
PhD Thesis

Machine Learning for Quantum
Physics and Quantum Physics

for Machine Learning

Author:
Patrick Huembeli

Supervisor:
Dr. Antonio Acín

February 6, 2021

iii

Acknowledgement

It is hard to decide to whom I am most grateful to that the last
four years went so well and that this PhD comes to a, hopefully,
successful end. But the three people that for sure were most
important for my academic success are my supervisor Antonio
Acín, Peter Wittek and Alexandre Dauphin. I am grateful, that
Toni gave me the opportunity to do my PhD in his group and
for all the support, trust and freedom he gave me during the
last years. Peter probably was the most influential person that
ever entered my professional life. From the beginning, he took
me under his wing, introduced me to the world of (quantum)
machine learning and gave me the opportunity to connect with
researchers all over the world. I will always remember his positive
can-do attitude and his sense of humor. And last but not least,
Alex guided me and my research on a daily basis. He always had
time for discussions, helped with new ideas and asked important
questions that improved my results and lead to new projects.

Life is a collection of many big and small interactions and
so is this thesis. I want to thank all my collaborators and the
people that supported me during the last years. A big thanks
goes to all former and current members of the QIT group. It was
always nice to work to a place with such a positive atmosphere.
Furthermore, I want to thank Samyo, Hara, Daniel, Jessica and
Vindhya who always had time for a quick coffee in the afternoon
to discuss private and work matters and with whom I became
close friends over the last years.

I am as well very thankful for all the opportunities I had to
travel abroad and visit other groups. A very special thanks to
Roger Melko who hosted me for four months in Waterloo and to
Xanadu and the Creative Destruction Lab who made it possi-
ble to visit Toronto for another five months. These were really
important experiences to me which let me grow as a researcher.

ICFO is an excellent place to do a PhD and I am very grateful
for all the support I got from ICFO members in IT, HR, Travel

iv

and many more. Thank you very much for all your hard work.
And finally, I dedicate a special thank-you to my girlfriend,

Helena, who always held my back. Even through this pandemic
she managed to make it a great experience to work from home.

v

Abstract

Research at the intersection of machine learning (ML) and quan-
tum physics is a recent growing field due to the enormous ex-
pectations and the success of both fields. ML is arguably one
of the most promising technologies that has and will continue to
disrupt many aspects of our lives. The way we do research is
almost certainly no exception and ML, with its unprecedented
ability to find hidden patterns in data, will be assisting future
scientific discoveries. Quantum physics on the other side, even
though it is sometimes not entirely intuitive, is one of the most
successful physical theories and we are on the verge of adopting
some quantum technologies of the second quantum revolution in
our daily life. Quantum many-body physics is a subfield of quan-
tum physics where we study the collective behavior of particles
or atoms and the emergence of phenomena that are due to this
collective behavior, such as phases of matter. The study of phase
transitions of these systems often requires some intuition of how
we can quantify the order parameter of a phase. ML algorithms
can imitate something similar to intuition by inferring knowledge
from example data. They can, therefore, discover patterns that
are invisible to the human eye which makes them excellent can-
didates to study phase transitions. At the same time, quantum
devices are known to be able to perform some computational task
exponentially faster than classical computers and they are able to
produce data patterns that are hard to simulate on classical com-
puters. Therefore, there is the hope that ML algorithms run on
quantum devices show an advantage over their classical analog.

This thesis is devoted to study two different paths along the
front lines of ML and quantum physics. On one side we study
the use of neural networks (NN) to classify phases of mater in
many-body quantum systems. On the other side, we study ML
algorithms that run on quantum computers. The connection be-
tween ML for quantum physics and quantum physics for ML in
this thesis is an emerging subfield in ML, the interpretability of

vi

learning algorithms. A crucial ingredient in the study of phase
transitions with NNs is a better understanding of the predictions
of the NN, to eventually infer a model of the quantum system and
interpretability can assist us in this endeavor. The interpretabil-
ity method that we study analyzes the influence of the training
points on a test prediction and it depends on the curvature of the
NN loss landscape. This further inspired an in-depth study of the
loss of quantum machine learning (QML) applications which we
as well will discuss.

In this thesis we give answers to the questions of how we can
leverage NNs to classify phases of matter and we use a method
that allows to do domain adaptation to transfer the learned "in-
tuition" from systems without noise onto systems with noise. To
map the phase diagram of quantum many-body systems in a fully
unsupervised manner, we study a method known from anomaly
detection that allows us to reduce the human input to a mini-
mum. We will as well use interpretability methods to study NNs
that are trained to distinguish phases of matter to understand
if the NNs are learning something similar to an order parame-
ter and if their way of learning can be made more accessible to
humans. And finally, inspired by the interpretability of classical
NNs, we develop tools to study the loss landscapes of variational
quantum circuits to identify possible differences between classi-
cal and quantum ML algorithms that might be leveraged for a
quantum advantage.

vii

Resumen

La investigación en la intersección del aprendizaje automático
(machine learning, ML) y la física cuántica es una área en crec-
imiento reciente debido al éxito y las enormes expectativas de
ambas áreas. ML es posiblemente una de las tecnologías más
prometedoras que ha alterado y seguirá alterando muchos aspec-
tos de nuestras vidas. Es casi seguro que la forma en que in-
vestigamos no es una excepción y el ML, con su capacidad sin
precedentes para encontrar patrones ocultos en los datos ayudará
a futuros descubrimientos científicos. La física cuántica, por otro
lado, aunque a veces no es del todo intuitiva, es una de las teorías
físicas más exitosas, y además estamos a punto de adoptar algunas
tecnologías cuánticas en nuestra vida diaria. La física cuántica de
los muchos cuerpos (many-body) es una subárea de la física cuán-
tica donde estudiamos el comportamiento colectivo de partículas
o átomos y la aparición de fenómenos que se deben a este com-
portamiento colectivo, como las fases de la materia. El estudio de
las transiciones de fase de estos sistemas a menudo requiere cierta
intuición de cómo podemos cuantificar el parámetro de orden de
una fase. Los algoritmos de ML pueden imitar algo similar a la
intuición al inferir conocimientos a partir de datos de ejemplo.
Por lo tanto, pueden descubrir patrones que son invisibles para
el ojo humano, lo que los convierte en excelentes candidatos para
estudiar las transiciones de fase.

Al mismo tiempo, se sabe que los dispositivos cuánticos pueden
realizar algunas tareas computacionales exponencialmente más
rápido que los ordenadores clásicos y pueden producir patrones
de datos que son difíciles de simular en los ordenadores clásicos.
Por lo tanto, existe la esperanza de que los algoritmos ML que se
ejecutan en dispositivos cuánticos muestren una ventaja sobre su
analógico clásico.

Esta tesis está dedicada a estudiar dos caminos diferentes a lo
largo de la vanguardia del ML y la física cuántica. Por un lado,
estudiamos el uso de redes neuronales (neural network, NN) para

viii

clasificar las fases de la materia en sistemas cuánticos de muchos
cuerpos. Por otro lado, estudiamos los algoritmos ML que se
ejecutan en ordenadores cuánticos. La conexión entre ML para
la física cuántica y la física cuántica para ML en esta tesis es
un subárea emergente en ML: la interpretabilidad de los algo-
ritmos de aprendizaje. Un ingrediente crucial en el estudio de
las transiciones de fase con NN es una mejor comprensión de las
predicciones de la NN, para eventualmente inferir un modelo del
sistema cuántico. Así pues, la interpretabilidad de la NN puede
ayudarnos en este esfuerzo.

El método de interpretabilidad que estudiamos en esta tesis
analiza la influencia de los puntos de entrenamiento en la predic-
ción de una prueba que depende de la curvatura del paisaje de
pérdidas de la NN. Esta dependencia inspiró además un estu-
dio en profundidad de la pérdida de aplicaciones de aprendizaje
automático cuántico (quantum machine learning, QML) que tam-
bién discutiremos.

En esta tesis damos respuesta a las preguntas de cómo pode-
mos aprovechar las NN para clasificar las fases de la materia y uti-
lizamos un método que permite hacer una adaptación de dominio
para transferir la "intuición" aprendida de sistemas sin ruido a
sistemas con ruido. Para mapear el diagrama de fase de los sis-
temas cuánticos de muchos cuerpos de una manera totalmente
no supervisada, estudiamos un método conocido de detección de
anomalías que nos permite reducir la entrada humana al mín-
imo. También usaremos métodos de interpretabilidad para es-
tudiar las NN que están entrenadas para distinguir fases de la
materia para comprender si las NN están aprendiendo algo simi-
lar a un parámetro de orden y si su forma de aprendizaje puede
ser más accesible para los humanos. Y finalmente, inspirados por
la interpretabilidad de las NN clásicas, desarrollamos herramien-
tas para estudiar los paisajes de pérdida de los circuitos cuánticos
variacionales para identificar posibles diferencias entre los algo-
ritmos ML clásicos y cuánticos que podrían aprovecharse para
obtener una ventaja cuántica.

ix

Contents

Acknoweldgement iii

Abstract v

Resumen vii

1 Introduction 1
1.1 State of the Art . 1

Phase Detection . 2
Quantum Variational Circuits 3

1.2 Motivation and main contributions 5
Phase detection with domain adaptation 5
Reinterpreting a phase transition as a data anomaly 7
Phase transitions and neural networks: Interpret-

ing the black box 8
VQC loss landscapes 9

1.3 List of publications 10

2 Background 13
2.1 Machine Learning: An overview 13

Supervised Learning 13
Transfer Learning and Domain Adaptation 14
Neural Networks 16
Convolutional Neural Network 18

Unsupervised Learning 19
NN Autoencoders 20

2.2 What is a Phase Transition? 22
Thermal Fluctuation 23
Quantum Fluctuation 24
Order Parameter 25
Reformulation of a phase transition into a ML task 26

2.3 Variational Quantum Circuits and Quantum Neu-
ral Networks . 30

x

Variational Quantum Circuits 30
Quantum Neural Networks 32

3 Domain Adversarial Phase Detection 35
3.1 Methods: Domain adversarial neural networks . . . 37

Input Data for the SSH model 41
Input Data for the Heisenberg model 41
Details of the neural network architecture . 41

3.2 Methods: The SSH model 42
The SSH model with disorder 42

Periodic and open boundary conditions . . 43
SSH model with long range hopping 44

3.3 Results: Domain adaptation with SSH 44
Open Boundary conditions 44
Periodic Boundary conditions 46
SSH model with long range hopping 47

3.4 Methods: Many-Body Localization 47
3.5 Results: Domain adaptation with MBL 49
3.6 Conclusions . 53

4 Anomaly Detection 57
4.1 Methods . 58

Anomaly Detection Method 58
The extended Bose Hubbard Model 60
Simulation Method and Input Data 62

4.2 Results . 65
Numerical Results 65
Phase separated supersolid and superfluid 70

4.3 Conclusion . 72

5 Interpretability of NN phase prediction 75
5.1 Methods . 76

Interpreting neural networks with influence functions 77
Influence function of Gaussian mixtures 79
Neural Network model for phase classification . . . 80
Physical Model: 1D half-filled spinless Fermi-Hubbard

model . 82
Data and code availability 86

5.2 Results . 86
Transition between LL and CDW-I. 86
Transfer learning 88

xi

Inferring the existence of the third phase 88
5.3 Conclusion . 91

6 Loss Landscapes of VQCs 93
6.1 Charaterization of the Loss Landscape with the

Hessian . 96
Hessian and Curvature 96
Loss landscape of neural networks: a brief review . 97
Computational methods 98

6.2 Loss Landscape of VQCs 98
6.3 Loss Landscape of VQCs: An Analytical Example . 99
6.4 Computation of the Hessian of a Quantum Circuit 103
6.5 Behaviour of a General VQC without Data 106
6.6 Training with Data 109
6.7 Escaping from Barren Plateaus with the Help of

the Hessian . 112
6.8 Conclusion . 114

7 Conclusions and Outlook 117
Domain Adversarial Phase Detection 118
Anomaly Detection 119
Interpretability of NN phase prediction 120
Loss Landscapes of Variational Quantum Circuits . 121

A DANN: Data analysis MBL 123

B Anomaly Detection: Phase discovery 125

C Anomaly Detection: Phases of the extended Bose Hub-
bard model 127

Critical Superfluid phase 128

1

Chapter 1

Introduction

1.1 State of the Art

In recent years the field of machine learning (ML) has shown enor-
mous progress and ML algorithms have been applied successfully
to many tasks that influence our life in multiple ways. The range
of applications is almost unlimited and goes from email spam fil-
tering, credit card fraud detections, to voice, face and written
word recognition, and many others. ML is a subfield of arti-
ficial intelligence that focuses on the study of algorithms that
can improve their performance in an automated fashion through
experience, which is provided in the form of sample data. The
success of ML soon started to draw attention from science and
learning algorithms, like neural networks (NNs), have been har-
nessed to solve problems of quantum chemistry, material science,
and biology [1, 2, 3, 4]. Physics is no exception and ML meth-
ods have also been explored by astrophysics, high-energy physics,
condensed matter physics, and quantum computing [5, 6, 7, 8, 9].

At the same time, parallel to the recent development in us-
ing ML algorithms on quantum physics, a new field is emerging:
quantum machine learning (QML). As shown in figure 1.1 we dis-
tinguish QML from classical ML solely by the hardware it is run
on. In this definition QML refers to ML tasks run on a quan-
tum computer independent on whether the data is of classical or
quantum origin, depicted in red. In green we depict ML assisted
quantum physics, the field of classical ML algorithms applied on
quantum data e.g. for the analysis of phase transitions.

2 Chapter 1. Introduction

C / Q Q / Q

Q / CC / C
H

ar
dw

ar
e

&
Al

go
rit

hm

Data / Problem

QML

Figure 1.1: A schematic representation of (Q)ML tasks dependent
on if the data or the hardware is classical or quantum (Q / C). We
differentiate QML (in red) from ML assited quantum physics (in green)

solely via the hardware that it is run on.

Phase Detection

Especially abundant is the use of ML for phase classification
which is not surprising if one considers that determining the
proper order parameters for unknown transitions is a highly non-
trivial task. Quantifying states of matter is often guided by in-
tuition of the researcher and requires a lot of experience and
sometimes even educated guessing. An alternative route was
shown, when NNs first located the phase transitions for known
systems without a priori physical knowledge [10, 11]. These find-
ings opened a new field of research following the question "Can
ML offer a qualitative advantage by assisting scientific discovery
in many-body physics? Or is it just a new tool for numerical
calculations?"

The main goals of the use of ML to distinguish phases of mat-
ter are manyfold. First, it is not yet entirely clear what kind of
phase transitions ML can detect and therefore, there are several
studies that apply ML on all kind of classical [10, 12, 13, 14],
quantum [11, 15, 16, 17, 18, 19], and topological phase transi-
tions [20, 21, 22, 23]. Second, a key feature of ML applied to
phase transition is its ability to classify states of matter without
human input. This indicates that the task of finding an order
parameter can be outsourced to the ML algorithm and we let it

1.1. State of the Art 3

decide what features are relevant to distinguish the phases. Espe-
cially in phase transition like the many-body localization (MBL),
where the standard Landau paradigm breaks down, it is not en-
tirely clear how we can best delineate the MBL phase. Therefore,
an automated extraction of relevant information is promising. Fi-
nally, ML algorithms are often opaque and the “reasoning” behind
a certain prediction is not accessible by human beings. For the de-
tection of phase transitions it is important for us, as researchers,
to understand how a NN came to its conclusion that a certain
state comes from one or another phase. To construct a model of
the physical system and its phase transitions, e.g. to design an or-
der parameter, we need to be able to extract this information from
the NN. While this issue has been addressed with specially con-
structed ML architectures that allow interpretability [24, 19], it
has so far not been possible to interpret more complex models for
phase detection and there is a demand for tools that allow, as well,
to interpret general models. To address this problem, we inves-
tigate new methods of how to leverage ML on data coming from
quantum systems in the Chapters 3 and 4. We show how partially
supervised and unsupervised methods can find phase transitions
even for systems with added noise, for completely new, unknown
phases and for the aforementioned MBL phase transition. Fur-
thermore, we show that NNs also have some numerical advantage
because they require less averaging for noisy systems. In Chap-
ter 5 we use a ML interpretability method to better understand
what a NN learns when it distinguishes phases of matter that is
generally applicable and not restricted to special case uses. We
will refer to these three topics as ML assisted quantum physics.

Quantum Variational Circuits

The discovery of the HHL algorithm [25] that allows to estimate
the solutions of systems of linear equations on a quantum com-
puter and its first experimental implementation [26] define a mile-
stone for the field of QML. Even though the HHL algorithm is not
an algorithm that is suited for noisy intermediate-scale quantum
(NISQ) devices [27], it as well brought a lot of attention to near
term quantum computers. HHL is strictly speaking not a QML
algorithm, but many ML protocols rely on performing matrix and
vector operations and therefore it was seen as an important step
also for the QML community. The term QML is mostly used

4 Chapter 1. Introduction

to refer to ML tasks that are run on a quantum computer with
the expectation to gain some advantage over classical computa-
tion [28]. Classical ML shows its strength in finding patterns in
data that are not visible to the human eye. Quantum computers
on the other hand are known to produce output data patterns
that are not simulateable on classical computers in reasonable
time [29]. Hence, the idea to use quantum computers to run ML
algorithms is driven by the hope that if a quantum computer
can produce complex output patterns, it can also detect patterns
that are difficult to recognize for a classical computer [30]. Re-
cent results rigorously prove that there are quantum speedups
for certain quantum kernel applications [31]. The discovery of
some seminal quantum algorithms that allowed to translate clas-
sical ML problems on a quantum computer finally put the field of
QML in the spotlight of recent research. These new algorithms,
namely, the quantum principal component analysis (qPCA) [32]
and the quantum support vector machine (qSVM) [33] used a hy-
pothetical fully error corrected quantum computer to harness a
quantum advantage for a data classification problem. Even be-
fore the appearance of the former algorithms, D-Wave showed
that their quantum annealer can be used to perform a classical
ML task called Boosting on their quantum annealer and named
it QBoost [34]. In the last few years other companies, such as
IBM and Google designed their own quantum computers that
are, compared to D-Wave, universal which means they have a
universal set of quantum gates that in theory allow to run any
quantum computation. All of these devices are not error cor-
rected and have of the order of 50 qubits and are therefore re-
ferred to as NISQ devices. These quantum computers do not
allow to run algorithms like qPCA and qSVM because the quan-
tum states would decohere before it would be possible to measure
an outcome and gate errors would not allow to apply sufficiently
many operations. To run ML applications on NISQ computer a
common choice is the use of variational quantum circuits (VQCs)
which are quantum algorithms composed of quantum gates that
are parametrized by a set of free classical parameters. These
VQCs have been applied on general optimization tasks such as
for example in chemistry [35] or to find ground states of classical
spin problem [36] and for ML problems such as classifying images
[37]. Even though these applications show promising results and
for some fault tolerant applications there is provable quantum

1.2. Motivation and main contributions 5

advantage [38], it is not yet clear if there is indeed an advantage
of using NISQ VQCs for ML tasks which is in contrast to the
aforementioned qPCA that has a mathematical provable advan-
tage over its classical analog [30]. It is of great interest to better
understand NISQ era QML algorithms and to identify possible
resources of a quantum advantage. Like for classical NNs, there
are results that show that some VQC architectures have universal
approximation properties [39, 40] that in theory allows to approx-
imate any function on a compact set. Nevertheless, compared to
classical ML literature there is a lack of general understanding
of VQCs. There is no general understanding of the loss mini-
mization and how the loss landscapes of QML algorithms look
like. We do not understand yet how stable the minima of the loss
landscapes are and how well they generalize to new data. Hence,
a first step to better understand VQCs is the development of tools
to study these issues.

1.2 Motivation and main contributions

This thesis focuses on three main questions. i) How can we ef-
ficiently leverage ML techniques, especially NN, to find phase
transitions? ii) Can we interpret the decision process of the NN
and gain more understanding about the phase transition? iii)
And finally, can we use techniques from classical ML on quantum
enhanced ML for a better understanding of VQCs? We study two
main approaches to the first question (i) of how to identify phase
transitions in quantum many-body systems with NNs and dedi-
cate two separate Chapters 3 and 4 to these approaches. Chapter
5 is dedicated to question (ii) and the interpretability of NN pre-
dictions, where the NN is trained on phase transitions. Chapter
6 is about question (iii) and the study of the loss landscape of
VQCs. In the following we introduce the main motivation and
questions behind these research topics and our contribution to
the field.

Phase detection with domain adaptation

The identification of phases of matter is a challenging task, es-
pecially in quantum mechanics. Determining the proper order
parameters for unknown transitions is not trivial, on the verge
of being an art. It includes the search in the exponentially large

6 Chapter 1. Introduction

Hilbert space and the examination of symmetries existing in the
system, guided by intuition and educated guessing. Traditionally,
physicists have to identify the relevant order parameters for the
classification of the different phases. The findings in [10] that a
simple NN can predict the phases of a classical Ising spin model
triggered a whole new research area of many-body physics and ML
which has produced spectacular successes in a short span of time
[10, 12, 13, 14, 21, 22, 41, 16, 22, 18, 11, 19, 17, 23]. Deep fully
connected and convolutional neural networks (CNN) have been
applied to detect phase transitions in a variety of physical mod-
els, for classical [10, 12, 13, 14], quantum [11, 15, 16, 17, 18, 19],
and topological phase transitions [20, 21, 22, 23] with supervised
[10, 41, 21, 16, 22, 18] and unsupervised [42, 12, 11, 19, 17, 23] ap-
proaches as well as for experimental data [43, 44]. The main idea
is to reinterpret a phase transition as a data driven process, which
can be learned by a ML algorithm or in our case more concretely
by a NN. If the phases are well understood, standard supervised
deep learning can be used to find out from which phase a unknown
test state comes [10, 17, 21]. Unsupervised techniques have so-far
been used in classical systems [19, 45], rely on the knowledge that
manually engineered features, such spin-spin correlators, capture
the physics of the phase transition [16] or require several retrain-
ings of the NN [11]. The problem we want to solve here, however,
is qualitatively different. We want to automatically learn the un-
known location of a phase boundary in a way, where we only need
labeled data from deep inside a phase. And we want to achieve
this without engineering features by hand and directly use the full
wave function coming from exact diagonalization which remains
a challenge for existing methods.

Our Contribution:

In Chapter 3, instead of defining and engineering an observable
that indicates a phase transition, a so-called order parameter, we
let the NN learn the relevant features to distinguish phases of
matter from unprocesses raw state vector as input data. We use
a technique called domain adversarial neural networks (DANN)
that allows to extract invariant features from the input data. This
is independent on where in the phase diagram the data comes
from or if it comes from a noisy system. We show the success of
this technique by applying it on two paradigmatic models: the

1.2. Motivation and main contributions 7

Su-Schrieffer-Heeger (SSH) model with disorder and the spin-1/2
Heisenberg chain in a random magnetic field that shows a many-
body localization (MBL) phase transition. The method finds un-
known transitions successfully and predicts transition points in
close agreement with standard methods. In the case of the MBL
phase transition it manages to do so with far less averaging over
different realizations than standard order parameters. Further-
more, we show that the DANN shows better performance than
standard transfer learning if the test points come from a Hamil-
tonian with added noise.

Reinterpreting a phase transition as a data anomaly

NNs have been shown to be excellent classifiers and they are
also exceptionally good at generalizing their learned knowledge.
Their main drawback is that in general classification settings they
have to be trained in a supervised manner. Even the domain
adversarial approach relies on two differently labeled sets of input
states that come from different phases. Often there is a region
in the phase diagram where one is sure to be in one or the other
phase, e.g. in the limits of integrability of the models. But for
a fully automated discovery of new phases this seems to be still
a mayor restriction. Some unsupervised approaches to identify
phase transitions show promising results [12, 11, 15, 19, 17, 23],
but they all have their own drawbacks. Either they are hard to
train and have to be retrained many times [11] or they so far only
work for classical systems [19]. We leverage a method known from
anomaly detection [46, 47, 48] that is based on NN autoencoders
and allows us to fully unsupervised map out the phase diagram
of the extended Bose-Hubbard model.

Our Contribution:

In Chapter 4 we demonstrate how to explore phase diagrams
with automated and unsupervised ML to find regions of inter-
est for possible new phases. In contrast to supervised learning,
where data is classified using predetermined labels, we perform
anomaly detection, where the task is to differentiate a normal
data set, composed of one or several classes, from anomalous data.
In this context, anomalous signifies that states coming from dif-
ferent phases than the states contained in the training set show
qualitative differences. As a paradigmatic example, we explore

8 Chapter 1. Introduction

the phase diagram of the extended Bose-Hubbard model in one
dimension at exact integer filling. We employ deep NNs to deter-
mine the entire phase diagram in a completely unsupervised and
automated fashion. As input data, instead of the wavefunction,
we use scalable information, such as the the entanglement spectra
and central tensors derived from tensor-networks algorithms for
ground-state computation. Later we extend our method and use
experimentally accessible data such as low-order correlation func-
tions as inputs. Apart from mapping the whole phase diagram,
our method allows us to reveal an unknown phase-separated re-
gion between supersolid and superfluid parts with unexpected
properties. This region appears in the system in addition to the
standard superfluid, Mott insulator, Haldane-insulating, and den-
sity wave phases.

Phase transitions and neural networks: Interpreting
the black box

Despite their success, NNs normally do not allow any insight into
the reasoning behind their predictions. The models that were
first able to locate phase transitions for known systems with-
out a priori physical knowledge [10, 11] are largely opaque. The
same is true for the DANN and the anomaly detection with AE
in the Chapters 3 and 4. ‘Artificial intelligence’ was provided by
extracting it from data, which is in stark contrast with a physi-
cists’ main driving force: the need to understand the underlying
mechanisms of the process. The need for ML interpretability was
already apparent after the first successful use of ML in physics.
The numerical power of ML cannot be denied, but without inter-
pretable predictions it might just be another numerical tool. At
the moment, we rely on black-box predictions that solely return
labels without any explanation or deeper motivation. Even in
phase classification problems, where NNs have been often used,
we usually cannot be fully confident that NNs learn order param-
eters. The necessity for interpretation has been already stressed
by physicists, but proposed methods are either restricted to lin-
ear models [24], to particular NN architectures [19], or require
pre-engineering of the data, which makes them very specific to
both the ML and physical model [49].

1.2. Motivation and main contributions 9

Our Contribution:

In Chapter 5 we show how an interpretability method called influ-
ence function can be used in the classification of quantum phase
transitions to understand what characteristics are learned by a
ML algorithm. This method does not rely on the a priori knowl-
edge on the order parameter or the system itself, and it is straight-
forwardly applicable to any physical model or experimental data
with no dependence on the architecture of the ML model. An
influence function is an approximation method of a leave one out
(LOO) training that helps to determine which training examples
are the most relevant for a given prediction. We demonstrate how
influence functions can unravel the black box of NN when trained
to predict the phases of the one-dimensional extended spinless
Fermi-Hubbard model at half-filling. We discuss how to interpret
the influence function and see if a relevant physical concept was
indeed learned or if the prediction cannot be trusted. As well, we
present that an interpretable NN can give additional information
on the phase transitions, not provided to the algorithm explicitly.

Our results provide strong evidence that the NN correctly
learns an order parameter describing the quantum transition of
the Fermi-Hubbard model. Moreover, we demonstrate that influ-
ence functions not only allow checking that the network can pre-
dict new unknown phases, but even allow physicists to be guided
in understanding patterns responsible for the phase transition.

VQC loss landscapes

In recent years, ML techniques enhanced by NISQ devices and es-
pecially variational quantum circuits (VQC) have attracted much
interest and have already been benchmarked for certain problems.
Inspired by classical deep learning, VQCs are trained by gradient
descent methods which allow for efficient training over big pa-
rameter spaces. For NISQ sized circuits, such methods show good
convergence. There are however still many open questions related
to the convergence of the loss function and to the trainability of
these circuits in situations of vanishing gradients. Furthermore,
it is not clear how “good” the minima are in terms of general-
ization and stability against perturbations of the data and there
is, therefore, a need for tools to quantitatively study the conver-
gence of the VQCs. The use of the influence function inspired
us to study the spectrum of the Hessian of a loss landscape that

10 Chapter 1. Introduction

contains information of the curvature of the minima of classical
NNs.

Our Contribution:

In Chapter 6 we introduce a way to study the loss landscape of
VQCs with the spectrum of its Hessian. This opens a systematic
way of quantifying loss landscapes and helps us to compare QML
to classical ML algorithms. This idea of studying the Hessian was
inspired by a ML interpretability method that we use in Chapter 5
and the interpretability of ML algorithms is the connecting piece
between ML assisted quantum physic and QML in this thesis.
We introduce a way to compute the Hessian of the loss function
of VQCs and show how to characterize the loss landscape with
it. The eigenvalues of the Hessian give information on the local
curvature and we discuss how this information can be interpreted
and compared to classical NNs. We benchmark our results on
several examples, starting with a simple analytic toy model to
provide some intuition about the behavior of the Hessian, then
going to bigger circuits, and also train VQCs on data. Finally,
we show how the Hessian can be used to escape flat regions of
the loss landscape.

1.3 List of publications

This thesis is based on the following publications:

• Identifying Quantum Phase Transitions with Adversarial Neu-
ral Networks, P. Huembeli, A. Dauphin, P. Wittek , Physi-
cal Review B 97, 134109 (2018).

• Automated discovery of characteristic features of phase tran-
sitions in many-body localization, P. Huembeli, A. Dauphin,
P. Wittek, C. Gogolin , Physical Review B 99, 104106 (2019).

• Unsupervised phase discovery with deep anomaly detection,
K. Kottmann, P. Huembeli, M. Lewenstein, A. Acin, Phys-
ical Review Letter 125, 170603 (2020).

• Phase Detection with Neural Networks: Interpreting the
Black Box, A. Dawid, P. Huembeli, Michal Tomza, M. Lewen-
stein, A. Dauphin, Accepted in New Journal of Physics
(2020).

1.3. List of publications 11

• Characterizing the loss landscape of variational quantum
circuitsP. Huembeli, A. Dauphin ArXiv preprint: 2008.02785.

Other works of the author that are not included in
this thesis:

• QuCumber: Wavefunction reconstruction with neural net-
works, M. J. S. Beach, I. De Vlugt, A. Golubeva, P. Huem-
beli, R. G. Melko, E. Merali, G. Torlai , SciPost Phys. 7,
009 (2019).

• Towards a heralded eigenstate preserving measurement of
multi-qubit parity in circuit QED, P. Huembeli, S. Nigg,
Phys. Rev. A 96, 012313 (2017).

13

Chapter 2

Background

In this chapter we introduce some concepts and notions that will
be used throughout this thesis. We review some basic concepts
of ML, interpretability and VQCs. Furthermore, we discuss the
notion of phase transitions and its mapping to a ML task. We
will leave the detailed descriptions of the ML models, as well as
the details about the physical many-body models that we will
investigate, to the Chapters 3, 4 and 5. The details of about the
VQCs is discussed in Chapter 6. Therefore, expert readers may
skip this chapter.

2.1 Machine Learning: An overview

This section gives a brief general introduction into ML terminol-
ogy and the methods that will be used for the phase transition
prediction in the chapters 3, 4 and 5 in this thesis.

Supervised Learning

In supervised learning, the training data set D = {(xi, yi)}Ni
contains a feature vector xi coming from an input space X to-
gether with a target value yi coming from an output space Y .
The training data is drawn from the unknown joint probability
distribution P defined on X × Y . The learning process aims to
find a function f : X → Y that correctly predicts the target
value yi ∈ Y of a given input xi ∈ X. The function f is param-
eterized with the parameters θ and its output is the predicted
target value y′i = f(xi,θ). The aim of a supervised task is to
tune the parameters θ such that the model eventually is capa-
ble to predict the target value of new data samples from P that
were not contained in the training data set. Most used examples

14 Chapter 2. Background

for supervised learning are regression and classification tasks. In
this thesis we only use classification and therefore we do not go
into detail for regression problems. A classification is the task
of assigning a discrete output (a class) to the input, where the
inputs xi can be anything from images, to text or in our case to
detect phase transitions xi can be a wavefunction or a physical
observables of a many-body system. In classification tasks we
refer to the target value yi as the label of the input data xi. It
contains the class information, for example if an image shows a
cat or a dog or in our case it will say if an input wavefunction is
a state coming from phase A or phase B of a system. To train a
supervised model we define a loss l(yi, y′i) which quantifies the dif-
ference between the prediction of the model y′i = f(xi,θ) and the
actual label yi and via gradient descent we minimize the empirical
risk L(θ) =

∑
x,y∈D l(f(x,θ), y). Commonly used losses are the

mean square error loss or the (binary) cross-entropy loss [50]. We
say that a ML model generalizes well, if the generalization error∑

(x,y)P̃ l(f(x,θ), y) is small.

Transfer Learning and Domain Adaptation

Transfer learning refers to the generalisation of knowledge that
was gained by the training of a model with one input data dis-
tribution and applying it to a new but similar data distribution
or to the same data distribution but with a different tasks [51].
A task in this context is what the ML model is supposed to de-
tect. For example one task could be to label states from different
phases and another could be to detect entangled and states with
no entanglement. Figure 2.1 shows the different areas of transfer
learning and how it can be distinguished from the “usual” super-
vised learning setting.

Domain adaptation is a special kind of transfer learning, where
the input space X and the output space Y of the ML model are
the same but the distribution of the data p(x, y) for x ∈ X and
y ∈ Y changes [53]. A domain is the combination of the input
space X, the output space Y and the associated probability dis-
tribution p(x, y). The training data set in this context comes
from the so called source domain S = (X,Y, pS). With the no-
tation we indicate, that the source domain is defined by a source
distribution pS over X × Y . Normally in supervised tasks the
test set is coming from the same distribution as the training set

2.1. Machine Learning: An overview 15

Same Source and Target

Distribution p(x)

Same Task on Source and

Target Domain

Same Task on Source and

Target Domain

“Usual” Learning Inductive 
Transfer Learning

Transductive 
Transfer Learning

Unsupervised 
Transfer Learning

Transfer Learning

Domain Adaptation

Yes

Yes Yes

No

NoNo

Figure 2.1: Comparing the usual supervised setting with transfer
learning and positioning domain adaptation inside transfer learning
via the distribution of the input data p(x, y) and the task that has to
be fulfilled. Domain adaptation is the setting where the source and
the target domain have different input data distributions, but for both
domains the same task has to be learned. Figure is inspired by [52]

and therefore there is only a single domain. In domain adaptation
tasks the test set stems from a different domain, which we call the
target domain T = (X,Y, pT). An example for domain adapta-
tion is the MNIST-M dataset [54], which is the original “Modified
National Institute of Standards and Technology” (MNIST) hand-
written digits dataset with new color schemes (see Figure 2.2).
The source set is the original MNIST data and the target set are
MNIST images with colors. Already with such a simple setup,
standard NN training schemes without domain adaptation strug-
gle to identify the images with new colors, because the classifiers
do not know what to do with the additional color information.
Domain adaptation on the other side helps the NN to identify
invariant features of both domains. In our case for the detection
of phase transitions domain adaptation can be used for models
with noise, where the source domain are the eigenstates of a sys-
tem without noise and the target domain are the eigenstates of a
system with noise.

The general idea of domain adaptation is that there is a do-
main invariant space, where the data of the source and the target
domain can be represented indistinguishably and therefore the
classification can be done independent on which domain the data

16 Chapter 2. Background

Figure 2.2: A sample from the original MNIST hand written digits
dataset in black and white and the extended MNIST-M dataset with

different color schemes for the digits and the backgrounds.

comes form. Domain adaptation focuses on finding this domain-
invariant space.

Neural Networks

NNs are a way to parametrize a function. The building blocks of
a NN are artificial neurons which are functions that take an input
vector x = (x1, x2, . . . , xn) and output a value y = σ(

∑
iwixi+b)

(See Figure 2.3(a)). The parameters wi are called weights and b is
called the bias of the neuron. We emphasize here that throughout
the manuscript xi refers to the whole input vector and xi is a
single element of the vector xi. The function σ(·) is an arbitrary
non-linear function which we call activation function. Commonly
used activation functions are the rectified linear units (ReLU) and
the sigmoid function as described in Equation 2.1 and 2.2.

ReLU: f(x) = max(0, x) (2.1)

Sigmoid: f(x) =
1

1 + e−x
(2.2)

A NN is a combination of several such neurons, where the outputs
of some neurons are the inputs of others. To train a NN it is
imperative to have a way to efficiently calculate its gradient. To
do so, we organize its neurons in layers. A layer is a group of
neurons that are not connected within each other but with the
same input (See Figure 2.3(b)). The output of the i-th layer of

2.1. Machine Learning: An overview 17

neurons is only the input of the (i + 1)-th layer and they are
connected via wires with weights expressed as a matrix W i with
the single neuron weights wi. If we structure the neurons in this
manner, we are able to take the gradient layer by layer and use
the chain rule for derivatives. This procedure is often referred
to as backpropagation [55]. The first layer of a NN is normally
referred to as the input layer where the data x ∈ X is used as an
input. The last layer of a NN is referred to as the output layer
of the NN and it returns the prediction of the label or regression
y. The intermediate layers are referred to as hidden layers hi.
The weights and biases of all these layers are the parameters that
have to be adjusted during the training. Since each neuron in one
layer is connected to all the neurons in a consecutive layer, this
kind of NN is also referred to as a fully connected NN. The notion
of deep learning refers to the amount of layers used in a NN, but
it is not clearly defined what amount of hidden layers classifies
as deep. In this thesis we will refer to NNs that have more than
one hidden layer as deep and NNs with only one hidden layer as
shallow.

x1

x2

xn

y

w1

w2

wn

σ (∑
i

wixi + b)

(a)

x1

x2

xn

y1

y2

yn

W1 Wl

h1 hl−1

(b)

Figure 2.3: Perceptron and Neural Network: a) A schematic
representation of a neuron: A non-linear function σ(·) processes an
input vector x by taking the dot product w · x with a weight vector
w = (w1, w2, . . . , wn) and by adding a bias value b. b) A NN is a

combination of several neurons organized in layers.

Deep learning has been successfully used on countless prob-
lems in the last decade. From image recognition [56] to natural
language processing [57] and to generate videos and music [58]
that has never been played by humans. Cars learn how to drive
autonomously and robots learn how to walk and grab objects
thanks to NNs. They have been proven to be very versatile and
they are also relatively easy to train via gradient based methods,

18 Chapter 2. Background

such as stochastic gradient descent. Theoretical results show that
NNs are universal approximators [59] which means that any con-
tinuous function f : X → Y on a compact input space X can be
approximated by a NN with only one hidden layer. It also has
been shown that the use of deep NNs allows us to learn certain
problems with much less neurons compared to a shallow neural
network [60], which hints at a possible explanation of why deep
learning is so successful.

Convolutional Neural Network

Fully connected NNs have certain shortcomings. For example the
number of weights scales withO(ni·ni+1) with the number of neu-
rons ni and ni+1 of two consecutive layers. For big input data,
such as images of millions of pixels or in our case a quantum state
vector ofm spins andO(2m) dimensions, the number of weights in
fully connected NNs is growing fast already for shallow NNs and
optimization becomes infeasible. If we want to be able to build
deep architectures, we have to use less weights per layer. Fur-
thermore, fully connected NNs, as well, do not take into account
spatial hierarchies of features of the input data [61] because we for
example have to reshape images to 1-dimensional vectors. This
implies, for example for image data, that a fully connected NN
does not take into account that pixels that are spatially close in an
image should also show more correlation than pixels far apart in
an image. The convolutional neural network (CNN) architecture
takes this shortcoming into account and also helps to reduce the
number of weights substantially. The main idea behind a CNN
is depicted in Figure 5.4 and as its name says, a small so-called
kernel matrix (often also referred to as a filter) is used as so-called
receptive field that convolves through the input data. A kernel
is nothing else than group of neurons that take spatially limited
amount of input values from the previous layer and outputs a
value for the next layer. In contrast to the fully connected NN
this group of neurons is moved along the input data vector and
does the same calculation for each position on the input vector
with the same weights. Therefore one kernel convolves the whole
input and the number of weights does not depend on the input
size anymore but only on the number of input elements that are
processed by the kernel, i.e. the size of the kernel. Later we will

2.1. Machine Learning: An overview 19

use one-dimensional and two-dimensional CNNs, dependent on if
the input data is a vector or a matrix.

Pooling is another technique that is used in convolutional NNs
to reduce the dimensionality of the representation between the
NN layers, often referred to as a feature representation. A typ-
ical way of pooling is maximum pooling, which takes a certain
amount of output values of a kernel and takes the maximum of
them. Typically the pooling is also done with a receptive field
that slides along the outputs of a convolutional layer and pools
the values inside the receptive field together to a single value.
Typical pooling functions are the mean and the maximum value
of the inputs.

K1
Input Output

K1
K1

K1
K2

=

=

∑
k,l∈{1,3}

xi+k−1,j+l−1 ⋅ kk,l
1

K1

k1,1
1 k1,2

1 k1,3
1

k2,1
1 k2,2

1 k2,3
1

k3,3
1k3,2

1k3,1
1

K2

k1,1
2 k1,2

2 k1,3
2

k2,1
2 k2,2

2 k2,3
2

k3,3
2k3,2

2k3,1
2

xi,j xi,j+1 xi,j+2

xi+j,i ⋯

⋯

⋯

⋯⋯
*

*
xi,j xi,j+1 xi,j+2

xi+j,i ⋯

⋯

⋯

⋯⋯
∑

k,l∈{1,3}
xi+k−1,j+l−1 ⋅ kk,l

2

Figure 2.4: Convolutional Neural Network: Schematic repre-
sentation of a CNN in 2D with two different kernels K1 and K2. A
Kernel of a given size, here with 3× 3 pixels convolves along the input
image and for each position {i, j} on the input image a kernel Km

returns a value
∑
k,l∈{1,3} x

i+k−1,j+l−1 · kk,lm . Optionally, a kernel can
also have an additional bias term and normally the kernel output is

furthermore processed via a non-linear function σ(·).

Unsupervised Learning

In contrast to supervised learning, for unsupervised learning the
data D = {(xi)}Ni does not have a target value yi and instead
of learning an output value, the aim of supervised learning prob-
lems is to find (hidden) structures in data. Typical tasks for un-
supervised learning include the clustering of data, where groups
within a given dataset are discovered, the estimation of proba-
bility densities of the data and the learning of low-dimensional
representations of data to better visualize it while maintaining
the original structure of the data. Typical examples of the latter

20 Chapter 2. Background

are the principal component analysis (PCA) and T-distributed
Stochastic Neighbor Embedding (t-SNE) which we will later use
in section 3 to post-process the latent variable from a NN.

NN Autoencoders

NN autoencoders are an example of an unsupervised ML method.
An autoencoder consists of two consecutive NNs fθ : X → Z and
gφ : Z → X, parametrized by θ and φ. The function z = fθ(x)
is the encoding part of the NN that maps the input data x ∈ X
to a, normally, lower dimensional space z ∈ Z. Throughout this
thesis we will use the notation f(x,θ). x̄ = gφ(z) = g(z,φ)
is the decoder that maps the lower dimensional representation
z back to x′ ∈ X. The aim of the training of a NN autoen-
coder is to find a low dimensional representation z ∈ Z that
allows a decoding such that x ≈ x̄. Instead of comparing the
NN output x′ with a label like in a supervised NN setting, we
compare it with the input x. To do this we define a loss function
l(x̄,x) = l(g(f(x,θ),φ),x). The training itself can be done via
gradient descent and the minimization of the average loss over
the whole data set L(θ,φ) =

∑
x∈D l(x̄,x). The mean square

error is commonly used in this setting.

Machine Learning Interpretability

As stated in [62], the age of ML will bring an enormous reduc-
tion in the cost of prediction. Often confused with a general
artificial intelligence, current ML algorithms are simple predic-
tion machines. At least for supervised tasks. One one side they
also have shown great success in learning from complex data and
at predicting new patterns. The actual learning process on the
other side is not accessible for humans and it is difficult for us to
understand, why a ML algorithm came to a certain conclusion.
In this section we give a brief introduction into the field of inter-
pretability of ML, which is the study of why a ML model came to
a certain prediction. We would like to outline a rough idea what
interpretability means and emphasize that this itself is an ongo-
ing research question [63] and therefore we only explain the basic
idea of interpretability. In chapter 5 we apply an interpretability
method called Influence Function, on the ML prediction of phases
and explain it in more detail.

2.1. Machine Learning: An overview 21

In [64] the authors point out that the need for interpretability
arises from an incompleteness in problem formalization. For cer-
tain ML prediction tasks, it is not sufficient to get the prediction
(the “what”) with high accuracy. The model must also explain
how it came to the prediction (the “why”) because a correct pre-
diction only partially solves the original problem. In physics, and
in our particular case of the prediction of phase transitions, the
“why” is of highest importance because we as scientists would like
to gain new insight and understanding of the physics of a model
via the NN predictions. The emphasis of interpretability is ex-
pressed in the following statements: “Interpretability is the degree
to which a human can understand the cause of a decision” [65]
or “the degree to which a human can consistently predict the
model’s result” [66] and “The ability to explain or to present in
understandable terms to a human” [64]. For the task of predicting
phase transitions with ML the motivation is not necessarily that a
human can easily understand the underlying physics but the con-
struction of new models is primarily in the focus. As stated in
[67] “interpretable ML refers to methods and models that make
the behavior and predictions of ML systems understandable to
humans”. To predict a phase transition we want to be capable of
extracting information about the decision process that eventually
lead to a model that helps us to understand the different phases.

The interpretability of ML algorithms is divided into two main
categories. There are intrinsic interpretable and post-hoc inter-
pretable models. Intrinsic interpretable models are self- explana-
tory and their interpretability is built directly into their struc-
ture. Examples for this kind of models are decision trees, rule
based models, but also class activation maps [68]. Post-hoc in-
terpretable models are black boxes and require additional tools
and models to do interpretation. Post-hoc interpretability is also
often referred to as model-agnostic interpretability [69] and is
generally done after the training of a model [70]. In practice for
post-hoc interpretability the focus lies mostly on the test points
and through the perturbation of the features of the input data
[71] one can understand how the fitted model behaves under these
perturbations and how important a certain feature is. Another
way is to locally fit a simpler model (e.g. a linear one) to a
test point for Local Interpretable Model-agnostic Explanations
(LIME) [72]. Therefore post-hoc analysis is primarily focused on
the test dataset and not on the training of the model itself.

22 Chapter 2. Background

The influence function [73, 74, 75, 76, 77] that we use and
introduce in full detail in Chapter 5 focuses more on the question
of how the model arrived at this test point prediction and asks
what would happen if a certain training point was excluded from
the training. This is still in the spirit of the post-hoc analysis
but with a slightly rephrased question and with less focus on the
features of the test point but more on the training set as a whole.

2.2 What is a Phase Transition?

This section is dedicated to give some background in (quantum)
phase transitions and clarify some terminology around many-
body physics. The description of the specific physical models will
follow in the respective chapters when we apply ML to identify
the phase transitions. Concretely, in Chapter 3 we study the Su-
Schrieffer-Heeger (SSH) model that hosts a non-trivial topological
phase and the Heisenberg spin-1/2 model in a random magnetic
field that shows a many-body localization (MBL) phase transi-
tion. In Chapter 4 we investigate the extended Bose-Hubbard
model with its rich phase diagram and in Chapter 5 we use the
extended Fermi-Hubbard model as a benchmark.

The study of phase transitions often requires a deep under-
standing and some intuition of the underlying physics. Espe-
cially, for more “exotic” phase transitions such as many-body-
localization it is not yet entirely clear how to exactly identify the
critical point as the underlying physics is not fully understood and
standard Landau theory is not applicable because it is a phase
outside thermodynamic equilibrium. Therefore, this section is
not only an introduction into phase transitions themselves, but it
will also show why the use of ML to identify phases of matter is
promising. We start with a very general overview and refer to the
later chapters for a more specific introduction to physical models
and their phase transitions.

Most people get for the first time in contact with phases of
matter and their transitions on the example of melting and va-
porising ice, where the phase of water goes from solid to liquid
and from liquid to gas. For everyday life it is often sufficient to
know that there are these three states of matter. As we will see in
this thesis there are many more of them. Furthermore, it is also
worth mentioning that a phase transition is a very general phe-
nomenon and does not necessarily refer to a state of matter but it

2.2. What is a Phase Transition? 23

can be a more abstract concept. Just to name two examples for
such abstract transitions, a computational phase transition refers
to a sudden change in satisfiability or run-time of a computa-
tional problem [78], and a Hopfield network experiences a phase
transition if too many patterns are stored and the memory states
become unstable [79].

The microscopic study of a many-body system like water
comes with the challenge of the exploding numbers of degrees
of freedom with growing system size if we would want to keep
track of every single molecule. Thermodynamics on the other
side allows us to describe a macroscopic system with a few vari-
ables such as temperature and pressure. In the case of melting
ice, a smooth change of a thermodynamic parameter, e.g. the
temperature, leads to an abrupt change in the state of matter
which results in the transition from ice to water or from water
to steam. This is called a phase transition and the temperature
at which it occurs is called the critical temperature. Probably
the most famous model for such a thermal phase transition in
physics is the Ising model that changes its state with increasing
temperature from an ordered (anti)ferromagnetic to a disordered
paramagnetic state. The systems that we will study in this thesis
are at zero temperature and their phase transitions are of pure
quantum nature. The distinction between classical and quantum
phase transition (CPT and QPT) is a distinction of non-zero and
zero temperature transitions. Both, QPT and CPT can occur
because of the change of the external conditions of the system
such as temperature (for CPT only), pressure or magnetic field.
As we later will see, QPTs also occur because of competing terms
in the Hamiltonian of the system.

Thermal Fluctuation

The reason for the occurrence of a transition at non-zero tem-
perature T is the competition between the inner energy and the
entropy in the free energy F = U−ST which is minimal if the sys-
tem is in equilibrium. The inner energy U tends to be minimized
in ordered phases and the entropy S is maximal for disordered
states. With growing temperature T the contribution of the en-
tropy on the free energy increases and the system will end up in
a higher energy state U . For high temperatures the entropy term
becomes dominant and the order that may exist gets destroyed.

24 Chapter 2. Background

This is often referred to as thermal fluctuations. More formally,
according to the Ehrenfest classification of phases, one can de-
scribe a CPT as a singularity in the free energy or its derivative
with respect to a thermodynamic variable. If the free energy or its
derivative becomes singular also other thermodynamic quantities
such as the entropy and the specific heat become singular.

To come back to our initial example, when transiting from
one phase to another the melting of ice is among the examples
that we will study in this thesis a special case, because the two
phases water and ice can coexist. This is possible, because at
melting temperature T = 0◦C there is some amount of latent
heat needed to transform the remaining ice into water. If the
phases become indistinguishable if we approach the critical point
and one phase transits continuously into another phase we call
them continuous or second order phase transitions. The notion of
second order comes from the second derivative of the free energy
in CPT which is discontinuous. As we will later see, a similar
notation will also be used for Landau’s theory of phase transi-
tion. And the order of the transition refers to the continuity of
the derivatives of the order parameters. If the critical point is
approached the spatial correlations become long ranged and di-
verge as χ ≈ (|T −TC |/TC)−ν , where ν is the critical exponent of
the correlation length. With a diverging correlation length other
observable quantities diverge as well. The collective behaviour of
all these quantities at the critical point and their power law decay
is usually referred to as critical behaviour.

Quantum Fluctuation

In the quantum case, instead of the entropy competing with the
inner energy, competing parameters of the basic interactions of a
system lead to phase transitions. Instead of thermal fluctuations,
quantum fluctuations are responsible for the change of the phase.
More formally this means that certain parts of the Hamiltonian
compete with each other. To illustrate this on a simple example
we introduce the transverse field Ising model in one dimension,

H = −J
∑
〈i,j〉

σzi σ
z
j − h

N∑
i

σxi , (2.3)

2.2. What is a Phase Transition? 25

where J is the interaction strength between the spins, h is the
transverse field strength, σ{x,z} are the pauli spin operators, 〈i, j〉
indicates the sum over nearest neighbours and N is the total
number of spins. In this simple model, the interaction term leads
to order, which indicates in the extreme case of h = 0 and J > 0
the lowest energy state can be achieved if the spins all align in the
σz direction. An increasing transverse field h on the other side
leads to spins aligning in the σx direction. The ground state of
the transverse field part of the Hamiltonian is the product state
|+〉N of the single spin equal superposition |+〉 = 1/

√
2(|0〉+ |1〉).

Therefore, the ground state of the Hamiltonian is in a competition
between its interaction and the field part.

Order Parameter

The Ehrenfest classification depends on a thermodynamical de-
scription of the system and its phases. Quantum phase transition
occur at zero temperature and we, therefore, use a different way to
study and quantify phases. A typical approach is to characterize
them with a “degree of order” introduced by Landau [80], which
nowadays referred to as an order parameter, that mostly is a local
observable of the system. The function of an order parameter is
to describe the order of a phase compared to another phase to
determine its boundaries. It is non-zero for an ordered and zero
for a disordered phase. This again can be a rather abstract no-
tion of order and depends on the system. Furthermore, the order
parameter captures the symmetries of the ordered phase and its
values will go to zero if the symmetry is spontaneously broken at
the phase transition. This definition holds for both classical and
quantum systems. This so called Landau theory of phases can de-
scribe spontaneous symmetry breaking phases and the transition
between these phases. We will also encounter quantum systems
where spontaneous symmetry breaking will not be sufficient to
characterize the phases of a system and no order parameter in
the sense of the Landau theory exists. Examples for such "new"
phases are topological phases or MBL.

A possible order parameter of our previous example, the trans-
verse field Ising-model, is the average magnetization of the sys-
tem M = 1/N

∑N
i 〈σzi 〉 that is 6= 0 in the ordered phase. In the

disordered phase, where h � J and the magnetization M = 0,

26 Chapter 2. Background

the groundstate |ψ0〉 is invariant under the Z2 "spin-flip" sym-
metry, |ψ0〉 = ⊗Ni σxi |ψ0〉. In the ordered phase the Z2 symme-
try is broken which is a consequence of the degeneracy of the
ground state of the ordered phase. As an example, both states
|ψ1〉 = |↑↑↑ · · ·〉 and |ψ2〉 = |↓↓↓ · · ·〉 are groundstates of the
system for h = 0. They are not invariant under a Z2 transforma-
tion |ψ2〉 = ⊗Ni σxi |ψ1〉 6= |ψ1〉 [81]. Therefore, the system has to
“choose” a groundstate when it undergoes a phase transition from
the disordered symmetric state to the ordered symmetry broken
state. This is what spontaneous symmetry breaking means.

An important question that we will investigate in this thesis
is how ML can help us to identify phases of matter and how we
can interpret ML predictions and to eventually include them in
our research. To achieve this we will have to introduce a refor-
mulation of a phase transition phenomena to a ML task. To do
so we conclude this brief overview over the most important con-
cepts of phase transitions with a very general description of what
a phase and a phase transition is. A phase is a (equilibrium) state
of matter that does not qualitatively change for small changes in
external parameters and within this phase the thermodynamical
potential is an analytic function of the external parameters. A
phase transition is a qualitative change in the state of the system,
where the thermodynamical potential becomes unstable with re-
spect to the external parameters and behaves non-analytically.
For QPT instead of the thermodynamical potential the ground
state energy becomes a non-analytic function of the non-thermal
external parameters.

Reformulation of a phase transition into a ML task

In this thesis we will look at a shift in paradigm in many-body
physics that was first introduced by [10] where the authors refor-
mulate the problem of finding a phase transition into a supervised
ML task. The task is to distinguish the ferromagnetic from the
paramagnetic phase of the classical 2D Ising model with nearest
neighbour interactions. For this purpose the two phases were la-
beled and a fully connected NN was trained on spin configurations
of both phases. What probably started as a pure curiosity if the
ML algorithms are capable of finding these transitions evolved to
a much more fundamental goal which is often referred to as a self-
driving laboratory [82], which in the case of many-body physics

2.2. What is a Phase Transition? 27

would be an algorithm that can find new materials and phases
of matter without human input. To automate the discovery of
phase transitions it will be necessary to formulate the problem
in an unsupervised manner or to use transfer learning to train a
ML algorithm one a well known model and use it to find phase
transitions on an other model. We use both concepts and study
them extensively in the Chapters 3 and 4.

Apart from automatizing research, avoiding human input has
another important reason. We as humans can bias the decision
making process of the ML algorithms by introducing a priori
knowledge about the underlying physics of the system and es-
pecially in the case of MBL phase transitions research has shown
that the order parameters that were engineered by physicists do
not even agree within error bars [83]. This leads to the ques-
tion that the order parameters chosen by physicists might not be
the most efficient approach to finding the exact critical point and
that instead of telling the machine what kind of order it has to
look for, we let the algorithm learn and decide itself what part
of the input data is most relevant to find phase transitions. The
interaction of a researcher with a ML algorithm and how we pre-
pare the data is a crucial step and it will eventually also bias
the outcome of the ML training and the predictions of the algo-
rithm. Bias can occur from the choice of the input data. There
is a famous example of a ML algorithm that was supposed to dis-
tinguish wolves from huskies. With interpretability methods the
researchers found that most images from wolves were taken in a
snowy environment and the ML algorithm only learned the snowy
background of the photographs [84] and therefore did not learn to
distinguish the animals. Clearly, this is a rather extreme example
and in physics the bias can be more subtle. For example when
the researcher already knows the physical system well and uses
the known order parameters as an input. This will most likely
prevent the discovery of new physics, because the ML algorithm
will not be able to extract new or unknown qualitative changes
in the data.

We can think of quantum states or measurements coming from
a quantum system, matching a particular choice of parameters,
as data instances with a label which indicates the corresponding
phase if we intend to do a supervised ML setting. The discrim-
ination of the phases can happen via supervised training, when
the phases are known in advance, or via unsupervised training,

28 Chapter 2. Background

when the phases are unknown. The latter is clearly harder, but it
is also more interesting from a physics perspective, since it would
allow us to map out an unknown phase diagram. In Chapter 3 we
use a supervised approach, where we label quantum states com-
ing from deep inside the phase, where one has some certainty of
which phase a state is coming from and after the training the NN
labels the test states close to the transition to find the critical
parameter. In Chapter 4 we discuss a fully unsupervised method,
that can map out the whole phase space after being trained on a
set of quantum states that come from an arbitrary region of the
phase space.

Different strategies can as well be adopted for the choice of
the inputs of the NN. The first one would be to feed the order
parameter or several order parameters to the machine and let it
find the phase transition points. This approach is very intuitive
for physicists but its main weakness is the requirement of ad-hoc
engineering as one has to know which are the relevant order pa-
rameters. As described before, this could be a possible source for
bias. The second one would be to feed directly the ground state
of the Hamiltonian to the algorithm and let the machine itself
discover the order parameters and the phase transition points.
In Chapter 3 we follow the second strategy. Namely, we use the
wavefunction coming from exact diagonalization as and input.
In Chapter 4 we don’t have access to the full wavefunction be-
cause we use the density matrix renormalization group (DMRG)
method. Therefore, we use the entanglement spectrum as an in-
put. In our opinion the wavefunction is the most unprocessed
input data that is accessible from simulations. If exact diago-
nalization is not possible and the data has to be obtained by
DMRG we use the entanglement spectrum. It is directly acces-
sible from DMRG data and it is unbiased in the sense that it
does not presume physical knowledge of the system but it is the
mere spectrum of the reduced density matrix ρA = TrB |ψ〉 〈ψ|
of the system |ψ〉. We will also study the use of the whole (cen-
tral) tensor of a matrix product state from a DMRG simulation
and we will also test certain ML methods with correlator data
that are in theory accessible from experiments. The latter case
is discussed in Chapter 4 and it becomes evident that the choice
of measurements in an experiment already gives a strong bias on
what phase transitions can be detected because for example topo-
logical phase transitions become invisible to the ML algorithm if

2.2. What is a Phase Transition? 29

the measurement is local.
Recent works have shown the feasibility of supervised and

unsupervised phase detection. Standard unsupervised methods,
such as principal component analysis or t-Distributed Stochas-
tic Neighbor Embedding (t-SNE), have been used to characterize
phase transitions in several systems such as Ising model, the XY
model or the Hubbard model [19, 17, 42]. Other works used
shallow NNs, i.e. fully connected NNs with a few layers, to char-
acterize models such as the Ising model or the Bose–Hubbard
model [11, 15, 17, 19]. The latter approaches all used fully con-
nected learners, which do not scale well with the input size and
depth of the network and have limited ability to extract features
from the input [85]. Therefore the input of the NN had to be
either small or hand-crafted, as in the case of using correlation
functions.

This stands in contrast to deep learning, that revolutionized
ML by providing automated means of extracting high-quality fea-
ture spaces from raw data [86]. Deep learning networks, however,
struggle with the unsupervised scenario, and they are mainly ap-
plied in supervised problems. A body of work studied classi-
cal [10, 12, 13, 14] and quantum [15, 18, 19] phase transitions,
and even topological phases [20, 21, 22, 23] with deep supervised
architectures. Since automated feature extraction is desirable to
investigate more complex systems, a few recent works ventured
into using unsupervised deep learning techniques for studying
phase transitions. Boltzmann machines are a computationally
expensive, but highly expressive method [87], and computation-
ally efficient feedforward CNNs can be tweaked in some cases
to perform unsupervised learning [16] or transfer learning [17].
Furthermore, there is an unsupervised method called learning by
confusion [11] which has the main drawback that it has to be
trained many times.

We can conclude that ideally one leverages deep convolutional
NNs on phase transition problems, with input data that is not bi-
ased and therefore not engineered. Instead of using shallow learn-
ers one lets deep architecture extract features automatically. The
convolutional input layers are advantageous in reducing the di-
mensionality of the input state vectors and therefore hand-crafted
dimensionality reduction can be avoided.

30 Chapter 2. Background

2.3 Variational Quantum Circuits and Quan-
tum Neural Networks

In the chapter 6 we study the loss landscape of variational quan-
tum circuits (VQCs) and Quantum neural networks (QNNs) with
the Hessian. We introduce here the basics of VQCs and leave the
details of how to obtain a gradient of a quantum circuit and the
exact architectures that we use to the discussion in chapter 6.

Variational Quantum Circuits

The wave function contains all the information of a quantum
state, but in general an exponential amount of classical informa-
tion is needed to encode it. Because of this “curse of dimension-
ality” that makes the wave function grow exponentially with any
additional spin or particle of a quantum many-body system there
is a plethora of techniques how to approximate quantum states
with classical representations. Just to name a few, there are quan-
tum Monte Carlo (QMC) methods [88, 89, 90], matrix product
states (MPS) [91, 92, 93], general tensor networks [94, 95] and in
recent years NNs have been used as an ansatz for the wavefunc-
tion [96, 97]. These methods all have in common that they rely on
unnormalized parametrized wave functions |ψ(θ)〉 and optimize
these parameters to minimize the energy

E(θ) =
〈ψ(θ)|H|ψ(θ)〉
〈ψ(θ)|ψ(θ)〉 (2.4)

to eventually find an approximation of the ground state of the
system described by the Hamiltonian H.

In recent years NISQ devices [27] have become accessible and
one of their most promising applications are VQCs. Since NISQ
devices don’t scale well and are still too noisy, it is not possi-
ble to run quantum algorithms on them that require error cor-
rected qubits, like Shor’s algorithm [98] for integer factorization
or Grover’s algorithm [99] to search a database. Instead, NISQ
devices can be used to implement parametrized quantum circuits
from which one can obtain measurements that would be in gen-
eral hard to simulate on a classical computer. The idea of a VQC
is, instead of parametrizing the wavefunction with classical ob-
jects such as MPS or NNs, one uses a quantum circuit with gates
that are parametrized with the free parameters θ and measures

2.3. Variational Quantum Circuits and Quantum Neural
Networks 31

|0⟩

|0⟩

|0⟩

|0⟩

R (ω1)
R (ω2)
R (ω3)
R (ω4)

R (ω5)
R (ω6)
R (ω7)
R (ω8){ {

L1(θ1) L2(θ2)

Figure 2.5: A way to
approximate a general uni-
tary is to use general
SU(2) qubit rotation gates
R(ω) = RZ(α)RY (β)RZ(γ)
followed by CZ gates and
repeat it several times. A
layer Li(θ) is defined by
R(ω) gates applied to each
qubit followed by CZ gates
that create entanglement.

observables that allow to calculate the energy. With the same
optimization techniques as in classical ML tasks, one can opti-
mize the parameters θ to find low energy states. These methods
are often referred to as quantum-classical hybrid optimizations,
because the quantum circuit is only used to sample the measure-
ments and the optimization itself is done classically.

In the NISQ devices that are currently available the parametrized
gates are often limited to single qubit Pauli rotations Ri(φ) =
exp(−iφ/2σi), where σi are the Pauli spin-1/2 matrices, with
i ∈ {x, y, z}. To approximate a general n-qubit unitary one can
use combinations of single qubit rotations followed by 2-qubit op-
erations such as a controlled NOT (CNOT) or a controlled Z (CZ)
gate like in Figure 2.5 and repeat this pattern several times. A
general n-qubit unitary would require O(2n) of one and two qubit
gates [100] and is not feasible on current devices. A possible way
to circumvent the growth of the circuit ansatz is to choose an ar-
chitecture that is well suited for certain classes of problems, such
as for example the Quantum Approximate Optimization Algo-
rithm (QAOA) ansatz [101]. In chapter 6 we will look at simple
combinations of rotational gates and 2-qubit gates.

Independent of the circuit ansatz we refer to the parametrized
circuit as V (θ) and the variational state is given by |ψ(θ)〉 =
V (θ) |0〉, where |0〉 = |0〉⊗n is the standard n-qubit initial state
of the device. With the aforementioned quantum-classical hy-
brid optimization one can optimize the expectation value 〈O〉 =
〈ψ(θ)|O|ψ(θ)〉 of any measurable observable O, the energy of the
state 〈E(θ)〉 = | 〈ψ(θ)|H|ψ(θ)〉 | or as well just try to maximize
the fidelity 〈ψ(θ)|ψT 〉 with a possible target state |ψT 〉.

32 Chapter 2. Background

|0⟩

|0⟩

|0⟩

|0⟩

V1(⃗x) V2(θ)

(a)

|0⟩

|0⟩

|0⟩

|0⟩

R (ω1)
R (ω2)
R (ω3)
R (ω4)

R (ω5)
R (ω6)
R (ω7)
R (ω8)

L1(⃗x , θ1) L2(⃗x , θ2)

R (⃗x)
R (⃗x)
R (⃗x)
R (⃗x)

R (⃗x)
R (⃗x)
R (⃗x)
R (⃗x)

(b)

Figure 2.6: Possible realizations of QNNs: a) A unitary V1(x)
encodes the classical data into a quantum state and the free parameters
θ of the unitary V2(θ) are adjusted until we obtain a certain measure-
ment. b) The reuploading scheme from [39] is constructed by layers
of general single qubit rotations R(ω) = RZ(α)RY (β)RZ(γ) with free
parameters ωi and the input data x as their rotation angles. For a
classification task with only two classes a single qubit measurement is
sufficient and the measurement outcomes 〈σZ〉 = ±1 are interpreted

as the label prediction of the QNN.

Quantum Neural Networks

QNN are VQCs where parts of the parameters θ are not free,
but dependent on input data xi coming from a data set D =
{(xi, yi)}Ni . The variational state takes the form |ψ(θ,xi)〉 =
V (θ,xi) |0〉. Instead of optimizing the energy of such a state we
reinterpret the measurement of an observable as the prediction of
a label of the QNN. For example one can measure the expectation
value

〈ψ(θ,xi)|σZ |ψ(θ,xi)〉 = 〈σZ〉θ,xi
(2.5)

on one of the qubits and interpret the measurement outcomes
〈σZ〉θ,xi

∈ [−1, 1] as the prediction y′ for the input data xi. Anal-
ogous to the classical NN a loss l(y′, y) can be defined and the
ideal parameters θ̃ can be found via the minimization of the em-
pirical risk

L(θ) =
∑

(x,y)∈D

l(〈σZ〉θ,x , y) (2.6)

Figure 2.6(a) shows an example for a QNN architecture [102]
where the unitary V (θ,xi) = V1(θ)V (xi) is separated in a unitary

2.3. Variational Quantum Circuits and Quantum Neural
Networks 33

that depends on the data x and another part that depends on free
parameters θ. The first part of the circuit is used to prepare a
quantum state from the classical input data x with a unitary
V1(x) that returns a state V1(x) |0〉 = |ψ(x)〉. This part is often
referred to as state preparation. The parameters θ of the unitary
V2(θ) are free and have to be optimized by the training scheme.

Figure 2.6(b) shows a different approach of how to encode the
data into the quantum state |ψ(θ,xi)〉. In this scheme an alter-
nating pattern between single qubit rotations R(x) that depend
on the data and R(ω) that depend on free parameters encode the
data inputs onto the quantum state. The subfield of the study
of encoding strategies drew recently a lot of attention [103] and
shows promising result that might lead to a better understand-
ing of QNNs. The specific architecture that we use in this thesis
is shown in Figure 2.6(b) and it will be discussed in detail in
Chapter 6.

35

Chapter 3

Domain Adversarial Phase
Detection

A phase diagram shows qualitative changes in many-body sys-
tems as functions of the parameters of the physical system and
the task of physicists is to identify the correct order parameter
that captures this change. As discussed in 2.2, in the Landau
theory of phase transitions, a discontinuity of the local order pa-
rameter or of one of its derivatives indicates a phase transition. In
more exotic systems, the order parameters are global as it is the
case for topological phases or topological insulators. The search
of the right order parameters and the derivation of the phase di-
agram in terms of the parameters of the Hamiltonian prove to be
very challenging tasks. Already for non-interacting Hamiltoni-
ans, where the addition of disorder or quasiperiodic disorder can
lead to Anderson localization [104, 105] or to topological phase
transitions [106, 107], distinguishing the phases can be demand-
ing. The interplay of disorder and interactions can even give rise
to many-body localization (MBL) [108] which is a phase transi-
tion not at thermal equilibrium and is, therefore, not captured by
Landau’s theory.

As described in Section 2.2 we can reformulate the distinction
of phases of matter as a ML task, where the aim is to discriminate
data instances with different labels or even in an unsupervised
manner. In this Chapter we deploy a supervised method that
only relies on labeled quantum states coming from deep inside
the phase.

An example where ML assistance is much needed is the de-
lineation and characterization of the aforementioned MBL phase,

36 Chapter 3. Domain Adversarial Phase Detection

exhibited by systems with many interacting quantum particles ex-
periencing a (strong enough) static disordered background poten-
tial. This research problem has attracted an immense amount of
attention recently [109, 110, 111, 112, 113, 114, 115, 116] because
MBL challenges long-held believes about the phase structure of
isolated systems and even the applicability of standard equilib-
rium statistical mechanics, which no longer correctly captures the
long-time behavior in that phase. Many details of how this break-
down happens remain elusive, despite the known characterization
of MBL in terms of local conserved quantities [117, 118] and an
extensive and ongoing debate [111, 114, 113, 116].

Traditionally, physicists have to identify the relevant order
parameters for the classification of the different phases. We here
in this Chapter follow a radically different approach: we address
this problem with a state-of-the-art domain adaptation method
called Domain Adversarial Neural Network (DANN) to derive
the phase diagram of the whole parameter space starting from a
fixed and known subspace. Through an adversarial approach, the
DANN is capable of extracting invariant features of two different
domains.

We benchmark the DANN method on two models. First we
use the SSH model with disorder to benchmark the DANN’s ca-
pability to do domain adaptation between state vectors coming
from a Hamiltonian with and without disorder. Later we extend
the SSH model to long range interaction because in this model
new winding numbers appear and therefore, we can use the long
range interaction to see if the invariant feature extraction also
works for new phases. The second model that we investigate is
the spin-1/2 Heisenberg chain in a random magnetic field that ex-
periences a MBL phase transition. The capability of the DANN
to extract invariant features from noisy data and, therefore, cap-
ture the relevant physics of the phase transition allows to “invent”
a new “order parameter” for the MBL phase transition that yields
meaningful results. Furthermore we show that the DANN can ex-
tract these features from vastly fewer disorder realizations than
established methods.

This approach avoids ad-hoc feature engineering and does not
make assumptions about the input data, relying on deep learning
to extract an expressive feature space. Furthermore our archi-
tecture allows to scale the size of the input because of the CNN.
We show that in both cases, for the SSH model and the spin-1/2

3.1. Methods: Domain adversarial neural networks 37

Heisenberg model, the DANN shows advantageous behaviour over
other techniques. The knowledge transfer for the SSH model from
data without noise to data with noise does not work with NNs
without domain adaptation, but it shows good results with the
DANN architecture. For the MBL transition we address two ma-
jor roadblocks preventing further progress: First, it yet remains
unclear what the best approach is to delineate the MBL phase.
Physicists have come up with a whole zoo of quantities whose be-
havior can serve as an indicator for the transition, but the various
phase boundaries they imply, do not agree within error bars [112]
and controlling finite-size effects is a challenge [119]. Second, all
of these quantities need to be averaged over an enormous number
of disorder realizations (often 10.000 [110, 112, 120]) to get mean-
ingful results. Highly optimized codes allow in principle to study
systems of up to 26 spins [115], but with the known quantities,
going beyond 22 spins is prohibitively expensive because of dis-
order averaging [115]. We show that the DANN can capture the
relevant features with up to 100x fewer disorder realizations to
obtain objective and more accurate predictions of the transition
point.

The rest of this Chapter is structured as follows. Section 3.1
reviews the idea of domain adversarial adaptation and discusses
how this algorithm can be a powerful tool for the classification
of phase transitions. In Section 3.2 we give an introduction into
the SSH model, and Section 3.3 demonstrates the efficiency of the
technique on the (SSH) model with disorder and long range hop-
ping. Section 3.4 gives an introduction into the spin-1/2 Heisen-
berg model in a random magnetic field and the MBL phase tran-
sition and Section 3.5 shows how the DANN can be used to find a
MBL phase transition with vastly fewer disorder realizations than
other, non-ML based methods. Finally, Section 3.6 is dedicated
to conclude the chapter.

3.1 Methods: Domain adversarial neural net-
works

The DANN is a deep learning method to do domain adaptation—
also known as adversarial domain adaptation—where the feature
extraction layers, consisting of a CNN, are trained to be invariant
between a supervised source data distribution and a potentially

38 Chapter 3. Domain Adversarial Phase Detection

unsupervised target data distribution [121]. We use a deep learn-
ing technique to let the ML algorithm decide what features are
relevant to be in the domain invariant space and to introduce as
little assumptions about the physics of the system as possible.

(a)

(b)

Figure 3.1: (colour) Schematic representation of our architecture. (a)
Given a parametric Hamiltonian, we find the ground states sampled
from two different distributions, e.g. noise levels of the Hamiltonian.
For one of them—the source—we know the labels. For the other one—
the target—we do not. A CNN is used as a feature extractor. The final
layer of the representation is fed into a domain and a label classifier to
find the correct phase labelling and to identify which domain the data
comes from, respectively. The gradient reverse layer adds a negative
constant to the back propagation of the domain classifier, which makes
the feature distributions of the two domains similar. (b) We send the
unlabelled examples across the trained feature extractor, and feed the
high-dimensional representation to unsupervised learning methods to

identify the phase transition.

As described in Section 2.1, for domain adaptation we have
two types of input data distributions, which we refer to as dif-
ferent domains. In our case, these distributions come either from
two different regions of the phase diagram of a model or from

3.1. Methods: Domain adversarial neural networks 39

two different regimes of noise in the model. Concretely, in the
case of the MBL phase transition one data distribution comes
from deep inside the phases from a wide range of energies where
one can be sure how to label the data. The other distribution
comes from a region close to the phase transition where labelling
is not possible. For the SSH model the well-known, labelled data
distribution consists of eigenstates coming from a Hamiltonian
without noise and the unknown data comes from a Hamiltonian
with noise. The task of the NN is to learn from the labeled in-
stances and adapt this knowledge to the new unknown instances
coming from another distribution. Since the data is coming from
two different domains we have to extract features from the data
that are invariant under the domain. In other words, we need to
extract only the features from the input data that are relevant
for phase discrimination and not for domain discrimination. To
achieve this, the DANN setup consists of three parts: the fea-
ture extractor, the label classifier, and the domain classifier as
shown in Figure 3.1(a). To make the features invariant under the
domain information, the DANN is trained such that the domain
classifier cannot distinguish between them anymore. The label
classifier on the other side is only trained on the source data. Af-
ter the training, we predict the labels of the data from the target
domain by feeding the inputs to the feature extractor and the
label classifier, without the domain classifier. Alternatively we
can as well not use the label classifier and apply unsupervised
algorithms such as t-SNE [122, 123], k-means clustering [124] or
density-based spatial clustering of applications with noise [125]
directly on the feature representation.

In our case, the labelled input data set of a well known region
of the phase diagram of the model is called the source data DS =
{(xs, ys)} and comes from the source domain S. The data set
coming from an unknown region, without labels, is called the
target data DT = {(xt)} and comes from the target domain T .
Our goal is to predict the labels yt for given inputs xt of our target
data. To distinguish whether the input xi is coming from the
source or target distribution, we introduce the domain label di,
which is di = 0 if xi is from our source distribution or di = 1 if xi
is from the target distribution. During the training of the DANN,
we feed the input x ∈ S ∪ T into the feature extractor where it
is mapped to a high-dimensional feature vector f = Gf (x,θf).
This latent representation of the state vectors is forwarded to the

40 Chapter 3. Domain Adversarial Phase Detection

label classifier Gy(f ,θy) and the domain classifier a = Gd(f ,θd).
The θi represent the parameters that have to be learned through
the training.

The feature extractor consists of CNNs, composed of many
different filters. After a convolutional layer, we apply a max-
pooling layer to further reduce the dimensionality of the input.
Since there is only labelled data for the source part of the input x,
the loss of the label classifier can only be calculated by the source
part of the feature vector f . The loss of the domain classifiers can
be calculated on all the inputs x ∈ S ∪ T .

To train the network we define the domain and classifier losses
Ld, Ly. As described in Ref. [121], the domain classifier loss is a
regularization of the label classifier. Therefore the training of the
DANN optimizes

E(θf ,θy,θd) = Ly(θf ,θy)− Ld(θf ,θd) (3.1)

by finding the saddle point

(θf ,θy) = argmin
θf ,θy

E(θf ,θy,θd) (3.2)

(θd) = argmax
θd

E(θf ,θy,θd). (3.3)

The update rule for the feature extractor therefore has the form

θf ← θf − µ
(
∂Ly
∂θf

− ∂Ld
∂θf

)
, (3.4)

which can be implemented via stochastic gradient descent and the
gradient reversal layer [121]. The domain classifier should not be
able to distinguish the two domains because their feature repre-
sentation is invariant. This is achieved by training the parameters
of the domain classifier θd such that the domain loss Ld is mini-
mal. At the same time, the parameters θf of the feature extractor
are identified by minimizing the function E(θf ,θy,θd). Since the
domain loss also depends on the feature extraction parameters
θf , this optimization problem has an adversarial character and
leads to a competition between the optimization of the domain
classifier and the label prediction loss or E(θf ,θy,θd). This re-
sults in a domain classifier that is well trained, but is unable to
distinguish the domains, as the feature representation of the two
domains is invariant. For the label classifier’s output, the training

3.1. Methods: Domain adversarial neural networks 41

is similar except that both parameters θf and θy minimize the
classifier loss.

To predict the labels of the target distribution, we can either
apply the label classifier or directly use unsupervised methods as
t-SNE or k-means on the feature representation.

Input Data for the SSH model

The ground state of the non-interacting SSH model can be found
via the diagonalization of the single particle Hamiltonian H =∑
c†iHi,jcj . Here, we use a system size of 32 unit cells. The input

data for the DANN are the fermionic occupied states, which are
the states with negative energy eigenvalues and the zero energy
state. We arrange these states in a matrix, where the eigenstates
are the columns. Therefore the input data is two dimensional.

Input Data for the Heisenberg model

The spin-1/2 Heisenberg model has to be diagonalized in the full
σZ basis and therefore ground states can only be obtained up to
a system size of N = 18 spins. The input of the NN is the ground
state vector of 2N dimensions.

Details of the neural network architecture

For the SSH model the feature extractor of our DANN consists
of two-dimensional convolutional layers each with 32 filters. For
two dimensional inputs (SSH), the receptive field size is 3×3 and
the pooling size is 2× 2. The input size in 2D is for every model
64× 64.

For the Heisenberg model the feature extractor of our DANN
consists of four one-dimensional convolutional layers with four
filters each and a filter length of 3. The input to the first layer is
the ground state. Each layer has four of these filters, extracting
different features of the input to the layer.

The fully connected layers of the NN are built in the same
way for both physical models. The label classifier and the do-
main classifier have the same architecture and they contain 128
hidden ReLU neurons and 2 softmax output neurons. The dif-
ference between them is the gradient reversal layer between the
feature extractor and the domain classifier. The activation func-
tion of these layers are rectified linear units (ReLUs). This is

42 Chapter 3. Domain Adversarial Phase Detection

a piecewise linear function that outputs zero for negative values
and a linear response for positive values. While NNs tradition-
ally used nonlinear activation functions, the ReLUs have better
numerical properties when training the network with many lay-
ers. Each of those layers is followed by a max-pooling layer that
pools from three neighboring neurons. This is a critical step for
coarse-graining the representation: we pick the maximum of the
value of the activation over three neighboring points and discard
the other two. In effect, we reduce the dimension of the vector by
two-thirds in each of these pooling layers. Pooling does not only
ensure a lower-dimensional representation, but it also enables that
the subsequent convolutional layer identifies longer range corre-
lations in the original data. We apply batch normalization after
every layer, which introduces a slight stochastic variation in the
scale of the characteristics of the input states, and thus reduces
the chance of overfitting. Furthermore, for both models, we use
dropout [126] for the fully connected layers in the phase discrim-
inator and adversarial networks, which is standard practice in
achieving better performance.

To ensure the reproducibility of our results, we made the
source code available under an open source license [127] where
one can find details about the exact NN architecture, pooling
and learning rates.

3.2 Methods: The SSH model

The SSH model with disorder

The SSH model is a relatively simple and well studied model that
shows a topological phase transition. Because of this we chose to
use this model to benchmark our NN to find out if it can predict
global state properties such as the winding number. Furthermore,
we can add noise to the inter site hopping amplitudes which allows
us to study the NN prediction with noisy input data. Here we
introduce some basics about the model. The results of the NN
phase classification is discussed in Section 3.3.

The SSH model is a one-dimensional-chiral model that ex-
hibits topological properties: this system is characterized by a
global topological invariant, the winding number. The term chiral
model refers to the chiral symmetry of the Hamiltonian ΓHΓ =
−H, with a local unitary operator Γ. This chiral symmetry leads

3.2. Methods: The SSH model 43

j1 j2

(a)

j1 j2

j3

j4
(b)

Figure 3.2: Caption

to a symmetric energy spectrum and therefore each eigenstate of
the Hamiltonian |ψ+〉 has a chiral partner |ψ−〉 with the energies
±ε(k) for a fermi energy EF = 0 [128]. The winding number
ν =

∮
dk
π i 〈ψ+|ψ′−〉 (with |ψ′−〉 = ∂k |ψ−〉) is either 0 or 1, being

ν = 1 in the topological non-trivial phase [129].
The Hamiltonian of non-interacting spinless fermions reads

HSSH =
∑
n

j1,nc
†
nσ1cn + j2,n

[
c†nσ+cn+1 + h.c.

]
, (3.5)

with the pauli matrices σi and σ+ = σ1 + iσ2. The SSH model is
a tight-binding model with a two site unit cell. j1,n is the hopping
amplitude within the unit cell and j2,n is the hopping amplitude
for between the unit cells (See also Figure 3.2(a)). We study this
model at half filling, which means we have one electron per unit
cell. This model describes a 1D chain of two different types of
alternating nuclei that are coupled and the electrons can move
along the chain.

The disorder can be added in the hopping parameters j1,n =
j1 +W1ωn and j2,n = j2 +W2ω

′
n, where ωn and ω′n are randomly

distributed numbers in the interval [−0.5, 0.5]. And W1 and W2

indicate the disorder strength of the two hopping amplitudes j1
and j2.

A phase transition from the topologically trivial (ν = 0) to a
topological phase (ν = 1) occurs at j2 = j1 with the topological
phase in j2 > j1.

Periodic and open boundary conditions

We study the SSH model with open and periodic boundary con-
ditions (OBC and PBC). For PBC we set j2,N = j2,0 for N unit
cells, which connects the N − th unit cell with the first one. The

44 Chapter 3. Domain Adversarial Phase Detection

winding number does not depend on the boundary conditions,
but for OBC one obtains edge states for ν = 1 at zero energy.

SSH model with long range hopping

We also consider the SSH model with nearest-neighbour hopping
j1 and j2, and third-nearest neighbour hopping j3 and j4, as
shown in Figure 3.2(b), which has the Hamiltonian

H = HSSH +
∑
n

j3,nc
†
nσ1cn+1 + j4,n

[
c†nσ+cn+2 + h.c.

]
. (3.6)

In this case, the phase diagram becomes richer with higher wind-
ing numbers [130]. By considering third-nearest neighbour hop-
ping j3 and j4, additionally to the winding numbers ν = 0, 1,
we can also obtain winding number ν = ±1,±2. We study this
model to find out if domain adaptation is able to transfer knowl-
edge of the short range SSH model to new unknown phases with
higher winding numbers.

3.3 Results: Domain adaptation with SSH

To train the DANN we generate source states with no disorder
W = 0 and label them analytically with the winding number.
The states in the topologically trivial phase have label 0 and the
states in the topological phase have label 1. We then generate a
target dataset with W1 = 2W2 = W , where the correct labelling
is unknown. For increasing disorder the winding number and the
DANN output is averaged over several disorder realizations.

Open Boundary conditions

We first apply the algorithm for the system with open boundary
conditions. Figure 3.3(a) shows the classifier output for different
disorder strengths averaged over 1000 disorder realizations. We
correctly identify a shift of the topological phase transition with
increasing disorder, which is in accordance with Ref. [107]. Fur-
thermore, we compared the phase transition points with the one
obtained from the winding number defined in Ref. [107], shown
in Figure 3.3(b). Remarkably, the DANN predicts precisely the
transition point.

3.3. Results: Domain adaptation with SSH 45

(a) (b)

Figure 3.3: SSH with open boundary conditions. (a) Neuron output
of the SSH model for different disorder strength W and for a system of
64 sites with open boundary conditions. The results are averaged over
1000 disorder realizations. (b) Comparison of the phase predictions of
a convolutional NN without domain adaptation (CNN), with the do-
main adversarial approach (DANN) and with the winding number for
different values of j1 and fixedW = 2. While the transfer learning fails,
the phase transitions predicted by the DANN are in good agreement

with the winding number.

We also compare the DANN prediction with a CNN with the
same label classifier and feature extractor but without the do-
main adaptation. To compare the efficiency of domain adversar-
ial adaptation to the one without domain adaptation, we train a
NN composed of a feature extractor and a classifier on the states
without disorder. The architecture of the feature extractor and
the classifier is chosen to be the same as the one of the domain
adaptation. Figure 3.3(b) compares the predictions of the phase
diagram of the SSH model with disorder W = 2.0 without do-
main adaptation (blue), with domain adaptation (dashed dark)
and with the winding number (green). In this case, the CNN is
not able to predict the label of input states with disorderW = 2.0,
where the DANN is in good agreement with the winding number.
This shows that the DANN is able to extract the relevant features
from the noisy input states and a conventional CNN is not.

46 Chapter 3. Domain Adversarial Phase Detection

Periodic Boundary conditions

We then focus on the case of periodic boundary conditions. Here,
in the absence of edge states the label classifier struggles to ac-
curately predict the phase transition, as presented in Fig. 3.4(a).
This is related to the fact that, within periodic boundary condi-
tions, the classifier has to find a global property of the bulk of the
system. Nevertheless, we can still perform unsupervised learning
directly on the invariant feature representation. We first apply
the t-SNE algorithm [122] which allows us to reduce the dimen-
sion of the feature representation to two. Figure 3.4 shows the
t-SNE plot for one realization of disorder W = 0.2. The trivial
(circles) and topological states (triangles) form two clearly sepa-
rated clusters that can be labelled with k-means clustering. This
method allows us to find the phase transition with good accuracy.

DANN-Classifier

k-means

(a) (b)

Figure 3.4: (colour) (a) k-means classification applied on the feature
space of the DANN trained on SSH model with periodic boundary
conditions compared to the DANN label classifier output. For periodic
boundaries. The classifier of the trained DANN can not distinguish
the phases of states with disorder. (b) Clustering of the two phases
with t-SNE. The shapes indicate the correct labelling, the colours show
the labelling found by k-means. If we apply k-means clustering on the
low-dimensional embedding provided by t-SNE on the feature space,
the labelling works well and the phase boundary can be found with an
accuracy of j1/j2 = 1 ± 0.01. The plots shows the SSH model with

periodic boundary conditions with disorder strength W = 0.2

3.4. Methods: Many-Body Localization 47

SSH model with long range hopping

The SSH model with long range hopping shows new winding num-
bers and our purpose is to see whether our scheme allows one to
predict these new, unseen phases. As before, we generate source
states for the SSH model for j2 = 1, j3 = j4 = 0 and label them
analytically with windings 0 and 1. We then produce target states
for the SSH with long range hopping for j2 = j1 = 1 and j3 = 0.
Although the classifier has been trained to distinguish data points
with windings 0 and 1, it accurately detects phase transitions be-
tween trivial and topological phases, as shown in Figure 3.5(a)
(solid line), even if the topological phase is of higher winding
number ν = 2 that has not been part of the training. Further-
more, when analysing the feature space directly, additionally to
the clustering trivial / topological phases we find a subcluster-
ing in the topological phase that separates ν = 1 from ν = 2.
K-means can predict the labels of the trivial phase (ν = 0) with
high accuracy. The transition between winding numbers ν = 1
and ν = 2, on the other hand, is not accurate close to the phase
transition, as shown in Figure 3.5(a) (dashed line). Nevertheless,
far from the phase transition, the k-means algorithm labels the
phases correctly.

3.4 Methods: Many-Body Localization

After successfully benchmarking the DANN architecture on the
SSH model, we study the problem of delineating the MBL phase
boundary in the prototypical spin-1/2 Heisenberg chain in a ran-
dom magnetic field, described by the Hamiltonian

H =
1

2

N∑
i=1

∑
α∈{x,y,z}

σαi σ
α
i+1 −

N∑
i=1

hi σ
z
i , (3.7)

with σx,y,zi the Pauli matrices on site i and the hi are drawn from
the uniform distribution over [−h, h].

Even though closed quantum systems follow unitary time evo-
lution, at low enough disorder they have been shown to be able to
thermalize [131], which is often referred to as that they satisfy the
eigenstate thermalization hypothesis (ETH) [132]. In a nutshell,
for a system that satisfies the ETH the reduced density matrix
of a subsystem A ρA = TrB(|n〉 〈n|) where B is the complement

48 Chapter 3. Domain Adversarial Phase Detection

(a) (b)

Figure 3.5: (colour) SSH Long Range label prediction of the classifier
(solid line). If we fix j1 = j2 = 1 and j3 = 0 we can find phase
transitions ν = 1 → 0 at j4 = 0 and ν = 0 → 2 at j4 = 1 [130]. The
dashed line shows the labelling found by k-means directly on the feature
space. We can see that there is a mislabelling at the boundary between
ν = 1 and ν = 0. In colour are the effective winding numbers. j1 and j2
are the nearest neighbour hopping terms, j3 and j4 are the third nearest
neighbour hopping terms. In the right panel is the SSH Long Range
feature space classification via k-means and graphical embedding by
t-SNE. The shapes indicate the correct labelling, the colours show the

labelling found by k-means.

of A will take a thermal form ρA(|n〉) ≈ exp(−H/Tn). The state
|n〉 is an eigenstate of H with energy En. The temperature Tn
is given by the canonical ensemble that reproduces eigenstate en-
ergy 〈H〉Tn = 〈n|H|n〉. For strong disorder the eigenstate behave
differently. For the extreme case where the local fields h → ∞
the eigenstates take the form of a product state |↑↑↓↑ . . .〉 and
the ETH breaks down. The eigenstates of the spin-1/2 Heisen-
berg model in a random magnetic field are known to undergo an
MBL transition at an energy dependent critical disorder strength
hc, whose precise position is however difficult to determine with
established methods. The most widely used method to detect
the MBL transition is the average adjacent gap ratio r [112, 120],
which goes from rWD ≈ 0.53, resulting from the Wigner-Dyson
distributed eigenvalues in the ergodic phase, to rPoisson ≈ 0.38,
reflecting the Poisson statistics in the MBL phase.

To determine the average adjacent gap ratio we first denote
the normalized energy by ε = (E − Emax)/(E0 − Emax) ∈ [0, 1],
which interpolates between the lowest and highest of the energies

3.5. Results: Domain adaptation with MBL 49

of H for a given realization of the disordered fields hi and we
restrict the eigenstates to the global magnetization zero subspace
〈S〉 = 0. For a given realization of hi one takes the ratio of the
level spacing of consecutive energy levels r(n) = min(δ(n), δ(n+
1))/max(δ(n), δ(n+ 1)) with δ(n) = En−En−1 at a given eigen-
energy En and averages them over 50 eigenpairs with energies
closest to the target energy ε. And finally one averages these
values over several different disorder realizations hi drawn from
the interval hi ∈ [−h, h]. This returns a single point in Figure
3.7(b) for a given h and ε.

There are other quantities to determine the phase transition,
such as the dynamical spin fraction [110] or the entanglement
entropy per site [112], but all these methods lead to different
results that sometimes do not even agree within their error bars.

3.5 Results: Domain adaptation with MBL

For the training of the DANN we generate eigenstates from small
windows around several values of the renormalized energy ε and
for multiple disorder realizations at different disorder strengths h
for system sizes up toN = 18 spins with the shift invert code from
[115]. The set of states from deep inside the phases D was drawn
from h ∈ [0.1, 0.5] for the delocalized phase and from h ∈ [7.0, 8.0]
with a step size 0.1 for the MBL phase for energy densities in the
range ε ∈ [0.05, 0.95]. To have equally big sets in the delocalized
and the MBL phase the values of h are separated by steps of 0.05
in the delocalized phase, 0.1 respectively in the MBL phase. The
epsilon values are separated by steps of 0.05. For the set close
to the phase boundary we choose states with disorder strength
h ∈ [0.5, 7.0] separated by steps of 0.2 and normalized energy
ε ∈ [0.05, 0.95] in steps of 0.05. For each set of parameters and
disorder realization we find the 50 states closest to the chosen
renormalized energy ε. We take several realizations for each point
in the parameter space which is chosen such that both sets are
of the same dimension, namely 50k. We have checked that the
results do not depend on the details of how these sets are chosen,
to be sure that the success of the prediction is not dependent
on the dataset. The states were produced with the open-source
software from [115]. For the training of the network we use states
from two sets deep inside the phases as the source dataset, which
we can label (indicated in blue in Figure 3.6). For the target

50 Chapter 3. Domain Adversarial Phase Detection

dataset we generate states from a wide range of ε and h values that
including the phase boundary (indicated in red in Figure 3.6). We
want to emphasize that we use the coefficients of the wavefunction
as input data without further preprocessing.

Adversarial

Phase discriminator

vs

Figure 3.6: DANN architecture applied to MBL: The source set
comes from deep inside the two phases, indicated in blue. The tar-
get set comes from the whole phase diagram, indicated in red. Both
sets are fed through several layers of convolutional filters. The phase
discriminator is solely trained on the source data (with class labels).
And the Adversarial, or also called domain classifier, is trained on the
source and target set with labels that indicate that an input vector

comes from the source or the target set.

We compare the estimate of the energy resolved phase dia-
gram obtained from the adversarial NN with results based on the
average adjacent gap ratio r and the dynamical spin fraction f .
The superior statistical properties of our approach are apparent.
Already from only 50 disorder realizations we obtain a clear char-
acterization of the phases, while the average adjacent gap ratio is
still very noisy (background in Figure 3.7).

The phase boundary shown in Figure 3.7(a) can be deter-
mined via a data collapse from plots such as that shown in Fig-
ure 3.8 for ε = 0.5 and in Figure 3.9 for all ε. To extract the
critical magnetic field strength hc, we use a scaling function of
the same form L1/ν(h− hc) as that for the average adjacent gap
ratio r [112]. The idea of a data collapse is to rescale the NN
outputs with the rescaling function such that the curves for dif-
ferent system sizes L overlap exactly. From this procedure we can
extract the values for ν and hc. The reduction in noise allows for
a more precise determination of the phase boundary for the same
number of disorder realizations. From just data for systems up to
size N = 18 (100 disorder realizations) we are able to determine
the phase boundary extrapolated to the thermodynamic limit to
an accuracy roughly matching the discrepancy between the con-
ventional quantities r and f determined in the numerically much

3.5. Results: Domain adaptation with MBL 51

0.1 0.9 1.7 2.5 3.3 4.1 4.9
h

0.1

0.3

0.5

0.7

0.9

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.1 0.9 1.7 2.5 3.3 4.1 4.9
h

0.1

0.3

0.5

0.7

0.9

0.40

0.44

0.48

0.52

0.56

(b)

Figure 3.7: The output of the NN directly provides a meaningful
estimate of the phase diagram for a finite system N = 12 (background
in (a)) from just 50 disorder realizations, while traditional quantities,
like the gap statistics (background in (b)) are still far too noisy. The
dots in (a) are the extrapolated phase boundary in the thermodynamic
limit obtained from 100 disorder realizations via the data collapse for
systems up to N = 18, shown exemplary for ε = 0.5 in Figure 3.8 where
we compare a data collapse of the DANN output with the data collapse
of the average adjacent gap ratio for the same amount of disorder
averaging. In Figure 3.9 we show the full data collapse of the DANN
output for all ε. The symbols in (b) are the phase boundaries found
in [112] based on the average adjacent gap ratio r (triangles) and the
dynamical spin fraction f (triangles pointing downwards) for systems
of size up to N = 22 and vastly more disorder realizations (the data

collapse plots for all values of ε are shown in Figure 3.9).

52 Chapter 3. Domain Adversarial Phase Detection

more expensive study of [112]. Intuitively, it makes sense that
the average adjacent gap ratio does not have the nice averaging
properties of the quantity computed by our NN, as it completely
disregards the properties of the eigenstates and only computes
one feature of the spectrum. ML, in contrast, figures out a way
to objectively determine the phase by directly recognizing non-
trivial properties of the eigenstates.

Another interesting feature in which our method differs from
average adjacent gap ratio (as well as most other quantities that
have been used in exact diagonalization studies so far) is the value
of the scaling exponent ν. Our method consistently yields ν ≈
1.6, independent of the energy range and the precise choice of the
training data (under the condition that it is sufficient to ensure
convergence of the training), while the average adjacent gap ratio
yields ν ≈ 0.9 [112]. Both exponents violate the (heuristic) Harris
criterion, which for one spacial dimension predicts ν > 2 [133],
but the larger value of our “order parameter” is closer to the
predicted value and there is hope that by moving to even larger
system sizes, the best data collapse will be obtained with ν ≈ 2.
This is another indication that our automatically detected “order
parameter” suffer less from finite-size effects than more traditional
quantities. The size of the region in which the network is unsure
which label to assigned shrinks during training and eventually
converges. It is a natural measure for the broadening of the phase
transition due to finite-size effects.

Our method has a number of additional desirable properties.
The intermediate values of the average adjacent gap ratio do not
have a physical meaning, whereas the output of the NN has an
immediate interpretation as to how certain the phase prediction
is. The predicted values of hc and the sizes of the plateaus are
stable against changing the regions from which the first kind of
training data is generated. The average adjacent gap ratio, actu-
ally attains the Poisson value at the integrable point at h = 0 and
it moreover fails to capture the transition if one does not restrict
to a fixed magnetization sector. Our method does not suffer from
either of these two drawbacks.

Importantly, the computational time for training and evalu-
ating the output of the adversarial NN is almost negligible com-
pared to the time it takes to generate states for mapping out the
phase diagram. As much fewer disorder realizations are necessary
per point, this yields a huge net gain in computational time. Our

3.6. Conclusions 53

0 1 2 3 4 5
h

0.0

0.2

0.4

0.6

0.8

1.0
N

N
 o

ut
pu

t

N = 12
N = 14
N = 16
N = 18

-20 0 20
(h hc)L

1/

0.0

0.5

1.0 = 1.6
hc = 3.5

(a)

0.0 1.0 2.0 3.0 4.0 5.0 6.0
h

0.4

0.44

0.48

0.52

r

rWD

rPoisson

N = 12
N = 14
N = 16
N = 18

-100 -50 0 50
(h hc)L1/

0.4

0.44

0.48

0.52 = 0.9
hc = 3.7

(b)

Figure 3.8: Exemplary output (a) of the NN at normalized energy
ε = 0.5 averaged over 50 disorder realizations and the data collapse
(inset) to determine the position of the phase transition hc in the
thermodynamic limit. The average adjacent gap ratio r is still far
too noisy (b) to obtain a good collapse (inset) for the same amount
of averaging. The error bands show the ensemble standard deviation

s = (
∑N
i (xi − x̂)2/(N − 1))1/2 of the disorder average.

approach thus allows to meaningfully include states from larger
system sizes, which can now be generated with state-of-the-art
shift invert algorithms [115], into studies of MBL.

3.6 Conclusions

We have demonstrated that ML can be used to automate the task
of identifying relevant features that most efficiently capture the
physics of phase transitions in quantum systems — a formidable
task so far reserved for human researchers. As humans, we often
gain an intuition on a physical system using a special case that is
analytically or numerically easy to treat. Then we generalize the
insights to the more complex cases. Domain adaptation captures
this idea: a deep learning system extracts intuition on a well-
understood system and applies it to a more perplexing one. This
is a subtle, targeted application of ML, with the explicit purpose
of avoiding brute force numerical methods. We demonstrated the
applicability of the method on the SSH model with a topological
phase transition and on the spin-1/2 Heisenberg model in a ran-
dom magnetic field with a MBL phase transition. For the SSH

54 Chapter 3. Domain Adversarial Phase Detection

0 1 2 3 4 5
h

0.0

0.2

0.4

0.6

0.8

1.0

N
N

 o
ut

pu
t

= 0.2

N = 12
N = 14
N = 16
N = 18

-20 0 20
(h hc)L1/

0.0

0.5

1.0 = 1.5
hc = 1.8

(a)

0 1 2 3 4 5
h

0.0

0.2

0.4

0.6

0.8

1.0

N
N

 o
ut

pu
t

= 0.3

N = 12
N = 14
N = 16
N = 18

-20 0 20
(h hc)L1/

0.0

0.5

1.0 = 1.6
hc = 2.4

(b)

0 1 2 3 4 5
h

0.0

0.2

0.4

0.6

0.8

1.0

N
N

 o
ut

pu
t

= 0.4

N = 12
N = 14
N = 16
N = 18

-20 0 20
(h hc)L1/

0.0

0.5

1.0 = 1.6
hc = 3.0

(c)

0 1 2 3 4 5
h

0.0

0.2

0.4

0.6

0.8

1.0

N
N

 o
ut

pu
t

= 0.5

N = 12
N = 14
N = 16
N = 18

-20 0 20
(h hc)L1/

0.0

0.5

1.0 = 1.6
hc = 3.5

(d)

0 1 2 3 4 5
h

0.0

0.2

0.4

0.6

0.8

1.0

N
N

 o
ut

pu
t

= 0.6

N = 12
N = 14
N = 16
N = 18

-20 0 20
(h hc)L1/

0.0

0.5

1.0 = 1.5
hc = 3.0

(e)

0 1 2 3 4 5
h

0.0

0.2

0.4

0.6

0.8

1.0

N
N

 o
ut

pu
t

= 0.7

N = 12
N = 14
N = 16
N = 18

-20 0 20
(h hc)L1/

0.0

0.5

1.0 = 1.6
hc = 2.5

(f)

0 1 2 3 4 5
h

0.0

0.2

0.4

0.6

0.8

1.0

N
N

 o
ut

pu
t

= 0.8

N = 12
N = 14
N = 16
N = 18

-20 0 20
(h hc)L1/

0.0

0.5

1.0 = 1.6
hc = 2.2

(g)

Figure 3.9: Output of the NN at energies ε = 0.2 to ε = 0.8. N = 12
and 14 are averaged over 500 disorder realizations and N = 16 and 18
over 100 realizations. The data collapse (inset) determines the position
of the phase transition hc in the thermodynamic limit. The error bands
show the ensemble standard deviation s = (

∑N
i (xi − x̂)2/(N − 1))1/2

of the disorder average. In Appendix A one can find the critical values
and their errors in a tabular form.

3.6. Conclusions 55

model the phase diagram found by the algorithm is in very good
agreement with the one obtained with standard methods and the
algorithm can even predict new phases as shown in the long-range
SSH model.

For the MBL phase transition the competitive process of ad-
versarial domain adaptation, is able to “invent” a new “order pa-
rameter” that yields meaningful results from vastly fewer disorder
realizations than established methods. It seems fair to say that
the resulting quantity actually captures the essential physics, as
the network, once trained, can correctly identify the phase transi-
tion not only at different energy densities, but also in similar but
distinct models. This is remarkable, since the MBL transition has
mostly defied analytical approaches and even the question of what
is the best way to delineate the phase could not be resolved in
a satisfactory way. As the automatic feature identification does
not rely on a human understanding of the underlying physical
processes, our approach has the potential to lead to new insights
into poorly understood many-body phenomena such as MBL or
topological phases through an analysis of the feature extraction
layer.

57

Chapter 4

Anomaly Detection

In this Chapter, we demonstrate how to map out a phase diagram
of a quantum many-body system to identify regions of interest for
possible new phases using automated and unsupervised ML based
on anomaly detection [46, 47, 48]. This approach is particularly
useful when one is confronted with sufficient data from known
classes of states and little or no data from unknown classes.

Compared to previous unsupervised attempts in [42, 12, 11,
19, 17, 23], this method needs only one or few training itera-
tions and has better generalization properties from employing
deep NNs [134, 135]. This allows for efficient fully automatized
phase discovery in the spirit of self-driving laboratories [82], where
artificial intelligence augments experimentation platforms to en-
able fully autonomous experimentation. Intuitively, the method
explores the phase diagram until an abrupt change, an anomaly,
is detected, singling out the presence of a phase transition. The
intuition is similar to the approach introduced in [136], where the
authors proposed to detect quantum phase transitions by look-
ing at the fidelity between ground states F(p, p̃)) = | 〈ψp|ψp̃〉 |,
where p and p̃ = p + δp are neighbouring parameters in the
phase diagram. The idea is to detect a transition because the
phase boundaries are characterized by their singular behaviour
and states that are close in the phase space are similar, except at
the phase boundary. Therefore, the fidelity drops to 0 at a phase
transition. With our approach of anomaly detection, we reinter-
pret the singular behaviour as a data anomaly. Moreover, as we
explain next, we do it from scalable data. Our method does not
require a full description of the physical states and therefore full
state contraction can be avoided. Thus, for higher dimensional
systems, [136] could not be used as a computational method as

58 Chapter 4. Anomaly Detection

contraction is known to be generally inefficient for 2d tensor net-
work states (commonly referred to as PEPS [137]).

In principle, there are many possible choices as input data for
training our method, including the full state vector. To improve
scalability and reach large system sizes, we propose to use quanti-
ties that arise naturally in the state description and do not require
complete state information. For instance, we obtain ground states
with tensor networks, from which we use the tensors themselves
or the entanglement spectrum (ES) as input data. These quan-
tities arise naturally from the state description without further
processing and contain crucial information about the phase, like
the ES for example [138, 139, 140]. We stress, however, that the
choice of preferred quantities to be used for ML may in general
vary and depend on the simulation method. In fact, we show
that our method also works well with physical data accessible in
experiments such as low-order correlation functions.

As a benchmark, we apply our method to the extended Bose
Hubbard model in one dimension at exact integer filling. Its phase
diagram is very rich and therefore provides a very good test to
showcase our method. We are able to determine the entire phase
diagram in a completely unsupervised and automated fashion.
Importantly, our results point out the existence of a supersolid
state that appears in the system in addition to the standard su-
perfluid, Mott insulator, Haldane-insulating, and density-wave
phases.

4.1 Methods

In this section we describe the ML technique and the physical
model that we investigate in this chapter.

Anomaly Detection Method

We apply deep NN autoencoders (AEs) for anomaly detection
[48]. As described in 2.1, an AE is a type of unsupervised NN
that map the input x to a lower dimensional space z and map
it back to x̄. The aim of the training is the minimization of a
loss function l(x, x̄) that measures the dissimilarity of the input
x and the output x̄. Heuristically, we find that the mean-square
error l(x, x̄) = |x − x̄|2 suffices for our purposes and provides
good results.

4.1. Methods 59

Figure 4.1: Schematic one-dimensional CNN AE with symmetric
shortcut connections (SSC) that connect latent layers of the same di-
mension directly via addition, thereby improving the model perfor-
mance [141, 142]. Shaded boxes in the background indicate schemat-
ically the convolutional nature of the layers. We illustrate how the
input data x gets encoded into the lower dimensional latent vector z

and decoded again to x̄.

The idea of this anomaly detection scheme is that for each
state |ψ〉 we take corresponding data x, such as for instance its
ES or low order correlation functions. The AE learns the charac-
teristic features of this data and encodes it into the latent variable
z at the bottleneck [143], from which it is ideally able to recon-
struct the original input. The loss l, that typical reaches < 5%,
directly indicates the success of this endeavour. We improve the
performance of the AE by employing symmetric shortcut con-
nections (SSC, see Figure 4.1). These SSC are direct connections
between the layers of the encoder and the decoder and it has been
shown that they improve the performance of AEs [141, 142]. Af-
ter a successful training, the intuition is that, when confronted
with data from unknown phases, the AE is unable to encode and
decode x. This leads to a higher loss, from which we deduce that
the states do not belong to the same phase as the ones used to
train the AE.

Deep learning architectures are known to generalize well [134,
135], such that it suffices to train in a small region of the pa-
rameter space. A mayor advantage of our method over known

60 Chapter 4. Anomaly Detection

supervised deep learning methods is that the anomaly detection
scheme does not rely on labeled data. We choose training data
from one or several regions of the phase diagram, and ask how
the loss of a test data point from any region of the phase dia-
gram compares to the loss of these training points. As we show
later, this can be performed with no a priori knowledge and in
a completely unsupervised manner. The computationally most
expensive step is the training and with our method it has to be
performed only once to map the whole phase diagram, as opposed
to multiple trainings like in [11, 15].

The specific architecture in use consists of two 1d-convolutional
encoding and decoding layers with SSCs (Figure 4.1), imple-
mented in TensorFlow [144]. To ensure the reproducibility of
our results, we made the source code available under an open
source license [145].

The extended Bose Hubbard Model

We test our method on the extended Bose-Hubbard Model in
1D with integer filling. The Bose-Hubbard (BH) model describes
spinless bosons on a lattice that interact if they occupy the same
site. The extended BH model also includes interactions of bosons
that occupy neighbouring sites.

H = −t
∑
i

(
b†ibi+1 + b†i+1bi

)
+
U

2

∑
i

ni(ni − 1) + V
∑
i

nini+1,

(4.1)

This model serves as a highly non-trivial test ground with its
rich phase diagram that, beside a critical superfluid and two insu-
lating phases, admits a symmetry protected topologically ordered
phase at commensurate fillings [146, 147, 148, 149, 150, 151, 152,
153, 138, 154]. Here, ni = b†ibi is the number operator for Bosons
defined by [bi, b

†
j] = δij . Typically, we are interested in vary-

ing the on-site interaction U and nearest-neighbour interaction
V and fix the hopping term t = 1. We explicitly enforce fill-
ing n̄ :=

∑
i 〈ni〉 /L∞ = 1 by employing U(1) symmetric tensors

[155], which we implement using the open source library TeNPy
[156] (easily readable code accessible in [145]).

4.1. Methods 61

0 1 2 3 4 5
V

0

2

4

6

8

U

SF

MI

OSF

0.0

0.5

1.0

DW

SS

ODW

HI

OHI

SF+

V

U

0

2

4

6

8

0 1 2 3 4 5 0 1 2 3 4 5

Figure 4.2: Extended BH phase diagram with five distinct phases
obtained by the correlators in Equations 4.2 to 4.4. MI: Mott Insulator,
SF: Super Fluid, SS: Super Solid, DW: Density Wave, HI: Haldane
Insulator. The dashed lines indicate the transition points observed
from diverging correlation lengths between MI-HI-DW and non-zero S

in 4.10 between SF and SF+SS.

Figure 4.2 shows the phase diagram of the extended BH model
with the Mott-insulating (MI), the superfluid (SF), density-wave
(DW) and Haldane-insulating (HI) phases. Furthermore, we in-
dicate a region where we found the SF phase coexisting with a
supersolid (SS) phase. One way to physically classify these phases
is to look at the correlators

CSF(i, j) = 〈b†ibj〉 (4.2)

CDW(i, j) = 〈δni(−1)|i−j|δnj〉 (4.3)

CHI(i, j) = 〈δni exp

−iπ ∑
i≤l≤j−1

δnl

 δnj〉 (4.4)

from which we will construct the order parameters, with δni =
ni − n̄, which measures the difference of the occupation of the i-
th site and the average filling. The DW phase occurs in a region
of strong nearest neighbour repulsion and therefore the bosons
start arranging in patterns where one site is occupied and the
neighbouring site is empty. This pattern is best captured with
CDW that converges to a constant value in the DW phase. The
HI phase experiences topological order and long-range density-
density correlation functions will decay exponentially. Neverthe-
less, there is some hidden long-range order in the HI phase that
is expressed with the string order parameter CHI which calcu-
lates the correlation function between site i and j while account-
ing for all the sites in between i and j. Hence, while the single

62 Chapter 4. Anomaly Detection

sites with distance |i − j| might not show a correlation, taking
all the sites in between i and j into account there is a correla-
tion [157]. This can be illustrated by a state, where δni shows a
patter [+1, 0, 0,−1, 0,+1,−1, 0, 0,+1, . . .]. Such a pattern does
not have an obvious long range correlation 〈δniδnj〉, but if we
ignore the sites with δni = 0 we see that the occupation number
switches between +1 and −1 and the order parameter CHI(i, j)
takes exactly this into account.

In the superfluid phase the long range off-diagonal order CSF
discriminates the Mott-insulating (MI) phase and the superfluid
(SF) phase, where it decays with a power-law in the SF phase
and exponentially in MI. More details about the characterization
of the system can be found in [146] and the Appendix C. We
visualize the phase diagram by computing the order parameter
from the correlators obove O• =

∑
i,j C•(i, j)/L

2
∞ in 4.2 in the

thermodynamic limit for a repeating unit cell of L∞ = 64 sites
with a maximum bond dimension χmax = 100 and assuming a
maximum occupation number nmax = 3, which results in a local
dimension d = nmax + 1 = 4. We use data from these states, ob-
tained with these parameters throughout the rest of the following
analysis.

Simulation Method and Input Data

We calculate the ground states by means of the Density Ma-
trix Renormalization Group algorithm (DMRG) in terms of Ten-
sor Networks, i.e. Matrix Product States (MPS) [158, 137]. A
general multipartite state of L parties with local dimension d
|Ψ〉 =

∑
σ cσ |σ〉, where σ = σ1 . . . σL is the vector of local in-

dices σi = 1, . . . , d, can always be decomposed into products of
tensors with the aid of the singular value decomposition that has
the left-canonical form

|Ψ〉 =
∑
σ

Aσ1 · · ·AσL |σ〉 , (4.5)

or the mixed-canonical form,

|Ψ〉 =
∑
σ

Aσ1 · · ·Aσi−1ΘσiBσi+1 · · ·BσL , (4.6)

4.1. Methods 63

where {Aσj}i−1j=1 and {Bσj}Lj=i+1 are left- and right-normalized,
which is (see [158] for details)∑

σj

Aσj (Aσj)† =
∑
σj

(Bσj)†Bσj = I. (4.7)

The tensor Θσi is left over after all of the sites in the MPS have
been orthonormalized and we will refer to it as the central matrix.
It is also referd to as the single site pseudo wavefunction and can
be used to calculate local observables.

For our work we use the convention of Vidal [159], and write
our ground state in the MPS form

|Ψ〉 =
∑
σ

Γσ1Λ[1] · · ·Λ[i−1]ΓσiΛ[i] · · ·Λ[L−1]ΓσL |σ1 . . . σi . . . σL〉 ,

(4.8)

where Λi−1Γσi = Aσi and ΓσiΛi = Bσi . This representation has
the advantage that Λ[i] is the diagonal singular value matrix of a
bipartition of the chain between site i and i+ 1, and contains the
Schmidt values (see [158]). The approximates of the exact ground
state can be done by keeping only the χmax largest Schmidt values
for each partition, where χmax is known as the bond dimension.
This is the best approximation of the full state in terms of the
Frobenius norm and enables us to handle big system sizes. Eq.
(4.8) corresponds to finite length and open boundary conditions.
Here, we use the version formulated in the thermodynamic limit
for infinite MPS (iMPS) [160, 161, 162]. In this case, instead of
a finite chain, we are effectively operating in the thermodynamic
limit and have a finite but repeating unit cell of length L∞.

There is a natural graphical language for tensor networks,
where Equation 4.8 corresponds to Figure 4.3 [158]. In this graph-
ical representation, connected lines correspond to index contrac-
tions, which in the case of Eq. 4.8 corresponds to matrix multipli-
cation. As aforementioned, in order to calculate local observables
at site i, one only needs the single site pseudo-wavefunction

Θσi
vi−1,vi =

∑
a,b

Λ[i−1]
vi−1,aΓ

σi
a,bΛ

[i]
b,vi
. (4.9)

For example, single-site operator expectation values are simply
calculated in terms of 〈Oi〉 =

∑
σi,σ′i,vi−1,vi

Θσi
vi−1,viOσi,σ′i

(
Θ
σ′i
vi−1,vi

)∗

64 Chapter 4. Anomaly Detection

Figure 4.3: Graphical representation of a finite MPS with open
boundary conditions, physical indices σi and virtual indices vi. Γσi

vi−1,vi
is the local description of site i with singular values Λ connecting to

the left and right part of the chain (entanglement spectrum).

and similarly two-point correlation functions, as graphically de-
picted in 4.4.

Figure 4.4: Graphical representation of a) single-site expectation
value 〈O〉 and b) two-point correlators 〈OiOj〉.

For the training of the NNs we use different quantities as
input data x and to explore the phase diagram. First we use the
Schmidt values Λ[i] as an input and we ambiguously refer to it
as ES. Our numerical results support the functionality of using
this anomaly detection scheme with ES as we get near-constant
losses for states of the training region and significantly higher
losses for unknown phases. The method generalizes well with
similar losses for states inside and outside the training region. For
the ES as an input we only need one dimensional convolutional
layers for the feature extraction. The tensor Θ

[i]σi
vi−1,vi has three

indices [158] and to input it into a NN, we treat the tensor as an
image, that, instead of the typical red green blue (RGB) channels,
has “spin channels". Each excitation value σi = 0, · · · , nmax now
corresponds to a “colour channel“ and the two indices vi−1 and vi
can be interpreted as the two dimensions of the image, yielding

4.2. Results 65

a χmax × χmax image for that channel. This way, we can use
classical ML methods that are optimized for image processing for
our physical problem, namely 2D CNNs.

4.2 Results

This section is dedicated to the results that we obtained with our
anomaly detection scheme applied to the extended Bose Hubbard
model.

Numerical Results

Assuming no a priori knowledge, we start by training with data
points at the origin of the parameter space (U, V) ∈ [0, 1.3]2 indi-
cated as a blue window in Figure 4.5, which accounts to training
in SF. By testing with data points from the whole phase diagram
we can clearly see the boundaries to all other phases from SF in
Figure 4.5. The transition between SF and MI is matched by an
abrupt rise in loss (Figure 4.5, inset a)). In this particular case,
we can already determine the different phases inside the anoma-
lous region due to their different loss levels and the appearance
of two valleys at the phase boundaries between MI, HI and SF
(Figure 4.5, inset b)). Physically, we can explain these valleys
by the criticality of these Luttinger and Ising type transitions,
which lead to a slowly decaying ES at the boundary, just like in
the critical SF phase.

It is not necessarily always the case that one can differen-
tiate the different phases inside the high-loss anomalous region
after solely training in one single region. Thus, as a systematic
approach, we propose picking homogeneous and high contrast
anomalous regions after the initial training and retrain the AE
with training inputs coming from these regions. Here, we were
somewhat fortunate to start our training only in the SF phase and
we could already map out the whole phase diagram after the first
training iteration. It could be that one picks accidentally to train
in two phases at the same time. Therefore, we suggest to redo the
training for different training sets. In the Appendix B we show
what happens if we train in the region (U, V) ∈ [4, 4.8] × [2, 4],
which was a high loss region for the training in Figure 4.5.

Our method is not tailored to ES as input data. To show
this, we use on one hand the central tensors Θ from the MPS as

66 Chapter 4. Anomaly Detection

Figure 4.5: 2D loss map of the AE after training near the parameter
space origin (blue square frame). The insets a), b) and c) show the loss
along the dashed lines. Vertical green dashed line in inset a) indicates
critical Uc = 3.33 [148]. Vertical grey dashed lines in inset b) and c)
are the transitions from 4.2. The phase boundaries are determined by
a rise in loss (inset a) and c)). The anomalous regions are already well-
separated by decreasing losses because of the critical behaviour at the
phase boundaries (inset b)), which share similarities with the critical
SF phase. Higher loss indicates that this region is more different from
the training region in the blue square, lower loss indicates similarity.

input data in Figure 4.6. On the other hand we use experimen-
tally accessible correlators in Figure 4.8. We see that the method
works well when using the central tensor as input data. Further-
more, we find that the network is capable of encoding more than
one phase in the training dataset. We still find the boundaries
between MI, HI and DW due to the criticality of the transitions
(see 4.6, inset a)), similar to the valleys in Fig. 4.5. Even though
translational invariance is broken in DW, we find it suffices to use
only one tensor Θ from the center of the unit cell. This is be-
cause, despite the broken translational symmetry, entanglement
is still distributed uniformly in the unit cell, which is implicitly
encoded in Θ. Heuristically, we found that already a tensor or
the ES from a site is sufficient for our method to discriminate the
phases. A possible explanation is the translational invariance of

4.2. Results 67

Figure 4.6: Instead of the ES, we use the central tensor Θ as input
data for the AE and use 2D convolutional layers. The same AE can

encode both MI, HI and DW data.

the model, which, in our case also results in uniformly distributed
entanglement. By this, we mean that the entanglement spectrum
is the same at all bonds, resulting in a uniform entanglement en-
tropy distribution along the chain. This is true even for the DW
phase, where translational invariance is broken. Only for the SS
phase (discussed in more details below) this is not the case any-
more, where the ES admits a periodic pattern. To improve the
results one could take several spectra or tensors from the chain
by concatenating them, keeping the input data scalable. Yet, we
find that one tensor or ES suffices for discrimination.

For the use of correlators as an input, instead of using un-
processed data from simulation, we calculate {CSF(i, j)}64i,j=1 and
train in MI and SF simultaneously. We interpret the rows of the
matrix CSF as color channels for a 1D CNN. Because CSF does
not contain any information about the topological order in HI, the
method does not recognize this region as we would expect (4.8,
inset a)). Overall, the boundaries match perfectly with a sharp
increase onto a plateau at the transition points. This opens the
possibility to use physical observables from experiment with the
caveat of requiring physical knowledge a priori.

68 Chapter 4. Anomaly Detection

By close inspection of 4.8, we see a region with noticeable con-
trast for small U and large V , indicating the presence of a separate
phase. This is interesting because, initially, we did not expect to
find a fifth phase in the diagram. Upon further physical investiga-
tion, we find a phase-separated state between SF and supersolid
(SF + SS). Supersolidity in this model has been studied in pre-
vious literature for incommensurate fillings [147, 148, 149, 163]
and was claimed to be found for filling 1 in [138] without further
discussion. The phase separation that we find here is new and has
not been studied before to the best of our knowledge. In order
to physically show the transition, we compute the Fourier trans-
form of the local density ñ(k) =

∑
j 〈nj〉 e−ikj/L∞ and detect

long-range solid order by looking at

S := max
k 6=0
|ñ(k)|2 (4.10)

in 4.7(a) [164]. Additionally, we find non-zero ODW and OSF ,
showing both superfluid and crystalline behavior. For higher nu-
merical accuracy and better illustration of the correlator decay,
we compute a larger state for L∞ = 200, d = 6 and χmax = 500 at
(U, V) = (0.5, 4) and see both crystalline and superfluid regions in
the density profile 〈nj〉, 4.7(a) inset a). To confirm supersolidity
of the crystalline part we show that CSF decays with a power-law
in that region, see 4.7(a) inset b).

This phase separation occurs as the system becomes mechan-
ically unstable. We can see this as the second derivative of the
ground state energy per site E = E/L with respect to the filling
f vanishes. We perform finite size scaling with open boundary
conditions to show this in 4.7(b). There, we target equidistant
discrete fillings fi = Ni/L for Ni ∈ [0.8L, 1.1L] and compute the
finite difference derivative

d2E/df2 = (E(fi−1)− 2E(fi) + E(fi+1)) /(fi − fi−1)2. (4.11)

The detection of this new phase demonstrates the power of our
approach and we discuss further findings in the following section.
An extensive study of the SS-SF phase separation we leave to
future work.

4.2. Results 69

2.0 2.5 3.0 3.5 4.0 4.5 5.0
V

0.0

0.2

0.4

0.6

0.8

1.0

U = 0.5

ODW
OSF

C
SF

(j
)

0 200
0

1

2
<
n j

>
V = 4

102

1.9

1.6

1.3

a)

b)
site

site

(a)

0.8 0.9 1.0
f

0.0

0.2

0.4

0.6

d²
/d

f²

d = 6, max = 100, U = 0.5, V = 4
L = 64
L = 100
L = 126
L = 200
L = 300

(b)

Figure 4.7: a) Transition from SF to phase separated SF + SS at
fixed U=0.5. The solid long-range order emerges while SF correlations
sustain. Inset a) shows the phase separation in the density 〈nj〉 for
a state at (U, V) = (0.5, 4) with L∞ = 200, d = 6 and χmax = 500.
Inset b) shows the power-law decay of CSF(0, j) in the solid part via
doubly logarithmic plot of every second value, confirming supersolidity.
b) Finite size scaling of the vanishing second derivative of the ground
state energy per site E with respect to the filling f . This shows that the
system becomes mechanically unstable, leading to phase separation as

depicted in a) for f = 1.

Figure 4.8: 2D loss map of the AE after training in the two blue
square frames in the SF and the MI phase. The insets a) and b) show
the loss along the dashed lines. Instead of the ES, we use the physically
accessible correlator CSF as input data. The HI is not recognized as
this correlator does not contain information about the topological order

of this phase.

70 Chapter 4. Anomaly Detection

Phase separated supersolid and superfluid

In this section we give more details about the discovered phase
separated ground states between supersolid (SS) and superfluid
(SF) for large V and small U at filling 1. First, we note that
iDMRG does not converge for small unit-cell sizes, as exemplar-
ily shown for (U, V) = (0.5, 4) and L∞ ∈ {2, 4, 8, 16, 32, 64} in 4.9.
The change of energy is checked every 25 sweeps, where we set
the threshold for convergence to 10−8. We find that iDMRG does
not reach convergence after 1000 sweeps for all runs but L∞ = 64.
There, the system has enough space to phase-separate into the
two phases and iDMRG can converge. One convincing argument
that this is a physical effect and not a numerical artefact is that
we obtain better (smaller) ground state energies per site E0/L∞
as we increase the unit cell-size, as depicted in 4.10. We can see
a breaking point in computation time at L∞ = 64 as the system
starts to converge to a solution. Choosing L∞ = 64 for the simu-
lations in the main text is a trade off between computation time
and accuracy in energy. Another argument to convince ourselves
of this effect was to increase the hyper-parameters d, χmax and
L∞. The ground states we obtained showed the same properties,
that we are now describing for L∞ = 200, d = 6 and χmax = 500
at (U, V) = (0.5, 4): We show the correlator CSF with respect
to a site inside the solid part in 4.11a). In terms of the density
(4.11a) inset 2), the system has a solid part with alternating filling
〈nj〉 ≈ (· · · , 2.5, 0, 2.5, 0, · · ·), and a superfluid part with constant
filling 〈nj〉 < 1. We see that inside the solid part, CSF decays
with a power law, making it SS (4.11a) inset 1). This is new and
different to the supersolids that have been discussed at incom-
mensurate fillings in previous studies [147, 148, 149, 138, 163].
We can recover such a homogeneous supersolid by increasing the
filling, see 4.11b). Here, we find a homogeneous density (inset 2),
accompanied by power law decaying CSF (inset 1), as is typical
for SS.

Note that in the case of phase separation the translational in-
variance is broken and therefore iDMRG is not optimal. However,
we find matching results when repeating the calculations for finite
chains with open boundary conditions (OBC). These states with
OBCs are used to show that the system becomes mechanically
unstable around filling 1 in the main text in Fig. 4.7(b).

4.2. Results 71

0 200 400 600 800 1000
iDMRG sweeps

0.03900

0.03875

0.03850

0.03825

0.03800

0.03775
E 0

/L
filling 1.0, n_max = 3, L = 2, U = 0.5, V= 4.0

0 200 400 600 800 1000
iDMRG sweeps

0.0392

0.0390

0.0388

0.0386

0.0384

0.0382

L = 4

0 200 400 600 800 1000
iDMRG sweeps

0.0391

0.0390

0.0389

0.0388
L = 8

0 200 400 600 800 1000
iDMRG sweeps

0.03916

0.03914

0.03912

0.03910

0.03908

0.03906

E 0
/L

L = 16

0 200 400 600 800 1000
iDMRG sweeps

0.0392

0.0391

0.0390

0.0389

0.0388

0.0387
L = 32

30 40 50 60 70 80 90 100
iDMRG sweeps

91

90

89

88

87
1e 7 3.965e 2 L = 64

Figure 4.9: Ground state energy during iDMRG iterations for L∞ =
2, 4, 8, 16, 32, and 64. Convergence criteria are checked every 25 sweeps.
The maximum number of sweeps was set to 1000 which was reached

without convergence for all but the L∞ = 64 run.

0 50 100 150
L

0.0405

0.0400

0.0395

0.0390

0.0385

E/
L

U= 0.5, V= 4.0

0 50 100 150
L

1

2

3

4

iD
M

RG
 ru

nt
im

e
(m

in
.) max = 100, d = 4

0 8 16
site i

0.75
1.00
1.25

n i

L = 16

0 32 64
site i

0

2
n i

L = 64

Figure 4.10: Energy per site (left) and computation time (right) for
unit cell sizes L∞ = 2, 4, 8, 16, 32, 64, 100, 128 and 150 with iDMRG.
For L∞ = 64 and upward the system has enough space to phase sep-
arate and iDMRG starts to converge, leading to a breaking point in
computation time. The insets show the density profile 〈ni〉 exemplarily

for L∞ = 16 and 64.

72 Chapter 4. Anomaly Detection

0 25 50 75 100 125 150 175 200
site

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C S
F(2

6,
j)

L = 200 U = 0.5 V = 4.0, filling 1

101

site

1.3 × 100
1.4 × 100
1.5 × 100
1.6 × 100
1.7 × 100
1.8 × 100

C S
F

1)

0 200
site

0

1

2

<
n j

>

2)

(a)

0 10 20 30 40 50 60
site

0.0

0.5

1.0

1.5

2.0

2.5

C S
F(0

,j)

L = 64, U= 0.5, V= 4.0, filling 1.297

101

site

100

4 × 10 1

6 × 10 1

C S
F

1)

0 50
site

0
1
2
3

<
n j

>

2)

(b)

Figure 4.11: a) CSF(i, j) for the phase-separated ground state at
filling 1 for L∞ = 200, d = 6 and χmax = 500, where i is taken within
the solid region (here site 26). The doubly logarithmic plot in inset 1
reveals the power law decay of CSF inside the solid region, confirming
supersolidity. Inset 2 shows the density 〈nj〉 along the chain with solid
checker board and flat superfluid parts. b) CSF(i, j) for a homogeneous
supersolid ground state at higher filling 1.297. Now the whole chain
has a solid checker board pattern (inset 2) while CSF decays with a

power law (inset 1), making the ground state overall supersolid.

4.3 Conclusion

We have shown an unsupervised method to map out the phase
diagram of a complex quantummany-body system that could pos-
sibly be performed fully data driven and without physical apriori
knowledge such as the construction of an order parameter. By
using tensor networks we can reliably compute ground states of
many-body systems in the thermodynamic limit and at the same
time extract the desired data without further processing. Entan-
glement spectra and central tensors serve as natural quantities in
this context, but the method also proved successful for physical
observables like 〈b†ibj〉 correlators or could also be used for the un-
processed wavefunction as an input. Hence, this method can be
applied in both purely computational platforms like self-driving
laboratories as well as experimental setups. It is as well worth
stressing that our method indeed helped us to discover a region of
interest in a well studied model like the extended BH model. The
region at low U and high V shows phase separation between a SF
and an SS phase and we would not have discovered this without
our anomaly detection method. An in-depth study of this region

4.3. Conclusion 73

of the phase diagram is currently being prepared but is not yet
available as a preprint.

75

Chapter 5

Interpretability of NN
phase prediction

As discussed in previous chapters, deep fully connected and con-
volutional NNs have been applied to detect phase transitions in
a variety of physical models. Next to all these successful applica-
tions, there are still some open problems. For instance, concern-
ing topological models and many-body localization (MBL), many
methods rely on pre-engineered features [165, 166, 167], they show
high sensitivity to hyperparameters describing the training pro-
cess [18] or the critical exponent is still in disagreement with
predicted values as we described in Chapter 3. Moreover, even in
the models described by Landau’s theory, so far, these approaches
have mostly enabled only the recovery of known phase diagrams
or the location of phase transitions in qualitative agreement with
more conventional approaches based, for instance, on order pa-
rameters and/or theory of finite-size scaling. Nonetheless, ML
achieved this at a much lower computational cost, e.g. using fewer
samples as described in Chapter 3 or smaller system sizes [18].

Additionally, the used ML techniques are mostly black boxes,
i.e., systems with internal logic not obvious at all to a user [168].
The missing key element is the model interpretability, i.e., the
ability to be explained or presented to a human in understand-
able terms [169]. The research on this crucial property is at the
heart of a booming field of ML interpretability [170, 171, 172,
173, 174, 175] aiming at designing methods that discover the in-
ternal logic of commonly used black boxes. They are needed for a
plethora of reasons. Given the ML presence in everyday life, it is
no surprise that already legal measures have been taken to assure
that any individual can obtain meaningful explanations of the
logic involved when automated decision-making takes place [176].

76 Chapter 5. Interpretability of NN phase prediction

Next to the legal motivations, there is ethics. The worrying fact
was revealed that learning machines inherit biases from humans
preparing data [177]. Also, deep NNs were shown to perfectly fit
random labels [178], and that a group of local features can be their
good approximation [179]. These studies prove that the learning
process sometimes goes against our intuition, and indicate that
the predictions should be accompanied by a justification under-
standable by humans to be trusted. Detecting phases of matter
with ML methods is no exception from this and the desire to
know and understand the underlying mechanisms of the process
cannot be met.

This need for interpretation has been already stressed by physi-
cists, but proposed methods are either restricted to linear mod-
els [24] or the particular NN’s architecture [19], or require pre-
engineering of the data, and, as a result, they are very specific to
both the ML and physical model [49]. Hence, in this work, we
follow a different paradigm without relying on the a priori knowl-
edge of the order parameter or the system itself. Our method
is straightforwardly applicable to any physical model or experi-
mental data with no dependence on the architecture of the ML
model. We show how interpretability methods can be used in the
classification of quantum phase transitions to understand what
characteristics are learned by a ML algorithm. This universal ap-
proach unravels if a relevant physical concept was indeed learned
or if the prediction cannot be trusted. We also present that an
interpretable NN can give additional information on the phase
transitions, not provided to the algorithm explicitly.

5.1 Methods

As described in 2.1, we consider supervised learning. In this
Chapter we remove training points with their labels from the
training data. Therefore, we use the short hand notation for the
labeled training data D = {zi}ni=0, with zi = (xi, yi). In our
setup, the inputs xi are the state vectors for a given physical sys-
tem, and yi are the corresponding phase labels. The ML model
is determined by the set of parameters θ. In the training process,
the parameters’ space is being searched for the final parameters
θ̂D ≡ θ̂ of the ML model, which minimizes the empirical risk
L(D,θ) = 1

n

∑
z∈D L(z,θ), where n is the training data set size,

which tends to be of the order of thousands. After training, a

5.1. Methods 77

training points
training pointsTaylor

approximation

test point

removal
of one
training
point

LL

BO

CDW-I

CDW-II

(3)

(1)

(2)

helpful
example

harmful
example

(a)

(b) Figure 5.1: (a) Visual explanation of leave-one-out training and its
approximation, the influence function. The black solid line represents
the loss landscape of the NN with its local minima. The removal of a

training point can lead to an increase or a decrease in loss.

model can make a prediction for an unseen test point ztest with
the test loss function value L(ztest, θ̂) related to the model cer-
tainty of this prediction.

Interpreting neural networks with influence functions

In Section 2.1 we introduced the idea of interpretable ML meth-
ods, its importance and how it can help to understand why for
example a NN comes to a certain conclusion. In this chapter
we study an intuitive way of unraveling the logic learned by
the machine. The idea is to retrain the model after removing
a single training point zr (starting from the same minimum, if
a non-convex problem is analyzed), and checking how it changes
the prediction of a specific test point ztest. Such a leave-one-
out training (LOO) [73] studies the change of the parameters
θ, now shifted to a new minimum θ̂D\{zr} of the loss function,
as depicted in Fig. 5.1. An analysis of the test loss change,
∆L ≡ L(ztest, θ̂)− L(ztest, θ̂D\{zr}), enables the indication of the
most influential training points for a given test point ztest being
the ones whose removal causes the largest change. Influential ex-
amples can be both helpful (∆L > 0) and harmful (∆L < 0).
Such an analysis gives the notion of a similarity used by the ma-
chine in a given problem, as training points being the closest in
the ∆L space can be understood as the most similar. Once the
most influential points are identified, we can decode what charac-
teristics are being looked at by comparing ‘similar’ points in the

78 Chapter 5. Interpretability of NN phase prediction

machine ‘understanding’. It can be especially useful in phase clas-
sification problems where the analysis of ∆L enables the recovery
of patterns being crucial for distinguishing the phases. Therefore,
we can gain some understanding of what a ML algorithm is learn-
ing if we use a supervised setting for phase discrimination and if
it learns something that makes physically sense, like an order pa-
rameter. The use of this technique to check the influence of every
training point in D on a given test point is, however, prohibitively
expensive, as the model has to be retrained for each removed z.

To circumvent this problem, one can make a Taylor expansion
of the loss function L with respect to the parameters around the
minimum θ̂, and approximate ∆L resulting from the LOO train-
ing. This method was proposed for regression problems already
forty years ago [73, 74, 75] and named influence functions. Not
only this interpretability method is computationally feasible, but
also it treats a model as a function of the training data instead
of assuming that the training data set is fixed. The influence
function reads

I(zr, ztest) =
1

n
∇θL(ztest, θ̂)TH−1θ (θ̂)∇θL(zr, θ̂) , (5.1)

and it estimates ∆L for a chosen test point ztest after the removal
of a chosen training point zr. Here, ∇θL(ztest, θ̂) is the gradient of
the loss function of the single test point, ∇θL(zr, θ̂) is the gradient
of the loss function of the single training point whose removal’s
impact is being approximated, and H−1θ (θ̂) is the inverse of the
Hessian,

Hi,j(θ̂) =
∂2

∂θi∂θj
L(D,θ)|θ=θ̂. (5.2)

All derivatives are calculated w.r.t. the model parameters θ, eval-
uated at θ̂ corresponding to the minimum of the empirical risk,
L(D, θ̂). We can only ensure the existence of the inverse of the
Hessian if it is positive-definite. However, it was shown [76, 77]
that this method could be generalized to non-convex problems
and therefore applied to ML. The example code can be found in
[180].

5.1. Methods 79

Influence function of Gaussian mixtures

To gain a better understanding of how influence functions work,
we start with a simple classification example. We train a NN on
two different datasets consisting of two-dimensional data points
5.2 drawn randomly from two different Gaussian distributions
with mean (1, 1) and (−1,−1). The first dataset is depicted in
Figure 5.2(a) and the second in Figure 5.2(b). We label the sam-
ples according to which Gaussian distribution they are coming
from. The NN is a simple feed-forward architecture with 10 hid-
den units. The Figures 5.3(a) and 5.3(b) show the influence func-

−4 0 4
x1

−4

0

4

x2

(a)

−4 0 4
x1

−4

0

4

x2

(b)

Figure 5.2: Gaussian mixture data: Data points drawn randomly
from two Gaussian distributions with mean (1, 1) and (−1,−1) with

Covariance a) 1.0 and b) 0.1

tion of a NN that was trained on the data set with covariance
1.0 where the samples slightly overlap. The NN is not able to
classify all the data points correctly, because in the overlapping
region the data is indistinguishable. The NN is trained on this
data until it converges and only a few points in the overlap re-
gion are missclassified. With the influence function we can now
identify training points that are most influential for a certain test
point. In Figure 5.3 we show the influence of the training points
on a test point (marked with the black X). The color scheme indi-
cates points with positive influence in red and negative influential
points in blue. In the inset of both subfigures we show the influ-
ence of all points ordered by magnitude, to display the change in
magnitude for different test points.

80 Chapter 5. Interpretability of NN phase prediction

In Subfigure 5.3(a) we show a test point inside the overlapping
region, where the NN is undecided, because it cannot distinguish
from which Gaussian distribution the data point comes from and
the test prediction is wrong. The test point is surrounded by
several highly influential training points which means that re-
moving them from the training set would change the prediction
substantially. Subfigure 5.3(b) shows the same NN with the same
parameters, but with a test point further inside one of the Gaus-
sians. Again the most influential training points are close to the
boundary between the distributions, but the order of magnitude
of the influence function (inset of Figure 5.3(b)) is smaller than
for the test point in the overlapping region. Finally, Subfigure
5.3(c) shows the influence of a NN trained on the dataset where
the covariance of the Gaussians is 0.1 and the samples do not mix.
One can see in the inset that there are no points with a positive
influence and that a few points close to the decision boundary
function as negative examples. This Figure shows that in such
a clear decision task with no ambiguity, the NN loss cannot be
influenced by removing a single training point.

In Chapter 6 we will discuss the information that is contained
in the Hessian of a loss landscape more extensively and we study
the Hessian for VQC loss landscapes. Generally, minima of NN
in the parameter space are mostly flat pools that have just a
few directions of steep ascent. In Equation 5.1 the inverse of the
Hessian is used to adjust the overlap of the gradients ∇θL(zr, θ̂)
and ∇θL(ztest, θ̂) to the curvature of the loss landscape. The
highest change in the loss results if these two gradients (anti)align
and point in a flat direction of the loss landscape of the trained
NN. In a direction of low curvature these gradients would lead to
a substantial change in the parameters and therefore change the
test loss the most. If the gradients would (anti)align in a direction
of high curvature the change in the parameter space would be less
pronounced. If the gradients do not strongly overlap or are even
orthogonal, then the influence is zero.

Neural Network model for phase classification

For the phase classification we use a CNN (see Fig 5.4) consist-
ing of 3 one-dimensional convolutional layers with 5 filters on the
input vector, 8 filters on the first hidden layer and 10 filters for

5.1. Methods 81

−4 0 4
x1

−4

0

4

x2
0 250 400

0.00

0.25

(a)

−4 0 4
x1

−4

0

4

x2
0 250 400

0.0000

0.0025

(b)

−4 0 4
x1

−4

0

4

x2
0 250 400

−0.00005

0.00000

(c)

Figure 5.3: Influence function for Gaussian mixtures: The figures
show the influence of the training points on a test point (marked as
a black X). The color scheme of the influence function is rescaled for
visibility and does not refer to an explicit value, but helps to see the
points with highest and lowest influence. The amplitude of the actual
influence can be seen in the inset, where the influence of each point
is shown ordered by magnitude. Blue points have a negative influence
and therefore they are harmful for the prediction, red points have a
positive influence and are therefore helpful for the prediction. a) Shows
the influence of a test point inside the decision boundary, where the
NN is maximally confused. There are many positively and negatively
influential points close to the test point. b) This is the same NN as in a)
with the same parameters, but with a test point deep inside one class.
The influence is orders of magnitudes smaller and the NN prediction
would not change as much if one of the points would be removed. c)
The same NN trained on a dataset with non-overlapping Gaussian dis-
tributions. The influence is another two orders of magnitudes smaller
and the point closest to the decision boundary is negatively influential

and slightly confuses the NN.

the last convolution layer. After the first 2 convolutions we ap-
ply a max pooling layer to reduce the dimension, and the last
convolutional layer is followed by a global average pooling (GAP)
layer. The GAP architecture has been introduced in [181] and
has found applications in discriminative localization of objects in
image data [172]. It reduces each filter of the final convolution
to a single value. After the GAP we have one fully connected
layer with two output neurons that predict the labels. The GAP
makes sure that most of the weights of the NN are contained
in the convolutional part and, therefore, reduces the amount of
weights in the fully connected part of the NN. This is important
in our case, because we calculate the exact Hessian for the influ-
ence function which is computationally demanding for NN with

82 Chapter 5. Interpretability of NN phase prediction

input

state

1x924

5x912

1D Conv

MaxPool

+ ReLu 1D Conv

MaxPool

+ ReLu

1D Conv
GAP + ReLu

Dense output

5x228 8x224 8x56 10x56 10x14 1x2

probabilities that the input state

belongs to phase 0 or 1

Figure 5.4: Scheme of used architecture. Length scale does not apply.

a lot of parameters. For such big NNs the Hessian can also be
approximated like in [76] with a stochastic approximation. For
the training of the NN we use state vectors from each phase as
an input and label them with 0 or 1 for each phase. The state
vectors are obtained via exact diagonalization of the Hamiltonian
5.3.

We use L2 regularization during the training to effectively de-
crease the certainty of the NN’s predictions. Actually, the under-
trained NN with imperfect accuracy can provide better intuition
behind the problem than overtrained one, whose predictions are
impacted by overfitting. Used CNNs had accuracy between 89
and 96%.

For the results in Fig. 5.8 we apply transfer learning, which
means that we use a NN that was trained with a training set that
comes from a different domain than the test data. In our case
the domains are different trajectories through the phase space
indicated in Figure 5.5 with the arrows (1) and (2) where the
phase transition appears for different values of V1/J .

Physical Model: 1D half-filled spinless Fermi-Hubbard
model

We apply the influence functions to the aforementioned CNN
trained to recognize phases in the extended Hubbard model, namely
a one-dimensional (1D) system consisting of spinless fermions at
half filling. Hubbard models are of fundamental importance to the
condensed-matter physics, with two-dimensional Fermi-Hubbard
model believed to be a good toy model to describe the high-
temperature superconductivity of cuprates [182]. The chosen 1D
system, however, has the advantage of being within the power
of efficient numerical simulations, and as a result, has a well-
studied phase diagram [183, 184]. As such it is useful to present
the power of influence functions (or any interpretability method)

5.1. Methods 83

in phase classification problems. In this model, fermions hop be-
tween neighboring sites with amplitudes J as well as interact with
nearest neighbors with strength V1 and next-nearest neighbors
with strength V2:

Ĥ = −J
∑
〈i,j〉

c†icj + V1
∑
〈i,j〉

ninj + V2
∑
〈〈i,j〉〉

ninj . (5.3)

The competition between the system parameters J , V1, and V2
leads to four different phases: gapless Luttinger liquid (LL), two
gapped charge-density-wave phases with density patterns 1010
(CDW-I) and 11001100 (CDW-II), and bond-order (BO) phase,
as seen in Fig. 5.5. Two of the phases, namely the BO and
CDW-II, co-exist in the limited range of parameters. Without
the next-nearest-neighbor interaction, V2, the system can follow
only patterns of the gapless liquid Luttinger phase (LL) or the
charge-density wave of the type I (CDW-I) with the degenerated
density pattern 101010. The CDW-I order parameter describ-
ing this transition reads OCDW-I = 1

L

∑
〈i,j〉 |ni − nj |, where 〈〉

symbolizes nearest neighbors. We emphasize here that this order
parameter captures the same behaviour as the CDW(i, j) in the
BH model in 4.1, Equation 4.3. The next-nearest-neighbor inter-
action, V2 competes with V1, so for non-zero V2 but still smaller
than V1 the transition between LL and CDW-I shifts towards
bigger V1.

training points
training pointsTaylor

approximation

test point

removal
of one
training
point

LL

BO

CDW-I

CDW-II

(3)

(1)

(2)

helpful
example

harmful
example

(a)

(b)

Figure 5.5: Schematic phase diagram of the extended one-
dimensional half-filled spinless Fermi-Hubbard model with the schemes
of the corresponding states: LL - Luttinger liquid, BO - bond order,
CDW-I and II - charge density wave type I and II. The arrows indicate

the transitions studied in this work.

For intermediate values of V2 the bond-order (BO) phase
emerges with the order parameter OBO = 1

L

∑
i(−1)iBi, where

84 Chapter 5. Interpretability of NN phase prediction

Bi =
〈
c†ici+1 + c†i+1ci

〉
. The BO phase is characterized by alter-

nating strengths of the expectation value of the kinetic energy
operator which leads to a spontaneous dimerization of the hop-
ping between the sites. This is also illustrated in Figure 5.5 with
the stronger couplings between alternating sites which illustrates
this phase.

For large values for V2 we obtain the charge-density wave
of the type II (CDW-II) with the degenerated density pattern
11001100 for large V2 values, with OCDW-II = 1

L

∑
〈〈i,j〉〉 |ni − nj |,

where 〈〈〉〉 symbolizes next-nearest neighbors. The order param-
eters describing the transition to the CDW-I (-II) phase are the
average difference between (next-)nearest-site densities.

To calculate the ground states and order parameters of the
model, we use QuSpin package [185] to write the Hamiltonian
for 12-site system in the Fock basis, resulting in 924 basis states.
We assume periodic boundary conditions. The exact diagonal-
ization is done with the SciPy package [186]. The ground states
belonging to BO, CDW-I and II phases are degenerate. In order
to lift the degeneracy of the ground state, we apply symmetry
breaking fields that favor one of the patterns. For example the
CDW-I phase can have the ground state density pattern 1010 . . .
and 0101 To force the system to one of the two states, we
add a field term h1

∑N
i=1(−1)ini to the Hamiltonian which will

reduce the energy of the density pattern 1010 . . . and make it a
non-degenrate ground state. The field is chosen h1 � 1. This
approach results in non-zero corresponding order parameters in-
dependently of the phase, therefore we define transition points
as such parameters of the system that correspond to the order
parameter being 10 times bigger than the corresponding symme-
try breaking fields. As such, due to the guiding fields of values
10−7, 10−5, and 10−4 for 101010 and 11001100 density patterns
and 1010 hopping pattern, respectively, the order parameters of
values 10−6, 10−4, and 10−3 signal the transition to the CDW-I,
CDW-II, and BO phase, respectively. It is interesting to note
that the results presented in this work stay the same without the
symmetry breaking fields, and also do not depend on the size of
the system.

Within this work we train the CNN on three transition lines
indicated with arrows (1)-(3) in Fig. 5.5. The first transition line
leads from the LL to the CDW-I phase, and is calculated for
constant V2 = 0 and V1/J ∈ [0, 40]. It is a source of training

5.1. Methods 85

data for both Figs. 5.7 and 5.8, and test data for Fig. 5.7. It
is symbolized in Fig. 5.5 with the arrow (1), and the values of
corresponding order parameter OCDW-I are plotted in Fig. 5.6(a).
The transition, defined as above, occurs for V1/J = 1. The second
transition line is calculated for V2 = 0.25V1 and V1/J ∈ [0, 80].
Indicated with the arrow (2), it is the source of test data for
Fig. 5.8. The corresponding order parameter CDW-I is plotted
in Fig. 5.6(b), and the transition takes place for V1/J = 1.85. The
final transition line cuts three phases: LL, BO, and CDW-II. It
is marked with the arrow (3) and provides both training and test
data for Fig. 5.9. It is calculated for constant V1 = 1/J and V2 ∈
[0, 8V1]. Transition between LL and BO occurs for V2 = 0.51V1,
and between BO and CDW-II for V2 = 1.7V1. It is important to
notice that for the chosen range of parameters V2 = [1.7V1, 8V1],
two phases co-exist what can be seen in Fig. 5.6(c). We feed

0 1 2 4 10 40

V1/ J

10−6

10−4

10−2

100

O
rd

er
p

ar
am

et
er

s’
va

lu
es

1.0

(a)

CDW-I

0 1 2 4 10 80

V1/ J

1.85

(b)

CDW-I

0 1 2 4 8

V2/ V1

0.51

1.7

(c)

CDW-II

BO

Figure 5.6: Corresponding order parameters’ values for three tran-
sition lines studied within this work, indicated with arrows (1)-(3) in
Fig. 5.5. (a)-(b) CDW-I order parameter for the transition line between
the LL and the CDW-I phase for V2 = 0 and 0.25V1, respectively. (c)
CDW-II and BO order parameters for the transition line between LL,
BO, and CDW-II for V1 = 1/J . Note the logarithmic scale of y-axis,
and the symmetric log scale of x-axis with threshold points chosen to
be 3, 3, and 2, respectively. Cusps in the lines are artificial and result

from the symmetric log scale of x-axis.

the CNN with ground states expressed in the Fock basis, labeled
with their appropriate phases, calculated for a 12-site system with
QuSpin and SciPy packages [185, 186]. To lift the degeneracy of
the ground state, we use guiding fields favoring one symmetry. As
shown above, we define the phase transition position where the
order parameter’s value is ten times larger than the corresponding
guiding field. The hopping amplitude, J is set to 1 throughout
the paper.

86 Chapter 5. Interpretability of NN phase prediction

Data and code availability

The code needed to reproduce all results, along with the data pro-
duction, is available for further development and use on GitHub [180].

5.2 Results

In this section we present the results for the influence function
applied on the different transitions within the extended Fermi-
Hubbard model.

Transition between LL and CDW-I.

We train a CNN to classify ground states into two phases: LL and
CDW-I based on the transition line marked with the arrow (1) in
Fig. 5.5 for V2 = 0. We plot the influence functions of all training
examples for a chosen test point (marked with orange line) in
Fig. 5.7. The order parameter describing the transition here is the
average difference between nearest-site densities, which is zero in
the LL phase and non-zero (growing to one) in the CDW-I phase.
The panels (a)-(b) present how influential training points are for
test points from the LL phase. The test state (a) is the ground
state located deeply in the LL phase, while (b) is closer to the
transition.

If the CNN learns an order parameter, all training points, i.e.,
ground states from the LL phase exhibiting a zero order parame-
ter, should be similarly positively influential, and that is exactly
what we observe. They form an almost flat line in panels (a),
(b), and (d). In panel (c), however, for the test point close to
the transition, their influence changes linearly. This divergence
from expected behavior is because, in our exact diagonalization
calculations, the order parameter in the LL phase is not exactly
constant and equal to zero. Instead, it is growing very slowly,
that is why finally the most helpful points are the ones near
the transition - they are also the most unique from the train-
ing points labeled as LL, and the information they provide is the
most valuable. The nonzero order parameter is caused by three
phenomena: the finite-size effect, use of the guiding fields, and
the numerical arbitrariness of choosing the transition point. In
the perfect scenario (observed, for example, for training on states
obtained from mean-field calculations), the five most influential

5.2. Results 87

−10−3

0

10−3

10−1

(a) (b)

0 1 2 4 10 40

−10−3

0

10−3

10−1

(c)

0 1 2 4 10 40

(d)

In
fl

u
en

ce
fu

n
ct

io
n

va
lu

e

V1/ J

Figure 5.7: Influence functions of all training examples i.e., ground
states calculated for the transition line between LL and CDW-I for
V2 = 0 for chosen test points marked with an orange line. Blue dots
are influence function values for training examples from the LL phase;
purple ones are from the CDW-I phase. Larger green (red) dots are
five the most influential helpful (harmful) training examples. The light
grey background indicates V1/J values of the LL phase, dark grey -
the CDW-I phase. A symmetric log scale is used both in x and y axis

with 3 and |10−3| chosen as threshold points, respectively.

points should be randomly distributed over the whole LL phase.
The most harmful training points are, in both cases, the ones clos-
est to the transition, but on the CDW-I side of it. These states
are the most similar (with the smallest order parameter value),
but already labeled differently. On the side of the CDW-I phase,
the influence pattern is significantly different. The curvature of
influential points corresponds to the growth of the order param-
eter, and the most influential helpful points are the ones closest
to the test point in the order parameter space, slightly shifted
towards the transition point, as they provide more information.
Panel (c) shows the influence functions of training points for the
test states on the CDW-I side, close to the transition. The most
harmful examples are, as in the previous test points, the ones
closest to the transition, but on the other side of it. Panel (d),

88 Chapter 5. Interpretability of NN phase prediction

however, presents a distinct behavior of the most harmful exam-
ples being the closest to the transition, but on the same side. All
the training points are similarly influential with small values of
influential functions resulting in the almost flat line. It is a signa-
ture of the CNN’s high certainty regarding the prediction made
in panel (d) manifesting with a small test loss function L(ztest, θ̂).
Also, the analyzed test point is deeply in the CDW-I phase with
all neighboring states being almost identical with the order pa-
rameter close to 1. The most harmful examples are the ones that
are labeled as the CDW-I phase, but very different, so the ones
closest to the transition. Important to keep in mind is that the
training data provided to the machine are fully shuffled, so the
ordering, which is visible in the figures, results solely from their
inner analysis by the ML algorithm.

Transfer learning

With a similar approach, we validate the transfer learning to an-
other transition line. We take the trained CNN from Fig. 5.7
and in Fig. 5.8 we apply it to test states coming from the transi-
tion line for V2 = 0.25V1, where the phase transition position is
shifted to higher values of V1/J . Therefore the training and test
states come from different transition lines, V2 = 0 and 0.25V1,
marked in Fig. 5.5 with the arrows (1) and (2), respectively.

Panels (a) and (b) of Fig. 5.8 show the influence function
values of training data set for test states from the LL phase,
while (c) and (d) - from the CDW-I phase. Due to the shifted
transition point for the test line, compared to the training line,
we see the same shift in the behavior of the most influential points
on the CDW-I side. This shift corresponds to the fact that no
longer the same value of V1/J yields the same value of the order
parameter, and that the ML algorithm still as the most influential
points regards the states with the most similar order parameter.

Inferring the existence of the third phase

This time we analyze the transition line crossing three phases,
LL, BO, and CDW-II, which is indicated by the arrow (3) in
Fig. 5.5. Two order parameters are needed to describe this tran-
sition. One is the average difference of the next-nearest neighbor
density, which equals zero in the LL and BO phases, and grows
to 1 in the CDW-II phase. The other is the staggering of effective

5.2. Results 89

−10−3

0

10−3

10−1

(a) (b)

0 1 2 4 10 80

−10−3

0

10−3

10−1

(c)

0 1 2 4 10 80

(d)

In
fl

u
en

ce
fu

n
ct

io
n

va
lu

e

V1/ J

Figure 5.8: Influence functions of all training examples i.e., ground
states calculated for the transition line between LL and CDW-I for
V2 = 0 for chosen test states from transition line for V2 = 0.25V1
marked with an orange line. Blue dots are influence function values
for training examples from the LL phase for V2 = 0; purple ones are
from the CDW-I phase. Larger green (red) dots are five the most influ-
ential helpful (harmful) training examples. The light grey background
indicates V1/J values of the LL phase for V2 = 0.25V1 line, dark grey -
the CDW-I phase. A symmetric log scale is used both in x and y axis

with 3 and |10−3| chosen as threshold points, respectively.

nearest-neighbor hoppings, being 0 in the LL phase, non-zero in
the BO phase, and slowly decaying to 0 in the CDW-II phase. In
the studied range of parameters, two phases (BO and CDW-II)
co-exist. It is crucial to note that in this section, we train on
the mentioned transition line crossing three phases, but we label
ground states only as belonging to one out of two phases.

In the first set-up, with results presented in the panels (a)-(b)
of Fig. 5.9, we label ground states as belonging to the LL (blue
dots, label 0) or belonging to the BO and CDW-II phases (purple
dots, label 1). Independently on the test point location, within
purple training points belonging to BO and CDW-II two simi-
larity regions, understood as two groups of points with similar
influence within the group, can be distinguished. The ML algo-
rithm apparently learns two different patterns (order parameters)

90 Chapter 5. Interpretability of NN phase prediction

−10−2

−10−4

0

10−4

10−2

(a) (b)

0 1 2 4 8

−0.001

0.000

0.001 (c)

0 1 2 4 8

(d)

In
fl

u
en

ce
fu

n
ct

io
n

va
lu

e

V2/ V1

Figure 5.9: Influence functions of all training examples i.e., ground
states calculated for the transition line between LL, BO, and CDW-
II for V1/J = 1 labeled as (a)-(b) LL - not LL and (c)-(d) CDWII -
not CDWII for chosen test points marked with an orange line. Blue
dots are influence function values for training examples from (a)-(b)
the LL phase, (c)-(d) the LL and BO phases, while purple ones (a)-
(b) from the BO and CDW-II phases, (c)-(d) from the CDW-II phase.
Larger green (red) dots are five the most influential helpful (harmful)
training examples. The light background indicates V1/J values of the
LL, light grey - BO, and dark grey - CDW-II phase. In all subplots,
a symmetric log scale is used in x axis with 2 chosen as a threshold
point. A symmetric log scale with |10−4| as a threshold is used in y

axis in panels (a)-(b), while in panels (c)-(d) the scale is linear.

to classify the data correctly, and as such, it notices the existence
of the third phase within the incorrectly labeled data. This would
be impossible to notice without the use of interpretability meth-
ods, which in this sense pave the way towards the detection of
unknown phases. The second set-up consists of labeling the same
data as belonging either to the LL and BO phases (blue dots,
label 0) or to the CDW-II phase (purple dots, label 1). The in-
fluence functions values, resulting from this classification, are in
the panels (c)-(d) of Fig. 5.9. The pattern they form is starkly
different. First of all, no longer two similarity regions within
training points from the LL and BO phases are distinguished. It

5.3. Conclusion 91

is because this transition can be fully described with one order
parameter, which is zero in the LL and BO phases, and non-
zero in the CDW-II phase. The behavior is then more similar
to the one seen in Fig. 5.7 with the transition between LL and
CDW-I. It is not identical, though, as in the phase LL+BO the
most helpful training points are always distributed randomly, but
deep in the LL phase, avoiding the BO phase. The most helpful
points on the CDW-II side are also those deep in the CDW-II
phase in contrast to Fig. 5.7, where they mostly follow the test
point. The difference comes mostly from the fact that the deeper
in the CDW-II phase, the smaller the BO order parameter, which
is making CDW-II predictions less difficult. We claim that the
observed pattern is the sign of not learning correctly the order
parameter and potentially overfitting.

Finally, we trained a CNN on the same data, but with three
labels correctly corresponding to all three phases. The influence
patterns seen in Fig. 5.7 and panels (c)-(d) of Fig. 5.9 are re-
peated, indicating that CNN correctly learns both appropriate
order parameters.

5.3 Conclusion

We used an interpretability method, the influence functions, on
a CNN trained to classify ground states of the extended 1D half-
filled spinless Fermi-Hubbard model. We provided for the first
time a strong indication that the ML algorithm indeed learned
a relevant order parameter. First, in the LL - CDW-I transition
the order parameter is zero in LL and continuously increasing
in CDW-I. Therefore, the states in LL should all be all equally
influential. In the CDW-I phase, on the other side, the points that
are close in the parameter space should be most similar to each
other and with increasing distance in the parameter space the
influence should decay. Exactly this behaviour can be obtained
with the influence function. At the same time we also have to
acknowledge significant finite size effects that show in the order
parameter and in the influence function. E.g. the order parameter
is not exactly zero in the LL phase.

We as well show that in a transfer learning setup, where the
LL-CDW-I phase transition for the test set is slightly shifted,
the influence function still identifies influential training points in
accordance of the new shifted transition.

92 Chapter 5. Interpretability of NN phase prediction

Second, we train the CNN on states from three different phases,
but only provide two different labels. From this experiment we
can obtain, that the CNN learns by itself to distinguish BO from
CDW-II if these two phases are labeled equally and compared
against the LL phase. This makes sense, because there are two
different order parameters for BO and CDW-II that are both zero
in LL. Therefore, when we tell the CNN that it has to distinguish
BO and CDW-II against LL, we can see in the influence func-
tion, that BO and CDW-II are distinguished differently from LL.
Which is the same if we would apply an order parameter. If, on
the other side, we train the CNN on LL and BO versus CDW-II,
the CNN only has the possibility to distinguish the two classes
via the CDW-II order parameter, which compares the density
the second nearest neighbour sites. This order parameter is zero
in BO and LL and therefore via this order parameter these two
phases are not distinguishable. This shows as well in the influence
function.

93

Chapter 6

Loss Landscapes of VQCs

In Chapter 5 we have seen how the eigenvalues of the Hessian of
a loss function can help us to calculate the influence function to
get more insight into the black-box of NNs. In recent years Noisy
intermediate-scale quantum (NISQ) devices [27] have drawn a
lot of attention. Variational quantum circuits (VQCs) are one of
the most promising applications of NISQ devices and like classical
NNs they are used as black-boxes. In this Chapter, we introduce a
way to compute the Hessian of the loss function of VQCs and show
how to characterize the loss landscape with it. The eigenvalues of
the Hessian give information on the local curvature and we discuss
how this information can be interpreted and compared to classical
NNs. We benchmark our results on several examples, starting
with a simple analytic toy model to provide some intuition about
the behavior of the Hessian, then going to bigger circuits, and
also train VQCs on data. Finally, we show how the Hessian can
be used to escape flat regions of the loss landscape. Even though
VQCs have been benchmarked on many different problems in the
past years, there are still many open questions related to the
convergence of the loss function and to the trainability of these
circuits in situations of vanishing gradients. Furthermore, it is not
clear how “good” the minima are in terms of generalization and
stability against perturbations of the data and there is, therefore,
a need for tools to quantitatively study the convergence of the
VQCs.

VQCs are constructed with parametrized gates to minimize
a given observable (or measurement) and can be trained with
gradient-based methods [187]. There are two main avenues for
the use of VQCs. The first one is the use of VQCs as a state
ansatz with the purpose of finding the variational parameters that

94 Chapter 6. Loss Landscapes of VQCs

minimize a given observable, such as the energy of a physical sys-
tem for the Variational Quantum Eigensolvers (VQE) [188, 189]
or Quantum approximate optimization algorithms (QAOA) [36].
Such circuits allow one to study for example chemistry prob-
lems [35] as well as classical optimization problems, where op-
timization tasks can be mapped to spin problems [36]. The sec-
ond main application for VQCs encompasses data driven quan-
tum machine learning (QML) tasks and their purpose is to map
classical input data onto a measurement that serves as a la-
bel [190, 191, 192]. The emphasis in this application is to pre-
dict the right label for different classical inputs and the quantum
states generated by VQCs are high dimensional representations of
the classical data. These architectures of VQCs have shown to be
universal approximators [191] and are therefore well suited to do
ML. We will refer to this second application as Quantum Neural
Network (QNN). Both of these applications have a classical NN
analogue. NNs have been used as variational ansatz to represent
quantum states [193, 194] and, like classical NNs, QNNs can be
trained on data and do classification or even work as generative
models [195].

Recent works in VQCs were mainly devoted to the exploration
of new applications. Nevertheless, the benchmark of the perfor-
mance and advantage of such circuits compared to classical NNs
has not yet received the deserved attention. In this chapter, we
focus on the loss landscape of VQCs and characterize it with the
help of the Hessian of the loss function. The loss landscapes of
classical NNs trained on data have been extensively studied and
we here compare the loss landscape of data driven classical NNs
and QNNs. For data driven classical NN tasks, the study of the
loss is almost as old as NNs themselves: it started with the investi-
gation of spin glass models for a better understanding of Hopfield
networks [196] and is still a very active research area. For exam-
ple, numerical studies of over-parametrized classical NNs suggest
that high error local minima traps do not appear [197, 198] in
these high dimensional optimization landscapes. Empirical evi-
dence even suggests that low loss basins in NNs are connected
and there are no barriers separating them from each other [199].
Furthermore, different training algorithms find comparable solu-
tions with similar training accuracies [200]. These findings are
all in contradiction with the original idea of a spin-glass-like loss
landscape, where many low energy solutions exist and one can get

Chapter 6. Loss Landscapes of VQCs 95

trapped in spurious minima. Supervised NN setups show good
performance in generalizing tasks: once trained on data, they are
able to predict labels of unknown test data. It is, until today, still
the subject of debates what kind of topology the loss minimum
of a well trained NNs should have. In Ref. [201], the authors
showed that even though the training is independent of the gra-
dient descent method, the generalization of the NNs depends on
many hyper parameters, such as the batch size during the train-
ing: Smaller batch sizes tend to generalize better leading to wider
minima basins of the loss function with many zeros eigenvalues
of the Hessian λi = 0 and almost none of them negative λi < 0.
These findings support the idea that wider minima generalize
better, whereas this question is not yet finally answered and is
still subject to today’s research in classical ML. The nature of
the non-convexity of classical NNs is still in the focus of ongoing
research [202].

A new phenomenon and a major short coming of VQCs com-
pared to classical NNs is the occurrence of Barren Plateaus [203,
204, 205], which are characterized by flat plateaus of the loss
function and exponentially vanishing gradients. In particular,
the authors of Ref. [204] showed that the appearance of the Bar-
ren plateaus depends on the choice of the cost function and that
for local cost functions, gradient decays only with a power law.
The authors also claimed that the loss landscape of certain prob-
lems resembles a narrow gorge, which somehow contrasts with the
idea of wide basins for good generalization in classical NNs. In
Ref. [205], the authors showed that one can avoid to initialize the
variational parameters of the circuit in a Barren Plateau. In so-
called hybrid-quantum-classical training settings, standard gradi-
ent methods like Stochastic gradient descent (SGD), the ADAM
optimizer [206] or also the quantum natural gradient (QNG) have
been used to train VQCs. QNG showed good convergence [187]
and also helped to avoid local minima [207], which is in contrast
to the aforementioned independence of the training method for
classical NNs. In Ref. [191], the authors used a Hessian based op-
timization method and obtain faster convergence for certain data
driven problems. Later in this chapter, we will provide a possible
explanation for this phenomenon.

Generally the loss landscape of VQCs is not yet well under-
stood and, as for classical NNs, a better understanding might
lead to the improvement of optimization algorithms and show

96 Chapter 6. Loss Landscapes of VQCs

the limitations of certain circuit designs. In this chapter we show
how the loss landscape of different VQCs can be studied via the
eigenvalues of the Hessian.

This Chapter is structured as follows: In Sections 6.1, we start
with a brief introduction of the Hessian of NN losses, the loss
landscape of classical NNs and the distribution of the eigenvalues
of the Hessian. In Section 6.2, we discuss the loss landscapes
of VQCs. In Section 6.3, we study an analytical example of a
VQC and compute the Hessian and its eigenvalues. We show
how to calculate the Hessian on an actual quantum hardware in
Section 6.4, apply it to a general example in Section 6.5 and study
it numerically. In Section 6.6, we study a VQC trained on classical
data acting as a classifier. Finally in Section 6.7, we show how
the Hessian can help to escape from very flat barren-plateau-like
regions in the landscape.

6.1 Charaterization of the Loss Landscape
with the Hessian

Hessian and Curvature

The Hessian of a function is a well-suited mathematical object to
study its the local curvature. Given a function f(θ) : RN → R,
the Hessian is defined as the square matrix of the second deriva-
tives of this function Hij = ∂θi∂θjf(θ), with θ = (θ1, θ2, . . . , θN).
For functions satisfying the Schwartz theorem, the Hessian is a
symmetric matrix, so its eigenvalues λi are real and can be or-
dered λ1 ≤ λ2 ≤ · · · ≤ λN . We denote by vi the eigenvector
associated with the eigenvalue λi and refer to the pair (λi,vi) as
the i-th eigenpair.

The Hessian H|θ evaluated at a certain point θ gives a second
order approximation of the function f(θ) within Taylor’s expan-
sion and its spectrum allows one to extract information about
the local curvature of f(θ): A positive eigenvalue λi > 0 of an
eigenpair indicates a locally positive curvature in the direction
of vi and, therefore, an increase of f(x) if one moves along the
direction θ + εvi, for a small perturbation ε. Analogously, nega-
tive eigenvalues indicate a locally negative curvature and λi = 0
indicate flat directions of the function f(θ) and, consequently,
zero curvature. Accordingly, if the function is at an extremum
∇f(θ) = 0 and all eigenvalues are positive (resp. negative), the

6.1. Charaterization of the Loss Landscape with the Hessian 97

point is a local minimum (maximum). If some eigenvalues are
positive and some are negative the extremum is a saddle point.

Loss landscape of neural networks: a brief review

The training of a NN in a supervised ML setting consists in min-
imizing the empirical risk L =

∑N
i l(f(xi,θ), yi) over a dataset

D = {(xi, yi)}Ni , where xi is a training point with its correspond-
ing label yi. f(xi,θ) is the NN prediction for the training point xi
parameterized by the weights θ. The loss function l(·) measures
the difference between the NN prediction and the label. Com-
monly used loss functions are the mean square error or the cross
entropy [208]. The Hessian is defined as Hij = ∂θiθjL and has a
wide range of applications in ML: It can be used to adapt gradi-
ent update to the current loss landscape in the so-called "New-
ton" method [209], for pruning [210, 211] or for interpretability
purposes with the influence function [212]. Furthermore, it can
also be used to study the local curvature of the loss for a bet-
ter understanding of the loss landscape and the convergence of
NNs. In an extensive empirical study, the authors of Ref. [200]
charaterized the behaviour of the Hessian for over-parameterized
NNs, where the number of weights θ of the NN is much bigger
than the number of training points N . They showed that, after
training, the eigenvalues of the Hessian are distributed such that
most eigenvalues are in a bulk close to zero and that there are
some outliers away from zero. For a randomly initialized NNs,
the outliers are both positive and negative and they are sym-
metrically distributed around zero. With the training progress,
the amount of positive eigenvalues increases and it converges to
a negligible amount of negative eigenvalues. For a trained NNs
most eigenvalues are zero and a few are positive, which indicates a
flat minimum of the loss landscape. These findings suggest that
classical notions of basins of attraction may be misleading and
the minima of over parameterized NNs are extremely flat pools
with just a few steep directions. The authors also showed that
the number of eigenvalues that are significantly larger than zero
can be even smaller than the number of training points N given
that the training data instances of each class do not deviate sig-
nificantly. They can be of the order of k, which is the number of
classes that have to be learned by the NN.

98 Chapter 6. Loss Landscapes of VQCs

Rx (θ1)|0⟩

Rx (θN)|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

R (ω1)
R (ω2)
R (ω3)
R (ω4)

R (ω5)
R (ω6)
R (ω7)
R (ω8)

L1(θ1) L2(θ2)

a) b)

Figure 6.1: Variational Circuits. a) Toy model circuit with 1 qubit
rotations around the x axis for N qubits without entangling gates. b)
A general 4 qubit circuit with 1 qubit rotations R(ωi) = R(φ1, φ2, φ3)
followed by CZ entangling gates. We denote by Li is a combination of

rotations and entangling gates.

Computational methods

For most of the implementations we use the pennylane package
from Ref. [213]. We also wrote our own code in pytorch to speed
up experiments with a big number of parameters. For the imple-
mentation we used the complex pytorch library from Ref [214].
All code can be found on GitHub [215].

6.2 Loss Landscape of VQCs

For the study of loss landscapes of VQCs the literature, so far,
is rather sparse and there are still many open questions. For
pure quantum optimization tasks, such as QAOA, VQE or also
state preparation, in general, Barren plateaus seem to be a major
shortcoming and ∇f(θ) = 0 might not indicate an extremum in
the loss landscape but an absolutely flat region, where all eigen-
values of the Hessian are zero. In Ref. [204], the authors defined
a Barren Plateau as a point in the parameter space, where the
mean gradient 〈∇f(θ)〉 = 0 and the variance Var [∇f(θ)] ex-
ponentially vanish with the number of qubits N for global cost
functions and any circuit depth d. They also showed that Bar-
ren plateaus can be avoided for local cost functions if the circuit
depth is d ∈ O(log(N)). For data driven tasks, where VQCs are

6.3. Loss Landscape of VQCs: An Analytical Example 99

trained on classical data, which we will refer to as a QNN, the
occurrence of Barren Plateaus has been observed in some specific
architecutres [216]. In section 6.6, we investigate a QNN which
seems to not suffer from vanishing gradients. The latter might
come from the fact that such architecture escapes the ones de-
scribed in Ref. [216]. The loss landscape for VQCs has so far
been studied in the context of the Quantum Natural Gradient
(QNG) [187, 207] where it has been shown that including the lo-
cal curvature of the quantum state can improve training conver-
gence and also help to avoid local minima. Furthermore, in VQC
settings, where the aim is to find a target state |ψT 〉, the ques-
tion of how expressive a certain circuit ansatz is and whether the
ansatz contains a solution to the problem becomes relevant [217].
Unfortunately, if one wants to find a target state with gradient
based optimization methods, it will not be enough to know that
the ansatz contains a solution. It might be impossible to reach it
from a certain initialization of the parameterized circuit, because
one gets stuck in local minima. This problem has been studied
for classical NNs and empirical evidence suggests that for over-
parametrized NNs the local minima basins are connected [218]
and therefore overparametrization is as crucial as the bare exis-
tence of the solution itself. It is still unclear if these notions of
overparameterization also apply to VQCs. Hence, there is a need
for a better understanding of the loss landscapes of general VQCs
and we believe that the use of the Hessian is one possible tool to
achieve this.

6.3 Loss Landscape of VQCs: An Analyti-
cal Example

In this section we analytically characterize the curvature of the
loss landscape with the Hessian. We start with a simple cir-
cuit that can be solved analytically to get familiar with the con-
cept of the Hessian of loss functions of VQCs. We choose a
toy model circuit introduced in Ref. [204] that presents Barren
Plateaus. The toy model is a N qubit VQC V (θ) = ⊗Ni Rx(θi) =

100 Chapter 6. Loss Landscapes of VQCs

⊗Ni exp(−iθi/2σx), shown in Fig. 6.1(a), with randomly initial-
ized parameters θ that generates the state

V (θ) |0〉 =

n∑
k=0

(i)kP

n−k∏
i

cos(
θi
2

)

k∏
j

sin(
θj
2

) |0〉n−k |1〉k
 ,

(6.1)
where |0〉 ≡ ⊗Ni |0〉i and P (·) stands for the sum of all possible
permutations of the argument. For example

P (cos(θ1) sin(θ2) |01〉)
= cos(θ1) sin(θ2) |01〉+ cos(θ2) sin(θ1) |10〉 . (6.2)

The aim of the variational algorithm is to rotate the initial state
V (θ) |0〉 into a given target state |ψT 〉 and to maximize the fidelity
F with respect to |ψT 〉. For the particular target state |ψT 〉 = |0〉,
all the sin(·) terms in the variational state of Eq. (6.1) cancel and
the fidelity reads [204]

F = | 〈ψT |V (θ) |0〉 |2 =

n∏
i

cos2
(
θi
2

)
. (6.3)

Therefore, we can translate this optimization problem into the
minimization of the loss function l = 1−F , shown in Fig. 6.2, as
a function of θ1 and θ2 and for θi>2 = 0.

We now discuss how the Hessian can help to understand the
loss landscape.

First we initialize the parameters θ randomly and we want
to find the parameters to generate the target state. Figure 6.2
depicts the eigenvalues of the Hessian for different values of θ1
and θ2. The points a) - d) in the optimization landscape show a
possible trajectory of an optimizer. Point a) shows an initializa-
tion in a Barren Plateau, where all the eigenvalues of the Hessian
are 0. Points b) and c) are saddle points in this high dimensional
optimization space where some of the eigenvalues are negative,
some are positive and the bulk of them is zero. Point d) shows
a well converged loss with no negative eigenvalues of the Hessian
and zero gradient ensuring that it is indeed a local minimum.
Since the loss l = 0, we even know that it is a global minimum.
We also observe many degenerate zero eigenvalues which implies
that the minimum is not isolated. As it was the case for classi-
cal NNs, this is a consequence of the over parametrization of the

6.3. Loss Landscape of VQCs: An Analytical Example 101

−π
0

π

−π
0

π

L
os

s

0.0

0.2

0.4

0.6

0.8

1.0

d)
c)
b)
a)

θ1θ2

0.0

0.5

1.0
0

2

E
ig

en
va

lu
es

a) b)

0 20

0

2

E
ig

en
va

lu
es

c)

0 20

d)

Order of Eigenvalues

Figure 6.2: Loss landscape of the toy model with a global loss
function. The target state is chosen to be |ψT 〉 = |0〉. We label in
the contour plot the points for which we compute the Hessians and its
eigenvalues. For fixed parameters θi = 0 with i > 2 the loss function is
not dependent on the number of qubits. Panel a) shows the vanishing
eigenvalues which indicate the Barren Plateau described in Ref. [204].

VQC: many different linear combinations of angles lead to the
same loss function.

For two free parameters θ1 and θ2 and the rest fixed, we find
that the amplitudes of the eigenvalues of the Hessian do not de-
pend on the system size. This might seem to contradict the phe-
nomenon of narrow gorge described in Ref. [204], where the au-
thors describe that the valley in Fig. 6.2 becomes narrower with
an increasing number of qubits N . But in their work, they change
half of the parameters collectively along one axis and the other
half along the other axis. Therefore, it is still true that the VQC
is more likely to be initialized in a flat region even with our de-
scription, because the parameter space becomes bigger and the
product of sinusoidal functions of Eq. (6.1) becomes smaller for
a larger number of randomly drawn parameters.

Figure 6.3 shows the loss landscape for a local loss function
l = 1−∑i | 〈Ψ|0〉i |2, where |Ψ〉 = V (θ) |0〉 is the variational state
and |0〉i is the qubit state of qubit i. In contrast to the global loss
of Eq. (6.3), we measure each qubit separately. For the local loss,
we find that there is no point in the loss landscape with vanishing
eigenvalues of the Hessian .

Note that this behaviour also applies to circuit ansatzes that
do not contain the exact target state and converge at high losses.
If we choose the equal superposition as a target state |ψT 〉 =

102 Chapter 6. Loss Landscapes of VQCs

−π

0

π
−π

0
π

L
os

s

0.0

0.2

0.4

0.6

0.8

1.0

d)
c)

b)
a)

θ1

θ2

0.0

0.5

1.0

−1

0

1

E
ig

en
va

lu
es

a) b)

0 5
−1

0

1

E
ig

en
va

lu
es

c)

0 5

d)

Order of Eigenvalues

Figure 6.3: Loss landscape of the toy model with a local loss
function. We label in the contour plot the points for which we cal-
culate the Hessian and its eigenvalues. The loss landscape is shown
here for only 2 qubits, because for the local loss if we have more than 2
qubits and fix their rotational parameters θ for the 3D loss, we will not
obtain the full range variation of the loss from 0 to 1. The landscape

looks qualitatively the same for more qubits.

∑
{σ} |σ〉 the circuit V (θ) that only consists of Pauli X rotations

will not be able to rotate the initial state |0〉 such that it matches
the target state with fidelity 1. However, with an eigenvalue pat-
tern like in Fig. 6.4, we know that point d) is a local minimum,
given that all the eigenvalues are either positive or zero. It be-
comes also clear that zero eigenvalues of the Hessian correspond
to directions where changes in parameters do not affect the loss
landscape. This phenomenon is illustrated in Figure 6.4 the di-
rection (θ1,−θ2) moves along a valley with constant loss. There-
fore, the eigenvectors of the Hessian reveal additional information
which help to find directions in the loss landscape of maximum
or minimum stability. The latter might be used for pruning the
network [210].

6.4. Computation of the Hessian of a Quantum Circuit 103

−π

0

π
−π

0
π

L
os

s

0.8

1.0

d)
c)

b)
a) θ1

θ2

0.93

0.97

1.00

0.0

0.1

0.2

E
ig

en
va

lu
es a) b)

0 2
0.0

0.1

0.2

E
ig

en
va

lu
es c)

0 2

d)

Order of Eigenvalues

Figure 6.4: Loss landscape of the toy model with |ψT 〉 =∑
{σ} |σ〉. In this case, the circuit is under-parametrized and can-

not reach minimum loss. Nevertheless, we can read from the Hessian’s
eigenvalues that we reached a stable minimum. Furthermore, one of
the eigenvectors of the Hessian with eigenvalue λ = 0 is v = (θ1,−θ2).
Along this direction, the loss is constant. The latter can be verified in

the contour plot.

6.4 Computation of the Hessian of a Quan-
tum Circuit

Like in classical ML, we can treat the VQC as a black-box function
that takes classical data x, depends on some learnable parameters
θ and returns some classical value f(θ,x) from a measurement
or some expectation value. The gradient of any quantum circuit
can be calculated by estimating the central finite difference of the
circuit output

∂θif(θ,x) = lim
εi−→0

f(θ¬i, θi + εi,x)− f(θ¬i, θi − εi,x)

2εi
, (6.4)

where θ¬i are all the parameters except θi. To approximate the
limit of εi → 0 on real hardware, one should choose ε� 1. This
kind of gradient estimation has been shown to not perform well
and depends strongly on the stochasticity of the measurement
outcomes, the number of measurements and the choice of ε [219].
Because of the factor 1

ε , the measurement noise can be amplified
and the estimation of the gradient requires more measurement
shots for smaller ε. In Refs. [220, 221], the authors showed how
the gradient can be calculated analytically to avoid the depen-
dency on the hyperparameter ε. The authors in [221] focused

104 Chapter 6. Loss Landscapes of VQCs

−0.1

0.0

0.2
E

ig
en

va
lu

e a)

−0.5

0.0

1.0
b)

0 10 20 30 40 50
Order of Eigenvalues

−0.5

0.0

1.5

E
ig

en
va

lu
e c)

0 10 20 30 40 50
Order of Eigenvalues

−0.5

0.0

1.5
d)

epoch 0

epoch 1

epoch 2

epoch 3

epoch 4

epoch 5

epoch 6

epoch 7

epoch 8

epoch 15

Figure 6.5: Eigenvalue evolution during the training. We sep-
arate the curves for different epochs to increase the visibility as the
difference between the smallest and biggest eigenvalues is varying dur-

ing the training.

on quantum circuits that can be implemented on NISQ devices,
where the parametrized gates are any qubit rotations generated
by Pauli operators. Taking advantage of these gates, the analytic
gradient reads

∂θif(θ,x) =
1

2
〈f(θ¬i, θi + s,x)〉 − 〈f(θ¬i, θi − s,x)〉, (6.5)

where we set s = π/2. This is called the parameter shift rule and
s = π/2 for all qubit gates that are generated by matrices with
eigenvalues equal to ±1/2, for example Pauli spin-1/2 matrices.
To obtain the gradient of a loss function l(f(θ,x)), we apply the
chain rule ∂θi l(f(θ,x)) = ∂θif(θ,x)l′(f(θ,x)), where l′ is the
first derivative of the loss function with respect to the argument
f(θ,x).

6.4. Computation of the Hessian of a Quantum Circuit 105

As proposed in [222], the Hessian of a quantum circuit can be
computed by applying the parameter shift rule twice

∂θj∂θif(θ,x) =
1

4

[
〈f(θ¬i,j , θi + s, θj + s,x)〉

+ 〈f(θ¬i,j , θi − s, θj − s,x)〉
− 〈f(θ¬i,j , θi − s, θj + s,x)〉
− 〈f(θ¬i,j , θi + s, θj − s,x)〉

]
. (6.6)

With this tool we are able to study the curvature of a loss function
l(f(θ,x), y) via the second derivative of the loss. We emphasize
here that one has to apply the chain rule twice to obtain the
correct Hessian of l

∂θj∂θi l(f(θ,x), y) = ∂θj∂θif(θ,x)l′(f(θ,x))

+ ∂θif(θ,x)∂θjf(θ,x)l′′(f(θ,x)), (6.7)

where l′ (l′′) is the first (second) derivative of the loss function
with respect to the argument f(θ,x). In this chapter, we mostly
use the loss function l(f(θ,x)) = 1−f(θ,x), because f(θ,x) will
be a figure of merit to be maximized, such as the overlap with
some target state or a local observable. The only exception is the
training on classical data where we use the square loss to compare
the labels with an observable.

106 Chapter 6. Loss Landscapes of VQCs

6.5 Behaviour of a General VQC without
Data

−1.0 −0.5 0.0 0.5 1.0
Perturbation ε

0.0

0.2

0.4

0.6

0.8

1.0

L
os

s

λ = 0.0

λ = 0.5

λ = 0.6

λ = 0.7

λ = 0.8

λ = 0.9

λ = 1.0

λ = 1.3

λ = 4.2

λ = 4.4

λ = 9.4

Figure 6.6: Loss around the mimimum for a given pertuba-
tion ε. We show several perturbations θpert = θ̃ + εv labeled by the
eigenvalue λ and the perturbation is along v which is the correspond-
ing eigenvector of the eigenpair (λ,v). Perturbations in the direction
of a zero eigenvalue behave similarly and therefore we only show one
as an example. Perturbations along the eigenvector of big eigenvalues

lead to a much steeper increase in the loss.

We now focus on the behaviour of the eigenvalues of the Hes-
sian during the training of a more general circuit with entan-
gling gates. The aim of the training is, again, to optimize a
randomly initialized circuit V (θ) such that we obtain the target
state |ψT 〉 =

∑
{σ} |σ〉 at the output. To have a better circuit

ansatz than in the previous section, we use general qubit rota-
tions R(φ1, φ2, φ3) = eiφ1σzeiφ2σyeiφ3σz , which we apply to each
qubit, followed by a layer of controlled-Z (CZ) operations. We en-
tangle the gates following the architecture proposed in Ref. [191],
where after each layer of rotations we entangle each qubit with
its neighbouring qubit, starting either with the even or the odd
qubits. We define the layer Li(θi) as the sequence of rotating op-
erations followed by CZ operations. Depending on the even/odd
label i of the layer, we start the pairwise entanglement with the
even/odd qubits [See Fig. 6.1 (b)].

Figure 6.5 shows the typical behaviour of the eigenvalues of
the Hessian of such a parametrized circuit during the training.
The eigenvalues’ distribution for the randomly initialized circuit

6.5. Behaviour of a General VQC without Data 107

(at epoch 0) shows the occurrence of a Barren-Plateau-like be-
haviour with all eigenvalues close to zero. Already for a circuit
with 4 qubits and 4 layers, which has 48 parameters (3 for each
rotation), the circuit is likely to be initialized in a flat region.

In particular, Figure 6.5 (d) depicts the eigenvalues of the
Hessian for the completely converged variational circuit (Epoch
15) and, similarly to the previous toy model, the eigenvalues are
all non negative. Furthermore, most of the eigenvalues are zero,
which means that the minimum is a flat pool, with only a few
directions where the loss will increase and where most directions
in the loss landscape are unaffected by small perturbations.

3D visualizations in these high dimensional loss landscapes are
not feasible anymore, provided that it is not clear how to fix the
remaining parameters. However, the Hessian contains informa-
tion about the local curvature of the loss landscape. Considering
an eigenvector v0 of the Hessian after convergence with the cor-
responding eigenvalue λ0 = 0, we know that if we perturb these
optimal parameters θ̂ in the direction of v0, θpert = θ̂+ εv0, the
loss will not change for a normalized v0 and a small perturbation
ε ∈ R. The same idea applies to eigenvectors vλ that correspond
to an eigenvalue λ � 0. Perturbing θ̂ in the direction of vλ the
loss increases fast, because the loss landscape in this direction is
steep.

Figure 6.6 shows the perturbation in the direction of several
eigenvectors. The corresponding eigenvalues are the labels of the
curves. For the eigenvalue λ = 0 we see that the loss only in-
creases for perturbations ε � 0, which shows that the loss land-
scape is indeed flat around the minimum. We also would like
to emphasize that most eigenvalues λ = 0, but we are only able
to show the perturbation curve for one eigenpair (λi = 0,vi) in
Fig. 6.6 because they behave very similarly around ε � 0. The
vast number of zero eigenvalues indicate that the loss landscape
around the minimum is mostly flat with only a few steep direc-
tions.

108 Chapter 6. Loss Landscapes of VQCs

−1 0 1
x1

−1

0

1

x2

Figure 6.7: Training data for variational circuit. Data inside
the disk are labelled −1 and data outside the disk are labelled +1.

We therefore see that the positive semi-definite nature of the
Hessian is an indicator for a very stable solution. The optimiza-
tion landscape cannot be perturbed and it is unlikely that during
the optimization one jumps to another local minimum. The fact
that in all directions the loss either stays the same or increases
means that, with gradient descent methods the minimum loss can
always be recovered, because we are in a locally convex point of
the landscape. On the other hand, as we discuss in the next sec-
tion, in quantum and classical ML tasks involving training with
data not all eigenvalues are positive. There are still some small
negative eigenvalues remaining and the Hessian is not positive
semi-definite [223]. The optimization still converges, but the ex-
act nature of the loss minima is controversial. There are claims
that these flat regions are essential for the generalization capa-
bilities of a NN [218] and that through these wide flat pools two
solutions can be connected, which contradicts the idea of isolated
basins at the bottom of the loss landscape [224].

6.6. Training with Data 109

6.6 Training with Data

We now characterize the Hessian of VQCs trained on data X
with labels y, often called quantum neural networks (QNNs). We
compare the results to a classical fully connected feed forward NN
and we observe qualitative differences between classical NNs and
QNNs. To this end, we use a simple dataset D = {(xi, yi)}Ni=1

which only contains two classes, depicted in Fig. 6.7: a 2 dimen-
sional set of points x = (x1, x2) labeled −1 inside the circle of
radius r and 1 otherwise. In order to have a balanced dataset
between the labels for xi ∈ [−1, 1], we choose r =

√
2/π.

|0⟩

|0⟩

|0⟩

|0⟩

R (ω1)
R (ω2)
R (ω3)
R (ω4)

R (ω5)
R (ω6)
R (ω7)
R (ω8)

L1(x, θ1) L2(x, θ2)

R (x)

R (x)

R (x)

R (x)

R (x)

R (x)

R (x)

R (x)

Figure 6.8: Data Reuploading Circuit. Each layer Li contains
an additional qubit rotation R(x) with the classical data vector x =
(x1, x2, x3). The parameterization and the entangling gates are the
same as in Figure 6.1 (b). For the 2D input data (x1, x2), we set

x3 = 0.

The first step is to encode the data instances x ∈ X onto
the variational circuit and then the second step is to associate
a certain measurement direction with a classical label y. There
are many possible ways to encode the classical data in the quan-
tum state |ψ(θ,x)〉. We follow here the architecture proposed in
Ref. [191] and depicted in Fig. 6.8, which adds to each layer of
Sec. 6.5 an additional rotation R(x1, x2, x3). This way, each layer
consists of a data dependent rotation R(x1, x2, x3) followed by
a parametrized rotation R(ω1, ω2, ω3) applied on each qubit (we

110 Chapter 6. Loss Landscapes of VQCs

here choose x3 = 0 as the data are two-dimensional), followed by
the entangling operators. Regarding the label, the general idea is
to define a measurement on one or more of the qubits that deter-
mines the QNN prediction. For two classes, the measurement of
one qubit is already sufficient to have orthogonal measurements
for each class, minimizing the overlap between complementary
predictions. Therefore we choose to measure the first qubit in
the Pauli Z direction and associate the measurement expectation
value 〈Z〉 = 1 (〈Z〉 = −1) with the labels y = 1 (y = −1). The
loss l(〈Z〉 , y) compares the label with the prediction 〈Z〉 and we
here use the mean square loss

l(x, y) = (〈ψ(θ,x)|Z |ψ(θ,x)〉 − y)2. (6.8)

After training, one finds the set of parameters θ̂ that minimizes
the empirical risk L =

∑
i l(xi, yi).

To get an intuition, we first consider the Hessian of the loss
of an arbitrary single training point (x, y). It has an eigenvalue
distribution dependent on the prediction of the NN on x. A
correctly predicted label ŷ with a loss l(x, ŷ = y) will lead to
an eigenvalue distribution with most eigenvalues equal 0 and a
few bigger than zero. This is the typical distribution if the loss
of the NN is in a minimum [200]. For wrongly predicted labels,
the eigenvalues of H are mostly zero with a few negative values.
This is typical if the loss of the QNN is in a maximum. If the
prediction ŷ is somewhere between the labels −1 and 1 and there
is a big uncertainty in the QNN’s prediction, the eigenvalues of
the Hessian will be again mostly zero but with an equal amount
of positive and negative eigenvalues. This distribution is likely
to be obtained in randomly initialized NNs. In the following, we
show that for VQCs the eigenvalue distribution of the Hessian and
the loss landscape itself shows some qualitative differences with
respect to classical NNs. We also emphasize that we do not look
at the Hessian spectrum of single training points, but rather at the
spectrum of the whole training set. Empirical studies show that
the eigenvalues of the sum of all the losses of the single training
points (the empirical risk) behave approximately like the average
of the spectrum of the single losses. If most training points are
correctly classified, the Hessian of the empirical risk has negligible
negative eigenvalues. In contrast, if all points are incorrectly
classified the positive eigenvalues are negligible. If most training

6.6. Training with Data 111

points show uncertainty in their prediction then there will be a a
positive and a negative tail in the eigenvalue spectrum.

Figure 6.9 shows the prediction map of the QNN and the
eigenvalues of the Hessian calculated over the whole training set
(inset) for random initialization and after the training. We com-
pare the results of the QNN with a classical fully connected feed
forward NN (FFNN) in Figure 6.10. To make the results compa-
rable, we choose a NN with a comparable amount of parameters,
the same labels y = ±1 and the same loss function. The classical
NN has 2 hidden layers with 12 and 10 neurons which results in
200 parameters, which is comparable to the 192 parameters of
the QNN (8 qubits, with each 8 layers and 3 parameters per layer
8× 8× 3 = 192).

Figure 6.9: QNN label prediction map with Z -measurement
for a randomly initialized variational circuit a) and after the training
b). The inset shows the Hessian’s eigenvalue distribution, which is
similar to a classical NN if we use the loss function . The Hessian is

computed over the whole training set.

The distribution of the eigenvalues is similar for the FFNN
and the QNN. For a random initialization, the eigenvalues are
equally likely positive and negative and the bulk is zero. After
convergence, the negative eigenvalues disappear. There is a qual-
itative difference between the classical and the quantum version
concerning the amplitude of the eigenvalues, which is almost an
order of magnitude smaller for the FFNN for random initializa-
tion. For these relatively small FFNNs with 200 parameters, the
distribution of the eigenvalues for a random initialization can vary
strongly, but this is an effect that disappears for higher overpa-
rameterization of the FFNN. This is in contrast to the QNN that

112 Chapter 6. Loss Landscapes of VQCs

does not show strong fluctuations in the amplitude of the negative
and positive eigenvalues.

Furthermore, the loss landscape of the QNN already shows
steep slopes for random initialization compared to the flat ran-
dom initialization of the FFNN. This seems to come from the
fact that the loss of a QNN contains products and sums of si-
nusoidal functions like in Eq. (6.1), and stands in stark contrast
to the training of variational circuits without data, where it is
likely to initialize the circuit in absolutely flat regions, the Bar-
ren Plateaus. We did not observe any Plateaus in the case of
QNN trained on data.

As the authors in Ref. [207] pointed out, classical NNs tend
to transform local minima into deep and narrow steep valleys
[225], which means that, for FFNN the amplitude of the negative
eigenvalues tends to decrease if the training progresses. This is
also in agreement with Ref. [202]. In addition, for FFNNs, we
observe that there are just a few positive eigenvalues, of the order
of the number of classes as introduced in section 6.1, in agreement
with [200]. On the other side, QNNs do not seem to converge to
these extremes, where just a few eigenvalues are positive and their
positive "tail" in the eigenvalue spectrum is less steep (at least
for the order of < 200 parameters). This observation seems to be
connected with the fact that the loss landscape of the QNN after
convergence still has some uncertainty at the decision boundary,
unlike the FFNN which barely has any. The eigenvalues of the
Hessian of the loss landscape inside a pool with high certainty
are all close to zero, even if the NN prediction is wrong. This
is generally true for wide flat regions of the loss landscape and
it means that the main contribution of the eigenvalues of the
Hessian comes from transition regions in the loss landscape where
the label prediction changes from one to another.

6.7 Escaping from Barren Plateaus with the
Help of the Hessian

In this section, we show how the Hessian can be used to escape
from Barren Plateaus during the training of variational circuits.
As shown in Ref. [204], the likelihood of initializing a variational
circuit in a Barren Plateau increases with the numbers of qubits
and layers of the circuit. Here, we propose to use the inverse of

6.7. Escaping from Barren Plateaus with the Help of the
Hessian 113

Figure 6.10: FFNN label prediction map for a randomly initial-
ized NN a) and after the training b). The inset shows the Hessian’s
eigenvalue distribution. The Hessian is calculated over the whole train-

ing set.

the largest eigenvalue of the Hessian 1/λmax as the learning rate
of the gradient descent optimizer in order to avoid being trapped
in the loss landscape by vanishing gradients. Figure 6.11 shows a
comparsion between a normal Gradient descent optimizer (GD),
the quantum natural gradient optimizer (QNG) from Ref. [187]
and our method of a learning rate of 1/λmax. The comparison
has been done for random initializations of a circuit with N = 8
qubits and 4 layers of parameterized rotations R(φ, θ, ω). The ini-
tial state is |0〉⊗N and the target state is |ψT 〉 = 1/

√
2N
∑
σ |σ〉.

To compare the optimization methods we start in the same ran-
dom initialization. We observe that the GD method is already
struggling to train for such small circuits, because the gradients
are too small, especially at the beginning of the training. With
large learning rates, we might be able to escape the region of van-
ishing gradients, but it is impossible to converge. Both methods
QNG and our Hessian method escape the flat region. The QNG
method basically transforms the parameter update such that the
update direction is not only in the steepest direction of the Eu-
clidean space of the parameters, but in the steepest direction of
the distribution space of all possible loss functions. Neverthe-
less, QNG can still get stuck in a flat region of the loss function.
Hence, QNG provides poor performance whenever the circuit is
initialized in a barren plateau. Our analysis also explains, why
LBFGS optimization methods work better in ref. [191], provided
that they are Hessian based.

Furthermore Ref. [207] shows that natural gradient optimiz-
ers help to prevent falling into local minima whereas Hessian

114 Chapter 6. Loss Landscapes of VQCs

0 50 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

L
os

s

a)

0 50 100
Epochs

b)

GD

QNG

H-LR

Figure 6.11: Training loss for training with Gradient descent
(GD), Quantum Natural Gradient (QNG) and the learning rate adap-
tion via the Hessian’s maximum eigenvalue (H-LR) for two different
random initializations a) and b). The first initialization a) shows a
very slow convergence for GD and QNG in the beginning. This is

caused by a Barren Plateau.

based methods struggle with local minima. The full Hessian is
also costlier to calculate than the quantum metric tensor from
Ref. [187]. Hence, we propose to use our method if the training
is stuck in a flat region of the loss landscape to escape a Plateau,
but to use the QNG for regions where the gradients are bigger.
The two methods can, therefore, be combined: The QNG adapts
the local shape of the gradient and fits it exactly to the loss land-
scape, providing faster convergence than vanilla GD [187] and the
Hessian helps to kick the loss out of very flat regions. Finally, we
emphasize that this method might have a practical shortcoming:
as the eigenvalues of the Hessian are small in a Barren plateau,
the measurement noise can be a limitation for such a proper eval-
uation of the Hessian in a plateau.

6.8 Conclusion

In this Chapter, we introduced the Hessian as a tool to study
VQCs and discussed how the interpretation the eigenvalues and
eigenvectors of the Hessian can lead to a better understanding of
the loss landscape of a VQC. The combination of NISQ devices

6.8. Conclusion 115

and gradient descent methods is still a young field and needs a
thorough study for a better understanding of its potential. Espe-
cially for data driven tasks, the use of QML is at least controver-
sial and one needs to find in which problems the application of
QML has a potential advantage over classical NNs. We identified
some qualitative differences between QNN and FFNN loss land-
scapes, which becomes evident after their initialization where the
QNN loss shows a rougher surface than the FFNN which initial-
izes very flat. We hope we can add another piece to the already
controversial discussion of what kind of basins an ideal minima
should live in for NNs by adding another interesting candidate:
QNNs. Like in Chapter 5, the main bottleneck for the use of the
Hessian in NN optimizations is its computational cost. For future
research there is a need of finding good approximation schemes
for quantum circuits. Furthermore, there are recent developments
in classical ML showing that the learning rate early in SGD de-
termines the quality of the minima found after the training [226]
and big initial learning rates, like in our method with the inverse
of the Hessian’s biggest eigenvalue goes in this direction. Fur-
thermore, there are Hessian based interpretability methods like
the influence function [212, 227] which one could also apply to
QNNs.

117

Chapter 7

Conclusions and Outlook

This thesis is dedicated to research at the intersection of ML and
quantum physics. Two of the main topics that are studied in this
context are the use of classical ML techniques to classify quan-
tum states, in our case to distinguish phases of matter, and the
use of quantum hardware to perform ML tasks. We have stud-
ied mainly three different directions within the realm of ML and
quantum physics and quantum physics for ML. First, was the use
of classical ML techniques to find phase transitions in quantum
many-body systems. Second was how can we interpret these ML
algorithms and their predictions to learn more about quantum
systems and finally, how we can use methods that are inspired
by classical ML interpretability to better understand quantum
enhanced ML, also called QML. For the first two directions we
focused on the use of deep NNs, which are very versatile function
approximators. They learn to distill in a supervised and unsu-
pervised manner patterns from quantum states to predict their
phases of matter. One of the big disadvantages of NNs is that
their reasoning is completely opaque and they, in general, do not
allow us to gain insight of how a network came to a certain con-
clusion. Therefore, we used a machine learning interpretability
method, called influence function, to better understand and un-
ravel the black-box of NN predictions. Finally, inspired by the
knowledge that we gained by classical ML interpretability, we
study VQCs and their loss landscapes to understand how they
compare to classical ML learning algorithms via the Hessian of
the loss.

118 Chapter 7. Conclusions and Outlook

Domain Adversarial Phase Detection

In Chapter 3 we used a deep NN architecture, called domain ad-
versarial NNs, to extract relevant features from quantum many-
body ground states to successfully predict their phase. As hu-
mans, we often gain an intuition on a physical system using a spe-
cial case that is analytically or numerically easy to treat. Then
we generalize the insights to the more complex cases. Domain
adaptation captures this idea: a deep learning system extracts
intuition on a well-understood system and applies it to a more
perplexing one. We benchmark the architecture first on the well
known SSH model and see that the DANN predicts the exact
phase transition points. Furthermore, we show that the DANN
architecture outperforms traditional transfer learning when the
target domain comes from a Hamiltonian with noisy interactions
and it can predict new and unknown phases reliably. When we
apply the DANN on the spin-1/2 Heisenberg chain that shows
a MBL transition we see that the DANN is able to “invent” a
new “order parameter” for the MBL phase transition that yields
meaningful results from vastly fewer disorder realizations than
established methods. This result is a strong argument for the
use of ML techniques in noisy systems and indicates a clear ad-
vantage over standard methods. It seems fair to say that the
resulting quantity actually captures the essential physics, as the
network, once trained, can correctly identify the phase transition
not only at different energy densities, but also in similar but dis-
tinct models. This is remarkable, since the MBL transition has
mostly defied analytical approaches and even the question of what
is the best way to delineate the phase could not be resolved in a
satisfactory way.

We have demonstrated that ML can be used to automate
the task of identifying relevant features that most efficiently cap-
ture the physics of phase transitions in quantum systems — a
formidable task so far reserved for human researchers. We use
the wavefunction as an input which is in our opinion the least
biased information we could give a NN and we therefore reduce
human input to a minimum. Our method is directly applicable to
other nonstandard critical phenomena beyond SSH and MBL and
can be used to distinguish multiple phases, even across different
classes of models, as long as their Hilbert spaces are compati-
ble [228]. It would be interesting for future work to apply the

Chapter 7. Conclusions and Outlook 119

technique demonstrated here to larger system sizes, hope to gain
new insights into whether there are additional thermodynami-
cally stable phases near the MBL phase transition [229, 230]. To
further improve our method one could combine it with the in-
terpretability method introduced in Chapter 5 to gain a better
understanding of what the NN learns. It would be important for
this to try different architectures and to reduce the NN parame-
ters to be able to calculate the Hessian.

Anomaly Detection

In Chapter 4 we reinterpret the phase prediction problem as an
anomaly detection problem. The main idea behind this is that
states or measurement data from the same phase of matter is sim-
ilar and from different phases is different. This difference can be
measured by the loss of a NN AE that was previously trained on
states from one region of the phase diagram. The idea of using the
similarity of state vectors that are close in phase space to identify
phase transitions has already been used in the method of [136] but
the use of our ML based method allows us to do the same without
doing full state contraction, which is an enormous computational
advantage. Compared to other ML techniques, the advantage of
this method is that it is completely unsupervised and does not
require any knowledge of the origin of the data or the underlying
physical behavior. This method can be used to fully automate
the exploration of unknown phase diagrams. We benchmark the
method on the extended Bose-Hubbard model. As an input we
use the entanglement spectrum (ES), the central tensor and corre-
lators that could be observed via a measurement, all obtained by
DMRG. We acknowledge that, compared to Chapter 3, this input
data is in some sense more preprocessed than the wavefunction
itself. At the same time avoiding the use of the full wavefunction
allows for much better scalability. We cannot avoid human input
completely because we have to make choices about the compu-
tational methods and e.g. the basis of the system. Nevertheless,
we do not have to give the NN any additional information and
we show that new phases can be found via the changes of the
loss of the AE. Furthermore, we obtain a new region in the phase
diagram of the extended Bose-Hubbard model that most likely
shows a phase separation between the superfluid and super solid
phase. Further research in this direction is still ongoing.

120 Chapter 7. Conclusions and Outlook

Moreover, there is ongoing research that aims at using anomaly
detection on experimental data to further follow the idea of a self-
driving laboratory, where the parameter space of a experimental
setup can be scanned and directly fed into the AE to identify
regions of interest.

Interpretability of NN phase prediction

In Chapter 5 we use ML interpretability to investigate what a
NN learns in a supervised phase discrimination task. We use
a method, called influence function, that approximates a leave
one out (LOO) training. We train a CNN to classify the phase
of ground states of the extended 1D half-filled spinless Fermi-
Hubbard model. On the trained model we apply the influence
function method to find out which states of the training set are
most influential on the prediction of the NN of a test state. We
provided strong evidence that the ML algorithm indeed learned
a relevant order parameter describing the quantum phase tran-
sition. In simulations, where we don’t teach the NN on the real
order parameters, the values of the influence functions would still
provide information about the phase transition and help in ex-
tracting a relevant order parameter. However it will not provide it
explicitly. Moreover, we showed that through the influence func-
tions, applied to the trained NN, we were able to detect an un-
known phase. Two aspects impacted which training points were
the most important for a given test point: The similarity with
the test state and the uniqueness in the training data. Together
they gave a notion of distance or similarity used by the CNN in
the phase classification problem and indicated that the patterns
relevant for the predictions coincided with the order parameters.
We also acknowledge significant finite-size effects, but we see that
the achieved results do not depend on the system size.

In future studies we can address open problems of topological
models and MBL with NNs, whose logic can be finally discov-
ered by influence functions. Even though this work concerned
quantum phase transitions, this method may be easily applied to
classical models as well as any physical model in general. Fur-
thermore, it will be of interest to test this method on new ar-
chitectures, such as in Chapter 3 and 4. For this we will have
to use approximate methods of how to calculate the Hessian be-
cause the NN in the previous chapters have to many parameters

Chapter 7. Conclusions and Outlook 121

to do exact calculations in reasonable time. Another way would
be to use global average pooling (GAP) to reduce the size of
known convolutional architectures to make the calculation of the
Hessian feasible. Furthermore, it would be interesting to use dif-
ferent input data, e.g. the ES like in Chapter 4 and see how the
influence function would behave when reducing finite size effects.
There are as well ongoing studies of how we can use the influence
function on experimental data. Moreover, this tool proved to be
very sensitive to outliers existing in the data set and may serve
for anomaly detection. As such, it can be useful for analysis of
experimental noise in the data on which various models are built
and allow to judge how strongly it affects them.

Loss Landscapes of Variational Quantum Circuits

The study of the Hessian of general variational methods is a useful
tool to gain an understanding of the shape of the loss landscape.
As shown in Chapter 5, the Hessian can even help us to find
correlations between test and training examples and express this
correlation as an influence function. For the study of VQCs the
questions are still more fundamental, because it is not yet clear
if there is any advantage in the use of quantum circuits for ML
applications, at least on NISQ devices. Our work contributes
a tool that allows us to better study VQCs that can help to
identify possible differences of VQCs to classical ML algorithms
that might be a resource for a quantum advantage. We first show
on a simple toy example how the eigenvalues of the Hessian can
be interpreted and what information can be extracted from them.
Then we introduce a way to calculate the Hessian on an actual
quantum hardware by applying the parameter shift rule twice.
We apply the Hessian to a bigger VQC and show how it can help
to escape a Barren Plateau. Furthermore, we study the Hessian of
a VQC trained on data, a QNN. Classical NN are useful because
of many reasons, but one of their main advantages is the fact
that they can be overparametrized in a highly non-linear way.
It is assumed that overparametrization leads to the connection of
local minima in loss landscapes up to the complete disappearance
of local minima traps. In Chapter 6 we show evidence that the
the loss minimas of QNNs behave similarly to classical NNs if
we compare circuits with the same amount of parameters. A well
converged QNN and VQC loss landscape shows eigenvalues of the

122 Chapter 7. Conclusions and Outlook

Hessian that indicate that the minimum is a mostly flat pool with
just a few steep directions which is in agreement what we find in
classical NN. We as well identified some qualitative differences
between QNN and classical NN loss when we look at the loss
landscape after initialization. In the training data input space
the QNN loss shows a rougher surface than the FFNN which
initializes very flat. This is very likely because of the way the
data is embedded in the QNN. Because the data is repeatedly
uploaded to the QNN, a change in the input data is equivalent
to a collective change of many parameters at the same time and,
therefore, the output changes rapidly.

For future research this feature could point in the direction
of how to lead a QNN out of a Plateau. If the training is stuck
one could apply changes to a collection of parameters instead
of single parameter updates. For further future research in the
context of the Hessian based analysis of loss landscapes in QML
it will be crucial to develop tools to approximate the Hessian
more efficiently. In this thesis we calculate the exact Hessian of
a loss landscape which is not necessary in many applications e.g.
escaping Barren Plateaus can be done with a very rough estimate
of the Hessian. Furthermore, it would be interesting to study the
influence function from Chapter 5 in QNNs. And finally, we would
like to point out that there are striking similarities between the
minimization of VQCs and Quantum Monte Carlo. In particular,
in both scenarios, it seems advantageous to take into account
the local curvature through the (quantum) metric tensor or the
Hessian. Thus, it would be interesting to explore the connections
between these two fields.

123

Appendix A

DANN: Data analysis
MBL

For the Heisenberg model we analyze the data generated by the
NN in the way described in the main text. In particular, to obtain
an estimate of the energy resolved phase boundary in the ther-
modynamic limit, we compute the output of the phase classifier
as a function of h for various values of ε and then perform a data
collapse as described in the main text. The raw and collapsed
data for different values of ε is shown in Figure 3.9. The resulting
estimates for h, ν, and their errors are shown in Table A.1.

ε ν ±∆ν hc ±∆hc
0.2 1.5± 0.2 1.8± 0.4

0.3 1.6± 0.2 2.4± 0.4

0.4 1.6± 0.2 3.0± 0.2

0.5 1.6± 0.1 3.5± 0.2

0.6 1.5± 0.2 3.0± 0.2

0.7 1.6± 0.2 2.5± 0.4

0.8 1.6± 0.2 2.2± 0.4

Table A.1: Estimates for ν and hc as well as their errors. The errors
were conservatively estimated by fixing the best possible value for the
respective other quantity and determining from plots such as those in

Figure 3.9 when the data collapse would diverge visibly.

125

Appendix B

Anomaly Detection:
Phase discovery

Figure B.1: 2D loss map of the AE after training with ES from blue
square frame. The insets a), b) show the loss along the dashed lines.
The training in the region of high loss from fig. 3 in the main text
confirms the boundaries. The MI and HI phases are well separated
because the loss in HI is much higher in comparison (inset a)). This
isn’t necessarily the case as indicated in inset b) for SF and SF+SS.

As discussed in the main text, it is not necessarily always the case
that after one training iteration, one can differentiate the different
phases inside the high-loss anomalous region, as was the case in
Fig. 4.5 in the main text. Thus, we propose picking homogeneous

126 Appendix B. Anomaly Detection: Phase discovery

and high contrast anomalous regions after the initial training as a
systematic approach. In B.1 we do this for (U, V) ∈ [4, 4.8]×[2, 4],
which is the region where the loss after the initial training was
highest and accounts to the DW phase. We can confirm the
previously determined boundaries to the anomalous region, which
is very sharp due to the Ising type transition. Further, we can
again separate MI and HI due to different loss levels but without
a valley in between (B.1, inset a)).

127

Appendix C

Anomaly Detection:
Phases of the extended
Bose Hubbard model

We briefly summarize the phases of the extended Bose Hubbard
model at integer filling, that have not been discussed in the main
text.

MI-HI-DW transition

Another way to locate the phase transitions, as has been discussed
in the main text, is by looking at the entanglement entropy

S[i] = −
∑
v

Λ[i]2
v log2(Λ

[i]2
v), (C.1)

and the correlation length ξ, defined in terms of

µ2 = exp(−L/ξ), (C.2)

where µ2 is the second largest eigenvalue of the transfer matrix
of the L-site unit cell. Note that here all entanglement entropies
are equal along the chain, such that we will simply speak of S.
We fix U = 5 and compare these two quantities with the order
parameters in C.1. We note that due to the infinite nature of the
states, ξ and S were not susceptible to L, only to χmax. Since
the order parameters do not notably change with χmax, we fix
χmax = 100, for which S and ξ indicate well the transitions.

128 Appendix C. Anomaly Detection: Phases of the extended
Bose Hubbard model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
x

Order parameters; L = 64, max = 100, U = 5

ODW= CDW(0,L)
Os= Cs(0,L)

0.75

1.00

1.25

1.50

1.75

2.00

S

Entanglement entropy; L = 64, U = 5

max = 50

max = 100

max = 200

max = 400

2.6 2.8 3.0 3.2 3.4 3.6 3.8
V

0

50

100

150

200

Correlation Length; L = 64, U = 5

max = 50

max = 100

max = 200

max = 400

Figure C.1: Mott-Insulator to Haldane-Insulator to Density Wave
transition characterized by a) order parameters (correlators evaluated
at r = L), b) Entanglement entropy and b) correlation length to de-

termine the phase transition, exemplarily for U = 5.

As mentioned in the main text, another way to indicate quan-
tum phase transitions without any a priori knowledge is by cal-
culating overlaps (fidelity) between ground states in the phase
diagram [136],

F(Vi, Vj) = 〈Ψ(Vi)|Ψ(Vj)〉 . (C.3)

For example, we depict the MI-HI-DW transition for U = 5 in
C.2. We can see how the states in the different phases separate
into quasi non-overlapping regions. The off-diagonal F(Vi, Vi+1)
accurately yields the transition points, indicated by drops in fi-
delity [136].

Critical Superfluid phase

In the superfluid phase, long-range order accounts to a power-law
decay in CSF, which gradually turns into an exponential decay in
the transition. We graphically display this in C.3 by showing the
decay and a respective fit deep in the SF and MI phases. Near
the transition point (U = 4.1 in C.3) we can clearly see that it

Appendix C. Anomaly Detection: Phases of the extended
Bose Hubbard model 129

0 1 2 3 4 5
V

0

1

2

3

4

5
U = 5

a)
0.0

0.2

0.4

0.6

0.8

1.0

0 5

0.8

1.0
a)

Figure C.2: F(Vi, Vj) for all possible combinations on 100 equally
spaced Vi ∈ [0, 5] for fixed U = 5. Inset: Off diagonal indicating

transition points with drops in overlap.

is neither power-law nor exponential decay. Although it nicely
illustrates the quality of the transition, it is hard to determine
the exact transition point in this manner.

0.0

0.2

0.4

0.6

E
C

Charge energy gap; V = 0.1, max = 100

L = 16

L = 32

L = 64

L = 128

L = 256

0.75

1.00

1.25

1.50

1.75

2.00

S
N

Entanglement entropy; V = 0.1, L = 64

max = 50

max = 100

max = 200

max = 400

0 1 2 3 4 5

U

0

100

200

300

400

500

Correlation Length; V = 0.1, L = 64

max = 50

max = 100

max = 200

max = 400

100 101

10 3

10 2

10 1

100

C
S
F
(0

,r
)

Correlator data: U = 0.5

Power Law Fit

0 10 20 30 40 50 60

10 3

10 2

10 1

100

C
S
F
(0

,r
)

Correlator data: U = 4.1

Power Law Fit

Exponential Fit

0 10 20 30 40 50 60

r

10 3

10 2

10 1

100

C
S
F
(0

,r
)

Correlator data: U = 5.0

Exponential fit

1a)

1b)

1c)

2a)

2b)

2c)

Figure C.3: 1) Correlators for the superfluid phase for fixed nearest
neighbour interaction V = 0.1 1a) deep in SF phase, 1b) near the tran-
sition point and 1c) deep in MI phase. 2) Superfluid to Mott-Insulator
transition characterized 2a) by vanishing charge energy gap, 2b) di-
verging entanglement entropy and 2c) diverging correlation length.

130 Appendix C. Anomaly Detection: Phases of the extended
Bose Hubbard model

Another indicator for this transition is the closing charge en-
ergy gap

EC = E(L+ 1) + E(L− 1)− 2E(L), (C.4)

where E(n) denotes the ground state energy for n fixed bosons.
The superfluidity of the state is indicated by zero EC , which we
gradually approach in the thermodynamic limit, see C.3. The
correlation length ξ and entanglement entropy SN diverge in the
critical SF phase, as indicated in C.3. We see that it is hard to
estimate the transition point from all these physical quantities.
The best results are obtained from looking at the overlaps, C.3,
in C.4. Though, the contrast in the off-diagonal as indicated in
the inset is very low. Note that the criticality of SF leads to the
valleys between MI, HI and DW, depicted in fig. 3 in the main
text.

0 1 2 3 4 5
U

0

1

2

3

4

5 V = 0

a)

0.2

0.4

0.6

0.8

1.0

0 5
0.9950

0.9975
a)

Figure C.4: F(Ui, Uj) for all possible combinations on 100 equally
spaced Ui ∈ [0, 5] for fixed V = 0. Inset: Off diagonal indicating

transition point with drops in overlap. Note the low contrast.

131

Bibliography

[1] J. Behler and M. Parrinello. Generalized neural-network
representation of high-dimensional potential-energy sur-
faces. Phys. Rev. Lett., 98:146401, 2007.

[2] L. Ward and C. Wolverton. Atomistic calculations and
materials informatics: A review. Curr. Opin. Solid State
Mater. Sci., 21:167, 2016.

[3] E. M. Christiansen et al. In silico labeling: Predicting flu-
orescent labels in unlabeled images. Cell, 173:792, 2018.

[4] D. Wong and S. Yip. Machine learning classifies cancer.
Nature, 555:446, 2018.

[5] B. Naul, J. S. Bloom, F. Pérez, and S. van der Walt. A
recurrent neural network for classification of unevenly sam-
pled variable stars. Nat. Astron., 2:151–155, 2018.

[6] P. Baldi, P. Sadowski, and D. Whiteson. Searching for
exotic particles in high-energy physics with deep learning.
Nat. Commun., 5:4308, 2014.

[7] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko,
and G. Carleo. Neural-network quantum state tomography.
Nat. Phys., 14:447, 2018.

[8] J Carrasquilla, G. Torlai, and R. G. Melko. Latent space
purification via neural density operators. Nat. Mach. Intell.,
1:155–161, 2019.

[9] M. Bukov, A. G. R. Day, D. Sels, P. Weinberg,
A. Polkovnikov, and P. Mehta. Reinforcement learning
in different phases of quantum control. Phys. Rev. X,
8:031086, 2018.

[10] J. Carrasquilla and R. G. Melko. Machine learning phases
of matter. Nat. Phys., 13:431–434, 2017.

132 BIBLIOGRAPHY

[11] E. P. L. van Nieuwenburg, Y.-H. Liu, and S. D. Hu-
ber. Learning phase transitions by confusion. Nat. Phys.,
13:435–439, 2017.

[12] Frank Schäfer and Niels Lörch. Vector field divergence of
predictive model output as indication of phase transitions.
Phys. Rev. E, 99:062107, Jun 2019.

[13] A. Tanaka and A. Tomiya. Detection of phase transition
via convolutional neural networks. J. Phys. Soc. Jpn.,
86:063001, 2017.

[14] C.-D. Li, D.-R. Tan, and F.-J. Jiang. Applications of neu-
ral networks to the studies of phase transitions of two-
dimensional Potts models. Ann. Phys., 391:312, 2018.

[15] Ye-Hua Liu and Evert P. L. van Nieuwenburg. Discrimina-
tive Cooperative Networks for Detecting Phase Transitions.
Physical Review Letters, 120(17):176401, April 2018.

[16] P. Broecker, J. Carrasquilla, R. G. Melko, and S. Trebst.
Machine learning quantum phases of matter beyond the
fermion sign problem. Sci. Rep., 7:8823, 2017.

[17] Kelvin Ch’ng, Nick Vazquez, and Ehsan Khatami. Unsu-
pervised machine learning account of magnetic transitions
in the hubbard model. Phys. Rev. E, 97:013306, Jan 2018.

[18] H. Théveniaut and F. Alet. Neural network setups for a
precise detection of the many-body localization transition:
finite-size scaling and limitations. Phys. Rev. B, 100:224202,
2019.

[19] S. J. Wetzel. Unsupervised learning of phase transitions:
From principal component analysis to variational autoen-
coders. Phys. Rev. E, 96:022140, 2017.

[20] D.-L. Deng, X. Li, and S. Das Sarma. Quantum entan-
glement in neural network states. Phys. Rev. X, 7:021021,
2017.

[21] P. Zhang, H. Shen, and H. Zhai. Machine learning topo-
logical invariants with neural networks. Phys. Rev. Lett.,
120:066401, 2018.

BIBLIOGRAPHY 133

[22] Yuan-Hong Tsai, Meng-Jer Yu, Yu-Hao Hsu, and Ming-
Chiang Chung. Deep learning of topological phase transi-
tions from entanglement aspects. 2019.

[23] Eliska Greplova, Agnes Valenti, Gregor Boschung, Frank
Schäfer, Niels Lörch, and Sebastian Huber. Unsupervised
identification of topological order using predictive models.
2019.

[24] P. Ponte and R. G. Melko. Kernel methods for inter-
pretable machine learning of order parameters. Phys. Rev.
B, 96:205146, 2017.

[25] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd.
Quantum Algorithm for Linear Systems of Equations. Phys-
ical Review Letters, 103(15):150502, October 2009.

[26] X.-D. Cai, Christian Weedbrook, Z.-E. Su, M.-C. Chen,
Mile Gu, M.-J. Zhu, L. Li, N.-L. Liu, Chao-Yang Lu, and
Jian-Wei Pan. Experimental Quantum Computing to Solve
Systems of Linear Equations. Physical Review Letters,
110(23):230501, June 2013.

[27] John Preskill. Quantum Computing in the NISQ era and
beyond. Quantum, 2:79, August 2018.

[28] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost.
Quantum algorithms for supervised and unsupervised ma-
chine learning. arXiv:1307.0411 [quant-ph], November
2013.

[29] Frank Arute, Kunal Arya, Ryan Babbush, Dave Ba-
con, Joseph C. Bardin, Rami Barends, Rupak Biswas,
Sergio Boixo, Fernando G. S. L. Brandao, David A.
Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro,
Roberto Collins, William Courtney, Andrew Dunsworth,
Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gid-
ney, Marissa Giustina, Rob Graff, Keith Guerin, Steve
Habegger, Matthew P. Harrigan, Michael J. Hartmann,
Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Hum-
ble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir
Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov,
Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David

134 BIBLIOGRAPHY

Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Sal-
vatore Mandrà, Jarrod R. McClean, Matthew McEwen,
Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud
Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley,
Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre
Petukhov, John C. Platt, Chris Quintana, Eleanor G. Ri-
effel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank,
Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung,
Matthew D. Trevithick, Amit Vainsencher, Benjamin Vil-
lalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam
Zalcman, Hartmut Neven, and John M. Martinis. Quantum
supremacy using a programmable superconducting proces-
sor. Nature, 574(7779):505–510, October 2019.

[30] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick
Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum
machine learning. Nature, 549(7671):195–202, September
2017.

[31] Yunchao Liu, Srinivasan Arunachalam, and Kristan
Temme. A rigorous and robust quantum speed-up in super-
vised machine learning. arXiv preprint arXiv:2010.02174,
2020.

[32] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost.
Quantum principal component analysis. Nature Physics,
10(9):631–633, September 2014.

[33] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd.
Quantum support vector machine for big data classifica-
tion. Physical Review Letters, 113(13):130503, September
2014.

[34] Hartmut Neven, Vasil S. Denchev, Geordie Rose, and
William G. Macready. Training a Large Scale Classifier
with the Quantum Adiabatic Algorithm. arXiv:0912.0779
[quant-ph], December 2009.

[35] Yudong Cao, Jonathan Romero, Jonathan P. Olson,
Matthias Degroote, Peter D. Johnson, Mária Kieferová,
Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas

BIBLIOGRAPHY 135

P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-
Guzik. Quantum Chemistry in the Age of Quantum Com-
puting. Chemical Reviews, 119(19):10856–10915, October
2019.

[36] Edward Farhi, Jeffrey Goldstone, and Sam Gut-
mann. A Quantum Approximate Optimization Algorithm.
arXiv:1411.4028 [quant-ph], November 2014.

[37] Maxwell Henderson, Samriddhi Shakya, Shashindra Prad-
han, and Tristan Cook. Quanvolutional Neural Net-
works: Powering Image Recognition with Quantum Cir-
cuits. arXiv:1904.04767 [quant-ph], April 2019.

[38] Ryan Sweke, Jean-Pierre Seifert, Dominik Hangleiter, and
Jens Eisert. On the quantum versus classical learnability
of discrete distributions. arXiv preprint arXiv:2007.14451,
2020.

[39] Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-
Fuster, and José I. Latorre. Data re-uploading for a univer-
sal quantum classifier. Quantum, 4:226, February 2020.

[40] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer.
The effect of data encoding on the expressive power of varia-
tional quantum machine learning models. arXiv:2008.08605
[quant-ph, stat], August 2020.

[41] Xiao-Yu Dong, Frank Pollmann, and Xue-Feng Zhang. Ma-
chine learning of quantum phase transitions. Phys. Rev. B,
99:121104, Mar 2019.

[42] Lei Wang. Discovering phase transitions with unsuper-
vised learning. Physical Review B, 94(19):195105, Novem-
ber 2016.

[43] B. S. Rem, N. Käming, M. Tarnowski, L. Asteria,
N. Fläschner, C. Becker, K. Sengstock, and C. Weitenberg.
Identifying quantum phase transitions using artificial neu-
ral networks on experimental data. Nat. Phys., 15:917–920,
2019.

136 BIBLIOGRAPHY

[44] E. Khatami, E. Guardado-Sanchez, B. M. Spar, J. F. Car-
rasquilla, W. S. Bakr, and R. T. Scalettar. Visualiz-
ing correlations in the 2d fermi-hubbard model with ai.
arXiv:2002.12310, 2020.

[45] Lei Wang. Discovering phase transitions with unsuper-
vised learning. Physical Review B, 94(19):195105, Novem-
ber 2016.

[46] Raghavendra Chalapathy and Sanjay Chawla. Deep learn-
ing for anomaly detection: A survey. arXiv preprint
arXiv:1901.03407, 2019.

[47] Donghwoon Kwon, Hyunjoo Kim, Jinoh Kim, Sang C Suh,
Ikkyun Kim, and Kuinam J Kim. A survey of deep learning-
based network anomaly detection. Cluster Computing,
pages 1–13, 2017.

[48] Andrea Borghesi, Andrea Bartolini, Michele Lombardi,
Michela Milano, and Luca Benini. Anomaly detection us-
ing autoencoders in high performance computing systems.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pages 9428–9433, 2019.

[49] W. Zhang, L. Wang, and Z. Wang. Interpretable ma-
chine learning study of the many-body localization tran-
sition in disordered quantum Ising spin chains. Phys. Rev.
B, 99:054208, 2019.

[50] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, November 2016.

[51] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing
He. A Comprehensive Survey on Transfer Learning.
arXiv:1911.02685 [cs, stat], June 2020.

[52] I. Redko, E. Morvant, A. Habrard, M. Sebban, and Y. Ben-
nani. Advances in Domain Adaptation Theory. Elsevier
Science, 2019.

[53] Ievgen Redko, Amaury Habrard, Emilie Morvant, Marc
Sebban, and Younès Bennani. Domain Adaptation Prob-
lem. In Advances in Domain Adaption Theory, pages 21–36.
Elsevier, 2019.

BIBLIOGRAPHY 137

[54] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-Adversarial
Training of Neural Networks. arXiv:1505.07818 [cs, stat],
May 2016.

[55] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. Learning representations by back-propagating er-
rors. Nature, 323(6088):533–536, October 1986.

[56] Qing Liu, Ningyu Zhang, Wenzhu Yang, Sile Wang, Zhen-
chao Cui, Xiangyang Chen, and Liping Chen. A Re-
view of Image Recognition with Deep Convolutional Neural
Network. In De-Shuang Huang, Vitoantonio Bevilacqua,
Prashan Premaratne, and Phalguni Gupta, editors, Intel-
ligent Computing Theories and Application, Lecture Notes
in Computer Science, pages 69–80, Cham, 2017. Springer
International Publishing.

[57] Iroju Olaronke and J. Olaleke. A Systematic Review of
Natural Language Processing in Healthcare. International
Journal of Information Technology and Computer Science,
08:44–50, August 2015.

[58] Jean-Pierre Briot, Gaëtan Hadjeres, and François-David
Pachet. Deep Learning Techniques for Music Generation
– A Survey. arXiv:1709.01620 [cs], August 2019.

[59] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
Multilayer feedforward networks are universal approxima-
tors. Neural Networks, 2(5):359–366, January 1989.

[60] Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco,
Brando Miranda, and Qianli Liao. Why and when can
deep-but not shallow-networks avoid the curse of dimen-
sionality: a review. International Journal of Automation
and Computing, 14(5):503–519, 2017.

[61] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do,
and Kaori Togashi. Convolutional neural networks: An
overview and application in radiology. Insights into Imag-
ing, 9(4):611–629, August 2018.

138 BIBLIOGRAPHY

[62] Ajay Agrawal, Joshua Gans, and Avi Goldfarb. Prediction
Machines: The Simple Economics of Artificial Intelligence.
Harvard Business Review Press, Boston, MA, USA, 2018.

[63] Diogo V Carvalho, Eduardo M Pereira, and Jaime S Car-
doso. Machine learning interpretability: A survey on meth-
ods and metrics. Electronics, 8(8):832, 2019.

[64] Finale Doshi-Velez and Been Kim. Towards a rigorous
science of interpretable machine learning. arXiv preprint
arXiv:1702.08608, 2017.

[65] Tim Miller. Explanation in artificial intelligence: Insights
from the social sciences. Artificial Intelligence, 267:1–38,
2019.

[66] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Ex-
amples are not enough, learn to criticize! criticism for in-
terpretability. In Advances in neural information processing
systems, pages 2280–2288, 2016.

[67] Christoph Molnar. Interpretable Machine Learn-
ing. 2019. https://christophm.github.io/
interpretable-ml-book/.

[68] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrim-
inative localization. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2921–
2929, 2016.

[69] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
Model-agnostic interpretability of machine learning. arXiv
preprint arXiv:1606.05386, 2016.

[70] W James Murdoch, Chandan Singh, Karl Kumbier, Reza
Abbasi-Asl, and Bin Yu. Interpretable machine learn-
ing: definitions, methods, and applications. arXiv preprint
arXiv:1901.04592, 2019.

[71] Philip Adler, Casey Falk, Sorelle A Friedler, Tionney Nix,
Gabriel Rybeck, Carlos Scheidegger, Brandon Smith, and
Suresh Venkatasubramanian. Auditing black-box models
for indirect influence. Knowledge and Information Systems,
54(1):95–122, 2018.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

BIBLIOGRAPHY 139

[72] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
" why should i trust you?" explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data
mining, pages 1135–1144, 2016.

[73] R. Dennis Cook. Detection of influential observation in
linear regression. Technometrics, 19:15–18, February 1977.

[74] R. D. Cook and S. Weisberg. Characterizations of an em-
pirical influence function for detecting influential cases in
regression. Technometrics, 22(4):495–508, 1980.

[75] R. Dennis Cook and Sanford Weisberg. Residuals and In-
fluence in Regression. Chapman and Hall, New York and
London, 1982.

[76] P. W. Koh and P. Liang. Understanding black-box predic-
tions via influence functions. In Proceedings of the 34th In-
ternational Conference on Machine Learning, pages 1885–
1894, 2017.

[77] P. W. Koh, K.-S. Ang, H. H. K. Teo, and P. Liang. On the
accuracy of influence functions for measuring group effects.
arXiv:1905.13289, 2019.

[78] H. Philathong, V. Akshay, I. Zacharov, and J. Biamonte.
Computational Phase Transition Signature in Gibbs Sam-
pling. arXiv:1906.10705 [cond-mat, physics:quant-ph], June
2019.

[79] Andrew Canning and Jean-Pierre Naef. Phase diagrams
and the instability of the spin glass states for the diluted
Hopfield neural network model. Journal de Physique I,
2(9):1791–1801, 1992.

[80] L. Landau. The Theory of Phase Transitions. Nature,
138(3498):840–841, November 1936.

[81] S. Sachdev. Quantum Phase Transitions. Cambridge Uni-
versity Press, 2011.

[82] Florian Häse, Loïc M. Roch, and Alán Aspuru-Guzik. Next-
Generation Experimentation with Self-Driving Laborato-
ries. Trends in Chemistry, 1(3):282–291, jun 2019.

140 BIBLIOGRAPHY

[83] David J. Luitz, Nicolas Laflorencie, and Fabien Alet.
Many-body localization edge in the random-field Heisen-
berg chain. arXiv:1411.0660 [cond-mat], December 2014.

[84] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
"Why Should I Trust You?": Explaining the Predictions of
Any Classifier. arXiv:1602.04938 [cs, stat], August 2016.

[85] Yoshua Bengio, Yann LeCun, et al. Scaling learning algo-
rithms towards ai. Large-scale kernel machines, 34(5):1–41,
2007.

[86] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. Nature, 521(7553):436–444, May 2015.

[87] Alan Morningstar and Roger G. Melko. Deep learning the
Ising model near criticality. August 2017.

[88] David Ceperley and Berni Alder. Quantum Monte Carlo.
Science, 231(4738):555–560, February 1986.

[89] J. Carlson, S. Gandolfi, F. Pederiva, Steven C. Pieper,
R. Schiavilla, K. E. Schmidt, and R. B. Wiringa. Quan-
tum Monte Carlo methods for nuclear physics. Reviews of
Modern Physics, 87(3):1067–1118, September 2015.

[90] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal.
Quantum Monte Carlo simulations of solids. Reviews of
Modern Physics, 73(1):33–83, January 2001.

[91] Stefan Rommer. Class of ansatz wave functions for one-
dimensional spin systems and their relation to the density
matrix renormalization group. . . ., page 18.

[92] Steven R. White. Density matrix formulation for quan-
tum renormalization groups. Physical Review Letters,
69(19):2863–2866, November 1992.

[93] Ulrich Schollwoeck. The density-matrix renormalization
group in the age of matrix product states. arXiv:1008.3477
[cond-mat], January 2011.

[94] Roman Orus. A Practical Introduction to Tensor Net-
works: Matrix Product States and Projected Entangled
Pair States. Annals of Physics, 349:117–158, October 2014.

BIBLIOGRAPHY 141

[95] F. Verstraete, V. Murg, and J. I. Cirac. Matrix prod-
uct states, projected entangled pair states, and variational
renormalization group methods for quantum spin systems.
Advances in Physics, 57(2):143–224, March 2008.

[96] Giuseppe Carleo and Matthias Troyer. Solving the Quan-
tum Many-Body Problem with Artificial Neural Networks.
Science, 355(6325):602–606, February 2017.

[97] Giacomo Torlai and Roger G. Melko. Learning Thermo-
dynamics with Boltzmann Machines. Physical Review B,
94(16):165134, October 2016.

[98] P.W. Shor. Algorithms for quantum computation: Discrete
logarithms and factoring. In Proceedings 35th Annual Sym-
posium on Foundations of Computer Science, pages 124–
134, November 1994.

[99] Lov K. Grover. A fast quantum mechanical algorithm for
database search. arXiv:quant-ph/9605043, November 1996.

[100] P. B. M. Sousa and R. V. Ramos. Universal quantum circuit
for n-qubit quantum gate: A programmable quantum gate.
arXiv:quant-ph/0602174, May 2006.

[101] Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G.
Rieffel. The Quantum Approximation Optimization Algo-
rithm for MaxCut: A Fermionic View. Physical Review A,
97(2):022304, February 2018.

[102] Francesco Tacchino, Panagiotis Barkoutsos, Chiara Macchi-
avello, Ivano Tavernelli, Dario Gerace, and Daniele Bajoni.
Quantum implementation of an artificial feed-forward neu-
ral network. Quantum Science and Technology, 5(4):044010,
October 2020.

[103] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer.
The effect of data encoding on the expressive power of varia-
tional quantum machine learning models. arXiv:2008.08605
[quant-ph, stat], August 2020.

[104] Philip Warren Anderson. Absence of diffusion in certain
random lattices. Physical Review, 109:1492, Mar 1958.

142 BIBLIOGRAPHY

[105] Serge Aubry and Gilles André. Analyticity breaking and
Anderson localization in incommensurate lattices. Ann. Is-
rael Phys. Soc, 3(133):18, 1980.

[106] Jian Li, Rui-Lin Chu, J. K. Jain, and Shun-Qing Shen.
Topological Anderson insulator. Physical Review Letters,
102:136806, Apr 2009.

[107] Ian Mondragon-Shem, Taylor L. Hughes, Juntao Song, and
Emil Prodan. Topological criticality in the chiral-symmetric
AIII class at strong disorder. Physical Review Letters,
113:046802, 2014.

[108] Rahul Nandkishore and David A. Huse. Many-body local-
ization and thermalization in quantum statistical mechan-
ics. Annual Review of Condensed Matter Physics, 6(1):15,
mar 2015.

[109] D.M. Basko, I.L. Aleiner, and B.L. Altshuler.
Metal–insulator transition in a weakly interacting many-
electron system with localized single-particle states. Ann.
Phys. (N. Y)., 321(5):1126–1205, may 2006.

[110] Arijeet Pal and David A. Huse. Many-body localization
phase transition. Physical Review B, 82(17):174411, Novem-
ber 2010.

[111] Rahul Nandkishore and David A Huse. Many-Body Lo-
calization and Thermalization in Quantum Statistical Me-
chanics. Annu. Rev. Condens. Matter Phys., 6(1):15–38,
mar 2015.

[112] David J. Luitz, Nicolas Laflorencie, and Fabien Alet.
Many-body localization edge in the random-field Heisen-
berg chain. Phys. Rev. B, 91(8), 2015.

[113] Thimothée Thiery, François Huveneers, Markus Müller, and
Wojciech De Roeck. Many-body delocalization as a quan-
tum avalanche. pages 1–9, jun 2017.

[114] S. A. Parameswaran and Romain Vasseur. Many-body lo-
calization, symmetry, and topology. jan 2018.

[115] Francesca Pietracaprina, Nicolas Macé, David J. Luitz, and
Fabien Alet. Shift-invert diagonalization of large many-
body localizing spin chains. mar 2018.

BIBLIOGRAPHY 143

[116] Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and
Maksym Serbyn. Many-body localization, thermaliza-
tion, and entanglement. Reviews of Modern Physics,
91(2):021001, May 2019.

[117] Maksym Serbyn, Z. Papić, and Dmitry A. Abanin. Local
Conservation Laws and the Structure of the Many-Body
Localized States. Physical Review Letters, 111(12):127201,
September 2013.

[118] David A. Huse, Rahul Nandkishore, and Vadim Oganesyan.
Phenomenology of fully many-body-localized systems.
Physical Review B, 90(17):174202, November 2014.

[119] T. Enss, F. Andraschko, and J. Sirker. Many-body local-
ization in infinite chains. Phys. Rev. B, 95(4):045121, jan
2017.

[120] Kazue Kudo and Tetsuo Deguchi. Finite-Size Scaling Re-
garding Interaction in the Many-Body Localization Transi-
tion. mar 2018.

[121] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial
training of neural networks. Journal of Machine Learning
Research, 17(59):1–35, 2016.

[122] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-SNE. Journal of Machine Learning Research,
9(85):2579–2605, 2008.

[123] Martin Wattenberg, Fernanda Viégas, and Ian Johnson.
How to use t-SNE effectively. Distill, 2016.

[124] Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
The elements of statistical learning: Data mining, inference,
and prediction. Biometrics, 2002.

[125] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi-
aowei Xu. A density-based algorithm for discovering clus-
ters in large spatial databases with noise. In Proceedings of
SIGKDD-96, 2nd International Conference on Knowledge
Discovery and Data Mining, volume 96, pages 226–231, Au-
gust 1996.

144 BIBLIOGRAPHY

[126] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. J. Mach.
Learn. Res., 15(1):1929–1958, 2014.

[127] Patrick Huembeli, Alexandre Dauphin, and
Peter Wittek. PatrickHuembeli/Adversarial-
Domain-Adaptation-for-Identifying-Phase-
Transitions: DANN_Arxiv_Version_01, October
2017. https://github.com/PatrickHuembeli/
Adversarial-Domain-Adaptation-for-Identifying-Phase-Transitions.

[128] János K. Asbóth, László Oroszlány, and András Pályi. A
Short Course on Topological Insulators, volume 919 of Lec-
ture Notes in Physics. Springer International Publishing,
2016.

[129] Navketan Batra and Goutam Sheet. Understanding Basic
Concepts of Topological Insulators Through Su-Schrieffer-
Heeger (SSH) Model. Resonance, 25(6):765–786, June 2020.

[130] Maria Maffei, Alexandre Dauphin, Filippo Cardano, Maciej
Lewenstein, and Pietro Massignan. Topological character-
ization of chiral models through their long time dynamics.
2017.

[131] Fabien Alet and Nicolas Laflorencie. Many-body
localization: An introduction and selected topics.
arXiv:1711.03145 [cond-mat], May 2018.

[132] Luca D’Alessio, Yariv Kafri, Anatoli Polkovnikov, and Mar-
cos Rigol. From quantum chaos and eigenstate thermal-
ization to statistical mechanics and thermodynamics. Ad-
vances in Physics, 65(3):239–362, May 2016.

[133] A. B. Harris. Effect of random defects on the critical be-
haviour of Ising models. Journal of Physics C: Solid State
Physics, 7(9):1671, May 1974.

[134] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Ben-
gio. Generalization in deep learning. 2017.

[135] Guillermo Valle-Pérez, Chico Q Camargo, and Ard A Louis.
Deep learning generalizes because the parameter-function
map is biased towards simple functions. 2018.

https://github.com/PatrickHuembeli/Adversarial-Domain-Adaptation-for-Identifying -Phase-Transitions
https://github.com/PatrickHuembeli/Adversarial-Domain-Adaptation-for-Identifying -Phase-Transitions

BIBLIOGRAPHY 145

[136] P. Zanardi, M. Cozzini, and P. Giorda. Ground state fidelity
and quantum phase transitions in free Fermi systems. jun
2006.

[137] Roman Orus. A Practical Introduction to Tensor Net-
works: Matrix Product States and Projected Entangled
Pair States. jun 2013.

[138] Xiaolong Deng and Luis Santos. Entanglement spectrum of
one-dimensional extended Bose-Hubbard models. apr 2011.

[139] Kazuya Shinjo, Kakeru Sasaki, Satoru Hase, Shigetoshi
Sota, Satoshi Ejima, Seiji Yunoki, and Takami Tohyama.
Machine Learning Phase Diagram in the Half-filled One-
dimensional Extended Hubbard Model. apr 2019.

[140] Yuan-Hong Tsai, Meng-Jer Yu, Yu-Hao Hsu, and Ming-
Chiang Chung. Deep learning of topological phase transi-
tions from entanglement aspects. sep 2019.

[141] Jianfeng Dong, Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin
Yang. Learning Deep Representations Using Convolutional
Auto-encoders with Symmetric Skip Connections. nov 2016.

[142] Jianfeng Dong, Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin
Yang. Unsupervised feature learning with symmetrically
connected convolutional denoising auto-encoders. CoRR,
abs/1611.09119, 2016.

[143] Raban Iten, Tony Metger, Henrik Wilming, Lídia del Rio,
and Renato Renner. Discovering Physical Concepts with
Neural Networks. Physical Review Letters, 124(1):010508,
jan 2020.

[144] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Is-
ard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-
junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,

146 BIBLIOGRAPHY

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from ten-
sorflow.org.

[145] Korbinian Kottmann and Patrick Huembeli. Un-
supervised phase discovery with deep anomaly
detection. https://github.com/Qottmann/
phase-discovery-anomaly-detection/, 2020.

[146] Davide Rossini and Rosario Fazio. Phase diagram of the
extended Bose Hubbard model. apr 2012.

[147] Till D. Kuehner and H. Monien. Phases of the one-
dimensional Bose-Hubbard model. dec 1997.

[148] Till D. Kuehner, Steven R. White, and H. Monien. The one-
dimensional Bose-Hubbard Model with nearest-neighbor in-
teraction. jun 1999.

[149] Tapan Mishra, Ramesh V. Pai, S. Ramanan, Meetu Sethi
Luthra, and B. P. Das. Supersolid and solitonic phases in
one-dimensional Extended Bose-Hubbard model. jul 2009.

[150] Laura Urba, Emil Lundh, and Anders Rosengren. One-
dimensional extended Bose-Hubbard model with a confin-
ing potential: A DMRG analysis. Journal of Physics B:
Atomic, Molecular and Optical Physics, 39(24):5187–5198,
jul 2006.

[151] Satoshi Ejima, Florian Lange, and Holger Fehske. Spec-
tral and Entanglement Properties of the Bosonic Haldane
Insulator. jul 2014.

[152] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and
M. Rigol. One dimensional Bosons: From Condensed Mat-
ter Systems to Ultracold Gases. jan 2011.

[153] G. G. Batrouni, F. Hebert, and R. T. Scalettar. Supersolid
phases in the one dimensional extended soft core Bosonic
Hubbard model. may 2006.

[154] Erez Berg, Emanuele G. Dalla Torre, Thierry Giamarchi,
and Ehud Altman. Rise and fall of hidden string order of
lattice bosons. mar 2008.

https://github.com/Qottmann/phase-discovery-anomaly-detection/
https://github.com/Qottmann/phase-discovery-anomaly-detection/

BIBLIOGRAPHY 147

[155] Pietro Silvi, Ferdinand Tschirsich, Matthias Gerster, Jo-
hannes Jünemann, Daniel Jaschke, Matteo Rizzi, and Si-
mone Montangero. The Tensor Networks Anthology: Sim-
ulation techniques for many-body quantum lattice systems.
SciPost Phys. Lect. Notes, page 8, 2019.

[156] Johannes Hauschild and Frank Pollmann. Efficient numer-
ical simulations with Tensor Networks: Tensor Network
Python (TeNPy). SciPost Phys. Lect. Notes, page 5, 2018.
Code available from https://github.com/tenpy/tenpy.

[157] Marcel den Nijs and Koos Rommelse. Preroughening tran-
sitions in crystal surfaces and valence-bond phases in quan-
tum spin chains. Physical Review B, 40(7):4709–4734,
September 1989.

[158] Ulrich Schollwöck. The density-matrix renormalization
group in the age of matrix product states. Annals of
Physics, 326(1):96–192, 2011.

[159] Guifre Vidal. Efficient classical simulation of slightly en-
tangled quantum computations. jan 2003.

[160] G. Vidal. Classical simulation of infinite-size quantum lat-
tice systems in one spatial dimension. may 2006.

[161] Ian P. McCulloch. From density-matrix renormalization
group to matrix product states. jan 2007.

[162] R. Orús and G. Vidal. Infinite time-evolving block decima-
tion algorithm beyond unitary evolution. Physical Review
B, 78(15):155117, oct 2008.

[163] Keima Kawaki, Yoshihito Kuno, and Ikuo Ichinose. Phase
diagrams of the extended bose-hubbard model in one di-
mension by monte-carlo simulation with the help of a
stochastic-series expansion. Phys. Rev. B, 95(19):195101,
May 2017.

[164] Yung-Chung Chen and Min-Fong Yang. Two supersolid
phases in hard-core extended Bose-Hubbard model. mar
2017.

[165] Y. Zhang and E.-A. Kim. Quantum loop topography for
machine learning. Phys. Rev. Lett., 118:216401, May 2017.

https://github.com/tenpy/tenpy

148 BIBLIOGRAPHY

[166] M. J. S. Beach, A. Golubeva, and R. G. Melko. Ma-
chine learning vortices at the Kosterlitz-Thouless transition.
Phys. Rev. B, 97:045207, 2018.

[167] M. Richter-Laskowska, H. Khan, N. Trivedi, and M. M.
Maśka. A machine learning approach to the berezinskii-
kosterlitz-thouless transition in classical and quantum mod-
els. Condens. Matter Phys., 21(3):33602, 2018.

[168] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, D. Pe-
dreschi, and F. Giannotti. A survey of methods for ex-
plaining black box models. arXiv:1802.01933, 2018.

[169] F. Doshi-Velez and B. Kim. Towards a rigorous science of
interpretable machine learning. arXiv:1702.08608, 2017.

[170] A. Baehrens, T. Schroeter, and S. Harmeling. How to ex-
plain individual classification decisions. J. Mach. Learn.
Res., 11:1803–1831, 2010.

[171] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should I
trust you? Explaining the predictions of any classifier. In
Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages
1135–1144, 2016.

[172] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-
ralba. Learning deep features for discriminative localiza-
tion. In Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 2921–2929, 2016.

[173] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra. Grad-CAM: Visual explana-
tions from deep networks via gradient-based localization.
arXiv:1610.02391, 2016.

[174] A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Bal-
asubramanian. Grad-CAM++: Improved visual explana-
tions for deep convolutional networks. In IEEE Winter
Conf. on Applications of Computer Vision (WACV2018),
2018.

[175] Q. Zhang and S.-C. Zhu. Visual interpretability for deep
learning: a survey. Front. Inform. Technol. Electron. Eng.,
19:27–39, 2018.

BIBLIOGRAPHY 149

[176] EU General Data Protection Regulation (GDPR). Regula-
tion (eu) 2016/679 of the european parliament and of the
council of 27 april 2016 on the protection of natural per-
sons with regard to the processing of personal data and
on the free movement of such data, and repealing directive
95/46/ec (general data protection regulation). OJ, L 119/1,
2016.

[177] T. Songül. Fair and unbiased algorithmic decision making.
JRC Tech. Rep., 10, 2018.

[178] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals.
Understanding deep learning requires rethinking generaliza-
tion. In International Conference on Learning Representa-
tion, 2017.

[179] W. Brendel and M. Bethge. Approximating CNNs with
bag-of-local-features models works surprisingly well on Im-
ageNet. In International Conference on Learning Represen-
tations, 2019.

[180] A Dawid, P. Huembeli, M. Tomza, M. Lewenstein,
and A. Dauphin. http://doi.org/10.5281/zenodo.
3746540, 2020. GitHub repository: Interpretable-Phase-
Classification (Version arXiv1.0).

[181] Min Lin, Qiang Chen, and Shuicheng Yan. Network in
network. 2013.

[182] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lüh-
mann, B. A. Malomed, T. Sowiński, and J. Zakrzewski.
Non-standard Hubbard models in optical lattices: a review.
Rep. Prog. Phys., 78:066001, 2015.

[183] E. Hallberg, E. Gagliano, and C. Balseiro. Finite-size
study of a spin-1/2 heisenberg chain with competing inter-
actions: Phase diagram and critical behavior. Phys. Rev.
B, 41(13):9474–9479, 1990.

[184] T. Mishra, J. Carrasquilla, and M. Rigol. Phase diagram
of the half-filled one-dimensional t-v-v’ model. Phys. Rev.
B, 84:115135, 2011.

http://doi.org/10.5281/zenodo.3746540
http://doi.org/10.5281/zenodo.3746540

150 BIBLIOGRAPHY

[185] P. Weinberg and M. Bukov. Quspin: a python package for
dynamics and exact diagonalisation of quantum many body
systems part i: spin chains. SciPost Phys., 2:003, 2017.

[186] P. Virtanen et al. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nat. Methods, 17:261–272,
2020.

[187] James Stokes, Josh Izaac, Nathan Killoran, and Giuseppe
Carleo. Quantum Natural Gradient. arXiv:1909.02108
[quant-ph, stat], December 2019.

[188] Jarrod R. McClean, Jonathan Romero, Ryan Babbush,
and Alán Aspuru-Guzik. The theory of variational hy-
brid quantum-classical algorithms. New Journal of Physics,
18(2):023023, February 2016.

[189] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-
Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-
Guzik, and Jeremy L. O’Brien. A variational eigenvalue
solver on a photonic quantum processor. Nature Commu-
nications, 5(1):4213, September 2014.

[190] Edward Farhi and Hartmut Neven. Classification with
Quantum Neural Networks on Near Term Processors.
arXiv:1802.06002 [quant-ph], August 2018.

[191] Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-
Fuster, and José I. Latorre. Data re-uploading for a univer-
sal quantum classifier. Quantum, 4:226, February 2020.

[192] Francesco Tacchino, Chiara Macchiavello, Dario Gerace,
and Daniele Bajoni. An artificial neuron implemented on
an actual quantum processor. npj Quantum Information,
5(1):26, December 2019.

[193] Giuseppe Carleo and Matthias Troyer. Solving the Quan-
tum Many-Body Problem with Artificial Neural Networks.
Science, 355(6325):602–606, February 2017.

[194] Mohamed Hibat-Allah, Martin Ganahl, Lauren E. Hay-
ward, Roger G. Melko, and Juan Carrasquilla. Recurrent
Neural Network Wavefunctions. arXiv:2002.02973 [cond-
mat, physics:physics, physics:quant-ph], February 2020.

BIBLIOGRAPHY 151

[195] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner.
Quantum Generative Adversarial Networks for learning and
loading random distributions. npj Quantum Information,
5(1):103, December 2019.

[196] J. J. Hopfield. Neural networks and physical systems with
emergent collective computational abilities. Proceedings of
the National Academy of Sciences, 79(8):2554–2558, April
1982.

[197] Andrew J. Ballard, Ritankar Das, Stefano Martiniani,
Dhagash Mehta, Levent Sagun, Jacob D. Stevenson, and
David J. Wales. Energy landscapes for machine learning.
Physical Chemistry Chemical Physics, 19(20):12585–12603,
2017.

[198] Levent Sagun, V. Ugur Guney, Gerard Ben Arous, and
Yann LeCun. Explorations on high dimensional landscapes.
arXiv:1412.6615 [cs, stat], April 2015.

[199] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and
Fred A. Hamprecht. Essentially No Barriers in Neural
Network Energy Landscape. arXiv:1803.00885 [cs, stat],
February 2019.

[200] Levent Sagun, Utku Evci, V. Ugur Guney, Yann Dauphin,
and Leon Bottou. Empirical Analysis of the Hessian of
Over-Parametrized Neural Networks. arXiv:1706.04454
[cs], May 2018.

[201] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On Large-
Batch Training for Deep Learning: Generalization Gap
and Sharp Minima. arXiv:1609.04836 [cs, math], Febru-
ary 2017.

[202] Guillaume Alain, Nicolas Le Roux, and Pierre-Antoine
Manzagol. Negative eigenvalues of the Hessian in deep neu-
ral networks. arXiv:1902.02366 [cs, math, stat], February
2019.

[203] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy,
Ryan Babbush, and Hartmut Neven. Barren plateaus in
quantum neural network training landscapes. Nature Com-
munications, 9(1):4812, December 2018.

152 BIBLIOGRAPHY

[204] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cin-
cio, and Patrick J. Coles. Cost-Function-Dependent
Barren Plateaus in Shallow Quantum Neural Networks.
arXiv:2001.00550 [quant-ph], February 2020.

[205] Edward Grant, Leonard Wossnig, Mateusz Ostaszewski,
and Marcello Benedetti. An initialization strategy for ad-
dressing barren plateaus in parametrized quantum circuits.
Quantum, 3:214, December 2019.

[206] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[207] David Wierichs, Christian Gogolin, and Michael Kas-
toryano. Avoiding local minima in variational quan-
tum eigensolvers with the natural gradient optimizer.
arXiv:2004.14666 [quant-ph], April 2020.

[208] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexan-
dre G. R. Day, Clint Richardson, Charles K. Fisher, and
David J. Schwab. A high-bias, low-variance introduction to
Machine Learning for physicists. Physics Reports, 810:1–
124, May 2019.

[209] Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri,
Bobby Prochnow, and Andrew Y Ng. On Optimization
Methods for Deep Learning. page 8.

[210] Yann LeCun, John S. Denker, and Sara A. Solla. Opti-
mal brain damage. In D. S. Touretzky, editor, Advances
in Neural Information Processing Systems, pages 598–605.
1990.

[211] Babak Hassibi and David G Stork. Second order derivatives
for network pruning: Optimal brain surgeon. In Advances
in neural information processing systems, page 164, 1993.

[212] Pang Wei Koh and Percy Liang. Understanding Black-box
Predictions via Influence Functions. arXiv:1703.04730 [cs,
stat], July 2017.

[213] Ville Bergholm, Josh Izaac, Maria Schuld, Christian
Gogolin, M. Sohaib Alam, Shahnawaz Ahmed, Juan Miguel

BIBLIOGRAPHY 153

Arrazola, Carsten Blank, Alain Delgado, Soran Jahangiri,
Keri McKiernan, Johannes Jakob Meyer, Zeyue Niu, An-
tal Száva, and Nathan Killoran. PennyLane: Auto-
matic differentiation of hybrid quantum-classical computa-
tions. arXiv:1811.04968 [physics, physics:quant-ph], Febru-
ary 2020.

[214] Matthew J. S. Beach, Isaac De Vlugt, Anna Golubeva,
Patrick Huembeli, Bohdan Kulchytskyy, Xiuzhe Luo, Roger
Melko, Ejaaz Merali, and Giacomo Torlai. QuCumber:
Wavefunction reconstruction with neural networks. SciPost
Physics, 7(1):009, July 2019.

[215] Patrick Huembeli and Alexandre Dauphin. PatrickHuem-
beli/vqc_loss_landscapes: ArXiv_version_v1.1. https:
//github.com/PatrickHuembeli/vqc_loss_landscapes,
2020.

[216] Kunal Sharma, M Cerezo, Lukasz Cincio, and Patrick J
Coles. Trainability of dissipative perceptron-based quantum
neural networks. arXiv preprint arXiv:2005.12458, 2020.

[217] Sukin Sim, Peter D. Johnson, and Alan Aspuru-Guzik.
Expressibility and entangling capability of parameterized
quantum circuits for hybrid quantum-classical algorithms.
Advanced Quantum Technologies, 2(12):1900070, December
2019.

[218] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On Large-
Batch Training for Deep Learning: Generalization Gap
and Sharp Minima. arXiv:1609.04836 [cs, math], Febru-
ary 2017.

[219] R. C. M. Brekelmans, L. T. Driessen, H. J. M. Hamers, and
D. den. Hertog. Gradient Estimation Schemes for Noisy
Functions. Journal of Optimization Theory and Applica-
tions, 126(3):529–551, September 2005.

[220] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and
Keisuke Fujii. Quantum Circuit Learning. Physical Review
A, 98(3):032309, September 2018.

https://github.com/PatrickHuembeli/vqc_loss_landscapes
https://github.com/PatrickHuembeli/vqc_loss_landscapes

154 BIBLIOGRAPHY

[221] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh
Izaac, and Nathan Killoran. Evaluating analytic gradients
on quantum hardware. Physical Review A, 99(3):032331,
March 2019.

[222] Kosuke Mitarai and Keisuke Fujii. Methodology for replac-
ing indirect measurements with direct measurements. Phys-
ical Review Research, 1(1):013006, 2019.

[223] Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues
of the Hessian in Deep Learning: Singularity and Beyond.
arXiv:1611.07476 [cs], October 2017.

[224] Pratik Chaudhari, Anna Choromanska, Stefano Soatto,
Yann LeCun, Carlo Baldassi, Christian Borgs, Jen-
nifer Chayes, Levent Sagun, and Riccardo Zecchina.
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys.
arXiv:1611.01838 [cs, stat], April 2017.

[225] Dawei Li, Tian Ding, and Ruoyu Sun. On the Benefit of
Width for Neural Networks: Disappearance of Bad Basins.
arXiv:1812.11039 [cs, math, stat], January 2020.

[226] Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort,
Devansh Arpit, Jacek Tabor, Kyunghyun Cho, and
Krzysztof Geras. The Break-Even Point on Optimization
Trajectories of Deep Neural Networks. arXiv:2002.09572
[cs, stat], February 2020.

[227] Anna Dawid, Patrick Huembeli, Michał Tomza, Ma-
ciej Lewenstein, and Alexandre Dauphin. Phase Detec-
tion with Neural Networks: Interpreting the Black Box.
arXiv:2004.04711 [cond-mat, physics:quant-ph], April 2020.

[228] Patrick Huembeli, Alexandre Dauphin, and Peter Wittek.
Identifying quantum phase transitions with adversarial neu-
ral networks. Phys. Rev. B, 97:134109, Apr 2018.

[229] Jonas A. Kjäll, Jens H. Bardarson, and Frank Pollmann.
Many-Body Localization in a Disordered Quantum Ising
Chain. Physical Review Letters, 113(10):107204, September
2014.

[230] J. Goold, C. Gogolin, S. R. Clark, J. Eisert, A. Scardicchio,
and A. Silva. Total correlations of the diagonal ensemble

BIBLIOGRAPHY 155

herald the many-body localization transition. Physical Re-
view B, 92(18):180202, November 2015.

	Acknoweldgement
	Abstract
	Resumen
	Introduction
	State of the Art
	Phase Detection
	Quantum Variational Circuits

	Motivation and main contributions
	Phase detection with domain adaptation
	Reinterpreting a phase transition as a data anomaly
	Phase transitions and neural networks: Interpreting the black box
	VQC loss landscapes

	List of publications

	Background
	Machine Learning: An overview
	Supervised Learning
	Transfer Learning and Domain Adaptation
	Neural Networks
	Convolutional Neural Network

	Unsupervised Learning
	NN Autoencoders

	What is a Phase Transition?
	Thermal Fluctuation
	Quantum Fluctuation
	Order Parameter
	Reformulation of a phase transition into a ML task

	Variational Quantum Circuits and Quantum Neural Networks
	Variational Quantum Circuits
	Quantum Neural Networks

	Domain Adversarial Phase Detection
	Methods: Domain adversarial neural networks
	Input Data for the SSH model
	Input Data for the Heisenberg model
	Details of the neural network architecture

	Methods: The SSH model
	The SSH model with disorder
	Periodic and open boundary conditions
	SSH model with long range hopping

	Results: Domain adaptation with SSH
	Open Boundary conditions
	Periodic Boundary conditions
	SSH model with long range hopping

	Methods: Many-Body Localization
	Results: Domain adaptation with MBL
	Conclusions

	Anomaly Detection
	Methods
	Anomaly Detection Method
	The extended Bose Hubbard Model
	Simulation Method and Input Data

	Results
	Numerical Results
	Phase separated supersolid and superfluid

	Conclusion

	Interpretability of NN phase prediction
	Methods
	Interpreting neural networks with influence functions
	Influence function of Gaussian mixtures
	Neural Network model for phase classification
	Physical Model: 1D half-filled spinless Fermi-Hubbard model
	Data and code availability

	Results
	Transition between LL and CDW-I.
	Transfer learning
	Inferring the existence of the third phase

	Conclusion

	Loss Landscapes of VQCs
	Charaterization of the Loss Landscape with the Hessian
	Hessian and Curvature
	Loss landscape of neural networks: a brief review
	Computational methods

	Loss Landscape of VQCs
	Loss Landscape of VQCs: An Analytical Example
	Computation of the Hessian of a Quantum Circuit
	Behaviour of a General VQC without Data
	Training with Data
	Escaping from Barren Plateaus with the Help of the Hessian
	Conclusion

	Conclusions and Outlook
	Domain Adversarial Phase Detection
	Anomaly Detection
	Interpretability of NN phase prediction
	Loss Landscapes of Variational Quantum Circuits

	DANN: Data analysis MBL
	Anomaly Detection: Phase discovery
	Anomaly Detection: Phases of the extended Bose Hubbard model
	Critical Superfluid phase

