
 
 

Ab-initio quantum Monte Carlo 
study of ultracold atomic 

mixtures 
 

Viktor Cikojević 
 

 
ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons       
(http://upcommons.upc.edu/tesis)  i el repositori  cooperatiu TDX   ( h t t p : / / w w w . t d x . c a t / ) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats  
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX. 
No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons 
(framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus 
continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. 
  
 
ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons 
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale- 
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual 
únicamente para usos privados enmarcados en actividades de investigación y docencia. No  
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde  
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una 
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al 
resumen de presentación de la tesis como a sus  contenidos. En la utilización o cita de partes     
de la tesis  es obligado  indicar  el nombre de la persona autora.  
 
 
WARNING On having consulted this thesis you’re accepting the following use conditions: 
Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis) 
and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized 
by the titular of the intellectual property rights only for private uses placed in investigation and 
teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor 
availability from a site foreign to the UPCommons service. Introducing its content in a window or 
frame foreign to the UPCommons service is not authorized (framing). These rights affect to the 
presentation summary of the thesis as well as to its contents. In the using or citation of parts of the 
thesis it’s obliged to indicate the name of the author. 
 

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en


University of Zagreb

Faculty of Science

Deparment of Physics

Universitat Politècnica de Catalunya

hello world, love Department of Physics

Viktor Cikojević
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Abstract

Ab-initio Quantum Monte Carlo study of ultracold atomic mixtures

VIKTOR CIKOJEVIĆ
University of Split, Faculty of Science

Ruđera Boškovića 33, 21 000 Split

The properties of mixtures of Bose-Einstein condensates at T = 0 have been investigated using
quantum Monte Carlo (QMC) methods and Density Functional Theory (DFT) with the aim of un-
derstanding physics beyond the mean-field theory in Bose-Bose mixtures. In particular, quantum
liquid droplets with attractive intraspecies and repulsive interspecies attraction were studied, for which
we observed significant contributions beyond Lee Huang Yang (LHY) theory that affect the energy,
saturation density, and surface tension. The critical atom number in droplets in free space for total
number of atoms N between N = 30 and N = 2000 was obtained. Results of the surface tension for three
values of the attractive interspecies interactions are presented. For a homogeneous system, extensive
calculations of the equations of state were performed and we report the influence of finite-range effects
in beyond-Bogoliubov theory. In systems interacting with a small (large) effective range, we observe
repulsive (attractive) beyond-LHY contributions to the energy. For the droplets in a mixture of 39K
atoms, which were observed experimentally for the first time, the calculations of equations of state
were performed. Combining QMC-built functionals with DFT, the discrepancy in the estimation of
critical atom number between the mean-field theory and experimental results was explained by the
proper inclusion of the effective range in inter-particle interaction models. The influence of finite-range
effects on breathing and quadrupole modes in 39K quantum droplets was investigated. We predicted a
significant deviation in the excitation frequencies when entering a more correlated regime. Finally, the
phase diagram of repulsive Bose-Bose mixtures in a spherical harmonic trap using Quantum Monte Carlo
calculations was studied. Density profiles were obtained reported and we found the occurrence of three
phases: separation of condensates in two blobs, fully mixed and shell-separated phase. A comparison
with the Gross-Pitaevskii solutions showed a large deviation in the regime of large mass imbalance
and strong interactions. We showed the universality in the density profiles with respect to the s-wave
scattering length and found numerical evidence for Gross-Pitaevskii scaling present beyond the regime
of applicability of Gross-Pitaevskii equations.

Original in: English

Keywords: Quantum Monte Carlo methods, Diffusion Monte Carlo, Density Functional Theory, Gross-
Pitaevskii equation, Bose-Bose mixtures, quantum liquids, beyond-Bogoliubov calculations, finite-range
effects, excitation modes

Supervisor: Professor Leandra Vranješ Markić, PhD, Full Professor

Supervisor: Professor Jordi Boronat, PhD, Full Professor



Sažetak

Ultrahladne atomske mješavine istražene ab-initio kvantnom Monte Carlo
metodom

VIKTOR CIKOJEVIĆ
Sveučilište u Splitu, Prirodoslovno-matematički fakultet

Ruđera Boškovića 33, 21 000 Split

Svojstva smjesa Bose-Einsteinovih kondenzata pri T = 0 istražena su korištenjem metoda kvantnog
Monte Carla (QMC) i teorije funkcionala gustoće (DFT) s ciljem proučavanja fizike izvan teorije srednjeg
polja u bozonskim mješavinama. Proučili smo kvantne kapljice s jednakim i odbojnim interakcijama
između atoma istovrsne komponente te privlačnim interakcijama atoma različitih komponenti u interakciji
i opazili smo značajne doprinose povrh Lee Huang Yang (LHY) teorije koji utječu na energiju, saturacijsku
gustoću i površinsku napetost. Odredili smo kritični broj atoma za kapljice u slobodnom prostoru
za broj atoma u kapljici N između N = 30 i N = 2000. Izračunali smo površinsku napetost za
tri vrijednosti privlačnih međuatomskih interakcija. Izvršili smo opsežne proračune jednadžbi stanja
iznimno rijetke tekućine bozonske mješavine i uočili utjecaj efekata konačnog dosega koji nije predviđen
Bogoliubovljevom teorijom. U sustavima koji interagiraju s malim (velikim) efektivnim dosegom,
opaženi su odbojni (privlačni) doprinosi koje ne predviđa LHY teorija. Izračunali smo jednadžbe
stanja za kapljice bozonskih mješavina koje su po prvi put eksperimentalno uočene u smjesi 39K atoma.
Kombinirajući funkcionale gustoće izgrađene pomoću kvantnog Monte Carla s DFT-om, neslaganje u
procjeni kritičnog broja atoma između teorije srednjeg polja i eksperimentalnih rezultata je objašnjeno
preko pravilnog uključivanja efektivnog dosega u modele međudjelovanja čestica. Istražen je utjecaj
efektivnog dosega na pobuđenja kapljice 39K, i to na mod disanja i kvadrupolni mod. Dobiveni rezultati
prikazuju značajno odstupanje frekvencija pobude pri ulasku u korelirani režim. Detaljno smo proučili
fazni dijagram odbojnih Bose-Bose mješavina u sfernoj harmonijskoj zamci koristeći kvantne Monte
Carlo račune. Dobiveni su profili gustoće koji pokazuju pojavu tri faze: separacija kondenzata u dvije
nakupine, potpuno miješanje i separacije u obliku ljuske. Usporedba s riješenjima Gross-Pitaevskii
jednadžbi pokazuje veliko odstupanje u režimu velike masene neravnoteže i jakih interakcija. Pokazali
smo univerzalnost profila gustoće s obzirom na s-valnu duljinu raspršenja te postojanje Gross-Pitaevskii
skaliranja prisutnog izvan dosega primjenjivosti Gross-Pitaevskii jednadžbi.

Jezik izvornika: engleski

Ključne riječi: Kvantne Monte Carlo metode, Difuzijski Monte Carlo, teorija funkcionala gustoće,
Gross-Pitaevskii jednadžba, bozonske mješavine, kvantne tekućine, povrh-Bogoliubov računi, efekti
konačnog dosega, modovi pobuđenja

Mentorica: Prof. dr. sc. Leandra Vranješ Markić

Mentor: Prof. dr. sc. Jordi Boronat
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Chapter 1

Introduction

States of matter in Nature such as liquids, gases and solids are characterized by the interparticle
correlations. Solids on one side, and liquids and gases on the other, can mutually be distinguished
by the degree of periodicity of the total density ρ(r) =

〈
Ψ̂†(r)Ψ̂(r)

〉
, that is, the diagonal long-range

order. For solids, it is manifested through the occurrence of peaks in the Fourier transform of ρ, whereas
for gases and liquids the periodicity is absent. Liquids stand in between gases and solids, as there
is no spatial long-range order, yet they are self-bound. Physical intuition between different classical
states of matter dates back to van der Waals in the 19th century, who won the Nobel prize in 1910 for
introducing an equation of state for liquids and gases. The basic idea is that ordinary liquids or solids
occur due to two features of interatomic potentials: long-range interparticle attraction and a short-range
repulsion. For weakly interacting atoms, attractive long-range interaction is of a van der Waals type,
coming from dipole-dipole interaction between neutral atoms. On the other hand, at small distances, the
Pauli exclusion principle acts as a repulsive force, so the balance between these two effects ultimately
defines the system properties, together with external parameters such as the pressure, geometry, and
temperature.

After the 1910s, experimental techniques allowed cooling the matter down to very low temperatures,
initiating the journey of ultracold physics and chemistry. With the decrease of temperature, the effect of
thermal fluctuations is reduced, allowing for the study of quantum effects in the many-body system. In
the low-temperature domain, two new phenomena emerged which defied the laws of classical statistical
mechanics: superfluidity of 4He and superconductivity of mercury, both manifesting resistless flow of
its constituents [1, 2] below a critical temperature, indicating that a new state of matter occurs at
very low temperatures. Both phenomena are captured with the phenomenological two-fluid model, first
introduced by Laszlo Tisza in 1938 [3], where the total density is decomposed in superfluid and normal
components.

London made a connection between a superfluid state of 4He with the condensation phenomena in a
Bose-Einstein gas [1]. Lowering the temperature, transition from normal to Bose condensed state in
a system obeying Bose-Einstein statistics is accompanied by a spike in the heat capacity, which bears
clear resemblance to that of 4He, and is called the λ-transition due to its peculiar shape. Additionally,
similar values of the measured critical temperature and entropy in a superfluid 4He state with those in a
corresponding Bose gas gave support to this hypothesis.
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By postulating symmetric (Bose-Einstein) statistics on the interchange between the two bosonic
particles, a homogeneous ensemble of ideal gas undergoes a Bose-Einstein condensation [4, 5] below a
critical temperature Tc, defined as the macroscopic occupation of k = 0 state. To generalize the concept
of a Bose-Einstein condensation to a system of interacting particles, Penrose and Onsager [6] considered
the long-range behaviour of the non-diagonal density matrix ρ(r, r′) =

〈
Ψ̂†(r)Ψ̂(r′)

〉
. It was proven

that in a BEC, a density matrix has a non-zero value at large distances, i.e., |r − r′| → ∞, which is
equal to the density of Bose-Einstein condensed system.

With the concept of macroscopic wavefunction present in both the superfluid and BEC theories, the
first attempt to explain the superfluidity came from the theory of Bose-Einstein condensation in an
ideal gas. Approximating liquid Helium as an ideal Bose gas proved to be a crude assumption, giving
predictions significatly off the measurements. The reason for these disagreements is that atoms in liquid
Helium are far from being non-interacting, leading to a significant condensate depletion, which leads to
a condensate fraction of around 8% [7].

An extended period of development of experimental techniques had to pass before the first observation
of a pure BEC, achieved in alkali atoms [8–10]. Typical density in which the experiments with cold
Bose gases are performed today is of the order of 1014cm−3, meaning that the temperature to achieve
quantum degeneracy is of the order 10−5K [11]. Experimental control of various system parameters
is supreme, making the field of ultracold atoms a fertile playground for the manifestation of different
phases of matter [12]. It is now possible to tune rather easily the strength and sign of interactions,
geometry of external traps, or dimensionality [12]. Various accessible system properties involve the
density profile, static structure factor, momentum distribution, collective excitations, or release energy.

A simple theoretical understanding of cold Bose gases is the Gross-Pitaevskii equation. It is a mean-
field approach, where all the particles occupy the same single-particle quantum state (k = 0), whereas
the interactions are incorporated through the average external field due to other particles. This approach
works well for very dilute systems. Increasing the density, the energy of a Bose gas can be calculated
perturbatively, where the first energy correction term to the mean-field one is called the Lee-Huang-Yang
(LHY) energy. This term is known for both single-component [13, 14] and two-component Bose mixtures
[15]. The next energy correction is called the Wu term [16] and is known only for single-component
systems, but it proved to deviate significantly from the quantum Monte Carlo energies [17]. The latter
values are taken as a reference, because quantum Monte Carlo methods give, within statistical errorbars,
exact values for bosonic systems.

Other than the mean-field approach, non-perturbative numerical treatments such as the variational
hypernetted chain method [18] or the quantum Monte Carlo techniques [19–21] are favorable when the
system under study enters a strongly correlated regime. Many-body quantum properties of a Bose
system at zero temperature can be directly investigated with the exact diffusion Monte Carlo (DMC)
method [22]. In this Thesis, we have implemented and exploited the DMC method to benchmark and
investigate the predictions of commonly used mean-field theories of Bose condensed mixtures.

In a single-component Bose system, beyond mean-field effects are very small, as it has been confirmed
with first principles numerical calculations, namely the diffusion Monte Carlo [17] and Path Integral
Ground State methods [23]. However, a dramatic manifestation of beyond mean-field physics was
predicted by Petrov [24], manifested in the mixture of two Bose-Einstein condensates with interspecies
attraction and intraspecies repulsion. In that particular system, the repulsive beyond mean-field
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repulsion stabilizes the mean-field collapse, resulting in a possibility of quantum droplet formation.
This phenomenon was first studied in three-dimensional systems, and later extended to one and two
dimensions [25–27] and at a dimensional crossover [28]. Very soon after this theoretical prediction, the
first Bose-Bose quantum droplet was observed in a homonuclear mixture of two hyperfine states of 39K
[29, 30] and later in a heteronuclear mixture of 41K - 87Rb atoms [31]. The first efforts in understanding
this system were done within the local density approximation [32], where the general thermodynamic
conditions for droplet stability were discussed. At very small densities, droplet properties are well
reproduced with Petrov’s theory. However, already in the first experiment [29], beyond-LHY terms
appeared to play a role at magnetic fields producing more correlated droplets. Microscopic understanding
of beyond-LHY physics was first made in numerical studies using diffusion Monte Carlo (see Chapters
4, 5 and 6) and the hypernetted chain method[33], where it was shown that the details of interaction
potential play an important role. These non-universal effects were already studied theoretically in the
single-component scenario [34–37], but they were not yet extended to two-component systems. Overall,
beyond mean-field effects are naturally incorporated in the diffusion Monte Carlo calculations, and it is
of interest to benchmark the Petrov functional, or even generate a correction to it at higher densities.
This functional can be used in dynamical studies, for example the calculation of collective excitation
modes, which in the past proved to be a powerful technique for exploring microscopic theories in a
many-body system [38–43].

These mixed quantum droplets resemble in some aspects the classical droplets, and already there
have been dynamical studies observing their liquid-like properties, such as collisions between quantum
droplets in 3D [44] or in 1D [45]. Interestingly, in Ref. [44], the authors observed, for the first time,
a compressible regime of the liquid phase, when the number of particles is so small that the droplet
has a surface size comparable to its radius. Interestingly, experimental results show disagreement with
the prediction of merging vs. separation in the collision outcome using the conventional Petrov theory.
Dynamical properties of quantum droplets were studied in lower dimensions as well, where it was shown
that they can support vortex states in 2D [46], as in 3D [47], and that they can host exotic metastable
phases in 2D [48].

Another advancement in the field was made by producing gases with dipolar interactions [49].
In contrast to quantum droplets in a Bose-Bose mixture, where the interactions are isotropic and
short-ranged, dipolar interactions are anisotropic and long-ranged [50]. A similar methodology of the
stabilization mechanism in dipolar droplet formation can be made following Petrov’s work [24]. However,
the failure of this approach has been observed in dilute dipolar quantum droplets [51], by measuring
radically different density profiles and critical atom numbers, all of which were recovered with a full
quantum Monte Carlo approach [51]. Lack of consistent theory proves the necessity to treat these
systems with a full many-body approach. A system with dipolar interactions is unique because of the
exotic feature of supersolidity, a phenomenon where periodically structured matter exhibits superfluid
behavior, first predicted in 4He [52], but never experimentally confirmed. By measuring the excitation
spectra [53] and performing time-of-flight experiments [54], the coexistence of phase coherence and
periodicity in dipolar gases has been observed, indicating the existence of a supersolid of droplets.

Nowadays, it is possible to routinely produce mixtures of same-species atoms [55, 56], different
isotopes [57, 58] or different elements [59, 60]. In a properly tuned magnetic field, a Bose mixture can
have the repulsive interactions in all of three channels. For example, in a harmonically trapped mixture
[61], there is a variety of spatial configurations that two-component species can have. They can form a
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mixed phase, where the two species completely overlap and they can be in a two-blob structure, where
the overlap is minimized, meaning that the two condensates physically separate. Alternatively, they
can form a shell structure, such that one species forms a shell structure around an inner one. These
different regimes depend on the atom number [62] and are quite sensitive to the interaction strength
[63], making the phase diagram much richer than the usual single-component trapped BEC. Occurrence
of these phases happens due to mean-field instability. Thus, this system is a promising candidate for
exploring beyond mean-field effects. Additionally, at ultracold temperatures, these mixtures can enter in
a superfluid regime [64], making it possible to study and improve our understanding of physics of the
two interpenetrating superfluids. With an increase of temperature, these mixtures exhibit interesting
thermodynamic properties. For example, recently, a counter-intuitive prediction of a phase separation
with temperature has been proposed, in the regime where zero-temperature mean-field theory predicts
mixing [65]. Usually, at very small densities, the description of these mixtures is well reproduced with the
Gross-Pitaevskii equation [66]. However, it is not clear how the phase space changes when the densities
or correlations become larger, thus it is of interest to study these systems with ab-initio quantum Monte
Carlo methods.

1.1 Outline

This Thesis is devoted to the computational study of quantum Bose-Bose mixtures. The outline of a
Thesis is as follows.

Chapter 2: Overview of ultracold gases. In chapter 2, we discuss the basics of ultracold Bose
gases. This chapter is relevant for the whole thesis, as the main physical quantities and terminology
are introduced. We start the discussion with the physics of scattering in ultracold gases, where the two
most important parameters are introduced: the s-wave scattering length and the effective range. The
numerical method to calculate those parameters is outlined. Next, the overview of the main results of
the Bogoliubov theory for a Bose gas is given. This problem can be formulated in a density-functional
manner, which we present with the numerical algorithm specialized to solve it. Finally, basic mean-field
theory and its extension, the LHY term, are introduced.

Chapter 3: QMC methods. In chapter 3 are discussed the quantum Monte Carlo methods used
in this Thesis. Since the goal is to study ultracold systems, it is an excellent approximation to tackle the
problem at T = 0, thus making it possible to use the power of the variational and diffusion Monte Carlo
methods, suitable for zero temperature quantum many-body studies. Variational Monte Carlo offers a
variational solution, and it is used both to sample and to optimize the trial wavefunction. Improvement
of this method can be made by performing the imaginary-time propagation, allowing to reach the
ground-state, and therefore extract the ground-state averages.

Chapter 4: Ultradilute quantum liquid drops. In chapter 4, we present the study of dilute
symmetric Bose-Bose liquid droplets using quantum Monte Carlo methods with attractive interspecies
interaction in the limit of zero temperature. The calculations are exact within some statistical noise and
thus go beyond previous perturbative estimations. By tuning the intensity of the attraction, we observe
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an evolution from a gas to a self-bound liquid drop in an N - particle system. This observation agrees
with recent experimental findings and allows for the study of an ultradilute liquid never observed before
in Nature.

Chapter 5: Universality in ultradilute liquid Bose-Bose mixtures. In chapter 5, we present
the study of dilute symmetric Bose-Bose liquid mixtures of atoms with attractive interspecies and
repulsive intraspecies interactions using quantum Monte Carlo methods at T = 0, in the thermodynamic
limit. Using several models for interactions, we determine the range of validity of the universal equation
of state of the symmetric liquid mixture as a function of two parameters: the s-wave scattering length
and the effective range of the interaction potential. It is shown that the Lee-Huang-Yang correction
is sufficient only for extremely dilute liquids, with the additional restriction that the range of the
potential is small enough. Based on the quantum Monte Carlo equation of state, we develop a new
density functional which goes beyond the Lee-Huang-Yang term and use it, together with local density
approximation, to determine density profiles of realistic self-bound drops.

Chapter 6: Finite-range effects in ultradilute quantum drops. In chapter 6, we present the
study of bulk properties of two hyperfine states of 39K utilizing the quantum Monte Carlo technique
and introduce an improved density functional based on two scattering parameters: the s-wave scattering
length and the effective range. In the first experimental realization of dilute Bose-Bose liquid drops
in the same hyperfine states of 39K, the prediction of the critical numbers using the Lee-Huang-Yang
extended mean-field theory [24] was significantly off the experimental measurements. Using a new
functional, based on quantum Monte Carlo results of the bulk phase incorporating finite-range effects,
we can explain the origin of the discrepancies in the critical number. This result proves the necessity of
including finite-range corrections to deal with the observed properties in this setup. The controversy on
the radial size is reasoned in terms of the departure from the optimal concentration ratio between the
two species of the mixture.

Chapter 7: Finite range effects on the excitation modes of a 39K quantum droplet. In
chapter 7, we present the study of the influence of finite-range effects on the monopole and quadrupole
excitation spectrum of extremely dilute quantum droplets, in the mixture of 39K. We present a density
functional, built from first-principles quantum Monte Carlo calculations, which can be easily introduced
in the existing Gross-Pitaevskii numerical solvers. Our results show differences of up to 20% with
those obtained within the extended Gross-Pitaevskii theory, likely providing another way to observe
finite-range effects in mixed quantum droplets by measuring their lowest excitation frequencies.

Chapter 8: Harmonically trapped Bose-Bose mixtures with repulsive interactions. Go-
ing from self-bound to gaseous systems, in Chapter 8 we present the study of a phase diagram of a
harmonically confined repulsive Bose-Bose mixture using quantum Monte Carlo methods, and we find
emergence of three phases: two-blob, mixed, and separated. Our results for the density profiles are
systematically compared with mean-field predictions derived through the Gross-Pitaevskii equation in
the same conditions. We observe significant differences between the mean-field results and the Monte
Carlo ones that magnify when the asymmetry in mass and interaction strength increases. In the analyzed
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interaction regime, we observe universality of our results, which extends beyond the applicability regime
for the Gross-Pitaevskii equation.







Chapter 2

Overview of ultracold atomic gases

2.1 Introduction

In Nature, elementary particles manifest in two statistics: bosons and fermions. They are distinguished
by spin: bosons have integer spin, while fermions have a half-integer spin. Statistics of composite
particles, such as atoms or molecules, is defined by the total spin: atoms with odd (even) atomic number
are fermions (bosons). The importance of statistics in a many-body system is generally enhanced as the
temperature is cooled down, as both Bose and Fermi particles are guided towards a quantum degeneracy
regime. Lowering the temperature increases the de Broglie wavelength associated with each particle, and
a quantum degenerate regime can be recognized when the de Broglie wavelength is comparable to the
mean interparticle spacing. For Bose particles at sufficiently low temperatures, wave packets mutually
overlap in a way that there can occurr a macroscopic occupation of a single-particle k = 0 state. Almost
100% Bose-Einstein condensates were first achieved in Ref. [8], earning Eric Cornell, Wolfgang Ketterle,
and Carl Wieman a Nobel prize in 2001, for the achievement of Bose-Einstein condensate in alkaline
dilute vapors. Ever since that discovery, the field of ultracold atomic gases has been one of the most
active avenues of research in contemporary physics.

The focus of this Thesis is on ultracold Bose-Bose mixtures. To present the relevance of the conducted
research, in Sec. (2.2) we will first explore the basic concepts of Bogoliubov and density-functional theory
relevant to the field of study, resulting in the famous Gross-Pitaevskii equation. Additionally, an efficient
numerical scheme for dealing with real- and imaginary-time properties of general density-functional
theories, based on the Trotter decomposition, is presented. The mean-field formalism of Bose-Bose
mixtures is covered in Sec. (2.3), where the stability and formation of two-component Bose droplets are
discussed. Crucial to the connection with real-world experiments, it is relevant to study the interaction
between ultracold atoms, which is covered in Sec. (2.4), where the basic scattering theory is presented.
Finally, the nomenclature and methodology to calculate the relevant parameters used in the Thesis, such
as the s-wave scattering length and the effective range, is discussed in Sec. (2.5).
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2.2 Single-component Bose gas

2.2.1 Bogoliubov theory

Having more than two particles and entering into the many-body physics, N -particle system obeys the
Schrödinger equation

iℏ
Ψ(r1, . . . , rN )

∂t
= Ĥψ(r1, . . . , rN ), (2.1)

with the Hamiltonian given by

Ĥ =
N∑

i=1

{
− ℏ2

2m∇2
i + Vext(ri)

}
+

N∑
i<j

Vpair(ri − rj), (2.2)

where Vext(r) is the external potential and Vpair is the interaction between the two particles. It is
convenient to write the Hamiltonian in the second-quantization formalism [67]

Ĥ =
∫
d3rΨ̂†(r)

{
− ℏ2

2m∇2 + Vext(r)
}

Ψ̂(r)

+1
2

∫
d3r

∫
d3r′ Ψ̂†(r)Ψ̂†(r′)V (r − r′)Ψ̂(r′)Ψ̂(r), (2.3)

where Ψ̂ is the field operator
Ψ̂(r) =

∑
i

ψi(r)âi, (2.4)

with ψi(r) being the i-th single-particle state, and âi (â†
i ) is the annihilation (creation) operator

which incorporates the statistics. For Bose particles, commutation relations are
[
âi, â

†
j

]
= δij and

[âi, âj ] =
[
â†

i , â
†
j

]
= 0, and their expectation values are [68]

〈
â†

kâk

〉
= Nk, (2.5)

with Nk being the occupation number of the k-th state. At ultracold temperatures and weak interactions,
excited states are scarcely populated in a Bose system, thus to a first approximation the field operator
can be replaced by its average value [68, 69]

Ψ̂(r) → ψ =
〈

Ψ̂
〉

≈ ψ0(r), (2.6)

where ψ0 = √
ρ0 is called the wavefunction of the condensate, with ρ0 being the number density of the

condensate. It plays the role of the order parameter of the Bose-Einstein condensate. In reality, not
all the particles are in the condensate. This is because the zero-momentum state is mixed with higher
excited states due to the two-body interaction. It can be show [11] that the depletion of the condensate
is equal to

ρ0

ρ
= 1 − 8

3
√
π

√
ρa3, (2.7)

where ρ is a total density and a is the s-wave scattering length (see Sec. 2.4). Consequently, the gas
parameter ρa3 plays a role of a perturbative parameter of the theory. In the experiments, usually, this
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parameter is of the order of 10−5, making the depletion of the condensate around one percent. However,
this is not true for atomic gases in the vicinity of a Feshbach resonance or in the unitary limit where
|a| → ∞ [70].

Finally, from the equation of motion for Ψ̂

iℏ
∂Ψ̂
∂t

=
[
Ψ̂, Ĥ

]
, (2.8)

and the Bogoliubov replacement (Eq. 2.6), the equation of motion for ψ reads

iℏ
∂ψ(r, t)
∂t

=
{

− ℏ2

2m∇2 + Vext(r)
}
ψ(r, t)

+
∫
d3r′ ψ∗(r′, t)Vint(r − r′)ψ(r′, t)ψ(r, t). (2.9)

Interaction potential between atoms usually has a complicated form (see for example the Aziz potential
for 4He [71]), but generally it consists of a short-range hard-core and a long-range Van der Waals tail
which varies as ∝ r−n at large distances. When the collision between particles are weak, i.e., the incident
wave-vector k is small, and the mean interparticle distance is much larger than the typical range of the
potential, realistic inter-particle potentials can be replaced with the effective potential [11]

Vint(r − r′) → Veff(r − r′) = 4πℏ2a

m
δ(r − r′), (2.10)

which is characterized solely by the s-wave scattering length a. When Vint in Eq. (2.9) is replaced with
the effective interaction Veff (Eq. 2.10), we get the famous Gross-Pitaevskii equation

iℏ
∂ψ(r, t)
∂t

=
{

− ℏ2

2m∇2 + Vext(r)
}
ψ(r, t) + 4πℏ2a

m
|ψ(r, t)|2ψ(r, t). (2.11)

The lowest eigenvalue for the Gross-Pitaevskii equation corresponds to the chemical potential, because
the condensate wavefunction is ψ(t) =

〈
Ψ̂(r, t)

〉
= ⟨N | Ψ̂ |N + 1⟩ ∝ exp [−(EN − EN−1)it/ℏ], so the

stationary Gross-Pitaevskii equation reads

µψ(r) =
{

− ℏ2

2m∇2 + Vext(r)
}
ψ(r) + 4πℏ2a

m
|ψ(r)|2ψ(r). (2.12)

2.2.2 LHY energy

Replacement of the realistic interaction with the effective one Veff(r) = 4πℏ2aδ(r)/m is correct only for
very small values of the gas parameter ρa3. This is because, as the density increases, the condensate
depletion starts to be non-negligible, i.e., higher-order momentum contributions to the effective interac-
tions start playing a role [11]. First correction to the mean-field energy is derived by Lee and Yang [72],
followed by Huang [14], thus the correction is called the Lee-Huang-Yang (LHY) term. Ground-state
energy of the single-component Bose gas, with the included effect of LHY term, is given by

E

N
= 2πℏ2a

m
ρ

{
1 + 128

15
√
π

√
ρa3
}
. (2.13)
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The energy per particle (Eq. 2.13) was observed experimentally [73], in the measurement of the equation
of state. A theoretical recipe for correcting the mean-field energy with the LHY term is shown to be
correct up to ρa3 ≈ 10−3, by comparing the predictions of Eq. (2.13) with a QMC calculation performed
in [17], showing only the weak dependence on the shape of the potential. For higher densities however,
more scattering parameters are required because the universality in terms of the s-wave scattering length
is ended [74, 17]. The same form of the correction was also derived for the inhomogeneous Bose gas [75],
and confirmed to be correct up to ρa3 ≈ 10−3 in a QMC calculation [76].

2.2.3 Density-functional formulation

An equivalent formulation of a many-body problem is the density-functional theory [77, 78]. The starting
point of a density-functional theory is the ground-state density, defined as

ρ(r) =
∫
d3r2 . . . d

3rN Ψ∗(r, r2, . . . , rN )Ψ(r, r2, . . . , rN ), (2.14)

where Ψ is the full many-body solution to the Schrödinger equation. This density is obtained by
minimizing the energy functional

E[ρ(r)] = T [ρ(r)] + Vext[ρ(r)] + Vint[ρ(r)]

= ⟨Ψ| − ℏ2

2m∇2 |Ψ⟩ + ⟨Ψ|Vext |Ψ⟩ + ⟨Ψ|Vint |Ψ⟩ , (2.15)

where ∇2 =
∑N

i=1 ∇2
i , Vext =

∑N
i=1 Vext(ri) and Vint =

∑N
i<j Vint(|ri − rj |). Minimization of the energy

Eq. (2.15) yields the ground-state density and other ground-state observables. In principle this theory
is exact [78] since there is a one-to-one correspondence between the full Hamiltonian of the system
and the ground-state density profile ρ(r), as proved in a seminal paper by Hohenberg and Kohn [77].
However, the interaction energy-density Vint[ρ(r)] is unknown and needs to be approximated, meaning
that the Density Functional Theory does not necessarily produce exact results. Highly accurate density
functionals can be derived employing quantum Monte Carlo data. This is in fact one of the goals of this
Thesis, with the specific application to the quantum self-bound Bose-Bose liquid. In the past, density
functionals of superfluid liquid helium [79] were obtained to reproduce various static and dynamic
properties from either the experiments, Hartree-Fock calculations, or first-principle QMC calculations
[80–82].

For the fully condensed Bose gas, we work in the Hartree approximation, i.e., we assume that all the
atoms are in the same single-particle orbital

ΨH(r1, . . . , rN ) =
N∏

i=1
ψ(ri), (2.16)

We further assume that the interaction part of the functional can be written as

⟨Ψ|Vint |Ψ⟩ =
∫
d3rEint[ρ], (2.17)
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where all the interaction effects are incorporated in the energy-density term Eint(r). The time evolution
can thus be obtained starting from the Lagrangian L

L =
∫
d3rL, (2.18)

=
∫
d3r

[
iℏ
2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− ℏ2

2m |∇ψ|2 − Vext(r)|ψ|2 − Eint(r)
]
,

whereupon the imposed action principle δ
∫ t2

t1

Ldt = 0 leads to a Schrödinger-like equation. For simple,

local density functionals behaving as a power-law of the density ρ, the equation of motion for ψ reads

iℏ
∂ψ

∂t
= ĤDFTψ =

{
− ℏ2

2m∇2ψ + Vext + ∂Eint

∂ρ

}
ψ. (2.19)

To make a connection of density-functional theory with QMC calculations, bulk properties can be exactly
obtained by fitting the numerically accesible energy per particle E/N , so that the interaction term Eint

can be written as
Eint = E

N
ρ. (2.20)

For a density functional to satisfy other than the bulk properties, more terms need to be included. To
name one example, we give the OT (Orsay-Trento) functional of 4He, which, on top of the bulk energy,
properly accounts for the static response function and the phonon-roton dispersion in the uniform liquid
[83]

EFull OT
int [ρ] =1

2

∫
dr′ρ(r)VLJ (|r − r′|) ρ (r′)

+ 1
2c2ρ(r)[ρ̄(r)]2 + 1

3c3ρ(r)[ρ̄(r)]3

− ℏ2

4mαs

∫
dr′F (|r − r′|)

[
1 − ρ̃(r)

ρ0s

]
∇ρ(r) · ∇′ρ (r′)

[
1 − ρ̃ (r′)

ρ0s

]
− m

4

∫
dr′VJ (|r − r′|) ρ(r)ρ (r′) [v(r) − v (r′)]2 .

(2.21)

2.2.4 Numerical solution of GPE-like equations

The numerical solution to the Eq. (2.19) is obtained by mapping the wavefunction ψ on a three-
dimensional grid of equally spaced grid points [84]. Time evolution is performed by applying the
time-evolution operator at each iteration

ψ(t+ ∆t) = T (∆t)ψ(t), (2.22)

where T (∆t) = exp
{

−iĤDFT∆t/ℏ
}

. The evolution operator T is not known analytically. However, it
can be decomposed by means of the Trotter formula. The simplest approximation we use in this thesis
reads

T (∆t) = e−i∆tV (r′)/2ℏe−i∆tℏ∇2/(2m)e−i∆tV (r)/2ℏ + O(∆t3). (2.23)
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Potential propagators are trivially evaluated in real space, and the kinetic propagator is evaluated in
k-space. Higher order decomposition schemes are also available [85–87], but in this Thesis we mantain
the second-order scheme. The methodology following the Eq. (2.23) inherently conserves the number
of particles during real-time evolution since the time-evolution operator is still unitary. In order to
obtain ground-state properties, the time evolution is performed in imaginary time τ = −it/ℏ. For a
sufficiently large imaginary-time propagation, the wavefunction reaches a ground state, since it becomes
the dominant mode due to exponentially decaying contributions of excited states in large imaginary-time
propagation. This is a general feature of imaginary-time propagation, used also in a diffusion Monte
Carlo method (see Sec. 3.5). The algorithm is presented below as a pseudocode

1. ψ1(r) = G1 ∗ ψ(r, t), where G1 = exp
{

−1
2 i∆tV/ℏ

}
, V = Vext(r) + ∂Eint

∂ρ
and ρ = |ψ(r, t)|2. ∗

stands for element-wise multiplication, where a result tensor has the same dimension as the two
tensors to be multiplied, with the value at the grid point (i, j, k) being the product of elements
(i, j, k) of the two tensors.

2. ψ2(r) = FFT−1 [G2 ∗ FFT[ψ1]], where G2 = exp
{

−i∆tℏk2/(2m)
}

and FFT stands for Fourier
transform.

3. ψ(r, t+ ∆t) = G1 ∗ ψ2(r), where G1 = exp
{

−1
2 i∆tV/ℏ

}
, V = Vext(r) + ∂Eint

∂ρ
and ρ = |ψ2(r)|2.

2.3 Two-component Bose system

The formalism of two-component Bose-Einstein condensates is readily extended from the single-component
one. Assuming the Hartree wavefunction

Ψ(r1, . . . , rN ) =
N1∏
i=1

ψ1(ri)
N∏

j=N1+1
ψ2(rj), (2.24)

where N1 (N2) is the number of atoms of the first (second) component, and N = N1 +N2 is the total
atom number. A general density functional describing two-component quantum Bose-Bose mixture reads

E [ρ1, ρ2] = ℏ2

2m1
|∇ψ1(r)|2 + V

(1)
ext (r)|ψ1(r)|2 +

ℏ2

2m2
|∇ψ2(r)|2 + V

(2)
ext (r)|ψ2(r)|2 +

Eint[ρ1, ρ2], (2.25)

where mi is the mass of atom of i-th species and V i
ext(r) is the external potential subjected to the i-th

component. In a mixture of two Bose-Einstein condensates, the mean-field energy-functional with point
interactions reads

EMF
int = 1

2g11ρ
2
1 + 1

2g22ρ
2
2 + g12ρ1ρ2, (2.26)
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where gii = 4πℏ2aii/mi (i = 1, 2), g12 = 2πℏ2a12/µ and µ = (1/m1 + 1/m2)−1. The corresponding
coupled equations for ψ1 and ψ2 are named Gross-Pitaevskii equations, and they read

iℏ
∂ψi

∂t
=
{

− ℏ2

2mi
∇2 + Vi(ρ1, ρ2)

}
ψi i = 1, 2 (2.27)

where
Vi = giiρi + g12ρj (j ̸= i = 1, 2), (2.28)

and ρi = |ψi|2, for i = 1, 2.

2.3.1 Stability of a Bose-Bose mixture

Here, we consider a stability criteria of a homogeneous Bose-Bose mixture with contact interaction, on a
mean-field level. For a mixture to be stable, the total energy must increase for small deviations of each
density δρ1 and δρ2 [88]. For a very small density variation, kinetic energy terms can be neglected, so
the total energy reads [11]

E =
∫
d3rEint =

∫
d3r

{
1
2g11ρ

2
1 + 1

2g22ρ
2
2 + g12ρ1ρ2

}
. (2.29)

A first-order variation δE reads

δE =
∫
d3r

{
∂Eint

∂ρ1
δρ1 + Eint

∂ρ2
δρ2

}
, (2.30)

which vanishes because the number of atoms is conserved
∫
d3rδρi = 0, for i = 1, 2. Second-order

variation reads

δ2E = 1
2

∫
d3r

{
∂2Eint

∂ρ2
1

(δρ1)2 + ∂2Eint

∂ρ2
2

(δρ2)2 + 2 ∂2Eint

∂ρ1∂ρ2
δρ1δρ2

}
. (2.31)

Expanding the integrand to a positive definite square, we get

(√
∂µ1

∂ρ1
δρ1 ±

√
∂µ2

∂ρ2
δρ2

)2

= ∂µ1

∂ρ1
(δρ1)2 + ∂µ2

∂ρ2
(δρ2)2 + 2δρ1δρ2

∂2Eint

∂ρ1∂ρ2
+

+ 2δρ1δρ2

{
±

√
∂µ1

∂ρ1

∂µ2

∂ρ2
− ∂2Eint

∂ρ1∂ρ2

}
(2.32)

where the chemical potential is µi = ∂Eint/∂ρi, for i = 1, 2. A requierement δ2E > 0 leads to the
conditions

∂µi

∂ρi
= gii ≥ 0 i = 1, 2, (2.33)

±

√
∂µ1

∂ρ1

∂µ2

∂ρ2
−

√
∂µ1

∂ρ2

∂µ2

∂ρ1
= ±√

g11g22 − g12 ≥ 0. (2.34)

First conditions, gii > 0, for i = 1, 2, are due to the requirement of stability against collapse of each of
the components. In case of attractive interactions (negative gii), the system is unstable under variations
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of density, so that the ground-state of a component i with a negative gii has an non-uniform density,
i.e., it is a self-bound cluster. For the repulsive interspecies interactions, g12 > 0, the requirement for
stability occurs for a positive sign in Eq. (2.34), finally reading

g12 ≤ √
g11g22. (2.35)

This condition ensures that the density disturbance in any of the two components does not lead to
their phase separation. When g12 = √

g11g22 is satisfied, deviations to the ground-state energy scale as
(√g11ρ1 + √

g22ρ2)2. For attractive interspecies interactions, i.e., for a negative sign in Eq. (2.34), the
stability condition reads

g12 ≤ −√
g11g22, (2.36)

preventing the formation of a self-bound cluster due to the stronger attractive interspecies interaction
over geometric average of intraspecies repulsion. When g12 = −√

g11g22, the optimal configuration
satisfies ρ2/ρ1 =

√
g11/g22, according to Eq. (2.34). For g12 > −√

g11g22, the ground-state is either a
dense droplet or a collapsed state, depending on the particle number [11].

2.3.2 LHY energy for Bose-Bose mixtures

At higher densities and stronger interactions, the quantum corrections to the mean-field energy due
to the condensate depletion start to play a role. Energy correction to the mean-field is called the
Lee-Huang-Yang (LHY) term, and was first derived for quantum mixtures in Ref. [15]. The energy
density term is given by [32]

ELHY = 8
15π2

(m1

ℏ2

)3/2
(g11ρ1)3/2

f

(
m2

m1
,
g2

12
g11g22

,
g22ρ2

g11ρ1

)
, (2.37)

where f(z, u, x) is given in [32]. For a homonuclear case z = 1, the expression reads [24]

f(1, u, x) = 1
4
√

2
∑

±

(
1 + x±

√
(1 − x)2 + 4ux

)5/2
. (2.38)

Note that for u > 1, i.e., g2
12 > g11g22, the LHY term is a complex valued number. This feature is also

present in the heteronuclear scenario [89]. This is usually omitted by taking an ad hoc approximation
u = 1 valid only in the vicinity of g2

12 ≈ g11g22, resulting in f(1, 1, x) = (1 + x)5/2. For a heterogenous
mixture with g12 ≠ g22 ̸= g11, the LHY term in Eq. (2.37) is given in terms of an non-analytic integral
and thus it has to be obtained numerically. However, an effective and accurate expression for this term
was deduced in Ref. [89], so that finally the LHY term for a general mixture, approximating g2

12 = g11g22,
reads

ELHY ≃ 8m3/2
1 (g11ρ1)5/2)

15π2ℏ3

[
1 +

(
m2

m1

)3/5
g22ρ2

g11ρ1

]5/2

. (2.39)

2.3.3 Quantum droplets

For a single-component Bose gas, the LHY term is small and usually included only when the density
is high and the influence of interactions is important. This stands for the repulsive Bose mixtures as
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well. However, when g12 ≲ −√
g11g22, the mean-field term starts to be of the same order as the LHY

term, first noted in a seminal paper by D. Petrov [24]. A mixture with residual attractive mean-field
energy can be balanced with the LHY term, resulting in a droplet having a density proportional to
∝ δg2/g5, where g is the coupling constant and δg = g12 + √

g11g22. Thus, it is theoretically possible to
create a droplet of arbitrarily low density. The prediction was confirmed by experimental observation of
ultradilute droplets in homonuclear [29, 30], and heteronuclear mixtures [31].

Fig. 2.1 Graphical illustration of the balance between mean-field (MF) and Lee-Huang-Yang (LHY)
energy, resulting in a formation of a quantum droplet. Figure taken from [90].

2.4 Scattering theory of ultracold collisions

Interaction plays a crucial role in the complexity of the many-body problem, otherwise, the problem could
be separated into N one-body problems. In a dilute many-body system, most of the interactions occurs
as binary collisions. Therefore, a natural starting point for constructing the many-body wavefunction is
the two-particle problem.

Let us consider a collision between two particles in vacuum, of mass m1 and m2, each having
coordinates r1 and r2 and interacting through the pair-potential Vint(|ri − rj |). The Schröedinger
equation for the two-body problem reads [91]{

−ℏ2

2m1
∇2

r1
+ −ℏ2

2m2
∇2

r2
+ Vint(|ri − rj |)

}
Ψ(r1, r2) = EΨ(r1, r2). (2.40)

The problem (2.40) is translationary invariant, so it can be reduced to a one-body problem after
making a transformation to the relative coordinate r = r1 − r2, and the center-of-mass coordinate
rcm =

∑
i miri/(m1 + m2). Thus, the wavefunction is decomposed as Ψ(r1, r2) = ψcm(rcm)ψ(r), as

well as the energy E = Ecm +E, with Ecm being the center-of-mass energy and E the incident energy of
the relative motion. The stationary equation for ψ reads{

−ℏ2

2µ ∇2 + Vint(r)
}
ψ(r) = Eψ(r), (2.41)

where µ = m1m2/(m1 +m2) is the reduced mass.
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p⃗

p⃗'
θ

Fig. 2.2 Schematic representation of the three-dimensional scattering. Incoming free particle with the
momentum p, presented with solid lines, enter into the region where an interaction potential Vpair is
non-negligible. An outcome of the collision is a spherical wave and an outgoing particle with momentum
p′, denoted by dashed and dotted lines, respectively. A scattering angle of collision is denoted by θ.

Thinking of the scattering problem, the solution of Eq. (2.41) can be expanded into partial waves
[92]

ψk(r) =
∑

k

Rkl(r)Pl(θ), (2.42)

where Pl is the Legendre polynomial of degree l, θ is the scattering angle (see Fig. 2.2) and k is the
incident wavevector k =

√
2µE/ℏ. In the asymptotic regime r → ∞ [92, 91, 93], the wavefuction behaves

as
Rkl(r) ∝ jl(kr) − tan [δl(k)]nl(kr), (2.43)

where jl and nl are the Bessel and Neumann functions, respectively. δl(k) is called the phase shift for
the l-th partial wave and it is equal to zero in the absence of interaction, i.e., when Vint = 0. Functions
jl and nl correspond to homogeneous and particular solution of Eq. (2.41), respectively, meaning that
the non-zero interaction can be seen as a unitary transformation which changes a phase of l-th angular
momentum eigenstate. This phase accumulates in the region where the potential is non-negligible, and a
small positive (negative) value of δl(k) can be interpreted as an effective attractive (repulsive) interaction,
which can be directly seen by rewriting Eq. (2.43) as [92]

Rkl(r) ∝ sin(kr + δl(k)). (2.44)

It is useful to define the general energy-dependent scattering length [94] as

a
(2l+1)
l (k) = − tan [δl(k)]

k2l+1 , (2.45)
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where we name a0(k) the energy-dependent s-wave scattering length, a1(k) the energy-dependent p-wave
scattering length, and so on. Generally, for a given interaction potentail, all the scattering lengths
are non-zero. However, in the field of ultracold atomic gases, experiments are performed at very low
temperature and low density, meaning that collisions are occurring at very low incident wavevector k. It
can be shown that this allows a large number of phase shifts to be neglected. This is because the order
of importance of l-th phase shift is smaller for larger values of l, since δl(k) goes to zero as k2l+1 for
small k, provided that l < (n− 3)/2, and that the potential varies as ∼ r−n at large distances [91, 11].
To obtain the low-energy properties of a binary collision, we expand the a0(k) around k = 0 [91]

tan [δ0(k)]
k

= a+ 1
2reffa

2k2 + O(k4), (2.46)

where a is the zero-momentum s-wave scattering length and reff is the effective range [94]. These two
very useful quantities are used throughout the Thesis for describing the interactions between atoms. In
the field of ultracold atomic gases, the second term in Eq. (2.46) is usually omitted, allowing for an
interaction to be described solely by one parameter, the s-wave scattering length. Usually, the potential
between atoms is not known precisely, except for the knowledge of a, so the real atom-atom interaction
is usually replaced by the δ-pseudopotential [14]

V (r) = 4πℏ2a

m
δ(r), (2.47)

which is characterized solely by a. For this potential, there are no higher-order scattering lengths than
the s-wave. The s-wave effective range is zero for a contact interaction because it is a constant in k-space.

2.5 Calculation of s-wave scattering length and the effective
range

Two most important parameters we use to describe the interactions in this Thesis are the s-wave
scattering length a and the effective range reff . Because the s-wave scattering affects the l = 0 state,
the wavefunction is spherically symmetric, and the two-body Schrödinger equation describing binary
collision reads

− d2

dr2 [rψ(r)] +
[

2µVint(r)
ℏ2 − k2

]
[rψ(r)] = 0. (2.48)

For any short-range potential which does not support a two-body bound state [91], the long-range
behavior of the wavefunction reads

ψ ∝ 1 − a

r
. (2.49)

It is readily seen that positive (negative) values of a can be interpreted as an effective repulsive (attractive)
interaction. Therefore, one way of obtaining a is by fitting a solution of the two-body problem (Eq.
2.48) to the form of Eq. (2.49) at large r. A second way to calculate a is to solve Eq. (2.48) for several
values of small k, and then to fit the long-range part of each of the solutions with

ψ ∝ sin(kr + δ0(k)), (2.50)
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to obtain the dependence of a l = 0 phase shift δ0(k) on k. Then, for a sufficiently small k, both a and
the effective range reff can be obtained by fitting to the form

tan [δ0(k)]
k

= a+ 1
2reffa

2k2. (2.51)

Alternatively, the effective range can be calculated by performing the integration

reff = 2
a2

∫ ∞

0

{
(r − a)2 − 1

C2
0

[rψ(r)]2
}
dr, (2.52)

where C0 = lim
r→∞

ψ(r). Practically, in a numerical estimation of the effective range, the upper limit is
replaced by a sufficiently large value so that the true value is reached below a given error threshold.

2.5.1 Numerov algorithm

Scattering parameters such as the s-wave scattering length a and the effective range reff can be obtained
analytically [67, 95] for some potentials. However, in most cases, they must be determined numerically.
We perform the numerical integration of the Schrödinger equation utilizing the Numerov algorithm
[96, 97].

The two-body Schrödinger equation

− d2

dr2 [rψ(r)] +
[

2µVint(r)
ℏ2 − k2

]
[rψ(r)] = 0, (2.53)

can be written as
− χ(r)′′ + u(r)χ(r) = 0, (2.54)

where
χ(r) = rψ, (2.55)

and
u(r) = 2µVint(r)

ℏ2 − k2. (2.56)

The problem is mapped to a discrete, equally spaced one-dimensional grid in the radial coordinate with
the grid size h = ri+1 − ri. Since the equation is second-order, two initial conditions are required. The
first condition is χ(0) = 0. The next point χ(∆r) can be chosen to have an arbitrary value, since this is
equivalent to a normalization condition. If the potential is not finite at r = 0, then the solution is started
at small but finite 0+, which helps to stabilize the algorithm. In that case, additional checks need to
be made in order to reach a physical result. Finally, a numerical solution of Eq. (2.53) is obtained by
performing forward iteration Numerov algorithm [98, 99]

χi+1 =
2
(

1 − 5
12h

2u2
n

)
χi −

(
1 + 1

12h
2u2

i−1

)
χi−1

1 + 1
12h

2u2
n+1

, (2.57)

where χi = χ(ri) and ui = u(ri). This algorithm has a O(h6) local error and serves as a usual technique
for calculating scattering properties of interatomic potentials. Once the exact solution to the two-body
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problem is solved, it can be used either to calculate the scattering properties of a interaction potential
(see Sec. 2.5) or as a basis for the construction of the Jastrow trial wavefunction (see Sec. 3.4).





Chapter 3

Quantum Monte Carlo methods

3.1 Introduction

The field of many-body physics goes beyond ultracold atomic gases. It is a general framework to be
used whenever there are many and, more importantly, interacting particles which are put together. Any
real physical system that we encounter consists of interacting particles: nuclei, atoms, molecules and so
on. They are all described by the Schrödinger equation

Ĥψ = Eψ, (3.1)

where ψ is the wavefunction and E is the corresponding energy. In this Thesis, we are interested in
understanding N -particle systems, where the particles interact through the two-body pair-wise potential
Vpair, and are possibly in the external potential defined by the Vext(r). Thus, the Hamiltonian Ĥ

generally reads

Ĥ =
N∑

i=i

− ℏ2

2m∇2
i +

N∑
i=i

Vext(ri) +
N∑

i<j

Vpair(|ri − rj |), (3.2)

There are numerous approaches to solving Eq. (3.1) [11]. A first approximation is the Hartree approach,
in which the motion of every particle is considered to be independent of other particles, and they rather
“feel” the forces in a mean-field manner. This approach is motivated by the non-interacting picture,
where the problem is trivially separable into N one-body problems. Another analytical approach is
the perturbation theory, where a theory is developed through the introduction of a small perturbation
parameter, à la Bogoliubov [69]. Nowadays, the method of quantum field theory is a general way of
theoretically understanding the ultracold atomic quantum gases [67]. Still, out of the applicability
domain of a given theory, numerical approaches provide an important, and sometimes the only tool in
understanding highly correlated systems.

Quantum Monte Carlo methods offer an elegant ab initio numerical solution for the quantum many-
body problem. Quantum nature emerges at ultracold temperatures, where the many-body system is
in the ground-state. The suitable Monte Carlo technique for studying ground-state properties in an
exact manner is the Diffusion Monte Carlo method. In this chapter, we introduce the quantum Monte
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Carlo methods used in the Thesis. The Monte Carlo method is a broad and general technique that
relies on (pseudo)random numbers to study a given problem. In this sense, its applicability goes beyond
studying quantum many-body physics. In order to perform high-dimensional integrals, we utilize the
Metropolis algorithm, presented in Sec. (3.2). Quantum Monte Carlo techniques are exact within some
statistical noise, and the method for estimating the associated statistical error is presented in Sec. (3.3).
The Variational Monte Carlo method, a method for obtaining good trial wavefunctions and variational
estimates of ground-state properties, is presented in Sec. (3.4). Finally, in Sec. (3.5) we present the
Diffusion Monte Carlo method, suitable for exploring quantum many-body systems at zero temperature
in the ground state.

3.2 Metropolis algorithm

Integral formulation of the quantum many-body problem containing N particles leads to highly multidi-
mensional integrals of the following type ∫

dRf(R), (3.3)

where R = {r1, . . . , rN } is a high-dimensional vector in the space RDN , with D being the dimension.
Often these integral are non-trivial and without analytical solution, so the only way to solve them is by
employing a numerical technique. Numerical finite-grid integration techniques are not a suitable approach
for this particular problem because of memory and processor requirements to deal with exponentially
large number of integration points. A general Metropolis algorithm [100], a method for sampling a
given distribution function is used instead. Monte Carlo methods applied in this Thesis all rely on this
approach. The trick is to rewrite integral in the following form∫

dRf(R) =
∫
dR g(R)ρ(R), (3.4)

where ρ(R) is interpreted as the normalized probability distribution function, whereas the integral in
Eq. (3.3) is recognized as the expectation value of the function g(R).

In the Metropolis algorithm, the simulation is performed as a Markov process which starts at a given
point R, with the update from state R to state R′ defined with a transition probablity P (R → R′),
satisfying the detailed balance condition [100, 101]

ρ(R)P (R → R′) = ρ(R′)P (R′ → R). (3.5)

The transition probability P is decomposed as P (R → R′) = G (R → R′) A (R → R′) [101], where A
is the acceptance distribution of a move R → R′ and G is a proposal distribution, chosen in such a way
that the phase space of the problem is sampled efficiently. Metropolis algorithm then accepts the move
with probability

A (R → R′) = min
(

1, ρ(R′)G(R′ → R)
ρ(R)G(R → R′)

)
. (3.6)

Eq. (3.6) satisfies the detailed balance condition (3.5), which finally ensures that the distribution ρ(R)
is sampled ergodically, thus making possible to express the integral (3.4) as the average during the
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stochastic walk ∫
dR g(R)ρ(R) = lim

N→∞

1
N

N∑
i=1

g(Ri), (3.7)

where Ri are stochastically generated high-dimensional vectors, drawn from the given distribution ρ(R).
In Quantum Monte Carlo techniques, the average is computed over a set of walkers, each one being a
point in a phase space R = (r1, . . . , rN ), with N being the number of particles.

There are multiple ways in which the proposal distribution G can be chosen. In this Thesis we have
mainly used the uniform distribution

Guniform(r → r′) =

const, r′ = [r − ∆r, r + ∆r]
0, otherwise.

(3.8)

The parameter ∆r ultimately defines the rate of step acceptance. For this distribution, a proposed new
particle coordinate is chosen on a symmetric interval defined by ∆r. Note that this distribution satisfied
the detailed balance condition only when the interval is symmetric because otherwise it would not be
possible for a random walk to occur in the opposite direction, r′ → r.

In case of P being a free-particle-like Gaussian (see Sec. 3.5), then a move can be generated according
to the Box-Muller algorithm [102], and we numerically implemented a gasdev numerical function [103]
to propose new particle coordinates.

General Metropolis algorithm is given below:

1. Generate a new configuration R′ from R according to the function G(R → R′).

2. Calculate transition probability T = ρ(R′)G(R′ → R)
ρ(R)G(R → R′)

.

3. if T ≥ 1 , step 2 is accepted, i.e., we set R = R′ and we proceed to step 5.

4. if T < 1, a proposed step is accepted and we set R = R′ only if r ≤ T , where r is a random
number chosen from the uniform distribution in interval [0, 1].

5. Calculate the averages evaluated at R.

6. In case the proposal distribution P is a uniform transition probability distribution; update the size
of the step: if the acceptance rate is greater (less) than the wanted acceptance rate, then decrease
(increase) the step size.

Iterations of the Metropolis algorithm are performed until the desired statistical accuracy is achieved.
The rate of exploration of the phase space is determined by the walker’s step size when the uniform
distribution is chosen for proposal distribution P . The size of a step must be variable during simulation,
such that the target percentage of accepted steps is in the interval 50% − 70% to ensure that the walker
moves through the phase space as efficiently as possible [101]. If the proposed moves are large, it is
improbable for a move to be accepted. For example, large steps can result in two particles being at a
very small relative distance where it is expected that the wavefunction is negligible due to the hard core.
On the other hand, if the proposed step is too small, then accepting a move is very likely because the
distribution function will not change too much from the original value. A high acceptance rate is a
problem because two successive steps are then be highly correlated, i.e., statistically dependent.
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3.3 Error estimation in Monte Carlo calculations: data block-
ing

Numerical error of Monte Carlo integration technique comes from the stochastic nature of the Markov
process and it is determined by the number of accumulated data. The usual definition of the statistical
error works only when the data points are statistically independent. For uncorrelated samples, the
measure of uncertainty is determined from standard deviation [101]

σf =

√√√√ 1
n− 1

n∑
k

(fk − ⟨f⟩)2
, (3.9)

with n being the total number of data points, and f the function to be averaged. In Monte Carlo
calculations there is always an inherent statistical dependence of two successive steps, and this problem
can be solved by data blocking technique (see Fig. 3.1). The basic idea of data blocking is to divide the
data into large enough blocks to assume that they are mutually uncorrelated, where the value of each
block is the average of the data within a block. If all the blocks have a specific size nsize, than there is
nblocks = n/nsize number of blocks. Each block carries a value corresponding to an average of measured
quantities during that block. This leads to the correct estimation of the standard deviation of function f

σ =

√√√√ 1
nblocks − 1

nblocks∑
k

(
f̃2

k − ⟨f⟩2
)
, (3.10)

where f̃k = (1/nsize)
∑(k+1)×size

i=k×size fi is an average during k-th block. Illustration of the convergence of σ
with respect to the size of each block nsize is shown in Fig. (3.1).

3.4 Variational Monte Carlo

Variational Monte Carlo (VMC) is a method for obtaining variational estimations in a stochastic sense.
We are interested in finding a variational many-body ground state ψ (Eq. 3.2). In this Thesis we are
only interested in continuous Hamiltonians, but the VMC methodology applies to discrete systems as
well as problems involving three-body forces, or many-body forces in general. Also, is is possible to use
the same methodology on the problems in 2nd quantization [104]. Finally, VMC method is applicable
both to Bose and Fermi systems because it is possible to interpret the |ψT|2 as the probability density
function for particles of both symmetries.

In VMC, the wavefunction is written in the coordinate representation and the expectation values are
integrated out by performing Markov chains over the states defined by R = {r1, . . . , rN }. The central
object in the VMC is a trial wavefunction ψT(R), written in a physically motivated way, which is a
function of all the coordinates of the system.

The idea of the VMC method is to reformulate the many-body problem as an optimization problem,
where the goal is to find the best wavefunction ψ, according to the minimization criteria of the energy
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Fig. 3.1 Dependence of the error estimation σ as the function of the number of data in a single block,
nsize.

(functional)

E[ψ] = ⟨ψ| Ĥ |ψ⟩
⟨ψ| ψ⟩

. (3.11)

It is also possible to extend the methodology to seek for excited states [105, 106], but this is outside the
scope of this Thesis.

Physical observables, of which the most important one is the energy, are estimated as the expectation
values using the trial wavefunction ψT. Generally, the expectation value of a generic operator Ô is
calculated as 〈

Ô
〉

= ⟨ψT| Ô |ψT⟩
⟨ψT| ψT⟩

=

∫
dr1· · ·

∫
drN |ψT(R)|2OL(R)∫

dr1· · ·
∫
drN |ψT(R)|2

. (3.12)

It is customary in all of quantum Monte Carlo techniques to define a local quantity OL of the operator
Ô as

OL(R) = ÔψT

ψT
. (3.13)

Integration in Eq. (3.12) is readily recognized as a problem which is possible to solve with the Metropolis
algorithm (Sec. 3.2). Note that the normalization constant of the wavefunction does not play any
role in the Metropolis sampling because the move R → R′ is always accepted with a probability
|ψT(R′)|2/|ψT(R)|2, thus canceling the normalization constant. Therefore the expectation value of the
operator Ô is calculated as 〈

Ô
〉

= lim
n→∞

1
n

n∑
i

OL(Ri), (3.14)
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where the set of states {R1, . . . ,Rn} is sampled according to the |ψT|2. Of course, in practice n is
always finite, meaning that the stochastic estimation has an intrinsic statistical error. Consequently,
the error analysis is always performed as described in Sec. 3.3. Starting from the initial configuration,
Metropolis algorithm ensures that after a certain amount of iterations, the particle coordinates will
reach the desired distribution.

The VMC method is primarily used to optimize the trial wavefunction, which is then used in
the Diffusion Monte Carlo method (see Sec. 3.5) in order to obtain the exact ground-state averages.
Variational energy EVMC gives an upper bound to the exact ground state energy E0 according to the
variational principle of Quantum Mechanics

EVMC = ⟨ψT| Ĥ |ψT⟩
⟨ψT| ψT⟩

≥ E0, (3.15)

meaning that the quality of a wavefunction can be judged by its relation with the DMC energy. Note
that Eq. (3.15) is true whenever ⟨ψT| ψ0⟩ ≠ 0. To physically guide the shape of the wavefunction, it is
optimal to follow the Bijl-Dingle-Jastrow-Feenberg expansion [107–110] of the many-body wavefunction

Ψ(R) = exp


N∑
i

f1(ri) +
N∑

i<j

f2(ri, rj) +
N∑

i<j<k

f3(ri, rj , rk) + · · ·

 , (3.16)

which is a rapidly converging series usually truncated to the first two terms, due to exponential increase
of computational requirements. It is expected that in the weakly interacting limit the wavefunction is
well described with one- and two-body functions, so we usually write the wavefunction as

ψT =
N∏
i

f1b(ri)
N∏

i<j

f2b(|ri − rj |). (3.17)

ψT is not an eigenstate, and it is usually parameterized in a physical manner with a set of parameters
α, with the purpose of improving the wavefunction. The choice of these parameters is determined by
minimizing either the energy or the energy variance [101, 91]. Those parameters with the minimal
energy, or minimal energy variance [111], are then chosen to give the optimal wavefunction. Minimal
energy criteria comes on from the energy-functional formulation of the quantum many-body problem
(Eq. 3.11), and the energy variance criterion is due to the zero variance principle for an eigenstate of
the Hamiltonian. One should be careful when the optimization with respect to the energy variance is
being carried out because the energy variance vanishes for excited states as well. In our calculations, we
usually use only a few parameters, allowing the optimization process to be performed by carrying out
many energy calculations and then picking one set of parameters which gives the lowest energy.

Improvements over the form written as Eq. (3.17) can be made by including effective three-body
correlations [112]. Recently, there has been a great advancement in the development of a VMC method by
writing it in the form of a neural network [113], allowing for study of precise real-time dynamics [114, 115],
and allowing for the improvement of knowledge of the nodal surface in Fermi systems [116–118].
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3.5 Diffusion Monte Carlo

The Diffusion Monte Carlo method is a widely used technique suitable for the study of strongly-correlated
quantum many-body systems at zero temperature. It is an improvement of the Variational Monte
Carlo method and allows the exact evaluation of ground-state observables for bosonic systems. This
method can be applied to fermions as well [20], but because the nodal surface is unknown, it can
provide only variational energies and other properties. In contrast with mean-field theory or conventional
perturbative approaches commonly used in the field of ultracold atomic gases, Diffusion Monte Carlo is
a first-principles method, meaning that it operates directly with the many-body wave function. The
Diffusion Monte Carlo method belongs to a more general class of projection methods [119], for which
the starting point is the Schrödinger equation in imaginary time. We focus on continuous Hamiltonians
and view the problem in the first quantization, but the generality of the DMC method allows for the
study in second quantization as well [104]. Diffusion Monte Carlo method scales as N2, which is due to
N(N − 1)/2 pairs appearing in the calculation of the potential energy. We have implemented a DMC
code for quantum Bose-Bose mixtures by following the works in Ref. [19, 120].

3.5.1 Schröedinger equation in imaginary time

The fundamental equation of motion for any quantum system is given by the Schrödinger equation

iℏ
∂ψ

∂t
= Ĥψ, (3.18)

where Ĥ is the Hamiltonian of the system. To search for the ground-state properties it is common to
introduce the concept of imaginary-time τ = −it/ℏ, in which the Schrödinger equation reads

− ∂ψ

∂τ
= Ĥψ. (3.19)

Primary motivation for formulating the problem in imaginary time is the fact that the imaginary-time
evolution of any given wavefunction ψ with a given symmetry leads to the ground-state. To see closely
what happens with the wavefunction ψ in an imaginary-time evolution, we expand it in Hamiltonian
eigenstate wavefunctions ϕn with increasing order of energies

ψ(R, τ) =
∞∑

n=0
cnϕn(R, 0)e−Eτ , (3.20)

where cn are components of ψ in the basis {ϕn}. For the methodology to work, i. e. to ensure that we
reach the ground-state in τ → ∞ limit, we must assume c0 ̸= 0, meaning that the overlap of ψ with a
ground state wavefunction ϕ0 is non-zero. In the limit τ → ∞, excited states decay to zero exponentially
faster than the ground-state. Since the normalization of ψ falls to zero as well, it is convenient to
introduce a constant shift to the Hamiltonian Ĥ → Ĥ − E0, thus making the ψ to finally arrive to the
many-body ground state wave function

ψ(R, τ → ∞) = c0ϕ0(R). (3.21)
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3.5.2 Naive implementation

Because R is often a highly-dimensional vector, the representation of the many-body wavefunction ψ on
the finite-grid is not feasible due to current computer memory and processor limitations. This limitation
is alleviated by providing the solution in a stochastic sense. Numerically, a stochastic process which
solves the Schrödinger equation must follow a probability distribution function. When dealing with
bosonic systems, the wavefunction is positive definite everywhere, meaning that it can be interpreted as
the probability distribution function. In what follows, the naive approach to the solution for a bosonic
many-body problem is presented [121], setting the stage for a final algorithm (3.5.4) implemented to
study problems presented in the Thesis.

In coordinate representation, the wavefunction is numerically represented as a set of walkers, which
are points in R space

ψ(R(τ)) = N
nw∑
i

δ (R(τ) − Ri) , (3.22)

with N representing the normalization of the wavefunction and nw is the number of walkers. Quantum
mechanically, coordinate representation of the wavefunction requires infinite number of walkers, but
in practice the series is truncated due to numerical limitations. Particle coordinates {Ri} are evolved
according to the Schrödinger equation

− ∂ψ

∂τ
= −D∇2

Rψ + V (R)ψ − Erefψ(R), (3.23)

where D = ℏ2/(2m), with m being the mass of particle in the system. The total potential V (R) reads

V (R) =
N∑

i=i

Vext(ri) +
N∑

i<j

Vpair(|ri − rj |), (3.24)

and Eref is the referent energy used to stabilize the number of walkers in the simulation. Particle
coordinates are evolved according to the many-body Green function G as

ψ(R′, τ + ∆τ) =
∫
G(R′,R,∆τ)ψ(R, τ), (3.25)

where G is the approximation to the full many-body Green’s function, accurate up to the second-order

G(R′,R,∆τ) =
( m

2π∆τ

)3/2
exp

{
−m(R − R′)2

2ℏ2∆τ

}
︸ ︷︷ ︸

GK

exp {−(V (R) − Eref)∆τ}︸ ︷︷ ︸
GR

+ O(∆τ2). (3.26)

Eq. 3.26 sets the basic ingredients for the evolution of particle coordinates:

1. For each particle, r → r + ξ
√

2ℏ2∆τ/m, where ξ is a pseudo-random number drawn from the
Gaussian distribution.

2. Replicate the walker according to GR = exp {−(V (Ri) − Eref)∆τ}, where Ri are particle coor-
dinates of the i-th walker. This is numerically achieved by rounding GR to the closest integer,
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erasing the walker if GR = 0, and making GR − 1 new copies of a given walker to be used in the
next iteration.

3. Eref is adjusted in order to achieve and maintain the number of walkers around target value.

After a long enough imaginary-time propagation, distribution of particles evolves according to the
ground-state wavefunction ϕ0. In the τ → ∞ limit, average of the reference energy Eref over a set
of walkers converges to the ground-state energy E0, as the population of walkers reaches a steady
distribution [122].

The fundamental problem of the previous algorithm is that a probability distribution function is not
the quantum-mechanical probability density |ψ|2, but rather a probability amplitude ϕ0 [91]. Therefore,
expectation values cannot be calculated, except for the ground-state energy E0. Practically, this approach
is never used for the study of many-body systems because of substantial fluctuations of the bare potential
V (R), resulting in a high variance in the estimation of energy, especially when the potentials have a
hard-core [19]. Finally, only bosonic systems can be treated in this way, since fermions have to obey
the Fermi principle. This algorithm can be significantly improved when a physically motivated trial
wavefunction is introduced, leading to the importance sampling.

3.5.3 Importance sampling

Importance sampling is a commonly used variance reduction Monte Carlo technique for efficient sampling
of the distribution function [123, 19, 122]. The basic physical idea is that certain phase space regions
play a much more important role than others in the estimation of statistical averages. Hence, it is
desired that these regions are sampled more frequently. For example, in a system interacting with a
pair-wise realistic Lennard-Jones-like potential, it is expected that the wavefunction is small in the
hard-core region, large around the potential minimum, and approaching a constant at large distances
[124]. Importance sampling is introduced in the Diffusion Monte Carlo method by exploiting the
knowledge of an approximate ground-state wavefunction ψT(R) obtained from Variational Monte Carlo.
This leads to the biased estimation of the averages, and a practitioner must ensure that the results are
unbiased (see Sec. 3.5.5). The probability distribution function f which is to be sampled is defined as

f(R, τ) = ψT(R)ϕ(R, τ), (3.27)

where ψT(R) is the trial wavefunction and ϕ(R, τ) is a function with an initial condition set to
ϕ(R, 0) = ψT(R). ϕ has the desired infinite projection time limit ϕ(R, τ → ∞) = ϕ0, with ϕ0 being the
ground-state wavefunction.

Choosing a good trial wavefunction is crucial for the efficient and unbiased Diffusion Monte Carlo
calculation. Benefits of importance sampling with a good trial wavefunction ψT coming from the
Variational Monte Carlo are twofold: variance-reduction leads to lower computation times, and finally
to a weaker dependence on the imaginary time-step and the number of walkers.

Probability distribution function f is represented as a finite set of particle coordinates {R}, i.e.,
walkers, at each instant τ

f(R, τ) = N
nw∑
i

δ (R(τ) − Ri(τ)) . (3.28)
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The time evolution equation of f(R, τ) is given by

− ∂f(R, τ)
∂τ

= −D∇2
Rf(R, τ) +D∇R (F(R)f(R, τ)) + (EL(R) − Eref) f(R, τ), (3.29)

where F(R) is defined as quantum force

F(R) = 2∇RψT(R)
ψT(R) , (3.30)

acting in the direction of the fastest increase of the wavefunction. The local energy EL(R) is

EL(R) = ĤψT(R)
ψT(R) = −D∇2

RψT(R)
ψT

+ V (R), (3.31)

and finally Eref is the reference energy used to stabilize the number of walkers in the simulation.
Derivation of the quantum force F(R) and local energy EL(R) is presented in the Appendix A. Eq.
(3.29) can be written as

− ∂f(R, τ)
∂τ

=
(
ÔK + ÔD + ÔB

)
f(R, τ), (3.32)

where the kinetic term is ÔK = −D∇2
R, the drift term is ÔD(·) = D∇R(F(R)·) and finally a branching

term is ÔB = EL(R) − Eref . The formal solution to the Eq. (3.29) is given by

f(R, τ) =
∫
G(R′,R, τ)f(R′, 0)dR′, (3.33)

where G(R′,R, τ) is the full many-body Green’s function

G(R′,R, τ) = exp
{

−(ÔK + ÔD + ÔB)τ
}
. (3.34)

For the full many-body problem, Green’s function is not known analytically. However, each of the Green’s
functions ĜK, ĜD and ĜB, corresponding to the operators ÔK, ÔD and ÔB, are known analytically. Since
the operators ÔK, ÔD and ÔB do not mutually commute, it is not possible to decompose G(R′,R, τ)
into a product GKGDGB, due to the Baker–Campbell–Hausdorff theorem [91]. Therefore, we resort to
the short-time approximation of the full Green’s function.

3.5.4 Short-time approximation of the Green’s function

In the limit of short-time propagation, the full Green’s function G(R′,R, τ) can be expressed perturba-
tively as a power series in the time-step ∆τ [19]. Therefore, the idea is to divide the propagation time
into discrete timesteps of length ∆τ , and at each iteration solve the equation

f(R, τ + ∆τ) =
∫
dR′G(R′,R,∆τ)f(R′, τ). (3.35)

There are known linear, quadratic [120, 19] and fourth-order [125] expansions of the G into a product of
analytically solvable Green’s functions which can be numerically implemented. In this Thesis, we use
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second-order expansion in the timestep

G(R′,R,∆τ) = GB

(
R,R4,

∆τ
2

)
GD

(
R,R3,

∆τ
2

)
GK (R3,R2,∆τ)

×GD

(
R2,R1,

∆τ
2

)
GB

(
R1,R′,

∆τ
2

)
+ O(∆τ3), (3.36)

which produces a quadratic dependence of energy on the timestep ∆τ [120]. In Eq. (3.36), there are
three different particle updates. First update is due to Green’s function GK, which corresponds to the
free-particle diffusion term ÔK = −D∇2

R, and is given by

GK(R′,R,∆τ) = (4πD∆τ)−3N/2 exp
[

−
(
R − R′)2

4D∆τ

]
. (3.37)

Numerically, the action of this operator, i.e.,
∫
dR′GK(R′,R,∆τ)f(R′,∆τ), corresponds to the isotropic

Gaussian displacement of variance 2D∆τ for each particle. The second particle update corresponds to
the drift force movement due to the operator ÔD = D∇R(F(R)·), whose Green’s function is given by

GD(R′,R,∆τ) = δ
(
R′ − R(∆τ)

)
, (3.38)

where
dR
dτ

= F(R). (3.39)

The particle move update according to the ÔD operator is hence defined deterministically by integrating
the equation of motion (Eq. 3.39) for time ∆τ , with the initial condition R(0) = R. Since the initial
decomposition of the full Green’s function is quadratic (Eq. 3.36), the equation of motion Eq. (3.39)
must be solved with the same accuracy. Particulary, we have implemented second-order Runge-Kutta
integrator to solve Eq. (3.39). Finally, the crucial term for the Diffusion Monte Carlo method is the
branching term GB, which selects regions of the phase space according to the value of local energy

GB(R′,R,∆τ) = exp [− (EL(R) − Eref) ∆τ ] δ
(
R′ − R

)
. (3.40)

This term does not change particle coordinates, but the walker population, according to the exponential
part of the Green’s function GB. The statistical weight of each walker w = exp [− (EL(R) − Eref) ∆τ ]
determines the probability that a walker would be passed on to the next iteration. Numerically, the
branching term is implemented by generating a random number from uniform distribution in the range
r ∈ (0, 1), and making [r + w] replications of the walker, where the brackets denote integer rounding of
r + w.

Finally, pseudo-code steps for a 2nd order DMC we have implemented, are given below:

1. Gaussian drift. For each walker, and for each particle coordinate r:

r → r +
√

2D∆τ × gasdev(), where gasdev() is the random number generator according to
the Gaussian distribution with zero mean and unity variance.

2. Drift move. For each walker:

R1 = R + F(R)D∆τ/2.
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Fig. 3.2 Dependence of energy per particle with the number of walkers, for the Bose-Bose symmetric
mixture. Bias is well eliminated for nw ≈ 200.

R2 = R + (F(R) + F(R1))D∆τ/4. Observables are calculated at this intermediate step.

R3 = R + F(R2)D∆τ.

3. Branching step. For each walker:

Calculate the weight w = exp [− ((EL(R) + EL(R2))/2 − Eref) ∆τ ].

Replicate the walker for [w + r] times, where r is a random number from uniform distribution
in the range r ∈ (0, 1), and brackets stand for integer rounding of r + w. If r = 0, a walker is
destroyed.

Summarizing, after a long enough application of the short-time operators defined above, a steady-state
distribution of walkers is generated according to the distribution ψTϕ. The observables are collected at
each iteration of the simulation only after the convergence is achieved.

3.5.5 Systematic errors in Diffusion Monte Carlo

Two main biases appear in the Diffusion Monte Carlo calculation: the finite population size and the
time-step error. They can be eliminated by studying the convergence of energy in the limit of small
time-steps and large population sizes. A typical dependence of the energy per particle on the population
size is shown in Fig. 3.2, where the convergence of energy at large nw is shown. The system under study
is the Bose-Bose liquid with symmetric interactions.

For the same system, the dependence of energy on the time-step is shown in Fig. 3.3. To finally
confirm the robustness of the DMC method, we usually perform a third set of calculations with purposely
worsened wavefunction. In Fig. 3.3, the predictions of energy per particle in the limit ∆τ → 0 are
indistinguishable with two wavefunctions, up to the statistical uncertainty, showing finally that the
results are unbiased. It is noted that for a trial wave function which has a greater overlap with the
true ground state, larger time-steps can be used. In addition, the efficiency of DMC increases when
that overlap is large. In particular, the number of walkers necessary to avoid population control bias is
reduced.
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Fig. 3.3 Dependence of energy per particle with the time-step, for the Bose-Bose symmetric mixture.
Two set of results correspond to different guiding wavefunctions, with the upper one being the best
available wavefunction.

3.6 Observables

The ground-state expectation value of a given observable Ô according to the equilibrium distribution
f = ψTϕ is 〈

Ô
〉

mixed
= ⟨ϕ| Ô |ψT⟩

⟨ϕ| ψT⟩
. (3.41)

Numerically, this is calculated by evaluating the statistical average over all walkers and iteration steps

〈
Ô
〉

mixed
≈ 1
ns

ns∑
is

 1
n

(is)
w

n(is)
w∑
iw

OL(Riw(is))

 , (3.42)

where ns is the number of simulation steps, n(is)
w is the number of walkers at the timestep is, and

OL(R) = ψ−1
T ÔψT. In general, statistical averages calculated according to Eq. (3.41) are biased from

the choice of the trial wavefunction ψT. Therefore,
〈
Ô
〉

mixed
is called the mixed estimator. When Ô

commutes with the Hamiltonian Ĥ, then the statistical average is exact. This is readily shown by noting
that Ô and Ĥ share the same basis of the eigenfunctions, thus

⟨ϕ| Ĥ |ψT⟩
⟨ϕ| ψT⟩

=
⟨ϕ| Ĥ

(
|ϕ⟩ +

∑
n̸=0 cn |ϕn⟩

)
⟨ϕ|
(

|ϕ⟩ +
∑

n ̸=0 cn |ϕn⟩
) = ⟨ϕ| Ĥ |ϕ⟩

⟨ϕ| ϕ⟩
, (3.43)

where ϕ converges to a ground state ϕ0 in the long projection limit. When Ô does not commute with
the Hamiltonian, then the average according to Eq. (3.41) is not exact. When a trial wavefunction is
close to the ground state, a first-order extrapolation towards an exact value

〈
Ô
〉

extr.
can be used to

〈
Ô
〉

extr.
= 2

〈
Ô
〉

mixed
−
〈
Ô
〉

VMC
, (3.44)
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where
〈
Ô
〉

VMC
is the VMC estimate. Another way of extrapolating to the ground state value, which

preserves a sign of the estimate is 〈
Ô
〉

extr.
=

〈
Ô
〉2

mixed〈
Ô
〉

VMC

. (3.45)

Additionally, in order to access to an exact estimation of an observable in a ground-state, a forward
walking technique [126, 22] can be used.

3.6.1 Unbiased estimators in Diffusion Monte Carlo

The exact estimation of an expectation value in a ground state is called a pure estimator, and it is
defined as 〈

Ô
〉

pure
= ⟨ϕ| Ô |ϕ⟩

⟨ϕ| ϕ⟩
. (3.46)

In this subsection, we lay out the forward walking technique used to evaluate ground-state averages
of operators that do not commute with the Hamiltonian. In the Diffusion Monte Carlo calculation, it
is not possible to directly access the value of a ground-state wavefunction ϕ. However, it is possible
rewrite Eq. (3.46) so that the density distribution function is f = ψTϕ

〈
Ô
〉

pure
=

⟨ϕ|OL
ϕ

ψT
|ψT⟩

⟨ϕ| ϕ

ψT
|ψT⟩

= ⟨OL(R)W (R)⟩mixed
⟨W (R)⟩mixed

, (3.47)

where W (R) = ϕ/ψT. Computationally, Eq. (3.47) reads

〈
Ô
〉

pure
=
∑

i OL(Ri)W (Ri)
W (Ri)

, (3.48)

where the sum is over walkers and times following the course of the DMC calculation. It is shown
[126] that W (R) represents the number of descendants for a walker R in the τ → ∞ limit. Thus, the
estimation of a pure estimator can be performed by means of a tagging algorithm [127]: a local quantity
OL(R) is computed at time t, but the statistical average is performed at t+ T , where T is large enough.
In this way, OL(R) is aposteriori weighted with the number of walker descendants.

A more simple version for the pure estimator algorithm we have implemented following references
[22, 128, 99], which alleviates the need to evaluate the summation (Eq. 3.47) “from the distance”, making
it more practical and more memory efficient. Instead of performing average of OL at each instant over
all walkers, which is the way to obtain mixed estimates, this method introduces an individual auxiliary
variable Pi associated with the walker at the index i. As the walkers die or replicate, the local estimate
of each walker is evolved together with a walker such that

Pi(τ + ∆τ) = OL(Ri(τ + ∆τ)) + Pi(τ), (3.49)
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where at the beginning of each block the Pi is initialized to zero. After the block of M steps is finished,
the average is performed over Nf values of Pi

〈
Ô
〉

pure
= 1
M ×Nf

Nf∑
i

Pi. (3.50)

In a new simulation block, the revision of calculated values of Pi are being propagated as Pi(τ + ∆τ) =
Pi(τ) for each walker, in order to ensure the asymptotic behavior W (R) in the τ → ∞ limit. Thus, for
a simulation involving Nb blocks, we end up having Nb − 1 block averages of a pure estimator. Finally,
with block averages, the error associated with pure estimators is calculated with the standard data
blocking technique (Sec. 3.3). The described pure estimator methodology works only in the limit of
large enough block sizes. Therefore, a value of a block size is chosen for which a convergence is obtained.





Chapter 4

Ultradilute quantum liquid drops

4.1 Introduction

The high tunability of interactions in ultracold Bose and Fermi gases is allowing for exploration of
regimes and phases difficult to find in other condensed-matter systems [11]. By adjusting the applied
magnetic field properly, Bose and Fermi gases are driven to Feshbach resonances with an increase of
interaction practically at will, and with the possibility of turning the system from repulsive to attractive
and vice-versa. This level of controllability is not possible in conventional condensed matter where
interactions are generally not tunable at this level. A significant example of this versatility has been the
clean experimental realization of the unitary limit for fermions [129, 130] and the precise characterization
of the BCS-BEC crossover [131, 132], which up to that moment was only a theoretical scenario.

Recently, it has been possible to explore the formation of liquid/solid patterns in dilute gases by
modifying the strength of the short-range interatomic interactions. Probably the most dramatic example
of this progress has been the observation of the Rosensweig instability in a confined system of 164Dy
atoms with a significant magnetic dipolar moment [133]. By tuning the short-range interaction, Kadau
et al. [133] observed the spontaneous formation of an array of self-bound droplets remembering the
characteristics of a classical ferrofluid. The observation of solid-like arrangements in dilute gases have
also been possible working with highly-excited Rydberg atoms [134]. By direct imaging, Schauss et
al. [134] obtained ordered excitation patterns with a geometry close to the well-known arrangements
obtained in few-body confined Coulomb particles.

In the line of obtaining other dense systems starting from extremely dilute Bose and Fermi gases,
the mechanism suggested by Petrov relying on Bose-Bose mixtures [24] is noteworthy. According to this
proposal, it is possible to stabilize a mixture with attractive interspecies interaction in such a way that
the resulting system is self-bound, i.e., a liquid. Whereas a mean-field (MF) treatment of the mixture
predicts a collapsed state, the first beyond mean field correction, the Lee-Huang-Yang (LHY) term, can
stabilize the system by properly selecting the interspecies s-wave scattering length. In what follows, we
call the perturbative LHY-corrected mean-field theory MF+LHY. Further work has shown that reducing
the dimensionality of the setup to two or quasi-two dimensions may help to stabilize the liquid phase [25].
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The LHY correction has also been used to account for the formation of dipolar drops [135] and then
confirmed by full first-principles quantum Monte Carlo (QMC) simulations [136, 137].

The exciting idea of producing self-bound liquid drops by using interspecies attractive interaction
acting as a glue of the entire Bose-Bose mixture has been put forward by Tarruell and collaborators [29],
followed by Semeghini et al. [30] and most recently by D’Errico et. al [31]. Therefore, the theoretical
prediction seems confirmed and thus a new window for exploring matter in unprecedented situations is
open. On one side, it proves the way of forming liquid drops with high density in the world of cold gases
and, on the other, makes possible the study of a liquid state of matter with an extremely low density,
lower than any other existing liquid.

In the present chapter, we study the formation of liquid drops in a Bose-Bose mixture using the
diffusion Monte Carlo (DMC) method, which solves the N -body Schrödinger equation exactly within
some inherent statistical uncertainties due to stochastic sampling (see Chapter 3). The DMC method
(see Chapter 3) had been extensively used in the past for determining the structure and energy properties
of liquid drops of 4He [138, 139], 3He [140, 141], H2 [142], and spin-polarized tritium [143]. At difference
with previous perturbative estimates, DMC allows for an exact study of the system’s quantum properties
relying only on its Hamiltonian. Our results confirm the LHY prediction on the stability of self-bound
mixtures and determine quantitatively the conditions under which liquid drops are stable and how they
evolve when the attractive interaction is increased. Within the regime here explored, we do not observe
a full collapse of the drop but an increase of the density and reduction of the size, which is rather
progressive.

4.2 Hamiltonian and the trial wavefunction

The Bose-Bose mixture under study is composed by N1 bosons of mass m1 and N2 bosons of mass m2

with Hamiltonian

H = − ℏ2

2m1

N1∑
i=1

∇2
i − ℏ2

2m2

N2∑
j=1

∇2
j + 1

2

2∑
α,β=1

Nα,Nβ∑
iα,jβ=1

V (α,β)(riαjβ
) , (4.1)

with V (α,β)(r) the interatomic interaction between species α and β. Our interest is focused on a mixture
of intraspecies repulsive interaction, i.e., positive s-wave scattering lengths a11 > 0 and a22 > 0, and
interspecies attractive potential, a12 < 0. To set up this regime, we use a hard-sphere potential of
diameter aαα for potentials V (α,α)(r) and an attractive square well of depth −V0 and range R for
V (α,β)(r). In the latter case, we fix R and change V0 to reproduce the desired negative scattering length;
notice that we work with negative aαβ values and we impose that the attractive potential does not
support a pair bound state.

The DMC method uses a guiding wave function as importance sampling to reduce the variance to a
manageable level (see Sec. 3.5.3). We adopt a Jastrow wave function in the form

Ψ(R) =
N1∏

1=i<j

f (1,1)(rij)
N2∏

1=i<j

f (2,2)(rij)
N1,N2∏
i,j=1

f (1,2)(rij) , (4.2)
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with R = {r1, . . . , rN }. In the case of equal particles the Jastrow factor is taken as the scattering
solution

f (α,α)(r) =

1 − aαα/r r ≥ aαα

0 otherwise.
(4.3)

If the pair is composed of different particles then we take

f (α,β)(r) = exp(−r/r0), (4.4)

with r0 a variational parameter.

In order to reduce the number of variables of the problem, keeping the essentials, we consider
m1 = m2 = m, N1 = N2, and a11 = a22. In this way, our study explores the stability and formation
of liquid drops as a function of a12 and the number of particles N (N1 = N2 = N/2). The s-wave
scattering length a12 of an attractive well is analytically known

a12 = R [1 − tan(KR)/(KR)] , (4.5)

with K2 = m1V0/ℏ2. We take a12 < 0 which correspond to KR < π/2. In practice, we fix the range of
the well R and vary the depth V0 to reproduce a desired value of a12. As it is obvious from the Eq. (4.5)
for a12, its value depends on the product RV 1/2

0 and then decreasing R means to increase V0. If for a
fixed a12 value we want to approach the limit R → 0 then V0 → ∞, our calculations become extremely
demanding in terms of accuracy and number of particles required to observe saturation.

After preliminary studies, we determined that R = 4a11 is a good compromise between accuracy and
reliability, and thus, the major part of our results is obtained with that value of R. To better illustrate
this point, in Fig. 4.1 we report the results for the pair distribution function P (r) in a typical drop, in
particular N = 100 + 100, normalized to have integral one∫ ∞

0
drP (r) = 1. (4.6)

As one can see, the most probable distance between particles is ∼ 15a11, nearly four times larger than
the potential range. If we integrate the distribution probability between 0 and 4, we get 0.01. Only
1% of the particles are, on average, at distances below the range of the well. On the other hand, the
repulsive potential between equal species is given by a hard-sphere potential with a core at a11 = a22,
which, in reality, fix our length units. Indeed, both potentials are not delta potentials (with zero range)
because the contact interaction is problematic in 3D simulations due to the singularity that it introduces
in the wave function at the origin. Still, we think that our model can be quite close to reality, taking into
account the large values of the effective ranges of potassium interactions that can play a relevant role.

The trial wave function Ψ(R) (Eq. 4.2) depends on a single parameter r0. This parameter is
previously optimized using the variational Monte Carlo method. Its value increases with the total
number of particles N ; for instance, when R = 4 (in a11 units) and V0 = 0.166 (in ℏ2/(2m1a

2
11) units),

r0 increases monotonously from 106 up to 622 when N grows from 100 to 2000.
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To obtain ground-state averages, we resort to the Diffusion Monte Carlo (DMC) algorithm, as
explained in Sec. 3.5. Our DMC algorithm is accurate up to second order in the imaginary-time
step [144] and uses forward walking to remove any bias of the trial wave function in the estimation of
diagonal operators, which do not commute with the Hamiltonian [22]. Any systematic bias derived from
the use of a finite time step and a finite number of walkers in the diffusion process is kept smaller than
the statistical noise.
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Fig. 4.1 Pair distribution function P (r) for three types of pairs in a Bose-Bose quantum droplet. The
probablity of two particle interacting within r = 4a11 is

∫ 4a11
0 P (r)dr ≈ 0.01.

4.3 Critical atom number

In Fig. 4.2, we report results for the energy per particle of the symmetric Bose-Bose liquid droplet, for a
different number of particles and as a function of the scattering length a12. For each N , we observe a
similar behavior when we tune a12. There is a critical value that separates systems with positive and
negative energies. When the energy is positive, the system is in a gas phase, and, by increasing |a12|,
the N system condenses into a self-bound system, that is, a liquid drop. Around the critical value,
the energy decreases linearly. Our results show a clear dependence of the critical scattering length for
binding on the number of particles: smaller drops require more attraction (larger V0) than larger ones.

The dependence of the critical scattering length for self-binding, acrit
12 , on the number of particles is

shown in Fig. 4.3. Plotted as a function of 1/N , we observe a linear decrease of acrit
12 , reaching in the

thermodynamic limit (N → ∞) a value slightly larger than one. MF+LHY theory has been applied to
the formation of Bose-Bose drops around this value |a12| ∼ a11 corresponding to drops with a very large
number of particles [24]. In the same figure, we show results derived using a different range R = 10a11

of the attractive well. As we can see, the results are slightly different, with an extrapolation to the
thermodynamic limit a bit closer to one. The influence of the effective range has been confirmed in
Chapter 5 by performing extensive calculations of the equations of state. Together with the finite-range



4.4 Liquid state calculation 43

1 2 3 4 5
−a12/a11

−4

−3

−2

−1

0

E
D

M
C
/N

[1
0−

3 h̄
2
/(

2m
1
a

2 11
)]

N = 30

N = 40

N = 50

N = 60

N = 100

N = 200

N = 2000

Fig. 4.2 Energy per particle of the Bose-Bose symmetric liquid droplet as a function of the scattering
length a12/a11. Different symbols and lines correspond to DMC calculations with different number of
particles.

effects appearing in a mixture of 39K for which a11 ̸= a22 (presented in Chapter 6), this gives strong
indications that effects due to effective range are a general feature emerging in correlated quantum
drops. Finally, a prediction of MF+LHY theory predicts systematically lower values of −acrit

12 /a11 for a
given N , signaling that we observe, for the first time, repulsive LHY contributions to the energy not
accounted for by the Petrov theory [145, 146].

4.4 Liquid state calculation

To compare our results of finite-N drops with the thermodynamic limit, we have carried out the
calculations in the homogeneous phase, where we can obtain the equilibrium density and energy per
particle. These two parameters served as a consistency check in the determination of a density profile
and surface tension. Our calculations of the homogeneous phase are performed by imposing periodic
boundary condition on particle coordinates in a box of size L = 3

√
ρ/N , where ρ is the total number

density and N is the total number of particles. We used a trial wavefunction built as a product of
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Fig. 4.3 Critical values acrit
12 for symmetric liquid drop formation as a function of 1/N . Red and blue

points stand for R = 4a11 and R = 10a11, respectively. The full lines correspond to fits to the DMC
results, and the dashed line is the prediction according to the MF+LHY theory [24].

Jastrow factors [147],

Ψ(R) =
N1∏
i<j

f (1,1)(rij)
N2∏
i<j

f (2,2)(rij)
N1,N2∏

i,j

f (1,2)(rij) , (4.7)

with N1 = N2 = N/2, and where the two-particle correlation functions f(r) are

fα,β(r) =


f2b(r) r < R0

B exp(− C
r + D

r2 ), R0 < r < L/2
1, r > L/2 .

(4.8)

Coefficients B, C and D are adjusted to match the continuity condition of the wavefunction and its
first derivative. R0 is a variational parameter, which is set to R0 = 0.45L in all calculations. Function
f2b(r) is a solution to the two-body problem, and it is connected to a long-range phononic wavefunction
[147]. By performing two set of calculations with increasing particle numbers, we observe that already
at N ≈ 100 the thermodynamic limit is achieved. Results of the energy per particle as a function of
density are shown in Fig. (4.4). By fitting the DMC energy per particle to the functional form given by

E

N
= αρ+ βργ , (4.9)

we can obtain the equilibrium energy per particle and density as

ρ0 =
(

−α
βγ

)1/(γ−1)
(4.10)

E0

N
= αρ0 + βργ

0 . (4.11)
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Fig. 4.4 DMC energy per particle in a symmetric liquid as a function of density for three values of the
scattering length a12. In each figure, a set of two calculations with increasing particle numbers in a box
is presented as an illustration that the finite-size effects are well eliminated.
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4.5 Density saturation

0.0
0.5
1.0
1.5
2.0
2.5

3.5

0 10 20 30 40
r[a11]

0.0
0.5
1.0
1.5
2.0
2.5

3.5
4.0

a12 = −3.81a11

a12 = −3.09a11

ρMF+LHY
bulk

ρQMC
bulk

ρMF+LHY
bulk

ρQMC
bulk

10
2
ρ
(r

)[
a

−
3

11
]

Fig. 4.5 Density profiles of the symmetric Bose-Bose liquid drops for different number of particles. Top
and bottom panels correspond to V0 = 0.150, a12 = −3.09 and V0 = 0.166, a12 = −3.81, respectively.
From small to large drops, N = 200, 400, 1000, and 2000. Red dashed lines denote the equilibrium
density in the bulk phase within the MF+LHY theory [24], whereas blue dashed lines correspond to the
equilibrium density of the bulk phase estimated from QMC calculations in the homogeneous setup (see
Eq. 4.10 and Fig. 4.4).

The calculation of the density profiles ρ(r) allows for a better knowledge of the shape and size of the
formed drops. In Fig. (4.5) we report DMC results on the density profiles of the obtained drops. Notice
that there is not any difference between the partial density profiles due to our election of interactions
and masses, ρ(1)(r) = ρ(2)(r) = ρ(r)/2. The two cases shown in Fig. (4.5) correspond to scattering
lengths a12 = −3.09 (top) and a12 = −3.81 (bottom). When the number of particles increases, one
observes that both the central density and radius of the drop grow. Progressive increase of density is
expected to happen until the central density reaches the equilibrium density of the bulk phase. Once
the drop saturates, only the radius increases with the addition of more particles. The density profiles,
shown in Fig. (4.5) for two illustrative examples, correspond to very dilute liquids because we need
∼ 2000 particles to reach saturation. In the figures, we have also shown the equilibrium densities that
we have obtained for the same potentials in the bulk phase (see Fig. 4.4).

By increasing the scattering length, i.e., by making the system more attractive, we observe that
the central density increases and the size of the drop squeezes. Apart from the central density one can
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also extract from the density profiles the surface width, usually measured as the length W over which
the density decrease from 90 to 10% of the inner density. It is expected that W increases with N for
unsaturated drops, and then it stabilizes when saturation is reached. Our results show also this trend:
for a12 = −3.09, W = 15 for the smallest drop and stabilizes then to W ≃ 20; for a12 = −3.81, these
values are W = 11 and 18.

DMC allows for the study of the drops around the gas to liquid transition but also can show how
the evolution towards a collapsed state happens. By increasing the depth of the attractive well V0, we
can see the change in the shape and size of a given drop. In Fig. 4.6, we report this evolution as a
contour plot of the density profiles for a particular liquid drop with N = 200 particles. The range of
a12 values starts close to acrit

12 , for this N value, and ends quite deep into the Feshbach resonance at a
scattering length a12 ≃ 30 acrit

12 . Following this ramp, we observe an increase of an order of magnitude in
the inner density and a shrinking of the size, with a three-fold reduction of the radius. Therefore, the
drop becomes denser, but it is still a fully stable object which is not at all collapsed.
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Fig. 4.6 Contour plots of the density profiles of a liquid drop with N = 200 as a function of a12.

4.6 Surface tension calculations

The microscopic characterization of the Bose-Bose liquid drops is not complete without the knowledge
of the energy. As we commented before, the result of the energy determines if an N -particle system is in
a gas or liquid state. Once in the liquid phase, it is important to calculate the dependence of the energy
on the number of particles. In Fig. (4.7), we report the DMC energies as a function of N and for three
different a12 values. From intensive calculations carried out in the past on liquid 4He drops [138, 139],
we know that the energy of the drops is well accounted for by a liquid-drop model. According to this,
the energy per particle is

E(N)/N = Ev + Es x+ Ec x
2 , (4.12)

with x ≡ N−1/3. The coefficients in Eq. (4.12), Ev, Es, and Ec are termed volume, surface, and
curvature energies, respectively. The term Ev corresponds to the energy of an infinitely large drop or, in
other words, to the energy per particle of the bulk. The second term Es is important because, from it,
we can estimate the surface tension of the liquid t as

t = Es

4πr2
0
. (4.13)
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Fig. 4.7 Energy per particle of symmetric Bose-Bose drops as a function of N−1/3. The open symbols
are the DMC results and the lines are fits according to the liquid drop model (4.12). The errorbars are
smaller than the size of the symbols. Different sets correspond to different values of the interparticle
scattering length a12. The points at zero x-axis with error bars correspond to bulk calculations (see Fig.
4.4).
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The parameter r0 is the unit radius of the liquid, and can be estimated from the relation

4π/3 r3
0ρ0 = 1, (4.14)

with ρ0 the equilibrium density of the liquid.

In Fig. (4.7), we plot as lines the results of the liquid-drop model obtained as least-squares fit to
the DMC energies. In the three cases studied, we obtain a high-fidelity fit. In Fig. (4.7) we plot in the
zero x-axis the energies of the bulk liquid with the same Hamiltonian as in the drops. These results
are not included in the fit (4.12), but they are completely coincident with the energies Ev obtained
solely from the drop energies. Matching of finite-N calculations with those in a homogenous phase is, in
fact, a stringent test of accuracy on the calculations of the liquid drops. In the figure, we see the effect
of the potential on the energy of the drops for three selected cases. The binding energy of a given N

drop increases with the magnitude of V0, and thus with a12. We have verified that the energy grows
linearly with V0 close to the critical value for self-binding but, for larger potential depths, increases
faster. From relation (4.13) and the values obtained for Es from the fits using the liquid-drop model, we
estimate that the surface tension for the three cases shown in Fig. (4.7) are 0.18 · 10−3, 0.37 · 10−3, and
2.41 · 10−3 (in units ℏ2/(2m1a

4
11)) when a12 = −3.09, −3.81, and −7.85, respectively.

We think that a comparison between the Bose-Bose drops here studied and the well-known properties
of stable superfluid 4He drops can help to better visualize their extraordinary properties. We can consider
a typical value for a11 used in the experiments with ultracold mixtures of 39K-41K, say a11 = 50 a0,
with a0 the Bohr radius. Then, the saturation densities of the drops shown in Fig. 4.5 are ∼ 1.0 · 10−6

and 1.4 · 10−6 Å−3. Near the critical scattering length for a given size, the drops are even more dilute,
e.g., for N = 2000 and a12 = −1.75, the central density is about 3 · 10−8Å−3. The saturation density of
liquid 4He is 2.2 · 10−2 Å−3 implying that the Bose-Bose drops can be as dilute as ∼ 104 times the 4He
ones (a similar ratio happens when compared with water, with density 3.3 · 10−2 Å−3). For the same
number of atoms, the Bose-Bose drop is much larger than the 4He one: 9.8 · 10−2µm for V0 = 0.150 and
3 · 10−3µm for 4He with N = 2000 [81]. The surface of dilute drop for this N is ∼ 50% of the total size,
much larger than the 20% value in 4He.

4.7 Summary and conclusions

Summarizing, we have carried out a DMC calculation of Bose-Bose mixtures with attractive interspecies
interaction. Relying only on the Hamiltonian, we describe the system without further approximations.
As announced by Petrov using LHY approximate theory [24], it is possible to get self-bound systems
by a proper selection of the interactions between equal and different species. Our results clearly show
the transition from gas, with positive energy, to a self-bound system (liquid), and accurately determine
the critical scattering lengths for the transition as a function of the number of particles. In the range
of parameters here studied, we do not observe universality in the sense that the results depend only
on the s-wave scattering lengths. For the same a12 value, we observe dependence on the range of the
potential R. This motivated us to study whether the inclusion of the s-wave effective range to the model
potentials provides with a more precise description, which is discussed in Chapters 5 and 6.
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The experimental realization of Bose-Bose liquid drops [29] opens the possibility of accessing to
denser systems than the usual trapped ultracold gases where quantum correlations can be much more
relevant. The point of view from the liquid state is different: the liquid that emerges from these mixtures
is ultradilute, much less dense than any other stable liquid in Nature. Therefore, the liquid phase realm
extends to unexpected regimes never achieved before.







Chapter 5

Universality in ultradilute liquid
Bose-Bose mixtures

5.1 Introduction

For more than two decades, most of the experiments in ultracold atoms were done in the low-density
gas phase, in the universal regime fixed solely by the gas parameter ρa3, with a the s-wave scattering
length and ρ the density. The range of universality of the homogeneous single-component Bose gas
was established using different model potentials and solving the N -body problem in an exact way with
quantum Monte Carlo (QMC) methods [17]. One of the most important advances in the field of ultracold
atoms in the last years is the recent creation of ultradilute quantum droplets in Bose-Bose mixtures.
Petrov [24] pointed out that liquid drops can be created in a setup composed by a two-component
mixture of bosons with short-ranged attractive interspecies and repulsive intraspecies interactions.
However, the perturbative technique employed by Petrov is valid only very close to the mean-field (MF)
instability limit, that is for extremely dilute liquids. The collapse predicted on the MF level is avoided
by stabilization due to the quantum fluctuations described by the Lee-Huang-Yang (LHY) correction to
the energy. Two experimental groups recently managed to obtain self-bound liquid drops [29, 30], which,
upon releasing the trap, did not expand. The drops required a certain critical number of atoms to be
bound. Importantly, measurements of the critical number and size of the smallest droplets could not be
fully accounted for by the MF+LHY term [29].

We have studied self-bound Bose-Bose droplets using the diffusion Monte Carlo (DMC) method,
thus solving exactly the full many-body problem for a given Hamiltonian at zero temperature, discussed
in Chapter 4 of this Thesis. Our results have confirmed the transition from gas, with positive energy, to
a self-bound droplet with negative energy. We have determined the critical number of atoms needed
to form a liquid droplet as a function of the intraspecies scattering length. Using two different models
for the attractive interaction, we did not get quantitatively the same results for the range of scattering
lengths studied, which points to the lack of universality in terms of ρa3. Thus, it is of fundamental
interest to find whether there is a range of densities and scattering lengths where such universality
exists. In the case of homogeneous Bose gases, departures from universality start to appear around
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ρa3 ≳ 10−3 [17]. In that case, adding the LHY correction allowed for a good approximation of the
equation of state up to higher densities. Recently, a variational hypernetted-chain Euler-Lagrange
calculation [33] of unbalanced mixtures showed that the drops could only be stable in a very narrow
range an optimal ratio of partial densities and near the energy minimum. Moreover, Ref. [33] found
dependence on the effective range, even at low densities.

In this chapter, we use the DMC method to address the question of the universality in the equation
of state of dilute Bose-Bose mixtures with symmetric interactions, i.e. a11 = a22 and m1 = m2. The
second question we pose here is whether there exists a regime where instead of using only one parameter
(s-wave scattering length) inclusion of an additional parameter (effective range [93]) extends the validity
of the universal description. To answer these questions directly for finite-size droplets would require
enormous computational resources, as at least thousands of atoms are needed to achieve a self-bound
state close to the mean-field limit [29]. In order to eliminate the finite-size effects caused by the surface
tension and simplify the analysis, we study here bulk properties corresponding to the interior of large
saturated droplets. From the obtained equation of state, we construct a new density functional and use
it to predict the profiles of the drops, discussing the effects of the potential range.

5.2 Hamiltonian and the methods

We rely on the DMC method, as described in Chapter 3. The Hamiltonian of our system is given by

H = −
2∑

α=1

ℏ2

2mα

Nα∑
i=1

∇2
iα + 1

2

2∑
α,β=1

Nα,Nβ∑
iα,jβ=1

V (α,β)(riαjβ
) , (5.1)

where V (α,β)(r) is the interatomic interaction between species α and β. The intraspecies interactions
with positive s-wave scattering length are modeled either by a hard-core potential of diameter aii

V (r) =

∞ r ≤ aii

0 otherwise,
(5.2)

or by a 10-6 potential [124] that does not support a two-body bound state

V (r) = V0

[(r0

r

)10
−
(r0

r

)6
]
. (5.3)

The latter model has an analytic scattering length given in Ref. [124]. The interspecies interactions with
negative scattering length, a12 < 0, are modeled by a square-well potential of range R and depth −V0

V (r) =

−V0 r ≤ R0

0 otherwise,
(5.4)

or by a 10-6 potential with no bound states.

We resort to a second-order DMC method and use a guiding wave function to reduce the variance,
as described in Ref. [144] and Sec. (3.5.3). Our calculations in the homogeneous phase are performed by
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imposing periodic boundary condition on particle coordinates in a box of size L = 3
√
ρ/N , where ρ is

the total number density and N is the total number of particles. We construct the trial wave function a
product of Jastrow factors [147]

Ψ(R) =
N1∏

1=i<j

f (1,1)(rij)
N2∏

1=i<j

f (2,2)(rij)
N1,N2∏
i,j=1

f (1,2)(rij) . (5.5)

The particular form of the two-particle correlation function depends on the model of the interaction
potential. For the hard-core potential we used

fα,α(r) =


1 − aα,α/r, r < R̃

B exp(− C
r + D

r2 ), R̃ < r < L/2
1, r > L/2,

(5.6)

The parameter R̃ can be optimized, but energies do not change drastically when R̃ ≈ L/2, so we set
R̃ = 0.9L/2. Other parameters were obtained by continuity conditions for the function and its first
derivative. For the square well potential we used

fα,β(r) =


sin(kr)/r, r < R

A(1 − ãα,β/r) R < r < R̃

B exp(− C
r + D

r2 ), R̃ < r < L/2
1, r > L/2,

(5.7)

where ãα,β is a variational parameter. We set R̃ = 0.9L/2, while other parameters were obtained by
continuity conditions. Finally, for the 10-6 potential we used

fα,β(r) =


h(r, ãα,β) r < R0

B exp(− C
r + D

r2 ), R0 < r < L/2
1, r > L/2,

(5.8)

where h(r, ãα,β) is the two-body scattering solution given in [124]. This function has a variational
parameter ãα,β , and we set R0 = 0.9L/2. Zero derivative was imposed at the half size of the simulation
box L for all three Jastrow factors.

We consider a mixture with equal masses of particles m1 = m2 = m. Such a situation is typical
in experiments where different hyperfine states of the same atomic species are used to create two
components [29]. Furthermore, to reduce the number of degrees of freedom, we choose to study the
symmetric mixture with a11 = a22 resulting in the ground-state concentration ratio of N1 = N2. The
calculations are performed in a box with periodic boundary conditions.

To approach the thermodynamic limit, we investigated finite-size effects by increasing the number of
particles up to the point where energy converged. DMC results are presented for the largest particle
number used. In Fig. 5.1, we show the convergence for three different a12/a11 values. It is possible to
obtain the finite-size correction analytically only very close to the mean-field instability limit. In that
case, the leading correction to mean-field (Hartree) contribution comes from the intracomponent number
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of pairs N1(N1 − 1)/2,
∆EMF(N)

N
= −π

6
ℏ2

ma2
11

2π
N
ρa3

11 , (5.9)

where N = 2N1. This correction is negative, linear with the density and decreases as N−1 with the
number of particles. This correction is also shown in Fig. 5.1.

We have also optimized the timestep and population bias to reduce their influence below the statistical
noise. Timesteps from 0.1 to 2×10−3 2m1a

2
11/ℏ2 were used, with lower values of the timestep being used

at higher densities. At low densities for the HCSW model, there was no difference between calculations
with 100 and 1000 walkers, which is a consequence of the good quality of the guiding wave function. In
other cases, we used up to 1000 walkers.

5.3 Finite-size effects

First, we report results obtained using the hard-core model for the repulsive interactions and a square-well
(SW) potential for the attractive ones. In Fig. (5.2), we show our results for different values of the
interspecies scattering length a12 and different ranges of the attractive well R, and compare them to the
MF+LHY prediction [24]. The equation of state in Ref. [24] for m2 = m1 = m, a22 = a11, and N2 = N1

is given by
E

N
= ℏ2π(a11 + a12)

m
ρ+ 32

√
2π

15
ℏ2a

5/2
11
m

f

(
a2

12
a2

11

)
ρ3/2 , (5.10)

with
f(x) = (1 +

√
x)5/2 + (1 −

√
x)5/2. (5.11)

Notice that the function f(x) becomes complex for a12 < −a11 and the presence of the imaginary
component reduces the applicability of the perturbative theory. If instead the argument is approximated
by x = a2

12/a
2
11 = 1 so that the function f(x) remains real, as it was done in Ref. [24], Eq. (5.10) reduces

to the following form,
E

N
= ℏ2π(a11 + a12)

m
ρ+ 256

√
π

15
ℏ2a

5/2
11
m

ρ3/2 . (5.12)

shown with a dashed line in Fig. (5.2). We plot as well the energy resulting from taking the real part
of f(x) (5.10), without invoking the approximation x = 1. Only very close to the a12 = −a11 limit
corresponding to zero equilibrium density, both predictions are nearly the same while they clearly differ
for finite densities. We report the exact DMC energies in Fig. (5.2). The perturbative MF+LHY results
are recovered for small range R of the square well and ρa3

11 ≈ 10−6, see Fig. 5.2a. However, when R is
increased by a large amount (to R = 100a11) the universality breaks at ρR3 ≃ 10−1. The energies for
experimentally relevant densities, ρa3

11 ≈ 10−5 [29, 30], are reported in Fig. 5.2b. In this case and for
larger densities (Fig. 5.2c), we observe that the energy depends on the potential range. Furthermore, the
two ways of writing the perturbative equation of state, given by Eqs. (5.10, 5.12), differ among themselves
but are not equal to the obtained DMC equation of state. The latter appears to be independent of R up
to approximately ρR3 = 10−3. Indeed, the difference between the energy per particle E/N calculated at
ρR3 = 10−3 and ρR3 = 10−5 is at most 3 errorbars or 6% at the highest density and at most 4% in the
minimum.
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Fig. 5.1 The energy per particle of a symmetric Bose-Bose liquid as a function of the density for
a12 = −1.01a11, −1.05a11 and −1.2a11. Different total number of particles N is used to illustrate the
finite-size effect. Results are obtained with hard-core of diameter a11 for the repulsive intraspecies
interaction and a square well potential with diameter ρR3 = 10−5 for interspecies attraction. Full lines
are finite-size corrections coming from the mean-field energy Eq. (5.9) and dashed line is the MF+LHY
result.
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Fig. 5.2 DMC equation of state of the symmetric Bose-Bose liquid mixture for different values of a12
and different ranges R, in comparison with MF+LHY theory.



5.4 Repulsive beyond-LHY energy 59

0 1 2 3 4
ρ/ρ0

−1

0

1

2

3

4

5

E
D

M
C
/|E

0
|

EMF+LHY/N with f (a2
12/a

2
11 = 1)

a12 = −1.01a11

a12 = −1.05a11

a12 = −1.1a11

a12 = −1.2a11

a12 = −1.3a11

a12 = −1.4a11

a12 = −1.5a11
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the form of E/N = αx+ βxγ with x = ρa3

11. The range of the square well is ρR3 = 10−5.

5.4 Repulsive beyond-LHY energy

It can be noted that within perturbative theory the energy is a single curve written in units of the
equilibrium energy E0 and density ρ0. That is, the equation of state (5.12) can be conveniently
represented as a (E/E0, ρ/ρ0) curve,

E

|E0|
= −3

(
ρ

ρ0

)
+ 2

(
ρ

ρ0

)3/2
, (5.13)

with, for the symmetric mixture

ρ0 = 25π (a11 + a12)2

16384a5
11

, (5.14)

and
E0/N = −25π2ℏ2|a11 + a12|3

49152ma5
11

. (5.15)

The DMC equations of state for different scattering lengths are shown in Fig. (5.3). The results are
obtained for sufficiently small potential range, ρR3 = 10−5, ensuring the universality in terms of the
s-wave scattering length. As already observed in Fig. (5.2), when |a12| ≈ a11, the MF+LHY prediction
is recovered. Increasing |a12|/a11 repulsive contributions to the energy beyond the LHY terms are found.
At the same time, the equilibrium densities become lower compared to the ones predicted by Eq. (5.13),
which was obtained by calculating f(x) function at x = 1. If instead one uses Eq. (5.10) derived by
taking the real part of f(x), weaker binding is predicted as compared to DMC results. Thus, as we can
see in Fig. 5.2, for small ranges ρR3 = 10−5, the DMC many-body prediction is between Eq. (5.10) and
(5.13), but closer to Eq. (5.13).
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Table 5.1 Energies (equilibrium and spinodal) and densities for different scattering lengths a12/a11 for
small ranges ρR3 = 10−5. Here “eq” stands for the minimum from the fit to DMC energy shown in
Fig. 5.3, “0” stands for minimum of perturbative equation of state given by Eq. (5.13), spinodal point is
denoted by “sp” from the fit on DMC data and “sp,0” in case of Eq. (5.13).

a12

a11

105ρeq

a−3
11

ρeq

ρ0

105ρsp

a−3
11

ρsp

ρsp,0

106ℏ2Eeq

2ma2
11N

Eeq

E0

−1.05 1.12 0.934 0.715 0.932 −1.15 0.919
−1.10 4.28 0.894 2.73 0.888 −8.82 0.879
−1.20 14.5 0.754 9.19 0.749 −56.0 0.697
−1.30 28.0 0.649 17.7 0.641 −163 0.601
−1.40 44.9 0.585 28.3 0.576 −334 0.520
−1.50 62.4 0.521 39.3 0.512 −554 0.441

The DMC values of the equilibrium energies and densities are reported in Table 5.1. They are also
compared to predictions from perturbative theory given by Eq. (5.13). With the increase of |a12|/a11 the
equilibrium and spinodal densities start to depart significantly from the MF+LHY values. It is worth
noticing again that the MF+LHY equation of state becomes complex, and thus unphysical, unless the
approximation f(a2

12/a
2
11 = 1) is used. Our results show that, even very small (in absolute value) negative

pressures, can cause spinodal instability. For typical experimental parameters a11 = 50a0 [29, 30] the
uniform liquid breaks into droplets when the applied negative pressure is very small, from 1.81pPa for
a12 = −1.05a11 to 31.3nPa for a12 = −1.5a11.

As can be seen from Fig. 5.2, the equation of state loses universality in terms of the scattering length
when ρR3 ≳ 10−3. This poses the relevant question of whether by fixing one more parameter, besides
the s-wave scattering length, it is possible to obtain a universal description. To address this question, we
performed DMC calculations using the 10-6 model with equivalent values of the s-wave scattering lengths
and effective range reff of the attractive interaction. For the repulsive interactions, we fix the range of
the 10-6 model potential to r0 = 2a11. In Fig. 5.4, we show results for scattering length a12 = −1.2a11

and three values of the effective range reff . The solid line is for Eq. (5.12) and the dashed one for the real
part of Eq. (5.10). The range of the SW potential is R/a11 = 0.531, 2.17, and 9.18 when reff/a11 = 0.626,
3.74 and 37.3, respectively. We find that specifying only the scattering length cannot generally fulfill
universal results unless the range is sufficiently small, ρR3 ≲ 10−1. The interaction potential for a given
scattering length predicts different energies and equilibrium densities when different effective ranges
are used. Generally, increasing the range lowers the energy and shifts the equilibrium density to larger
values. However, if we specify both the scattering length and the effective range, then we observe that
the difference between results of two models is always smaller than the difference between results for the
same type of model but with a different effective range. In Fig. 5.4, the two models with reff/a11 = 0.626
give, within errorbars, the same energies in the whole density range. Increasing the range, at higher
densities, we observe that the two potentials start to give different predictions and that the difference
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between them grows with the increase in density. Interestingly, even when the effective range is quite
large, reff/a11 = 37.3, the relative difference between the models remains lower than 10%, as long as
ρR3 < 0.2. Increasing the density even further, we would need more parameters beyond a12 and reff to
describe the interaction. The observed dependence on the effective range for ρeqR

3 > 10−3 is in overall
agreement with the recent calculation of unbalanced mixtures [33] based on the variational hypernetted
chain method. It is interesting to notice that the MF+LHY equations of state, following Eq. (5.13), are
closer to our full many-body calculations using rather large values of the effective range. On the other
hand, the results using only the real part of Eq. (5.10) are above the DMC energies for even the smallest
range.

Presuming that the equation of state of the liquid mixture is universal in terms of the scattering
length and the effective range for ρR3 ≲ 10−1, we use the SW results to deduce the following form for
the equation of state

E

N
= |E0|

N

[
−3
(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ]
, (5.16)

where β and γ are functions of a12/a11 and reff/a11

β = β01
a12

a11
+
(
β10 + β11

a12

a11

)
R(a12, reff)

a11
(5.17)

γ = γ00 + γ01
a12

a11
+
(
γ10 + γ11

a12

a11

)
R(a12, reff)

a11
. (5.18)

R is the square well diameter associated with the given a12 and reff > 0. It can be calculated numerically
for given a12 and reff , and we provide a numerical code in [148]. There are 7 free parameters in the
model: β01, β10, β11, γ00, γ01, γ10, γ11. They are obtained by fitting 18 equations of state with different
R and a12. In particular, the chosen a12/a11 were -1.01, -1.05, -1.08, -1.1 and -1.2. The obtained values
of the parameters are given in Table 5.2.

Table 5.2 Parameters of the equation of state.

β01 β10 β11 γ00 γ01 γ10 γ11
−1.956(3) 0.231(5) 0.236(5) 1.83(2) 0.32(2) 0.030(3) 0.030(3)

With these values β(a12 = −a11, R = 0) = 1.956 ± 0.003, γ(a12 = −a11, R = 0) = 1.51 ± 0.02, which
is very close to MF+LHY value: β = 2, γ = 1.5. We then verified that this form predicts well the
equation of state up to a12 = −1.3a11 provided that R is not too large (ρR3 < 10−1).

5.5 Universal equation of state

The equation of state (5.16) can be used as an energy functional [32] to calculate density profiles of
liquid mixture drops within the local density approximation (LDA), following the procedure described
in Chapter 2. Starting from the DMC equation of state and using LDA we obtain density profiles of
drops for different scattering lengths and effective ranges and compare them with MF+LHY predictions
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Fig. 5.4 Dependence of the equation of state on the effective range.

in Fig. 5.5. To do so we write the energy functional as

E = ℏ2

2mN |∇ϕ|2 + 25π2ℏ2|a11 + a12|3

49152ma5
11

[
−3N

2|ϕ|4

ρ0
+ β

(N |ϕ|2)γ+1

ργ
0

]
,

where N is the number of particles and ϕ is normalized as∫
d3r|ϕ|2 = 1. (5.19)

Then, we find the stationary solution of the equation of motion

iℏ
∂ϕ

∂t
= −ℏ2∇2ϕ

2m + 25π2ℏ2|a11 + a12|3

49152ma5
11

(
−6N |ϕ|2

ρ0
+ β(1 + γ)

(
N |ϕ|2

ρ0

)γ)
ϕ, (5.20)

by propagating it in imaginary time τ = iℏt. The results for the equilibrium density as a function of the
interspecies scattering length and the square-well range are presented in Fig. 5.6 and compared to the
MF+LHY predictions. For a negligible range R, the equilibrium density drops below the MF+LHY
prediction as |a12|/a11 is increased. The effect of the finite range is to increase the equilibrium density.
That is by increasing R, the LDA prediction crosses the perturbative result of MF+LHY and goes above.
Overall, by increasing the range and decreasing |a12|/a11 (i.e. going in the up-right direction in Fig. 5.6)
we observe an increase of ρeq

LDA/ρ
eq
MF+LHY.
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Fig. 5.5 Density profiles of symmetric drops with different scattering lengths and ranges compared
to MF+LHY predictions. Dashed and dotted lines correspond to LDA calculations using the energy
functional (Eq. 5.16), for ρpR

3 = 10−5 (dashed line) and ρpR
3 = 10−1 (dotted line), where ρp =

25π (a11 + a12)2
/(16384a5

11) is equilibrium density from the MF+LHY theory. Full lines correspond to
MF+LHY calculation using the approximation f(a2

12/a
2
11 = 1). For each a12 and R, we show profiles

for three different values of particle numbers, written below legend, distinguished by color and growing
from purple to red. Profiles with the smallest particle number (purple color) are stable (E < 0) and
close to the critical number Nc = 22.55 × 96

√
6/(5π2|1 + a12/a11|5/2) [24].

5.6 Summary and conclusion

We have carried out high-precision DMC calculations of the ground-state equation of state of ultradilute
two-component Bose liquids. We find out that the use of only the first beyond-MF correction, the LHY
term, is accurate only for extremely small densities, and only when the range of the interaction is not
very large. In our study, we have used for the range R the diameter of the square well potential, which
has the same scattering length and effective range as the chosen model. If |a12/a11 + 1| ≤ 0.05 and
ρR3 < 10−3 one parameter, the s-wave scattering length is enough to describe the system, but there is
an appreciable difference with respect to MF+LHY. Increasing the range, one enters a regime where
interaction potentials with the same scattering length and effective range give equivalent results within
10%, which means that up to ρR3 = 0.1 we have at hand a universal equation of state which is a function
of two parameters. For even larger values of ρR3, additional parameters would need to be specified. The
results of scattering calculations of alkali atoms, such as given in Ref. [95, 149], indicate that most likely,
the effective ranges are quite far from the zero-range limit. In that case, for obtaining the correct results,
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one needs a full many-body approach like DMC. Here, we provide a new energy functional based on the
best fit of DMC data and use it to calculate the density profiles of realistic drops with LDA.







Chapter 6

Finite-range effects in ultradilute
39K quantum drops

6.1 Introduction

In the two labs [29, 30], where the ultradilute Bose-Bose drops have been observed, the Bose-Bose
mixture is composed of two hyperfine states of 39K. In the first experiment by Cabrera et al. [29], the
drops are harmonically confined in one of the directions of space, whereas in the second one by Semeghini
et al. [30] the drops are observed in free space. This difference in the setup makes that, in the first case,
the drops are not spherical like in the second experiment. The external trap also affects the critical
number: the minimum number of atoms required to get a self-bound state. The measured critical
numbers differ significantly between the two labs due to the different shapes of the drops, the ones in the
confined case being smaller than in the free case. In both works, the experimental results for the critical
number are compared with the LHY-extended mean-field (MF+LHY) theory. The agreement between
this theory and the drops produced in free space is entirely satisfactory despite the large error bars of
the experimental data that hinder a precise comparison. However, in the confined drops of Ref. [29],
where the critical numbers are significantly smaller than in the free case, the theoretical predictions do
not match well the experimental data.

Ultradilute liquid drops, which require beyond-mean field corrections to be theoretically understood,
offer the perfect benchmark to explore possible effects beyond MF+LHY theory [150] which usually play
a minute role in the case of single-component gases [11, 17]. Indeed, several theoretical studies (see
Chapters 4, 5, 6 and Refs. [33–36]) indicate a strong dependence of the equation of state of the liquid
on the details of the interatomic interaction, even at very low densities accessible to the experiment.
This essentially means that it is already possible to achieve observations outside the universal regime,
in which all the interactions can be expressed in terms of the gas parameter na3, with a the s-wave
scattering length. The first correction beyond this universality limit must incorporate the next term in
the scattering series, which is the effective range reff [93, 151], which in fact can be quite large in these
drops and alkali atoms in general [95, 149].
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Motivated by experiments with quantum drops, we have investigated the self-bound quantum mixture
composed of two hyperfine states of 39K using nonperturbative quantum Monte Carlo (QMC) methods.
Direct QMC simulations, such as those presented in Chapter 4, of finite particle-number drops, as
produced in experiments, would serve as a great test of mean-field theory, but, unfortunately, this is not
yet achievable because of the large number of particles in realistic drops (N > 104). Nevertheless, the
problem can be addressed in the Density Functional Theory (DFT) spirit, relying on the Hohenberg-
Kohm-Sham 2nd theorem [77], which guarantees that a density functional exists that matches precisely
the ground-state solution. To build a functional for the quantum Bose-Bose mixture, we have carried
out calculations in bulk conditions using the diffusion Monte Carlo (DMC) method, an exact QMC
technique applicable to systems at zero temperature (see Sec. 3.5). Using that functional, we can access
energetics and structure of liquid drops in the same conditions as in the experiment. We focus on the
data obtained by Cabrera et al.[29] in the confined setup since it is in that case where discrepancies
between MF+LHY theory were observed.

The rest of the chapter is organized as follows. In Sec. (6.2) we introduce the theoretical methods
used for the study and discuss how the density functional is built. Sec. (6.3) comprises the bulk liquid
results using the available scattering data of the 39K mixture. The inclusion of the effective range
parameters in the interaction model allows for a better agreement with the measured critical numbers.
Finally, we summarize the most relevant results here obtained and derive the main conclusions of our
work.

6.2 Hamiltonian and the methods

We study a liquid mixture of two hyperfine states of 39K bosons at zero temperature. The Hamiltonian
of the system is

H =
N∑

i=1
− ℏ2

2m∇2
i + 1

2

2∑
α,β=1

NαNβ∑
iα,jβ=1

V (α,β)(riαjβ
) , (6.1)

where V (α,β)(riαjβ
) is the interatomic potential between species α and β. The mixture is composed

of N = N1 + N2 atoms, with N1 (N2) bosons of type 1 (2). The potentials are chosen to reproduce
the experimental scattering parameters, and we have used different model potentials to investigate the
influence of the inclusion of the effective range. The microscopic study has been carried out using a
second-order DMC method [144], as described in Chapter 3. In the present case, and similarly as in
Chapters 4 and 5, we used a trial wavefunction built as a product of Jastrow factors [147],

Ψ(R) =
N1∏
i<j

f (1,1)(rij)
N2∏
i<j

f (2,2)(rij)
N1,N2∏

i,j

f (1,2)(rij) , (6.2)

where the two-particle correlation functions f(r) reproduce the expected behavior at small and large
distance between atom pairs

fα,β(r) =


f2b(r) r < R0

B exp(− C
r + D

r2 ), R0 < r < L/2
1, r > L/2 ,

(6.3)
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thus focusing the sampling where it is physically most likely. The function f2b is the solution of
the two-body problem for a specific interaction model, and it is connected to the long-range phonon
wavefunction [147] with the corresponding coefficients B, C and D, which are adjusted to match the
continuity condition of the wavefunction, its first derivative and the imposing condition of zero derivative
at r = L/2. R0 is a variational parameter, and L = (N/ρ)1/3 is the size of the simulation box. There is a
weak dependence of the variational energy on R0. Even though the long-range part of the wavefunction
does not contribute significantly to the variational energy, we have kept the phonon part in the two-body
correlations in order to smoothly connect the wavefunction to r = L/2, where it fullfils the condition
f ′(r = L/2) = 0. Particularly, the value of variational parameter R0 has been kept as R0 = 0.9L/2 for
all the cases. A careful analysis of imaginary time-step dependence and population size bias has been
carried out, keeping both well under the statistical error. The time-step dependence is well eliminated
for ∆τ = 0.2 ×ma2

11/ℏ and the population bias by using nw = 100. Our simulations are performed in a
cubic box with periodic boundary condition, using a number of particles N . The thermodynamic limit is
achieved by repeating calculations with different particle numbers; we observe that, within our numerical
precision, the energy per particle converges at N ≈ 600 for the range of magnetic fields here considered.

Within density functional theory (DFT), we seek for a many-body wave function built as a product
of single-particle orbitals,

Ψ(r1, r2, . . . , rN ) =
N∏

i=1
ψ(ri). (6.4)

These single-particle wave functions, which in general are time-dependent, are obtained by solving the
Schrödinger-like equation [32],

iℏ
∂ψ

∂t
=
(

− ℏ2

2m∇2 + Vext(r) + ∂Eint

∂ρ

)
ψ , (6.5)

where Vext is an external potential acting on the system and Eint is an energy per volume term that
accounts for the interparticle correlations. The Eq. (6.5) is solved as described in Chapter 2.

6.2.1 Interatomic model potentials

For the system under study, 39K, only two scattering parameters, that is the s-wave scattering length and
the effective range, are known. In the mixture of 39K under study, we call the state |F,mF⟩ = |↓⟩ = |1, 0⟩
as component 1, and the state |F,mF⟩ = |↑⟩ = |1,−1⟩ as component 2. In order to model the interaction
potential with those parameters, we have used three different set of potentials:

i) Hard-core interactions (HCSW) with diameter aii, i = 1, 2, for the repulsive intraspecies interaction,
and a square-well potential with range R = a11 and depth V0 for the interspecies potential. The
three potentials reproduce the s-wave scattering lengths for the three channels. Mathematical
expression for the potential reads

Vii(r) =

∞, r < aii

0, otherwise,
(6.6)
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for i = 1, 2. The s-wave scattering length of this potential corresponds to the diameter of the hard
core. Interspecies attraction is modeled by the attractive square well potential

V12(r) =

−V0, r < R0

0, otherwise.
(6.7)

The s-wave scattering length and the effective range of the attractive square well can be found in
Ref. [11].

ii) POT1 stands for a set of potentials which reproduces both the s-wave scattering lengths and
effective ranges of the three interacting pairs of the 39K mixture. To model the interactions, we
have chosen a square-well square barrier potential [152] for the 11 channel, a 10-6 Lennard-Jones
potential [124] for the 22 channel, and a square-well potential of range R and depth V0 [11] in the
12 channel. Mathematical expression of these potentials are the following

V11(r) =


−V0, r < R0

V1, R0 < r < R1

0, R1 > r,

(6.8)

V12(r) =

−V0, r < R0

0, else,
(6.9)

V22(r) = V0

[(r0

r

)10
−
(r0

r

)6
]
. (6.10)

The effective range of 22 potential was found numerically by solving the two-body scattering
problem (see Sec. 2.5.1 and Ref. [93]), whereas analytical expressions for the effective ranges for
11 and 12 interactions are given in Refs [152] and [11], respectively.

iii) POT2 also reproduce both the s-wave scattering lengths and effective ranges, by using a sum
of Gaussians in the 11 channel, a 10-6 Lennard-Jones potential in the 12 channel, and finally a
soft-sphere square well in the 22 channel. Mathematical expression for these potentials read

V11(r) = −V0 exp
[
− r2

2r2
0

]
+ V1 exp

[
− (r − r1)2

2r2
0

]
, (6.11)

V12(r) = V0

[(r0

r

)10
−
(r0

r

)6
]
, (6.12)

V22(r) =


V0, r < R0

−V1, R0 < r < R1

0, R1 > r.

(6.13)

The scattering parameters for the potential in the 11 and 12 channel are found numerically (see
Sec. 2.5.1 and Ref. [93]). Scattering properties of 22 channel can be found using the relations in
[152].
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Table 6.1 Scattering parameters for the 39K mixture [153], s-wave scattering length a and the effective
range reff in units of Bohr radius a0, as a function of the magnetic field B.

B(G) a11(a0) reff
11 (a0) a22(a0) reff

22 (a0) a12(a0) reff
12 (a0)

56.230 63.648 -1158.872 34.587 578.412 -53.435 1021.186
56.337 66.619 -1155.270 34.369 588.087 -53.386 1022.638
56.395 68.307 -1153.223 34.252 593.275 -53.360 1022.617
56.400 68.453 -1153.046 34.242 593.722 -53.358 1022.616
56.453 70.119 -1150.858 34.136 599.143 -53.333 1023.351
56.511 71.972 -1148.436 34.020 604.953 -53.307 1024.121
56.574 74.118 -1145.681 33.895 610.693 -53.278 1024.800
56.639 76.448 -1142.642 33.767 616.806 -53.247 1025.593

In all cases, the attractive interatomic potential does not support a two-body bound state. We have
obtained the s-wave scattering length and effective range of the potentials using standard scattering
theory (see Sec. 2.5.1 and Refs. [93, 151]). Note that for a given set of just two scattering parameters,
there is an uncountable number of corresponding potentials. We have used HCSW potentials to
investigate systems under the limit of zero range. However, this set of potentials cannot reproduce
the scattering parameters of 39K given in Table 6.1. In order to fulfill both scattering conditions, the
s-wave scattering lengths, and the effective ranges, interaction potentials need to have a more elaborate
shape, so we use POT1 and POT2 set of potentials. These particular choices of interaction models are
somewhat arbitrary since we have focused only on reproducing two scattering parameters. POT1 and
POT2 potentials have different shapes and thus different higher-order scattering parameters. However,
they are qualitatively similar, i.e., they share the dominant repulsive or attractive character of the
potential, and they have a similar structure. All the potentials we use do not support a two-body bound
state.

6.3 Equations of state

In order to go beyond the MF+LHY density functional, we have carried out DMC calculations of the
bulk liquid. In Fig. (6.2), we show the energy per particle of the 39K mixture as a function of the density,
using three different sets of potentials in the Hamiltonian (6.1). We compare our DMC results to the
MF+LHY theory, which can be compactly written as [24]

E/N

|E0/N |
= −3

(
ρ

ρ0

)
+ 2

(
ρ

ρ0

)3/2
, (6.14)

assuming the optimal concentration of particles from mean-field theory, N1/N2 =
√
a22/a11. The energy

per particle E0/N at the equilibrium density ρ0 of the MF+LHY approximation are

E0/N = 25π2ℏ2|a12 + √
a11a22|3

768ma22a11
(√
a11 + √

a22
)6 , (6.15)

ρ0a
3
11 = 25π

1024

(
a12/a11 +

√
a22/a11

)2

(a22/a11)3/2
(

1 +
√
a22/a11

)4 . (6.16)
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Fig. 6.1 POT1 and POT2 potentials in each of the channel which reproduce the s-wave scattering lengths
and effective ranges for 39K mixture at B = 56.337G.

In Fig. (6.2), we report DMC results for the equation of state corresponding to a magnetic field
B = 56.337 G, one of the magnetic fields used in experiments. We demonstrate the convergence of
energy per particle on the number of particles in the particular case of the POT1 set of potentials.
As we can see, the convergence is achieved with N = 600. We have repeated this analysis for all the
potentials, and, in all the magnetic field range explored, we arrive at convergence with similar N values.
We have investigated the dependence on the effective range by repeating the calculation using the
HCSW and POT2 potentials. As it is clear from Fig. (6.2), only when both scattering parameters,
the s-wave scattering length and the effective range, are imposed on the model potentials, we get an
approximate universal equation of state, mainly around the equilibrium density. The equation of state
so obtained shows a significant and overall decrease of the energy compared to the MF+LHY prediction,
with a correction that increases with the density. Instead, using the HCSW potentials, which only fulfill
the s-wave scattering lengths, the energies obtained are even above the MF+LHY prediction. Similar
behavior has been previously shown to hold in symmetric (N1 = N2) Bose-Bose mixtures (see Chapter
5).

Equations of state of the bulk mixture, for the seven values of the magnetic field used in the
experiments (B = 56.230 G to B = 56.639 G), are shown in Fig. (6.3). The DMC results are calculated
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Fig. 6.2 Dependence of the equation of state of 39K quantum liquid on the effective range for selected
potential models, compared with MF+LHY theory. Full circles are calculations using POT1, and we
illustrate the convergence to negligible finite-size effects starting from N = 100 (lower points), 200, 400,
500 to N = 600 (upper points). Dashed lines are fits to the DMC data with Eq. (6.17).

using the model POT1. In all cases, we take the mean-field prediction for the optimal ratio of partial
densities ρ1/ρ2 =

√
a22/a11. We have verified in several cases that this is also the concentration

corresponding to the ground state of the system in our DMC calculations, i.e., the one that gives the
minimum energy at equilibrium (see Sec. 6.5.1). The DMC results are compared with the MF+LHY
equation of state (Eq. 6.14). Overall, a reduction of the magnetic field, or equivalently an increase in
|δa| = a12+√

a11a12, leads to an increase of the binding energy compared to the MF+LHY approximation.
This happens clearly due to the influence of the large experimental effective range since in the limit of
zero range, one would observe overall repulsive beyond-LHY terms (see also Fig.6.2 and Chapter 5).

DMC energies for the 39K mixture are well fitted using the functional form

E/N = αρ+ βργ , (6.17)

as it can be seen in Fig. (6.3). These equations of state, calculated within the range of magnetic fields
used in experiments, are then used in the functional form (6.5) with the interacting energy density being

Eint = ρ
E

N
(6.18)
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Fig. 6.3 DMC energy per particle for the 39K liquid as a function of the density (circles), starting from
B = 56.230G (lower points) to B = 56.639G (upper points). Energy and density are normalized to E0
and ρ0, given in Eq. 6.15 and 6.16, respectively. Dashed lines are fits with Eq. (6.17). Full line is the
MF+LHY theory (Eq. 6.14), universally expressed in terms of equilibrium density (Eq. 6.16) and energy
(Eq. 6.15).

With the new functional, based on our DMC results, we can study the quantum drops with the proper
number of particles which is too large for a direct DMC simulation.

6.4 Critical atom number

Results for the critical atom number Nc at different B are shown in Fig. (6.4) in comparison with the
experimental results of Ref. [29]. To make the comparison reliable, we have included the same transversal
confinement as in the experiment. In particular, theoretical predictions are obtained within DFT, using
a Gaussian ansatz normalized to total particle number N

ϕ =
√
N

π3/4σr
√
σz

exp
(
−r2/(2σ2

r) − z2/(2σ2
z)
)
, (6.19)

where we take σr and σz to be variational parameters. To obtain the critical atom number, we have
calculated the binding energy per particle (in absolute value) E/N − ℏωz/2, with ωz = ℏ/(ma2

ho), as a
function of the total atom number. By extrapolating the fit to the point where binding energy is equal
to zero, we obtain the critical atom number. This is illustrated for B = 56.230G at Fig. (6.5).
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Fig. 6.4 Dependence of the critical atom number of a 39K droplet on the magnetic field. Full circles are
predictions using the QMC functional within DFT with the interaction potentials which reproduce both
a and reff . Diamond points are data from the experiment [29]. Empty points show the prediction using
the QMC functional with the HCSW model potentials.

When the equation of state of the bulk takes into account the effective range of all the pairs, we
observe an overall decrease of Nc with respect to the MF+LHY prediction. Interestingly, if we use the
HCSW model potentials, with essentially zero range, our results are on top of the MF+LHY line (see
the points at B = 56.23 G, B = 56.337 G and B = 56.453 G in Fig. 6.4). The observed decrease of Nc

leads our theoretical prediction closer to the experimental data in a significant amount and all the δa
range, clearly showing the significant influence of the effective range on the Nc values.

Experiments on quantum droplets were performed either in the harmonic trap [29] or in a free-drop
setup [30]. Predictions of Nc for these two geometries are given in Table (6.2) and (6.3), using MF+LHY
and QMC functionals. The absolute difference of predicted Nc values between the two functionals are
about 1000 atoms. On the other hand, relative difference is much higher in the harmonically-trapped
system because the introduction of an external trap significantly reduces the Nc.

6.5 Size of a 39K droplet

A second observable measured in experiments is the size of the drops. Close to the critical atom number,
the density profile of a drop can change drastically depending on the functional. We illustrate this
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Fig. 6.5 Absolute value of the binding energy with respect to the total atom number, using the scattering
parameters corresponding to the magnetic field B = 56.230G. Points are energies estimated with the
density functional Eq. (6.17), with the input Gaussian wavefunction. Lines are fits to the energies in a
form ∆/(N −Nc)C , with ∆, Nc and C being the fit parameters. Value of Nc is used as an estimate for
the critical atom number. QMC POT1 (QMC HCSW) stands for the QMC-built functional using the
POT1 (HCSW) model potentials (see Fig. 6.2 and Eq. 6.18), whereas the MF+LHY uses functional
derived by Petrov (see Eq. 6.14 and Ref. [24]).
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Table 6.2 Critical atom number to form a droplet in a harmonic trap Vz = 1
2mω

2
zz

2, where
aho =

√
ℏ/(mωz) = 0.639µm is the same value as in the experiment [29]. Er stands for(

NQMC
c −NMFLHY

c

)
/NMFLHY

c .

B(G) NQMC
c NMFLHY

c N ICFO
c [29] Er NQMC

c −NMFLHY
c

56.23 3500 4650 - -0.25 -1150
56.337 4200 5570 3420 -0.25 -1370
56.395 5000 6200 3421 -0.19 -1200
56.4 5100 6250 - -0.18 -1150

56.453 6000 7000 4373 -0.14 -1000
56.511 7000 8050 7052 -0.13 -1050
56.574 8500 9800 9217 -0.13 -1300
56.639 11300 12700 13819 -0.11 -1400

Table 6.3 Critical atom number for spherical free drops [30]. Er stands for
(
NQMC

c −NMFLHY
c

)
/NMFLHY

c .

B(G) NQMC
c NMFLHY

c Er NQMC
c −NMFLHY

c

56.23 16000 15800 0.01 200
56.337 24600 24900 -0.01 -300
56.395 32700 33900 -0.04 -1200
56.4 35300 35500 -0.01 -200

56.453 47200 47700 -0.01 -500
56.511 69100 70600 -0.02 -1500
56.574 114000 119000 -0.04 -5000
56.639 230000 236000 -0.03 -6000

effect in Fig. (6.6) for a magnetic field B = 56.337 G. In the figure, we show the dependence of the
radial size on the number of particles, with the same harmonic confinement strength as in one of the
experiments [29]. We observe a substantial difference between the MF+LHY and QMC functional
results, mainly when N approaches the critical number Nc.

The radial size of a N = 15000 drop for different magnetic field values was reported in Ref. [29].
In Fig. (6.7), we compare the experimental values with different theoretical predictions. We observe a
slight reduction in size using QMC functionals, compared to MF+LHY theory, which is a consequence
of the stronger binding produced by the inclusion of finite range interactions. Since the experimental
data go in the opposite direction, it means that drop size can not be explained solely with the non-zero
effective range. One possible explanation for this clear disagreement could be a deviation from the
optimal relative number of particles, which can occur in non-equilibrated drops or when one of the
components has a large three-body recombination coefficient. In section (6.5.1) we further explore the
theory of non-equilibrated droplets and introduce the x parameter.

6.5.1 Effective MF+LHY theory for x ̸= 1 liquids

We explain the discrepancy in size of the droplets due to the non-optimal ratio between particles, namely
N2/N1 ̸=

√
a11/a22. For simplicity, let us consider a homogeneous metastable liquid with the ratio of

partial densities ρ1 and ρ2 being
ρ2

ρ1
= x

√
g11

g22
. (6.20)
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Fig. 6.6 Dependence of the radial size σr of the 39K drop on the number of particles. The size is
obtained from the variational ansatz, since close to the critical atom number the density profile in the
radial direction is well approximated by a Gaussian. In both functionals, it is assumed that the relative
concentration is optimal N2/N1 =

√
a11/a22. QMC functional includes the correct finite-range reff

through POT1 set of potentials, Fig. 6.2.

Mean field optimal particle ratio is fulfilled for x = 1, i.e., the concentration corresponding to the
ground-state of the system. and a deviation of x from one implies an excess of one of the component in
the liquid: when x < 1 (x > 1), there is an excess of species 1 (2). MF and LHY terms read

EMF

V
= ℏ2

ma2
11

2π
(

1 + x2 + 2x a12/a11√
a22/a11

)
(

1 + x/
√
a22/a11

)2 (ρa3
11)2, (6.21)

ELHY

V
= ℏ2

ma2
11

256
√
π

15

1 + x
√
a22/a11

1 + x√
a22/a11


5/2 (

ρa3
11
)5/2

, (6.22)

where ρ = ρ1 + ρ2 is the total density. Note that this energy functional keeps the x parameter fixed.
This is in contrast with the ground state of the two-component MF+LHY theory, which is fulfilled when
x = 1. Parameter x thus plays a role of how much the liquid is metastable. On Fig. (6.8) we compare
the equations of state with various non-optimal ratios, obtained with DMC. We see that finite-range
effects are of second-order compared to the influence of non-optimal particle ratio.

We have investigated the behavior of both the MF+LHY and QMC functionals under variations in
x, and both predict a decrease in the drop size proportional to the deviation from x = 1. Using the
MF+LHY functional, we have obtained the x values that fit the experimental size for every B (Fig. 6.7).
We report the result of this analysis in Fig. (6.9); notice that there is symmetry on x ↔ 1/x, equivalent
to relabeling the components as 1 ↔ 2, and so only its absolute deviation from one is important. This
result clearly shows the sensitive dependence of drop structural properties on the relative atom number.
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Fig. 6.7 Dependence of the radial size of a N = 15000 39K drop on the external magnetic field, or
equivalently the residual s-wave scattering length. Lines are predictions under MF+LHY theory; full line
is a prediction with x = 1, dashed and dotted lines are fits of experimental sizes using a parameter x.

As we can see in Fig. 6.9, the value for x becomes 1 (optimal value) when the drop composed of
15000 particles is studied at the highest magnetic field. This can be understood if we observe that
the critical number for this magnetic field matches approximately this number of atoms (see Fig. 6.4).
When the number of atoms of a drop is larger than the critical number (lower B in Fig. 6.7) x departs
from one. This can be better understood if one calculates the drop phase diagram as a function of x.
The result is plotted in Fig. 6.10. As the number of particles is approaching the critical one, the range
of possible values of x, which supports a drop state, is reducing. This is a supporting fact that drops
close to the critical atom number observed in the experiment fulfill the condition x = 1. On the other
hand, there is an increasing range of relative particle concentrations for which a drop can emerge as the
number of particles increases.

The phenomenological density functional with x ̸= 1 is motivated by the experimental observations
in which x is always reported to deviate from x = 1. For example, in Fig. (6.11) we show the time
evolution of x as reported in Ref. [30], and it can be observed that x can deviate even 30% from 1,
which is still within the values we report in Fig. (6.9). Two important processes describe the relaxation
of the drop to the true ground state x = 1: (i) evaporation of the excess component from the drop
and (ii) three-body recombination. When a droplet is created with x ̸= 1, during relaxation time, the
particles from excess component evaporate out of the droplet. With three-body losses being present in
these drops, there is a possibility that these drops do not reach the ground state x = 1 and are observed
in the metastable regime. This indication is further grounded by noting that both the MF+LHY and
QMC functionals predict much smaller sizes than experimentally observed.
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Fig. 6.8 Energy per particle as a function of total density ρ. Different colors differentiate population
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√
g11/g22, full lines are MF+LHY predictions (see Eq. 6.21
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(Fig. 6.7) within the MF+LHY theory, as a function of the magnetic field. Points are the values which
reproduce the size, and lines are power-law fits of x as a function of the magnetic field B. Note that two
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evaluated at x = 1 [24].

We have also compared the size of spherical droplets in a vacuum, which is a geometry used in the
experiment [30]. The qualitative behavior of the droplet size with respect to x is very similar to the one
we present for the drops in harmonic traps [29].
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Fig. 6.11 Evolution of x = (N2/N1)
√
a22/a11 in time as reported in Fig 2C in [30].
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6.6 Summary and discussion

An experiment in Ref. [29] showed significant disagreement between the measured data and the MF+LHY
perturbative approach. In order to determine the possible origin of these discrepancies, we have pursued
a beyond MF+LHY theory, which explicitly incorporates the finite range of the interaction. To this end,
we have carried out DMC calculations of the bulk liquid to estimate its equation of state accurately. We
have observed that the inclusion in the model potentials of both the s-wave scattering length and the
effective range produces a rather good universal equation of state in terms of this pair of parameters.
This is in agreement with the results from Chapter 5, where a symmetric mixture with a11 = a22 and
m1 = m2 was studied. Excluding the effective range, significant differences are obtained from these
universal results. This relevant result points to the loss of universality in terms of the gas parameter in
the study of these dilute liquid drops.

Introducing the DMC equation of state into the new functional, following the steps which are standard
in other fields, such as DFT in liquid Helium [81], we derive a new functional that allows for an accurate
study of the most relevant properties of the drops. In particular, we observe that the inclusion of
finite range effects reduces the critical atom number in all the magnetic field ranges, approaching the
experimental values significantly. On the other hand, our QMC functional cannot explain the apparent
discrepancy between theory and experiment about the size of the drops. We attribute this difference
to the dramatic effect on the size that small shifts on the value of x produce. Our analysis provides a
reasonable explanation of this feature: above the critical atom number, the window of stability of the
drops increases from the single point x = 1 to a range of values that, in absolute terms, grow with the
number of particles. With the appropriate choice of x, one can obtain agreement with the experiment.
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The drops produced in the different setup of Ref. [30] are spherical since all magnetic confinement is
removed. The corresponding critical numbers, in this case, are larger than in the confined setup [29], and
MF+LHY theory accounts reasonably well for the observed features. We have applied our formalism to
this case, and the corrections are not zero but relatively less important than in the case analyzed here.





Chapter 7

Finite range effects on the excitation
modes of a 39K quantum droplet

7.1 Introduction

In Chapter 6 we have performed diffusion Monte Carlo (DMC) calculations [144, 17] using model
potentials that reproduce both scattering parameters, obtaining the equation of state for a 39K mixture
in the homogeneous liquid phase. We concluded that one could reproduce the critical atom number
determined in the experiment [29] only for the model potentials which incorporate the correct effective
range. This critical number is a static property of the quantum droplet at equilibrium. Besides a good
knowledge of the equilibrium properties of a quantum many-body system, determining the excitation
spectrum is essential to unveil its microscopic structure.

In the present Chapter, we present a study of the monopole and quadrupole excitation spectrum of a
39K quantum droplet using the QMC functional introduced in Chapter 6, which correctly describes the
inner part of large drops, constituting an extension to the MF+LHY theory. The excitation spectrum of
these droplets has already been calculated within the MF+LHY approach [24, 150]. Our goal is to make
visible the appearance of any beyond-LHY effect arising from the inclusion of the effective range in the
interaction potentials.

This Chapter is organized as follows. We build in Sec. 7.2 the QMC density functional, in the local
density approximation (LDA), and compare it with the MF+LHY approach, which can be expressed in
a similar form. In Sec. 7.3, we give details on the application of the density functional method, static
and dynamic, to the obtainment of the ground state and excitation spectrum of quantum droplets. In
Sec. 7.4, we report the results of the monopole and quadrupole frequencies obtained with the QMC
functional and compare them with the MF+LHY predictions. Finally, a conclusion is in Sec. 7.5.
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Table 7.1 Parameters of the QMC energy per atom calculated at several magnetic fields B, assuming
ρ1/ρ2 =

√
a22/a11, satisfying the s-wave scattering length a and effective range reff given in Table

6.1. α is in ℏ2a2
11/(2m) units, β is in ℏ2a3γ−2

11 /(2m) units, m being the mass of a 39K atom, and γ is
dimensionless.

B(G) α β γ
56.230 -0.812 5.974 1.276
56.453 -0.423 8.550 1.373
56.639 -0.203 12.152 1.440

7.2 The QMC Density Functional

We shall consider 39K mixtures at the optimal relative atom concentration yielded by the mean-field
theory, namely N1/N2 =

√
a22/a11 [24]. For these mixtures, in Chapter 6 we have shown that the

energy per atom in the QMC approach can be accurately written as

E

N
= αρ+ βργ , (7.1)

where ρ is the total atom number density. The parameters α, β, and γ have been determined by fits to
the DMC results for the model potentials satisfying the s-wave scattering length and effective range,
given in Table 6.1. The QMC approach does not yield a universal expression for E/N , as it depends on
the value of the applied B. For the optimal concentration, the MF+LHY energy per particle can be cast
in a similar expression

E/N

|E0|/N
= −3

(
ρ

ρ0

)
+ 2

(
ρ

ρ0

)3/2
, (7.2)

where E0/N and ρ0 are the energy per atom and atom density at equilibrium given in equations 6.15 and
6.16, respectively. MF+LHY theory is thus universal if it is expressed in terms of ρ0 and E0. According
to this theory, the droplet properties do not change separately on N and aij but rather combined through

N

Ñ
= 3

√
6

5π2

(
1 +

√
a22/a11

)5

∣∣∣a12/a11 +
√
a22/a11

∣∣∣5/2 , (7.3)

where Ñ is a dimensionless parameter [24]. Additionally, the healing length corresponding to the mixture
is

ξ

a11
= 8

√
6

5π

√
a22

a11

(1 +
√
a22/a11)3∣∣∣a12/a11 +
√
a22/a11

∣∣∣3/2 . (7.4)

The energy per atom Eq. (7.1) allows one to readily introduce, within LDA, a density functional
whose interacting part is

Eint = ρ
E

N
= αρ2 + βργ+1 . (7.5)

A similar expression holds in the MF+LHY approach. In the homogeneous phase, one may easily obtain
the pressure

p(ρ) = ρ2 ∂

∂ρ

(
E

N

)
= αρ2 + βγργ+1 (7.6)
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Fig. 7.1 DMC energy per particle as a function of the density. From bottom (purple triangles) to top
(red stars), the results correspond to magnetic fields B=56.23, 56.453 and 56.639 G. Calculations were
performed for the mean-field optimal ratio ρ2/ρ1 =

√
a11/a22. The energy per atom and atom density

are normalized to the |E0|/N and ρ0 MF+LHY values obtained from Eqs. (6.15) and (6.16), respectively.
The dashed lines are fits in the form E/N = αρ+βργ . The black solid line corresponds to the MF+LHY
theory, Eq. (7.2).
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Table 7.2 Surface tension of a 39K Bose-Bose mixture at the MF+LHY optimal mixture composition in
10−8 × ℏ2/(ma4

11) units.

B(G) σMF+LHY σQMC
56.230 35.1 48.8
56.453 9.31 12.2
56.639 1.21 1.46

and incompressibility
κ(ρ) = ρ

∂p

∂ρ
, (7.7)

which can be written as

κ(ρ) = ρ2 ∂
2Eint

∂ρ2 = ρ2
{

2 ∂
∂ρ

(
E

N

)
+ ρ

∂2

∂ρ2

(
E

N

)}
. (7.8)

Figure 7.1 shows the DMC energy per atom as a function of the density for selected values of the
magnetic field, together with the result for the MF+LHY theory. It is worth noticing the rather different
equations of state yielded by the QMC functional and MF+LHY approaches. The QMC approach yields
a substantially larger equilibrium density and more binding. The QMC incompressibility is also larger,
as can be seen in Fig. 7.2; at first sight, this seems to be in contradiction with the results in Fig. 7.1,
which clearly indicate that the curvature of the E/N vs ρ curve at equilibrium (∂(E/N)/∂ρ = 0 point)
is smaller for the QMC functionals than for the MF+LHY approach. However, this is compensated
by the larger QMC value of the atom density at equilibrium, see Eq. (7.8) and Fig. 7.3, where we
show the ratio of QMC and MF+LHY equilibrium densities. Besides its importance for a quantitative
description of the monopole droplet oscillations addressed here, inaccurate incompressibility may affect
the description of processes where the liquid-like properties of quantum droplets play a substantial role,
as e.g. droplet-droplet collisions [44].

Another fundamental property of the liquid is the surface tension σ of the free-surface. The origin of
the definition of surface tension is as follows. Let us consider a semi-infinite system having a surface in
the z-direction, with the translational invariance in xy coordinates, and let the conditions of the density
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profile be ρ(z → −∞) = ρ0 and ρ(z → ∞) = 0, as in Ref. [154]. Then, the surface tension is defined as
the grand potential per unit surface

σ = E − µN

S
=
∫ +∞

−∞
dz {E(ρ) − µρ} , (7.9)

where S is unit surface, µ is the chemical potential evaluated at the equilibrium density, and E is energy
density

E = αρ2 + βργ+1 + ℏ2

2m
1
4

(∇ρ)2

ρ
, (7.10)

where the last term in Eq. (7.10) is the kinetic energy density. Minimizing the energy density, or
equivalently the surface tension, leads to the condition

δE
δρ

= µ, (7.11)

which gives the equation for the surface density profile along z

2αρ+ β(1 + γ)ργ + ℏ2

8m

(
ρ′2

ρ2 − 2ρ
′′

ρ

)
= µ. (7.12)

Multiplying by ρ′, integration yields

dρ

dz
= −

(
αρ3 + βργ+2 − µρ2

ℏ2

8m

)1/2

. (7.13)

Since (∇ρ)2 = (dρ/dz)2, the equations (7.9), (7.10) and (7.13) can be combined for the simple quadrature
formula of the surface tension

σ = 2
∫ ρ0

0
dρ

[(
ℏ2

8m

)
(αρ+ βργ − µ)

]1/2

. (7.14)



90 Finite range effects on the excitation modes of a 39K quantum droplet

The surface tension of several QMC functionals, i.e. functionals corresponding to different magnetic
fields, is given in Table 7.2. As can be seen, QMC functionals yield consistently higher values of the
surface tension than the MF+LHY approach. Within MF+LHY, the surface tension can be written in
terms of the equilibrium density (6.16) and healing length (7.4) [24]

σMF+LHY = 3(1 +
√

3)ρ0ℏ2

35mξ . (7.15)

7.3 The LDA-DFT approach

7.3.1 Statics

Once Eint[ρ] has been obtained, we have used density functional theory (DFT) to address the static
and dynamic properties of 39K droplets similarly as for superfluid 4He droplets [79]. Within DFT, the
energy of the quantum droplet at the optimal composition mixture is written as a functional of the atom
density ρ(r) as

E[ρ] = T [ρ] + Ec[ρ] = ℏ2

2m

∫
dr|∇Ψ(r)|2 +

∫
dr Eint[ρ], (7.16)

where the first term is the kinetic energy, and the effective wavefunction Ψ(r) of the droplet is related
to the atom density as ρ(r) = |Ψ(r)|2. The equilibrium configuration is obtained by solving the
Euler-Lagrange equation arising from the functional minimization of Eq. (7.16){

− ℏ2

2m∇2 + ∂Eint

∂ρ

}
Ψ ≡ H[ρ] Ψ = µΨ, (7.17)

where µ is the chemical potential corresponding to the number of 39K atoms in the droplet, N =∫
dr|Ψ(r)|2. The time-dependent version of Eq. (7.17) is obtained minimizing the action and adopts the

form
iℏ
∂

∂t
Ψ(r, t) = H[ρ] Ψ(r, t). (7.18)

We have implemented a three-dimensional numerical solver based on the Trotter decomposition of the
time-evolution operator with second-order accuracy in the time-step ∆t [86]. Within this scheme, it is
possible to obtain both the ground state and the dynamical evolution, as described in Sec. 2.2.4. It is
known that in real time, the Trotter decomposition may be unstable for different combinations of the
time and space steps used in the discretization [155]. To tackle this problem, we have carefully chosen
the time step that ensures that the dynamic evolution is stable during the total propagation time.

Figure 7.4 shows the density profile of two droplets, one corresponding to a small gaussian-like
droplet and the other to a large saturated one. They have been obtained within the QMC (B = 56.230
G) functional and MF+LHY methods. The sizeable difference between the profiles yielded by both
approaches reflects the different value of their equilibrium densities, see Fig. 7.3.

7.3.2 Real-time dynamics and excitation spectrum

The multipole excitation spectrum of a quantum droplet can be obtained e.g. by solving the equations
obtained linearizing Eq. (7.18) [42, 24, 156]. We have used an equivalent method based on the Fourier
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analysis of the real-time oscillatory response of the droplet to an appropriated external field [157, 43].
The method, which we outline now, bears clear similarities with the experimental procedure to access to
some excited states of confined Bose-Einstein condensates (BEC) [40, 41]. For monopole oscillations,
our method is similar to that used in Ref. [158].

A droplet at the equilibrium, whose ground-state effective wavefunction Ψ(r) is obtained by solving
the DFT Eq. (7.17), is displaced from it by the action of a static external one-body field Q whose
intensity is controlled by a parameter λ. The new equilibrium wavefunction Ψ′(r) is determined by
solving Eq. (7.17) for the constrained Hamiltonian H′

H → H′ = H + λQ. (7.19)

If λ is small enough so that λQ is a perturbation and linear response theory applies, switching off Q

and letting Ψ′(r) evolve in time according to Eq. (7.18), ⟨Q(t)⟩ will oscillate around the equilibrium
value Qeq = ⟨Ψ(r)|Q|Ψ(r)⟩. Fourier analyzing ⟨Q(t)⟩, one gets the non-normalized strength function
corresponding to the excitation operator Q, which displays peaks at the frequency values corresponding
to the excitation modes of the droplet. Specific values of λ that we use are in the range from λ = 10−13

to 10−15 for the monopole modes, and λ = 10−15 to 10−17 for the quadropole modes, with λ being
measured in ℏ2/(2ma4

11) units, and the smaller values corresponding to larger magnetic fields, i.e. less
correlated drops.
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7.4 Results

We have used as excitation fields the monopole Q0 and quadrupole Q2 operators

Q0 =
N∑
i

r2
i (7.20)

Q2 =
N∑
i

(
r2

i − 3z2
i

)
(7.21)

which allows one to obtain the ℓ = 0 and 2 multipole strengths. The ℓ = 0 case corresponds to pure radial
oscillations of the droplet and for this reason it is called “breathing” mode. In a pure hydrodynamical
approach, its frequency is determined by the incompressibility of the liquid and the radius of the droplet
[159, 160].

We have propagated the excited state Ψ′(r) for a very long period of time, storing ⟨Q(t)⟩ and Fourier
analyzing it. Fig. 7.5 (left) shows ⟨Q0(t)⟩ for 39K quantum droplets of different sizes. We choose the
same scale of particle numbers (x-axis) as in Ref. [24], as the monopole frequency ω0 close to the
instability point Ñc = 18.65 is directly proportional to (Ñ − Ñc)1/4 [24]. Whereas a harmonic behavior
is clearly visible for the largest droplets, as corresponding to a single-mode excitation, for small droplets
the radial oscillations are damped and display different oscillatory behaviors (beats), anticipating the
presence of several modes in the monopole strength, as the Fourier analysis of the signal unveils.

Figure 7.5 (right) displays the monopole strength function in logarithmic scale as a function of the
excitation frequency. The solid vertical line represents the frequency |µ|/ℏ corresponding to the atom
emission threshold, i.e. the absolute value of the atom chemical potential, |µ|. It can be seen that for
(Ñ − 18.65)1/4 = 5.1 the strength is in the continuum frequency region above |µ|/ℏ. Hence, self-bound
small 39K droplets, monopolarly excited, have excited states (resonances) that may decay by atom
emission [24, 158]. This decay does not imply that the droplet breaks apart; it just loses the energy
deposited into it by emitting a number of atoms, in a way similar to the decay of some states appearing
in the atomic nucleus, the so-called “giant resonances” [159]. We want to stress that the multipole
strength is not normalized, as it depends on the value of the arbitrary small parameter λ. However, the
relative intensity of the peaks for a given droplet is properly accounted for in this approach.

A similar analysis for the quadrupole mode is presented in Fig. 7.6. In this case, we have found a
more harmonic behavior for ⟨Q2(t)⟩, and therefore the quadrupole strength function is dominated by
one single peak.

Figures 7.5 and 7.6 show an interesting evolution of the strength function from the continuum to the
discrete part of the frequency spectrum as the number of atoms in the droplet increases. For small N
values, but still corresponding to self-bound quantum droplets, the spectrum is dominated by a broad
resonance that may decay by atom emission. The ⟨Q(t)⟩ oscillations are damped, and when several
resonances are present (monopole case), distinct beats appear in the oscillations.

This remarkable evolution of the monopole and quadrupole spectrum has also been found for 3He
and 4He droplets [161, 162]. In the 4He case, it has been experimentally confirmed by detecting “magic”
atom numbers in the size distribution of 4He droplets which correspond to especially stable droplets
[163]. The magic numbers occur at the threshold sizes for which the excitation modes of the droplet, as



7.4 Results 93

calculated by the diffusion Monte Carlo method, are stabilized when they pass below the atom emission
energy. This constituted the first experimental confirmation for the energy levels of 4He droplets. On
the other hand, in confined BECs, the energy of the breathing mode is obtained by direct analysis of
the radial oscillations of the atom cloud [160].
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Fig. 7.5 Time evolution of the monopole moment ⟨Q0(t)⟩ and strength function (right) for 39K quantum
droplets of different sizes obtained using the QMC functional at B = 56.230 G. In the right panels, the
vertical solid line corresponds to the frequency |µ|/ℏ corresponding to the atom emission energy |µ|, and
the dotted and dash-dotted lines to the E3/ℏ and E1/ℏ frequencies, obtained by the sum rules in Eq.
(7.25) and (7.22), respectively.
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the dotted and dash-dotted lines to the E3/ℏ and E1/ℏ frequencies, obtained by the sum rules in Eq.
(7.26) and (7.23), respectively.



96 Finite range effects on the excitation modes of a 39K quantum droplet

We show in Fig. 7.7 the breathing and quadrupole frequencies, corresponding to the more intense
peaks, as a function of the number of atoms obtained with the QMC functional and the MF+LHY
approach. For the latter, our results are in full agreement with both those obtained using the Bogoliubov-
de Gennes method [24], which is fully equivalent to ours, and with the ones of Ref. [158]. The results
are plotted in the universal units of the MF+LHY theory. We find that the QMC functional predicts
systematically larger monopole and quadrupole frequencies in all the range of particle numbers we have
studied. Additionally, as we change the magnetic field, i.e. the scattering parameters, QMC predictions
do not fall on the same curve, meaning that the QMC functional breaks the MF+LHY universality.

When the multipole strength is concentrated in a single narrow peak, it is possible to estimate the
peak frequency using the sum rules approach [159, 160]. Sum rules are energy moments of the strength
function that, for some excitation operators, can be written as compact expressions involving expectation
values on the ground state configuration. For the multipole operators considered here, two such sum
rules are the linear-energy m1 and cubic-energy m3 sum rules. The inverse-energy sum rule m−1 can be
obtained from a constrained calculation involving the Hamiltonian H′ of Eq. (7.19). Once determined,
these three sum rules may be used to define two average energies E1 =

√
m1/m−1 and E3 =

√
m3/m1

expecting, bona fide, that they are good estimates of the peak energy.

For the monopole and quadrupole modes, the E1 energies are [159]

E1(ℓ = 0) =

√
−4ℏ2

m

〈
r2〉

(∂ ⟨Q0⟩ /∂λ)|λ=0
(7.22)

and

E1(ℓ = 2) =

√
−8ℏ2

m

〈
r2〉

(∂ ⟨Q2⟩ /∂λ)|λ=0
, (7.23)

with λ being the parameter in the constrained Hamiltonian H′, Eq.(7.19), and
〈
r2〉 =

∫
drρ(r)r2/N

evaluated at λ = 0. The frequencies corresponding to these energies are drawn in Figs. 7.5 and 7.6 as
vertical dash-dotted lines. Except for small droplets, for which the monopole strength is very fragmented,
one can see that they are good estimates of the peak frequency.

Closed expressions for the E3 averages can be easiliy obtained for the monopole and the quadrupole
modes [159, 160]. For the sake of completeness, we present the result obtained for the QMC functional.

Defining

Eα = α

∫
drρ2(r)

Eβ = β

∫
drργ+1(r)

⟨T ⟩ = ℏ2

2m

∫
dr|∇Ψ(r)|2 , (7.24)

where Ψ(r) and ρ(r) are those of the equilibrium configuration, we have

E3(ℓ = 0) =
[

ℏ2

Nm⟨r2⟩

]1/2

[4⟨T ⟩ + 9(Eα + γ2Eβ)]1/2 (7.25)
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E3(ℓ = 2) =
[

ℏ2

Nm⟨r2⟩

]1/2

[4⟨T ⟩]1/2 . (7.26)

We have E3(ℓ = 2) < E3(ℓ = 0). The ω3 = E3/ℏ frequencies are shown in Figs. 7.5 and 7.6 as vertical
dotted lines. It can be seen that even when the strength is concentrated in a single peak, ω3 is a worse
estimate of the peak frequency than ω1 = E1/ℏ. This is likely so because m3 gets contributions from
the high energy part of the spectrum. At variance, since contributions to m−1 mainly come from the
low energy part of the spectrum, ω1 is better suited for estimating the peak frequency.

The relative differences between the MF+LHY theory and the QMC functional for monopole and
quadrupole frequencies are presented in Fig. 7.8. As the magnetic field increases, the droplet is more
correlated and differences of even 20% can be observed.
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We finally compare in more detail the frequencies obtained with the QMC and MF+LHY functionals
at B = 56.230 G for Ñ = 100 and Ñ = 1010, which correspond to N = 7 × 104 and N = 7.1 × 105,
respectively. Although it might require rather large droplets to observe neat breathing oscillations,
systems with Ñ > 100, for which clean quadrupole modes show up (see Fig. 7.7), are already accessible
in experiments [29, 30, 44, 31]. For N = 7 × 104, the quadrupole frequencies are ωQMC

2 = 2323 Hz
and ωMF+LHY

2 = 1972 Hz, i.e. oscillation periods τQMC
2 = 2.70 ms and τMF+LHY

2 = 3.19 ms. A
similar comparison can be made for the monopole frequency; for N = 7.1 × 105, the frequencies are
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ωQMC
0 = 3114 Hz and ωMF+LHY

0 = 2755 Hz, and the oscillation periods are τQMC
0 = 2.02 ms, and

τMF+LHY
0 = 2.28 ms. In Fig. (7.9), we report our results for the breathing and quadrupole modes in

not-reduced units to facilitate future comparisons with experiments.
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Fig. 7.9 Predictions of the frequency corresponding to the absolute value of the chemical potential |µ|,
breathing frequency ω0 and quadropole frequency ω2 as a function of total atom number, using the
QMC functionals. Dashed lines are ω1 = E1/ℏ frequencies.

7.5 Summary and outlook

Using a new QMC-based density functional which properly incorporates finite-range effects, we have
determined the monopole and quadrupole excitation modes of 39K quantum droplets at the optimal
MF+LHY mixture composition. Comparing with the results obtained within the MF+LHY approach,
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we have found that finite-range effects have a detectable influence on the excitation spectrum, whose
study may thus be a promising way to explore physics beyond the LHY correction.

We have shown that introducing the QMC functional into the usual DFT methodology can easily
be done, as only minor changes need to be made in the (many) existing Gross-Pitaevskii numerical
solvers [164–166]. This opens the door to using better functionals –based on including quantum effects
beyond mean-field– in the current applications of the extended Gross-Pitaevskii approach [45, 44].







Chapter 8

Harmonically trapped Bose-Bose
mixtures with repulsive interactions

8.1 Introduction

Before the adventure of BEC gases, the study of Bose-Bose mixtures was purely academic since there
was not such a stable system in Nature. Nevertheless, its stability was deeply studied in connection with
the stable 3He-4He mixture at low 3He concentration. In particular, it was proved that the Bose-Bose
mixtures of isotopic Helium are always unstable and phase separate and that only the right consideration
of the Fermi nature of 3He atoms could account for its finite miscibility [167–170].

The very low density of the BEC gases makes feasible a theoretical description where atomic
interactions are modeled by a single parameter, the s-wave scattering length. The miscibility of bulk
Bose-Bose mixtures can be easily derived within mean-field theory (see Sec. 2.3.1 and references
[171–173]) and the predictions of this approximation account well for the observed properties in different
experiments. However, quite recently this simple argument has been questioned when the mixtures
are harmonically trapped and a new parameter, based on the shape of the density profiles, has been
suggested [61]. The theoretical descriptions rely on the Gross-Pitaevskii (GP) equation whose range of
applicability has been assumed to fit in the relevant experimental setups. Recently, it has been proved
that if the interspecies interaction is attractive, instead of repulsive, the mixture can be stable due to the
Lee-Huang-Yang correction which cancels the mean-field collapse [24], resulting in a self-bound (liquid)
system.

In the present chapter, we report results of harmonically trapped repulsive Bose-Bose mixtures in
different interaction regimes and with different masses for the constituents. Our approach is microscopic
and relies on the use of quantum Monte Carlo methods able to solve exactly a given many-body
Hamiltonian for Bose systems (within some statistical noise). The number of particles of our system is
much smaller than the typical values used in GP calculations due to the complexity of our approach
but this allows for an accurate study of effects going beyond the mean-field treatment. The numerical
simulations have been carried out for different combinations of the interaction strengths, covering the
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mixed and phase separated regimes. In agreement with previous GP results, the miscibility rule derived
for homogeneous gases fails to describe some of the results.

The rest of this chapter is organized as follows. In the next Section we introduce the theoretical
method used for the study. Sec. III contains the density profiles corresponding to the points of the phase
diagram here analyzed, both in miscible and phase-separated regimes. In Sec. IV, we study the scaling
in terms of the GP interaction strength. Sec. V discusses the universality of our results by changing the
model potential. Finally, Sec. VI reports the main conclusions of our work.

8.2 Model and the methods

We study a mixture of two kind of bosons with masses m1 and m2, harmonically confined and at zero
temperature. The Hamiltonian of the system is

H = −ℏ2

2

2∑
α=1

Nα∑
i=1

∇2
i

mα
+ 1

2

2∑
α,β=1

Nα,Nβ∑
iα,jβ=1

V (α,β)(riαjβ
)

+
2∑

α=1

N∑
i

V
(α)

ext (ri) . (8.1)

The mixture is composed of N = N1 +N2 particles, with N1 and N2 bosons of type 1 and 2, respectively.
The interaction between particles is modeled by the potentials V (α,β)(riαjβ

) and the confining potential
is a standard harmonic term, with frequencies that can be different for each species,

V
(α)

ext (r) = 1
2mαω

2
αr

2 . (8.2)

The many-body problem is solved by means of the diffusion Monte Carlo method (DMC), presented
in Chapter 3. In the present problem, we have chosen a Jastrow model for the trial wave function,

Ψ(R) =
N1∏

1=i<j

f (1,1)(rij)
N2∏

1=i<j

f (2,2)(rij)
N1,N2∏
i,j=1

f (1,2)(rij)

×
N1∏
i=1

h(1)(ri)
N2∏
i=1

h(2)(ri) , (8.3)

with R = {r1, . . . , rN }, f (α,β)(r) the two-body Jastrow factors accounting for the pair interactions
between α and β type of atoms, and h(α)(r) the one-body terms related to the external harmonic
potential. Systematic errors, which are the time-step and population-size biases, were investigated and
reduced below the statistical noise; we used about 100 walkers and a time step of around 10−3m1a

2
11/ℏ.

As one of the objectives of our work is to estimate the validity regime for a mean-field approach we
have also studied the problem by solving the Gross-Pitaevskii (GP) equations. In this case, one assumes
contact interactions between particles,

V (α,β)(riαjβ
) = gαβ δ(|riα

− rjβ
|) , (8.4)
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with strengths

gα,β = 2πℏ2aαβ

µαβ
, (8.5)

with µ−1
αβ = m−1

α + m−1
β the reduced mass and aαβ the s-wave scattering length of the two-body

interaction between α and β particles. With the Hartree ansatz,

Ψ(R) =
N1∏
i=1

ϕ1(ri, t)
N2∏
j=1

ϕ2(rj , t) (8.6)

one obtains the coupled GP equations for the mixture [171],

iℏ
∂ϕ1(r, t)

∂t
=

(
− ℏ2

2m1
∇2 + V

(1)
ext (r) + g11|ϕ1(r, t)|2

+g12|ϕ2(r, t)|2
)
ϕ1(r, t) , (8.7)

iℏ
∂ϕ2(r, t)

∂t
=

(
− ℏ2

2m2
∇2 + V

(2)
ext (r) + g22|ϕ2(r, t)|2

+g12|ϕ1(r, t)|2
)
ϕ2(r, t) . (8.8)

We have solved the GP equations (8.7,8.8) by imaginary-time propagation using a 4th order Runge-Kutta
method.

8.3 Results

We have explored the phase space of the Bose-Bose mixture using the DMC method and, in all cases,
we have compared DMC with GP results in the same conditions. We drive our attention to the density
profiles of both species since our main goal is to determine if the systems are miscible or phase separated.
The results contained in this Section have been obtained by using hard-core potentials between the
different particles,

V (αβ)(r) =

∞, r ≤ aαβ

0, r > aαβ

, (8.9)

with aαβ the radius of the hard sphere which coincides with its s-wave scattering length. The Jastrow
factor in the trial wave function (8.3) is chosen as the two-body scattering solution, f (α,β)(r) = 1−aαβ/r,
and the one-body term corresponds to the exact single-particle ground-state wave function, h(α)(r) =
exp(−r2/(2a2

α)). The length aα is optimized variationally but, even for the strongest interaction
regime here studied, its value is at most 10% larger than the one of the non-interacting system,
lho,α =

√
ℏ/(mαωα). The influence of internal parameters of the DMC calculations, such as the number

of walkers and the imaginary-time step, is analyzed and the reported results are converged with respect
to them. The density profiles that we report are derived using the mixed estimation since we have
checked that the correction introduced by using pure estimators [22] is at the same level as the typical
statistical noise.
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Fig. 8.1 Representation of the phase space for the mixture as a function of the interaction strengths gαβ .
The points correspond to the cases studied, with coordinates given in Table 8.1. The mean-field theory
for homogeneous system predicts separation (mixing) for all the points above (below) the mean-field
critical line (dashed line). The dotted (green) line stands for points where g11 = g22.

As in Ref. [61], we plot the phase space in terms of the adimensional variables g12/g22 and g11/g12.
In Fig. 8.1 we plot it showing the different regimes, with the line g2

12 = g11g22 standing for the critical
line separating miscibility and phase separation, using the mean-field criterion. In the figure, we plot
the points which we have studied; they are selected to cover the most interesting areas of the phase
space. In Table 8.1, we report the specific coordinates of the interaction strengths.

As usual in the study of Bose-Bose mixtures we define an adimensional parameter ∆,

∆ = g11g22

g2
12

− 1 , (8.10)

Label g12/g22 g11/g12 ∆
A 3.0 0.33 −0.89
B 0.75 0.75 0
C 0.75 1.7 1.27
D 1.2 1.7 0.42
E 1.7 1.7 0
F 0.33 3 8
G 3 1.7 -0.43

Table 8.1 Representative phase space points analyzed in our study. The values of ∆ are obtained from
Eq. (8.10).



8.3 Results 107

which classifies the regimes of phase separation (∆ < 0) and miscibility (∆ > 0) according to the
mean-field treatment of bulk mixtures. When ∆ = 0 we are on the critical line separating both regimes
(dashed line in Fig. 8.1). In the results reported below, we also calculate the parameter ∆n defined
as [61]

∆n = ρ1(0)
max ρ1(r) − ρ2(0)

max ρ2(r) , (8.11)

which compares the value of the density profiles ρα(r) at the origin r = 0 with its maximum value. Then,
∆n ≃ 0 when the peaks of both density profiles coincide to be at the origin (mixed state) or when the
ratio of the central and maximum density is the same for both species, which occurs when two species of
the same mass separate to two blobs. For other types of phase separation |∆n| > 0.

The density profiles reported in this Section have been obtained with a total number of particles
N = 200 and considering a balanced mixture, i.e., N1 = N2. We have repeated some calculations
considering N1/N2 =

√
g22/g11, which is the optimal balance from the mean-field theory [24], and the

differences in energy with respect to N1 = N2 are at most 10%. Therefore, we concentrate on the
balanced mixture. The role of the confining frequencies ωα is a bit more relevant since we have observed
changes in the results that can reach the 30%. In general, the energies are lower when the frequencies
obey the rule m1ω

2
1 = m2ω

2
2 which corresponds to applying the same harmonic confinement for both

species. Therefore, the results presented below correspond always to this choice.

8.3.1 ∆ > 0

When ∆ > 0 the mean-field criterion predicts mixing between the two species. We have explored the
confined system in three different points of the phase space. We start with point C, with ∆ = 1.27 and
the gαβ values reported in Table 8.1. In Fig. 8.2, we show the density profiles of both species. In all
cases, we use as unit length the harmonic oscillator length lho,1 of species 1. In the nine subfigures of
Fig. 8.2, going from left to right we increase the parameter Na11/lho,1, and from top to bottom we
increase the mass of species 2. The parameter Na11/lho,1 is chosen because it is the mean-field scaling
variable contained in the GP equation. As we keep the total number of particles N fixed, increasing
that parameter means to increase the scattering length of the 11 interaction and thus making g11 larger.
As the coordinates in the phase space are fixed at the point C, increasing g11 implies that also the
other strengths g12 and g22 increase. Therefore, moving to the right in the panels of Fig. 8.2 means an
increase of both the interspecies and intraspecies interaction. Moving down in the panels, for a fixed
value Na11/lho,1, means an increase of the mass of species 2 and therefore an increase of the scattering
lengths a12 and a22 because the couplings g12 and g22 are kept constant.

The density profiles shown in Fig. 8.2 show in all cases a mixed state, with ∆n ≃ 0 (8.11). In the
leftmost column, when the interaction is very soft, we appreciate that ρ(α)(r) are basically Gaussians,
following the shape of the non-interacting gas. When m2 grows, they are still Gaussians but slightly
different in shape because the frequencies are different. The Gaussian profiles disappear progressively
moving to the right due to the increase of interactions. The comparison between DMC and GP shows
agreement when the interaction is low and they clearly depart when Na11/l

(1)
ho grows. The DMC profiles

show the emergence of a plateau close to r = 0, in significant contrast with the GP prediction.

Density profiles for points D (∆ = 0.42) and F (∆ = 8) are reported in Figs. 8.3 and 8.4, respectively.
The results are qualitatively similar to the ones of point C, showing mixing in both cases. Point F is
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Fig. 8.2 Point C of the phase space. The points correspond to the DMC results and the lines to the
solution of the GP equations for the same system.

deeply located in the mixed part of the phase space (large ∆ value) and the agreement with GP is, in
this case, quite satisfactory except quantitatively when the mass difference is large and the strength of
the interaction increases. Point D, with a small ∆ value, shows slightly more significant departures from
GP predictions that again increase when the difference in mass between both species increases.

8.3.2 ∆ = 0

We have studied two points (B and E, see Table 8.1) of the phase space which are illustrative of the
∆ = 0 case. Assuming mean-field theory, this corresponds to the critical line for mixing in bulk mixtures.

In point B, we have g12/g22 = 0.75 and g11/g12 = 0.75. With these values, g22 > g12 > g11, and
thus one expects that species 2 goes out of the trap center because it is more repulsive than species
1. This effect is emphasized when m2 > m1 because the relation between scattering lengths has an
additional factor m2/m1. In Fig. 8.5, we can see the evolution of the density profiles as a function
of the interaction strength and mass ratio. When the system is only weakly interacting (left column)
one appreciates Gaussian profiles that coincide with GP predictions. The situation changes when the
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Fig. 8.3 Point D of the phase space. The points correspond to the DMC results and the lines to the
solution of the GP equations for the same system.

interaction grows (second and third columns) as we can see that the two systems start to phase separate,
a feature that is measured by the positive value of the factor ∆n (8.11). If the difference in mass is
enlarged, bottom panels, one can see that the phase separation is even more clear. In this case, the
heaviest component (2) is manifestly going out of the center and thus it surrounds the core, mainly
occupied by the species 1. Comparison with GP shows that there is a qualitative agreement with DMC
but quantitatively GP is rather inaccurate, specially when the mass ratio is m2/m1 = 4.

In point E, we are still in the critical line ∆ = 0 but now the relation of interaction strengths
is inverted with respect to point B. That is, g22 < g12 < g11. Therefore, one now expects species 2
occupying the center and species 1 moving to the external part of the trap. This is reflected in the
negative values of the parameter ∆n which are reported for every panel in Fig. 8.6. The increase of
the factor m2/m1 goes in reverse direction and slightly compensates the increase in a22. However, it is
shown not to be large enough to change the description. Comparing with Fig. 8.5, the phase separation
is not complete because one can see that there is always a finite fraction of species 1 close to the center.
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Fig. 8.4 Point F of the phase space. The points correspond to the DMC results and the lines to the
solution of the GP equations for the same system.

8.3.3 ∆ < 0

In this subsection, we move to points of the phase space where phase separation is expected. We have
studied two representative points of the phase space, points A and G (see Table 8.1).

In point A, g12/g22 = 3 and g11/g12 = 1/3 producing ∆ = −0.89. The relation of strengths is now
g11 = g22 < g12. By going from left to right in the panels of Fig. 8.7 one can see that the mixture
phase separates when the interaction between atoms is more important than the one-body confining
harmonic potential. When the masses of both species are equal, one identifies a phase separation in
form of two symmetric separated blobs, similar to what one would observe in a bulk system. This
is also consistent with ∆n = 0. Again, the mean-field prediction becomes quantitatively worse, as
the interaction strength and the difference in mass between the two components increase. However,
although it is not visible from the radial profiles, in all cases of point A there is at least partial phase
separation in two blobs. In order to show this, we have calculated the P (z, ρ) distribution, where the
z-direction is defined as a line passing through the two centers of mass, with the second component
being in the positive z-direction. z = 0 is the geometric center between the two centers of mass. The
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Fig. 8.5 Point B of the phase space. The points correspond to the DMC results and the lines to the
solution of the GP equations for the same system.

second variable, ρ, is just the distance of a single particle from this line. Results are normalized such
that

∫
2πρdρdzP (z, ρ) = N/2. The results in the two illustrative cases are presented in Fig. 8.8 and 8.9.

In the case of equal masses and Na11/lho,1 = 2 (Fig. 8.8) although both species overlap significantly,
the maxima of their probability distributions are clearly separated. In fact the average distance of their
centers of mass is about 0.4lho,1. Increasing Na11/lho,1 the overlap between the two species decreases
and a clear two-blob structure becomes visible, with the average distance between the two centers of
mass becoming 3lho,1. The increase of the mass difference of the two species also favors their separation.
The extreme case of m2 = 4m1 and Na11/lho,1 = 15 is shown in Fig. 8.9. We observe that the two
species are clearly separated in two blobs and more spread in both the ρ and z directions than in Fig.
8.8, due to the larger repulsive interspecies interaction. DMC predicts the more massive component to
be closer to the center of the trap, unlike GP. |∆n| > 0 is quite large, but remarkably has opposite sign
in GP and DMC.
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Fig. 8.6 Point E of the phase space. The points correspond to the DMC results and the lines to the
solution of the GP equations for the same system.
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Fig. 8.7 Point A of the phase space. The points correspond to the DMC results and the lines to the
solution of the GP equations for the same system.
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Fig. 8.8 Point A of the phase space for m1 = m2 and Na11/lho,1 = 2. z-axis corresponds to the line
going through the centers of mass of the two components, while ρ corresponds to the distance of a
particle from that line. Top and bottom panels stand for the distribution of species 1 and 2, respectively.
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Fig. 8.9 Same as Fig. 8.8 (point A) for m2 = 4m1 and Na11/lho,1 = 15.
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Fig. 8.10 Same as Fig. 8.8 (point G) for m2 = m1 and Na11/lho,1 = 2.
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Fig. 8.11 Same as Fig. 8.8 (point G) for m2 = 4m1 and Na11/lho,1 = 15.
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In the last point (G), one expects phase separation because ∆ = −0.43. The relation of strengths is
now g11 > g12 > g22. We clearly observe a phase separated system for medium and large interactions
and a mixed one when Na11/lho,1 = 2. The lighter particle moves progressively out of the center and
finally, when the relation of masses is large, it surrounds completely the heavier one, which occupies the
center of the trap. Contrarily to point A, here the GP description is in nice agreement with the DMC
data even when the difference in masses is large.
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Fig. 8.12 Point G of the phase space. The points correspond to the DMC results and the lines to the
solution of the GP equations for the same system.

8.4 Scaling with the interaction parameter Na11/lho,1

In the previous Section, we have plotted the density profiles considering the parameter Na11/lho,1 as a
scaling parameter to determine the strength of the interactions. For a given value of this adimensional
parameter we have then changed the relation of masses between the two species. This parameter has
been taken from the GP equation for a single Bose gas harmonically confined where it is proved to be
the only input parameter of the calculations.
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This universality emerges from the Gross-Pitaevskii equations (Eqs. 8.7 and 8.8) when they are
written in length, energy, and time scales given by lho,1 =

√
ℏ/(m1ω1), ℏ2/(m1l

2
ho,1) and τ = m1l

2
ho,1/ℏ,

respectively

i
∂ϕ̃1(r̃, t̃)

∂t̃
=

(
−∇̃2

2 + 1
2 r̃

2 + 4πN1a11

lho,1
|ϕ̃1(r̃, t̃)|2

+4πN2a12

lho,1
|ϕ̃2(r̃, t̃)|2

)
ϕ̃1(r̃, t̃) , (8.12)

i
∂ϕ̃2(r̃, t̃)

∂t̃
=

(
−∇̃2

2 + m2

m1

ω2
2
ω2

1

1
2 r̃

2 + 4πN2a22

lho,1
|ϕ̃2(r̃, t̃)|2

+4πN1a12

lho,1
|ϕ̃1(r̃, t̃)|2

)
ϕ̃2(r̃, t̃) , (8.13)

where ϕ̃1 and ϕ̃2 are normalized according to
∫
d3r̃|ϕ̃i|2 = 1 (i = 1, 2). Notice that the universality is

recovered when fixing the ratios g12/g22, g11/g12 and N1a11/lho,1 since in our study N1 = N2, with ω1

and ω2 kept fixed.

In this section, we check if this universality also holds true when performing DMC calculations, both
in regimes where DMC results and GP ones essentially coincide and in others where we have observed
significant discrepancies.

We have chosen two illustrative cases of both situations. In particular, points A and E of the phase
space (see Table 8.1). In both cases we have changed independently N and a11 in such a way to keep
the GP parameter as equal. To this end, we have used a system with N = 100 + 100 and a smaller one,
composed by half the number of particles N = 50 + 50.

In Fig. 8.13, we report the results of this analysis for point A. The results of the density profiles
are all normalized to sum up to 200 in order to make the comparison easier. As we commented in the
previous Section, point A is the one where we have observed the largest departures from the GP results.
The figures shows excellent agreement when the interaction is low and some discrepancies when the
GP parameter grows. However, the effect is not dramatic and affects only the heaviest species. It is
remarkable that even in situations like the ones of Fig. 8.13, where GP strongly departs from DMC, one
can still observe a very reasonable scaling with the GP interaction parameter.
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Fig. 8.13 Scaling on the GP parameter in point A of the phase space. Solid and open points stand for
results with N = 200 and N = 100, respectively.
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Fig. 8.14 Scaling on the GP parameter in point E of the phase space. Solid and open points stand for
results with N = 200 and N = 100, respectively.

Point E was one of the points where the agreement between GP and DMC was better. In Fig. 8.14,
we study the the dependence of the density profile results on the GP parameter as a scaling factor. In
this case, the agreement is practically perfect because the discrepancies are just of the order of the error
bars.

8.5 Universality test

A relevant point in our numerical simulations is the influence of the model potential on the results.
Universality in these terms means that the interaction can be fully described by a single parameter, the
s-wave scattering length, as it corresponds to a very dilute system. In all the previous results we have
used a hard-core model for the interactions between the atoms (8.9). In this Section, we compare these
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results with other ones obtained with a 10-6 potential,

V (αβ)(r) = ℏ2

2µαβ
V0

[(r0

r

)10
−
(r0

r

)6
]
, (8.14)

whose s-wave scattering length is analytically known [124]. We fix the parameter r0 = 2aαβ for all cases
and modify the strength V0 to reproduce the desired scattering length. In Eq. (8.14), the parameter
µαβ is the reduced mass, µαβ = mαmβ/(mα +mβ).

Our analysis has been performed for m2 = 1.5m1, N = 100 + 100 particles, and considering equal
harmonic frequencies ω1 = ω2. Two interaction strengths have been used, Na11/lho,1 = 8 and 15. As in
the previous Section, we have studied points E and A of the phase space, i.e., those characteristic of
agreement and disagreement with GP.
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Fig. 8.15 DMC results for two models are compared to GP results for two values of GP parameter in
point A .

In Fig. 8.15, we show the density profiles of point A, obtained using the two model potentials
normalized in the same way. We can see an overall agreement between both results with only some
differences in the estimation of the density in the center. Close to r = 0 the statistical fluctuations are
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bigger due to the normalization in a small volume. This feature is always present but we observe that
these fluctuations are larger in the case of the 10-6 potential (8.14).

In Fig. 8.16, we analyzed the same for point E in which we are closer to an effective mean-field
description. The comparison also shows a good agreement between results obtained for both potentials,
with some differences in the inner core of the trap.

We have verified in other points of the phase space the universality of our results and the conclusion
is that this is maintained with respect to the character of the system (miscible or phase separated) and
also the overall shape of the density profiles. The influence of the model potential is at the scale of our
statistical fluctuations, except close to r = 0 where small differences are observed in some cases.
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Fig. 8.16 DMC results for two models are compared to GP results for two values of GP parameter in
point E.

8.6 Summary and discussion

Using the diffusion Monte Carlo method, able to provide exact results for bosonic systems,we have
explored the phase space of an harmonically confined Bose-Bose mixture at zero temperature. Our
results are compared in all cases with a mean-field Gross-Pitaevskii calculation in the same conditions.
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As expected, our DMC results agree better with the GP ones when the strength of interactions is small
and worsens progressively when that grows. In spite of the fact that the prediction for miscibility
or phase separation is coincident in both cases, it is also true that the density profiles can be rather
different.

Our results are by construction exact and go beyond mean-field, showing the limits of this approach.
A systematic trend in which GP fails is the dependence on the mass of the two species. When the
asymmetry in the masses grows GP becomes clearly wrong in some cases. That could be argued to be
an effect of the interaction model used in DMC but our results contradict this point, within the range of
interactions here explored.

The tunability of atomic interactions and the possibility of using atoms with different mass ratios
makes this system specially rich. The phase space shows regimes of miscibility and, interestingly, two
different situations for phase separation, two blobs or in-out spherical separation, depending in the
relation of masses and interaction strength. It would be very interesting to produce in the lab smaller
systems, with hundreds of atoms, to check the departure of the physics from the mean-field GP treatment.
In this way, one can start to enter into the realm of fully quantum many-body physics.





Chapter 9

Summary and outlook

In this Thesis, we performed numerical studies of different bosonic mixtures with essentially four
techniques of various range of applicability. We built numerical codes specialized to the study of
quantum mixtures, which can stimulate further research, as we will make them available in open access
repositories.

Firstly, we used a Variational Monte Carlo method, which, as the name suggests, is a variational
method aimed at solving the many-body Schrödinger equation. Throughout the Thesis, we investigated
various forms of the trial wave functions and reported those which worked the best for each system when
combined with the Diffusion Monte Carlo method. Secondly, we applied the Diffusion Monte Carlo
technique, an exact method suitable for the study of static properties of bosonic systems. It is restricted
to zero temperature, making it ideal for the study of ultracold systems where neglecting thermal effects
is an excellent first approximation. Diffusion Monte Carlo is very computationally demanding, thus
making it somewhat limited to systems with at most 1000 atoms. This led us to resort to the final set of
methods applicable to large systems, which opened access to time-dependent phenomena as well, the
bosonic mean-field theory and density functional theory. We used Gross-Pitaevskii equation, arising
from mean-field theory. In the regime where the Gross-Pitaevskii equation fails, we built an underlying
density functional by relying on the Quantum Monte Carlo data.

The results presented in this Thesis are relevant both to theoretical and experimental activities in
quantum Bose mixtures. We benchmarked the existing mean-field theories, extended them where they
are expected to fail, and explained the physical mechanism behind the numerical results. The main
body of the Thesis is the study of ultradilute bosonic droplets, where we presented numerical evidence of
the necessity to go beyond the LHY-extended mean-field theory, as we discovered both the repulsive and
attractive contribution to the energy, depending on the value of the effective range of the interaction.
Part of these findings are already manifested in experimentally obtained quantum droplets in 39K. We
believe that next-generation experiments with quantum droplets will rely on our findings.

The last topic of this Thesis is the study of repulsive mixtures, where we aimed at understanding
the repulsive part of the bosonic mixture phase diagram. These findings will allow one to connect the
Quantum Monte Carlo results with future experimental findings in mesoscopic quantum systems, where
the description needs to go beyond the mean-field.
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Following is the summary and outlook for the subtopics of this Thesis.

Properties of finite-size symmetric quantum drops

Properties of symmetric finite-size quantum drops using essentially the exact DMC method were
presented. For simplicity, we restricted to symmetric Bose mixtures, i.e., the ones with a11 = a22. We
studied the critical atom number, which is the minimum total atom number required to have a self-bound
drop, for a wide range of interparticle attractive strength a12/a11, where the Petrov’s theory cannot
be applied. There we already observed the repulsive beyond-LHY contributions which seem to be a
general feature in a Bose mixture with short-ranged interactions [146, 145]. We predicted on density
profiles which feature the density saturation, for two values of the attractive s-wave scattering length
a12/a11. These are in agreement with our predictions of the full equation of state of a symmetric liquid,
i.e., the total energy per particle as a function of the density, for three values of a12/a11. Finally, by
fitting the energies of finite-size drops within a liquid drop model, we obtained the surface tension. A
further investigation of small-N quantum drops could lead to the improved density-functional which
generalizes the Petrov’s approach, and which could reproduce the QMC results summarized here.

Beyond-LHY contributions to the energy in quantum liquids

The bothersome feature of the LHY-extended mean-field theory is the appearance of imaginary
contributions to the energy of homogeneous mixtures, coming from the LHY term [24, 145]. We
extensively benchmarked and studied the energy per particle in the thermodynamic limit by means
of DMC calculations, which provided exact estimations of the energy. We discovered that there exist
substantial beyond-LHY contributions in a symmetric a11 = a22 liquid, which have a repulsive nature,
and whose contribution increases when entering in a more correlated, dense regime. We predicted that
the aforementioned beyond-LHY terms also depend on the effective range, which is another coefficient
in the expansion of the l = 0 phase shift. We concluded that the inclusion of the effective range leads to
a decrease in energy, a feature which appears both in symmetric liquids and in a liquid of 39K atoms.
By performing many, in particular 18 calculations of the equations of state of symmetric liquids, we
produced a QMC-built density functional which also incorporates the effects of finite-range. The outlook
of presented results is very wide: we believe that the correct inclusion of the effective range is crucial in
the description of next-generation quantum droplet experiments. Additionally, our results could be used
as a benchmark of beyond-LHY theories, such as those in Refs. [145, 146].

Finite-range effects on the static and dynamic properties of 39K drops

We thoroughly studied a quantum droplet in a mixture of 39K, which was first experimentally realized
by the Cabrera et. al [29] and by Semeghini et. al. [30]. For this mixture, there are known values of the
effective ranges, on top of the s-wave scattering lengths. We provided the QMC-built density functionals
for various values of the applied magnetic field, or alternatively the scattering parameters. Based on
QMC energies, we devised a density functional which leads to the prediction of a substantially lower
critical atom number, observed in [29]. We outlined the MF+LHY theory for non-optimal composition
of particles in a drop, which we used to explain the discrepancy in the predictions of observed size in the
experiment [29]. Non-optimal composition might occur due to strong three-body losses, in which case
finite-range effects would be of second-order of importance. The discrepancy in size might also occur
due to thermal effects [174], which is an outlook for a future investigation.
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We presented a study of the thermodynamic properties of a QMC-built density functional in a 39K
liquid. We predicted frequencies of excitation modes in a spherical self-bound 39K quantum droplet, in
particular the quadropole and the monopole modes. The significant differences between the results of
QMC and MF+LHY functionals for the excitation spectrum indicates that finite-range effects could
show up in other dynamical problems as well. In particular, in droplet-droplet collisions [44], where
the actual value of the incompressibility might play a relevant role. A reliable functional might also be
useful to study quantum droplet aspects that are currently under study for superfluid 4He droplets, such
as the appearance of quantum turbulence and of bulk and surface vorticity in droplets merging, the
equilibrium phase diagram of rotating quantum droplets, and the merging of vortex-hosting quantum
droplets [175–177]. These aspects are at present under investigation. Further improvements in the
building of a more accurate QMC functional should consider the inclusion of surface tension effects
others that those arising from the quantum kinetic energy term [178].

Phase diagram and universality in repulsive Bose-Bose mixtures

We presented an extensive study of the phase diagram of harmonically trapped Bose-Bose mixtures
at zero temperature where all the interactions are repulsive. We systematically explored the phase
diagram of the system and compared the density profiles obtained by DMC with Gross-Pitaevskii
solutions. We found good qualitative agreement between the DMC and Gross-Pitaevskii equations
when the interactions are weak and mass asymmetry is small. However, the differences magnify when
the asymmetry between masses and interaction strength increases. Our study was limited to zero
temperature, and a future outlook would be the proper inclusion of thermal fluctuations, which proved
to trigger a phase separation in the homogeneous system even when the mean-field zero temperature
theory predicts mixing [65].

We showed that the shape of DMC-predicted density profiles remained the same, with just the norm
changing accordingly, when the calculations were performed for N = 200 and 400 atoms, provided
that N1a11/lho,1 , N1a12/lho,1, N2a12/lho,1 and N2a22/lho,1 were kept fixed. Thus, the universality in
Gross-Pitaevskii equations seems to be valid even in the strongly correlated regime, which allows for the
comparison of ab-initio microscopic calculations with experimental results.

We provided numerical evidence for the universality of our results, meaning that the interaction can
be fully described by a single parameter, the s-wave scattering length, as it corresponds to a very dilute
system. This is relevant as our density profiles differ from the Gross-Pitaevskii solutions. Since the next
correction to the mean-field, the LHY term, is imaginary for g2

12 > g11g22, our results might prove useful
as a benchmark of more elaborate many-body theory of repulsive mixtures.
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Appendix A

Derivation of quantum force and
local energy in VMC and DMC

Crucial elements for the propagation of particle coordinates during the course of DMC and VMC
methods are the quantum force

F(R) = 2∇RψT(R)
ψT(R) , (A.1)

and the local energy

EL(R) = − ℏ2

2m
∇2

RψT(R)
ψT(R) + V (R), (A.2)

where V (R) =
∑N

i Vext(ri) +
∑

i<j Vpair(|ri − rj |). Since we work directly in the coordinate representa-
tion, potential energy evaluation is trivial. In this Appendix the explicit expression for these quantities
are derived under the assumption of the trial wavefunction in the form

ψT(R) =
N∏
i

f1b(ri)
N∏

i<j

f2b(|ri − rj |). (A.3)

Let us write the wavefunction as
ψT(R) = ψ1(R)ψ2(R), (A.4)

where

ψ1(R) =
N∏
i

f1b(ri), (A.5)

and

ψ2(R) =
N∏

i<j

f2b(|ri − rj |). (A.6)

Quantum force is therefore

F(R) = 2∇RψT(R)
ψT(R) = 2∇Rψ1(R)

ψ1(R) + 2∇Rψ2(R)
ψ2(R) = F1(R) + F2(R), (A.7)
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where the force acting on the particle i is given by

F1(ri) = 2∇ri
ψ1(ri)

ψ1(ri)
(A.8)

= 2
ψ1b(ri)

3∑
k=1

êk
∂

∂x
(i)
k

ψ1b(rs) (A.9)

and

F2(ri) = 2
3∑

k=1
êk

N∑
j=1 ̸=i

1
f(rij)

∂f(rij)
∂rij

x
(i)
k − x

(j)
k

rij
. (A.10)

Calculation of F2(r) can be utilized such that iterations go only through N(N −1)/2 atom pairs. Finally,
kinetic part can be calculated by invoking formula

∇2ψ

ψ
= 1

2∇F + 1
4F2, (A.11)

where the gradient for the particle i is calculated as

∇ri
F(ri) = G1(ri) +G2(ri), (A.12)

where

G1(ri) = 2
3∑

k=1

∂

∂x
(i)
k

{
1
ψ1b

∂ψ1b(ri)
∂x

(i)
k

}
, (A.13)

G2(ri) = 2
N∑

j=1 ̸=i

{
∂

∂rij

(
1

f(rij)
∂f(rij)
∂rij

)
+ 2
f(rij)

∂f(rij)
∂rij

}
, (A.14)

where again the calculation of G2 can be done by looping only through each atom pair.
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