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Preface

This thesis is the result of an industrial PhD done at Scytl in close collaboration
with Dr. Paz Morillo, from the Department of Applied Mathematics at UPC and
Ramiro Mart́ınez, PhD student. The main objective of this kind of PhD is to do an
applied research, by analyzing the needs of the company and proposing solutions.

As a member of the Research and Security team at Scytl, the author of this
thesis has participated in the design of several electronic voting systems as well as
in their implementation, by providing support to the development team. This work
has allowed her to obtain an in-depth knowledge of the electronic voting field and to
learn which are the existing solutions for satisfying both the customer requirements
and those established by the security guidelines. An important part of her work
consists also on thinking how to improve current voting systems based on the market
needs but also on new security recommendations given by the experts.

One of the main concerns nowadays is how to be prepared for the appearance
of quantum computers and the risk they suppose for the long-term privacy of the
online voting systems. Currently, Scytl’s technology ensures the privacy of voters
in front of attacks done by classical computers but it will not ensure privacy in the
future if a quantum computer is used to perform the same attack. Hence, from here
the following question arises: is it possible to build a quantum-safe online voting
system which provides long-term privacy? With the aim of giving a positive answer
to this question this research started.

This thesis consists on a first important part which is the research done on
the basics of post-quantum cryptography and, more concretely, on lattice-based
cryptography. Since Scytl was not working on post-quantum cryptography when
this work started and the author has not any experience on this field, this has been
a mandatory step before being able to contribute to the state of the art of lattice-
based crytographic primitives. These contributions are essential building blocks of
the online voting system presented as part of this thesis and allow to provide privacy
even in the presence of a quantum adversary.

It is worth to say that the research done for this PhD has allowed Scytl to
participate in the European Union PROMETHEUS project which aims to provide
post-quantum signature schemes, encryption schemes and privacy-preserving proto-
cols relying on lattice. In this context, the implementation of a post-quantum online
voting system which is mostly based on that presented in this thesis, is already on-
going.
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Chapter 1

Introduction

Electronic voting (e-voting) is defined by the Council of Europe as the use of infor-
mation and communication technology (ICT) to cast and/or count the votes [3, 60].
There are different types of e-voting systems depending on the environment where
they are conducted. If it is a controlled environment, such as the polling station, the
casting of the vote is done in a place supervised by the election administration. An
example of this type of e-voting is the usage of Direct Recording Electronic (DRE)
voting machines. On the other hand, in an uncontrolled environment the voting
devices cannot be supervised by the election administration, voters cast their votes
using personal devices such as mobile phones and the vote is transferred through
the Internet to a central voting server. These systems are known as online voting
systems although they are also called remote electronic voting systems or internet
voting systems. E-voting in a controlled environment can be seen as the electronic
equivalent of traditional paper-based voting and in an uncontrolled environment as
the equivalent of postal voting. While there is a number of countries that have
only experimented with e-voting, there are some others that are using it for bind-
ing elections or referendum since long time ago [1, 18]. In 2000, the United States
was the first one to use online voting for a binding election, followed by the UK in
2002 for local government elections, Canada, France and Switzerland in 2003 and
the Netherlands in 2004. In 2005 Estonia was the first country in the world to
hold a nation-wide election for the entire electorate and in 2008 the Swiss Canton
of Neuchâtel used an online voting trial for the citizens living abroad (although
Geneva was the first offering online voting in Switzerland in 2003). Switzerland is
one of the main references on the introduction of online voting1[73], having one of
the permanent online voting platforms in the world until 2019.

Some of the common motivations for introducing e-voting in countries are the
following ones: reduce fraud during the election process, speed up the processing
of results, increase the accessibility of voters with disabilities, facilitate the voting
process to citizens living abroad and reduce the costs associated to the electoral
processes; nevertheless, there are some inherent challenges that must be addressed
such as the lack of transparency for voters, the complexity of the system that is only
fully understood by a small number of experts or the conflict with the existing legal

1In the portal of the Swiss government there is a summary of the e-voting milestones in Switzer-
land: https://www.bk.admin.ch/bk/en/home/politische-rechte/e-voting/chronik.html
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and regulatory framework. What makes e-voting systems different from other ICT
systems such as banking or e-commerce, is precisely the number of requirements
that they must fulfill in order to provide a solution for all their inherent challenges
or, as pointed out in [75], the interaction between these requirements. Things that
are inherent to traditional paper-based voting becomes a challenge in e-voting. An
e-voting system should check that all the votes stored in the ballot box were cast
by eligible voters while at the same time must preserve voter’s anonymity. This is
easily done in a polling station where the election officer manually checks voter’s
identity and once the vote is inside the ballot box any relation between it and the
voter disappears. On the other hand, voters want to be sure that their votes are
taken into account during the counting phase but they do not want anyone to know
their voting intention. Finally, due to the lack of transparency of the process, e-
voting systems must offer public mechanisms in order to verify that the integrity of
the election was not manipulated neither by outsiders nor by the system operators.
Depending on the context where an election is run it is required that the e-voting
system satisfies some requirements or others.

In online voting systems, in which this thesis is focused on, privacy and verifia-
bility are two of the fundamental ones. Privacy requires that the link between the
vote and the voter who has cast it must remain secret during the whole process (vote
anonymity) and that the voting options selected by the voter must be private (vote
confidentiality), while verifiability requires that all the steps of the electoral process -
vote casting, vote storage and vote counting - can be checked by the voters, the audi-
tors or external observers. There must be a compromise between these requirements
so the election information published to achieve verifiability does not compromise
privacy. This information is usually published protected by cryptographic means
whose security, which is based on well-known computational problems such as the
discrete logarithm or the factorization, cannot be broken in a reasonable amount
of time with the computing devices that we have nowadays. But, what would it
happen if powerful machines appear in the future? Could this be a problem for the
security of an e-voting system? The answer is yes and is precisely the problem we
try to solve in this thesis.

The National Institute of Standards and Technology (NIST) published on 2016
a report on post-quantum cryptography [43] to share their understanding about
the status of quantum computing and post-quantum cryptography, give recom-
mendations on how to move forward and inform about their desire to initiate a
standardization process for post-quantum cryptography 2. As the report explains,
post-quantum cryptography has become more and more important in the last years
due to the increase of research on quantum computers, which can be used to solve
certain computational problems faster than classical computers. This means that
any public-key cryptosystem that is built on top of these problems, mainly the fac-
torization and the discrete logarithm problem, is vulnerable to quantum attacks,
and can be easily broken by a quantum computer. This poses a risk on the secu-
rity of most of the applications we use nowadays, in which public-key cryptography

2Full details of the Post-Quantum Cryptography Standardization process can be found in
the following website: https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-
cryptography-standardization
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is an indispensable component. In contrast, the impact of quantum computers
in the security of symmetric cryptography is not as dramatic. These primitives
make no computational assumptions and if the key sizes are large enough, they
are information-theoretically secure 3. The research on quantum and post-quantum
cryptography focuses on solving the problem with public-key cryptosystems.

1.1 Quantum and Post-Quantum cryptography

Quantum computing uses the principles of quantum physics to do things that clas-
sical computers cannot, such as breaking RSA efficiently. Nevertheless, a quantum
computer is not a super-fast normal computer, so they cannot solve any problem
that is too hard for a classical computer such as NP-complete problems.

While classical computers operate with bits which are either 0 or 1, quantum
computers use quantum bits (qubits) which can take both values at the same time.
This ambiguous state is called superposition. The idea is that before we observe a
qubit it does not take a definite value, it is in a state of superposition, and is only
when we observe it, i.e., when we measure it, that it stops in a concrete value. A
good example to better understand what this status means is to think on a coin.
If we spin it, there is a chance that the coin lands on heads or on tails, it can be
either, but it is not until we stop it that we know the value.

We can express a qubit state in the following way: |ψ〉 = α|0〉+β|1〉, where α and
β are complex numbers called amplitudes such that |α|2 + |β|2 = 1. The probability
of seeing a 0 when we observe a qubit is |α|2 and the probability of seeing 1 is |β|2.
If instead of a single qubit we have a group of them (for example a qbyte which
is formed by 8 qubits), we know that their states are somehow connected. This
phenomenon is known as quantum entanglement which means that several qubits
can exist in a single quantum state and changing the state of one will change the
state of the others. We define this single quantum state as: |ψ〉 = α0|0 . . . 0〉 +
α1|0 . . . 1〉 + α2|0 . . . 10〉 + . . . + α2n−1|1 . . . 1〉 where n is the number of qubits and
|α0|2 + . . . |α2n−1 |2 = 1.

Let us consider an example with 2 qubits. While in a classical computer with two
bits we can have only one the following four states {00, 01, 10, 11}, in a quantum
computer 2-qubits can represent these four values at the same time, they can be
in a superposition of the four states (the 2-qubits state is represented as |ψ〉 =
α0|00〉+α1|01〉+α2|10〉+α3|11〉). So informally we can say that n qubits can store
more information than n bits and can process also more data since they can consider
a large number of combinations simultaneously.

These special properties of quantum computers allow to efficiently solve compu-
tational problems which are considered hard to break by classical computers. Two of
the most important problems broadly used nowadays to provide security to our sys-
tems are the factorization and the discrete logarithm problem, which can be solved

3Grover’s algorithm [89] executed in a quantum computer can provide a quadratic speedup on
finding the symmetric key, which decreases the brute force attack time. For example, this algorithm
allows finding an AES256 private key in 2128 quantum operations given several encrypted messages
using this key
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by Shor’s quantum algorithm [137] in polynomial time. This is why some organiza-
tions such as NIST are recommending to transitionate to quantum-safe algorithms.
Indeed the main problem comes when we want to provide long-term privacy to the
information. Data encrypted using a quantum insecure algorithm may be stored by
an adversary until quantum computers are available, and then use them to break
the privacy of this data. If this happens for example in the e-voting context, the
adversary can learn how a person voted some years ago which may have political, as
well as personal implications (e.g. in case of family coercion). There are two possible
solutions to the problems inherent to the appearance of quantum computers: either
use quantum cryptography or post-quantum cryptography.

Quantum cryptography uses the principles of quantum mechanics to perform
cryptographic operations. The best-known example is the Quantum Key Distribu-
tion that allows two parties to exchange a secret and detect any interception of it
during the communication. This is due to the fact that it is not possible to mea-
sure the quantum state of the system without disturbing it. Nevertheless, quantum
cryptography needs special requirements such as its own infrastructure and does
not cover all the needs of secure-communications and secure e-voting systems, e.g.,
digital signatures, public-key encryption, zero-knowledge proofs, etc. Due to this,
quantum cryptography is not suitable for the purpose of this thesis.

On the other hand, post-quantum cryptography uses classical computational
problems and algorithms to build quantum-resistant cryptographic primitives, hence
they can be implemented in classical computers. Some of the main families of post-
quantum primitives are lattice-based cryptography, code-based cryptography, mul-
tivariate polynomial cryptography and hash-based signatures [43]. Their security
is based on computational problems for which there is currently no quantum algo-
rithm that can break them. Code-based cryptography is based on error-correcting
codes which add redundancy to transmitted data so that the receiver can correct
the errors that occurred during the communication. Multivariate polynomial cryp-
tography consists on building cryptographic schemes which security is based on the
difficulty of solving systems of multivariate equations or equations involving multi-
ple unknowns. The security of hash-based cryptography is based on the well-studied
hash functions, whose collision resistance property ensures that the probability of
obtaining the same hash value using two different inputs, is negligible. Finally, from
all of them lattice-based cryptography is which have received more attention and is a
great promise to get cryptosystems that will remain secure in the post-quantum era
[113]. It allows to build several cryptosystem such as digital signatures, public-key
encryption or zero-knowledge proofs. The cryptographic protocols and the online
voting system presented in this thesis uses lattice-based cryptography to achieve
long-term privacy.

1.2 Our contribution

The contribution of this thesis is mainly on the fields of online voting and lattice-
based cryptography. More concretely, we propose two distinct lattice-based proof of
a shuffle which are used to build a post-quantum verifiable mix-net. Then, we also
propose a post-quantum online voting system which uses the post-quantum verifiable
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mix-net to provide anonymity and a lattice-based coercion-resistant protocol, which
is also one of the contributions of this thesis, to provide cast-as-intended verifiability.

In the last years, several countries have been introducing electronic voting sys-
tems to improve their democratic processes: e-voting systems provide more accurate
and fast vote counts, reduce the logistic cost of organizing an election and can offer
specific mechanisms for voters with disabilities to be able to cast their votes indepen-
dently. In particular, internet voting systems provide voters with the chance to cast
their votes from anywhere: their homes, hospitals, or even from foreign countries in
case they are abroad at the time of the election. As we have explained at the begin-
ning of this introduction, privacy and verifiability are two fundamental requirements
for internet voting systems that seem to be contradictory. Privacy requires that the
link between the vote and the voter who has cast it must remain secret during the
whole process (anonymity) and that the vote content is only known by the voter who
cast it (confidentiality), while verifiability requires that all the steps of the electoral
process - vote casting, vote storage and vote counting - can be checked by the voters,
the auditors or external observers.

The different techniques used by the actual internet voting systems to achieve
anonymity can be classified in three categories: blind signatures, homomorphic tal-
lying and mixing, which will be explained in detail in Section 2.3.2. For the purpose
of this thesis we are interested on the latter technique. During a mixing process the
ciphertexts are transformed in such a way that the correlation between the input
and output of the process is hidden and it is not possible to trace it back, i.e., cipher-
texts at the output look completely different as those at the input. This operation
is called a shuffle and it is executed in a mixing network (mix-net) composed of
mixing nodes (mix-nodes) each one performing in turns the same operation. This is
done in order to be able to preserve the privacy of the process even if some nodes
are dishonest: as long as one of the mix-nodes remains faithful and does not reveal
the secret values used for computing the shuffle, unlinkability is preserved. Notice
that this method requires to provide a proof of a shuffle to demonstrate that the
contents of the output are the same as the contents of the input, i.e., ciphertexts
have not been manipulated nor added or deleted.

On the other hand, in order to build verifiable systems one key instrument is
the Bulletin Board: a public place where all the audit information of the election
(encrypted votes, election configuration, . . . ) is published by authorized parties and
can be verified by anyone: voters, auditors or third parties. However, once published
in the Bulletin Board, it is not possible to ensure that all the copies are deleted after
the election and the audit period ends, and long-term privacy may not be ensured
by the cryptographic algorithms used nowadays, for example due to the efficient
quantum algorithm given by Shor [137] that breaks computational problems such
as the discrete logarithm or the integer factorization problems. This means that if
our online voting system uses a mix-net to preserve privacy but also publishes the
encrypted votes and the proof of a shuffle in the bulletin board to give verifiability,
we need to ensure that the published information does not break long-term privacy.
Since lattice-based cryptography seems to be one of the main alternatives to achieve
post-quantum security, we consider interesting to focus our research on mix-nets
capable of shuffling lattice-based encryptions and on computing lattice-based proofs
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of a shuffle. In this way, we will be able to build a post-quantum online voting system
in which long-term privacy is preserved since voting options are encrypted using a
lattice-based cryptosystem and the resulting ciphertexts are anonymized using a
lattice-based mix-net. Publishing the audit information in the bulletin board will
not suppose any risk for long-term privacy since the cryptographic primitives used
are known to be secure in front of a quantum adversary.

Lattice-based proof of a shuffle. We propose two proofs of a shuffle based on
lattices. The former is the first universally verifiable mix-net for a post-quantum
cryptosystems and follows Wikström’s technique [153], who proposes an offline pre-
computation technique to reduce the online computation complexity and a provably
secure technique to prove the correctness of a cryptographic shuffle. Our proposal,
although is based in [153], it is not a direct adaptation of it since it introduces
two significant differences: during the offline part the random elements used to re-
encrypt the ciphertexts are committed using the generalized version of Pedersen
commitment and it is proved that these elements belong to a certain interval us-
ing zero-knowledge proofs. We show how to permute and re-encrypt lattice-based
encryptions and give the first proof of a shuffle that works for a lattice-based cryp-
tosystem. As we have mentioned before, for building the proof we use Pedersen
commitments, which are perfectly hiding and computationally binding. The former
means that the commitment does not reveal any information about the message
committed and the latter that once committed, the message cannot be changed.
For long-term privacy we are mainly interested on the first property. Since the
commitment perfectly hides the committed message, its privacy does not depend
on any computational assumption whose strength may be eroded in the future, so
the scheme achieves our goal, which is to construct a proof of shuffle which ensures
long-term privacy. Nevertheless, since the binding property of the commitment re-
lies on the discrete logarithm problem which is already broken by Shor’s quantum
algorithm, the proof cannot be considered fully post-quantum. Moreover, there is
no formal definition of security, necessary to precisely know how it can be embedded
in a larger construction.

The second proof of a shuffle proposal tries to improve the previous one. It is
fully based on lattices and we also give a definition of security and provide a proof of
security for the mix-node. The proof is based on Bayer and Groth’s technique [22],
who use a different approach from Wikström to demonstrate the correctness of the
shuffle and significantly improves the efficiency compared with previous schemes.
Again, our proposal is not a direct adaptation of [22] since working with lattices
requires different techniques to be applied. In order to build the proof we use a
lattice-based commitment scheme and lattice-based zero-knowledge proofs, which
makes the proof of a shuffle fully post-quantum. We use this lattice-based proof of
a shuffle to provide anonymity to our post-quantum online voting system.

Post-quantum online voting system. This system uses a lattice-based encryp-
tion scheme to encrypt votes in the voting device, signs them using a lattice-based
signature scheme and computes a coercion-resistant cast as intended proof as the one
proposed in [91] but using lattice-based primitives. This proof allows the voter to
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check that the options selected have not been modified by their voting device and,
in addition, it prevents the voter from being coerced. The system also provides
recorded-as-cast verifiablity which allows the voter to verify that their vote was suc-
cessfully stored in the ballot box. With the description of this system we achieve
the main goal of this PhD thesis which was to design a quantum-safe online voting
system which provides long-term privacy.

1.3 Organization

The organization of this thesis is as follows:

• In Chapter 2 we give the background needed for better understanding the
following chapters. There is an introduction to cryptography in which we
present basic cryptographic primitives such as encryption or signatures but also
some more advanced such as zero-knowledge proofs. We also define what does
it mean for a cryptographic scheme to be secure and how we can demonstrate
this security. Then, we introduce the reader to online voting, by explaining
which are the security requirements an ideal online voting system should satisfy
and how we can ensure they are fulfilled by cryptographic means. Finally,
and probably the most important part of this chapter since is the result of
our earliest research, we give an introduction to lattices. We explain some
of the basics concepts and which are the computational problems we work
with. Then, we describe a special class of lattices which allows to build more
efficient lattice-based cryptographic schemes and finally we describe some of
these schemes, focusing specially on those that will be used for building our
proof of a shuffle.

• Chapter 3 corresponds to our first contribution to state of the art on lattice-
based mixing protocols, which are a key component in online voting systems
for providing anonymity. We show how to demonstrate that a list of RLWE
ciphertexts, i.e., messages encrypted using a lattice-based encryption scheme,
has been successfully shuffled without modifying them. This new protocol,
which as far as we know is the first universally verifiable mix-net for a post-
quantum cryptosystem, was published in the NordSec conference4 in 2017:

– Proof of shuffle for lattice-based cryptography. Núria Costa, Ramiro
Mart́ınez, Paz Morillo. In: Lipmaa H., Mitrokotsa A., Matulevicius R.
(eds) Secure IT Systems. NordSec 2017. Lecture Notes in Computer Sci-
ence, vol 10674, pp. 280-296. Springer International Publishing (2017).

The full version of the paper can be found at ePrint5.

• Chapter 4 corresponds to our second contribution to state of the art on lattice-
based proofs of a shuffle and addresses some of the problems detected in our
previous work. It is fully based on lattices and it is the first fully post-quantum

4http://www.nordsec.org/conferences/
5https://eprint.iacr.org/2017/900.pdf

http://www.nordsec.org/conferences/
https://eprint.iacr.org/2017/900.pdf


18 Chapter 1. Introduction

proof of a shuffle for a RLWE encryption scheme. This proof was published in
the International Conference on Financial Cryptography and Data Security in
2019:

– Lattice-based proof of a shuffle. Núria Costa, Ramiro Mart́ınez, Paz Mo-
rillo. In: Bracciali A., Clark J., Pintore F., Rønne P., Sala M. (eds) Fi-
nancial Cryptography and Data Security. Lecture Notes in Computer Sci-
ence, vol 11599, pp. 330-346. Springer International Publishing (2020).

The full version of the paper can be found at ePrint6.

• In Chapter 5 we use most of the cryptographic primitives explained in previ-
ous chapters to build our post-quantum online voting system. We define the
protocol by describing each of the algorithms involved in each of the system
phases and we informally discuss which are the security requirements fulfilled
by the system. Finally, we propose some research lines that could be followed
in future work in order to improve the post-quantum online voting system.

• We end this PhD thesis with Chapter 6, in which we share with the reader the
conclusions of our research, focusing on which have been our contributions to
both the academic and industry world but also which are the topics we leave
open for future work.

6https://eprint.iacr.org/2019/357.pdf

https://eprint.iacr.org/2019/357.pdf


Chapter 2

Preliminaries

In this chapter we introduce first the notation that will be used throughout the
document (Section 2.1). Specific notation, for example regarding lattices, will be in-
troduced in the corresponding section. Then, we give a background on cryptography
(Section 2.2) focusing on those primitives that are interesting for our work and we
explain what is online voting, which are the security requirements an online voting
system should satisfy and which are the existing techniques for achieving privacy
and verifiability (Section 2.3). Finally, in Section 2.4 we introduce the reader to lat-
tices and ideal lattices, explaining which are the main lattice-based computational
problems and some of the cryptosystems built upon them.

As its name indicates, this is a preliminary chapter which will give us the neces-
sary background to understand the following chapters.

2.1 Notation

Standard notation regarding vectors and matrices will be used. Column vectors will
be represented by boldface lowercase roman letters (such as v or w) and matrices
will be represented by boldface uppercase roman letters (such as M or A). Given
two vectors v,w ∈ ZNq , we define the standard inner product in ZNq as 〈v,w〉 =∑N

i=1 viwi. In addition, we define the l∞ norm of a vector v as ‖v‖∞ = max1≤i≤N |vi|
and the general norm lp as ‖v‖p = (

∑N
i=1 |vi|p)1/p for p ≥ 1.

For a real number x ∈ R, we let bxc denote the largest integer not greater than
x, and bxe := bx+ 1/2c denote the integer closest to x, with ties broken upward.

Finally, we write a
$←− A when a is sampled uniformly at random from a set A,

and a
$←− D if it is drawn according to the distribution D. We also write a← A(x)

when on input x the deterministic algorithm A outputs a and, a
$←− A(x) if A is a

probabilistic algorithm.

2.2 Basic cryptography

Cryptography has a long history, starting with the use of hieroglyphs in Egypt and
ending nowadays where cryptography plays a crucial role in most of the applications
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since it provides security to the transmitted and stored information. Although the
first goal of cryptography was to provide confidentiality in order to ensure the secrecy
of the transmitted messages, modern cryptography is concerned also about data
integrity, authentication and non-repudiation. Taking as a reference the Handbook
of applied cryptography [110], we can define these four cryptography goals in the
following way:

• Confidentiality: it prevents unauthorized parties to learn content of informa-
tion. It is sometimes referred as privacy or secrecy.

• Integrity: it prevents unauthorized parties from modifying data.

• Authentication: it allows to verify that information comes from where it
claims.

• Non-repudiation: it prevents an entity from denying the validity of some in-
formation or action.

In order to ensure each one of these goals there exist different cryptographic primi-
tives: encryption transforms data to make it incomprehensible for all those who are
unauthorized to access it, thus providing confidentiality. Nevertheless encryption
does not provide integrity so if the encrypted data is modified no one will notice
it. In order to provide integrity we can use signatures which also provides authen-
tication and non-repudiation (other primitives such as hash functions or message
authentication code functions are also used to provide integrity). The receiver of a
signed message can check by verifying the signature that the information was not
altered during its transmission and that the sender is who claims to be. It is also
possible to combine encryption and signatures, i.e., the sender of a message signs it
after encrypting it, thus ensuring the four goals.

Although these two primitives are probably the most well-known, there are also
others which are considered more advanced, such a zero-knowledge proofs or com-
mitments, that apart from ensuring some of the goals mentioned above they are also
used to demonstrate other properties that we will see in more detail in the following
sections.

The main goal of this section is to present the cryptographic primitives used as
building blocks for the online voting system described in Chapter 5. We are going
to explain what does it mean for a cryptographic primitive to be secure, how can
we prove its security and which are the algorithms that define each one them.

There are some common concepts that will be used throughout all the explana-
tions and that we describe below.

Definition 1 (Probabilistic polynomial-time algorithm (PPT algorithm) [96]). An
algorithm A is said to run in polynomial time if there exists a polynomial p(·) such
that, for every input x ∈ {0, 1}∗, the computation A(x) terminates within at most
p(‖x‖) steps (‖x‖ denotes the length of the string x). A probabilistic algorithm is
one that has access to a source of randomness that yields unbiased random bits that
are each independently equal to 1 with probability 1/2 and 0 with probability 1/2.



2.2. Basic cryptography 21

Definition 2 (Negligible function [96]). A function f(κ) is negligible (negl) if it
decreases faster than the inverse of every positive polynomial:

∀c > 0 ∃κ0 ∈ N | ∀κ ≥ κ0 |f(κ)| ≤ 1

κc

where κ is the security parameter.

Definition 3 (One-way function). A function f : {0, 1}∗ → {0, 1}∗ is a one-way
function if it can be evaluated in polynomial time and for every PPT algorithm A
there is a negligible function ε such that

Pr[A(f(x)) ∈ f−1(f(x))] ≤ ε(n) ∀n ∈ N

Definition 4 (Trapdoor one-way function). A function f : {0, 1}∗ → {0, 1}∗ is
a trapdoor one-way function if it is a one-way function (see Definition 3) but it
becomes easy to invert with the knowledge of a trapdoor.

2.2.1 Security

When trying to define what does it mean for a cryptographic scheme to be secure
we need first to define which are the conditions under it is secure, i.e., against whom
or from what it is safe. For this reason, we define the following two concepts:

• The attack model: specifies the information available to the adversary when
performing the attack.

• The security goal of the adversary: is the adversary’s intention when attacking
the cryptographic scheme.

Then, we can define the security notion of a cryptographic scheme as a combina-
tion of a goal and an attack and we can claim that a cryptographic scheme achieves
a certain security notion if any attacker working in a given attack model cannot
achieve their goal.

Nevertheless, is it impossible for an attacker to achieve their goal or depending on
the computational resources available it will be hard to achieve it but not impossible?
and, what does it mean hard, how much work it will take for an attacker to break
a system? Following we answer these questions.

The security level of a cryptographic scheme defines the amount of work that
it takes to break the cryptosystem. We distinguish between two types of security
levels:

• Information-theoretic security (or unconditional security): even if an adver-
sary has unlimited computational resources (computationally unbounded ad-
versary) is theoretically impossible to break the cryptographic scheme. This is
a desired security level but is useless in practice. An example of information-
theoretically secure cryptosystem is the one-time pad symmetric encryption
scheme.
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• Computational security: this is a more relaxed security level than the previous
one so it is also weaker. While unconditional security says that a cryptographic
scheme cannot be broken, computational security gives a limit on how hard it is
to break it. An efficient adversary (computationally bounded adversary) with
reasonable resources and in a reasonable amount of time can only succeed on
breaking the cryptographic scheme with some very small probability. We can
express computational security in terms of two values: a limit t on the number
of operations that an attacker can carry out, and a limit ε on the probability
of success of an attack. Then, we can say that a scheme is (t, ε)−secure if
an attacker performing at most t operations has a probability of success on
breaking the scheme no higher than ε. We are going to consider both t and ε
as functions of the security parameter of the scheme [96] and the adversary as
a PPT algorithm (see Definition 1).

The security level we are going to require for our cryptographic schemes is compu-
tational security since it suffices for practical proposals. Nevertheless, it is important
to recall that a scheme that is computationally secure can always be broken with
enough time and enough resources.

Taking all of these into consideration, we can define more precisely what does it
mean for a cryptosystem to be secure in the following way:

Definition 5 (Secure cryptosystem). A cryptographic scheme is secure if every
PPT adversary A working in a given attack model achieves their goal with only
negligible probability.

Apart from giving a definition of security for a cryptographic scheme we also
want to demonstrate that it is indeed secure. For doing it there are mainly two
approaches:

• Provable security: it shows that if the security of a cryptographic scheme is
compromised then either some simple logical contradiction occurs (information-
theoretic security) or some well-studied problem can be solved efficiently (com-
putational security) [17]. In order to demonstrate computational security we
can use either formal methods or reductionist proofs [79] in which is it demon-
strated that any efficient adversary breaking the cryptographic scheme can be
used as a subroutine by another adversary to solve the problem that is believed
to be hard.

• Probable security: there are some cryptographic schemes (for example, most
of symmetric encryption schemes) for which it is not possible to demonstrate
that they are as hard to break as a well-studied problem. In this case, we are
confident that the scheme is (probably) secure because it has not been found
yet any efficient attack that breaks the scheme.

The approach we are going to follow to demonstrate that a cryptographic scheme
is secure is reductionist proofs and more concretely the game-playing technique
[138]. In this game there are two probabilistic processes, the challenger C and the
adversary A which communicate with each other in an attack game which usually
consists on four phases: init, request, challenge and response phase. During the
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init phase the challenger configures the environment in which the game will be
executed, i.e., generates all the public and private parameters required to setup
the cryptosystem that is going to be attacked. Then, in the request phase the
adversary performs queries to the challenger and uses the answers to try to be
successful in the next phase. Intuitively, the more flexible the attacker is in this
phase, the more probability will have to be successful. When the challenge phase
is reached the adversary cannot perform more queries and it is challenged by C to
solve a problem (for example, to distinguish between the encryption of two different
messages). Finally, in the response phase the adversary answers the challenge
and A wins if the answer is correct. Indeed, we normally say that A wins the game
if some particular event S happens which corresponds to successfully answering
to the challenge. In this context, and taking as a reference Definition 5, security
means that for every PPT adversary A, the probability that the event S occurs is
negligible close to some other target probability (either 0, 1/2 or the probability that
some other event occurs in other game where the same adversary is playing with
another challenger). In order to demonstrate the security of a cryptosystem usually
it is required not only one game but a sequence of them: Game 0, Game 1,. . . ,
Game n; where Game 0 is the original game in which the adversary plays against
the original challenger. From one Game to another only small modifications are
done such that adjacent games are indistinguishable, thus if Si denotes the event in
game Gi that makes the adversary win, |Pr[Si]| is negligible close to |Pr[Si+ 1]|.
In the last game the probability that the adversary wins, i.e., the probability that
the event Sn occurs, is negligible close to the target probability, since usually the Sn
implies that some well-studied hard problem is broken. If it is demonstrated that
G0 is indistinguishable from G1, G1 from G2 and so on, we can argue that the first
game is indistinguishable from the last one and security is proved. As explained in
[138] this transition from one game to another can be based on indistinguishability,
on failure events or on conceptual changes.

These proofs sometimes make use of an assumption in which the hash functions
are ideal, i.e., they behave as a truly random functions. This idealized model in-
troduced by Bellare and Rogaway [25] (we say that is an idealized model because
truly random functions cannot be handled by polynomial time algorithms) is called
the Random Oracle Model (ROM) in which it is assumed that exists a random
oracle O to which both the adversary and the challenger have access. This oracle
can be seen as a black box which for each input produces an output in such a way
that if the same input is provided the same output is given. Reductionist proofs
that make no assumptions are said to be in the standard model, nevertheless they
are not considered in this thesis.

2.2.2 Encryption

Encryption is the principal application of cryptography since it allows users to ex-
change messages in a secure way through a insecure channel, so any unauthorized
user cannot learn the content of these messages. In an encryption scheme the plain-
text is the unencrypted message and the ciphertext refers to the encrypted message.
The set of all possible plaintexts is denoted as M and the set of ciphertexts as C.
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The operation that converts a plaintext into a ciphertext is called encryption and
the one that turns a ciphertext back to a plaintext is called decryption. In order to
execute these two operations it is necessary to use a key. Depending on how many
keys do we need we distinguish between symmetric encryption (the same secret key
is used to encrypt and decrypt) and asymmetric encryption or public-key encryption
(a public key is used to encrypt and a private key to decrypt).

As we have explained in the previous section the definition of the security of a
cryptosystem starts by specifying which are the attack model and the goal of the
adversary. In an encryption scheme we distinguish between the following ones:

• Attack model:

– Ciphertext-only attack (COA): this is the most basic scenario in which
the attacker has access only to some ciphertexts and does not have any
information about the plaintexts that were encrypted. This is a passive
attacker model since A is just an observer.

– Known-plaintext attack (KPA): in this scenario the attacker has access
to one or more pairs of ciphertext and plaintext, not chosen by him. As
in the previous model, this is a passive attacker model since A is just an
observer.

– Chosen-plaintext attack (CPA): in this attack model the attacker can
make queries to the challenger asking for the encryption of some previ-
ously selected message. The attacker can chose these messages consider-
ing the information sent by the challenger.

– Chosen-ciphertext attack (CCA)[115]: in this attack model the attacker
can make queries to the challenger asking for the decryption of some
ciphertexts. As in the previous model, the selection of the ciphertexts
can be done considering the information sent by the challenger, i.e., the
relation between a ciphertext and the corresponding decryption. If the
attacker is allowed to make queries after the challenge phase, the attack
model is called Adaptative Chosen Ciphertext Attack or CCA2 [127].

• Adversary goal:

– Distinguish: given a ciphertext c which encrypts one of two messages pre-
viously chosen by A, the objective of the adversary is to determine which
message was encrypted by C during the challenge phase. If the adver-
sary is not successful the encryption scheme achieves the security goal of
indistinguishability (IND) [79]. What we will require for our encryption
scheme is that the probability of the adversary of being successful is close
to 1/2, so we can guarantee that the only possibility A has to guess the
correct message is to randomly select one of them.

– Tampering: given a ciphertext c1 that encrypts m1 the objective of the
adversary is to generate another ciphertext c2 such that m2 is related to
m1. If the adversary is not successful the encryption scheme achieves the
security goal of non-malleability (NM) [59].
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From these models and goals we can define several security notions but the mains
ones are IND-CPA and IND-CCA. We say that our encryption scheme is IND-CPA
secure if an adversary performing a CPA attack is not able to distinguish between
the encryption of two different messages except with a negligible probability. This
is also called semantic security [78]. On the other hand, an encryption scheme in
IND-CCA secure if an adversary performing a CCA attack is not able to distinguish
between the encryption of two different messages except with a negligible probability.
If the attacker is allowed to make decryption queries also after the challenge phase,
we say that the scheme in IND-CCA2 secure.

2.2.2.1 Symmetric key encryption

In a symmetric encryption (also called private-key encryption), the symmetry lies
on the fact that both parties hold the same key which is used for both encryption
and decryption.

Definition 6 (Symmetric key encryption scheme). A symmetric encryption scheme
is defined by the following PPT algorithms:

• KeyGenSE(1κ): the randomized key generation algorithm takes as input the
security parameter 1κ and outputs the secret key k ∈ K. It also defines the
message space Mκ and the ciphertext space Cκ.

• EncS(m, k): the encryption algorithm takes as input a message m ∈ Mκ and
the secret key k ∈ K and produces a ciphertext c ∈ Cκ.

• DecS(c, k): the decryption algorithm takes as input the ciphertext c ∈ Cκ and
the secret key k ∈ K and outputs the corresponding plaintext m or ⊥ in case
of error.

We use the superscript S to distinguish the EncS and DecS algorithms of a sym-
metric key encryption scheme from those in the asymmetric scheme. Following
the same approach, the subscript E used in the key generation algorithm allows to
distinguish it from that algorithm in the commitment scheme (see Definition 15).

Definition 7 (Correctness). A symmetric key encryption scheme is correct if for all
m ∈Mκ, all k ← KeyGenSE(1κ) and all c← EncS(m, k) we have that DecS(c, k) = m.

The best known attack for a symmetric-key encryption scheme is a brute-force
attack, which consists on an exhaustive search of the secret key that was used
to encrypt the plaintext. In order to consider a symmetric-key encryption scheme
computationally secure it must not be vulnerable to this kind of attack. On the other
hand, a necessary condition to be unconditionally secure is that the key should be
at least as long as the message, such as in the one-time pad scheme.

The main limitation of a symmetric-key encryption primitive is the key distri-
bution since the secret key must be shared between the sender and the receiver
of the ciphertext. One way of solving this issue is using a public-key encryption
scheme in which it is not necessary to share any key for executing the encryption
and decryption algorithms.



26 Chapter 2. Preliminaries

2.2.2.2 Public-key encryption

In 1976, Diffie and Hellman [58] proposed a new encryption technique which allowed
two parties to communicate privately without the need to share any secret key. This
technique is called public-key encryption or asymmetric encryption. The asymmetry
lies on the fact that the encryption of a message is done using a public key and the
decryption using a private key. As their names suggest, the public key is known by
everyone thus anybody can encrypt a message and the private key is only known
by the receiver of the message so only them can execute the decryption. Although
these two keys are different, they are not independent from each other: usually, the
public key is computed from the private key using a one-way function (see Definition
3), thus from the public key it is computationally hard to retrieve the private key.
As a consequence the encryption process is based on trapdoor one-way functions
(see Definition 4): the encryption is the easy operation (anyone can do it) and the
decryption is only easy for the user who knows the private key, i.e., the trapdoor.

Definition 8 (Public-key encryption scheme). A public-key encryption scheme is
defined by the following PPT algorithms:

• KeyGenE(1κ): the randomized key generation algorithm takes as input the
security parameter 1κ and outputs a key pair (pk, sk). We refer to pk as the
public key and to sk as the private key. It also defines the message spaceMκ,
the ciphertext space Cκ and a randomness space Rκ (if it is a probabilistic
encryption scheme).

• Enc(pk,m): the encryption algorithm takes as input a message m ∈ Mκ and
the public key pk and produces a ciphertext c ∈ Cκ. If the algorithm is
probabilistic, it also uses a randomness r ∈ Rκ to compute the ciphertext.
For simplicity, when working with a probabilistic encryption scheme we will
denote this algorithm as Encpk(m, r).

• Dec(sk, c): the decryption algorithm takes as input the ciphertext c ∈ Cκ and
the private key sk and outputs the corresponding plaintext m or ⊥ in case of
error.

We use the subscript E in the key generation algorithm allows to distinguish it
from that algorithm in the commitment scheme (see Definition 15).

Definition 9 (Correctness). A public-key encryption scheme is correct if for all
m ∈Mκ, all key pairs (pk, sk)← KeyGenE(1κ) and all c← Enc(pk,m) we have that
Dec(sk, c) = m.

The first cryptosystem implementing a public-key encryption scheme was the
RSA cryptosystem by Rivest, Shamir and Adleman [130] in 1978, whose strength is
based on the hardness of solving the RSA problem which is related to the problem
of factoring large composite integers. Another well-known public-key encryption
scheme is the ElGamal cryptosystem [62] defined by Taher ElGamal in 1985. The
security of this scheme is based on the hardness of solving the discrete logarithm
problem over finite fields.
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Both the raw RSA (where the message is not padded before being encrypted
thus the encryption operation is deterministic) and ElGamal encryption schemes
are homomorphic (see Definition 10), which informally means that it possible to
operate with the plaintexts without decrypting the ciphertexts. This will be a very
useful property when constructing online voting schemes and, more concretely, when
trying to ensure voters’ anonymity.

Definition 10 (Homomorphic encryption scheme). A public-key encryption scheme
is homomorphic if Enc(pk,m1)φEnc(pk,m2) ≡ Enc(pk,m1θm2) for some operations
φ and θ.

There are two types of homomorphism depending on the operation θ done over
the plaintexts. If θ is the multiplication operation we talk about multiplicative
homomorphism and if it is the sum, the homomorphism is additive.

Public-key encryption schemes solves the key-management problem inherent
from symmetric encryption schemes, nevertheless it is much less efficient. As shown
in the ECRYPT standard 1 or by the NIST2, in order to achieve the same security
strength public-key cryptography must use larger keys than symmetric cryptogra-
phy. This is due to the fact that in public-key schemes the attacker has access to an
extra piece of data that can leak information about the private key, i.e., the public
key. In order to break the security of the scheme, instead of trying a brute-force
attack the attacker will try to recover the private key from the public key, which
becomes an easy task if we use the same key length as in symmetric-key schemes.

In real applications what is commonly used is a combination of both schemes in
which we use the flexibility of the public-key cryptosystem to distribute the secret
key and the efficiency of the symmetric-key cryptosystem to encrypt data. The
secret key k is encrypted using the public key pk: c1 = Enc(pk, k) and the message
m is encrypted using the secret key k: c2 = EncS(m, k). The information sent is both
ciphertexts. When the receiver wants to decrypt the message, they first decrypts
the secret key and finally the message: m = DecS(c2,Dec(c1, sk)).

2.2.2.3 Threshold public-key encryption scheme

In some applications such as online voting it is important that the private key
used for the decryption is not owned by a single user but a group of them. In a
threshold public-key encryption scheme [57] the private key is shared among a group
of participants and the ciphertext can only be decrypted if a threshold number of
them collaborate. In order to share the private key a (t,n)-threshold sharing scheme
in used, where n is the number of participants and t is the threshold.

The most famous construction of a (t, n)−threshold sharing scheme is the Shamir
Threshold Scheme [136] which we briefly explain hereunder:

1. Define a0 as the private key that is going to be shared: a0 = sk.

2. Choose a1, . . . , at−1 at random from Zp, where p is a prime.

1https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
2https://www.keylength.com/en/4/
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3. Construct the polynomial: f(x) = a0 + a1x+ . . .+ at−1x
t−1.

4. Choose x1, x2, . . . , xn ∈ Zp and evaluate the polynomial in each value xi.

5. The i−th participant is given the share f(xi).

6. In order to recover the secret sk only t shares are required. Then, the polyno-
mial is reconstructed using, for example, Lagrange interpolation and the secret
is computed as the evaluation of the polynomial at 0.

2.2.3 Digital signatures

As we have seen in the previous section, public-key encryption schemes are used
to provide confidentiality since only the sender and the receiver of the ciphertext
can learn its content. Nevertheless, since the key used to generate the ciphertext
is public, any attacker could encrypt a different message and substitute the initial
ciphertext by the new one without the receiver noticing it. In order to avoid this
situation one solution is to use digital signatures. A digital signature [58] is a
cryptographic tool that is used to ensure the integrity of the messages exchanged
between two parties. The receiver of the signed message can check by verifying the
signature whether the message has been modified during its transmission or not.
In addition, digital signatures also provide authenticity and non-repudiation, which
allows the receiver to check that the sender is who claims to be and avoids the sender
to deny that they signed the message.

As public-key encryption schemes, digital signatures are also asymmetric key
schemes: the private key only known by the sender of the message is used to compute
the signature, and the public key which is known by everyone is used for verifying
it.

Definition 11 (Digital signature scheme). A digital signature scheme is defined by
the following PPT algorithms:

• KeyGenS(1κ): the key generation algorithm takes as input the security param-
eter 1κ and outputs a key pair (pks, sks). We refer to pks as the verification
key and to sks as the signing key. It also defines the message space Mκ and
the signature space Sκ.

• Sign(m, sk): the signing algorithm takes as input a message m ∈Mκ and the
signing key sk and produces a signature σ ∈ Sκ.

• SignVer(m,σ, pk): the verification algorithm takes as input the message m ∈
Mκ, the signature σ ∈ Sκ and the verification key pk and outputs 1 if the
verification succeeds or 0 otherwise.

Definition 12 (Correctness). A digital signature scheme is correct if for all m ∈
Mκ, all key pairs (pk, sk) and all signatures σ ← Sign(m, sk) we have that
SignVer(m,σ, pk) = 1.

We define the following attack models and adversary goals for a digital signature
scheme:
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• Attack model:

– Key-only attack (KOA): in this scenario the adversary only knows the
public key corresponding to the entity that signs the messages and they
are not allowed to do signing requests nor private key requests.

– Known message attack (KMA): the adversary can make queries to the
challenger asking for the signature of some messages but without control-
ling which messages are going to be signed.

– Chosen message attack (CMA): the adversary can choose which are the
messages that are going to be signed by the challenger. If these queries
are adaptive, i.e., they depend on previously obtained signatures and
messages, the model is called adaptive chosen message attack.

• Adversary goal: the main goal of the adversary is to forge a signature, i.e., to
generate a signature on behalf of other entity. If they achieve their objective we
say that the scheme is broken. Nevertheless, depending on how the adversary
forges the signature, the meaning of breaking the system varies:

– Total break: the adversary is able to compute the private key or to find
an efficient algorithm equivalent to the valid signing algorithm.

– Selective forgery: the adversary is able to compute a signature for one
message or a set of them previously chosen.

– Existential forgery: the adversary is able to forge a signature for at least
one message. The adversary has no control over the messages for which
a signature is requested.

Digital signature schemes have the same drawback as public-key encryption
schemes, efficiency. For this reason, what it is usually done is to sign a hash of
the message instead of the message itself. Informally, a hash function is a one-way
function (see Definition 3) that given an input of an arbitrary length it produces an
output of fixed and short length. More formally,

Definition 13 (Hash function). A hash function h : D → R is an unkeyed function
that has the following properties [131]:

• Compression: h maps and input x of arbitrary finite bit-length to an output
h(x) of fixed bit-length n.

• Preimage resistance: given an output of the hash function y it is computa-
tionally hard to find the corresponding input such that h(x) = y.

• 2nd-preimage resistance: given an input x and the corresponding output h(x)
it is computationally hard to find a second input x′ which has the same output,
i.e., x′ ∈ D such that x′ 6= x and h(x′) = h(x).

• Collision resistance: it is computationally hard to find two distinct inputs x
and x′ (which can be freely chosen) which hash to the same output.

The compression property of the hash functions allows to improve the efficiency
of the signature and verification operations.
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2.2.3.1 Blind signatures

In a digital signature scheme the signer knows the message that is signing but in
some scenarios (such as online voting systems) it is required that the signer generates
a signature without knowing the message. Blind signature schemes, proposed by
David Chaum in 1982 [40], are signature schemes in which the message is blinded
before being signed, thus the signer will not learn the message content. Then, the
signed message is unblinded and the signature can be publicly checked against the
original message.

To illustrate how a blind signature scheme works, we show an example using the
RSA scheme:

1. Alice wants Bob to sign a message m, but she does not want him to learn the
content. Bob’s RSA public key is (n, e) and private key (n, d).

2. Alice generates a blinding factor r such that gcd(r, n) = 1.

3. Alice computes x = (mre) mod n and sends x to Bob. The value m is blinded
by r.

4. Bob signs x using his private key t = xd mod n and sends t to Alice.

5. Since t = xd = (mre)d = mdrde mod n = mdr mod n, Alice can retrieve the
signature of m computing σ = r−1t mod n.

2.2.4 Zero-knowledge proofs

Interactive zero-knowledge proofs (ZKP) were introduced by Goldreich, Micali and
Rackoff in 1989 [80]. An interactive ZKP is a protocol between a prover P and a
verifier V in which P convince V that exists a witness for which some statement is true
without leaking any other information. If in addition the prover also demonstrates
that they know the witness, not just its existence, we talk about zero-knowledge
proofs of knowledge (ZKPoK). For example, if we define R as the set of discrete
logarithms problems and their solutions, the prover will demonstrate using a ZKPoK
that they know a solution w to the statement x = (p, q, g, h) such that h = gw

without revealing any information about w (p and q are primes, g, h ∈ Z∗p and
w ∈ Zq).

A zero-knowledge proof should satisfy the following properties:

• Completeness: if the statement is true, an honest prover succeeds in convincing
an honest verifier.

• Soundness: if the statement is false, a dishonest prover does not succeed in
convincing an honest verifier except with negligible probability. For a ZKPoK
the definition is formalized by introducing an efficient knowledge extractor
that is supposed to extract a witness from the proof and that succeeds on
convincing an honest verifier.
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• Zero-knowledge: if the statement is true, a dishonest verifier does not learn
anything more than the assertion of the statement. For ZKPs this definition is
formalized by saying that there exists a simulator S which outputs an accept-
ing conversation with the same probability distribution as the conversation
between P and V. If the distribution is exactly the same we talk about perfect
zero-knowledge and if it is statistically close to the original distribution we talk
about statistically zero-knowledge. Finally, if it is not possible to distinguish
between both distributions in polynomial time, we talk about computational
zero-knowledge. There is a variant of this property called honest-verifier zero-
knowledge (HVZK) in which the verifier is expected to perform according to
the protocol.

In order to clarify the concept of interactive zero-knowledge proof of knowledge
we show below a concrete example, the Schnorr protocol [135] which describes how
to prove knowledge of a discrete logarithm.

Protocol 2.1: Schnorr protocol

P (g, h = gw;w) V (g, h = gw)

k ∈ Zq
a = gk

a−−−−−−−−→
c ∈ [0, q − 1]

c←−−−−−−−−
z = k + wc mod q

z−−−−−−−−→
gz

?
= a · hc

If the prover knows w and is honest, the honest verifier is convinced after the
interaction, i.e., g = a · hc = gk · (gw)c = gk+wc (completeness). In order to demon-
strate the soundness property we will use the fact that if the prover does not know
the witness w, they cannot answer more than one challenge correctly. Given a fixed
value a and two challenges c and c′ (and their corresponding z and z′), if P could
answer in such a way that V accepts both transcripts, then P will be able to extract
the discrete logarithm w. This is demonstrated in the following way: if P answers
correctly to both challenges then gz = a · hc and gz

′
= a · hc′ . So,

gz−z
′ ≡p hc−c

′ ≡p gw(c−c′)

z − z′ ≡q w(c− c′)

w ≡q
z − z′

c− c′
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Since the discrete logarithm problem is known to be computationally hard to solve,
we can conclude that it is not possible for a prover to answer correctly to more than
one challenge without knowing w. There exist at most one challenge c for which a
honest verifier will accept a false transcript from a dishonest prover (a = gzh−c),
but the probability of correctly guessing c given a challenge space C large enough,
is negligible.

Finally, in order to demonstrate that the protocol is honest-verifier zero-knowledge
we need to ensure that it can be simulated. Without knowing w and for each chal-
lenge c, it is possible to compute a triple (a = gzh−c, c, z) with the same probability
distribution as it occurs in the real protocol.

2.2.4.1 Sigma protocols

The Schnorr protocol is an example of Sigma (Σ) protocol [53], which is a 3-move
interactive protocol between P and V, where P wants to prove knowledge of a witness
w for a statement x. During the first move, the prover P sends the commitment a
(see Definition 15) to the verifier, then V replies with a challenge c and finally P
sends the answer z to V. The verifier decides to accept or to reject the answer based
on the information they have seen, i.e., (x, a, c, z).

Definition 14 (Sigma protocol). A protocol P is said to be a Σ−protocol if is of
the above 3-move form and the following properties are satisfied:

• Completeness: if P and V are honest, V always accepts.

• Special soundness: there exists a knowledge extractor E which from any x
and any pair of accepting conversations (a, c, z),(a, c′, z′) where c 6= c′ can
efficiently compute w.

• Special honest-verifier zero-knowledge: there exists an efficient simulator S
which on input x and a random c, outputs an accepting transcript (a, c, z) with
the same probability distribution as a real conversation between an honest P
and V on input x.

As we have explained before the first move of a Σ−protocol consists on computing
a commitment. A commitment scheme is a cryptographic primitive which allows
to commit to a message by generating a commitment, which hides the message to
other parties. At a later stage, the commitment can be opened thus revealing the
hidden message.

Definition 15 (Commitment scheme). A commitment scheme is an interactive
protocol between two parties which is defined by the following PPT algorithms:

• KeyGenC(1κ): the key generation algorithm takes as input the security param-
eter 1κ and outputs the public commitment key ck.

• Comck(m, d): the commitment algorithm takes as input a message m, the
commitment key and an opening d and outputs a commitment c.
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• ComVerck(m, c, d): the verification algorithms takes as input the message m,
the commitment key ck, the commitment c and the opening d. It outputs 1 if
the verification succeeds or 0 otherwise.

The subscript C in the key generation algorithm allows to distinguish it from
that algorithm in the public-key encryption scheme (see Definition 8).

The scheme should satisfy the following requirements:

• Correctness: if both the sender of the commitment and the verifier are honest
the algorithm ComVer always outputs 1.

• Binding: a commitment c cannot be opened to different messages, i.e., no
adversary can generate c, m 6= m′ and d, d′ such that both ComVerck(m, c, d)
and ComVerck(m

′, c, d′) output 1.

• Hiding: the commitment c does not reveal any information about the message
m.

The binding and hiding requirements can be satisfied perfectly/unconditionally
or computationally depending on the computational resources available to the adver-
sary. Nevertheless, a commitment scheme cannot be perfectly hiding and binding
at the same time, so it is either perfectly binding and computationally hiding or
viceversa.

2.2.4.2 Non-interactive zero-knowledge proofs

Interaction between the prover and the verifier is not always possible or desirable:
delays on the communication may affect the usability of the system (such as online
voting systems) or errors on the order how messages are delivered may affect the
security of ZKPs.

Non-interactive zero-knowledge proofs (NIZKPs) eliminate this interaction be-
tween P and V and give them some common information which depends on the
security model where the proof is built.

Fiat and Shamir [66] proposed a technique to build NIZK-PoK from Σ−protocols
with ROM-based security. The idea of this transformation is that the challenge
(generated by the verifier in an interactive protocol) is computed as a secure hash
on the public information, the statement and the commitment. Since in the Random
Oracle Model hash functions are identified with truly random functions, the output
of this function is a uniformly distributed random value as in the interactive proof,
where the challenge is chosen at random from the challenge space.

In order to give a concrete example of this kind of proof we take as a reference
Protocol 2.1 and convert it into a non-interactive protocol:

• The public information to which both P and V have access is the values p, q, g, h
and a hash function H : {0, 1}∗ → Zq.

• The prover computes the commitment a = gk.

• The prover computes the challenge as c = H(g, h, a).
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• The prover computes z = k + wc.

• The prover sends (a, z) to the verifier.

• The verifier computes c = H(g, h, a) and accepts if gz = a · hc

The security obtained in the ROM is heuristic and sometimes is interesting to
build protocols which security is not based on an idealized model. This is the
case of the Common Reference String (CRS) model which states that there exists
a common reference string generated by a trusted party to which both the prover
and the verifier has access. This CRS is given as input to both P and V and is used
to generate the proof and verify it. The main advantage of this security model is
that proofs have a standard reduction-based security proof so they are not heuristic.
Nevertheless, the disadvantage is that the CRS must be created in a trusted manner,
which is not always feasible.

2.3 Online Voting

In recent years several countries have been introducing online voting systems as a
way to improve their democratic processes: e-voting allows more accurate and fast
vote counts, reduces the logistic cost of organizing an election and also offers specific
mechanisms for voters to cast their votes from anywhere. Nevertheless, one of the
main drawback of these systems is the lack of transparency of the process, which
generates mistrust and slows down their introduction into the electoral system. In
traditional paper-based elections every citizen can observe how their vote is intro-
duced in the ballot box and they are convinced that the counting is done correctly
due to the number of observers. We trust the process because we can understand
each of its phases and how they are implemented. In an online voting system, how
can we be sure that our computer has not modified our vote before sending it or
how can we know that our vote was counted? what happens from the moment when
we click the ”Send” button in our device until the results are published? We can-
not observe all the operations done by the voting software (or if we can observe it
probably we cannot understand it) and we need to trust a small group of experts
who are managing the election and the system. In order to address all these prob-
lems and provide guidance and assistance to governments and organizations who
are considering introducing online voting, some organizations such as the Council
of Europe give their recommendations on legal, operational and technical standards
for e-voting.

In this section we are going to define first which are the security requirements that
an ideal online voting system should fulfill (Section 2.3.1) focusing on verifiability
and privacy. Then, we are going to describe which are the existing techniques that
allow to meet these requirements and which are their advantages and disadvantages
(Sections 2.3.2 and 2.3.3). Finally in Section 2.3.4, we are going to introduce the
syntax used in the definition of the voting system proposal presented in Chapter 5.
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2.3.1 Security requirements

A simplified version of an online voting scheme could be that presented in Figure
2.1.

Figure 2.1: Simplified version of an online voting system

Each voter uses their own electronic device to send their vote through the Inter-
net to the voting server, which stores the votes in an electronic ballot box. Then,
once the voting phase is over the votes are counted and the final result is published.
Without having any security measure implemented there are several risks that can-
not be mitigated: the voting device could try to modify the voting options selected
by the voters, an attacker can eavesdrop the communication channel and learn how
the voter voted or a malicious system administrator could delete or add votes in the
ballot box thus altering the result of the election.

For this reason, there are some security requirements that an ideal online voting
system should satisfy, apart from those that are common to other online applica-
tions. We have not found any formal classification of these requirements thus the
list presented in this section is the result of analyzing several e-voting papers, the
legislation and lower regulations of Switzerland [38, 39] and the Council of Europe
standards for e-voting [3].

• Vote authenticity: it has to be ensured that all the votes are cast by eligible
voters (eligibility) and that only one vote per voter is taken into account during
the counting phase (vote unicity).

• Voter privacy: the voting options selected by the voter must be private (vote
confidentiality) and they cannot be linked to the voter who cast them (vote
anonymity).
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• Tally accuracy: the result of the election must accurately reflect the intention
of the voters. Therefore, it should not be possible to modify the content of the
votes (vote integrity), erase them from the ballot box or add fake votes.

• Election fairness: it should not be possible to provide intermediate results
before the end of the election in order to give to all the candidates a fair
decision.

• Verifiability: the voting system should provide enough evidences to allow vot-
ers and any third party to check that everything works as expected. Voters
should be able to verify that the vote stored in the ballot box indeed represents
their intention and that it has been taken into account during the counting
phase. An auditor should be able to verify that only votes cast by eligible
voters have been included in the tally.

• Receipt-freeness: the system should not provide to the voter with any infor-
mation that allows them to demonstrate to a third party how they voted. This
is done in order to prevent coercion or vote selling.

• Traceability and accountability: all the components of the voting system must
leave traces of their operations in order to allow their verification. In addition,
in case of any malfunction, it has to be possible to identify the responsible
component.

As we can see there are several requirements that seem to be contradictory: how
can the system provide enough evidences to the voter that their vote was cast-as-
intended but at the same time prevent them from being coerced? or, how can the
system ensure that all the votes included in the tally were cast by eligible voters
without breaking voters’ privacy? In order to fulfill all these security requirements
we use cryptographic techniques.

As we have already seen in Section 2.2, by encrypting a message we ensure that
only the sender and the intended recipient can learn the content, and signing it we
protect its integrity and we can verify the authenticity of the sender. Therefore
it seems that two security measures that could be implemented in order to satisfy
requirements such as vote confidentiality or vote integrity are the encryption and
the signature of the vote.

Unlike the online voting system presented at the beginning of this section, in
the system shown in Figure 2.2 the voting options are encrypted and then digitally
signed by a software executed in the voting device. Once encrypted and signed,
the vote is sent to the voting server which verifies the signature before storing it
in the ballot box. This allows the server to verify that the encrypted vote was
not manipulated during its transmission. Once the voting phase is over and before
sending the votes to the electoral board, the signatures are removed in order to avoid
linking a decrypted vote with the voter who cast it. Usually each electoral board
member holds a share of the private key and only if all the members collaborate
votes can be decrypted. If threshold decryption techniques are used (see Section
2.2.2.3), only a threshold number of members is needed to perform the operation.
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Figure 2.2: Basic online voting system. The voting options are encrypted and
digitally signed in the voter’s device.

Nevertheless, although with the encryption and the signature of the votes it is
possible to fulfill some of the requirements, it is not enough. The voter cannot verify
neither that their vote was successfully stored in the ballot box nor that it has been
taken into account when computing the election result. On the other hand, although
before decrypting the signatures are removed, any attacker knowing the order how
the votes were cast and then analyzing the order they are decrypted, can link the
content of a vote with a specific voter.

In order to address these issues which are mainly related to verifiability and
privacy, we are going to describe in the following sections which are the existing
techniques that allow to fulfill these security requirements.

2.3.2 Privacy in online voting systems

As we have already explained, one of the security requirements that an online voting
system should satisfy is voter privacy, which include vote confidentiality and vote
anonymity. The former is ensured by encrypting the vote and for the latter there
are different approaches:

• Pollsterless or code voting

• Two agencies model

• Homomorphic tally

• Mixing

Each category is defined by a different anonymization procedure implemented in a
distinct phase.

2.3.2.1 Pollsterless or code voting

As explained in [108, 144] a pollster is a piece of software that interacts with the
voters during the voting phase in order to generate the vote and send it later to the
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voting server. In order to preserve the voter privacy, the pollster must be trusted
since it knows how the voter voted (for example, a pollster could be the voter’s
mobile phone). The online voting systems that implement the pollsterless protocol
use pre-encryted ballots generated during the configuration phase and do not require
any cryptographic operation to be done on the user’s side (the software can be as
simple as possible) hence the voting client does not need to be trusted.

In more detail, this kind of systems works in the following way: before the
voting phase starts, each voters receives a Voting Card (see Figure 2.3) with the
list of voting options available in the election and a voting code associated to each
one of them. These codes are unique per voter, i.e., two different voters will have
different voting code for the same voting option. In order to vote, the voter should
introduce in the voting client the codes corresponding to the voting options selected.
In this way, we do not need the voting client to have computational power to perform
cryptographic operations, since it does not need to encrypt the vote nor to sign it. In
addition, the voting card could also have a verification code for each voting option.
When the server receives the voting codes, it uses them to compute the verification
codes, which will be sent back to the voter, who will check using the voting card
that they correspond to the voting options selected. At the end of the election, once
the voting period has finished, the electoral board retrieves the voting cards in order
to do the counting and provide the results.

Figure 2.3: Voting card used in a pollsterless voting system

From an anonymity point of view these protocols allow us to send anonymous
votes since they are not signed by the voter. They also protect the secrecy of the
vote since the voting codes themselves do not give any information about the voting
option they represent without having the voting card. Nevertheless, there is still
a possibility of breaking voter’s privacy if the voting card is compromised. For
example, an attacker could know which are the voting options selected by the voter
if they intercept the vote and compare the codes with those in the stolen voting
card.
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Apart from voter privacy, pollsterless online voting systems also satisfies verifia-
bility, since the voter can verify that their voting intention has not been manipulated
using the verification codes; and election fairness because the voting cards are only
used by the electoral board once the voting phase has finished to provide the results.
Nevertheless, they do not provide receipt-freeness since voters can demonstrate to
a coercer how they voted using their voting card and the verification code sent by
the voting server. Finally, due to the usage of voting codes this technique cannot
be used in elections that allow write-ins.

Examples of voting system using this methodology are SureVote [41], Pretty
Good Democracy [132] and Pretty Understandable Democracy [34].

2.3.2.2 Two agencies model

Unlike the previous protocol, the two agencies model [42, 68, 118] anonymize the
votes when casting them. This protocol has two independent servers:

• Validation server: it authenticates voters, verifies their eligibility and, in case
they are allowed to vote in that election, it sends them an anonymous token
which will allow them to send an anonymous vote.

• Voting server: it receives the encrypted votes with the corresponding anony-
mous token. Only votes with tokens issued by the validation server will be
accepted.

Figure 2.4: Two agencies model

This kind of protocols use blind signature already explained in Section 2.2.3.1.
In more detail, the voting process is the following:

• The voting client, after the voter selects the voting options, encrypts them us-
ing the election public key, blinds the ciphertext and sends it to the validation
server together with the voter’s credentials. In this scenario, the voting client
should have enough computational power to perform cryptographic operations.
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• The validation server receives the blind vote, checks that the voter who sends
it is an eligible voter and signs it. Finally, it sends back to the voter the signed
blind vote.

• The voting client removes the blinding factors and obtains the encrypted vote
signed by the validation server.

• The voting client sends the signed and encrypted vote to the voting server,
that validates the signature and if the validation is successful, it stores the
vote.

This protocol ensures anonymity because the validation server, who knows the
identity of the voter, never sees the encrypted vote in clear but a blind version. In
addition, the voting server stores an anoynymous encrypted vote, since its signature
has been done by the validation server, not by the voter.

Nevertheless, this is not enough to provide anonymity, we should also assume
that the servers are not going to collaborate. If they do collaborate, they could share
some voter information, such as the IP address, that will allow them to link votes
with voters. Furthermore, if the validation server is compromised, it could generate
valid encrypted and signed votes that will be successfully accepted by the voting
server, thus manipulating the election results.

Since this protocol does not pose any restriction on the encoding of the voting
options, it supports any type of election including those having write-ins.

2.3.2.3 Homomorphic tally

Homormophic tally was first proposed in [45]. In this kind of systems voting options
are encrypted using a cryptographic scheme that has homomorphic properties (see
Definition 10) such as ElGamal or Paillier [119] and the anonymization procedure
consists on aggregating the encrypted votes once the election has finished and de-
crypt only the result of the aggregation. From the two types of homomorphism
(see Section 2.2.2.2), the additive one is the most used in electronic voting since
the result of the aggregation is directly the sum of all the votes. In order to better
understand these systems, we give below an example using the exponential version
of the ElGamal cryptosystem.

c = (γ, δ) = (gk, hk · gm) = (gk, (gx)k · gm)

Recall that in the ElGamal encryption scheme the public key is pk = (g, h), where
h = gx and x is the private key (sk = x). When using additive homomorphism, the
voting options are encoded using either g1 or g0 depending whether the voting option
has been selected by the voter or not. After the encoding is done we have an array
with as many elements as voting options available in the election: (gm1 , . . . , gml)
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where mi ∈ {0, 1} and each one of these elements is encrypted independently:

V1 : c1 = (gk1 , (gx)k1 · gm1)

V2 : c2 = (gk2 , (gx)k2 · gm2)

...

Vl : cl = (gkl , (gx)kl · gml)

Once the voting phase has finished, the ciphertexts corresponding to the same
option are aggregated:

V1 :(g
∑n
i=1 k1,i , (gx)

∑n
i=1 k1,i · g

∑n
i=1m1,i)

V2 :(g
∑n
i=1 k2,i , (gx)

∑n
i=1 k2,i · g

∑n
i=1m2,i)

...

Vl :(g
∑n
i=1 kl,i , (gx)

∑n
i=1 kl,i · g

∑n
i=1ml,i)

where n is the number of voters in the election. Note that after decrypting each
ciphertext the value obtained is g in power of the number of votes each voting
option has received. In order to obtain this value it is necessary to compute the
discrete logarithm, which is a problem assumed to be hard to solve. This poses a
limitation on the complexity of the elections that can be supported since the bigger
the exponent is the more expensive the computation of the discrete logarithm is.

Figure 2.5 shows an example of vote aggregation in an election with 4 options
and 3 voters.

Figure 2.5: Homomorphic tally.

Summarizing, homomorphic tally systems ensures voter’s privacy because:

• Votes are encrypted in the voting client and they are not decrypted until the
end of the election.

• Individual votes are not decrypted but the aggregation of them, thus it is not
possible to relate a decrypted vote with the voter who cast it.
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Due to the encoding of the voting options, it is easy for a malicious voting client
to cast an incorrect vote, for example, voting twice (g2) for one option. Since votes
are aggregated before being decrypted this attack will never be detected and the
election result will be affected. For this reason, homomorphic tally systems require
the generation of zero-knowledge proofs [50, 85], commonly known as OR-proofs,
in the voting client in order to provide vote correctness. These proofs allow to
demonstrate that the encrypted vote contains either g0 or g1, without revealing
which one of both is encrypted.

Let us clarify these concepts with an example. The prover will encrypt mb ∈
{m0,m1} = {0, 1} using the exponential version of the ElGamal cryptosystem, and
will obtain the ciphertext c = (γ, δ) = (gk, hk · gmb) = (gk, (gx)k · gmb). Then, they
will compute an OR-proof in order to demonstrate the following relation:

logg γ = logh

(
δ

g0

)∨
logg γ = logh

(
δ

g1

)

Protocol 2.2: OR proof

P ((γ, δ);x) V ((γ, δ))

rb ← Zq
(ab, bb) = (grb , hrb)
z1−b, c1−b ← Zq
(a1−b, b1−b) =
(gz1−bγc1−b , hz1−b(δ/gm1−b)c1−b)

a1, b1, a1−b, b1−b−−−−−−−−→
c

$←− Zq
c←−−−−−−−−

cb = c− c1−b

zb = rb + xcb
zb, z1−b, cb, c1−b−−−−−−−−→

c
?
= cb + c1−b

ab
?
= gzbγcb

bb
?
= hzb(δ/gmb)cb

a1−b
?
= gz1−bγc1−b

b1−b
?
= hz1−b(δ/gm1−b)c1−b

Note that only one equality of the two above will be true, that equality corre-
sponding to the encrypted message. For example if mb = m0 = 0 the left-hand side

equality will be true since logg g
k = logh

(
hk·g0
g0

)
. Nevertheless, the right-hand side

one is false since we have a factor g multiplying hk: logg g
k 6= logh

(
hk·g1
g0

)
. We

show a sketch of the proof in Protocol 2.2 where we use the subscript b to refer to
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the message selected by the prover (could be either 0 or 1) and 1− b to refer to the
non-selected message. The idea is that for mb the prover can compute a real proof
but for m1−b they have to fake it.

Each encrypted voting option has its corresponding OR-proof that should be
verified before computing the aggregation of ciphertexts. This makes homomorphic
tally systems practical only for elections where the number of options is limited.
Besides that, due to the specific encoding used for the voting options, write-ins or
complex electoral systems are not supported by these systems.

2.3.2.4 Mixing

The mixing protocols [7] are based on trying to emulate real elections when, at the
end of the election, the ballot boxes are shaken in order to break the order how the
votes were cast.

The voting options selected by the voter are encrypted and signed by the voting
client and stored in the voting server until the end of the voting period. Then, during
the counting phase, the votes are validated and the signatures are removed in order
to separate the vote from the voter who cast it. Nevertheless, this is not enough to
anonymize the votes since they will be decrypted in the same order they were cast.
For this reason, the anonymization procedure consists on sending the encrypted
votes through a mixing process, that applies a permutation and a transformation
over them, i.e., a shuffle [42], which makes the output of the process looks completely
independent from the input. Thanks to this, votes cannot be linked to the voters
who cast them, and they can be decrypted without breaking the anonymity.

Mixing protocols are built using mixing networks (mix-nets) that are formed
by several mixing nodes (mix-nodes) each one performing in turns the shuffle. De-
pending on which transformation they apply, we distinguish between to types of
mix-net:

• Decryption mix-net[42]: the voting client encrypts the vote as many times
as mix-nodes using the public key of each one of them, starting from the last
one to the first one. When votes are mixed, each node permutes the votes
and removes the encryption layer using its private key. When the process
finishes, the result is the list of votes permuted and decrypted. In order to
avoid computing as many encryption operations as mix-nodes, we can use an
encryption scheme such as ElGamal. In this scenario each mix-node has a key
pair (pki, ski) = (gxi , xi) and votes are encrypted using a public key which is a
combination of the mix-nodes’ public keys: pk =

∏
i pki = g

∑
i xi . When a mix-

node receives a list of ciphertexts (each ciphertext of the form (gk, pkk ·m)) it
permutes them and removes the corresponding encryption layer by computing
a partial decryption: (gk, pkk · (gk)−xj ·m) = (gk, (

∏
i 6=j pki)

k ·m). When the
ciphertexts reach the last node, all the nodes’ private keys except the last one
have been removed and the messages can be recovered.

• Re-encryption mix-net: in this type of mix-net the transformation applied
by each mix-node is the re-randomization. One of the algorithms that is
suitable for doing this operation is the ElGamal encryption scheme, since it is
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Figure 2.6: Decryption mix-net.

possible to re-encrypt the votes using the same public key and just modifying
the randomness used during the encryption:

Encryption :(gk, hk ·m)

Re-encryption :(gk, hk ·m) · (gk′ , hk′) = (gk+k′ , hk+k′ ·m)

When the votes go through the mix-net, each node applies a secret permuta-
tion, re-randomizes the votes and sends them to the next node. After the last
node, the new ciphertexts contain the same messages as those at the input of
the process, but encrypted using a new randomness which is the sum of the
mix-nodes’ randomness: (gk+

∑
i k
′
i , hk+

∑
i k
′
i ·m). Finally, votes are decrypted.

Figure 2.7: Re-encryption mix-net.

Independently of which type of mix-net is used, votes at the output look com-
pletely different from votes at the input and this opens a door to several attacks.
How do we know that the mix-nodes have behaved properly? or, how can we ensure
that votes have not been modified, added or removed during the process? For the
anonymity procedure to work as expected, we need to assume that at least one of the
mix-nodes is honest and will not leak any information neither about the permutation
nor about the re-encryption parameters or private keys. On the other hand, it is
important to provide verification methods to demonstrate that the mix-nodes have
behaved properly. Proofs of a shuffle are zero-knowledge proofs (see Section 2.2.4)
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that are used to demonstrate that the ciphertexts at the output of the mix-node are
those at its input without revealing any secret information. Two of the most known
verifiable mix-nets are explained in Chapters 3 and 4.

In contrast to homomorphic tally based systems, mix-net based systems do not
have any vote correctness method implemented, i.e., the voting client does not need
to compute a zero-knowledge proof for each voting option. Since votes are individ-
ually decrypted, invalid voting options can be detected during the counting phase.
In addition, voting options do not require any special encoding and this makes mix-
ing protocols more suitable for complex electoral processes such as elections having
write-ins. In order to decide which anonymization procedure is better in terms of
computational cost it should be analyzed how many voting options exist in an elec-
tion and how complex it is. For example, if the election is a referendum in which
the answers are usually three (yes, no, blank) most probably the best option would
be to use an homomorphic-tally based system.

From the anonymization procedures explained in this section, this work is going
to focus on mix-net based online voting system.

2.3.3 Verifiability in online voting systems

In the previous section we have already seen that in order to demonstrate the cor-
rectness of some procedures it is important to provide a verification method. In
this section we are going to explain which types of verifiability [74] we distinguish
depending on who is going to do the verification and what is going to be verified.

Figure 2.8: Individual and universal verifiability in online voting systems.

• Individual verifiability: voters can check that their vote contains the voting
options they have selected (cast-as-intended), i.e., the voting client has not
modified their selections, and that the vote has been successfully stored in the
ballot box (recorded-as-cast).

• Universal verifiability: anyone can check that all the votes successfully stored
in the ballot box during the voting phase has been taken into account for
computing the results (counted-as-recorded), and that these votes were cast
by eligible votes (eligibility verifiability).

Systems that have both individual and universal verifiability are said to be end-
to-end verifiable [28]. It is important to remark than even if a system is end-to-end
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verifiable it is still possible for an attacker to manipulate the integrity of the election
result, but it will be detected.

We want also to emphasize here the complexity of ensuring both verifiability and
vote privacy at the same time. As it is discussed in [74], it is not possible for an
online voting system to provide unconditional verifiability and unconditional vote
privacy of the vote simultaneously. For example, if the system guarantees recorded-
as-cast verifiability, it implies that the encrypted vote stored in the ballot box should
be linked to the identity of the voter, which makes the vote not anonymous.

A key component when talking about verifiability is the bulletin board. A bulletin
board, first introduced by Benaloh et al. [45, 27], is a public information dissemi-
nation channel, such a web page, that has special properties: only authorized users
can publish information and, once published, it cannot be erased nor tampered. A
bulletin board can contain, for example, a list of encrypted votes or a list of cryto-
graphic proofs. The information published will depend on the verifiability provided
by the system and the chosen implementation.

2.3.3.1 Cast-as-intended

In an online voting system voters use their own voting device to select their choices.
Then, the voting device encrypts the selections and sends the encrypted vote to the
voting server. From the encrypted vote it is not possible to infer any information
about the voting options encrypted thus it is not possible for the voter to check
if the encrypted vote contains indeed the options they have selected. A malicious
voting device could modify the voter’s selections without anyone noticing.

The implementation of individual verification mechanisms allows the voter to
check that their vote has been cast-as-intended, i.e., to detect if the voting device has
changed their selections before encrypting them.

In the last years there have been several proposals of online voting systems pro-
viding cast-as-intended that implement different individual verification mechanisms.
The classification done by Guasch [90] is the most complete we have found in the
literature and considers the following categories:

• Verification with codes: this mechanism is based on the so-called return
codes. The voting server, using the vote sent by the voting device, computes
the return codes and send them back to the voter who checks against their
voting card that they correspond to the voting options selected. Traditionally
these systems are pollsterless systems, already explained in Section 2.3.2.1, but
there are other systems such as that used in Norway [76, 126] or Neuchâtel
[71], that also use return codes. Unlike the pollsterless systems, in these ones
voters are not required to enter any voting code, they are presented with the
voting options available in the election and they just select them from the
voting interface.

• Challenge or cast: this verification mechanism was first proposed in 2006
by Benaloh [28]. After the voting device encrypts the selected voting options,
voters have two alternatives: (1) challenge the voting device in order to check if
the encrypted options correspond to their selections or, (2) cast the encrypted
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vote. Independently of the alternative chosen, after the voting device encrypts
the voting options it shows a commitment of the vote to the voter, i.e., a hash
of the vote. After this step, if the voter chooses not to challenge the voting
device the encrypted vote is directly sent to the voting server. Later, the voter
is able to check if the hash shown by the voting device is also present in the
bulletin board (this is recorded-as-cast verification and will be explained in
more detail in Section 2.3.3.2). On the contrary, if voters want to challenge
the voting device, they are provided with the randomness used for encrypting
their selections. Then, using a verification device and the randomness, they
will recalculate the encrypted vote and check if its hash matches with that
previously shown by the voting device. If the voting device has modified the
voter’s selections, it has negligible probability of showing the correct hash. If
the verification is successful, the voting device generates a new encryption of
the voting options and the voter has again the possibility of either challenge
the voting device or cast the vote. Therefore, the vote that is cast is never
audited. This is done in order to prevent vote selling attacks, since the voter
could share the randomness with the vote buyer who will access to the bulletin
board in order to check the contents of the encrypted vote. In this kind of
systems it is recommended to challenge the voting device multiple times before
casting the vote since this increases the probability of catching a cheating
voting device. Helios [8, 9, 46], Wombat [2, 26], VoteBox [134] and STAR Vote
[23] are examples of voting systems that implement this verification mechanism
although only the first one is designed to be used remotely.

• Decryption-based: this individual verification mechanism consists on de-
crypting the vote that is stored in the voting server in order to check that it
contains the voting options selected by the voter. The Estonian voting system
[93] and the iVote 2015 system [33] implement this verification mechanism.
As in the challenge or cast mechanism, the voter needs a second device to
perform the verification, i.e., a smartphone. After the vote is cast the voting
device shows a QR to the voter that contains the randomness used for the
encryption and an identifier of the vote. The voter uses the smartphone to
read the QR and requests the encrypted vote to the voting server using the
voter identifier. Finally, the smartphone uses the randomness to brute-force
the encrypted vote and shows the encrypted options to the voter.

• Hardware-based verification: this mechanism requires a trusted hardware
device (for example, a smartcard) in order to be implemented. In the online
voting protocols that implement this individual verification mechanism [101,
83] the voting device should interact with the hardware device, which will
perform some basic cryptographic operations in order to send the vote and
generate the verification information for the voter.

We have omitted from this list the category verifiable optical scanning since it is
not a cast-as-intended verification mechanism used in online voting system.

Nevertheless, for our post-quantum online voting system we are not going to
use any of the cast-as-intended approaches presented above but a variation of the
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challenge or cast mechanism called challenge and cast, that is proposed by Guasch
and Morillo in [91]. The details of this scheme are given in Section 5.2.1.

2.3.3.2 Recorded-as-cast

Online voting systems that implement mechanisms to provide recorded-as-cast al-
low voters to check that their votes were correctly received and stored by the voting
server. For example, the decryption-based verification mechanism used to provide
cast-as-intended verifiability also gives recorded-as-cast verifiability. Since the veri-
fication requires the vote to be downloaded from the voting server, the voter can be
sure that the vote stored in the ballot box is the vote that was cast.

Another technique frequently used to provide recorded-as-cast verifiability is the
generation of vote receipts. These receipts are values that uniquely identifies the
vote and that are used by the voters, usually once the voting phase has ended, to
check that their votes are stored in the ballot box . In the implementation used
in Norway [126] and Neuchâtel [71] the receipt is a hash computed by the voting
server after receiving the vote. This receipt is sent to the voting device which shows
it to the voter. After the voting phase ends, a list of vote receipts is published in the
bulletin board and voters can verify that their receipts are in that list. In addition,
in order to prevent voters from cheating, i.e., to come up with a fake receipt and
claim that something went wrong because it is not in the list, the voting server also
signs the receipts and sends the signature to the voting device. Any valid receipt
must have its corresponding signature.

Figure 2.9: Recorded-as-cast verifiability using receipts.

2.3.3.3 Counted-as-recorded

The counted-as-recorded verifiability allows voters to check that their votes were
included in the final tally, i.e., that were properly decrypted; and allow any observer
to verify that all the votes cast by eligible voters were properly tallied. The easiest
way to provide this verifiability would be to publish the list of encrypted votes in the
bulletin board together with the output of the decryption and the decryption key.
Although this will allow anyone to verify that the decryption process was properly
done, it will also break voters’ privacy. In order to avoid this, there are two main
cryptographic techniques (already presented in Section 2.3.2) that can be applied:
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• Mix-nets: the encrypted and signed votes are published in the bulletin board
so anyone chan check that they were cast by eligible voters by verifying the
signatures. Then, during the mixing process each mix-node re-encrypts and
permutes the encrypted votes in turns and computes a zero-knowledge proof of
the correct shuffle, which is published in the bulletin board together with the
input and the output of each mix-node. Since the verification of the proof does
not require any secret value to be revealed, it is universally verifiable with the
information already published. Then, after the encrypted votes are shuffled
they are decrypted. In order for the decryption process to be verifiable it
must compute a zero-knowledge proof of correct decryption, that will be also
published in the bulletin board as well as the input and the output of the
process.

• Homomorphic tally: as in the previous technique, the encrypted and signed
votes are published in the bulletin board. Then, after the aggregation of votes
is done, the result is also published. Since this operation does not require any
private information in order to be computed, it can be repeated by anyone
who wants to verify that the operation was done correctly. Finally, as it is
done when using mix-nets, votes are decrypted and the required information
is published in order to verify the decryption process.

Any of these two techniques allow to verify that the decrypted votes correspond
to the encrypted votes stored in the ballot box but without breaking voter’s privacy.

2.3.4 Online voting syntax

In this section we give a general overview of the participants of an online voting
system, the algorithms they execute and in which phase they do it. It is worth
to say that this is an informal description since our goal here is only to introduce
the syntax and both the algorithms and the phases will be formally presented in
Chapter 5. We use as a reference the syntax described in [49] and [90, 91].

• Voter : A person who is entitled to cast a vote in a particular election or
referendum.

• Electoral authority : They are in charge of configuring the election, decrypting
the votes and generating the results.

• Registration authority : They are in charge of registering the voters and sending
them the information that they need in order to cast their votes, for example,
the voting card.

• Ballot box : Is the component in which the votes cast by eligible voters are
stored. Usually it is managed by the voting server.

• Ballot : The legally recognized means by which the voter can express their
choice of voting option.

• Bulletin board : Public information dissemination channel in which only au-
thorized users can publish information that cannot be erased nor tampered.
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• Voting device: Is the device used by the voters to cast their votes. It shows
them the voting options available in the election, generates the vote from
voter’s selections and sends it to the voting server.

• Voting server : Is the component that receives, processes and stores the votes
sent by the voting device. It also publishes information in the bulletin board and
performs additional operations such as generating the receipt.

• Auditor : A person, internal or external, responsible for assessing the condition,
reliability and security of the system.

• Attacker : A human or process, both internal or external, mounting an attack
to the system or to parts of it. Also a subject authenticated as such but acting
outside its role. The main goal of an attacker is to access, modify or insert
sensitive information or to disrupt services.

Figure 2.10: Participants of an online voting system.

Our online voting protocol V = {Setup,Register,CreateVote,AuditVote,
CastVote,ProcessBallot,VerifyVote,Tally,VerifyTally} consists of nine algorithms which
are executed by the participants in the different phases of an election in the following
way:

• Configuration phase: during this phase the electoral authority sets up the
voting options and runs the Setup algorithm in order to generate the election
information such as the election key pair. The public information is sent to the
bulletin board so it can be used for verification and the private information is
sent to whom belongs to (either the registration authority or the voter).

• Registration phase: in this phase the registration authority defines the elec-
toral roll (voters that are eligible to vote in the election) and executes the
Register algorithm to generate all the information that voters need in order
to cast their vote, i.e., the credentials. As in the previous phase the public
information is published in the bulletin board and the credentials are sent to
the voters through a private channel.
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• Voting phase: voters select their preferred voting options and the voting
device runs the CreateVote algorithm which encrypts them and generates
the information needed by the voter to check that their vote is cast as in-
tended. Then, the voter executes the AuditVote algorithm with the aid of
an audit device to check that the encrypted vote contains the selected voting
options. If the verification is successful, the voter introduces their credentials
into the voting device which uses them to digitally sign the vote by running
the CastVote algorithm. The signed and encrypted vote is sent to the vot-
ing server which validates it using the ProcessBallot algorithm. If none of
the validations fails, the vote is stored in the ballot box and a hash of it is
sent to the bulletin board. Finally, the voter uses the VerifyVote algorithm to
check that their vote is in the bulletin board, i.e., that their vote has been
recorded-as-cast.

• Counting phase: when the voting phase ends, the electoral authority obtains
the votes from the ballot box and executes the Tally algorithm. This algorithm
first cleanses the votes, which consists on validating them and separating the
ciphertexts from their signatures. Once the cleansing is done, it anonymizes
the ciphertexts by running a protocol such as the mixing or homomorphic
tally. Then, the election private key is reconstructed (if needed) and the
ciphertexts are decrypted. Finally, the tally of the decrypted votes is computed
and the results are published in the bulletin board. In order to verify the
integrity of the operations executed by the Tally algorithm, the auditors runs
the VerifyTally algorithm which first performs the same validations over the
votes than the cleansing, and then verifies that the proofs generated during
the process are valid.

In Chapter 5 we give details about which are the inputs, operations and outputs
of each one of these algorithms.

2.4 Lattices

Lattices were employed in early 1980s for breaking cryptosystems but it was not
until late 1900s when they were first used in the design of cryptographic schemes.
In 1982, Lenstra, Lenstra and Lovász presented a lattice reduction algorithm called
LLL algorithm [99] which has many applications in cryptanalysis [139] such as fac-
toring polynomials or solving the knapsack problem. More than 10 years later, in
1996, Miklós Ajtai [12] presented the first lattice-based cryptographic construction,
a family of one-way functions which security is based on the worst-case hardness
of the Shortest Vector Problem (SVP). From then until nowadays, lattice-based
cryptography [113] has become a very active area of research since it is maybe
the most promising approach to get cryptosystems that will remain secure in the
post-quantum era. It enjoys strong security guarantees from worst-case hardness,
meaning that breaking their security implies finding an efficient algorithm for solv-
ing any instance of the underlying lattice problem. Furthermore, these constructions
mainly involve linear operations such as matrix and vector sum or multiplication
modulo integers, which make them highly parallelizable and consequently faster
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in certain contexts. Given the interest aroused by this type of cryptography, sev-
eral lattice-based protocols have been proposed like public key encryption schemes,
digital signatures schemes, hash functions, identity-based encryption schemes or
Zero-Knowledge Proofs of Knowledge.

In this section we give an introduction to lattices, focusing on those concepts that
will be relevant for the understanding of further chapters. The organization is as
follows: in Section 2.4.1 we define some basic concepts related with lattices. Then, in
Section 2.4.2 we briefly explain what are Gaussian functions and distributions, since
they play a central role in lattice-based cryptography. Finally, in order to describe
some lattice-based cryptosystems in Section 2.4.5, we need first to introduce which
are the computational problems we are going to work with to demonstrate the
security of lattice-based constructions. This is done in Section 2.4.3.

2.4.1 Lattice basics

A lattice is a set of points in a n-dimensional space with a periodic structure (see
Figure 2.11). More formally:

Definition 16 (Lattice). A lattice L is a discrete additive subgroup of Rn:

• Discrete: ∃ε > 0 s.t. ∀x 6= y ∈ L, ‖x− y‖ ≥ ε

• Additive subgroup: ∀x,y ∈ L,x− y ∈ L

Figure 2.11: A two dimensional lattice generated by b1 = (2, 5) and b2 = (7, 3)

Given n linearly independent vectors b1, . . . ,bn ∈ Rm×n, the lattice generated
by them is the set

L(B) = {
n∑
i=1

xibi : xi ∈ Z} = {Bx : x ∈ Zn}
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of all integer linear combinations of the columns of B. The matrix B is the basis of
L, and the integers m and n are called the dimension (number of components of
each vector) and the rank (number of vector in the basis) of the lattice respectively.
If m = n, L(B) is a full-rank lattice.

If instead of combining the columns of B using integers we use arbitrary real
coefficients, we obtain the vector space generated by B:

span(B) = {Bx : x ∈ Rn}

The same lattice can be generated using different bases related by an unimodular
transformation. In fact, the hardness of some lattice problems is based on the
difficulty of transforming one basis to another of the same lattice.

Definition 17 (Unimodular matrix). A square matrix U ∈ Zn×n is unimodular if
det(U) = ±1.

Lemma 2.4.1 (Equivalent bases). Two bases B1,B2 ∈ Rm×n are equivalent if and
only if B2 = B1 ·U (see Figure 2.12).

(a) b1 = (6, 0),b2 = (1, 4) (b) b1 = (8, 8),b2 = (9, 12)

Figure 2.12: A two dimensional lattice with two equivalent bases.

Each specific lattice basis is characterized by a fundamental parallelepiped:

Definition 18 (Fundamental parallelepiped). Given a basis B, we define the fun-
damental parallelepiped as:

P(B) = {
n∑
i=1

cibi : 0 ≤ ci < 1}

Or, equivalently, if we center the parallelpiped in the origin:

P1/2(B) = {
n∑
i=1

cibi : −1/2 ≤ ci < 1/2}
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Lemma 2.4.2. Let L be a full-rank lattice and let b1, . . . ,bn be a set of n indepen-
dent linear vectors of L. Then B is a basis of the lattice if and only if P(B) does
not contain any non-zero lattice point: P(B) ∩ L = {0}.

Figure 2.13 shows the fundamental parallelepiped corresponding to the lattice on
Figure 2.11. The fundamental parallelepipeds of different basis of the same lattice
are related by the determinant.

Figure 2.13: In grey, the fundamental parallelepiped corresponding to a two dimen-
sional basis b1 = (2, 5) and b2 = (7, 3).

Definition 19 (Determinant). The determinant det(L(B)) of a lattice is defined as
the n-dimensional volume of the fundamental parallepiped of B:

det(L) :=
√
det(BTB)

If L is a full-rank lattice, det(L) = |det(B)|. We say that the determinant is well-
defined since its value is unique per lattice, i.e., it does not depend on the choice
of the basis and, consequently, the volume of all the fundamental parallelepipeds is
the same.√

det(B1
TB1) =

√
det((B2 ·U)TB2 ·U) =

√
det(UTB2

TB2U) =

√
det(B2

TB2)

The determinant of a lattice can also be represented using the Gram-Schmidt
orthogonalization of B:

det(L(B)) =
∏
i

‖b∗i ‖ (2.1)

Definition 20 (Gram-Schmidt orthogonalization). This basic procedure in linear
algebra takes an ordered set of linearly independent vectors b1, . . . ,bn and creates
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the set of n vectors orthogonal to them b∗1, . . . ,b
∗
n via an iterative process: the first

vector is defined as b∗1 = b1 and for i = 2, . . . , n, b∗i is defined as the component
of bi orthogonal to span(b1, . . . ,bi−1) = span(b∗1, . . . ,b

∗
i−1), i.e., 〈b∗i ,b∗j〉 = 0 for

i 6= j:

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j for µi,j =

〈bi,b∗j〉
〈b∗j ,b∗j〉

If we define the orthogonal basis B∗ as the matrix with columns {b∗1, . . . ,b∗n}, it
is easy to see that B∗ satisfies that B = B∗R, where R is

R =



1 µ2,1 µ3,1 . . . µn,1
0 1 µ3,2 . . . µn,2
0 0 1 . . . µn,3
...

...
...

...
...

0 0 0 . . . 1
...

...
...

...
...

0 0 0 . . . 0


If L is a full-rank lattice (n = m), R is an upper triangular square matrix with
1’s on the diagonal so |det(R)| = 1 and consequently |det(B)| = |det(B∗)|. Since
(B∗)>B∗ is diagonal because the columns of B∗ are orthogonal, the determinant of
B∗ can be computed as the product of the diagonal elements

∏
i ‖b∗i ‖, and from

there we can conclude 2.1.
An upper bound on the determinant is given by the Hadamard inequality:

Theorem 2.4.3 (Hadamard inequality). For any lattice L(B), det(L(B)) ≤
∏n

i=1 ‖bi‖.

‖bi‖2 =
i−1∑
j=1

µ2
j,i‖b∗j‖2 + ‖b∗i ‖2

‖bi‖2 ≥ ‖b∗i ‖2

‖bi‖ ≥ ‖b∗i ‖

det(L(B)) =
n∏
i=1

‖b∗i ‖ ≤
n∏
i=1

‖bi‖

In addition to the concepts seen so far in this section, there is one basic parameter
of a lattice which is the minimum distance λ = λ1.

Definition 21 (Minimum distance). The minimum distance of a lattice L corre-
sponds to the length of the shortest vector of the lattice (shown in Figure 2.14):

λ1(L) = min
v∈L\{0}

‖v‖

It can be equivalently defined as the minimum distance of two lattice points:

λ(L) = inf{‖x− y‖ : x,y ∈ L,x 6= y}

Given the definition of the determinant, the Gram-Schmidt orthogonalization,
the Hadamard inequality and the minimum distance, we can proceed to define some
parameters that will be useful to measure the quality of a basis.
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Figure 2.14: In blue the length of the shortest vector of the lattice λ1(L).

Definition 22 (Orthogonality defect). Given a basis B = [b1, . . . ,bn] of a lattice,

the orthogonality defect is defined as δ(B) =
∏
i ‖bi‖

|det(B)| and is used to quantify the
orthogonality of a lattice basis.

Informally, we can say that this parameter indicates how close is a basis from its
orthogonal. Note that δ(B) ≥ 1 and δ(B) = 1 if and only if b1, . . . ,bn are pairwise
orthogonal. The difficulty of solving most lattice problems is proportional to the
orthogonality of its basis. As we have explained before, one lattice can be represented
by several basis, all of them equivalent but not with the same orthogonality defect.
The more orthogonality the basis has, the better is (see Figure 2.15). It is said that
a basis with short highly orthogonal vectors, i.e., with low orthogonality defect, is
a good basis, and when the defect is high it is a bad basis. In order to show an
application of these concepts, we use as an example the GGH cryptosystem [77]. In
this encryption scheme the public and private key are two basis of the same lattice.
The private key is a good basis and allows to efficiently solve the Closest Vector
Problem (CVP, Definition 32) thus allowing to decrypt the messages. On the other
hand, the public key is a bad basis and from it no information about the private
key can be extracted.

Another parameter that is useful to measure the quality of a basis is the Hermite
factor δnL:

δnL =
λ1(L)

|det(L(B))|1/n

or its n-th root δL = (δnL)1/n, where λ1(L) is the shortest vector of the lattice basis
B.

There is a special basis of a lattice, called the Hermite Normal Form, which can
be efficiently computed from any other basis.
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(a) Good basis: Lattice basis consisting
of short lattice vectors. Basis with low
orthogonality defect.

(b) Bad basis: Lattice basis consisting
of long and highly non-orthogonal lattice
vectors. Basis with high orthogonality
defect.

Figure 2.15: Lattice represented using a good basis and a bad basis

Definition 23 (Hermite Normal Form). A non-singular squared matrix
B = [b1, . . . ,bn] ∈ Rn×n is in its Hermite Normal From if and only if:

• B is lower triangular (bi,j 6= 0→ i ≥ j).

• Off-diagonal elements are reduced modulo the diagonal element on the row
they are in ∀i > j, 0 ≤ bi,j < bi,i.

We can also generalize the definition for non-squared matrices:

Definition 24. A non-singular matrix B = [b1, . . . ,bm] ∈ Rm×n is in its Hermite
Normal From if and only if:

• Exist 1 ≤ i1 < . . . < ih ≤ m such that bi,j 6= 0→ (j < h) ∧ (i ≥ ij).

• Elements belonging to rows ij are reduced modulo bij ,j: ∀k > j, 0 ≤ bij ,k < bij ,j.

The index h is the number of non-zero columns and ij corresponds to the row
of the first non-zero element in column j. Every integer lattice L(B) has a unique
basis in Hermite Normal Form and it is useful when solving some theoretic problems
such as equality between two lattices.

The last two concepts we are going to define in this section are the dual lattice
and the q-ary lattice, which are used in most of lattice-based cryptosystems.

Definition 25 (Dual lattice). For a full-rank lattice L, the dual lattice L∗ of L is
defined as:

L∗ = {y ∈ Rn|∀x ∈ L, 〈x,y〉 ∈ Z}

The dual lattice is indeed a lattice formed by the set of points whose inner
products with the vectors in L are all integers.
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Definition 26 (Dual basis). Given a basis B ∈ Rm×n of L, the dual basis D of L∗
is defined as D = B(BTB)−1.

We claim that:

• If D is the dual basis of B, then (L(B))∗ = L(D).

• The dual of the dual of a lattice is the original lattice: (L∗)∗ = L.

• For any lattice L, det(L∗) = 1/det(L).

Definition 27 (q-ary lattice). A q-ary lattice is a lattice L that satisfies that qZ ⊆
L ⊆ Zn for some prime q.

For a matrix A ∈ Zn×mq we can define two m-dimensional q-ary lattices:

Lq(A) = {x ∈ Zm : x = AT s mod q s ∈ Znq }

L⊥q (A) = {x ∈ Zm : Ax = 0 mod q}

Lq(A) is generated by the rows of A and L⊥q (A) is the parity-check lattice
because it contains all vectors that are orthogonal modulo q to the rows of A (A
acts as a parity-check matrix that defines the lattice L⊥q (A)). These two lattices are
periodic modulo q, i.e., we can take a finite set Q of lattice points with coordinates
in 0, . . . , q − 1 and recover the whole lattice by generating copies of Q as: Q+ qZn.

Note that usually the matrix A is not a lattice basis. For example, an integer
linear combination of its columns may not generate all the elements of the form
qZn. If for example we consider a two dimension q-ary lattice with vectors b1 =
(2, 5),b2 = (7, 3) (same vectors as those used in Figure 2.11), there is no integer
solution to the following equation will allows us to compute the point [q, 0]:

17 = 2z1 + 7z2

0 = 5z1 + 3z2

Note also that every q-ary lattice is a full rank lattice since it contains qZn. It is
easy to see that, with high probability, a q-ary lattice defined by n vectors linearly
independent in Znq with q prime is the same as Zn. We illustrate this fact in Figure
2.16.

2.4.2 Gaussian Functions and Distributions

Gaussian distributions play a central role in lattice-based cryptography since they
are used to build most of the cryptosystems.

The continuous Gaussian distribution over R is defined by the density function
in the following way:

ρσ,µ(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

where µ ∈ R is the mean and σ the standard deviation. Then, the discrete Gaussian
distribution over Z centered at µ = 0 is defined as:
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(a) Using L form (b) Using Lq(A) form with q = 17

Figure 2.16: Lattices generated using the same pair of vectors but the one on the
right has been generated using the Lq(A) form with q = 17.

Dσ(x) =
ρσ(x)

ρσ(Z)

where ρσ(Z) =
∑

z∈Z ρσ(z). Note that when µ = 0 it is omitted in the subscript.

These definitions are also formulated using the Gaussian parameter s = σ
√

2π.

An example of the usage of Gaussian distributions is found in the RLWE en-
cryption scheme (Section 2.4.5.3). This scheme requires to sample some error from
a discrete Gaussian distribution in order to generate the public and private keys and
also to encrypt a message. If instead of a single error we need a vector of errors to be
chosen from the Gaussian distribution, as it is the case for the commitment scheme

(Section 2.4.5.4) we write e
$←− Dk

σ so each component of is chosen independently
from Dσ.

Finally, there is a parameter related to Gaussians measures on lattices called
smoothing parameter, which is a key concept in the best known worst-case/average-
case reductions for lattice problems and several lattice-based cryptosystems. Imag-
ine that we take a lattice L and we add a Gaussian with a certain standard deviation
σ to each lattice point. As shown in Figure 2.17, once σ becomes large enough the
Gaussian distribution is statistically close to a uniform distribution. But what does
it mean that σ is large enough? Precisely this is what is quantified by the smoothing
parameter. Informally, this parameter tells us how large s = σ

√
2π should be in

order for the distribution to become close to uniform. More formally:

Definition 28 (Smoothing parameter[112]). For an n-dimensional lattice L and
positive real ε > 0, we define its smoothing parameter ηε(L) to be the smallest s
such that ρ1/s(L∗\{0}) ≤ ε.
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Figure 2.17: A lattice distribution perturbed with Gaussian noise using four different
values of σ.

2.4.3 Lattice problems

The security of a lattice-based cryptosystem relies on the hardness of solving some
computational problems on lattices which are considered secure against quantum
computers, e.g., Shortest Vector Problem (SVP), Closest Vector Problem (CVP),
Shortest Independent Vector Problem (SIVP) or Bounded Distance Decoding Prob-
lem (BDD). These problems are hard to solve in the worst-case, meaning that in
order for an adversary to break them it must succeed on solving the problem on all its
instances with non-negligible probability. Nevertheless, cryptographic schemes re-
quires average-case hardness instead of worst-case hardness, i.e., problems for which
random instances (a non-negligible portion) are hard to solve. In order to demon-
strate that a lattice-based cryptographic protocol enjoys strong security guarantees,
it is shown that the average-case problem is at least as hard as the arbitrary in-
stances of a worst-case problem. Ajtai [12] was the first proposing a worst-case to
average-case reduction for a lattice problem.

Most of the computational problems we describe hereunder exist in their exact
and approximate version. We are going to define the approximate version whenever
is possible since the exact one is just a particularization when the approximation
factor γ(n) is equals to 1 (being n the dimension of the lattice). It is demonstrated
that if γ(n) is a polynomial of the dimension of the lattice, computational problems
are hard to solve.

Definition 29 (Approximate Shortest Vector Problem (γ − SV P )). Given a basis
B of a n-dimensional lattice L(B), find a lattice vector v ∈ L(B) such that 0 <
‖v‖ ≤ γ(n) · λ1(L).

When this problem is defined in terms of the dual lattice, i.e., finding short
vectors in the dual lattice L⊥q (A), it is called Short Integer Solution (SIS) (see
Definition 34).
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Definition 30 (Decisional Approximate Shortest Vector Problem (GapSV Pγ)).
Given a basis B of a n-dimensional lattice L(B) where either λ1(L) ≤ 1 or λ1(L) >
γ(n), decide which is the case.

Definition 31 (Approximate Shortest Independent Vector Problem (SIV Pγ)). Given
a basis B of a full-rank n-dimensional lattice L(B), find a set S = {si} ⊂ L of n
linearly independent lattice vectors such that ‖si‖ ≤ γ(n) · λn(L) for all i.

Definition 32 (Approximate Closest Vector Problem (CV Pγ)). Given a basis B of
a n-dimensional lattice L(B) and a target point t ∈ Rn, find a lattice point v ∈ L
such that ‖t− v‖ ≤ γ(n) · dist(t,L).

We define dist(t,L) as the distance from the point t to the closest point in the
lattice L. There is a variant of this problem called Bounded Distance Decoding
Problem in which the target point is guaranteed to be close to the lattice.

Definition 33 (Bounded Distance Decoding Problem (BDDγ)). Given a basis B
of a n-dimensional lattice L(B) and a target point t ∈ Rn with the guarantee that
dist(t,L) < d = λ1(L)/(2γ(n)), find the unique lattice vector v ∈ L such that
‖t− v‖ < d.

Figure 2.18: Example where dist(t,L) < d = λ1(L)/2. The red point is the target
point.

There are two main average-case problems when working with lattices which
have a reduction from one of the problems presented above, i.e., the existence of
an adversary that can break the average-case problem can be directly translated to
breaking the worst-case problem. The first problem is called the Short Integer So-
lution (SIS), introduced by Ajtai [12] and used in the construction of cryptographic
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primitives such as one-way and collision-resistant hash functions or digital signa-
tures. The second one, which is considered as the ’dual’ of the SIS problem, is the
Learning With Errors problem that was introduced by Regev [128] in 2005. It has
been used as the basis of public-key encryption schemes, identity-based encryption
schemes and more. We are going to work mainly with this problem.

Definition 34 (Short Integer Solution (SIS)). Given m uniformly random vectors
ai ∈ Znq as columns of the matrix A ∈ Zn×mq , find a non-zero integer vector z ∈ Zm
with norm ‖z‖ ≤ β such that

fA(z) = Az =
∑
i

ai · zi = 0 ∈ Zn
q

Definition 35 (Learning With Errors (LWE) distribution). Let n and q (possibly
prime) be two positive integers, χ an error distribution over Z (usually a discrete
Gaussian distribution) and s ∈ Znq a secret vector. We denote Ls,χ as the probability
distribution over Znq × Z sampled by choosing a ∈ Znq uniformly at random, e ← χ
and outputting (a, b = 〈s, a〉+ e mod q).

It is often convenient to represent several LWE samples in a compact manner by
using vectors and matrices in the following way: (A,b = As + e).

There are two versions of the LWE problem: the search version which consists
on finding the secret vector s given several LWE samples, and the decision version,
where the goal is to distinguish between LWE samples or samples chosen uniformly
at random. For any version of the problem, the number m of samples available is a
polynomial of n.

Definition 36 (Search-LWE). Given m = poly(n) independent samples (ai, bi) ∈
Znq × Zq drawn from Ls,χ for a uniformly random s ∈ Znq , find s.

Definition 37 (Decisional-LWE). Givenm = poly(n) independent samples (ai, bi) ∈
Znq × Zq, decide if they are distributed according to Ls,χ for a uniformly random
s ∈ Znq or the uniform distribution Znq × Zq.

These two versions of the problem are equivalent under certain conditions over
the modulus q and the Gaussian parameter s. The search to the decision version
reduction is trivial since if the secret s is found it can be used to verify if the
component b belongs to a LWE sample by checking that e = b−As is small. The
reduction from decision to search is not trivial and it is demonstrated using the
following lemma:

Lemma 2.4.4. [128] Given n ≥ 1 an integer, 2 ≤ q ≤ poly(n) a prime and χ an
error distribution in Zp. Assume that we have access to an algorithmW that for all
s accepts with probability exponentially close to 1 given samples of the distribution
Ls,χ, and rejects with probability exponentially close to 1 given some samples drawn
from the uniform distribution U . Then, there exist an efficient algorithm W ′ that,
given samples from Ls,χ for some s, outputs s with probability exponentially close
to 1.
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There is a quantum reduction [128] and a classical reduction [122] from the worst-
case hardness of the GapSVP problem to the search version of the LWE problem.
The latter only works when the modulus q is exponential in the dimension of the
lattice. Additionally, the decisional version of the LWE problem becomes no easier
to solve even if the secret s is chosen from χ rather than uniformly. To prove this
the following lemma is used:

Lemma 2.4.5. [16] Given access to an oracle Ls,χ returning samples of the form
(a, b = 〈a, s〉+ e) ∈ Znq × Zq with a← U(Znq ), e← χ and s ∈ Znq , we can construct
samples of the form (a, b = 〈a, e〉 + e) ∈ Znq × Zq with a ← U(Znq ), e ← χ and
e← χn at the loss of n samples overall. This is also called the normal form in [123].

Finally, if we see A as the basis of a lattice the search problem consists on recov-
ering the coordinates of a lattice point after adding it some error, and the decision
problem is to distinguish between uniformly random points in Zn and perturbed
lattice points.

2.4.4 Ideal lattices

Some lattice-based cryptographic schemes tend to require key sizes on the order n2

due to the dimension of the basis A, making working with lattices not desirable from
a practical point of view. One way to solve this issue is to use ideal lattices, that have
some extra algebraic structure and introduce some redundancy in the basis of the
lattice, allowing a more compact representation and thus reducing significantly the
storage space. Ideal lattices are a generalization of cyclic lattices which are defined
as follows:

Definition 38 (Cyclic lattice). L is a cyclic lattice if it is a discrete set and for any
v,w ∈ L: 1) v + w ∈ L, 2) −v ∈ L and 3) a cyclic shift of v is also in L.

For a prime positive integer q, let Znq = (Z/qZ)n denote the quotient ring of
vectors whose coefficients are integers modulo q. Working on cyclic lattices in Znq
is equivalent of working on ideals in Rq = Zq[x]/ (xn − 1), that is, the ring of all
integer polynomials modulo f(x) = xn − 1 ∈ Z[x], where xn is identified with 1.
Let us briefly explain this equivalence: the basis A of a cyclic lattice in Znq can be
constructed by taking a vector a ∈ Znq and making it the first column of A. The next
n− 1 columns are generated by applying consecutive rotation of a in the following
way:

A =


a1 an an−1 . . . a2

a2 a1 an . . . a3

a3 a2 a1 . . . a4
...

...
...

. . .
...

an an−1 an−2 . . . a1


So A is the matrix whose columns are cyclic rotations of a. Then, the operation of
multiplying the circulant matrix A by a vector s ∈ Znq is equivalent to multiplying
the polynomial a(x) =

∑n
i=1 aix

i−1 by s(x) =
∑n

i=1 six
i−1 modulo f(x) = xn − 1.
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This can be seen in the following example for n = 3:

As =

 a1 a3 a2

a2 a1 a3

a3 a2 a1

 s1

s2

s3

 =

 a1s1 + a3s2 + a2s3

a2s1 + a1s2 + a3s3

a3s1 + a2s2 + a1s3


We do now the same operation but with polynomials and considering that if we use
f(x) = x3 − 1 as the modulus, this element will be 0 thus x3 = 1:

a(x)s(x) mod f(x) =

(a1 + a2x+ a3x
2)(s1 + s2x+ s3x

2) mod (x3 − 1) =

a1s1 + a1s2x+ a1s3x
2 + a2s1x+ a2s2x

2 + a2s3x
3+

+ a3s1x
2 + a3s2x

3 + a3s3x
4 mod (x3 − 1) =

(a1s1 + a2s3 + a3s2) + (a1s2 + a2s1 + a3s3)x+ (a1s3 + a2s2 + a3s1)x2

So given this equivalence we can represent an element a ∈ L either as a vector
(a1, . . . , an) ∈ Znq or as a polynomial a1 + a2x+ . . .+ anx

n−1 ∈ Rq.
After giving an intuition of what an ideal lattice is, now we are going to define

it formally:

Definition 39 (Ideal lattice). L is an ideal lattice if it has as a basis a matrix
A constructed from a vector a iteratively multiplied by a transformation matrix
F ∈ Zn×n defined from a vector f = (f0, f1, . . . , fn−1) ∈ Zn:

A = F∗a = [a,Fa, . . . ,Fn−1a] where F =


0 . . . 0 −f0

. . . −f1

I
...

. . . −fn−1


These lattices can be seen as ideals in the polynomial ring Rq = Zq[x]/(f(x)),

where f(x) = xn + fn−1x
n−1 + . . .+ f0 ∈ Zq[x] is a polynomial given by the vector f .

As we have seen before, if we choose f(x) to be f(x) = xn − 1, this is equivalent as
working on cyclic lattice in Znq , nevertheless some ring versions of lattice problems
are easy to solve in rings where f(x) = xn−1, since it is factorizable. For this reason
and following what is proposed in [107], we are going to work with f(x) = xn + 1
for n a power of 2, which makes the polynomial irreducible over the rationals. This
is a cyclotomic polynomial and the ring Rq = Zq[x]/〈xn + 1〉 generates the family of
the so-called anti-cyclic integer lattices, i.e., lattices in Znq that are closed under the
operation that cyclically rotates the coordinates and negates the cycled elements.

Notice that the polynomial f(x) = xn + 1 can be expressed also as the vector
f = (f0, . . . , fn−1) = (1, 0, . . . , 0) and we can define from it a transformation matrix
F ∈ Zn×n as:

F =


0 0 . . . 0 −1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0
... 1 0
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Using this transformation matrix, the basis A is pretty similar to that for cyclic
lattices, i.e., its first column is the vector a and the following columns are the
previous one with the coordinates cyclically rotated, but with the difference that
the cycled element is also negated:

A =


a1 −an −an−1 . . . −a2

a2 a1 −an . . . −a3

a3 a2 a1 . . . −a4
...

...
...

. . .
...

an an−1 an−2 . . . a1


It is important to remind that given two polynomials, a ∈ Rq and p ∈ Rq, the

product a · p ∈ Rq is equivalent to the product of the matrix A with the vector
p = (p1, . . . , pn)>.

Note that using ideal lattices we only need n values to express a rank n ideal
lattice, i.e., we can generate the matrix A just using the vector a, rather than the
n×n values needed for general lattices. This allows a more compact representation
that requires less space.

Moreover, working with the polynomial representation in Rq with certain mod-
ules allows a speed-up in operations commonly used in lattice-based schemes: poly-
nomial multiplication can be performed in O(n log n) scalar operations, and in par-
allel depth O(log n), using the Fast Fourier Transform (FFT).

There is currently no known way to take advantage of the extra structure intro-
duced by ideal lattices, and the running time required to solve lattice problems on
such lattices is the same as that for general lattices.

2.4.4.1 RLWE problem

Lyubashebsky, Peikert and Regev [107] introduced in 2010 the ring-based variant
of learning with errors problem: Ring-LWE (RLWE). This was motivated by the
necessity of constructing efficient LWE-based cryptosystems. Analogously to LWE,
the goal will be either to distinguish random linear equations, perturbed by a small
amount of noise, from truly uniform pairs or recover the secret s ∈ Rq from arbi-
trarily many noisy products.

Definition 40 (RLWE Distribution). For a secret s ∈ Rq, the RLWE distribution

As,χ over Rq × Rq is sampled choosing a ∈ Rq uniformly at random, e
$←− χn (i.e.,

e ∈ Rq with its coefficients drawn from χ), and outputting samples of the form
(a, b = a · s+ e mod q) ∈ Rq ×Rq.

Using the definition of the matrix A for an ideal lattice: A = F∗a, we can
express an RLWE sample in the following way:

(A,b = As + e) = (F∗a,b = F∗a · s + e) ∈ Zn×nq × Znq

Given that F∗a = [a,Fa, . . . ,Fn−1a], we can divide the RLWE sample in n samples:

(F(i)a, b(i) = F(i)a · s + e(i)) ∈ Znq × Zq where i ∈ {0, . . . , n− 1}
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The result are LWE samples and we conclude that each pair (a, b) ∈ Rq × Rq of
an RLWE distribution replaces n samples (a, b) ∈ Znq × Zq of an standard LWE
distribution.

Similarly to LWE, certain instantiations of RLWE are supported by worst-case
hardness theorems [107], related to the Shortest Vector Problem (SVP). For the
error distribution χ where the standard deviation σ ≥ ω(

√
log n), and for any ring,

there exist a quantum reduction from the γ(n)-SVP problem to the RLWE problem
to within γ(n) = O(

√
n · q/σ). Additionally, RLWE becomes no easier to solve even

if the secret s is chosen from the error distribution rather than uniformly [16].

2.4.5 Lattice-based cryptosystems

There are several cryptographic constructions which are built upon the computa-
tional problems presented in Section 2.4.3. This gives strong security guarantees
since breaking the cryptosystems implies an efficient algorithm for solving a lattice
problem in the worst-case, i.e., for solving any instance of the underlying lattice
problem. In this section we are going to focus on some of the cryptographic con-
structions that are necessary to build the lattice-based e-voting scheme.

It is worth to mention that the National Institute of Standards and Technology
(NIST) initiated in December 2016 a process to solicit, evaluate and standardize one
or more quantum-resistant public-key cryptographic algorithms. There have been
two rounds of this process already completed and they are currently on the third
round. Lattice-based candidates to be reviewed for consideration for standardiza-
tion at the conclusion of the third round are: CRYSTALS-KYBER [31], NTRU
[94] and SABER [54] as public-key encryption schemes or KEMs; and CRYSTALS-
DILITHIUM [61] and FALCON [67] as digital signature schemes.

2.4.5.1 One-way functions

As we have already explained in Section 2.2 (Definition 3), a one-way function is
a function that is easy to compute but hard to invert in terms of computations
complexity. When working with lattices we distinguish between two lattice-based
one way functions depending on the average-case problem their security is based on:
SIS or LWE problem.

Given a public matrix A ∈ Zn×mq and the parameters q = poly(n) and m =
Ω(n log q), the one-way function fA(x) based on the SIS problem is defined as:

fA(x) = A · x ∈ Znq

where x is a short integer vector. Note that fA(x) is a surjective function since it is
compressing. Indeed, fA(x) is a collision resistant hash function (see Definition 13)
assuming the hardness of the SIS problem, as shown by Ajtai in [12].

On the other hand, the one-way function gA based on the LWE problem, is
defined as

gA(s, e) = s>A + e> mod q ∈ Zmq
where e is a short integer vector. Unlike fA, gA is an injective function and it
cannot be used to build a collision resistance hash function. For this reason we are
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going to focus only on fA. For our cryptographic applications (the lattice-based
online voting system) we will be interested on inverting fA. Since the function is
compressing there are many pre-images given one image, so in order to invert it,
i.e. compute f−1

A (u), we will need to sample random pre-images according to a
discrete Gaussian distribution (see [72]). This type of function was defined in [72]
as a Preimage Sampleable Trapdoor Functions.

2.4.5.2 Trapdoor functions

As explained in Section 2.2 (Definition 4), a trapdoor function is a one-way function
that is easy to invert with the knowledge of a secret, the trapdoor.

In lattice-based cryptography there are problems that are hard to solve given
an arbitrary basis but some of them become easy if we are given a good basis (the
concept of good and bad basis of a lattice is explained in Section 2.4.1). In the
literature there are two different notions of what is a lattice trapdoor: (1) a short
(good) basis [13, 15], i.e., a basis made up of short lattice vectors; or (2) a gadget-
based trapdoor [111]. We are going to focus on the latter since, as mentioned by
the authors, is simpler and faster than prior constructions. In [111] Micciancio and
Peikert propose a new method for generating strong trapdoors in cryptographic
lattices and they also give specialized algorithms for inverting gA and preimage
sampling for fA. As previously mentioned we are interested on functions like fA
since they are collision-resistant hash functions (we will see in Chapter 5 how to
use them in the lattice-based online voting system). The main idea of this trapdoor
generation method is that the matrix A is generated from a matrix G that is public
and for which we know that the associated function fG is easy to invert (admit
efficient preimage sampling). Given G and applying some transformations we obtain
A, that is distributed uniformly at random. Preimage sampling for fA reduce to
the corresponding tasks for fG. In more detail, the trapdoor generation method for
hard random lattices L⊥(A) works as follows:

1. Construct a fixed gadget matrix G. This matrix is public and the associated
function fG can be efficiently inverted.

fG(x) = G · x mod q

Given the primitive vector g3, the matrix G is built as a tensor product of an
identity matrix and the primitive vector g.

G := In ⊗ g>

The simplest gadget matrix is when q is a power of a small prime, such as
q = 2k. Then, the vector g is defined as g = (1, 2, 4, . . . , 2k−1) ∈ Zkq where
k = dlog2 qe.

G =


· · ·g> · · ·

· · ·g> · · ·
. . .

· · ·g> · · ·


3A primitive vector g is a vector such that gcd(g1, . . . , gk, q) = 1. We refer the reader to [111]

for the details about what is a primitive lattice and its corresponding primitive matrix.
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2. Extend G into a semi-random matrix A’ = [B|HG], for a matrix B ∈ Zn×mq

chosen uniformly at random and an invertible matrix H ∈ Zn×nq called the tag
of the trapdoor. For completeness we define the tag H but it can be set as
the identity matrix most of the time. As shown in [37] inverting fA’ reduces
very efficiently to inverting fG and we give a brief explanation here. We want
to invert the function fA’(x) = A’ · x = y′, i.e., to sample a preimage from
f−1
A’ (y′). Note that we can also write fA’ as (for simplicity we assume that H

is the identity matrix):

fA’

(
x1

x2

)
= [B|G]

(
x1

x2

)
= Bx1 + Gx2 = y′

First we choose a random x1 from the discrete Gaussian distribution and
compute fB(x1) = Bx1 = y. Then, we sample a random preimage x2 from
f−1
G (y′ − y) = f−1

G (Gx2) under the appropriate Gaussian distribution using

that fG is easy to invert. Finally we define x as x =

(
x1

x2

)
.

3. Apply a random unimodular transformation T to A’ and obtain the matrix
A.

A = A’ ·T = A’ ·
(

I −R
0 I

)
= [B|HG−BR]

The transformation matrix T includes a short secret matrix R that will server
as the trapdoor. We recall the definition of this trapdoor matrix R given in
[111].

Definition 41 (Lattice-based trapdoor). Let A ∈ Zn×mq and G ∈ Zn×wq be

matrices with m ≥ w ≥ n. A G-trapdoor for A is a matrix R ∈ Z(m−w)×w
q

such that A

[
R
I

]
= HG for some invertible matrix H ∈ Zn×nq . We refer to

H as the tag or label of the trapdoor. The quality of the trapdoor is measured
by its largest singular value s1(R).

As long as R has the right dimension, by the leftover hash lemma [92], (B,
BR) is indistinguishable from (B, U), where U ∈ Zn×wq , hence A is uniform.

Observe that the inverse of T is T−1 =

(
I R
0 I

)
and we can invert fA(x) =

A’ ·T · x = y by first inverting fA’ and then T: f−1
A (y) = T−1f−1

A’ (y′). Note
that without the knowledge of the trapdoor R it is difficult to obtain preimages
of fA.

2.4.5.3 Public-key encryption schemes

As explained in [113], there are several methods that have been proposed to build
public-key encryption schemes based on the hardness of solving some lattice prob-
lems. Some of them are interesting from a theoretical point of view, since they admit
security proofs which prove that breaking the scheme is as hard as solving lattice
problems in the worst-case; nevertheless they are not efficient enough to be used in
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practice. On the other hand, there are also public-key encryption schemes which
are much more efficient than theoretical proposals but they often lack the support
of a security proof.

Although there have been several lattice-based encryption schemes proposed so
far, e.g., GGH/HNF [77], NTRU [94] or Ajtai-Dwork [14], we are going to focus on
the RLWE encryption scheme proposed by Lyubashevsky et al. in [107], since it is
that used for encrypting the voting options in the lattice-based e-voting scheme we
propose in Chapter 5.

RLWE encryption scheme. The additive homomorphic RLWE encryption scheme
proposed in [107] consists of three algorithms (KeyGenE, Enc, Dec) defined below.
Let Rq = Zq[x]/f(x) be the ring of integer polynomials modulo both f(x) = (xn+1)
and q, n the security parameter which is a power of 2, q = 1 mod 2n a sufficiently
large public prime modulus and κ the security parameter:

• KeyGenE(1κ): Given a uniformly random aE ∈ Rq and two small elements
s, e ∈ Rq drawn from the error distribution χ, the public key is a RLWE
sample (aE, bE) = (aE, aE · s+ e) ∈ Rq ×Rq and the secret key is s.

• EncaE,bE(z, rE, eE,u, eE,v): Given three random small elements rE, eE,u, eE,v ∈ Rq

drawn from the error distribution χ, the encryption of an n-bit message z ∈
{0, 1}n (identified as a polynomial of degree n − 1 with coefficients 0 or 1) is
(u, v) = (aE · rE + eE,u mod q, bE · rE + eE,v + b q

2
ez mod q) ∈ Rq ×Rq.

• Dec(s, (u, v)): Given the secret key and the ciphertext this algorithm com-
putes:

v − u · s = rE · bE + eE,v − s(aE · rE + eE,u) + bq
2
ez mod q

= rE · (aE · s+ e) + eE,v − s(aE · rE + eE,u) + bq
2
ez mod q

= rE · e− s · eE,u + eE,v + bq
2
ez mod q

≈ bq
2
ez

Notice that in case of lack of error the decryption would always be correct since
the algorithm will return directly 0 or b q

2
e depending on the encrypted bit. Given

that, a decryption error will occur if the coefficients of (rE · e− s · eE,u + eE,v) have
magnitude greater than q/4.

The cryptosystem can be generalized in order to encrypt messages with elements
bigger than a bit, i.e., z ∈ {0, 1, . . . , k − 1}n. In order to do so, we will map the
n-symbol message z to a polynomial of Rq by scaling it with a factor of b q

k
e, instead

of b q
2
e. In the decryption step, the symbols of z can be recovered by rounding each

coefficient of v−u · s back to ib q
k
e for i = {0, . . . , k− 1} whichever is closest modulo

q. Analogously to the case where k = 2, the symbols will be properly decrypted
whenever the coefficients of (rE · e − s · eE,u + eE,v) ∈ Rq have magnitude less than
q/2k.
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Due to the homomorphic property of the scheme we can compute the re-encryption
just adding to the original ciphertext the encryption of the element 0, that is, the
polynomial whose coefficients are all 0.

• Re-encaE,bE((u, v), r′E, e
′
E,u, e

′
E,v): Given the small elements r′E, e

′
E,u, e

′
E,v drawn

from the error distribution χ, the re-encryption of a ciphertext (u, v) is (u′, v′) =
(u, v) + EncaE,bE(0, r

′
E, e
′
E,u, e

′
E,v) ∈ Rq ×Rq.

Explicitly, the re-encrypted ciphertext is (for simplicity we omit here the modulo q):

(u′, v′) = (u, v) + (aE · r′E + e′E,u, bE · r′E + e′E,v)

(u′, v′) = (aE · rE + eE,u, bE · rE + eE,v +
⌊q

2

⌉
z) + (aE · r′E + e′E,u, bE · r′E + e′E,v)

(u′, v′) = (aE · (rE + r′E) + (eE,u + e′E,u), bE · (rE + r′E) + (eE,v + e′E,v) +
⌊q

2

⌉
z)

So we can see that in (u′, v′) the randomness used for encrypting the message z is
the sum of the randomness used during the encryption and the re-encryption.

RLWE encryption scheme and consequently the RLWE re-encryption scheme are
semantically secure based on the RLWE assumption. It is demonstrated in [107] that
if there exists a polynomial time algorithm that distinguishes between encryption of
0 and 1 then there exists a distinguisher that distinguishes between As,χ and U(Rq)
for a non-negligible fraction of all possible s.

Finally, as we have mention before, the RLWE encryption scheme is homomor-
phic so it allows to sum several ciphertexts and obtain one unique ciphertext which
encrypts the sum of all the messages. If we represent each ciphertext in the following
way:

u(i) = a · r(i) + e
(i)
1

v(i) = b · r(i) + e
(i)
2 +

⌊q
2

⌉
z(i)

The sum of all of them is:

u(Σ) =
∑
i

u(i) = a ·
∑
i

r(i) +
∑
i

e
(i)
1 = a · r(Σ) + e

(Σ)
1

v(Σ) =
∑
i

v(i) = b ·
∑
i

r(i) +
∑
i

e
(i)
2 +

∑
i

⌊q
2

⌉
z(i) = b · r(Σ) + e

(Σ)
2 +

⌊q
2

⌉
z(Σ)

As we can see, the resulting ciphertext contains the sum of all messages but also
the sum of all the individual errors. This means that the error linearly grows with
the number of ciphertexts that are being added. For this reason, if we want to use
the homomorphic properties of the encryption scheme, we should know which is the
maximum number of ciphertexts we are going to aggregate, so we can choose in
advance the appropriate parameters (s and q) in order to be able to do the sum but
also to have a low or negligible error probability when decrypting.
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2.4.5.4 Commitment scheme

From the proposals of lattice-based commitment schemes we choose that proposed
by Benhamouda et al. [29] since apart from allowing us to commit to a message,
it allows to prove knowledge of the committed messages and also relations between
them. This scheme needs that the prime q is q ≡ 3 mod 8. This implies xn + 1
splits into two irreducible polynomials of degree n/2 [29], and every polynomial of
degree smaller than n/2 can be inverted. There are other proposals for a lattice-
based commitment scheme and the corresponding proofs such as that from Baum
[20], but we leave their analysis for future work.

The commitment scheme consists of the following three algorithms:

• KeyGenC(1κ): this algorithm generates the public commitment key ck = (aC,bC)

where aC,bC
$←− (Rq)

k, q ≡ 3 mod 8 is prime and n is a power of 2.

• Comck(m; rC, eC): in order to commit to a message m ∈ Rq, the algorithm

chooses rC
$←− Rq and eC

$←− Dk
σe , where σe is the standard deviation of the

error used for computing the commitment, conditioned on ‖eC‖∞ ≤ n and
computes:

c = ComaC,bC
(m; rC, eC) = aCm+ bCrC + eC

The opening of the commitments is defined as (m, rC, eC, 1)

• ComVerck(c,m
′, r′C, e

′
C, f

′): given (c,m′, r′C, e
′
C, f

′) the verification algorithm
accepts if and only if:

aCm
′ + bCr

′
C + f ′−1e′C = c ∧ ‖e′C‖∞ ≤

⌊
n4/3

2

⌋
∧ ‖f ′‖∞ ≤ 1 ∧ degf ′ ≤ n

2

This commitment scheme satisfies the security requirements of correctness, perfectly
binding and computational hiding that are explained below:

• Correctness: if the commitment is computed by an honest party, the verifi-
cation algorithm always accepts.

• Perfectly binding: a commitment cannot be opened to different messages.
Given two distinct openings, (c,m, rC, eC, f) and (c,m′, r′C, e

′
C, f

′), for the same
commitment, the verification algorithm with overwhelming probability accepts
both of them if and only if m = m′.

• Computationally hiding: given two messages, m0 and m1, and the com-

mitment to one of them cb = ComaC,bC
(mb; rC, eC) with b

$←− {0, 1}, for every
PPT adversary there is a negligible probability that the adversary guess the
committed message. It is argued that by the RLWE assumption, bCrC + eC is
pseudorandom and thus so is cb.

The proof of these three properties is well explained in [29] and we omit the
details here.



72 Chapter 2. Preliminaries

Notice that with this construction of the commitment scheme they are relaxing
the opening such that they also accept openings of the form aCm + bCrC + f−1eC,
where f ∈ Rq is an additional small polynomial. This relaxation is done in order
to overcome the knowledge-error ”barrier” from the original commitment scheme
presented in [154]. It is proved that this modification does not affect the binding
property of the scheme.

There exist efficient zero-knowledge proofs to prove knowledge of an opening of
a given commitment or to prove that the messages inside some commitments satisfy
any polynomial relation. This proofs are well described in [29] and are also explained
in Chapter 4.



Chapter 3

Post-quantum mix-net

3.1 Introduction

As we have seen in Section 2.3.2, mix-nets are of paramount importance in an on-
line voting scenario. They provide anonymity by permuting and re-encrypting or
partially decrypting the votes so the output of the process cannot be correlated
with the input, i.e., the ciphertexts at the output look completely different from the
ciphertexts at the input. If we want the mixing process to be universally verifiable,
it is necessary that each mix-node computes a proof of a shuffle in order to demon-
strate that the encrypted messages have not been modified during the operation.
In addition, if we want to use the mix-net to build a post-quantum online voting
system we need to base its security on quantum-resistant computational problems,
such as lattice problems.

The proposal described in this chapter is a proof of shuffle based on lattices [47]
which is used to build the first universally verifiable mix-net for a post-quantum
cryptosystem. The proof is based on that proposed by Wikström in [153].

Although this proof of a shuffle based on lattices is not used as a building block
of our post-quantum online voting system (Chapter 5), it has served as a prelimi-
nary work for designing the fully post-quantum proof of a shuffle presented in next
chapter.

3.1.1 Related work

The first mix-net was introduced by Chaum [42] in 1981 who proposed a decryption
mix-net using RSA onions with random padding (the padding added to the message
before being encrypted). The idea is that each mix-node Mk has its public key
and the corresponding private key. The messages that are going to be shuffled are
encrypted as many times as mix-nodes using a different public key and random
padding each time. The ciphertexts at the input of the mix-net are represented as:

Ci = Enc(pk1,Enc(pk2, . . .Enc(pkl,m))))

begin l the number of mix-nodes.
In turns, each mix-node decrypts the outer layer of Ci using the corresponding

private key, removes the random padding and sends the remaining onion to the next



74 Chapter 3. Post-quantum mix-net

node. If decryptions are done in the correct order, the last node obtains the original
message m. Nevertheless, Chaum did not give any method for guaranteeing the
correctness of the shuffle.

Nine years later, Pfitzmann and Pfitzmann [125] discovered an attack on Chaum’s
proposal which consists on performing two sequential shuffles. The first shuffle is
done using the honest input, i.e., the ciphertexts without being manipulated. Then,
for the second shuffle the attacker uses an input that is related to the honest input
which yields in a relationship between the corresponding output ciphertexts and
plaintexts. Finally, this allows the attacker to trace an input of the first shuffle.

In 1993, Park et al. noticed that Chaum’s mix-net required a ciphertext size
proportional to the number of mix-nodes and they proposed the first re-encryption
mix-net [120], where each mix-node re-randomized the ciphertexts using a homo-
morphic cryptosystem like ElGamal. Recall that in the ElGamal cryptosystem it is
possible to re-encrypt the messages using the same public key and just modifying the
randomness used during the encryption by multiplying the initial ciphertext by the
encryption of 1: (gk, hk ·m) · (gk′ , hk′) = (gk+k′ , hk+k′ ·m). Each mix-node permutes
and re-encrypts each ciphertext and decryption occurs after all shuffles have been
done. Note that in this scenario the size of the final ciphertext does not depend on
the number of times it is re-encrypted. Finally, the authors also proposed a differ-
ent mix-net in the same paper where each node performs partial decryption besides
the shuffling. Again, Pfitzmann found an attack in 1995 against both proposals
[124] which uses the fact that ElGamal used over all Z∗p is not semantically secure.
He proposed a solution which consists on using a subgroup of order q of Z∗p. This
approach was formalized by Tsiounis and Yung in [147].

None of the mix-nets proposed until the date were universal verifiable, i.e., the
correctness of the shuffle cannot be verified. It was Sako and Kilian in 1995 who
first defined the property of universal verifiability and proposed the first univer-
sally verifiable mix-net that provides a zero-knowledge proof of correct mixing [133].
The mix-net uses the partial decryption and re-encryption approach presented in
[120] and also applies Pfitzmann’s countermeasure. In addition, each mix-node after
performing the shuffle provides a proof of partial decryption and a proof of a shuf-
fle. Michels and Horster pointed out in [114] that if only one mix-node is honest,
which is a common assumption when working with mix-nets, the privacy can be
compromised.

Achieving efficient mixing proofs was the challenge of the late 1990s, when two
solutions were proposed for building an efficient universally verifiable mix-net [5,
109]. Both proposals are based on permutation networks, use a semantically secure
ElGamal cryptosystem and perform threshold decryption after the mixing. They
differ on some of the zero-knowledge proofs generated. In 2001, Furukawa and Sako
[70] proposed a proof of correct mixing more efficient than the previous ones. In
this scheme each node uses a matrix to do the ciphertexts permutation and proves
in zero-knowledge that this matrix is a permutation matrix. In the same year, Neff
[116] introduced the fastest, fully-private, universally verifiable mix-net shuffle proof
known so far, optimized and generalized by Groth in [84]. The proof requires three
protocols which consists of proving in zero-knowledge several equalities.

There is another type of universally verifiable mix-net which is called Optimistic
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Mixing and that was first proposed by Golle et al. [82] in 2002. The proof generated
by this mix-net is significantly faster than the others if all the mix-nodes behave
honestly, and is only when an error is detected that a proof like Neff’s is generated.

It was also Golle two years later who proposed a mix-net with universal re-
encryption [81] which does not require that each mix-node participates on the key
generation process. This can be done with homomorphic cryptosystems like ElGa-
mal. In the same year, Wikström [151] gave the first mix-net provably secure in the
Universally Composable (UC) framework [36], unlike previous proposals that give
ad-hoc definitions of security and most of them provide proofs in heuristic models.
Proving security on this framework allows to precisely determine which are the se-
curity properties of a mix-net and ensures that the system will remain secure even
if it runs alongside others. One year later, in 2005, Wikström [152] presented a
slightly different mix-net approach from previous ones in which re-encryption is not
necessary, each mix-node just partially decrypts and permutes its input. This allows
the sender to verify that its message was successfully processed, i.e., the scheme is
sender verifiable. He also gives the first proof of a partial-decryption and permuta-
tion shuffle of ElGamal ciphertexts and demonstrates that the mix-net is provably
secure in the UC framework.

Motivated by the complexity of using mix-nets in elections, Adida and Wik-
ström introduced a different mix-net approach [10, 11]. They proposed an offline
pre-computation technique in order to reduce the online computation complexity.
However, the scheme [10] was quite inefficient while the construction in [11] was
very efficient but reduced to a relatively small number of senders. In 2009 [153],
Wikström presented a mix-net based on homomorphic cryptosystems using the idea
of permutation matrices. In the proposal, a proof of a shuffle is split in an offline and
online phase following the approach proposed in [11]. More precisely, in the offline
part the mix-node computes a commitment to the permutation matrix and proves in
zero knowledge that it knows an opening for that commitment. In the online part,
the node computes a commitment-consistent proof of a shuffle to demonstrate that
the committed matrix has been used to shuffle the input. One year later, Terelius
and Wikström [146] proposed a provably secure technique to prove the correctness
of a cryptographic shuffle using simple shuffle arguments which allow the restriction
of the shuffles to certain classes of permutations. Then, in 2012, Bayer and Groth
[22] proposed an honest verifier zero-knowledge argument for the correctness of a
shuffle of homomorphic encryptions that, compared with previous work, matches
the lowest computation cost for the verifier.

Nevertheless, as these non-interactive proofs are known to be secure in the ran-
dom oracle model which is only heuristic, several works have studied how to con-
struct non-interactive zero-knowledge (NIZK) shuffle arguments in the Common
Reference String (CRS) model. The two first shuffle arguments in the CRS model
were proposed by Groth and Lu [87] in 2007 and by Lipmaa and Zhang [102] in 2012.
Nevertheless they were significantly slower than the fastest arguments in the random
oracle model. The former only provides culpable soundness which informally means
that if a malicious mix-node can produce an acceptable shuffle for an invalid state-
ment and has also access to the secret key, the underlying security assumption can
be broken. The latter improves the efficiency of [87] but it provides a weaker secu-
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rity notion. Both schemes suggest a NIZK argument for the correctness of a shuffle
of BBS ciphertexts [30]. The BBS cryptosystem, proposed by Boneh, Boyen and
Shacham works in bilinear groups. Later, Lipmaa and Fauzi [63] proposed a pairing
based NIZK shuffle argument in the CRS model which achieves culpable soundness
and when compared with the previous proposals [87, 102] is faster both proving
and verifying, and it is based on ElGamal cryptosystem over bilinear groups. The
efficiency of this proposal is improved by Lipmaa et al. [65] by proving knowledge-
soundness (there exists a PPT extractor which is able to compute a witness from the
proof and succeeds in convincing an honest verifier) in the Generic Bilinear Group
Model (GBGM). Finally, the most efficient known pairing-based NIZK shuffle argu-
ment is also given by Lipmaa in 2017 [64].

However, given that these CRS-based proposals are constructed for bilinear
groups, we are going to follow the approach presented in [146, 153] to build our
proof of a shuffle.

To the best of our knowledge, the concept of using mix-nets for lattice-based
cryptography is very new in the research literature, and as such, there are not many
proposed schemes. Until 2017 there have been proposals for a lattice-based universal
re-encryption for mix-nets [140, 141] but none of them proposes a proof of a shuffle,
which is essential for verifiable protocols.

The most recent work on lattice-based mix-nets is that presented by Boyen et al.
in 2020 [32]. They propose a plain decryption mix-net, i.e., a mix-net which is not
verifiable, with trip wires thus achieving high level of verifiability and accountability
in the presence of fully malicious mix-nodes. They also claim that re-encryption
mix-nets are currently impractical for defending against quantum attackers. Their
verifiability approach, consisting on using the trip wire technique, is not based on
computing a proof of a shuffle but on a set of auditors who introduce fake votes at
the input and reveal them at the output. Since the mix-nodes cannot distinguish
between fake and real votes, if they have modified a set of votes with high probability
some of them will be those introduced by the auditors, and everyone will be able to
check that they are not part of the output.

3.1.2 Our proposal

We propose the first universally verifiable mix-net for a post-quantum cryptosystem
[47]. The mix-net receives at its input a set of messages encrypted using a RLWE
encryption scheme [107] whose security is based on the hardness of solving the
Learning With Errors problem over rings (RLWE problem) [129]. In the proposal,
we show how to permute and re-encrypt RLWE encryptions and we also give the
first proof of a shuffle that works for a lattice-based cryptosystem. This proof is
based on what is proposed in [153] but it is not a direct adaptation of it, since we
introduce a new technique to implement the last part of the proof that differs from
what is presented in that article.

We split the proof of a shuffle into two protocols following Wikström’s technique.
In the offline part, the permutation and re-encryption parameters used to shuffle the
ciphertexts are committed and it is demonstrated using zero knowledge proofs that
these values meet certain properties and that the openings for the commitments are
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known. The zero-knowledge proofs used in this part satisfy special soundness and
special honest verifier zero-knowledge (see Section 2.2.4). The first property means
that given two accepting conversations with identical first messages but different
challenges, it is possible to extract a valid witness. Regarding the second property,
it means that for a given challenge the verifier can be simulated.

In the online part, instead of computing a commitment-consistent proof of a
shuffle, each mix node should compute a commitment to its output using the com-
mitments calculated in the offline protocol taking advantage of the homomorphic
property of both the commitment and encryption schemes. Finally, the node should
reveal the opening of the output commitment in order to demonstrate that it has
used the committed permutation and re-encryption values to do the shuffle. It is
important to notice that we are not opening the commitments directly to the secret
permutation neither to the secret re-encryption values but the commitments to a
linear combination of them. The openings revealed by each node perfectly hide the
secret values and no information is leaked that could compromise the privacy of
the process. Commitments used to construct the proof are generalized versions of
the Pedersen commitment, which is perfectly hiding and computationally binding
under the discrete logarithm assumption and it is widely used to provide everlasting
privacy. Although it might seem a contradiction to use these commitments since its
binding property relies on an assumption that is broken in a quantum scenario, the
property we are interested on in order to provide long-term privacy is the hiding
property, which is quantum-resistant. In addition, the reason why we use Pedersen
commitments is for efficiency and simplicity. Nevertheless, since our protocol only
requires a commitment that allows us to prove linear relations between committed
elements, the protocol presented in this paper could be modified in order to use the
commitment scheme proposed by Benhamouda et al. in [29]. This would allow us to
construct a mix-net totally based on post-quantum cryptography, which is presented
in Chapter 4. As this is a non-trivial modification we first show how to mix RLWE
ciphertexts using Pedersen commitments and how to do it universally verifiable.

3.2 A commitment-consistent proof of a shuffle

In this section we give an overview of Wikström’s proposal and we refer the reader
to [153] for the exact details of how the protocol works. In this mix-net approach
Wikström shows how to split the shuffle proof into two protocols: offline and on-
line, which allows to reduce the online computation complexity. This proof is later
improved and generalized in [146].

In a re-encryption mix-net based on a homomorphic cryptosystem, each mix-
node Mk chooses a secret permutation πk and one re-encryption parameter ρk,i
for each ciphertext Ci to be mixed. The output of each node is then a list of
ciphertexts that have been permuted and re-encrypted: Lk = {C ′′k,1, . . . , C ′′k,N} where
C ′′k,i = C ′k,iEncpk(1, ρk,i) and C ′k,i = Ck−1,πk(i). During the offline protocol each mix-
node commits to the permutation, proves knowledge of how to open the commitment
and proves certain properties about the committed elements. Then, during the
online protocol, it proves that it has used the committed permutation to perform
the shuffle.
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Before continuing with the overview of the proof, we describe which is the com-
mitment scheme used by Wikström that will be also the commitment scheme used
in our proposal.

Pedersen commitment. Let p and q be large primes, Z∗p a group of integers
modulo p = 2q+ 1 and Gq ⊂ Z∗p a subgroup of order q where the discrete logarithm
assumption holds. Given two independent generators ck = {g, g1} of Gq, to commit
to a message x ∈ Zq using the Pedersen commitment scheme [121], choose a random

α
$←− Zq and output Comck(x, α) = gαgx1 . In order to open this commitment simply

reveal the values α and x. This scheme is perfectly hiding and computationally
binding as long as the discrete logarithm problem is hard in Gq.

In our proposal we are going to work with the extended version of the Pedersen
commitment scheme, that allows committing to more than one message at once.
Given N + 1 independent generators ck = {g, g1, . . . , gN} of Gq and a randomnes

α
$←− Zq, the commitment to N messages x = (x1, . . . , xN) ∈ ZNq is computed as:

Comck(x, α) = gα
N∏
i=1

gxii

We use this version of the Pedersen commitment to commit to a matrix M ∈ ZN×Nq .
We do that just computing a commitment to each of its columns (m1, . . . ,mN) where
mj = (m1j,m2j, . . . ,mNj)

> for j = 1, . . . , N . This means that a matrix commitment
is a vector whose components are the commitments to the matrix columns:

Comck(M, α1, α2, . . . , αN) = (Comck(m1, α1), . . . ,Comck(mN, αN)) = (cm1 , . . . , cmN
)

(3.1)

where cmj
= gαj

∏N
i=1 g

mij
i . Finally, due to the homomorphic property of the Peder-

sen commitment we can compute a commitment to the product of a matrix M by
a vector x from the commitment to the matrix Com(M,α) = (cm1 , . . . , cmN

).

Com(Mx, αMx) =
N∏
j=1

cxjmj
=

N∏
j=1

(
gαj

N∏
i=1

g
mij
i

)xj

= g〈α,x〉
N∏
i=1

g
〈(mi1,...,miN ),(x1,...,xN )〉
i

(3.2)
where αMx = 〈α,x〉. Note that if we try to directly compute the product of M by
x and we commit to the result, we obtain the same outcome.

Mx =


m11 . . . m1N

m21 . . . m2N
...

...
...

mN1 . . . mNN




x1

x2
...
xN

 =


∑N

j=1m1j · xj∑N
j=1m2j · x2

...∑N
j=1mNj · xN



Com(Mx, αMx) = gαMx

N∏
i=1

(g
∑N
j=1mij ·xj

i ) = gαMx

N∏
i=1

g
〈mi,x〉
i
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In order to construct the proof of shuffle batch techniques are used. As pointed
out by Neff [116] and Furukawa and Sako [70], batch proofs are in some sense
invariant under permutation and this allows to construct efficient shuffle proofs.
Given the set of group elements (y1 = gx11 , . . . , yN = gxNN ) it will be expensive to
prove knowledge of each logarithm xi independently. Nevertheless, using a batch
proof we can do it simultaneously: the prover P will demonstrate that it knows a
w such that y = gw. During the proof the verifier V will select e1, . . . , eN ∈ Zp and

will send them to P. Then, both P and V will compute y =
∏N

i=1 y
ei
i .

This idea is used for constructing the proof of a shuffle (note that this is just
a simplified description of the proof and some of the details are omitted here. We
refer the reader to [24] for the details):

1. Both P and V will use (e1, . . . , eN) and C1, . . . , CN for computing C =
∏N

i=1 C
ei
i .

2. The prover also computes C ′′ =
∏N

i=1(C ′′i )eπ(i) and convinces the verifier that
the original exponents, re-ordered using a fixed permutation are used to form
C ′′.

3. P proves knowledge of ρ such that C ′′ = C · Encpk(1, ρ)

The second step is the most expensive, so Wikström design it in such a way
that almost all of it can be moved to the offline phase. During this phase each mix-
node computes a permutation and commits to its matrix (the permutation matrix ).
Then, the node proves that it knows how to open the commitment. The concept of
permutation matrix is explained below.

Permutation matrix. A matrix M is the permutation matrix corresponding to a
permutation function π if

Mij =

{
1 mod q if π(i) = j
0 mod q otherwise

(3.3)

In other words, M is a permutation matrix if it has exactly one non-zero element in
each column and each row, and the elements of each column sum up to one, that is,
the non-zero element is the number one. Notice that in this case the commitment to
each column of the matrix will be cmj

= Com(mj , αj) = gαj
∏N

i=1 g
mij
i = gαjgπ−1(j)

and the Equation 3.1 translates to:

Com(M, α1, α2, . . . , αN) =
(
gα1gπ−1(1), . . . , g

αNgπ−1(N)

)
(3.4)

and consequently Equation 3.2 translates to:

N∏
j=1

cxjmj
=

N∏
j=1

(
gαjgπ−1(j)

)xj = g〈α,x〉
N∏
j=1

g
xπ(j)
j (3.5)

So we can see that given a commitment to a permutation π and a vector x =
(x1, . . . , xN) we can transform this commitment into a commitment of xπ where the
elements xj are in a different order defined by π.
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Note that the commitment to the permutation allows to publicly computing the
commitment to all 〈mj, e〉 as shown in Equation 3.2:

N∏
j=1

cejmj
= g〈α,e〉

N∏
i=1

g
〈mi,e〉
i

During the offline phase each mix-node computes Comck(M,α) and proves knowl-
edge of both α and M. It also demonstrates that M is a permutation matrix in the
following way:

1. Shows that
∏N

i=1〈mi, e〉 =
∏N

i=1 ei, which is true only if M has exactly one
non-zero element in each column and each row. This can be tested by using
the Schwarz-Zippel’s lemma which is used to prove polynomial equalities (see
Lemma 3.2.1). The idea is that we can construct two non-zero multi-variate
polynomials p(x1, . . . , xN) and q(x1, . . . , xN) such that p(x1, . . . , xN) =

∏N
i=1 xi

and q(x1, . . . , xN) =
∏N

i=1〈mi,x〉 (where mi denotes the ith row of the per-
mutation matrix). If we evaluate them at a random point and we obtain the
same result, there is a high probability of the two polynomials being the same.

2. Shows that the non-zero element equal to one. This is demonstrated by show-
ing that the elements of each row sum up to one M · 1 = 1. Indeed, it suffices
to prove that

∏N
j=1 cmj

/
∏N

j=1 gj is of the form gα for some α. Note that this
is the same as showing that Com(1, v) = 〈Com(M,α),1〉 where v = 〈α,1〉.

Lemma 3.2.1 (Schwartz-Zippel lemma). Let f ∈ Zp[x1, . . . , xN ] be a non-zero
multivariate polynomial of total degree d ≥ 0 over Zq, let S ⊂ Zq, and let e1, . . . , eN
be chosen randomly from S. Then

Pr[f(e1, . . . , eN) = 0] ≤ d

|S|

Formally, the zero-knowledge proof computed is of the following form [103]:

Σ-proof

 v, w ∈ Zq
e′ ∈ ZNq

∣∣∣∣∣∣
Com(1, v) = 〈Com(M,α),1〉∧
Com(e′, w) = 〈Com(M,α), e〉∧∏N

j=1 e
′
i =

∏N
j=1 ei


where w = 〈α, e〉 and e′ = (eπ(1), . . . , eπ(N)). Recall that e = (e1, . . . , eN) is

selected and sent by the verifier V.
During the online phase each node proves that its output is its input re-encrypted

and permuted and that the permutation used is that committed in the offline phase.
We are not going to enter in more details since our proposal for the online protocol
differs from [153, 146].

3.3 Mixing protocol overview

In this section we present an overview of our mixing protocol but before entering into
the details we want to recall some of the lattice concepts we have already introduced
in Section 2.4.
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Let Rq be the ring of integer polynomials Rq = Zq[x]/〈xn+1〉 where n is a power
of 2 and q is a prime; and let χσ be a discretized Gaussian distribution (see Section
2.4.2). The RLWE public key is pk = (aE, bE) = (aE, aE · s + e) ∈ Rq × Rq and the
private key sk = s. The ciphertext obtained from encrypting a message z ∈ {0, 1}n
(which is identified as a polynomial in Rq with 0−1 coefficients) with the public key
pk is (u, v) = (aE · rE + eE,u, bE · rE + eE,v + b q

2
ez) ∈ Rq ×Rq, where rE, eE,u, eE,v ∈ Rq

are drawn from the error distribution χσ. Although it is not strictly necessary to
use the subscript E in this chapter, we are going to maintain it in order to be aligned
with the next chapter, where the subscript is important to differentiate between the
ciphertext and the commitment elements.

If instead of using polynomials we use vector and matrix notation, the public key
is (A,b = As + e) where A and B are constructed from a and b correspondingly,
in the following way:

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . ann

 =


a1 −an −an−1 . . . −a2

a2 a1 −an . . . −a3

a3 a2 a1 . . . −a4
...

...
...

. . .
...

an an−1 an−2 . . . a1



B =


b11 b12 b13 . . . b1n

b21 b22 b23 . . . b2n

b31 b32 b33 . . . b3n
...

...
...

. . .
...

bn1 bn2 bn3 . . . bnn

 =


b1 −bn −bn−1 . . . −b2

b2 b1 −bn . . . −b3

b3 b2 b1 . . . −b4
...

...
...

. . .
...

bn bn−1 bn−2 . . . b1


Finally, we can express the ciphertext as a vector of 2n elements (u,v) =

(u1, . . . , un, v1, . . . , vn) ∈ Z2n
q :(

u
v

)
=

(
A
B

)
(rE) +

(
eE,u
eE,v

)
+
⌊q

2

⌉(0
z

)
and its re-encryption as:(

u′

v′

)
=

(
u
v

)
+

(
A
B

)
(r′E) +

(
e′E,u
e′E,v

)
Following this notation and given a permutation π characterized by the matrix M

and a set of re-encryption parameters
(
r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

)
for each one of the messages

i (for all i ∈ [1, . . . , N ]), we can express the shuffling of N RLWE encryptions as:
u
′′(1)
1 · · · u

′′(1)
n v

′′(1)
1 · · · v

′′(1)
n

...
. . .

...
...

. . .
...

u
′′(N)
1 · · · u

′′(N)
n v

′′(N)
1 · · · v

′′(N)
n


N×2n

=

m11 · · · m1N

...
. . .

...
mN1 · · · mNN


N×N


u
(1)
1 · · · u

(1)
n v

(1)
1 · · · v

(1)
n

...
. . .

...
...

. . .
...

u
(N)
1 · · · u

(N)
n v

(N)
1 · · · v

(N)
n


N×2n

+


r
′(1)
E,1 · · · r

′(1)
E,n

...
. . .

...

r
′(N)
E,1 · · · r

′(N)
E,n


N×n


a1 · · · an b1 · · · bn
−an · · · an−1 b2 · · · bn−1

...
. . .

...
...

. . .
...

−a2 · · · a1 −b2 · · · b1


n×2n

+


e
′(1)
E,u,1 · · · e

′(1)
E,u,n e

′(1)
E,v,1 · · · e

′(1)
E,v,n

...
. . .

...
...

. . .
...

e
′(N)
E,u,1 · · · e

′(N)
E,u,n e

′(N)
E,v,1 · · · e

′(N)
E,v,n


N×2n
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(
U′′ V′′

)
= M

(
U V

)
+ R′E

(
AT BT

)
+
(
E′E,u E′E,v

)
(3.6)

Matrices M,R′E,E
′
E,u,E

′
E,v are selected and kept secret by the mix-node, and

(
U′′ V′′

)
,(

U V
)
,
(
A B

)
are public values since they are the output and the input of

the mix-node, and the public key of the encryption scheme respectively. A mix-
node should prove that it knows M,R′E,E

′
E,u,E

′
E,v such that the output of the node(

U′′ V′′
)

is the input
(
U V

)
re-encrypted and permuted, without revealing any

information about M,R′E,E
′
E,u and E′E,v.

Σ-proof


π

r
′(1)
E , . . . , r

′(N)
E

e
′(1)
E,u , . . . , e

′(N)
E,u

e
′(1)
E,v , . . . , e

′(N)
E,v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((
u′′(1),v′′(1)

)
, . . . ,

(
u′′(N),v′′(N)

))T
=

Re-enc
((
uπ(1),vπ(1)

)
, r
′(1)
E , e

′(1)
E,u , e

′(1)
E,v

)T
. . .

Re-enc
((
uπ(N),vπ(N)

)
, r
′(N)
E , e

′(N)
E,u , e

′(N)
E,v

)T



Following Wikström’s proposal we are going to split the proof into two protocols (in
order to simplify the equations we omit the subscript ck in the algorithm Com).

Offline phase

1. The mix-node Mk chooses a random permutation πk characterized by the
matrix Mk ∈ ZN×Nq , computes a matrix commitment Com(Mk,αm,k) and
publishes it. It also proves knowledge of the committed permutation (see
Section 3.4).

2. Mk randomly chooses the re-encryption matrices: R′E,k ∈ ZN×nq ,E′E,u,k ∈ ZN×nq

and E′E,v,k ∈ ZN×nq . It computes the corresponding matrix commitments,
publishes them and prove that the committed elements are small (see Section
3.5).

Recall that the commitments are calculated in the following way (we omit here
the subscript k which refers to a specific mix-node):

Com(M,αm) = (cm1 , . . . , cmN
)

Com(R′E,αr′) = (cr′E,1 , . . . , cr′E,n)

Com(E′E,u,αe′u) = (ce′E,u,1
, . . . , ce′E,u,n

)

Com(E′E,v,αe′v) = (ce′E,v,1 , . . . , ce′E,v,n)

where each element of each vector is defined as the commitment to a matrix column
j:

cmj
= Com(mj, αmj) = gαmj

N∏
i=1

g
mij
i ∀j ∈ 1÷N

cr′E,j = Com(r′E,j , αr′E,j ) = g
α
r′E,j

N∏
i=1

g
r
′(i)
E,j

i ∀j ∈ 1÷ n
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ce′E,u,j
= Com(e′E,u,j , αe′E,u,j

) = g
α
e′E,u,j

N∏
i=1

g
e
′(i)
E,u,j

i ∀j ∈ 1÷ n

ce′E,v,j = Com(e′E,v,j , αe′E,v,j ) = g
α
e′E,v,j

N∏
i=1

g
e
′(i)
E,v,j

i ∀j ∈ 1÷ n

Online phase

1. Given a list of N input ciphertexts, the mix-node Mk permutes and re-encrypts
the list using Equation 3.6.

2. In order to prove that the committed matrices have been used to perform the
mixing, Mk computes the commitment to its output using those commitments
calculated during the online phase, and finally reveals its opening (see Section
3.6)

3.4 Proof of Knowledge of a Permutation Matrix

The first step of the offline phase consists on selecting a random permutation, com-
mitting to it and finally demonstrating in zero-knowledge that the value committed
is indeed a permutation. The permutation matrix is characterized by the following
theorem.

Theorem 3.4.1. Given a matrix M ∈ ZN×Nq and a vector x = (x1, . . . , xN) ∈ ZNq
of N independent variables, M is a permutation matrix if and only if M1 = 1 and∏N

i=1 xi =
∏N

i=1 x
′
i where x′ = Mx.

We refer the reader to [146] for the details about the theorem’s proof.
Given a commitment to a matrix Com(M,αm) = (cm1 , . . . , cmN

) and a vector
x = (x1, . . . , xN), we can compute a commitment to the product of the matrix by a
vector Com(Mx, 〈αm,x〉) using Equation 3.2. In the special case where the vector
x = 1 the commitment above is Com(1, t) where t =

∑N
j=1 αmj . Another important

observation is that given a vector r̂ = (r̂1, . . . , r̂N) we can express a commitment to

the product of the elements of x′ in a recursive way ĉi = gr̂i ĉ
x′i
i−1 for i = 1, . . . , N and

ĉ0 = g1.

ĉ0 = g1

ĉ1 = gr̂1 ĉ
x′1
0 = gr̂1g

x′1
1

ĉ2 = gr̂2 ĉ
x′2
1 = gr̂2gr̂1x

′
2g
x′1x
′
2

1

...

ĉN = gr̂N ĉ
x′N
N−1 = gr̂g

∏N
i=1 x

′
i

1

where r̂ =
∑N

i=1 r̂i
∑N

j=i+1 xj.
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Applying the second condition for a permutation matrix (
∏N

i=1 xi =
∏N

i=1 x
′
i), it

is possible to obtain a commitment ĉN such that ĉN = gr̂g
∏N
i=1 x

′
i

1 = gr̂
′
g
∏N
i=1 xi

1 , and
prove that we know two different valid openings (r̂,

∏N
i=1 x

′
i) and (r̂′,

∏N
i=1 xi). Due to

the binding property of the commitments we know that if someone is able to open a
commitment to two different openings, this means that either both openings are the

same or the discrete logarithm, g1 = gz where z = (r̂ − r̂′) /
(∏N

i=1 xi −
∏N

i=1 x
′
i

)
,

can be computed in the following way:

gr̂g
∏N
i=1 x

′
i

1 = gr̂
′
g
∏N
i=1 xi

1

gr̂−r̂
′
= g

∏N
i=1 xi−

∏N
i=1 x

′
i

1

logg g1 =
r̂ − r̂′∏N

i=1 xi −
∏N

i=1 x
′
i

Observe that using the Schwartz-Zippel lemma (see Lemma 3.2.1) we can prove
that the polynomial equality

∏N
i=1 xi =

∏N
i=1 x

′
i holds with overwhelming probability

just verifying that the equation holds for a point (λ1, . . . , λN) randomly chosen from
ZNq .

Given these preliminaries we can construct a Σ-proof to prove that the mix-
node knows an opening for the commitment and that the element committed is a
permutation matrix. This proof follows the approach given by Wikström which has
been already explained in Section 3.2.

Σ-proof

λ′ ∈ ZNq , t, k, z ∈ Zq

∣∣∣∣∣∣∣∣∣

(
Com(1, t) =

∏N
j=1 cmj

)
∧
(
Com(λ′, k) =

∏N
j=1 c

λj
mj

)
∧
(∏N

i=1 λi =
∏N

i=1 λ
′
i ∨ g1 = gz

)


This protocol (shown in detail in the next page) meets the requirements of complete-
ness, special soundness and special honest-verifier zero-knowledge defined in Section
2.2.4. We refer the reader to [153] for the details about the demonstration of these
requirements.

We let nv, nc and nr denote the bitsize of components in random vectors, chal-
lenges, and random paddings respectively. The security parameters 2−nv , 2−nc and
2−nr must be negligible in n. We can construct a simulator selecting B1, . . . , BN ∈
Gq, d,d′ ∈ ZNq and dα, dγ, dδ ∈ Zq randomly, and computing α, βi, γ, δ using the
verification equations. In order to prove the consistency we have to undo the built
recurrences in the same way that Wikström explains in his article.
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r, s
$←− ZNq

sα
$←− Zq

sγ
$←− Zq

sδ
$←− Zq

n̂ = nv + nr + nc

s′
$←−
[
0, 2n̂ − 1

]
B0 = g1

Bi = griB
λ′i
i−1

α = gsα
N∏
i=1

g
s′i
i

βi = gsiB
s′i
i−1

γ = gsγ

δ = gsδ

P B0,Bi,α,βi,γ,δ−−−−−−−−→ V

c
$←− [0, 2nc − 1]

P c←− V
λ′′1 = s1

λ′′i = λ′′i−1λ
′
i + si

dα = ck + sα

d′i = cλ′i + s′i
di = cri + si

dγ = c 〈s,1〉+ sγ

dδ = cλ′′N + sδ

P
dα,d′i,di,dγ ,dδ−−−−−−−→ V (

N∏
j=1

cλjmj

)c

α
?
= gdα

N∏
i=1

g
d′i
i

Bc
iβi

?
= gdiB

d′i
i−1(

N∏
j=1

c1j
mj

/
N∏
i=1

gi

)c

γ
?
= gdγ(

BN
/
g
∏N
i=1 λi

)c
δ

?
= gdδ
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3.5 Proof of Knowledge of small exponents

The second step of the offline phase will be to prove that the random values used
to re-encrypt are small. Remember that in order to re-encrypt a message, the

following randomness is used: r
′(i)
E =

(
r
′(i)
E,1, . . . , r

′(i)
E,n

)
, e
′(i)
E,u =

(
e
′(i)
E,u,1, . . . , e

′(i)
E,u,n

)
and e

′(i)
E,v =

(
e
′(i)
E,v,1, . . . , e

′(i)
E,v,n

)
for i ∈ {1, . . . , N}. In our case, we would require that

the coefficients of these vectors belong to [−β + 1, β − 1] where β = 2k. In order to
prove this we are going to use the strategy proposed in [100] by Ling et al. As it is
explained in [29] the probability of obtaining an element from the error distribution
with norm larger than β is negligible (notice that β will depend on the parameters
of the encryption). Even when this restriction on the re-encryption elements norm
is applied, the RLWE samples remain pseudorandom. This prevents a corrupted
node from modifiying the plaintext of the ciphertexts, while an honest node can still
use the pseudorandomness to hide the relation between its input an output.

In order to prove that the re-encryption parameters are small, each of their
coefficients are represented using their bit decomposition:

r
′(i)
E,j =

k−1∑
l=0

r
′(i)
E,j,l2

l

e
′(i)
E,u,j =

k−1∑
l=0

e
′(i)
E,u,j,l2

l

e
′(i)
E,v,j =

k−1∑
l=0

e
′(i)
E,v,j,l2

l

with r
′(i)
E,j,l, e

′(i)
E,u,j,l, e

′(i)
E,v,j,l ∈ {−1, 0, 1}. Then, we can also express the bit decomposi-

tion of all the re-encryption parameters using matrix and vector notation:



r
′(1)
E,1

r
′(1)
E,2
...

r
′(1)
E,n

r
′(2)
E,1
...

r
′(N)
E,n


nN×1

=



r
′(1)
E,1,0 r

′(1)
E,1,1 · · · r

′(1)
E,1,k−1

r
′(1)
E,2,0 r

′(1)
E,2,1 · · · r

′(1)
E2,k−1

...
...

. . .
...

r
′(1)
E,n,0 r

′(1)
E,n,1 · · · r

′(1)
E,n,k−1

r
′(2)
E,1,0 r

′(2)
E,1,1 · · · r

′(2)
E,1,k−1

...
...

. . .
...

r
′(N)
E,n,0 r

′(N)
E,n,1 · · · r

′(N)
E,n,k−1


nN×k


20

21

...
2k−1


k×1
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e
′(1)
E,u,1
...

e
′(1)
E,u,n

e
′(1)
E,v,1
...

e
′(1)
E,v,n

e
′(2)
E,u,1
...

e
′(N)
E,v,n


2nN×1

=



e
′(1)
E,u,1,0 e

′(1)
E,u,1,1 · · · e

′(1)
E,u,1,k−1

...
...

. . .
...

e
′(1)
E,u,n,0 e

′(1)
E,u,n,1 · · · e

′(1)
E,u,n,k−1

e
′(1)
E,v,1,0 e

′(1)
E,v,1,1 · · · e

′(1)
E,v,1,k−1

...
...

. . .
...

e
′(1)
E,v,n,0 e

′(1)
E,v,n,1 · · · e

′(1)
E,v,n,k−1

e
′(2)
E,u,1,0 e

′(2)
E,u,1,1 · · · e

′(2)
E,u,1,k−1

...
...

. . .
...

e
′(N)
E,v,n,0 e

′(N)
E,v,n,1 · · · e

′(N)
E,v,n,k−1


2nN×k


20

21

...
2k−1


k×1

The commitment to each element of the decomposition can be expressed as:

c
r
′(i)
E,j,l

= g
α
r
′(i)
E,j,lg

r
′(i)
E,j,l

i

c
e
′(i)
E,u,j,l

= g
α
e
′(i)
E,uj,lg

e
′(i)
E,u,j,l

i

c
e
′(i)
E,v,j,l

= g
α
e
′(i)
E,uj,lg

e
′(i)
E,v,j,l

i

From these commitments we can easily compute the commitments to r
′(i)
E,j , e

′(i)
E,u,j

and e
′(i)
E,v,j: cr′(i)E,j

, c
e
′(i)
E,u,j

, c
e
′(i)
E,v,j

. For example, using the commitments to the elements

r
′(i)
E,j,l, we can compute the commitment c

r
′(i)
E,j

in the following way:

c
r
′(i)
E,j

=
k−1∏
l=0

(c
r
′(i)
E,j,l

)2l =
k−1∏
l=0

(g
α
r
′(i)
E,j,lg

r
′(i)
E,j,l

i )2l = g

∑k−1
l=0 2lα

r
′(i)
E,j,lg

∑k−1
l=0 r

′(i)
E,j,l2

l

i = g
α
r
′(i)
E,j g

r
′(i)
E,j

i

And finally, using the commitments c
r
′(i)
E,j

we can compute the commitment to the

vector r′E,j which corresponds to the column j of matrix R′E:

cr′E,j =
N∏
i=1

c
r
′(i)
E,j

=
N∏
i=1

g
α
r
′(i)
E,j g

r
′(i)
E,j

i = g

∑N
i=1 αr′(i)

E,j

N∏
i=1

g
r
′(i)
E,j

i = g
α
r′E,j

N∏
i=1

g
r
′(i)
E,j

i

We prove in zero knowledge that the elements r
′(i)
E,j,l, e

′(i)
E,u,j,l, e

′(i)
E,v,j,l have one of the

possible values in the set {−1, 0, 1} using an OR-proof (see Protocol 2.2 in Section
2.3.2.3).

The protocol used to demonstrate that a value belongs to a specific set, x ∈
{−1, 0, 1}, is based on a zero knowledge proof that proves that the element x has
one of the values in the set without revealing which one it is.

Σ-proof
[
x
∣∣x ∈ {−1, 0, 1}, c = grhx

]
Informally, the proof consists of computing three proofs simultaneously, for x =
−1, x = 0 and x = 1, where two of them will be simulated and only that which
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corresponds to the real value of x will be the real proof. This is a standard proof
[52] and we give the details hereunder.

s, tx+1, tx−1, ex+1, ex−1
$←− Zq

dy =

{
gs if y = x

gty (ch−y)
−ey if y 6= x

P d0,d1,d−1−−−−−→ V

k
$←− Zq

P k←− V
ex = k − ex+1 − ex−1

tx = s+ rex

P e0,e1,e−1−−−−−→
t0,t1,t−1

V

k
?
= e0 + e1 + e−1

∀y ∈ {−1, 0, 1}

gty
?
= (ch−y)eydy

Notice that given that the values of x could be −1, 0 or 1, variables tx−1, tx, tx+1

correspond to t−1, t0, t1.
The completeness of the protocol is easy to demonstrate considering that if both

the prover and the verifier follows the protocol, the equation k = e0 + e1 + e−1 holds
since ex = k − ex+1 − ex−1. Regarding the second verification equation, we will
distinguish between the situation where y = x:

gs+rex = gs+rex

gs+rex = (grhxh−x)exgs

gtx = (ch−x)exdx

and where y ∈ {x− 1, x+ 1}:

gty = gty

gty = (ch−y)eygty
(
ch−y

)−ey
gty = (ch−y)eydy

In order to prove the consistency, we define two accepted transcriptions of the pro-
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tocol:

(d0, d1, d−1, k, t0, t1, t−1, e0, e1, e−1)(
d0, d1, d−1, k

′, t′0, t
′
1, t
′
−1, e

′
0, e
′
1, e
′
−1

)
k 6= k′

Since k 6= k′, one of the values ey must be different from e′y.

e−1 + e0 + e1 = k 6= k′ = e′−1 + e′0 + e′1
=⇒ ∃y ∈ {−1, 0, 1} such that ey 6= e′y

=⇒ (ey − e′y) 6= 0 ∈ Zq

On the other hand, given that both transcriptions are accepted:

gty = (ch−y)eydy

gt
′
y = (ch−y)e

′
ydy

gty−t
′
y = (ch−y)ey−e

′
y

g(ty−t′y)/(ey−e′y)hy = c

We can conclude that
(
(ty − t′y)/(ey − e′y), y

)
would be an opening for the commit-

ment c to a value y ∈ {−1, 0, 1}.
Finally, the protocol is zero-knowledge since it is possible to construct a simula-

tor that generates accepted transcriptions indistinguishable from real transcriptions
between an honest prover and verifier.

t−1, t0, t1, e−1, e0, e1
$←− Zq

k = e−1 + e0 + e1

d−1 = gt−1(ch)−e−1

d0 = gt0c−e0

d1 = gt1(c/h)−e1

(d0, d1, d−1, k, t0, t1, t−1, e0, e1, e−1) is a valid transcription.

3.6 Opening the commitments

Given the commitments to the permutation matrix and to the re-encryption matri-
ces, the only thing that is left to prove is that these matrices have been used during
the mixing process. This is an operation that should be done online since we need
the list of encrypted messages to compute the proof. In order to do that we propose
a methodology that differs from what Wikström proposes.



90 Chapter 3. Post-quantum mix-net

Given the commitments to the columns of matrices M, R′E, E′E,u and E′E,v:

cmj
= Com

(
mj , αmj

)
cr′E,j = Com

(
r′E,j , αr′E,j

)
ce′E,u,j

= Com
(
e′E,u,j , αe′E,u,j

)
ce′E,v,j = Com

(
e′E,v,j , αe′E,v,j

)
and Equation 3.6:(

U′′ V′′
)

= M
(
U V

)
+ R′E

(
AT BT

)
+
(
E′E,u E′E,v

)
we can compute the commitment to the output of the mix-node, i.e., commitments
to U′′ and V′′. Note that each column k of these matrices can be expressed in the
following way:

u′′k = M · uk + R′E · ak + e′E,u,k =
(
u
′′(1)
k , . . . , u

′′(N)
k

)
v′′k = M · vk + R′E · bk + e′E,v,k =

(
v
′′(1)
k , . . . , v

′′(N)
k

)
In addition, knowing that uk =

(
u

(1)
k , . . . , u

(N)
k

)
, vk =

(
v

(1)
k , . . . , v

(N)
k

)
, ak =

(a1k, . . . , ank), bk = (b1k, . . . , bnk), e
′
E,u,k =

(
e
′(1)
E,u,k, . . . , e

′(N)
E,u,k

)
and

e′E,v,k =
(
e
′(1)
E,v,k, . . . , e

′(N)
E,v,k

)
, each element of vectors u′′k and v′′k is computed as:

u
′′(i)
k =

N∑
j=1

mij · u(j)
k +

n∑
j=1

r
(i)
E,j · ajk + e

′(i)
E,u,k

v
′′(i)
k =

N∑
j=1

mij · v(j)
k +

n∑
j=1

r
(i)
E,j · bjk + e

′(i)
E,v,k

Finally, using the property of Pedersen commitments which allow us to compute a
commitment to the product of a matrix by a vector from the commitment to the
matrix (see Equation 3.2), we can calculate the commitment to each column of U′′

and V′′ in the following way:

Com(u′′k , αu′′
k
) = ce′E,u,k

(
N∏
j=1

c
u
(j)
k
mj

)(
n∏
j=1

c
ajk
r′E,j

)

Com(v′′k , αv′′k ) = ce′E,v,k

(
N∏
j=1

c
v
(j)
k
mj

)(
n∏
j=1

c
bjk
r′E,j

)

where the randomness used to compute the commitments is αu′′
k

= αe′E,u,k
+〈αm,uk〉+

〈αr′ ,ak〉 and αv′′k = αe′E,v,k + 〈αm,vk〉+ 〈αr′ , bk〉.
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The only thing that the mix-node should do in order to prove that it has used the
appropriate values during the shuffling, is to open the commitments above revealing
the openings:(

αe′E,u,k
+ 〈αm,

(
u

(1)
k , . . . , u

(N)
k

)
〉+ 〈αr′ , (a1k, . . . , ank)〉

)
∀k ∈ [1, . . . , n](

αe′E,v,k + 〈αm,
(
v

(1)
k , . . . , v

(N)
k

)
〉+ 〈αr′ , (b1k, . . . , bnk)〉

)
∀k ∈ [1, . . . , n]

The verifier has to check that these values are appropriate openings of the commit-
ments in order to verify the node has used the committed matrices M,R′E,E

′
E,u and

E′E,v to shuffle the encrypted messages (at its input).
As we have seen above, given the commitments to M,R′E,E

′
E,u and E′E,v we

can compute the commitment to the matrix of permuted votes M
(
U V

)
and

the re-encryption matrix
(
R′E
(
AT BT

)
+
(
E′E,u E′E,v

))
. Notice that the 2n linear

combinations of the values αmj
, αr′E,j , αe′E,u,j

, αe′E,v,j that the mix-node reveals, allow
us to open the commitments to the sum of these matrices, but not to each matrix
separately. Given that αm, and αr′ appear on all the openings that we reveal
we have to double check if they could leak any information about any relations
between the α’s that (in a post-quantum scenario) may reveal information about
the permutation and the re-encryption elements. This is not the case because all the
αe′E,u,j

and αe′E,v,j are uniformly and independently chosen from Zq. All the linear
combinations that we reveal have a different αe′E,u,j

or αe′E,v,j , and this implies that
the combinations are also uniformly and independently distributed, and thereby it
is impossible to isolate any of the α.

3.7 Full mixing protocol and its properties

In previous sections we have explained which are the main components of the shuffle
proof and how they work. In this section we want to show the whole protocol and also
to discuss the properties of the proof: completeness, soundness and zero-knowledge.

Offline phase

The mix-node:

Picks the re-encryption parameters r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

$←− Znq ; ∀i ∈ {1, . . . , N} and the
permutation π.

Picks α
r
′(i)
E,j,l
, α

e
′(i)
E,u,j,l

, α
e
′(i)
E,v,j,l

$←− Zq; ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , n} and ∀l ∈
{0, . . . , k − 1}.

Computes the bit-decomposition of each element in r
′(i)
E , e

′(i)
E,u and e

′(i)
E,v as explained

in Section 3.5 and obtains:

r
′(i)
E,j =

k−1∑
l=0

r
′(i)
E,j,l2

l
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e
′(i)
E,u,j =

k−1∑
l=0

e
′(i)
E,u,j,l2

l

e
′(i)
E,v,j =

k−1∑
l=0

e
′(i)
E,v,j,l2

l

Commits to each component of the bit decomposition using the randomness gen-
erated in a previous step:

c
r
′(i)
E,j,l

= Com(r
′(i)
E,j,l, αr′(i)E,j,l

)

c
e
′(i)
E,u,j,l

= Com(e
′(i)
E,u,j,l, αe′(i)E,u,j,l

)

c
e
′(i)
E,v,j,l

= Com(e
′(i)
E,v,j,l, αe′(i)E,v,j,l

)

Publishes the commitments computed in the previous step ∀i ∈ {1, . . . , N}, ∀j ∈
{1, . . . , n} and ∀l ∈ {1, . . . , k − 1}.

Demonstrates that each element of the bit decomposition is small, i.e., is either a
−1, 0 or −1.

Σ-proof

[
r
′(i)
E,j,l

∣∣∣∣ (cr′(i)E,j,l

= g
α
r
′(i)
E,j,lg

r
′(i)
E,j,l

i

)
∧
(
r
′(i)
E,j,l = −1 ∨ r′(i)E,j,l = 0 ∨ r′(i)E,j,l = 1

)]
Σ-proof

[
e
′(i)
E,u,j,l

∣∣∣∣ (ce′(i)E,u,j,l

= g
α
e
′(i)
E,u,j,lg

e
′(i)
E,u,j,l

i

)
∧
(
e
′(i)
E,u,j,l = −1 ∨ e′(i)E,u,j,l = 0 ∨ e′(i)E,u,j,l = 1

)]
Σ-proof

[
e
′(i)
E,v,j,l

∣∣∣∣ (ce′(i)E,v,j,l

= g
α
e
′(i)
E,v,j,lg

e
′(i)
E,v,j,l

i

)
∧
(
e
′(i)
E,v,j,l = −1 ∨ e′(i)E,v,j,l = 0 ∨ e′(i)E,v,j,l = 1

)]
The details of the zero-knowledge proof are given in Section 3.5.

Picks αm
$←− ZNq and generates the matrix M which characterizes the permutation π

selected in the first step of the protocol.

Commits to the permutation matrix by committing to each of its columns as shown in
Section 3.2.

cM = Com(M,αm)

Publish the commitment to the permutation matrix.

Then, the verifier selects λ
$←− ZNq and sends it to the mix-node.

And finally, the mix-node using the vector λ sent by V and the commitment
cM demonstrates that the committed matrix is a permutation matrix using the
zero-knowledge proof explained in Section 3.4.

Σ-proof

[
M

∣∣∣∣∣ (cM = Com(M,αm)) ∧ (M1 = 1) ∧

(
N∏
i=1

λi =
N∏
i=1

λ′i

∣∣∣∣∣λ′ = Mλ

)]
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Online phase

Given a list of ciphertexts (u(i),v(i)) ∈ Z2n
q for all i ∈ {1, . . . , N} the mix-node uses

the permutation and the re-encryption parameters selected during the offline
phase to shuffle them following the equation:(

U′′ V′′
)

= M
(
U V

)
+ R′E

(
AT BT

)
+
(
E′E,u E′E,v

)
The output is the list of shuffled ciphertexts (u′′(i),v′′(i)) for all i ∈ {1, . . . , N}.

From the randomness used to commit to each element of the bit-decomposition
during the offline phase, the mix-node computes the randomness needed to
commit to each r

′(i)
E,j , e

′(i)
E,u,j and e

′(i)
E,v,j.

α
r
′(i)
E,j

=
k−1∑
l=0

α
r
′(i)
E,j,l

2l, α
e
′(i)
E,u,j

=
k−1∑
l=0

α
e
′(i)
E,u,j,l

2l, α
e
′(i)
E,v,j

=
k−1∑
l=0

α
e
′(i)
E,v,j,l

2l

From the previous randomness the mix-node computes the randomness needed to
commit to each column of R′E,E

′
E,u and E′E,v.

αr′E,j =
N∑
i=1

α
r
′(i)
E,j
, αe′E,u,j

=
N∑
i=1

α
e
′(i)
E,u,j

, αe′E,v,j =
N∑
i=1

α
e
′(i)
E,v,j

The vector αr′ is defined as αr′ =
(
αr′E,1 , . . . , αr′E,n

)
.

Finally, the mix-node computes the randomness that will be used by the verifier
to open the commitments to the output of the mixing process.

αu′′
k

= αe′E,u,k
+ 〈αm,uk〉+ 〈αr′ ,ak〉, αv′′k = αe′E,v,k + 〈αm,vk〉+ 〈αr′ , bk〉

The mix-node sends the openings αu′′
k

and αv′′k to the verifier.

The verifier V uses the commitments to the bit-decomposition elements published
during the offline phase to compute the commitments to the elements r

′(i)
E,j , e

′(i)
E,u,j

and e
′(i)
E,v,j; ∀i ∈ [1, . . . , N ] and ∀j ∈ [1, . . . , n].

c
r
′(i)
E,j

=
k−1∏
l=0

(
c
r
′(i)
E,j,l

)2l

c
e
′(i)
E,u,j

=
k−1∏
l=0

(
c
e
′(i)
E,u,j,l

)2l

c
e
′(i)
E,v,j

=
k−1∏
l=0

(
c
e
′(i)
E,v,j,l

)2l

The verifier V uses the commitments computed in the previous step to compute
the commitments to each column of R′E,E

′
E,u and E′E,v.

cr′E,j =
N∏
i=1

c
r
′(i)
E,j

ce′E,u,j
=

N∏
i=1

c
e
′(i)
E,u,j

ce′E,v,j =
N∏
i=1

c
e
′(i)
E,v,j

.
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The verifier V commits to each column of the matrices U′′ and V′′ which contains
the input ciphertexts permuted and re-encrypted. These commitments are
computed using the opening revealed by the mix-node.

Com(u′′k , αu′′
k
), Com(v′′k , αv′′k )

Finally, the verifier V uses the commitments computed in previous steps to check
that the following equations hold (this technique is explained in detail in Sec-
tion 3.6):

ce′E,u,k

(
N∏
j=1

c
u
(j)
k
mj

)(
n∏
j=1

c
ajk
r′E,j

)
?
= Com(u′′k , αu′′

k
)

ce′E,v,k

(
N∏
j=1

c
v
(j)
k
mj

)(
n∏
j=1

c
bjk
r′E,j

)
?
= Com(v′′k , αv′′k )

We finally discuss the properties of protocol.

Completeness. Completeness follows from the homomorphic property of the Ped-
ersen commitment and the completeness of the Σ-protocols for the small elements
and the permutation matrix. The prover computes αe′E,u,j

and αe′E,v,j for all j ∈
[1, . . . , n] using the random elements from the initial commitments. Then, if the
prover has been honest, the verifier builds the commitments to the output using
the published commitments and applying Equation 3.6, and check that αe′E,u,j

and
αe′E,v,j are valid openings for the output commitments.

Soundness. Soundness follows from the homomorphic and binding properties of
the Pedersen commitment and from the soundness of the Σ-protocols for the small
elements and the permutation matrix. The prover has published some commitments
and proved knowledge of valid openings that satisfy the required conditions. When
combined into a commitment to the output he shows a valid opening. Given that
the commitment scheme is binding this implies that the output of the mix node is
really the desired permutation and re-randomization of the input.

This property is the only one that would not hold in a quantum scenario, as the
binding property of the Pedersen commitment would be broken. Nevertheless, until
the first practical quantum computer is build soundness would be achieved by our
protocol.

Zero-knowledge. We can build a simulator that produces transcriptions indistin-
guishable from the real interactions between an honest prover and a verifier.

Given λ and the responses of the Σ-protocols we choose π and r
′(i)
E,j,l, e

′(i)
E,u,j,l, e

′(i)
E,v,j,l

(∀l ∈ {0, . . . , k − 1}) uniformly at random except for e
′(1)
E,u,j,0, e

′(1)
E,v,j,0. We compute

its commitments, publish them and answer the challenges from the Σ-protocols as
usual. Then we choose αu′′

k
and αv′′k uniformly at random and we define ĉ

e
′(1)
E,u,j,0

and

ĉ
e
′(1)
E,v,j,0

in the following way:
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ce′E,u,j
=

N∏
i=1

c
e
′(i)
E,u,j

=
N∏
i=1

(
k−1∏
l=0

(
c
e
′(i)
E,u,j,l

)2l
)

=
N∏
i=1

(
c
e
′(i)
E,u,j,0

k−1∏
l=1

(
c
e
′(i)
E,u,j,l

)2l
)

=

= c
e
′(1)
E,u,j,0

k−1∏
l=1

(
c
e
′(1)
E,u,j,l

)2l
N∏
i=2

(
c
e
′(i)
E,u,j,0

k−1∏
l=1

(
c
e
′(i)
E,u,j,l

)2l
)

=

= c
e
′(1)
E,u,j,0

k−1∏
l=1

(
c
e
′(1)
E,u,j,l

)2l
N∏
i=2

c
e
′(i)
E,u,j

ce′E,u,k

(
N∏
j=1

c
u
(j)
k
mj

)(
n∏
j=1

c
ajk
r′E,j

)
= Com(u′′k , αu′′

k
)(

c
e
′(1)
E,u,j,0

k−1∏
l=1

(
c
e
′(1)
E,u,j,l

)2l
N∏
i=2

c
e
′(i)
E,u,j

)(
N∏
j=1

c
u
(j)
k
mj

)(
n∏
j=1

c
ajk
r′E,j

)
= Com(u′′k , αu′′

k
)

And finally we obtain:

ĉ
e
′(1)
E,u,j,0

=
Com(u′′k , αu′′

k
)(∏k−1

l=1

(
c
e
′(1)
E,u,j,l

)2l
)(∏N

i=2 ce′(i)E,u,j

)(∏N
j=1 c

u
(j)
k
mj

)(∏n
j=1 c

ajk
r′E,j

)
ĉ
e
′(1)
E,v,j,0

=
Com(v′′k , αv′′k )(∏k−1

l=1

(
c
e
′(1)
E,v,j,l

)2l
)(∏N

i=2 ce′(i)E,v,j

)(∏N
j=1 c

v
(j)
k
mj

)(∏n
j=1 c

bjk
r′E,j

)

The only thing that is left to prove is that ĉ
e
′(1)
E,u,j,0

and ĉ
e
′(1)
E,v,j,0

are commitments to

−1, 0 or 1. As we have the response from the verifier we can simulate these proofs
and publish its outputs. By construction this simulation will be a valid conversation,
equally distributed as any honest conversation since α1,k and α2,k follow the same
uniformly random distribution as if they were computed using linear combinations
of other uniformly random elements. Fake commitments ĉ

e
′(1)
E,u,j,0

and ĉ
e
′(1)
E,v,j,0

follow

again a uniformly random distribution as they will do if they were honestly obtained.
The same applies to the outputs of the Σ-protocols, both the one proving that an

element is −1, 0, 1 and Wikström’s protocol for the characterization of a committed
permutation matrix.

The zero-knowledge property will not be compromised with quantum computers
as the distribution of the simulated proof is not only computationally indistinguish-
able but completely identical to the honest distribution, thanks to the perfectly
hiding property of the Pedersen commitments.
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3.8 Conclusions

In this chapter we have proposed the first universally verifiable proof of a shuffle for a
lattice-based cryptosystem. The messages at the input of the mix-net are encrypted
using a post-quantum encryption scheme, i.e., the RLWE encryption system, and
then they are shuffled by the mix-nodes. In order to prove the correctness of this
shuffle each node must provide a proof of a shuffle, demonstrating that the protocol
has been executed correctly without leaking any secret information. Our proposal
follows the idea presented in [153] but introduces two significant differences: during
the offline part the random elements used to re-encrypt the ciphertexts are commit-
ted using the generalized version of Pedersen commitment and it is proved that these
elements belong to a certain interval using OR-proofs. On the other hand, during
the online part each node computes a commitment to its output using the homo-
morphic properties of both the commitment scheme and the encryption scheme.
Opening this commitment the mix-node proves that it has used the values commit-
ted during the offline part to compute its output. Revealing this opening does not
give any information about the secret information required to do the shuffling.

Since the shuffle proof uses Pedersen commitments, which are perfectly hiding
but only computationally binding under the discrete logarithm assumption, we can-
not claim that the proof is fully post-quantum. Although our proposal of providing
long-term privacy to the protocol is achieved since the proof will be zero-knowledge
also in a future with quantum computers, the soundness property would not hold
in a quantum scenario. This implies that a successful verification of the proof will
not give us any guarantee on the validity of the statement proven.

On the other hand, it is worth noticing that shuffling the votes is not enough
to guarantee the voters’ privacy, as the system can be insecure, for instance, due
to malleability attacks [150]. To avoid this kind of attack additional security proofs
might be provided before the mixing process starts.

Regarding efficiency, the number of OR-proofs to be computed by each mix node
is proportional to knN , where N is the number of encrypted messages received by
the node, n is the dimension of the lattice and k is the number of bits of each element
of the re-encryption matrices. There are some techniques that allow to reduce the
computational cost of these proofs and we leave for future work to explore these
improvements. We refer the reader to [153] for the details about the efficiency of
the ZKP for a permutation matrix.

In the next chapter we solve some of the issues that have arisen from this con-
struction, by proposing a new proof of a shuffle which is entirely based on post-
quantum assumptions.



Chapter 4

Fully post-quantum proof of a
shuffle

4.1 Introduction

In Chapter 3 we have given an overview to the state of the art of mixing protocols,
starting with Chaum’s mix-net [42] and ending with Boyen et al. proposal [32], and
we have presented our protocol [47] for building a proof of a shuffle for lattice-based
cryptography which is, as far as we know, the first universally verifiable mix-net for
a post-quantum cryptosystem.

As we have explained, our first proposal requires Pedersen commitments, whose
binding property is based on the discrete logarithm problem and for this reason
we cannot consider the proof fully post-quantum. With the aim of improving our
previous work, we propose in this chapter a proof of a shuffle that is fully constructed
over lattice-based cryptography [48] and the first for RLWE encryption schemes,
which makes it secure in a post-quantum scenario. The proof is based on Bayer
and Groth’s proposal [22] and uses a commitment scheme which is perfectly binding
and computationally hiding under the Learning With Errors over Rings (RLWE)
assumption. Finally, we also provide a formal definition for security of a mix-node
and prove security of our proposal using the sequence of games approach.

This proof is used by the mixing protocol of our post-quantum online voting
system (Chapter 5) in order to ensure the correctness of the shuffle but also long-
term privacy.

4.1.1 Related work

After the introduction of the idea of a shuffle by Chaum in 1981 [42], several schemes
have been proposed. The first universally verifiable mix-net is presented in [133] and
gives a proof to check the correctness of the shuffle. Later, several solutions for an ef-
ficient universally verifiable mix-net are proposed [4, 5, 6, 109] and in [70] Furukawa
and Sako suggest a paradigm based on permutation matrices in the common refer-
ence string model (CRS) for proving the correctness of a shuffle, that was improved
in [69, 88]. The latest proposal for a CRS based proof of a shuffle is [35] by Bünz et
al. Wikström also uses this idea of the permutation matrix and presents in [153] a
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proof of a shuffle that can be split in an offline and online phase in order to reduce
the computational complexity in the online part.

On the other hand, Neff [116] proposes another paradigm based on polynomials
being identical under permutation of their roots, obtaining Honest Verifier Zero-
Knowledge (HVZK) proof and improved later in [84, 117] with the drawback that
these constructions are 7-move proofs. Unlike previous proposals, Groth and Ishai
[86] and Bayer and Groth [22] give a practical shuffle argument with sub-linear
communication complexity. We are going to use the ideas presented in [22] to build
our protocol.

None of these proofs are constructed using post-quantum cryptography and, as
far as we know, until the proof of a shuffle explained in this chapter was presented,
only two proposals were published whose security relies on the complexity of solv-
ing lattice problems. The first is our previous construction [47], which consists on a
proof of a shuffle based on lattices but that cannot be considered fully post-quantum
since it uses Pedersen commitments, whose binding property relies on the discrete
logarithm problem. Moreover, in [47] there is no formal definition of security, neces-
sary to precisely know how it can be embedded in a larger construction. The second
one is by Strand [145], who presents a verifiable shuffle for the GSW cryptosystem
that works with any homomorphic commitment scheme. Using the lattice-based
commitment scheme [20] makes the proof fully post-quantum. Additionally, there
have been some proposals for a lattice-based universal re-encryption for mix-nets
[141] but none of them give a proof of a shuffle.

Finally, regarding security definitions for mix-nets, in [150] Wikström provides
one for a single re-encryption mix-node. It is important to note that as Wikström
remarks this is not enough to completely ensure privacy since a definition of security
of a complete mix-net must involve several other aspects, regarding the validity of
the input messages or decryption proofs.

4.1.2 Our proposal

We propose a proof of a shuffle fully constructed over lattices. The existing pub-
lished proposal for a universally verifiable proof of a shuffle for RLWE encryptions
[47] based on [146], uses Generalized Pedersen commitments to hide the secret re-
randomization elements. This would not be sound in a post-quantum scenario, as
it is based on DL assumptions. Naively replacing the commitment scheme with
the one proposed by Benhamouda et al. yields several difficulties since it is useful
when committing to polynomials, but is quite inefficient if we only want to commit
to a bit, as is the case with the entries of a permutation matrix. The fact that
Zq [x] / (xn + 1) is not an integral domain also has some implications for the charac-
terization of a permutation matrix proposed in [146], that cannot be proven directly
and would require additional statements different from the ones discussed in [47].

Due to this, the proposal we present in this chapter [48] is based on the technique
introduced by Bayer and Groth in [22] to construct a shuffle argument; neverthe-
less it is not a direct adaptation of it since working with lattices requires different
techniques to be applied.

The first step of the proof, which is also the first difference with [22], consists on
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committing to the re-encryption parameters in order to demonstrate that they meet
certain constraints. This is done using the commitment scheme and the ZKPoK
proposed by Benhamouda et al. [29] which are perfectly binding and computation-
ally hiding under the RLWE assumption and satisfy special soundness and special
HVZK. The next step consists on proving knowledge of the permutation. The gen-
eral idea here is to prove that two sets contain the same elements. This is done by
computing two polynomials, each of them having as roots the elements of each set,
and proving that both polynomials are equal.

The last step will prove knowledge of the re-encryption parameters, and this
introduces another difference between Bayer and Groth’s protocol and ours. While
they demonstrate that there exists a linear combination of the parameters such that
an equality holds, we have to use a different technique, since the re-encryption pa-
rameters in a RLWE re-encryption scheme are taken from an error distribution and
a linear combination of them would imply the error grows uncontrollably, causing
decryption errors. Indeed, what we will need to prove is that some hidden elements
have small norm and also that several committed elements satisfy a polynomial re-
lation. As these proofs are generally costly we are going to use amortized protocols
to reduce the communication cost. The first amortized protocol is presented in [51]
by Cramer et al., it is improved first by del Pino and Lyubashevsky [55] and later
by Baum and Lyubashevsky in [21].

Proofs of a shuffle commonly require universal verifiability, meaning that a proof
must be generated and also published, so it can be verified by any observer. Clas-
sically, this kind of interactive protocols can be transformed into non-interactive
protocols by means of the Fiat-Shamir heuristics, replacing the random responses
from the verifier with a hash of the previous elements in the conversation, achieving
a protocol secure in the Random Oracle Model (ROM).

However, as it is exposed in [149], this method is not secure anymore in the
Quantum Random Oracle Model (QROM). As far as we know the only quantum
secure general transformation from an interactive protocol to a non-interactive ver-
sion is the one described by [148]. Therefore, a universally verifiable version of our
protocol in the QROM requires further considerations.

Finally, we give a definition of security, based on the one proposed by Wikström
in [150], and we provide a proof of security for our mix-node. His proposal implies
that no adversary can properly compute two indices for the input and the output
respectively such that the messages encrypted in the corresponding ciphertexts are
the same, except with a probability negligibly close to the probability given by
a random guess. In his definition the adversary might have some knowledge of
correlations between the input messages. We provide a definition of security allowing
the adversary to have full control over the input of the mix-node, and we prove that
our construction meets this definition. This is a new formal definition of security,
stronger than that given in [150].

The organization of the chapter is as follows: in Section 4.2 we present Bayer
and Groth proof of a shuffle and in Section 4.3 the main building blocks of our proof:
the encryption and commitment scheme and the ZKPoKs. In Section 4.4 we show
an overview of our shuffling protocol and the details of the construction are given
in Section 4.5. Finally, in Section 4.6 we prove that the mix-node is secure.
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4.2 Efficient zero-knowledge argument for correct-

ness of a shuffle

As mentioned in the introduction, our proposal is based on the shuffle argument
given by Bayer and Groth in [22]. Although is not a direct adaptation of it, we
want to give some intuitions here in order to better understand our construction
presented in Section 4.5.

The general idea of the shuffle argument is to demonstrate knowledge of a permu-
tation π and some re-encryption parameters {ρi}Ni=1 such that the set of ciphertexts
at the output of the shuffle {C ′′i }Ni=1 are those at the input {Ci}Ni=1 permuted and
re-encrypted using the equation C ′′i = C ′iEncpk(1, ρi) where C ′i = Cπ(i). In order to
construct the proof, Bayer and Groth use the combination of two arguments: the
multi-exponentiation (Σmulti-exp) and the product argument (Σprod-arg). We are not
going to enter into details about them since they are specific to ElGamal encryp-
tion and the generalized version of Pedersen commitment, but we want to give an
overview of the main ideas behind the proof.

The proof can be divided in several steps (full proof is shown in Protocol 4.1):

• The prover P computes the permutation of the indexed set of elements {1, . . . ,
N}: a = {π(i)}Ni=1. If we define N as N = m·n, the vector a is indeed a matrix
A with m columns and n rows, where each column is aj = (a1j, . . . , anj) (note
that a11 = π(1) and anm = π(N)).

• P picks r ∈ Zmq and computes the commitment to A using as randomness the

vector r: cA = Com(A, r) = (ca1 , . . . , cam), where caj
= grj

∏n
l=1 g

alj
l .

• The verifier sends a challenge x ∈ Z∗q and the prover computes b = {xπ(i)}Ni=1.
Again, if the use that N = m · n we can express the vector b as a matrix B.

• The matrix B is committed using as randomness the vector s: cB = Com(B, s) =

(cb1 , . . . , cbm), where cbj
= gsj

∏n
l=1 g

blj
l .

• It is demonstrated that the permutation used to compute a and b is the same,
meaning that the prover has a commitment to {x1, . . . , xN} permuted in an
order that was fixed before receiving x. This demonstration is done in the
following way:

– The verifier V sends two values y and z.

– The prover P builds the following N elements using y, z, a and b:

d1 − z = yπ(1) + xπ(1) − z, . . . , dN − z = yπ(N) + xπ(N) − z

Note that using the homomorphic properties of the Pedersen commitment
we can compute the commitment to D, where D is the matrix represen-
tation of the vector d = (d1, . . . , dN), as cD = cA

ycB = Com(D, yr + s)
(this is the commitment to ya + b). In addition, P computes the com-
mitment to z in the following way: c−z = Com(−z, . . . ,−z,0), so it can
define Com(d− z, t) = cDc−z, where t = yr + s.
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– P builds two degree N polynomials, one using y, z, a and b and the second
one with y, z, {1, . . . , N} and {xi}Ni=1, which are identical in z with the
only difference that their roots are permuted:

N∏
i=1

(di − z) =
N∏
i=1

(yi+ xi − z)

– The prover demonstrates using the product argument that Com(d −
z, t) = cDc−z and that both polynomials are equal, i.e., that a set of
committed values has a particular product. Using the Schwartz-Zippel
lemma (Lemma 3.2.1) the verifier can deduce that they are equal since
the prover has negligible probability over the choice of z to generate a
convincing proof unless di = yπ(i) +xπ(i) for i ∈ {1, . . . , N}. In addition,
this will not be true unless cA is a commitment to π(1), . . . , π(N) and
cB to xπ(1), . . . , xπ(N).

• Finally the prover demonstrates using the multi-exponentiation argument that
he knows the re-encryption parameters such that

N∏
i=1

Cxi

i = Encpk(1, ρ)
N∏
i=1

(C ′′i )x
π(i)

where ρ = −〈ρ,b〉 and ρ = (ρ1, . . . , ρN). Given the homomorphic properties
of the encryption scheme, the verifier can deduce from the above equation

N∏
i=1

Mxi

i =
N∏
i=1

(M ′′
i )x

π(i)

and taking discrete logarithms we have

N∑
i=1

log(Mi)x
i =

N∑
i=1

log(M ′′
π−1(i))x

i.

As it is argued in [22], there is negligible probability over the choice of x that
this equality holds true unless M ′′

1 = Mπ(1), . . . ,M
′′
N = Mπ(N).

• The verifier accepts if the product and the multi-exponentiation arguments
are both valid.
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Protocol 4.1: Shuffle argument

P (pk, ck,C,C′′; π, ρ) V (pk, ck,C,C′′)

r
$←− Zmq

a = {π(i)}Ni=1

cA = Comck(a; r)
cA−−−−−−−−→

x
$←− Z∗q

x←−−−−−−−−
s ∈ Zmq
b = {xπ(i)}Ni=1

cB = Comck(b; s)

cB−−−−−−−−→
y, z

$←− Z∗q
y, z←−−−−−−−−

c−z = Comck(−z, . . . ,−z; 0)
cD = cA

ycB

d = ya + b
t = yr + s
cDc−z = Comck(d− z; t)∏N

i=1(di − z) =
∏N

i=1(yi+ xi − z)
ρ = −〈ρ,b〉
x =

(
x1, x2, . . . , xN

)
Cx = Encpk(1; ρ)C′′b

Σmulti-exp,Σprod-arg−−−−−−−−→
outputs accept if all
ZKPoK are correct

4.3 Building blocks

In this section we give an overview of the building blocks used for constructing the
proof of shuffle. Two of them, the encryption scheme [107] and the commitment
scheme [29], have been already explained in Section 2.4.5. We recall here how a
lattice-based ciphertext and commitment look like:

Ciphertext: (u, v) = (aE · rE + eE,u, bE · rE + eE,v + bq
2
ez)

Commitment: c = aCm+ bCrC + eC

In addition to these two schemes we will need ZKPoKs to demonstrate that
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the re-encryption parameters used during the mixing process are small (see Section
4.3.1) and for proving knowledge of the opening of a commitment and proving linear
and multiplicative relations among committed messages (see Section 4.3.2).

4.3.1 Proving knowledge of small elements

When working with lattices there is a common hard problem which consists on
recovering a vector x with small coefficients such that Ax = y with ‖x‖∞ ≤ β. This
problem is known as Inhomogeneous Short Integer Solution (ISIS) problem [72] and
it is described in Definition 42.

Definition 42 (Inhomogeneous Short Integer Solution Problem (ISISpn,m,q,β)). Given
an integer q, a matrix A ∈ Zn×mq , a syndrome u ∈ Znq and a real β, find an integer
vector e ∈ Zm such that Ae = u mod q and ‖e‖p ≤ β (in the lp norm).

In some lattice-based constructions we would like to build a zero-knowledge proof
in which the prover P convinces the verifies V that it knows x. For constructing
such ZKP there are two main techniques: Stern-like protocols [143] or Fiat-Shamir
with aborts [104, 105, 106].

The main idea of Stern-like protocols is that the prover P generates three com-
mitments (c1, c2, c3) and sends them to the verifier V. Then, V sends a random
challenge b from {1, 2, 3} to P who, according to the challenge received reveals two
of the three commitments, e.g., if b = 1 the prover reveals the opening of c2 and c3.
The security of these protocols depends on the hardness of the Syndrome Decoding
Problem (SDP), and due to its similarity with the ISIS problem the protocol was
adapted by Kawachi et al. [97] in 2008 to the lattice setting. Note that one round
of this protocol has soundness error 2/3 and therefore it should be repeated several
times in order to achieve negligible soundness error.

The protocol presented in [97] proposed a ZKPoK for a restricted version of the
ISIS∞ problem in which x is restricted to x ∈ {0, 1}m. Nevertheless, since this is
not sufficient for some applications, in 2012 Ling et al. [100] improved the system
by designing a ZKPoK whose security is based on the general ISIS problem and that
achieves an optimal gap, i.e., the norm bound for the witness and the bound the
prover is able to prove, are identical. We describe below this proof:

1. The prover P and the verifier V extends the matrix A ∈ Zn×mq by appending
2m zero columns: A′ = (A|0) ∈ Zn×3m

q

2. The prover P represents each coordinate xi of the vector x = (x1, x2, . . . , xm)
using its bit decomposition, i.e., xi = bi,0 ·20 + bi,1 ·21 + . . .+ bi,k−1 ·2k−1, where
bi,j ∈ {−1, 0, 1} for all j = 0, . . . , k − 1. Note that for each index j we can
define a vector of the form ũj = (b1,j, b2,j, . . . , bm,j) ∈ {−1, 0, 1}m and from:

x1 = b1,0 · 20 + b1,1 · 21 + . . .+ b1,k−1 · 2k−1

x2 = b2,0 · 20 + b2,1 · 21 + . . .+ b2,k−1 · 2k−1

...

xm = bm,0 · 20 + bm,1 · 21 + . . .+ bm,k−1 · 2k−1
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we can represent x as x = ũ0 · 20 + . . .+ ũk−1 · 2k−1 =
∑k−1

j=0 ũj · 2j.

3. P extends each vector ũj so all of them have the same number of coordinates

−1, 0 and 1. In order to do so, if each vector ũj has λ
(−1)
j , λ

(0)
j , λ

(1)
j coordinates

−1, 0, 1 respectively, choose a random vector tj ∈ {−1, 0, 1} that has (m −
λ

(−1)
j ) coordinates −1, (m− λ(0)

j ) coordinates 0 and (m− λ(1)
j ) coordinates 1.

Append tj to ũj and obtain uj = (ũj‖tj). Recall that during the first step
the matrix A has been extended so its last 2m columns are 0. Due to this
A′(
∑k−1

j=0 2j · uj) = y mod q ⇔ Ax = y mod q.

After these preparation steps, P and V interact as shown in Protocol 4.2.

Note that if we write the RLWE encryption of a message in matrix form we
observe that proving knowledge of the small random elements r′E, e

′
E,u and e′E,v is

equivalent to finding a solution of the ISIS problem:



u1
...
un
v1
...
vn


=
⌊q

2

⌉


0
...
0
z1
...
zn


+



a1 −an · · · −a2

a2 a1 · · · −a3

. . .
...

. . .
...

an an−1 · · · a1

b1 −bn · · · −b2

b2 b1 · · · −b3

. . .
...

. . .
...

bn bn−1 · · · b1




r′E,1
r′E,2

...
r′E,n

+



e′E,u,1
...

e′E,u,n
e′E,v,1

...
e′E,v,n





u1
...
un

v1 − b
q
2
ez1

...
vn − b

q
2
ezn


=

(
A Idn 0n
B 0n Idn

)



r′E,1
...
r′E,n
e′E,u,1

...
e′E,u,n
e′E,v,1

...
e′E,v,n



We can re-write the previous equation as y = Ãx and we can see that proving
knowledge of r′E, e

′
E,u and e′E,v is equivalent to proving knowledge of a vector x with

‖x‖ ≤ β.
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Protocol 4.2: Extended Stern protocol

P
(
y,A′; x, {uj}k−1

j=0

)
V (y,A′)

r0, . . . , rk−1
$←− Z3m

1

π0, . . . , πk−1
$←− S3m

c1 = Com(π0, . . . , πk−1,A
′(
∑k−1

j=0 2j · rj) mod q)

c2 = Com(π0(r0), . . . , πk−1(rk−1))
c3 = Com(π0(u0 + r0), . . . , πk−1(uk−1 + rk−1))

c1, c2, c3−−−−−−−−→
c

$←− {1, 2, 3}
c←−−−−−−−−

If c=1 :
∀j,vj = πj(uj),wj = πj(rj)
RSP:=(v0, . . . ,vk−1,w0, . . . ,wk−1)

If c=2 :
∀j, φj = πj, zj = uj + rj
RSP:=(φ0, . . . , φk−1, z0, . . . , zk−1)

If c=3 :
∀j, ψj = πj, sj = rj
RSP:=(ψ0, . . . , ψk−1, s0, . . . , sk−1)

RSP−−−−−−−−→
If c=1 check that:

vj ∈ B3m∀j ∈ {0, . . . , k − 1}
c2 = Com(w0, . . . ,wk−1)

c3 = Com(v0 + w0, . . . ,vk−1 + wk−1)

If c=2 check that:

c1 = Com(φ0, . . . , φk−1,A
′(
∑k−1

j=0 2j · zj)− y mod q)

c3 = Com(φ0(z0), . . . , φk−1(zk−1))

If c=3 check that:

c1 = Com(ψ0, . . . , ψk−1,A
′(
∑k−1

j=0 2j · sj) mod q)

c2 = Com(ψ0(s0), . . . , ψk−1(sk−1))

outputs accept if all
conditions hold

As mentioned at the beginning of this section, the second technique used for
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proving knowledge of the vector x is known as Fiat-Shamir with aborts. The intuition
behind it is that during the interactive protocol between P and V, there is some
constant fraction of time that the prover cannot respond to the challenge sent by
the verifier and must abort the protocol, i.e., perform a rejection sampling step. As
a consequence, the commit and challenge steps must be repeated several times. The
basic protocol presented in [104] is as follows: the prover knows a short vector x
such that f(x) = y (where the function f is defined by the matrix A). In a first step
P chooses a mask g and sends h = f(g) to the verifier, who then selects the challenge
c from the set {0, 1} and sends it to P. The prover computes z = c ·x+g and aborts
with a probability that depends on the value computed. This is done because if the
prover always responds to the verifier, the secret key x could be linked from z. Note
that in number-theoretic schemes, such as the Schnorr protocol (2.1) presented in
Section 2.2, the value of the mask is chosen uniformly at random and since all the
operations are done in a finite ring, the mask perfectly hides the secret. Nevertheless,
when working with lattices we need this mask to be small which implies that when
added to the secret, it is sometimes leaked. Indeed, the mask g is chosen from a
Gaussian distribution so z it is also a discrete Gaussian distribution centered at c ·x.
In order for the distribution z to be statistically indistinguishable from a discrete
Gaussian distribution centered at the origin, the protocol uses rejection sampling

and aborts with probability exp
(
−2〈z,cx〉+‖cx‖2

2σ2

)
(see [106], Lemma 4.5), where σ is

the standard deviation.
If P does not abort, it sends z = c ·x+g to V, who finally checks if f(z) = c ·y+h

and ‖z‖ is small. The domain of the challenge c is expanded from {0, 1} to a set of
sufficiently small elements, in a follow-up work by Lyubashevsky [105].

There are two main problems related to this kind of protocols which are the
overhead and the soundness slack. The former refers to the number of times the
protocol must be repeated and the latter to the ratio between the coefficients in the
secret and those that can be extracted from the proof. As explained in [19, 51] what
we want is the smallest overhead and soundness slack, but when proving knowledge of
a single pre-image we do not know how to reduce both values. Using Lyubachevsky’s
rejection sampling technique we can reduce the soundness slack but not the overhead.

Nevertheless, if instead of proving knowledge of one pre-image we do it for a set of
them, it is possible to reduce the amortized overhead. This is possible using amor-
tized proofs. The prover knows {x1, . . . ,xn} such that f(x1) = y1, . . . , f(xn) = yn
and proves knowledge of a set of vectors {x′i}ni=1 with small coefficients such that
f(x′i) = yi. More formally, the relation to be proven in zero-knowledge is the
following [19]:

RKSP =
{

(v, w)|v = (y1, . . . , yn) ∧ w = (x1, . . . ,xn) ∧ [yi = f(xi) ∧ ‖xi‖ ≤ β]i∈[n]

}
We are mainly interested on the proposal by del Pino and Lyubashevsky [55]

which is based on [51] and reduces the necessary number of equations to be proven
simultaneously at the expense of a higher running time. In this protocol the amor-
tized proof is constructed by combining imperfect proofs [19] and the rejection
sampling mechanism explained before. Informally, in an imperfect proof of knowl-
edge the prover only demonstrates that it knows almost all pre-images. We give
below an overview of this protocol:
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1. During a first step the prover chooses several masking parameters gj and
commits to them: hj = f(gj)

2. The verifier sends a challenge string and asks the prover to reveal a fraction
of the masking parameters. V checks if the values are small.

3. The prover then computes xi+gj for every 1 ≤ i ≤ n and executes a rejection
sampling step.

4. The prover creates several additive combinations of yi. The pre-image of each
of these combinations is the corresponding additive combination of the xi.

5. The prover runs an imperfect proof on each of these combinations.

For building our mixing protocol we are interested not only on proving knowl-
edge of one witness x but on a set of them, i.e., each mix-node will want to prove
knowledge of all re-encryption parameters used during the mixing of N ciphertexts.
In order to prove this we are going to use the amortized strategy proposed in [55]
which we have previously sketched.

4.3.2 Efficient zero-knowledge proofs for commitments from
RLWE

For building our proof of a shuffle we are going to use the commitment schemes
proposed by Benhamouda et al. in [29] which is perfectly binding and computation-
ally hiding as long as the RLWE problem is hard (see Section 2.4.5 for more details
about the commitment scheme). In addition, in the same paper the authors pro-
pose Σ−protocols for proving knowledge of the message contained in a commitment
(Protocol 4.3) but also to prove additive (Protocol 4.4) and multiplicative relations
(Protocol 4.5) among the committed messages. These protocols are those we are
going to present in this section but before doing it we want to give an overview of
some of the parameters used in [29]: the prime q is q ≡ 3 mod 8 and q ≥ nγ, where
n is the degree of polynomial, a power of 2 and γ is the integer parameter controlling
the size of the modulus. σe is the standard deviation of the error in the commitment
scheme, ση is the standard deviation of the randomness used for hiding eC in the

protocols and κ is an integer, where 1/|C| = 1/
(
n/2
κ

)
bounds the knowledge error of

the proofs and C is the domain of challenges.
Note that Protocol 4.3 follows the usual structure of a Σ−protocol. In a first step

the prover chooses as many masking parameters as witnesses and generates the value
t which follows the same structure as the commitment. Then, it commits to t using
an auxiliary string commitment scheme aCom and sends the auxiliary commitment
to the verifier. V chooses the challenge d from C = {d ∈ {0, 1}n : ‖d‖1 ≤ κ∧deg d ≤
n/2} and sends it to the prover. P builds t+dc = aC(µ+dm)+bC(ρ+drC)+η+deC

and reveals its opening (sm, sr, seC) to the verifier, who checks that the information
received is correct. As explained in previous section, since η is chosen from the error
distribution, seC reveals some information about eC and in order to correct this the

protocol aborts with a probability of exp
(
−2〈seC ,deC〉+‖deC‖

2

2σ2
η

)
. From Lemma 4.5 in
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[106] it follows that the probability that P does not abort is exponentially close to

1/M where M ∈ O(exp(‖deC‖
ση

)), so on average M iterations of the protocol until

there is not any abort are required.

Protocol 4.3: Simple pre-image proof

P (c;m, rC, eC) V (c)

µ, ρ
$←− Zq[x]/〈xn + 1〉

η
$←− χkση

t = aCµ+ bCρ+ η
(caux, daux) = aCom(t)

caux−−−−−−−−→
d

$←− C
d←−−−−−−−−

sm = µ+ dm
sr = ρ+ drC
seC = η + deC

abort with probability

exp
(
−2〈seC ,deC〉+‖deC‖

2

2σ2
η

)
daux, t, sm, sr, seC−−−−−−−−→

aVer(caux, daux, t)
?
= accept

t + dc
?
= aCsm + bCsr + se

‖se‖∞
?

≤ bn4/3/4c

Running different instances of Protocol 4.3 in parallel it is possible to prove
linear relations of different messages contained in their corresponding commitments
(see Protocol 4.4). The idea is that P wants to prove knowledge of m1,m2 and
m3 contained in c1, c2 and c3 where mi satisfies a linear relation of the form m3 =
x1m1 + x2m2 for xi ∈ Zq[x]/〈xn + 1〉.

Following a similar approach that in Protocol 4.4 a prover can prove knowledge
of mi, rC,i, eC,i (for i = 1, 2, 3) such that ci = aCmi + bCrC,i + eC,i and additionally
m3 = m1 ·m2 (see Protocol 4.5).

As Benhamouda et al. explain in their article, if the auxiliary commitment
scheme if perfectly binding, Protocols 4.3, 4.4 and 4.5 are honest-verifier zero-
knowledge proof of knowledge with knowledge error 1/

(
n/2
κ

)
, 1/

(
n/2
κ

)
and 2/

(
n/2
κ

)
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correspondingly, for the following relations:

R′LWE =
{

((aC,bC, c), (m, rC, eC, f)) : ComVer(c,m, rC, eC, f) = accept
}

R′LLWE =
{

((aC,bC, x1, x2, {ci}3
i=1), ({mi}3

i=1, {rC,i}3
i=1, {eC,i}3

i=1, {fi}3
i=1)) :

3∧
i=1

ComVer(ci,mi, rC,i, eC,i, fi) = accept ∧m3 = x1m1 + x2m2

}
R′MLWE =

{
((aC,bC, {ci}3

i=1), ({mi}3
i=1, {rC,i}3

i=1, {eC,i}3
i=1, {fi}3

i=1)) :
3∧
i=1

ComVer(ci,mi, rC,i, eC,i, fi) = accept ∧m3 = m1m2

}

Protocol 4.4: Linear relation proof

P (ci;mi, rC,i, eC,i) V (ci)

µ1, µ2, ρ1, ρ2, ρ3
$←− Zq[x]/〈xn + 1〉

µ3 = x1µ1 + x2µ2

η1,η2,η3
$←− χkση

ti = aCµi + bCρi + ηi for i = 1, 2, 3
(caux, daux) = aCom(t1, t2, t3)

caux−−−−−−−−→
d

$←− C
d←−−−−−−−−

smi = µi + dmi for i = 1, 2, 3
sri = ρi + drC,i for i = 1, 2, 3
seC,i = ηi + deC,i for i = 1, 2, 3
abort with probability

exp
(−2〈seC,i ,deC,i〉+‖deC,i‖

2

2σ2
ηi

)
daux, ti, smi , sri , seC,i−−−−−−−−→

aVer(caux, daux, (t1, t2, t3))
?
= accept

sm3 = x1sm1 + x2sm2

ti + dci
?
= aCsmi + bCsri + seC,i for i = 1, 2, 3

‖seC,i‖∞
?

≤ bn4/3/4c for i = 1, 2, 3
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Protocol 4.5: Multiplicative relation proof

P (ci;mi, rC,i, eC,i) V (ci)

µ1, µ2, µ3, ρ1, ρ2, ρ3
$←− Zq[x]/〈xn + 1〉

η1,η2,η3
$←− χkση

ti = aCµi + bCρi + ηi for i = 1, 2, 3
m+ = µ1m2 + µ2m1

m× = µ1µ2

r+, r×
$←− Zq[x]/〈xn + 1〉

e+, e×
$←− χkσe

c+ = aCm+ + bCr+ + e+

c× = aCm× + bCr× + e×

µ+, µ×, ρ+, ρ×
$←− Zq[x]/〈xn + 1〉

η+,η×
$←− χkση

t+ = aCµ+ + bCρ+ + η+

t× = aCµ× + bCρ× + η×

ρ̃
$←− Zq[x]/〈xn + 1〉

η̃
$←− χkση

t̃ = bCρ̃+ η̃
(caux, daux) = aCom(t+, t×, ti, t̃, c+, c×)

caux−−−−−−−−→
d

$←− C
d←−−−−−−−−

smi = µi + dmi for i = 1, 2, 3,+,×
sri = ρi + dri for i = 1, 2, 3,+,×
seC,i = ηi + deC,i for i = 1, 2, 3,+,×
sr̃ = ρ̃+ dr̃
ẽ = −d2e3 − e+ − de×
r̃ = −d2r3 − r+ − dr×
sẽ = η̃ + dẽ
abort-checks for sẽ, seC,j

caux, t+, t×, ti, t̃, c+, c×−−−−−−−−−−→
smi ,sri ,seC,i ,sr̃,sẽ

aVer(caux, daux, (t+, t×, ti, t̃, c+, c×))
?
= accept

ti + dci
?
= aC,ismi + bC,isri + seC,i for i = 1, 2, 3,+,×

‖seC,i‖∞
?

≤ bn4/3/4c for i = 1, 2, 3,+,×
c̃ = aCsm1sm2 − d2c3 − c× − dc+

t̃ + dc̃
?
= bCsr̃ + sẽ

‖sẽ‖∞
?

≤ bn4/3/4c
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4.4 Protocol overview

Having in mind Bayer and Groth’s protocol (4.2) and all the building blocks (4.3),
in this section we present an overview of the lattice-based proof of a shuffle which
is explained in detail in Section 4.5.

Given a permutation π and a set of re-encryption parameters
{
r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

}
for each one of the messages, the shuffling of N RLWE encryptions is defined asu′(1), v′(1)

...
...

u′(N), v′(N)

 =

uπ(1), vπ(1)

...
...

uπ(N), vπ(N)

+

 r
′(1)
E
...

r
′(N)
E

(aE, bE
)

+

 e
′(1)
E,u , e

′(1)
E,v

...
...

e
′(N)
E,u , e

′(N)
E,v

 (4.1)

We will refer to a specific output in a compact manner as:(
u′(i), v′(i)

)
= Re-enc

((
uπ(i), vπ(i)

)
, r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

)
.

A mix-node will perform the shuffling over the input ciphertexts and will generate
a proof of a shuffle (see 4.2), to demonstrate that it knows the permutation π and

the random elements r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v, without revealing any information about them.

ZKPoK


π{

r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

}N
i=1

∣∣∣∣∣∣∣∣∣∣

(
u′(i), v′(i)

)
=

Re-enc
((
uπ(i), vπ(i)

)
, r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

)
∥∥∥r′(i)E

∥∥∥
∞
,
∥∥∥e′(i)E,u

∥∥∥
∞
,
∥∥∥e′(i)E,v

∥∥∥
∞
≤ δ

 (4.2)

This proof will be published so everybody is convinced that the ciphertexts have
been permuted and re-encrypted without modifying the encrypted plaintexts (even
if some of the nodes are dishonest and leak the permutation). We summarize now
which are the main steps of the protocol.

The first step will be to commit to the encryptions of 0 used to compute the
RLWE re-encryptions. Then, each mix-node will demonstrate that the commit-
ments computed in the previous step are indeed commitments to ciphertexts of the
form: (u0, v0) = (aEr

′
E + e′E,u, bEr

′
E + e′E,v), i.e., commitments to the encryption of

0. Additionally, it will also be demonstrated that the polynomials r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

used to compute the re-encryptions have an infinity norm that is bounded by some
parameter δ � q/4.

As it is explained in [29] for a suitable δ even if this additional restriction on the
re-encryption parameters norm is applied, re-encryptions remain pseudorandom, as
the two probability distributions are statistically close. This first part of the protocol
is explained in detail in Section 4.5.1.

The last part of the protocol (detailed in Section 4.5.2) consists on proving that
two sets contain the same elements:

(
u′′(i), v′′(i)

)︸ ︷︷ ︸
mix-node output

−
(
aEr

′(i)
E + e

′(i)
E,u, bEr

′(i)
E + e

′(i)
E,v

)
︸ ︷︷ ︸

encryptions of 0


N

i=1

=

 (
u(i), v(i)

)︸ ︷︷ ︸
mix-node input


N

i=1
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This is done following the strategy proposed by Bayer and Groth in [22], which
consists of building two polynomials, each of them having as roots the elements of
each of the sets and then prove that both polynomials are equal. Note that the
left-hand side of the equality contains the input ciphertext in a permuted order,
since we remove the randomness introduced during the re-encryption operation. So,
intuitively, the polynomials constructed from these sets will be equal but with their
roots permuted.

Our polynomials will be evaluated and have coefficients in Rq, i.e., we will work
in Rq [A] and the variable A takes values on Rq:

N∑
i=1

Aiu(i) =
N∑
i=1

Aπ(i)(u′′(i) − aEr′(i)E − u
(i))

N∑
i=1

Aiv(i) =
N∑
i=1

Aπ(i)(v′′(i) − bEr′(i)E − v
(i))

To convince a verifier that two polynomials are equal the prover evaluates them
in a random point chosen by the verifier and uses the generalized version of Schwartz-
Zippel lemma (Lemma 4.4.1). Bayer and Groth’s shuffle proof uses the Schwartz-
Zippel lemma, already presented in Chapter 3, which works in general commutative
rings that are not necessarily integral domains. Unlike them, for the proof presented
in this chapter we need the generalized version of the lemma since we work with
polynomials whose coefficients belong to another ring of polynomials.

Lemma 4.4.1 (Generalized Schwartz-Zippel lemma.). Let p ∈ R[x1, x2, . . . , xn] be
a non-zero polynomial of total degree d ≥ 0 over a commutative ring R. Let S be a
finite subset of R such that none of the differences between two elements of S is a
divisor of 0 and let r1, r2, . . . , rn be selected at random independently and uniformly
from S. Then: Pr[p(r1, r2, . . . , rn) = 0] ≤ d

|S| .

We will use this lemma to prove that two polynomials, p1 and p2, are equal with

overwhelming probability if p1(r1, r2, . . . , rn)−p2(r1, r2, . . . , rn) = 0 for r1, r2, . . . , rn
$←−

S.
Now we need to define a suitable subset S ⊆ Zq [x] / (xn + 1) for which the

condition holds.
We can guarantee it if all differences of elements in S are invertible. We choose:

S =
{
p(x) ∈ Zq [x] / (xn + 1)

∣∣∣ deg p(x) < n/2
}

Observe that the proposed subset S meets the required condition for Lemma
4.4.1, as all differences of two polynomials in S are invertible. This is true as the
condition q ≡ 3 mod 8 implies that xn+1 splits into two irreducible polynomials of
degree exactly n/2 (Lemma 3 in [142]). Then all polynomials of degree smaller that
n/2 have an inverse that can be computed using the Chinese Remainder Theorem.
The number of elements in S is still exponential in n, so we can use it as a set of
challenges.

We define the mixing protocol using the following algorithms:
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• SetupMix(1κ): generate parameters (n, q, σ) and run the following algorithms:

– KeyGenE(1κ) to obtain the public and the private key of the RLWE en-
cryption scheme: pkE = (aE, bE) ∈ Rq ×Rq and s ∈ Rq.

– KeyGenC(1κ) to generate the public commitment key: pkC = aC,bC
$←−

(Rq)
k.

Output {{(aE, bE), s}, (aC,bC)}

• MixVotes(pkE, pkC, {(u(i), v(i))}Ni=1): taking as input a list of N encrypted mes-
sages {(u(i), v(i))}Ni=1 compute the shuffling of these RLWE encryptions. Gen-
erate commitments and ZKPoK (we denote by ZKi its corresponding protocols
and by Σi the proofs they output) as it is explained in Section 4.5 in order
to demonstrate the correctness of the process. We can explicitly state the
permutation and/or random elements to be used writing

MixVotes(pkE, pkC, {(u(i), v(i))}Ni=1; π, {r′(i)E , e
′(i)
E,u, e

′(i)
E,v}

N
i=1)

Output
(
{(u′′(i), v′′(i))}Ni=1, {cu(i)0

, c
v
(i)
0
, cπ(i), cαπ(i)}Ni=1,Σ1,Σ2,Σ3,Σ4

)
.

We denote Σ0 = {c
u
(i)
0
, c

v
(i)
0
, cπ(i), cαπ(i)}Ni=1 to unify the notation of the output

of MixVotes.

• VerifyMix(pkE, pkC, {(u(i), v(i))}Ni=1, {(u′′(i), v′′(i))}Ni=1, {Σl}4
l=0): given an input

and an output of the mixing process and the ZKPoK generated, this algo-
rithm outputs 1 if the proofs are valid and 0 otherwise.

4.5 Lattice-based proof of a shuffle

After the overview given in Section 4.4, in this section we describe in detail the
proof of a shuffle (see Protocol 4.6) and explain how the building blocks presented
in Section 4.3 can be used to construct it.

4.5.1 Proving knowledge of the re-encryption parameters

Notice that each mix-node runs the algorithm MixVotes and acts as a prover P. As
a first step, P commits to N encryptions of zero obtaining for each ciphertext the
following commitment (c

u
(i)
0
, c

v
(i)
0

):(
aC

(
aEr

′(i)
E + e

′(i)
E,u

)
+ bCr

(i)
C,u + e

(i)
C,u, aC

(
bEr
′(i)
E + e

′(i)
E,v

)
+ bCr

(i)
C,v + e

(i)
C,v

)
That is, the commitment is a linear combination of the polynomials, with the

additional condition of r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v, e

(i)
C,u, e

(i)
C,v having small norm (r

(i)
C,u and r

(i)
C,v can

be any polynomial in Zq [x] / (xn + 1)).
Then, P sends the commitments to the verifier and proves, using the amortized

proof of knowledge of secret small elements by del Pino and Lyubashevsky [55] (see
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Section 4.3.1), that the public commitments are indeed commitments to encryptions
of zero.

ZKPoK
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∥∥∥
∞
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For a linear function f , a small vector x and its image y = f(x) we can prove

knowledge of a small vector x′ such that f(x′) = y. We can write this linear function
in the following way:

f(r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v, e

(i)
C,u, e

(i)
C,v, r
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C,v) =(
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(
aEr
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E + e
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E,u

)
+ bCr
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C,u + e

(i)
C,u, aC

(
bEr
′(i)
E + e

′(i)
E,v

)
+ bCr

(i)
C,v + e

(i)
C,v

)
Since we need to prove knowledge of the preimages of this function for all

i ∈ {1, . . . , N}, we can amortize the cost by using del Pino and Lyubashebsky’s
technique.

As it is usual in this kind of proofs there is a gap τ between the upper bound
of the norm we use for witness x and the upper bound we get for the extracted x′.
This has to be taken into account when determining specific parameters so that this
possible error multiplied by the number of mix-nodes does not exceed the bounds
allowed for a correct decryption.

We refer the reader to [55] for details, as we directly use their protocol as a
building block for the ZKPoK of linear relations in ZK1 (Protocol 4.6).

Using the amortization technique of [55] as a way of proving knowledge of valid
openings for the commitments [29] has some benefits and some drawbacks. On the
one hand this amortized technique allows us to prove the complex structure with an
amortized cost. On the other hand the gap from the bound known by the prover
and the bound he is able to prove is larger than the one originally established in the
ZKPoK for valid commitment openings from [29].

As a result, the prover is only able to prove knowledge of some openings that
would not be valid as originally defined. However, we can prove that, in our partic-
ular case, we can further relax this definition as the openings we obtain still ensure
the binding property of the commitment scheme. Details of this and a rigorous
parameter analysis are given below.

Del Pino and Lyubashevsky show in [55] how to prove knowledge of small secrets
with an amortized cost. In order to do so their proof consists of two steps, an
imperfect proof of knowledge, where the prover is able to prove knowledge ofN−τ(λ)
out of N secrets, and a compiler (adapted from [51]), used to transform an imperfect
proof of knowledge into a regular proof of knowledge. The function τ(λ) defined for
a security parameter λ is called imperfection.

Their initial imperfect proof has a soundness slack that depends on a parameter
r and an imperfection τ(λ) = λ

logα
+ 1. This r has to be an integer greater or equal
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than 128 and α is another parameter that controls the minimal amount of samples
required for amortization. They provide an example that suits our demands, for
α = 210 one can create amortized proofs for as few as 853 secrets with a security
parameter λ = 128. The compilation step adds extra soundness gap, and as a
result [55] claims that the final ZKPoK for a secret bounded by β has a slack of
4
√
rλβ/ logα for a security parameter λ.

In our case we use n as a security parameter and consider the error term of
the commitment scheme also bounded by n. Using this kind of amortized proofs
we would be able to prove that the error is bounded by 4

√
128n

(
n
10

)
. This is

greater than n4/3/2, as required by the definition of a valid opening. However no
invertible f is involved, and we can just redo the original binding proof and show
how, for a suitable set of parameters, with overwhelming probability over the choice
of the commitment public key, if a valid commitment exists and a prover uses this
particular amortized proof to prove knowledge of another opening, then the message
cannot be a different one. This binding property is what is required for the soundness
of our protocol.

Lemma 4.5.1 (Extended binding property). Let (m′, r
′

C, e
′

C, f
′), (m′′, r

′′

C, e
′′

C, 1) be
such that c = aCm

′+ bCr
′

C + f ′−1e
′

C = aCm
′′+ bCr

′′

C + e
′′

C where
∥∥e′

C

∥∥
∞ ≤ bn

4/3/2c,
‖f ′‖∞ ≤ 1, deg f ′ < n/2 and

∥∥e′′

C

∥∥
∞ ≤ 4

√
128n

(
n
10

)
. Then, provided that parame-

ters are chosen appropriately, with overwhelming probability over the choice of aC

and bC, we have m′ = m′′.

Proof. Our goal is to find conditions on k and γ (defined as in [29], k is the dimension
of aC and γ is such that q ≥ nγ) such that this lemma holds.

Assume by contradiction thatm′ 6= m′′. Subtracting the two different expressions
for c we get aCm + bCrC = f ′−1e

′

C − e
′′

C, for some m, rC ∈ Rq with m 6= 0. Lets fix
these values m, rC, f

′, e
′

C, e
′′

C and check that the chances of this being possible are
negligible.

Here we use again the fact that, since q ≡ 3 mod 8, xn + 1 splits into two
irreducible polynomials p1 and p2 of degree n/2. As m 6= 0 we have m 6= 0 mod pb
at least for one b ∈ {1, 2}. Considering all possible ai ∈ Rq we have that aim
takes all qn/2 possible equivalence classes mod pb with uniform probability. This
is independent for every i, as a result only a fraction 1

qkn/2
of all possible (aC,bC)

would satisfy the required equation.

Now, as we started fixing m, rC, f
′, e

′

C, e
′′

C we have to apply a union bound for
all their possible values. That is qn for m, qn for rC, 3n/2 for f ′, (n4/3)kn for e

′

C and(
8
√

128n
(
n
10

))kn
for e

′′

C.

If this union bound is negligible then with overwhelming probability over the
choice of (aC,bC) there are no m, rC, f

′, e
′

C, e
′′

C satisfiying the equation with m 6= 0.
It would imply that m has to be 0, and the commitment would be binding even
when considering this relaxed opening verifications that come from the amortized
proofs.
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The only missing step is to check when the following quantity is negligible:

q2n3n/2(n4/3)kn
(
8n
√

128 n
10

)kn
qkn/2

=

(
q2−k/231/2(n4/3)k

(
211/2n2

5

)k)n

We know k > 6 from [29], then 2 − k/2 < 0 and we can use q ≥ nγ as defined in
[29]:

≤

(
n2γ−kγ/231/2(n4/3)k

(
211/2n2

5

)k)n

=

(
n2γ+k(10/3−γ/2)31/2

(
211/2

5

)k)n

=
(
n2γ+k(10/3−γ/2+log(211/2/5)/ log(n))31/2

)n
And we want to impose that this quantity is negligible, that is:

≤
(

1

2

)n
This is equivalent to:

1√
12
≥ n2γ+k(10/3−γ/2+log(211/2/5)/ log(n))

And taking logarithms:

log
(
1/
√

12
)

log(n)
≥ 2γ + k(10/3− γ/2 + log(211/2/5)/ log(n))

0 ≥ 2γ + k(10/3− γ/2 + log(211/2/5)/ log(n)) +
log(12)

2 log(n)

Notice how the contribution of the 1
log(n)

terms is positive. Therefore if the inequality
is satisfied for some n0 it would also be satisfied for any n ≥ n0. Therefore we can
just plug in here the minimum value we want to consider for n, in this case n = 29

to achieve minimal security for the commitment scheme:

0 ≥ 2γ + k

(
71− 2 log(5)− 9γ

18

)
+

log(12)

18

Following the same reasoning, and using again 2 − k/2 < 0 we notice that
whenever this condition is satisfied for one γ0 it will also be satisfied for any other
γ ≥ γ0.

In order for the inequality to hold the coefficient of k, 71−2 log(5)−9γ
18

, has to be
negative. This imposes γ ≥ 8, and once we have this condition if the inequality
holds for a given k0 it will also be satisfied for any other k ≥ k0.

Summarizing, we just need to find the minimal pairs of (k0, γ0) ∈ Z2 satisfiying
the following three conditions, and that would imply that any pair (k, γ) with k ≥ k0

and γ ≥ γ0 would be feasible too.
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• γ ≥ 8

• k > 18γ
3γ−16

• 0 ≥ 2γ + k
(

71−2 log(5)−9γ
18

)
+ log(12)

18

The region of feasible parameters can be found in Figure 4.1. As long as we choose
our parameters inside the green area the probability of the existence of non-zero
solutions would be negligible and the commitment scheme will have the required
extended binding property.

γ
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Figure 4.1: Region of feasible parameters satisfying the binding property.

4.5.2 Proving knowledge of the permutation

In order to commit to a permutation, P starts committing to π(1), . . . , π(N) using
the commitment scheme presented in Section 4.3 and obtains cπ(i). Then, the prover
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sends the commitments to V and receives a polynomial α chosen uniformly at random
from the subset: S = {p(x) ∈ Rq | deg p(x) < n/2}. As explained in Section 4.4, this
subset meets the required conditions for Lemma 4.4.1.

P commits to each power απ(i) in commitments cαπ(i) and publishes them. After

that, P receives two more random polynomials β, γ
$←− S.

If we denote mi ∈ Zq and m̂i ∈ Rq to the messages committed in cπ(i) and cαπ(i)
respectively, at this point P starts proving that he knows valid integer openings
mi and m̂i to commitments cπ(i), cαπ(i) that satisfy the following relation (ZK2 in
Protocol 4.6): ∏N

i=1 (βi+ αi − γ) =
∏N

i=1 (βmi + m̂i − γ) (4.3)

Note that ZK2 indeed implies computing two proofs: the prover will use the
amortized proposal by del Pino and Lyubashevsky [55] to demonstrate that the
openings of the commitments meet certain conditions, i.e., they are integers; and
it will use the Σ−protocol presented in Section 4.3.2 for proving the polynomial
relation between committed messages defined by Equation 4.3.

As we will see later, since we are working in Zq/(xn+1) where xn+1 splits into two
irreducible polynomials p1 and p2, we need to guarantee that mi (for i ∈ {1, . . . , N})
is an integer in order to be sure that mi mod p1 = mi mod p2 and be able to prove
that the Equation 4.3 holds. Note that if mi mod p1 6= mi mod p2, by the Chinese
Remainder Theorem we can obtain the polynomial mi, thus mi will not be an
integer. In order to prove that the committed messages are integers the approach
to be followed is similar to that used in Section 4.5.1. This time the linear function
we need to consider maps the message, randomness and error to the commitment:.

f(mi, r
(i)
C , e

(i)
C ) =

(
aCmi + bCr

(i)
C + e

(i)
C

)
Originally [55] was designed for proving knowledge of small preimages, however

everything works the same way if we just require part of the preimage to be small.
During the generation of the proof, the small part of the preimage will be hidden
with gaussian noise while the unbounded part will be hidden with uniformly random
noise. The same parameter analysis that was done before applies here.

In order to verify Equation 4.3 we can use Σ−protocols presented in Section
4.3.2 that allow proving polynomial relations between committed messages.

We can consider the two sides of Equation 4.3 as polynomials in a variable Γ
evaluated in a specific γ ∈ Rq with coefficients in Zq [x] / (xn + 1). The prover has
shown that they are equal when evaluated in this specific γ chosen by the verifier,
but we would like them to be equal as polynomials in Rq[Γ]. The left hand side
of the equation has been determined by the choices of the verifier, and in the right
hand side, by the binding property of the commitment scheme, we know that mi, m̂i

were determined before the choice for γ was made.
We have already checked that subset S satisfies the conditions of the Generalized

Schwartz-Zippel lemma 4.4.1. Using this lemma the verifier is convinced that with
overwhelming probability the two polynomials defined by 4.3 are indeed equal in
Rq[Γ]. Nevertheless, this does not mean that the roots are also the same, so we
would still have to prove that both sets of roots, {βi +αi}i, {βmi + m̂i}i, are equal.
This is not direct in general as Rq is not a unique factorization domain (in particular
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it is not even a domain). However, in our particular case, both sets are going to be
equal with overwhelming probability over the choice of β.

For each j ∈ {1, . . . , N}, we are going to study whether βj + αj belongs to
{βmi+m̂i}i. We know it is a root of the polynomial so

∏N
i=1(βmi+m̂i−(βj+αj)) =

0.

As we stated before, choosing q ≡ 3 mod 8 implies that xn + 1 splits into two
irreducible polynomials of degree n/2. We are going to call these polynomials p1

and p2 and consider operations modulo both of them. In particular
∏N

i=1(βmi +

m̂i − (βj + αj)) ≡ 0 mod p1 and
∏N

i=1(βmi + m̂i − (βj + αj)) ≡ 0 mod p2.

Given that p1 and p2 are irreducible, Zq[x]/〈p1〉 and Zq[x]/〈p2〉 are fields and it is
possible to ensure that at least one of the factors has to be 0. Let ij1 and ij2 be the
indexes such that βmij1+m̂ij1−(βj+αj) ≡ 0 mod p1 and βmij2+m̂ij2−(βj+αj) ≡ 0
mod p2.

Lets write it as affine equations on β:

(mij1 − j)β + (m̂ij1 − αj) ≡ 0 mod p1

(mij2 − j)β + (m̂ij2 − αj) ≡ 0 mod p2

First of all we need to see that, since mi and m̂i were committed before β was
honestly chosen uniformly from S, it is very unlikely that for any triplet i, j ∈
[1, . . . , N ], b ∈ {1, 2} we have (mi− j)β+ (m̂i−αj) ≡ 0 mod pb unless (mi− j) ≡ 0
mod pb. As we are now working in a field Zq[x]/〈pb〉 having (mi − j) 6≡ 0 mod pb
implies there is only one possible β satisfying the equation for each triplet (i, j, b).
Notice that as elements of S have degree smaller than n/2 determining β mod pb
also determines it in Rq. There are 2N2 possible βijb ≡ (mi−j)−j(αj−m̂i) mod pb,

but β is chosen uniformly at random from S, that has cardinal qn/2 and therefore
the probability of choosing one of these conflicting values is negligible.

Provided that previous proofs in ZK2 ensure that mi ∈ Zq is a constant poly-
nomial we have that mijb ≡ j mod pb implies mijb ≡ j mod xn + 1. Since for each
j we have mij1 = mij2 = j this implies ij1 = ij2 and we can directly call it ij and
write the equations mod xn + 1.

As a direct consequence we would also have m̂ij = αj mod xn+1 via the Chinese
Remainder Theorem.

Finally, we can ensure that, with overwhelming probability over the choice of β
both sets commit to the same elements. Notice we have seen only one set inclusion,
but since both sets contain the same number of elements and ij 6= ij′ , if j 6= j′ this
is everything we need.

Let π̃ be the permutation such that j = π̃(ij). Then , with overwhelming
probability, mi = π̃(i) and m̂i = απ̃(i) for every i ∈ [1, . . . , N ].

We abuse notation and call mαπ(i) to m̂i as it has to be απ(i), but understanding
it is indexed by i and not the evaluation π(i) that is unknown to the verifier.

This means that cαπ(i) are indeed commitments to α with exponents from 1 to
N permuted in an order that was fixed by cπ(i) before α was chosen.
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Protocol 4.6: Proof of a shuffle
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 (ZK1)

∀i ∈ [1, . . . , N ]

cπ(i) = Com(π(i))
cπ(i)−−−−−−−−→

α
$←− S

α←−−−−−−−−
∀i ∈ [1, . . . , N ]
cαπ(i) = Com
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outputs accept if all
ZKPoK are correct
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Until now, the prover has committed to the encryptions of 0 and has proven in
zero-knowledge that they are indeed, encryptions of 0. Then, it has also commit to
the permutation and has shown knowledge of it by proving that two polynomials
are equal and have the same roots but in a permuted order. Combining these
commitments and using the Σ-protocols from [29] presented in Section 4.3.2 we can
generate a zero-knowledge proof (ZK3 and ZK4 in Protocol 4.6) to demonstrate that
the input and the output of the mix-node hold the following relations:

∑N
i=1 α

iu(i) =
N∑
i=1

απ(i)
(
u′′(i) − aEr′(i)E − e

′(i)
E,u

)
N∑
i=1

αiv(i) =
N∑
i=1

απ(i)
(
v′′(i) − aEr′(i)E − e

′(i)
E,v

)
Once again we can see them as polynomials in Rq[Γ] with coefficients in Rq that

are equal when evaluated in α.
Both polynomials were determined before α was picked up, so we can apply

Lemma 4.4.1 and conclude that with overwhelming probability they are equal as
polynomials, and so:

u′′(i) = uπ(i) + aEr
′(i)
E + e

′(i)
E,u v′′(i) = vπ(i) + bEr

′(i)
E + e

′(i)
E,v

The verifier V can conclude that the mix-net has behaved properly and the output is
a permuted re-encryption of the input. Completeness, zero-knowledge and soundness
follow from this reasoning and are discussed below.

Completeness, zero-knowledge and soundness

If the prover P chooses all re-encryption parameters from the appropriate distribu-
tion χ conditioned to have norm smaller than δ, correctly builds the commitments
to the encryptions of 0 and follows the small secrets proof, the answer will be ac-
cepted. This is also the case for the proof of the committed permuted powers of
α, as products

∏N
i=1 (βi+ αi − γ) and

∏N
i=1 (βmi + m̂i − γ) are exactly equal, just

in permuted order. Finally the two last ZKPoK are accepted as the output is ex-
actly a permutation and re-encryption of the input, and we have built a polynomial
subtracting the re-encryptions and inverting the permutation. To summarize, the
protocol is complete as all the ZKPoK involved are accepted if an honest prover
follows the protocols.

The special HVZK property is achieved as the only published elements are com-
mitments (with a computationally hiding property based on the hardness of RLWE)
and outputs of lattice-based ZK-protocols (that can be simulated and therefore leak
no information).

Soundness follows with overwhelming probability from the soundness proper-
ties of the ZK-protocols for the commitments and the small elements, the binding
property of the commitment scheme and also from the generalized Schwartz-Zippel
lemma.
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We start with ZK1, if δ′ is such that τδ′ ≤
⌊
n4/3

2

⌉
the extractor of this zero-

knowledge proof given by Del Pino and Lyubashevsky provides us with valid open-
ings of c

u
(i)
0

and c
v
(i)
0

to a valid encryption of 0.

Then, we analyze ZK2, using the extractor of Benhamouda et al. we obtain
valid openings for cπ(i) and cαπ(i) that satisfy the equation

∏N
i=1 (βi+ αi − γ) =∏N

i=1 (βmi + m̂i − γ). The order in which all polynomials have been determined,
generalized Schwartz-Zippel and the previously discussed argument guarantees that,
with overwhelming probability, those extracted messages are permuted integers from
1 to N and powers of α in the same order.

Finally we have ZK3 and ZK4, using the extractor of these proofs we obtain
openings of cπ(i), cαπ(i) , cu(i)0

, c
v
(i)
0

. Given that the commitment scheme is binding

we know from previous proofs that those openings are π(i), απ(i), u
(i)
0 , v

(i)
0 . Then,

the relations held by the messages committed that were written in terms of my are

exactly
∑N

i=1 α
iu(i) =

∑N
i=1 α

π(i)(u′(i)−u(i)
0 ) and

∑N
i=1 α

iv(i) =
∑N

i=1 α
π(i)(v′(i)−v(i)

0 ).
Applying the generalized Schwartz-Zippel lemma we can ensure with overwhelming

probability that u(i) = u′′π
−1(i)−uπ

−1(i)
0 and v(i) = v′′π

−1(i)−vπ
−1(i)

0 . And this implies
that the mix-node has performed a correct shuffle on the input votes.

4.6 Security

Finally we propose a security definition and provide a proof of security for our
proposed mix-node. Informally, a mix-node should ensure that it is not possible to
link an input ciphertext with its corresponding output. However, there might be
more than one ciphertext encrypting the same message (this is particularly the case
in an election with many voters and only a few voting options), and we have to
precisely say that it is not possible to link an input of the mix-node to an output
encrypting the same message.

Some security definitions assume that the original messages are independently
and uniformly distributed over the message space, but it was pointed out by Wik-
ström in [150] that there might be known correlations between some of the input
plaintexts that cannot be ignored.

We base our secure mix-node definition on that presented by Wikström in [150],
but we notice that he assumes that the inputs of the mix-node are correctly com-
puted encryptions of the messages. However the input of each mix-node comes from
the (possibly malicious) previous node, and while the proof of a shuffle ensures that
the input is a set of valid encryptions we do not know if the re-encryption parame-
ters have been drawn randomly from the adequate distribution or specifically chosen
by the possibly malicious previous node. Therefore we present a stronger definition
where we even allow an adversary A to choose the messages and compute something
of the form of an encryption, that is, a pair of polynomials in Rq, allowing them
to completely determine the input of the mix-node. Even though, they should not
be able to identify an input and output index corresponding to the same message
with a probability significantly greater than a random guess. Let MixVotes be the
algorithm that performs a shuffle and outputs a zero-knowledge proof Σ. Then we
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can define:
ExpsecA (κ)

• (pk, sk)← SetupMix(1κ)

• (z(1), . . . , z(N), aux)
$←− A(pk)

• for k ∈ {1, . . . , N}
(u(k), v(k))

$←− A(pk, z(k), aux)

end for

• π $←− SN

•
(
{(u′′(k), v′′(k))}Nk=1,Σ

)
← MixVotes(pk, {(u(k), v(k))}Nk=1; π)

• (iA, jA)
$←− A({(u(k), v(k))}Nk=1, {(u′′(k), v′′(k))}Nk=1,Σ, aux)

• if z(iA) = zπ(jA) then Return 1 else Return 0

Now we can formalize our security definition saying that no adversary can have
a significant advantage over a random guess.

Definition 43 (Secure Mix-Node). Let J be a uniform random variable taking
values in [1, . . . , N ]. We say that a mix-node defined by an algorithm MixVotes is
secure if the advantage of any PPT adversary A over a random guess is negligible
in the security parameter. That is, for all c there exists a κ0 such that if κ ≥ κ0:

AdvsecA (κ) =
∣∣Pr
[
z(iA) = zπ(jA)

]
− Pr

[
z(iA) = zπ(J)

]∣∣
=
∣∣Pr [ExpsecA (κ) = 1]− Pr

[
z(iA) = zπ(J)

]∣∣ < 1

κc

We allow the adversary to corrupt all mix-nodes except one, and the non-
corrupted one is that considered in the experiment ExpsecA . In order to take into
account any possible control of the adversary over those other corrupted nodes and
possibly a subset of the voters we even allow him to fully control all the input of
the mix-node. Even though, if at least one of the mix-nodes is honest, the link
between the ciphertexts at the output and those at the input of the mix-net remains
completely hidden.

Observe that this security definition has to be complemented with additional
security proofs when this mix-node is used as a building block in a larger scheme.
For instance Wikström in [150] shows how a malleable cryptosystem can be used to
break anonymity. Therefore additional validity proofs are required to enforce non-
malleability, as well as strict decryption policies to prevent any leakage of information
during the decryption phase.

Theorem 4.6.1. The proposed mix-node given by our MixVotes algorithm is a
secure mix-node according to Definition 43, under the RLWE hardness assumption.
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Proof. We prove the security of a mix-node defining a sequence of games between a
challenger and an adversary. Beginning from Game 0, that represents the original
attack game with respect to a given efficient adversary, we use a sequence of hybrid
arguments, Game 0, Game 1, Game 2 and Game 3, and we show that each game
is indistinguishable from the previous one. Transitions between games are done
applying very small changes to the defined experiment and we demonstrate that if
an adversary can detect them, it would imply an efficient method of distinguishing
between two distributions that are computationally indistinguishable under the cor-
responding assumptions. When Game 3 is reached, ciphertexts at the output of the
mix-net are not RLWE samples any more, and are independent from the input.

Game 0 models the probability of an adversary getting output 1 from the exper-
iment.

In Game 3 we have an output which is completely independent from the input
and the original messages, and the permutation π is still chosen uniformly at random.
Therefore the probability of guessing a correct pair of indices (iA, jA) is equivalent
to choosing the second index uniformly at random from [1, . . . , N ], i.e., sampling J .

This is the sequence of games:

Game (G0).

– Run SetupMix algorithm. (((aE, bE), s) , (aC,bC))
$←− SetupMix(1κ).

pkE = (aE, bE) pkC = (aC,bC)

– The adversary chooses the messages. ({z(i)}Ni=1, aux)
$←− A1 (pkE, pkC).

– The adversary also computes the input of the mix-node.({
(u(i), v(i))

}N
i=1

)
$←− A2

({
z(i)
}N
i=1

, aux
)

– Mix the encrypted votes:

1. Choose a random permutation π
$←− SN .

2. Choose the re-encryption parameters {r′(i)E , e
′(i)
E,u, e

′(i)
E,v}Ni=1 from the appro-

priate distribution.

3. Compute the output of the mixing process with their corresponding
proofs using the MixVotes algorithm. ({(u′′(i), v′′(i))}Ni=1, {Σl}4

l=0) ←

MixVotes

(
pkE, pkC,

{
(u(i), v(i))

}N
i=1

; π,
{
r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

}N
i=1

)
– A outputs (iA, jA)

$←− A3({(u(i), v(i))}Ni=1, {(u′′(i), v′′(i))}Ni=1, {Σl}4
l=0, aux).

– Check whether z(iA) ?
= zπ(jA).

Game (G1).

– Run SetupMix algorithm. (((aE, bE), s) , (aC,bC))
$←− SetupMix(1κ).

pkE = (aE, bE) pkC = (aC,bC)
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– The adversary chooses the messages. ({z(i)}Ni=1, aux)
$←− A1 (pkE, pkC).

– The adversary also computes the input of the mix-node.({
(u(i), v(i))

}N
i=1

)
$←− A2

({
z(i)
}N
i=1

, aux
)

– Mix the encrypted votes:

1. Choose a random permutation π
$←− SN .

2. Choose the re-encryption parameters {r′(i)E , e
′(i)
E,u, e

′(i)
E,v}Ni=1 from the appro-

priate distribution.

3.→ Compute the output of the mixing process and simulate their correspond-
ing proofs.

(u′′(i), v′′(i))← Re-enc
(
pkE, u

π(i), vπ(i); r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

)
{Σl}4

l=1

$←− Simulator
(
pkE, pkC,

{
(u(i), v(i))

}N
i=1

,
{

(u′′(i), v′′(i))
}N
i=1

)
Since the zero-knowledge proofs are simulated, they are now independent
from the commitments in Σ0 and we can use their hiding property to
substitute each one of them by random samples, without giving to the
adversary more advantage in this game than the probability of breaking
the RLWE assumption.

– A outputs (iA, jA)
$←− A3({(u(i), v(i))}Ni=1, {(u′′(i), v′′(i))}Ni=1, {Σl}4

l=0, aux).

– Check whether z(iA) ?
= zπ(jA).

Game (G2).

–→ Run SetupMix algorithm. (((aE, bE), s), (aC,bC))
$←− SetupMix(1κ).

a′E, b
′
E

$←− Zq [x] / (xn + 1) pkE = (a′E, b
′
E) pkC = (aC,bC)

– The adversary chooses the messages. ({z(i)}Ni=1, aux)
$←− A1 (pkE, pkC).

– The adversary also computes the input of the mix-node.({
(u(i), v(i))

}N
i=1

)
$←− A2

({
z(i)
}N
i=1

, aux
)

– Mix the encrypted votes:

1. Choose a random permutation π
$←− SN .

2. Choose the re-encryption parameters {r′(i)E , e
′(i)
E,u, e

′(i)
E,v}Ni=1 from the appro-

priate distribution.
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3. Compute the output of the mixing process and simulate their correspond-
ing proofs.

(u′′(i), v′′(i))← Re-encpkE

(
uπ(i), vπ(i); r

′(i)
E , e

′(i)
E,u, e

′(i)
E,v

)
{Σl}4

l=0

$←− Simulator
(
pkE, pkC,

{
(u(i), v(i))

}N
i=1

,
{

(u′′(i), v′′(i))
}N
i=1

)
– A outputs (iA, jA)

$←− A3({(u(i), v(i))}Ni=1, {(u′′(i), v′′(i))}Ni=1, {Σl}4
l=0, aux).

– Check whether z(iA) ?
= zπ(jA).

Game (G2,j). We define G3 to be G2,N and observe that G2,0 is exactly G2.

– Run SetupMix algorithm. (((aE, bE), s), (aC,bC))
$←− SetupMix(1κ).

a′E, b
′
E

$←− Zq [x] / (xn + 1) pkE = (a′E, b
′
E) pkC = (aC,bC)

– The adversary chooses the messages. ({z(i)}Ni=1, aux)
$←− A1 (pkE, pkC).

– The adversary also computes the input of the mix-node.

({(u(i), v(i))}Ni=1)
$←− A2({z(i)}Ni=1, aux)

– Mix the encrypted votes:

1. Choose a random permutation π
$←− SN .

2.→ Choose random polynomials and re-encryption parameters from the ap-
propriate distribution.

w′(i)u , w′(i)v
$←− Zq [x] / (xn + 1) ∀i ∈ [1, j]

{r′(i)E , e
′(i)
E,u, e

′(i)
E,v}

N
i=1

$←− χn ∀i ∈ [j + 1, N ]

3.→ Compute the modified output of the mixing process and simulate their
corresponding proofs.

(u′(i), v′(i)) = (uπ(i), vπ(i)) + (w′(i)u , w′(i)v ) ∀i ∈ [1, j]

(u′′(i), v′′(i))← Re-encpkE(u
π(i), vπ(i); r

′(i)
E , e

′(i)
E,u, e

′(i)
E,v) ∀i ∈ [j + 1, N ]

{Σl}4
l=0

$←− Simulator(pkE, pkC, {(u(i), v(i))}Ni=1, {(u′′(i), v′′(i))}Ni=1)

– A outputs (iA, jA)
$←− A3({(u(i), v(i))}Ni=1, {(u′′(i), v′′(i))}Ni=1, {Σl}4

l=0, aux).

– Check whether z(iA) ?
= zπ(jA).

Lemmas 4.6.2, 4.6.3 and 4.6.4 prove that, under RLWE assumptions, all four
games above defined are equivalent. For any PPT adversary A the probability of
winning in one of the games is at negligible distance to the probability of winning
in any of the other games.

This proves the theorem and ensures that our mix-node is indeed secure.
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We let S∗ be the event that z(iA) = zπ(jA) in game G∗.

Lemma 4.6.2. G0 and G1 are statistically indistinguishable.

Proof. In G1 instead of generating the proofs Σ1,Σ2,Σ3,Σ4 using the witnesses,
we simulate them. As simulated conversations are statistically close to real ones
both games are indistinguishable in probabilistic polynomial time. Additionally,
given that the commitment scheme is computationally hiding under the RLWE-
assumption, we substitute each commitment in Σ0 by random samples.

Then
|Pr{S0} − Pr{S1}| ≤ εzkmix + εhid

where εzkmix is the advantage of an adversary against the zero-knowledge property
of Σ1,Σ2,Σ3 and Σ4 and εhid is the advantage of an adversary against the RLWE
problem, which are negligible.

Lemma 4.6.3. G1 and G2 are computationally indistinguishable if the RLWE prob-
lem is hard.

Proof. This is immediate as we have just substituted the RLWE sample (aE, bE) by

a uniform sample (a′E, b
′
E)

$←− R2
q .

Then
|Pr{S1} − Pr{S2}| ≤ εdRLWE

where εdRLWE is the advantage of an adversary against the decisional RLWE prob-
lem, which is negligible.

Lemma 4.6.4. G2 and G3 are computationally indistinguishable if the RLWE prob-
lem is hard.

Proof. We can define N intermediate games between G2 and G3. G2,0 will be G2,

G2,N will be G3 and in each G2,j we add random (w
′(i)
u , w

′(i)
v ) for the first j encryptions

and we use the Re-enc algorithm for all the others from j + 1 to N , with correctly
chosen re-encryption parameters.

Indistinguishability follows from the indistinguishability of any pair of games
G2,j and G2,j+1.

If they were not indistinguishable we could use them to correctly guess if two
pairs of elements (g1, h1) and (g2, h2) are RLWE samples or uniformly random sam-

ples. We would just need to modify G2,j+1 assigning a′E = g1, b
′
E = g2, w

′(j+1)
u =

h1, w
′(j+1)
v = h2. If the samples came from a RLWE distribution the game would be

exactly G2,j, while if samples are uniformly random the game would be G2,j+1.
Then

|Pr{S2,j−1} − Pr{S2,j}| ≤ εdRLWE

where εdRLWE is the advantage of an adversary against the decisional RLWE prob-
lem, which is negligible.

Finally, as in G3 all the re-encryptions are uniformly random samples, it is clear
that

Pr{S3} = Pr
[
z(iA) = zπ(J)

]
.
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Combining all the probabilities we obtain the advantage of the adversary

AdvsecA (κ) =
∣∣Pr [ExpsecA (κ) = 1]− Pr

[
z(iA) = zπ(J)

]∣∣
= |Pr{S0} − Pr{S3}| ≤ εzkmix + εhid + (N + 1)εdRLWE

which is negligible since εzkmix, εhid and εdRLWE are negligible.

4.7 Conclusions

In this chapter we have presented a proof of a shuffle fully constructed over lattice-
based cryptography, which makes it secure in a post-quantum scenario. This pro-
posal improves our previous work (see Chapter 3) but it is not a direct adaption of it
to the post-quantum setting. This new construction follows the strategy proposed by
Bayer and Groth in [22] but introduces some differences since working with lattices
requires different techniques to be applied: while in [22] the authors demonstrate
that there exists a linear combination of the re-encryption parameters such that an
equality holds, we need to treat these parameters separately. We commit to them
and prove that the elements committed have small norm and that satisfy a polyno-
mial relation. Both the security of the commitment scheme and the zero-knowledge
proofs used for building the fully post-quantum proof of a shuffle, is based on the
hardness of solving lattice computational problems.

In addition to the description of the proof, in this chapter we also give a security
definition and we prove that our shuffle satisfies it. The definition we use is based on
that proposed [150] but is stronger, since we modify it in order to allow an adversary
to completely determine the input of the mix-node. The proof of security is build
using the game-playing technique and we demonstrate that our mix-node is secure
according to the security definition under the RLWE hardness assumption.

As future work it would be worthy to have an implementation with concrete
parameters in order to accurately test efficiency in a real setting. We also remark
that this shuffle has to be combined with additional security requirements regarding
how the input is generated as well as how the output is decrypted, in order to
guarantee privacy for the overall scheme that uses this shuffle as a building block,
and these requirements will depend on the specific application.

In the next chapter we show how to use this proof of a shuffle as a building block
for constructing a post-quantum online voting system.



Chapter 5

A post-quantum online voting
system

5.1 Introduction

In previous chapters, we have seen several lattice-based cryptographic primitives,
some of them already existing in the literature, such as the RLWE encryption scheme
[113] and others which are the result of the work done for this thesis, for example,
the fully post-quantum proof of a shuffle presented in Chapter 4. We have also
explained what is an online voting system, which are the requirements that ideally
it should satisfy and which are the existing techniques that allow us to fulfill these
requirements. Therefore, we already have all the ingredients to build a post-quantum
online voting system.

In this chapter, we are going to present an overview of which was the main
goal we had in mind when we started our research on lattice-based cryptography: a
lattice-based online voting system secure under quantum attacks. In order to build
this system, we are going to use most of the primitives we have already explained
in Chapters 2 and 4 but also one extra protocol that we will explain in the current
chapter.

To the best of our knowledge, there are two proposed e-voting schemes [44,
56] that are constructed using lattices. They both follow an alternative approach
without shuffling, making use of the homomorphic property of their encryption
schemes to compute the tally. However, mix-net based schemes are more flexible
and provide better support for complex electoral processes.

In Section 5.2, we describe a protocol proposed by Guasch and Morillo [91],
and we show how to implement it using lattice-based trapdoor functions and zero-
knowledge proofs explained in Sections 2.4.5.2 and 4.3.1 correspondingly. This pro-
tocol allows the voters to check that their votes were cast as intended and also
provides a mechanism against coercion. Then, in Section 5.3, we give an overview
of the post-quantum online voting system, describing which are the algorithms in-
volved in the protocol, how do they use the cryptographic primitives explained
throughout the document, and how they are organized in the different phases. In
the same section, we also discuss which are the security requirements fulfilled by the
voting system and why. As this is on-going research, there is still a lot of room for
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improvement, so finally, some ideas for future work are given in Section 5.4.

5.2 Coercion-resistant cast-as-intended protocol

In Section 2.3 we have talked about which are the security requirements that an ideal
online voting system should satisfy and how they can be fulfilled. In this section we
are interested on verifiability and more concretely on cast-as-intended verifiability. If
an online voting system implements a mechanism that provides cast-as-intended ver-
ifiability, voters can check that the voting options they have selected are indeed those
that were encrypted by their voting device. These mechanisms can be based on the
so-called return codes, on challenging the voting device, or on decrypting the vote
stored in the ballot box. Here we are going to focus on the second technique, known
as challenge or cast, first proposed by Benaloh [28]. Just as a reminder, this tech-
nique consists on verifying the encrypted vote before being cast. Once the voter
has selected the voting options, the voting device encrypts them, commits to the
resulting ciphertext and the voter is asked either to challenge the voting device or
to cast the vote. In the first scenario the voter uses an alternative software and
the information provided by the voting device to check that the encrypted vote in-
deed contains the voting options selected. If the verification is successful, the voting
device generates a new encryption using fresh randomness and the voter is asked
again whether to challenge or cast the vote. Note that this protocol is sound as
long as the voting device does not know, before committing to the encrypted voting
options, whether the voter will decide to challenge it or to cast the vote. Indeed, a
malicious voting device which has modified the voting options selected by the voter,
has 50% of probability of being caught. It is recommended to repeat the protocol
multiple times, i.e., to choose to challenge the voting device multiple times, in order
to increase this probability.

The main drawback of this protocol is that, in order to prevent vote-selling
attacks, it does not allow for auditing the vote that is going to be cast. With this
problem in mind, Guasch and Morillo proposed in 2016 [91] a new technique for
providing cast-as-intended verifiability but also coercion-resistance called challenge
and cast, which is an improvement of the challenge or cast protocol. This new
technique is explained in Section 5.2.1 and the lattice version is presented in Section
5.2.2.

5.2.1 Challenge and cast protocol

The challenge and cast solution [91] consists on the following: the voting device en-
crypts the voting options and computes a zero-knowledge proof of the encryption
randomness. Then, instead of revealing the randomness directly to the voter as it
is done in the challenge or cast protocol, it shows the ciphertext together with the
proof to the voter. The voter uses an audit device to verify the proof and if the
verification is successful, the vote is cast and published in the bulletin board. Note
that with the proof itself it is still possible to sell the vote or to coerce the voter.
This is why the authors take advantage of the simulatability of the zero-knowledge
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proof to allow the voter to generate fake proofs which will look like valid ones to
anyone else.

These proofs are called Designated Verifier Proofs [95], in which only the desig-
nated verifier, in our case the voter, is convinced of the correctness of the proof and
has a trapdoor that allows them to simulate the proof for false statements to other
verifiers. The intuition behind this proof is the following: the prover, which is the
voting device, demonstrates that either the ciphertext contains a concrete message
or the prover is the voter. When the voter checks the proof, since he knows that
the prover, i.e., the voting device, is not him, he is convinced that the ciphertext
contains the voting options he has selected.

In order to build this proof in the non-interactive setting using the Fiat-Shamir
transformation [66] (see Section 2.2.4.2), chameleon hashes [98] are used (see Defini-
tion 44). The idea is that the challenge generated during the non-interactive protocol
is substituted by the output of the chameleon hash function. These functions are
trapdoor collision-resistant hash functions and were first introduced by Krawczyk
and Rabin in [98]. The main difference between this kind of hash functions and
the standard ones (see Definition 13 in Section 2.2.3), is that a chameleon hash is
collision-resistant only for those who do not know the trapdoor, i.e., the owner of
the trapdoor can find two inputs for which the output is the same; while using a
standard hash function is infeasible two find collisions.

Definition 44 (Chameleon hash function [98]). A chameleon hash function is com-
posed by three PPT algorithms:

• CGen(1κ): given as input the security parameter 1κ, the algorithm outputs a
pair of public and private keys (ek, tk), namely, the evaluation and the trap-
door key. In addition it also defines the message space Mch, the randomness
space Rch and the hash space Hch.

• CHash(ek,m, r): given as input the evaluation public key ek, a message m ∈
Mch and randomness rch ∈ Rch, the algorithm outputs a chameleon hash
cch ∈ Hch.

• CHash−1(tk,m,m′, r): given as input the trapdoor key tk, two messagesm,m′ ∈
Mch and a randomness rch ∈ Rch, the algorithm outputs a randomness
r′ch ∈ Rch such that CHash(ek,m, rch)=CHash(ek,m′, r′ch).

and should satisfy the following requirements:

• Collision resistance: there is no efficient PPT algorithm that given the evalu-
ation key ek can find (m, rch) 6= (m′, r′ch) such that CHash(ek,m, rch)=
CHash(ek,m′, r′ch), except with negligible probability.

• Trapdoor collisions: there is an efficient algorithm that given the trapdoor key
tk, two different message m, m′ and a randomness rch, can find r′ch such that
CHash(ek,m, rch)=CHash(ek,m′, r′ch).

Then, the simulatable NIZKP is composed by the following algorithms:
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• GenCRS(1κ): given as input the security parameter 1κ, the algorithm runs
CGen(1κ) and outputs the evaluation ek and the trapdoor key tk.

• NIZKProve(ek, x, w): given as input the evaluation key ek, the statement x and
the witness w, this algorithm executes the first two movements of a Σ−protocol
(see Section 2.2.4.1) in the following way: generates the commitment a and a
random rch ∈ Rch. Then, it defines m = H1(x, a) and computes the challenge
e = H2(CHash(ek,m, rch)), where H1 : {0, 1}∗ → Mch and H2 : {0, 1}∗ → C
(the challenge space) are standard collision-resistant hash functions. Finally,
it obtains the answer z and outputs the proof π = (a, e, rch, z).

• NIZKVerify(π, x): given as input the proof π and the statement x, the algorithm
computes e′ = H2(CHash(ek,H1(x, a), rch)) and checks whether e = e′ and
the validations of the Σ−protocol pass. If the verifications are successful the
algorithm outputs 1, 0 otherwise.

• NIZKSimulate(x, tk): given as input a statement x and the trapdoor key tk of
the chameleon hash scheme, the simulator computes the simulates proof π∗ =
(a∗, e∗, r∗ch, z

∗) in the following way: it uses the simulator of the Σ−protocol
to generate (a∗, e∗, z∗). Then, it uses the trapdoor key tk, the simulated com-
mitment a∗, the simulated challenge e∗, the statement x and the algorithm
CHash−1 to obtain the value r∗ch.

This cast-as-intended mechanism improves the usability and the soundness of
the verification process: the vote that is cast is the same that has been audited.

In order to clarify the idea of this proof we give a concrete instantiation of the
simulatable NIZKPoK using the ElGamal encryption scheme and a chameleon hash
based on the discrete logarithm problem [98].

Let (c1, c2) = (gr, pkr · v) be the ElGamal ciphertext. A chameleon hash for a

given message m and a randomness r
$←− Zq is computed as cch = gm · hr, where

h = gx and x is the trapdoor sampled uniformly from Zq. Additionally, define the
hash functions H2 : {0, 1}∗ → C and H1 : {0, 1}∗ → Mch where C and Mch are
the challenge and the message space respectively. The objective of the proof is to
demonstrate that loggc1 = logpk(

c2
v

).
The interactive protocol between the prover and the verifier is described in Pro-

tocol 5.1. In order to make it non-interactive and simulatable, the prover computes
the challenge e in the following way:

e = H2(CHash(H1(c1,
c2

v
, a1, a2), r)) = H2(gH1(c1,

c2
v
,a1,a2)hr)

Then proof is then defined as π = (a1, a2, e, r, z).
If the designated verifier wants to generate a fake proof in order to convince

another verifier that the message encrypted is v∗ instead of v, it uses the trapdoor
key in the following way:

1. Define the new statement to be proven: (c1,
c2
v∗

).

2. Take at random the values z∗ ∈ G, α ∈ Zq and β ∈ Zq.
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3. Set e∗ = H2(gαhβ).

4. Compute a1
∗ = gz

∗
c1
e∗ and a2

∗ = hz
∗
(c2/v

∗)e
∗
.

5. Obtain r∗ such that the following equality is fulfilled

H2(gH1(c1,c2/v∗,a∗1,a
∗
2)hr

∗
) = H2(gαhβ)

Given that h = gx, the randomness is r∗ = (α−H1(c1, c2/v
∗, a∗1, a

∗
2)) ·x−1 +β.

This is done by running the CHash−1 algorithm with the following inputs:
CHash−1(x, α,H1(c1, c2/v

∗, a∗1, a
∗
2), β)

6. The simulated proof is π = (a∗1, a
∗
2, e
∗, r∗, z∗).

Protocol 5.1

P
(
g, h, c1,

c2
v

; r
)

V
(
g, h, c1,

c2
v

)
s← Zq
(a1, a2) = (gs, pks)

(a1, a2)
−−−−−−−−→

e
$←− C

e←−−−−−−−−
z = s+ r · e z−−−−−−−−→

gz
?
= a1(c1)e

pkz
?
= a2( c2

v
)e

5.2.2 Lattice-based coercion resistant cast-as-intended pro-
tocol

In this section we present our lattice version of the chameleon hash function and
the simulatable NIZKP. As we have already explained in the previous section, a
chameleon hash function needs a trapdoor in order to allow the owner of it to find
collisions.

First of all, the lattice-based hash function we are going to use is that described
in Section 2.4.5.1: fA(x) = A · x ∈ Znq , were A ∈ Zn×mq and x is a short integer
vector in Zmq . Then, for constructing A we follow the strategy for constructing
lattice-based trapdoor functions presented in Section 2.4.5.2. We recall how to do
it hereunder:

A = [B|G−BR]

where G ∈ Zn×wq is a public matrix for which we know that the function fG is easy to

invert, B ∈ Zn×mq is chosen uniformly at random and R ∈ Z(m−w)×w
q is the trapdoor

(note that m = m− w).
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Now, we can construct the lattice-based chameleon hash function in the following
way:

• The algorithm CGen outputs the matrix A =
(
A1|A2

)
∈ Zn×m̃q where A1 ∈

Zn×m̂q is chosen uniformly at random and A2 ∈ Zn×mq is constructed using a

trapdoor R ∈ Z(m−w)×w
q as explained before (note that we define m̃ = m̂+m).

The evaluation key is A and the trapdoor key is R.

• The algorithm CHash receives as input the evaluation key A, a message x ∈ Zm̂q
and a randomness r ∈ Zmq where both x and r are small vectors and r is chosen
from a discrete Gaussian distribution. The chameleon hash is computed as:

fA(x, r) =
(
A1|A2

)(x
r

)
= A1x + A2r = y

.

• The algorithm CHash−1 receives as input the trapdoor R, the message x and
the randomness r used to compute fA(x, r) and the new message x′. The
randomness r′ is computed in the following way. We can express r′ as r′ =(

r′1
r′2

)
and, since we know that A2 is constructed as A2 = [B|G−BR], we can

define:

fA(x′, r′1, r
′
2) =

(
A1 | B | G−BR

)x′

r′1
r′2

 = A1x
′ + Br′1 + (G−BR)r′2

The goal is to find r′1 and r′2 such that fA(x′, r′1, r
′
2) = y. Following the

technique explained in Section 2.4.5.2, we choose a random r̂1 from the discrete
Gaussian distribution and compute fB(r̂1) = Br̂1. Then, we sample a random
preimage r̂2 from f−1

G (y −A1x
′ −Br̂1) = f−1

G (Gr̂2) and define r′2 = r̂2. Since
we want that:

A1x
′ + Br′1 + (G−BR)r′2 = y

Gr′2 = y −A1x
′ −Br′1 + BRr′2

Gr′2 = y −A1x
′ + B(r′1 −Rr′2)

we define r′1 = r̂1 + Rr′2.

This chameleon hash function is collision resistance since finding (x, r) 6= (x′, r′)

such that fA(x, r) = fA(x′, r′) implies A

(
x− x′

r− r′

)
= 0, i.e., solving the SIS problem.

Moreover, it also satisfies the property of trapdoor collisions since, as we have seen
before, given x, r and x′ it is possible to find r′ such that fA(x, r) = fA(x′, r′) with
the knowledge of the trapdoor R.

Once we know how to construct a lattice-based chameleon hash function we
can build the lattice-based simulatable NIZKP. Using this proof the prover will
demonstrate that a ciphertext contains a concrete vote z which in the lattice setting
translates to prove knowledge of a solution to the ISIS problem as explained in
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Section 4.3.1. We recall that we can re-write the RLWE encryption of a message z
as:

y = Ãx (5.1)



u1
...
un

v1 − b
q
2
ez1

...
vn − b

q
2
ezn


=

(
A Idn 0n
B 0n Idn

)



r′E,1
...
r′E,n
e′E,u,1

...
e′E,u,n
e′E,v,1

...
e′E,v,n


Then, using Ling et al. proposal (see Section 4.3.1, Protocol 4.2) we demonstrate
knowledge of the vector of small elements x. As one round of the protocol has
soundness error 2/3 it is necessary to repeat it several times in order to achieve
enough soundness. For this reason, during the execution of the NIZKProve the prover
will compute t tuples of commitments {c1,i, c2,i, c3,i}ti=1 and will store them in a
vector c. Then, the challenge e will be computed as e = H2(CHash(A, H1(y, c), r))
where A is the evaluation key, r ∈ Zmq is a small vector chosen from a discrete
Gaussian distribution, H1 is a hash function that sends the statement y concatenated
with t tuples of commitments, to small vectors in Zm̂q and H2 is a hash function that
sends vectors from Znq to the space of challenges e ∈ {1, 2, 3}t. Finally, the prover
computes the answer z and shows the proof to the verifier, i.e., the voter, which also
contains the randomness r used for computing the chameleon hash.

5.3 Voting system overview

In Section 2.3.4 we have already defined the syntax regarding the participants of an
online voting system, the phases and the algorithms executed in each one of them.
In this section we are going to detail which are exactly the operations done by each
of the algorithms, also specifying which cryptographic primitives of those explained
throughout the document are used. In addition, we are going to introduce new
algorithms which are specific to this voting system, we are going to show how the
participants interact in each phase and finally we are going to explain which of the
security requirements defined in Section 2.3.1 are fulfilled and how.

There are several electoral models that would be interesting to support in an
online voting system, for example, write-ins, which allow voters to write their pref-
erences instead of selecting them from a pre-defined list, or questions with prefer-
ential answers which allow voters to numerically order options according to their
preferences. Nevertheless, for the sake of clarity, here we are going to work with
the simplest electoral model which consists on one question with several answers of
which the voter can only select one. It is left for future work to extend the system
to support more electoral models.
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We denote as V = {v1, . . . , vψ} to the set of voting options the voter can vote
for. We assume that V is the same for all the voters.

The voting system uses the following cryptographic schemes as building blocks,
all of them explained in previous sections or chapters: the RLWE encryption scheme
(KeyGenE,Enc,Dec), the RLWE commitment scheme (KeyGenC,Com,
ComVer), a digital signature scheme (KeyGenS, Sign, SignVer), a simulatable NIZKPoK
(GenCRS,NIZKProve,NIZKVerify,NIZKSimulate) and a mixing protocol
(SetupMix,MixVotes,VerifyMix).

We propose to use as a lattice-based signature scheme one of those submitted to
the NIST competition. The FALCON algorithm seems to be a good candidate due
to its compactness and performance.

5.3.1 Configuration and registration phase

During the configuration phase the electoral authority generates the election infor-
mation that is common to all the voters, such as the voting options, the election
key pair or the commitment key. As we have explained in Section 2.2.2.3, in some
systems it is desirable that the election private key is not owned by a single user but
a group of them. In this situation the private key is split in as many shares as users
using a (threshold) secret sharing scheme (or it is directly generated in a distributed
way) and each user securely stores their private key share during the whole election.
This key sharing procedure usually takes place during the configuration phase. For
simplicity in the explanation we are going to assume that the whole private key is
kept by a single entity.

The counting phase consists only on one algorithm, the Setup.

• Setup(1κ): it receives as input the security parameter and runs the SetupMix(1κ)
algorithm of the mixing protocol (see Section 4.4). It outputs the election key
pair (pke, ske) = ((aE, bE), s) and the commitment key (aC,bC).

The steps executed during the counting phase, shown in Figure 5.1, are the
following ones:

1. The electoral authority generates the list of voting options of the election
{vi}ψi=1 and the empty credential list ID.

2. The electoral authority runs the Setup(1κ) algorithm and obtains the election
key pair (pke, ske) = ((aE, bE), s) and the commitment key (aC,bC).

3. The voting options {vi}ψi=1, the list ID, the election public key pke and the
commitment key (aC,bC) are published in the bulletin board. The election
private key ske is kept by the electoral authority.

During the registration phase all the voter-related information is generated. Vot-
ers are provided with the keys that will allow them to authenticate their vote and
to generate fake proofs of the content of their encrypted votes in case it is needed.
This phase consists of the Register algorithm:

https://falcon-sign.info/
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• Register(1κ, id): it receives as input the security parameter and the identity id
of a voter and runs the GenCRS algorithm of the simulatable NIZK protocol
and the KeyGenS(1κ) algorithm of the digital signature scheme. It outputs the
voter’s signing and verification keys (pks,id, sks,id) and the voter’s evaluation
and trapdoor keys (ekid, tkid).

The steps executed during the registration phase, shown in Figure 5.1, are the
following ones:

1. For each voter with identity id, the registration authority runs the Register al-
gorithm.

2. The registration authority updates the list id with the following information
for each registered voter: (id, pks,id, ekid). The key pairs (pks,id, sks,id) and
(ekid, tkid) are given to the voter.

Setup

{vi}ψi=1, list ID, pke,(aC,bC)

{vi}ψi=1,list ID

id, pks,id, ekid

sks,id, tkid

Register

Voter Registration authority Bulletin board Electoral authority

For each id

Figure 5.1: Overview of the interaction among the online voting system participants
during the configuration and registration phases.

5.3.2 Voting phase

During the voting phase each voter selects their preferred voting option, which is
encrypted in the voting device. Both the ciphertext and the proof of content are
shown to the voter, who can use an audit device to verify that the voting device is not
cheating and has encrypted the option selected by them. If the audit is successful,
they introduce their signing key into the voting device that uses it to sign the vote.
The signed vote is sent to the voting server that performs several validations and
if all of them are successful, stores the vote both in a private ballot box and in the
bulletin board and informs the voter that the vote was successfully cast. Meanwhile,
the voter introduces the trapdoor key into the voting device to generate fake proofs
for the voting options that were not selected. This proof can be used in case of
coercion or vote buying. Finally, if the response received from the voting server is
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successful, the voter can check that the audited vote has been published in the
bulletin board.

The voting phase consists of the following algorithms:

• CreateVote((aE, bE), vi, ekid): this algorithm receives as input the election public
key (aE, bE), the voting option selected vi and the voter’s evaluation key ekid. It
encodes the voting option vi as z and runs the Enc algorithm from the RLWE
encryption scheme. The output is the ciphertext (u, v). Then, it re-writes the
ciphertext following Equation 5.1 (y = Ãx) and runs NIZKProve algorithm
from the simulatable NIZKPoK scheme using as inputs the evaluation key ekid,
the statement y and the encryption randomness x. The algorithm outputs the
ciphertext (u, v) and its hash h, and the proof πCH

• AuditVote((u, v), vi, πCH, h, ekid): this algorithm receives as input the ciphertext
(u, v), its hash h, the selected voting option vi, the simulatable NIZK proof
πCH and the evaluation key ekid. First, it checks that h corresponds to the
hash of (u, v). Then, it encodes vi as z and computes the statement y from
(u, v) and z. Finally, it runs the NIZKVerify algorithm from the simulatable
NIZKPoK scheme with inputs the evaluation key ekid, the proof πCH and the
statement y. If the verification of the hash and the proof are successful, it
outputs 1, 0 otherwise.

• FakeProof((u∗, v∗), v∗j , tkid, ekid): given as inputs the trapdoor key tkid, the
evaluation key ekid and the new statement for which a proof wants to be gen-
erated, this algorithm runs the NIZKSimulate algorithm from the simulatable
NIZKPoK scheme. The output is the simulated proof π∗CH.

• CastVote(id, (u, v), sks,id): on inputs the voter’s identity id, the ciphertext (u, v)
and the voter’s signing key sks,id, this algorithm runs the Sign algorithm in
order to sign the ciphertext together with the voter’s identity using the signing
key. The output is the authenticated ballot which consists of the signature σ,
the ciphertext and the voter’s identity: ba = (id, (u, v), σ).

• ProcessBallot(BB, ba): this algorithm receives as input the authenticated ballot
ba = (id, (u, v), σ) and performs the following validations: it checks that the
voter has not cast a vote yet, i.e., that there is no entry in BB for the identity
id, or that there is no entry for the same ciphertext (u, v). Then, it checks
that the voter is authorized to vote in the election, i.e., the id is in the list
ID. Finally, it takes the voter’s verification key pks,id from the bulletin board
and verifies the signature by calling to the SignVerify algorithm of the digital
signature scheme. If all validations are successful, the algorithm outputs 1, 0
otherwise.

• VerifyVote(BB, ba, id): this algorithm checks if there is an entry in the bulletin
board for the identity id and, in case there is, it retrieves the stored hash h′ and
checks that it corresponds to the hash of the authenticated ballot h′ = H(ba).
It outputs 1 if the verification is successful, or 0 otherwise.
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Once we have defined the algorithms to be executed during the voting phase, we
need to know by whom they are run and in which order. This sequence is depicted
in Figure 5.2 and detailed below:

1. The voter receives the list of voting options they are authorized to vote for,
selects one of them vi and sends it to the voting device together with their
identity id.

2. The voting device retrieves the election public key (aE, bE) from the bulletin
board and uses the voter’s identity id to gather the corresponding evaluation
key ekid. It then runs the CreateVote algorithm which outputs the ciphertext
(u, v) and the proof πCH.

3. The voting device computes the hash of the ciphertext h = H(u, v) and pro-
vides (u, v), h and the proof πCH to the voter.

4. The voter, using an audit device, runs the AuditVote algorithm sending as
input the ciphertext (u, v), its hash h and the proof πCH provided by the
voting device, the voting option selected vi and the evaluation key ekid. If the
output of the algorithm is 1, the voter is convinced that the voting device is
not cheating since it has encrypted the voting option selected. Otherwise, the
voting device is corrupted and the voter is instructed to use another device to
cast their vote.

5. If the execution of the AuditVote algorithm is successful, the voter introduces
their signing key sks,id into the voting device that runs the CastVote algorithm
and obtains the authenticated ballot ba.

6. The voting device sends the authenticated ballot ba to the voting server.

7. The voting device asks the voter to introduce their trapdoor key tkid and
generate a fake proofs for the options the voter has not selected by calling to
the FakeProof algorithm. The simulated proofs {π∗CH}

ψ
j=1,j 6=i are provided to

the voter in case they need to show them to a possible vote buyer or coercer.
It is important that the voting device does not learn the trapdoor key until
the valid proof is generated since, otherwise, it could use it to generate a fake
proof for the voter and convince them that the ciphertext encrypts the voting
option selected when, indeed, it is encrypting another one.

8. Once the voting server receives the authenticated ballot ba it runs the Pro-
cessBallot algorithm. If the output is 0 the process is stopped and the voter is
informed that something went wrong. Otherwise, the voting server computes
a hash of the authentication ballot and posts it in the bulletin board. It also
stores ba in the private ballot box.

9. If the output of the previous step is successful, the voter can run the VerifyVote
algorithm to check that their vote has been published in the bulletin board.
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{vi}ψi=1

{vi}ψi=1

id, vj

(aE, bE), ekid

CreateVote

id, vj

(u, v), h, πCH

AuditVote

(u, v), h, πCH, vj , ekid

0/1

CastVote

FakeProof

tkid

{π∗CH}
ψ
j=1,j 6=i

ProcessBallot

H(ba)

ba

ba

0/1

sks,id

0/1

VerifyVote

ba, id

0/1

Audit device Voter Voting device Voting server Bulletin board Ballot box

ProcessBallot=1

Figure 5.2: Overview of the interaction among the online voting system participants
during the voting phase.

5.3.3 Counting phase

During the counting phase the votes cast by eligible voters are decrypted and the
results are published. More concretely, the electoral authority obtains the encrypted
votes from the ballot box, validates them and execute a mixing process in order
to anonymize them. Then, if the election private key has been split during the
configuration phase at this point is reconstructed and finally votes are decrypted
and tallied. It is recommended that this phase is done offline, i.e., in machines not
connected to the internet, due to the criticality of the operations that are going to
be executed and the secrecy of the elements that are going to be used, such as the
election private key. Nevertheless, in real elections, this is not always possible since
it requires additional steps and infrastructure which increases the cost and decreases
the usability of the system.
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Both the results of the decryption and the proof of correct mixing are published
in the bulletin board, so the auditors of the election can verify that the process was
done correctly. The question that arises at this point is, how the auditors can check
that the decryption operation has not modified any of the ciphertexts, i.e., that the
decrypted votes correspond to the encrypted votes at the output of the mixing? One
of the possible solutions is to generate decryption proofs as it is done in other online
voting systems such as the iVote system [33] or Neuchâtel’s [71]. Nevertheless, more
research has to be done on this field in order to find or to come up with a decryption
proof for the RLWE encryption scheme.

The counting phase consists on the following algorithms (note that we decompose
the Tally algorithm mentioned in Section 2.3.4 into the first three algorithms):

• Cleansing(BB,bb): this algorithm performs several validations over each vote
stored in the ballot box: it checks that the voter identity id is present in the
list ID, that there is only one entry per id (id, (u, v), σ) and that the hash of
(u, v) corresponds to that published in the bulletin board. Then, it picks the
corresponding voter’s verification key pks,id from the bulletin board and verifies
the signature σ by calling to the SignVerify algorithm of the digital signature
scheme. If all validations are successful the ciphertext (u, v) is included in the
list of cleansed votes bbC, which is given as the output of the algorithm .

• Mixing(BB,bbC): this algorithm anonymizes the votes that have successfully
passed all the validations done during the cleansing. It executes the MixVotes
algorithm of the mixing protocol sending as input the election public key and
the commitment key, both retrieved from the bulletin board, and the list of
cleansed votes bbC. The output is the list of mixed votes bbM and the shuffle
proof Σmix = {Σl}4

l=0.

• Decryption(bbM,ske): this algorithm executes the Dec algorithm of the RLWE
encryption scheme for each vote in the list of mixed votes bbM, sending as
input the election private key ske. The output is the list of decrypted votes
bbD.

• VerifyTally(BB,bb): this algorithm verifies the cleansing and mixing processes.
It first repeats all the validations done by the Cleansing algorithm and checks
that the list of votes that have successfully passed all the validations contains
the same votes as those included in bbC. Then, it calls to the VerifyMix al-
gorithms of the mixing protocol with inputs the election public key, the com-
mitment key, the list of cleansed votes bbC, the list of mixed votes bbM and
the shuffle proof Σmix. The output is 1 if the validations are successful, 0
otherwise.

Finally, the steps executed during the counting phase, shown in Figure 5.3 are
the following ones:

1. The electoral authority runs the Cleansing algorithm on the ballot box bb and
publishes the list of cleansed votes bbC in the bulletin board.
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2. Once the cleansing is done, the electoral authority runs the Mixing algorithm
sending as input the list of cleansed votes and once the process is finished,
they publish the output of the mixing (bbM and Σmix) in the bulletin board.

3. The electoral authority uses the election private key to run the Decryption al-
gorithm and obtain the list of decrypted votes bbD, which is also published in
the bulletin board.

4. Finally, the auditors obtain the ballot box bb from the voting server and run
the VerifyTally algorithm to detect any problem during the execution of the
cleansing and the mixing processes.

Cleansing

bbC

Mixing

bbM,Σmix

Decryption

bbD

bb

bbC, bbM,Σmix VerifyTally

Electoral authority Bulletin board Auditors Voting server

Figure 5.3: Overview of the interaction among the online voting system participants
during the counting phase.

Taking as a reference the security requirements defined in Section 2.3.1 we in-
formally analyze which of them are satisfied by the online voting system. Votes are
encrypted in the voting device and they are not decrypted until the decryption phase
using a private key which is protected by the electoral authority. As long as the en-
cryption scheme is secure and the electoral authority is trusted, vote confidentiality
and election fairness are ensured. In addition, before decrypting the votes they are
anonymized using a mixing protocol, which ensures vote anonymity provided that
at least one of the mix-nodes is honest and does not reveal its secret permutation
or re-encryption parameters.

Vote authenticity and integrity are guaranteed by means of the signature and
the validations done by both the voting server and the cleansing process. Votes are
signed with a private key that is only known by the corresponding voter. If the
encrypted vote is modified or an attacker tries to send a vote on behalf of a voter,
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the signature verification will fail either during the execution of the ProcessBallot or
the Cleansing algorithm.

The system provides the voter with a proof to check that the content of their votes
is correct thus ensuring cast-as-intended verifiablity. This mechanism is coercion-
resistant, i.e., it does not give to the voter any information that allows them to
demonstrate how they voted, so receipt-freeness is also ensured. Voters can also
check that their votes were recorded-as-cast by verifying that the hash published in
the bulletin board corresponds to the hash of the audited vote. Then, we can con-
clude that the system provides individual verifiability. Finally, since the decryption
process does not generate any proof to allow anyone to check that the operation
was done successfully, we cannot say that the system is end-to-end verifiable since
it does not provide counted-as-recorded verifiability.

5.4 Future work

In this chapter, we have shown that it is possible to build a post-quantum online
voting system satisfying most of the security requirements presented in Section 2.3.1.
Nevertheless, there is still a lot of work that can be done in order to both improve
and evolve the system.

In terms of the security of the protocol, it is necessary to provide a security
analysis in order to demonstrate that the system satisfies the following proper-
ties: ballot privacy, strong correctness, cast-as-intended , coercion-resistant cast-as-
intended and recorded-as-cast. If we want also to demonstrate counted-as-recorded ver-
ifiability and consequently universal verifiability, we need first to define a lattice-
based decryption proof or to use some technique that allows anyone to verify the
correctness of the decryption process.

Thinking also on giving more functionalities to the system, it will be useful not
only to demonstrate to the voter that the vote contains the selected voting options,
but also to universally demonstrate the correctness of the vote, i.e., that the
vote is well-formed and that the voting options encrypted follow the election rules.
On the other hand, the security of the system would be improved if instead of
requiring the electoral authority to reconstruct the private key in order to decrypt
the votes, we use a threshold decryption scheme. The idea is that each electoral
authority member owns a share of the private key and during the decryption phase
they compute a decryption share, i.e., a partial decryption, for each ciphertext using
the corresponding private key share. Once there is a threshold number of decryption
shares, they are combined in order to decrypt the ciphertexts.

Finally, an essential step for analyzing the performance of the system and decide
if it will be efficient enough for being used in a real election, is to implement it.
This implementation is a work in progress that is being conducted as part of the
European Union PROMETHEUS project and will allow us to identify which parts
of the system can be improved in terms of performance.
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Chapter 6

Conclusions

This work has focused on lattice-based cryptography and how to apply it to build
post-quantum online voting systems. We can distinguish three main parts of the
research done in the framework of this thesis.

First, after analyzing how we can contribute to the state of the art on online
voting systems, we have studied lattice theory, starting with the basics and ending
with the existing lattice-based cryptosystems. This has allowed us to identify how
to approach our research on the field of lattice-based constructions.

Then, we have proposed three protocols that can be used as building blocks of an
online voting system: a lattice-based coercion-resistant cast-as-intended protocol, a
post-quantum mix-net, and a fully post-quantum proof of a shuffle. The former is
the lattice version of an existing protocol and allows the voter to check that the vote
cast contains the selected voting options. The second and third protocols are the
result of our research on lattice-based mix-nets. Since, to the best of our knowledge,
there were no proposals for a proof of a shuffle in lattice-based cryptography, we
proposed two constructions. The first one allows to demonstrate that a mix-node has
permuted and re-encrypted a list of RLWE ciphertexts without modifying them,
but it cannot be considered fully post-quantum since the binding property of the
commitment scheme relies on classical computational problems. The second one
is fully post-quantum since all the cryptographic schemes used for building it, i.e.,
commitment scheme and zero-knowledge proofs, are based on lattices. Last but not
least, for this second proposal we provide a security definition and a proof of security.
The definition is based on that proposed by Wikström in [150], but we modify it in
order to allow the input of the mix-node to come from a possibly malicious previous
node. Consequently, the security definition we present is stronger. We demonstrate
that our mix-node is secure according to that definition under the RLWE hardness
assumption.

Finally, we use our previous research and also existing lattice-based constructions
to build a post-quantum online voting system. We describe in detail which are
the main algorithms involved in each phase, and we discuss which are the security
requirements fulfilled by the system.

It has not been possible to implement the post-quantum online voting system as
part of this thesis due to time and resource constraints. Nevertheless, there is an
on-going implementation of a system based on ours in the context of the European
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Union PROMETHEUS project, which is still in a preliminary stage but aims to
finish at the end of next year. The author is participating on writing the protocol
specification as well as giving support to the developers in the implementation.

This PhD thesis ends here, but we leave several doors open for future research.
In our opinion, the first one would be to make the decryption process verifiable, thus
providing universal verifiability to the post-quantum online voting system. Then, it
would also be necessary to provide a formal analysis of the security of the system.
Regarding the performance of the system, probably some of the constructions such
as the proof of a shuffle can be improved in terms of efficiency by using new proposals
which have emerged in the last years. Nevertheless, a better analysis can be done
when the implementation finishes.

Another pending topic which we have not studied as part of this thesis is how to
show the security of our protocols in the Quantum Random Oracle Model (QROM).
We know that this is an open point for several post-quantum proposals in the liter-
ature which use the Fiat-Shamir framework and, although there are some articles in
which it is demonstrated that under certain conditions Fiat-Shamir implies security
in the QROM, further investigation should be done in order to demonstrate that
our constructions are secure in the QROM.

The last conclusion we want to share, which is also a lesson learned after some
years working in a company specialized in secure electronic voting solutions, is that
cooperation between academia and industry is crucial for implementing real-world
online voting systems while achieving strong security guarantees.
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[71] Galindo, D., Guasch, S., Puiggaĺı, J.: 2015 neuchâtel’s cast-as-intended
verification mechanism. In: Proceedings of the 5th International Con-
ference on E-Voting and Identity - Volume 9269, VoteID 2015, p. 3–18.
Springer-Verlag, Berlin, Heidelberg (2015). URL https://doi.org/10.1007/

978-3-319-22270-7_1

[72] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions. In: R.E. Ladner, C. Dwork (eds.) 40th ACM
STOC, pp. 197–206. ACM Press (2008). doi:10.1145/1374376.1374407

[73] Gerlach, J., Gasser, U.: Three Case Studies from Switzerland: E-
Voting. https://cyber.harvard.edu/sites/cyber.harvard.edu/files/

Gerlach-Gasser_SwissCases_Evoting.pdf (2009)

[74] Gharadaghy, R., Volkamer, M.: Verifiability in electronic voting - explanations
for non security experts. In: EVOTE’10, no. 167 in Springer, LNI, pp. 151–162
(2010)

[75] Gibson, J., Krimmer, R., Teague, V., Pomares, J.: A review of e-voting: the
past, present and future. Annals of Telecommunications 71, 279–286 (2016).
URL https://doi.org/10.1007/s12243-016-0525-8

[76] Gjøsteen, K.: The norwegian internet voting protocol. Cryptology ePrint
Archive, Report 2013/473 (2013). http://eprint.iacr.org/2013/473

[77] Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lat-
tice reduction problems. In: B.S. Kaliski Jr. (ed.) CRYPTO’97, LNCS, vol.
1294, pp. 112–131. Springer, Heidelberg (1997). doi:10.1007/BFb0052231

[78] Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental
poker keeping secret all partial information. In: 14th ACM STOC, pp. 365–
377. ACM Press (1982). doi:10.1145/800070.802212

[79] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and
System Sciences 28(2), 270–299 (1984)

[80] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-
tive proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/978-3-319-22270-7_1
https://doi.org/10.1007/978-3-319-22270-7_1
https://doi.org/10.1145/1374376.1374407
https://cyber.harvard.edu/sites/cyber.harvard.edu/files/Gerlach-Gasser_SwissCases_Evoting.pdf
https://cyber.harvard.edu/sites/cyber.harvard.edu/files/Gerlach-Gasser_SwissCases_Evoting.pdf
https://doi.org/10.1007/s12243-016-0525-8
http://eprint.iacr.org/2013/473
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1145/800070.802212


154 Bibliography

[81] Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for
mixnets. In: T. Okamoto (ed.) CT-RSA 2004, LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24660-2 14

[82] Golle, P., Zhong, S., Boneh, D., Jakobsson, M., Juels, A.: Optimistic mixing
for exit-polls. In: Y. Zheng (ed.) ASIACRYPT 2002, LNCS, vol. 2501, pp.
451–465. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2 28

[83] Grewal, G., Ryan, M., Chen, L., Clarkson, M.: Du-vote: Remote electronic
voting with untrusted computers. In: 2015 IEEE 28th Computer Security
Foundations Symposium, pp. 155–169 (2015). doi:10.1109/CSF.2015.18

[84] Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In:
Y. Desmedt (ed.) PKC 2003, LNCS, vol. 2567, pp. 145–160. Springer, Hei-
delberg (2003). doi:10.1007/3-540-36288-6 11

[85] Groth, J.: Non-interactive zero-knowledge arguments for voting. In: J. Ioan-
nidis, A. Keromytis, M. Yung (eds.) ACNS 05, LNCS, vol. 3531, pp. 467–482.
Springer, Heidelberg (2005). doi:10.1007/11496137 32

[86] Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of
a shuffle. In: N.P. Smart (ed.) EUROCRYPT 2008, LNCS, vol. 4965, pp.
379–396. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 22

[87] Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In:
K. Kurosawa (ed.) ASIACRYPT 2007, LNCS, vol. 4833, pp. 51–67. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-76900-2 4

[88] Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: T. Okamoto,
X. Wang (eds.) PKC 2007, LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71677-8 25

[89] Grover, L.K.: A fast quantum mechanical algorithm for database search. In:
28th ACM STOC, pp. 212–219. ACM Press (1996). doi:10.1145/237814.237866

[90] Guasch, S.: Individual verifiability in electronic voting. Ph.D. thesis (2016)

[91] Guasch, S., Morillo, P.: How to challenge and cast your e-vote. In:
J. Grossklags, B. Preneel (eds.) FC 2016, LNCS, vol. 9603, pp. 130–145.
Springer, Heidelberg (2016)

[92] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396
(1999)

[93] Heiberg, S., Willemson, J.: Verifiable internet voting in estonia. In: 2014 6th
International Conference on Electronic Voting: Verifying the Vote (EVOTE),
pp. 1–8 (2014)

https://doi.org/10.1007/978-3-540-24660-2_14
https://doi.org/10.1007/3-540-36178-2_28
https://doi.org/10.1109/CSF.2015.18
https://doi.org/10.1007/3-540-36288-6_11
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1007/978-3-540-71677-8_25
https://doi.org/10.1145/237814.237866


Bibliography 155

[94] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key
cryptosystem. In: J.P. Buhler (ed.) Algorithmic Number Theory, pp. 267–
288. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

[95] Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: U.M. Maurer (ed.) EUROCRYPT’96, LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9 13

[96] Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Cryptography
and Network Security Series). Chapman and Hall/CRC (2007)

[97] Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification
schemes based on the worst-case hardness of lattice problems. In: J. Pieprzyk
(ed.) ASIACRYPT 2008, LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-89255-7 23

[98] Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. Cryptology
ePrint Archive, Report 1998/010 (1998). http://eprint.iacr.org/1998/

010

[99] Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261 (1982). URL https://doi.org/10.

1007/BF01457454
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