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Abstract

Despite the undeniable importance of the marine ecosystem, vast areas of the seabed re-
main largely unexplored. Accurate and detailed 3D models of the environment yield high
added value to any marine survey, as such results convey immense information easily inter-
pretable by humans. The wealth of information enables experts (biologists, archaeologists
and geologists, among others) to carry out further in-depth investigations of the areas of
interest after the missions and can also serve as a base map for long-term environmental
monitoring.

This thesis presents a comprehensive investigation and use of image-based 3D recon-
struction techniques for practical applications in underwater environment. It focuses
on the research and development of resources for accurate scaling and uncertainty es-
timation of 3D models for scientific purposes based on data acquired with monocular or
un-synchronized camera systems in difficult-to-access GPS-denied (underwater) environ-
ments.

Two novel methods for automatic scaling of structure from motion (SfM)-based 3D
models using commonly available laser scalers were proposed, namely the fully uncon-
strained method (FUM) and the partially constrained method (PCM). The methods are
able to compensate the geometry of the scene together with the geometry of the laser
scaler setup. Furthermore, they also eliminate the need for the manual, time-consuming
and error-prone step of image-model point association. The approaches are therefore no
longer limited to certain camera poses and/or the roughness of the observed scene when
estimating the scale. In addition, the confidence level for each of the scale estimates is also
evaluated independently by propagating the uncertainties associated with image features
and laser spot detection using a Monte Carlo simulation. Both methods are considered
universal as they are not tied to data collected with specific sensors or hardware and can
even be used with diver-based surveys. Moreover, the minimal requirement for knowledge
of laser configurations allows the methods to be used with a wide variety of legacy data.
The methods have been fully validated by a series of generated data sets based on a real
3D model of a deep-sea hydrothermal vent, and their applicability in real scenarios has
been demonstrated by a data set from the SUBSAINTES scientific cruise.

Utilizing the newly proposed scaling methods, a scale error analysis on large-scale
models of deep-sea underwater environments was performed. It evaluated and deter-
mined the effects of the most commonly used image-navigation fusion strategies. Two
distinct underwater survey scenarios encapsulating realistic deep-sea field working condi-
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tions were considered. The study demonstrated that the surveys with multiple overlaps
of non-sequential images result in a nearly identical solution regardless of the strategy,
while surveys with weakly connected sequentially acquired images are prone to produce
broad-scale deformation (doming effect) when navigation is not included in the optimiza-
tion. Additionally, we evaluated the effects of multi-survey data sets. We showed that
the introduction of auxiliary displacement parameters in the optimization successfully ac-
counted for offset changes present in the underwater USBL-based navigation data, and
thus minimize the effect of contradicting navigation priors.

In addition, the analysis also provided a quantitative estimate of the model scal-
ing which is a requirement for applications that demand precise measurements (such
as distances, areas, volumes and others). Since the analysis was performed using the
SUBSAINTES data set, it enabled the geologists from Paris Institute of Earth Physics
to use the corresponding models in their respective studies. Previously performed anal-
yses using a single model are now being performed with information from more than 30
different sites with 41 different models.

To facilitate the detection and characterization of the uncertainty of laser spots, we
have also developed a method that robustly detects the centers of laser beams by taking
into account the texture of the scene. At the same time, the uncertainty of each of these
detections is determined based on the recovered characteristic shapes of the laser spots.
The versatility and robustness of the proposed method has been demonstrated on several
data sets.

The dissertation also introduces the developed image-based 3D reconstruction frame-
work. The end-to-end pipeline was built by integrating several open-source solutions and
by developing additional functionalities (e.g. navigation fusion, soft enforcement of known
relative constraints, underwater color correction). It enables the creation of photo-realistic
textured 3D models based on optical and navigation data and is independent of a specific
robot or diver-based platform, camera or mission. We report on an extensive use of the
framework in real-world applications with six different underwater robotic platforms and
numerous different cameras and camera types. The created models were used in numerous
collaborations with different scientists and researchers. They enabled accurate measure-
ments in scientific fields, the generation of superior omnidirectional video, augmented real-
ity applications or as proof that algorithms like mission planning have successfully ensured
satisfactory data acquisition. The processing of data from the SUBSAINTES scientific
cruise led to the creation of one of the largest collections of image-derived underwater 3D
models ever made by deep-sea vehicles for geological purposes.

Finally, we also made a contribution by demonstrating the feasibility of mission-time
3D reconstruction and uncertainty estimation. We proposed a novel SfM-based system
capable of producing a globally consistent 3D reconstruction together with an estimate of
its uncertainty while the robot is still in the water or shortly after. The system integrates
an incremental way of solving the bundle adjustment problem as well as fast covariance
recovery and an outlier rejection scheme based on a dual-map approach. This enables the
possibility of quality-conscious data acquisitions, which consequently will not only increase
the quality of the final data collected and the efficiency of the survey, but also reduces the
possibility of conducting unsatisfactory optical surveys.
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Resum

Malgrat la indubtable importància dels ecosistemes marins, grans àrees del fons del mar
permaneixen encara inexplorades. Models de l’entorn 3D precisos i detallats proporcionen
un alt valor afegit en qualsevol investigació marina, donat que els seus resultats trans-
meten una extensa informació fàcilment interpretable pels humans.La riquesa d’aquesta
informació permet als experts (biòlegs, arqueòlegs y geòlegs, entre d’altres) portar a terme
investigacions més profundes de les àrees d’interès després de las missions i també pot
servir com a mapa base per a la vigilància ambiental a llarg plaç.

Aquesta tesis presenta una investigació exhaustiva i l’ús de tècniques de reconstrucció
tridimensional basades en imatges per a aplicacions pràctiques en el medi ambient sub-
marí. Se centra en la investigació i el desenvolupament de recursos per a l’escalat precís i
l’estimació de la incertesa dels models tridimensionals amb finalitats científiques basades
en dades adquirides amb sistemes de càmeres monoculars o no sincronitzades en entorns
(subaquàtics) de difícil accès.

Es van proposar dos mètodes nous per a l’escalat automàtic de models 3D basats en
SfM utilitzant mesuradors làser comunament disponibles, principalment, el FUM i el PCM.
Aquests mètodes són capaços de compensar la geometria de l’escena juntament amb la ge-
ometria del mesurador làser. A més, també eliminen la necessitat del pas manual, que
porta temps i és propens a errors, de l’associació de punts de models d’imatges. Per tant,
els enfocaments ja no es limiten a determinades posis de la càmera i/o a la rugositat de
l’escena observada a l’estimar l’escala. A més, el nivell de confiança per a cadascuna de les
estimacions de l’escala també s’avalua de forma independent mitjançant la propagació de
les incerteses associades a les característiques de la imatge i la detecció de punts de làser
utilitzant una simulació de Monte Carlo. Tots dos mètodes es consideren universals ja que
no estan relacionats amb dades recollides amb sensors o hardware específics i fins i tot
es poden utilitzar amb dades adquirides per submarinistes. A més, aquests mètodes re-
quereixen tan poc coneixement sobre la configuració dels làsers, que és possible utilitzar-los
amb dades ja existents, adquirides en altres campanyes. Els mètodes han estat plenament
validats per una sèrie de conjunts de dades generats sobre la base d’un model real en 3D
d’un respirador hidrotermal en aigües profundes, i la seva aplicabilitat en escenaris reals
ha quedat demostrada per un conjunt de dades del creuer científic SUBSAINTES.

Utilitzant els mètodes d’escalat proposats, es va realitzar una anàlisi d’error d’escala
en models a gran escala dels entorns submarins de les profunditats. Es van avaluar i deter-
minar els efectes de les estratègies de fusió de navegació d’imatges més utilitzades. Es van
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considerar dos escenaris d’estudi submarí diferents que encapsulaven condicions de treball
realistes en el camp de les profunditats marines. L’estudi va demostrar que els estudis amb
múltiples superposicions d’imatges no seqüencials donen com a resultat una solució gairebé
idèntica independentment de l’estratègia, mentre que els estudis amb imatges adquirides
seqüencialment i dèbilment connectades són propensos a produir una deformació a gran
escala (efecte de cúpula) quan la navegació no està inclosa en l’optimització. A més a més,
vam avaluar els efectes dels conjunts de dades d’estudis múltiples. Vam demostrar que la
introducció de paràmetres de desplaçament auxiliars en l’optimització va tenir en compte
amb èxit els canvis de desplaçament presents en les dades de navegació submarina basats
en USBL, i per tant, va minimitzar l’efecte de inconsistències en les dades de navegació.

A més a més, l’anàlisi també va proporcionar una estimació quantitativa de l’escalament
del model, que és un requisit per a les aplicacions que requereixen mesures precises (com
ara distàncies, àrees, volums i altres). Atès que l’anàlisi es va realitzar utilitzant el conjunt
de dades de SUBSAINTES, va permetre als geòlegs de l’Institut de Física del Globus de
París utilitzar els models corresponents en els seus respectius estudis. Les anàlisis real-
itzades anteriorment amb un sol model s’estan realitzant ara amb informació de més de
30 de llocs diferents amb 41 de models diferents.

Per a facilitar la detecció i caracterització de la incertesa dels punts de làser, també hem
desenvolupat un mètode que detecta de forma robusta els centres dels raigs làser tenint en
compte la textura de l’escena. Al mateix temps, la incertesa de cadascuna d’aquestes de-
teccions es determina en base a les formes característiques recuperades dels punts làser. La
versatilitat i la robustesa del ’mètode proposat han estat demostrades en diversos conjunts
de dades. La tesis també introdueix el marc desenvolupat de reconstrucció tridimensional
basat en imatges. La línia de processament de d’extrem a extrem es va construir integrant
diverses solucions de codi obert i desenvolupant funcionalitats addicionals (per exemple,
fusió de navegació, aplicació suau de les limitacions relatives conegudes, correcció del color
submarí). Permet la creació de models 3D texturitzats foto-realistes basats en dades òptics
i de navegació i és independent d’una plataforma robòtica específica, càmera o missió. S’ha
realitzat un ampli ús del marc en aplicacions del món real amb sis plataformes robòtiques
submarines diferents i nombroses càmeres i tipus de càmeres diferents. Els models creats
es van utilitzar en nombroses col·laboracions amb diferents científics i investigadors. Van
permetre realitzar mesures precises en els camps científics, generar vídeo omnidireccional
de qualitat superior, aplicacions de realitat augmentada o com a prova que els algoritmes
com la planificació de missions han assegurat satisfactòriament l’adquisició de dades. El
processament de les dades del creuer científic SUBSAINTES va portar a la creació d’una
de les majors col·leccions amb finalitat geològica mai reunides de models 3D submarins
derivats d’imatges realitzades per vehicles d’alta mar.

Finalment, també contribuïm demostrant la viabilitat de la reconstrucció tridimen-
sional en temps de missió i l’estimació de la incertesa. Vam proposar un nou sistema
basat en el SfM capaç de produir una reconstrucció 3D globalment consistent juntament
amb una estimació de la seva incertesa mentre el robot està encara a l’aigua o poc després.
El sistema integra una forma incremental de resoldre el problema de l’bundle adjustment,
així com una ràpida recuperació de la covariància i un esquema de rebuig de valors atípics
basat en un enfocament de doble mapa. Això permet la possibilitat d’adquirir dades
de qualitat, la qual cosa no només augmenta la qualitat de les dades finals recollides i
l’eficiència del mesurament, sinó que també redueix la possibilitat de realitzar mesures
òptiques insatisfactòries.
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Resumen

A pesar de la indudable importancia de los ecosistemas marinos, grandes áreas del fondo del
mar permanecen aún inexploradas. Los modelos 3D precisos del entorno proporcionan un
alto valor añadido en cualquier investigación marina, puesto que sus resultados transmiten
una vasta información fácilmente interpretable por los humanos. La riqueza de dicha
información permite a los expertos (biólogos, arqueólogos y geólogos, entre otros) llevar
a cabo investigaciones más detalladas de las áreas de interés después de las misiones y
también puede servir como mapa base para la vigilancia ambiental a largo plazo.

Esta tesis presenta una investigación exhaustiva de técnicas de reconstrucción tridimen-
sional basadas en imágenes y su uso para aplicaciones prácticas en el entorno submarino.
El estudio se centra en la investigación y el desarrollo de recursos para el escalado preciso
y la estimación de la incertidumbre de los modelos tridimensionales con fines científicos
basados en datos adquiridos con sistemas de cámaras monoculares o no sincronizadas en
entornos (subacuáticos) de difícil acceso.

Se propusieron dos métodos novedosos para el escalado automático de modelos 3D
basados en SfM utilizando medidores láser comúnmente disponibles, principalmente, el
FUM y el PCM. Estos métodos son capaces de compensar la geometría de la escena
junto con la geometría del medidor láser. También eliminan la necesidad del paso, que
lleva tiempo y es propenso a errores, de la asociación manual de puntos de modelos de
imágenes. Por lo tanto, los enfoques ya no se limitan a determinadas poses de la cámara
y/o a la rugosidad de la escena observada al estimar la escala. El nivel de confianza
para cada una de las estimaciones también se evalúa de forma independiente mediante
la propagación de las incertidumbres asociadas a las características de la imagen y la
detección de puntos de láser utilizando una simulación de Monte Carlo. Ambos métodos
se consideran universales ya que no están relacionados con datos recogidos por sensores o
hardware específicos e incluso se pueden utilizar con datos adquiridos mediante buceadores.
Estos métodos requieren tan poco conocimiento sobre la configuración de los láseres que
es posible utilizarlos con datos ya existentes. Los métodos han sido plenamente validados
por una serie de conjuntos de datos generados sobre la base de un modelo real en 3D de
un respiradero hidrotermal en aguas profundas, y su aplicabilidad en escenarios reales ha
quedado demostrada por un conjunto de datos del crucero científico SUBSAINTES.

Utilizando los métodos de escalado recientemente propuestos, se realizó un análisis
de error de escala en modelos a gran escala de los entornos submarinos de las profundi-
dades. Se evaluaron y determinaron los efectos de las estrategias de fusión de navegación
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de imágenes más utilizadas. Se consideraron dos escenarios de estudio submarino distintos
que encapsulaban condiciones de trabajo realistas en el campo de las profundidades mari-
nas. El estudio demostró que los estudios con múltiples superposiciones de imágenes no
secuenciales dan como resultado una solución casi idéntica independientemente de la es-
trategia, mientras que los estudios con imágenes adquiridas secuencialmente y débilmente
conectadas son propensos a producir una deformación a gran escala (efecto domo) cuando
la navegación no está incluida en la optimización. Además, evaluamos los efectos de los
conjuntos de datos de estudios múltiples. Demostramos que la introducción de parámetros
de desplazamiento auxiliares en la optimización tuvo en cuenta con éxito los cambios de
desplazamiento presentes en los datos de navegación submarina basados en USBL, y por
lo tanto, minimizó el efecto de la contradicción de los datos de navegación.

Además, el análisis también proporcionó una estimación cuantitativa de la escala del
modelo, que es un requisito para las aplicaciones que requieren mediciones precisas (como
distancias, áreas, volúmenes y otros). Dado que el análisis se realizó utilizando el con-
junto de datos de SUBSAINTES, permitió a los geólogos de IPGP utilizar los modelos
correspondientes en sus respectivos estudios. Los análisis hechos anteriormente con un
solo modelo se están realizando ahora con 41 modelos diferentes en 30 sitios distintos.

Para facilitar la detección y caracterización de la incertidumbre de los puntos de láser,
también desarrollamos un método que detecta de forma robusta los centros de los rayos
láser teniendo en cuenta la textura de la escena. Al mismo tiempo, la incertidumbre de
cada una de estas detecciones se determina en base a las formas características recuper-
adas de los puntos láser. La versatilidad y la robustez del método propuesto han sido
demostradas en varios conjuntos de datos.

La tesis también introduce el marco desarrollado de reconstrucción tridimensional
basado en imágenes. La solución de procesamiento se construyó integrando varias solu-
ciones de código abierto y desarrollando funcionalidades adicionales (p. ej., fusión de nave-
gación, aplicación permissiva de las limitaciones relativas conocidas, corrección del color
submarino). Permite la creación de modelos 3D texturizados foto-realistas basados en
datos ópticos y de navegación y es independiente de una plataforma robótica específica,
cámara o misión. Realizamos un amplio uso del marco en aplicaciones del mundo real
con seis plataformas robóticas submarinas y numerosas tipos de cámaras diferentes. Los
modelos creados se utilizaron en colaboraciones con diferentes científicos e investigadores.
Permitieron realizar mediciones precisas en los campos científicos, generar vídeo omnidi-
reccional de calidad superior, aplicaciones de realidad aumentada o servir como prueba de
que los algoritmos como la planificación de misiones pueden asegurar satisfactoriamente la
adquisición de datos. El procesamiento de los datos del crucero científico SUBSAINTES
llevó a la creación de una de las mayores colecciones de modelos 3D submarinos derivados
de imágenes jamás reunidas por vehículos de alta mar con fines geológicos.

Por último, contribuimos demostrando la viabilidad de la reconstrucción tridimensional
en tiempo de misión y la estimación de la incertidumbre. Propusimos un sistema basado
en el SfM capaz de producir una reconstrucción 3D globalmente consistente junto con una
estimación de su incertidumbre mientras el robot está todavía en el agua o poco después.
El sistema integra una forma incremental de resolver el problema de la BA, así como una
rápida recuperación de la covarianza y un esquema de rechazo de valores atípicos basado en
un enfoque de doble mapa. Esto permite adquirir datos de calidad, lo que en consecuencia
no sólo aumentará la calidad de los datos finales recogidos y la eficiencia de la medición,
sino que también reducirá la posibilidad de realizar mediciones ópticas insatisfactorias.

6



1
Introduction

This chapter presents the motivation behind the development of this Ph.D. thesis. In Section 1.1
a brief overview of main underwater 3D reconstruction methods is presented together with

the principal challenges of optical-based mapping in underwater environment. Next, Section 1.2
states the objectives of the thesis and Section 1.3 describes the context in which this work has been
developed. Finally, Section 1.4 concludes with a summary of the organization of this document.
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8 Chapter 1. Introduction

1.1 Motivation

The underwater world is more complex than most of us could ever imagine. As it cov-
ers 71% of the Earth’s surface [21], the role of the world’s largest biosphere in climate
regulation, energy resources, and as a habitat for breathtaking biodiversity has made it a
vital source of food, transport and trade throughout history. Despite its undeniable im-
portance, the ocean ecosystem and its innumerable processes are still poorly understood,
as vast areas of the seabed remain largely unexplored. According to some estimates, less
than twenty percent of the world’s oceans and seabed have been explored, and less than
ten percent have been fully mapped and explored with modern technologies [22].

Despite numerous challenges, seafarers and marine researchers have been committed
to mapping the ocean since the early days of seafaring. Be it with simple measurements of
the ocean depths with heavy ropes dropped over the side of the ship as early as in the 16th

century, with sound waves at the beginning of the 20th century and today with state-of-the-
art submersibles, which are equipped with arrays of highly accurate optical and acoustic
sensors. With the introduction of unmanned underwater vehicles (UUVs) from the mili-
tary to the industrial and research sector in the late 1970s and 1980s, the availability of
various remote operated vehicles (ROVs) and autonomous underwater vehicles (AUVs),
such as work-class deep-sea vehicles (e.g. ROV Jason [23], ROV VICTOR 6000 [24], Sentry
AUV [25], REMUS 6000 AUV [26]), smaller vehicles (e.g. Girona 500 AUV [27], Seabed
AUV [28], Seaeye Cougar XT ROV [29], Sparus II AUV [30]) and their lightweight and
low cost alternatives (e.g. Sofar Trident [31], SeaDrone Inspector [32], BlueRov2 [33]) has
increased dramatically. Together with towed systems (e.g. TowCam [34], Deep Towed
Imaging system - DTIS [35], Wide Angle Seafloor Photography [36], Ocean Floor Obser-
vation and Bathymetry System - OFOBS [37]) and various diver-based handheld devices,
scientists, industry and even mere enthusiasts now have unprecedented access to large
marine areas in both shallow and deep-sea regions [38].

The immense amount of diverse data being collected in previously unreachable areas
has already enabled researchers to revolutionise not only our understanding of the fun-
damental processes responsible for the formation and alteration of the oceanic crust, but
has also led to the discovery of new life forms and sources of energy and improved our
overall understanding of the oceanic ecosystem. One of the most important discoveries of
the 20th century is considered to be the discovery of hydrothermal vent ecosystems at the
Galapagos Rift in 1977 by the world’s first deep-sea submersible Alvin [39]. This finding
enabled the confirmation of chemosynthesis [40] as the method of survival without sunlight
that was previously considered impossible. Since this discovery, modern technologies and
maps of the underwater landscape have been widely used in fields such as marine biology,
geology and archaeology to survey and detect marine benthic habitats, study hydrother-
mal vents, as well as observe, record and categorise ancient shipwrecks and settlements. In
addition, several commercial companies now offer routine inspections of underwater struc-
tures, including pipelines, oil platforms, bridges, dams and other waterfront structures
with automatic detection of problematic areas based on the recorded maps.

1.1.1 Underwater environment

Regardless of the enormous improvements in recent years, access to and operation in an
underwater environment remains a major challenge and often an extremely costly under-
taking. Apart from the countless technical difficulties involved in the design and manufac-
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ture of subsea vehicles/devices, the acquisition of potentially useful mapping data remains
highly unpredictable due to the particular electromagnetic and acoustic propagation char-
acteristics of the water medium.

While acoustic waves achieve good propagation by causing a longitudinal movement
of particles in the direction of wave transmission [41], the same numerous particles of
different sizes (from molecules to zooplankton [42]) cause a strong wavelength-dependent
attenuation of light. This effectively leads to an exponential loss of energy on the prop-
agation path of light (absorption) and/or to a change of direction of individual photons
(scattering). These together with other degradation processes that affect image formation
are shown in Figure 1.1.

The effects of attenuation can be described by the inherent optical properties of the
water medium (as absorption and volume scattering coefficients) [43] with their values
depending on several complex factors, including water temperature and salinity, and the
type and amount of particles in the water [44]. Famously, Jerlov [45, 46] classified natural
waters into a set of typical oceanic and coastal water types based on their spectral optical
attenuation. Examples of attenuation of a full sunlight spectrum in a clear oceanic and
coastal water are shown in Figure 1.1(right). The penetration of different wavelengths is
shown together with the human perception of water color. As expected, in a clean ocean
the light reaches much deeper and causes the water to appear blue, while in coastal waters
laden with chlorophyll and dissolved organic matter, such as the English Channel, the
stronger attenuation of blue compared to green makes the water appear green [42].

Figure 1.1: Underwater image formation model with different degradation processes (attenuation,
scattering, marine snow and caustics). An example of the attenuation of the full sunlight spectrum
(top right) occurring in different water types (oceanic and coastal) is shown along with the human
perception of water color (blue in clear ocean water and green in coastal waters) on the right.
Ultraviolet wavelengths, which are not perceptible to human vision, are colored black (adapted
from [42]).

The selective attenuation of light, which is normally greater at red wavelengths (i.e. 600
to 700 nm) than that of green and blue [47], not only causes the color distortion of
the light that illuminates the scene itself, but also disproportionately reduces the red
intensity of the light reflected (emitted) by the scene. Forward scattering of photons
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further reduces the amount of light from the incident beam, while backward scattering
introduces additional residual light that is scattered from various other beams. These
phenomena can be observed in an image as image blur and light pollution, i.e. a veil
covering the object. Figures 1.2 and 1.3 show the effects of light attenuation. The color
charts in Figure 1.2 were photographed at various depths z with a constant distance
between the chart and the camera. Since the emitted light is equally attenuated in all
cases, the change in perceived color is caused by the increasing wavelength dependent
attenuation of the sunlight illuminating the chart. On the other hand, the images in
Figure 1.3 are deteriorated due to the attenuation caused by the greater distance between
the object and the camera (at constant depth). The greater volume of water between the
camera and the object results in exponentially greater absorption of the light reflected by
the object, as well as increased scattering, making the images appear increasingly bluish
and blurred.

Figure 1.2: The effect of wavelength-dependent attenuated sunlight illuminating a color chart at
different depths z (adapted from [48]).

Figure 1.3: The effects of wavelength-dependent attenuation of light emitted by an object at
different observation distances (adapted from [42]).

The rapid decay of sunlight intensity with depth therefore requires the use of artificial
light sources if optical based acquisitions are to be performed in the deep-sea or correct
color information is to be restored (Figure 1.4a and Figure 1.4b). While additional light
sources are of great benefit, they can also cause a number of problems. Because such setups
usually illuminate the scene unevenly, collected images contain a characteristic bright spot
in the center with diminishingly illuminated areas around it. The new light source can also
create shadows in the scene, which inevitably change with movement and can therefore
cause visual inconsistencies in the collected data. The emitted light can also be excessively
reflected by the small observable particles floating in the water, causing disproportionately
bright spots known as marine snow (Figure 1.4c). Since vehicles often need to be close to
the seafloor to obtain high-quality images, the propulsion of their thrusters can quickly stir
up suspended matter, which greatly degrades the data and may even prevent subsequent
processing [49].

Conversely, images taken in shallow waters (<10 m) can be significantly affected by
the refraction of sunlight at waves (i.e. at the air-water interface) [50]. Strong light fluc-
tuations, also known as caustics/flickering, can cause constant random changes in the
perceived scene and therefore, similar to moving shadows, can lead to inconsistencies in
the captured data (Figure 1.4d) [51].
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(a) (b)

(c) (d)

Figure 1.4: Examples of images taken under various conditions under water: (a) without and
(b) with artificial light [52]. (c) Marine snow effect due to reflection of artificial light by particles
in the water. (d) Caustics / flickering caused by refracted sunlight [50].

1.1.2 Underwater 3D reconstruction methods

The most common underwater 3D mapping techniques, which are extensively described
by Massot et al. [53], can be classified into either acoustic or optical, based on the type of
sensor used.

Given the ability of sound to penetrate water much further than light (kilometers
compared to tens of meters), it is not surprising that the most commonly used underwater
mapping devices are based on acoustics. Modern sonar systems work on the principle that
the distance between the sensor and the scene (seabed) can be determined by considering
the elapsed time between the pulse and its echo, taking into account the speed of sound
in the water. While multibeam profiling and side-scan sonars are usually used to obtain
2.5D elevation maps of the sea floor (i.e. bathymetric maps), their use for performing
fine-scale 3D reconstructions has so far been limited (e.g. [54, 55, 56, 57, 58]). Due to
their small spatial extent and strict path restrictions, these approaches require very dense
sampling, expensive navigation sensors and complex processing, which significantly limits
their practical applicability [59]. On the other hand, (imaging) sonars with a wider angle
of aperture increase coverage and can thus encapsulate information from larger volumes
of water at once. While they are often used for mapping the seafloor (e.g. [60, 61, 62,
63]), the problems of recorded sonar images in the form of blurring along the aperture and
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the significant dependence of the perceived appearance of objects on the viewing direction
has for the time being, limited their widespread use for 3D reconstruction to a few works
reported in the literature (e.g. [59, 64, 65, 66]).

Optical-based 3D reconstruction methods

On the other hand, optical scanning still offers the best option for restoring an accurate 3D
representation of smaller areas of interest in higher resolution [67], despite various problems
with light penetration as described above. Optical-based 3D reconstruction methods can
be further divided into active and passive, depending on the needs of a technique for
additional projection of a signal (e.g. laser line) [53, 68].

Several active underwater optical systems [68, 69, 70, 71, 72, 73, 74] have been pre-
sented. In most cases a structured light, based on laser (e.g. a laser line), is projected over
the field of view of the camera. By exploiting a known relative pose between camera and
laser emitter, highly precise individual 3D points can be obtained through a triangulation
process. Long acquisition times, caused by the need to move the line projection over the
scene, limit its usability under real underwater conditions, where a constant relative move-
ment between the sensor and the observed scene often produces additional reconstruction
errors [53]. In addition, the strong absorption and scattering of the emitted laser, even in
clear water [75], limits its use to small working distances and prevents the simultaneous
use of other light sources. Therefore, intricate strategies such as those presented in [72,
76] have to be employed to acquire both 3D and color information.

In contrast, passive methods fully rely on the information acquired by the optical
images to reconstruct the 3D model of the observed environment. Additional light sources
may be used to illuminate the scene, and the methods are still considered passive as long
as they do not aim to cast features used for triangulation of the 3D points [77].

Nowadays, images are normally acquired using RGB cameras, which have undergone
a tremendous development in recent years. The evolution of modern and increasingly
sensitive image sensors allows their versatile use in various underwater conditions. In
addition, their increasingly compact design allows them to be placed on virtually any
submersible or to be used hand-held. While in the past the complex handling of the
cameras and the high price limited their use underwater to specialized research institutes
and companies with specially trained personnel, the above mentioned improvements and
the recent emergence of low-cost cameras (e.g. GoPro) have spearheaded their use in a
variety of underwater applications even by non-vision experts.

Depending on the number of cameras and their configuration, the camera systems are
usually classified as monocular, stereo or multi-camera systems. Stereo systems typically
consist of two synchronized cameras offset by a fixed distance (baseline), resulting in a
large viewing overlap, while multi-camera systems can consist of any number of synchro-
nized cameras in any pose. Typically, multi-camera systems are designed with the desire
to maximize the total field of view of the system [12], and hence the cameras tend to
have small overlap areas. Therefore, the main differences between the systems related
to 3D mapping are in the number of occasions that any point in the observed scene is
viewed in the images recorded at each instance of image acquisition and in the number
of known geometric constraints between the cameras in the system. In most underwater
scenarios, the limited payload capabilities often mean that the systems have only a single
high-resolution camera or stereo camera system at best. While multi-camera underwater
metrology systems are gradually coming into the market as commercially available prod-
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ucts and services (Rovco; Comex. SA), such systems are still too large and expensive for
most scientific applications.

In the context of image-based 3D mapping, monocular cameras have been extensively
studied in the computer vision community. Using the concept known as structure from
motion (SfM) [78, 79], the geometric information about the structure can be derived
from the information encoded in the change of location of projected scene points onto
the images taken from different viewpoints. Recent improvements in both speed and
robustness [80, 81, 82, 83] have led to a significant increase in the use of SfM in underwater
reconstruction scenarios, as the data can be easily captured with monocular cameras
mounted on UUVs [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], or else is acquired by
divers using low-cost, commercially available cameras [95, 96, 97, 98, 99, 100, 101]. To
jointly estimate the structure (3D coordinates of scene points) and the movement (relative
camera trajectory), modern methods solve the problem by nonlinear optimization of the
re-projection error as a cost function, i.e. bundle adjustment (BA) [83]. In order to describe
the geometry of the scene completely in high detail, dense and surface reconstructions are
built on top of the obtained sparse point clouds by means of triangulation [102].

An example of a result obtained with a SfM-based 3D reconstruction is shown in
Figure 1.5. The 3D model of the Cap del Vol shipwreck in Port de la Selva (Costa Brava,
Spain) was created using our 3D reconstruction framework with images taken by a diver
with a standard off-the-shelf camera. The sparse reconstruction of the scene together with
the location from which the images were captured is shown in Figure 1.5a. Enlarged views
in Figures 1.5c-d show the fine details of the reconstruction. For comparison, Figure 1.6
shows a 2D forward-looking sonar-based mosaic of the same area. This result is taken
from the work of Hurtós et al. [103] where an ARIS Explorer 3000 sonar was mounted on
a Girona 500 AUV tele-operated at a constant altitude of 3m. Since the data were not
collected with the same surveying strategy and the methods pursued different objectives
(3D vs. 2D), the comparison should only be interpreted as a comparison of the typical
representations of the results obtained nowadays with one of the two types of sensor.

Due to the nature of projective geometry, performing a SfM-based reconstruction us-
ing only data from a monocular camera precludes obtaining a metric scale of the resulting
model, i.e. the model is defined only up to an unknown scale [79, 104]. Since the elec-
tromagnetic signals from satellites are heavily damped in water [105] and therefore global
positioning system (GPS) is not usable, the scale of the model can be determined by
a combination of acoustic positioning (e.g. ultra-short baseline (USBL) or long baseline
(LBL) [106] and inertial navigation system [90, 91, 107]). Although acoustic-based nav-
igation provides position estimates that can be used for scale estimation, the associated
uncertainties that increase with increasing range (i.e. depth) in addition to the possible
loss of communication (navigation gaps) mean that the scale is estimated from data that is
often noisy and/or poorly resolved. In addition, many smaller submersible vehicles do not
have sufficiently accurate navigation capabilities due to the high cost and large payload
requirements, resulting in pure dead reckoning navigation solutions which often result in
excessive drift in the estimated trajectory.

The scale can also be estimated through the introduction of known distances or object
dimensions [92]. Since in real underwater scenarios only rarely are known measurements
readily available, the latter requires the placing of objects on site (e.g. [95, 96, 97, 98,
108]) and is therefore practically limited to small-scale reconstructions and shallow water
environments due to the time and logistical effort involved. Alternatively, knowledge of
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(a) (b)

(c) (d)

Figure 1.5: SfM-based 3D reconstruction of the Cap del Vol shipwreck at Port de la Selva (Costa
Brava, Spain). (a) Sparse point cloud , and (b) textured 3D model of the reconstructed scene with
magnified details in (c,d).

Figure 1.6: Acoustic-based 2D mosaic of the Cap del Vol shipwreck, created using forward-looking
sonar data. .The results are taken from Hurtós et al. [103].

the distance between different points can be obtained by projecting laser beams in a known
configuration onto the scene (e.g. [94, 109, 110, 111, 112]). These image scaling methods
require precise alignment of the laser scaler to the camera and projection of the lasers
onto flat areas of the scene, ideally perpendicular to the camera, to overcome the lack of
knowledge of the scene geometry and camera-scene distance. Both conditions prove to be
extremely limiting in real scenarios with rough surfaces. In order to transfer the knowledge
of scale from the image to the 3D model, each laser point must additionally be identified
on the model itself, which leads to an extremely error-prone and time-consuming manual
process.

As a special case of SfM with a sequential nature of observation in a robotic setup,
visual SLAM (V-SLAM) enables precise localization of an underwater robot in real time
while it is moving through the environment and simultaneously creates a map of the ex-
plored areas [113]. Since pre-calibrated and synchronized cameras allow for any scene
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point viewed by multiple cameras to be efficiently identified, converted to a 3D represen-
tation and subsequently merged into a single 3D reconstruction of a large area, numerous
commercial (e.g. [113, 114, 115]) and custom-build stereo camera systems (e.g. [102, 116,
117, 118, 119, 120]) have also been employed on underwater robots or used by scuba
divers [121]. Besides the fact that visual sensors are a cost-effective alternative to more
specialized sensors (e.g. Doppler velocity log, USBL, inertial measurement unit and sonar),
V-SLAM methods can provide information about the location and the environment even
in cluttered areas where solutions such as dead-reckoning may not be sufficiently accurate
[122]. A variety of methods have been developed that can be roughly divided into feature-
based, direct methods and a few recent attempts using deep learning [123, 124]. When
used underwater, dramatic lighting variations and the common use of radial corrections to
compensate for refraction effects at air-glass-water interfaces [125] lead to inconsistencies
in the results of direct methods [114, 126], while purely feature-based V-SLAM approaches
often suffer from poor imaging conditions, fast movements and dynamic scenes [127]. This
problem is often solved by merging visual information with inertial measurements, Doppler
velocities, an/or depth pressure measurements [128] (e.g. [118, 129, 130, 131, 132, 133]),
which in the case of monocular-based systems (e.g. [129, 131, 133, 134]), also helps with
initialization, scale ambiguity and scale drift problems [135]. To suppress accumulated
estimation errors within the global map or robot trajectory, the global solution should
constantly optimized. While in the past filter-based approaches (Extended Kalman Fil-
ter [136, 137] and its variants [130]) were used, most modern simultaneous localization
and mapping (SLAM) approaches perform a graph-based optimization [113, 138, 139]
through BA. To limit the growing computational complexity due to the increasing num-
ber of points and cameras, common solutions decouple the problem into a local BA step
that minimizes the re-projection error over a few recently added cameras and 3D points,
and a global optimization of the pose-graph optimization [135, 140, 141]. While this al-
lows for real-time results, such solutions are only locally consistent when executing large
loops and cannot provide uncertainty estimates as indicators of the quality of the acquired
optical data.

Given the number and unpredictability of degradation effects that severely affect the
quality of optical images taken underwater, the lack of real-time feedback on data quality
requires strong human intervention and an overly conservative approach during surveys
to try to ensure the collection of adequate data. Not only does this significantly increase
the time required for a mapping mission, but it can also lead to the need for additional
missions in the same area. It is therefore, together with scale estimation, one of the
most limiting problems of optical-based 3D reconstruction with monocular cameras in
underwater scenarios.

1.2 Objectives
With the motivations of this thesis described, we can now state that the main goal is:

To research and develop resources for accurate scaling and uncer-
tainty estimation of 3D models for scientific purposes, built based on
data acquired with monocular or un-synchronized camera systems in
difficult-to-access GPS-denied (underwater) environments.

This general aim can be divided into the following objectives:



16 Chapter 1. Introduction

• Survey the state of the art in SfM-based 3D reconstruction and navigation fusion to
understand the work and research contributions of other authors in the field.

• Develop a versatile 3D reconstruction framework for the generation of photo-realistic
textured 3D models based on optical and navigation data, independent of a specific
robot platform, camera or mission.

• Systematically analyze and determine the most appropriate 3D reconstruction and
navigation fusion strategy for large-scale reconstructions in GPS-denied environ-
ments using a monocular camera.

• Design and develop an automatic scaling method for SfM-based 3D models with
uncertainty estimation that can be used in routine underwater investigations using
commonly available underwater laser scalers, with emphasis on reducing the need
for manual labor in the process.

• Extend existing laser spot detection algorithms to allow automatic estimation of the
uncertainty in the position of detection.

• Extensively validate the framework, both in simulation and in several field tests
performed in representative environments with real robot platforms.

Surveying the state of the art and the validation of the reconstruction framework have
been a constant effort throughout the development of the thesis and as such reflected in
all publications of this compendium as well as in numerous other manuscripts published
in collaboration with fellow researchers. The two proposed scale estimation methods have
been covered in separate publications with thorough evaluations in simulation, with a
comprehensive application to real data was carried out in conjunction with the system-
atic analysis of fusion strategies, which has been covered in a third publication of the
compendium.

1.3 Context
The work presented in this thesis was supported by the Marie Skłodowska-Curie Early
Stage Researcher Fellowship of an European Academy for Marine and Underwater Robotics
- Robocademy (FP7- PEOPLE -2013-ITN-608096) and was developed at the Underwater
Vision Lab (UVL) of the Underwater Robotics Research Center (CIRS) within the Com-
puter Vision and Robotics Research Group (ViCOROB) of the University of Girona
(UdG). The group started its activities in the field of underwater vision and robotics
in 1992 and is now considered one of the leading groups in the research and develop-
ment of AUVs for accurate seafloor mapping and light intervention. The team, consisting
of pre-doctoral researchers, engineers, technicians, post-doctoral fellows and permanent
staff, has participated in many national and European projects and is actively involved
in various technology transfer projects. Over the years, the group has developed several
AUVs prototypes and currently has two fully-functional robots: the Sparus II AUV [30]
and the Girona 500 AUV [27], both of which have been used for data collection in the
context of this dissertation. Other robotic platforms used in this dissertation are VICTOR
6000 [24], Seaeye Cougar XT ROV [29] and PlaDyPos ASV [142].

Throughout this work, various collaborations have taken place with other researchers
from Computer Vision and Robotics Research Group (ViCOROB) and from abroad. The
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(a) Sparus II AUV [30] (b) Girona 500 AUV [27]

Figure 1.7: Robots currently in use at the CIRS research center.

use of 3D models in omnidirectional video stitching enabled the collaboration in [12]. The
developed reconstruction framework was extended to use the rigidity information of the
multi-camera system and to provide spatial information about the scene to enable seamless
panoramic stitching. The same system has been used in collaboration with the University
of Zadar to demonstrate the methodology for the use of omnidirectional cameras on un-
derwater robots for rapid high-resolution mapping of shipwrecks in marine archeology [7].
As part of a successful collaboration with fellow researchers of ViCOROB focusing on
mission planning, the 3D reconstruction framework has also been significantly improved
and extended to work with different camera configurations and robot platforms [1, 8, 11,
13, 18]. The 3D reconstruction framework has also received a number of improvements
and extensions to work with different camera configurations and robot platforms. Other
collaborations with researchers developing GIS-like mapping in a virtual reality (VR) en-
vironment [16, 17] and studying gorgonian populations in the Mediterranean [14] have also
been possible through our 3D modeling capabilities.

Due to the close cooperation with marine scientists, the author also had the opportu-
nity to participate in three international research missions. In the framework of the EU
project MIDAS (Grant No. 603418, FP7) we took part in an 8-day demonstration cruise
at the Mid-Atlantic Ridge (Figure 1.8a), during which the 3D reconstruction framework
was tested and evaluated for its applicability to industry-standard environmental baseline
surveying and impact assessment. The 3D reconstruction abilities with imagery acquired
using omnidirectional and stereo camera systems were also tested during the 7-day archae-
ological campaign in Caesarea, Israel, in cooperation with the Israel Antiquity Authorities,
the University of Zagreb and the University of Rhode Island. Most recently, the author
participated in the second stage (10 days) of the 21-day mapping cruise SUBSAINTES
(Figure 1.8b) near Les Saintes (Guadeloupe, France Antilles). In collaboration with Paris
Institute of Earth Physics (IPGP) and the French Research Institute for Exploitation of
the Sea (IFREMER), the 3D reconstruction framework was extensively used to create 3D
models of the Roseau fault rupture [9, 10, 15, 16].

Finally, this thesis also benefited from a 5-month research stay at the ARC Centre
of Excellence for Robotic Vision within the Australian National University (Canberra,
Australia). During this time an optical-based system for mission-time 3D reconstruction
with quality estimation for difficult environments was developed. The published papers [4,
6] received the Best Paper Honorable Mention Award at the International Conference on
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(a) MIDAS cruise at Mid-Atlantic Ridge (b) SUBSAINTES cruise at French Antilles

Figure 1.8: The scientific cruises attended to validate the developed algorithms.

3D Vision - 3DV 2017 (Qingdao, China) and the Norman Miller Best Student Poster
Award at IEEE OCEANS’17 (Aberdeen, UK).

The experiments, equipment and infrastructure resources used in this thesis have been
partially funded by the following projects:

• EU H2020 Project ROBUST (ref. 690416-H2020-CS5-2015-onestage) funded by the
European Commission.

• EU H2020 Project Eurofleets Plus (ref. 824077) funded by the European Commis-
sion.

• MINECO Project UDRONE (ref. CTM2017-83075-R) funded by the Spanish Min-
istry of Education, Culture and Sport.

• ANR Project SERSURF (ref. ANR-17-CE31-0020, France) funded by the French
National Research Agency.

• MINECO Project OMNIUS (ref. CTM2013-46718-R), funded by the Spanish Min-
istry of Economy, Industry and Competitiveness.

• MINECO Project ARCHROV (part of MERBOTS) (ref. DPI2014-57746-C3-3-R)
funded by the Spanish Ministry of Science and Innovation.

• EU H2020 Project EXCELLABUST (ref. H2020-TWINN-2015(CSA)-691980) funded
by the European Commission.

• EU H2020 Project STRONGMAR (ref. H2020-TWINN-2015(CSA)-692427) funded
by the European Commission.

1.4 Document structure
This document is structured into the following chapters:

• Chapter 2: In this chapter, the publication Autonomous Underwater Navigation
and Optical Mapping in Unknown Natural Environments introduces our first image-
based 3D reconstruction pipeline developed for the purpose of automatically generat-
ing photo-realistic textured 3D models of previously unexplored scenes. It addresses
underwater specific problems that normally occur under changing conditions and in
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dynamically planned missions, such as color correction and inconsistent speeds of
image content changes. The work was carried out in collaboration with research
colleagues at the Underwater Robotics Research Center (CIRS) research center, fo-
cusing on mission planning algorithms.

• Chapter 3: In this chapter we present our work on the problem of the exact scaling
of 3D models created from monocular camera images in GPS-denied environments.
In the publication Automatic Scale Estimation of Structure from Motion based 3D
Models using Laser Scalers, we present two novel methods of scaling based on laser
scalers. Together they cover the majority of different laser scaler configurations, one
completely unrestricted method which allows the use of any laser setup, while the
partially constrained method reduces the required knowledge of the geometry of the
setup by assuming the laser parallelism and equidistance of the laser origin to the
camera. The extended validation of the methods on a simulated real world example
is reported, as well as their applicability to the real scenario.

• Chapter 4: In the publication of this chapter, entitled Scale Accuracy Evaluation of
Image-Based 3D Reconstruction Strategies Using Laser Photogrammetry, a complete
scale accuracy framework is presented first. As an extension of our earlier work,
the scaling methods are incorporated into a Monte Carlo (MC) simulation capable
of estimating the confidence levels for each of the scale estimates. The detection
and uncertainty estimation of laser spots is addressed through a new automatic
laser spot detection method, which aims to facilitate the detection of even strongly
attenuated laser beams. The framework is then used to perform a systematic analysis
of scale errors in 3D reconstruction and navigation fusion strategies applied to the
reconstruction of 3D models on a larger scale in GPS-denied environments using
monocular camera images. Two distinct surveys from the SUBSAINTES scientific
cruise are used to assess the effects of different real deep-sea field working conditions.

• Chapter 5: The work done during my research stay at the Australian National
University (ANU) is presented in this chapter by a publication entitled Mission-
time 3D Reconstruction with Quality Estimation. It presents a novel SfM-based
system capable of producing globally consistent 3D reconstruction together with an
estimate of its uncertainty in mission-time or shortly thereafter. This publication
describes the outlier rejection scheme, which is based on a dual-map approach, as
well as the integration of the incremental fashion of solving the BA problem using an
incremental non-linear least squares (NLS) solver and a method for fast covariance
recovery, both implemented in the SLAM++ library by the collaborating authors.

• Chapter 6: This chapter contains a summary of the results obtained in the context
of this thesis, as well as some additional new and previously unpublished results.
The last section of this chapter also gives an overview of the most important models
reconstructed due to various collaborations with other researchers and scientists
during the development of the thesis.

• Chapter 7: Finally, the last chapter presents the conclusions and some guidelines
for future work.
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In this chapter we describe an approach for autonomous exploration and subsequent image-
based 3D reconstruction of underwater structures. First, the procedure for online planning

of a collision-free path is presented. This endows an AUV with the capability to autonomously
acquire optical data in close proximity to the environment without the requirement for any previous
knowledge of the observed area. Subsequently, we focus on an image-based 3D reconstruction
pipeline. It addresses underwater specific problems that normally occur under changing conditions
and during dynamically planned missions, such as color correction and inconsistent speeds of image
content changes. Through several steps the pipeline is able to create photo-realistic textured 3D
models of the inspected area. The work, carried out in collaboration with a research colleague
at CIRS was evaluated using the Sparus II AUV in a challenging real-world natural environment.
For the experiments, a custom-made multi-camera setup was designed and built, which allowed for
the reconstruction of a complex underwater canyon between two rocky formations with a single
pass of the robot.
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Abstract: We present an approach for navigating in unknown environments while, simultaneously,
gathering information for inspecting underwater structures using an autonomous underwater
vehicle (AUV). To accomplish this, we first use our pipeline for mapping and planning collision-free
paths online, which endows an AUV with the capability to autonomously acquire optical data
in close proximity. With that information, we then propose a reconstruction pipeline to create a
photo-realistic textured 3D model of the inspected area. These 3D models are also of particular interest
to other fields of study in marine sciences, since they can serve as base maps for environmental
monitoring, thus allowing change detection of biological communities and their environment over
time. Finally, we evaluate our approach using the Sparus II, a torpedo-shaped AUV, conducting
inspection missions in a challenging, real-world and natural scenario.

Keywords: underwater; path planning; mapping; 3D reconstruction; ecology

1. Introduction

Environmental science is an interdisciplinary field that gathers together different natural sciences
to study and determine the interactions of physical, chemical and biological components of the
environment, as well as their effects on the organisms which inhabit it. An important objective in such
studies is to establish a baseline that permits detecting changes and correlating them with possible
underlying factors. In order to correctly identify such changes, it is necessary to conduct long-term
and high-frequency observations of the studied ecosystem. To this end, and especially during the last
decades, robotic systems have started being used to systematically collect such environmental data [1].

Marine scientists were among the first to capitalize on the use of robotic vehicles for
environmental monitoring. Oceanographers, for instance, started using unmanned underwater
vehicles (UUVs) to study deep marine environments and the seafloor [2]. However, although the
majority of such early applications were devoted to monitoring marine habitats, nowadays there are a
significant and increasing number of robots that contribute to other environmental science domains.
The interested reader is encouraged to look into [1] for an extensive review of such contributions.

UUVs, are divided into two categories: remotely operated vehicles (ROVs), which need to
be controlled by a human operator, and autonomous underwater vehicles (AUVs) that conduct
(autonomously) a pre-established mission. While the former group has as a main drawback its
dependence on a surface vessel to operate the vehicle, the second, on the other hand, involves important
research challenges around localization, perception, mapping, path planning, and safety—just to
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mention a few. Therefore, an important part of the work in underwater environmental robotics
research, especially that involving AUV, has concentrated on developing the basic functional modules
that allow autonomous operation.

In their simplest form, robotic monitoring applications in underwater environments involve an
AUV that follows a sequence of pre-calculated waypoints in order to collect data, which are retrieved
after concluding the mission. In other words, the AUV behaves as a mobile sensor that explores and
measures aspects of interest in an underwater environment. For this reason, another important body
of research has been dedicated to developing pipelines that automatically and systematically process
large amounts of information.

With the increased selection of sensors now included in the AUV allowing performance of
underwater explorations, underwater 3D mapping now relies on acoustic multibeam [3,4] or sidescan
sonars [5] to produce elevations maps. This ability to accurately map underwater environments yields
high added value to any survey, as such results convey immense information easily interpretable by
humans [6].

However, while these maps are indispensable for providing a rough approximation of the terrain,
they are not able to sense more complex structures (e.g., they cannot represent concavities). For this
reason, optical imaging is used to recover high quality 3D representation of small areas of interest in
high resolution [7]. For an extensive review of various methods for underwater 3D reconstruction, the
interested reader is referred to [8].

Furthermore, as a result of numerous readily-available off-the-shelf underwater camera systems,
as well as custom-made systems for deep-sea explorations, an increasing number of biologists,
geologists and archaeologists rely on optical imagery to survey marine benthic habitats [9–12],
study hydrothermal vents and spreading ridges [13,14] as well as ancient shipwrecks and
settlements [6,15,16]. Underwater imagery has also been used to identify and classify different benthic
elements in the surveyed area [17–19] as well as to detect changes in the environment [20–22].

Whatever the type of information required to study an underwater environment (e.g., thermal,
chemical, acoustic, optic, etc.), most of the surveys done with AUVs are conducted in a previously
explored area so that the vehicle can navigate at a constant and safe altitude from the seafloor.
In a typical application, the vehicle uses its on-board sensors to gather (environmental) data that is
used to build thematic maps. However, recent and potential new applications require the AUV to
navigate in close proximity to underwater structures and the seafloor. An example is the imaging
and inspection of different structures such as underwater boulders [23] or confined natural spaces
(e.g., underwater caves) [24]. In some of these cases, preliminary information about the structure to be
inspected, such as its location and shape, permits determining the region of interest in advance, so
that a coverage path is pre-calculated. The information obtained during the mission is used to correct
or adjust the path to the goal online in order to adapt to the real shape of underwater structures [23].
Nonetheless, there are applications in which no previous information is available on the environment,
or cannot be obtained autonomously. In such cases, preliminary work has focused on gathering data
to characterize such environments [24], while relying on human supervision to ensure vehicle safety.

On that basis, the purpose of this paper is to propose a framework that endows an AUV with the
capability to autonomously inspect environments for which no previous information is available.
The framework consists of two main functional pipelines: (1) one that computes collision-free
paths while simultaneously mapping the surroundings incrementally; (2) another that allows the
reconstruction of various 3D representations (i.e., sparse, dense, meshed, textured) of the surveyed area
using images gathered by an arbitrary camera setup during the mission. Due to the aforementioned
constraints of underwater optical mapping, the latter pipeline establishes a range of distances at
which the AUV must navigate, which represents a path constraint to be considered by the former
functional pipeline. The resulting 3D reconstructions will serve as base maps for environmental
monitoring of interest areas, allowing the detection of any change in biological communities and their
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environment on a temporal scale, and enabling a new way to visualize the evolution of wide areas in
that temporal scale.

The remainder of this paper is organized as follows. Section 2 presents our proposed path
planning pipeline that permits an AUV to autonomously navigate in unknown environments, and
also discusses the extensions necessary in order to calculate paths that attempt to maintain a desired
range of visibility, i.e., distance to inspected structure. Section 3 reviews the reconstruction pipeline
that builds a 3D textured model of the inspected area using optical imagery. In Section 4, we present
a real-world mission that validates our approach. Results include both an autonomous inspection
conducted by the Sparus II (University of Girona, Girona, Spain) AUV (see Figure 1) in a challenging
and natural environment, and its corresponding 3D reconstruction done with optical data gathered
during the inspection mission. This clearly extends our preliminary work, where only simulated or
real-world but structured (non-natural) environments have been used [25,26]. Finally, concluding
remarks and directions for further research are given in Section 5.

Figure 1. Sparus II, a torpedo-shaped AUV.

2. Path Planning Pipeline

This section reviews our path-planning pipeline that solves start-to-goal queries online for an AUV
that operates in unknown environments [25]. In order to accomplish this, the pipeline is composed of
three functional modules. The first of them incrementally builds an occupancy map of the environment
using on-board perception sensors. The second one plans safe (collision-free) paths online. The third
and last functional module works as a high-level coordinator that handles the mission execution by
exchanging information with the other two modules and the AUV’s controllers. Figure 2 depicts how
these functional modules are connected to one another. Additionally, we explain how to extend this
pipeline by incorporating a criterion to maintain a desired distance to guarantee visibility constraints
while conducting a mission in close proximity.

Figure 2. Pipeline for online path planning for AUV.
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2.1. Module for Incremental and Online Mapping

The mapping module incrementally builds a representation of the environment by using data
received from different kinds of perception sensors, such as multibeam or mechanically scanned
profiling sonars, echosounders, etc. Such sensors provide a range of information about nearby
obstacles that, combined with the vehicle’s navigation (position and orientation), permits establishing
the free and occupied space with respect to an inertial coordinate frame. In order to represent this
data, we use an octree-based framework called Octomap [27], which has three main characteristics that
permit efficient modelling such volumetric information. The first characteristic is the probabilistic state
representation that not only allows us to modify the map when updated environment information
is available, but also protects it from noisy measurements, i.e., a position state considers previous
information and calculates its new value according to probabilistic functions. The second characteristic
is the capacity of representing unexplored areas, which can be relevant for guiding exploration in
unknown environments. Finally, Octomap offers a computationally efficient way to enlarge or extend
the map as demanded. Figure 3 shows a breakwater structure and its representation with an Octomap,
which has been built using multibeam sonar data obtained by a surface vessel.

(a) (b)

Figure 3. (a) breakwater structure in the harbor of Sant Feliu de Guíxols in Catalonia, Spain.
The structure is composed of a series of blocks, each of which is 14.5 m long and 12 m wide; (b) Octomap
created from real-world data obtained with a multibeam sonar.

2.2. Module for (Re)Planning Paths Online

The planning module is in charge of calculating a collision-free path for the AUV. For doing so,
this module receives a query to be solved that is specified with a start configuration (qstart) and a
goal configuration (qgoal), and other parameters, such as the available computing time and minimum
distance to the goal. Furthermore, given that the vehicle navigates in an unknown environment, this
module is required to continuously verify and repair (if necessary) the path from the current vehicle’s
position to qgoal . In order to calculate a collision-free path under such constraints, i.e., incrementally
and online, we have modified the asymptotic optimal RRT (RRT*) [28], which is one of the most
relevant sampling-based path planning algorithms.

The rapidly-exploring random tree (RRT) and its variants are algorithms that incrementally build
a tree of collision-free configurations. Their main characteristic is the rapid and efficient exploration of
the C-Space [29]. The state-of-the-art method for calculating optimal paths is the RRT* with its concept
of asymptotic optimality (an algorithm is said to be probabilistically complete when the probability
that the planner finds a path, if one exists, asymptotically approaches one as the number of samples
increases), which was firstly introduced in 2010 by Karaman and Frazzoli [28,30]. This property states
that the total cost of the solution, measured by a user-defined function, decreases as the number
of samples increases. In this approach, new configurations are connected to the closest and best
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configuration, i.e., the one that guarantees a minimum cost. Furthermore, an additional step of sample
reconnection allows improving the associated cost of the surrounding configurations.

However, the RRT* used in this work not only permits us to progressively improve the path
(through its property of asymptotic optimality), but has also been modified to incorporate concepts of
anytime computation and delayed collision checking. These extensions enable the enhancement of the
performance for online (re)planning applications, such as the one proposed for this work.

2.2.1. Anytime Approach for (Re)Planning Online

Even though RRT* has been previously extended to behave as an anytime algorithm [31], our
alternative approach grows a single tree and prunes it to discard those branches that result under
collision after updating the map, similarly to what Bekris and Kavraki proposed for a standard
RRT [32]. Like other RRT-based algorithms, our variant consists of two procedures, build and extend.
The former procedure, which is presented in Algorithm 1, works similarly to other RRTs that sample
uniformly distributed configurations (line 4) and attempt to expand the tree towards them (line 5
(see also Algorithm 2)). However, our variant has two main modifications.

The first modification arises from the necessity of correcting or adjusting the path according to
the new elements discovered in the environment. In order to deal with this, updateTree procedure is
called before sampling new configurations (line 2). With this procedure, the modified RRT* traverses
the tree using a depth-first search (DFS) algorithm to check if any node or edge is under collision. If a
new collision is detected, the corresponding subtree (i.e., the tree that includes the nodes or edges
under collision) will be discarded. Nonetheless, if the tree root is one of the nodes under collision or if
the path from the current vehicle’s configuration to the root is not feasible, our modified RRT* (i.e., the
planning module) informs the mission handler to cancel the current waypoint and starts again planning a
new path from the current vehicle’s position. This latter situation occurs because the tree root always
corresponds to the configuration (or position) that the vehicle is moving towards, as explained below.

The purpose of the second modification in Algorithm 1 is to make the RRT* behave in an
anytime fashion. To do this, if the new configuration resulted from the tree expansion meets the
specified minimum distance to the goal (line 7), it is added to a list of possible solutions (line 8).
After concluding the tree expansion, if the mission handler has requested a new waypoint and there
is at least one available solution stored in the list (line 10), the planner selects the solution with the
minimum associated cost, sends the mission handler the configuration connected to the root of that
solution (line 13), and prunes the tree in such a way that the configuration sent becomes the new
tree root (line 14). During this pruning process, subtrees connected to the initial root (excepting the
corresponding to the new root) are discarded.

In our modified RRT*, extend procedure (Algorithm 2) remains as originally proposed in [28].
This means that it receives a random configuration (qrand) towards which the tree will be expanded.
To do so, it first finds the node (configuration) qnear that is the nearest to qrand (line 2). It then calculates
a path of length δ from qnear towards qrand which, in turn, generates a new configuration qnew (line 3)
(in a geometrical case, i.e., when no motion constraints are considered, the connection between two
configurations results in a straight line segment). If both qnew and the path that connects qnear and qnew

are proved to be safe (collision-free), this procedure will not only incorporate qnew into the tree, but
will also check its surrounding nodes to reconnect them in case better (less expensive) connections are
possible (lines 6–9). Finally, this procedure returns a value that confirms whether the expansion was
successful (line 10) or not (line 12).
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Algorithm 1: buildRRT
Input:
T: tree of collision-free configurations.

1 begin
2 updateTree()
3 while not stop_condition do
4 qrand ←sampleConf()
5 result, qnew ←extendRRT(T, qrand)
6 if result 6= TRAPPED then
7 if dist(qnew, qgoal) < εgoal then
8 addSolution(qnew)
9 solution_ f ound← true

10 if solution_ f ound and wp_req then
11 result_path←getBestSolution()
12 new_root← result_path[1]
13 sendWaypoint(new_root)
14 pruneTree(new_root)

Algorithm 2: extendRRT*
Input:
T: tree of collision-free configurations.
qrand: state towards which the tree will be extended.
C: C-Space.
Output:
Result after attempting to extend.

1 begin
2 qnear ← T.findNearestNeighbor(qrand)
3 qnew, collision←calculatePath(qnear, qrand, δ)
4 if not collision then
5 addNewNode(T, qnew)
6 Qnear ←findNearestNeighbors(T, qnew)
7 qmin_cost ←findMinCost(T, Qnear, qnew)
8 addNewEdge(T, qmin_cost, qnew)
9 reconnectNearNeighbors(T, Qnear, qnew)

10 return ADVANCED

11 else
12 return TRAPPED

Figure 4 shows a simulation of the Sparus II AUV conducting a mission in an environment that
resembles the breakwater structure presented in Figure 3. In this case, the vehicle is assumed to have a
mechanically scanning profiler with a perception distance of 20 m, the tree generated by our modified
RRT* is presented in dark blue, the path to the goal is drawn in red, and the path to the current
waypoint appears in yellow. The mission, specified as a start-to-goal query, consists in navigating
from one side of a series of blocks (obstacles) to the other (see Figure 4d). The environment is initially
undiscovered and is incrementally mapped as the AUV navigates towards the goal. When the vehicle
starts the mission, and no obstacle has been detected, the waypoint sent to the AUV’s controllers
(the tree root) coincides with the goal, since a straight path to it is feasible (see Figure 4a). This situation
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can persist even when obstacles have been detected, as long as the path from the vehicle’s position
to the goal is collision-free (see Figure 4b). However, when such a straight path is not possible, the
planner starts again calculating a new path from the vehicle’s current position, as previously explained
(see Figure 4c). More details about the simulation environment and test scenarios will be provided in
Section 4.

(a) (b)

(c) (d)

Figure 4. Sparus II AUV conducting an autonomous mission in a simulated scenario (a), where it
incrementally maps the environment (b), (c) and (re)plans a collision-free path to the goal (d). The tree
of configurations is presented in dark blue, the path to the goal in red, the path to the current waypoint
in yellow, and the vehicle’s trajectory in green.

2.2.2. Delayed Collision Checking for (Re)Planning Incrementally and Online

When navigating in unknown or partially known environments, the information about the
static and dynamic surrounding elements (obstacles) is progressively acquired as the vehicle moves.
Because of this, an important number of configurations (sampled or obtained after expanding the tree)
are located in unexplored regions of the environment. In these situations, it is not only impossible but
also unnecessary to attempt to determine if a configuration is at risk of collision. To compensate for this,
our strategy is to assume as safe (collision-free) any configuration that is out of the explored area, which
can be efficiently determined when using Octomaps (as described in Section 2.1). Furthermore, given
that the tree expansion is periodically interleaved with updating the map, such parts initially assumed
as safe will be verified and discarded if found under collision as the vehicle explores the environment.
This approach is inspired by the lazy collision checking strategy introduced by Bohlin and Kavraki [33].

Figure 5 depicts another simulation in the same scenario used in Figure 4, but, in this case, the
explored regions of the maps are presented in light blue and the occupied ones are presented in green.
With this visualization, the importance of delaying the collision checking for those configurations
located in undiscovered regions can be appreciated. As mentioned before, the tree is checked and
reshaped as the environment is being explored (see changes from Figure 5a–b).
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(a) (b)

Figure 5. Sparus II AUV conducting an autonomous mission in the same simulated scenario
(breakwater-structure). (a) The explored region, presented in light blue, expands as the vehicle moves
towards the goal. It is important to notice that a significant part of the tree (dark blue) is located in
undiscovered areas of the workspace; (b) Those branches are initially assumed as safe (collision-free)
until the corresponding region has been explored, thus avoiding unnecessary collision-checking
routines computation.

2.3. Mission Handler

The third functional module that constitutes the path-planning pipeline is the mission handler.
This module is in charge of controlling and coordinating the previously explained modules
(mapping and planning). It also verifies whether the AUV is prepared to start solving and conducting
a task; to do so, this module communicates with other functional modules on the vehicle to verify
both that navigation data is correctly being generated and that the vehicle’s low-level controllers are
not conducting any safety manoeuver. After completing the checking stage, the mission handler starts
requesting waypoints from the planning module, which, after being received, are adapted and sent to
the vehicle’s low-level controllers. Finally, this module is also responsible for cancelling any ongoing
waypoint if it is notified by the planning module, as explained in Section 2.2.

2.4. Conducting Surveys at a Desired Distance Using a C-Space Costmap

As mentioned in the introduction to this paper, environmental science requires conducting
long-term and high-frequency observations in order to determine changes over the studied ecosystem.
One of the alternative ways of conducting such a study—and the one presented in this work—is
to gather optical data that can be used to build 3D representations of the environment. In this way,
changes in the environment can be detected by inspecting the different reconstructions built over time.
However, visibility is highly variable in underwater environments and can play a critical role when
collecting optical information. For this reason, the planning pipeline has to be adjusted according to
both the visibility conditions given when conducting the data collection and the camera parameters.

In order to tackle this issue, we propose establishing a costmap over the C-Space that
specifies a distance constraint as an attempt to guarantee the visibility with respect to the surface
of interest. To do so, the cost that is associated with each configuration q must be calculated according to
Equation (1), where 0 ≤ Cost ≤ 100, with 0 and 100 as the minimum and maximum costs, respectively.
This cost function is used as the optimization objective for our planning pipeline and its RRT*. In this
formulation, the Cost is dependent on the distance (d) and has additional parameters that permit
adjusting the costmap. These parameters include the expected distance to the inspected structure (de)
and the range of distance (∆da) that defines an admissible interval in which the cost is minimal (clearly
observed in Figure 6):
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Cost(d) =





(
1− d

de

)
100, d < de − ∆da

2 ,

0, de − ∆da
2 ≤ d ≤ de +

∆da
2 ,(

d
de
− 1
)

100, d > de +
∆da

2 .

(1)

Lastly, there is an additional important aspect to note when using Equation (1) within the
planning pipeline. When high-cost values are defined for certain zones, it does not imply that a
restriction is applied to planning paths over those zones (thus discarding possible paths), but it
does means that those paths should be avoided as far as possible. To put it in another way, the
proposed approach does not define restricted areas in which the vehicle would not be allowed to
move through. This situation may occur when the only feasible path coincides with the highest cost
one (e.g., narrow passages), in which case the planner will also admit the path as a valid solution.

Figure 6. Costmap projected in vehicle’s X(surge)-Y(sway) plane. Dark blue indicates the zone that
meets visibility constraints.

3. 3D Reconstruction Pipeline

Underwater environments with their particular phenomena (i.e., light attenuation, blurring and
low contrast) [7], can be regarded as hostile places for optical surveying. Acquisitions have to be
performed at close range, significantly limiting the area viewed in a single image, thus enormous
amounts of data have to be collected and processed to generate a wide area view enabling the extraction
of valuable information on a broader space scale [34]. While 2D photomosaics have been successfully
used in describing large areas [13,35,36], they can only be accurately generated if the scene is relatively
planar [37] and images taken in a nearly orthographic setup (e.g., [38]). In scenarios with significant 3D
structures, the aforementioned prerequisites cannot be met, resulting in obvious distortions (see [39]).
However, redundant information from multiple images can be used to provide visually rich 3D
reconstructions of the underwater terrain. Furthermore, as the camera poses do not have to be
orthogonal to the seafloor, images can convey more meaningful information regarding the global shape
of the object, especially in the case of intricate structures (e.g., underwater hydrothermal vents), which
are impossible to capture accurately using downward looking cameras [7].

In this section, an optical-based 3D reconstruction pipeline is presented. Through a series of
sequential modules (see Figure 7), the pipeline is able to reconstruct a 3D model based on the optical
imagery acquired from an arbitrary number of cameras in various poses. Cameras do not have to
be synchronized and can be freely re-positioned between missions, based on the mission’s goals and
the expectations of the terrain in the surveyed area. However, in order to obtain a metric-scaled
reconstruction, the cameras have to be connected with the AUV sensors [40] or known measurements
of the environment have to be introduced [41].

30
Chapter 2. Autonomous Underwater Navigation and Optical Mapping in Unknown

Natural Environments



Sensors 2016, 16, 1174 10 of 27

Figure 7. 3D reconstruction pipeline.

Each of the reconstruction steps results in a different representation of the reconstruction.
While the preferable representation for visualization and dissemination is a textured triangle mesh,
some applications may require solely dense or even a sparse point cloud of points describing the
observed area. In such cases, substantial reduction in the computational cost can be achieved, as none
of the subsequent steps have to be performed. It is also worth noting that an important pre-processing
step of color correction is required to reduce the image degradation effects of the water medium.

3.1. Keyframe Selection

Once the AUV has been recovered, the data acquired during the mission has to be collected
and preprocessed in order to obtain a consistent set of quality images used in the subsequent
reconstruction process. The optical data can be acquired either by still imagery or through recording
of high resolution videos. Challenging underwater conditions in which the acquisition is performed
often lead to blurry and low-contrast images, which have to be detected and removed before the start
of the reconstruction process. Videos provide a large number of images (i.e., frames) with large overlap
and enable a greater flexibility in image selection. However, as the movement of the AUV is typically
slow, the length of the videos and consequently the number of frames may become overwhelming
and inefficient to process. Furthermore, as the displacement of the camera (i.e., baseline) between
consecutive frames is extremely small, the reconstruction process cannot reliably infer the depth
information [42]. Thus, a smaller subset of quality images with sufficient movement is extracted and
used in the following steps to build an accurate 3D model.

The initial keyframe selection step employed in our reconstruction pipeline is performed as a
twofold process on data acquired by each of the cameras used in our setup. To identify the frames
in which the vantage point has sufficiently changed, we use a similar approach to Cavan in [43].
The Lucas–Kanade tracking algorithm [44] has been used to track features detected as points with
strong gradients in both image directions (minimum eigenvalue corners) [45]. The camera motion
is then estimated based on the movement of the tracked features. Despite the fact that this does not
allow us to directly estimate real camera movement, it does, however, enable us to detect frames
where the content has sufficiently changed. Similarly, if the number of tracked features between
the frames is insufficient, we predict a significant change and extract a new keyframe. While Cavan
selected each candidate that met this criteria, we perform an additional filtering step to avoid extracting
blurry frames. A new frame is selected among a few closely consecutive frames based on the blurriness
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score, which is estimated as the variance of its Laplacian [35]. As the Laplacian highlights the rapid
change of intensities, higher variance represents a more in-focus image with sharper edges.

This approach enables us to automatically adjust the extraction rate of the frames depending on
the movement of the AUV, as opposed to time-dependent frame extraction (e.g., selecting a frame
every second). However, the approach requires an empirical selection of per-video threshold value for
sufficient feature movement on the image plane. On the contrary, the least blurry image is detected
based on the relative highest variance and is not conditioned by any thresholds.

3.2. Color Correction

The inherent properties of the water medium induce several effects causing the color and
brightness of the images to vary significantly depending on the distance to the scene [46]. The red
components of the visible spectrum are strongly absorbed, resulting in typical greenish-blue images [47]
(see Figure 8a). The image quality can be further degraded by the scattering and absorption effects
caused by the presence of suspended particles in the medium (e.g., plankton) [48,49]. For heavily
degraded images, applying color correction not only benefits human perception and interpretation
of its contents, but also improves the quality and quantity of successful scale-invariant feature
transform (SIFT) matches between image pairs [50] used in the subsequent reconstruction process.

The color correction techniques can be based either on a physical model of the image formulation
process (image restoration) or on subjective qualitative criteria (image enhancement). While the former
requires knowledge of the physical parameters of the medium, the latter can be performed based on
various suggested criteria (e.g., histogram stretching). As our goal is to perform the reconstruction
without the requirement of prior knowledge about physical parameters or medium properties, we
use an image enhancement technique proposed by Bianco et al. [47]. The method is based on the
“white-world” assumption in Ruderman opponent color space lαβ [51] and uniform illumination of the
scene. The lαβ space is used to separate the luminance (l) and two chromatic components (α, β) and
subsequently shift their distributions around the white point (0, 0). This can be seen as the correction
of image-cast and the adjustment is analogous to the “grey-world” assumption in the RGB space.
Additionally, histogram cutoff and stretching are performed on the luminance component to improve
the image contrast. An example image before and after color correction and contrast enhancement is
depicted in Figure 8.

(a) (b)

Figure 8. (a) image acquired with a downward oriented camera; (b) the same image after color correction.

3.3. Distortion Correction

Aside from the effects of the light passing through water, the incident light beam’s path is
additionally altered due to the difference in the density in the water–glass–air interface (between the
camera sensor and the scene). The change in path destroys the collinearity between the point in water,
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the camera’s center of projection, and the image point [52], resulting in a distorted image, causing the
scene to appear wider on the image than it actually is [53].

For planar interfaces, such as we use (see Section 4.1), the deformation increases with respect to
the distance from the camera’s center of projection. It can be regarded as a pin-cushion distortion,
and its effects can be reduced by considering it as radial distortion [54]. Unknown radial distortion
parameters introduce additional ambiguity in the subsequent structure from motion (SfM) process and
can lead to ambiguous reconstructions (e.g., bending of the model) [55]. This can be avoided by either
using pre-calibrated radial distortion parameters or avoiding critical acquisition configurations [55].

As we cannot ensure the absence of critical configurations, due to the unknown structure of the
environment, we pre-calibrate the intrinsic parameters of the cameras in an underwater environment
prior to the mission using a calibration pattern and a standard calibration procedure [56].

3.4. Sparse Reconstruction

Using a set of previously pre-processed images, the 3D geometry of the scene, simplified to sparse
3D points, is simultaneously estimated with the motion of the cameras through a process known
as structure from motion (SfM). The problem solved by SfM can be seen as an inverse process of
image formulation. Instead of finding the points of intersection between the image plane and the
rays connecting the camera’s centre of projection and the points in space, the goal is to recover the
position of the points in space together with the pose of the camera. The estimation is done entirely
from the texture features extracted and matched across the 2D image set. By using the equations
of projective geometry, connecting the image projections and the position of real world points, the
solution is estimated through a non-linear minimization of the reprojection errors—also known as
bundle adjustment [57]. As the process is based on projective geometry, the obtained reconstruction
can be defined only up to scale [42].

3.4.1. Feature Detection and Matching

Given that the structure and motion parameters are inferred entirely from the projections of the
points on the images, these interest points should be salient features robustly detected and associated
across multiple views. In our approach, we detect such features using Wu’s [58] graphics processing
unit (GPU) implementation of SIFT [59]. SIFT is widely accepted as one of the highest quality feature
descriptors [60] as it has a high degree of invariance to scale and rotation, as well as being partially
invariant to changes in illumination, noise, occlusions and small changes in the viewpoint. The points
are detected as extremes of the difference of gaussians (DOG) at multiple scales, and described based
on local gradients using a 128-element normalized unit vector.

The association of features across the image set is done image pairwise based on the Euclidean
distance using Lowe’s ratio test [59] and subsequently filtered through a geometric filtering procedure
to eliminate possible outliers. The behaviour of individual matches is evaluated with respect to
the global estimate of the transformation between the two images, i.e., epipolar constraints [42].
Without prior knowledge of the cameras positions, the fundamental/essential matrices are computed
using a robust statistical method to prevent the influence of possible outliers on the estimation of
the model. In order to avoid the empirical selection of the inlier/outlier threshold value in the widely
used method of random sample consensus (RANSAC) [61], we use the parameter-free evolution called
a contrario-RANSAC (AC-RANSAC) [62] implemented in the open-source library OpenMVG [63].
The method uses the acontrario methodology, which relies on the Helmholtz principle of meaningful
deviations and regards any model that is unlikely to be explained by chance as conspicuous. As the
meaningfulness of the model is determined by data-specific statistical criteria, explicit threshold values
are not required.
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3.4.2. Structure from Motion

Using the established feature correspondences, the 3D scene and extrinsic camera parameters
are gradually estimated through a sequential SfM [64] implemented in the open-source library
OpenMVG [63]. The process starts with the initialization step, where a seed pair of images is selected.
Without prior knowledge of the scene, initial poses are decomposed directly from the estimated
fundamental/essential matrix relating the pair. As the erroneous initial estimation can cause the
algorithm to converge to wrong local minima, from which it is unlikely to recover, the selected pair
has to be well conditioned, i.e., have a wide baseline and not many coplanar common points, to ensure
robust estimation of the fundamental/essential matrix [42]. The reconstruction is then incrementally
expanded with newly observed points and cameras one view at a time. Extrinsic parameters of each
new camera are initialized through a direct linear transform technique [42] using already estimated
3D points. After each step of the expansion, bundle adjustment is performed to minimize and evenly
propagate the re-projection error.

As the reconstruction is performed sequentially from a series of relative motion estimations
between the images, the accumulation of small errors can lead to a drift in the final reconstruction.
This can be significantly reduced with the introduction of non-sequential constraints in the
optimization process. An effective strategy is to perform a loop closure by re-visiting the same area.
Using the image matching between the non-sequential images the relative motion is restricted and
drift minimized.

While the algorithm enables the recovery of both extrinsic (i.e., the position and orientation of the
camera at the moment of the acquisition) and intrinsic cameras parameters (i.e., focal length, principle
points and radial distortions of the lens), this can lead to ambiguous reconstructions (excluding the
inherited scale ambiguity) [55] (see Section 3.3). We avoid the radial ambiguity by pre-calibrating the
cameras in an underwater environment and consider the intrinsic parameters constant during the
reconstruction process. This additionally reduces the complexity of the problem and subsequently
reduces the possibility of convergence to a wrong solution.

As a final result, an estimate of the external camera parameters together with the sparse 3D
structure is obtained as shown in Figure 9.

Figure 9. Example of sparse 3D scene reconstruction together with with camera positions (red).

3.5. Dense Reconstruction

As sparse 3D points describing the observed scene recovered in the previous step are usually
not sufficient to describe the underlining structure in detail, we perform a densification step in which
we aim to obtain a detailed globally consistent dense representation of the scene. This is achieved by
trying to estimate the 3D coordinates of each pixel in the acquired images. Using the mathematical
models estimated in the SfM process (e.g., camera projection matrices) [65], the correspondence
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information required for such estimations can be determined through a dense image matching
procedure, either by using stereo pairs (stereo matching) or by identifying correspondences in multiple
images (multi-view stereo).

Modern dense matching algorithms can be categorized either as local or global [66]. While local
methods are efficient, due to pixel-wise correspondence evaluation and local “winner-take-all”
optimization [65], they tend to produce incorrect results at sudden depth variations and detailed
areas, as well as lacking the ability to reconstruct surfaces in locally ambiguous areas (e.g., occlusions,
repeated patterns and uniform texture regions) [67]. Relative robustness in such areas can be achieved
using global methods, which determine the solution by minimizing a global cost function extended to
all image pixels [68] but require significant computational effort. An efficient solution can be found
using a Semi-Global Matching [69] method, which is a local pixel-wise method that approximates the
minimization of a global 2D smoothness constraint by combining several independent 1D constraints,
thus allowing the recovery of object boundaries and fine details.

We perform the dense reconstruction using a semi-global matching-like multi-image method [70,71]
implemented in an open-source MicMac photogrammetry [72]. The reconstruction is formulated as an
energy minimization problem and solved by finding a minimal cut in a graph. For each hypothetical
3D point, a patch in the master image is identified and projected to all the neighbouring images,
which are then used in the computation of the global similarity estimate through Normalized Cross
Correlation [65]. An energy minimization approach, similar to [69], is then applied to enforce surface
regularities and avoid undesirable jumps [71].

To reduce the computational complexity, the method is based on a multi-resolution pyramidal
approach using a coarse-to-fine extension of the maximum-flow image matching algorithm presented
in [73]. At each pyramid level, matching results for the relevant resolution are computed and used to
guide the matching process at a higher level. This produces a multi-stereo correlation result for each
master image in the form of a depth map. A 3D point cloud is later obtained by projecting the points
to space according to the camera’s pose and associated depth value. Additionally, RGB attributes can
be assigned to each of the 3D points from the appropriate master image [71]. The result can be seen in
Figure 10, depicting the scene from the same viewpoint as in Figure 9.

Figure 10. Example of dense 3D scene reconstruction.

3.6. Surface Reconstruction

In sparse and dense point clouds obtained in the previous steps, the scene has only been
described using an unorganized noisy point cloud without any assumption about their connectivity.
This representation is frequently not sufficient for further processing of the data, and it also does not
enable proper visualization, as visibility information is not established, preventing the user from easily
distinguishing points that should be either visible or occluded from a specific viewpoint [7].
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In the surface reconstruction step, our aim is to describe the geometry of the scene using a triangle
mesh, i.e., finding the most probable surface based on the sampling represented by the point cloud
obtained from the noisy dense reconstruction. Optical-based reconstructions created in the underwater
environment are normally corrupted by both noise and outliers due to poor imaging conditions [7].
Surface reconstruction methods can be classified as interpolation- or approximation-based depending
on their approach [7]. Interpolation methods consider the points in the point set only as possible vertex
candidates in the resulting triangle mesh, thus making them directly dependent on the quality of the
point cloud. For this reason, such methods should only be used with ideal (or nearly ideal) point clouds,
i.e., noise and outlier free [7]. On the contrary, the approximation-based methods are able to mitigate
the effects of noise in the data by considering the point set only as information about the surface and
not necessarily as final vertices. However, the implicit smoothing hampers its ability to recover sharp
features (e.g., edges, corners). Considering that our main focus is on the recovery of the scenes in the
underwater scenarios, where sharp edges are rare (with the exception of man-made structures) and
the point cloud is noisy, we decided to use the Poisson method [74,75] as one of the most representative
approximation-based methods.

The Poisson surface reconstruction method forms a unique implicit surface representation
(iso-surface) through the reconstruction of an indicator function, i.e., a function having the value
0 if inside the object, and 1 if outside. As the oriented points in the point cloud can be seen as
samples of the indicator function’s gradient, the point cloud can be used to represent the function’s
gradient field. By computing the inverse of the gradient, that is, by finding the scalar function of
which gradient best approximates the gradient field defined by the input point set, the problem can be
transformed to a Poisson problem and its solution found by determining the scalar function whose
Laplacian equals the divergence of the gradient field. To efficiently represent the 3D function, an octree
adapted to the distribution of the samples is used.

By using the indicator function, the Poisson method implicitly requires the possibility of
determining the inside and outside of the surface, i.e., the object has to be watertight [7]. As the
underwater scenarios are predominately focused on the reconstruction of the seafloor with various
additional 3D structures, the scene can not be properly viewed from all angles. Such scenarios
force the Poisson method to define false surfaces in areas lacking needed information. These areas
can be subsequently eliminated by removing triangles with edges longer than a certain threshold
(triangles increase in size in non-sampled parts) [76]. The resulting model is presented in Figure 11.

Figure 11. Example of surface reconstruction.

3.7. Surface Texturing

In the final step of our reconstruction pipeline, the goal is to obtain a photo-realistic 3D model
of the observed scene. A consistent texture for the reconstructed surface mesh can be retrieved by
mapping high-quality textures from the input images.

Generating a globally consistent and seamless texture is challenging due to changes in the
acquisition conditions (e.g., changes in illumination, light attenuation, white-balancing, presence
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of unreconstructed occluding objects (particles in the water)), varying image scales (e.g., close-ups,
distant overview images), as well as unavoidable imperfections in the reconstructed geometry) [77].
As multiple images observe each surface element, their information can either be fused using blending
techniques or the information from a selected image can be used. In blending, due to the inaccuracies
in the camera poses, slight inaccuracies in the reconstruction and different attenuation of the light
depending on the camera poses, can lead to ghosting and blurring of details in the final texture.
Alternatively, by selecting the most appropriate image for each texel, seams between regions mapped
from different images can be made clearly visible [78].

In our pipeline, we use the work of Waechter et al. [77], which performs the mapping of textures
from multiple registered images in two steps. First, for each surface face, a single image is selected
through a process of energy minimization, preferring close focused orthogonal views with high resolution
and similar adjacent patches. Additional photo-consistency checking is employed to detect and reject
any inconsistent views caused by unreconstructed occluding objects. Color discontinuities between
the patches are then adjusted in an attempt to minimize the visibility of the seams. Per-vertex-based
globally optimal luminance correction terms are computed using a weighted average of the vertex
color along all adjacent seam edges, and are used together with local Poisson image editing [79] to
generate the final coherent texture of the reconstructed scene.

An arbitrary user-defined view of the textured 3D model is presented in Figure 12.

Figure 12. Example of surface reconstruction.

4. Results

In order to evaluate and validate the presented approach, we selected a natural and unexplored
underwater scenario in which the Sparus II AUV had to autonomously navigate. The vehicle not
only successfully conducted multiple start-to-goal missions, but also gathered optical data that was
used to build a 3D reconstruction of the surroundings. The results demonstrate the capabilities of
our approach in natural real-world conditions, and validate our preliminary work conducted in a
simulated environment [26]. This section explains the vehicle setup and presents the results obtained
in one of the conducted missions.

4.1. Experimental Setup and Simulation Environment

Sparus II is the most recent AUV developed at the CIRS [80]. Rated for depths up to 200 m, the
torpedo-shaped robot has three thrusters (two horizontal and one vertical, see Figure 13a) and can be
actuated in surge, heave and yaw modes degrees of freedom (DOF), which endows it with hovering
capabilities. For estimating its position and orientation, the vehicle is equipped with a navigation
sensor suite that includes a pressure sensor, a doppler velocity log (DVL), an inertial measurement
unit (IMU) and a GPS to receive fixes while at surface. Furthermore, the vehicle has different perception
sensors that are located within the vehicle’s payload (front) area, including a mechanically scanning
pencil-beam sonar used online to create the surroundings map, and a set of three GoPro Hero 4 Black
edition cameras (GoPro, San Mateo, CA, United States) that gather the images required to create the

37



Sensors 2016, 16, 1174 17 of 27

3D environment’s reconstruction. The cameras are positioned systematically (see Figure 13) to ensure
the highest possible coverage, while still maintaining the ability to perform feature matching between
images taken from different perspectives. Two cameras were placed in a downward configuration at
an angle of 20 degrees while the third camera was positioned forward looking at 40 degrees.

(a) (b)

Figure 13. Sparus II AUV. (a) CAD model, where the three thrusters can be observed, as well as the
profiling sonar and cameras located in the payload area (yellow); (b) real-world vehicle’s payload.

Sparus II AUV is controlled through the component oriented layer-based architecture for
autonomy (COLA2) [81], which is completely integrated with the robot operating system (ROS).
Furthermore, COLA2 not only operates the real vehicle, but can also interact with the underwater
simulator (UWSim) [82], thus permitting the use of 3D environment models and simulation of the
vehicle’s sensors and dynamics. Before conducting real-world trials, we used UWSim with different
virtual scenarios in order to extensively simulate and test most of the vehicle’s functional modules,
including our path-planning pipeline. For this particular work, we designed two virtual scenarios:
one that resembles the breakwater structure mentioned in Section 2 (see Figures 3 and 4), and one that
includes an underwater canyon located between two rocks (see Figure 14). In both cases, the vehicle
succeeded in conducting start-to-goal missions without having a priori information on the environment.
Another important aspect to mention is that we make use of the open motion planning library (OMPL),
which is a general path-planning library that can be extended and adapted to different contexts and
problems [83].

(a) (b)

Figure 14. (a) Sparus II AUV conducting autonomous missions in a simulated environment (UWSim),
which resembles an underwater canyron created by a rocky formation; (b) The vehicle after traveled
successfully through the canyon. The map, generated online, can be observed in purple, while the
vehicle trajectory appears in green.

The following sections present an inspection mission conducted by the Sparus II AUV in a
real-world and natural environment. The results include not only the navigation map created online
from the profiling sonar data, but also the 3D reconstruction of the underwater surroundings.
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4.2. Online Mapping and Path Planning in Unexplored Natural Environments

In order to evaluate our approach, we tested its effectiveness in a challenging real-world natural
environment in Sant Feliu de Guíxols, Spain (see Figure 15). The testing area contains rocky formations
that create an underwater canyon. In order to inspect this environment, two different start-to-goal
queries were established by extracting GPS coordinates from Google Maps [84]. The first query
required the Sparus II AUV to traverse the canyon towards the shore. The second query goal was
chosen on the outside of the rocky formation in such a way that the vehicle had to circumnavigate the
outer rock. Furthermore, after completing the second query, the first query was executed again until
the vehicle overlapped its initial trajectory in the canyon, in order to close the imaging acquisition loop
and thus improve the reconstruction results. The profiling sonar of the AUV only covers the horizontal
plane, which restricts the safe motion of the vehicle to planes of constant depth. For this reason, the
navigation was set at a constant depth of 3 m for both queries.

Figure 15. The test scenario that consists of rocky formations that create an underwater canyon.

Figure 16 depicts the results of the inspection mission, where the AUV not only created a map
of a complex and unknown environment, but also planned a collision-free path, simultaneously and
incrementally. The map and the vehicle’s trajectory are shown overlapping a satellite image. In the
initial part of the mission, i.e., when the vehicle traverses the canyon for the first time, the map
coincides with the satellite image (see Figure 16b); however, disparities can be clearly observed after
some time (see Figure 16c,d). Such differences are due to the accumulation of errors in the dead
reckoning system (position and orientation estimation) that depends on the DVL, which may provide
incorrect data when navigating over rocks, as occurred in this test scenario. Despite this situation,
the vehicle succeeded in conducting the mission because both the map and the path are created
online, which permits correcting or adjusting them even when moving in previously visited areas
(see Figure 16d when accessing the canyon for a second time).

4.3. 3D Reconstruction

During the autonomous inspection mission, each of the three cameras captured 725 seconds of
video, comprising a total of 21, 750 frames. The imagery was acquired in 2.7 K HD 4:3 video mode with
a resolution of 2704× 2028 pixels. In order to test our pipeline, we used the complete set of frames
as input. Using the keyframe selection method described in Section 3.1, we automatically identified 264,
376, and 316 representative frames from the left, right and forward looking camera, respectively.

The visibility varied between different sections of the mission from ∼4.5 m inside the canyon to
∼3 m on the most exposed outer part. These conditions, combined with the different viewing angles of
the cameras, caused the acquired images to have low contrast and different appearances depending on
the cameras, with predominant blue and green tones (see Figure 17a–c). This was especially noticeable
in the last part of the mission, where the AUV pulled away from the rocky formation. For this reason,
the images were color corrected and contrast enhanced, to unify the appearance and improve the
feature detection and matching (see Figure 17d–f).
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(a) (b)

(c) (d)

Figure 16. (a) the test scenario consists of rocky formations that create an underwater canyon; (b) Sparus
II AUV conducting the first part of the inspection mission that requires traversing the canyon; (c) during
the second part of the mission, the vehicle circumnavigates one of the rocks on its way back to the
initial position; (d) the AUV partially repeats the first start-to-goal query in order to close the loop and
obtain overlapped images.

(a) (b) (c)

(d) (e) (f)

Figure 17. (a–c) images captured by forward, left and right camera respectively; (d–f) images after
color correction and contrast enhancement.
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The reconstruction was obtained using the series of sequential steps explained in Section 3, each
producing an intermediate representation, e.g., sparse/dense point clouds and 3D triangle mesh
(see Figures 9–11), as well as the final photo-realistic 3D model depicted in Figure 18a, presented in a
standard top-down view. The recovered 3D model also enables us to generate arbitrary user-defined
views (see Figures 18b,c and 19b, and also supplementary material Video S1 to observe the complete
reconstruction). Since the reconstruction is performed exclusively from image information, the areas
which were not properly imaged (such as crevices, or areas occluded by other rocks along the robot
path) can not be reconstructed. Similarly, the bottom of the canyon was not properly observed on the
images due to the poor visibility conditions, thus preventing its reconstruction in high detail.

While a 3D reconstruction could be achieved with a single camera, each of the cameras used
in our mission contributed an important part of the final result. This can be seen in Figure 19a
where the reconstruction is color coded with respect to the different combinations of cameras used for
different areas. It is not surprising that the largest area is reconstructed using the images captured by the
right camera, as this camera was within the visibility range of the rocky formations. This was not true
for the remaining cameras, as the visibility conditions on several occasions prevented the observation of
any distant objects. While the majority of the reconstruction is done using the combination of one or two
cameras (either due to the visibility conditions, or small overlap between downward oriented cameras),
we can see that the area in which the texture is especially rich (enlarged area in Figure 19b), many points
have been reconstructed from different combinations of cameras (see Figure 19c). When features
detected are sufficiently dominant, they can be successfully matched across various views from
different cameras.

(a)

(b) (c)

Figure 18. (a) top-down view of the textured 3D model with marked areas additionally depicted
(magenta–Figure 18b, orange–Figure 18b and blue–Figure 19b); (b) generated view inside the
underwater canyon; (c) generated view of the external side of the underwater rocky formation.
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(a)

(b) (c)

Figure 19. (a) color coded 3D reconstruction based on the cameras used in specific areas in
top-down view; (b) generated view of a marked area in blue in Figure 19a using textured 3D model;
(c) color coded view of the same view as Figure 19b.

Since the cameras are not connected or synchronized with the AUV, additional information from
other sensors cannot be directly imposed in the reconstruction process. As a consequence, the problem
solved by the SfM does not allow determination of the real scale of the reconstruction. In order
to compare the vehicles and cameras trajectory estimated during the SfM, we manually estimated
the scale of the reconstruction. Despite this, Figure 20 presents a visual comparison between them
(green for the vehicle and red for the cameras). While both trajectories have a similar shape, it can
be clearly observed how the one derived from the cameras is more realistic according to the rock
observed in the surface (the rocky formation does not create a vertical wall, which means that the
vehicle may have moved further from the visible part of the rock when navigating at 3 m deep),
while the one estimated by the AUV’s dead reckoning system seems to be colliding with the rock.
This latter situation, as explained the previous section, is mainly due to the accumulation of errors in
the navigation system.

A final and important observation in Figure 20 is the loss of visibility in the last part of
the mission. Even though the path-planning pipeline attempts to guarantee the visibility of the
inspected structure, the second query goal guided the vehicle towards the coordinate system origin
(see Figure 16c), which clearly moved the vehicle away from the structure. However, even though
such (visibility) discontinuity can be appreciated in the cameras’ trajectory, it can also be observed
how the reconstruction pipeline was able to properly match the subsequent images once the vehicle
approached the canyon during the second travel. While in this particular case this prevented us from
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successfully enforcing the loop closure, it does, however, demonstrate the pipeline’s ability if the
visibility conditions are met.

Figure 20. Vehicle’s trayectory (green) calculated by its dead reckoning system and the camera’s
trajectory (red) estimated by the SfM, both overlapping a satellite image of the test scenario.

5. Conclusions

In this paper, we have presented a new end-to-end approach for autonomously mapping unknown
underwater natural environments using AUV. To do so, we proposed a framework composed of two
main functional pipelines. The first provides the AUV with the capability for creating an acoustic
map online, while simultaneously planning collision-free paths. Such functionality is essential for safe
navigation in unknown and potentially dangerous areas, and to maintain very short distance to the
areas being imaged, as required by optical mapping underwater. Using the gathered image data, the
second pipeline builds a photo-realistic 3D model, which can be used as base maps for environmental
inspection and subsequent monitoring.

In recent previous work, both pipelines were independently tested in simulated and real-world
non-natural (structured) environments. In order to thoroughly validate our approach, this paper
presented results obtained in a challenging real-world natural scenario, in which the Sparus II AUV
conducted several autonomous missions. The test scenario, containing an underwater canyon between
two rocky formations, permitted us to demonstrate the extent of the capabilities of our approach.
By successfully navigating through the natural environment, the AUV was able to acquire data
subsequently used in the reconstruction of a complex textured 3D model of the area.

Our next effort will focus on using different perception modalities (such as multibeam sonar)
to create online acoustic 3D maps, thus enabling missions at different depths. This will permit the
path-planning pipeline to attempt maintaining the visibility not only with the inspected structure
but also with the sea bottom if desired. Consequently, these kind of missions will allow for better
exploitation of the reconstruction pipeline capabilities for representing complex 3D environments.

Supplementary Materials: The following are available online at https://www.youtube.com/watch?v=
ide5gj6V0GM&feature=youtu.be. Video S1: 3D reconstruction created using optical data acquired by an SPARUS
II AUV during an autonomous mission in an unknown environment as presented in the paper.
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Abbreviations

The following abbreviations are used in this manuscript:

C-Space configuration space
RRT rapidly-exploring random tree
RRT* asymptotic optimal RRT
1D 1-dimensional
2D 2-dimensional
3D 3-dimensional
OMPL open motion planning library
DFS depth-first search
DOF degrees of freedom
ROS robot operating system
UUV unmanned underwater vehicle
ROV remotely operated vehicle
AUV autonomous underwater vehicle
DVL Doppler velocity log
IMU inertial measurement unit
CIRS underwater vision and robotics research center
COLA2 component oriented layer-based architecture for autonomy
UWSim underwater simulator
SIFT scale-invariant feature transform
SfM structure from motion
DOG difference of Gaussians
RANSAC random sample consensus
AC-RANSAC a contrario-RANSAC
GPU graphics processing unit
CAD computer-aided design
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In this chapter we address the the problem of accurate scaling of 3D models created with images
from monocular cameras in GPS-denied environments, such as in underwater applications. We

propose two novel methods for scaling SfM-based 3D models using commonly available laser scalers.
The first is a completely unrestricted method that allows the use of any laser setup, while the second
method reduces the required knowledge of the setup’s geometry by assuming the laser parallelism
and equidistance of the laser origin to the camera. Together the methods encompass the majority
of laser scaler configurations. The methods are extensively evaluated using data generated from a
realistic 3D model as well as data collected during an oceanographic cruise in 2017.
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A B S T R A C T

Improvements in structure-from-motion techniques are enabling many scientific fields to benefit from the
routine creation of detailed 3D models. However, for a large number of applications, only a single camera is
available for the image acquisition, due to cost or space constraints in the survey platforms. Monocular structure-
from-motion raises the issue of properly estimating the scale of the 3D models, in order to later use those models
for metrology. The scale can be determined from the presence of visible objects of known dimensions, or from
information on the magnitude of the camera motion provided by other sensors, such as GPS.

This paper addresses the problem of accurately scaling 3D models created from monocular cameras in GPS-
denied environments, such as in underwater applications. Motivated by the common availability of underwater
laser scalers, we present two novel approaches which are suitable for different laser scaler configurations. A fully
unconstrained method enables the use of arbitrary laser setups, while a partially constrained method reduces the
need for calibration by only assuming parallelism on the laser beams and equidistance with the camera. The
proposed methods have several advantages with respect to existing methods. By using the known geometry of
the scene represented by the 3D model, along with some parameters of the laser scaler geometry, the need for
laser alignment with the optical axis of the camera is eliminated. Furthermore, the extremely error-prone manual
identification of image points on the 3D model, currently required in image-scaling methods, is dispensed with.

The performance of the methods and their applicability was evaluated both on data generated from a realistic
3D model and on data collected during an oceanographic cruise in 2017. Three separate laser configurations
have been tested, encompassing nearly all possible laser setups, to evaluate the effects of terrain roughness,
noise, camera perspective angle and camera-scene distance on the final estimates of scale. In the real scenario,
the computation of 6 independent model scale estimates using our fully unconstrained approach, produced
values with a standard deviation of 0.3%. By comparing the values to the only other possible method currently
usable for this dataset, we showed that the consistency of scales obtained for individual lasers is much higher for
our approach (0.6% compared to 4%).

1. Introduction

In increasing number of remote sensing applications photo-
grammetry is used to obtain reliable geometric information about the
environment. These optical-based reconstruction procedures, generally
based on the Structure from Motion (SfM) approach, have gained sig-
nificant popularity due to multiple factors. The improvements in both

speed and robustness of many image processing techniques (Snavely
et al., 2008; Remondino et al., 2008; Agarwal et al., 2009; Triggs et al.,
1999) together with the increased computational capabilities of com-
monly available processing hardware, enable nowadays nearly black-
box type of data processing, where there is little to no need for user
intervention. The abundance of low cost cameras that can easily be
mounted on a variety of vehicles, or used hand-held, has further
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spearheaded the widespread application of these techniques in a variety
of fields (e.g., Wallace et al., 2016; Javernick et al., 2014; Anderson and
Gaston, 2013).

Concurrently, the field of underwater photogrammetry has also
grown considerably with the availability of underwater vehicles.
Whereas traditional aerial and terrestrial vehicles are increasingly
equipped with single or multi-camera set-ups (e.g., stereo cameras,
multi-camera systems), most underwater remotely operated vehicles
(ROVs) and autonomous underwater vehicles (AUVs) that are nowa-
days used in scientific missions (e.g., VICTOR 6000 from IFREMER
depicted in Fig. 1) have limited optical sensing capabilities. Common
optical systems consist of a single main camera used by the ROV-pilot
or, in the case of the larger workclass ROVs, also of additional cameras
for maneuvering. As these are typically unsynchronized and have non-
overlapping fields-of-view, they are not suited for stereo image pro-
cessing. While multi-camera underwater metrology systems are starting
to appear as commercially available products and services (Rovco,
2019; Comex, 2019), such systems are still too large and expensive for
most ROV science applications. Nonetheless, the ability to produce
accurate 3-dimensional (3D) models from monocular cameras despite
the unfavorable properties of the water medium (i.e., light attenuation
and scattering, among other effects) has given scientists unprecedented
access to the underwater environment and its ecosystems, from shallow
waters (Pizarro et al., 2017; Storlazzi et al., 2016; Rossi et al., 2019) to
the deep ocean (Bingham et al., 2010; Escartín et al., 2016; Bodenmann
et al., 2017).

Performing SfM based reconstruction using single camera imagery
has an important limitation as it precludes obtaining a metric scale of
the resulting model. The image formation process of projecting the 3D
world onto 2-dimensional (2D) image planes obviously causes the loss
of a dimension. When performing the reconstruction, this results in
scale ambiguity, i.e. the estimated parameters of 3D structure and
camera trajectory can be multiplied by an arbitrary factor and still give
rise to the same image observations (Lourakis and Zabulis, 2013;
Hartley and Zisserman, 2003). This also precludes or at least limits the
possibility of conducting quantitative measurements based on geo-
metric parameters (e.g., distances, areas, volumes, etc.) obtained from
the models. To resolve the ambiguity, a general trend in aerial and
terrestrial problems is to fuse the image measurements with other
sensors (e.g., inertial navigation system (INS) (Spaenlehauer et al.,
2017; Zhang and Singh, 2015) and Global Navigation Satellite System
(GNSS) (SSoloviev and Venableoloviev and Venable, 2010; Mian et al.,
2016)) or using ground control points (GCPs) (Eltner and Schneider,
2015; Mertes et al., 2017). These control points are extremely hard, if
not impossible, to establish underwater, while the absorption of

electromagnetic waves in water prevents the use of GPS. Hence the
scale is normally disambiguated either using INS (Sedlazeck et al.,
2009; Pizarro et al., 2009; Campos et al., 2016) or through the in-
troduction of known distances between points in the scene (Garcia
et al., 2011). It is worth noting that reliable displacement information
may not be available in smaller ROVs, since this normally requires a
dedicated INS complemented with a Doppler Velocity Log (DVL) (Ribas
et al., 2011) and there are rarely any known measurements readily
available in real underwater scenarios. The scale is therefore often
determined by placing objects with known dimensions (e.g., scaling
cube (Cocito et al., 2003), locknuts (Kalacska et al., 2018), graduated
bars (Neyer et al., 2018), etc.) into the scene. While such an approach
does not require any additional equipment (with the exception of
auxiliary objects), it does however involve their transport and place-
ment, which can be challenging in deep-sea environments.

Alternatively, the distance between known points on the model can
also be established from the projections of laser beams with known
geometry (Robert et al., 2017; Bergmann et al., 2011; Tusting and
Davis, 1992). The use of laser scalers to provide an absolute size re-
ference in photographs is one of their most widespread applications
(Tusting and Davis, 1992, 1993). Their initial use dates back to the late
1980s (Tusting and Davis, 1986; Caimi and Tusting, 1987). To com-
pensate for the lack of knowledge about the scene and camera-scene
distance, these methods require a perfect alignment of parallel lasers
with the camera, planarity of the scene surface and perpendicularity
between the camera and the scene. Comparing the spacing between two
laser spots on the image and the known beam spacing, any measure-
ment in the plane of the lasers, regardless of the camera-to-scene range,
should be correctly estimated.

Seen as the most restrictive requirement, the necessity of perpen-
dicularity between the optical axis of the camera and the plane of the
scene has been addressed in various approaches with the introduction
of additional lasers and sensors. Wakefield and Genin (1987) first in-
troduced the idea of perspective grids to enable oblique camera views.
Although being an improvement, the method imposed additional con-
straints on the camera-scene distance (altitude) and fixed inclination
angle. To provide additional information about the camera-scene re-
lationship, more lasers have also been added to the systems. A config-
uration consisting of three lasers, two aligned with the optical axis of
the camera and a third laser oriented at an angle, has been described by
Davis and Tusting (1991). It enables the estimation of range and size of
objects from direct scaling of the position of the light spots on the
image. An underwater photogrammetric system using several sensors to
provide precision navigation for benthic surveys is described in Kocak
et al. (2002, 2004). One of them, the ring laser gyroscope, made for
measuring pitch/roll motions is integrated into a custom software
package which establishes the scale reference from the projections of
the three beam laser system. To enable the measurement of distance
between any two points on the image, Pilgrim et al. (2000) presented a
multi-laser approach. It gains information about the camera’s inclina-
tion angle and distance to the scene by using four parallel lasers posi-
tioned equidistant from the camera center together with either a fifth
laser set at an angle parallel to the bottom or a side pair, similar to the
three-beam approach. The method works under the assumption of scene
flatness and the restraint of the camera in either pan or tilt planes with
respect to the sea bottom. A more versatile method capable of de-
termining an arbitrary tilt of a surface was presented by Davis and
Tusting (1991) which requires four parallel lasers aligned with the
optical axis of the camera.

Due to the lack of a better approach, image-scaling methods are still
commonly used for scaling 3D models, and therefore require not only
that the image containing the projections of lasers be acquired in flat
areas of the scene, but also complex laser alignment with the optical
axis of the camera. In real scientific cruises these strict rigidity con-
straints can be nearly impossible to maintain, due to the frequent need
to mount and dismount equipment, especially when the camera is not

Fig. 1. ROV VICTOR 6000 (IFREMER), used among other, in the SUBSAINTES
2017 cruise (doi:10.17600/17001000).
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rigidly attached to the laser scalers. As obtaining accurate geometrical
information would entail repetitive calibration procedures, it sig-
nificantly limits its usability. Furthermore, given that the image-scaling
techniques only provide the estimated distance between points on an
image, this information is not directly related to the model itself. In
order to scale any model, a separate identification of these laser points
has to be carried out on the model itself. As the identification of image
points on the model is done manually, it is extremely error-prone and
time consuming.

The main goal of this paper is to present two novel automated ap-
proaches to solve the scaling problem for SfM based 3D models, using
commonly available laser scalers. The image information is exploited
beyond the automatic location of laser spots, compensating for the
known geometry of the laser scalers. The need for laser alignment with
the optical axis, scene geometry or camera position are thus abolished
together with the error-prone manual identification of 3D points on the
model.

Each of the two proposed methods (i.e., fully unconstrained and
partially constrained) is suitable for a different laser scaler configura-
tion. While the fully unconstrained approach enables an arbitrary laser
setup, the required rigidity between the lasers and the camera can be
extremely limiting in real scenarios. To overcome this, we also present
an alternative approach in which the required relation of the lasers to
the camera is significantly relaxed at the cost of requiring the lasers to
be parallel among themselves (but not necessarily with the optical
axis). As the fully unconstrained method utilizes a fully-determined
laser geometry, it is able to estimate the scale using a single laser, while
the partial method requires a laser pair. Any additional laser mea-
surements are used to further reduce the potential effect of noisy laser
spot detections. These methods are considered universal, as they can be
applied to standard imagery acquisitions, and are not linked to data
acquired with specific sensors or hardware (e.g., stereo cameras).
Hence, it is possible to process legacy data from previous missions ac-
quired using different vehicles and imaging systems. However, as the
novel methods require a description of a scene in a form of a 3D model,
they cannot be utilized on moving objects (e.g., fish, benthonic species,
soft corals, etc.) or in highly dynamic environments.

The results of our methods are validated using a 3D model con-
structed using real underwater data and comparing them to the results
which would have been obtained using an image-scaling method sup-
porting an arbitrary tilt of the surface (Davis and Tusting, 1991). The
effects of noise, camera perspective angle and camera-scene distance on
our process and final estimates of scale are further analyzed. Finally,
the results of using our method to scale a model reconstructed from
data acquired during the SUBSAINTES 2017 cruise (doi:10.17600/
17001000) (Escartín et al., 2017) are presented.

2. Scaling of SfM-based 3D models

Optical-based 3D models are produced using a set of images through
a sequential series of steps. A sparse set of 3D points representing the
general 3D geometry of the scene can be obtained by exploiting mul-
tiple projections of the same 3D point in overlapping images through
the equations of projective geometry (Hartley and Zisserman, 2003). By
extracting salient features and matching them across the image set, the
3D locations of these points (the structure) are estimated together with
the camera parameters (the motion) through a technique called Struc-
ture from Motion (SfM). An accurate and highly detailed description of
the scene is subsequently obtained through a multi-view stereo densi-
fication process followed by an estimation of a surface from the noisy
point cloud. The final photo-realistic 3D model representation is
achieved by finding a consistent high-quality texture through seam-
lessly mapping input images to a high-resolution triangle representation
of the surface. If the imagery used in the process was acquired using one
or more unsynchronized cameras, and no other auxiliary data is used, it
is impossible to determine the correct scale of the model. Such a result
can be visually pleasing but cannot be used for further scientific pur-
poses where knowledge of the distances, areas and volumes is required.
Therefore, a scale estimation step is vital in the reconstruction for sci-
entific purposes.

Nowadays, the most common uses of laser scalers are based on the
image-scaling multi-laser approaches introduced by Pilgrim et al.
(2000) and Davis and Tusting (1991). The requirements associated with
these methods, i.e. laser alignment with the optical axis and manual
identification of the image points on the 3D models, while originally
reasonable, are becoming constricting in an increasing number of si-
tuations in which data for photogrammetry can be collected.

In this section, we present two novel methods for scale estimation,
namely the fully unconstrained method (FUM) and the partially con-
strained method (PCM), suitable for different laser-scaler configurations
and scenarios. Both methods, based on computer vision techniques of
image localization and ray casting, exploit the information acquired
with an optical image in which the intersection of laser beams with the
scene (laser spots) are visible. Both methods consist of three main steps,
as depicted in Fig. 2. The two initial steps are identical in both methods.
First, a laser detection method is required to determine the locations of
laser spots on an image. Secondly, the pose of the camera (wrt. the 3D
model), at the moment at which the image was acquired, is estimated
through a feature-based localization process. These estimations are
used in the third step, which differs between the two methods and
depends on available laser configuration information. The scale of the
model is finally computed after determining the 3D position of laser
beams intersecting with the scene.

It is worth noting that our approaches are independent of the
method used for detecting laser spots on the image. Laser spots can be
selected either manually, through a simple method (e.g., color

Fig. 2. Flowchart of the scale estimation process depicting three crucial steps in scale estimation: laser spot detection, pose estimation, and scale estimation.
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thresholding) or even with a more complex approach such as machine
learning (Rzhanov et al., 2005; Schoening et al., 2015).

2.1. Measuring device

The measuring setup required consists of two devices commonly
used in underwater surveying using ROVs and AUVs: A laser scaler,
which can contain a variable number of lasers, and a monocular optical
camera. If the laser geometry (origins OL and directions vL) with respect
to the optical axis of the camera are known, the setup is considered fully
calibrated (Fig. 3a). The origins are defined as points on a plane ,
which is perpendicular to the optical axis of the camera and contains
the optical center, while the directions are unit vectors expressed wrt.
the camera’s optical axis.

Depending on the circumstances (e.g., multiple dives involving
mounting and dismounting of equipment with associated misalign-
ments), the strict rigidity constraints between the lasers and the camera
are very difficult to maintain, especially if the camera and the laser
scaler are not rigidly coupled. As any change would thus entail a new
calibration procedure, which may not be feasible in certain situations,
we also present an alternative approach, in which laser pairs have to be
parallel, along with the sole condition that the camera be equidistant to
their origins (Fig. 3b). As there is no requirement of parallelism be-
tween the laser beams and the optical axis of the camera, this partially
constrained approach permits alterations in the orientation between the
camera and laser scaler, making it more suitable for scenarios with
multiple mounting and dismounting operations, or situations in which
an accurate calibration procedure is not possible or unavailable. These
relaxed constraints render the system more usable in practice.

2.2. Pose estimation

The scale estimation process requires the knowledge of the camera
pose =P R R t SE[ ] (3)T T defined as the projection from the world
to the camera frame at the moment the image was taken. As these
images contain laser spots, they do not reflect the real appearance of the
environment and are, as such, considered undesirable in the 3D re-
construction process, specially in the densification and texture mapping
steps. To estimate the poses, images can potentially still be included in
the SfM step (and excluded from rest) or, alternatively, the pose can be
computed through a separate feature-based image localization method
presented here.

Salient 2D features extracted from the image, are matched with a
full set of features associated with the model’s sparse set of 3D points.
Feature detection and matching procedures can be adjusted for each
specific dataset, and do not influence the scale estimation process, as
long as it is possible to produce successful pairs of 3D-2D observations
( = X x{ , }k j ). Such matches are then exploited to obtain an initial es-
timate of camera extrinsic parameters P (and possible camera intrinsics
K ). In cases in which the camera has been calibrated, the solution is

obtained by solving a minimal case ( =n 3) of the Perspectiven-Point
(PnP) problem (Ke and Roumeliotis, 2017), while alternatively a Direct
Linear Transform (DLT) (Hartley and Zisserman, 2003) algorithm can
be used. As feature observations are noisy and might contain outliers,
the process must be carried out in conjunction with a robust estimation
method A Contrario Ransac (AC-RANSAC) (Moisan et al., 2012). Initial
parameter values are subsequently refined through a non-linear opti-
mization. Using Bundle Adjustment (BA) the re-projection error of
known (and fixed) 3D points and their 2D observation is minimized:

K Px Xmin proj( , , ) .
P K

j k
,

2

(1)

2.3. Scale estimation

The scale of a 3D model is obtained as the ratio between a known
quantity m and its model based estimate m:

=s m
m

. (2)

Using the location of recorded and detected laser spots xL and
previously estimated parameters of the camera K P{ , }, it is possible to
predict the geometry of the laser scaler which produced the recorded
results. Given that the prediction is based on the 3D model, it is directly
affected by the scale of the model and can therefore be used to de-
termine it. Depending on the availability of information about the
geometry of the lasers and the camera, we can either use the distance
between the laser origins and camera’s optical center (FUM) or the
perpendicular distance between the two parallel beams (PCM).

2.3.1. Fully unconstrained method
When the complete laser geometry (origins OL and directions vL) are

known, the position from where the lasers must be emitted OL in order
to produce the observed result can be determined regardless of poten-
tial non-parallelism between the lasers (Fig. 4). The position of origin of
each laser can be estimated independently by exploiting the known
direction of the laser beam and the determined position of the laser
beam intersection with the scene XL. As this point is seen on the image,
the actual 3D point XL had to be in the line-of-sight of the camera and
can therefore be deduced using a ray casting procedure. The location is
computed by finding the first surface of the 3D model which is inter-
sected by a ray originating in the camera center and passing through
the location of the detected laser spot on the image. Subsequently, to
obtain the location of the origin, the point XL expressed in the camera
frame is back-projected according to a known direction of the beam vL
onto the plane (Eq. (3)). Once known, the scale can be determined by
comparing the displacement =m OL L with its a priori known value
mL.

Fig. 3. (a) Fully- and (b) partially-calibrated setups of the measuring device
(optical camera and separate lasers) with the required information marked in
red. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. Scale estimation procedure using the fully unconstrained approach,
based on the 3D model and optical image depicting the laser beam projection of
the laser intersection with the scene. The displacement of the predicted laser
origin mL, obtained by projecting the 3D point XL onto the plane according to
the known direction of the laser beam vL, is compared to its known value mL.
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where cz represents the optical axis of the camera.
Fig. 5 depicts the effect different scaling factors (affecting the 3D

model) have on the displacement of the predicted laser origin (re-
presented as cross on plane ). Due to the scale ambiguity, all varia-
tions of the model (light gray dotted line), are valid solutions of the 3D
reconstruction process. As shown, only the laser intersection point
(blue) obtained using the model with the true scale (dark gray dotted
line) produces the correct prediction of the laser origin on the plane
(green cross) by using known directions of the laser beams.

2.3.2. Partially constrained method
While fully unconstrained method enables the use of an arbitrary

laser setup, the required rigidity between the lasers and the camera can
be extremely limiting in certain real scenarios. To alleviate this, we
present an alternative approach, in which the required relation between
the camera and the lasers is significantly less rigid. This approach only
requires the two lasers to be parallel and equidistant from the camera.
As opposed to the existing image-scaling methods, the lasers do not
have to be aligned with the optical axis of the camera. The scale of the
model is therefore estimated by comparing a known perpendicular
distance between the two parallel beams to the one estimated from the
image and the model dL (Fig. 6). To overcome the fact that the direction
of the parallel beams wrt. the camera is not known, we exploit the
knowledge that the lasers are equidistant to the camera and approx-
imate the direction with the direction of the vector connecting the
camera center and the midpoint between the two points of laser beam
intersections with the model XL1 and XL2. Since it is reasonable to expect
the camera-scene distance to be significantly greater than its difference
measured at the two points, this approximation leads to a negligible
error. Similarly to the FUM, the location of laser beam intersections
with the scene XL1 and XL2 are determined through a ray casting pro-
cedure and are affected by the same scale as the model and therefore

affect the final estimated distance dL by the same factor:

=
v v

v v
cos

·
,1,2 CM

1,2 CM (4)

=d vsin · ,L 1,2 (5)

where v1,2 represents the vector between scene points XL1 and XL2 and
vCM the vector connecting camera center with the middle point XM .

2.4. Camera – laser calibration

Depending on the method used for estimating the scale, several
parameters describing the geometric arrangement between the camera
and the laser scaler need to be estimated. To obtain a fully calibrated
system, both origins and orientations of the laser beams with respect to
the optical camera have to be known. Normally, the calibration pro-
cedure consists of the acquisition of images with clearly visible laser-
surface intersections for which the distances between the camera and
surface are known or can be easily computed (e.g., using a checker-
board pattern). A set of points lying on the laser beam is thus obtained
by expressing the 3D positions of these intersections in the camera
coordinate system. Given that the spread of distances at which the data
is collected is sufficient, the direction of the laser beam can be con-
fidently estimated through a line fitting procedure minimizing the sum
of squared perpendicular distances between the 3D points and the laser
beam line. To avoid any potentially erroneous 3D points affecting the
final calibration, a robust estimation method such as RANSAC can be
utilized. Finally, the origin of the laser is determined by computing the
intersection between the now estimated direction of the laser beam and
plane . It is important to note that, in underwater scenarios, sig-
nificant refraction can occur at the air-acrylic-water interface of the
laser housing. This effect has to be considered in the calibration pro-
cedure, either mathematically or by performing the data acquisition
underwater.

Alternatively, the partially constrained method requires the
knowledge of the distance between the parallel pair of lasers and that
the camera center is equidistant to the laser origins (without the need
for the knowledge of its value). For most cases, commercially available
laser scalers have laser beams that are adequately parallel. On the
contrary, ensuring that the camera center is equidistant to the beams is
more challenging, unless one is using a purposely designed mounting
bracket for the camera/laser system. Having this in mind, it is im-
portant to be aware of a potential error in the accuracy of the scale
estimation caused by not having the camera equidistant to the laser
origins.

The direct consequence of such error is the inaccuracy induced in
the estimation of the vector vCM used for approximating the direction of
the parallel lasers. Given that the magnitude of the misalignment error
will always be disproportionately small compared to the camera-scene
distance (mm/cm vs. m), the effect on the estimated direction and
subsequently on the final scale estimation will be negligible small as
seen in Fig. 7. The analysis of the induced error due to the camera
center misalignment up to 5 cm showed that the error increases with

Fig. 5. The effect of scale ambiguity on a 3D reconstruction and its projection
on images. The structure and motion can be multiplied by an arbitrary factor
(incorrect – light gray, correct – black) and still produce projections in the same
positions on the images. The error in scale can be determined by comparing the
predicted locations of the laser origin (incorrect – red, correct – green cross).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Scale estimation procedure using the partially constrained method,
based on the 3D model and optical image depicting the laser beam projections
of the laser intersections with the scene. The direction of the parallel laser
beams (wrt. the camera) is approximated with the vector vCM and used to
compute the perpendicular distance between the predicted laser beams origi-
nating at the point of laser intersenctions with the scene (XL1 and XL2).

Fig. 7. Error in the estimation of scale using partially constrained method due
to the misalignment of camera center with the laser pair.
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decreased camera-scene distance as well as the error is small (less than
0.15% in the worst case). To ensure the error is in fact due to the mis-
alignment, the camera was positioned parallel to a flat surface.

3. Results

To assess the applicability and theoretical accuracy of the two
proposed approaches (PCM and FUM), tests were performed on both
real and simulated scenario datasets. To validate the performance using
different laser configurations and acquisition conditions, we have used
a real 3D model built using underwater imagery, as depicted in Fig. 8.
Various laser measurements were generated as they would have been
captured during an ROV survey. As the absolute scale of the model is
not precisely known, for the purpose of this evaluation, it was assumed
that the model and its scale are correct. Therefore, the performance can
be evaluated by comparing the deviations of the estimated scales with
the assumed (imposed) correct value of the scale of the model ( =s 1).
This allowed us to confirm the correctness of our approaches, as well as
analyze the effects of various types and levels of noise have on the
estimation.

Given our goal of developing methods usable in real world sce-
narios, three distinct laser configurations were devised (Fig. 9)) to test
the performance:

(A) Lasers are parallel and aligned with the optical axis of the camera;
(B) Lasers are parallel and positioned equidistant from the camera

center, but not aligned with the optical axis;
(C) Lasers have arbitrary positions and directions.

To illustrate the advantages of our proposed methods in comparison
to commonly used image-scaling approaches, the approach by Davis
and Tusting (1991) was additionally evaluated, as one of the most
versatile methods. The procedure requires four parallel lasers aligned
with the optical axis of the camera as well as assuming scene flatness.
By exploiting the known spacing between the laser spots on the image
and the known displacement of laser origins from the optical center of
the camera, distances between various points on the image can be
computed for an arbitrary tilt and pan of the camera. As only laser
configuration A meets the requirements of their method, and other
configurations cause dramatic and unpredictable errors, we limit the
reporting of the results for Davis and Tusting’s approach to laser con-
figuration A. Another commonly used method presented by Pilgrim
et al. (2000) was not evaluated, as this method requires the restriction
of the pose of the camera in either pan or tilt with respect to the scene,
which can only be a reasonable restriction if the scene is flat (e.g., the
sea bottom), which is almost never the case in models reconstructed
using SfM.

3.1. Data

The generation of image and laser data as they would have been
recorded in real scenarios enabled us to simulate different perspective
angles and camera-scene distances, and analyze their effects on the
resulting estimations of scales. The measuring system consisted of an
ideal pinhole camera and laser scalers. Both the intrinsic parameters of
the camera and the refraction of the lasers occurring at the air-housing-
water interface were correctly modelled in the calibration. A real 3D
model depicted in Fig. 8 was used in this simulation. The 3D chimney
was reconstructed from 908 images of an underwater vent field at the
deep-sea Lucky Strike area, collected during the MOMARSAT 2015
cruise (doi:10.17600/15000200). The model covers an area of ap-
proximately 200 m2 with a height range of ~13 m. Assuming the 3D
model has a correct scale, we can compute the location of laser spots
and feature points as they would appear on the images taken from
different poses and according to the pre-determined laser configura-
tions. The number of feature points has been selected to reflect an
average number of successfully matched features per image in under-
water scenarios ( =n 1500). To mimic the various perspective angles of
the camera, we generate views for which the image plane is not only
perpendicular to the surface normal (at the point viewed by the prin-
cipal point of the camera), but also at a wide range of angles. In total
289 different views were created from different combinations of pitch
and roll angles deviating from between °40 and °40 in °5 steps
(Fig. 10). If not specified differently, the camera-scene distance (i.e.,
distance between the camera center and the point of interest on the
surface) has been kept constant at 3 m; based on our experience, this is a
reasonable assumption for a typical ROV survey of the scene in this type
of environments.

The lasers have been positioned according to the configurations
envisioned in different scenarios (Fig. 9). In configuration A, the lasers

Fig. 8. 3D model of an underwater hydrothermal vent (Eiffel Tower at Lucky
Strike vent field, Mid-Atlantic Ridge) used for model reconstruction evaluation
at two marked areas. Data acquired during the 2015 MOMARSAT cruise
(doi:10.17600/15000200).

Fig. 9. Various laser configurations used in evaluation: (A) Optical axis aligned
laser beams; (B) Pair-wise parallel laser pairs; (C) Lasers with arbitrary origins
and orientations. Blue lines represent the optical axis, and the remaining lines
depict lasers which are parallel among themselves. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. Definition of perspective angles and camera-scene distance used in the
generation of the evaluation data.
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have been positioned at an equidistance of 10 cm from the camera
center. For configuration B two pairs of lasers, with a 10 cm perpendi-
cular distance between the beams, have been used, positioned vertically
and horizontally. The pairs are perfectly parallel but not aligned with
the optical axis of the camera. Each of the pairs has been used in-
dependently to test the two most common scenarios, with laser scalers
positioned either below or at the side of the camera. As both produced
similar results we only present the results for the horizontal pair.

Finally, the configuration C reflects a real laser configuration used
during the 2017 SUBSAINTES cruise (doi:10. 17600/17001000)
(Escartín et al., 2017). The laser set-up in the ROV VICTOR (IFREMER)
used for image acquisition during this cruise was slightly misaligned,
while the laser origins are placed at an approximately equal distance of
16.5 cm with slight rotation around the z-axis of the camera.

3.2. Terrain roughness

We first compare the results of estimated scales on two different
types of terrain (smooth – Area A and rough – Area B) acquired from a
variety of perspective angles and laser configurations. Fig. 11 presents
the results obtained using laser configuration A and with our two
proposed methods (FUM and PCM) as well as with the Davis approach.

Comparing the errors among the methods, we notice that the Davis
and Tusting method is capable of estimating the correct scale only if the
flatness assumption is only slightly violated, i.e. the area is nearly flat
and the perspective angle is not too large (Fig. 11a). As that is not the
case on rough terrain (Fig. 11b), the estimated scale varies significantly
with different perspective angles, confirming the strong dependency of

this method on scene geometry. On the other hand, our two methods
correctly compensate for any changes in the viewing angle and terrain
roughness. The laser direction approximation assumed in PCM does,
however, cause a slight error – up to 1.5% in extreme cases (e.g., rough
terrain and large perspective angle – Fig. 11d), a situation in which the
camera-scene distance discrepancy between the two laser points is
strongly boosted. The fact that the scale is correctly estimated in all
cases, clearly shows the ability of the FUM to correctly compensate for
the effects of terrain roughness and perspective angle (Figs. 11e and
11f). Additionally, it is important to emphasize again that image-scaling
methods require an additional association between the image points
and the model in order to be able to estimate the scale. In our tests, we
assumed perfect association, which is nearly impossible to achieve as it
is a manual error-prone process. The actual results in real cases are
therefore expected to be even worse.

In scenarios in which the lasers are not perfectly aligned with the
camera (i.e., laser configurations B and C), the image-scaling methods
become unusable as the errors increase dramatically and unpredictably.
For this reason, we only present the results of our proposed methods
(FUM and PCM) for the remaining two configurations. Similarly, we
limit the presented results to the rough terrain, as the methods will
perform better (or equally) on flat areas.

As seen in Fig. 12a and c, both of our methods obtain good results
with a laser configuration B, in which the lasers are mounted parallel to
each other. As in the previous cases, the partial method exhibits slight
errors due to the assumed laser direction approximation. Analysis of
data collected using laser configuration C, shows that the partial
method fails, with results strongly affected by the irregularities in the
parallelism. Instead, the full method (Fig. 12d) correctly compensates
these irregularities and yields correct results.

3.3. Laser direction approximation

To illustrate the influence that a difference of camera-scene dis-
tances (measured at the two points hit by the laser beams) has on the
results of the partial method at various distances, we estimated the
scale using 10, 000 randomly-selected points across the model
(Fig. 13a). For each point, the camera has been positioned at a distance

Fig. 11. Estimated scales of the model at a smooth (area A) and rough area
(area B) with various perspective angles and constant camera-scene distance
( =d 3 m) using Davis and Tusting (1991), partially constrained (PCM) and fully
unconstrained method (FUM). Lasers were aligned with the optical axis (con-
figuration A).

Fig. 12. Estimated scales of the model at a rough area (area B) with various
perspective angles and constant camera-scene distance ( =d 3 m) using partially
constrained (PCM) and fully unconstrained method (FUM). Lasers were in
configuration B and C.
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d in the direction of the normal of the surface. Results obtained at three
distances (2 m, 3 m and 4 m), illustrated in Fig. 13b–d, show that the
error decreases with increasing distance of the camera (i.e., larger d).
This is especially visible in rougher areas, such as the top of the hy-
drothermal vent and the areas near previously mentioned area B. In
those areas, larger discrepancies between the camera-scene distances
measured at the detected laser spots are expected, as the probability of
laser beams hitting different parts of the model is much higher.
Therefore the result indicates that the increased camera-scene distance
decreases the effect of difference of distances on the accuracy of the
results. We also document the cumulative distribution functions of
these estimated scales obtained at various camera-scene distances
(Fig. 13e), from which it is noticeable that a higher percentage of points
with scales closer to the anticipated value of 1.0 is obtained the further
the camera is from the scene.

The relation between the average camera-scene distance and its
difference measured at the two points of laser beam-scene intersections
can be clearly observed in Fig. 14, which shows the estimated scale vs.
the difference of distances, with color coded average camera-scene
distance. As expected, the error in the estimation grows with the in-
crease in the distance discrepancies between the points. Furthermore,
we can see that the increase follows a parabola-shaped functions de-
termined by the camera-scene distance. Short distances define a narrow
parabola, and cause an increase in the error that is larger than that for
longer distances. This indicates that a distance discrepancy between the
two points of laser – scene intersections causes a greater error in the
result when the camera is near the scene. The shape and steepness of

the parabolas is dependent on the displacement of the lasers from the
camera origin, as well as their orientation with respect to the optical
axis of the camera.

3.4. Noise

As collected data is never noise-free, we performed an additional
analysis to evaluate the effects that the expected noise in feature and
laser spot detection have on the scale estimation process. The various
values for noise assumed in laser spot detection intend to represent the
dispersion and absorption of the laser beam in the water medium. The
greater the absorption and/or dispersion, the less certain the detection
of the laser positions will be. The experiment was performed on area B
of the model, with camera angles ranging from °15 to °15 in pitch and
roll; the range of view geometries which give consistent results in the
ideal scenario (Fig. 11). The observation distributions were modelled by
assuming multivariate Gaussian distributions with dimension-in-
dependent noise for both feature and laser spot detections. For 2D
features, the values were set matching those normally obtained in un-
derwater scenarios (Garcia and Gracias, 2011) = {0.5px, 1.0px}f , while
laser detection noise was defined by assuming 95% accuracy of peak
detection within one or two pixels = {0.25px, 0.5px}l . As feature
matches themselves are normally corrupted with a certain level of
outliers, we have also performed experiments with various inlier/out-
lier ratios (Campos et al., 2015) =r {0%, 10%, 20%}. Each of the tests
were repeated 500 times.

The resulting distributions of estimated scales with parallel and free
laser configurations (i.e., configurations B and C) are presented in
Table 1 with a subset of the results shown in Fig. 15. Given that the
FUM requires only a single laser to obtain a scale estimate, results from
separate lasers were fused by computing their average. The effect of
such averaging can be identified in Table 1, where the results for a
single laser (FUM – single) are shown side by side with the final aver-
aged result (FUM – all).

As expected, the uncertainty of estimated scales increases with the
increasing noisiness of the laser detections, as each estimation is di-
rectly influenced by displacements in laser spot positions. Comparison
of these results show that with noisy data the PCM method performs
better than the FUM with a single laser point, but worse when multiple
laser points are used instead. This occurs due to the averaging of in-
dependent scale estimates. As each laser produces a result that is

Fig. 13. (a) 10,000 random points used for estimating the scale across the
model; (b–d) Estimated model scales at various camera-scene distances with
laser configuration B using a partially constrained method; (e) Cummulative
probability distribution of estimated scales.

Fig. 14. Estimated model scale (using partially constrained method at 10,000
random points) with respect to the difference of the camera-scene distances
measured at the two points of laser beam intersection with the model color
coded by the average camera-scene distance per image. Narrower parabolas at
shorter distances indicate that the accuracy of the partially constrained method
is more affected by the difference of the camera-scene distances at the two laser
points than at longer distances.

K. Istenič, et al. ISPRS Journal of Photogrammetry and Remote Sensing 159 (2020) 13–25

20

57



independently affected by noise, the subsequent averaging reduces its
effect.

To some extent this can also be observed in the partial method with
the simultaneous use of two laser points, which explains the improved
results over the full method with the single laser. It is also clear that the
uncertainty of the scaling estimate also increases with the camera-scene
distance, which is expected as errors on the image are magnified when
projected further from the camera.

In contrast, the noise affecting the feature points used in the pose
estimation, does not significantly influence the final scaling results. This
is due to the use of BA in the pose optimization, which is a maximum
likelihood estimator when the image error is zero-mean and normally
distributed, as is the case in our tests. Similarly, the effects of outliers
are mitigated by the use of a robust estimation method AC-RANSAC

(Moisan et al., 2012). As the outliers do not follow a specific pattern,
the iterative procedure successfully identifies and removes spurious
matches, and hence the final estimate is unaffected. It is important to
note that while the results obtained might indicate a method which is
extremely robust to any discrepancy in the feature points, the approach
is still vulnerable to (a) outliers that obey the estimated geometric
model; to (b) the possibility of having a set of feature points which can
be explained with multiple camera poses, or to both (a) and (b).
However, this vulnerability can be reduced to a level that is not of
practical concern, by ensuring that the set of features is well spread
throughout the image.

3.5. Real scenario

The fully unconstrained method was used on a real dataset collected
during the SUBSAINTES cruise (doi: 10.17600/ 17001000).
Throughout the cruise, extensive seafloor imagery was collected using
the ROV VICTOR 6000 (IFREMER) (Michel et al., 2003) with a mounted
monocular camera (Sony FCB-H11 with corrective optics and dome
port), and a laser scaler with four laser beams positioned around the
camera (Fig. 16). The intrinsic parameters of the camera were de-
termined using a standard calibration procedure (Bouguet, 2008) as-
suming a pinhole model together with the 3rd degree radial distortion
model. Once calibrated, the camera parameters were kept constant
through the entire acquisition process.

One of the main goals of this cruise is to identify, map, and measure
indicators of displacement at the seafloor associated with a recent
submarine earthquake (Escartín et al., 2016) that occurred in the
French Antilles, offshore from Les Saintes Islands in 2004 (Feuillet
et al., 2004). These traces are visible in outcrops of an active submarine
fault scarp at depths of up to ~1000 m below sea level, that has been
systematically mapped and surveyed. Imagery was used to obtain ~30
3D models, that will ultimately be used to conduct measurements of
displacement associated with the 2004 earthquake. Therefore proper
scaling is required to enable accurate geological measurements.

The 3D models have been reconstructed using an adapted 3D re-
construction procedure consisting of multiple open-source solutions
(OpenMVG (Moulon et al., 2018; Moulon et al., 2013), OpenMVS
(Shen, 2013; Jancosek and Pajdla, 2014), MVS-Texturing (Waechter
et al., 2014)) as described in (Hernández et al., 2016). Fig. 17 depicts
one such model, named FPA, which has been reconstructed from a total
of 218 images with a resolution of ×1920 1080. This particular outcrop
was already imaged during a prior cruise (ODEMAR, doi:10.17600/
13030070) (Escartín et al., 2016).

As the FPA model was reconstructed using only optical images

Table 1
The results obtained with various methods (PCM, FUM) with different levels of
noise induced into the location of detected features and laser spots.

Cam-Scene Configuration B Configuration C

distance [m] PCM FUM – all FUM – single FUM – all

= =0.5, 0.25f l
2 ±1.0 0.0014 ±1.0 0.0010 ±1.0 0.0019 ±1.0 0.0010
3 ±1.0 0.0022 ±1.0 0.0015 ±1.0 0.0028 ±1.0 0.0014
4 ±1.0 0.0030 ±1.0 0.0021 ±1.0 0.0034 ±1.0 0.0017

= =1.0, 0.25f l
2 ±1.0 0.0014 ±1.0 0.0010 ±1.0 0.0019 ±1.0 0.0010
3 ±1.0 0.0022 ±1.0 0.0015 ±1.0 0.0028 ±1.0 0.0014
4 ±1.0 0.0030 ±1.0 0.0021 ±1.0 0.0034 ±1.0 0.0017

= =0.5, 0.5f l
2 ±1.0 0.0028 ±1.0 0.0020 ±1.0 0.0038 ±1.0 0.0020
3 ±1.0 0.0044 ±1.0 0.0031 ±1.0 0.0056 ±1.0 0.0028
4 ±1.0 0.0059 ±1.0 0.0042 ±1.0 0.0069 ±1.0 0.0034

Fig. 15. Distributions of estimated model scales with partially constrained and
fully unconstrained methods at various noise levels induced into the location of
detected features and laser spots. The results obtained at different camera-scene
distances are depicted with (2 m – red; 3 m – green; 4 m – blue). (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 16. ROV VICTOR 6000 (IFREMER) with enlarged camera and laser scaler
system.
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acquired by a monocular camera, the proper scale of the model can be
obtained using images containing laser beams projected on the surface
of the scene by applying one of our proposed methods. During the
SUBSAINTES cruise, such images were collected in addition to the ones
already used in the reconstruction process. Six images with clearly
noticeable laser spots (Fig. 18) have been selected from the center of the
3D model, at two different locations as indicated in Fig. 18. The images
were collected at camera-scene distances of approximately 3 m and 4 m
respectively while keeping the camera intrinsic parameters constant
and equal to the ones used in the acquisition process. Subsequently, the
laser spot’s locations have been marked manually (with the guidance of
simple color thresholding) with an expected error that was on average
between 1 px and 2 px. Due to multiple changes in the vehicle payload
throughout the cruise, the lasers became misaligned and therefore a
fully unconstrained method was used to obtain the scale of the model.

Given that the setup consisted of four lasers, the FUM method
computed four independent estimates of the model’s scale per image. As
we have shown in the previous experiments, averaging these in-
dependent results further reduces the effects of errors in the detection
processes, leading to a better constrained final solution. The scaling
results for each of the 6 selected images are presented in Table 2 and
Fig. 19. In this figure, the scale estimates obtained for each laser beam
are depicted as circles, while the final estimate per image is marked
with a black cross (x). The average of all the values obtained is ad-
ditionally shown by a red dashed line.

The average value of the scale of the FPA model estimated per
image was ±0.237 0.0008 which represents 0.3% of the scale value. The
obtained result means that each unit in the current model is equal to

0.237 m or alternatively, the model has to be scaled by a factor 4.22 to
obtain a metric result. This implies that on a measurement of 25 cm on a
model with lateral and vertical dimensions of 33 m by 10 m is expected
to have an uncertainty, due to scaling error introduced by the proposed
method, of approximately 1 mm. It is important to note that this esti-
mate is based on the assumption of adequate calibration of the camera
and of the camera-laser system. Given that these methods estimate the
scale from image information, it is impossible to decouple the error
reported by the method with the actual error of the model without the
validation with the external measurements. A sign of such problems
would be disproportionately large variations of scale estimates from
individual lasers within the same image, as each result would be af-
fected differently by the erroneous calibration. Comparing the devia-
tions of scale estimates for image sets 1-3 and 4-6, the correlation be-
tween increasing camera-scene distance and increased uncertainty is
apparent and consistent with previous result from generated data.

The analyses of scaling deviations computed for each laser with
respect to the final estimated scale per image (Fig. 20) shows that in-
dependent evaluations deviate by about 0.6% with a maximum

Fig. 17. (a) Textured and (b) triangle mesh representations of FPA 3D model,
with marked areas of evaluation.

Fig. 18. Example of images from the two areas of evaluation with visible laser
projections on the scene.

Table 2
Estimated FPA model’s scale using fully unconstrained method and a simplistic
direct 3D approach. Reported numbers represent the ratio between the model’s
unit and a meter – each measurement has to be multiplied with the inverse of
the ratio to obtain a metric result.

Cam-Scene FUM (per laser) FUM Direct 3D

distance [m] L 1 L 2 L 3 L 4 (all) (all)

1 3.05 0.234 0.239 0.237 0.236 ±0.237 0.002 ±0.235 0.009
2 3.06 0.236 0.239 0.236 0.238 ±0.237 0.002 ±0.236 0.008
3 3.05 0.237 0.237 0.235 0.236 ±0.236 0.001 ±0.235 0.008
4 3.90 0.239 0.241 0.236 0.236 ±0.238 0.003 ±0.236 0.013
5 3.91 0.238 0.239 0.237 0.234 ±0.237 0.002 ±0.236 0.013
6 3.60 0.238 0.236 0.236 0.233 ±0.236 0.002 ±0.234 0.010

Fig. 19. Estimated scale factors for FPA model, per laser and per image, using
our fully unconstrained method. Colour of image numbers (x axis) corresponds
to locations shown in Fig. 18. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Deviation of estimated FPA model’s scales, using our fully un-
constrained method FUM, and for each laser in each image.
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deviation of 1.3% for laser 2 in image 4. These results are again in
agreement with the results previously computed with the validation
data on the hydrothermal vent in Fig. 8.

To further show the robustness and usefulness of our approach, we
compare our results to the ones that would have been obtained if our
method was not available. As the non-alignment of lasers with the
optical axis would have prevented the use of both image-scaling
methods (Pilgrim et al. (2000) and Davis and Tusting (1991)), the only
option available would have been a manual and somewhat simplistic
approach still widely used in laser photogrammetry (Kocak et al., 2004;
E. Rowe and Dawson, 2008; Robert et al., 2017; Pilgrim et al., 2000).
This involves manual identification of laser beam intersection points
with the scene on the 3D model, and assuming pair-wise Euclidean
distances to be the actual distances between the laser pairs. In order to
compare our results with the best possible outcome of this simplistic
approach, we determined the points on the model using a ray-casting
technique, effectively completely eliminating the extremely error-prone
human step. The results averaged over 4 laser pairs are presented in the
last column of Table 2 (Direct 3D). We can see that the results of dif-
ferent laser pairs are much more incoherent (4.3% deviation compared
to 0.6% in the case of fully unconstrained method). We also note that the
results of such a simplistic method are extremely dependent on the
perspective angle of the camera, and the degree of misalignment of the
lasers, as well as errors induced by manual point selection. As shown
with the validation tests, our fully unconstrained method remains un-
affected.

4. Conclusions

This paper introduced two novel methods for automatic scaling of
SfM-based 3D reconstructions using laser scalers, methods that are
applicable for routine underwater surveys with ROVs or AUVs. Both
methods were validated using a series of generated datasets based on an
underwater 3D model derived from submarine field imagery, and
showed its applicability in real scenarios using a dataset collected
during a recent cruise (SUBSAINTES 2017).

The two approaches presented here, namely the fully and partially
constrained methods, overcome a multitude of restrictions imposed by
prior laser photogrammetry methods (e.g., laser alignment with the
optical axis of the camera, perpendicularity of laser beams with the
scene). These methods, within the step of pose estimation, also remove
the need for manual identification of identical points on the image and
3D model, an extremely time-consuming and error-prone processing
step.

Each of the two methods is designed to address the different types of
laser setup, encompassing the variety of most commonly used setups in
real underwater scenarios. The fully unconstrained method is applic-
able to arbitrary laser setups, with known geometric relations between
the camera and the lasers. The ability to compensate for any mis-
alignments enables accurate scaling in a wider variety of circumstances,
such as the manipulation of equipment between surveys during a cruise
and precluding strict parallelism. We thus propose a partially con-
strained method, which significantly reduces the camera-laser rigidity
constraints, that may be otherwise too restrictive in real scenarios. This
approach requires parallel lasers but alleviates the need for a time-
consuming calibration process. The partially constrained method can
thus be used to accurately and automatically scale 3D models built with
data acquired using ROVs, including smaller shallow-water ones. Pre-
calibrated underwater laser scalers are readily available nowadays, and
need only to be placed near the optical camera.

To robustly validate the performance of the methods, a real 3D
model of an underwater hydrodynamic vent was used to generate laser
and image information as it would have been obtained from various
laser configurations, camera viewing angles and camera-scene dis-
tances. We tested our methods with three laser configurations (i.e.,
aligned with the optical axis of the camera; parallel but misaligned with

the optical axis; and freely oriented) which can account for nearly all
possible laser setups in real seafloor surveying situations using ROVs
and AUVs. The initial evaluation was performed on two different types
of terrain (smooth and rough), and demonstrated the advantages pro-
vided by the two proposed approaches relative to previously used
image-scaling methods. Our methods can be used in the field, with
misaligned or freely oriented lasers, and with extreme camera angles
during image acquisitions, reaching up to °40 in both pitch and roll.

While the fully unconstrained method yielded robust results under
all tested circumstances, the partially constrained method was affected
by a slight error (2.9% in the most extreme case) due to the approx-
imation used for determining the laser direction. We further analyzed
the effect of the approximation by evaluating 10, 000 randomly selected
points. We demonstrate that scaling errors depend on the difference of
camera-scene distances between the two points of laser beam – scene
intersection, and that this effect decreases with an increasing camera-
scene distance. The consequences of inevitable noise in feature and
laser-spot detection uncertainty were also examined, together with the
effects of potential errors in feature matching (outliers). Due to the
specificity of the algorithms used, the noise and potential outliers in the
feature detection and matching process did not have a significant effect
on the results, while the noise induced in the position of laser spots did
directly influence the estimations. As expected, increases in camera-
scene distance results in higher errors in the estimation, as the dis-
placements are magnified with distance. Additionally we compared the
results obtained from a single laser measurement with the average
obtained from all and demonstrated that such fusion further reduces the
effects of noise.

It is important to acknowledge that the achieved accuracy in the
simulated scenario should be regarded as theoretical accuracy, given
that the camera and camera-laser calibrations used in generating the
data were ideal. Errors in the calibration will affect the final result, in
such a way that, without external validation (using known measure-
ments) it becomes impossible to decouple the error reported by the
method and the actual error of the model. We note that a sign of such
problems would be large deviations of scale estimated obtained by in-
dependent lasers/laser pairs within the same image.

Finally we report on the application of the fully unconstrained
method to determine the scale of a model built using images from a
geologic outcrop, recorded during the SUBSAINTES cruise. Six images
with clearly visible laser spots have been selected from two different
model locations, and used to independently determine the scale of the
model. The average scale estimated using our fully unconstrained
method was 0.237 with the standard deviation of 0.3% between the re-
sults from various images. The average deviation of estimated scales by
independent lasers was 0.6% with the maximum deviation of 1.3%. We
also documented data showing that images acquired at a longer
camera-scene distance exhibited bigger deviations of estimated scales,
as predicted from the validation test results.

The results of our two methods were also compared to those that
would have been obtained without the availability of our method. Due
to laser non-alignment with the optical axis of the camera, the only
approach possible would be a somewhat simplistic method which in-
volves manual identification of laser intersection points with the 3D
model, and assumes that the pair-wise Euclidean distances are the ac-
tual distances between the laser pairs. To predict the best possible
outcome, we automatically determined these correspondences, alle-
viating any additionally induced errors. The results from the simplistic
scale method show a much more significant deviation than that of our
method (4.3% vs. 0.6%, respectively). Based on our results we also stress
that the results of such simplistic methods are extremely dependent on
the perspective angle of the camera and the degree of misalignment of
the lasers, which is not the case for our fully unconstrained method.
Finally, these methods can be used universally as they are based on
standard sensors available for ROVs and AUVs (cameras and laser
scalers), do not require any dedicated hardware, and can be applied to
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legacy data.
Although the presented methods are designed to be independent of

the laser spot detection approach used, we showed that its performance
directly influences the scale estimation accuracy. In the reported re-
sults, we identified the location of the spots manually albeit with the
help of simple color thresholding. While relatively accurate, this
manual process is time consuming. An effort is currently ongoing aimed
at automating the detection of the laser spots, which will facilitate the
ability to perform scale estimation on a larger number of images.
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Abstract: Rapid developments in the field of underwater photogrammetry have given scientists
the ability to produce accurate 3-dimensional (3D) models which are now increasingly used in the
representation and study of local areas of interest. This paper addresses the lack of systematic analysis
of 3D reconstruction and navigation fusion strategies, as well as associated error evaluation of models
produced at larger scales in GPS-denied environments using a monocular camera (often in deep
sea scenarios). Based on our prior work on automatic scale estimation of Structure from Motion
(SfM)-based 3D models using laser scalers, an automatic scale accuracy framework is presented.
The confidence level for each of the scale error estimates is independently assessed through the
propagation of the uncertainties associated with image features and laser spot detections using a
Monte Carlo simulation. The number of iterations used in the simulation was validated through
the analysis of the final estimate behavior. To facilitate the detection and uncertainty estimation
of even greatly attenuated laser beams, an automatic laser spot detection method was developed,
with the main novelty of estimating the uncertainties based on the recovered characteristic shapes of
laser spots with radially decreasing intensities. The effects of four different reconstruction strategies
resulting from the combinations of Incremental/Global SfM, and the a priori and a posteriori use of
navigation data were analyzed using two distinct survey scenarios captured during the SUBSAINTES
2017 cruise (doi: 10.17600/17001000). The study demonstrates that surveys with multiple overlaps
of nonsequential images result in a nearly identical solution regardless of the strategy (SfM or
navigation fusion), while surveys with weakly connected sequentially acquired images are prone to
produce broad-scale deformation (doming effect) when navigation is not included in the optimization.
Thus the scenarios with complex survey patterns substantially benefit from using multiobjective BA
navigation fusion. The errors in models, produced by the most appropriate strategy, were estimated
at around 1% in the central parts and always inferior to 5% on the extremities. The effects of
combining data from multiple surveys were also evaluated. The introduction of additional vectors in
the optimization of multisurvey problems successfully accounted for offset changes present in the
underwater USBL-based navigation data, and thus minimize the effect of contradicting navigation
priors. Our results also illustrate the importance of collecting a multitude of evaluation data at
different locations and moments during the survey.
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1. Introduction

Accurate and detailed 3D models of the environment are now an essential tool in different
scientific and applied fields, such as geology, biology, engineering, archaeology, among others.
With advancements in photographic equipment and improvements in image processing and
computational capabilities of computers, optical cameras are now widely used due to their low
cost, ease of use, and sufficient accuracy of the resulting models for their scientific exploitation.
The application of traditional aerial and terrestrial photogrammetry has greatly expanded in recent
years, with commercial and custom-build camera systems and software solutions enabling a nearly
black-box type of data processing (e.g., the works by the authors of [1–4]).

These rapid developments have also significantly benefited the field of underwater
photogrammetry. The ability to produce accurate 3D models from monocular cameras under
unfavorable properties of the water medium (i.e., light attenuation and scattering, among other
effects) [5], and advancements of unmanned underwater vehicles have given scientists unprecedented
access to image the seafloor and its ecosystems from shallow waters to the deep ocean [6–9].
Optical seafloor imagery is now routinely acquired with deep sea vehicles, and often associated
with other geophysical data (acoustic backscatter and multibeam bathymetry) and water column
measurements (temperature, salinity, and chemical composition). High-resolution 3D models with
associated textures are, thus, increasingly used in the representation and study of local areas of interest.
However, most remotely operated vehicles (ROVs) or autonomous underwater vehicles (AUVs) that
are currently used in science missions have limited optical sensing capabilities, commonly comprising
a main camera used by the ROV-pilot, while larger workclass ROVs have additional cameras for
maneuvering. Due to the nature of projective geometry, performing 3D reconstruction using only
optical imagery acquired by monocular cameras results in a 3D model which is defined only up
to scale, meaning that the unit in the model is not necessary a standard unit such as a meter [10].
In order to correctly disambiguate the scale, it is essential to use additional information in the process
of model building. Predominantly, solutions in subaerial applications are based on the fusion of image
measurement with robust and dependable satellite references, such as Global Navigation Satellite
System (GNSS) [11–13], or ground control pointss (GCPs) [14–16], due to their accuracy and ease
of integration. On the contrary, the water medium not only hinders the possibility of accurately
establishing the control points, but also prevents the use of global positioning system (GPS) due to
the absorption of electromagnetic waves. Hence the scale is normally disambiguated either using
a combination of acoustic positioning (e.g., Ultra-Short BaseLine (USBL)) and inertial navigation
system (INS) [17–19], or through the introduction of known distances between points in the scene [20].

In shallow water environments, i.e., accessible by divers, researchers have often placed auxiliary
objects (such as a scaling cube [21], locknuts [22], graduated bars [23], etc.) into the scene, and used the
knowledge of their dimensions to scale the model a posteriori. Such approaches, while applicable in
certain scenarios, are limited to the use in small-scale reconstructions (e.g., a few tens of square meters),
and in shallow water environments, due to the challenges in transporting and placing objects in deep
sea environments. Similarly, laser scalers have been used since the late 1980s, projecting parallel laser
beams onto the scene to estimate the scale of the observed area, given the known geometric setup of
the lasers. Until recently, lasers have been mostly used in image-scaling methods, for measurements
within individual images (e.g., Pilgrim et al. [24] and Davis and Tusting [25]). To provide proper
scaling, we have recently proposed two novel approaches [26], namely, a fully-unconstrained (FUM)
and a partially-constrained method (PCM), to automatically estimate 3D model scale using a single
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optical image with identifiable laser projections. The proposed methods alleviate numerous restrictions
imposed by earlier laser photogrammetry methods (e.g., laser alignment with the optical axis of the
camera, perpendicularity of lasers with the scene), and remove the need for manual identification of
identical points on the image and 3D model. The main drawback of these methods is the need for
purposeful acquisition of images with laser projections, with the required additional acquisition time.

Alternatively, the model scaling can be disambiguated with known metric vehicle displacements
(i.e., position and orientation from acoustic positioning, Doppler systems, and depth sensors [19,27,28]).
As this information is recorded throughout the mission, such data are normally available for arbitrary
segments even if they have not been identified as interesting beforehand. The classic range-and-bearing
position estimates from acoustic-based navigation, such as USBL, have an uncertainty that increases
with increasing range (i.e., depth) in addition to possible loss of communication (navigation gaps).
Consequently, the scale information is inferred from data which is often noisy, poorly resolved, or
both. Hence the quality of the final dataset is contingent on the strategy used in the fusion of image
and navigation information. Depending on the approach, the relative ambiguity can cause scale drift,
i.e., a variation of scale along the model, causing distortions [29]. Furthermore, building of large
3D models may require fusion of imagery acquired in multiple surveys. This merging often results
in conflicting information from different dives, and affects preferentially areas of overlap between
surveys, negatively impacting the measurements on the model (distances, areas, angles).

The need to validate the accuracy of image-based 3D models has soared as the development
of both the hardware and the techniques enabled the use of standard imaging systems as a viable
alternative to more complex and dedicated reconstruction techniques (e.g., structured light). Numerous
evaluations of this accuracy are available for aerial and terrestrial 3D models (e.g., the works by the
authors of [2,30–32]). Environmental conditions and limitations of underwater image acquisition
preclude their transposition to underwater image acquisition and, to date, most underwater accuracy
studies use known 3D models providing reference measurements. This leads to marine scientists
nowadays being constantly faced with the dilemma of selecting appropriate analyses that could
potentially be performed on the data derived from the reconstructed 3D models.

Early studies [21,33–38] evaluated the accuracy of small-scale reconstructions (mainly on coral
colonies), comparing model-based and laboratory-based volume and surface areas for specific corals.
More recently, auxiliary objects (e.g., locknuts [22], graduated bars [23], special frames [39,40], and
diver weights [41]) have been used to avoid removal of objects from the environment. Reported
inaccuracies range from 0.85% to 17%, while more recent methods achieve errors as low as 2–3% [22,41].
Diver-based measurements and the placement of multiple objects at the seafloor both restrict the use
of these methods in shallow water or experimental environments, and hinder such approaches in deep
sea environments (e.g., scientific cruises), where reference-less evaluation is needed instead, which has
been performed in only a few experiments.

Ferrari et al. [38] evaluated their reconstruction method on a medium-size reef area (400 m) and
a 2 km long reef transect. Maximum heights of several quadrants within the model were compared
to in situ measurements, coupled with an estimation of structural complexity (rugosity). The stated
inaccuracies in reef height were 18± 2%. This study split larger transects into approx 10 m long
sections to reduce potential drift, and hence model distortion. Similarly, Gonzales et al. [42] reported
15% error in rugosity estimates from stereo imaging and compared them with results from a standard
chain-tape method, along a 2 km long transect. To the best of our knowledge, no other scale accuracy
estimate of submarine large-area models has been published. Furthermore, although laser scalers
are often used for qualitative visual scaling, they have never been used to evaluate the accuracy of
underwater 3D models.

Objectives

Although a growing body of literature supports the belief that underwater image-based 3D
reconstruction is a highly efficient and accurate method at small spatial extents, there is a clear absence
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of scale accuracy analyses of models produced at larger scales (often in deep sea scenarios). Validation
of 3D reconstruction methods and associated error evaluation are, thus, required for large underwater
scenes and to allow the quantitative measurements (distances and volumes, orientations, etc.) required
for scientific and technical studies.

The main goal of this paper is to present and use an automatic scale accuracy estimation
framework, applicable to models reconstructed from optical imagery and associated navigation
data. We evaluate various reconstruction strategies, often used in research and industrial ROV deep
sea surveys.

First, we present several methods of 3D reconstruction using underwater vehicle navigation,
to provide both scaling and an absolute geographic reference. Most commonly, SfM uses either an
incremental or a global strategy, while the vehicle navigation may be considered a priori as part of the
optimization process, or a posteriori after full 3D model construction. Here, we compare four different
strategies resulting from combination of Incremental/Global SfM and the a priori and a posteriori use
of navigation data. We discuss the impact of each strategy in the final 3D model accuracy.

Second, the four methods are evaluated to identify which one is best suited to generate 3D models
that combine data from multiple surveys, as this is often required under certain surveying scenarios.
Navigation data from different surveys may have significant offsets at the same location (x, y, z,
rotation), show noise differences, or both. The changes between different acquisitions of a single scene
are taken into account differently by each 3D reconstruction strategy.

Third, prior approaches, recently presented by Istenič et al. [26], to estimating model scale using
laser scalers, namely FUM and PCM methods, are augmented with Monte Carlo simulations to
evaluate the uncertainty of the obtained scale estimates. Furthermore, the results are compared to the
kinds of estimates commonly used and suffering from parallax error.

Fourth, an automatic laser detection and uncertainty estimation method is presented. Accurate
analyses require a multitude of reliable measurements spread across the 3D model, whose manual
annotation is extremely labor-intensive, error-prone, and time-consuming, when not nearly impossible.
Unlike previous detection methods, our method detects the centers of laser beams by considering the
texture of the scene, and then determines their uncertainty, which, to the best of our knowledge, has
not been presented in the literature hitherto.

With the data from the SUBSAINTES 2017 cruise (doi: 10.17600/17001000; [43]) we evaluate
the advantages and drawbacks of the different strategies to construct underwater 3D models,
while providing quantitative error estimates. As indicated above, these methods are universal as they
are not linked to data acquired using specific sensors (e.g., laser systems and stereo cameras), and
can be applied to standard imagery acquired with underwater ROVs. Hence, it is possible to process
legacy data from prior cruises and with different vehicles and/or imaging systems. Finally, we discuss
the best practices for conducting optical surveys, based on the nature of targets and the characteristics
of the underwater vehicle and sensors.

2. Image-Based Underwater 3D Reconstruction

Textured 3D models result from a set of sequential processing steps (Figure 1). As scene geometry
is computed entirely from the optical imagery, the end result directly depends on image quality
and an adequate survey strategy. Compared to subaerial imagery, the unfavorable properties of the
water medium (i.e., light attenuation and scattering effects) [5] cause blurring of details, low image
contrast, and distance-dependent color shifts [44]. As such, acquisition is conducted at close range,
thus limiting the observation area of any single image, while significantly increasing the amount
of data collected and processed. The distance from the camera to the scene is often defined by a
combination of several factors, such as the visibility, amount of available light, terrain roughness, and
maneuverability of the imaging platform. As some of these factors may change from place to place
and over time; it is common to adjust the distance during acquisition. The survey speed is also affected
by several factors. Commonly, the survey speed is adjusted as a function of the distance to the scene
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and of the image exposure time, in order to keep motion blurriness to minimum levels (often less than
2 pixels). Typically, the survey speed is in the order of a 1/4 of the distance to the scene, per second.

Figure 1. Flowchart of a 3D reconstruction process for underwater applications.

2.1. Preprocessing

Keyframe selection is hence important preprocessing step, used to remove unnecessary
redundancy (i.e., images taken from very similar poses). Selecting too many images may represent
an unnecessary increase of processing time, whereas the selection of too few images may result in
missing observations and prevent the reconstruction of a single complete model. The commonly used
strategy for image selection based on constant time intervals (e.g., selecting a frame every n-th second)
is often not suitable; surveys with significant changes in speed and/or distance to the scene can lead to
over- or underselection of images. Instead, we use an approach with implicit detection of frames with
similar vantage points [45] through estimates of feature displacements between consecutive frames
(e.g., Lucas–Kanade tracking algorithm [46]). For sufficiently dense image sets (e.g., video acquisitions),
sharpness may be used for further selection (e.g., variance of Laplacian [47]).

Additionally, color correction can be used to counteract the degradation effects of water.
Minimizing the effects of the water medium not only benefits human perception and interpretation
of the scene, but also improves the quality and quantity of successful feature matches between
image pairs [48], thus increasing the quality of the final model. Accurate color information recovery
depends on knowledge of the physical image formulation process model which is rarely available in
its completeness. Alternatively, color enhancing methods (e.g., Bianco et al. [49] used in our tests) can
remove the attenuation effects, as well as the color cast introduced by an unknown illuminant (Figure 2).

(a) (b) (c) (d)

Figure 2. (a) Original underwater (UW) image. (b) Chromatic components (α, β) of the estimated local
illuminant. (c) White balanced image. (d) Final enhanced image.
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2.2. Sparse Reconstruction

A concise set of preselected images is then used to jointly estimate the sparse 3D geometry of the
scene (set of 3D points) and the motion of the camera (trajectory) through a technique called Structure
from Motion (SfM). The inherent scale ambiguity of the reconstructed 3D structure and camera motion
from a set of images taken by a monocular camera is addressed by either using the vehicle navigation
a priori as part of the optimization process (multiobjective BA), or a posteriori through an alignment
with the reconstructed camera path using a similarity transformation.

As the structure and motion parameters are inferred entirely from multiple projections of the
same 3D point in overlapping images, the robustness of detection, and matching of feature points
across the image set is important. In the evaluated approach, the features are detected as accelerated
KAZE (AKAZE) [50], and described using Modified-SURF descriptors [51]. To avoid an empirical
selection of the inlier/outlier threshold in the geometric filtering procedure (e.g., fundamental/essential
matrix [10]), a parameter-free A Contrario Ransac (AC-RANSAC) [52], implemented in openMVG
library [53], is used. The approach automatically determines the threshold and model meaningfulness
by a statistical balance between the tightness of fitting of data and the number of the inliers.

Due to the nonlinearity in the projection process, a nonlinear optimization, Bundle Adjustment
(BA), is required, with the final solution obtained by formulating a nonlinear least squares (NLS)
problem. The cost function to be minimized is normally an image-based error, consisting of the
sum of squared re-projection errors, defined as the distances between the 2-dimensional (2D) feature
observations of the 3D point and their corresponding projections onto the images. Intrinsic camera
parameters, if a priori known, can be excluded from the optimization, leading to lowering the
complexity of the problem and thus improving the results. The problem can be efficiently solved using
iterative methods such as Levenberg-Marquardt (LM) [54], which, however, only guarantees finding a
local minimum of the optimizing function. This makes it extremely sensitive to the initial parameter
estimate, leading to different strategies proposed for their initialization broadly classified as either:
incremental or global.

Incremental SfM expands model reconstruction one image at a time, allowing for a
gradual estimation of parameters for the newly added points and cameras. After each addition,
intermediate BA can be performed to propagate and minimize the error of intermediate reconstructions.
Incremental approaches are widely used, given that the intermediate partial reconstructions enable
a more robust detection of outliers, and thus decrease the chance of convergence to a wrong local
minimum. However, when no prior information about the scene is available, the initialization step of
decomposing the fundamental/essential matrix is critical, as a poor selection of the seed pair of images
can quickly force the optimization to a nonrecoverable state. Furthermore, as the method inherently
gives disproportionate weight to images used at the beginning of the process, it can result in error
accumulation. This may produce significant drift and fail to reconstruct the scene in the form of a
single connected model. In our tests, the method of Moulon et al. [53,55] was used with a contrario
model estimation.

Global SfM considers instead the entire problem at once, with full BA performed only at the
end. To alleviate the lack of partial reconstructions, that identifies possible outliers, the parameter
initialization is split into two sequential steps (i.e., rotation and translation estimation), the first
one being more robust to a small number of outliers. This mitigates the need for intermediate
nonlinear optimizations, as camera and scene points are estimated simultaneously in a single iteration.
It also ensures an equal treatment of all the images, and, consequently, equal distribution of errors.
These methods rely on averaging relative rotations and translations, thus requiring images to have
overlap with multiple other images, to ensure meaningful constraints and mutual information. As a
consequence, the reconstruction from a sparsely connected set of images will result in distorted or
even multiple disconnected components. In our test, the method of Moulon et al. [53,56] is used.
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2.3. Navigation Fusion

The result of the sparse reconstruction process is thus expressed as a set of 3D points X =

{Xk ∈ R3 | k = 1 . . . L}; camera motion is defined with the following set of projection matrices,
P = {Pi =

[
RT

i |−RT
i ti

]
| i = 1 . . . N}, where Pi ∈ SE(3) defines the projection from world to camera

frame, and the following set of intrinsic camera parameters, K = {Ki | i = 1 . . . N}. As the joint
parameter estimation is an inherently ill-conditioned problem, when estimated from a set of images
acquired by a single camera, the solution is determined only up to an unknown scale [10]. The estimated
parameters can be multiplied by an arbitrary factor, resulting in an equal projection of the structure on
the images. A metric solution thus requires known measurements [20] or metric vehicle displacements
(navigation/inertial priors) [19,27,28]. Depending on the availability of synchronization between the
camera and the navigation, priors C = {Ci | i = 1 . . . N} extracted from the ROV/AUV’s navigation,
can either be used in a multisensor fusion approach or to align the reconstructed camera path via a
similarity transformation.

2.3.1. Multiobjective BA

When navigation priors are available for a significant proportion of images, then this information
can be incorporated in the optimization through a multisensor fusion approach. When the
measurement noises are not known, the problem of appropriate weighting of different objectives
arises, as each of the sensor mean squared error (MSE) does not share the same unit neither the same
significance [57].

Most commonly, there is no unique solution that would simultaneously optimize both the
re-projection (Ei,k(v) =

∥∥xi,k − proj(Ki, Pi, Xk)
∥∥2) and navigation fit errors (Ei(n) = Ti − Ci). Instead

there exists a hypersurface of Pareto optimal solutions, where one of the objective functions can only
be improved by degrading the other [58]. Such solution space can be defined as a weighted compound
function of the two objectives [57]. Assuming that both re-projection and navigation fit errors are
independent and Gaussian, it is statistically optimal to weight the errors by their variance [59,60]:

E =
1

Mσ2
v

∑
i,k

∥∥Ei,k(v)
∥∥2

+
1

Nσ2
n

∑
i

∥∥Ei(n)
∥∥2 , (1)

which can be rewritten as
E =

1
M ∑

i,k

∥∥Ei,k(v)
∥∥2

+
1
N

λ2 ∑
i

∥∥Ei(n)
∥∥2 , (2)

where λ = σv/σn indicates the ratio between the two covariances, representing the noise variance of
each sensor measurement and M and N are the number of re-projection and navigation prior terms.

In such cases, the weighting can be selected empirically or through automatic weight-determining
methods. For bi-objective optimizations, Michot et al. [57] have shown that the L-Curve criterion is
the preferred selection method. This criterion is based on plotting the trade-off between the cost of
the objectives using different weights, represented in log–log space. This plot has a typical L-curve
shape, with two prominent segments. Each term dominating a segment (flat and vertical part) is
used to detect the “corner” separating the two, essentially identifying a neutral objective dominance.
The associated weight is considered to be the optimal, and representative of the ratio between the
covariances of the sensors. Lying between two nearly flat segments, it can be easily identified as the
point with maximum curvature.

2.3.2. Similarity Transformation

Alternatively, the navigation data can be used in an a posteriori step of rescaling and
georeferencing. A similarity transformation, which minimizes the sum of differences between
the reconstructed camera poses and their navigation priors, is applied to the reconstructed model.
Depending on the survey pattern, this method can be used even in cases when the camera is not
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synchronized with the navigation data. If the reconstructed path can be unambiguously matched to
the path given by the navigation data, then the associations between the cameras and navigation poses
can be determined through finding the closest points between the paths.

2.4. Dense, Surface and Texture Reconstruction

To better describe the scene geometry, a denser point cloud representation is computed using the
method of Shen [61]. For each image reconstructed in SfM, a depth-map is computed, and subsequently
refined to enforce consistency over neighboring views. These depth maps are merged into a single
(dense) set of 3D points, where points with high photometric inconsistencies are removed to ensure
the visibility constraints.

The final steps towards obtaining a final photo-realistic 3D model require estimating both a
surface and high-quality texture to be pasted upon such surface. As underwater reconstructions are
inevitably affected by noise and outliers [5], a method is used [62] to compute the most probable
surface, by modeling the surface as an interface between the free and full space as opposed to directly
using the input points. The reconstruction is completed by estimating the texture with a two step
method [63]. The method prioritizes near, well-focused and orthogonal high-resolution views, as well
as similar adjacent patches. Texture inconsistencies are mitigated by an additional photo-consistency
check. Finally, any significant color discontinuities between neighboring regions are addressed by
per-vertex-based globally optimal luminance correction as well as with Poisson image editing [64].

3. Model Evaluation Framework

Estimating the scale accuracy of 3D models reconstructed from underwater optical imagery and
robot navigation data is of paramount importance since the input data is often noisy and erroneous.
The noisy data commonly leads to inaccurate scale estimates and noticeable variations of scale
within the model itself, which precludes use of such models for their intended research applications.
Real underwater scenarios usually lack elements of known sizes that could be readily used as size
references to evaluate the accuracy of 3D models. However, laser scalers are frequently used during
underwater image collection to project laser beams onto the scene and can be used to provide such
size reference.

The framework we will describe builds upon two recently introduced methods [26] for scale
estimation of SfM-based 3D models using laser scalers. We extend the scale estimation process by
including it into a Monte Carlo (MC) simulation, where we propagate the uncertainties associated
with the image features and laser spot detections through the estimation process.

As the evaluated models are built with metric information (e.g., the vehicle navigation data,
dimensions of auxiliary objects), their scale is expected to be consistent with the scale provided by the
laser scaler (sL). Therefore, any deviation from the expected scale value (s=1.0) can be regarded as an
inaccuracy of the scale of the model (εs). The error can be used to represent the percentage by which
any spatial measurement using the model will be affected:

εs = sL − 1.0 =
m
m̂
− 1.0 , (3)

where m and m̂ represent a known metric quantity and its model based estimate.

3.1. Scale Estimation

The two methods, namely, the fully-unconstrained method (FUM) and the partially-constrained
method (PCM), are both suitable for different laser scaler configurations. FUM permits an arbitrary
position and orientation for each of the lasers in the laser scaler, at the expense of requiring a full
a priori knowledge of their geometry relative to the camera (Figure 3a). On the other hand, the
laser-camera constraints are significantly reduced when using the PCM method. The laser origins have
to be equidistant from the camera center and laser pairs have to be parallel (Figure 3b). However, in
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contrast to prior image scaling methods [24,25], the lasers do not have to be aligned with the optical
axis of the camera.

2

1

4

3

1

2

4

3

(a) (b)

Figure 3. (a) Fully- and (b) partially-calibrated setup consisting of an optical camera and lasers, with
the required information marked in red.

Both methods exploit images with visible intersections of the laser beams with the scene, not just
the simple location of the laser spots. The model scale is estimated through a three step process:
laser detection, pose estimation and scale estimation (Figure 4). The two initial steps are identical in
both methods: First, a laser detection method determines the locations of laser spots on an image;
second, the pose of the camera (wrt. the 3D model) at the time of image acquisition is estimated
through a feature-based localization process.

Figure 4. Flowchart of the scale estimation process depicting three crucial steps in scale estimation:
laser spot detection, pose estimation, and scale estimation.

The initial camera-extrinsic values (and optionally also camera-intrinsics) are obtained by solving
an Perspective-n-Point (PnP) problem [65] using 3D–2D feature pairs. Each pair connects an individual
image feature and a feature associated with the sparse set of points representing the model. As these
observations and matches are expected to be noisy and can contain outliers, the process is performed
in conjunction with a robust estimation method A-Contrario Ransac (AC-RANSAC) [52]. The estimate
is further refined through a nonlinear optimization (BA), minimizing the re-projection error of known
(and fixed) 3D points and their 2D observation on the image.

The camera pose and location of the laser spots are lastly used either to estimate the position of the
laser origin, so as to produce the recorded result (FUM), or else to estimate the perpendicular distance
between the two parallel laser beams (PCM). As these predictions are based on the 3D model, they
are directly affected by its scale, and can therefore be used to determine it through a comparison with
a priori known values. As shown through an extensive evaluation in our previous work, both FUM
and PCM can be used to estimate model scale regardless of the camera view angle, camera–scene
distance, or terrain roughness [26]. After the application of a maximum likelihood estimator (BA) and
a robust estimation method (AC-RANSAC), the final scale estimation is minimally affected by noise in
the detection of feature positions and the presence of outlier matches.

In the fully-unconstrained method (Figure 5a), knowledge of the complete laser geometry is used
(origins, OL, and directions, vL) to determine the position of laser emission ÔL, and then produce the
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results observed on the image (Equation (4)). The laser origins ÔL are predicted by projecting 3D points
XL, representing the location of laser beam intersections with the model, using a known direction of
the beam vL. As the points XL must be visible to the camera, i.e., be in the line-of-sight of the camera,
their positions can be deduced by a ray-casting procedure using a ray starting in the camera center and
passing through the laser spot xL detected in the image. The final scale estimate can then be determined
by comparing the displacement of the m̂L = ‖ÔL‖ with its a priori known value ‖OL‖.

ÔL = PXL −
PXL · cz

vL · cz
vL , (4)

where P is defined as the projection from world to camera frame and cz represents the optical axis of
the camera.

1
,2

1

2

1

2

(a) (b)

Figure 5. Scale estimation using (a) fully-unconstrained and (b) partially-constrained approach, based
on the 3D model and optical image depicting the laser beam projection on the scene intersection with
the scene.

Alternatively, the partially-constrained method (Figure 5b) can be used when laser pairs are
parallel but with unknown relation to the camera. As opposed to other image scaling methods, laser
alignment with the optical axis of the camera is not required, allowing its application to numerous
scenarios in which strict rigidity between camera and lasers is undetermined or not maintained
(e.g., legacy data). To overcome the lack of information on the direction of laser beams with respect to
the camera, the equidistance between the laser origins and the camera center is exploited. Laser beam
direction is thus approximated with the direction of the vector connecting the camera center and the
middle point between the two points of lasers intersections with the model vCM. As we have shown in
our previous work [26], this approximation can lead to small scaling errors only in the most extreme
cases where the distance discrepancy between two points on the model is disproportionately large
compared to the camera–scene distance. As underwater surveys are always conducted at sufficiently
large safety distances, this scenario is absent in underwater reconstructions.

3.2. Uncertainty Estimation

Uncertainty characterization of each scale estimate is crucial for quantitative studies (precise
measurement of distances and volumes, orientations, etc.), as required in marine science studies where
accurate metrology is essential (such as in geology, biology, engineering, archaeology and others).
The effect of uncertainties in the input values on the final estimate is evaluated using a MC simulation
method. The propagation of errors through the process is modeled by repeated computations of the
same quantities, while statistically sampling the input values based on their probability distributions.
The final uncertainty estimate in scale is derived from the independently computed values.

Figure 6 depicts the complete MC simulation designed to compute the probability distribution
of an estimated scale error, computed from multiple laser observations in an image. We assume that
the sparse 3D model points, associated with the 2D features in the localization process, are constant,
and thus noise free. On the other hand, uncertainty in the imaging process and feature detection
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is characterized using the re-projection error obtained by the localization process. We also account
for the plausible uncertainty in the laser calibration and laser spot detection, with each laser being
considered independently.

Figure 6. Monte Carlo simulation scheme used for propagating input uncertainties through the process
of scale error estimation.

4. Laser Spot Detection

The accurate quantification of scale errors affecting 3D models derived from imagery requires
numerous reliable measurements that have to be distributed throughout the model. As scale estimates
are obtained by exploiting the knowledge of laser spot positions on the images, the quantity and
quality of such detections directly determine the number of useful scale estimates. Furthermore, to
properly estimate the confidence levels of such estimated scales, the uncertainty of the laser spot
detections needs to be known.

The laser beam center is commonly considered to be the point with the highest intensity in the laser
spot, as the luminosity of laser spots normally overpowers the texture of the scene. However, due to
the properties of the water medium, the laser light can be significantly attenuated on its path to the
surface before being reflected back to the camera. In such cases, the final intensity of the beam reaching
the camera might be overly influenced by the texture at the point of the impact (Figure 7). As such,
performing manual accurate annotations of laser spots tends to be extremely challenging and labor
intensive, and even impossible in certain cases.

Figure 7. Example of image used for scale error evaluation with enlarged laser area.

Considerable attention has been given to the development of the image processing components
of laser scanners, namely on laser line detection [66,67], while the automatic detection of laser dots
from underwater laser scalers has only been addressed in a few studies. Rzhanov et al. [68] developed
a toolbox (The Underwater Video Spot Detector (UVSD)), with a semiautomatic algorithm based
on a Support Vector Machine (SVM) classifier. Training of this classifier requires user-provided
detections. Although the algorithm can provide a segmented area of the laser dot, this information
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is not used for uncertainty evaluation. More recently, the authors of [69] presented a web-based,
adaptive learning laser point detection for benthic images. The process comprises a training step using
k-means clustering on color features, followed by a detection step based on a k-nearest-neighbor (kNN)
classifier. From this training on laser point patterns the algorithm deals with a wide range of input data,
such as the cases of having lasers of different wavelengths, or acquisitions under different visibility
conditions. However, neither the uncertainty in laser point detection nor the laser line calibration are
addressed by this method.

To overcome the lack of tools capable of detecting and estimating the uncertainty in laser spot
detection while still producing robust and accurate detections, we propose a new automatic laser
detection method. To mitigate the effect of laser attenuation on the detection accuracy, scene texture
is considered while estimating the laser beam center. Monte Carlo simulation is used to estimate the
uncertainty of detections, considering the uncertainty of image intensities.

4.1. Detection

To determine laser spot positions on any image, the first step is a restriction of the search area to
a patch where visible laser spots are expected (Figure 8a). Although not compulsory, this restriction
minimizes false detections and reduces computational complexity and cost. The predicted area may
be determined from the general pose of the lasers with respect to the camera, and from the range of
distances to the scene.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Laser spot detection: (a) predicted ROI of original image, (b) aligned auxiliary patch,
(c) ROI after the removal of texture information (intensity ×5), (d) potential laser pixels after color
thresholding, (e) filtered laser pixels, (f,g) estimated laser beam luminosity without/with texture
removal, and (h) detected laser spot with detection uncertainty.

An auxiliary image is used to obtain a pixel-wise aligned description of the texture in the patch.
This additional image is assumed to be acquired at a similar distance and with laser spots either
absent or in different positions. This ensures visually similar texture information at the positions
of the laser spots. This requirement is easily achievable for video acquisitions, as minor changes in
camera pose sufficiently change the positions of the lasers. Alternatively, if still images are acquired, in
addition to each image with visible laser spots, an additional image taken from a slightly different
pose or in the absence of laser projections has to be recorded. The appropriate auxiliary patch is
determined using normalized cross correlation in Fourier domain [70] using the original patch and
the auxiliary image. The patch is further refined using a homography transformation estimated by
enhanced correlation coefficient maximization [71] (Figure 8b). Potential discrepancies caused by
the changes in the environment between the acquisitions of the two images, are further reduced
using histogram matching. Once estimated, the texture is removed from the original patch to
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reduce the impact of the texture on the laser beam spots. A low-pass filter further reduces noise
and the effect of other artifacts (e.g., image compression), before detection using color thresholding
(e.g., red color) in the HSV (Hue, Saturation, and Value) color space (Figure 8d). Pixels with low
saturation values are discarded as hue cannot be reliably computed. The remaining pixels are further
filtered using mathematical morphology (opening operation). The final laser spots are selected by
connected-component analysis (Figure 8e).

Once the effects of the scene texture have been eliminated, the highest intensity point may
be assigned to the laser beam center. In our procedure, the beam luminosity is characterized by
the V channel of the HSV image representation. Figure 8f,g depicts the estimate of the laser beam
luminosity with and without texture removal. Our proposed texture removal step clearly recovers
the characteristic shape of the beam, with radially decreasing intensity from the center. Fitting a 2D
Gaussian distribution to each laser spot allows us to estimate the center of the beam, assuming a 95%
probability that the center falls within the top 20% of the luminance values (Figure 8h).

4.2. Uncertainty

Given that the estimation of the laser center is based on color information, it is important to
consider the effect of image noise. Depending on the particularities of the image set, image noise is
the result of the combined effects of sensor noise, image compression, and motion blur, among others.
In our approach, the image noise is characterized by comparing the same area in two images taken
within a short time interval (e.g., time between two consecutive frames), where the sensed difference
can be safely attributed to image noise rather than an actual change in the environment.

For a randomly selected image from dataset FPA, the relation between assumed image noise
(pixel-wise difference of intensities) and pixel intensities per color channel is depicted in Figure 9a,
with the histogram of differences shown in Figure 9b. The results clearly illustrate a lack of correlation
between image noise and pixel intensity levels or color channels as well as the fact that the noise
can be well described by a Gaussian distribution. Furthermore, the analysis of 52 images from
both datasets (FPA and AUTT28), acquired at a wide range of camera–scene distances and locations,
in which the image noise was approximated by Gaussian distribution, indicating that the distribution
of noise remains bounded regardless of the dataset or camera–scene distance (Figure 9c). While it is
worth noting that the motion blur will be increasingly noticeable in images acquired at closer ranges,
the analyzed range of distances is representative of the ones used for the evaluation presented in the
following sections.
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Figure 9. Characterization of image noise using an image from the FPA dataset: (a) image noise
vs. pixel intensity, (b) distribution of noise per color channel and (c) standard deviation of estimated
image noise for a series of images from multiple datasets and camera–scene distances, color-coded by
the color channel.
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To obtain a final estimate of confidence levels of detection, the uncertainty of image intensities are
propagated through the laser detection process using MC simulation. At each iteration the noise is
added independently to each pixel before the described laser spots detection. The iterations yield a set
of independent detections, each characterized by a Gaussian distribution (Figure 8h). The final laser
spot detection is subsequently obtained by determining an equivalent Gaussian using the Unscented
Transform [72] to make this process less computationally expensive. If the laser is not detected in
more than 80% of iterations, the detection is considered unstable and discarded. A set of laser spot
detections obtained by a MC simulation is shown in Figure 10, together with the final joint estimation.
Red and green ellipses represent 66% and 95% confidence levels for independent detections, while blue
and cyan indicate the final (combined) uncertainty.

Figure 10. Examples of detected laser spot with uncertainty estimated through MC simulation for
image shown in Figure 8. Individual detections and uncertainties are depicted with blue dots and
red/green ellipses, while final uncertainty estimate is blue and cyan.

5. Dataset

During the SUBSAINTES 2017 cruise (doi: 10.17600/17001000) [43] extensive seafloor imagery
was acquired with the ROV VICTOR 6000 (IFREMER) [73]. The cruise targeted tectonic and volcanic
features off Les Saintes Islands (French Antilles), at the same location as that of the model published in
an earlier study [9], and derived from imagery of the ODEMAR cruise (doi: 10.17600/13030070).
One of the main goals of this cruise was to study geological features associated with a recent
earthquake—measuring the associated displacement along a fault rupture—while expanding a
preliminary study that presented a first 3D model where this kind of measurement was performed [9].
To achieve this, the imagery was acquired at more than 30 different sites along ∼20 km, at the base
of a submarine fault scarp. This is, therefore, one of the largest sets of image-derived underwater 3D
models acquired with deep sea vehicles to date.

The ROV recorded HD video with a monocular camera (Sony FCB-H11 camera with corrective
optics and dome port) at 30Hz, and with a resolution of 1920× 1080 px (Figure 11). Intrinsic camera
parameters were determined using a standard calibration procedure [74] assuming a pinhole model
with the 3rd degree radial distortion model. The calibration data was collected underwater using
a checkerboard of 12× 8 squares, with identical optics and camera parameters as those later used
throughout the entire acquisition process. The final root mean square (RMS) re-projection error of the
calibration was (0.34 px, 0.30 px). Although small changes due to vibrations, temperature variation,
etc. could occur, these changes are considered too small to significantly affect the final result.

Onboard navigation systems included a Doppler velocity log (Teledyne Marine Workhorse
Navigator), fibre-optic gyrocompass (iXblue Octans), depth sensor (Paroscientific Digiquartz), and a
long-range USBL acoustic positioning system (iXblue Posidonia) with a nominal accuracy of about 1%
of the depth. As the camera was positioned on a pan-and-tilt module lacking synchronization with the
navigation data, only the ROV position can be reliably exploited.
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(a) (b)

Figure 11. (a) ROV VICTOR 6000 (IFREMER) [73]. (b) Enlarged camera and laser system.

To date, 3D models have been built at more than 30 geological outcrops throughout the
SUBSAINTES study area. Models vary in length between ∼10 m and ∼300 m horizontally, and extend
vertically up to 30 m. Here we select two out of the 30 models (FPA and AUTT28), representative
both of different survey patterns and spatial extents and complexity. Concurrently, evaluation data
were collected with the same optical camera centered around a laser scaler consisting of four laser
beams. For both selected datasets, numerous laser observations were collected, ensuring data spanning
throughout the whole area. This enabled us to properly quantify the potential scale drifts within
the models.

5.1. FPA

The first model (named FPA), extends laterally 33 m and 10 m vertically, and corresponds to a
subvertical fault outcrop at a water depth of 1075 m. The associated imagery was acquired in a 10 min
51 s video recording during a single ROV dive (VICTOR dive 654). To fully survey the outcrop, the ROV
conducted multiple passes over the same area. In total, 218 images were selected and successfully
processed to obtain the final model shown in Figure 12. The final RMS re-projection errors of BA
using different strategies are reported in Table 1. As expected, the optimizations using solely visual
information and incremental approach are able to achieve lower re-projection errors, which, however,
is not sufficient proof of an accurate reconstruction.

Figure 12. Textured 3D model of FPA area.
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Table 1. Final RMS re-projection error (in pixels) achieved for the reconstructions of the FPA and
AUTT28 models using all four strategies.

FPA AUTT28

Global SfM w/Similarity T. 0.42 0.44
Incremental SfM w/Similarity T. 0.37 0.36
Global SfM w/multiobjective BA 0.49 0.74
Incremental SfM w/multiobjective BA 0.44 0.56

5.2. AUTT28

The second model (named AUTT28), shown in Figure 13, is larger and required a more complex
surveying scenario, as is often encountered in real oceanographic cruises. Initially, the planned area of
interest was recorded during VICTOR dive 654. Following a preliminary onboard analysis of the data,
a vertical extension of the model was required, which was subsequently surveyed during VICTOR
dive 658. This second survey also partially overlapped with the prior dive, with overlapping images
acquired at a closer range and thus providing higher textural detail. The survey also included a
long ROV pass with the camera nearly parallel to the vertical fault outcrop, an extremely undesirable
imaging setup. This second 3D model is the largest constructed in this area, covering a sub-vertical fault
scarp spanning over 300 m laterally and 10 m vertically, with an additional section of approximately
30 m in height from a vertical ROV travel. This model is thus well suited to evaluate scaling errors
associated with drift as it includes several complexities (survey strategy and geometry, multiple dives,
extensive length and size of the outcrop). After keyframe selection, 821 images were used out of a
combined 1 h 28 min and 19 s of video imagery to obtain reconstructions with the RMS re-projection
error, as reported in Table 1.

Figure 13. Textured 3D model of AUTT28 area.

5.2.1. Multiobjective BA Weight Selection

Models built with a priori navigation fusion through the multiobjective BA strategy require
a weight selection which represents the ratio between re-projection and navigation fit errors.
As uncertainties of the two quantities are in different units and, more importantly, not precisely
known, this selection must be done either empirically or automatically. Due to the tedious and
potentially ambiguous trial-and-error approach of empirical selection, the weight was determined
using L-Curve analysis.

The curve, shown in Figure 14a, uses the FPA dataset and 100 BA repetitions with weights λ

ranging from 0.18 to 18. As predicted, the shape of the curve resembles an “L”, with two dominant
parts. The point of maximum curvature is determined to identify the weight with which neither
objective has dominance (Figure 14b). As noise levels of the camera and navigation sensors do not
significantly change between the acquisition of different datasets, the same optimal weight λ = 2.325
was used in all our multiobjective optimizations.
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Figure 14. (a) L-Curve for FPA dataset. (b) Curvature of L-Curve (shown on a smaller segment of
weights for bigger clarity).

Given the heuristic nature of the optimal weight determination, it is important to evaluate the
effects of the selection uncertainty on the final results. Figure 15 depicts the maximum difference in
scale between the reconstructions computed using different weights and the reconstruction obtained
with the optimal weight. The maximum expected scale differences were determined by comparing
the Euclidean distances between the cameras of various reconstructions. The scale of the model is not
expected to change if the ratio between the position of cameras does not change. The results show that
the scale difference increases for an approximately 1% with the increment or decrement of λ by a value
of one. Given that the optimal λ can be determined with the uncertainty of less than 0.1, as illustrated
in Figure 14b, it can be assumed that the uncertainty in the determination of optimal weight has no
significant effect on the final result.
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Figure 15. Maximum expected scale difference compared to the results obtained using the optimal
weight λ (shown over a smaller range of weights for clarity).

5.2.2. Multisurvey Data

As is often the case in real cruise scenarios, the data for the AUTT28 model was acquired in
multiple dives (Figure 16). When combining the data, it is important to consider the consequences of
the merger. Optical imagery can be simply combined, given the short period of time between the two
dives, in which no significant changes are expected to occur in the scene. In contrast, the merging of
navigation data may be challenging; ROV navigation is computed using smoothed USBL and pressure
sensor data, with expected errors in acoustic positioning being ~1% deep. As data was collected
at roughly 1000 m depth, the expected nominal errors are ∼ 10 m, or more in areas of poor acoustic
conditions (e.g., close to vertical scarps casting acoustic shadows or reverberating acoustic pings).
These errors, however, do not represent the relative uncertainty between nearby poses, but rather a
general bias of the collected data for a given dive. Although constant within each dive, the errors can
differ between the dives over the same area, and are problematic when data from multiple dives are
fused. Models built with data from a single dive will only be affected by a small error in georeferencing,
while multisurvey optimization may have to deal with contradicting navigation priors; images taken

80
Chapter 4. Scale Accuracy Evaluation of Image-Based 3D Reconstruction

Strategies Using Laser Photogrammetry



Remote Sens. 2019, 11, 2093 18 of 32

from identical positions would have different acoustic positions, with offsets of the order of several
meters or more.

This is overcome by introducing an additional parameter to be estimated, in the form of a 3D
vector for each additional dive, representing the difference between USBL-induced offsets. Each vector
is estimated simultaneously with the rest of the parameters in the SfM. For the case of AUTT28,
the offset between the dives 654 and 658 was estimated to be −2.53 m, 1.64 m, and −0.02 m) in the x
(E-W), y (N-S), and z (depth) directions, respectively. The disproportionately smaller z offset is due to
the fact that the pressure sensor yields inter-dive discrepancies that are orders of magnitude smaller
than the USBL positions.

Figure 16. Navigation data for AUTT28 model merged from multiple dives (654-blue; 658-red).

5.3. Laser Calibration

Normally, the calibration process consists of the initial acquisition of images containing clearly
visible laser beam intersections with a surface at a range of known or easily determined distances (e.g.,
using a checkerboard pattern). The 3D position of intersections, expressed relative to the camera, can be
subsequently computed through the exploitation of the known 2D image positions and aforementioned
camera–scene distances. Given a set of such 3D positions spread over a sufficient range of distances,
the direction of the laser can be computed through a line-fitting procedure. Finally, the origin is
determined as the point where the laser line intersect the image plane. Given the significant refraction
at the air–acrylic–water interfaces of the laser housing, the images used in the calibration process must
be collected under water.

In our case, the evaluation data was collected during multiple dives separated by several days,
and with camera and lasers being mounted and dismounted several times. While the laser-scaler
mounting brackets ensured that the laser origins remained constant, the laser directions with respect
to the camera changed slightly with each installation. Due to operational constraints on the vessel,
it was not possible to collect dedicated calibration data before each dive. However, given that the
origins of the lasers are known a priori and remained fixed throughout the cruise, the only unknown
in our setup is the inter-dive variation of the laser directions (relative to the camera and with respect
to each other). The fact that independent laser directions do not encapsulate scale information (only
the change of direction on an arbitrary unit) enables us to overcome the lack of dedicated calibration
images and alternatively determine the set of points lying on each laser beam using images collected
over the same area for which a 3D model has been constructed.

As our interest is only in the laser directions, the points used in the calibration can be affected by
an arbitrary unknown scale factor, as long as this factor is constant for all of the points. Therefore, it is
important to avoid models with scale drift, or to use data from multiple models with different scales.
For each of the images used in the calibration, the camera was localized with respect to the model
by solving an PnP problem [65] as in the FUM and PCM and additionally refined through BA. Each
of the individual laser points were then determined by a ray-cast process and expressed in the
camera coordinate system, before the direction of each of the lasers was determined by line-fitting.
To maximize the conditioning of line-fitting, the selection of a model with the widest distance range
of such intersection points and the smallest scale drift is important. This is the case for the AUTT28
model built using Global SfM and multiobjective BA, selected here. The global nature of the SfM
and internal fusion of navigation data is predicted to most efficiently reduce a potential scale drift.
As noisy laser detections are used to obtain the 3D points utilized in the calibration, laser spot
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uncertainties were propagated to obtain the associated uncertainty of the estimated laser direction.
A MC simulation with a 1000 repetitions was used. Together with the a priori known origin of the
laser, this calibration provides us with all the information needed to perform scale estimation using
the fully-unconstrained method.

The evaluation data were collected on dives 653, 654, and 658. As no camera and laser
dismounting/mounting occurred between dives 653 and 654, there are two distinct laser setups:
one for dives 653 and 654 and one for dive 658. Figure 17a depicts all laser intersections with the scene
(for both AUTT28 and FPA models), as well as the calibration results, projected onto an image plane.
Intersections detected in 3D model AUTT28 are depicted in black, and those from 3D model FPA are
shown in orange. Similarly, the squares and circles represent dives 653/654 and dive 658, respectively.
The projections of the final laser beam estimations are presented as solid and dotted lines. The figure
shows a good fit of estimated laser beams with the projections of the intersections, both in the AUTT28
and FPA models.
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Figure 17. (a) Calibration results for dives 653/654 and 658. Solid and dotted lines represent the
projections of estimated laser beams on the image plane, while projected laser intersections with the
scene are depicted as squares/circles. (b) Histogram of perpendicular distances between the projected
laser beams and projected laser intersections for the two datasets and dives.

The distributions of calibration errors, measured as perpendicular distances between the calibrated
laser beams and the projected laser intersections with the scene, are depicted in Figure 17b, and the RMS
errors are listed in Table 2. The adequate fit to the vast majority of AUTT28 points (RMS error < 0.6px)
shows that the model used in the calibration had no significant scale drift. Furthermore, the fitting of
the FPA related points (RMS error < 0.8px), which were not used in the calibration and are affected by
a different scale factor, confirms that the calibration of laser directions is independent of the 3D model
used, as well as of different scalings. The broad spread of the black points relative to the orange ones
also confirms that the choice of the AUTT28 over the FPA model was adequate for this analysis. Lastly,
it is worth reiterating that the data from all the models cannot be combined for calibration, as they are
affected by different scale factors.

Table 2. RMS calibration errors (in pixels) measured as perpendicular distances between the projected
laser beams and laser intersections with the scene for the two datasets and dives.

Dataset FPA AUTT28

Dive 653/654 658 654 658

RMSE [px] 0.66 0.79 0.60 0.55
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6. Results

As the accuracy of the measurements performed in 3D models for the purposes of quantitative
studies (precise measurement of distances and volumes, etc.) depends on the strategy used for
image-based 3D reconstruction, in addition to data quality itself, four of the most widely used
approaches were evaluated:

A) Incremental SfM with a posteriori navigation fusion.
B) Global SfM with a posteriori navigation fusion.
C) Incremental SfM with multiobjective BA navigation fusion.
D) Global SfM with multiobjective BA navigation fusion.

The models for each of the two datasets (FPA and AUTT28) were built using each of the
four strategies, and subsequently evaluated on multiple segments spread across the observed
area. Using the model evaluation framework and laser spot detection method presented above,
the scale accuracy and its associated uncertainties were automatically estimated using more than 550
images. To minimize the effects of possible false laser spot detections, only images with at least two
confidently detected laser points were used. Furthermore, any images exhibiting excessive variation
of the estimated scale between the individual lasers were discarded, as scale can be assumed to be
locally constant.

6.1. Scale Accuracy Estimation

During accuracy evaluation, the scale error εs is estimated for each image independently. The final
per-image scale error and its uncertainty are estimated through a MC simulation, with input variables
(features, laser spot locations and laser calibration) sampled according to their probability distributions.
The repeated computation with noisy data thus results in an equal number of final scale error
estimates per laser. Figure 18 shows one example of such an estimation, together with the selected
intermediate results of the evaluation process. As each MC iteration encapsulates the complete
evaluation process (image localization, ray-casting, origin estimation, and scale error evaluation),
intermediate distributions presented in Figure 18 are only shown for illustration, and are not used as
distribution assumptions in the process itself.

Figure 18. Intermediate results of a scale estimation procedure.

To satisfactorily represent the complexity of the process, 5000 iterations were used for each
estimation. Figure 19 shows the evolution of the estimated scale error with associated uncertainty with
increasing number of samples. After 500 iterations, the errors exhibit only minor fluctuations, and
after 1500 iterations there is no noticeable difference. Hence, our selection of 5000 iterations is more
than adequate to encapsulate the distribution of noise.
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To demonstrate the advantages of our fully-unconstrained approach compared to previously
available methods or our partially-constrained method, scale estimates obtained for each laser/laser
pair are compared. Given the nonalignment of lasers with the optical axis of the camera, the majority
of previous image-scaling methods (e.g., [24,25]) are not applicable. The only available option is thus
a simplified approach where the Euclidean distance between a pair of 3D points (laser intersection
points with the scene) is assumed to be the actual distance between the laser pair.

Results using different lasers (Figure 20) show that the FUM method produces the most consistent
results. This is expected as the estimation process considers both individual laser directions and
the geometry of the scene. The effect of scene geometry is clear when Figure 20a,b are compared.
The slightly slanted angle together with the uneven geometry of the scene causes a large variation in the
scale error estimates by the individual laser pairs. Similarly, the comparison of Figure 20b,c shows the
effect of an inaccurate assumption of laser parallelism. This error depends on the camera–scene distance
as shown in Figure 21. It is likely that the overestimation of laser pair 3–4 and the underestimation
of other laser pairs can be explained by the use of oversimplified laser geometry. To validate this
assumption, the results of the partially-constrained method were corrected by the expected errors
(at d = 2m) induced by disregarding nonparallelism of laser beams (Figure 20d). While the result is
nearly identical to that from a FUM method (Figure 20c), we note that the scale error in Figure 20c
is computed for each laser individually, while the partially-constrained method considers laser pairs
instead, and hence there are minor discrepancies.

Figure 19. Evolution of scale error estimate with increasing number of MC iterations.
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Figure 20. Estimated scale error per laser using different methods of computation: (a) Simplistic,
(b) partially-constrained method, (c) fully-unconstrained method, and (d) partially-constrained method
corrected for errors induced by nonparallelism of laser beams.
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Figure 21. Error induced in scale error estimate due to disregarding nonparallelism of laser beams.

6.2. FPA

The accuracy of the FPA model was analyzed using 148 images (432 lasers). To represent the
results concisely, measurements are grouped into 7 segments based on their model position (Figure 22
and Table 3). To ensure that the scale of the model did not vary within each segment, the maximum
distance of any laser detection to the assigned segment center was set to 1 m.

Figure 22. 3D reconstruction with the distribution of laser observations per segment for FPA area.

Table 3. Distribution of laser observations per segment for FPA area.

A B C D E F G

# Images 12 6 39 40 12 24 15
# Lasers 29 12 137 103 33 53 36

Laser distance (min/max) [m] 3.23/3.29 4.44/4.46 3.03/3.50 3.58/4.01 3.59/3.61 3.19/3.37 3.19/3.79

FPA covers a relatively small area, and is imaged with multiple passes, thus providing redundancy
that promotes model accuracy. Hence, it is expected to have only minor variations in scale error
between areas. Figure 23 depicts the distribution of estimated scale errors for all four methods of 3D
model construction. The comparison of results (Table 4) shows that accuracy does not significantly
differ between them. The scale error varies between −1% and −5% with estimated uncertainties of
approximately ±3%. The highest errors occur at the borders of the model. As expected, uncertainty is
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closely related to the camera–scene distance, as small uncertainties in the laser direction translate to
larger discrepancies at larger distances.
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Figure 23. Estimated scale errors per segment for model FPA: (a/b) Global/Incremental SfM with
similarity transformation navigation fusion. (c/d) Global/Incremental SfM with multiobjective BA
navigation fusion.

Table 4. Estimated scale errors (%) per segment for different reconstructions of FPA area (values
represent mean value with standard deviation).

A B C D E F G

Global SfM w/Similarity T. −3.6± 2.9 0.9± 3.2 −1.1± 1.9 −1.2± 3.4 −1.4± 2.8 −4.0± 2.9 −4.0± 3.4
Incremental SfM w/Similarity T. −3.6± 2.9 0.9± 3.2 −1.0± 1.9 −1.2± 3.4 −1.4± 2.8 −4.0± 2.9 −4.0± 3.5
Global SfM w/multiobjective BA −4.7± 2.8 0.7± 3.2 −1.3± 1.9 −1.2± 3.4 −1.4± 2.8 −3.1± 2.9 −2.2± 3.5
Incremental SfM w/multiobjective BA −4.7± 2.9 0.7± 3.2 −1.3± 1.9 −1.2± 3.4 −1.4± 2.8 −3.2± 2.9 −2.1± 3.5

6.3. AUTT28

For model AUTT28, the evaluation data (images containing projected laser spots) were gathered
during VICTOR dives 654 and 658, after the video acquisition of data used for 3D model creation.
A total of 432 images with 1378 laser measurements were selected and grouped into 6 distinct sections
throughout the 3D model, as shown in Table 5 and Figure 24. Dive 654 covered a longer vertical path
(blue dots), while dive 658 (red dots) surveyed an additional horizontal segment together with parts
of the area already viewed using dive 654. The higher density of red points indicates that the ROV
observed the scene at a closer range during dive 658, requiring a higher number of images to obtain
the necessary overlap compared to dive 654.

Table 5. Distribution of laser observations per segment for AUTT28 area.

A B C D E F

# Images 30 47 20 46 261 28
# Lasers 97 169 51 165 812 84

Laser distance (min/max) [m] 1.95/2.25 2.13/2.67 2.90/3.36 3.21/3.89 1.70/4.14 3.63/3.79
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Figure 24. 3D reconstruction with the distribution of laser observations per segment for AUTT28 area.
Blue and red dots correspond to VICTOR dives 654 and 658.

The comparison of results (Table 6) shows that the models built using a posteriori navigation
fusion (Figure 25a,b) are significantly impacted by scale drift (∼15%), and that this impact is nearly
identical regardless of the use of global or incremental SfM approaches. The gradual scale sliding
observed is caused by inherent scale ambiguity of the two-view image pair geometry when BA is solely
dependent on visual information. While this might not have been as obvious in the previous case, the
long single pass of the camera, as performed in dive 654, introduces in this particular model numerous
consecutive two-view image pairs, magnifying the scale drift. As shown in Figure 25c,d, additional
constraints in the BA (e.g., navigation data) reduce ambiguity and, ultimately, nearly eliminate scale
drift. Overall, scale error of the model built with global SfM using multiobjective BA is less than 1%
with nearly zero scale drift, while a model built with incremental SfM approach showed a 2% scale
drift along its 300 m length. It should be noted that the observed difference in scale estimates are
within the uncertainty levels of the estimations, and therefore inconclusive.
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Figure 25. Estimated scale errors per segment for model AUTT28: (a/b) Global/Incremental SfM with
similarity transformation navigation fusion. (c/d) Global/Incremental SfM with multiobjective BA
navigation fusion.
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Table 6. Estimated scale errors (%) per segment for different reconstructions of AUTT28 area (values
represent mean value with standard deviation).

A B C D E F

Global SfM w/ Similarity T. −6.4± 2.3 −6.3± 1.9 −4.5± 2.4 −1.1± 2.0 2.1± 2.2 9.2± 2.9
Incremental SfM w/Similarity T. −6.3± 2.3 −6.1± 1.9 −4.1± 2.5 −0.8± 2.0 2.3± 2.3 9.3± 2.8
Global SfM w/multiobjective BA 0.7± 2.4 0.7± 2.0 0.8± 2.6 −0.2± 2.0 1.7± 2.3 0.9± 2.6
Incremental SfM w/multiobjective BA −0.6± 2.4 −0.1± 2.1 1.2± 2.6 2.0± 2.2 1.7± 2.3 0.6± 2.7

6.3.1. Multiobjective BA vs. Similarity Transformation Navigation Fusion

The effects of different navigation fusion strategies are further demonstrated through the
comparison of two reconstructions obtained using Global SfM with multiobjective BA and with
similarity transformation (Figure 26). The reconstructions diverge on the outer parts of the model,
consistent with a “doming” effect. A broad-scale systematic deformation produces a reconstruction
that appears as a rounded-vault-distortion of a flat surface. This effect is a result of applying a rigorous
re-projection error minimization to a loosely interconnected longer sequence of images taken from
a nearly parallel direction, combined with slight inaccuracies in modeling of the radial distortion
of the camera [14]. Multiobjective BA is able to reduce the effect by introducing the additional
non-vision-related constraints, while the similarity transformation, with its preservation of angles
between any three points and subsequent shape preservation, is not adequate for such corrections of
the model deformations.

Figure 26. Comparison of navigation fusion strategies used in the reconstruction of 3D models.

6.3.2. Multisurvey Data Fusion

As explained in Section 5.2.2, the multimission data fusion can cause contradictory navigation
priors during optimization. We address this by expanding the optimization problem with an additional
3D vector, representing the possible USBL offset between the recorded navigation data of the two
dives. To examine the effects of this offset compensation on model construction, an additional model
was constructed using raw navigation data (i.e., without offset compensation). Figure 27 depicts errors
in the camera pose estimates with respect to their navigation priors, and shows a concentration of
errors in areas imaged during both dives (Figure 16), where navigation priors of the two dives are
incoherent. The errors dramatically decrease with the introduction of an offset, yielding an improved
fitting solution. Alternatively, incoherence can cause model distortions to compensate for contradicting
priors, as shown by abrupt changes of scale (area D in Figure 28).
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Figure 27. Comparison of the effects of multisurvey data fusion strategies on the estimated camera path.
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Figure 28. Estimated scale errors per segment for AUTT28 model built with Global SfM with
multiobjective BA navigation fusion without an additional offset vector.

6.3.3. Scale Error Estimation Methods

To recover high-resolution and precise information from 3D models (lengths, areas, and volumes)
it is important to use the most accurate method. As the nonalignment of lasers with the optical axis of
the camera prevents the use of previous image-scaling methods (e.g., Pilgrim et al. [24]; Davis and
Tusting [25]), two other methods could be used instead. Minor misalignments of laser scalers may
be discarded for simplicity or lack of sufficiently distributed calibration data. In such cases, both our
partially-constrained approach and the simplified direct 3D method, that assumes an equivalence of
the Euclidean distance between the points of laser intersections and the beams themselves, could be
used for the evaluation.

For this comparison the model with least scale drift was selected (Global SfM and multiobjective
BA navigation fusion) to emphasize the effects of different methods on the results. Furthermore,
as both the simplistic direct 3D and partially-constrained methods assume laser-pair parallelism,
the analysis of these two methods was performed on data consisting of only laser pairs that were the
closest to being parallel (Figures 29a and 30a), as well as on the complete dataset (Figures 29b and 30b),
to show the effect that nonparallelism of laser beams may have on the different methods.
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Figure 29. Comparison of estimated scale errors computed with fully-unconstrained and simplistic
direct 3D method using (a) only nearly-parallel laser pairs and (b) all laser pairs.

As expected, in comparison to the simplistic approach (orange) (Figure 29a), our method (green) is
significantly less impacted by the discrepancies in camera–scene distances at the two laser intersections
caused by the deviation of camera–scene angle from perpendicularity. The spread of the estimated
values within each segment for the direct approach is directly correlated with the span of camera–scene
distances (most notable in area E in Figure 29). Although varying distances themselves do not play a
role, they do however increase the probability of both having deviating camera-surface angles, and of
violating the surface flatness requirement, which both result in discrepancies in camera–scene distances
between the two laser points.

In contrast, the analysis of the results of the partially-constrained approach (Figure 30a) confirms
that this method is unaffected by changes of camera angle and scene roughness. As expected, the
results in sections D, E and F are nearly identical, with discrepancies in sections A, B and C. Sections
A, B, and C were evaluated using data collected during dive 658, and D, E, and F were evaluated
during dive 654; we attribute this discrepancy to the marginally larger error in nonparallelism of the
laser configuration used during dive 658 compared to that of dive 654. This is clearly shown when
the results are computed on the data from all laser pairs (Figure 30b), as nonparallelism of different
laser pairs causes significant variation in the results. Segments acquired at closer ranges (A, B, and C),
and therefore less affected by the errors in parallelism, have smaller errors than those of segments D
and F, which are evaluated at larger distances. While similar multimodal distributions appear in the
results of the simple direct 3D method, the clear multimodal peaks are suppressed by the effects of
camera-surface angles and roughness of the surface model.
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Figure 30. Comparison of estimated scale errors computed with fully- and partially-constrained
method using (a) only nearly-parallel laser pairs; (b) all laser pairs.
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7. Discussion

The comparison between the results show that the fully-unconstrained method is more consistent
and accurate than the two other approaches, i.e., partially-constrained and simplistic direct 3D method.
We note that by limiting the data to parallel laser pairs (dive 654), the partially-constrained method
produced similar results. Therefore, the PCM approach can be used when the relation between parallel
lasers and the camera is not known, opening up its use to numerous scenarios where strict rigidity
between the camera and lasers is not maintained or determined (e.g., legacy data).

The effects of different reconstruction strategies were analyzed using two distinct survey scenarios.
The first model (FPA dataset) was acquired with multiple passes over the same areas. Overlap of
nonsequential images restricted the potential solutions of the optimization problem to a nearly identical
solution regardless of the strategy (SfM or navigation fusion). In a second model (AUTT28 dataset),
data were acquired during two separate surveys, and include a long single pass with the camera
oriented nearly parallel to a vertical wall. The results demonstrate that surveys where sequential
images are weakly connected are prone to produce broad-scale deformation (doming effect) in the
final model. Rigorous minimization of the re-projection error, combined with the projective scale
ambiguity, distorts the model, and can lead to further drift in the scale estimate. While the navigation
fusion strategy did not play a role in the first model (FPA), the results of this second model (AUTT28)
demonstrate the advantage of using multiobjective BA navigation fusion to process data with more
complex survey patterns. Furthermore, the introduction of additional vectors in the optimization
of multisurvey problems successfully accounted for the offset changes present in the underwater
USBL-based navigation data, and thus minimize the effect of contradicting navigation priors.

8. Conclusions

This study presented a comprehensive scale error evaluation of four of the most commonly used
image-based 3D reconstruction strategies of underwater scenes. This evaluation seeks to determine
the advantages and limitations of the different methods, and to provide a quantitative estimate of
model scaling, which is required for obtaining precise measurements for quantitative studies (such as
distances, areas, volumes and others). The analysis was performed on two data sets acquired during a
scientific cruise (SUBSAINTES 2017) with a scientific ROV (VICTOR6000), and therefore under realistic
deep sea fieldwork conditions. For models built using multiobjective BA navigation fusion strategy,
an L-Curve analysis was performed to determine the optimal weight between competing objectives of
the optimization. Furthermore, the potential offset in navigation when using USBL-based positioning
from different dives was addressed in a representative experiment.

Building upon our previous work, the lack of readily available measurements of objects of known
sizes in large scale models was overcome with the fully-unconstrained method, which exploits laser
scaler projections onto the scene. The confidence level for each of the scale error estimates was
independently assessed with a propagation of the uncertainties associated with image features and
laser spot detections using a Monte Carlo simulation. The number of iterations used in the simulation
to satisfactorily represent the complexity of the process was validated through the analysis of the final
estimate behavior.

As each scale error estimate characterizes an error at a specific area of the model, independent
evaluations across the models enable efficient determination of potential scale drifts. To obtain a
sufficient number of accurate laser measurements, an automatic laser spot detector was also developed.
By mitigating the effects of scene texture using an auxiliary image, a much larger number of accurate
detections was possible, even with greatly attenuated laser beams. The requirement of having
laser spots either not present or in at different position in the auxiliary image is easily satisfied
in video acquisitions, while an additional image has to be recorded if still images are collected.
Furthermore, the recovery of characteristic shapes of laser spots with radially decreasing intensities
enabled additional determination of the uncertainty of laser spot detections. In total, the scale errors
have been evaluated on a large set of measurements in both models (432/1378) spread across them.
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Finally, the comparison of results obtained using different reconstruction strategies were
performed using two distinct survey scenarios. In surveys comprising a single dive and with multiple
overlapping regions, the choice of reconstruction strategies is not critical, since all strategies perform
adequately well. However, in more complex scenarios there is a significant benefit from using
optimization including the navigation data. In all cases, the best reconstruction strategies produced
models with scale errors inferior to 5%, with errors on the majority of each model area being around 1%.
Acquisition of calibration data (points collected over a large range of distances) is indeed critical.
Depending on laser setup, a modification of laser geometry is possible (e.g., during the process of
diving due to pressure changes). As minor discrepancies in parallelism can cause significant offsets at
the evaluating distance, performing a calibration in the field is desirable (e.g., approach of the scene
illuminated with laser beams). Furthermore, our results also indicate and justify the importance of
collecting a multitude of evaluation data at different locations and moments during the survey.
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5
Mission-time 3D Reconstruction

with Quality Estimation

In this chapter we present the results of the collaboration between University of Girona (UdG) and
the ARC Centre of Excellence for Robotic Vision at the Australian National University (ANU),

through the research stay of the main author of this thesis. In this publication we propose a novel
SfM-based system capable of producing a globally consistent 3D reconstruction together with an
estimate of its uncertainty in mission-time or shortly after. The system integrates an incremental
NLS solver for the BA problem, as well as a new method for fast covariance recovery proposed in
another collaborative work, and an outlier rejection scheme based on a dual-map approach. The
published work received the Norman Miller Prize for Best Student Poster Award at the MTS/IEEE
OCEANS 2017 Conference.
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Abstract 

Accurate and detailed 3-dimensional (3D) models of the underwater environment are becoming 
increasingly important in modern marine surveys, since they convey immense information that can 
be easily interpreted. Techniques such as bundle adjustment (BA) and structure from motion (SfM), 
which jointly estimate sparse 3D points of the scene and camera poses, have gained popularity in 
underwater mapping applications. However, for large-area surveys these methods are 
computationally expensive and not intended for online application. This paper proposes an SfM 
pipeline based on solving the BA problem in an incremental and efficient way. Furthermore, the new 
system can provide not only the solution of the optimization (camera trajectory along time and the 
3D points of the environment), but also the estimate of the uncertainty associated with the 3D 
reconstruction. This system is able to produce results in mission-time, i.e. while the robot is in the 
water or very shortly afterwards. Such quick availability is of great importance during survey 
operations as it allows data quality assessment in-situ, and eventual replanning of missions in case of 
need. 
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6
Results and Discussion

In this chapter the main results of the thesis are discussed. Section 6.1 provides a summary
of the completed work. Next sections discuss the results obtained along the road map of the

thesis: Sections 6.2 and 6.3 discuss and present additional details of the pre-processing steps we
often utilized in our processing pipeline. The main contributions of our work are commented
in section 6.4 regarding the proposed scale estimation framework, in section 6.5 concerning the
proposed laser spot detection method together with additional results showing the applicability of
the approach on the legacy data sets, and in section 6.6 detailing the calibration process undertook
in order to use the relevant data in the reconstruction strategy analysis discussed in section 6.7.
The multi-survey particularities observed in the analysis are further discussed in section 6.8 with
the presentation of additional results from a different scientific research cruise. Section 6.9 finally
comments the results regarding the mission-time 3D reconstruction system developed during the
research stay at the ANU in Canberra, Australia. Lastly, section 6.10 presents a brief overview
of a selected subset of 3D models that have been built throughout the duration of this thesis. In
order to avoid excessive repetition with the result sections of the publications of this compendium,
the reader is referred to the corresponding chapter where the detailed results can be found, and
we focus on providing additional insights and results where applicable.
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108 Chapter 6. Results and Discussion

6.1 Overview of completed work

The motivation for the development of this thesis was to improve the resources for the
creation of accurate image-based 3D reconstructions of hard-to-access underwater (GPS-
denied) environments that are subsequently to be used for a wide range of scientific pur-
poses. Driven by the objective of establishing a framework that is independent of a specific
robot platform, camera system and mission trajectory, numerous particularities as well as
the effects of the water medium on the quality and availability of data had to be considered.

The basic reconstruction steps, i.e. matching, sparse, dense, surface and texture recon-
struction, were supplemented by additional pre-processing steps of keyframe selection and
color correction to counteract the downgrading effects of the water medium on the images
(e.g. blurriness, low contrast), as described in the chapters 2 (section 3) and 4 (section 2).
The benefits of our proposed scheme for efficient subset selection are discussed in more
detail in section 6.2 with previously unpublished results, while the effects of image en-
hancement and color correction on the quality and final perception of the resulting models
are presented in section 6.3. By comparing several intermediate results of the reconstruc-
tion steps using a real data set, we show the many positive effects that color correction
has on the reconstruction process.

Depending on the area of application and the depth of the environment, the data to
be processed with our framework is usually collected either by a diver or with a remotely
operated / autonomous vehicle. Since optical sensing capabilities in science-focused explo-
rations are still predominantly limited to a single optical camera or at best asynchronous
camera systems (e.g. several GoPro cameras), the resulting models, derived from images
alone, can only be estimated up to an unknown scale [79, 104]. This makes them useless for
quantitative studies (e.g. precise measurement of distances, volumes, orientations, etc.).
In the case of robotic vehicles, where the navigation data is significantly noisier and more
prone to large spurious errors than in conventional air and terrestrial applications, the
fusion strategy in SfM becomes of paramount importance. While there is a growing body
of literature supporting the notion that small spatial scale image-based 3D underwater
reconstructions (on the order of meters) are accurate, there is an evident lack of such scale
accuracy evaluation of models produced on a larger scale (in the range of tens to hundreds
of meters, and often in deep-sea scenarios).

In our work we have addressed this issue in several steps. First, we proposed two
novel methods for the automatic scaling of SfM-based 3D reconstructions using commonly
available laser scalers, namely the fully unconstrained method (FUM) and the partially
constrained method (PCM). In the publication presented in chapter 3, we show that
the exploitation of the image information beyond the mere localization of the laser spots
allows these methods to overcome the limitations imposed by earlier laser photogrammetry
methods and thus to accurately estimate the scale of the model. Both methods have been
validated by a series of generated data sets based on a real 3D model of a hydrodynamic
underwater vent and their applicability in real scenarios has been proven by a data set
from the SUBSAINTES scientific cruise off Les Saintes Islands (in the French Antilles).

In order to use the above-mentioned scale estimation methods for scaling real models
used in quantitative studies as part of accurate metrology applications in such areas as
geology, biology, engineering, archaeology, etc. we have further extended our approach with
uncertainty characterization. Described in detail in chapter 4 (section 3), we proposed a
framework in which the confidence levels for each of the scale estimates are independently
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assessed by propagating the uncertainties of the inputs (image features and laser spot
detection) using a Monte Carlo (MC) simulation.

We took advantage of our participation in a scientific deep-sea cruise SUBSAINTES
(doi: 10.17600/17001000) in 2017, where we equipped a ROV both with the navigation
sensors (i.e. USBL, inertial measurement unit) and with a laser scaler, to obtain data for
an analysis of image-derived underwater 3D models. Since we were able to determine the
scale of the model by two approaches independently (i.e. scaling with laser scalers and by
navigation fusion), it was possible to perform a scale error analysis on large-scale models
of deep-sea underwater environments that had been built using navigation data as the
only source of scale information.

Considering that the evaluation framework we propose depends integrally on the ex-
traction of knowledge of the location and the associated uncertainty of the laser spots, we
developed an automatic method that can be robustly used on a large number of images.
This significantly reduced the very labor-intensive and error-prone nature of the process
when it is performed manually. Presented in chapter 4 (section 4), our method facilitates
the detection of the centers of the laser beams by taking into account the texture of the
scene. To the best of our knowledge, this is the first publication solving the problem of
determining the uncertainties of these detections based on the recovered characteristic
shapes of the laser spots. While the results of its use on two data sets collected during
the SUBSAINTES cruise are shown in the publication, section 6.5 contains, in addition
to a brief summary, new results of the processing of an unrelated legacy data set. This is
to further demonstrate the applicability of our method and its generalization capabilities
to other data sets.

The two methods of scale estimation (fully unconstrained method (FUM) and partially
constrained method (PCM)) presented here require the knowledge of certain aspects of
the geometry between the lasers and the camera, which may be logistically difficult to
obtain in a real application scenario. Motivated by this, we also addressed the alternative
possibilities of the laser scaler-camera calibration as a way of obtaining that required
information from the image data itself. In the case of the SUBSAINTES data, we exploited
the fact that the laser origins were known and showed that the orientation of the lasers
could be determined using data collected during the mission itself and with a 3D model
affected by an unknown scale. To account for the uncertainties in the detection of the laser
spot positions, we propagated them through the calibration process in order to obtain the
associated uncertainties of the final estimated laser directions. Chapter 4 (section 5.3)
explains this procedure in detail and presents the results that show the aforementioned
independence of the obtained laser directions from the scale of the model from which they
were calculated.

Finally, with the use of numerous measurements (detected laser spots) and the esti-
mated laser-camera calibration, we were able to perform a comprehensive analysis of the
most commonly used image-based 3D reconstruction strategies in the underwater commu-
nity. The selected strategies consisted of the combinations of incremental/global SfM and
the a priori / a posteriori use of navigation data. The advantages and limitations of the
different approaches were determined by analysing two distinct underwater survey scenar-
ios acquired during the SUBSAINTES cruise with a scientific ROV (VICTOR 6000). They
encapsulate realistic deep-sea field working conditions such as different survey strategies,
multiple dives and extensive outcrop lengths and sizes.

As part of the analysis, we also investigated some other important aspects of the
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image-based reconstruction process in underwater scenarios. For a priori (multiobjective
BA) navigation fusion strategy we reiterated and analysed the process of determining the
optimal weight, to model the ratio of the uncertainties of image localization and navigation
data. To avoid its potentially ambiguous determination process in our analysis, we used
L-Curve analysis to estimate the optimal weight between competing optimization goals.
In line with results in the literature, we showed that while the optimization process is
robust to small deviations from the optimal weight, this is no longer true for the case of
large deviations, which can cause errors of several percent for our data sets, thus rendering
the models unsuitable for scientific applications. The effects of combining data collected
in several surveys were also evaluated. We have shown that the introduction of additional
vectors in the optimization of such problems successfully takes into account the potential
offset in navigation when using USBL-based positioning from different dives. We further
confirm these claims by presenting the results of processing an unrelated data set acquired
during the MIDAS cruise in section 6.8. In this section, a similar navigation offset had to
be considered to facilitate the detection of changes between models of the same area.

While the work presented so far has addressed various steps to potentially mitigate
the effects of unfavourable water characteristics, the outcome of the reconstruction process
still depends, to a large extent, on the conditions and strategies applied in the acquisition
process itself. Since the computational requirements of the reconstruction phase dictate
its decoupling from the acquisition, especially in large-scale scenarios, it prevents active
feedback on the quality of the subsequent reconstruction directly at the time of data
acquisition. The immediate consequence is a high demand for careful mission planning
and redundant data acquisition, which often still does not prevent the reconstructions
from being of poor quality and possibly requiring costly additional missions in the same
area.

During my research stay at ANU in 2017 we addressed this issue by proposing a new
SfM system capable of estimating the trajectory and a sparse 3D representation of the
scene together with the associated uncertainties in mission time, i.e. while the robot is
in the water or shortly after. The proposed approach, presented in chapter 5, is able to
process large-scale 3D reconstructions in a robust and globally consistent way, exploiting
the incremental fashion of solving the BA problem and covariance recovery. We performed
and reported on an analysis of the proposed system as a whole and of the individual
methods for incremental processing and covariance recovery using a large-scale underwater
data set. The related publications [4, 6] received Best Paper Honorable Mention Award
at the International Conference on 3D Vision - 3DV 2017 (Qingdao, China) and Norman
Miller Best Student Poster Award at the IEEE OCEANS’17 (Aberdeen, UK).

With the general objective of this thesis being the creation of tools and strategies for
accurate image-based 3D reconstruction in underwater scenarios for scientific purposes,
we present in section 6.10 an overview of the most significant models built during the
whole duration of this thesis. These models have been created as a result of collaboration
with a large number of other scientists and researchers in many fields. As described, some
models have been used for accurate measurements in scientific fields, while others have been
used for various purposes ranging from the generation of superior omnidirectional video,
augmented reality applications, or simply as evidence that algorithms such as mission
planning have successfully ensured satisfactory data acquisition. In this way, we want to
show that the work presented in this thesis has contributed to the development of studies in
a variety of fields such as robotics, underwater photogrammetry and the natural sciences.
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6.2 Keyframe Selection Scheme

Keyframe selection is an important pre-processing step, used for removing unnecessary
redundancies in the image set (i.e., images taken from very similar poses), while simul-
taneously ensuring the selection of the best possible subset of images. Although still
photography allows for higher quality image acquisition, video remains a preferred op-
tion for situations in which the conditions are unpredictable. By collecting a significantly
larger number of images (frames) with a large overlap, video enables a greater flexibility
in post-acquisition image selection. Significant changes of camera-scene distance and/or
survey speed within a mission, often occurring in dynamic scenarios, can cause consid-
erable variations in frame overlap. If the most commonly used constant-frame selection
strategy (i.e., selecting a frame every n-th second) is used, it can cause an over- or under-
selection of images. Over selection can not only significantly degrade the efficiency of the
reconstruction process due to exaggerated observation redundancy, but also potentially
lead to unreliable estimates of the depth information due to small displacements of the
camera [79]. Conversely, the under selection of frames will lead to segments of missing
observations and thus preventing the reconstruction of a complete model.

As described in chapters 2 (section 3.1) and 4 (section 2.1), our keyframe selection
scheme uses a simple dual approach. First, a measurement of feature displacement on
an image plane and the ratio of successfully tracked features between keyframes is used
to discard frames whose overlap and content is excessively similar to the already selected
frames. Once the threshold is reached, a small number of adjacent and thus similar frames
are identified and used to find the sharpest among them. This prevents a random selection
of a blurry frame when a sharper version is available. The blurriness score is calculated
as a variance of the Laplacian over an image [143], since its value increases with rapid
changes in intensity in the image, potentially indicating sharper edges of a more in-focus
image.

The performance of the scheme is illustrated by the presentation of the results of
processing two different video sequences (in both cases 6 min 40 s sequences were used to
increase the clarity of the figures). The videos were collected with different cameras in
two significantly different mission types. First, we present the data used in our joint work
Vidal et al. [11] where the robot (Sparus II AUV) explored a natural rock formation using
an autonomous mission planning algorithm designed to ensure sufficient data acquisition.
While the ideal path would maintain constant both the robot-scene distance and the
speed of the robot, the difficult conditions (near-surface depth of 2.5 m and lack of prior
information about the environment) led to various changes in the robot-scene distance
and rapid changes in speed. The estimated shift and ratio of successfully tracked features
between frames is shown in Figure 6.1. The dots represent frames where our system has
decided to select a new keyframe, either because the content has changed sufficiently (red
dots) or because the number of tracked features from the last keyframe has fallen below
the allowable threshold (blue dot). In our tests, the maximum change in overlap was set at
15% and the minimum acceptable tracking rate was set at 70%. It can be seen that, when
the robot is near the scene (marked orange), the system extracted frames more frequently
because the change in image content was more abrupt. This can be seen particularly well
in Figure 6.2, where the determined dynamic frame extraction frequency is shown in blue,
with straight red and magenta lines representing the constant extraction rates of 1fps and
0.5fps respectively. The determined extraction frequency varies considerably and increases
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in the marked segments where the robot is near the scene. The fact that there is not a
single horizontal line that could satisfactorily match the calculated frequency clearly shows
the advantage of content-adapted frame extraction. If the constant extraction frequency
was used and if it was set high (the line in the graph would be lower), the frames would
be over-sampled in many areas, while at lower frequency (the line would be higher) the
reconstruction process would result in several unconnected sub-models. The total number
of frames extracted for the presented video with our scheme was 158, while at a constant
rate of 1/0.5 fps 401/201 frames would have been selected.

(a)

(b)

Figure 6.1: Feature displacement and ratio of tracked features between each frame and the last
selected keyframe for a sequence in the Punta del Molar data set [11]. Red dots represent extraction
of a new keyframe as a result of sufficient feature shift, cyan dots represent selection as a result
of an excessively reduced number of tracked features, and orange areas mark the segments with
reduced distances between the robot and the scene.

The advantages of the proposed selection of the best neighbor based on the blurriness
score is demonstrated with an example, which occurred at frame 6787. At that moment,
the system successfully detected a significant change in content and started collecting
neighboring frames (i.e. frames that are very similar). In this particular case, it identified
54 consecutive frames and calculated their individual blurriness scores. The relative dif-
ferences between them are shown in Figure 6.3a, with the best/worst frame highlighted
in green/red and shown in Figures 6.3c and d. While the pair is visually similar, which is
to be expected due to the way the frames are selected, the difference in sharpness can be
determined by comparing their histograms of the magnitudes of the Laplacians shown in
Figure 6.3b. It can be seen that the higher number of elements with larger magnitudes in
the high quality image (green) indicates a sharper image.
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Figure 6.2: Proposed dynamic frame extraction frequency in the Punta del Molar data set with
constant frame rates of 1/0.5 fps, highlighted in red and magenta.

(a) (b)

(c) (d)

Figure 6.3: Selection of the best (sharpest) keyframe - frame 6787 in the Punta del Molar data set.
(a) Individual blurriness scores for adjacent frames with marked best/worst score (green/red dot).
(b) Histogram of magnitudes of Laplacians for marked best/worst frames. (c,d) The best/worst
frame identified by the selection.
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In the previous scenario, the dynamic determination of the frame extraction frequency
proved to be extremely important for the selection of a high-quality image set. In the
second selected video, collected during the MIDAS 2016 cruise, the robot (Seaeye Cougar
XT ROV) was tele-operated and moved at a nearly constant speed and altitude, with
a slightly tilted camera. While the resulting nearly constant frame extraction frequency
(Figure 6.4) could easily have been replaced by a simpler method with constant-rate frame
extraction, the conditions in the water (numerous suspended particles) caused the camera
to constantly refocus, resulting in a multitude of blurred images. The use of such simple
strategies could therefore possibly lead to the selection of many blurred frames despite
the fact that sharper alternatives were available. Such an example, which occurred in
frame 2757 of the MIDAS D17 data set, is shown in Figure 6.5 with the same graphics as
in the previous case. The change of the focus (i.e. increased blur) between frames is re-
flected in the computed blurriness scores (Figure 6.5a), the frames themselves (Figures 6.5c
and 6.5d), and on the associated histograms (Figure 6.5b). Similar to the previous sce-
nario, the selected sequence consisted of 6 min40 s and the system identifies 229 sharpest
keyframes, while 401/201 (random) frames would have been selected if a constant rate of
1/0.5 fps had been used.

Figure 6.4: Proposed dynamic frame extraction rate in the MIDAS D17 data set with constant
frame rates of 1/0.5 fps, highlighted in red and magenta.

The results presented here (and in our publications) show that the proposed keyframe
selection scheme enables an automatic determination of a dynamic frame extraction rate
which directly depends on the movement of the camera and the survey speed. We do
acknowledge a few shortcomings of the approach, namely the need for empirical selection
of threshold values and the sensitivity of our blurriness score computation method to
various factors (e.g. small illumination changes, new objects in the scene such as fish).
However, even in those rare (worst) cases, in which the scheme might lead to a selection
of an image with a slightly poorer quality, the scheme will intrinsically ensure that the
selected images have sufficient overlap needed for the successful reconstruction, which is
never ensured with the constant-time strategy. While a more complex strategy could
easily be introduced to address those issues, the simplicity of the approach enables the
rapid processing of a large number of frames.

6.3 Color Correction
The formulation of underwater images is a complex process that is influenced by a vari-
ety of effects that are typically negligible in air (e.g. uneven spatial illumination, color-
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(a) (b)

(c) (d)

Figure 6.5: Selection of the best (sharpest) keyframe - frame 2757 in the MIDAS D17 data set.
(a) Individual blurriness scores for adjacent frames with marked best/worst (green/red dot). (b)
Histogram of magnitudes of Laplacians for marked best/worst frames. (c,d) The best/worst frame
identified by the selection.

dependent attenuation, backscatter, etc.). It often results in significant variance in color
and brightness of the same area within the image set, due to images taken from different
poses and distances between the camera and the scene. Therefore, the application of color
correction not only benefits human perception and interpretation of image content, but
also improves the quality and quantity of successful feature matches between image pairs
used in the reconstruction process [144].

Dating back to the beginning of the Christian era, the ship incited the interest of
archaeologists because it has different naval architecture from those known from the same
time when it was discovered. In the process of documenting the structure of the vessel, the
images were taken from various distances and views. This caused the attenuation of light
to differ considerably both within a single image and in the entire image set, resulting in
a highly variable set of images.

To illustrate the beneficial effects of using color correction as a pre-processing step
for the reconstruction process, we present various intermediate results of individual re-
construction steps as well as the final textured 3D model obtained with data with and
without the applied color correction. We performed the analysis using a challenging Cap
del Vol data set, which was recorded by a diver while observing a Roman shipwreck lo-
cated in the bay of Port de la Selva, Spain [145]. The ship, dating back to the beginning
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of the Christian era, incited the interest of archaeologists because of its particular naval
architecture. In the process of documenting the structure of the vessel, the images were
taken from various distances and views. This caused the attenuation of light to differ
considerably both within a single image and in the entire image set, resulting in a highly
variable set of images. Some examples of original images observing a common area are
shown in Figure 6.6(a-c), with color-corrected versions shown in (d-f). Although there are
several sophisticated approaches that can robustly and accurately restore measurements
of true color (reflectance), such methods without an exception require complex acquisition
arrangements setups (e.g. [146]) or careful data acquisition (e.g. [147]). In our example,
we have used the method of Ancuti et al. [148] because it requires only the selection of a
reference image that encapsulates the distribution of expected resulting hues. Despite the
use of this particular method, the observed effects of color correction on the reconstruction
process can be assumed for almost any correction method, including novel methods based
on advanced machine learning approaches (e.g. WaterGAN [149]), as long as they improve
the visibility and perceptual uniformity of regions observed in multiple images.

(a) (b) (c)

(d) (e) (f)

Figure 6.6: Sample images from theCap del Vol data set: (a-c) original color, (d-f) corrected
with the color correction method of Ancuti et al. [148].

The reconstruction process used in this analysis is described in detail in chapter 4
(section 2). To obtain comparable results between the two sets of images, we extracted the
best 2000 features from each of the 549 images after reducing their size to 1160×868px. The
overview and some detailed views of the two final textured models are shown in Figure 6.7.
The reconstructions were scaled to metric units using two physical spatial measurements
extracted from a drawing made by divers during the acquisition. The results show a
significant benefit of the color correction procedure for the human interpretation of the
models. While the original images suffer from a distinct blue color cast, the corrected
images produce a model in which the texture of the wood is easier to see and where,
among other things, the numbering plates and measurement chips are of correct black,
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white and yellow color.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.7: Textured 3D models of the Cap del Vol shipwreck created with our reconstruction
pipeline: (a-b) top-down view with original images/corrected images, (c,e,g) detailed views of a
model with original images, (d,f,h) detailed views of a model with color corrected images.

The statistics of the various intermediate results are summarized in Table 6.1. The
performance of pairwise feature matching is characterized by the ratio between the number
of matches obtained for each image pair using original images and color-corrected images.
Values greater than 1 represent better performance on the original data set, while values
closer to 0 (and less than 1) represent superiority of results with processed images. Since
the comparison of individual image pairs is too content-dependent to draw definitive con-
clusions about the effects of color correction, the data was aggregated over the entire data
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set.
To evaluate the possible impact of the color correction process on the reconstruction

process, we compared not only the number of successful feature matches validated by the
geometric filtering, but also the number of actual feature matches used in the reconstruc-
tion process, thus passing the numerous filters based on the re-projection errors. Figure 6.8
shows the distribution of the calculated ratios between the number of successful feature
matches after geometric filtering in original and color-corrected image pairs (red columns)
and the distribution of the ratios of those matches that passed all the re-projection error
tests and were used in the final optimization of the 3D reconstruction.

The comparison suggests that although the matching within the original set results in a
slightly higher number of matches (the average ratio is 1.11), such matches are likely to be
less accurate and therefore more often rejected in the reconstruction process (the average
ratio of successfully used matches in the reconstruction process is 0.86). The somewhat
surprisingly larger number of geometric matches in the original set can be explained by the
fact that these images are of lower contrast and therefore lead to less pronounced feature
descriptors that more often match with imprecisely located partners.

Figure 6.8: [Distribution of feature matches ratios after geometric filtering (blue) and matches
used in the 3D reconstruction process (orange) of the Cap del Vol model.

Subsequently, and predictably, the larger number of quality feature pairs also directly
affects the number of reconstructed 3D points in the sparse point cloud (64, 683 versus
73, 646). The impact of the difference in the number of image-based constraints in the BA
optimization was further evaluated by comparing the discrepancies between the locations
of the estimated cameras in the two results. As shown in Figure 6.9, the location of the
majority (93%) of the cameras is nearly identical (with the Euclidean distance smaller than
1 cm), with only a few cameras having slight discrepancies reaching up to 5 cm. When
examining the locations of these cameras, it can be seen that all problematic cameras have
nearby cameras farther away. The discrepancies can thus be attributed to the fact that it
is more difficult to match features in such images because of changes in appearance. Since
this effect is significantly reduced by the color correction process, it subsequently allows
more matches and a better estimation of the poses of these images. While we acknowledge
that the discrepancies found cannot be unambiguously attributed as errors of the model
created with the original images, the significant difference in the number of 3D points
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reconstructed and the lower root mean square error (RMSE) of the re-projection (0.32px
versus 0.28px) suggests that the color corrected model can be considered as more accurate.

Figure 6.9: Discrepancies between estimated camera locations in the Cap del Vol data set: (a)
top-down view and (b) side view.

The advantages of having a color corrected image set are also evident in the results
of the densification process. While already starting with a larger number of initial seed
points and better estimates of camera poses, the improved visibility of the texture and
its uniform appearance in different images allows the densification process to recover a
significantly higher number of points (75, 963, 734 versus 68, 170, 202). This is also in part
due to a larger covered area (115.49 m2 versus 100.31 m2). The surfaces reconstructed from
these dense point clouds are further compared and displayed in Figure 6.10 to reveal any
geometric differences between the final 3D models. While the majority (88%) of the two
models are within a 5 mm difference, there are two distinct areas where the discrepancies
increase up to 1 cm. These areas correspond to the regions observed by the cameras
identified as displaced in Figure 6.9.

Although the performance improvement of applying a color correction procedure to an
image set prior to the 3D reconstruction will vary depending on the data set [150], the
presented analysis shows a variety of benefits. Any method that increases the ability of
feature matching to obtain a greater number of accurate feature pairs, will subsequently
lead to a better constrained optimization process, resulting in more accurate estimates of
camera poses and a larger set of sparse 3D points describing the scene. Together with
the increased visibility and uniformity of regions in the images, this not only allows the
recovery of more detail and potentially larger areas, but also improves the result of the
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Figure 6.10: Discrepancies between 3D models created with the original and color corrected
images from the Cap del Vol data set. Areas missing from the original model are highlighted in
blue.

Table 6.1: Comparison of different intermediate results of reconstruction steps using original and
color corrected image sets of the Cap del Vol data set.

Original images Color corrected images
Mean ratio of # geo. filtered feature matches 1.03
Mean ratio of # feature matches used in 3D 0.86
Re-projection error of SfM [px] 0.32 0.28
# of 3D points in SfM 64, 683 73, 646
# of 3D points after densification 68, 170, 202 75, 963, 734
Area covered [m2] 100.31 115.49

texture mapping process.

6.4 SfM-based Scale Estimation Methods

To extend the use of laser scalers from simply providing an absolute size reference on
photographs to an automatic scaling of SfM-based 3D reconstructions, we proposed two
novel methods. The fully unconstrained method (FUM) and partially constrained method
(PCM) were designed to cover a variety of frequently used laser configurations in real
underwater scenarios. The FUM can be applied to any laser configuration with known
geometric relationships between the camera and the lasers, while PCM addresses the
scenarios where the lasers are equidistant from the camera center and parallel to each
other, but not necessarily aligned with the camera axis. This relaxation of the required
rigidity between the camera and the lasers significantly increases its potential applicability
in real scenarios where strict rigidity is often unattainable.

Both methods are based on image localization and ray-casting techniques and exploit
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the information obtained with an optical image beyond the sole position of the intersec-
tion of the laser beams with the scene (laser spots). As described in detail in chapter 3
(section 2), the camera pose (with respect to the 3D model) is obtained by a feature-based
localization process which uses BA to minimize the re-projection error between known
(and fixed) 3D points of the model and their 2D image observations. Once estimated, the
pose is used together with the location of the laser spots on the images in a ray casting
process to obtain the actual location of the 3D points onto which the lasers were pro-
jected. Finally, by compensating for the known geometry of the laser scalers, either the
perpendicular distance between the estimated laser beams (PCM) or the displacement of
the laser origins is used to infer the scale of the model.

In order to use the newly presented methods for scaling real models in quantitative
studies (precise measurement of distances, volumes, orientations, etc.), the effects of the
uncertainties of the input values on the final estimate of scale are further determined using
a MC simulation, as presented in chapter 4 (section 3.2). The propagation is modeled by
repeated computations of the same quantities, with the input values being statistically
sampled on the basis of their probability distributions. The uncertainty of the imaging
process and feature detection is characterized by the re-projection error obtained from the
localization process, while the uncertainty of the laser calibration and laser spot detection
is obtained from their respective processes, which are reviewed in the following sections
and presented in detail in chapter 4 (sections 4 and 5.3).

In the results section of the chapter 3 we show that the proposed methods have several
advantages over the existing methods. In order to validate the performance of the two
methods and to compare them with the image scaling methods used so far, a synthetic
data set based on a real 3D model of a hydrothermal vent was created. The laser and image
information was generated as it would have been obtained from a number of scenarios.
Three different laser configurations (i.e. aligned with the optical axis of the camera; parallel
but not aligned with the optical axis; and freely oriented), a range of camera viewing angles
(up to 40° both in pitch and roll relative to the perpendicular view of the camera on the
surface) and at several camera-scene distances were considered.

The result of the tests proved that the methods are capable of accurately estimating
the model scale independent of camera viewing angle, camera-scene distance or terrain
roughness (chapter 3, section 3.2). The FUM provided accurate results under all tested
circumstances, while the PCM was subject to only a slight error (2.9% in the most extreme
case) due to the approximation used to determine the laser direction. By further evaluating
the effect of this approximation on 10, 000 randomly selected points (chapter 3, section
3.3), we have shown that the scaling error in PCM depends on the difference in camera-
scene distances between the two points of the laser beam-scene intersection, and that this
error decreases as the camera scene distance increases. Furthermore, we also show that
due to the specificity of the algorithms used (robust pose estimation), noise and potential
outliers in the feature detection and matching processes do not have a significant impact
on the results. However, the noise induced in the position of laser spots had a direct
influence on the estimates. Increases in the distance between the camera and the scene led
to higher errors in scale estimation because the displacements are magnified with distance.
Additionally, we compared the results of a single laser measurement with the average of
multiple measurements within an image, and showed that such fusion further reduces the
effects of noise.

The proposed methods were also evaluated using real data from the SUBSAINTES
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cruise. While the non-alignment of the lasers with the optical axis of the camera pre-
vented a comparison of the methods with previous image scaling approaches, the FUM
and PCM were compared to the only other possible method - a simplistic direct 3D ap-
proach (assuming the equivalence of the Euclidean distance between the points of the
laser intersections and the beams themselves). The comparison of the outcomes reported
in chapter 4 (section 6.3.3), clearly shows the advantages of using FUM and potentially
PCM over the simplistic 3D method.

To obtain accurate results, the laser spot locations first had to be corrected (undis-
torted) for the refraction effects caused by the density difference in the water-glass-air
interface (between the camera sensor and the scene). Assuming that the optical axis
of the camera is approximately perpendicular to the dome port, the primary refractive
effects can be assumed to be radially symmetric around the principal point and thus cor-
rected by the radial lens distortion component of the calibration parameters [151, 152]. In
the reported experiments, the camera and light refraction at the air-port and port-water
interfaces were modeled using a pinhole camera model with the 3rd degree radial distor-
tion [153]. As described in chapter 4 (section 5), the intrinsic parameters of the camera
were calculated using a standard calibration procedure [154] with the data collected at the
beginning of the cruise. The optics and camera parameters were identical to those used
later throughout the entire acquisition process. Although small asymmetric effects caused
by misalignment between the optical axis and the housing port, and/or non-uniformities
in the thickness or material of the housing are not incorporated into the model, the mag-
nitude of the systematic error is generally negligible as it is below the noise level when
measurements are taken in the same ranges as during the calibration process [155, 156].
Similarly, small changes may occur due to vibration, temperature variations, etc. However,
these changes are considered too small to significantly affect the final result.

Our FUM approach was significantly less affected both by the deviation of the camera-
scene angle from perpendicularity and by the violation of the requirement for surface
flatness, which caused a much greater dispersion of the estimated values within each
segment for the direct approach. The ability of the PCM to overcome different camera
angles and scene roughness was also pointed out, although the results also clearly showed
the negative effects of using laser pairs that violate the requirement for laser parallelism.
The use of these measurements led to significantly larger deviations in the estimated scales
and were directly affected by the distance between camera and scene. However, by limiting
the data to parallel laser pairs, PCM produced comparable results indicating its possible
use in numerous scenarios where the strict rigidity between camera and lasers was not
maintained or not accurately determined (e.g. legacy data).

In addition to validating the ability and accuracy of our SfM-based scale estimation
methods, we have showed in chapter 3 (section 3.5) that the methods can be used directly
to estimate and then scale an arbitrarily scaled 3D model. Since our methods (FUM or
PCM) estimate a scale with associated uncertainty for each individual image containing
laser spots, a general scale estimate for the model must then be determined. In the
results section in chapter 3, we show that such a general scale estimate can be obtained by
averaging the individual scale estimates, taking into account their individual uncertainties.
Since calculating and applying the scale correction in an a posteriori step forces a single
scale correction for the entire model, any scale drifts within the model cannot be corrected
in this way. Furthermore, if the model contains significant scale drifts, simple averaging
would yield inaccurate results. In such cases, a more scenario-dependent selection of the
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individual scale estimates used in a global scale estimate would need to be performed to
obtain satisfactory results, or the calculation of the scale estimates themselves would need
to be included in SfM process, rather than as an a posteriori step. We consider this as a
possible future work and briefly comment on the implications of such an implementation
in section 7.2

6.4.1 Usage of legacy data

Since the use of laser scales to provide scale references has been in use since the late
1980s [157, 158, 159], there is a significant amount of data (i.e. legacy data) that can
potentially be used with our SfM-based scale estimation methods. Although until recently
the acquired data was mostly used for measurements within single images, it is likely that
the images with identifiable laser projections can be used to provide the scale information
if the recorded sequence allows the reconstruction of a 3D model using an image-based
approach. However, this limits its application to moving objects (e.g. fish, benthonic
species, soft corals, etc.) or in highly dynamic environments. Apart from this, our methods
are considered universal as they can be applied to standard image acquisitions and are not
tied to data acquired with specific sensors or hardware (e.g. stereo cameras, underwater
vehicle, color laser).

The ability to use legacy data with our scaling methods was one of the main reasons for
developing PCM. While FUM requires full knowledge of both the origins and orientations
of the lasers (with respect to the camera), the required knowledge is significantly reduced
in PCM. Based on the fact that many (old and commercially available) laser scaler setups
consist of at least two parallel lasers, PCM is designed to exploit this knowledge. The
method is thus capable of determining scale, with the sole additional requirement that the
laser origins be equidistant from the camera center (without the need for precise knowledge
of their position). If these conditions are met, additional calibration of the laser-camera
system is not required.

Furthermore, unlike previous image scaling methods, the lasers do not need to be
aligned with the optical axis of the camera. This relaxes the constraints considerably and
increases the applicability of our method to an even wider range of legacy data sets, as well
as to many non-professional applications where laser-camera axis alignment is extremely
rarely performed.

As demonstrated with the data collected during the SUBSAINTES cruise, even legacy
data where the lasers are not exactly parallel can potentially be used. However, in such
situations it is necessary that the position of the laser origins is known. Such scenarios
often occur when the lasers are fixed individually (the laser directions may change inde-
pendently) and the calibration process is not performed before each acquisition, or the
accurate knowledge of this detailed information is lost over time. As shown in chapter 4
(section 5.3) and summarized in section 6.6, the missing information about the direction
of the lasers can be recovered from the data itself as long as there is a sufficient number
of laser intersections along a range of distances.

As with all applications of our approach, the location of the laser spots detected on
the images must be corrected to mitigate the effects of refraction at the water-glass-air
interface. Since legacy data often do not contain accurate camera intrinsic and distortion
parameters, these parameters can be included in the BA and thus estimated together
with the extrinsic camera parameters and the geometry of the scene. Although an accu-
rate and deliberate calibration process is preferable, such joint estimation usually yields
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incomparably better results than using inaccurate intrinsic information.

6.5 Laser Spot Detection Method

The scale estimation framework presented depends heavily on the ability of the system
to reliably detect laser spots on an image and subsequently characterize the uncertainties
of these detections. The apparent lack of such tools in the literature has been addressed
in the work presented in chapter 4 (section 4). The proposed method differs from other
approaches in that the point with the highest image intensity in a given image area is
not directly considered as the center of the laser beam. Instead, it additionally considers
the underlying scene texture and its influence on the resulting intensities. This is done
by using an auxiliary image that is assumed to have been taken from a similar distance
and with laser spots that either do not exist or are in a different position. The auxiliary
image provides pixel-wise texture information at the positions of the laser spots through
the process of alignment. This becomes especially important in scenarios where the bright-
ness of the laser beam does not sufficiently overlay the texture of the scene due to the
significant attenuation that occurs along its path. In such cases, the final intensity of the
beam reaching the camera can be overly influenced by the texture at the point of impact,
resulting in imprecise localization using methods based solely on image intensity.

The proposed approach for laser spot detection has a number of important novel as-
pects with respect to previously published approaches. The foremost is the ability to
detect even strongly attenuated laser spots. Additionally it estimates the uncertainties
of individual laser detections on an image by means of a MC simulation that accounts
for the inherent camera noise in terms of image intensities. Each iteration of the sim-
ulation thus yields a set of independent detections whose uncertainties are described by
a Gaussian distribution based on the recovered characteristic shapes of laser spots with
radially decreasing intensities. If the same laser spot has been consistently detected over
the majority of MC iterations, the merged distribution is determined using the Unscented
Transform [160], or otherwise discarded if it is considered unstable.

The application of the methods to two data sets collected during the SUBSAINTES
cruise is reported in chapter 4 (sections 4 and 6). Due to the strong attenuation of the
laser beams, our approach to mitigate the effects of scene texture contributed significantly
to the fully automatic detection of over 1800 laser spots on approximately 580 pre-selected
images. Although the method was developed for the SUBSAINTES data, the approach
itself is not limited to a specific data set. However, since the method uses a helper image
to improve the visibility of the laser spots, it is necessary for any data set to have such
additional images. This requirement is easily met in video recordings, since even slight
changes in camera pose will sufficiently alter the positions of the lasers, whereas in still
image acquisition additional effort must be made to collect either images from slightly
altered poses or in the absence of laser projections.

To demonstrate the applicability of our approach to other data sets, we present ex-
amples of laser detection on image data collected during CALDERA 2012 cruise [161].
Since the data was acquired long before our method was developed, it was collected with-
out regard to the requirements of our laser detection method and is therefore a good
representation of legacy data. The acquisition was done in video format, with the robot
(Girona 500 AUV) in constant motion, implicitly fulfilling the requirement of availability
of auxiliary images. The laser scaler consisted of two red lasers, which were clearly visible
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throughout the mission. For the demonstration we chose a 5 min segment in which a robot
makes several passes over an area at different distances. Various example frames are shown
in Figure 6.11.

(a) (b)

(c) (d)

Figure 6.11: Sample frames from the Caldera data set: (a-c) frames successfully used in the
detection process, (d) frame discarded due to incorrect detection (identified due to a significant
distance from the expected ray line) caused by the presence of a shrimp or other fauna.

A total of 181 frames were selected (one image every two seconds) in which the two
lasers were constantly present. An example of the successful detection of the two laser
spots and the meaningful characterization of their uncertainties is shown in Figure 6.12.
The positions of all detected laser spots in the sequence are further shown in Figure 6.13a
together with the two fitted laser beams. Since the lasers did not move during the entire
mission, all laser spots should lie on a laser ray line and thus any spot that deviates by
more than 2px is considered an outlier (marked with X). Overall, in 153 frames (84.5%)
successful and accurate detection of both laser spots was achieved, while in another 19
(10.5%) at least one laser spot was detected correctly. Only in 9 frames (5.0%) either no
laser spot was detected or it was detected in a wrong place.

The missing and the falsely detected laser spots can be explained by the presence
of shrimp or other suspended particles in the vicinity of the laser spots (Figure 6.11d).
As a result, the method either detected a laser spot incorrectly or rejected a correct
laser spot due to increased unreliability. However, the fact that only 11 of 336 (3.3%)
laser spots were identified as outliers shows the robustness of our method. Furthermore,
Figure 6.13b depicts the cumulative distribution of errors in the laser spot, measured as
the perpendicular distance between the laser spot and the projected laser beam. The
results show that there is no significant difference between the two lasers and that at least
90% of the detections are within a 1px error.
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(a) (b) (c)

(d)

(e)

Figure 6.12: Example of successful detection of laser spots in the Caldera sequence: (a) original
frame, (b) predicted region of interest, (c) estimated laser beam brightness after texture removal,
(d) detected laser spots in an individual MC iteration, (e) final detection result with uncertainty
estimated by MC simulation. Individual detections are marked with black crosses and blue/violet
ellipses for their uncertainties (68%/95% confidence level), and the final uncertainty estimate is
shown in green and red, respectively.

6.6 Laser-Camera Calibration Process

Laser-camera calibration is a process of determining the relative geometry between the two
devices that form our measurement system, i.e. the optical camera and the laser scaler.
Depending on the method used in our scale estimation framework, either a complete
geometry of the laser configuration must be known (i.e. origin and directions of each laser
with respect to the camera center) or, in the case of the partially calibrated method, only
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(a) (b)

Figure 6.13: Detected laser spots in the Caldera sequence: (a) projected onto an image plane
along with the estimated laser lines, and (b) cumulative distribution of detection errors, measured
as the perpendicular distance between the laser spot and the projected laser beam for each of the
two lasers.

the distance between the parallel lasers must be known (details in chapter 3 section 2).
Normally, the calibration process consists of an initial acquisition of images containing
clearly visible laser spots at a range of known or easily determined distances (e.g. using a
checkerboard pattern), followed by a line-fitting process based on the 3D positions of the
laser-surface intersections extracted from the aforementioned images. Ideally, it should
be performed after each operation that could affect the geometry of the camera and the
lasers, such as the servicing or replacement of equipment in the vehicle frame, but this is
rarely possible in real-world scenarios.

In the case of the SUBSAINTES cruise, whose data we used for our scale error analysis,
the evaluation images were collected during several dives separated by days, during which
both the camera and the lasers were moved several times, and operational constraints on
the ship prevented repeated acquisitions of calibration images. In this particular case, the
laser-scaler mounting brackets ensured that the laser origins remained constant and only
the laser directions with respect to the camera changed slightly each time the camera was
installed. Given this is not an uncommon situation, we presented in chapter 4 (section
5.3) the approach we followed to obtain the missing and necessary information. Since the
lasers were slightly misaligned, and not parallel, the fully unconstrained method had to be
applied and thus its prerequisite need to know the complete geometry of the measurement
system had to be fulfilled. Taking advantage of the facts that only the laser directions
were changed between the dives and that the directions themselves do not encapsulate
scale information, we were able to use images (with visible laser spots) collected during
the missions themselves to estimate the required information. A set of 3D points lying on
the laser beams were recovered by ray-casting using a reconstructed model of the scene
and the locations of the laser spots detected on the images. As detailed in section 6.4,
the laser spots first had to be corrected for refraction effects within the water-glass-air
interface, which in our case was done using the 3rd degree radial distortion model [153].
The 3D points were then used to determine the laser directions by independent line fitting
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methods. To maximize the conditioning of the line fitting, it was important to select and
use the reconstructed model with the largest distance range of such intersections.

Although the evaluation data was collected over two distinct areas (AUTT28 and
FPA), the requirement of having a constant scale limited the use of points in calibration
to only those collected from the same area. Finally, the calibration was only performed
with selected images from the AUTT28 area, as this provided the largest distance range
of laser intersection points. The model used for ray casting was created using Global SfM
and multiobjective BA, since the global nature of SfM and the internal fusion of navigation
data reduces the possibility of scale drifts within the model most significantly.

Furthermore, due to the use of noisy laser spot positions, we have taken into account
the inherent uncertainty of the resulting calibration by propagating the uncertainties of the
laser spot through the calibration process by means of a MC simulation. The method thus
provided us with the laser directions and the associated uncertainties, which, together with
the a priori known origins of the lasers gave us all the information we needed to perform
the scale estimation/error evaluation on the models.

In chapter 4 (section 5.3), we show that the calibration of the laser directions is inde-
pendent of the 3D model used as well as of the associated model scale. We present the
results depicting adequate fit between the projected laser line and the FPA related points
(RMSE <0.8px) which were not used in the calibration and were affected by a completely
different scaling factor. Since the lasers were moved between dives 654 and 658, the result
shows two distinct sets of calibrations, and our assumption is thus justified with data from
2 different dives with 4 independent lasers. In addition, a similar fit to the vast majority
of AUTT28 points (RMSE <0.6px) shows that the model used in the calibration did not
exhibit any significant scale drift.

6.7 Scale Error Analysis

The lack of a systematic study of the performance of image-based 3D reconstruction and
navigation fusion strategies on large scale models in GPS-denied environments (e.g. in
deep-sea scenarios) was addressed by a comprehensive analysis presented in chapter 4.
In this, we evaluated the four most commonly used approaches, which result from the
combination of incremental/global SfM and the a priori (multiobjective BA) and a pos-
teriori (similarity transformation) use of navigation data. The scale accuracies of the
resulting reconstructions and the associated uncertainties were automatically estimated
by our model evaluation framework and using numerous measurements obtained with our
laser spot detection method previously mentioned.

The benefits and limitations of the evaluated strategies were analyzed on the basis
of two distinct survey scenarios, which were carried out during the SUBSAINTES 2017
cruise (doi: 10.17600/17001000). In the first survey (FPA data set) the data was collected
in a single dive by several passes over the same area, resulting in a set of images with a
significant overlap between non-consecutive images. In contrast, the second set (AUTT28
data set) consisted of two separate dives over the same area. The first of the two dives
was a long, single pass dive, with the camera aligned almost parallel to a vertical wall.
The additional dive subsequently recorded the data of a new horizontal segment and re-
observed the areas already seen on the first dive, albeit at a closer range (see Figure 4.16).
The selection of these sets allowed us to capture several real challenges in deep-sea field-
work, such as combining different surveying strategies, multiple dives, viewing distances
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and perspectives, and large outcrop lengths and sizes.

The models for each of the two data sets (FPA and AUTT28) were constructed using
all four strategies and then evaluated on several segments distributed over the observed
area. The accuracy of the models was analyzed using 148 images (432 lasers) grouped into
7 segments (FPA model) and 432 images with 1378 laser measurements grouped into 6
segments (AUTT28 model). The individual lasers were clustered into segments based on
their proximity to ensure that the scale of the model did not vary within each segment.
Because the estimates of each segment characterized the error in a specific area of the
model, and because the segments were well distributed across the models (see Figures 4.24
and 4.25), we were able to determine not only the average scale error of each model, but
also potential scale drifts within the models themselves.

As explained in detail in the results section of the chapter 4, the scale error analysis
revealed that in surveys where the observed area is imaged with several overlapping passes
(e.g. FPA), the accuracy does not differ significantly between different strategies or within
the models themselves. The errors were determined to be within the range of −1% and
−5% with uncertainties of about ±3%. The presence of only minor differences in error
between the segments/models can be attributed to the fact that the greater number of
constraints between non-sequential images significantly limited potential deviations of the
result regardless of the approach. As expected, the results also showed that the uncertainty
of the estimates is closely related to the camera-scene distance, since small uncertainties
in the laser direction lead to larger discrepancies at larger distances.

While the results of the FPA data set might indicate that the choice of reconstruc-
tion strategy is unimportant, the analysis of a more complex scenario (AUTT28) showed
significant advantages of using navigation within the optimization using multiobjective
BA - a priori. The models built with a posteriori navigation fusion suffered from broad-
scale deformation (doming effect) due to the minimization of the re-projection error in
combination with the inherent scale ambiguity of the two-view image pair geometry. The
long single pass of the ROV, as performed in the first dive of the data set, introduced
numerous successive two-view image pairs, magnifying the scale drift. As the results of
the analysis show, the additional constraints introduced by the navigation data help to
reduce ambiguity and ultimately virtually eliminate the scale drift. In addition, we have
shown that the best strategy (global SfM with multiobjective BA) produced a total scale
error of less than 1%, while the incremental SfM produced models with a scale drift of 2%
along its 300 m length.

The analysis not only provided insight into the best possible reconstruction strate-
gies, but also showed that the models created using the SUBSAINTES data have scale
inaccuracies much smaller than 5%, with the majority being around 1%. The precise
quantification of the model uncertainty has allowed the geologists from the Paris Institute
of Earth Physics (IPGP) to use these models to study geological features associated with
an earthquake by measuring the associated displacement along a fault rupture. In this
way, they can extend their preliminary studies, previously carried out with a single model,
with the information from more than 30 different sites along a ∼ 20 km transect. This
collection of models generated from the SUBSAINTES data (using our pipeline) is, to
date, considered one of the largest sets of image-derived underwater 3D models acquired
by deep-sea vehicles for geological purposes (e.g. [9, 10, 15, 16, 17]).
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6.8 Multi-survey Fusion

In real scenarios, several deployments over the same area are often necessary to obtain
sufficient data for adequate 3D mapping. As we analyzed in chapter 4, it is important to
consider the consequences of the merging when combining the data. If the scene has not
changed significantly between the dives, the optical images can be easily combined, while
special attention has to be devoted to the merging of the navigation data. Typically the
available USBL data (and possibly pressure sensor data) have been smoothed and have
usually expected errors in the acoustic positioning of ~1% or higher of the distance to the
ship. This can lead to significant increases in nominal positioning error at greater depths.
However, these errors do not represent the relative uncertainty between nearby poses,
but rather a general bias of the collected data for a particular dive. Although they are
constant within each dive, the errors will vary between dives in the same area and become
especially problematic when data from multiple dives are combined. Models built with
data from a single dive will therefore only be affected by a small error in georeferencing,
while multi-survey optimization may have to deal with conflicting navigation priors; images
taken from identical positions would have different acoustic positions, with offsets of the
order of several meters or more. We have shown that the problem of merging multiple
surveys can be solved by introducing an additional unknown parameter in the form of a
3D displacement vector for each subsequent dive, representing the difference between the
USBL-induced offsets.

Here we present another example of such a multi-survey scenario, which was processed
in 2016 for the purposes of the MIDAS project. During the industry-led field testing cruise
- MIDAS 2016, an area of 150 m2 over the Condor Seamount in the Mid Atlantic Ridge
was surveyed twice (in dives 17 and 26). The aim was to collect data for an experiment
to detect changes before and after the deployment of steel structures (landers) for an
unrelated scientific experiment. Both models, shown in Figures 6.14 and 6.15, were built
using our initial reconstruction pipeline.

Figure 6.14: Textured 3D model reconstructed from the pre-impact survey (dive 17) during the
MIDAS cruise.



6.8 - Multi-survey Fusion 131

Figure 6.15: Textured 3D model reconstructed from post-impact survey (dive 26) during the
MIDAS cruise.

Initially the models were built independently, using optical and navigation data for
each respective dive. Although they appeared to be aligned as shown in Figure 6.16a,
where the sparse point clouds reconstructed for models D17 (red) and D26 (blue) closely
overlap, the alignment based on navigation data alone was not sufficiently consistent with
the reconstructed scene (optical data). To obtain a better alignment, the model D26 was
realigned based on the optical data from dive 17. By localizing images taken in dive
26 within the previously built model D17, the new realigned model D26 was effectively
estimated based on the optical data acquired during dive 26 and indirectly with the navi-
gation data from dive 17. Figure 6.16b shows the sparse point cloud of the new realigned
reconstruction in green along with the original model D17 in blue. The change between
the two models, namely the independently georeferenced model D17 and realigned model
D26, is explicitly shown in Figure 6.16c with the same color coding. In the Figures 6.16d-f,
the location of the cameras reconstructed in the three cases is also shown.

The constant shift between the locations of the two camera sets (independently georef-
erenced model D17 and realigned reconstruction D26) clearly indicate the existence of the
bias mentioned above, which influences navigation priors. By estimating the displacement
between the two sets, the average bias was estimated to be (2.09 m, 1.86 m, 0.015 m) in
the x (E-W), y (N-S), and z (depth) directions, with the final misalignment of the cameras
being 0.029 m ± 0.022 m. Similar to the SUBSAINTES data sets in chapter 4, the z offset
is disproportionately smaller because the pressure sensor gives discrepancies between dives
that are orders of magnitude smaller than the USBL positions.

The improved alignment subsequently enabled us to detect several geometric changes
based on the 2.5D height maps and direct point cloud comparison. The 2.5D height maps
were constructed by projecting points onto a grid of cells on a common plane, which were
then compared between the models, while the direct point cloud comparison measured the
Euclidean distance between the two closest points in the two models. From the results
of the 2.5D height map comparison (Figure 6.17) we can see that we were able to detect
changes caused by the deployment of the landers (red square in Figure 6.17 and top row in
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(a) (b) (c)

(d) (e) (f)

Figure 6.16: Reconstructed sparse point clouds (a-c) and camera locations (d-f) from: inde-
pendently georeferenced model D17 (blue), independently georeferenced model D26 (red), and
realigned model D26 based on visual data from D17 (green).

Figure 6.18) and the presence of new fish during post-impact acquisition (blue square in
Figure 6.17 and bottom row in Figure 6.18). The results also show some problems, in the
form of false indicators of change, which are due to the bending of the model (red squares
in figure 6.17). This was especially pronounced at the corners due to uncertain navigation
and sparsely overlapping image tracks, which did not provide sufficient constraints in the
optimization process.

6.9 Mission-time 3D Reconstruction with Quality Estima-
tion

One of the perennial problems of image-based underwater 3D reconstruction processes
was partially tackled during my research stay at the Australian National University. The
significant dependence of the outcome of the reconstruction process on the conditions
and the strategy applied in the acquisition process has long limited its applicability in
real-world scenarios.

Described in detail in the conference paper titled Mission-time 3D reconstruction with
quality estimation given in chapter 5, the problematic decoupling of the offline reconstruc-
tion process was addressed by proposing a new reconstruction pipeline capable of robust
and globally consistent processing of large-scale 3D reconstructions by using an incre-
mental way of solving the BA problem. An incremental NLS solver implemented in the
SLAM++ library was used to efficiently apply incremental updates to the BA solution,
thus enabling high performance in sequential image processing, which is the predominant
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Figure 6.17: Discrepancies between calculated 2.5D height maps from pre-impact (D17) and post-
impact (D26) surveys based on realigned 3D models. Examples of true changes are highlighted
with magenta and blue rectangles, and false changes due to bending of the models are highlighted
in red.

(a) (b) (c)

(d) (e) (f)

Figure 6.18: Two examples of detected changes between pre-impact (D17) and post-impact (D26)
surveys based on the realigned 3D models (top row - blue highlighted area in figure 6.17; bottom
row - magenta highlighted area in figure 6.17). (a,d) Optical images, (b,e) difference in 2.5D
height maps, and (c,f) difference between point clouds, shown as colorcoded distance measured as
Euclidean distance between the nearest points in the two point clouds.

nature of our target problem.
To reduce the generation of noisy and erroneous 3D points resulting from noisy un-

derwater images, the system employs an outlier rejection strategy based on a dual-map
approach. Each point is assigned to either a local or a global map, depending on the confi-
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dence in the points (calculated from the number of successful observations). Local points
can be reassigned and transferred to the global map once their confidence has increased
sufficiently, or discarded as outliers upon a certain period of inactivity. By decoupling the
two sets and constantly culling the local map, the tracking process is able to use a large
set of points at any given time, while still operating within the computational limits of
on-board processing. This significantly increases the robustness of the tracking process
while ensuring that only well-observed points are included in the global optimization, thus
further improving the quality and global consistency of the estimate at each step.

The BA, formulated as a probabilistic framework, provides not only the mean estimate,
but also the uncertainty of camera poses and 3D points encoded within the marginal
covariances. This normally prohibitively expensive procedure is possible by using a fast
recovery covariance method [6]. In it, the key elements of the covariance matrix are
calculated by identifying the variables affected by each update and by exploiting the
algebraic manipulations of the operations within the computations to significantly reduce
the computational time required.

Some methods underlying our system (i.e. incremental NLS solver and fast covariance
recovery) were proposed by Dr. Ila and Dr. Polak during my research stay at the ANU and
are part of the SLAM ++ library. As co-author of the paper ( [6]) describing the methods
published at International Conference on 3D Vision - 3DV 2017 (Qingdao, China), my
main task was to compare the proposed methods with the implementation available in
Ceres and to create and process the large-scale underwater data set used in the analysis.
The paper mentioned above was given the Best Paper Honorable Mention Award.

In the paper presented in chapter 5 we have made an analysis of the proposed sys-
tem as a whole and of the individual methods for incremental processing and covariance
recovery. Using a large-scale underwater data set of inspection of a shipwreck, we demon-
strated that our proposed SfM system is capable of successfully reconstructing a scene by
applying a dual-map filtering approach, retaining only informative points and images in
the global representation, while maintaining its ability to perform robust tracking under
limited computational resources. This was demonstrated by the ability of the system to
maintain an approximately constant size for the local map by removing inactive points
throughout the mission while continuously adding newly observed points to the global
map. The display of recovered covariance also showed its usefulness in identifying regions
of the reconstruction that had been poorly observed. The performance of our incremental
NLS solver and our method for fast covariance recovery was also compared to two other
widely used approaches (g2o [162] and Ceres [163]). The results proved that they not only
outperform the others in terms of computation time with similar accuracy, but that they
are the only methods that allow estimating the uncertainties in the targeted mission-time.

6.10 Various results

The fulfillment of one of the main objectives of this thesis, namely the creation of tools
and strategies for accurate image-based 3D reconstructions that can be used for scientific
purposes in underwater scenarios, was also demonstrated by the numerous 3D models
built in different application fields and for various purposes. In this section we provide
an overview of the most significant projects and models from various collaborations with
researchers in natural sciences, in robotics and in computer vision.
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Subsaintes cruise

As previously mentioned, a significant part of the work presented in this thesis was made
possible by the close collaboration with Dr. Javier Escartín and his research team at
the IPGP, as well as with other research groups participating in the SUBSAINTES 2017
cruise (doi: 10.17600/17001000) and in the subsequent project ANR SERSURF (ANR-
17-CE31-0020, France). Our participation in the project focused on the acquisition and
subsequent processing of optical data with the ROV VICTOR 6000, with emphasis on
3D reconstruction. As described in detail in the dissertation, the obvious lack of a sys-
tematic accuracy assessment of larger-scale 3D models built in GPS-denied environments
was addressed. Our work allowed us to precisely quantify the scale accuracy (and the
associated uncertainties) of reconstructed 3D models recorded at more than 30 different
sites along a ∼ 20 km transect at the base of the fault scarp. This now enables Dr. Es-
cartín and other researchers to systematically use the models to measure the detected
displacements, fractures and other deformations of the fault as well as study links be-
tween erosion/sedimentation and seismicity.

While the two most prominent models were already shown in the chapter 4, we built a
total of 36 3D models using images acquired in 11 different dives conducted over 20 days
at depths between 500 and 1200 m. Of these, 28 models were based on the data from a
single dive, 7 used information from two dives, and one model was created by merging 3
dives that spanned over 7 days. The models vary in length between ∼ 10 m and ∼ 300 m
horizontally, and extend vertically up to ∼ 30 m. The geological studies, which were
partly made possible by the existence of these 3D models, have now been presented at the
world’s largest international Earth and space science meeting - the American Geophysical
Union Fall Meeting in 2018 ([9, 10]), as well as at the general assembly of the European
Geosciences Union in 2019 ([15, 16]).

As part of the ongoing cooperation, we were also involved in the development of a VR
application aimed at recreating the experience of classic onshore survey work for the train-
ing of marine geologists. As explained in detail in the conference paper titled Performing
submarine field survey without scuba gear using geographic information system (GIS)-like
mapping in a Virtual Reality environment [17], we tried to mitigate the limited physical
and visual capabilities of ROVs by combining the visualization of SfM-based 3D models
with other digital elevation models in an immersive 3D environment. The VR system not
only allows a good estimation of the scale and geometry of the objects under investiga-
tion, but also enables the users to perform actions on the underwater outcrops similar to
those normally performed during geomorphological or geological fieldwork, as shown in
Figure 6.19.

Boreas shipwreck

Throughout the thesis, one of the closest and most rewarding collaborations came from
joint work with fellow researchers from the Underwater Vision and Robotics Center, who
led the development of the omnidirectional camera. The camera, which was designed
and built in-house, was extensively used in numerous projects as an acquisition device
for optical images used in 3D reconstruction processes. Apart from these projects, some
of which are presented in the following sections, the focus of the joint research was on
overcoming the challenges in the creation of omnidirectional video. Since the camera is
made up of several individual GoPro Hero4 Black cameras, each of which is strategically
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Figure 6.19: Overview of the interactive tools within the developed VR environment: (A) con-
trolling the display, (B) teleportation, (C) compass, (D) localization, (E) coordinate selection, (F)
ruler, and (G) plane and line measurement tool. Figure taken from Billant et al. [17]

oriented in a different direction, the images must be stitched together in a post-processing
step to create a unified panorama as if it was shot from a single location, i.e. without any
visible alignment errors.

As described in detail in the publication titled Omnidirectional Multicamera Video
Stitching Using Depth Maps [12], we developed novel online and offline stitching methods
that make use of the available information about both the multi-camera system and the
observed environment. The online process uses sparse samples of the environment obtained
through the simultaneous localization and mapping process, while the (offline) process of
generating high-quality panoramic images requires a prior reconstruction of the scene in
the form of a 3D model/depth maps.

The individual cameras in our custom-built system are not electronically synchronized.
As such, only an approximate synchronization can be achieved, with an accuracy in the
order of the frame duration. This approximate synchronization did not cause any signifi-
cant problems in the creation of 360°videos. However it prevented the direct use of known
rigid body transformations between the cameras in the reconstruction process. In order
to create a correctly scaled 3D model, which is needed for the proposed offline stitching
method, we proposed a bi-objective optimization where the known relative transforma-
tions are softly enforced by introducing an additional cost term. The new term penalizes
large deviations in the relative transformations calculated from the newly estimated poses
and their a priori known values. Since approximate synchronization dictates that the dif-
ference in acquisition time between cameras should be less than the elapsed time between
two frames, we can reasonably assume that these differences in transformations should
be small. Thus, the bi-objective optimization simultaneously compensates for the lack of
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synchronization and ensures that the reconstructed model is scaled correctly.
This approach was applied to the data set collected in a survey over a World War

II shipwreck that had sunk near the coast of Palamós, Spain, named Boreas. The 40 m-
long wreck is a well-known attraction for recreational divers and lies between 25 and 30 m
below the surface of the sea. The omnidirectional camera was mounted on the Sparus
II AUV (Figure 6.20 and was guided by the diver to ensure safety when passing through
narrow passages and tight cargo holds like those shown in Figure 6.21.

Figure 6.20: Sparus II AUV equipped with the omnidirectional camera while surveying over the
Boreas shipwreck.

(a) (b)

Figure 6.21: Example images from the forward-facing camera of the omnidirectional system at:
(a) narrow passage and (b) the entry of the narrow cargo hold.

The advantages of using an omnidirectional camera for 3D reconstruction in such
diverse terrain are evident. By selecting a total of 3, 595 individual images from 5 cameras
acquired in only about 20 min we were able to produce a textured 3D model shown in
Figure 6.22. The ability to capture images in all directions enabled us to obtain sufficient
data for reconstruction even with just a single pass over narrower areas that would normally
require several passes and would significantly extend the capture time. The large number
of images also allowed us to successfully reconstruct some challenging parts of the ship,
such as the cargo hold, as shown in Figure 6.23.
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(a) Top-down view

(b) Stern

(c) Bow

Figure 6.22: Textured 3D model of the Boreas shipwreck created with omnidirectional imagery
(top view with a few magnified details).
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Figure 6.23: Side view of a fused dense/textured 3D model of the Boreas shipwreck with high-
lighted successfully reconstructed cargo hold area.

In the context of omnidirectional video generation, the reconstructed model enabled
us to create equirectangular depth maps (Figure 6.24a), which are required for high-
resolution stitching in post-processing. The fact that the direct projections of the images
onto a panorama are precise (figure 6.24b) indicates that our depth maps are correct and,
our proposed approach with soft enforcement of the transformations worked correctly,
since the accuracy of the scale of the model is an important factor for the accuracy of the
equirectangular depth maps.

(a) Equirectangular depth map (b) Equirectangular panorama

Figure 6.24: Equirectangular depth map and panorama generated according to individual depth
maps extracted from 3D model of Boreas shipwreck. Black regions correspond to parts not recon-
structed on the model or regions without observations from the individual cameras.

While the process and details of creating the final panoramas are outside the scope of
this thesis, we nonetheless present the advantages of using the proposed (offline) stitching
method compared to the usual spherical-world approach. The results are taken from our
joint publication [12]. To keep the transition between the cameras visible in the panoramas,
the presented images were not compensated for the individual exposure and gain settings
of the cameras, except for the final result in Figure 6.26. The panorama created with
the spherical-world assumption is shown in Figure 6.25a. In the highlighted areas, the
misalignment is clearly visible at the boundaries of the contributions of different cameras,
since the incorrectly assumed distances to the objects manifest themselves as errors in
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the projection process. By better estimating these distances, e.g. by using a 3D model
in our approach, the misalignments become hardly visible, as shown in Figure 6.25b.
The finished, high-quality, fully color-blended panorama, on which independent camera
contributions are imperceptible, can be seen in figure 6.26.

(a) (b)

Figure 6.25: Equirectangular panorama generated with: (a) spherical-world assumption, and (b)
depth maps from 3D reconstruction with a few magnified details. Misalignments in the spherical-
world panorama are due to the incorrectly estimated depths.

Figure 6.26: Final equirectangular panorama with color blending technique applied. The contri-
butions of each Individual camera are indistinguishable.

Punta Del Molar and Amarrador

Similar to the case of the omnidirectional camera project, another collaboration with
research colleagues within the CIRS research center has led to my participation in a series
of real-world experiments in which our pipeline was used to demonstrate the effectiveness of
the developed robotic exploration algorithm for the exploration of unknown environments
while ensuring full coverage of the observed scene with multiple sensors (e.g. profiling
sonar and optical camera).
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First, an isolated rock - Punta del Molar, which is located next to the coastal cliffs
of St. Feliu de Guixols (Girona, Spain), was inspected with the Sparus II AUV. The
approximately 60 m long rock was chosen because of its irregular shape and complex
geometry, as shown in the Figure 6.27. The experiment, which is explained in detail in the
journal paper titled Two-Dimensional Frontier-Based Viewpoint Generation for Exploring
and Mapping Underwater Environments [13] was carried out at a shallow depth of 2.5 m
in about 17 min. The final exploration map is shown in Figure 6.28, where the orange
cells represent successfully viewed areas of the detected environment. The inspection was
performed following a clockwise trajectory, since the cameras were mounted on the right
side, and ended at approximately the same position where the robot started.

Figure 6.27: Aerial view of marked Punta del Molar rock.

Figure 6.28: Exploration map at the end of the Punta del Molar inspection mission. The orange
inspection mission. Orange color represents the investigated cells and the green line the trajectory
of Sparus II AUV.

The optical images were captured with 3 un-synchronized GoPro Hero 4 Black cameras
positioned at the front of the vehicle and oriented right, right-down and forward-to-right-
down. The final result of the reconstruction obtained from images of the exploratory
mission is shown in the Figure 6.29. As explained in the journal paper, although the
algorithm successfully ensured the complete coverage of the scene, the accumulated drift
in the last part of the mission resulted in the optical images being effectively captured
from a greater distance. Due to the poor visibility conditions, the observed scene was not
visible, so our pipeline was not able to reconstruct the complete 3D model. The data from
this mission was also used to demonstrate the power of our keyframe selection scheme
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described in section 6.2.

Figure 6.29: Textured 3D model of the explored Punta del Molar rock.

In the second scenario, an underwater boulder - Amarrador was observed with the
Girona 500 AUV, which was equipped with the omnidirectional camera. The boulder,
also located near St. Feliu de Guixols (Girona, Spain) at a depth of 40 m, spans an area
of 30 × 15 m and is about 12 m high. The exploration algorithm, which is described in
detail in the publication entitled Multisensor online 3D view planning for autonomous
underwater exploration [18], ensured that the images were taken at a distance of about
4 m from the boulder and the seabed. Using our pipeline, a total of 2, 239 images were
identified as keyframes (Figure 6.30) and used in the reconstruction process. The final
result, in the form of a textured model, is shown in Figure 6.31. As can be seen in
the figure, the exploration algorithm ensured that the Amarrador boulder was indeed
completely observed, with only small patches missing in the surrounding sand areas due
to the lack of visible features. Borrowing from our joint publication, we also show the
reconstruction obtained by projecting multibeam data onto a single coordinate frame.
The multibeam-based reconstruction shown side-by-side with the optical-based model in
Figure 6.32 is significantly less detailed due to noise in the multibeam measurements. This
demonstrates the advantage of using optical images in scenarios with sufficient visibility.

Figure 6.30: Sample images captured during the exploration of the underwater boulder - Amar-
rador.
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Figure 6.31: Surface and textured 3D model of the Amarrador boulder reconstructed from images
captured by the omnidirectional camera during an autonomous exploration.

(a) Optical-based (b) Multibeam-based

Figure 6.32: Comparison of 3D reconstructions created using optical and multibeam echo sounder
sensors during the Amarrador exploration mission.
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Gnalić

The project of surveying a shipwreck near the island of Gnalić was part of a cooperation
with archaeologists from the University of Zadar. It demonstrated the methodology for
rapid high-resolution mapping of shipwrecks in marine archaeology applications during
the "Breaking the Surface 2016" workshop. The Girona 500 AUV was equipped with a
high-resolution stereo imaging system (with two Canon EOS 5D Mark II still cameras)
and an omnidirectional camera consisting of five individual GoPro Hero4 Black cameras.
The robot was programmed to survey a predetermined area of the shipwreck at a depth
of ∼ 25 m for approximately one hour, during which it collected data to create 360°
panoramic videos and image-based 3D reconstructions, among other things. Examples of
images collected with both camera systems are shown in the Figures 6.34 and 6.36.

Figure 6.33: Girona 500 AUV with omni-
directional and stereo camera system.

Figure 6.34: Example of original images
from each independent camera comprising
the omnidirectional camera in Gnalić data
set.

The results of the reconstruction efforts are presented for both omnidirectional and
high-resolution imaging. As stated in the conference paper entitled Immersive Touring for
Marine Archaeology. Application of a New Compact Omnidirectional Camera to Mapping
the Gnalić shipwreck with an AUV [7], the omnidirectional images taken simultaneously
from multiple angles on the investigated area not only reduce the time required for survey-
ing, but also enable the introduction of the additional geometric and temporal constraints
by matching image pairs between different individual cameras. The complete 3D tex-
ture model created using the images from the independent cameras of the omnidirectional
system is shown in Figure 6.35.

Due to the relatively high attenuation of light in the water (especially on the red
component), the images recorded with GoPro cameras were severely impaired which led
to a sub-optimal restoration of color information. However, the more sensitive image
sensors in the Canon cameras were able to record sufficient information in the red channel,
allowing us to perform better color correction on high-resolution images from the stereo
system. Since the camera was positioned almost perpendicular to the seafloor and most
of the mission (at least in the part above the shipwreck) was performed at a constant
altitude, a single 3 × 4 color correction matrix was used to remove the color cast caused
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Figure 6.35: Textured 3D model of the Gnalić shipwreck created using omnidirectional imagery
(top view with a few magnified details).

by the attenuation of sunlight. The matrix was calculated from white and black reference
points manually determined in the images. An example of the color correction result is
shown in Figure 6.36, while the final textured 3D model is shown in Figure 6.37. Although
stereo images were available, only images from the left camera were used given that our
pipeline did not allow the use of stereo constraints at the time.

(a) (b)

Figure 6.36: Example of a high-resolution image taken with the Canon EOS 5D Mark II camera
of the Gnalić shipwreck in: (a) original, and (b) color- corrected colors.



146 Chapter 6. Results and Discussion

Figure 6.37: Textured 3D model of the Gnalićshipwreck created with color corrected images
from the left camera of the stereo camera system (top view with a few magnified details).

Gorgonians

In cooperation with the Institute of Marine Sciences (ICM–CSIC) in Barcelona, Spain, the
3D reconstruction pipeline was also successfully used for marine biology purposes. In a
pilot study to evaluate the feasibility of recovery and return of gorgonians to their natural
environment [14], the marine biologists transplanted the bycatch gorgonians onto three
steel structures and deployed them in the marine protected area of Cap de Creus (north-
west Mediterranean Sea, Spain). The structures were then monitored over various periods
of time with the Girona 500 AUV. In those surveys, optical images were taken with a
PointGrey Bumblebee stereo camera by orbiting each of the structures while maintaining
an approximately constant distance of 2 m to the structure, as shown with some selected
frames in the Figure 6.38.

Figure 6.38: Sample images from a survey monitoring a steel structure with transplanted gor-
gonians.

In order to provide the researchers with additional material to successfully assess the
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survivability of the observed colonies, each of the three structures shown in the Figure 6.39
were reconstructed independently, using images from a single camera of the stereo pair,
as the pipeline did not support the introduction of stereo constraints at the time of the
project. The unknown scale was unambiguously determined based on measurements taken
from the CAD model of the steel structure.

(a) Lander 1

(b) Lander 2

(c) Lander 3

Figure 6.39: Different views of the three textured 3D models of the steel structures with trans-
planted gorgonians deployed in the marine protected area of Cap de Creus (north-west Mediter-
ranean Sea, Spain).





7
Conclusions and Future Work

This chapter closes this thesis by presenting the main conclusions in Section 7.1 and proposing
some research lines for future work in Section 7.2.

149
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7.1 Conclusions
This thesis presented a comprehensive exploration and exploitation of image-based 3D
reconstruction techniques for practical applications in underwater environments. It has
contributed to the advancement of the state of the art in accurate scaling and uncertainty
estimation of 3D models built with monocular or un-synchronized camera systems in
GPS-denied environments, and to the development of studies in a variety of fields such as
robotics, underwater photogrammetry and natural sciences. Through the work presented
in the dissertation, the objectives detailed in chapter 1 were successfully completed and
led to the following contributions:

Versatile image-based 3D reconstruction framework
We integrated several open-source solutions (openMVG, openMVS, MVS-Texturing) and
developed additional functionalities and capabilities (e.g. navigation fusion, soft enforce-
ment of known relative constraints, underwater color correction) in order to develop an
end-to-end pipeline capable of reconstructing 3D models for scientific purposes. The frame-
work for creating photo-realistic textured 3D models allows reconstruction based on optical
and navigation data and is independent of a specific robot platform, camera or mission.

Extensive use of a 3D reconstruction framework in real-world applications
The developed 3D reconstruction pipeline was extensively used on data collected with six
different underwater robotic platforms and numerous different cameras and camera types
(monocular, stereo, multi-camera setups). The versatility of the framework led to its use
in numerous collaborations with various scientists and researchers. As a result, the models
created have been used for accurate measurements in scientific fields as well as for various
purposes ranging from the generation of superior omnidirectional video, augmented reality
applications or simply as proof that algorithms such as mission planning have successfully
ensured satisfactory data acquisition. The pipeline was also used to process data from the
SUBSAINTES scientific cruise which led to the creation of one of the largest collections of
image-derived underwater 3D models acquired by a deep-sea vehicle for geological purposes
to date.

Automatic scaling method for SfM-based 3D models with uncertainty estima-
tion
Two novel methods for automatic scaling of SfM-based 3D reconstructions using commonly
available laser scalers were proposed. By exploiting image information beyond its use in
previous laser photogrammetry methods, the limitations on specific camera poses and/or
roughness of the observing scene while estimating the scale were eliminated, and their
applicability under a larger variety of circumstances was made possible. Furthermore,
we alleviated the need for the manual, time-consuming and error-prone step of image-
model point association. Additionally, by endowing the approaches with the process of
uncertainty characterization, the scale estimation methods are also suitable for scaling
3D models used in quantitative studies as part of accurate metrology applications. Both
methods were validated by a series of generated data sets based on a real 3D model of a
deep-sea hydrothermal vent, and their applicability in real scenarios was demonstrated by
a data set from the SUBSAINTES scientific cruise.

Laser spot detection algorithm with an uncertainty estimation
In order to reduce the very labor-intensive and error-prone process of laser spot detection,
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we have developed a method that facilitates the detection of the centers of laser beams,
by taking into account the texture of the scene. The uncertainty of these detections
is determined based on the recovered characteristic shapes of the laser spots. We have
demonstrated the versatility of the approach by processing several data sets with different
characteristics.

Laser-Camera Calibration Process
We addressed the possibility of a posteriori calibration of the laser-camera orientation
based on the image data and a 3D model affected by an unknown scale. Taking advantage
of the fact that, in the SUBSAINTES data set, the origins of the lasers are stationary and
known, we showed that the direction of the lasers can be determined using the data
collected during the mission itself. Therefore, this method eliminates the need for a
separate acquisition process, enabling its use on numerous legacy data sets in which the
location of laser origins in known.

Analysis of image and navigation fusion strategies for underwater 3D recon-
struction
Using novel methods for scale estimation and laser spot detection, we performed a com-
prehensive analysis of the most common image-based 3D reconstruction strategies used
by the underwater research community. The advantages and limitations of the different
approaches, encapsulating realistic deep-sea field working conditions such as different sur-
veying strategies, multiple dives and extensive outcrop lengths and sizes, were considered.
A scale error analysis on large-scale models of deep-sea underwater environments was per-
formed using two different underwater survey scenarios recorded during the SUBSAINTES
cruise with a scientific ROV (VICTOR 6000). In total, our scaling methods yielded 580
estimates from 1810 laser measurements. The study has shown that surveys with multiple
overlaps of non-sequential images result in a nearly identical solution regardless of the
strategy (SfM or navigation fusion), whereas surveys with weakly connected sequentially
acquired images tend to produce broad-scale deformation (doming effect) if navigation is
not included in the optimization. Besides providing insight into the best possible recon-
struction strategies, the precise quantification of the uncertainty of the estimated scale
for models created with the SUBSAINTES data enabled the geologists from IPGP to use
these models in their studies. In this way, they were able to extend the preliminary studies
of geological features associated with an earthquake, previously conducted with a single
model, with the information from more than 30 different sites along a ∼20 km transect.
In addition, we reiterated and analysed the process of determining the optimal weight in
a priori (multiobjective BA) navigation fusion strategy. We also showed that the intro-
duction of additional vectors in the process of model reconstruction with data collected by
multiple surveys successfully mitigates the potential offset in navigation of USBL-based
positioning.

Mission time 3D reconstruction and uncertainty estimation
The proposed SfM system, which is capable of estimating the trajectory and a sparse
3D representation of the scene together with the associated uncertainties in mission time,
i.e. while the robot is in the water or very shortly after, contributes to the field by demon-
strating the feasibility of mission-time 3D reconstruction and uncertainty estimation. By
exploiting the incremental way of solving the BA problem and covariance recovery, the
undesirable dependence of the outcome of the reconstruction process on the conditions
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and strategies of the acquisition process is partially addressed. This opens up the pos-
sibility of quality-aware data acquisitions which will consequently not only increase the
quality of the final acquired data and the survey efficiency, but at the same time reduce
the possibility of conducting unsatisfactory optical surveys.

7.2 Future work

Although this dissertation covered a wide range of topics related to image-based 3D re-
construction, there are still many different possible extensions and future lines of research
that would go beyond the scope of this thesis.

The complete image-based end-to-end framework for 3D reconstruction was created
based on the conventional approach to multi-view geometry. We used numerous traditional
computer vision techniques to perform steps such as feature extraction and matching, pose
and structure estimation, meshing and texture mapping. Similarly, we relied on statistical
methods for underwater color correction and keyframe extraction. With the emergence
and rapid development of powerful machine learning techniques, such as deep learning
(DL), which are able to solve problems that were considered unsolvable with superhuman
accuracy [164], we believe that promising future work would be to integrate novel DL
solutions to these problems independently, and to explore the potential applicability of the
techniques in an end-to-end manner, with the aim of benefiting most from both learnable
priors and geometric rules. Given that DL excels at solving problems where sufficient
data is available and new data closely resembles the training set, the fusion of traditional
computer vision and DL techniques should be investigated. This can improve performance
and help reduce some of the weaknesses of DL in underwater applications where data is
scarce and extremely dependent on environmental conditions.

While the resulting 3D models are already used in numerous applications, e.g. for
scientific quantitative studies, the generation of omnidirectional video and in augmented
reality scenarios, we further envision their use as additional information in various other
research areas. The information about the pose of the cameras and the geometry of
the scene could be further leveraged to achieve better results in image dehazing and color
recovery processes. Done iteratively, the improvement of the original images will lead to an
even better and more accurate 3D model which will hence lead to a better image correction.
Similarly, 3D models and auxiliary camera pose information could be further used to detect
temporal changes in the observed environment. During our wcork with the MIDAS data
set, we identified several improvements that could increase the robustness and accuracy of
change detection. An additional, non-rigid alignment of 3D models that goes beyond the
alignment of common sparse points would significantly reduce the erroneous detection of
changes that occur due to differences caused by the densification and meshing processes.
Moreover, in environments where the changes are both geometrically and photometrically
significant, the association between multi-temporal image sets has proven to be extremely
difficult for traditional hand-crafted image features. The use of DL techniques known for
their ability to learn different priors could prove extremely beneficial.

As already briefly mentioned in section XX, the purpose of our proposed scale esti-
mation approaches can be further extended. Currently the methods provide estimates
of scale for the reconstructed 3D models in an a posteriori step. The scale information
is computed based on the back-projection of 3D points determined as intersections be-
tween the reconstructed model of the scene and the laser rays. As both FUM and PCM
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achieve high accuracies by compensating for terrain roughness (among other things), it is
important that the scene representation used in the ray casting procedure is as detailed
and accurate as possible. This therefore implies the use of a highly detailed description
of the scene obtained through multiple steps following SfM (densification and surface re-
construction). Such approach limits its use to scale error evaluations, and as means of
determining a general scale correction factor used in rigid transformation of arbitrarily
scaled 3D models. While this enables the use of the models for quantitative studies, the a
posteriori nature of our approach (with regards to SfM) precludes it from being directly
included in SfM as well as to be used to correct potential scale drifts within the model.

Since there are clear benefits of incorporating the scale estimates within the optimiza-
tion (e.g., optimal scaling of the model given the laser measurements, possible preven-
tion/minimization of scale drifts and decrease in broad-scale systematic deformations),
this is seen as a natural next step in the development of the approach.

The use of scale estimates within SfM would require several adjustments to our current
proposal. The pose estimation step would no longer be a separate image localization step
based on known and fixed 3D points representing the environment. Instead, the poses
related to the images containing laser spots would be estimated simultaneously with the
other camera poses. In addition the 3D intersections between the reconstructed model
and the laser rays would no longer be computed based on a highly detailed 3D model to
eliminate the a posteriori requirement of the scale estimation process. In this case, the
locations of 3D points would have to be approximated using the spare set of 3D points
jointly estimated within SfM. Finally, the cost function would also need to be augmented
to include appropriate cost terms representing the error in the scale estimate. While the
benefits of such a complex implementation should not be ignored, it is important to note
that determining scale based solely on the 3D geometry of the scene described with sparse
3D points could lead to erroneous scale estimates if the roughness of the scene is not
satisfactorily represented, and therefore such an approach would need to be used carefully
and with full knowledge of its limitations.

With regard to the precise scale error analysis, the proposed future work addresses
the problem of the inability of methods to decouple two different sources of error. As
discussed in the publication, the fact that our method estimates the scale factor exclusively
from image data containing laser spots leads to the possibility of the resulting error being
caused by errors in the camera and camera-laser calibrations and not an actual error in the
model. While we believe that small deviations in between the independent scale estimates
obtained from each laser scaler within an image indicate that the calibrations are correct,
this could not be unambiguously determined. Performing a similar analysis with a data
set containing several auxiliary objects of known dimensions placed in the scene would
allow us to clearly decouple the two sources of error and check our assumptions that the
reported errors are indeed the actual errors in the model. Furthermore, such an analysis
would also contribute significantly to the generalization argument of our conclusions (if
confirmed).

Since the scale estimation framework depends heavily on the ability to reliably detect
laser spots, any improvement in the detection process will lead to a more accurate and/or
usable approach. Although we have shown in chapter 6.5 that the method we propose
is applicable and accurate for different data sets, the reliability of the detections can be
further improved. Currently, the detection method is designed as a stand-alone approach
that uses only the information from the main and auxiliary images. By integrating the



154 Chapter 7. Conclusions and Future Work

method into the estimation framework and using the reconstructed 3D model, the addi-
tional geometric knowledge of the environment could be used to further narrow down the
search area for laser spots and robustly reject outliers. In cases where the collected data
is in a video format, the known temporal relationship of the detections and the known
geometry could be further exploited.

Finally, in relation to the proposed mission-time SfM system, a full implementation
allowing it to be integrated into our Girona 500 AUV and/or Sparus II AUV is still to
be done. Although we have made the first approach to implementing the system, which
could be used in real applications, the processing pipeline would greatly benefit from
further parallelization of the tracking module and extensive testing is needed. In addition,
a fully functional application must have an intuitive visual interface for pilots to enable
quality-conscious acquisition missions.
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