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ABSTRACT 

 

This PhD thesis is concerned with evaluating the long-term effects of interventions in the editorial 

peer review process of a biomedical journal. The growing need to increase the value of research 

and avoid waste motivates this work. We focus on evaluating the long-term impact on the number 

of citations (NC) of articles introduced in trials, as this will allow us to evaluate the effects of adding 

either a methodological expert (statistician) or reporting guidelines (RG) during the peer review 

process.  

In 2004 and 2009, two randomized trials were published in Medicina Clínica (Elsevier, Barcelona), 

in which these interventions were added during the editorial process. They showed a slightly 

positive effect on paper quality, as assessed by the Manuscript Quality Assessment Instrument 

(MQAI) of Goodman et al. In this work, we explore the effect on NC by collecting from Web of 

Science (WoS) the NC of each article that had been randomized in the two previous studies. 

This thesis presents different ways of analyzing count data involving time-to-event, first from a 

perspective of count data models and then from a perspective of recurrent events methods. 

Results show that including a methodological reviewer (for example, a senior statistician) who is 

dedicated to looking for missing RG items increases the NC by 40% (95% CI: 1% to 94%) when 

considering that citations are independent within articles, like count models. When considering the 

within-article correlation of citations using the frailty gamma model, we find that including a 

methodological reviewer during the peer-review process increases the possibility of receiving a 

citation by 41% (95% CI: 0% to 102%). Independently of the method used to analyze NC, and with 

different assumptions, the consistency of those results gives robustness to the findings.  

Therefore, as measured by the NC, with this work we show that randomized studies of using 

interventions in the peer review process to improve scientific impact are feasible. Our proof of 

concept study opens the door for the development of confirmatory trials. 

 

 

Keywords: Reporting guidelines, peer review, reproducibility, number of citations, count models, 

recurrent events models, research on research 



Resumen 

 

 

RESUMEN 

 

El interés de esta tesis recae en la evaluación del efecto a largo plazo de intervenciones propuestas 

durante el proceso editorial de revisión por pares de una revista biomédica. La creciente necesidad 

para incrementar el valor de la investigación evitando gastos motiva este trabajo. Nos hemos 

centrado en evaluar el impacto a largo plazo mediante el número de citas (NC) de unos artículos 

que forman parte de dos ensayos clínicos, lo que nos permite evaluar el efecto de añadir tanto un 

experto en metodología (estadístico) como las guías de publicación (RG) durante el proceso 

editorial de revisión por pares. 

En 2004 y 2009 se publicaron dos ensayos clínicos en la revista biomédica Medicina Clínica 

(Elsevier, Barcelona), dónde se implementaron estas intervenciones durante el proceso editorial. 

Sus autores encontraron un ligero efecto positivo en la calidad del manuscrito, evaluada mediante 

el instrumento de evaluación de la calidad de los manuscritos (MQAI) de Goodman. En este trabajo, 

exploramos el efecto sobre el NC recogiendo de la Web of Science (WoS) el NC de cada artículo 

aleatorizado en los dos estudios previos.  

Esta tesis presenta diferentes formas de analizar datos de contaje dónde interviene el tiempo hasta 

el evento, primero desde una perspectiva de modelos de datos de contaje y después desde una 

perspectiva de modelos de eventos recurrentes. 

Los resultados muestran que incluir un revisor metodológico (por ejemplo, un estadístico senior) 

que se dedique a buscar ítems ausentes de las RG incrementa el NC un 40% (95% IC: 1% a 94%) 

cuando consideramos que las citas son independientes dentro de los artículos, como en los modelos 

de contaje. Cuando consideramos la correlación intra-artículo usando el modelo gamma de 

fragilidad, encontramos que incluir un revisor metodológico durante el proceso editorial de revisión 

por pares incrementa la posibilidad de recibir una cita un 41% (95% CI: 0% a 102%). 

Independientemente de la metodología utilizada para analizar el NC, y con diferentes asunciones, 

la consistencia de estos resultados da robusteza a los hallazgos.  

Con este trabajo mostramos que son factibles los ensayos clínicos que implementan intervenciones 

en el proceso editorial de revisión por pares para mejorar el impacto científico. Nuestro estudio 

abre la puerta al desarrollo de estudios confirmatorios en este ámbito. 

 

Palabras clave: guías de publicación, revisión editorial por pares, reproducibilidad, número de citas, 

modelos de contaje, modelos de eventos recurrentes, investigación en investigación
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Chapter 1  

INTRODUCTION 

 

 

 

 

 

1.1. GENERAL INFORMATION 

 

This doctoral thesis relates to the importance of proposing interventions capable of improving the 

quality of biomedical research as well as its impact and dissemination. The growing need to conduct 

research on research motivates this work. Evaluating whether the research produced is of quality 

and has a positive impact on the development of knowledge is fundamental, and this is even truer 

in the field of biomedical research, where the health of people is at stake.  

Biomedical research has an unrestricted potential to improve the quantity and quality of life. It is a 

necessary activity for the success of any strategy that aims to improve health (1). The integration 

of research with clinical practice promotes higher quality of health services and better and faster 

implementation of scientific advances in prevention, diagnosis, patterns of care, treatment of 

diseases, costs and use. In addition, health policies and public health services will be better 

informed and oriented when responding to the needs and demands of citizens (2) (3). 

In 2009, Chalmers and Glasziou (4) estimated that 85% of all research funding was wasted due to 

inappropriate research questions, flawed execution, inappropriate study design, irrelevant 

endpoints, poor reporting and/or non-publication (5). In 2014, The Lancet published a series of five 

papers about research discussing the abovementioned weaknesses (6) (7) (8) (9) (10). Moher et al. 

(11) published a review in 2016 showing gratifying action in response to the weaknesses discussed 

on The Lancet’s series, although they claimed that much more needs to be done to reduce research  



Chapter 1. Introduction. General information 

 

9 

 

 

waste. One of the strategies proposed for controlling this waste involves getting journal editors to 

promote the use of reporting guidelines (RG) by peer reviewers and authors. 

A critical step in scientific production is the review and editorial processes during the publishing 

period, as it is essentially a quality control mechanism (12). Editorial peer review has been widely 

accepted as the best way to filter low quality research and to improve papers with significant 

contributions to their fields (13) (14), although some “studies showed that peer reviewers were not 

able to appropriately detect errors, improve the completeness of reporting, or decrease the distortion 

of the study results” (15). A systematic review performed in 2005 and published in 2007 by 

Jefferson et al. (16) evaluated the effect of editorial peer review processes in any type of design, 

although they focused mainly on observational studies. They concluded that there was little 

empirical evidence available to support the use of editorial peer review as a mechanism to ensure 

quality in biomedical publications. 

Transparent and complete reporting is essential for allowing readers to assess the validity of 

research findings for use in healthcare and policy decision-making (17). To this end, and in an 

attempt to address problems in reporting health research, researchers and methodologists have 

collaborated with journal editors to develop guidelines as a quality assurance tool for complete and 

transparent reporting of health research results (18). After the development of the first reporting 

guidelines for randomized controlled trials (RCTs) in 1996 (19), other guidelines have come into 

regular use and new ones are continually being developed in a systematic way (20). 

Despite all the efforts, many RGs are underused (17). In order to increase their uptake, evidence of 

their effectiveness is required. RGs would provide authors, peer reviewers and editors with an 

important resource for the use and implementation of pertinent guidance (17). 

When we talk about the progress of science, what we look for is to quantify the impact that current 

research has on subsequent science. For that, we have to guarantee not only the quality of the 

manuscripts, but also its long-term impact. It is expected that the quality of the manuscripts is 

related to this impact. Citation analysis is a traditional method for assessing research impact, and it 

is performed by examining an individual publication and assessing how often it has been cited, if 

ever, by subsequent publications. It is a tool for gauging the extent of a publication’s influence in 

the literature and for tracking the advancement of knowledge with the inherent assumption that 

significant publications will demonstrate a high citation count. Citation analysis has some well-

known and accepted flaws, such as self-citing, reciprocal citing by colleagues and inclusion of 

“negative” citations. However, it is accepted as a standard tool for assessing the merits of a 

publication (21). 
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After a bibliographic search, we found two studies that randomly allocated the interventions of 

including a statistical reviewer and/or publication guidelines during the peer review process with 

the aim of improving manuscript quality. To observe the long-term effect on the impact of these 

interventions, we have had the chance to collect posterior new information: the number of citations 

(NC) for all the articles included in the two randomized studies. 

In studying the effects on impact as a result of including a statistical reviewer and/or publication 

guidelines during the peer review process, the traditional way would have been to size the study 

with some pre-desired power to test this hypothesis. In order to design such a confirmatory study, 

we would have needed information about the distribution of this variable among the two groups 

under both scenarios: the null and alternative hypotheses. In classical pharmacological situations, 

the outcome would be represented by a Normal homoscedastic distribution with the same mean 

under the null hypothesis, but the alternative hypothesis would have a separation equal to the 

expected effect size, which is referred to as the delta. However, as there are no previous studies for 

such intervention, we do not have this information. Therefore, we have done a proof of concept 

study that aims to assess these long-term interventions in order to have an idea of the expected 

effect as well as their viability at a confirmation level. 

Apart from the total NC an article receives, we also have the time between citations; thus, we also 

analyzed the NC with recurrent events methods. We think that taking advantage of all the collected 

information can give a more realistic estimate of the effect. 

Recurrent events are repeated events of the same type, such as acute exacerbations in asthmatic 

children, seizures in epileptics, myocardial infarctions, migraine attacks and sports injuries. 

In a systematic review, Meghan et al. (22) revealed that an appropriate statistical method was used 

in less than one-third of 83 research articles whose outcome of interest was a recurrent event. Any 

application of sub-optimal suitability could lead to loss in terms of bias and the precision of the 

results. 

Whenever information on time is collected throughout the study, and when information on event 

time plays an important role in addressing the true research question, survival techniques are always 

a better choice than non-survival techniques. For example, one may be interested in knowing 

whether the intervention is responsible for increasing time between successive events (22). 

In this context, those survival times observed in the same individual will not be independent of each 

other due to the existence of individual heterogeneity or within-subject dependence. Furthermore, 

the effects of the explanatory variables may be different between the first event (or recurrence) and 

the next.  
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1.2. DISSERTATION STRUCTURE 

 

The organization of this thesis follows a commonly used structure in biomedical research. There 

are four chapters: Introduction, Methods, Results and Discussion. 

In the Introduction, you will find the state of existing research on several concepts related to the 

thesis objectives. The aim is to establish a background for understanding all the processes. This 

chapter details how the editorial peer review process has evolved over the years and its importance 

within research. It also explains: the use and evaluation of RGs as a tool for improving manuscripts; 

and the indicators used to measure and evaluate research impact. There, we explain the extension 

of our search for a previous systematic review (15) in order to summarize all published 

interventions thought to improve manuscripts throughout editorial peer review in biomedical 

research journals. We introduce two previous studies (ET and IQ studies) conducted from 2004 to 

2005 and 2009 to 2010, which randomly allocated two interventions: adding a statistician and using 

RG in the editorial peer review panel of the journal Medicina Clínica (Barcelona). Both studies 

aimed to see the effect of these interventions on MQAI.  

Chapter 2 concerns the methodology used to analyze the data. It introduces the data collection 

process of the NC for the articles previously randomized in the ET and IQ studies, as well as other 

variables used for the analyses. Before seeing the distribution of NC, we planned to analyze this 

variable with the most popular model for count data, the Poisson model. After collecting the data 

and seeing its distribution, we realized that the Poisson model, which was defined a priori, was not 

the most appropriate model for fitting the NC. This is because, despite the Poisson model equating 

mean and variance, the NC for the latter was much larger than the former. This implies 

overdispersion, and the Poisson model does not estimate standard errors correctly. The estimation 

we use is free of model assumptions and is based on the Jackknife method (JK) for the main 

analysis. In order to see if the findings are consistent among different statistical methods, a 

sensitivity analysis uses other count models more appropriate for fitting count data with 

overdispersion, such as the Quasi-Poisson (QP), the Negative Binomial (NB), the Zero-Inflated 

Poisson (ZIP) and the Zero-Inflated Negative Binomial (ZINB). 

Once count data models are presented, we analyze NC with recurrent events methods. The second 

part of the methodology in Chapter 2 defines the models used in the multivariate time-to-event 

analysis. First, we introduce the non-parametric mean cumulative function (MCF) method to 

describe the average NC that occurs for one individual within a certain time, and we compare the 

intensity of citations between groups. Then, we examine frailty models, which are a kind of random 

effects model for survival analysis. These models estimate the dependence between citations while 

explicitly specifying its probability distribution and including it in the model as a frailty parameter.
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Chapter 3 presents the results and describes both the NC and our analysis of the effect of the 

interventions. For the count data models and recurrent events methods, we present the effects of 

the three interventions: (1) statistical reviewer using RG; (2) the statistical reviewer alone; and (3) 

the RG alone. 

Finally, Chapter 4 discusses the results obtained, the limitations of the study and proposes 

interesting new lines of research.  
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1.3. STATE OF EXISTING RESEARCH 

 

1.3.1. EDITORIAL PEER REVIEW PROCESS 

 

Biomedical journals are a tool for the dissemination and critical evaluation of advances in 

biomedical research. Nowadays, the editorial process for journals is based on peer review. The 

International Committee of Medical Journal Editors defines editorial peer review as the “critical 

assessment of manuscripts submitted to journals by experts who are not part of the editorial staff” 

(23). 

The editorial peer review process seeks to ensure the quality of both content and methodology in 

submitted manuscripts, with two basic objectives (16) (24): 

- Select the best manuscripts in the literature and filter out the manuscripts that do not meet 

the minimum quality requirements. 

- Improve through recommendations and guidelines the methodological quality and the 

communication of results. 

Thus, peer-reviewed journals are the most important tool for selecting and improving papers to be 

published in biomedical research (25). As such, we could consider that the progress of science relies 

on the editorial peer review process.  

Although it can vary between journals, the editorial peer review process can be broadly summarized 

in 12 steps (26): 

1. Submission of paper: Author submits the paper to the journal. 

2. Editorial office assessment: The journal checks the paper’s composition and arrangements 

against the journal’s Author Guidelines to make sure it includes the required sections and 

stylizations. 

3. Appraisal by the Editor-in-Chief (EIC): The EIC checks that the paper is appropriate for 

the journal and is sufficiently original and interesting. If not, the paper may be rejected 

without being reviewed any further. 

4. EIC assigns an associate editor (AE): Some journals have associate editors who handle the 

peer review. If they do, they would be assigned at this stage to act as “handling editor”. 

5. Invitation to reviewers: The handling editor sends invitations to individuals he or she 

believes would be appropriate reviewers. 

6. Response to invitations: Potential reviewers consider the invitation against their own 

expertise, conflicts of interest and availability. Then they accept or decline. 
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7. Review is conducted: The reviewer reads the paper, ideally several times, and takes notes 

so as to build a detailed point-by-point review. The review is then submitted to the journal 

with a recommendation to accept or reject it – or else with a request for revision (usually 

flagged as either major or minor) before it is reconsidered. 

8. The journal evaluates the reviews: The handling editor considers all the returned reviews 

before making an overall decision. 

9. The decision is communicated: The handling editor sends a decision 

(accept/reject/revision) email to the author, including any relevant reviewer comments. 

10. If the article is rejected or sent back for either major or minor revision, the handling editor 

includes constructive comments from the reviewers to help the author improve the article. 

If the paper was sent back for revision, the reviewers may receive a new version. 

11. If authors accept the review, they re-start the process with a new re-submission. 

12. Next steps: If accepted, the paper is sent to production.  

Figure 1 shows an overview of the editorial peer review process (26), where you can identify the 

different steps. Some of the journals with a higher index factor (IF) repeat these steps more than 

once. 

 

 

Figure 1. Overview of the editorial peer review process for indexed journals 

 

Given the importance of the editorial peer review process, different tools have been used in 

biomedical research for assessing the quality of peer review reports (27). A systematic review  
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published in 2009 (27) identified 24 tools: 23 scales and 1 checklist. One out of four tools consisted 

of a single item that simply asked the evaluator for a direct assessment of the peer review report’s 

“overall quality”. The remaining tools had between 4 to 26 items in which the overall quality was 

assessed as the sum of all items, their mean, or as a summary score. 

Sense about Science (28) surveyed 3000 researchers to ascertain their current view of editorial peer 

review. They noticed that 90% of respondents felt that editorial peer review improves the quality 

of research articles overall, and 85% thought that without editorial peer review there is no control 

in scientific communication. When respondents were asked for the most important thing for 

maintaining a healthy editorial peer review system, 66% felt that reviewers should be given clear 

guidance on the criteria for reviewing, and 37% opted for formal training of reviewers to create a 

quality benchmark. 

They commented that editors and peer reviewers in biomedical journals lack the appropriate 

competencies. Peer reviewers rarely receive formal training (24) (29), and thus their capacity to 

detect errors and identify deficiencies in reporting is limited (30). Facing this deficit in editorial 

peer review training, some researchers described general and specific elements that should be 

included in a high-quality review for the journal (26) (31). Figure 2 shows a summary of peer 

reviewer involvement in the revision process, sorted by importance according to Kelly et al. (26). 

The benefit of the editorial peer review process has been questioned (24) (32) (33) (34) (35) (36). 

Not only are there gaps in the part of the process that includes reviewers, but editorial staffs also 

demonstrate poor practices in many cases (37) (38) (39). In addition, despite its wide acceptance 

by the scientific community, little is known about its impact on the quality of reporting the 

published research (40). 
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Figure 2. Summary of peer reviewer involvement when evaluating a manuscript 

 

One of the limitations of the editorial peer review process is the lack of training and specialization 

of peer reviewers, which appears to compromise the scientific quality of published manuscripts 

(24) (40). Current editors of scientific journals are expected to monitor the thoroughness and 

fairness of the editorial peer review process (41). Although statistical aspects play an important role 

in medical research, in many cases the published research lacks the expected rigor (42) (43). To 

avoid statistical pitfalls in the review process (44) (45), some journals make available to the authors 

guidelines to communicate the description of data, expectations for statistical usage, and the 

preparation of findings (46) (47); but most do not (37). Enhanced expert statistical reviews of 

manuscripts would help confront a key part of the peer review evaluation. It would allow 

recognizing the weaknesses in the design and statistical analyses in order to avoid flaws that either: 

1) limit or preclude the potential contributions of findings to the literature or 2) create misleading 

results (48) (49). 
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1.3.2. REPORTING GUIDELINES 

 

RGs have been developed over the past two decades to provide advice on how to report research 

methods and findings; this helps authors, editors and peer reviewers check and improve the 

transparency of research studies while ensuring that papers are both accurate and complete (50) 

(51) (52) (53) (54) (55). RGs are usually in the form of a checklist, a flow diagram or an explanation 

and elaboration document. They specify a minimum set of items required for a clear, transparent 

account of what was done and what was found in a research study. A large number of RGs have 

been published during the last 15 years. They are heterogeneous in the sense that each of them has 

different characteristics in terms of their scope, development methodology and presentation of 

recommendations.  

Since the development in 1996 of the CONsolidated Standards Of Reporting Trials (CONSORT) 

statement for reporting randomized controlled trials, several guidelines have been developed 

relating to other types of research (56). Table 1 presents the RGs for the main study designs (57). 

An international initiative promoting transparent and accurate reporting of health-related research 

was launched in 2008: the EQUATOR (Enhancing the QUAlity and Transparency of health 

Research) Network. This program supports wider practical implementation of RGs by all relevant 

parties to increase the usability and value of health research. 

Many health journals endorse RG (in particular, the CONSORT Statement, endorsed by over 600 

journals) (55); thus, their contributing authors should follow them. Those journals usually include 

a statement in the “Instructions to Authors” suggesting or requiring the use of one or more 

guidelines to submit a manuscript. However, there is still skepticism. A recent study (58) identified 

257 journals that publish observational studies (2007-2017) related to the scope of seven 

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) extensions 

(antimicrobial stewardship programs, infectious disease molecular epidemiology, molecular 

epidemiology, rheumatology, genetic association studies, routinely collected health data, and 

response-driven sampling). Of these 257 journals, 12 (5%) required the STROBE statement on 

submission; 22 (9%) suggested using them; 12 (5%) recommended a “relevant guideline”; 72 

(28%) mentioned it indirectly (via editorial policies or International Committee of Medical Journal 

Editors recommendations); and 139 (54%) did not mention STROBE. They concluded that RG 

endorsement rates are low. Another study (59) surveyed the authors of observational studies to 

know their attitude toward and experiences with STROBE. Of the 1015 non-randomly sampled 

participants who completed the survey, 185 (18.2%) indicated they had never heard of STROBE 

nor used it previously; 195 (19.2%) had heard of it but never used it; and 635 (62.6%) had used it. 



Chapter 1. Introduction. State of existing research 

 

18 

 

 

 

Type of study RG Acronym RG large name 

Randomized trials CONSORT Consolidated Standards of Reporting Trials (60) 

Observational studies STROBE Strengthening the Reporting of Observational Studies in Epidemiology (61) 

Systematic reviews PRISMA Transparent reporting of systematic reviews and meta-analysis (62) 

Study protocols 
SPIRIT Defining standard protocol items for clinical trials (63) 

PRISMA-P Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (64) 

Diagnostic/Prognostic studies 
STARD Standards for Reporting of Diagnostic Accuracy Studies (65) 

TRIPOD Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (66) 

Case reports CARE Consensus-based clinical case reporting guideline development (67) 

Clinical practice guidelines 
AGREE The AGREE reporting checklist: a tool to improve reporting of clinical practice guidelines (68) 

RIGHT A Reporting Tool for Practice Guidelines in Health Care (69) 

Qualitative research 
SRQR Standards for reporting qualitative research: a synthesis of recommendations (70) 

COREQ Consolidated criteria for reporting qualitative research (71) 

Animal pre-clinical studies ARRIVE Animal Research: Reporting In Vivo Experiments Guidelines (72) 

Quality improvement studies SQUIRE 
SQUIRE 2.0 (Standards for QUality Improvement Reporting Excellence): revised publication 

guidelines from a detailed consensus process (73) 

Economic evaluations CHEERS Consolidated health economic evaluation reporting standards statement (74) 

Table 1. Reporting guidelines (RG) for main study designs.
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To date, there have been few evaluations of RGs. One reporting guideline extensively evaluated is the 

CONSORT Statement (18) (19) (75) (76) (77). In 2006, a systematic review of CONSORT effectiveness 

identified eight studies evaluating its impact (78). A 2012 update of that review identified 42 additional 

evaluations (60) (79). Both found that endorsement of CONSORT by journals is significantly associated 

with a higher frequency of completely reported trials, at least for some items of the CONSORT 

Statement.  

There is growing evidence that use of a checklist is a beneficial tool. For example, Richards (80) 

concluded in his systematic review,  

“There is evidence that [checklists for reporting a range of study designs have] had an 

impact on the quality of reporting clinical trials, at least. These checklists can assist 

both authors and peer reviewers to improve the quality of publications and, together 

with the additional research into the peer review process called for by the authors here, 

should lead to improvements in the quality of scientific publications in the future.” 

However, although initial studies evaluating the impact of journal support for RG indicate beneficial 

effects on the completeness and transparency of publications (51), better use and adherence of reporting 

checklists by journal editors, peer reviewers, and authors could be one important step towards improving 

the reporting of published articles. Improving adherence to RGs is one of the key issues for enhancing 

complete and accurate reporting and therefore reduce waste in research (81). 

Blanco et al. (81) reveal that, “most published research aimed at improving adherence to RGs has been 

conducted in journals”. They summarized journal strategies that range from “making available editorial 

statements that endorse certain RGs, recommending or requiring authors to follow RGs in the 

‘Instructions to authors’, and requiring authors to submit an RG checklist together with the manuscript, 

with page numbers indicated for each item”. However, even though some journals have implemented 

these strategies, there is no sufficient research on their effect. 
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1.3.3. RESEARCH IMPACT 

 

“Research impact is the demonstrable contribution that research makes to the economy, 

society, environment and culture beyond the contribution to academic research”1 

We consider the impact of a scientific article on research to be the attention it gets, and this attention 

can be assessed using citation analysis. Citation by other authors is important in the dissemination of 

published study findings. Citations represent the author’s explicit recognition of having relied on 

previous knowledge to build new knowledge (82).  

In this context, Egghe & Rousseau (83) claim four important assumptions: 

 (1) A citation of an article implies use of that document by the citing author.  

(2) A citation reflects the merit (quality, significance, impact) of the article. 

(3) References are made to the best possible works. 

(4) An article is related in content to the one in which it is cited.  

Thus, NC can be regarded as an objective method of obtaining a quantitative expression of the utilization 

and contribution of a particular published paper, which could be interpreted as the impact of a paper 

(38). However, a critical issue is whether or not citation is adequate for describing the quality and impact 

of research. One of the main factors related to NC is the quality of the paper, which could predict the 

paper’s future citation impact (84) (85) (86) (87) (88) (89). Some studies have mentioned that papers 

with higher quality obtain more citations (84) (87). According to Garfield (90), the Pareto principle 

applies, as about 20% of papers receive 80% of the total NC, while 80% of papers are rarely cited or not 

cited at all. It is commonly accepted that the top 20% of papers have higher quality compared to other 

papers (89). Therefore, the quality of a paper is a factor that influences the impact of research. 

Peer-reviewed papers obtain more citations than non-reviewed ones (91). Aside from the quality of a 

paper, some articles indicate that among the factors influencing citations are the novelties of its subject, 

the popularity of the topics, and the citer’s interest in the subject. The initial citations that a paper 

receives constitute the early feedback of the scientific community about that paper. The NC a paper 

receives in the years immediately following its publication can be considered as a predictor of its future 

citations (92) (93). On the other hand, as stated by Garner et al. “papers that get cited further away will 

tend to take longer to pick up cites” (94). 

However, citation counts are not free of limitations, since there are many reasons why researchers cite 

others’ works in their papers. For instance, they cite others to support their own claims, methodology or  

                                                      
1 Australian Research Council. https://www.arc.gov.au/. [Online] 2017. 
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findings (called supportive citations). Other citations are made to present other researchers’ points of 

view. Some papers are cited as good research examples, while others might be cited as a negative 

example of poorly designed research (95) (96). 

A different measure that applies to the journal instead of the paper is the impact factor (IF). IF is defined 

as the ratio between citations and recent citable items published. Thus, the IF of a journal is calculated 

by taking the number of current year citations to the source items published in that journal during the 

previous two years and dividing that by the total number of such source items (97). For example, the 

2018 IF for the Cancer Journal for Clinicians was 72.58, the highest among all scientific journals (98). 

This number is calculated by noting that 43 source items were published in 2016 and 43 items in 2017; 

in turn, the journal’s 2016 and 2017 material was cited a total of 6241 times in 2018 (6241/86 = 72.58). 

Journals with higher IF are deemed to be more important than those with lower ones. As papers are 

nested within the publishing journal, IF is a related measure. This measure has a strong relationship with 

the NC. In an exploratory way, I considered the sum of IF of the journals where the citing paper was 

published as a secondary measure of impact in the 2014 analyses. 

All the articles that set up the ET and IQ studies were submitted to the same journal (Medicina Clínica, 

Barcelona); thus, they all have the same assessment of the IF of the journal where they were published.  

A criticism of NC is the time it takes to appear. With current communication speeds, researchers, 

authors, and grant funders are impatient to get an indicator of its value. Waiting 1-3 years for publication 

and citation seems interminable.  

In recent years, there has been an explosion in the use of social networks. These networks have extended 

the dissemination of information and have led to the appearance of new indicators of research activity, 

known as “alternative metrics” or altmetrics (99). 

Sense about Science (28) published a survey finding that when a reader is interacting with research 

outputs (e.g., research articles, preprints, data), the additional information that respondents found helpful 

for assessing those research outputs are citations (88%). Respondents view downloads helpful (69%) 

and notice the number of retweets and/or mentions on blogs (31%). 

Some studies (100) (101) have evaluated the association between altmetric scores and citation indicators. 

The findings indicate a positive correlation (Pearson correlation coefficient = 0.462) between the number 

of citations and the altmetric score of articles. Replacing NC with this social score is not recommended, 

but it is possible to use altmetric indicators not as an alternative to traditional citation bibliometrics but 

as useful complementary information (99).  

Altmetrics started tracking attention to research across various sources (Twitter, Facebook, news, blogs, 

Mendeley, etc.) in October 2011 (82); therefore, we cannot expand our work using altmetric scores, 

since the articles in the ET and IQ studies were published before that date. 
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There are several citation databases of peer-reviewed literature for collecting NC, like Google Scholar 

(GS), Web of Science (WoS) and Scopus. All deliver a comprehensive overview of the world’s research 

output in the fields of science, technology, medicine, social sciences, etc. A recent study (102) presented 

the results of a comprehensive analysis of these citation sources (Figure 3). They identify that 46.9% of 

citations were found by all three sources. GS found over a third (36.9%) of all citations. WoS and/or 

Scopus found only 6% of all citations that were not found by GS. 

 

 

Figure 3. Percentage of unique and overlapping citations in Google Scholar, Web of Science and Scopus 

(n=2,448,055 citations of the 2,515 highly-cited documents written in English and published in 2006; from the 

2017 edition of the Google Scholar Classic Papers list.2) 

 

The Spearman correlation between citation counts of GS and WoS was 0.98 for the Biomedical Sciences 

category, and the mean ratio of citation counts (GS / WoS) was 1.72, indicating that the mean number 

of citations in GS is 72% higher than for WoS. The authors do not provide confidence intervals (CI) of 

the estimations.  

  

                                                      
2 https://scholar.google.com/citations?view_op=list_classic_articles&hl=en&by=2006 

https://scholar.google.com/citations?view_op=list_classic_articles&hl=en&by=2006
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1.3.5. INTERVENTIONS TO IMPROVE MANUSCRIPTS THROUGHOUT EDITORIAL 

PEER REVIEW IN BIOMEDICAL JOURNALS 

 

In searching the literature for interventions implemented to improve editorial peer review in biomedical 

research, we found a review published in 2015 by Bruce et al. (15) with this very objective. Therefore, 

a good strategy to see if there are new studies is to expand this review with a longer follow-up: the 

period between 15 Jun 2015 and 1 May 2017.   

Just Bruce et al. (15) did, we searched the Cochrane Central Register of Controlled Trials (CENTRAL), 

MEDLINE (via PubMed), Embase, and the WHO International Clinical Trials Registry Platform for all 

reports of RCTs evaluating the impact of interventions aiming to improve the quality of editorial peer 

review in biomedical journals. We also searched the Cochrane Database of Systematic Reviews to 

identify systematic reviews on the editorial peer review process. We placed no limitations on language. 

The search strategy relied on the Cochrane Highly Sensitive Search Strategies (103) and the search term 

“peer review”. Table 2 shows the syntax of the search details for the different data sources. We also 

hand-searched reference lists of reports and reviews that were identified during the screening process 

and known to be dedicated to the editorial peer review process. 

 

Data source Syntax 

Pubmed and Embase 

("peer review"[All Fields] AND ("2015/06/15"[PDAT] : 

"2017/05/01"[PDAT])) AND Randomized Controlled Trial[Publication 

Type] 

WHO International clinical trials registry 

platform and Cochrane database of systematic 

reviews 

*peer review [Complete text] AND randomized controlled trial [Type of 
publication] – with date of publication between Jun 2015 and May 2017 

Table 2. Syntax of the search details for the different data sources 

 

Bruce et al. (15) pre-specified the categorization of the interventions as follows: 

- Training, which included training or mentoring programs for peer reviewers to provide 

instructional support for appropriately evaluating important components of manuscript 

submissions 

- Addition of peer reviewers for specific tasks, such as adding a statistical peer reviewer 

- Peer reviewers’ use of a checklist, such as reporting guideline checklists 

- “Open” peer review process 

- “Blinded”/masked peer review 

- Other interventions 
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They selected 22 reports of randomized controlled trials, in which they found 25 comparisons evaluating 

training interventions (n=5), the addition of a statistical peer reviewer (n=2), use of a checklist (n=2), 

open peer review (n=7), blinded peer review (n=6) and other interventions to increase the speed of the 

editorial peer review process (n=3).  

They defined different outcomes to measure the impact of the interventions described above: 

- Final manuscript quality. They found several scales to assess manuscript quality: MQAI and 

other scales (76) that measure the completeness of reporting based on reporting guideline items. 

- Quality of the peer review report, measured by scales such as the Review Quality Instrument 

(104) or editor routine quality rating scales (105). 

- Rejection rate. 

- Time spent on the peer review as reported by peer reviewers. 

- Overall duration of the peer review process. 

The most-used outcome was the quality of the peer review report (n=14), followed by the rejection rate 

(n=10), the time spent on the peer review as reported by peer review (n=7), the final manuscript quality 

(n=4) and the overall duration of the peer review process (n=2). Ten of the 25 comparisons included 

more than one outcome. The four comparisons using the final manuscript quality outcome were made 

in three publications. 

With the expansion of the review, we found one additional trial (106) that studied the effect of the 

“blinded”/masked peer review intervention on the outcome rejection rate.  

Therefore, at least 23 randomized trials have studied interventions during the editorial peer review 

process. The majority of them focus on the quality of editorial peer review as a surrogate outcome while 

only three (107) (108) (109) analyzed the completeness of reporting as an outcome. Of these three trials,  

two (108) (107) were based on a single journal (Medicina Clinica; Elsevier, Barcelona) and they found 

partially positive results regarding paper completeness.  Both interventions were based on the use of 

methodological reviewers and RG. Those studies were based on a partly subjective outcome, MQAI, 

and there was some evidence that evaluators could have successfully guessed which ones were in the 

intervention group (15), since masked evaluators were able to guess the allocated group in 62% (56/90) 

of the papers, thus presenting a risk of detection bias. We follow up on those studies here by taking 

advantage of the WoS (110) to reassess those two trials by using the NC later received by those papers.  

One of the two trials identified was published in 2007 (107). The editorial team of Medicina Clinica 

published the results of a masked, randomized experiment to improve the effect of editorial peer review 

on paper quality as assessed by the MQAI. We refer to this work as the IQ study. The two crossed 

interventions were (1) adding a peer reviewer from the standard list of methodological reviewers and 

(2) suggesting an RG checklist to reviewers. They randomly allocated the provisionally accepted  
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manuscripts into four groups defined by the orthogonally tested interventions: clinical reviewers (R) as 

the normal reference procedure; clinical reviewers plus a statistical reviewer (S); clinical reviewers with 

checklist (C); and clinical reviewers plus a statistical reviewer and checklist (SC). Figure 4 shows the 

scheme of the allocation of interventions for the IQ study. The checklist intervention (C) consisted of 

just one recommendation: 

“To facilitate your revision, you will find enclosed the reporting guideline from Bosch 

and Guardiola (Med Clin (Barc) 2003; 121:228–30) (111). If you prefer, you may also 

employ one of the following documents: for clinical trials, the CONSORT statement 

(Ann Inter Med 2001;134:663–694) (60); for meta-analysis, QUOROM (Lancet 1999; 

354: 1896–1900) (112); for diagnostic tests, STARD (Clinical Chemistry 2003;49:7–

18) (65); or the collections provided by the Scottish Intercollegiate Guidelines Network 

(http:/www.sign.ac.uk/guidelines/ fulltext/50/annexc.html) or by Mora (Med Clin 

(Barc) 1999;113: 138–49) (113)” 

The statistical reviewer (S) intervention comprised an additional review of the manuscript by a statistical 

reviewer chosen from Medicina Clínica’s traditional list of experts. They found positive evidence for 

the effects of adding a methodological expert to the review panel. 

 

 

Figure 4. Scheme of the allocation of interventions of the IQ study. R=reference; C=Checklist; S=Statistician; 

SC= both Statistician and Checklist. 

 

Figure 5 shows the flow chart of the IQ study. Of the 327 original articles received between May 2004 

and March 2005, 196 (59.9%) were directly rejected by the editorial team. The remaining 131 (40.1%) 

were selected by the editorial committee as possible publications and therefore randomized. Of these, 

two were excluded either as a result of an administrative error (n = 1) or because the authors refused to 

participate (n = 1). 

Of the 129 randomized manuscripts: 

 

http://www.sign.ac.uk/guidelines/%20fulltext/50/annexc.html
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- 14 were lost to follow-up because authors missed the deadline and the masked allocation was 

revealed. 

- 21 (18.3%) of the 115 included papers related to “interventional” studies, but only 3 were 

randomized clinical trials. 

- 46 (40.0%) were longitudinal designs. 

- 28 (24.3%) were cross-sectional.  

- 20 (17.4%) others. 

- 16 manuscripts were rejected by the editorial team after evaluating peer review reports 

 

 

 

Figure 5. Summary of the flow chart of the IQ study. R=reference; C=Checklist; S=Statistician; SC= both 

Statistician and Checklist. 

 

Due to the small effect observed in the IQ study, the same authors published a new study that redefined 

and pooled both interventions into a single one. We refer to this work as the ET study (108).  

The ET study modified this design in three ways: first, by relying on just one senior methodological expert 

rather than choosing a statistical reviewer from an expert list; second, by combining both interventions, 

with the senior methodological reviewer proposing specific changes based on relevant international   
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reporting guidelines; and, third, to avoid attrition by delaying the intervention until the decision had been 

made on whether or not to publish. 

Figure 6 shows the scheme of the allocation of interventions for the ET study.  

 

 

Figure 6. Scheme of the allocation of interventions for the ET study.  R=Reference; SC= both Statistician and 

Checklist. 

 

Figure 7 reproduces the flow chart of the ET study. From May 2008 to April 2009, 126 consecutive 

original papers were selected as possible study candidates. Of these papers, 34 (27%) were rejected after 

the conventional review, resulting in 92 randomized papers. The study designs of the included 

manuscripts were: 16 (17%) interventional studies, mainly before-after studies of only five randomized 

trials; 38 (41%) longitudinal studies; 26 (28%) cross sectional studies; and 12 (13%) studies of other 

types (mainly diagnostic studies). The authors ascertained protocol deviations in four papers in the 

conventional review group, which underwent an additional review based on reporting guidelines before 

the scheduled date. Again, they observed a modest increase in the MQAI scale measured at the end of 

the editorial process. 

 

 

Figure 7. Summary of the flow chart of the ET study. R=Reference; SC= both Statistician and Checklist. 
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In addition to the standard editorial peer review revision (group R), both the ET and IQ studies had an 

intervention that added the revision of a statistician using RG (group SC). Therefore, we compare these 

groups for the main analysis. In the secondary analyses, we use the data of the IQ study to estimate 

separately the effect of the statistician (group S) and the effect of the publication guidelines (group C).
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1.4. MAIN AND SECONDARY OBJECTIVES 

 

In broad terms, the main objective of this thesis is to evaluate the long-term impact on biomedical 

research of interventions made during the editorial peer review process.  

We work with all articles from two previous studies (ET and IQ studies) that applied interventions during 

editorial peer review in order to improve the quality of the manuscripts submitted to Medicina Clínica 

journal.  

We do not have any references of previous works evaluating the long-term impact of published articles 

in biomedical research. However, we expect to have enough follow-up time, as the mean follow-ups are 

13.35 (SD=0.31) for the IQ study and 9.29 (SD=0.31) for the ET study. 

As we use the case from other studies (not designed to analyze the intervention effect on NC), we did 

not size our study to have enough power to perform a confirmatory study. Therefore, this is a proof of 

concept study, and we interpret the results as exploratory. Our intention is to provide the research 

community with the results of the present thesis in order to design a future confirmatory study. 

This thesis presents different secondary goals according to its purpose. To define the distribution of NC 

is challenging because it could depend, among other things, on the time since article publication. Our 

secondary objectives are to find the count model that best fits NC and to become trained in a new 

statistical methodology based on recurrent events methods for estimating the intervention effect. 

Another secondary objective is to measure the separate effect of a statistical reviewer and a revision 

using reporting guidelines during the editorial peer review process. 
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2.1. DATA COLLECTION 

 

From the data of the ET and IQ studies, we recover the article title and publication date. With this 

information and masked to the intervention group, I collected from WoS the number of citations and the 

publication date of each citation that the sample articles received. Later, we recovered the treatment 

group and baseline MQAI from the ET and IQ studies. 

For the search in WoS, I included three items in the search tab:  

- Publication name of the article, searched for topic to consider title changes (from submitted 

version to finally published); 

- Medicina Clinica (Barcelona) as the journal; 

- Publication year between 2004 to 2005 for IQ articles, and 2009 to 2010 for the ET articles. 

Datasets for the analyses have different structures: 

- Articles dataset: includes a row for article (identification variable (ID) of this dataset) with the 

common variables in Table 3. I use this dataset to analyze the number of citations at the end of 

the follow-up. 

- Citations dataset: includes a row for each citation (ID of this dataset), adding an additional row 

for each article to represent articles without a citation. This longitudinal structure dataset has 

the same variables as the Articles dataset, but with the extra variables shown in Table 3. I use  
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this dataset to analyze the NC as recurrent events, taking into account the time when each 

citation appears.  

 

 Variable Description 

Common 

variables 

Article title Article title (as finally published)  

Article ID Unique identifier for each article 

Study Abbreviation name of the study where the article belongs (ET or IQ) 

Group Allocation treatment group (R or SC or S or C)  

Publication date Publication date of the article 

Follow-up Time from publication date to last NC update 

MQAI Baseline MQAI obtained in the ET and IQ studies 

Number of citations Number of citations of the article 

Extra 

variables 

Citation title Citation title 

Citation publication date Publication date of the article 

Time 1 Time from article publication to citation publication 

Time 2 Time between consecutive citations 

Table 3. Description of the common variables for the Articles and Citations datasets, as well as for the extra 

variables belonging to the Citations dataset 
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Figure 8. Scheme of the data collection evolution. NC=Number of citations; R=Reference group; SC=Intervention group with the additional review of a statistician using 

reporting guidelines; SD=Standard deviation
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Since updating NC through WoS is relatively easy, I have collected it three times (see Figure 8): 

- On 2014, the idea arose that it is possible to study further outcomes related to the long-term 

impact of the ET study, with the rationale that a better-reported paper should have better 

repercussions. The first time I collected NC was in March. I collected 5 years of follow-up data 

from the ET study. The objective of that analysis was to analyze the final Manuscript Quality 

Assessment Instrument (MQAI) scale (14) as a predictor of NC and the sum of IF, and to explore 

further effects of intervention on NC and IF. We found relationships between the final MQAI 

and both impact measures. The linear regression model slope for NC was 0.52 (95% CI: -0.04 

to 1.08), and for the sum of IF it was 1.19 (95% CI: -0.17 to 2.55). These results are in Annex 

A. 

This exploratory analysis suggested the hypothesis that intervention improves NC and promotes 

articles with zero citations. The mean (standard deviation or SD) was greater for the intervention 

group, with 3.1 (3.2) versus 2.5 (2.1) in the reference group. Furthermore, the proportion of zero 

citations was 14.6% for the reference group versus 25.5% for the intervention group. These 

characteristics lead us to think that zero-inflated models were appropriate for analyzing the data. 

- Then, in December 2016, I updated the NC of the ET study and I collected the citations for the 

IQ study. An exploratory analysis suggested that zero-inflated models were not appropriate for 

a longer follow-up, since articles with zero citations decreased substantially (the ET study: R 

group from 14.6 to 4.9%, SC group from 25.5 to 13.7%). Annex C shows the results obtained 

with this update.  

- Finally, the analyses detailed in this PhD thesis pertain to the data update until December 2018.  

Three aspects guarantee the quality of the data collection process, the first is that, before collecting the 

final NC (2018), I trained in 2014 with the ET articles, which minimized data entry errors. The second 

is my blinding to the intervention group allocation. Finally, the third aspect is that a random 20 of the 

191 articles were reviewed again by a second rater (Jordi Cortés), and no errors in the data collection 

process were detected. 

WoS records citations in several databases apart from its core collection. At all collection times, I 

considered the NC included in all databases, ensuring consistency and comparability of the results. 

 

 



Chapter 2. Methodology. Count data models 

 

34 

 

 

2.2. COUNT DATA MODELS 

 

This part of the thesis introduces the count models used to see the effects of the interventions over a 

count data outcome. Count data is discrete data with non-negative integer values that enumerate items, 

which in our case is the number of citations that an article receives during a given period. 

First, we take a non-parametric approach, which assesses the intervention effects on NC without any 

model assumption. Then, we explain the most-used model for this type of data, the Poisson model. 

After exploring the behavior of NC, we also analyze NC with other count models, such as the negative 

binomial, the zero-inflated Poisson and the zero-inflated negative binomial model. We use these 

analyses as sensitivity analyses to determine the robustness of the results by examining the 

methodology’s degree of influence on them. 

 

 

 

2.2.1. NON-PARAMETRIC EFFECT ESTIMATION 

 

Assuming a predefined model to estimate an effect without knowing the distribution of the outcome can 

lead to erroneous estimates. Therefore, we consider calculating the point estimate of the effect and its 

uncertainty by means of a method without any modeling assumption, which we call a non-parametric 

methodology. 

Count models like Poisson, NB, ZIP and ZINB estimate the average number of occurrences in a time 

interval, which in our case is the average number of citations per year. Therefore, we use the NC divided 

by the follow-up time as outcome for the non-parametric estimation. Thus, we can compare the results. 

We use Jackknife (JK) resampling method, also known as “leave-one–out”, to estimate the bias and 

variability of an estimator 𝜙̂ by using the values of 𝜙̂(𝑌) on subsamples 𝑌1, 𝑌2, … , 𝑌𝑛. These subsamples 

have size n-1 and are assembled by successively excluding one observation from the full dataset with n 

observations, obtaining n estimates of 𝜙̂. 

The parameter we want to estimate is the mean; therefore, for i=1,…,n, we compute the mean 𝜙̂(𝑖) for 

each subsample that excludes the i-th data observation from the full dataset: 

 𝜙̂(𝑖) =
1

𝑛 − 1
∑ 𝑦𝑗

𝑛

𝑗=1,j≠i

 [1] 
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Using the n JK estimates, 𝜙̂(1), 𝜙̂(2), … , 𝜙̂(𝑛), the standard error (SE) of the estimator is: 

 𝑆𝐸(𝜙̂)
𝐽𝐾

= {
𝑛 − 1

𝑛
∑(𝜙̂(i) − 𝜙̂(.))

2
𝑛

𝑖=1

}

1
2⁄

, [2] 

where 𝜙̂(∙) is the average of the JK replicates: 

 𝜙(∙) =
1

𝑛
∑ 𝜙̂(𝑖)

𝑛

𝑖=1

 [3] 

JK is a useful method for estimating the variability of some estimator, whereas this methodology does 

not expect awareness of the theoretical distribution of the estimator’s standard error. However, this 

method is conservative since estimations of standard error are large, and JK performs inadequately when 

the estimator is not smooth enough (i.e. the median is a non-smooth statistic). 

 

 

 

2.2.2. POISSON REGRESSION MODEL 

 

The Poisson (log-linear) regression model is a generalized linear model (GLM) that is widely used for 

cross-sectional count data analyses. The GLM framework describes the dependence of a variable 𝑦𝑖  (𝑖 =

1,2, … , 𝑛) on a vector of regressors 𝑥𝑖. 

To introduce the Poisson regression model I use the definition employed by Zeileis et al. (114) in the 

page 3 of their paper, with some changes on the names of the parameters to fit my thesis: 

“The conditional distribution of yi|xi is a linear exponential family with the probability 

density function 

 f(y|x, δ, ψ) = exp (
yδ − b(δ)

ψ
+ c(y, ψ)), [4] 

where δ is the canonical parameter that depends on the regressors via a linear predictor, 

and ψ is a dispersion parameter that is often known. The functions b(·) and c(·) are 

known and determine which member of the family is used, e.g., the normal, binomial 

or Poisson distribution. 
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Conditional mean and variance of yi are given by E(yi|xi) = μi = b′(δi) and 

Var(yi|xi) = ψb′′(δi). Thus, up to a scale or dispersion parameter ψ, the distribution 

of yi is determined by its mean.  

The dependence of the conditional mean E(yi|xi) = μi on the regressors xi is specified 

via 

 g(μi) = xi
Tβ, [5] 

where g(·) is a known link function and β is the vector of regression coefficients, 

typically estimated by maximum likelihood (ML) using the iterative weighted least 

squares algorithm.” 

The straightforward distribution for modelling count data is the Poisson. The probability density 

function of the Poisson distribution is: 

 𝑓(𝑦|𝜆) =
𝜆𝑦exp (−𝜆)

𝑦!
, [6] 

where 𝑦 = 0, 1, 2, …, represents the discrete random variable, such as the NC obtained by an article, 

with 𝜆 > 0. This probability function is of the form specified in [4]. The canonical link is 𝑔(𝜆) = ln(𝜆), 

resulting in a log-linear relationship between the mean and the linear predictor. The variance in the 

Poisson model is identical to the mean, thus the dispersion is fixed at 𝜓 = 1. 

Considering the canonical link, a possible regression equation for associating the 𝑝 regression variables 

and the expected value of 𝑦 is 

 ln (𝜆) = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑝

𝑖=1

 [7] 

To model NC with and without adjusting for the baseline MQAI and including an “offset (t)”, the 

equations for our particular variables are:  

Non-adjusted model:  log(𝜆) = 𝛽0 + 𝛽1 ∗ 𝐺𝑟𝑜𝑢𝑝 + offset(𝑡) 

= 𝛽0 + 𝛽1 ∗ 𝐺𝑟𝑜𝑢𝑝 + ln(𝑡) 

Adjusted model: ln(𝜆) = 𝛽0 + 𝛽1 ∗ 𝐺𝑟𝑜𝑢𝑝 + 𝛽2 ∗ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑀𝑄𝐴𝐼 + offset(𝑡)

= 𝛽0 + 𝛽1 ∗ 𝐺𝑟𝑜𝑢𝑝 + 𝛽2 ∗ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑀𝑄𝐴𝐼 + ln(𝑡) 
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These can be rewritten as: 

Non-adjusted model: 
ln (

𝜆

𝑡
) = 𝛽0 + 𝛽1 ∗ 𝐺𝑟𝑜𝑢𝑝 

Adjusted model: 
ln (

𝜆

𝑡
) = 𝛽0 + 𝛽1 ∗ 𝐺𝑟𝑜𝑢𝑝 + 𝛽2 ∗ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑀𝑄𝐴𝐼 

Thus, this fits the mean-per-year NC. 

The offset is a variable that denotes the exposure period (t in years) in the Poisson regression. 

As we mentioned, the Poisson regression model must hold 𝑉𝑎𝑟(𝑦) = 𝐸(𝑦). When 𝑉𝑎𝑟(𝑦) > 𝐸(𝑦), the 

data presents overdispersion; and when 𝑉𝑎𝑟(𝑦) < 𝐸(𝑦), it presents underdispersion. Fitting the Poisson 

regression model when data do not hold the mean-variance equality assumption makes the estimations 

of standard errors inaccurate (115). If there is overdispersion, standard error estimates are biased 

downward (116). 

If 𝑦𝑖 are independent observations with corresponding values 𝑥𝑖 of the predictor variables, then 𝛽 can 

be estimated by maximum likelihood (ML). The ML estimator maximizes the log-likelihood function. 

The likelihood function for independent observations (117) is the product ∏ 𝑓(𝑦𝑖|𝑥𝑖 , 𝛽)𝑖  of the 

individual densities, conditioned on the regressors. The log-likelihood function is then the log of a 

product, which equals the sum of logs, or ∑ ln 𝑓(𝑦𝑖|𝑥𝑖, 𝛽)𝑖 . 

For the Poisson density [4], the log-density for the 𝑖𝑡ℎ observation is 

 ln(𝑓(𝑦𝑖|𝑥𝑖 , 𝛽)) = − exp(𝑥𝑖
′𝛽) + 𝑦𝑖𝑥𝑖

′𝛽 − ln (𝑦𝑖!) [8] 

So the Poisson ML estimator 𝛽̂ maximizes 

 𝒬𝑁(β) =
1

𝑁
∑(− exp(𝑥𝑖

′𝛽) + 𝑦𝑖𝑥𝑖
′𝛽 − ln (𝑦𝑖!))

𝑁

𝑖=1

 [9] 

The Poisson ML estimator is the solution to the first-order conditions 

 
𝜕𝒬𝑁(β)

𝜕β|𝛽̂

= 0 [10] 

Or, equivalently 

 
1

𝑁
∑(𝑦𝑖 − exp(𝑥𝑖

′𝛽))𝑥𝑖||𝛽̂

𝑁

𝑖=1

= 0 [11] 

There is no explicit solution for 𝛽̂ in [11]. Thus, ML estimates must be found by numerical methods. 

The second derivative of [11] is always negative for the Poisson regression, therefore this ML function  
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is always concave and gradient-based methods as Newton-Raphson are appropriate estimation 

techniques (117). 

The Poisson model ML estimator is consistent if the specification of density for the data is correct.  

Considering our main variable NC, three characteristics challenge this model: 

(1) It arises from independent and identical exponentially distributed inter-occurrence times 

between events, under the main assumption that events occur completely randomly over time. 

It is reasonable to think that the NC do not have the same probability of occurrence when an 

article already has one citation or more. After each new citation, the time to the next citation 

may decrease. 

(2) It assumes that the occurrences are independent. It would not be prudent to consider that 

citations are independent if each new citation gives the opportunity to cite the original work. 

(3) It assumes that there can be no more than one occurrence in each interval. Some articles may 

have citations within the same date.  

 

R software provides a very flexible implementation of the general GLM framework in the function glm() 

(118) contained in the stats package. The family argument has to be specified “poisson” in the case of 

the Poisson model. The canonical link is 𝑔(𝜆) = ln(𝜆), resulting (as already mentioned) in a log-linear 

relationship between the mean and the linear predictor. 

 

 

 

2.2.3. QUASI-POISSON AND NEGATIVE BINOMIAL REGRESSION MODEL 

 

In many applications, the assumptions underlying the basic Poisson regression model are too restrictive 

(117). A common deviation from the basic Poisson model is that variance of the data exceeds the mean 

or overdispersion. The most common explanation for overdispersion is unobserved heterogeneity. 

To deal with this overdispersion, it is usual to use a generalization of the Poisson regression model to 

include an extra parameter in the Poisson regression model which estimates how much larger the 

variance is than the mean. These models are the quasi-poisson (QP) regression model and the negative 

binomial (NB) regression model. 
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The QP regression model has two parameters that correspond to mean (𝜆) and overdispersion (𝜃), 

assuming that variance is a linear function of mean (119). Therefore, the first two moments for a random 

variable following a QP regression model (𝑦~𝑃(𝜆, 𝜃)) are 𝐸(𝑦) = 𝜆 and 𝑉𝑎𝑟(𝑦) = 𝜃𝐸(𝑦) = 𝜃𝜆. 

This model uses quasi-likelihood (QL) function to estimate the coefficients. It has the advantage that 

the QL function does not need to specify the distribution of the observations, but only specify the mean-

variance relationship (120). 

Another alternative for modelling overdispersion is the negative binomial (NB) regression model. As in 

the QP model, the variance of a NB is a function of its mean and has an additional parameter for 

overdispersion. For a count random variable 𝑦 following a NB, the variance of 𝑦 is 𝑉𝑎𝑟(𝑦) = 𝜆 + 𝜆2/𝜃.  

The variance converges to the mean as the dispersion parameter gets larger, then the negative binomial 

turns into a Poisson distribution. 

Equations for the NB regression model are the same as for the Poisson regression model, and it fits the 

mean-per-year NC. Furthermore, the NC’s three characteristics described in the Poisson regression 

model section also challenge the NB regression model. 

In summary, the QP and NB models have an advantage over the Poisson model in the flexibility of 

modeling the variance function, which can be appreciated in the case of heteroscedasticity. 

 

The R software package MASS (121) provides the glm.nb() function for using ML to estimate the 

parameters of the NB model The function glm() of the stats package with the family argument 

“quasipoisson” ftis the QP model. 

 

 

 

2.2.4. ZERO-INFLATED POISSON AND ZERO-INFLATED NEGATIVE BINOMIAL 

MODELS 

 

Another deviation from the equidispersion assumption of the Poisson model is the frequently 

encountered feature that empirical data has a higher relative frequency of zero observations than any 

standard count regression model. A common approach to dealing with the excess zero problem is to use 

zero-inflated models (122) (123). With these models, the high frequency of zeros is accounted for, thus 

allowing extra probability mass at zero and reducing the probability mass for other frequencies. 
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Zero-inflated models assume that the data are a mixture of two separate data generation processes:  

- Process 1 generates only zero counts.  These zero counts are considered structural zeros. Authors 

usually model their probability with a logit model. 

- Process 2 generates counts from either a Poisson or a NB model. 

To determine which of the two processes generates an observation, the result of a Bernoulli trial is used.   

For observation y, process 1 is chosen with probability 𝜔, and Process 2 with probability 1 − ω, 

 𝑦~ {
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜔

𝑔(𝑦) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜔
, [12] 

where 𝑔(𝑦) is the probability function for Poisson or NB. 

Thus, this mixture model has two independent sources of zeros:  

- structural zeros above the expected zero frequency under Poisson or NB  

- sampling zeros due to sampling variability under Poisson or NB 

The probability of y is 

 𝑃𝑍𝐼(𝑦) = {
𝜔 + (1 − 𝜔)𝑔(𝑦) 𝑖𝑓 𝑦 = 0

(1 − 𝜔)𝑔(𝑦) 𝑖𝑓 𝑦 > 0
 [13] 

For data with only an excess of zero counts, a Zero-Inflated Poisson model (ZIP) is proposed. However, 

for overdispersed count data with both extra zeros and unobserved heterogeneity, the Zero-Inflated 

Negative Binomial model (ZINB) is the appropriate one. 

Mean and variance of ZIP (117) are 

 𝐸(𝑦) = 𝜆(1 −  𝜔) [14] 

 𝑉𝑎𝑟(𝑦) = 𝜆(1 −  𝜔)(1 + 𝜆𝜔) [15] 

And mean and variance of ZINB are 

 𝐸(𝑦) = 𝜆(1 −  𝜔) [16] 

 𝑉𝑎𝑟(𝑦) = 𝜆(1 −  𝜔)(1 + 𝜆(𝜔 + 𝛼)) [17] 

Both zero-inflated models present overdispersion: 𝑉𝑎𝑟(𝑦) > 𝐸(𝑦). 

 

In R, zero-inflated count data models can be fitted with the zeroinfl() function from the pscl package 

(114). This function has a parameter to specify the data distribution (dist), where the option 

dist=”poisson” is for ZIP and dist=”negbin” is for ZINB. 
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2.2.5. COMPARING MODELS 

 

Figure 9 shows the comparison of the abovementioned count models from an interpretability point of 

view. Poisson is the basic model, which estimates the effect of random citation (a group of articles with 

a random chance of having citations). When there is overdispersion (sample variance is greater than the 

mean), the Poisson model underestimates the standard error of the outcome. An excess of zero counts 

may cause this overdispersion, and that is when the ZIP model is pertinent. ZIP has the capability of 

differentially estimating the effect of random citation and the effect of non-citable articles (a group of 

articles that have a zero probability of being cited). When overdispersion is for a non-specific cause or 

for heterogeneity, then the NB model best fits the data by estimating an overdispersion parameter that 

allows the model to distinguish between random citations and this extra variability. Another model 

comes into play when there are both sources of overdispersion. ZINB model distinguish between random 

citation, effect of non-citable articles and overdispersion. 

One way to compare the different models is to compare the sample distribution of the data to the average 

predicted distributions using the estimated models. 

 

 

Figure 9. Comparison of the count models for the type of data to interpret 

 

 

Kolmogorov-Smirnov statistic 

The Kolmogorov-Smirnov statistic (K-S) quantifies the distance between two distributions. K-S is the 

maximum (“vertical”) distance between, for example, the empirical cumulative distribution function 

and the theoretical one. Its main advantage is that it is sensitive to differences in both the location and 

the shape of the cumulative distribution function. 

For 𝑛 independent and identically distributed (i.i.d.) ordered observations 𝑌𝑖, the empirical distribution 

function 𝐹𝑛 is defined as 

 𝐹𝑛(𝑦) =
1

𝑛
∑ 𝐼(𝑌𝑖)𝑛

𝑖=1 , [20] 
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where 𝐼(𝑌𝑖) is equal to 1 if 𝑌𝑖 ≤ 𝑦 and equal to 0 otherwise, behaving as an indicator function. 

Then, for a given cumulative distribution function 𝐹(𝑌) the K-S statistic is 

 𝐷𝑛 = max {|𝐹𝑛(𝑦) − 𝐹(𝑌)|} [21] 

Thus, the closer the K-S statistic is to 0, the better the fit that the theoretical model has. 

 

Akaike Information Criterion (AIC) 

With the aim of comparing the fit between models, we take the information theory approach of the 

Akaike criterion (AIC). AIC estimates the relative amount of information lost by a given model. Then, 

the less information a model loses, the higher the quality of that model. 

To calculate the AIC value of a model we use the expression 

 𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿̂) [22] 

where 𝑘 is the number of parameters in the model and 𝐿̂ is the maximum value of the likelihood function 

for the model. 

Therefore, AIC includes a penalty for the number of estimated parameters discouraging overfitting and 

the lowest AIC value indicates a better fit. 

Quasi models do not necessarily have a distributional form and do not depend on a likelihood. They are 

only characterized by their mean and variance. In 2002, Burnham and Anderson (124) developed quasi-

AIC (qAIC) to compare within quasi models but the validity of this approach for comparing with AIC 

has not been demonstrated (120). 

Note that AIC and qAIC say nothing about the absolute quality of a model, only the quality relative to 

other models. 
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2.3. JOINT EFFECT ESTIMATION 

 

The meta-analysis (MA) methodology is the statistical procedure for combining data from multiple 

studies. MA identifies a common effect when the treatment effect (“effect size”) is consistent from one 

study to the next. Then, we use this method to estimate the joint effects in the ET and IQ studies for the 

common intervention groups (R versus SC). 

A MA is the synthesis of 𝐾 (number of studies in the MA) compatible effects (𝛾𝑗) giving greater weight to 

studies with less uncertainty (𝑉𝑗), that is, more precision (𝑤𝑗 = 1 𝑉𝑗⁄ ), for 𝑗 = 1, … , 𝐾. 

There are two main approaches to applying a meta-analysis methodology: the fixed-effects model and 

the random-effects model. A fixed-effects MA usually takes the inverse variances of the estimates as 

weights, and interpretation relies on the assumption of a common effect underlying every study. A 

random-effects MA incorporates the underlying among-study variation of effects into the weights. 

For both the fixed-effects and the mixed-effects models, the parameter estimate is given by 

 𝛾̂ =
1

∑ 𝑤𝑗
𝐾
𝑗=1

∑ 𝑤𝑗𝛾̂𝑗

𝐾

𝑗=1

 [25] 

and 

 𝑉𝑎𝑟(𝛾̂) =
1

(∑ 𝑤𝑗
𝐾
𝑗=1 )2

∑ 𝑤𝑗
2𝜎𝛾𝑗

2

𝐾

𝑗=1

 [26] 

The difference between the fixed-effects and random-effects models is in the weight 𝑤𝑗. In the fixed-effects 

model, 𝑤𝑗 = 1/𝜎𝛿𝑗
2, where 𝜎𝛿𝑗

2 is the within-study variance. In the random-effects model, 𝑤𝑗 =

1/(𝜎𝛿𝑗
2 + 𝜎2), where 𝜎2 is between-study variance. 

The fixed-effects model assumes that the differences between the effect sizes of individual studies are 

due only to the fact that the studies use different samples of subjects (125). That is, the variability is 

exclusively a result of random sampling errors. 

 

To estimate the joint effect, the rmeta package in R provides the meta.summaries() function. 

https://www.meta-analysis.com/pages/effects.php
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2.4. RECURRENT EVENTS METHODS 

 

Over the last few decades, many powerful survival methods have been developed for recurrent event 

data by extending Cox’s proportional hazard regression. These methods can be differentiated into two 

groups by the way they deal with within-subject correlation: variance-corrected models and frailty 

models. Most popular variance-corrected models are Anderson-Gill (126), Prentice Williams and 

Peterson (127), and Wei Lin and Weissfeld (128). Contrary to variance-corrected models, frailty models 

assume that correlation among recurrent events is due to some subjects (articles) being more prone to 

events (citations) as compared to others because of some unobserved/unknown factors.  

Frailty models directly incorporate into the model estimation a frailty term, which follows a specific 

distribution. The reasons for this are to accommodate the unobserved factors and to correct the 

estimation of regression parameters. Variance corrected models adjust the variance–covariance matrix 

in order to deal with the within-subject correlation. 

Considering the properties of variance-corrected models and frailty models (see Annex F), the latter are 

more appropriate for the analysis of NC. Frailty models capture within-article correlation due to citation 

dependence and heterogeneity. 

Using recurrent events methods, we try to see if the main intervention effect estimation remains similar, 

independently of the statistical method, thus giving robustness to the results. Another aspect we want to 

explore is if these techniques, which consider more information, lead to narrower 95% CI. 

Apart from frailty models, we find the mean cumulative function (MCF) useful for visualizing the 

tendency of the NC over the two intervention groups. The shape of MCF can give us an idea of how 

long we should wait to study the long-term effect of the intervention on the NC of articles in a medium-

impact journal like Medicina Clínica (Elsevier, Barcelona). 
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2.4.1. MEAN CUMULATIVE FUNCTION 

 

Recurrent events data analysis describes every unit in the population by means of a cumulative history 

function for the number of recurrences. In other words, it represents the accumulated number of events 

over time. The average of all population curves passing through the vertical line at each time 𝑡 is known 

as the MCF. 

The MCF method assumes that: 

(i) The sample units represent a random sample of the target population.  

(ii) The cumulative history functions of all sample units are statistically independent of their 

censoring times (i.e., random censoring, also called non-informative censoring) (129). 

Nelson (130) describes a simple nonparametric estimator of the MCF, which is analogous to the Nelson-

Aalen estimator for the cumulative hazard function of lifetime data (131), as explained below. 

Formally, let 𝑁𝑖(𝑡𝑗) denote the number of citations happening to article 𝑖 at time point 𝑡𝑗, where 1 ≤ 𝑖 ≤ 𝑛 

articles and 1 ≤ 𝑗 ≤ 𝑚 time points. Furthermore, each article has a censoring time 𝜁𝑖, after which the 

citations are not known. Let 𝑂𝑖(𝑡) denote whether article 𝑖 is observable at time 𝑡, meaning that 𝑂𝑖(𝑡) =

I[𝑡 ≤ 𝜏𝑖]. The 𝑁𝑖(𝑡𝑗) is defined as zero when there is no event happening to article 𝑖 at time 𝑡𝑗 or when the 

article is censored before any citation, i.e., 𝑂𝑖(𝑡𝑗) = 0. Finally, we denote by 𝑁𝑇𝑖(𝑡) = ∑ 𝑁𝑖(𝑡𝑗)𝑗:𝑡𝑗≤𝑡  the 

total number of citations accumulated by article 𝑖 in the interval (0, 𝑡𝑗]. 

To define the aggregate values over all articles, denote by 𝑁𝑜(𝑡) = ∑ 𝑁𝑖(𝑡)𝑛
𝑖=1  the total number of citations 

at time 𝑡 and by 𝑂𝑜(𝑡) = ∑ 𝑂𝑖(𝑡)𝑛
𝑖=1  the total number of articles observable at time 𝑡. The MCF represents 

the population mean number of recurrent events by certain times. 𝑀𝐶𝐹(𝑡) = 𝐸[𝑁𝑇(𝑡)], where 𝑁𝑇(𝑡) is a 

random variable for the number of events that have occurred up to time 𝑡. The MCF estimates the expected 

value 𝐸[𝑁𝑇(𝑡)] as a cumulative sum of the total NC over all event times divided by the number of articles 

observed at time t: 

 E[𝑁𝑇(𝑡)] = ∑
𝑁𝑜(𝑡𝑗)

𝑂𝑜(𝑡𝑗)
𝑗:𝑡𝑗≤𝑡

 [27] 

A robust variance estimate is (132): 

 Var[E[𝑁𝑇(𝑡)]] = ∑ (∑
𝑂𝑖(𝑡𝑗)

𝑂𝑜(𝑡𝑗)
(𝑁𝑖(𝑡𝑗) −

𝑁𝑜(𝑡𝑗)

𝑂𝑜(𝑡𝑗)
)𝑗:𝑡𝑗≤𝑡 )𝑚

𝑖=1

2

         [28] 

Any estimate based on a sample has uncertainty associated with its sampling. Thus, it is important to 

estimate confidence intervals that quantify the probable range of the MCF at each given time point t: 
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 95% CI = E[𝑁𝑇(𝑡)] ± 1.96√Var[E[𝑁𝑇(𝑡)]]          [29] 

To assess the intervention effect, we compare the difference of the MCFs of the R and SC groups, 

denoted by E[𝑁𝑇𝑆𝐶(𝑡)] and E[𝑁𝑇𝑅(𝑡)]. The estimate of each citation time point MCF difference is         

 E[∆𝑁𝑇(𝑡)] = E[𝑁𝑇SC(𝑡)] − E[𝑁𝑇R(𝑡)]                             [30] 

Since the sampling of articles is independent due to randomization, the variance of the difference is the 

sum of the MCF variances that were estimated using the previous formula [28]: 

                  Var[E[∆𝑁𝑇(𝑡)]] = Var[E[𝑁𝑇𝑆𝐶(𝑡)]] + Var[E[𝑁𝑇𝑅(𝑡)]]                   [31] 

The estimate of the difference E[∆𝑁𝑇(𝑡)] between MCFs, with corresponding CIs based on 

Var[E[∆𝑁𝑇(𝑡)]], can be plotted similarly to the MCFs. CIs based on the MCF show the expected 

difference and the probable region of this difference for every time point over a long duration  

 

R software has the reda package to analyze the recurrent event data by means of the MCF methodology. 

It implements the mcf() function to estimate the MCF of the data and the mcfDiff() function to estimate 

the difference between two MCFs at each time. 

 

 

 

2.4.2. FRAILTY MODELS 

 

Frailty models provide a suitable way to introduce random effects into a survival model to account for 

within-subject correlation and unobserved heterogeneity across subjects, which in our case are the 

articles. These models assume that correlation among recurrent events over time is due to some 

individuals being more susceptible to having a recurrent event than others because of some unobserved 

or unknown factor (133). 

Thus, a frailty model is a random effects model for time-to-event data, where the random effect (the 

frailty) has a multiplicative effect on the baseline hazard function. Frailty models are an extension of 

Cox’s model for introducing frailty terms (nonobservable random covariates).  

The frailty term follows a specific distribution, but there are no guidelines on how to select an 

appropriate frailty distribution for a given scenario. The gamma distribution is the most commonly used 

in the estimation of this frailty term, although there are other distributions for frailty estimation. 
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Some authors have distinguished (133) between two categories of frailty models: univariate frailty 

models, which consider univariate survival times; and multivariate frailty models, which account for 

multivariate survival times (e.g., competing risks, recurrence of events in the same individual, and 

occurrence of a disease in relatives). 

We are interested in multivariate frailty models, as they account for the presence of dependence between 

event times. To account for dependence, the frailty model introduces a random effect called frailty that 

is denoted by Z. This frailty term describes the common risk within each article acting as a multiplicative 

factor in the hazard function. 

The definition of a frailty model in terms of conditional risk is: 

       ℎ(𝑡𝑖𝑠|𝑍𝑖) = 𝑍𝑖ℎ(𝑡𝑖𝑠), [32] 

where the frailty term 𝑍𝑖 is added to the classical Cox model. The term 𝑍𝑖 is a nonobservable random 

variable that varies over the sample and increases the individual risk if 𝑍𝑖 > 1, and it decreases if 𝑍𝑖 >

1. When interpreting the model, the hazard ratios (HR) of the covariate 𝑥 are the same as they are for 

the Cox model without frailty. 

When this frailty term is cluster-specific, as in recurrent events, the frailty model is known as a shared 

frailty model. 

Under the shared frailty model, citations of article i are supposed to share the same frailty (134). The 

conditional hazard function at time t of citation s in article i is: 

                  ℎ𝑖𝑠(𝑡|𝑥, 𝛽, 𝑍) = 𝑍𝑖ℎ𝑖𝑠(𝑡) = ℎ0(𝑡)𝑒𝑥𝑖𝑠𝛽𝑍𝑖, [33] 

where ℎ𝑖𝑠 is the conditional hazard function for the sth citation from the ith article (conditional on Zi); 

ℎ0(𝑡) is the common baseline hazard function; 𝛽 is the regression coefficient vector of dimension p; 𝑥𝑖𝑠  

represents the vector of covariates of citation s in article i; 𝑍𝑖 is the random effect on the ith article. The 

frailty terms 𝑍1, 𝑍2, … , 𝑍𝑛 are independent and identically distributed with known density 𝑓(· |𝜃) and 

unknown parameter 𝜃. 

As in the proportional hazards model, parametric or non-parametric forms of baseline hazard can be 

assumed in frailty models (135). The parametric model performs the parameter estimation by means of 

the maximum marginal likelihood approach (136). The semi-parametric model leaves the baseline risk 

function unspecified, since the shape of the baseline hazard function is often unknown in practice. For 

parameter estimation, the semi-parametric model uses penalized partial likelihood, expectation 

maximization or hierarchical-likelihood methods. 

The frailty term 𝑍𝑖 accounts for the extra variability from unobserved risk that are not accounted for in 

the model. If we assume that 𝑍𝑖 follows some distribution, then we can estimate the frailty model. The 

goal is to estimate the frailty variance, as it is used to determine the degree of heterogeneity in the study  
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population. When the variance is small, the values of frailty are around one. When the variance is large, 

there is dispersion on the values of frailty, making that the frailty promotes greater heterogeneity into 

the individual hazards. 

The shared frailty model has some limitations, as it assumes that the unobserved covariates are the same 

within the cluster, or that the dependence parameter and the population heterogeneity are confounded. 

The choice of the frailty distribution is very important, as the shape of the distribution plays an important 

role in frailty models. The tails of the distributions can determine the type of dependence. Distributions 

with a large right tail such as positive stable distributions lead to strong early dependence, whereas 

distributions with a large left tail such as gamma lead to strong late dependence (137). 

The one-parameter gamma distribution is the most widely used frailty distribution (138), since it is very 

tractable. We will focus on the gamma frailty model, although we will compare the results with other 

frailty distributions to see the robustness of the findings. 

 

Gamma frailty model 

Suppose a random variable 𝑧 > 0 is gamma distributed with shape parameter 𝛼 > 0 and scale parameter 

𝜃 > 0. The probability density function of 𝑧 is: 

              𝑓𝑧(𝑡) =
𝜃𝛼𝑡𝛼−1 exp(−𝜃𝑡)

Γ(𝛼)
,      𝑡 > 0, [34] 

where 

                  Γ(𝛼) = ∫ 𝑠𝛼−1 exp(−𝑠) 𝑑𝑠
∞

0

 [34] 

is the gamma function. 

The expected value and variance of the gamma distribution are 

                  E(z) =
𝛼

𝜃
 Var(z) =

𝛼

𝜃2
 [35] 

The gamma distribution 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝜃) takes a variety of shapes as 𝛼 varies. When 𝛼 = 1, it is identical 

to the exponential distribution. The relationship between 𝛼 and the hazard function is 

ℎ(𝑡) = {

𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑤ℎ𝑒𝑛 0 < 𝛼 < 1
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤ℎ𝑒𝑛 𝛼 = 1

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑤ℎ𝑒𝑛 𝛼 > 1
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In gamma frailty models, the restriction 𝛼 = 1 is used, which results in an expectation of 1. The variance 

of the frailty variable is then 1/𝜃. Assuming that the frailty term 𝑧 is distributed as gamma with 𝐸(𝑍) =

1 and 𝑉𝑎𝑟(𝑍) = 𝜃, then the distribution function of the frailty term 𝑧 is the one-parameter gamma 

distribution: 

 𝑓(𝑧) =
𝑧

1
𝜃

−1
exp(−𝑧/𝜃)

Γ(1/𝜃)𝜃1/𝜃
,      𝜃 > 0 [36] 

where 𝑧 > 1 indicates that article i has a higher probability of being cited, whereas 𝑧 < 1 indicates that 

article i has a lower probability of being cited.  

The maximum likelihood estimation in the gamma frailty model is straightforward, since we can easily 

integrate the frailties into the likelihood function and obtain the parameter estimates using classical 

maximum likelihood techniques.  

 

Shared frailty models with R software 

There are diverse estimation approaches available in the R software for fitting a shared frailty model 

(135), as shown in Table 4.  

The baseline hazard function in a parametric model has known parametric distribution with unknown 

parameters to estimate. The method to estimate these parameters is the maximum marginal likelihood 

(MML) approach (136). The parfm package (139) provides with several parametric frailty models.  

Generally, the distribution of the baseline hazard function is unknown, therefore it is advisable to use a 

semi-parametric model that leave the baseline hazard function unspecified. Under this semi-parametric 

framework, survival (140) and coxme (141) packages employ the penalized partial likelihood (PPL). 

The frailtypack package obtains the parameter estimates by nonlinear least squares (NLS) methodology.  

To test the performance of each R package, we simulate data with an exponential baseline hazard time 

and frailty term following a gamma distribution – the most usual frailty distribution assumption when 

fitting shared frailty models. We compare the bias of the effect estimation to decide which package to 

use for estimating our real data with the formula: 

 𝐵𝑖𝑎𝑠(𝛽) =
∑ 𝛽̂𝑟

𝑛𝑠𝑖𝑚
𝑟=1

𝑛𝑠𝑖𝑚
− 𝛽, [37] 

where nsim is the number of simulations, 𝛽̂𝑟 are the estimates of the effect within each of the nsim 

simulations, and 𝛽 is the assumed true value of the intervention effect. Annex G describes in detail the 

simulation study. 
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Package::function Baseline hazard function Estimation procedure Frailty distribution 

parfm::parfm Parametric MML Gamma, PS, IG 

survival::coxph Nonparametric PPL Gamma, LN 

coxme::coxme Nonparametric PPL LN 

frailtypack::frailtyPenal Nonparametric NLS Gamma, LN 

frailtyEM::emfrail Nonparametric ML Gamma, PS, IG, PVF 

Table 4. R packages and functions for fitting shared frailty models for recurrent events.MML= maximum marginal 
likelihood; PPL=penalized partial likelihood; NLS= nonlinear least squares; ML: maximum likelihood; PS=positive 

stable; IG=inverse Gaussian; LN=log-normal; PVF=power variance function 
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2.5. REPRODUCIBILITY (Shiny application) 

 

The scientific method relies on reproducibility, the benchmark for the reliability of an experiment. 

There is a growing interest in evaluating and ensuring the transparency and reproducibility of the 

published scientific literature. Since 2014, there have been intensified efforts to promote open science 

practices across the biomedical literature (142). Maintaining reproducibility requires that all data 

management, analysis, and visualization steps behind the results presented in a paper are documented 

and available in full detail. Reproducibility here means that someone else should be able to obtain the 

same results, given all the documented inputs and the published instructions for processing them. 

It is almost impossible to reproduce the results of a study with only the manuscript of the publication; 

one also needs the code and the raw data used. Furthermore, to ensure reproducibility, the best strategy 

is to provide executable code and data (Figure 10).  

 

 

Figure 10. Steps towards reproducibility 

 

With the aim of providing reproducibility for this research, I have created an application with the Shiny 

tool, which allows fully replicating the results obtained. This application provides the data and the 

obtained results in an easy and interactive interface. 

The Shiny tool is a framework for building interactive web applications (apps) using the R language. It 

allows users to interact and explore data, and to understand models and its dependency on different 

parameters without managing the code. 

The link to the application is: http://shiny-eio.upc.edu/pubs/NumberCitations/  

 

http://shiny-eio.upc.edu/pubs/NumberCitations/
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It has two tabs. The first tab consists of the dataset table used to perform the analyses. Table 5 shows 

the name of the dataset table variables and their meanings. Through the application menu, it is possible 

to see all the data and filter the data separately, which in this example are of the ET and IQ studies. It 

also allows choosing the number of registers to display and provides the option of downloading the data 

in order to work with it. 

 

Name of the variable Explanation 

Title Title of the original randomized article in the ET and IQ studies 

Study Study to which it belongs (ET or IQ) 

Study design Type of  study design 

Group To which intervention group it was randomized (R; S; C; SC) 

Publication date Date of publication of the article in the Medicina Clínica journal 

Follow-up Time of follow-up to 31/12/2016 

Goodman scale The baseline MQAI scale value evaluated in the ET and IQ studies 

NC Number of citations collected using WoS that the article has received at the end of the follow-up 

Table 5. Names of the variables and their meanings that appear in the first tab of the shiny app. 

 

The other tab shows the results obtained using graphics. These are the results of the main comparison 

(R vs. SC) for both studies (ET and IQ) and the joint effect estimation. It is possible to see the results 

obtained by the Poisson model and nonparametric methodology. You can choose to view the analyses 

according to type of study. In the case of estimating with the Poisson model, you can choose how to 

estimate the standard error through the Jackknife or Wald methods. It also shows the results of secondary 

comparisons: the effect of the statistical reviewer (R + C vs. S + SC) and the effect of the publication 

guidelines (R + S vs. C + SC). For each display, there is a small explanation of the result shown.
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RESULTS 

 

 

 

 

 

3.1. DESCRIPTIVE RESULTS 

 

The IQ study includes 99 articles published between 4 February 2005 and 12 May 2006, with a mean 

(SD) follow-up period of 13.35 (0.31) years. These publications received 1037 citations (mean 10.47, 

SD 15.94). The main analysis includes only the 24 and 27 papers allocated to the SC and R groups, 

which received 545 citations (mean 10.69, SD 15.37).  

The ET study includes 92 articles published between 24 June 2009 and 3 April 2010, with a mean (SD) 

follow-up period of 9.29 (0.31) years. 41 and 51 papers belong to the R and SC groups, respectively. 

They received 484 citations (mean 5.26, SD 4.86).  

Table 6 shows the descriptive results for each study and intervention group of the NC collected until 

December 2018.  

For the IQ study, Table 6 uses a shaded style to differentiate the descriptive data of groups not included 

in the main analysis, i.e., the S and C groups. The R and SC groups have obtained 268 and 277 citations, 

with means (variance) of 9.93 (207.30) and 11.54 (277.48), respectively. The mean (SD) annual rate is 

0.74 (1.08) for the R group and 0.86 (1.22) for the SC group. In the R group there is 1 (3.70%) article 

with 0 citations, and the SC group has 3 (12.50%).  

During the 9.29 years of follow-up period for the ET study, the R and SC groups obtained a total of 176 

and 308 citations, respectively. The R group has a mean (variance) of 4.29 (9.11) citations and the SC 

group’s is 6.04 (34.24) citations. The mean (SD) annual rate is 0.46 (0.32) for the R group and 0.66  
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(0.66) for the SC group. In the R group, there are 1 (2.44%) articles without any citations, whereas the 

SC group has 5 (9.80%) articles. The proportion of articles with 10 or more citations is higher in the SC 

group, with 11 (21.57%) versus 2 (4.88%) articles in the R group. 

In both studies, the intervention groups have higher means and standard deviations of NC, higher annual 

rates, and higher proportions of articles with 0 citations (Figure 11).  

 

 

Figure 11. Number of citations by study and intervention group 

 

Figure 12 displays the data in a recurrent events perspective for the ET study. It shows separate event 

plots for each article, where crosses indicate the days that citations occurred. In cases where there were 

more than one citation for a given article on a given day, I slightly separate the cross. This figure provides 

an impression of the frequency and patterns of citations throughout the follow-up time for each article.  
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N 

Number of citations 

Sum NC 

Articles with 0 citations Annual rate  

Mean Variance Median IQR N (%) Mean (SD) 

  IQ study R 27 9.93 207.30 5.00 8.00 268 1 (3.70%) 0.74 (1.08) 

S 26 9.46 202.98 5.00 6.50 246 4 (15.38%) 0.71 (1.07) 

C 22 11.18 379.68 5.50 9.25 246 2 (9.09%) 0.83 (1.42) 

SC    24 11.54 277.48 7.00 8.50 277 3 (12.50%) 0.86 (1.22) 

Total 99 10.47 254.01 5.00 8.00 1.037 10 (10.10%) 0.78 (1.18) 

ET study R 41 4.29 9.11 4.00 3.00 176 1 (2.44%) 0.46 (0.32) 

SC 51 6.04 34.24 4.00 7.00 308 5 (9.80%) 0.66 (0.66) 

Total 92 5.26 23.58 4.00 5.00 484 6 (6.52%) 0.57 (0.54) 

Table 6. Number of citations by study and intervention group until December 2018. Groups not included in the main analysis are in a shaded style. 
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Figure 12. Evolution of citations by group in the ET study 

 

To visualize the increment in citations over time, we plot the MCF for articles in the ET study (Figure 

13). It shows that the growth is not constant over the follow-up.  During the first year after publication, 

articles receive a moderate increment in NC. The most important increment in citations is between the 

first and fourth year after publication. After the fourth year, the increment starts to lose strength.  

 

Figure 13. Mean cumulative function for the ET study articles
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3.2. EFFECT OF A STATISTICAL REVIEWER USING REPORTING GUIDELINES 

 

Figure 14 displays the adjusted and non-adjusted estimation of the SC additional intervention effect 

using the Poisson model. This figure shows narrow 95% CI when using the Wald standard errors, or 

what is the same standard errors from the information matrix. These 95% CI do not seem trustworthy 

since it compares small sample sizes. This may indicate a violation of the distribution assumption that 

the variance equals the mean. In such cases it is recommended (117) using robust standard errors for the 

parameter estimates, as resampling methods. 

NC have overdispersion and the Poisson model is not an optimal model to fit the data (see Annex B). 

 

 

Figure 14. Citations-per-year mean ratio for the main comparison (R vs. SC) using the Poisson model with Wald 

standard errors 
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Figure 15 shows three different estimates of the SC additional intervention using the mean citations-per-

year ratio: 

1. Raw estimate: without using any model assumption, I use the JK resampling method with the 

outcome NC/Follow-up for each article 

2. Poisson non-adjusted: this estimate assumes a Poisson regression model with group and 

offset(follow-up) covariates 

3. Poisson adjusted: this estimate assumes a Poisson regression model with group, baseline MQAI 

value and offset(follow-up) as covariates 

All reported 95% CI come from the JK method. 

For the ET study, the intervention increases the mean citations-per-year by 44% (95% CI: 1 to 107%) 

using raw estimation, by 54% (95% CI: 4 to 127%) using Poisson non-adjusted and by 51% (95% CI: 3 

to 123%) using Poisson adjusted. 

For the IQ study, the intervention increases the mean citations-per-year by 16% (95% CI: -52 to 180%) 

using raw estimation, by 18% (95% CI: -51 to 183%) using Poisson non-adjusted and by 18% (95% CI: 

-51 to 184%) using Poisson adjusted. 

For both the ET and IQ studies, point estimates of the intervention are positive. CIs for the IQ study are 

wider. One possible explanation for this is the number of articles under comparison (R=27 vs. SC=24) 

compared with the ET study, which has more articles per group (R=41 vs. SC=51). 

The joint MA estimated effect is 40% (95% CI: 1 to 94%) for the raw estimation, 47% (95% CI: 4 to 

109%) for Poisson non-adjusted and 45% (95% CI: 2 to 105%) for Poisson adjusted. MA effects are 

similar to those of the ET study, as they have more weight in MA.  
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Figure 15. Citations-per-year mean ratio for the main comparison (R vs. SC) 

 

Figure 16 shows the estimated mean-per-year ratio with the QP, NB, ZIP and ZINB models. 

Point estimated effects of the mean-per-year ratio are greater than 1 for all models in both the ET and 

IQ studies, as in the MA analysis. Furthermore, the joint MA estimated 95% CI that are greater than 1 

for all models and adjustments. The NB model fits the NC better than the other models (Figure 17, Table 

7, Table 8 and Table 9). The joint MA estimated effect is 61% (95% CI: 8 to 138%) for the non-adjusted 

and 59% (95% CI: 5 to 140%) for the adjusted NB model. 

Therefore, the results of the citation-per-year mean ratio for the Poisson regression model and 

nonparametric estimations are consistent with the results obtained from the other count models, all of 

which show that NC is improved by the additional intervention of including a statistical reviewer that 

uses reporting guidelines in the editorial process. 

Figure D.1 of Annex D shows the odds ratio (OR) of non-citable articles (extra zeros) estimated by ZIP 

and ZINB. Extra zero estimates have wide intervals, indicating inaccurate estimations, which is most 

probably due to the absence of high extra zero counts for the NC collected until 2018. Considering the  
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MA of the ZIP non-adjusted model, the estimated odds of observing an excess zero in the intervention 

group is 11.44 times (95% CI: 0.00 to 6.17*1010) the odds in the reference group. This wide CI indicates 

that zero-inflated models are not appropriate for our data, accordingly with Table 7 and Annex E. 

 

 

Figure 16. Citation-per-year mean ratio using QP, NB, ZIP and ZINB models 

 

Figure 17 shows the empirical and theoretical cumulative distribution functions (CDFs) of the sample 

and the different models tested, respectively. It shows that the model that best fits the data is the NB. 

Figure E.1 of Annex E shows the histogram of the ET study data with theoretical densities of Poisson, 

QP, ZIP, NB and ZINB, thus supporting the use of NB to fit the NC data. 
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17a 

 

17b 

 

Figure 17. Empirical and theoretical CDFs for the ET study. For clarity, this figure shows two plots: 17a for the 

CDFs of Poisson, QP and ZIP, and 17b for NB and ZINB  

 

The Kolmogorov-Smirnov statistic (K-S) in Table 7 shows the absolute maximum distance between the 

CDF of the sample and the CDFs of the other models considered. The closer K-S is to 0, the better the 

fit. For the ET and IQ studies, the model that best fits the NC is the NB model. The maximum K-S 

distance between the NB model’s CDF and the sample CDF is 0.08 (95% CI: 0.04 to 0.16) for ET study 

and 0.16 (95% CI: 0.08 to 0.27) for IQ study. 

 

 
ET study IQ study 

K-S 95% CI K-S 95% CI 

Poisson 0.25 (0.18, 0.30) 0.49 (0.41, 0.55) 

Quasi-Poisson 0.09 (0.04, 0.15) 0.18 (0.10, 0.29) 

Negative Binomial 0.08 (0.04, 0.16) 0.16 (0.08, 0.27) 

Zero-Inflated Poisson 0.22 (0.15, 0.29) 0.45 (0.35, 0.53) 

Zero-Inflated Negative Binomial 0.59 (0.49, 0.67) 0.75 (0.65, 0.84) 

Table 7. Kolmogorov-Smirnov statistic by study and count model 
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After estimate the effect of a statistical reviewer using reporting guidelines by the different count 

models, we note consistency of the effect independently of the chosen model. Table 8 and Table 9 show 

a summary of the estimated effects and AIC values for the different models. In both ET and IQ studies 

the mínimum AIC corresponds to the NB model, which agree with the shortest KS distance (Table 7).  

Since the QP model is not calculated based on the likelihood approach, it does not have AIC estimation. 

It is possible to compute qAIC but it is not comparable with AIC, therefore it is not offered. Other model 

selection criterion such as the Bayesian information criterion (BIC) relies also on the likelihood 

approach, therefore quasi BIC is not neither comparable to BIC. 

Raw estimation of the effect is in the line with the estimation of the count models. It reaffirms that the 

effect of the intervention is free of model selection bias. 

 

ET study Non-adjusted by baseline MQAI Adjusted by baseline MQAI 

Mean ratio (95% CI) AIC Mean ratio (95% CI) AIC 

Poisson 1.54 (1.04, 2.27) 754.34 1.51 (1.03, 2.23) 747.47 

Quasi-Poisson 1.53 (1.04, 2.25) - 1.50 (1.02, 2.21) - 

Negative Binomial 1.77 (1.13, 2.78) 527.91 1.73 (1.08, 2.77) 528.66 

Zero-Inflated Poisson 1.71 (1.16, 2.52) 711.59 1.70 (1.17, 2.47) 699.10 

Zero-Inflated Negative Binomial 1.87 (1.20, 2.92) 530.12 1.84 (1.16, 2.90) 530.91 
 

Raw estimation 1.44 (1.01, 2.07) 

Table 8. Summary of the adjusted by baseline MQAI intervention effect by different count models for ET study 

 

IQ study Non-adjusted by baseline MQAI Adjusted by baseline MQAI 

Mean ratio (95% CI) AIC Mean ratio (95% CI) AIC 

Poisson 1.18 (0.49, 2.83) 906.59 1.18 (0.49, 2.84) 908.23 

Quasi-Poisson 1.18 (0.49, 2.84) - 1.18 (0.49, 2.83) - 

Negative Binomial 1.14 (0.48, 2.70) 350.59 1.16 (0.47, 2.88) 352.38 

Zero-Inflated Poisson 1.37 (0.59, 3.20) 826.49 1.37 (0.58, 3.23) 830.04 

Zero-Inflated Negative Binomial 1.23 (0.50, 2.98) 353.53 1.25 (0.49, 3.15) 357.24 
 

Raw estimation 1.16 (0.48, 280) 

Table 9. Summary of the adjusted by baseline MQAI intervention effect by different count models for IQ study 
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As a secondary result, Figure 18 shows the effect of the intervention by study design. For both cross-

sectional and interventional studies, the intervention increases the mean-per-year ratio by 1.97 (95% CI: 

1.05 to 3.70) and 1.88 (95% CI: 1.19 to 2.98), respectively. The analysis for longitudinal and other types 

of studies point to a null effect: 1.03 (95% CI: 0.61 to 1.75) and 0.81 (95% CI: 0.28 to 2.38). 

 

Figure 18. Citations-per-year mean ratio of SC additional intervention by study design 
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Figure 19 shows the MCF for the reference and the intervention groups. During the whole follow-up 

period, MCF is greater for the SC than for the R group. For example, the average NC experienced in 5 

years in the SC group is 4.10 (95% CI: 2.97 to 5.23) versus 3.05 (95% CI: 2.40 to 3.70) citations per 

article.  This figure reveals that the cumulative NC growth seems constant in the SC group, while this 

growth decrease with time for the R group, mainly after four years after publication. 

 

 

Figure 19. Mean cumulative function for the ET study by group 

 

Figure 20 presents the MCF differences between the intervention and reference groups, with their 

random uncertainty measured as 95% CI. It shows that the intervention would increase in one citation 

per article within five years on average. This figure also reflects that the MCF difference grows over the 

years until the seventh year after publication, when the difference is stabilized. This difference is always 

in favor of the intervention group. As the MCF point estimate of the difference remains above zero, it 

indicates that the effect of the intervention persists over years. 
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Figure 20. Mean cumulative function differences between groups for the ET study 

 

We analyze the NC as recurrent events with a semi-parametric frailty model. We compute the frailty 

model with the different packages available in R software since it seems that there are no differences 

with the values of mean square error and bias in the simulation study (see Annex G). We exclude the 

parfm package since it does not converge neither in the simulation study nor in the data of study.  

Baseline hazard ratio is non-parametric, and we assume that the frailty term follows a gamma 

distribution. Results shown below (Table 10, Figure 21 and Figure 22) are not adjusted for the baseline 

MQAI.  

For the ET study, the hazard of receiving a citation for an article in the SC group at any time t compared 

to an R group article is 1.42 (95% CI: 1.00 to 2.03) according to the survival package. The estimation 

for the frailtyEM package is similar with a HR equals to 1.41 (95% CI: 1.00 to 2.02). The estimation for 

the frailtypack package is 1.39 (95% CI: 1.05 – 1.85). For all packages, the estimations suggest that the 

articles in the SC group have higher hazard to recive a citation.  
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ET study IQ study 

HR (95% CI) 
Variance of frailty 

(95% CI) 
HR (95% CI) 

Variance of frailty 

(95% CI) 

survival::coxph 1.42 (1.00, 2.03) 0.52 (-) 1.16 (0.36,  3.69) 0.82 (-) 

frailtyEM::emfrail 1.41 (1.00, 2.02) 0.51 (0.34, 0.77) 1.17 (0.62, 2.18) 0.84 (0.55, 1.25) 

frailtypack::frailtyPenal 1.39 (1.05, 1.85) 0.28 (0.12, 0.44) 1.29 (0.79, 2.11) 0.71 (0.37, 1.05) 

Table 10. Estimation of the hazard ratio comparing the expected number of citations between R and SC groups 

for ET and IQ studies. 

  

Figure 21 shows the cumulative hazard function of R and SC groups for ET and IQ studies. Interpretation 

of this cumulative hazard is the expected number of citations at a certain time. For ET study, articles in 

SC group are expected to have higher NC at each time. For IQ study, the SC group also have higher 

expected NC although this difference is less strong and the confidence intervals are wider.  

 

   

Figure 21. Comparison of the expected number of citations at a certain time between reference and intervention 

groups for ET and IQ studies 

 

Variance of frailty for the frailtyEM package (see Table 10), which is the one that better MSE and bias 

values obtained in the simulation study (see Annex G), is 0.51 (95% CI: 0.34 to 0.77) for the ET study. 

Therefore, the hazard given that a citation occurs at time t is 51% higher than the hazard given that a 

citation does not occurr at time t. 
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Figure 22 shows the estimated frailty distribution relying on a gamma density for the ET and IQ studies. 

For the ET study, the quartiles are 0.48, 0.84 and 1.35. Without splitting by intervention group, articles 

with frailty at the first quartile (Q1) have 43% (Q1/median - 1) lower risk of obtaining a citation, and 

articles with frailty at the third quartile (Q3) have 61% (Q3/median - 1) higher risk of obtaining a citation 

than articles with median frailty. Clearly, the relationship between citations within each article have a 

substantial effect on the probability of obtaining a citation. 

For both the R and SC groups, articles with frailty at Q1 have 34% lower risk of obtaining a citation 

than articles with median frailty. Articles with frailty at Q3 have 17% and 84% higher risk than articles 

with median frailty for R and SC groups respectively. Therefore, in SC group there are more articles 

with higher risk of citation. 

For the IQ study, the quartiles are 0.34, 0.74 and 1.38. Without splitting by intervention group, articles 

with frailty at Q1 have 54% lower risk of obtaining a citation, and articles with frailty at Q3 have 87% 

higher risk of obtaining a citation than articles with median frailty. Again, the relationship between 

citations within each article have a substantial effect on the probability of obtaining a citation. 

For the R and SC groups, articles with frailty at Q1 have 50% and 53% lower risk of obtaining a citation 

than articles with median frailty. Articles with frailty at Q3 have 86% and 40% higher risk than articles 

with median frailty for R and SC groups respectively.  

  

Figure 22. Gamma density of the estimated frailty distribution 

 

For greater transparency, we present the main results updating the NC in July 2020. These results are in 

Annex I.  

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

theta

d
e
n
s
ity

ET study: Gamma density (mean 1, var 0.51)

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

theta

d
e
n
s
ity

IQ study: Gamma density (mean 1, var 0.84)



Chapter 3. Results. Separate effects of statistical reviewer and reporting guidelines  

 

68 

 

 

3.3. SEPARATE EFFECTS OF STATISTICAL REVIEWER AND REPORTING 

GUIDELINES 

 

The separated effects are explored through the comparison of R+C versus S+SC (Statistician) and R+S 

versus C+SC (RG).  

Figure 23 shows a negligible effect of the statistician, with a mean ratio equal to 1.03 (95% CI: 0.53 to 

2.01); and a moderate effect of the RG, with mean ratio equal to 1.24 (95% CI: 0.64 to 2.40). Therefore, 

the intermediate IQ intervention groups showed concordant intermediate results, with more citations in 

the RG group. 

 

 

Figure 23. Citations-per-year mean ratio for Statistician and Reporting Guidelines effects 
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Chapter 4  

DISCUSSION 

 

 

 

 

 

The objective of this thesis is to evaluate the long-term impact of including a methodological reviewer 

(for example, a senior statistician) who is dedicated to looking for missing RG items in the peer-review 

panel of a journal. In the absence of previous exploratory studies designed for this purpose, we have 

conducted a proof of concept study. The results of this thesis will help to define the necessary parameters 

for carrying out future confirmatory studies to provide evidence of the benefits of such interventions.  

 

4.1. MAIN FINDINGS 

 

The intervention increases the number of citations by 40% (95% CI: 1 to 94%) when considering raw 

estimation without model assumptions. This effect increases to 61% (95% CI: 8 to 139%) with the 

negative binomial model, which is the parametric model that best fits NC. Considering citations as 

recurrent events and using a semi-parametric shared gamma frailty model, we find that the hazard of 

receiving a citation for an article in the SC group at any time t compared to an R group article is 1.41 

(95% CI: 1.00 to 2.02). 

If these findings are sustained, they justify the journal’s cost and time expenditure (5) (4) (7) (8) (9). 

Interestingly, the number of papers with zero citations was higher in the intervention groups of both 

studies, which raises the possibility that greater transparency deters citations for some kinds of papers.
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To the best of our knowledge, this is the first study that shows the potential association between 

completeness of reporting and higher citation counts due to the intervention of adding a methodological 

expert and reporting guidelines during the peer review process. 

 

4.2. LIMITATIONS 

 

Although the number of citations is considered by some authors to be an indicator of a paper’s influence 

(143) (144) (145) (146) (147), some have argued that “citation counts are an indicator more of impact 

than of quality or importance” (148); thus, we should not conflate the number of citations with research 

quality (149) (150). We consider the NC impartial and fair, as it is naturally free from the risk of 

evaluation bias. 

There are factors that can influence citations counts such as the online social media attention, some 

investigations have showed correlation between NC and the article level metrics (151) (152). Our meta-

analysis combined the intervention effect of two studies with articles from two periods with different 

degrees of social media appearance. We ignore the effect of social media or other factors on NC, further 

studies are needed to investigate this issue. 

Behind the IQ study lies considerable uncertainty, including the risk of bias due to attrition. The ET 

study has higher weight when estimating the combined effects; therefore, our interpretation mainly 

follows the ET results in that: when a methodologist formally uses RGs at the end of the editorial phase 

following peer review, this leads to an increase in the papers’ potential scientific value. This 

interpretation assumes that all added citations are “positive” in the sense that they contribute to the body 

of knowledge.  

As the ET and IQ studies were originally designed to test those hypotheses in a different outcome, our 

results should be interpreted as suggestive and need to be replicated. 

Our next important limitation pertains to the fact that the results rely on just one journal that is not top-

quality (Medicina Clínica, Barcelona), and they therefore cannot be transported to top-tier journals 

where those interventions have probably already been implemented. According to the Scimago Journal 

& Country Rank website, journals with Impact Factor ≥ 10 account for just 1% (15259 out of 1528749 

articles published in 2016) of biomedical scientific production. Thus, our focus is not on the top-quality 

journals but on second-tier journals that could benefit from the intervention.  

It is essential to interpret these results according to the exploratory nature of this extended follow-up 

study. First, we did not have enough advance information to know the fit between our data and the 

statistical models. Second, and more importantly, we had neither previous studies to sustain the  

http://www.scimagojr.com/journalrank.php
http://www.scimagojr.com/journalrank.php
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hypothesis nor a sample size rationale to guarantee any desired power for testing this hypothesis. 

Therefore, in keeping with the American Statistical Association (ASA) statement on p-value (153), we 

should not interpret the results of any hypothesis test. Accordingly, we should also not be concerned 

about whether or not the 95% confidence intervals (CI) include the neutral value of 1, because there is 

no such previous hypotheses. However, as we stated prior to the data collection that our objective is to 

estimate the effects of S and/or C interventions on the number of citations, selective outcome reporting 

is of no concern. 

In order to hinder the reproducibility crisis that many authors claim (154) in biomedical research, we 

provide a Shiny application with R Software that shows the data of the study and the results obtained, 

all of which are available to anyone browsing the internet. With this initiative, we attempt to demonstrate 

that methods currently exist for promoting reproducibility so that other researchers can reproduce the 

analysis of a study and replicate the effect that was originally reported. It is important that scientific 

research focus on preventing falsifiability (154). 

Apart from this manuscript, the process of carrying out this thesis led to our publishing an article (see 

Annex J) presenting the positive results of this post-hoc study. It reported the same methodology for 

count data using the NC that was collected up to 31 December 2016 as the main variable. This article 

was well-received by the research community and obtained six citations in the first year after 

publication: one citation found in WoS and five in CrossRef. Online attention measured by Altmetric 

calculated a score of 42 points within one year after publication, placing it in the 94th percentile (ranked 

15,309th of the 264,209 tracked articles of a similar age in all journals). This attention is basically due 

to the 80 tweeters and 25 Mendeley mentions in the online community. 

 

4.3. FUTURE RESEARCH 

 

The implementation of this proof of concept study has opened up various lines of future research. 

With the obtained results, we can design a confirmatory long-term impact study to verify the positive 

intervention effect. This future study will require two phases: the first will implement the intervention 

on articles in a second-tier journal; and the second phase will take place after a few years, when the 

effect of the intervention will be evaluated by analyzing the NC obtained for these articles. The results 

in Figure 20 make us consider a follow-up of around 7 years to estimate the long-term effect, since this 

figure shows that, after the 7th year after publication, the differences between the cumulative numbers 

of citations stabilize. 

 

https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-019-0746-4/metrics
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The secondary objectives for the confirmatory study could be to examine the consistency of the results 

using different sources of NC (WoS, Google Scholar, and Scopus, among others) and also examining 

the impact in social media by means of altmetrics.   

The ET and IQ studies showed a positive relationship of the intervention, as measured by MQAI. While 

in the exploratory analysis of 2016 we found a relationship between MQAI and NC, this thesis shows 

the positive effect of the intervention on NC. These relationships make it challenging to determine the 

real cause of the long-term impact as measured by NC. Therefore, we propose to approach this challenge 

by using mediation analysis.  

 

4.4. CONCLUSIONS 

 

We have definitively shown that randomized studies are feasible for improving scientific impact, as 

measured by the number of WoS citations.  

As the implementation costs of RG are low relative to the benefits, we strongly urge journals to perform 

their own studies to ascertain whether scientific impact increases by adhering to reporting guidelines and 

involving statisticians or methodological experts in the editorial process. 

Our findings indicate that the citation counts of research papers increased by 40% (95% CI: 1% to 94%) 

after introducing into the editorial process a senior methodologist that uses the publication guidelines. As 

our studies were originally designed to test those hypotheses on a different outcome, our results should be 

interpreted as exploratory and need to be replicated. We invite journals to perform their own studies to 

ascertain whether scientific repercussion increases by adhering to reporting guidelines and further 

involving statisticians in the editorial process. 
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ANNEX A. Exploratory analysis with NC collected in 2014 for the ET 

study 

 

 

DESCRIPTIVE RESULTS 

 

Sample of 92 papers published between 24 January 2009 and 3 April 2010: 

- 51 randomly assigned to statistical review based on reporting guidelines (SC group) 

- 41 randomly assigned to conventional peer review (R group) 

This exploratory analysis shows de description of the NC and the Impact Factor sum (IF sum) collected in 

2014 for the ET study. We assess the variable IF sum as the sum of the Impact Factors of the journals that 

publish the citations of the corresponding article in the year of that publication. 

The Table A.1 presents de summary statistics of the main variables collected. The mean (sd) follow-up of 

the articles is 55.38 (3.61) months. The articles of the ET study obtain a mean (sd) of 2.89 (2.81) citations 

with a mean (sd) of 5.79 (6.65) IF sum. 

 

  n Mean SD Min Q1 Median Q3 Max 

Number of citations 92 2.89 2.81 0.00 1.00 2.00 4.00 12.00 

References 92 21.28 11.49 7.00 10.00 25.50 30.00 57.00 

Impact Factor Sum 92 5.79 6.65 0.00 1.03 3.17 8.81 31.78 

Months published 92 55.38 3.61 48.63 53.42 55.33 58.43 63.10 

Table A.1. Summary statistics of the variables collected in 2014 

 

Figure A.1. Proportion of citations of the articles in the ET study. NC collected in 2014  
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Figure A.2 shows scatter plots between combinations of the previous four variables. Only a relevant 

relationship arises between the sum of impact factors and the number of citations. 

 

Figure A.2. Scatter plots for the combination ot the variables collected in 2014 
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The next figure shows the relationship between the previous or baseline quality measurements collected 

for ET study and the two outcome impact variables (NC and IF sum). 

 

Figure A.3. Relationship between the baseline quality measurements and the NC and the IF sum collected in 2014 

 

In the next figure, regression lines are plotted for all cases (first row), stratified by allocation group (second 

row) and stratified by study design (third row). The highest slope was found for the intervention studies 

when taking as response the number of citations, with 0.88 (95% CI: 0.05 to 1.72), as well as the sum of 

the impact factors, with 1.91 (95% CI: 0.15 to 3.67).  
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By subgroups 

 

Figure A.4. Regression lines between the final MQAI and the NC and the IF sum collected in 2014, for all cases, by 

allocation group and by type of study design 
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Figure A.5. Forest plot of the slopes of the regression lines between the final MQAI and the NC and the IF sum 

collected in 2014, for all cases, by allocation group and by type of study design 
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DIFFERENCE BETWEEN REFERENCE (R) AND INTERVENTION (SC) GROUPS. –

OUTCOME: NUMBER OF CITATIONS 

 

Frequencies 

 Proportion of citations (row %) 

  0 1 2 3 4 5 6 7 8 9 10 12 

- Interventio group (SC) 25.49 17.65 11.76 11.76 3.92 3.92 11.76 1.96 1.96 5.88 1.96 1.96 

– Reference group (R) 14.63 24.39 21.95 4.88 17.07 4.88 2.44 2.44 7.32 0.00 0.00 0.00 

 Table A.2. Proportion of the number of citations by allocation group 

 

 

Figure A.6. Cumulative proportion of citations by allocation group 

 

  n Mean SD Min Q1 Median Q3 Max 

Interventio group (SC) 51 3.08 3.17 0.00 0.50 2.00 5.50 12.00 

Reference group (R) 41 2.66 2.31 0.00 1.00 2.00 4.00 8.00 

Table A.3. Summary statistics of the number of citations by allocation group 
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DIFFERENCE BETWEEN REFERENCE (R) AND INTERVENTION (SC) GROUPS. –

OUTCOME: SUM OF IMPACT FACTORS 

 

  n Mean SD Min Q1 Median Q3 Max 

Interventio group (SC) 51 5.70 6.99 0.00 0.00 3.11 8.96 31.78 

Reference group (R) 41 5.91 6.30 0.00 1.40 3.69 6.71 25.60 

Table A.4. Summary statistics of the IF sum by allocation group 

 

 

Figure A.7. Boxplot of the IF sum by allocation group 
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DIFFERENCE BETWEEN REFERENCE (R) AND INTERVENTION (SC) GROUPS BY 

STUDY DESIGN. –OUTCOME: NUMBER OF CITATIONS 

 

Intervention 

  n Mean SD Min Q1 Median Q3 Max 

Interventio group (SC) 8 2.63 2.32 0.00 1.00 2.00 3.75 6.00 

Reference group (R) 8 1.88 1.46 0.00 1.00 2.00 2.00 5.00 

Longitudinal 

  n Mean SD Min Q1 Median Q3 Max 

Interventio group (SC) 18 2.28 2.52 0.00 0.00 2.00 3.00 9.00 

Reference group (R) 20 2.65 2.62 0.00 0.75 1.50 4.00 8.00 

Cross-sectional 

  n Mean SD Min Q1 Median Q3 Max 

Interventio group (SC) 17 4.82 3.84 0.00 1.00 5.00 8.00 12.00 

Reference group (R) 9 3.67 2.40 1.00 2.00 3.00 4.00 8.00 

Other 

  n Mean SD Min Q1 Median Q3 Max 

Interventio group (SC) 8 1.63 2.33 0.00 0.00 1.00 2.00 7.0 

Reference group (R) 4 2.00 1.41 1.00 1.00 1.50 2.50 4.00 

Table A.5. Summary statistics of the number of citations by allocation group and type of study design 

 

Figure A.8. Boxplot of the number of citations by type of study design   
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DIFFERENCE BETWEEN REFERENCE (R) AND INTERVENTION (SC) GROUPS BY 

STUDY DESIGN. –OUTCOME: SUM OF IMPACT FACTORS FOR 2012 

 

Intervention 

  n Mean SD Min Q1 Median Q3 Max 

Interventio group (SC) 8 4.82 4.91 0.00 1.45 3.33 6.07 13.15 

Reference group (R) 8 3.33 3.17 0.00 1.70 3.04 3.92 10.04 

Longitudinal 

  n Mean SD Min Q1 Median Q3 Max 

Interventio group (SC) 18 4.67 6.00 0.00 0.00 2.57 8.08 20.36 

Reference group (R) 20 6.37 7.12 0.00 1.05 4.76 7.78 25.60 

Cross-sectional 

  n Mean SD Min Q1 Median Q3 Max 

Interventio group (SC) 17 8.83 9.08 0.00 1.40 7.80 12.63 31.78 

Reference group (R) 9 8.50 6.95  1.40 2.16 5.64 13.54 18.99 

Other 

  n Mean SD Min Q1 Median Q3 Max 

Interventio group (SC) 8 2.26 2.86 0.00 0.00 1.00 3.70 7.51 

Reference group (R) 4 2.90 2.07 1.40 1.40 2.21 3.71 5.78 

Table A.6. Summary statistics of the IF sum by allocation group and type of study design 

 

 
Figure A.9. Boxplot of the IF sum by type of study design   
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COMPARISON BETWEEN GROUPS (ITT) 

Number of citations 

Comparison of variances. Original variables 
 F test to compare two variances 

 

data:  resp by gr.inv 

F = 2.1789, num df = 50, denom df = 40, p-value = 0.01226 

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval: 

 1.189126 3.913965 

sample estimates: 

ratio of variances  

          2.178934 

log-transform variables 
 F test to compare two variances 

 

data:  log.resp by gr.inv 

F = 1.6906, num df = 50, denom df = 40, p-value = 0.08851 

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval: 

 0.9226138 3.0367504 

sample estimates: 

ratio of variances  

          1.690582 

 

Mean comparison. 
 Welch Two Sample t-test 

 

data:  resp by gr 

t = -0.9747, df = 87.669, p-value = 0.3324 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -1.6466905  0.5629985 

sample estimates: 

mean in group 0 mean in group 1  

       2.536585        3.078431 

 

Sum of impact factor 

 Two Sample t-test 

 

data:  resp by gr 

t = 0.1443, df = 90, p-value = 0.8856 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -2.585515  2.990638 

sample estimates: 

mean in group 0 mean in group 1  

       5.905463        5.702902 
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ANNEX B. Assessment of overdispersion for NC 

 

Overdispersion occurs when there is more variability than expected under the response distribution. In 

Poisson model, the variance should be equal to the mean.  

For NC collected in 2018, variance is much larger than mean, indicating overdispersion. 

 Mean Variance % of zeros 

ET study 5.33 24.13 6.52% 

IQ study 10.69 236.10 7.84% 

Table B.1. Description of the number of citations by study 

I explore the zero inflation characteristic by comparing the number of zeros in the data to the number of 

zeros that expected from a Poisson distribution with a mean equal to the mean count of the data. The 

proportion of zeros in NC is 6.52% and 7.84% for ET and IQ studies, and the proportion of zeros expected 

from a Poisson distribution are 1% and 0.002% respectively. Therefore, it seems reasonable to suppose 

zero inflation for NC. 

To explore the distributional properties of the response variable graphically I use a modified version of a 

histogram that plots the square roots of frequencies rather than the raw frequencies, called rootogram (1). 

Figure B.1 shows two hanging rootograms of the NC fitted by a Poisson model for ET and IQ studies. Both 

rootograms show substantial departures of the model from de data. Specially, the data exhibit too many 

small counts for a Poisson model to provide an adequate fit. 

 

 

Figure B.1. Rootograms of NC collected in 2018 fitted by Poisson model for ET and IQ studies. 

 

(1) Kleiber C., Zeileis A. 20016. Visualizing count data regressions using rootograms. The American 

Statistician. 70:3, 296–303. 
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ANNEX C. Results with NC collected in December 2016 and 

comparison with 2014 results 

 

DESCRIPTIVE RESULTS 

IQ included 99 articles published between 4 February 2005 and 12 May 2006, with a mean (standard 

deviation, SD) follow-up period of 11.35 (0.31) years. Only the 24 and 27 papers allocated to both 

interventions and the reference groups respectively were included in the main analysis. The publications 

received 927 citations (mean 9.36, SD 14.87). ET included 92 articles published between 24 June 2009 and 

3 April 2010, with a mean (SD) follow-up period of 7.29 (0.31) years. They received 409 citations (mean 

4.44, SD 4.08).  

 

 

2016 

N 

Number of citations 
Sum 

NC 

Articles with 

0 citations 

Annual rate 

Mean (SD) Mean Variance Median IQR 

IQ study R 27 8.4 148.3 4.0 4.0 227 1 (3.7%) 0.74 (1.07) 

S 26 8.4 187.1 4.5 6.75 218 4 (15.4%) 0.74 (1.21) 

C 22 10.3 355.0 4.5 7.5 226 3 (13.6%) 0.90 (1.61) 

SC 24 10.7 241.8 6.5 7.5 256 3 (12.5%) 0.93 (1.34) 

Total 99 9.4 221.0 5.0 7.0 927 11 (11.1%) 0.82 (1.29) 

ET study R 41 3.6 6.3 3.0 2.0 148 2 (4.9%) 0.49 (0.34) 

SC 51 5.1 24.2 3.0 7.0 261 7 (13.7%) 0.72 (0.71) 

Total 92 4.4 16.6 3.0 4.3 409 9 (9.8%) 0.62 (0.58) 

Table C.1. Number of citations by study and intervention group in December 2016. Groups not included in main 

analysis are in a shaded style. 

 

 

Comparing the number of citations (NC) of 2014 (table B.2.) with the NC of 2016 (table B.1.), we observe 

an increment in the sum of NC of around 20% for the IQ study and 57% for the ET study. The IQ study 

increases more citations in the R group (24%), followed by the S (23.9%), C (20.9%) and SC (12.8%) 

groups. In the ET study intervention group, SC increases by about 66.2% while the R group only by 42.3%. 

In the IQ study, we see a decrease  in the number of articles with 0 citations in those 2 years for only the R 

and S groups (about 3.7% and 3.8%, respectively); and in the ET study it is about 9.7% for the R and 11.8% 

for the SC groups. 
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2014 

N 

Number of citations Sum 

NC 

Articles with 

0 citations 

Annual rate 

Mean (SD) 
Mean Variance Median IQR 

IQ study R 27 6.8 94.4 3.0 3.0 183 7.4% 0.72 (1.04) 

S 26 6.8 152.4 3.5 6.0 176 19.2% 0.73 (1.33) 

C 22 8.5 265.3 4.5 6.5 187 13.6% 0.90 (1.69) 

SC 24 7.3 200.4 6.5 7.25 227 12.5% 1.00 (1.46) 

Total 99 7.8 169.2 4.0 5.0 773 13.13% 0.83 (1.37) 

ET study R 41 2.5 4.6 2.0 3.0 104 14.6% 0.48 (0.41) 

SC 51 3.1 10.0 2.0 5.0 157 25.5% 0.60 (0.63) 

Total 92 2.8 7.6 2.0 3.0 261 20.7% 0.54 (0.54) 

Table C.2. Number of citations by study and intervention group in December 2014. Groups not included in main 

analysis are in a shaded style. 

 

Tables C.3 and C.4 show the descriptive results of the number of citations by study, study design and 

intervention group for the data collected in 2014 and 2016.  

For the IQ study: 

 Cross-sectional is the more frequent design with 0-cited articles, 19% in both 2014 and 2016 

collecting times. 

 Longitudinal is the second design with highest number of 0-cited articles, 14.6% in both 2014 and 

2016 collecting times. This design only have citations in intervention group. 

 The highest NC mean is for Other type of study (13.8 in 2014 and 17.1 in 2016) followed by Cross-

Sectional (10 in 2014 and 11 in 2016), Longitudinal (5.9 in 2014 and 7.6 in 2016) and 

Interventional (3.8 in 2014 and 4.2 in 2016). 

 For the variance and median of the NC, we see the same pattern. 

 In Cross-sectional studies, the mean NC is the highest for the intervention group SC, with a mean 

of 24.3 and 25.7 citations for, respectively, 2014 and 2016. As for the variance, it was 862.3 and 

904.3, respectively for those same years. 

For the ET study: 

 Longitudinal is the more frequent design with 0-cited articles, (31.6% in 2014 and 18.4 in 2016). 

 Other is the second design with highest number of 0-cited articles, 25% in 2014 and 8.3% in 2016. 

 All study designss have 0 citation counts in the intervention group SC, with the Cross-sectional 

and Other types having 0 citations only in that group. 

 



Annex C. Results with NC collected in December 2016 and comparison with 2014 results 

 

98 

 

 

 The highest mean and variance values are for Cross-sectional (mean of 4.2 and 6.7, variance of 

11.1 and 28.8 for data in 2014 and 2016, respectively) and Longitudinal (mean of 2.5 and 3.8, 

variance of 6.5 and 12.4 for data in 2014 and 2016, respectively).  

 For Cross-sectional and Interventional types of studies, the intervention group SC has a higher 

mean of NC. 

 

2016 

N 

Sum 

NC 

Zero 

(percentage) 

NC 

Mean Variance Median IQR 

IQ 

study 

Cross-sectional R 7 43 14.3 6.1 79.5 4.0 2.5 

S 6 87 33.3 14.5 680.7 4.0 9.0 

C 5 23 20.0 4.6 24.3 3.0 1.0 

SC 3 77 0.0 25.7 904.3 13.0 28.0 

Total 21 230 19.0 11.0 343.7 4.0 10.0 

Interventional R 3 7 0.0 2.3 1.3 3.0 1.0 

S 4 10 0.0 2.5 3.7 2.0 2.5 

C 5 24 20.0 4.8 17.7 5.0 4.0 

SC 7 39 0.0 5.6 7.3 6.0 2.5 

Total 19 80 5.3 4.2 9.2 3.0 4.5 

Longitudinal R 12 110 0.0 9.2 164.5 4.0 4.0 

S 12 81 16.7 6.8 69.8 4.5 6.3 

C 7 51 14.3 7.3 91.9 4.0 5.5 

SC 10 68 30.0 6.8 79.7 4.0 8.3 

Total 41 310 14.6 7.6 97.3 4.0 6.0 

Other R 5 67 0.0 13.4 322.3 6.0 5.0 

S 4 40 0.0 10.0 30.0 8.0 4.5 

C 5 128 0.0 25.6 1296.8 10.0 10.0 

SC 4 72 0.0 18.0 590.0 8.5 15.5 

Total 18 307 0.0 17.1 527.7 9.0 10.0 

ET 

study 

Cross-sectional R 9 37 0.0 4.1 5.1 3.0 1.0 

SC 17 137 5.9 8.1 36.4 8.0 11.0 

Total 26 174 3.8 6.7 28.8 4.0 7.0 

Interventional R 8 24 0.0 3.0 3.4 2.5 1.3 

SC 8 36 0.0 4.5 7.1 5.0 4.0 

Total 16 60 0.0 3.8 5.5 3.0 3.3 

Longitudinal R 20 77 10.0 3.9 8.7 4.0 4.3 

SC 18 69 27.8 3.8 17.3 3.0 4.8 
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Total 38 146 18.4 3.8 12.4 3.0 4.0 

Other R 4 10 0.0 2.5 3.0 2.5 3.0 

SC 8 19 12.5 2.4 6.0 2.0 1.3 

Total 12 29 8.3 2.4 4.6 2.0 2.3 

Table C.3. Number of citations by study, study design and intervention group in 2016. Groups not included in main 

analysis are in a shaded style. 

 

 

2014 

N 

Sum 

NC 

Zero 

(percentage) 

NC 

Mean Variance Median IQR 

IQ 

study 

Cross-sectional R 7 43 14.3 6.1 79.5 4.0 2.5 

S 6 87 33.3 14.5 680.7 4.0 9.0 

C 5 23 20.0 4.6 24.3 3.0 1.0 

SC 3 77 0.0 25.7 904.3 13.0 28.0 

Total 21 230 19.0 11.0 343.7 4.0 10.0 

Interventional R 3 7 0.0 2.3 1.3 3.0 1.0 

S 4 10 0.0 2.5 3.7 2.0 2.5 

C 5 24 20.0 4.8 17.7 5.0 4.0 

SC 7 39 0.0 5.6 7.3 6.0 2.5 

Total 19 80 5.3 4.2 9.2 3.0 4.5 

Longitudinal R 12 110 0.0 9.2 164.5 4.0 4.0 

S 12 81 16.7 6.8 69.8 4.5 6.3 

C 7 51 14.3 7.3 91.9 4.0 5.5 

SC 10 68 30.0 6.8 79.7 4.0 8.3 

Total 41 310 14.6 7.6 97.3 4.0 6.0 

Other R 5 67 0.0 13.4 322.3 6.0 5.0 

S 4 40 0.0 10.0 30.0 8.0 4.5 

C 5 128 0.0 25.6 1296.8 10.0 10.0 

SC 4 72 0.0 18.0 590.0 8.5 15.5 

Total 18 307 0.0 17.1 527.7 9.0 10.0 

ET 

study 

Cross-sectional R 9 37 0.0 4.1 5.1 3.0 1.0 

SC 17 137 5.9 8.1 36.4 8.0 11.0 

Total 26 174 3.8 6.7 28.8 4.0 7.0 

Interventional R 8 24 0.0 3.0 3.4 2.5 1.3 

SC 8 36 0.0 4.5 7.1 5.0 4.0 

Total 16 60 0.0 3.8 5.5 3.0 3.3 

Longitudinal R 20 77 10.0 3.9 8.7 4.0 4.3 
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SC 18 69 27.8 3.8 17.3 3.0 4.8 

Total 38 146 18.4 3.8 12.4 3.0 4.0 

Other R 4 10 0.0 2.5 3.0 2.5 3.0 

SC 8 19 12.5 2.4 6.0 2.0 1.3 

Total 12 29 8.3 2.4 4.6 2.0 2.3 

Table C.4. Number of citations by study, study design and intervention group in 2014. Groups not included in main 

analysis are in a shaded style. 

 

MAIN COMPARISON 

The main comparison of the analysis compares the reference (R) with the additional intervention of an 

expert statistician who uses the reporting guidelines (SC). The latter is the shared intervention group in the 

ET and IQ studies. 

For the 2016 NC (Figure C.1), the point estimate of the effect is positive for both the ET and IQ studies, 

indicating that the intervention increases the number of citations. The joint effect of the two studies 

indicates that the intervention increases the citation-per-year mean ratio by 43% (95% CI: 3% to 98%). 

Similar results are obtained when considering raw count data and Poisson distribution (through a 

Generalized Linear Model). The estimated joint effect for non-adjusted and adjusted Poisson model are 

40% (95% CI: 2 to 93%) and 50% (95% CI: 6 to 112%), respectively. 95% CIs are calculated using 

Jackknife method.  

 

Figure C.1. Citations-per-year mean ratio for the main comparison of NC collected in 2016. 



Annex C. Results with NC collected in December 2016 and comparison with 2014 results 

 

101 

 

 

Forest plot in Figure C.1 reflects that the intervention effect is homogenous between the ET and IQ studies. 

It shows that the confidence intervals are all overlapping and in addition to that, the ET and IQ studies 

favour the additional intervention. 

Figure C.2 shows that the effects in the main comparison are consistent over time. For data collected in 

2016, the effect is higher, increasing from 1.26 (95% CI: 0.88 to 1.81) in 2014 to 1.43 (95% CI: 1.03 to 

1.98). This consistency makes the effect more plausible, suggesting that the effect of the intervention could 

apply with shorter follow-up, although sampling error should be reduced, for example examining a larger 

sample. 

 

 

Figure C.2. Citation-per-year mean ratio for the main comparison of NC collected in 2014 and in 2016 

  



Annex C. Results with NC collected in December 2016 and comparison with 2014 results 

 

102 

 

 

SUBGROUP ANALYSIS 

 

We have also explored the effect of the two additional interventions in the IQ study: the statistician (S+SC) 

and reporting guidelines (C+SC). 

Figure C.3 shows the effect of the additional intervention of a statistical reviewer, obtaining a mean-per-

year ratio of 1.03 (95% CI: 0.53 to 2.01). For the additional intervention of reporting guidelines, the effect 

is also positive, with a mean ratio of 1.24 (95% CI: 0.64 to 2.40).  

 

 

Figure C.3. Citations-per-year mean ratio for Statistician and Reporting Guidelines effects (only the IQ study) 

 

Another subgroup analysis that we studied is the effect of the additional intervention of a statistician using 

reporting guidelines (SC), which is common in both the ET and IQ studies by study design. 

Figure C.4 shows that the estimated joint effect for cross-sectional and interventional study designs increase 

the mean-per-year ratio by 2.3 (95% CI: 1.37 to 3.86) and 1.87 (95% CI: 1.15 to 3.03), respectively. For 

the ET study, the type of study with a higher effect is Cross-sectional, with a mean-per-year ratio of 2.13 

(95% CI: 1.22 to 3.69). For the IQ study, is the interventional study design with a mean-per-year ratio of 

2.44 (95% CI: 1.18 to 5.04). 95% CI are obtained using Jackknife method. 

 

 

 

 

 

 



Annex C. Results with NC collected in December 2016 and comparison with 2014 results 

 

103 

 

 

 

Figure C.4. Citations-per-year mean ratio of the additional intervention of a statistical reviewer using reporting 

guidelines by study design 
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ANNEX D. Estimation of the intervention effect on non-citable articles 

using zero-inflated models 

 

In the first exploratory analysis conducted in 2014 it seemed that the model that best fit the NC took into 

account overdispersion due to non-citable articles. When we explored the NC with greater follow-up, 

we realized that dispersion due to a large number of 0-citations was no longer relevant. Figure D.1, that 

shows the results of the comparison of non-citable articles by group, confirms this. It has very large CIs 

values, indicating that these models do not converge, probably due to the lack of information to estimate 

this parameter. 

 

 

Figure D.1. Odds ratio (OR) estimation for the main comparison (R vs. SC) of non-citable articles using zero inflated 

models. 95% confidence intervals (CI) are estimated using Jackknife method.
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ANNEX E. Comparison of sample density and theoretical densities of Poisson, QP, ZIP, NB and ZINB 

 

 

Figure E.1. Histogram of the ET study data with sample density and theoretical densities of Poisson, QP, ZIP, NB and ZINB 
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ANNEX F. Characteristics of recurrent events data models 

 

 
Risk interval Risk set for citation k at time t Baseline hazard 

Within-article 

correlation 
Comment 

AG 
Duration since 

article publication 

Independent citations (any given citation 

is not affected by previous citations) 

Common baseline hazard across all 

citations of all articles 

The within article 

citations are independent 

AG models is recommended when there is no 

citation dependence and no covariate citation 

effects 

PWP-TT 
Duration since 

article publication 

All articles that have experienced citation 

k-1, and have not experienced citation k 

at time t 

Stratifies the data by citation count so 

that the baseline hazard is allowed to 

vary with each citation 

The within-article 

citations are independent 

PWP-TT model takes into account the ordering 

of events 

PWP-GT 
Duration since 

previous citation 

All articles that have experienced citation 

k-1, and have not experienced citation k 

at time t 

Stratifies the data by citation count so 

that the baseline hazard is allowed to 

vary with each citation 

The within-article 

citations are independent 

PWP-GT model takes into account the ordering 

of events 

WLW 
Duration since 

article publication 

All articles that have not experienced 

citation k at time t 

Stratifies the data by citation count so 

that the baseline hazard is allowed to 

vary with each citation 

The within-article 

citations are independent 

At any time point, WLW-TT describes all 

articles that have not yet experienced k citations 

and are assumed to be at risk for the kth citation  

Frailty 
Duration since 

article publication 

A random effect (frailty) term is used to 

account for the within-article correlation 

between citations to enable modeling the 

phenomenon by which some articles are 

intrinsically more or less susceptible to 

receive citations than others 

Heterogeneity is directly incorporated 

via a random effect so that the 

baseline hazard is allowed to vary 

with each citation 

Captures within-article 

correlation due to both 

citation dependence and 

heterogeneity 

The frailty approach accounts for heterogeneity. 

The random effect (the frailty) has a 

multiplicative effect on the baseline hazard 

function and the mixture of articles with 

different citation risks 

Table F.1. Characteristics of recurrent events data models 
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ANNEX G. Simulation study to compare shared frailty models for 

recurrent events 

 

In order to perform simulations, we need to generate recurrent event data. The occurrences times from 

shared frailty models assume independence and follow a proportional hazards model, given the frailty (1). 

The survival function for article i in citation time j with 𝑧𝑖 frailty parameter is 

                  𝑆𝑖𝑗(𝑡) = exp (−𝐻0(𝑡)𝑧𝑖 exp(𝑥𝑖𝑗𝛽)) [D1] 

Then, the cumulative distribution function of the proportional hazards model is 

                  𝐹𝑖𝑗(𝑡) = 1 − exp (−𝐻0(𝑡)𝑧𝑖 exp(𝑥𝑖𝑗𝛽)) [D2] 

The distribution function F(t), denoted by V, follows a uniform distribution on the interval 0 to 1. 

If 𝑉~𝑈[0,1], then (1 − 𝑉)~𝑈[0,1]. Thus, let t be the survival time of the proportional hazards model, then 

it follows from [D.2] that 

                  𝑉 = exp(−𝐻0(𝑡)𝑧𝑖 exp(𝑥𝑖𝑗𝛽)) ~𝑈[0,1] [D3] 

If ℎ0(𝑡) > 0 for all t, then 𝐻0 can be inverted and the survival time t can be expressed as 

                  𝑡 = 𝐻0
−1 (−

log (𝑉)

𝑧𝑖exp (𝑥𝑖𝑗𝛽)
) [D4] 

Where 𝐻0 is the cumulative baseline hazard function. 

When considering that the baseline hazard function 𝐻0 follows an exponential distribution 𝐻0
−1(·)=

𝑡

𝜆
, the 

occurrence time is 

                  
𝑡 =

(−
log (𝑉)

𝑧𝑖exp (𝑥𝑖𝑗𝛽)
)

𝜆
 

[D5] 

For simplicity, the frailty term 𝑧𝑖 is generated from a gamma distribution. 

The intervention effect parameter 𝛽 is set to ln(1.5) so that the hazard rate of articles in the intervention 

group is 1.5 times the hazard rate in the reference group. 

We generate nsim=1000 data sets under the exponential baseline hazard model and gamma frailty model. 

Using the different packages available in R software for shared frailty models we estimate the parameters 

for the variance of the frailty distribution, 𝜃 and the fixed treatment effect 𝛽. We also cumpute the bias and 

mean square error (MSE) of the estimates following these formulas: 
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                  𝐵𝑖𝑎𝑠(𝜃) =
∑ 𝜃𝑟

𝑛𝑠𝑖𝑚
𝑟=1

𝑛𝑠𝑖𝑚
− 𝜃 [D6] 

 𝑀𝑆𝐸(𝜃) = 𝐵𝑖𝑎𝑠2(𝜃) +
∑ 𝑉𝑎𝑟(𝜃𝑟)𝑛𝑠𝑖𝑚

𝑟=1

𝑛𝑠𝑖𝑚
 [D7] 

 𝐵𝑖𝑎𝑠(𝛽) =
∑ 𝛽̂𝑟

𝑛𝑠𝑖𝑚
𝑟=1

𝑛𝑠𝑖𝑚
− 𝛽 [D8] 

 𝑀𝑆𝐸(𝛽) = 𝐵𝑖𝑎𝑠2(𝛽) +
∑ 𝑉𝑎𝑟(𝛽̂𝑟)𝑛𝑠𝑖𝑚

𝑟=1

𝑛𝑠𝑖𝑚
 [D9] 

Where 𝜃𝑟 and 𝛽̂𝑟 are the estimates of interest within each of the nsim simulations. 

We assume that the frailty term follows a gamma distribution with the shape parameter 2 and scale 

parameter 0.5. The mean and variance of the gamma frailty distribution are 1 and 0.5, respectively. 

Table G.1. shows the bias and MSE for 𝜃 and 𝛽, estimated for the R packages that allow the frailty term to 

follow a gamma distribution. The parfm function of the parfm package does not converge and the coxph 

function does not estimate the variance of 𝜃 needed for the estimation of the MSE. The bias for β are similar 

for survival and frailtyEM packages. With the frailtypack package the bias and MSE for 𝜃 parameter are 

the lowest. There is no evidence for choosing one among the others. 

 

package::function 𝐁𝐢𝐚𝐬(𝛃) 𝐌𝐒𝐄(𝛃) 𝐁𝐢𝐚𝐬(𝛉) 𝐌𝐒𝐄(𝛉) 

parfm::parfm nc nc nc nc 

survival::coxph 0.0066 0.0307 -0.1262 * 

frailtypack::frailtyPenal 0.0133 0.0308 -0.0112 0.0091 

frailtyEM::emfrail 0.0066 0.0307 0.1134 0.0434 

* survival::coxph do not show the variance of 𝜃 

Table G.1. Bias and MSE of the variance of the frailty distribution, 𝜃 and the fixed treatment effect 𝛽, 

obtained with the simulation study for different R packages. nc=no converge.  

 

The estimation method used in frailtypack is the maximization of the penalized likelihood, which is 

described in detail in Rondeau et al (2). 

 

(1) Bender R., Augustin T, and Blettner M. 2005. Generating survival times to simulate Cox proportional 

hazards models. Statistics in Medicine 24: 1713–1723. 
(2) Rondeau V, Mazroui Y, Gonzalez JR. 2012. Friatilypack: An R package for the analysis of correlated 

survival data with frailty models using penalized likelihood estimation or parametrical estimation. 
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R code for the simulation study 

rm(list=ls()) 

set.seed(1234) 

library(parfm) 

library(frailtypack) 

library(frailtyEM) 

library(survival) 

 

num.sim <- 1000 

#- Cox (frailty) 

estim.cox.frailty <- matrix(NA,ncol=6,nrow=num.sim) 

names(estim.cox.frailty) <- 

c("effect","effect.inf","effect.sup","theta.estim","theta.estim.inf","theta.estim.sup") 

#- EM 

estim.frailtyEM <- matrix(NA,ncol=6,nrow=num.sim) 

names(estim.frailtyEM) <- 

c("effect","effect.inf","effect.sup","theta.estim","theta.estim.inf","theta.estim.sup") 

#- FrailtyPenal Gamma 

estim.frailtyPenal <- matrix(NA,ncol=6,nrow=num.sim) 

names(estim.frailtyPenal) <- 

c("effect","effect.inf","effect.sup","theta.estim","theta.estim.inf","theta.estim.sup") 

 

for (i in 1:num.sim){ 

  Nart = 90 

  NT = 10  # años 

  theta = 2 

  frail = rgamma(Nart, shape=theta, scale=1/theta) 

  beta = log(1.5) 

  arm = sample(0:1, Nart, replace=TRUE) 

  lambda = 1# Weibull scale parameter 

  rho = 1 # Weibull shape parameter (rho=1 if exponential(1/lambda)) 

   

  Y.start = c(); Y.stop = c(); Z = c(); Ev = c(); G = c() 

   

  for (a in 1:Nart) { 

    v <- runif(n=100) 

    x <- (- log(v) / (lambda * frail[a] * exp(arm[a] * beta)))^(1 / rho) 

    xx = cumsum(x) 

    y.start = c(0, xx[xx<NT]) 

    y.stop = c(xx[xx<NT], NT) 

    z = rep(a, length(y.start)) 

    Y.start = c(Y.start, y.start) 

    Y.stop = c(Y.stop, y.stop)   

    Z = c(Z, z) 

    Ev = c(Ev, c(rep(1, length(y.start)-1), 0)) 

    G = c(G,rep(arm[a], length(y.start))) 

   

  } 

   

  dat.sim <- data.frame(cbind(Y.start,Y.stop,Z,Ev,G)) 

  dat.sim$Ev <- as.numeric(as.character(dat.sim$Ev)) 

  dat.sim$Y.start <- as.numeric(as.character(dat.sim$Y.start)) 

  dat.sim$Y.stop <- as.numeric(as.character(dat.sim$Y.stop)) 

   

  #- Cox model (Frailty) 

  fit3 <- coxph(Surv(Y.start,Y.stop,Ev)~G+frailty(Z,distribution="gamma"),dat = dat.sim) 

  effect <- exp(fit3$coefficients) 

  effect.inf <- exp(fit3$coefficients-1.96*sqrt(fit3$var)) 

  effect.sup <- exp(fit3$coefficients+1.96*sqrt(fit3$var)) 

  theta.estim <- 1/as.numeric(substr(summary(fit3)$print2, start=28, stop=36)) 

  theta.estim.inf <- "" 

  theta.estim.sup <- "" 

  estim.cox.frailty[i,] <- 

c(effect,effect.inf,effect.sup,theta.estim,theta.estim.inf,theta.estim.sup) 

   

  #- EM 

  fit1 <- emfrail(Surv(Y.start,Y.stop,Ev)~G+cluster(Z),dat = dat.sim) 

  effect <- exp(fit1$coefficients) 

  effect.inf <- exp(fit1$coefficients-1.96*summary(fit1)$coef[,3]) 

  effect.sup <- exp(fit1$coefficients+1.96*summary(fit1)$coef[,3]) 

  theta.estim <- exp(fit1$logtheta) 

  theta.estim.inf <- exp(fit1$ci_logtheta[1]) 

  theta.estim.sup <- exp(fit1$ci_logtheta[2]) 
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  estim.frailtyEM[i,] <- c(effect,effect.inf,effect.sup,theta.estim,theta.estim.inf,theta.estim.sup) 

   

  #- FrailtyPenal Gamma 

  fit6 <- frailtyPenal(Surv(Y.start,Y.stop,Ev)~G + cluster(Z), data=dat.sim, n.knots=7,kappa=10000) 

  effect <- exp(fit6$coef) 

  effect.inf <- exp(fit6$coef-1.96*sqrt(fit6$varHIH)) 

  effect.sup <- exp(fit6$coef+1.96*sqrt(fit6$varHIH)) 

  theta.estim <- fit6$theta 

  theta.estim.inf <- fit6$theta-1.96*sqrt(fit6$varTheta)[1] 

  theta.estim.sup <- fit6$theta+1.96*sqrt(fit6$varTheta)[1] 

  estim.frailtyPenal.gamma[i,] <- 

c(effect,effect.inf,effect.sup,theta.estim,theta.estim.inf,theta.estim.sup) 
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ANNEX H. Results of the adjusted Frailty models for recurrent events 

 

This annex complements the analysis of the NC as recurrent events with a semi-parametric frailty model 

with the estimations obtained adjusting for the baseline MQAI value of the articles.  

For the ET study, the hazard of receiving a citation for an article in the SC group at any time t compared 

to an R group article is 1.41 (95% CI: 0.99 to 2.01) according to the survival package. The estimation 

for the frailtyEM package is similar with a HR equals to 1.41 (95% CI: 0.99 to 2.00). The estimation for 

the frailtypack package is 1.36 (95% CI: 1.03 to 1.81). For all packages the estimations suggest that the 

articles in the SC group have higher hazard to recive a citation.  

For the IQ study, the hazard of receiving a citation for an article in the SC group at any time t compared 

to an R group article is 1.16 (95% CI: 0.36 to 3.67) according to the survival package. The estimation 

for the frailtyEM package is similar with a HR equals to 1.16 (95% CI: 0.62 to 2.19). The estimation for 

the frailtypack package is 1.29 (95% CI: 0.79 to 2.11). For all packages the estimations suggest that the 

intervention has positive effect on the NC of the articles.  

 

Adjusted analysis ET study IQ study 

HR (95% CI) 
Variance of frailty 

(95% CI) 
HR (95% CI) 

Variance of frailty 

(95% CI) 

survival::coxph 1.41 (0.99, 2.01) 0.53 (-) 1.16 (0.36,  3.67) 1.21 (-) 

frailtyEM::emfrail 1.41 (0.99, 2.00) 0.52 (0.34, 0.78) 1.16 (0.62, 2.19) 1.19 (0.80, 1.81) 

frailtypack::frailtyPenal 1.36 (1.03, 1.81) 0.25 (0.10, 0.41) 1.29 (0.79, 2.11) 1.23 (0.75, 2.03) 

Table H.1. Estimation of the hazard ratio between the NC for R and SC groups adjusted for the baseline MQAI for 

ET and IQ studies. 
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ANNEX I. Main results with NC collected in July 2020 

 

Figure I.1 shows the raw, the Poisson non-adjusted and the Poisson adjusted estimates of the SC 

additional intervention using the mean citations-per-year ratio for the NC collected in July 2020. All 

reported 95% CI come from the JK method. 

For the ET study, the intervention increases the mean citations-per-year by 32% (95% CI: -6 to 87%) 

using raw estimation, by 40% (95% CI: -3 to 103%) using Poisson non-adjusted and by 38% (95% CI: 

-4 to 99%) using Poisson adjusted. 

For the IQ study, the intervention increases the mean citations-per-year by 15% (95% CI: -52 to 173%)  

using raw estimation, by 17% (95% CI: -50 to 177%) using Poisson non-adjusted and by 17% (95% CI: 

-50 to 177%) using Poisson adjusted. 

The joint MA estimated effect is 29% (95% CI: -6 to 78%) for the raw estimation, 36% (95% CI: -3 to 

90%) for Poisson non-adjusted and 34% (95% CI: -4 to 87%) for Poisson adjusted.  

 

 

Figure I.1. Citations-per-year mean ratio for the main comparison (R vs SC) with NC collected in July 2020 
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Figure I.2. shows the MCF for the reference and the intervention groups with a follow-up of more than 

11 years. This figure shows the same as Figure 19, the MCF is greater for the SC than for the R group 

and that the cumulative NC growth seems constant in the SC group, while this growth decrease with 

time for the R group, mainly after four years after publication. 

 

 

Figure I.2. Mean cumulative function for the ET study by group with NC collected in July 2020 

 

Figure I.3 presents the MCF differences between the intervention and reference groups, with their 

random uncertainty measured as 95% CI. This figure reflects that the MCF difference stabilize after the 

seventh year after publication. This difference is always in favor of the intervention group, persisting a 

positive effect of the intervention. 
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Figure I.3. Mean cumulative function differences between groups for the ET study with NC collected in 2020 
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ANNEX K. R code for the analyses 

 

################################################################################################# 

### 

### R CODE FOR MAIN COMPARISON 

### 

################################################################################################# 

 

rm(list=ls()) 

 

library(rmeta) 

library(pscl) 

windowsFonts("Times New Roman" = windowsFont("Times New Roman")) 

 

##-- Data collected in 31/12/2018 

datos <- read.csv('data_2018.csv',header=TRUE,sep=";") 

datos$Follow.up <- as.numeric((as.Date("31/12/2018","%d/%m/%Y")-

as.Date(datos$Publication.date,"%d/%m/%Y"))/365) 

datos1 <- datos[datos$Study=="ET",] 

datos2 <- datos[datos$Study=="IQ" & (datos$Group=="R" | datos$Group=="SC"),] 

 

#- RAW ESTIMATION JACKKNIFE 

log.mean.ratio <- function(dat) { 

  d=dat; m0=mean(d$response[d$group=="R"],na.rm=T); 

m1=mean(d$response[d$group=="SC"],na.rm=T);log(m1/m0) 

  } # Function to find log(mean ratio) 

# ET study 

response <- datos1$NC/datos1$Follow.up;group <- datos1$Group 

dat <- data.frame(response,group=as.factor(group)); estim <- c(); estim[1] <- log.mean.ratio(dat) 

for (i in 1:dim(dat)[1]){  d <- dat[-i,];  estim[i] <- log.mean.ratio(d)} 

n <- dim(dat)[1]; desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2));  

ET.jac <- round(exp(mean(estim)),2); se.ET.jac <- desv 

LL.ET.jac <- round(exp(mean(estim)-qt(0.975,dim(datos[datos$Study=="ET",])[1]-1)*desv),2) 

UL.ET.jac <- round(exp(mean(estim)+qt(0.975,dim(datos[datos$Study=="ET",])[1]-1)*desv),2) 

ET_row_jac <- data.frame(x=c("Row JK ET: R vs 

SC"),y=round(c(ET.jac),2),ylo=round(c(LL.ET.jac),2),yhi=round(c(UL.ET.jac),2),se=se.ET.jac) 

# IQ study: Both interventions effect (R vs SC) 

response <- datos2$NC/datos2$Follow.up 

group <- datos2$Group; dat <- data.frame(response,group=as.factor(group)) 

estim <- c(); estim[1] <- log.mean.ratio(dat);  

for (i in 1:dim(dat)[1]){d <- dat[-i,];  estim[i] <- log.mean.ratio(d)} 

n <- dim(dat)[1]; desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2));  

IQ.jac <- round(exp(mean(estim)),2); se.IQ.jac <- desv 

LL.IQ.jac <- round(exp(mean(estim)-qt(0.975,dim(datos[datos$Study=="IQ" & (datos$Group=="R" | 

datos$Group=="SC"),])[1]-1)*desv),2) 

UL.IQ.jac <- round(exp(mean(estim)+qt(0.975,dim(datos[datos$Study=="IQ" & (datos$Group=="R" | 

datos$Group=="SC"),])[1]-1)*desv),2) 

IQ_row_jac <- data.frame(x=c("Row JK IQ: R vs 

SC"),y=round(c(IQ.jac),2),ylo=round(c(LL.IQ.jac),2),yhi=round(c(UL.IQ.jac),2),se=se.IQ.jac) 

# Meta-analysis 

logs <- c(log(ET_row_jac$y),log(IQ_row_jac$y)); selogs <- c(ET_row_jac$se,IQ_row_jac$se); names 

<- c("ET study", "IQ study") 

b <- data.frame(names,logs,selogs); d <- meta.summaries(b$logs, b$selogs, names=b$names, 

method="fix", logscale=TRUE) 

estim.meta.2018 <- round(exp(d$summary),2); estim.meta.se.2018 <- round(d$se.summary,2) 

LL.estim.meta.2018 <- round(summary(d)$summci[1],2); UL.estim.meta.2018 <- 

round(summary(d)$summci[3],2) 

MA_row_jac <- data.frame(x=c("Row JK MA: R vs 

SC"),y=round(c(estim.meta.2018),2),ylo=round(c(LL.estim.meta.2018),2), 

yhi=round(c(UL.estim.meta.2018),2),se=estim.meta.se.2018) 

# Join estimation (no MA) 

response <- datos$NC/datos$Follow.up;group <- datos$Group 

dat <- data.frame(response,group=as.factor(group)); estim <- c(); estim[1] <- log.mean.ratio(dat) 

for (i in 1:dim(dat)[1]){  d <- dat[-i,];  estim[i] <- log.mean.ratio(d)} 

n <- dim(dat)[1]; desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2));  

Join.jac <- round(exp(mean(estim)),2); se.Join.jac <- desv 

LL.Join.jac <- round(exp(mean(estim)-qt(0.975,dim(datos)[1]-1)*desv),2) 

UL.Join.jac <- round(exp(mean(estim)+qt(0.975,dim(datos)[1]-1)*desv),2) 

Join_row_jac <- data.frame(x=c("Row join: R vs 

SC"),y=round(c(Join.jac),2),ylo=round(c(LL.Join.jac),2), 

yhi=round(c(UL.Join.jac),2),se=se.Join.jac) 

 

#- POISSON GLM JACKKNIFE 

# ET: Adjusted Poisson (offset(FU) + Baseline Goodman scale) 
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S <- summary(m1 <- glm(NC ~ as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., 

data = datos1,family="poisson"));  

estim <- c(); estim[1] <- S$coefficients[2,1] 

windows(); par(mfrow=c(2,2)); plot(m1,main="Adjusted ET") 

for (i in 1:dim(datos1)[1]){ 

  d <- datos1[-i,] 

  S <- summary(m1 <- glm(NC ~ 

as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., data = 

d,family="poisson"));  

  estim[i] <- S$coefficients[2,1] 

} 

n <- dim(datos1)[1]; desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2));  

ET_adj.pois <- exp(mean(estim)); se.Adj.ET.pois <- desv 

ET_adj_pois_inf <- exp(mean(estim)-qt(0.975,dim(datos1)[1]-1)*desv);  

ET_adj_pois_sup <- exp(mean(estim)+qt(0.975,dim(datos1)[1]-1)*desv) 

ET_adj_pois <- data.frame(x=c("Adj Pois ET: R vs SC"),y=round(c(ET_adj.pois),2), 

                          

ylo=round(c(ET_adj_pois_inf),2),yhi=round(c(ET_adj_pois_sup),2),se=se.Adj.ET.pois) 

# ET: Non-Adjusted Poisson 

S <- summary(m1 <- glm(NC ~ as.factor(Group)+offset(Follow.up), data = datos1,family="poisson"));  

estim <- c(); estim[1] <- S$coefficients[2,1] 

windows(); par(mfrow=c(2,2)); plot(m1) 

for (i in 1:dim(datos1)[1]){ 

  d <- datos1[-i,];  

  S <- summary(m1 <- glm(NC ~ as.factor(Group)+offset(Follow.up), data = d,family="poisson")) 

  estim[i] <- S$coefficients[2,1] 

} 

n <- dim(datos1)[1]; desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2));  

ET_no_adj.pois <- exp(mean(estim)); se.no.Adj.ET.pois <- desv 

ET_no_adj_pois_inf <- exp(mean(estim)-qt(0.975,dim(datos1)[1]-1)*desv);  

ET_no_adj_pois_sup <- exp(mean(estim)+qt(0.975,dim(datos1)[1]-1)*desv) 

ET_no_adj_pois <- data.frame(x=c("No Adj Pois ET: R vs SC"),y=round(c(ET_no_adj.pois),2), 

ylo=round(c(ET_no_adj_pois_inf),2),yhi=round(c(ET_no_adj_pois_sup),2),se=se.no.Adj.ET.pois) 

# IQ: Adjusted Poisson (offset(FU) + Baseline Goodman scale) 

S <- summary(m1 <- glm(NC ~ as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., 

data = datos2,family="poisson")) 

estim <- c(); estim[1] <- S$coefficients[2,1]; 

for (i in 1:dim(datos2)[1]){ 

  d <- datos2[-i,];  

  S <- summary(m1 <- glm(NC ~ 

as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., data = d,family="poisson")) 

  estim[i] <- S$coefficients[2,1] 

} 

n <- dim(datos2)[1]; desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2));  

IQ_adj.pois <- exp(mean(estim)); se.Adj.IQ.pois <- desv 

IQ_adj_pois_inf <- exp(mean(estim)-qt(0.975,dim(datos2)[1]-1)*desv);  

IQ_adj_pois_sup <- exp(mean(estim)+qt(0.975,dim(datos2)[1]-1)*desv) 

IQ_adj_pois <- data.frame(x=c("Adj Pois IQ: R vs 

SC"),y=round(c(IQ_adj.pois),2),ylo=round(c(IQ_adj_pois_inf),2), 

                          yhi=round(c(IQ_adj_pois_sup),2),se=se.Adj.IQ.pois) 

# IQ: Non-Adjusted Poisson 

S <- summary(m1 <- glm(NC ~ as.factor(Group)+offset(Follow.up), data = datos2,family="poisson"));  

estim <- c(); estim[1] <- S$coefficients[2,1] 

for (i in 1:dim(datos2)[1]){ 

  d <- datos2[-i,];  

  S <- summary(m1 <- glm(NC ~ as.factor(Group)+offset(Follow.up), data = d,family="poisson"));  

  estim[i] <- S$coefficients[2,1] 

} 

n <- dim(datos2)[1]; desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2));  

IQ_no_adj.pois <- exp(mean(estim)); se.no.Adj.IQ.pois <- desv 

IQ_no_adj_pois_inf <- exp(mean(estim)-qt(0.975,dim(datos2)[1]-1)*desv);  

IQ_no_adj_pois_sup <- exp(mean(estim)+qt(0.975,dim(datos2)[1]-1)*desv) 

IQ_no_adj_pois <- data.frame(x=c("No Adj Pois IQ: R vs SC"),y=round(c(IQ_no_adj.pois),2), 

                             

ylo=round(c(IQ_no_adj_pois_inf),2),yhi=round(c(IQ_no_adj_pois_sup),2),se=se.no.Adj.IQ.pois) 

# Meta-analysis 

# Unadjusted 

logs <- c(log(ET_no_adj_pois$y),log(IQ_no_adj_pois$y)); selogs <- 

c(ET_no_adj_pois$se,IQ_no_adj_pois$se) 

names <- c("ET study", "IQ study"); b <- data.frame(names,logs,selogs); d <- 

meta.summaries(b$logs, b$selogs,  

names=b$names,method="fix", logscale=TRUE) 

estim.no.Adj.meta <- round(exp(d$summary),2); LL.estim.no.Adj.meta <- 

round(summary(d)$summci[1],2);  

UL.estim.no.Adj.meta <- round(summary(d)$summci[3],2) 

se.estim.meta.no.Adj <- d$se.summary 
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MA_no_adj_pois <- data.frame(x=c("No Adj Pois MA: R vs 

SC"),y=round(c(estim.no.Adj.meta),2),ylo=round(c(LL.estim.no.Adj.meta),2),yhi=round(c(UL.estim.no

.Adj.meta),2),se=se.estim.meta.no.Adj) 

# Adjusted 

logs <- c(log(ET_adj_pois$y),log(IQ_adj_pois$y)); selogs <- c(ET_adj_pois$se,IQ_adj_pois$se) 

d <- meta.summaries(logs, selogs, names=names,method="fix", logscale=TRUE); estim.Adj.meta <- 

round(exp(d$summary),2) 

LL.estim.Adj.meta <- round(summary(d)$summci[1],2);  

UL.estim.Adj.meta <- round(summary(d)$summci[3],2); se.estim.meta.Adj <- d$se.summary 

MA_adj_pois <- data.frame(x=c("Adj Pois MA: R vs 

SC"),y=round(c(estim.Adj.meta),2),ylo=round(c(LL.estim.Adj.meta),2),yhi=round(c(UL.estim.Adj.meta

),2),se=se.estim.meta.Adj) 

 

# Elements for the graphic 

MA_row_jac 

MA_no_adj_pois 

MA_adj_pois 

ET_row_jac 

ET_no_adj_pois 

ET_adj_pois 

IQ_row_jac 

IQ_no_adj_pois 

IQ_adj_pois 

 

# GRAHIC - Forest plot (se JK) 

library(extrafont) 

win.graph(8,6); par(oma=c(0,6,0,9)); par(family = "Times New Roman") 

poin <- c(22,22); lin <- c(1,1); wid <- c(1,2); pos <- c(4:1); etiq <- c("(n=41 vs 51)","(n=27 vs 

24)") 

plot(NA, xlim = c(0.33,3), 

ylim=c(0,pos[1]),xaxt="n",yaxt="n",ylab="",xlab="",axes=F,log="x",main="",font.main=4) 

abline(v=1,lty=3,col="darkgrey"); axis(1,c(1/3.5,0.33,0.5,1,2,3,3.5),labels=F); 

mtext(c("1/3","1/2","1","2","3"),las=1,side=1,at=c(0.33,0.5,1,2,3),line=0.5) 

# MA 

segments(MA_row_jac$ylo,pos[2]+0.8,MA_row_jac$yhi,pos[2]+0.8,lwd=wid[1],col="darkgrey",lty=1);  

points(MA_row_jac$y,pos[2]+0.8,pch=poin[2],cex=0.8/sqrt(MA_row_jac$se),bg="darkgrey",col="darkgre

y") 

segments(MA_no_adj_pois$ylo,pos[2]+0.5,MA_no_adj_pois$yhi,pos[2]+0.5,lwd=wid[1],lty=1);  

points(MA_no_adj_pois$y,pos[2]+0.5,pch=poin[1],cex=0.8/sqrt(MA_no_adj_pois$se)) 

segments(MA_adj_pois$ylo,pos[2]+0.2,MA_adj_pois$yhi,pos[2]+0.2,lwd=wid[1],lty=1);  

points(MA_adj_pois$y,pos[2]+0.2,pch=poin[2],cex=0.8/sqrt(MA_adj_pois$se),bg="black",col="black") 

# ET 

segments(ET_row_jac$ylo,pos[3]+0.2,ET_row_jac$yhi,pos[3]+0.2,lwd=wid[1],lty=1,col="darkgrey");  

points(ET_row_jac$y,pos[3]+0.2,pch=poin[1],cex=0.8/sqrt(ET_row_jac$se),bg="darkgrey",col="darkgre

y") 

segments(ET_no_adj_pois$ylo,pos[3]-0.1,ET_no_adj_pois$yhi,pos[3]-0.1,lty=1);  

points(ET_no_adj_pois$y,pos[3]-0.1,pch=poin[2],cex=0.8/sqrt(ET_no_adj_pois$se)) 

segments(ET_adj_pois$ylo,pos[3]-0.4,ET_adj_pois$yhi ,pos[3]-0.4,lwd=wid[1],lty=1);  

points(ET_adj_pois$y,pos[3]-0.4,pch=poin[2],cex=0.8/sqrt(ET_adj_pois$se),bg="black",col="black") 

# IQ 

segments(IQ_row_jac$ylo,pos[4],IQ_row_jac$yhi,pos[4],lwd=wid[1],lty=1,col="darkgrey");  

points(IQ_row_jac$y,pos[4],pch=poin[1],cex=0.8/sqrt(IQ_row_jac$se),bg="darkgrey",col="darkgrey") 

segments(IQ_no_adj_pois$ylo,pos[4]-0.3,IQ_no_adj_pois$yhi,pos[4]-0.3,lwd=wid[1],lty=1);  

points(IQ_no_adj_pois$y,pos[4]-0.3,pch=poin[2],cex=0.8/sqrt(IQ_no_adj_pois$se)) 

segments(IQ_adj_pois$ylo ,pos[4]-0.6,IQ_adj_pois$yhi ,pos[4]-0.6,lwd=wid[1],lty=1);  

points(IQ_adj_pois$y,pos[4]-0.6,pch=poin[2],cex=0.8/sqrt(IQ_adj_pois$se),bg="black",col="black") 

# Labels 

mtext("Joint MA",las=2,side=2,at=pos[2]+0.7,line=4,font=2,cex=1.2);  

mtext("estimated effect",las=2,side=2,at=pos[2]+0.5,line=1.3,font=2,cex=1.2) 

mtext("ET study",las=2,side=2,at=pos[3],line=3.8,font=2,cex = 1);  

mtext(etiq[1],las=2,side=2,at=pos[3]-0.2,line=2.9,cex = 1) 

mtext("IQ study",las=2,side=2,at=pos[4]-0.3,line=4.1,font=2,cex = 1);  

mtext(etiq[2],las=2,side=2,at=pos[4]-0.5,line=3.1,cex = 1) 

mtext("Mean ratio (95% CI)",las=2,side=4,at=pos[1]+0.25,line=0.5,font=2) 

mtext(c("1.40","1.44","1.54","1.51","1.16","1.18","1.18"),side=4,las=2,at=c(3.8,2.2,1.9,1.6,1,0.7

,0.4),line=1,cex=c(1,rep(0.9,6))) 

mtext(c("1.47","1.45"),side=4,las=2,at=c(3.5,3.2),line=1) 

mtext(c("(1.01, 1.94)","(1.01, 2.07)","(0.48, 

2.80)"),side=4,las=2,at=c(3.8,2.2,1),line=3,cex=c(1,rep(0.9,2))) 

mtext(c("(1.04, 2.09)","(1.02, 2.05)","(1.04, 2.27)","(1.03, 2.23)","(0.49, 

2.83)","(0.49,2.84)"), 

      side=4,las=2,at=c(3.5,3.2,1.9,1.6,0.7,0.4),line=3,cex=c(1,1,rep(0.9,4))) 

mtext("Higher additional intervention",side=1,at=2.5,line=1.5); mtext("Higher reference 

intervention",side=1,at=1/2.5,line=1.5) 

par(xpd=NA) 

legend(0.23,4.9,bty="n",horiz = T,c("Raw estimate","Poisson Non-adjusted","Poisson 

Adjusted"),pch=c(15,0,15),col=c("grey","black","black")) 

  



Annex K. R code for the analyses 

 

125 

 

 

############################################################################################# 

## 

## SENSITIVITY ANALYSIS (POISSON WALD standard deviation estimation) 

## 

############################################################################################# 

rm(list=ls()) 

 

library(rmeta) 

library(pscl) 

 

##-- Udated data in 31 December 2018 

datos <- read.csv('data_2018.csv',header=TRUE,sep=";") 

summary(datos) 

 

# Follow-up 

datos$Publication.date <-  as.Date(datos$Publication.date,format="%d/%m/%Y") 

datos$Follow.up <- as.numeric(as.Date("2018-12-31")-datos$Publication.date)/365 

datos1 <- datos[datos$Study=="ET",] 

datos2 <- datos[datos$Study=="IQ" & (datos$Group=="R" | datos$Group=="SC"),] 

 

##-- POISSON MODEL (Wald) 

##-- ET: Adjusted Poisson (offset(FU) + Baseline Goodman scale) 

S <- summary(m1.1 <- glm(NC ~ 

as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., data = 

datos1,family="poisson")) 

desv <- S$coefficients[2,2]; ET_OR_adj.wald <- exp(S$coefficients[2,1]) 

ET_OR_adj_inf.wald <- exp(S$coefficients[2,1]-qt(0.975,dim(datos1)[1]-1)*desv) 

ET_OR_adj_sup.wald <- exp(S$coefficients[2,1]+qt(0.975,dim(datos1)[1]-1)*desv) 

se.Adj.ET.pois.wald <- desv 

##-- IQ: Adjusted Poisson (offset(FU) + Baseline Goodman scale) 

S <- summary(m1.2 <- glm(NC ~ 

as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., data = 

datos2,family="poisson")) 

desv <- S$coefficients[2,2]; IQ_OR_adj.wald <- exp(S$coefficients[2,1]) 

IQ_OR_adj_inf.wald <- exp(S$coefficients[2,1]-qt(0.975,dim(datos1)[1]-1)*desv) 

IQ_OR_adj_sup.wald <- exp(S$coefficients[2,1]+qt(0.975,dim(datos1)[1]-1)*desv) 

se.Adj.IQ.pois.wald <- desv 

##-- Meta-analisis 

logs <- c(log(ET_OR_adj.wald),log(IQ_OR_adj.wald)) 

selogs <- c(se.Adj.ET.pois.wald,se.Adj.IQ.pois.wald) 

names <- c("ET study", "IQ study") 

b <- data.frame(names,logs,selogs) 

d <- meta.summaries(b$logs, b$selogs, names=b$names,method="fix", logscale=TRUE) 

estim.Adj.meta.wald <- round(exp(d$summary),2) 

LL.estim.Adj.meta.wald <- round(exp(d$summary-1.96*d$se.summary),2) 

UL.estim.Adj.meta.wald <- round(exp(d$summary+1.96*d$se.summary),2) 

se.estim.meta.Adj.wald <- d$se.summary 

 

##-- ET: Non-Adjusted Poisson (offset(FU)) 

S <- summary(m1.1 <- glm(NC ~ as.factor(Group)+offset(Follow.up), data = 

datos1,family="poisson")) 

desv <- S$coefficients[2,2]; ET_OR_no_adj.wald <- exp(S$coefficients[2,1]) 

ET_OR_no_adj_inf.wald <- exp(S$coefficients[2,1]-qt(0.975,dim(datos1)[1]-1)*desv) 

ET_OR_no_adj_sup.wald <- exp(S$coefficients[2,1]+qt(0.975,dim(datos1)[1]-1)*desv) 

se.no.Adj.ET.pois.wald <- desv 

##-- IQ: Non-Adjusted Poisson (offset(FU)) 

S <- summary(m1.2 <- glm(NC ~ as.factor(Group)+offset(Follow.up), data = 

datos2,family="poisson")) 

desv <- S$coefficients[2,2]; IQ_OR_no_adj.wald <- exp(S$coefficients[2,1]) 

IQ_OR_no_adj_inf.wald <- exp(S$coefficients[2,1]-qt(0.975,dim(datos1)[1]-1)*desv) 

IQ_OR_no_adj_sup.wald <- exp(S$coefficients[2,1]+qt(0.975,dim(datos1)[1]-1)*desv) 

se.no.Adj.IQ.pois.wald <- desv 

##-- Meta-analisis 

logs <- c(log(ET_OR_no_adj.wald),log(IQ_OR_no_adj.wald)) 

selogs <- c(se.no.Adj.ET.pois.wald,se.no.Adj.IQ.pois.wald) 

names <- c("ET study", "IQ study") 

b <- data.frame(names,logs,selogs) 

d <- meta.summaries(b$logs, b$selogs, names=b$names,method="fix", logscale=TRUE) 

estim.no.Adj.meta.wald <- round(exp(d$summary),2) 

LL.estim.no.Adj.meta.wald <- round(exp(d$summary-1.96*d$se.summary),2) 

UL.estim.no.Adj.meta.wald <- round(exp(d$summary+1.96*d$se.summary),2) 

se.estim.meta.no.Adj.wald <- d$se.summary 

 

# GRAHIC - Forest plot (Wald se) 

library(extrafont) 

win.graph(8,6); par(oma=c(0,6,0,9)); par(family = "Times New Roman") 
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poin <- c(22,22); lin <- c(1,1); wid <- c(1,2); pos <- c(3:1); etiq <- c("(n=41 vs 51)","(n=27 vs 

24)") 

plot(NA, xlim = c(0.33,3), 

ylim=c(0,pos[1]),xaxt="n",yaxt="n",ylab="",xlab="",axes=F,log="x",main="",font.main=4) 

abline(v=1,lty=3,col="darkgrey"); axis(1,c(1/3.5,0.33,0.5,1,2,3,3.5),labels=F); 

mtext(c("1/3","1/2","1","2","3"),las=1,side=1,at=c(0.33,0.5,1,2,3),line=0.5) 

# MA 

segments(LL.estim.no.Adj.meta.wald,pos[2]+0.5,UL.estim.no.Adj.meta.wald,pos[2]+0.5,lwd=wid[1],lty

=1); points(estim.no.Adj.meta.wald,pos[2]+0.5,pch=poin[1],cex=0.8/sqrt(se.estim.meta.no.Adj.wald 

<- d$se.summary)) 

segments(LL.estim.Adj.meta.wald,pos[2]+0.2,UL.estim.Adj.meta.wald,pos[2]+0.2,lwd=wid[1],lty=1); 

points(estim.Adj.meta.wald,pos[2]+0.2,pch=poin[2],cex=0.8/sqrt(se.estim.meta.Adj.wald <- 

d$se.summary),bg="black",col="black") 

# ET 

segments(ET_OR_no_adj_inf.wald ,pos[3]+0.4,ET_OR_no_adj_sup.wald,pos[3]+0.4,lwd=wid[1],lty=1); 

points(ET_OR_no_adj.wald ,pos[3]+0.4,pch=poin[1],cex=0.8/sqrt(se.no.Adj.ET.pois.wald 

),bg="black",col="black") 

segments(ET_OR_adj_inf.wald,pos[3]+0.1,ET_OR_adj_sup.wald,pos[3]+0.1,lwd=wid[1],lty=1); 

points(ET_OR_adj.wald ,pos[3]+0.1,pch=poin[2],cex=0.8/sqrt(se.Adj.ET.pois.wald )) 

# IQ 

segments(IQ_OR_no_adj_inf.wald,pos[3]-0.4,IQ_OR_no_adj_sup.wald ,pos[3]-0.4,lwd=wid[1],lty=1); 

points(IQ_OR_no_adj.wald ,pos[3]-0.4,pch=poin[2],cex=0.8/sqrt(se.no.Adj.IQ.pois.wald )) 

segments(IQ_OR_adj_inf.wald,pos[3]-0.7,IQ_OR_adj_sup.wald ,pos[3]-0.7,lwd=wid[1],lty=1); 

points(IQ_OR_adj.wald ,pos[3]-0.7,pch=poin[1],cex=0.8/sqrt(se.Adj.IQ.pois.wald 

),bg="black",col="black") 

# Labels 

mtext("Joint MA",las=2,side=2,at=pos[2]+0.5,line=4.1,font=2,cex=1.2); mtext("estimated 

effect",las=2,side=2,at=pos[2]+0.3,line=1.5,font=2,cex=1.2) 

mtext("ET study",las=2,side=2,at=pos[3]+0.4,line=3.8,font=2,cex = 1); 

mtext(etiq[1],las=2,side=2,at=pos[3]+0.25,line=2.9,cex = 1) 

mtext("IQ study",las=2,side=2,at=pos[3]-0.4,line=4.1,font=2,cex = 1); 

mtext(etiq[2],las=2,side=2,at=pos[3]-0.55,line=3.1,cex = 1) 

mtext("Mean ratio (95% CI)",las=2,side=4,at=pos[1]+0.25,line=0.5,font=2) 

mtext(c("1.33 (1.17, 1.51)","1.32 (1.17, 

1.50)"),side=4,las=2,at=c(pos[2]+0.5,pos[2]+0.2),line=1,cex=1) 

mtext(c("1.54 (1.27, 1.85)","1.51 (1.25, 

1.83)"),side=4,las=2,at=c(pos[3]+0.4,pos[3]+0.1),line=1,cex=0.9) 

mtext(c("1.18 (1.00, 1.40)","1.18 (1.00, 1.40)"),side=4,las=2,at=c(pos[3]-0.4,pos[3]-

0.7),line=1,cex=0.9) 

mtext("Higher additional intervention",side=1,at=2.5,line=1.5); mtext("Higher reference 

intervention",side=1,at=1/2.5,line=1.5) 

par(xpd=NA) 

legend(0.37,3.7,bty="n",horiz = T,c("Poisson Non-adjusted","Poisson 

Adjusted"),pch=c(0,15),col=c("black","black")) 
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###################################################################################### 

## 

## SENSITIVITY ANALYSIS (OTHER MODELS) 

## 

###################################################################################### 

rm(list=ls()) 

library(rmeta) 

library(pscl) 

 

##-- Udated data since 31 December 2018 

datos <- read.csv('data_2018.csv',header=TRUE,sep=";") 

datos$Follow.up <- as.numeric((as.Date("31/12/2018","%d/%m/%Y")-

as.Date(datos$Publication.date,"%d/%m/%Y"))/365) 

datos1 <- datos[datos$Study=="ET",] 

datos2 <- datos[datos$Study=="IQ" & (datos$Group=="R" | datos$Group=="SC"),] 

 

####---- NEGATIVE-BINOMIAL MODEL 

#- ET (Adjusted) 

library(MASS) 

S <- summary(m2.1 <- glm.nb(NC ~ 

as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., data = datos1)) 

estim <- c(); estim[1] <- S$coefficients[2,1] 

for (i in 1:dim(datos1)[1]){ 

  d <- datos1[-i,] 

  S <- summary(glm.nb(NC ~ as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., 

data = d)) 

  estim[i] <- S$coefficients[2,1] 

} 

n <- dim(datos1)[1] 

desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2)); se.Adj.ET.nb <- desv 

ET_adj.nb  <- exp(mean(estim)) 

ET_adj_nb_inf  <- exp(mean(estim)-qt(0.975,dim(datos1)[1]-1)*desv) 

ET_adj_nb_sup  <- exp(mean(estim)+qt(0.975,dim(datos1)[1]-1)*desv) 

ET_adj_nb <- data.frame(x=c("Adj NB ET: R vs 

SC"),y=round(c(ET_adj.nb),2),ylo=round(c(ET_adj_nb_inf),2),yhi=round(c(ET_adj_nb_sup),2),se=se.Ad

j.ET.nb) 

#- IQ (Adjusted) 

library(MASS) 

S <- summary(m2.2 <- glm.nb(NC ~ 

as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., data = datos2)) 

estim <- c(); estim[1] <- S$coefficients[2,1] 

for (i in 1:dim(datos2)[1]){ 

  d <- datos2[-i,] 

  S <- summary(glm.nb(NC ~ as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., 

data = d)) 

  estim[i] <- S$coefficients[2,1] 

} 

n <- dim(datos2)[1] 

desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2)); se.Adj.IQ.nb <- desv 

IQ_adj.nb <- exp(mean(estim)) 

IQ_adj_nb_inf <- exp(mean(estim)-qt(0.975,dim(datos2)[1]-1)*desv) 

IQ_adj_nb_sup <- exp(mean(estim)+qt(0.975,dim(datos2)[1]-1)*desv) 

IQ_adj_nb <- data.frame(x=c("Adj NB IQ: R vs 

SC"),y=round(c(IQ_adj.nb),2),ylo=round(c(IQ_adj_nb_inf),2),yhi=round(c(IQ_adj_nb_sup),2),se=se.Ad

j.IQ.nb) 

#- MA (Adjusted) 

logs <- c(log(ET_adj.nb),log(IQ_adj.nb)); selogs <- c(se.Adj.ET.nb,se.Adj.IQ.nb) 

names <- c("ET study", "IQ study"); b <- data.frame(names,logs,selogs) 

d <- meta.summaries(b$logs, b$selogs, names=b$names, method="fix", logscale=TRUE) 

estim.Adj.meta.2 <- round(exp(d$summary),2); se.estim.meta.Adj <- d$se.summary 

LL.estim.Adj.meta.2 <- round(exp(d$summary-1.96*d$se.summary),2) 

UL.estim.Adj.meta.2 <- round(exp(d$summary+1.96*d$se.summary),2) 

MA_adj_nb <- data.frame(x=c("Adj NB MA: R vs 

SC"),y=round(c(estim.Adj.meta.2),2),ylo=round(c(LL.estim.Adj.meta.2),2),yhi=round(c(UL.estim.Adj.

meta.2),2),se=se.estim.meta.Adj) 

 

#- ET (Non-Adjusted) 

library(MASS) 

S <- summary(m2.1 <- glm.nb(NC ~ as.factor(Group)+offset(Follow.up), data = datos1)) 

estim <- c(); estim[1] <- S$coefficients[2,1] 

for (i in 1:dim(datos1)[1]){ 

  d <- datos1[-i,] 

  S <- summary(glm.nb(NC ~ as.factor(Group)+offset(Follow.up), data = d)) 

  estim[i] <- S$coefficients[2,1] 

} 

n <- dim(datos1)[1] 
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desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2)); se.no_Adj.ET.nb <- desv 

ET_no_adj.nb  <- exp(mean(estim)) 

ET_no_adj_nb_inf  <- exp(mean(estim)-qt(0.975,dim(datos1)[1]-1)*desv) 

ET_no_adj_nb_sup  <- exp(mean(estim)+qt(0.975,dim(datos1)[1]-1)*desv) 

ET_no_adj_nb <- data.frame(x=c("Non Adj NB ET: R vs 

SC"),y=round(c(ET_no_adj.nb),2),ylo=round(c(ET_no_adj_nb_inf),2),yhi=round(c(ET_no_adj_nb_sup),2)

,se=se.no_Adj.ET.nb) 

#- IQ (Non-Adjusted) 

library(MASS) 

S <- summary(m2.2 <- glm.nb(NC ~ as.factor(Group)+offset(Follow.up), data = datos2)) 

estim <- c(); estim[1] <- S$coefficients[2,1] 

for (i in 1:dim(datos2)[1]){ 

  d <- datos2[-i,] 

  S <- summary(glm.nb(NC ~ as.factor(Group)+offset(Follow.up), data = d)) 

  estim[i] <- S$coefficients[2,1] 

} 

n <- dim(datos2)[1] 

desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2)); se.no_Adj.IQ.nb <- desv 

IQ_no_adj.nb <- exp(mean(estim)) 

IQ_no_adj_nb_inf <- exp(mean(estim)-qt(0.975,dim(datos2)[1]-1)*desv) 

IQ_no_adj_nb_sup <- exp(mean(estim)+qt(0.975,dim(datos2)[1]-1)*desv) 

IQ_no_adj_nb <- data.frame(x=c("Non Adj NB IQ: R vs 

SC"),y=round(c(IQ_no_adj.nb),2),ylo=round(c(IQ_no_adj_nb_inf),2),yhi=round(c(IQ_no_adj_nb_sup),2)

,se=se.no_Adj.IQ.nb) 

#- MA (Non Adjusted) 

logs <- c(log(ET_no_adj.nb),log(IQ_no_adj.nb)); selogs <- c(se.no_Adj.ET.nb,se.no_Adj.IQ.nb) 

names <- c("ET study", "IQ study"); b <- data.frame(names,logs,selogs) 

d <- meta.summaries(b$logs, b$selogs, names=b$names, method="fix", logscale=TRUE) 

estim.no_Adj.meta.2 <- round(exp(d$summary),2); se.estim.meta.no_Adj <- d$se.summary 

LL.estim.no_Adj.meta.2 <- round(exp(d$summary-1.96*d$se.summary),2) 

UL.estim.no_Adj.meta.2 <- round(exp(d$summary+1.96*d$se.summary),2) 

MA_no_adj_nb <- data.frame(x=c("Non Adj NB MA: R vs 

SC"),y=round(c(estim.no_Adj.meta.2),2),ylo=round(c(LL.estim.no_Adj.meta.2),2),yhi=round(c(UL.esti

m.no_Adj.meta.2),2),se=se.estim.meta.no_Adj) 

 

####---- ZERO-INFLATED POISSON MODEL 

library(pscl) 

##-- ET: Adjusted ZIP (offset(FU) + Baseline Goodman scale) 

S <- summary(m4.1 <- zeroinfl(NC ~ 

as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., data = datos1)) 

estim <- c(); estim[1] <- S$coefficients$count[2,1] 

estim.zero <- c(); estim.zero[1] <- S$coefficients$zero[2,1] 

desv.zero <- S$coefficients$zero[2,2] 

for (i in 1:dim(datos1)[1]){ 

  d <- datos1[-i,] 

  S <- summary(zeroinfl(NC ~ as.factor(Group)+offset(Follow.up) 

                        +Baseline.Goodman.Scale..likert.5., data = d)) 

  estim[i] <- S$coefficients$count[2,1] 

  estim.zero[i] <- S$coefficients$zero[2,1] 

} 

n <- dim(datos1)[1] 

desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2)) 

desv.zero <- sqrt(((n-1)/n)*sum((estim.zero[-81]-mean(estim.zero[-81]))^2)) 

ET_adj.mean.zip  <- exp(mean(estim)); se.Adj.ET.mean.zip <- desv 

ET_adj_mean.zip_inf  <- exp(mean(estim)-qt(0.975,dim(datos1)[1]-1)*desv) 

ET_adj_mean.zip_sup  <- exp(mean(estim)+qt(0.975,dim(datos1)[1]-1)*desv) 

ET_adj_mean.zip <- data.frame(x=c("Adj mean ZIP ET: R vs 

SC"),y=round(c(ET_adj.mean.zip),2),ylo=round(c(ET_adj_mean.zip_inf),2),yhi=round(c(ET_adj_mean.zi

p_sup),2),se=se.Adj.ET.mean.zip) 

ET_adj.zero.zip <- exp(mean(estim.zero)) 

ET_adj_zero_zip_inf <- exp(mean(estim.zero)-qt(0.975,dim(datos1)[1]-1)*desv.zero) 

ET_adj_zero_zip_sup <- exp(mean(estim.zero)+qt(0.975,dim(datos1)[1]-1)*desv.zero) 

se.Adj.ET.zero.zip<- desv.zero 

ET_adj_zero.zip <- data.frame(x=c("Adj zero ZIP ET: R vs 

SC"),y=round(c(ET_adj.zero.zip),2),ylo=round(c(ET_adj_zero_zip_inf),2),yhi=round(c(ET_adj_zero_zi

p_sup),2),se=se.Adj.ET.zero.zip) 

##-- IQ: Adjusted ZIP (offset(FU) + Baseline Goodman scale) 

S <- summary(m4.1 <- zeroinfl(NC ~ 

as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., data = datos2)) 

estim <- c(); estim[1] <- S$coefficients$count[2,1] 

estim.zero <- c(); estim.zero[1] <- S$coefficients$zero[2,1] 

desv.zero <- S$coefficients$zero[2,2] 

for (i in 1:dim(datos2)[1]){ 

  d <- datos2[-i,] 

  S <- summary(zeroinfl(NC ~ 

as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., data = d)) 

  estim[i] <- S$coefficients$count[2,1] 

  estim.zero[i] <- S$coefficients$zero[2,1] 
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} 

n <- dim(datos2)[1] 

desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2)) 

desv.zero <- sqrt(((n-1)/n)*sum((estim.zero[-81]-mean(estim.zero[-81]))^2)) 

IQ_adj.mean.zip  <- exp(mean(estim)); se.Adj.IQ.mean.zip <- desv 

IQ_adj_mean.zip_inf  <- exp(mean(estim)-qt(0.975,dim(datos2)[1]-1)*desv) 

IQ_adj_mean.zip_sup  <- exp(mean(estim)+qt(0.975,dim(datos2)[1]-1)*desv) 

IQ_adj_mean.zip <- data.frame(x=c("Adj mean ZIP IQ: R vs 

SC"),y=round(c(IQ_adj.mean.zip),2),ylo=round(c(IQ_adj_mean.zip_inf),2),yhi=round(c(IQ_adj_mean.zi

p_sup),2),se=se.Adj.IQ.mean.zip) 

IQ_adj.zero.zip <- exp(mean(estim.zero)) 

IQ_adj_zero.zip_inf <- exp(mean(estim.zero)-qt(0.975,dim(datos2)[1]-1)*desv.zero) 

IQ_adj_zero.zip_sup <- exp(mean(estim.zero)+qt(0.975,dim(datos2)[1]-1)*desv.zero) 

se.Adj.IQ.zero.zip<- desv.zero 

IQ_adj_zero.zip <- data.frame(x=c("Adj zero ZIP IQ: R vs 

SC"),y=round(c(IQ_adj.zero.zip),2),ylo=round(c(IQ_adj_zero.zip_inf),2),yhi=round(c(IQ_adj_zero.zi

p_sup),2),se=se.Adj.IQ.zero.zip) 

#- MA 

logs <- c(log(ET_adj.mean.zip),log(IQ_adj.mean.zip)); selogs <- 

c(se.Adj.ET.mean.zip,se.Adj.IQ.mean.zip); names <- c("ET study", "IQ study") 

b <- data.frame(names,logs,selogs) 

d <- meta.summaries(b$logs, b$selogs, names=b$names,method="fix", logscale=TRUE) 

estim.Adj.meta.4 <- round(exp(d$summary),2);  se.estim.meta.Adj <- d$se.summary 

LL.estim.Adj.meta.4 <- round(exp(d$summary-1.96*d$se.summary),2) 

UL.estim.Adj.meta.4 <- round(exp(d$summary+1.96*d$se.summary),2) 

MA_adj_mean.zip <- data.frame(x=c("Adj mean ZIP MA: R vs 

SC"),y=round(c(estim.Adj.meta.4),2),ylo=round(c(LL.estim.Adj.meta.4),2),yhi=round(c(UL.estim.Adj.

meta.4),2),se=se.estim.meta.Adj) 

logs <- c(log(ET_adj.zero.zip),log(IQ_adj.zero.zip)); selogs <- 

c(se.Adj.ET.zero.zip,se.Adj.IQ.zero.zip); names <- c("ET study", "IQ study") 

b <- data.frame(names,logs,selogs) 

d <- meta.summaries(b$logs, b$selogs, names=b$names,method="fix", logscale=TRUE) 

estim.Adj.meta.4 <- round(exp(d$summary),2);  se.estim.meta.Adj <- d$se.summary 

LL.estim.Adj.meta.4 <- round(exp(d$summary-1.96*d$se.summary),2) 

UL.estim.Adj.meta.4 <- round(exp(d$summary+1.96*d$se.summary),2) 

MA_adj_zero.zip <- data.frame(x=c("Adj zero ZIP MA: R vs 

SC"),y=round(c(estim.Adj.meta.4),2),ylo=round(c(LL.estim.Adj.meta.4),2),yhi=round(c(UL.estim.Adj.

meta.4),2),se=se.estim.meta.Adj) 

 

##-- ET: Non-Adjusted ZIP (offset(FU) 

S <- summary(m4.1 <- zeroinfl(NC ~ as.factor(Group)+offset(Follow.up), data = datos1)) 

estim <- c(); estim[1] <- S$coefficients$count[2,1] 

estim.zero <- c(); estim.zero[1] <- S$coefficients$zero[2,1] 

desv.zero <- S$coefficients$zero[2,2] 

for (i in 1:dim(datos1)[1]){ 

  d <- datos1[-i,] 

  S <- summary(zeroinfl(NC ~ as.factor(Group)+offset(Follow.up), data = d)) 

  estim[i] <- S$coefficients$count[2,1] 

  estim.zero[i] <- S$coefficients$zero[2,1] 

} 

n <- dim(datos1)[1] 

desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2)) 

desv.zero <- sqrt(((n-1)/n)*sum((estim.zero[-81]-mean(estim.zero[-81]))^2)) 

ET_no_adj.mean.zip  <- exp(mean(estim)); se.no_Adj.ET.mean.zip <- desv 

ET_no_adj_mean.zip_inf  <- exp(mean(estim)-qt(0.975,dim(datos1)[1]-1)*desv) 

ET_no_adj_mean.zip_sup  <- exp(mean(estim)+qt(0.975,dim(datos1)[1]-1)*desv) 

ET_no_adj_mean.zip <- data.frame(x=c("Non Adj mean ZIP ET: R vs 

SC"),y=round(c(ET_no_adj.mean.zip),2), 

                                 

ylo=round(c(ET_no_adj_mean.zip_inf),2),yhi=round(c(ET_no_adj_mean.zip_sup),2),se=se.no_Adj.ET.mea

n.zip) 

ET_no_adj.zero.zip <- exp(mean(estim.zero)) 

ET_no_adj_zero.zip_inf <- exp(mean(estim.zero)-qt(0.975,dim(datos1)[1]-1)*desv.zero) 

ET_no_adj_zero.zip_sup <- exp(mean(estim.zero)+qt(0.975,dim(datos1)[1]-1)*desv.zero) 

se.no_Adj.ET.zero.zip<- desv.zero 

ET_no_adj_zero.zip <- data.frame(x=c("Non Adj zero ZIP ET: R vs 

SC"),y=round(c(ET_no_adj.zero.zip),2),ylo=round(c(ET_no_adj_zero.zip_inf),2), 

                                 yhi=round(c(ET_no_adj_zero.zip_sup),2),se=se.no_Adj.ET.zero.zip) 

##-- IQ: Non-Adjusted ZIP (offset(FU)  

S <- summary(m4.1 <- zeroinfl(NC ~ as.factor(Group)+offset(Follow.up), data = datos2)) 

estim <- c(); estim[1] <- S$coefficients$count[2,1] 

estim.zero <- c(); estim.zero[1] <- S$coefficients$zero[2,1] 

desv.zero <- S$coefficients$zero[2,2] 

for (i in 1:dim(datos2)[1]){ 

  d <- datos2[-i,] 

  S <- summary(zeroinfl(NC ~ as.factor(Group)+offset(Follow.up), data = d)) 

  estim[i] <- S$coefficients$count[2,1] 

  estim.zero[i] <- S$coefficients$zero[2,1] 
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} 

n <- dim(datos2)[1] 

desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2)) 

desv.zero <- sqrt(((n-1)/n)*sum((estim.zero[-81]-mean(estim.zero[-81]))^2)) 

IQ_no_adj.mean.zip  <- exp(mean(estim)); se.no_Adj.IQ.mean.zip <- desv 

IQ_no_adj_mean.zip_inf  <- exp(mean(estim)-qt(0.975,dim(datos2)[1]-1)*desv) 

IQ_no_adj_mean.zip_sup  <- exp(mean(estim)+qt(0.975,dim(datos2)[1]-1)*desv) 

IQ_no_adj_mean.zip <- data.frame(x=c("Non Adj mean ZIP IQ: R vs 

SC"),y=round(c(IQ_no_adj.mean.zip),2),ylo=round(c(IQ_no_adj_mean.zip_inf),2),yhi=round(c(IQ_no_ad

j_mean.zip_sup),2),se=se.no_Adj.IQ.mean.zip) 

IQ_no_adj.zero.zip <- exp(mean(estim.zero)) 

IQ_no_adj_zero.zip_inf <- exp(mean(estim.zero)-qt(0.975,dim(datos2)[1]-1)*desv.zero) 

IQ_no_adj_zero.zip_sup <- exp(mean(estim.zero)+qt(0.975,dim(datos2)[1]-1)*desv.zero) 

se.no_Adj.IQ.zero.zip<- desv.zero 

IQ_no_adj_zero.zip <- data.frame(x=c("Non Adj zero ZIP IQ: R vs 

SC"),y=round(c(IQ_no_adj.zero.zip),2),ylo=round(c(IQ_no_adj_zero.zip_inf),2),yhi=round(c(IQ_no_ad

j_zero.zip_sup),2),se=se.no_Adj.IQ.zero.zip) 

#- MA 

logs <- c(log(ET_no_adj.mean.zip),log(IQ_no_adj.mean.zip)); selogs <- 

c(se.no_Adj.ET.mean.zip,se.no_Adj.IQ.mean.zip); names <- c("ET study", "IQ study") 

b <- data.frame(names,logs,selogs) 

d <- meta.summaries(b$logs, b$selogs, names=b$names,method="fix", logscale=TRUE) 

estim.no_Adj.meta.4 <- round(exp(d$summary),2);  se.no_estim.meta.no_Adj <- d$se.summary 

LL.estim.no_Adj.meta.4 <- round(exp(d$summary-1.96*d$se.summary),2) 

UL.estim.no_Adj.meta.4 <- round(exp(d$summary+1.96*d$se.summary),2) 

MA_no_adj_mean.zip <- data.frame(x=c("Non-Adj mean ZIP MA: R vs 

SC"),y=round(c(estim.no_Adj.meta.4),2), 

                                 

ylo=round(c(LL.estim.no_Adj.meta.4),2),yhi=round(c(UL.estim.no_Adj.meta.4),2),se=se.estim.meta.no

_Adj) 

logs <- c(log(ET_no_adj.zero.zip),log(IQ_no_adj.zero.zip)); selogs <- 

c(se.no_Adj.ET.zero.zip,se.no_Adj.IQ.zero.zip); names <- c("ET study", "IQ study") 

b <- data.frame(names,logs,selogs) 

d <- meta.summaries(b$logs, b$selogs, names=b$names,method="fix", logscale=TRUE) 

estim.no_Adj.meta.4 <- round(exp(d$summary),2);  se.estim.meta.no_Adj <- d$se.summary 

LL.estim.no_Adj.meta.4 <- round(exp(d$summary-1.96*d$se.summary),2) 

UL.estim.no_Adj.meta.4 <- round(exp(d$summary+1.96*d$se.summary),2) 

MA_no_adj_zero.zip <- data.frame(x=c("Non-Adj zero ZIP MA: R vs 

SC"),y=round(c(estim.no_Adj.meta.4),2),ylo=round(c(LL.estim.no_Adj.meta.4),2), 

yhi=round(c(UL.estim.no_Adj.meta.4),2),se=se.estim.meta.no_Adj) 

 

####---- ZERO-INFLATED NEGATIVE BINOMIAL MODEL 

library(pscl) 

##-- ET: Adjusted ZIP (offset(FU) + Baseline Goodman scale) 

S <- summary(m5.1 <- zeroinfl(NC ~ as.factor(Group)+offset(Follow.up) 

+Baseline.Goodman.Scale..likert.5., data = datos1,dist="negbin")) 

estim <- c(); estim[1] <- S$coefficients$count[2,1] 

estim.zero <- c(); estim.zero[1] <- S$coefficients$zero[2,1] 

desv.zero <- S$coefficients$zero[2,2] 

for (i in 1:dim(datos1)[1]){ 

  d <- datos1[-i,] 

  S <- summary(zeroinfl(NC ~ as.factor(Group)+offset(Follow.up) 

+Baseline.Goodman.Scale..likert.5., data = d,dist="negbin")) 

  estim[i] <- S$coefficients$count[2,1] 

  estim.zero[i] <- S$coefficients$zero[2,1] 

} 

n <- dim(datos1)[1] 

desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2)) 

desv.zero <-sqrt(((n-1)/n)*sum((estim.zero[-61]-mean(estim.zero[-61]))^2)) 

ET_adj.mean.zinb <- exp(mean(estim)) 

ET_adj.mean.zinb_inf <- exp(mean(estim)-qt(0.975,dim(datos1)[1]-1)*desv) 

ET_adj.mean.zinb_sup <- exp(mean(estim)+qt(0.975,dim(datos1)[1]-1)*desv) 

se.Adj.ET.mean.zinb<- desv 

ET_adj_mean.zinb <- data.frame(x=c("Adj mean ZINB ET: R vs 

SC"),y=round(c(ET_adj.mean.zinb),2),ylo=round(c(ET_adj.mean.zinb_inf),2),yhi=round(c(ET_adj.mean.

zinb_sup),2),se=se.Adj.ET.mean.zinb) 

ET_adj.zero.zinb <- exp(mean(estim.zero)) 

ET_adj.zero.zinb_inf <- exp(mean(estim.zero)-qt(0.975,dim(datos1)[1]-1)*desv.zero) 

ET_adj.zero.zinb_sup <- exp(mean(estim.zero)+qt(0.975,dim(datos1)[1]-1)*desv.zero) 

se.Adj.ET.zinb.zero<- desv.zero 

ET_adj_zero.zinb <- data.frame(x=c("Adj zero ZINB ET: R vs 

SC"),y=round(c(ET_adj.zero.zinb),2),ylo=round(c(ET_adj.zero.zinb_inf),2), 

yhi=round(c(ET_adj.zero.zinb_sup),2),se=se.Adj.ET.zinb.zero) 

##-- IQ: Adjusted ZIP (offset(FU) + Baseline Goodman scale) 

S <- summary(m5.1 <- zeroinfl(NC ~ as.factor(Group)+offset(Follow.up) 

+Baseline.Goodman.Scale..likert.5., data = datos2,dist="negbin")) 

estim <- c(); estim[1] <- S$coefficients$count[2,1] 

estim.zero <- c(); estim.zero[1] <- S$coefficients$zero[2,1] 
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desv.zero <- S$coefficients$zero[2,2] 

for (i in 1:dim(datos2)[1]){ 

  d <- datos2[-i,] 

  S <- summary(zeroinfl(NC ~ 

as.factor(Group)+offset(Follow.up)+Baseline.Goodman.Scale..likert.5., data = d,dist="negbin")) 

  estim[i] <- S$coefficients$count[2,1] 

  estim.zero[i] <- S$coefficients$zero[2,1] 

} 

n <- dim(datos2)[1] 

desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2)) 

desv.zero <-sqrt(((n-1)/n)*sum((estim.zero[-61]-mean(estim.zero[-61]))^2)) 

IQ_adj.mean.zinb <- exp(mean(estim)) 

IQ_adj.mean.zinb_inf <- exp(mean(estim)-qt(0.975,dim(datos2)[1]-1)*desv) 

IQ_adj.mean.zinb_sup <- exp(mean(estim)+qt(0.975,dim(datos2)[1]-1)*desv) 

se.Adj.IQ.mean.zinb<- desv 

IQ_adj_mean.zinb <- data.frame(x=c("Adj mean ZINB IQ: R vs 

SC"),y=round(c(IQ_adj.mean.zinb),2),ylo=round(c(IQ_adj.mean.zinb_inf),2), 

yhi=round(c(IQ_adj.mean.zinb_sup),2),se=se.Adj.IQ.mean.zinb) 

IQ_adj.zero.zinb <- exp(mean(estim.zero)) 

IQ_adj.zero.zinb_inf <- exp(mean(estim.zero)-qt(0.975,dim(datos2)[1]-1)*desv.zero) 

IQ_adj.zero.zinb_sup <- exp(mean(estim.zero)+qt(0.975,dim(datos2)[1]-1)*desv.zero) 

se.Adj.IQ.zinb.zero<- desv.zero 

IQ_adj_zero.zinb <- data.frame(x=c("Adj zero ZINB IQ: R vs 

SC"),y=round(c(IQ_adj.zero.zinb),2),ylo=round(c(IQ_adj.zero.zinb_inf),2), 

yhi=round(c(IQ_adj.zero.zinb_sup),2),se=se.Adj.IQ.zinb.zero) 

#- MA 

logs <- c(log(ET_adj.mean.zinb),log(IQ_adj.mean.zinb)); selogs <- 

c(se.Adj.ET.mean.zinb,se.Adj.IQ.mean.zinb); names <- c("ET study", "IQ study") 

b <- data.frame(names,logs,selogs) 

d <- meta.summaries(b$logs, b$selogs, names=b$names,method="fix", logscale=TRUE) 

estim.Adj.meta.4 <- round(exp(d$summary),2);  se.no_estim.meta.Adj <- d$se.summary 

LL.estim.Adj.meta.4 <- round(exp(d$summary-1.96*d$se.summary),2) 

UL.estim.Adj.meta.4 <- round(exp(d$summary+1.96*d$se.summary),2) 

MA_adj_mean.zinb <- data.frame(x=c("Adj mean ZINB MA: R vs SC"),y=round(c(estim.Adj.meta.4),2), 

ylo=round(c(LL.estim.Adj.meta.4),2),yhi=round(c(UL.estim.Adj.meta.4),2),se=se.no_estim.meta.Adj) 

logs <- c(log(ET_adj.zero.zinb),log(IQ_adj.zero.zinb)); selogs <- 

c(se.Adj.ET.zinb.zero,se.Adj.IQ.zinb.zero); names <- c("ET study", "IQ study") 

b <- data.frame(names,logs,selogs) 

d <- meta.summaries(b$logs, b$selogs, names=b$names,method="fix", logscale=TRUE) 

estim.Adj.meta.4 <- round(exp(d$summary),2);  se.estim.meta.Adj <- d$se.summary 

LL.estim.Adj.meta.4 <- round(exp(d$summary-1.96*d$se.summary),2) 

UL.estim.Adj.meta.4 <- round(exp(d$summary+1.96*d$se.summary),2) 

MA_adj_zero.zinb <- data.frame(x=c("Adj zero ZINB MA: R vs 

SC"),y=round(c(estim.Adj.meta.4),2),ylo=round(c(LL.estim.Adj.meta.4),2), 

=round(c(UL.estim.Adj.meta.4),2),se=se.estim.meta.Adj) 

##-- ET: Non-Adjusted ZIP (offset(FU)  

S <- summary(m5.1 <- zeroinfl(NC ~ as.factor(Group)+offset(Follow.up), data = 

datos1,dist="negbin")) 

estim <- c(); estim[1] <- S$coefficients$count[2,1] 

estim.zero <- c(); estim.zero[1] <- S$coefficients$zero[2,1] 

desv.zero <- S$coefficients$zero[2,2] 

for (i in 1:dim(datos1)[1]){ 

  d <- datos1[-i,] 

  S <- summary(zeroinfl(NC ~ as.factor(Group)+offset(Follow.up), data = d,dist="negbin")) 

  estim[i] <- S$coefficients$count[2,1] 

  estim.zero[i] <- S$coefficients$zero[2,1] 

} 

n <- dim(datos1)[1] 

desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2)) 

desv.zero <-sqrt(((n-1)/n)*sum((estim.zero[-61]-mean(estim.zero[-61]))^2)) 

ET_no_adj.mean.zinb <- exp(mean(estim)) 

ET_no_adj.mean.zinb_inf <- exp(mean(estim)-qt(0.975,dim(datos1)[1]-1)*desv) 

ET_no_adj.mean.zinb_sup <- exp(mean(estim)+qt(0.975,dim(datos1)[1]-1)*desv) 

se.no_Adj.ET.mean.zinb<- desv 

ET_no_adj_mean.zinb <- data.frame(x=c("Non-Adj mean ZINB ET: R vs 

SC"),y=round(c(ET_no_adj.mean.zinb),2),ylo=round(c(ET_no_adj.mean.zinb_inf),2), 

                               yhi=round(c(ET_no_adj.mean.zinb_sup),2),se=se.no_Adj.ET.mean.zinb) 

ET_no_adj.zero.zinb <- exp(mean(estim.zero)) 

ET_no_adj.zero.zinb_inf <- exp(mean(estim.zero)-qt(0.975,dim(datos1)[1]-1)*desv.zero) 

ET_no_adj.zero.zinb_sup <- exp(mean(estim.zero)+qt(0.975,dim(datos1)[1]-1)*desv.zero) 

se.no_Adj.ET.zinb.zero<- desv.zero 

ET_no_adj_zero.zinb <- data.frame(x=c("Non-Adj zero ZINB ET: R vs 

SC"),y=round(c(ET_no_adj.zero.zinb),2),ylo=round(c(ET_no_adj.zero.zinb_inf),2), 

yhi=round(c(ET_no_adj.zero.zinb_sup),2),se=se.no_Adj.ET.zinb.zero) 

##-- IQ: Non-Adjusted ZIP (offset(FU) 

S <- summary(m5.1 <- zeroinfl(NC ~ as.factor(Group)+offset(Follow.up), data = 

datos2,dist="negbin")) 

estim <- c(); estim[1] <- S$coefficients$count[2,1] 
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estim.zero <- c(); estim.zero[1] <- S$coefficients$zero[2,1] 

desv.zero <- S$coefficients$zero[2,2] 

for (i in 1:dim(datos2)[1]){ 

  d <- datos2[-i,] 

  S <- summary(zeroinfl(NC ~ as.factor(Group)+offset(Follow.up), data = d,dist="negbin")) 

  estim[i] <- S$coefficients$count[2,1] 

  estim.zero[i] <- S$coefficients$zero[2,1] 

} 

n <- dim(datos2)[1] 

desv <-sqrt(((n-1)/n)*sum((estim-mean(estim))^2)) 

desv.zero <-sqrt(((n-1)/n)*sum((estim.zero[-61]-mean(estim.zero[-61]))^2)) 

IQ_no_adj.mean.zinb <- exp(mean(estim)) 

IQ_no_adj.mean.zinb_inf <- exp(mean(estim)-qt(0.975,dim(datos2)[1]-1)*desv) 

IQ_no_adj.mean.zinb_sup <- exp(mean(estim)+qt(0.975,dim(datos2)[1]-1)*desv) 

se.no_Adj.IQ.mean.zinb<- desv 

IQ_no_adj_mean.zinb <- data.frame(x=c("Non-Adj mean ZINB IQ: R vs 

SC"),y=round(c(IQ_no_adj.mean.zinb),2),ylo=round(c(IQ_no_adj.mean.zinb_inf),2), 

yhi=round(c(IQ_no_adj.mean.zinb_sup),2),se=se.no_Adj.IQ.mean.zinb) 

IQ_no_adj.zero.zinb <- exp(mean(estim.zero)) 

IQ_no_adj.zero.zinb_inf <- exp(mean(estim.zero)-qt(0.975,dim(datos2)[1]-1)*desv.zero) 

IQ_no_adj.zero.zinb_sup <- exp(mean(estim.zero)+qt(0.975,dim(datos2)[1]-1)*desv.zero) 

se.no_Adj.IQ.zinb.zero<- desv.zero 

IQ_no_adj_zero.zinb <- data.frame(x=c("Non-Adj zero ZINB IQ: R vs 

SC"),y=round(c(IQ_no_adj.zero.zinb),2),ylo=round(c(IQ_no_adj.zero.zinb_inf),2), 

yhi=round(c(IQ_no_adj.zero.zinb_sup),2),se=se.no_Adj.IQ.zinb.zero) 

#- MA 

logs <- c(log(ET_no_adj.mean.zinb),log(IQ_no_adj.mean.zinb)); selogs <- 

c(se.no_Adj.ET.mean.zinb,se.no_Adj.IQ.mean.zinb); names <- c("ET study", "IQ study") 

b <- data.frame(names,logs,selogs) 

d <- meta.summaries(b$logs, b$selogs, names=b$names,method="fix", logscale=TRUE) 

estim.no_Adj.meta.4 <- round(exp(d$summary),2);  se.no_estim.meta.no_Adj <- d$se.summary 

LL.estim.no_Adj.meta.4 <- round(exp(d$summary-1.96*d$se.summary),2) 

UL.estim.no_Adj.meta.4 <- round(exp(d$summary+1.96*d$se.summary),2) 

MA_no_adj_mean.zinb <- data.frame(x=c("Non-Adj mean ZINB MA: R vs 

SC"),y=round(c(estim.no_Adj.meta.4),2), 

ylo=round(c(LL.estim.no_Adj.meta.4),2),yhi=round(c(UL.estim.no_Adj.meta.4),2),se=se.no_estim.meta

.no_Adj) 

logs <- c(log(ET_no_adj.zero.zinb),log(IQ_no_adj.zero.zinb)); selogs <- 

c(se.no_Adj.ET.zinb.zero,se.no_Adj.IQ.zinb.zero); names <- c("ET study", "IQ study") 

b <- data.frame(names,logs,selogs) 

d <- meta.summaries(b$logs, b$selogs, names=b$names,method="fix", logscale=TRUE) 

estim.no_Adj.meta.4 <- round(exp(d$summary),2);  se.estim.meta.no_Adj <- d$se.summary 

LL.estim.no_Adj.meta.4 <- round(exp(d$summary-1.96*d$se.summary),2) 

UL.estim.no_Adj.meta.4 <- round(exp(d$summary+1.96*d$se.summary),2) 

MA_no_adj_zero.zinb <- data.frame(x=c("Non-Adj zero ZINB MA: R vs 

SC"),y=round(c(estim.no_Adj.meta.4),2),ylo=round(c(LL.estim.no_Adj.meta.4),2), 

yhi=round(c(UL.estim.no_Adj.meta.4),2),se=se.estim.meta.no_Adj) 

 

 

### CITATION-PER-YEAR MEAN RATIO FOREST PLOT FOR DATA COLLECTED IN 2018 

 

# d1: NA - NB 

# d2: A - NB 

# d3: NA - ZIP 

# d4: A - ZIP 

# d5: NA - ZINB 

# d6: A - ZINB 

 

ET <- rbind(ET_no_adj_nb[2:4], 

            ET_adj_nb[2:4], 

            ET_no_adj_mean.zip[2:4], 

            ET_adj_mean.zip[2:4], 

            ET_no_adj_mean.zinb[2:4], 

            ET_adj_mean.zinb[2:4]) 

s.ET <- rbind(ET_no_adj_nb[5], 

              ET_adj_nb[5], 

              ET_no_adj_mean.zip[5], 

              ET_adj_mean.zip[5], 

              ET_no_adj_mean.zinb[5], 

              ET_adj_mean.zinb[5]) 

 

IQ <- rbind(IQ_no_adj_nb[2:4], 

            IQ_adj_nb[2:4], 

            IQ_no_adj_mean.zip[2:4], 

            IQ_adj_mean.zip[2:4], 

            IQ_no_adj_mean.zinb[2:4], 

            IQ_adj_mean.zinb[2:4]) 

s.IQ <- rbind(IQ_no_adj_nb[5], 
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              IQ_adj_nb[5], 

              IQ_no_adj_mean.zip[5], 

              IQ_adj_mean.zip[5], 

              IQ_no_adj_mean.zinb[5], 

              IQ_adj_mean.zinb[5]) 

 

MA <- rbind(MA_no_adj_nb[2:4], 

            MA_adj_nb[2:4], 

            MA_no_adj_mean.zip[2:4], 

            MA_adj_mean.zip[2:4], 

            MA_no_adj_mean.zinb[2:4], 

            MA_adj_mean.zinb[2:4]) 

s.MA <- cbind(MA_no_adj_nb[5], 

              MA_adj_nb[5], 

              MA_no_adj_mean.zip[5], 

              MA_adj_mean.zip[5], 

              MA_no_adj_mean.zinb[5], 

              MA_adj_mean.zinb[5]) 

 

 

poin <- c(0,15) 

lin <- c(1,2,2) 

wid <- c(1,1,2) 

pos <- c(0.5,1.25,2.25,3,4,4.75,0,6.25,7,8,8.75,9.75,10.5,0,13.5,14.25,15.25,16,17,17.75) 

pos<-pos[length(pos):1] 

 

library(extrafont) 

win.graph(15,12) 

par(oma=c(0,5,3,7)); par(family = "Times New Roman") 

plot(NA, xlim = c(0.33,3), ylim=c(0,18),xaxt="n",yaxt="n", 

     ylab="",xlab="",axes=F,log="x") 

abline(v=1,lty=2) 

axis(1,c(1/3.5,1/3,0.5,1,2,3,3.5),labels=F) 

mtext(c("1/3","1/2","1","2","3"),las=1,side=1,at=c(1/3,0.5,1,2,3),line=0.5,cex=0.8) 

 

par(xpd=NA) 

legend(0.15,24,horiz=T,bty="n",c("Negative Binomial", 

                                  "Zero-Inflated Poisson", 

                                  "Zero-Inflated Negative Binomial"), 

       lty=c(lin,0,0),lwd=c(wid,0,0),pch=c(NA,NA,NA,poin)) 

legend(0.5,22.5,horiz=T,bty="n",c("Non-adjusted", 

                                  "Adjusted"),lty=c(0,0),lwd=c(0,0),pch=c(poin)) 

par(xpd=FALSE) 

 

# Joint estimation (Meta-analisis) 

segments(MA$ylo[1],pos[1],MA$yhi[1],pos[1],lwd=wid[1],lty=lin[1]) 

points(MA$y[1],pos[1],pch=poin[1],lwd=wid[1],cex=(0.5/s.MA[,1])) 

segments(MA$ylo[2],pos[2],MA$yhi[2],pos[2],lwd=wid[1],lty=lin[1]) 

points(MA$y[2],pos[2],pch=poin[2],cex=0.5/s.MA[,2]) 

segments(MA$ylo[3],pos[3],MA$yhi[3],pos[3],lwd=wid[2],lty=lin[2]) 

points(MA$y[3],pos[3],pch=poin[1],cex=0.5/s.MA[,3]) 

segments(MA$ylo[4],pos[4],MA$yhi[4],pos[4],lwd=wid[2],lty=lin[2]) 

points(MA$y[4],pos[4],pch=poin[2],cex=0.5/s.MA[,4]) 

segments(MA$ylo[5],pos[5],MA$yhi[5],pos[5],lwd=wid[3],lty=lin[3]) 

points(MA$y[5],pos[5],pch=poin[1],lwd=wid[2],cex=0.5/s.MA[,5]) 

segments(MA$ylo[6],pos[6],MA$yhi[6],pos[6],lwd=wid[3],lty=lin[3]) 

points(MA$y[6],pos[6],pch=poin[2],cex=0.5/s.MA[,6]) 

# ET 

segments(ET$ylo[1],pos[8],ET$yhi[1],pos[8],lwd=wid[1],lty=lin[1]) 

points(ET$y[1],pos[8],pch=poin[1],lwd=wid[1],cex=0.5/s.ET[1,]) 

segments(ET$ylo[2],pos[9],ET$yhi[2],pos[9],lwd=wid[1],lty=lin[1]) 

points(ET$y[2],pos[9],pch=poin[2],cex=0.5/s.ET[2,]) 

segments(ET$ylo[3],pos[10],ET$yhi[3],pos[10],lwd=wid[2],lty=lin[2]) 

points(ET$y[3],pos[10],pch=poin[1],cex=0.5/s.ET[3,]) 

segments(ET$ylo[4],pos[11],ET$yhi[4],pos[11],lwd=wid[2],lty=lin[2]) 

points(ET$y[4],pos[11],pch=poin[2],cex=0.5/s.ET[4,]) 

segments(ET$ylo[5],pos[12],ET$yhi[5],pos[12],lwd=wid[3],lty=lin[3]) 

points(ET$y[5],pos[12],pch=poin[1],lwd=wid[2],cex=0.5/s.ET[5,]) 

segments(ET$ylo[6],pos[13],ET$yhi[6],pos[13],lwd=wid[3],lty=lin[3]) 

points(ET$y[6],pos[13],pch=poin[2],cex=0.5/s.ET[6,]) 

# IQ 

segments(IQ$ylo[1],pos[15],IQ$yhi[1],pos[15],lwd=wid[1],lty=lin[1]) 

points(IQ$y[1],pos[15],pch=poin[1],lwd=wid[1],cex=0.5/s.IQ[1,]) 

segments(IQ$ylo[2],pos[16],IQ$yhi[2],pos[16],lwd=wid[1],lty=lin[1]) 

points(IQ$y[2],pos[16],pch=poin[2],cex=0.5/s.IQ[2,]) 

segments(IQ$ylo[3],pos[17],IQ$yhi[3],pos[17],lwd=wid[2],lty=lin[2]) 

points(IQ$y[3],pos[17],pch=poin[1],cex=0.5/s.IQ[3,]) 

segments(IQ$ylo[4],pos[18],IQ$yhi[4],pos[18],lwd=wid[2],lty=lin[2]) 
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points(IQ$y[4],pos[18],pch=poin[2],cex=0.5/s.IQ[4,]) 

segments(IQ$ylo[5],pos[19],IQ$yhi[5],pos[19],lwd=wid[3],lty=lin[3]) 

points(IQ$y[5],pos[19],pch=poin[1],lwd=wid[2],cex=0.5/s.IQ[5,]) 

segments(IQ$ylo[6],pos[20],IQ$yhi[6],pos[20],lwd=wid[3],lty=lin[3]) 

points(IQ$y[6],pos[20],pch=poin[2],cex=0.5/s.IQ[6,]) 

mtext("Mean Ratio (95% CI)",las=2,side=2,at=19.5,line=-32.5,font=2) 

mtext("Joint MA",las=2,side=2,at=pos[3],line=2.7,font=2,cex=1.2) 

mtext("estimated effect",las=2,side=2,at=pos[4],line=0,font=2,cex=1.2) 

mtext("ET study",las=2,side=2,at=pos[10],line=3,font=2) 

mtext("(n=41 vs 51)",las=2,side=2,at=pos[11],line=2) 

mtext("IQ study",las=2,side=2,at=pos[17],line=3,font=2) 

mtext("(n=27 vs 24)",las=2,side=2,at=pos[18],line=2) 

mtext(paste(MA$y," (",MA$ylo,", ",MA$yhi,")",sep=""),side=4,las=2,at=pos[1:6],line=1.5,cex=1) 

mtext(paste(ET$y," (",ET$ylo,", ",ET$yhi,")",sep=""),side=4,las=2,at=pos[8:13],line=1.5,cex=0.9) 

mtext(paste(IQ$y," (",IQ$ylo,", ",IQ$yhi,")",sep=""),side=4,las=2,at=pos[15:20],line=1.5,cex=0.9) 

mtext("Higher in intervention",las=2,side=2,at=-2.3,line=-27,cex=0.9) 

mtext("Higher in control",las=2,side=2,at=-2.3,line=-4,cex=0.9) 

 

 

### OR FOREST PLOT FOR DATA COLLECTED IN 2018 

 

# d3: NA - ZIP 

# d4: A - ZIP 

# d5: NA - ZINB 

# d6: A - ZINB 

 

ET <- rbind(ET_no_adj_zero.zip[2:4], 

            ET_adj_zero.zip[2:4], 

            ET_no_adj_zero.zinb[2:4], 

            ET_adj_zero.zinb[2:4]) 

s.ET <- rbind(ET_no_adj_zero.zip[5], 

              ET_adj_zero.zip[5], 

              ET_no_adj_zero.zinb[5], 

              ET_adj_zero.zinb[5]) 

 

IQ <- rbind(IQ_no_adj_zero.zip[2:4], 

            IQ_adj_zero.zip[2:4], 

            IQ_no_adj_zero.zinb[2:4], 

            IQ_adj_zero.zinb[2:4]) 

s.IQ <- rbind(IQ_no_adj_zero.zip[5], 

              IQ_adj_zero.zip[5], 

              IQ_no_adj_zero.zinb[5], 

              IQ_adj_zero.zinb[5]) 

 

MA <- rbind(MA_no_adj_zero.zip[2:4], 

            MA_adj_zero.zip[2:4], 

            MA_no_adj_zero.zinb[2:4], 

            MA_adj_zero.zinb[2:4]) 

s.MA <- rbind(MA_no_adj_zero.zip[5], 

              MA_adj_zero.zip[5], 

              MA_no_adj_zero.zinb[5], 

              MA_adj_zero.zinb[5]) 

 

poin <- c(0,15) 

lin <- c(1,1,1) 

wid <- c(1,1,1) 

pos <- c(0.5,1.25,2.25,3,5,5.75,6.75,7.5,11.5,12.25,13.25,14) 

pos<-pos[length(pos):1] 

 

win.graph(18,14) 

par(oma=c(0,4,0,9)); par(family="Times New Roman") 

plot(NA, xlim = c(1/100000,100000), ylim=c(0,15),xaxt="n",yaxt="n", 

     ylab="",xlab="",axes=F,log="x") 

abline(v=1,lty=2) 

axis(1,c(1/1000000,1/100000,1/10000,1/1000,1/100,1/10,0,10,100,1000,10000,100000,1000000),labels=

F) 

mtext(c("1/10^5","1/10^4","1/10^3","1/10^2","1/10","0","10","10^2","10^3","10^4","10^5"),las=1,si

de=1,at=c(1/100000,1/10000,1/1000,1/100,1/10,0,10,100,1000,10000,100000),line=0.5,cex=0.8) 

par(xpd=NA) 

legend(0.000004,18.5,horiz=T,bty="n",c("Zero-Inflated Poisson", 

                                 "Zero-Inflated Negative 

Binomial"),lty=1,col=c("black","darkgrey")) 

legend(0.005,17.5,horiz=T,bty="n",c("Non-adjusted","Adjusted"),lty=c(0,0),lwd=c(0,0),pch=c(poin)) 

par(xpd=FALSE) 

 

# Pooled estimation (Meta-analisis) 

arrows(1,pos[1],270000,pos[1],lwd=wid[2],lty=lin[2],length=0.12) 

arrows(1,pos[1],1/270000,pos[1],lwd=wid[2],lty=lin[2],length=0.12) 
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points(MA$y[1],pos[1],pch=poin[1],cex=10/s.MA[1,]) 

arrows(1,pos[2],270000,pos[2],lwd=wid[2],lty=lin[2],length=0.12) 

arrows(1,pos[2],1/270000,pos[2],lwd=wid[2],lty=lin[2],length=0.12) 

points(MA$y[2],pos[2],pch=poin[2],cex=10/s.MA[2,]) 

arrows(MA$ylo[3],pos[3],270000,pos[3],lwd=wid[3],lty=lin[3],length=0.12,col="darkgrey") 

points(MA$y[3],pos[3],pch=poin[1],lwd=wid[3],cex=10/s.MA[3,],col="darkgrey") 

arrows(1,pos[4],270000,pos[4],lwd=wid[3],lty=lin[3],length=0.12,col="darkgrey") 

arrows(1,pos[4],1/270000,pos[4],lwd=wid[3],lty=lin[3],length=0.12,col="darkgrey") 

points(MA$y[4],pos[4],pch=poin[2],cex=10/s.MA[4,],col="darkgrey") 

# ET 

arrows(1/270000,pos[5],270000,pos[5],lwd=wid[1],lty=lin[1],length=0.12) 

arrows(270000,pos[5],1/270000,pos[5],lwd=wid[1],lty=lin[1],length=0.12) 

points(ET$y[1],pos[5],pch=poin[1],lwd=wid[1],cex=10/s.ET[1,]) 

arrows(1,pos[6],270000,pos[6],lwd=wid[1],lty=lin[1],length=0.12) 

arrows(1,pos[6],1/270000,pos[6],lwd=wid[1],lty=lin[1],length=0.12) 

points(ET$y[2],pos[6],pch=poin[2],cex=10/s.ET[2,]) 

arrows(1,pos[7],270000,pos[7],lwd=wid[2],lty=lin[2],length=0.12,col="darkgrey") 

arrows(1,pos[7],1/270000,pos[7],lwd=wid[2],lty=lin[2],length=0.12,col="darkgrey") 

points(ET$y[3],pos[7],pch=poin[1],cex=10/s.ET[3,],col="darkgrey") 

arrows(1/270000,pos[8],270000,pos[8],lwd=wid[1],lty=lin[1],length=0.12,col="darkgrey") 

arrows(270000,pos[8],1/270000,pos[8],lwd=wid[1],lty=lin[1],length=0.12,col="darkgrey") 

points(ET$y[4],pos[8],pch=poin[2],cex=10/s.ET[4,],col="darkgrey") 

# IQ 

arrows(1/270000,pos[9],270000,pos[9],lwd=wid[1],lty=lin[1],length=0.12) 

arrows(270000,pos[9],1/270000,pos[9],lwd=wid[1],lty=lin[1],length=0.12) 

points(IQ$y[1],pos[9],pch=poin[1],lwd=wid[1],cex=10/s.IQ[1,]) 

arrows(1/270000,pos[10],270000,pos[10],lwd=wid[1],lty=lin[1],length=0.12) 

arrows(270000,pos[10],1/270000,pos[10],lwd=wid[1],lty=lin[1],length=0.12) 

points(IQ$y[2],pos[10],pch=poin[2],cex=10/s.IQ[2,]) 

arrows(1/270000,pos[11],270000,pos[11],lwd=wid[1],lty=lin[1],length=0.12,col="darkgrey") 

arrows(270000,pos[11],1/270000,pos[11],lwd=wid[1],lty=lin[1],length=0.12,col="darkgrey") 

points(IQ$y[3],pos[11],pch=poin[1],cex=10/s.IQ[3,],col="darkgrey") 

arrows(1/270000,pos[12],270000,pos[12],lwd=wid[2],lty=lin[2],length=0.12,col="darkgrey") 

arrows(270000,pos[12],1/270000,pos[12],lwd=wid[2],lty=lin[2],length=0.12,col="darkgrey") 

points(IQ$y[4],pos[12],pch=poin[2],cex=10/s.IQ[4,],col="darkgrey") 

mtext("OR (95% CI)",las=2,side=2,at=15.5,line=-31.5,font=2) 

mtext("Join MA",las=2,side=2,at=pos[2],line=4,font=2) 

mtext("estimated effect",las=2,side=2,at=pos[2]-0.5,line=1.5,font=2) 

mtext("ET study",las=2,side=2,at=pos[6],line=4,font=2,cex=0.9) 

mtext("(n=41 vs 51)",las=2,side=2,at=pos[6]-0.5,line=3,cex=0.9) 

mtext("IQ study",las=2,side=2,at=pos[10],line=4,font=2,cex=0.9) 

mtext("(n=27 vs 24)",las=2,side=2,at=pos[10]-0.5,line=3,cex=0.9) 

mtext(paste(MA$y," (",MA$ylo,", 

",c("6.17*10^10","1.33*10^12","7.17*10^9","4.16*10^10"),")",sep=""),side=4,las=2,at=pos[1:4],line

=1.5,cex=1) 

mtext(paste(ET$y," (",ET$ylo,", 

",c("4.73*10^14","8.78*10^16","6.37*10^12","2.17*10^12"),")",sep=""),side=4,las=2,at=pos[5:8],lin

e=1.5,cex=0.9) 

mtext(paste(IQ$y," (",IQ$ylo,", 

",c("3.44*10^15","3.35*10^15","1.23*10^12","2.43*10^15"),")",sep=""),side=4,las=2,at=pos[9:12],li

ne=1.5,cex=0.9) 

mtext("Higher in intervention",las=2,side=2,at=-2.1,line=-26,cex=0.9) 

mtext("Higher in control",las=2,side=2,at=-2.3,line=-4,cex=0.9) 
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################################################## 

##-- GRÀFIC CDFs 

################################################## 

rm(list=ls()) 

library(rmeta) 

library(pscl) 

 

##-- Udated data in 31 December 2018 

datos <- read.csv('data_2018.csv',header=TRUE,sep=";") 

datos$Follow.up <- as.numeric((as.Date("31/12/2018","%d/%m/%Y")-

as.Date(datos$Publication.date,"%d/%m/%Y"))/365) 

datos1 <- datos[datos$Study=="ET",] 

 

library(pscl) 

library(boot) 

library(fitdistrplus)    # fits distributions using maximum likelihood 

library(gamlss)          # defines pdf, cdf of ZIP 

 

######### ET STUDY 

round(prop.table(table(datos1$NC))*100,2) 

ks1 <- ecdf(datos1$NC) 

## Poisson 

fit.pois <- fitdist(datos1$NC, 'pois') 

round(prop.table(table(rpois(fit.pois$n,fit.pois$estimate)))*100,2) 

ks2 <- ecdf(rpois(fit.pois$n,fit.pois$estimate)) 

## Negative Binomial 

fit.nb <- fitdist(datos1$NC, 'nbinom') 

round(prop.table(table(rnegbin(fit.nb$n,fit.nb$estimate["mu"],fit.nb$estimate["size"])))*100,2) 

## ZIP 

S <- summary(m1 <- zeroinfl(NC ~ 1, data = datos1)) 

mu_C = exp(S$coefficients$count[1]); sigma_C = S$coefficients$count[2] 

zero_C = inv.logit(S$coefficients$zero[1]) 

set.seed(1234) 

fit_zip = fitdist(datos1$NC, 'ZIP', start = list(mu = mu_C, sigma = zero_C) 

                  ,lower=c(-Inf, 0.000001),upper=c(Inf, 1)) 

round(prop.table(table(rZIP(fit_zip$n,fit_zip$estimate["mu"],fit_zip$estimate["sigma"])))*100,2) 

## ZINB 

S <- summary(zeroinfl(NC ~ 1, data = datos1, dist="negbin",link="logit")) 

mu_C = exp(S$coefficients$count[1]); zero_C = inv.logit(S$coefficients$zero[1]); sigma_C = 

S$theta 

set.seed(4321) 

fit.zinb <- rZINBI(length(datos1$NC), mu=mu_C, sigma=sigma_C,nu=zero_C)  

h<-round(prop.table(table(fit.zinb))*100,2) 

h<-hist(fit.zinb) 

 

## Plot CDFs for ET study 

library(extrafont) 

windows() 

par(family="Times New Roman") 

cdfcomp(list(fit.nb, fit_zip, fit.pois),lwd=2,addlegend = F,xlab="Number of 

citations",fitlty=c(1,1,1)) 

lines(ecdf(fit.zinb),verticals=T,lwd=2,col="orange",lty=1,pch=NA) 

lines(ecdf(fit_zip),verticals=T,lwd=2,col="blue",lty=1,pch=NA) 

legend("bottomright",c("Sample","Poisson","Zero-Inflated Poisson","Negative Binomial","Zero-

Inflated Negative Binomial","") 

       ,col=c("black","blue","green","red","orange","white"),lty=1,lwd=2,bty="n") 

 

windowsFonts("Times New Roman" = windowsFont("Times New Roman")) 

win.graph(9,9) 

par(family="Times New Roman",mfrow=c(2,1)) 

denscomp(list(fit_zip,fit.pois),lwd=2,ylim=c(0,0.2),xlim=c(0,15),addlegend = F,xlab="Number of 

citations",fitlty=1,datacol = c("black","green","blue")) 

legend("topright",c("Sample","Poisson","Zero-Inflated Poisson") 

       ,col=c("black","green","red"),lty=1,lwd=2,bty="n") 

denscomp(list(fit.nb),lwd=2,ylim=c(0,0.2),xlim=c(0,15),addlegend = F,xlab="Number of 

citations",fitlty=1,main="") 

d <- density(h,lty=1,col="orange",lwd=2) 

t<- tapply(d$y,round(d$x),mean)[5:21] 

segments(0.15:15.15,0,0.15:15.15,t,lty=1,col="green",lwd=2) 

legend("topright",c("Sample","Negative Binomial","Zero-Inflated Negative Binomial") 

       ,col=c("black","green","red"),lty=1,lwd=2,bty="n") 
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######################################################################## 

## 

## CODE TO COMPUTE K-S STATISTIC ESTIMATION WITH 95% CI 

## 

##-- Description: 

##   - random generation of samples with Pois, Q-P, NB, ZIP, ZINB 

##   - ks.test() funtion of R to estimate K-S statistic 

##   - 10000 simulations to obtain a 95% CI 

## 

######################################################################## 

 

rm(list=ls()) 

library(rmeta) 

library(pscl) 

 

##-- Udated data in 31 December 2018 

datos <- read.csv('data_2018.csv',header=TRUE,sep=";") 

datos$Follow.up <- as.numeric((as.Date("31/12/2018","%d/%m/%Y")-

as.Date(datos$Publication.date,"%d/%m/%Y"))/365) 

datos1 <- datos[datos$Study=="ET",] 

datos2 <- datos[datos$Study=="IQ" & (datos$Group=="R" | datos$Group=="SC"),] 

 

nsim <- 10000 

n <- dim(datos1)[1] 

##-- Poisson 

set.seed(1234) 

ks.pois <- c() 

for(i in 1:nsim){d <- rpois(n, lambda = mean(datos1$NC)); ks.pois[i] <- 

ks.test(datos1$NC,d)$statistic} 

KS.POIS <- median(ks.pois); LL.KS.POIS <- quantile(ks.pois,0.025); UL.KS.POIS <- 

quantile(ks.pois,0.975) 

##-- Negative-binomial 

library(fitdistrplus) 

set.seed(1234) 

fit.nb <- fitdist(datos1$NC, 'nbinom') 

ks.nb <- c() 

for(i in 1:nsim){d <- rnegbin(n, mu = fit.nb$estimate[2], theta = fit.nb$estimate[1]); ks.nb[i] 

<- ks.test(datos1$NC,d)$statistic} 

KS.NB <- median(ks.nb); LL.KS.NB <- quantile(ks.nb,0.025); UL.KS.NB <- quantile(ks.nb,0.975) 

##-- Zero-Inflated Poisson 

set.seed(1234) 

library(pscl); library(boot); library(gamlss) 

S <- summary(m1 <- zeroinfl(NC ~ 1, data = datos1)) 

mu = exp(S$coefficients$count[1])  

sigma = inv.logit(S$coefficients$zero[1]) 

ks.zip <- c() 

for(i in 1:nsim){d <- rZIP(n, mu, sigma); ks.zip[i] <- ks.test(datos1$NC,d)$statistic} 

KS.ZIP <- median(ks.zip); LL.KS.ZIP <- quantile(ks.zip,0.025);UL.KS.ZIP <- quantile(ks.zip,0.975) 

##-- Zero-Inflated Negative Binomial  

set.seed(1234) 

library(pscl) 

model.zinb <- zeroinfl(NC ~ 1, data = datos1,dist="negbin") 

S <- summary(model.zinb); k <- S$theta ;lambda <- exp(S$coefficients$count[1]); 

omega = inv.logit(S$coefficients$zero[1]); ks.zinb <- c() 

for(i in 1:nsim){d <- rZINBI(n, k,lambda, omega); ks.zinb[i] <- ks.test(datos1$NC,d)$statistic} 

KS.ZINB <- median(ks.zinb); LL.KS.ZINB <- quantile(ks.zinb,0.025); UL.KS.ZINB <- 

quantile(ks.zinb,0.975) 

##-- Taula 

taula <- rbind(cbind(KS.POIS,LL.KS.POIS,UL.KS.POIS), 

               cbind(KS.NB,LL.KS.NB,UL.KS.NB), 

               cbind(KS.ZIP,LL.KS.ZIP,UL.KS.ZIP), 

               cbind(KS.ZINB,LL.KS.ZINB,UL.KS.ZINB)) 

rownames(taula) <- c("Poisson","Negative Binomial", "Zero-Inflated Poisson","Zero-Infalted 

Negative Binomial") 

colnames(taula) <- c("K-S","95%LL","95%UL") 

round(taula,2) 

 

nsim <- 10000 

n <- dim(datos2)[1] 

##-- Poisson 

set.seed(1234) 

ks.pois <- c() 

for(i in 1:nsim){d <- rpois(n, lambda = mean(datos2$NC)); ks.pois[i] <- 

ks.test(datos2$NC,d)$statistic} 

KS.POIS <- median(ks.pois); LL.KS.POIS <- quantile(ks.pois,0.025); UL.KS.POIS <- 

quantile(ks.pois,0.975) 

##-- Negative-binomial 
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library(fitdistrplus) 

set.seed(1234) 

fit.nb <- fitdist(datos2$NC, 'nbinom') 

ks.nb <- c() 

for(i in 1:nsim){d <- rnegbin(n, mu = fit.nb$estimate[2], theta = fit.nb$estimate[1]); ks.nb[i] 

<- ks.test(datos2$NC,d)$statistic} 

KS.NB <- median(ks.nb); LL.KS.NB <- quantile(ks.nb,0.025); UL.KS.NB <- quantile(ks.nb,0.975) 

##-- Zero-Inflated Poisson 

set.seed(1234) 

library(pscl); library(boot); library(gamlss) 

S <- summary(m1 <- zeroinfl(NC ~ 1, data = datos2)) 

mu = exp(S$coefficients$count[1])  

sigma = inv.logit(S$coefficients$zero[1]) 

ks.zip <- c() 

for(i in 1:nsim){d <- rZIP(n, mu, sigma); ks.zip[i] <- ks.test(datos2$NC,d)$statistic} 

KS.ZIP <- median(ks.zip); LL.KS.ZIP <- quantile(ks.zip,0.025);UL.KS.ZIP <- quantile(ks.zip,0.975) 

##-- Zero-Inflated Negative Binomial  

set.seed(1234) 

library(pscl) 

model.zinb <- zeroinfl(NC ~ 1, data = datos2,dist="negbin") 

S <- summary(model.zinb); k <- S$theta ;lambda <- exp(S$coefficients$count[1]); 

omega = inv.logit(S$coefficients$zero[1]); ks.zinb <- c() 

for(i in 1:nsim){d <- rZINBI(n, k,lambda, omega); ks.zinb[i] <- ks.test(datos2$NC,d)$statistic} 

KS.ZINB <- median(ks.zinb); LL.KS.ZINB <- quantile(ks.zinb,0.025); UL.KS.ZINB <- 

quantile(ks.zinb,0.975) 

##-- Taula 

taula <- rbind(cbind(KS.POIS,LL.KS.POIS,UL.KS.POIS), 

               cbind(KS.NB,LL.KS.NB,UL.KS.NB), 

               cbind(KS.ZIP,LL.KS.ZIP,UL.KS.ZIP), 

               cbind(KS.ZINB,LL.KS.ZINB,UL.KS.ZINB)) 

rownames(taula) <- c("Poisson","Negative Binomial", "Zero-Inflated Poisson","Zero-Infalted 

Negative Binomial") 

colnames(taula) <- c("K-S","95%LL","95%UL") 

round(taula,2) 
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###################################################################################### 

## 

## RECURRENT EVENTS ANALYSIS  

## 

###################################################################################### 

rm(list=ls()) 

 

plt.rcParams["font.family"] = "Times New Roman" 

 

dat <- read.csv("BD_RecurrentEvents_2020.csv",header=T,sep=";") 

dat$Publication.date<-as.Date(dat$Publication.date,"%d/%m/%Y") 

dat$p1[dat$Previous.study=="ET"] <- (as.Date("2020-12-31","%Y-%m-%d") - 

dat$Publication.date[dat$Previous.study=="ET"])/365 

dat.ET <- dat[dat$Previous.study=="ET",] 

dat.ET <- dat.ET[order(dat.ET$Article.ID,dat.ET$t.stop.2020),] 

id <- dat.ET[duplicated(dat.ET$Article.ID)==F,c("Article.ID","Publication.date","p1")] 

id_ordenat <- id[order(id$Publication.date),] 

library(extrafont) 

##-- Histograms of the number of citations, by study group and by trial 

windowsFonts(A = windowsFont("Times New Roman")) 

windows(12,11) 

par(family = "Times New Roman") 

par(oma=c(0,0,0,0)) 

plot(NA,xaxt="n",yaxt="n", 

     ylim=c(1,92),xlim=c(0,12.5),lwd=0.5,ylab="Article",xlab="Year",main="",family="A") 

axis(1,at=0:12,labels=c("2008","2009","2010","2011","2012","2013","2014","2015","2016","2017","20

18","2019","2020"),family="A") 

axis(2,at=1:92,labels=id_ordenat$Article.ID,las=2,family="A",cex.axis=0.4,tick=F) 

for(i in 1:dim(id_ordenat)[1]){ 

  

segments(id_ordenat$p1[i],i,max(dat.ET$t.stop.2020[dat.ET$Article.ID==id_ordenat$Article.ID[i]])+

id_ordenat$p1[i],i, 

col=ifelse(dat.ET$Group[dat.ET$Article.ID==id_ordenat$Article.ID[i]]=="R","orange","blue"),lwd=1) 

} 

for(i in 1:dim(id_ordenat)[1]){ 

  x <- dat.ET$t.stop.2020[dat.ET$Article.ID==id_ordenat$Article.ID[i]]+id_ordenat$p1[i] 

  points(x[-length(x)],rep(i,length(x)-1),pch=15,cex=0.7) 

} 

for(i in 1:dim(id_ordenat)[1]){ 

  x <- dat.ET$t.stop.2020[dat.ET$Article.ID==id_ordenat$Article.ID[i]]+id_ordenat$p1[i] 

  points(x[length(x)],i,pch=1,cex=0.7) 

} 

par(xpd=NA) 

legend(4,105,c("R","SC"), col=c("orange","blue"),pch=15,horiz = T,bty = "n") 

 

## MCF AMB LA LLIBRERIA REDA DE R per BD (data 20/07/2020) 

library(reda) 

dat_MCF <- 

data.frame(ID=dat$Article.ID,time=as.numeric(dat$t.stop.2020),Event=as.numeric(dat$Event), 

                      Study=dat$Previous.study,Study.type=dat$Study.type,Group=dat$Group, 

GS_B=dat$Baseline.Goodman.Scale..likert.5.,GS_F=dat$Final.Goodman.Scale..Likert.5.) 

dat_MCF_ET <- dat_MCF[dat_MCF$Study=="ET",] 

mod1 <- mcf(Survr(ID, time, Event)~1,data=dat_MCF_ET,variance="LawlessNadeau") 

windows() 

library(ggplot2) 

par(family = "Times New Roman") 

plot(mod1,conf.int=TRUE,mark.time=T,addOrigin=T,col="grey3",ylim=c(0,6),family="A") + 

ggplot2::xlab("Years") +  

  ggplot2::ylab("Mean cumulative number of citations") + ggplot2::ggtitle("") + #Sample Mean 

Cumulative Function for ET study 

  ggplot2::ylim(c(0,6)) + ggplot2::xlim(c(0,11))   + ggplot2::theme_bw() + 

ggplot2::theme(text=element_text(family="Times New Roman", size=12))  

# ET segons Grup 

library(ggplot2) 

dat_MCF_ET$Group2 <- relevel(as.factor(dat_MCF_ET$Group),ref="SC") 

mod1 <- mcf(Survr(ID, time, Event)~Group2,data=dat_MCF_ET,variance="LawlessNadeau") 

windows() 

plot(m<-mcfDiff(mod1),col="navy",lwd=2) + ggplot2::xlab("Years") + ggplot2::theme_bw() + 

  ggplot2::ylab("MCF difference between SC and R groups") + ggplot2::ggtitle("Sample MCF 

differences between groups for ET study") + 

  ggplot2::xlim(c(0,12)) + ggplot2::ylim(c(-4,4))+ geom_hline(yintercept=0)+ 

geom_hline(yintercept=0) + ggplot2::theme(text=element_text(family="Times New Roman", size=12)) 

 

## FRAILTY MODEL WITH frailtySurv package (semi-parametric) 

rm(list=ls()) 

library(frailtySurv) 
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head(dat) 

dat_ET <- dat[dat$Previous.study=="ET",] 

dat_ET$Group2 <- as.factor(as.character(dat_ET$Group)) 

vfit <- survfit(Surv(t.start.2018, t.stop.2018+0.0001, Event) ~ Group2, data=dat_ET, 

id=Article.ID) 

windows() 

plot(vfit, cumhaz=FALSE, col=1:2, conf.times=c(1, 3, 5, 7, 9), 

     xlab="Years since publication", ylab="Cumulative hazard") 

legend("topright",col=1:2,levels(dat_ET$Group2),lty=1) 

 

 

 

 


