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Abstract 

Reactive transport modeling is a methodological tool to study the coupled physical, chemical and 

biological processes in Earth system. It is complex not only because of the nature of the equations, but 

also because of the effects of the porous medium heterogeneity on reactive transport. This thesis aims 

to deepen the understanding of reactive transport processes in order to explain the biochemical 

degradation process in porous media, with special emphasis on the role of biofilm and its growth. 

First, we propose a general and efficient numerical solution of reactive transport in multicontinuum 

media using Multirate Mass Transfer (MRMT) approach. To overcome the non-linearity of the 

problem, induced by non-linear kinetics, we use the Newton-Raphson method to get the global solution. 

We solve the system of equations in block form, which allow us to reduce the unknowns to those of 

mobile zones and to, thus improving efficiency. The solution is validated by comparison with analytical 

solution for linear kinetics. The code is developed in Object-oriented way, which enables the code 

reusability and data polymorphism.    

Second, we investigate the conditions for chemical localization (i.e., the occurrence of reactions that 

would not be possible in single continuum media). To this end, we write the multicontinuum transport 

equations in dimensionless form to find that reactive transport in multicontinuum media is governed by 

three characteristic times: the distribution of residence times in immobile zones, and the characteristic 

reaction and transport times. To study the interplay between these three characteristic times, we simulate 

three chemical systems: conservative, single reaction and sequential reaction. Results demonstrate that 

reactions driven by species that result from previous reactions will localize in immobile zones whose 

residence time is comparable to reaction times. Furthermore, immobile zones with residence times 

much smaller than those for transport can be lumped together (assuming that very fast reactions are 

assumed in equilibrium), which greatly reduces computations. 

Third, we perform simulations of reactive transport incorporating biochemical reactions that not only 

oxidize organic carbon, but also produce biomass, thus causing biofilm growth. Biofilm growth is 

known to cause clogging (i.e., reduction of permeability), which has concentrated most research on the 

topic. But it also causes a significant change in the pore space geometry and connectivity, which leads 

to not only an overall increase in mean residence time in immobile regions, but also on its distribution. 

As discussed above, this is critical to (bio)chemical localization, especially considering that microbial 

mediated reactions tend to concentrate in biofilms. We propose a model for the evolution of residence 

time distribution in immobile zones in response to biofilm growth. We test this model by comparison 

with laboratory experiments extracted from the literature, where tracer tests have been performed at 

various stages of growth. Results show that the dynamic MRMT model is capable of reproducing the 

salient features of these experiments.  
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Resumen 

 El modelado de transporte reactivo es una herramienta metodológica para estudiar los procesos físicos, 

químicos y biológicos acoplados en el sistema terrestre. Es complejo no solo por la naturaleza de las 

ecuaciones, sino también por los efectos de la heterogeneidad del medio poroso sobre el transporte 

reactivo. Esta tesis tiene como objetivo profundizar en el conocimiento de los procesos de transporte 

reactivo para explicar el proceso de degradación bioquímica en medios porosos, con especial énfasis en 

el papel del biofilm y su crecimiento. 

En primer lugar, proponemos una solución numérica general y eficiente de transporte reactivo en 

medios multicontinuum utilizando el enfoque de Transferencia de Masa Multivelocidad (MRMT). Para 

superar la no linealidad del problema, inducida por una cinética no lineal, utilizamos el método de 

Newton-Raphson para obtener la solución global. Resolvemos el sistema de ecuaciones en forma de 

bloque, lo que nos permite reducir las incógnitas a las de zonas móviles y a, mejorando así la eficiencia. 

La solución se valida por comparación con la solución analítica para cinética lineal. El código se 

desarrolla de forma orientada a objetos, lo que permite la reutilización del código y el polimorfismo de 

los datos. 

En segundo lugar, investigamos las condiciones para la localización química (es decir, la ocurrencia de 

reacciones que no serían posibles en un medio continuo único). Con este fin, escribimos las ecuaciones 

de transporte multicontinuum en forma adimensional para encontrar que el transporte reactivo en 

medios multicontinuum se rige por tres tiempos característicos: la distribución de los tiempos de 

residencia en zonas inmóviles, y los tiempos de reacción y transporte característicos. Para estudiar la 

interacción entre estos tres tiempos característicos, simulamos tres sistemas químicos: conservador, 

reacción única y reacción secuencial. Los resultados demuestran que las reacciones impulsadas por 

especies que resultan de reacciones previas se localizarán en zonas inmóviles cuyo tiempo de residencia 

es comparable a los tiempos de reacción. Además, las zonas inmóviles con tiempos de residencia mucho 

más pequeños que los de transporte pueden agruparse (asumiendo que se asumen reacciones muy 

rápidas en equilibrio), lo que reduce en gran medida los cálculos. 

En tercer lugar, realizamos simulaciones de transporte reactivo incorporando reacciones bioquímicas 

que no solo oxidan el carbono orgánico, sino que también producen biomasa, lo que provoca el 

crecimiento de biopelículas. Se sabe que el crecimiento de biopelículas causa obstrucciones (es decir, 

reducción de la permeabilidad), lo que ha concentrado la mayor parte de la investigación sobre el tema. 

Pero también provoca un cambio significativo en la geometría del espacio poroso y la conectividad, lo 

que conduce no solo a un aumento general del tiempo medio de residencia en las regiones inmóviles, 

sino también a su distribución. Como se discutió anteriormente, esto es crítico para la localización (bio) 

química, especialmente considerando que las reacciones mediadas por microbios tienden a concentrarse 

en biopelículas. Proponemos un modelo para la evolución de la distribución del tiempo de residencia 

en zonas inmóviles en respuesta al crecimiento de biopelículas. Probamos este modelo comparándolo 

con experimentos de laboratorio extraídos de la literatura, donde se han realizado pruebas de trazadores 

en varias etapas de crecimiento. Los resultados muestran que el modelo MRMT dinámico es capaz de 

reproducir las características más destacadas de estos experimentos.
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Resum 

La modelització del transport reactiu és una eina metodològica per estudiar els processos físics, químics 

i biològics acoblats en el sistema terrestre. És complex no només per la naturalesa de les equacions, 

sinó també pels efectes de l’heterogeneïtat mitjana porosa sobre el transport reactiu. Aquesta tesi té com 

a objectiu aprofundir en la comprensió dels processos de transport reactiu per explicar el procés de 

degradació bioquímica en medis porosos, amb especial èmfasi en el paper del biofilm i el seu creixement. 

En primer lloc, proposem una solució numèrica general i eficient de transport reactiu en medis 

multicontinuos mitjançant l'enfocament de transferència de massa multirata (MRMT). Per superar la no 

linealitat del problema, induïda per cinètiques no lineals, fem servir el mètode de Newton-Raphson per 

obtenir la solució global. Resolem el sistema d’equacions en forma de blocs, que ens permeten reduir 

les incògnites a les de les zones mòbils i a, millorant així l’eficiència. La solució es valida comparant-

la amb una solució analítica de cinètica lineal. El codi es desenvolupa de manera orientada a objectes, 

que permet la reutilització del codi i el polimorfisme de dades. 

En segon lloc, investigem les condicions per a la localització química (és a dir, l’aparició de reaccions 

que no serien possibles en un mitjà continu). Amb aquest objectiu, escrivim les equacions de transport 

multicontinu en forma adimensional per trobar que el transport reactiu en mitjans multicontinuos es 

regeix per tres temps característics: la distribució dels temps de residència en zones immòbils i els temps 

de reacció i transport característics. Per estudiar la interacció entre aquests tres temps característics, 

simulem tres sistemes químics: conservador, de reacció única i reacció seqüencial. Els resultats 

demostren que les reaccions impulsades per espècies que resulten de reaccions anteriors es localitzaran 

en zones immòbils el temps de residència és comparable als temps de reacció. A més, les zones 

immòbils amb temps de residència molt menors que les del transport es poden agrupar (suposant que 

s’assumeixen reaccions molt ràpides en equilibri), cosa que redueix considerablement els càlculs. 

En tercer lloc, realitzem simulacions de transport reactiu que incorporen reaccions bioquímiques que 

no només oxiden el carboni orgànic, sinó que també produeixen biomassa, provocant així el creixement 

del biofilm. Se sap que el creixement del biofilm causa l’obstrucció (és a dir, la reducció de la 

permeabilitat), que ha concentrat la majoria de les investigacions sobre el tema. Però també provoca un 

canvi significatiu en la geometria i la connectivitat de l’espai dels porus, que condueix no només a un 

augment global del temps mitjà de residència en regions immòbils, sinó també a la seva distribució. 

Com s’ha comentat anteriorment, això és fonamental per a la localització (bio) química, sobretot tenint 

en compte que les reaccions mediàtiques microbianes tendeixen a concentrar-se en biofilms. Proposem 

un model per a l’evolució de la distribució del temps de residència en zones immòbils en resposta al 

creixement del biofilm. Provem aquest model en comparació amb experiments de laboratori extrets de 

la literatura, on s'han realitzat proves de traçador en diverses etapes de creixement. Els resultats mostren 

que el model dinàmic MRMT és capaç de reproduir les característiques més destacades d’aquests 

experiments. 
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摘要 

反应运移模型是地球系统中研究物理、化学和生物耦合过程的一种方法工具。反应运移是

复杂的，不仅在于其控制方程本身的复杂性，而且受多孔介质非均质性的影响。本论文旨在加

深对反应运移过程的理解，以解释多孔介质中的生物化学降解过程，尤其是生物膜的生长及其

作用。 

首先，我们利用多速率传质(MRMT)方法提出了多连续介质中反应运移的一种通用且高效的

数值解。为克服非线性动力学反应导致问题的非线性，我们采用牛顿-拉夫森方法迭代求得全

局解。利用分块的形式求解方程组，将未知量的个数减少为可移动区域的个数，从而提高计算

效率。通过与线性动力学解析解的比较，验证了该方法的正确性。采用面向对象的方式开发程

序，实现了代码的可重用性和数据多态性。 

其次，我们研究了局部化学反应的条件，即在单一连续介质中不可能发生的反应的发生。

为此，我们推导了多连续介质中的反应运移方程的无量纲形式，发现多连续介质中的反应运移

受控于三个特征时间:不可移动区停留时间的分布，反应时间和运移时间。为研究这三种特征

时间之间的相互作用，我们模拟了三种化学体系:保守反应、单反应和顺序反应。结果表明，

由前一的反应导致的物种驱动的反应将定位于停留时间与反应时间相当的不可移动区域。此外，

可将停留时间比运移时间小的多的不可移动区域视作可移动区域（假设非常快的反应处于平衡

状态），从而很大的减少了计算。 

最后，我们模拟了有微生物参与的反应运移，涉及的生物化学反应不仅能够氧化有机碳，而且

能够为微生物的生长提供碳源，从而导致生物膜的生长。众所周知，生物膜的生长会导致生物

堵塞（即渗透性的降的），大多研究致力于该方向。但生物膜的生长也会导致孔隙几何形状和

连通性发生显著变化，不仅导致不可移动区域平均停留时间的增加，而且改变其分布。如上所

述，这对于研究局部（生物）化学过程至关重要，特别是在考虑微生物介导的反应时，其往往

集中在生物膜中。我们提出了一个停留时间在不可移动区域中随生物膜生长的演化模型。通过

与文献中提取的实验数据进行对比，在生长的不同阶段进行示踪实验，来测试该模型。结果表

明，该模型能够较好地再现实验的显著性特征。 
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1 Introduction 

 

This thesis is motivated by projects dealing with water renationalization by Soil Aquifer treatment (SAT) 

and degradation processes in the subsurface. 

The hydrogeology research group has worked recently on a methodology to enhance water quality 

improvement processes during soil passage (Valhondo et al., 2020). The approach consists of installing 

a reactive barrier at the bottom of infiltration basins in SAT system to favor the adsorption of organic 

pollutants and their degradation. To this end, the reactive barrier consists of a mixture of sand (to ensure 

high permeability and to guarantee structural strength), organic matter (woodchips or vegetable 

compost, to provide sorption sites for neutral compounds and as a source of organic carbon to promote 

reducing conditions), clay (to provide sorption sites for cationic compounds). Ideally, having a broad 

range of sorption sites and redox conditions should ensure the removal of most organic contaminants. 

Many of them hardly degrade under aerobic conditions, but require reducing conditions (Christensen et 

al., 2001). 

Another type of application is the removal of nitrates from mine tailing's seepage. An efficient passive 

technology to reduce nitrate concentration consists of circulating the nitrate loaded water through a tank 

containing woodchips, which ensures denitrification conditions (Nordström et al., 2021; Nordström & 

Herbert, 2019; Nordström & Herbert, 2018; Nordström & Herbert, 2017). 

Both approaches have been successfully tested in the field (Nordström et al., 2021; Valhondo et al., 

2020; Valhondo, Martínez-Landa, et al., 2020; Nordström & Herbert, 2018; Valhondo et al., 2018). 

However, quantitative interpretation of results is difficult because degradation reactions occur in the 

biofilm, which evolves overtime. Microbial communities grow, which causes degradation rates to take 

place more efficiently, but also risks clogging. Quantitative interpretation of results is required for 

proper understanding and for upscaling observation from pilot to large scale and from relatively short 

(2 years) to long term operation. 

Quantitative interpretation is made by means of numerical models, which is challenging for several 

reasons. First, degradation reactions take place within the biofilm, which hosts the vast majority of 

microorganisms (Flemming et al., 2007; Morales et al., 2010; Flemming & Wingender, 2010; Satpathy 

et al., 2016; Flemming & Wuertz, 2019; Wu et al., 2019), but where water does not flow (Costerton et 

al., 1995; Flemming et al., 2007; Flemming & Wingender, 2010). Obviously, mobile-immobile 

representations of porous media are required. Many such representations are available (Le Borgne et 

al., 2008). But such representations are primarily motivated to reproduce the impact of heterogeneity, 

which leads to a broad range of residence times because of the variability of water velocity in different 

flow paths, but not necessarily because of the time it takes to reach actual immobile zones. Second, as 

a result of the above, the experience about simulating reactive transport in this kind of model 

representations is limited (Donado et al., 2009; Willmann et al., 2010). Worse, the computational 

demand increases dramatically because the number of unknowns is multiplied by the number of 

immobile zones used for representing the broad range of residence times. This may lead to 

computationally unfeasible problems when the chemical system is complex. And, third, these immobile 

regions evolve in time as a result of biofilm growth. Many studies exists on Its effect on hydrological 

parameters, such as permeability, porosity and retention curve (e.g., Taylor et al., 1990; Morales et al., 

2010; Carles Brangarí et al., 2017; Lopez-Peña et al., 2019). Its effects on the parameters controlling 

mass exchange between mobile and immobile zones have been studied and modelled much less. 
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To address these challenges, I have opted for a multi-rate-mass-transfer (MRMT) approach (Haggerty 

& Gorelick, 1995; ), because it localizes chemical data, thus making it possible to use conventional 

chemical calculation tools, which I have also developed as part of the thesis. In this context, I have 

made several contributions. Each of them is described in one chapter, which will hopefully be published. 

This implies that every chapter can be read independently, but also that a portion of the mathematical 

description is repeated in every chapter.  

Chapter 2 contains a new method to solve MRMT problems. The method benefits from the fact that 

immobile zones are connected to independent mobile nodes. This leads to a highly sparse system matrix, 

which facilitates solution. In fact, the final system only contains the mobile zone concentrations because 

immobile zones concentrations are expressed as a function of mobile zone concentrations. The resulting 

algorithm is very fast.  

Chapter 3 analyses the interplay of immobile zones residence times, transport time and reaction times 

with two goals: first, to minimize the number of immobile zones, and second, to identify the conditions 

for chemical localization (i.e., the occurrence of reactions that would not take place if all the water was 

mobile). 

Finally, Chapter 4 contains a proposal for biofilm growth. To date, biofilm growth models emphasize 

clogging (i.e., the reduction of permeability as the pore space becomes filled by biofilm. Here, I 

emphasize that the residence time distribution changes in response to biofilm growth. This change is 

relevant for proper representation of the evolution of redox states that occur both during artificial 

recharge across a reactive barrier and during flow through a woodchips porous medium, which 

motivated this thesis.  
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2 A general and efficient numerical solution of 

reactive transport with multirate mass transfer  

 

The presence of low permeability regions within porous media impacts solute transport and the 

distribution of species concentrations. Therefore, (bio)chemical reactions are equally affected. Multirate 

Mass Transfer (MRMT) models can be used to represent this anomalous transport process. MRMT 

conceptualizes the medium as a set of multiple continua: one mobile zone and multiple immobile zones. 

It simulates species transport in mobile and immobile zones simultaneously, which are related by first-

order mass exchange. Numerical modeling of reactive transport in this kind of multicontinua media is 

complex and demanding because of the high dimensionality of the problem. In this paper, we establish 

the governing equations of reactive transport in multicontinuum media incorporating chemical kinetics 

into the governing equations. We propose a general numerical solution of reactive transport with 

MRMT by applying direct substitution approach (DSA) based on Newton-Raphson method. The 

efficiency of the proposed algorithm benefits of the block structure of the system, which allows us to 

eliminate immobile zones equations and leads to significant savings in CPU time. We test the validity 

of the developed solution by comparison with other numerical and analytical solutions.   

                                                      
 This chapter is based on the paper Wang et al., 2021. A general and efficient numerical solution of reactive 

transport with multirate mass transfer, submitted to Computers & Geosciences, under 2-nd review. 
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2.1 Introduction  

Solute transport is often anomalous in the sense that observed concentrations display numerous non-

Fickian features, such as asymmetric spatial distributions or heavy tailed break-through curves (BTCs) 

(Kosakowski et al., 2001; Zinn et al., 2004; Zhang et al., 2007; Le Borgne & Gouze, 2008). Many 

methods have been developed to address anomalous transport, including continuous time random walk 

(CTRW) (Berkowitz & Scher, 1998; Dentz et al., 2004; Cortis & Berkowitz, 2004; Dentz et al., 2015), 

fractional advection-dispersion equations (FADE) (Benson et al., 2000; Schumer et al., 2003; 

Marseguerra & Zoia, 2008), memory functions (Carrera et al., 1998; Haggerty et al., 2000; Willmann 

et al., 2008; Gouze et al., 2008a), multiple interacting continua (MINC) (Pruess & Narasimhan, 1985; 

De Dreuzy et al., 2013), structured interacting continua (SINC) (Babey et al., 2015; Rapaport et al.,  

2017), multirate mass transfer (MRMT) (Haggerty and Gorelick, 1995; Wang et al., 2005; Salamon et 

al., 2006; Benson & Meerschaert, 2009), and others. These methods are essentially equivalent (Dentz 

& Berkowitz, 2003; Silva et al., 2009) in that they can be viewed as representing solute mass exchange 

between a mobile zone and several immobile zones with negligible water velocity. The above references 

demonstrate that all these methods are relevant for realistic solute transport, which is a pre-condition 

for realistic reactive transport. But MRMT, MINC and SINC are advantageous because they localize 

concentrations. That is, concentrations are computed and available at mobile and immobile zones at 

each point in space, which facilitates reactive calculations. In this study we use MRMT for its simplicity 

and generality, but our results can be relevant as well for MINC and SINC.  

MRMT consists of viewing the medium as the superposition of mobile and immobile zones (Figure 

2.1a). Typically, the immobile zones represent areas where water does not flow or flows very slowly. 

Numerous (actually a distribution of) immobile zones are needed to reproduce the distribution of 

residence time in the immobile regions. Numerical solutions can be viewed as adding extra nodes to 

every mobile node (Figure 2.1b).  

 

(a) 

 

(b) 

Figure 2.1 (a) Illustration of MRMT model in porous media, white areas bounded by black curves 

represent mobile zone, the black areas represent solid matrix, and the gray areas represent immobile 

zones, dark gray corresponding to a lower possibility of visit, while light gray denotes a higher 



 

 

5 

 

possibility to visit (Gouze et al., 2008b). (b) Numerical discretization of mobile and immobile zones, 

each circle (labelled m for mobile, and im for immobile) is a node. 

MRMT or any other method to address anomalous transport is relevant for a broad range of reactive 

transport problems. A clear example is reactive transport in fractured media (see Deng & Spycher, 2019, 

for a review). Groundwater flow in fractures is much higher than in the rock matrix. Mass transfer 

between the fracture and the matrix is by molecular diffusion and can lead to mineral- dissolution-

precipitation depending on the distance or connection to the fracture. Another important example is 

mass exchange between pore water and biofilms (e.g., Chen-Charpentier, 1999; Tiwari & Bowers, 2001; 

Gaebler & Eberl, 2018; Brangarí et al., 2018). Biological reactions mainly take place in biofilms 

composed of cellular material and extracellular polymeric substances (EPS). As hydraulic conductivity 

of biofilms is very low, mass transfer is controlled by diffusion and shape and size of the biofilm. 

A broad range of residence times may be relevant in many reactive transport problems. Simulating them 

is relevant not only for proper reproduction of (conservative tracers) breakthrough curves, but also for 

reproducing geochemical localization (Soler-Sagarra et al., 2016). Localization refers to reactions that 

occur in some portions of the domain, but which would not occur with the concentrations averaged over 

all portions of the domain (i.e., in single porosity models). General reactive transport codes must be 

coupled to MRMT to simulate these problems.  

MRMT is computationally costly because it involves multiplying the number of unknowns by the 

number of immobile zones plus one. This is especially true for implicit solvers, which require building 

a system of equations with size equal to the number of unknowns. Therefore, it is not surprising that 

developers have sought “tricks” to reduce this cost. The types of tricks depend on the method. One 

option is to solve diffusion into the immobile region and then perform a convolution to acknowledge 

the time variability of concentrations in the mobile zone (Carrera et al., 1998;  Wang et al., 2005; Silva 

et al., 2009). This is tedious, so many others (Haggerty & Gorelick, 1995; Berkowitz et al., 2006; 

Berkowitz et al., 2008) propose using a Laplace transform, which transforms the convolution into a 

regular product. But these tricks require that the transport problem is linear. Therefore, they would not 

be valid for general non-linear reactive transport. 

MRMT is still feasible if all reactions are fast (i.e., simulated as equilibrium reactions) and identical 

because transport of components is linear (Donado et al., 2009; Willmann et al., 2010). However, 

MRMT is most important for reactive transport problems with kinetic reactions, because of both the  

broad range of residence times (Haggerty et al., 2000) and chemical localization (Soler-Sagarra et al., 

2016). 

However, solving MRMT for general reactive transport including kinetics cannot take advantage of the 

above “tricks”. It needs to be solved in the way in Figure 2.1b by using general purpose codes, such as 

PFLOTRAN (Lichtner et al., 2015; Hammond et al., 2014; Iraola et al., 2019), OpenGeoSys (Olaf 

Kolditz et al., 2012; O. Kolditz et al., 2012; Bilke et al., 2019), PHREEQC (Parkhurst & Appelo, 2013), 

CrunchFlow (Steefel et al., 2015; Beisman et al., 2015), CHEPROO (Bea et al., 2009), Retraso (Saaltink 

et al., 2004) and PHT3D (Prommer et al., 2001; Prommer et al., 2003; Steefel et al., 2015), which is 

costly. Therefore, it would be desirable to have a general, yet efficient method to solve reactive transport 

with MRMT.   

The objective of this paper is to propose an accurate and efficient numerical approach of MRMT for 

general reactive transport. In part one, we establish the mathematical governing equations. In part two, 

we formulate the traditional and proposed numerical solutions. In part three, we verify the accuracy of 

proposed formulation by comparing with the traditional one and available analytical solutions. We also 

analyze the efficiency of the proposed algorithm.  
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2.2 Governing Equations 

The immobile zones are fully defined by the distribution of mass exchange rates between mobile and 

immobile zones. 𝑓(𝛼)  is the probability density of immobile zones that transfer mass at a given 

exchange rate 𝛼 (Haggerty et al., 2000).  

The total concentration 𝒄(𝑥, 𝑡) (i.e., mass of solute per unit volume of medium) at a given point is the 

weighted sum of mobile 𝒄𝑚(𝑥, 𝑡) and immobile 𝒄𝑖𝑚(𝑥, 𝛼, 𝑡) concentrations, written as  

𝒄(𝑥, 𝑡) = 𝜙𝑚𝒄𝑚(𝑥, 𝑡) + 𝜙𝑖𝑚 ∫ 𝑓(𝛼)𝒄𝑖𝑚(𝑥, 𝛼, 𝑡)
∞

0

𝑑𝛼 
(2.1) 

where 𝜙𝑚 and 𝜙𝑖𝑚 are porosity of mobile zone and porosity of immobile zone, respectively. As we 

deal with reactive transport with several chemical species and reactions, 𝒄, 𝒄𝑚  and 𝒄𝑖𝑚  are vectors 

containing the concentrations of several species.  

The governing mass balance equation to simulate species transport in mobile zone is defined as follows 

(Willmann et al., 2008)  

𝜙𝑚

𝜕𝒄𝑚(𝑥, 𝑡)

𝜕𝑡
= 𝐿𝑡[𝒄𝑚(𝑥, 𝑡)] − 𝜙𝑖𝑚 ∫ 𝛼[𝒄𝑚(𝑥, 𝑡) − 𝒄𝑖𝑚(𝑥, 𝛼, 𝑡)]𝑓(𝛼)

∞

0

𝑑𝛼 + 𝜙𝑚𝒓𝑚(𝑥, 𝑡) 
(2.2) 

  

where 𝐿𝑡[𝒄𝑚(𝑥, 𝑡)] = −𝒒𝛻𝒄𝑚 + 𝛻 ∙ (𝜙𝑚𝑫𝛻𝒄𝑚)  is the transport operator, which accounts for 

advection and dispersion, 𝑫 is the dispersion and diffusion tensor, 𝒒 is Darcy flux, 𝒓𝑚(𝑥, 𝑡) is a vector 

of sink-source term that represents the mass added or removed by chemical reactions in mobile zone 

per unit volume of water per unit time.  

Mass in immobile zones exchange with the mobile zone as  

𝜕𝒄𝑖𝑚(𝑥, 𝛼, 𝑡)

𝜕𝑡
= 𝛼[𝒄𝑚(𝑥, 𝑡) − 𝒄𝑖𝑚(𝑥, 𝛼, 𝑡)] + 𝒓𝑖𝑚(𝑥, 𝛼, 𝑡) 

(2.3) 

Different distributions can be used for the mass exchange rate 𝛼 . The (truncated-) power law 

distribution (Haggerty et al., 2000; Haggerty et al., 2002; Schumer et al., 2003; Benson & Meerschaert, 

2009) is commonly used. Integrating equation (2.3) with weight 𝑓(𝛼) in terms of 𝑑𝛼, and multiplying 

by 𝜙𝑖𝑚, then adding it into equation (2.2), yields the governing equation for the total concentrations,  

𝜙𝑚

𝜕𝒄𝑚(𝑥, 𝑡)

𝜕𝑡
+ 𝜙𝑖𝑚 ∫ 𝑓(𝛼)

𝜕𝒄𝑖𝑚(𝑥, 𝛼, 𝑡)

𝜕𝑡

∞

0

𝑑𝛼 = 𝐿𝑡[𝒄𝑚(𝑥, 𝑡)] + 𝒓(𝑥, 𝑡) 
(2.4) 

in which, 𝒓(𝑥, 𝑡) is the total reaction rate (now per unit volume of porous medium) that integrates 

reaction in both mobile and immobile zones,  

𝒓(𝑥, 𝑡) = 𝜙𝑚𝒓𝑚(𝑥, 𝑡) + 𝜙𝑖𝑚 ∫ 𝑓(𝛼)𝒓𝑖𝑚(𝑥, 𝛼, 𝑡)
∞

0

𝑑𝛼 
(2.5) 

For any chemical system, reaction rates 𝒓(𝑥, 𝑡) at any point can be written as,  

𝒓(𝑥, 𝑡) = 𝑺𝑒
𝑇𝒓𝑒(𝑥, 𝑡) + 𝑺𝑘

𝑇𝒓𝑘(𝑥, 𝑡) (2.6) 

where 𝑺𝑒  and 𝑺𝑘  are the stoichiometric matrices describing equilibrium and kinetic reactions 

respectively, 𝒓𝑒 and 𝒓𝑘 represent the vectors of reaction rates (Saaltink et al., 1998).   

The component matrix 𝑼 is introduced to eliminate equilibrium reactions in equation (2.6), and to 

reduce the number of unknowns (Saaltink et al., 1998; Molins et al., 2004). 𝑼 is the kernel of 𝑺𝑒
𝑇 , 

satisfying 𝑼𝑺𝑒
𝑇 = 𝟎. Multiply equation (2.2) and (2.3) by component matrix 𝑼, we obtain the simplified 

governing equation in terms of components that is written as,  
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𝜙𝑚

𝜕𝒖𝑚(𝑥, 𝑡)

𝜕𝑡
= 𝐿𝑡[𝒖𝑚(𝑥, 𝑡)] − 𝜙𝑖𝑚 ∫ 𝛼[𝒖𝑚(𝑥, 𝑡) − 𝒖𝑖𝑚(𝑥, 𝛼, 𝑡)]𝑓(𝛼)

∞

0

𝑑𝛼

+ 𝜙𝑚𝑼𝑺𝑘
𝑇𝒓𝑘,𝑚(𝑥, 𝑡) 

(2.7) 

𝜕𝒖𝑖𝑚(𝑥, 𝛼, 𝑡)

𝜕𝑡
= 𝛼[𝒖𝑚(𝑥, 𝑡) − 𝒖𝑖𝑚(𝑥, 𝛼, 𝑡)] + 𝑼𝑺𝑘

𝑇𝒓𝑘,𝑖𝑚(𝑥, 𝛼, 𝑡) 
(2.8) 

where component vector 𝒖 = 𝑼𝒄 is the product of component matrix and concentration vector. 

2.2.1 Numerical Equations  

We solve the non-linear coupled reactive transport governing equation (2.7) and (2.8) by applying 

Newton-Raphson method, i.e., direct substitution approach (DSA) (Steefel & Lasaga, 1994; Saaltink et 

al., 1998; Saaltink et al., 2001; Molins et al., 2004; Liu et al., 2019). Therefore, we define the system 

equations in both mobile and immobile zones simultaneously. The details are given in Appendix A.  To 

explain the algorithm, we write the equation system in the form 𝒈(𝒙) = 0: 

𝒈𝑚 = 𝜙𝑚

𝜕𝒖𝑚(𝑥, 𝑡)

𝜕𝑡
− 𝐿𝑡[𝒖𝑚(𝑥, 𝑡)] + ∑𝑭𝑗

𝑁

𝑗=1

− 𝜙𝑚𝒓𝑚(𝑥, 𝑡) = 0 

(2.9) 

𝒈𝑖𝑚,𝑗 =
𝜕𝒖𝑖𝑚,𝑗(𝑥, 𝑡)

𝜕𝑡
− 𝛼𝑗[𝒖𝑚(𝑥, 𝑡) − 𝒖𝑖𝑚,𝑗(𝑥, 𝑡)] − 𝒓𝑖𝑚,𝑗(𝑥, 𝑡) = 0, 𝑗 = 1,⋯ ,𝑁 

(2.10) 

where 𝑁 is the number of immobile zones for each nodes and 𝑭𝑗 is the exchange rate between mobile 

and immobile zone.  

The Newton-Raphson method is based on solving the linearized form of the equations, i.e.,  

𝒈𝑖+1 = 𝒈(𝒙𝑖+1) ≈ 𝒈(𝒙𝑖) +
𝜕𝒈(𝒙)

𝜕𝒙
(𝒙𝑖+1 − 𝒙𝑖) = 0 

(2.11) 

In our case, this can be written as,  

[
 
 
 
 
 
 
 
 (

𝜕𝒈𝑚

𝜕𝒖𝑚
𝑘+1)

𝑖

(
𝜕𝒈𝑚

𝜕𝒖𝑖𝑚,1
𝑘+1)

𝑖

⋯ (
𝜕𝒈𝑚

𝜕𝒖𝑖𝑚,𝑁
𝑘+1 )

𝑖

(
𝜕𝒈𝑖𝑚,1

𝜕𝒖𝑚
𝑘+1)

𝑖

⋮

(
𝜕𝒈𝑖𝑚,𝑁

𝜕𝒖𝑚
𝑘+1 )

𝑖

(
𝜕𝒈𝑖𝑚,1

𝜕𝒖𝑖𝑚,1
𝑘+1 )

𝑖

⋯ 0

⋮ ⋱ ⋮

0 ⋯ (
𝜕𝒈𝑖𝑚,𝑁

𝜕𝒖𝑖𝑚,𝑁
𝑘+1 )

𝑖

]
 
 
 
 
 
 
 
 

[
 
 
 
 
 (𝒖𝑚

𝑘+1)
𝑖+1

− (𝒖𝑚
𝑘+1)

𝑖

(𝒖𝑖𝑚,1
𝑘+1 )

𝑖+1
− (𝒖𝑖𝑚,1

𝑘+1 )
𝑖

⋮

(𝒖𝑖𝑚,𝑁
𝑘+1 )

𝑖+1
− (𝒖𝑖𝑚,𝑁

𝑘+1 )
𝑖
]
 
 
 
 
 

= −

[
 
 
 
 

(𝒈𝑚)𝑖

(𝒈𝑖𝑚,1)
𝑖

⋮

(𝒈𝑖𝑚,𝑁)
𝑖
]
 
 
 
 

 

(2.12) 

in which, 𝒖𝑚 is the column vector containing all components in mobile zone at all nodes, and 𝒖𝑖𝑚,𝑗 is 

the column vector containing all the components in 𝑗th immobile zone at all nodes, the matrix at the left 

hand side is the Jacobian matrix (𝜕𝒈 𝜕𝒖𝑘+1⁄ )
𝑖
 consisting of the derivatives of system equations with 

respect to the unknown components in both mobile and immobile zones at all nodes.  

The important feature of equation (2.12) is the block diagonal form of the lower portion of the Jacobian, 

which allows us to rewrite it into blocks representing the mobile and immobile zones separately and 

leads to  

[
𝑨 𝑩
𝑪 𝑫

] [
𝒙
𝒚] = [

𝒂
𝒃
] (2.13) 

Block 𝑫 is a block diagonal matrix with 𝑁𝑛 × 𝑁 blocks of size 𝑁𝑢 × 𝑁𝑢 (𝑁𝑛 being the number of mesh 

nodes and 𝑁𝑢 the number of components). This characteristic can be used to solve system equations by 
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defining Schur complement of block 𝑫, that is 𝑨 − 𝑩𝑫−𝟏𝑪. In this way, solutions can be efficiently 

solved by  

(𝑨 − 𝑩𝑫−𝟏𝑪)𝒙 = (𝒂 − 𝑩𝑫−𝟏𝒃) (2.14) 

𝒚 = 𝑫−𝟏(𝒃 − 𝑪𝒙) (2.15) 

The traditional approach is to solve equation (2.12) as one large system with a size equal to 𝑁𝑛 × 𝑁𝑢 ×
𝑁. We propose to split the solution into two parts, first solving equation (2.15), followed by equation 

(2.14). We conjecture that this is much less costly, because equation (2.14) is N times smaller than that 

of the traditional approach of equation (2.12) and, because the block diagonal structure of matrix 𝑫 

permits the calculation of its inverse for each immobile zone of each node separately. The approach is 

valid not only for MRMT, but also for MINC of SINC. The difference lies in that, if these methods are 

adopted, then matrix 𝑫 must include all immobile zones connected to a node, instead of each immobile 

zone separately.  Note that both solution approaches are mathematically equivalent, which means that 

the convergence of the Newton-Rapson method will be identical for both. 

2.2.2 Algorithms  

We apply two nested Newton-Raphson iteration loops to solve the nonlinear system in each time step, 

the outside one is used to solve components transport, the inner one is used for chemical speciation 

calculation in each iteration. The algorithm proceeds as follows:  

Step 0: Set 𝑖 = 0, and initialize components (𝒖𝑘+1)
𝑖
=  0.  

Step 1: Compute functions 𝒈𝑖.  

Step 2: Compute the derivative of functions to construct Jacobian matrix (
𝜕𝒈

𝜕𝒖𝑘+1)
𝑖
.  

Step 3: Solve system equation (2.14) and (2.15) to get solutions ∆𝒖𝑘+1 = (𝒖𝑘+1)
𝑖+1

− (𝒖𝑘+1)
𝑖
.  

Step 4: Compute solutions at next iteration step, (𝒖𝑘+1)
𝑖+1

= (𝒖𝑘+1)
𝑖
+ ∆𝒖𝑘+1.  

Step 5: Execute speciation calculation of primary species concentrations (𝒄𝟏
𝑘+1)

𝑖
 and secondary 

species concentrations (𝒄𝟐
𝑘+1)

𝑖
 from components (𝒖𝑘+1)

𝑖
 according to equations of components and 

mass action law iteratively. Then calculate the derivatives of (
𝜕𝒓(𝒖𝑘+1)

𝜕𝒄1
𝑘+1 )

𝑖

 and (
𝜕𝒄1

𝑘+1

𝜕𝒖𝑘+1 )
𝒊

. Furthermore, 

compute the derivatives of kinetics with respect to components (
𝜕𝒓𝑘,𝑚

𝑘+1

𝜕𝒖𝑚
𝑘+1)

𝑖

 and (
𝜕𝒓𝑘,𝑖𝑚,𝑗

𝑘+1

𝜕𝒖𝑖𝑚,𝑗
𝑘+1 )

𝑖

 to facilitate the 

calculation of function derivatives (
𝜕𝒈

𝜕𝒖𝑘+1)
𝑖
.  

Step 6: Convergence check. If (𝒖𝑘+1)
𝑖+1

 close to (𝒖𝑘+1)
𝑖
 or 𝒈𝑖+1 ≈ 𝟎, then stop. Otherwise, set 𝑖 =

𝑖 + 1, and return to step 1.   

2.3 Accuracy Verification and Efficiency Analysis  

2.3.1 Accuracy Verification  

To test the accuracy of the proposed solution, we perform 1D simulations of (1) non-reactive transport 

test, (2) multicomponent reactive transport for MRMT in chemical equilibrium and (3) kinetics. All 

these models are under the same MRMT model, with 𝐿 = 100.0 m, 𝜙𝑚 = 0.1, 𝜙𝑖𝑚 = 0.1, 𝑞 = 1.0m/s, 

𝐷 = 10.0m2/s, and a power law distribution of mass exchange rates, the corresponding residence time 
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(that is the inverse of the mass exchange rate, 𝜏 ≡ 1 𝛼⁄ ) distribution, 𝑃(𝜏) ∝ 𝜏−𝛽, with exponent 𝛽 =

3 2⁄ . 

2.3.1.1 Non-reactive solute  

We compared our method with that of Silva et al. (2009), which differs from our method in that it writes 

the concentrations of the immobile zones as an explicit function of those of the mobile zones. This can 

be done only for non-reactive transport. In Figure 2.2, the break-through curve of solute at distance 𝑥 =

100.0 m is displayed. It is a typical BTC, the characteristic advection time 𝑡𝑎𝑑𝑣 is between 𝜙𝑚𝑥 𝑞⁄  and 

(𝜙𝑚 + 𝜙𝑖𝑚)𝑥 𝑞⁄ , and the concentrations decrease for times longer than the characteristic advection 

time, at the late times the power law tail is reproduced as 𝑐(𝑡) ∝ 𝑡−𝛽−1. The blue solid line is the 

numerical formulation proposed by Silva et al. (2009), and the square red line is the numerical solution 

of our proposed method. As can be seen, these two numerical solutions are almost identical. The small 

differences may be due to the explicit calculation of the concentrations of the immobile zones by the 

method of Silva et al. (2009). 

 

Figure 2.2 Comparison between the results of the non-reactive transport model calculated by the 

proposed method and the method of Silva et al. (2009). 

2.3.1.2 Equilibrium gypsum dissolution  

Figure 2.3 displays component (left) concentrations and (right) reaction rates for a case physically 

identical to the above one, but transporting 𝐶𝑎2+ and 𝑆𝑂4
2− in equilibrium with  gypsum 𝐶𝑎𝑆𝑂4 =

𝐶𝑎2+ + 𝑆𝑂4
2− for which we apply the mass action law: 𝑎𝐶𝑎2+𝑎𝑆𝑂4

2− = 𝐾, where 𝑎 is activity and 𝐾 is 

an equilibrium constant (𝑙𝑜𝑔𝐾(25℃) = −4.4823). Activities are calculated from concentrations by 

means of the extended Debye Hückel equation. We compare the numerical results of our proposed 

method with the analytical solution of Donado et al., (2009). As we can see the numerical results are 

consistent with analytical solutions. A clear separation between BTCs in mobile and immobile zones is 

presented due to the physical mass transfer limitations, components both in mobile and immobile zones 

are retarded at late time. Notice that the reaction rates are negative, that means calcium ion and sulfate 

ion are oversaturated and precipitated into gypsum. The analytical solutions of reaction rates in mobile 

and immobile zones, which are given by    

𝒓𝑖𝑚(𝑥, 𝑡) = ∫ 𝑓(𝛼) {
𝜕𝒄𝑖𝑚(𝑥, 𝛼, 𝑡)

𝜕𝑡
− 𝛼[𝒄𝑚(𝑥, 𝑡) − 𝒄𝑖𝑚(𝑥, 𝛼, 𝑡)]}

∞

0

𝑑𝛼 
(2.16) 
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𝒓𝑚(𝑥, 𝑡) = −
𝜕𝒄𝑚,2(𝑥, 𝑡)

𝜕𝒖𝑚(𝑥, 𝑡)
[
𝜙𝑖𝑚

𝜙𝑚
∫ 𝑓(𝛼)

∞

0

𝜕𝒖𝑖𝑚(𝑥, 𝛼, 𝑡)

𝜕𝑡
𝑑𝛼]

+
𝜙𝑖𝑚

𝜙𝑚
∫ 𝑓(𝛼)

∞

0

𝜕𝒄𝑖𝑚,2(𝑥, 𝛼, 𝑡)

𝜕𝒖𝑖𝑚(𝑥, 𝛼, 𝑡)

𝜕𝒖𝑖𝑚(𝑥, 𝛼, 𝑡)

𝜕𝑡
𝑑𝛼

−
𝜕2𝒄𝑚,2(𝑥, 𝑡)

𝜕𝒖𝑚
2 (𝑥, 𝑡)

∇𝑇𝒖𝑚(𝑥, 𝑡)𝑫∇𝒖𝑚(𝑥, 𝑡) −
𝜙𝑖𝑚

𝜙𝑚
𝒓𝑖𝑚(𝑥, 𝑡) 

(2.17) 

 

Figure 2.3 Distribution of (left) components 𝑢𝑚 and 𝑢𝑖𝑚, (right) reaction rates 𝑟𝑚 and 𝑟𝑖𝑚 versus time 

at distance 𝑥 = 100.0m. The blue color represents state variables in the mobile zone, and the red color 

represents state variables in immobile zones. The solid lines are the analytical solutions and the circle 

dot lines are the proposed numerical solutions. 

2.3.1.3 Kinetic reaction 

To test the performance of our proposed solution in chemical kinetics, we choose a simple first-order 

kinetics. In this case, the analytical solution can be found in the Laplace domain (the solution is deduced 

in Appendix B). Then we simulate the distribution of components and kinetic rates both in mobile and 

immobile zones over time with the component degradation rate 𝜅 = 0.01. As we can see the proposed 

numerical solutions agree with the analytical solution as displayed in Figure 2.4. Comparing the 

evolution of components in chemical equilibrium (Figure 2.4 left), the presence of chemical reactions 

decreases the concentrations of the components both in mobile and immobile zones.  

 

Figure 2.4 Distribution of (left) components 𝑢𝑚 and 𝑢𝑖𝑚, (right) reaction rates 𝑟𝑚 and 𝑟𝑖𝑚 versus time 

at distance 𝑥 = 100.0m. The blue color represents state variables in the mobile zone, and the red color 
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represents state variables in immobile zones. The solid lines are the analytical solutions and the circle 

dot lines are the proposed numerical solutions. 

2.3.2 Efficiency Analysis  

The efficiency of the algorithm depends on the problem size 𝑛, the total number of unknowns of system 

equation (2.13) that equals to the number of mesh nodes times the number of components times the 

number of immobile zones plus one. In our problem, the matrix operation is the most time consuming. 

Both the computational cost of matrix multiplication and matrix inversion are 𝑂(𝑛3).  

Instead of solving system equation (2.13) globally, we solve it in blocks representing mobile and 

immobile zones separately, using equations (2.14) and (2.15). Since these two approaches are 

mathematically identical, the two will converge to the same solution within the same iterations. The 

advantage of the proposed block solution is that it reduces the size of the system to be the number of 

mesh nodes times the number of components.  

We simulate an irreversible bimolecular reaction 𝐴 + 𝐵 → 𝐶 for the number of immobile zones equal 

to 3, 10, 30, 50, 70 and 100, with a second-order kinetics  𝑟𝑘 = 𝜅𝑐𝐴𝑐𝐵. In Figure 2.5, we compare the 

CPU time of the proposed method (i.e., block solver) and full DSA on a log-log scale. As we can see, 

the CPU time of the block solver increases linearly with the number of immobile zones (𝑁), while that 

of the full DSA increases much faster, approximating to 𝑁3. Clearly, the block solver runs faster than 

full DSA for a higher number of immobile zones. For a small number of immobile zones, the full DSA 

runs faster because of the costs of building the more complicated structure of the block solver.  

 

Figure 2.5 CPU time comparison between proposed method and full DSA for different number of 

immobile zones. The chemical systems are identical for all cases that is an irreversible bimolecular 

reaction 𝐴 + 𝐵 → 𝐶, with a second-order kinetics 𝑟𝑘 = 𝜅𝑐𝐴𝑐𝐵.  

2.4 Conclusions  

The proposed method is effective and efficient for reactive transport modeling capable of accounting 

for numerous immobile zones. We formulate the general numerical solution of reactive transport with 

MRMT based on the Newton-Raphson method, which enables us to simulate complex chemical kinetics. 

For chemical systems, whatever it is in equilibrium or in kinetics, the convergent solution is efficiently 

solved within several iterations.  
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The proposed numerical solution is verified in case of passive solute transport, chemical equilibrium 

and chemical kinetics. In all cases the simulations agree very well with available analytical solutions 

and other numerical solutions. The full consistency between the proposed numerical solutions and 

available analytical solutions indicate that our proposed method is capable of reproducing the 

anomalous transport of reactive transport with MRMT.  

The computational efficiency of the proposed algorithm is improved by solving system equations in 

block instead of full DSA, which eliminates the impact of the number of immobile zones on the 

computational complexity and decreases the size of the linear system to be the number of mesh nodes 

times the number of components. This may become particularly important for more complicated 

chemical models in combination with MRMT. In that case the full DSA can become prohibitively 

expensive in CPU and the block solver may be the only feasible method.  

The advantage of the method increases with the number of immobile zones. Babey et al. (2015) 

concluded that five immobile zones (compared to one hundred in our models) are sufficient to address 

anomalous transport of non-reactive solutes. However, this may be different for reactive transport 

because of the broad range of residence times (Haggerty et al., 2000) and chemical localization (Soler-

Sagarra et al., 2016). The number of immobile zones needed for proper reproduction of reactive 

processes requires further research.  

2.5 Computer Code Availability  

Name of code: Reactive Transport with Multirate Mass Transfer  

Developer: Jingjing Wang 

Contact detail: Department of Civil and Environmental Engineering, Universitat Politécnica de 

Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain  

Email: jingjing.wang.xiang@gmail.com  

Year first available: October, 2020 

Hardware required: No specific hardware is required. However, the code has been developed on a 

computer with processor Intel® Core™ i5-6500 CPU @ 3.20GHz, 16GB Installed memory (RAM), 

64-bit Operating System, x64-based processor.  

Software development platform: Microsoft Visual Studio 2015  

Program language: object-oriented programming FORTRAN 2003 

Compiler: Intel Parallel Studio XE 2017 Cluster Edition for Windows*  

Library: Intel® Math Kernel Library. To solve the system equation (2.14), we call routine dgbtrf() to 

compute the LU factorization of the left hand side matrix of system equation (2.14), then we call routine 

dgbtrs() to solve the linear system with the LU-factored square coefficient matrix returned by routine 

dgbtrf().  

Program size: 4.39 MB  

Details on how to access the open-source code: the source code can be freely download from GitHub 

on the public repository https://github.com/Jingjingwangxiang/RT_MRMT_DSA.  

Our codes are developed in object-oriented instead of procedural-oriented which lacks flexibility and 

extensibility (Meysman et al., 2003a ; Meysman et al., 2003b). The object-oriented programming allows 

the code reusability and facilitates the implementation of reactive transport modeling. To simulate the 

reactions, two main modules are developed. The biochemical system module simulates the localized 

chemical reactions occurring in a (bio)chemical system, it contains procedures that are capable of 

constructing the stoichiometric matrix and component matrix. The local biochemistry module captures 

mailto:jingjing.wang.xiang@gmail.com
https://github.com/Jingjingwangxiang/RT_MRMT_DSA
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(bio)chemical state variables at each mesh node, such as components, concentrations, equilibrium 

reaction rates, kinetics, as well as the derivatives of kinetics with respect to concentrations, etc. It 

encapsulates procedures of chemical calculations that are capable of computing the state variables at 

each mesh node by using the biochemistry system module. These two main developed modules are 

coupled with the transport equations in the reactive transport module, which enables the modeling of 

reactive transport.      
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3 On the localization of chemical reactions in 

multicontinuum media  

 

The objective of this work is to study the localization of reactions in different portions of the porous 

medium. For this we use the non-local MRMT model, which views the porous media as being composed 

of one mobile zone and many immobile zones. The localized physical and chemical heterogeneity are 

reflected by a distribution of residence times and reaction times in the different immobile zones, which 

can be incorporated in the governing equations through memory functions and reaction rate kernels, 

respectively. We show that the dimensionless form of governing equations is characterized by reaction 

times, transport times and distribution of residence times. To analyze the interplay between them, we 

simulated three cases: one without reactions, one with a single reaction and one with sequential 

reactions. The results indicate that reactions driven by species that are not present in the inflowing water 

but are the result of previous reactions will take place in immobile zones, whose residence time is 

comparable to reaction times. Furthermore, mobile zones with residence times much smaller than those 

for transport can be lumped together (assuming that very fast reactions are assumed in equilibrium), 

which greatly reduces computations.   

  

                                                      
 This chapter is based on the manuscript Wang et al., 2021. On the localization of chemical reactions in 

multicontinuum media, submitted to Water, under review. 
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3.1 Introduction 

Characterization of reactive transport in heterogeneous media is important for environmental science 

and engineering problems, such as managed aquifer recharge, seawater intrusion, CO2 geological 

storage, and in situ bioremediation. Physical heterogeneity may induce chemical heterogeneity or 

localization of chemical reactions by which different reactions occur in different portions of the porous 

medium (Soler-Sagarra et al., 2016; Babaei & Islam, 2018). Dentz et al. (2011) concluded that transport 

under physical and chemical heterogeneity cannot be upscaled separately: upscaling reactions depends 

on physical heterogeneity and upscaling transport is affected by chemical heterogeneity. In addition, 

we acknowledge that the behavior of macroscale transport in the mobile zone of the porous medium is 

determined by the microscale transport process in immobile zones (Gouze et al., 2008). Yet, it is not so 

clear how the localized physical and chemical heterogeneity affects the distribution and evolution of 

reactive species in different portion of immobile zones and how these microscale processes in immobile 

zones govern the reactive transport in mobile zone?   

It is well known that transport in heterogeneous porous media displays anomalous (non-Fickian) 

behavior (Kitanidis, 1988) both at field (Adams & Gelhar, 1992) and laboratory scales (Valocchi, 1985; 

Levy & Berkowitz, 2003; Berkowitz & Scher, 2009). Hence, the advection-dispersion-reaction equation 

(ADRE) is no longer appropriate. Many non-local methods have been developed to represent this 

anomalous transport, including continuous time random walks (CTRW) (Berkowitz & Scher, 1998; 

Dentz et al., 2004; Berkowitz et al., 2006; Berkowitz et al., 2006; Dentz et al., 2015), fractional 

advection-dispersion equations (fADE) (Benson et al., 2000; Schumer et al., 2003; Marseguerra & Zoia, 

2008), multirate mass transfer (MRMT) (Haggerty & Gorelick, 1995; Wang et al., 2005; Salamon et 

al., 2006; Benson & Meerschaert, 2009; Dentz et al., 2011; Fernàndez-Garcia & Sanchez-Vila, 2015; 

De Dreuzy & Carrera, 2016), memory functions (Carrera et al., 1998; Haggerty et al., 2000; Willmann 

et al., 2008; Gouze et al., 2008) and so forth. Although these methods use different approaches, 

essentially they are equivalent (Dentz & Berkowitz, 2003; Silva et al., 2009; Neuman & Tartakovsky, 

2009). Many studies focus on the behavior of breakthrough curves (BTCs) and conservative transport 

in heterogeneous porous media (Haggerty et al., 2000; Schumer et al., 2003; Willmann et al., 2008; 

Berkowitz & Scher, 2009; Dentz et al., 2015). Only few deals with reactive transport (Willmann et al., 

2010; Dentz et al., 2011) probably due the complexity of reactive transport in heterogeneous porous 

media. For non-linear kinetic reactions, no analytical solutions exist in the Laplace domain which 

further limits the study of the problem.  

Among the non-local methods, the MRMT formulation allows localized concentrations which 

simplifies the simulations of reactive transport in physical and chemical heterogeneous media (Dentz 

et al., 2011; Soler-Sagarra et al., 2016; Babaei & Islam, 2018). Moreover, the MRMT formulation for 

conservative transport can be extended to reactive transport, including nonlinear reactions (Willmann 

et al., 2010).  

The objective of this work is to study the effects of localized physical and chemical heterogeneity on 

reactive transport based on the MRMT formulation. To do so, first, we establish the governing equations 

of reactive transport in multicontinuum media and deduce a dimensionless form of these equations. 

Then we present three models one without reactions, one with a single reaction, and one with two 

sequential reactions in section 3.3, whose results are analyzed in section 3.4. The last section is 

dedicated to the conclusions.  

3.2 Methodology  

We model reactive transport in heterogeneous porous medium by using the MRMT approach (Haggerty 

& Gorelick, 1995). Every point (representative elementary volume) is viewed as consisting of a mobile 

zone and a distribution of immobile zones characterized by their residence time. Each of these 
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exchanges solute mass with the mobile portion proportionally to the mass transfer rate, 𝛼[T−1] . 

Therefore, it is natural to characterize this distribution by a probability density function (pdf) of mass 

transfer rates, 𝑓(𝛼) (see Figure 3.1 left). To facilitate comparison to other non-local methods, we also 

characterize immobile zones by the distribution, 𝑃(𝜏𝛼), of residence times, 𝜏𝛼 ≡ 1 𝛼⁄  [T] (Haggerty et 

al., 2004) (see Figure 3.1 right). 𝑃(𝜏𝛼) is given by (Dentz & Berkowitz, 2003; Dentz et al., 2011; Dentz 

et al., 2015)  

𝑃(𝜏𝛼) = 𝜏𝛼
−2𝑓(𝛼) (3.1) 

The residence time probability 𝑃(𝜏𝛼)𝑑𝜏𝛼 is the frequency of the immobile zone, characterized by the 

residence time in the interval [𝜏𝛼 , 𝜏𝛼 + 𝑑𝜏𝛼]. Obviously, it satisfies the condition ∫ 𝑃(𝜏𝛼)
∞

0
𝑑𝜏𝛼 = 1.  

 

Figure 3.1 Pdf of exchange rates, 𝛼 (Gamma distibution), and residence times, 𝜏𝛼, plotted in log-log 

scale for several values of 𝜏𝛼0 and 𝛽 = 1 2⁄ . Note that the maximum of latter is around 𝜏𝛼0 (the mode 

is 𝜏𝛼0/(𝛽 + 1) and the expected value 𝜏𝛼0 (1 − 𝛽)⁄ ). Its large 𝜏𝛼 slope is 𝛽 + 1.  

3.2.1 Governing equations  

The transport of any reactive species in a medium that consists of a mobile continuum and multiple 

immobile continua can be expressed as (Donado et al., 2009; Willmann et al., 2010; Dentz et al., 2011) 

𝜙𝑚

𝜕𝑐𝑚

𝜕𝑡
= 𝐿𝑡[𝑐𝑚] − 𝜙𝑖𝑚 ∫

1

𝜏𝛼
𝑃(𝜏𝛼)[𝑐𝑚(𝑥, 𝑡) − 𝑐𝑖𝑚(𝑥, 𝜏𝛼 , 𝑡)]

∞

0

𝑑𝜏𝛼 + 𝜙𝑚𝑟𝑚 
(3.2) 

where 𝐿𝑡[𝑐𝑚] = −[𝑞𝑚𝛻𝑐𝑚] + 𝛻 ∙ [𝜙𝑚𝐷𝑚𝛻𝑐𝑚] is the transport operator that describes advection and 

dispersion, 𝑞𝑚 [LT-1] is Darcy flux, 𝐷𝑚 [L2T-1] is the hydrodynamic dispersion tensor; 𝜙𝑚 [-] and 𝜙𝑖𝑚 

[-] are the porosities of mobile and immobile zones, which denote the volume fraction of the mobile 

pore zone and immobile pore zones over the bulk volume, respectively; 𝑐𝑚 [ML-3] and 𝑐𝑖𝑚 [ML-3] are 

concentrations in the mobile and immobile zone, which are expressed as mass per unit volume of mobile 

zone and mass per unit volume of immobile zone; 𝑟𝑚 [ML-3T-1] is the sink-source term due to chemical 

reactions in mobile zone and corresponds to the mass removed by reactions in mobile zone per unit 

volume of mobile water per unit time.  

Mass balance in each immobile zone is given by 

𝜕𝑐𝑖𝑚(𝑥, 𝜏𝛼 , 𝑡)

𝜕𝑡
=

1

𝜏𝛼

[𝑐𝑚(𝑥, 𝑡) − 𝑐𝑖𝑚(𝑥, 𝜏𝛼 , 𝑡)] + 𝑟𝑖𝑚(𝑥, 𝜏𝛼 , 𝑡) 
(3.3) 

where 𝑟𝑖𝑚 [ML-3T-1] is the reactions sink-source term in the immobile zone with residence time 𝜏𝛼, 

which corresponds to the mass removed by reactions in the immobile zone per unit volume of immobile 

water per unit time.  

The mass exchange between mobile and immobile zone is modeled by a first-order mass transfer 

mechanism, represented by the continuous variable 𝜏𝛼 and characterized by the distribution density 

function 𝑃(𝜏𝛼) for the immobile zones. Thus, the total mass exchange is the weighted sum over all 
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immobile zones as expressed in the integral term of equation (3.2). Integrating equation (3.3) with 

weight 𝑃(𝜏𝛼) in terms of 𝜏𝛼, multiplying by 𝜙𝑖𝑚, and substituting it into equation (3.2), yields the total 

solute mass balance,  

𝜙𝑚

𝜕𝑐𝑚(𝑥, 𝑡)

𝜕𝑡
+ 𝜙𝑖𝑚 ∫ 𝑃(𝜏𝛼)

𝜕𝑐𝑖𝑚(𝑥, 𝜏𝛼 , 𝑡)

𝜕𝑡

∞

0

𝑑𝜏𝛼 = 𝐿𝑡[𝑐𝑚(𝑥, 𝑡)] + 𝑟(𝑥, 𝑡) 
(3.4) 

in which, 𝑟 is the total reaction rate (now per unit volume of bulk porous medium) that integrates 

reactions in both mobile and immobile zones,  

𝑟(𝑥, 𝑡) = 𝜙𝑚𝑟𝑚(𝑥, 𝑡) + 𝜙𝑖𝑚 ∫ 𝑃(𝜏𝛼)𝑟𝑖𝑚(𝑥, 𝜏𝛼 , 𝑡)
∞

0

𝑑𝜏𝛼 
(3.5) 

 If the reaction follows first-order kinetics, the reaction rate in mobile zone will be   

𝑟𝑚(𝑥, 𝑡) = −𝑘𝑚𝑐𝑚(𝑥, 𝑡) (3.6) 

where 𝑘𝑚  is the reaction rate constant. Similarly, the local reaction rate in the 𝜏𝛼  immobile zone 

becomes 

𝑟𝑖𝑚(𝑥, 𝜏𝛼 , 𝑡) = −𝑘𝑖𝑚(𝜏𝛼)𝑐𝑖𝑚(𝑥, 𝜏𝛼 , 𝑡) 

 

(3.7) 

where 𝑘𝑖𝑚(𝜏𝛼) [T-1] is the local reaction rate constant. The reaction time in the immobile zone of 𝜏𝛼 is 

𝜏𝑟 ≡ 1 𝑘𝑖𝑚(𝜏𝛼)⁄ , which is a variable dependent on the immobile zone.  

By inserting equation (3.7) into (3.3), then solving equation (3.3), we obtain the concentration in the 

immobile zone of 𝜏𝛼 as a function of mobile concentration history  

𝑐𝑖𝑚(𝑥, 𝜏𝛼 , 𝑡) = 𝑐𝑖𝑚(𝑥, 𝜏𝛼 , 𝑡 = 0)𝑒−[𝛼+𝑘𝑖𝑚(𝜏𝛼)]𝑡 + ∫ 𝜑(𝑡 − 𝑡′)𝑐𝑚(𝑥, 𝑡′)
𝑡

0

𝑑𝑡′ 
(3.8) 

in which, the definition of 𝜑(𝑡) is  

𝜑(𝑡) =
1

𝜏𝛼
𝑒−[𝛼+𝑘𝑖𝑚(𝜏𝛼)]𝑡 

(3.9) 

Assuming that the initial concentration in the immobile zones is zero (i.e., 𝑐𝑖𝑚(𝑥, 𝜏𝛼 , 𝑡 = 0) = 0), then 

by substituting equation (3.8) into equation (3.2) and rearranging terms, we obtain the total solute mass 

balance, as a sole function of 𝑐𝑚 

𝜙𝑚

𝜕𝑐𝑚(𝑥, 𝑡)

𝜕𝑡
+ 𝜙𝑖𝑚

𝜕

𝜕𝑡
∫ 𝑔(𝑡 − 𝑡′)𝑐𝑚(𝑥, 𝑡′)𝑑𝑡′

𝑡

0

= 𝐿𝑡[𝑐𝑚(𝑥, 𝑡)] − ∫ 𝜅(𝑡 − 𝑡′)𝑐𝑚(𝑥, 𝑡′)𝑑𝑡′
𝑡

0

 

(3.10) 

where the memory function (Carrera et al., 1998; Haggerty et al., 2000) and reaction rate kernel (Dentz 

et al., 2011) are given by  

𝑔(𝑡) = ∫ 𝑃(𝜏𝛼)𝜑(𝑡)𝑑𝜏𝛼

∞

0

 
(3.11) 

and 

𝜅(𝑡) = 𝜙𝑚(𝑥)𝑘𝑚𝛿(𝑡) + 𝜙𝑖𝑚(𝑥)∫
1

𝜏𝑟
𝑃(𝜏𝛼)𝜑(𝑡)𝑑𝜏𝛼

∞

0

 
(3.12) 

respectively. In which, 𝛿(𝑡) is the Dirac delta. The memory function can be viewed as the rate of change 

of concentration in the immobile zone that is caused by a unit change of concentration in the mobile 

zone at initial time 𝑡 = 0. In the presence of reactions, the memory function not only incorporates the 
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distribution of local mass transfer rates but also the distribution of local reaction rates. Similarly, the 

reaction rate kernel represents the local reactions in immobile zones, it integrates both the reactions in 

mobile and immobile zones, and accounts for the mass transfer between mobile and immobile zones.  

Although the memory function is mainly controlled by the distribution of residence times in immobile 

zones, it is also affected by the local reaction times in immobile zones. Likewise, the reaction rate kernel 

is mainly controlled by the chemical reactions, but it is also affected by the distribution of residence 

times in immobile zones (Dentz et al., 2011).  

Clearly, the governing equations of reactive transport under physical and chemical heterogeneity (3.10), 

(3.11) and (3.12) are controlled by the distribution of residence times and reaction times in immobile 

zones simultaneously. The physical and chemical heterogeneities interact with each other, and together 

they govern reactive transport (Dentz et al., 2011).  

3.2.2 Dimensionless formulations  

To characterize the governing equation (3.10), (3.11) and (3.12), we define the characteristic length as 

follows  

𝐿𝑐 =
𝜙𝑚𝐷𝑚

𝑞𝑚
 

(3.13) 

and the characteristic transport time as follows 

𝑡𝑐 =
𝐿𝑐

𝑣𝑚
=

𝜙𝑚
2 𝐷𝑚

𝑞𝑚
2  

(3.14) 

Note, that in 1D, the characteristic length equals the longitudinal dispersivity 𝛼𝐿 due to the definition 

of dispersion 𝐷𝑚 = 𝛼𝐿𝑣𝑚, where 𝑣𝑚 = 𝑞𝑚 𝜙𝑚⁄  is the mean fluid velocity in porous media. Introducing 

these definitions of characteristic length and characteristic transport time into equation (3.10), we obtain 

the dimensionless form of the governing equations, that is  

𝜕𝑐𝑚𝐷

𝜕𝑡𝐷
+ 𝜂

𝜕

𝜕𝑡𝐷
∫ 𝑔(𝑡𝐷 − 𝑡𝐷

′ )𝑐𝑚𝐷(𝑡𝐷
′ )𝑑𝑡𝐷

′
𝑡𝐷

0

= −𝛻𝐷𝑐𝑚𝐷 + 𝛻𝐷 ∙ 𝛻𝐷𝑐𝑚𝐷 − ∫ 𝜅(𝑡𝐷 − 𝑡𝐷
′ )𝑐𝑚𝐷(𝑡𝐷

′ )𝑑𝑡𝐷
′

𝑡𝐷

0

 

(3.15) 

with the following dimensional variables 

𝑐𝑚𝐷 =
𝑐𝑚

𝑐𝑐
,  𝑡𝐷 =

𝑡

𝑡𝑐
, 𝑥𝐷 =

𝑥

𝐿𝑐
, 𝜂 =

𝜙𝑖𝑚

𝜙𝑚
,  𝜏𝛼𝐷

=
𝜏𝛼

𝑡𝑐
,  𝜏𝑟𝐷 =

𝜏𝑟

𝑡𝑐
 

(3.16) 

In the dimensionless formulations of governing equation (3.15), the physical and chemical 

heterogeneity are represented by the distribution of residence times and reaction times, respectively, 

and reflected simultaneously in the memory function and reaction rate kernel.  

Obviously, in the situation where the characteristic length 𝐿𝑐 and the dimensionless ratio of porosity of 

immobile zone to porosity of mobile zone 𝜂  are invariables, the governing equation (3.15) in 

dimensionless form are totally governed by three characteristic times, that is the characteristic transport 

time 𝑡𝑐, the dimensionless residence time 𝜏𝛼𝐷
 and the dimensionless reaction time 𝜏𝑟𝐷 in immobile 

zones.  

The solution of governing equation (3.15) in Laplace domain is expressed as    

ℒ{𝑐𝑚𝐷}(𝑠) = 𝑒𝑥𝑝 [
𝑥𝐷

2
(1 − √1 + 4[𝑠[1 + 𝜂ℒ{𝑔}(𝑠)] + ℒ{𝜅}(𝑠)])] (3.17) 

where ℒ{∙}(𝑠) represents the Laplace transform of a function. The Laplace transform of the memory 

function and reaction rate kernel are defined as  
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ℒ{𝑔}(𝑠) = ∫ 𝑃(𝜏𝛼)ℒ{𝜑}(𝑠)𝑑𝜏𝛼𝐷

∞

0

 
(3.18) 

and 

ℒ{𝜅}(𝑠) = 𝑘𝑚𝑡𝑐 + 𝜂 ∫
1

𝜏𝑟𝐷

𝑃(𝜏𝛼𝐷)ℒ{𝜑}(𝑠)𝑑𝜏𝛼𝐷

∞

0

 
(3.19) 

in which, the Laplace transform of 𝜑(𝑡) is 

ℒ{𝜑}(𝑠) =

1
𝜏𝛼𝐷

𝜏𝛼𝐷 + 𝜏𝑟𝐷
𝜏𝛼𝐷𝜏𝑟𝐷

+ 𝑠
 

(3.20) 

If we substitute 𝑠 for 𝑠[1 + 𝜂ℒ{𝑔}(𝑠)] + ℒ{𝜅}(𝑠) in equation (3.17), then equation (3.17) becomes the 

solution of the transport equation in homogeneous media. Obviously, the retardation of localized 

physical heterogeneity on transport is reflected in the term 𝑠𝜂ℒ{𝑔}(𝑠), and the decay of localized 

chemical heterogeneity on reactive species is shown in the term ℒ{𝜅}(𝑠).  

3.3 Solution method  

To study the behavior of reactive transport in physically and chemically heterogeneous media, we 

simulated three cases using the formulation of section 3.2. For the calculation we used the code 

RT_MRMT_DSA (Wang et al., 2021, Chapter 2) which is an object-oriented code based on finite 

element method (FEM). The global solutions are solved by applying the iterative Newton-Raphson 

method. 

3.3.1 Numerical setup  

All the model are one-dimensional with the properties 𝜙𝑚 = 0.1  [-], 𝜙𝑖𝑚 = 0.3  [-], 𝛼𝐿 = 1.0  [L], 

𝑞𝑚 = 1.0 [LT-1]. Thus we have 𝐿𝑐 = 1.0 [L], 𝑡𝑐 = 0.1 [T], 𝜂 = 3.0. The length of the domain 𝐿 =

100𝐿𝑐, and the simulated time 𝑇 = 104𝑡𝑐. The space interval ∆𝑥𝐷 = 𝐿𝑐 and the time interval ∆𝑡𝐷 = 𝑡𝑐.  

Initial concentrations are set to zero both in mobile and immobile zones, that is 𝑐𝑚(𝑥, 𝑡 = 0) = 0.0 

[ML-3] and 𝒄𝑖𝑚(𝑥, 𝜏𝛼 , 𝑡 = 0) = 0.0  [ML-3], except for the first mobile node that has initial 

concentration 𝑐𝑚(𝑥 = 0, 𝑡 = 0) = 1.0 [ML-3].  

At the inlet, we set a Cauchy boundary condition to express that no solute mass enters the domain  

𝐷𝑚∇𝑐𝑚(𝑥 = 0, 𝑡) ∙ 𝐧 = 𝑞𝑚[𝑐𝑒(𝑥 = 0, 𝑡) − 𝑐𝑚(𝑥 = 0, 𝑡)], 𝑞𝑚 ∙ 𝐧 < 0 

𝑐𝑒(𝑥 = 0, 𝑡) = 0.0 

(3.21) 

where 𝑐𝑒 is the concentration of the inflowing water. The outlet is an open boundary condition   

𝐷𝑚∇𝑐𝑚(𝑥 = 𝐿, 𝑡) ∙ 𝐧 = 0, 𝑞𝑚 ∙ 𝐧 ≥ 0 (3.22) 

where 𝐧 is a unit vector which is normal to the boundary, and ∙ represents the inner product operator. 

In addition to the calculation of concentrations of this pulse injection, we also calculated the 

accumulative concentration until time 𝑡  (∫ 𝑐𝑑𝑡
𝑡=𝑡

𝑡=0
) for both mobile and immobile zones. This is 

equivalent to a continuous injection, simulated through a Cauchy boundary condition at the inlet 

(equation (3.21)) with 𝑐𝑒 equal to the initial mass of the pulse injection divided by the flow rate (𝑐𝑒 =

0.5Δ𝑥𝜙𝑖𝑚𝑐𝑚(𝑥 = 0, 𝑡 = 0)/𝑞𝑚 = 0.05).  
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3.3.2 Cases considered   

We simulated three cases: a no reaction system (conservative transport), a single reaction system and a 

sequential reaction system. All models use the same gamma distribution of residence times with 𝛽 =

1 2⁄ , 𝜏𝛼0𝐷 = 101. 

In the single reaction system, only one reaction 𝐴 → 𝐵 occurs, following a first-order rate law with 

𝑟𝑘1 = 𝑘1𝑐𝐴. Thus, the degradation of species A follows 𝑟𝐴 = −𝑘1𝑐𝐴, and the formation of species B, 

𝑟𝐵 = 𝑘1𝑐𝐴. In the sequential reaction system, two sequential reactions 𝐴 → 𝐵 and 𝐵 → 𝐶 take place 

simultaneously. The reaction rates of both are first-order with 𝑟𝑘1 = 𝑘1𝑐𝐴, and 𝑟𝑘2 = 𝑘2𝑐𝐵. Thus, the 

degradation of species A follows 𝑟𝐴 = −𝑘1𝑐𝐴, the formation and degradation of species B, 𝑟𝐵 = 𝑘1𝑐𝐴 −

𝑘2𝑐𝐵, and the formation of species C, 𝑟𝐶 = 𝑘2𝑐𝐵.  

3.3.3 Steady state analytical solution  

The final steady state is referred to the cumulative concentration of species in immobile and mobile 

zone, respectively. The ratio between them is given by  

∫ 𝑐𝑖𝑚𝐷(𝑥𝐷, 𝜏𝛼𝐷, 𝑡𝐷)𝑑𝑡𝐷

∞

0

∫ 𝑐𝑚𝐷(𝑥𝐷, 𝑡𝐷)𝑑𝑡𝐷

∞

0

⁄ = ℒ{𝜑}(𝑠)|𝑠=0 
(3.23) 

as can be obtained from the Laplace transform of equation (3.8) and (3.9).  

The concentration in immobile zone is the weighted integral of concentrations in all immobile zones, 

which is defined as 

𝑐𝑖𝑚𝐷(𝑥𝐷 , 𝑡𝐷) = ∫ 𝑃(𝜏𝛼𝐷)𝑐𝑖𝑚(𝑥𝐷, 𝜏𝛼𝐷 , 𝑡𝐷)
∞

0

𝑑𝜏𝛼𝐷 
(3.24) 

From equation (3.8), we can obtain that  

𝑐𝑖𝑚𝐷(𝑥𝐷 , 𝑡𝐷) = ∫ 𝑔(𝑡𝐷 − 𝑡𝐷
′ )𝑐𝑚(𝑥𝐷, 𝑡𝐷

′ )𝑑𝑡𝐷
′

𝑡𝐷

0

 
(3.25) 

Then, the ratio between the cumulative concentrations in immobile and mobile zone becomes  

∫ 𝑐𝑖𝑚𝐷(𝑥𝐷, 𝑡𝐷)𝑑𝑡𝐷

∞

0

∫ 𝑐𝑚𝐷(𝑥𝐷 , 𝑡𝐷)𝑑𝑡𝐷

∞

0

⁄ = ℒ{𝑔}(𝑠)|𝑠=0 
(3.26) 

For the sequential reaction case, the immobile region equations in steady state follow  

0 = 𝛼(𝑐𝑚𝐴 − 𝑐𝐴) − 𝑘1𝑐𝐴 

0 = 𝛼(𝑐𝑚𝐵 − 𝑐𝐵) + 𝑘1𝑐𝐴 − 𝑘2𝑐𝐵 

0 = 𝛼(𝑐𝑚𝐶 − 𝑐𝐶) + 𝑘2𝑐𝐵 

(3.27) 

From equation (3.27) we can obtain  

𝑐𝐴 =
𝛼𝑐𝑚𝐴

(𝛼 + 𝑘1)
 

𝑐𝐵 =
𝛼𝑐𝑚𝐵 + 𝑘1𝑐𝐴

(𝛼 + 𝑘2)
 

𝑐𝐶 =
𝛼𝑐𝑚𝐶 + 𝑘2𝑐𝐵

𝛼
 

(3.28) 

Assuming 𝑐𝑚𝐵 = 𝑐𝑚𝐶 = 0, from equation (3.28) we can obtain the analytical solution of each species 

in steady state  
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𝑐𝐴
𝑐𝑚𝐴

=
𝛼

(𝛼 + 𝑘1)
 

𝑐𝐵

𝑐𝑚𝐴
=

𝛼𝑘1

(𝛼 + 𝑘1)(𝛼 + 𝑘2)
 

𝑐𝐶

𝑐𝑚𝐴
=

𝑘1𝑘2

(𝛼 + 𝑘1)(𝛼 + 𝑘2)
 

(3.29) 

 

In Figure 3.2, we present the steady state of species A, B and C in different immobile regions. Note that 

the sum of concentrations A, B and C equals one. This reflects the fact that this sum has a conservative 

behavior, because 𝑟𝐴 + 𝑟𝐵 + 𝑟𝐶 = −𝑘1𝑐𝐴 + 𝑘1𝑐𝐴 − 𝑘2𝑐𝐵 + 𝑘2𝑐𝐵 = 0 (see section 3.3.2) and the fact 

that in steady state the concentration of a conservative species in the mobile zones equals that in all 

immobile zones. Also note, that the species A (blue) can be found in immobile zones with residence 

times smaller than the characteristic reaction time of the first reaction (𝜏𝛼 < 𝜏𝑟1 = 1/𝑘1), species B 

(red) in those with residence times between the reaction times of the two reactions (𝜏𝑟2 < 𝜏𝛼 < 𝜏𝑟2 =

1/𝑘1) and species C (yellow) in those with residence times larger than the reaction time of the second 

reactions (𝜏𝛼 < 𝜏𝑟1). In fact, it resembles Figure 3.10. The only difference is that, in the latter the 

existence of either species is limited by the overall time, that is, species only exist at immobile zones 

smaller than the overall time (𝜏𝛼 < 𝑡). 

 

Figure 3.2 Steady state concentrations of species A (blue color), B (red color), and C (yellow color) as 

a function of residence time in immobile zones, 𝜏𝛼[T], assuming that mobile concentrations of B and C 

are zero. First rate constant, 𝑘1 [T-1], for A→B transformation equals 0.1 (solid lines), 1 (dot lines), and 

10 (dash lines). The rate constant, 𝑘2 [T-1], for B→C reaction is 0.01.  

3.3.4 Model verification   

The analytical solution is verified by the numerical results in section 3.4.2 (see Figure 3.3). It confirms 

that the final steady sate depends on the reaction time and the distribution of residence times in immobile 

regions simultaneously. In the regions 𝑡𝑟𝐷 ≫ 𝜏𝛼𝐷, the ratios are almost one. In the regions 𝑡𝑟𝐷 ≈ 𝜏𝛼𝐷, 

the ratios become to decrease from one to zero. In the regions 𝑡𝑟𝐷 ≪ 𝜏𝛼𝐷, the ratios are almost zero. 
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Figure 3.3 The ratios between the cumulative concentration in immobile zones and mobile zone for 

reactant species A (left) in immobile zones characterized by the residence times and (right) at different 

reaction times. The solid lines represent the analytical solutions, and the squares represent the numerical 

solutions. 

3.4 Results  

3.4.1 No reaction system  

Results for the conservative transport case are summarized in Figure 3.4 and Figure 3.5. The 

breakthrough curves (Figure 3.4) are displayed both in arithmetic and logarithmic scale. The log-log 

scale is usually preferred for tracer test analysis, because it emphasizes tailing. The late time slope of 

the pulse BTC is that of the memory function plus 1. Therefore, by analyzing the BTC, modelers can 

gain insight into the nature of the immobile zones. Tailing can be also observed in the arithmetic scale 

plot by looking at the time of peak concentration. For slow exchange (low 𝜏𝛼0𝐷), most of the solute 

mass pulse flows in the mobile region. The opposite occurs for fast exchange, which allows 

equilibrating concentration in the mobile and immobile zones, so that the medium behaves as if the 

whole porosity was mobile. It is important to notice the above separation between fast and slow is 

relative to the advective transport time (𝑡𝐴𝑚 = 𝐿𝑞𝑚 𝜙𝑚⁄ , where 𝐿 is the travel distance of solute). If 

𝑡𝐴 ≫ 𝜏𝛼, the immobile region becomes accessible to the solute and the actual travel time reflects the 

total porosity (𝑡𝐴𝑇 = 𝐿𝑞𝑚 𝜙⁄ , where 𝜙 = 𝜙𝑚 + 𝜙𝑖𝑚 is the total porosity). 

The effect of tailing is somewhat less dramatic for a continuous injection (cumulative concentration of 

a pulse). The breakthrough curve approaches asymptotically the input concentration (𝑐𝑒) with the bulk 

of solute arising at 𝑡𝐴𝑚. This kind of observations may explain why non-local models are less popular 

in unconsolidated, granular, aquifers than in fractured media. Fractured media with diffusion lengths of 

the order of meters will display residence times of the order 𝑡𝐷 = 𝐿2/𝐷 = (10𝑚)2/10−10𝑚2/𝑠 ≅

1012𝑠 ≅ 3.105𝑦𝑒𝑎𝑟𝑠. That is, diffusion is never exhausted. Diffusion lengths in porous media are less 

than 1cm, so that residence times in immobile zones will be of the order of 𝑡𝐷 = (10−2𝑚)2/10−10𝑚2/

𝑠 = 106𝑠 ~ 4 𝑚𝑜𝑛𝑡ℎ𝑠. This time may be relevant for tracer tests, where travel time is of a few days, 

but is too short for natural groundwater flow. Support for this kind of observations is provided by 

Guimerà and Carrera (2000). They observed that the “advective porosity” (i.e. the porosity derived from 

the peak arrival time) calculated from a broad collection of tracer tests in fractured rocks correlates with 

the peak arrival time. This implies that the mobile porosity increases when the flow rate is reduced, 

which we take as indicative of fast immobile regions equilibrating with truly mobile zones. Increasing 

the travel time causes and increasing fraction of immobile regions to equilibrate with mobile zones, 

thus becoming effectively mobile. 

Further insight into the behavior of conservative solutes can be gained from Figure 3.5, which displays 

the concentration in the immobile regions versus distance. The figure is somewhat misleading the 
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immobile porosity associated to small residence times (recall pdf of immobile zones for a gamma 

distribution). Still, as shown in Figure 3.2 the concentration in immobile regions is independent of their 

volumetric fraction. What Figure 3.5 shows is that concentrations in the immobile zones with short 

residence times (much shorter than travel time, 300 dimensionless units in Figure 3.5) are identical to 

concentrations in the mobile zone. On the other hand, concentration is negligible in the immobile zones 

whose residence time is much larger than travel time. This might suggest that slow immobile regions 

might be neglected, whereas fast immobile regions might be lumped with the mobile domain. While 

this may be appropriate for inert tracers, it may not for reacting tracers because reactivity is usually 

higher in the immobile regions, certainly in the case of biofilms (Taylor & Jaffé, 1990; Seifert & 

Engesgaard, 2007; Kone et al., 2014), which motivates our work. 

 

Figure 3.4 Mobile (top row) and average immobile (bottom row) concentrations versus time at 𝑥𝐷 =
100𝐿𝑐 in response to a pulse input (left in arithmetic scale, center in log scale) and to a continuous 

injection (right) for transport in a medium with a distribution residence times in immobile zones with 

𝛽 = 1 2⁄ , 𝜏𝛼0𝐷 = 102, 101, 100, and 10−1. The log-scale enhances the BTC tail (note vertical scale), 

which is only relevant in this case for 𝜏𝛼0𝐷 = 102. When exchange with the immobile zones is slow 

(i.e, large 𝜏𝛼0𝐷), the BTC peaks at the advective time in the mobile zone (𝑡𝐷 = 100, indicated by blue 

arrows). The peak occurs at the advective time for the full porosity (𝑡𝐷 = 400, red arrows) when 

axchange is fast, which also reduces the time it takes for immobile zones to equilibrate with inflow 

water.  

 

Figure 3.5 Cumulative immobile scaled concentration profiles versus dimensionless distance and 

dimensionless residence times (pdf with 𝛽 = 1 2⁄  and 𝜏𝛼0𝐷 = 10−1) at 𝑡𝐷 = 300. Note that immobile 

concentrations are identical to mobile concentrations for  𝜏𝛼𝐷 < 10−1.  

3.4.2 Single reaction system  

Results for the case of two solutes, A and B, where B is produced by the degradation of A, are shown 

in Figure 3.6 and Figure 3.7 for several characteristic reaction times. The situation is now more 
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complicated than in the conservative transport case because two sets of characteristic times are involved 

(residence times in immobile regions and reaction times). The first immediate observation, is that BTC 

concentrations are reduced when the reaction rate is increased (i.e., when the characteristic reaction 

time is reduced). Note that BTC concentrations become negligible when transport time is much larger 

than the reaction time. 

The behavior of concentrations in the immobile regions may be less intuitive (see Figure 3.8). 

Concentration of the parent species, A, is negligible in regions where residence time is much larger than 

the reaction time (𝜏𝛼𝐷 ≫ 𝜏𝑟𝐷) because the solute diffusing into these regions is degraded before a 

significant concentration can build up. On the other extreme, concentration in fast immobile regions is 

virtually equilibrated with the mobile concentration.  

More interesting is the behavior of species B, which is washed away from the mobile region and fast 

immobile regions before it becomes significant. As a result, B concentrations are significant only in 

immobile regions where residence time is comparable to the characteristic reaction time.  

 

Figure 3.6 Mobile (top row) and average immobile (bottom row) concentrations of species A (first and 

third columns) and B (second and fourth columns) versus time at 𝑥𝐷 = 100𝐿𝑐 in response to a pulse 

input (left two columns) and to a continuous injection (right columns) for transport in a medium with a 

distribution residence times in immobile zones with 𝛽 = 1 2⁄ , and 𝜏𝛼0𝐷 = 101, and reaction times are 

uniformly distributed in immobile zones with 𝜏𝑟𝐷 = ∞, 104, 103 and 102. Species B is absent when 

no reaction occurs.   

 

Figure 3.7 Cumulative mobile and averaged immobile concentration profiles versus dimensionless time 

and dimensionless distance for species A (left two columns) and B (right two columns). Species 

transport in a medium characterized by the immobile zones in which the residence time follows gamma 
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distribution with 𝛽 = 1 2⁄ , 𝜏𝛼0𝐷 = 101. The reaction times are uniform in immobile zones with 𝜏𝑟𝐷 =

∞, 104, 103 and 102 from top to bottom.  

 

Figure 3.8 Cumulative concentration profiles versus dimensionless distance and dimensionless 

residence times for species  A (left) and B (right) at 𝑡𝐷 = 300 (above), and  1× 104 (below) from top 

to bottom after continuous injection of A in a medium with immobile zones  distributed with 𝛽 = 1 2⁄ , 

𝜏𝛼0𝐷 = 101. Reaction  A→B occurs with a characteristic time 𝜏𝑟𝐷 = 102. 

3.4.3 Sequential reaction system   

Results for the sequential reactions case (A→B and B→C) are summarized in Figure 3.9 and Figure 

3.10. Figure 3.9  makes it clear that BTCs for mobile-immobile regions with short residence times are 

identical to BTCs where all the porosity is mobile. That is, immobile regions with short residence time 

(compared to transport time) can be lumped in the mobile region, if reactivity is the same in both types 

of regions. Otherwise (i.e., when reactions occur primarily in the immobile region), all fast reactions 

can be lumped into a simple immobile region (a complete set of BTCs for several 𝜏𝑟𝐷  and 𝜏𝛼0𝐷 is 

presented in Appendix C). 

The most significant observation derives from Figure 3.10, which displays immobile regions 

concentrations as a function of space and residence time. This figure makes it clear that C concentrations 

are only relevant in immobile regions with residence times comparable to characteristic reaction times, 

regardless of the transport time. Therefore, the three sets of times (transport time, reaction time, and 

residence times) are relevant when deciding the appropriate discretization of residence times. 
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Figure 3.9 Breakthrough curves of species A, B and C in different cases for 𝜏𝑟1𝐷 = 𝜏𝑟2𝐷 = 103. The 

black lines represent results only with mobile zone. Case 1: 𝜏𝛼𝐷 = [100], case 2: 𝜏𝛼𝐷 = [100, 101], 
case 3: 𝜏𝛼𝐷 = [100, 101, 102] , case 4: 𝜏𝛼𝐷 = [100, 101, 102, 103] , case 5: 𝜏𝛼𝐷 =
[100, 101, 102, 103, 104], case 6: 𝜏𝛼𝐷 = [100, 101, 102, 103, 104, 105, 106], case 7: 𝜏𝛼𝐷 = [102, 103] 
and case 8: 𝜏𝛼𝐷 = [101, 102, 103].  
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Figure 3.10 Cumulative concentration profiles versus dimensionless distance and dimensionless 

residence times for species (left) A, (middle) B and (right) C for 𝜏𝑟1𝐷 = 𝜏𝑟2𝐷 = 103 at 𝑡𝐷 = 50, 200, 

500 , 2000  and 1× 104  from top to bottom. Species transport in a medium characterized by the 

immobile zones in which the residence time follows gamma distribution with 𝛽 = 1 2⁄ , 𝜏𝛼0𝐷 = 101. 

3.5 Conclusions  

Several conclusions can be drawn from the modeling exercise presented in this work 

1) Some reactions may occur in immobile regions that would not occur if the entire medium was 

mobile. This is not surprising when the mineral composition is different in each immobile zone, 

as was discussed by Soler-Segarra et al (2016). What we show here is that, independently of 

the reactivity of mobile and immobile regions, the interplay between residence times and 

reaction times may cause some reactions to take place solely in the immobile region. This will 

occur whenever residence time is comparable to reaction time, and both are much longer than 

the transport time. It goes without saying that immobile region reactions will be enhanced if 

reactivity in immobile regions is higher than in the mobile region. This is the case for biofilms, 

where microbial mediated degradation reactions concentrate.   

2) Regardless of reaction rates, concentrations in the fast immobile regions (i.e., regions where 

𝜏𝛼 ≪ 𝑡𝑡 = 𝐿𝜙/𝑞)  will tend to equilibrate with mobile concentrations. Therefore, little is 

gained by representing them explicitly in a model. All fast exchange immobile regions can be 

lumped into a zone with residence time slightly smaller than transport time. 
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3) Similarly, very slow immobile zones (𝜏𝛼 ≫ 𝑡𝑡) can be ignored because little mass will diffuse 

into them. Note that this conclusion is more relevant for laboratory experiments or short tracer 

tests, where transport forms are moderate. Under natural conditions, transport time can be very 

long (many years), so that most immobile regions are indeed accessible. 
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4 A conceptual model for reactive transport with 

dynamic biofilm growth in multicontinuum 

media  

 

Biofilm growth in porous media changes the hydrodynamic properties of the medium: porosity and 

permeability are reduced, and dispersivity increases. However, the first arrival of breakthrough curves 

(BTCs) is more reduced than derived from the reduction in porosity, and the BTC tail becomes heavier. 

These observations suggest the need of multicontinuum models (Multirate-Mass-Transfer, MRMT) that 

evolve dynamically with the biofilm. The MRMT model is capable of representing reactive transport 

in heterogeneous porous media which facilitates the simulation of localized reactions often observed 

within biofilms. In this work, we present a conceptual model of reactive transport with dynamic biofilm 

growth based on MRMT formulations. It incorporates the microbial growth according to the 

stoichiometry and kinetic rate laws of biological reactions. The physical, including not only porosity, 

but also the distribution of residence times in immobile zones, and chemical properties are updated after 

the reactive transport simulations at each time. This model has been tested on laboratory data.  

  

                                                      
 This chapter is based on the manuscript Wang et al., 2021. A conceptual model for reactive transport with 

dynamic biofilm growth in multicontinuum media, in preparation for Water Resource Research.  
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4.1 Introduction  

Biofilm growth in porous media is important for many natural and engineered environmental 

applications such as wastewater treatment (Nicolella et al., 2000; Lewandowski & Boltz, 2011), aquifer 

recharge (Kim et al., 2010), enhanced oil recovery (Raiders et al., 1989; Van Hamme et al., 2003) and 

in situ bioremediation of  soil and aquifer contamination (Cunningham et al., 2003; Sethi & Di Molfetta, 

2019). Biofilm consists of living and reproducing microbial communities. It forms when microbes 

adhering to the surface of grains excrete extracellular polymeric substance (EPS). EPS is a fibrous gel-

type matrix composed of polysaccharides, lipids, proteins, and DNA materials (Flemming et al., 2007; 

Flemming & Wingender, 2010). Biofilm mainly consists of water. Microbial cells, which account for 

less than 10% of the dry mass, and the EPS matrix, which can account for over 90% (Satpathy et al., 

2016). Microorganisms in biofilms catalyze chemical reactions (Flemming & Wingender, 2010). The 

metabolism of microorganisms leads to the modification of biofilm surface structure and the deposition 

of microbes (Esperanza Cortés et al., 2011). The complex biofilm structure and metabolism gives the 

biofilm a function similar to tissues in higher organisms (Costerton et al., 1995).  

Models usually take microbes as an independent phase to account for biofilm growth (Chen-Charpentier, 

1999; Von Der Schulenburg et al., 2009; Shafahi & Vafai, 2009). These models assume that 

biochemical reactions take place in the bulk mobile pore water. In reality, however, these reactions are 

catalyzed by microbes residing within the immobile biofilm. Moreover, the biofilm structure is very 

heterogeneous in space and evolves with biomass growth (Picioreanu et al., 1998; Eberl et al., 2000; 

Picioreanu et al., 2004). Biofilm growth is known to change the hydrodynamic properties in porous 

media such as reduction of porosity and permeability (Taylor et al., 1990; Cunningham et al., 1991; 

Von Der Schulenburg et al., 2009; Cunningham et al., 2003; Thullner, 2010), retention curve (Carles 

Brangarí et al., 2017), as well as dispersivity (Taylor & Jaffé, 1990b; Kone et al., 2014). As a result, it 

impacts the reactive transport processes, which in turn affects biofilm growth. Experimental results 

demonstrate that biofilm growth induces heterogeneities that affect the transport in porous media 

(Seifert & Engesgaard, 2007; Kone et al., 2014).  

To properly simulate biofilm growth and its effects on reactive transport, a model is needed that 

accounts for these heterogeneities. However, biofilm growth modeling is complex, because it requires 

coupling it with reactive transport. The challenges include how to model reactive transport in 

heterogeneous media, how to model the biofilm growth, and how to couple these two processes 

reasonably.  

As the hydraulic conductivity of biofilm is very low (Deng et al., 2013), exchange of solutes between 

pore water and biofilm is controlled by diffusion. Models of biofilm growth on a flat surface in 

constantly stirred tanks take this into account (Picioreanu et al., 2004). In porous media this has to be 

combined with the heterogeneity of the pore and biofilm sizes. This makes the MRMT a promising tool 

to model the dynamical interaction between solute transport and biofilm growth. In fact, diffusion 

models of mass transfer between mobile and immobile zones can also be described by a set of first-

order mass transfer models (Haggerty & Gorelick, 1995).  

The non-local MRMT formulation has been widely used to represent transport in heterogeneous media 

(Haggerty & Gorelick, 1995; Wang et al., 2005; Salamon et al., 2006; Benson & Meerschaert, 2009; 

Dentz et al., 2011; Fernàndez-Garcia & Sanchez-Vila, 2015; De Dreuzy & Carrera, 2016). In addition, 

Willmann et al. (2010) obtained quite accurate agreement between 2D heterogeneity and 1D MRMT, 

which demonstrates that the non-local MRMT formulation of conservative transport can be extended 

to reactive transport. The MRMT model allows the localized modeling of reactive transport in physical 

and chemical heterogeneous porous media (Soler-Sagarra et al., 2016; Babaei & Islam, 2018). The 

physical and chemical heterogeneity are characterized by a distribution of mass transfer rates and 

reactions rates (or residence times and reaction times) in immobile zones.  
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The major challenge is that biofilm growth causes the heterogeneity of porous media to change. In fact, 

it is clear that velocity distributions in the medium evolve as the biofilm grows. The velocity distribution 

becomes broad, which suggests an increase in channeling and immobile zones (Maxence Carrel et al., 

2018; M. Carrel et al., 2018). Hence, the evolution of biomass distribution should be represented by the 

change of mass transfer rates and reaction rates in biofilm.  

The objective of this work is to build a concept model of biofilm growth in the framework of MRMT. 

We focus on the study of biofilm growth induces effects on transport.   

4.2 Conceptual models  

In our concept model, we assume a biofilm consists of water and biomass i.e., EPS & microbial cells 

(Seifert & Engesgaard, 2007). The biofilm is represented by the various immobile zones of the MRMT 

approach. Solutes diffuse into biofilm and provide nutrients for the metabolism of microbes residing in 

the biofilm. Reactions mediated by microbes only occur in the biofilm, not in mobile water. Here, we 

explain the reactive transport formulation of the abiotic chemical species, and the incorporation of 

biofilm.  

4.2.1 Reactive transport with MRMT  

In MRMT model, reactive transport in mobile zone is expressed as   

𝜙𝑚

𝜕𝒄𝑚

𝜕𝑡
= 𝐿𝑡[𝒄𝑚] − ∑𝜙𝑖𝑚,𝑗

𝑁

𝑗=1

𝛼𝑗(𝒄𝑚 − 𝒄𝑖𝑚,𝑗) + 𝜙𝑚𝒇𝑄𝑚 

(4.1) 

in which, 𝜙𝑚 [-], porosity of mobile water and 𝜙𝑖𝑚 [-], porosity of immobile water , denote the volume 

fraction of the mobile and immobile pore water over the total volume, respectively; 𝒄𝑚 [ML-3] and 𝒄𝑖𝑚,𝑗 

[ML-3], arrays of concentrations of all aqueous species in the mobile and 𝑗th immobile zone, denote the 

mass of a species per unit volume of mobile water and immobile water. 𝐿𝑡[𝒄𝑚] = −𝒒𝑚𝛻𝒄𝑚 + 𝛻 ∙
(𝜙𝑚𝑫𝑚𝛻𝒄𝑚) is the transport operator that describe the advection and dispersion processes, 𝒒𝑚 [LT-1] 

is Darcy flux, 𝑫𝑚 [L2T-1] is the hydrodynamic dispersion tensor that includes the molecular diffusion 

and the mechanical dispersion. The second term on the right-hand side of equation (4.1) describes the 

mass transfer between mobile water and immobile water. 𝛼𝑗 [T-1] is a first-order mass transfer rate 

between the mobile and 𝑗th immobile zone. 𝜙𝑖𝑚,𝑗 = 𝜙𝑖𝑚𝑝𝑗 , where 𝑝𝑗  is the probability of the 𝑗th 

immobile zone. The sum of 𝑝𝑗 of all immobile zones should be equal to one, that is, ∑ 𝑝𝑗
𝑁
𝑗=1 = 1.0. 

𝒇𝑄𝑚
 [ML-3T-1] is the sink-source term due to reactions in the mobile zone which is the mass removed 

𝒇𝑄𝑚
< 0 or added 𝒇𝑄𝑚

> 0 by reactions per unit volume of mobile water per unit of time.  

In the immobile zone, the mass balance is described by   

𝜕𝒄𝑖𝑚,𝑗

𝜕𝑡
= 𝛼𝑗(𝒄𝑚 − 𝒄𝑖𝑚,𝑗) + 𝒇𝑄𝑖𝑚,𝑗

    𝑗 = 1,⋯ ,𝑁 
(4.2) 

in which, 𝒇𝑄𝑖𝑚,𝑗
 [ML-3T-1] is the sink-source term of the 𝑗th immobile zone and corresponds to the mass 

removed or added by biochemical reactions per unit volume of immobile water and per unit of time, 

and 𝑁 is the number of immobile zones.  

Equations (4.1) and (4.2) need to be complemented with the mass balance of non-mobile species 

(biomass, minerals, sorbed species). These additional mass balances are identical to those of aqueous 

species, but neglecting transport terms (advections, diffusion, and exchange) 

The basic equations for biochemical sink/sources can be expressed as a function of reaction rates 

(Steefel & MacQuarrie, 1996; Saaltink et al., 1998) 
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𝒓 = 𝑺𝑒
𝑇𝒓𝑒 + 𝑺𝑘

𝑇𝒓𝑘 (4.3) 

where 𝑺𝑒 is the stoichiometric matrix for equilibrium reactions, and 𝑺𝑘 is the stoichiometric matrix for 

kinetic reactions, 𝒓𝑒 and 𝒓𝑘 represent the vectors of reaction rates for equilibrium and kinetic reactions, 

respectively. Note that these matrices contain the full description of the chemical system, as every row 

contains the stoichiometric coefficients of all species (columns) participating in the reaction. In the case 

of biofilm growth, these species may include biomass, whose level of detail depends on the specific 

model, as well as electron acceptors and donors. 

Solving the system of equations (4.1), (4.2) and (4.3), including the mass balance of non-mobile species, 

require complementing these equations with the Mass Action Law for equilibrium reactions and 

empirical expressions. Solution can be complex, but it is greatly simplified by introducing the 

component matrix 𝑼 to eliminate the equilibrium reactions and reduce the number of unknowns in the 

governing equations (4.1) and (4.2). It is the kernel of 𝑺𝑒
𝑇, defined as 𝑼𝑺𝑒

𝑇 = 𝟎 (Saaltink et al., 1998; 

Molins et al., 2004). Multiplying equation (4.1) and (4.2) by the component matrix 𝑼, we obtain the 

governing equations of the components, 𝒖 = 𝑼𝒄 that is  

𝜙𝑚

𝜕𝒖𝑚

𝜕𝑡
= 𝐿𝑡[𝒖𝑚] − ∑𝜙𝑖𝑚,𝑗

𝑁

𝑗=1

𝛼𝑗(𝒖𝑚 − 𝒖𝑖𝑚,𝑗) + 𝜙𝑚𝑼𝑺𝑘
𝑇𝒓𝑘,𝑚 

(4.4) 

𝜕𝒖𝑖𝑚,𝑗

𝜕𝑡
= 𝛼𝑗(𝒖𝑚 − 𝒖𝑖𝑚,𝑗) + 𝑼𝑺𝑘

𝑇𝒓𝑘,𝑖𝑚,𝑗    𝑗 = 1,⋯ ,𝑁 
(4.5) 

4.2.2 Biofilm growth  

In this study we simplify the biochemistry by two kinetic reactions: the growth of microbes or biomass 

(b) through a redox reaction involving an electron donor (D) and acceptor (A) and the death of biomass. 

Other chemical species, such as inorganic carbon, are not considered. Then, the stoichiometric matrix 

for kinetic reactions becomes: 

𝑺𝑘 = [−𝑆𝐷 −𝑆𝐴] (4.6) 

where SD and SA are stoichiometric coefficients. We do not consider equilibrium reactions, which means 

that matrix U equals the identity matrix. 

The mass balances of non-mobile species. The metabolism of microbes in biofilm induces the growth 

and decay of biofilm which is given by  

𝜌𝑏

𝜕𝜙𝑏,𝑖𝑚,𝑗

𝜕𝑡
= 𝑟𝑏,𝑖𝑚,𝑗𝜙𝑏,𝑖𝑚,𝑗 

(4.7) 

where 𝜌𝑏  [ML-3] is the molar density of biomass (biomass per unit volume of biofilm), 𝜙𝑏,𝑖𝑚,𝑗 =

𝜙𝑖𝑚,𝑗 𝜃𝑏⁄  [-] is the volume of biofilm in the 𝑗th immobile zone per unit volume of porous medium, 𝜃𝑏 

is the volume ratio of immobile water in the biofilm, and 𝑟𝑏,𝑖𝑚,𝑗 [ML-3T-1] is the growth rate of microbes 

corresponding to the mass growth of microbes per unit volume of biofilm per unit of time that can be 

expressed as (Cirpka et al., 1999; Rodríguez-Escales et al., 2016) 

𝑟𝑏,𝑖𝑚,𝑗 = 𝑌𝑟𝑘,𝑖𝑚,𝑗 − 𝑑𝜌𝑏 (4.8) 

where 𝑌 [-] is the yield coefficient which denotes the production of microbes per unit mass of substrate 

(electron donor), 𝑑 [T-1] is the death rate, 𝑟𝑘,𝑖𝑚,𝑗 [ML-3T-1] is the degradation rate of substrate (electron 

acceptor) catalyzed by microbes, which can be represented by the Monod kinetics equation (Rodríguez-

Escales et al., 2016)  
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𝑟𝑘,𝑖𝑚,𝑗 = 𝜇
𝑐𝐷,𝑖𝑚,𝑗

𝐾𝐷 + 𝑐𝐷,𝑖𝑚,𝑗

𝑐𝐴,𝑖𝑚,𝑗

𝐾𝐴 + 𝑐𝐴,𝑖𝑚,𝑗
𝜌𝑏 

(4.9) 

where 𝜇 [T-1] is the maximum growth rate, 𝑐𝐷,𝑖𝑚,𝑗 [ML-3] and 𝑐𝐴,𝑖𝑚,𝑗 [ML-3] are the concentrations of 

electron donor and electron acceptor in biofilm, 𝐾𝐷  [ML-3] and 𝐾𝐴  [ML-3] are the half saturation 

constants for species of electron donor and electron acceptor, respectively.  

The solution of equation (4.7) is 

𝜙𝑏,𝑖𝑚,𝑗(𝑡) = 𝜙𝑏,𝑖𝑚,𝑗(𝑡 = 0)𝑒
𝑟𝑏,𝑖𝑚,𝑗

𝜌𝑏
𝑡
 

(4.10) 

It is an exponential function with its exponent depending on the microbial growth rate and molar density 

that equals to     

𝑟𝑏,𝑖𝑚,𝑗

𝜌𝑏
= 𝑌𝜇

𝑐𝐷,𝑖𝑚,𝑗

𝐾𝐷 + 𝑐𝐷,𝑖𝑚,𝑗

𝑐𝐴,𝑖𝑚,𝑗

𝐾𝐴 + 𝑐𝐴,𝑖𝑚,𝑗
− 𝑑 

(4.11) 

4.3 Simulation methods 

The simulation follows a time marching scheme. At each time step, it mainly consists of two steps: 

reactive transport simulation and model update caused by biofilm growth.  

4.3.1 Reactive transport  

We use the finite element method (FEM) to discretize the governing equations (4.4) and (4.5). Then we 

apply the Newton-Raphson method to solve the global non-linear equations (Wang et al., 2021, 

Chapter2). The reactive transport simulation is implemented by the code RT_MRMT_DSA developed 

by Wang et al. (2021, Chapter 2), which is coupled to biofilm growth by updating the hydrodynamic 

properties of porous media and the local residence time in the different portions of the biofilm. These 

two simulations are run sequentially. The reactive transport simulation solves the state variables of 𝑐𝑚, 

𝑐𝑖𝑚,𝑗, 𝑟𝑘,𝑚, 𝑟𝑘,𝑖𝑚,𝑗 and 𝑟𝑏,𝑖𝑚,𝑗 at each mesh node.  

4.3.2 Model update  

At each time step, the growth of the volume fraction of biofilm is updated according to equation (4.7), 

that is    

∆𝜙𝑏,𝑖𝑚,𝑗 = 𝜙𝑏,𝑖𝑚,𝑗(𝑡)
𝑟𝑏,𝑖𝑚,𝑗(𝑡)

𝜌𝑏
∆𝑡    𝑗 = 1,⋯ ,𝑁 

(4.12) 

The increase of the volume fraction of the 𝑗th immobile water is the contribution of all microbial species 

in which,  

∆𝜙𝑖𝑚,𝑗 = 𝜃𝑏 ∑ ∆𝜙𝑏,𝑖𝑚,𝑗

𝑁𝑏

𝑏=1

    𝑗 = 1,⋯ ,𝑁 

(4.13) 

where 𝑁𝑏 is the number of microbial species.  

At each mesh node, the increase of the total volume fraction of immobile water is the sum of all the 

fractions of the volume of immobile water, which is  

∆𝜙𝑖𝑚 = ∑∆𝜙𝑖𝑚,𝑗

𝑁

𝑗=1

 

(4.14) 

The total volume fraction of the mobile water and biofilm in porous media is a constant which equals 

to  
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𝜙 = 𝜙𝑚(𝑡 = 0) +
𝜙𝑖𝑚(𝑡 = 0)

𝜃𝑏
 

(4.15) 

Therefore, the reduction of the mobile porosity induced by the biofilm growth equals the increase of 

the volume fraction of the biofilm, which leads to  

∆𝜙𝑚(𝑡 + ∆𝑡) = −
∆𝜙𝑖𝑚

𝜃𝑏
 

(4.16) 

In essence, the MRMT is defined by the distribution of residence times in immobile zones 𝑓𝜏(𝜏) or, 

equivalently, by the distribution of exchanging rates 𝑓𝛼(𝛼), where 𝛼 = 1/𝜏. The point is that, as the 

biofilm grows, the residence times in immobile zones increases, not only because the fraction of 

medium occupied by biofilm increases, but also because its thickness increases. Therefore, defining the 

change in 𝑓𝛼(𝛼) implies describing how is the geometrix growth pattern. We propose a model based of 

form sequential but superimposed stages (see Appendix D and Figure 4.1).  

Stage I- Lateral growth (Figure 4.1a). Initially, where biofilm only occupies a small portion of the 

medium, the dominant growth is lateral. This implies that the residence time hardly changes and its 

distribution is controlled by the pore structure (dead end pores and the like).  

Stage II- Spherical growth (Figure 4.1b). We conjecture that microbial communities near grain 

meniscus may tend to join, both because they are subject to less shear and because there is an increased 

probability of EPS filaments in adjacent pores to contact. This leads to a 2/3 power low increase in 

residence time (see Appendix D) 

Stage III- (Figure 4.1c) Increase in thickness. As the biofilm grows laterally and spherically, the 

majority of the growth concentrates in increasing the biofilm thickness, which causes a quadratic 

increase in residence time.  

Stage IV- (Figure 4.1d) clogging. Its stated earlier, the permeability of the biofilm is very low, which 

reflects its fibrous gel nature. Therefore, when pores get filled, they become barriers to flow. At this 

stage, permeability is greatly reduced, which causes the flow to become highly channelized (Maxence 

Carrel et al., 2018; M. Carrel et al., 2018). The result is that the velocity distribution broadens, with 

large portions of the pore space virtually immobile, and the whole flux concentrating in the rest. Since 

exchange between channels is minimized, the emerging flow pattern might be best represented by a 

multi-advective regime. Moreover, diffusion distances increase dramatically which leads to a dramatic 

increase in residence time. 

The resulting growth model is best expressed in terms of residence time as: 

𝜏𝑗(𝑡) = 𝜏𝑗(𝑡 = 0) [1 + (
𝜙𝑖𝑚

𝜙𝐼𝐼
)

2
3
+ (

𝜙𝑖𝑚

𝜙𝐼𝐼𝐼
)
2

+ (
𝜙𝑖𝑚

𝜙𝐼𝑉
)
5

] 

(4.17) 

Where each term represents a growth stage, 𝜙𝐼𝐼, 𝜙𝐼𝐼𝐼, and 𝜙𝐼𝑉 are the immobile porosities at which 

each stage becomes relevant. In practice, we do not need to separate them explicitly, as each of them 

becomes naturally dominant at different times as the biofilm grows (Figure 4.2). Note that there is a 

degree of discretionality in the choice of parameters. Therefore, for now, we just tried, updating the 

exchange rates as 

𝛼𝑗(𝑡 + ∆𝑡) = 𝛼𝑗(𝑡 = 0) (
𝜙𝑖𝑚,𝑗(𝑡 + ∆𝑡)

𝜙𝑖𝑚,𝑗(𝑡 = 0)
)

−𝛾

    𝑗 = 1,⋯ ,𝑁 
(4.18) 

in which, 𝛾 is a shape parameter that varies between 0 and 2 depending on shape of the biofilm and the 

manner of biofilm growth (see Appendix D). Many studies assume a constant specific surface area of 

biofilm, where biofilm growth leads to an increase of thickness (Tiwari & Bowers, 2001; Gaebler & 

Eberl, 2018; Lopez-Peña et al., 2019). According to Appendix D this gives 𝛾 = 2. However, biofilm 
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patterns and shape may vary and depend on the bacterial species, the characteristics of the porous 

structure, and the prevailing hydrodynamic and nutritional conditions (Kapellos et al., 2015). They may 

also depend on the biofilm volume fraction. We can divide the biofilm growth into four stages (see 

Figure 4.1 ) with each stage having a different value for 𝛾. This can be represented by a relationship 

between mass transfer rate, 𝛼𝑗 (or 𝜏𝛼𝑗
= 1/𝛼𝑗), and biofilm volume fraction, 𝜙𝑖𝑚,𝑗. Of course, if all 

pores are occupied by biofilm, 𝛼𝑗 will drop dramatically and γ will go to infinity (see Figure 4.2). 

The corresponding probability of each immobile water is updated according to the formulation below 

𝑝𝑗(𝑡 + ∆𝑡) =
𝜙𝑖𝑚,𝑗(𝑡 + ∆𝑡)

𝜙𝑖𝑚(𝑡 + ∆𝑡)
    𝑗 = 1,⋯ ,𝑁 

(4.19) 

which also imposes the condition ∑ 𝑝𝑗
𝑁
𝑗=1 = 1.0.  

 

Figure 4.1 Proposed stages in ideal biofilm growth. Stage I (upper left) represent the initial situation, 

where a few isolated colonies (red points) tend to grow laterally (as indicated by black arrows at points 

L). Lateral growth continues during stage II (upper right), but spherical growth (arrows at points S) 

dominates in some portions. Stage III (lower left) emerges as the biofilm covers all the grains, and 

growth occurs primarily by thickening (red arrows at points S), although spherical growth may still 

occur in some places. Eventually, biofilm tends to clog the system (stage IV, lower right), so that flow 

lines tend to crowd the few open paths. This causes a dramatic reduction in permeability and increase 

in diffusion times into immobile zones, which may starve (purple zones). Changes in flow path 

geometries are moderate during stages I through III, although permeability may be reduced as a part of 

the pores is occupied by the biofilm, thus reducing its size. 

 

Figure 4.2 Relationship between residence time and the fraction of porous medium occupied by biofilm. 
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4.3.3 Algorithms   

The algorithm can be explained in pseudocode as follows:  

do time loop  

1) do reactive transport simulations  

solve 𝒄𝑚, 𝒄𝑖𝑚,𝑗, 𝒓𝑘,𝑚 and 𝒓𝑘,𝑖𝑚,𝑗  

solve 𝒓𝑏,𝑖𝑚,𝑗 

2) compute the change of volume fractions ∆𝜙𝑏,𝑖𝑚,𝑗, ∆𝜙𝑖𝑚,𝑗 and ∆𝜙𝑚 

3) update hydrodynamic properties 𝜙𝑖𝑚,𝑗, 𝜙𝑖𝑚 and 𝜙𝑚 

4) update local mass transfer rates 𝛼𝑗 and the corresponding probability 𝑝𝑗  

5) renew time, 𝑡 ← 𝑡 + ∆𝑡 

end do   

4.4 Applications  

We used our conceptual model to analyze two small (cm to dm scale) laboratory experiments (Kone et 

al., 2014; Seifert & Engesgaard, 2007). Both experiments consist of porous medium columns where 

biofilm growth is induced by adding an electron acceptor and donor to the inlet water. At several times 

of the experiments, tracer tests were performed and breakthrough curves measured. The time scales of 

the trace tests (less than an hour) are much shorter than those for biofilm growth during the whole 

experiment (several tenths of days). This permits us to evaluate the changes in the mass transfer 

coefficients (𝛼𝑗). 

For the modeling of these two experiments we calibrated the rate law parameters (𝜇, 𝐾𝐷 , 𝐾𝐴) and initial 

immobile porosity and mass transfer coefficients. Other parameters (𝜃𝑏 , 𝜌𝑏 , 𝑌, 𝑑) are taken from 

literature (Satpathy et al., 2016; Bakke et al., 1984; Rittmann & McCarty, 2001). We used a constant 

value for 𝛾 of 2/3, which corresponds to a stage II biofilm growth.  

4.4.1 Experimental data of Kone (2014) 

To validate our model, we run simulations and calibrate the results with the experimental data of Kone 

et al. (2014). The parameters are set as shown in Table 4-1. In Figure 4.3, we present the evolution of 

biofilm in space and time. It shows that the biofilm grows with time and the distribution of biofilm is 

almost uniform in distance, which indicates the reaction rates along space are uniform as well. This 

distribution reflects that the input flux of electron donors and acceptors are much larger than the reaction 

rate in the whole system, so that the reaction rates are uniform within the immobile zones.  

Figure 4.4, displays the evolution of the biofilm at x = 9 cm and plot it both in linear and semi-log scale. 

In the semi-log scale, the volume fraction of biofilm varies linearly over time, which confirms that 

biofilm growth is exponential. At 29 days, the volume fraction of biofilm reaches 0.2, which is 

consistent with the experiment data of Kone et al. (2014). A tracer test was performed. After the biofilm 

growth at 29 days, the results are shown in Figure 4.5. At first sight the model does not seem to 

reproduce well the experimental data of Kone et al. (2014). In fact, the mean arrival time displayed by 

the BTCs of Kone et al. (2014) appears to increase with residence time. This is inconsistent, the mean 

arrival time is given by 𝑉𝑝𝜙𝑡/𝑄, where 𝑉𝑝 is the volume of the porous medium, 𝜙𝑡 = 𝜙𝑚 + 𝜙𝑖𝑚 is the 

total porosity and 𝑄 is the flow rate. 𝑉𝑝 and 𝑄 are constant and 𝜙𝑡 should be reduced. Therefore, the 

mean residence time should decrease. This mismatch might due to adsorption that could have occurred, 

but was not modeled. This creates additional retardation of the breakthrough curve. Note, that if we 

multiply the time scale of the modeled results by a factor of around 1.4, the fit would be much better. 

Therefore, we think that the model reproduces correctly the effect of biofilm growth on transport. Both 
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model and experimental results show that the biofilm growth causes the tailing of breakthrough curves. 

Figure 6 shows that Biofilm grows equally for all portions of immobile zones. This is due to the 

abundance of electron acceptors and donors in this experiment. As a result, biofilm growth is not limited 

by transport of these species and does not depend on the transport parameters, specific for each mobile 

zone.  

Table 4-1 Model setup for transport and biofilm growth  

Parameter Symbol Value 

Length L  10 cm 

Initial porosity of mobile water 𝜙𝑚  0.39 

Initial porosity of immobile water  𝜙𝑏,𝑖𝑚  0.01 

Darcy flux 𝑞𝑚  0.0133 cm/s 

Longitudinal dispersivity 𝛼𝐿  0.0301 cm 

Initial mass transfer rates 𝛼𝑗  1.0 × 10−3 , 5.0 × 10−3 , 0.02 , 

0.05, 0.2 s-1 

Initial probabilities 𝑝𝑗  3.0454e-04, 0.0034, 0.0272, 

0.1077, 0.8614 

Coefficient 𝛾  2/3 

Volume ratio 𝜃𝑏  0.9 

Molar density of microbes 𝜌𝑏  8.8496e-04 mol/cm3 

Yield coefficient 𝑌  0.3 

Maximum growth rate 𝜇  5.4e-04 s-1 

Half saturation constant for ED 𝐾𝐷  1.0e-02 mol/cm3 

Half saturation constant for EA 𝐾𝐴  1.0e-03 mol/cm3 

Death rate 𝑑  1.0e-07 s-1 

Inlet concentration for ED 𝑐𝐷  1.0e-03 mol/cm3 

Inlet concentration for EA 𝑐𝐴  1.0e-04 mol/cm3 

 

 

Figure 4.3 The evolution and distribution of the volume fraction of biofilm in porous media.  
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Figure 4.4 Biofilm growth curve plotted as a function of time at x = 9 cm, (left) plotted on linear scale 

and (right) semi-log scale.  

 

Figure 4.5 Breakthrough curves of solute at x = 9cm for continuous injection at t =29 days.  

 

Figure 4.6 The evolution of residence times and probabilities in different portions of immobile zones 

during biofilm growth at t = 29 days. 

4.4.2 Experimental data of Seifert (2007) 

We use the experimental data of Seifert (2007) to calibrate our model. The parameters are set as shown 

in Table 4-2. In this model, the volume fraction of biofilm increases with time, but is not uniform in 

distance (see Figure 4.7).Tracer tests were performed after 13, 62 and 113 days. Our results are in 

agreement with the experimental data of Seifert (2007), as shown in Figure 4.8. Meanwhile, it confirms 

that the biofilm growth leads to the increase of residence times in immobile zones (see Figure 4.9). In 
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this model, the increase of residence times mainly occurs in the immobile zones with the residence 

times between 5 and 20 min. This is because the residence times of these immobile zones are 

comparable to the transport time (the time solute travel through the column) which facilitates the biofilm 

growth (see Figure 4.10).  

Table 4-2 Model setup for transport and biofilm growth  

Parameter Symbol Value 

Length L  5 cm 

Initial porosity of mobile water 𝜙𝑚  0.35 

Initial porosity of immobile water  𝜙𝑏,𝑖𝑚  0.05 

Darcy flux 𝑞𝑚  0.1262 cm/min 

Longitudinal dispersivity 𝛼𝐿  0.16 cm 

Initial mass transfer rates 𝛼𝑗  0.001, 0.005, 0.02, 0.05, 0.2 

min-1 

Initial probabilities 𝑝𝑗  3.0454e-04, 0.0034, 0.0272, 

0.1077, 0.8614 

Coefficient 𝛾  2/3 

Volume ratio 𝜃𝑏  0.9 

Molar density of microbes 𝜌𝑏  8.8496e-04 mol/cm3 

Yield coefficient 𝑌  0.3 

Maximum growth rate 𝜇  1.0e-01 min-1 

Half saturation constant for ED 𝐾𝐷  1.0e-06 mol/cm3 

Half saturation constant for EA 𝐾𝐴  1.0e-06 mol/cm3 

Death rate 𝑑  1.0e-07 min-1 

Inlet concentration for ED 𝑐𝐷  1.5e-07 mol/cm3 

Inlet concentration for EA 𝑐𝐴  3.0e-07 mol/cm3 

 

 

Figure 4.7 The evolution and distribution of the volume fraction of biofilm in porous media. 
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Figure 4.8 Breakthrough curves of solute at x = 5cm for continuous injection at t=13, 62 and 113 days. 

 

Figure 4.9 The evolution of residence times and probabilities in different portion of immobile zones 

during biofilm growth at x = 5cm and t = 13, 62 and 113 days. 
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Figure 4.10 The distribution of reaction rates in space and immobile zones at t = 13, 62 and 113 days 

from top to bottom.  

4.5 Conclusions   

We have developed a conceptual model for biofilm growth based on the non-local MRMT formulation, 

which takes into account the changes in transport characteristics. Clearly, biofilm growth affects 

transport. This is shown by both the conceptual model and the experiments we used to validate the 

models. Although the modeled results do not agree perfectly the experiments, the model can reproduce 

the change in transport behavior due to biofilm growth.  

We modeled two experiments, which revealed some interesting differences between the two. In the 

experiment of Kone et al. (2014) the abundance of electron acceptors and donors made the biofilm 

growth independent of transport. This caused an equal change for all immobile zone, that is, the 

probability density function 𝑝 only shifts, but does not change its form. On the other hand, in the 

experiment of Seifert and Engesgaard (2007) biofilm growth is dependent on transport behavior. This 

causes a change probability density function 𝑝 with a larger effect on the immobile zones with smaller 

residence time and a tendency to decrease the heterogeneity. 

For both models we used a constant shape parameter 𝛾 = 2/3. This leads to an exponential biofilm 

growth with time. This can be seen clearly for the experiment of Kone et al. (2014), but is also true for 

that of Seifert and Engesgaard (2007). Obviously, the shape parameter will increase, when biofilm 

volume fraction approach values equal to the porosity during clogging. In that case, models should 

consider changes in shape parameter.    
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5 Conclusions 

 

Each chapter of this thesis is independent and contains the relevant conclusions. Therefore, here I simply 

summarize the most salient conclusions. 

In chapter 2, I presented a novel method to solve MRMT reactive transport models. The method takes 

advantage of the sparse nature of the system matrix that results in MRMT problems. This allows solving 

immobile concentrations as a function of mobile concentrations, so that the final system is only a 

function of mobile concentrations. The method turns out to be extremely efficient.  

In chapter 3, We analyzed the interplay between characteristic reaction times, transport times and 

distribution of residence times. We conclude that reactions driven by species that are not present in the 

inflow water but are the result of previous reactions will take place in immobile zones, whose residence 

time is comparable to reaction times. Furthermore, immobile zones with residence times much smaller 

than those for transport can be lumped together (assuming that very fast reactions are assumed in 

equilibrium), which greatly reduces computations.  

Finally, a biofilm growth model was presented in Chapter 4. The singularity of this model lies in its 

ability to represent the changes in residence time distributions as a result of biofilm growth. The model 

has been successful in reproducing tracer test experiments extracted from the literature performed in 

the laboratory at different stages of biofilm growth.  
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A. Numerical discretization of governing 

equations  

In practice, MRMT model is substituted by a finite number of immobile zones. In this way, the 

continuous governing equation (2.7) and (2.8) are discretized as follows,  

𝜙𝑚

𝜕𝒖𝑚(𝑥, 𝑡)

𝜕𝑡
= 𝐿𝑡[𝒖𝑚(𝑥, 𝑡)] − ∑𝑭𝑗

𝑁

𝑗=1

+ 𝜙𝑚𝑹𝑚(𝑥, 𝑡) 

(A.1) 

𝑭𝑗 = 𝜙𝑖𝑚,𝑗𝛼𝑗[𝒖𝑚(𝑥, 𝑡) − 𝒖𝑖𝑚,𝑗(𝑥, 𝑡)] (A.2) 

𝑹𝑚(𝑥, 𝑡) = 𝑼𝑺𝑘
𝑇𝒓𝑘,𝑚(𝒖𝑚(𝑥, 𝑡)) (A.3) 

𝜕𝒖𝑖𝑚,𝑗(𝑥, 𝑡)

𝜕𝑡
= 𝛼𝑗[𝒖𝑚(𝑥, 𝑡) − 𝒖𝑖𝑚,𝑗(𝑥, 𝑡)] + 𝑹𝑖𝑚,𝑗(𝑥, 𝑡), 𝑗 = 1,⋯ ,𝑁 

(A.4) 

𝑹𝑖𝑚,𝑗(𝑥, 𝑡) = 𝑼𝑺𝑘
𝑇𝒓𝑘,𝑖𝑚,𝑗 (𝒖𝑖𝑚,𝑗(𝑥, 𝑡)) (A.5) 

where 𝑭𝑗 is the mass exchange between mobile and 𝑗th immobile zone, 𝜙𝑖𝑚,𝑗 = 𝜙𝑖𝑚𝑝𝑗 is the weighted 

porosity in 𝑗th immobile zone, 𝑝𝑗  is the probability for mass exchange rate 𝛼𝑗 accounting in the 𝑗th 

immobile zone, 𝑁 is the number of immobile zones.  

To obtain the numerical discretization of the system equations, a forward finite difference method is 

used to discretize the first derivative in time, and the finite element method is applied to discretize the 

governing partial difference equations. Meanwhile, state variables are evaluated at some time between 

time step 𝑘 and 𝑘 + 1.  

The resulting discretized system equations are given below,  

(𝒈𝑚)𝑖 = (
𝑮

∆𝑡
+ 𝜃𝑡𝑬) (𝒖𝑚

𝑘+1)
𝑖
− (

𝑮

∆𝑡
− (1 − 𝜃𝑡)𝑬)𝒖𝑚

𝑘 +
𝑮

𝜙𝑚
∑(𝑭𝑗

𝑘+𝜃𝑡)
𝑖

𝑁

𝑗=1

− 𝑮(𝑹𝑚
𝑘+𝜃𝑟)

𝑖

= 0 

(A.6) 

(𝒈𝑖𝑚,𝑗)
𝑖
=

(𝒖𝑖𝑚,𝑗
𝑘+1)

𝑖
− 𝒖𝑖𝑚,𝑗

𝑘

∆𝑡
− 𝛼𝑗 [(𝒖𝑚

𝑘+𝜃𝑡)
𝑖
− (𝒖𝑖𝑚,𝑗

𝑘+𝜃𝑡)
𝑖
] − (𝑹𝑖𝑚,𝑗

𝑘+𝜃𝑟)
𝑖
= 0, 𝑗 = 1,⋯ ,𝑁 

(A.7) 

in which, 𝑬 is the global matrix accounting for advection and dispersion, 𝑮 is the global matrix that 

assembles porosity in the mobile zone, 𝑖  is the iteration number at each time step, 𝜃𝑡 ∈ [0, 1] is a 

temporal weight factor for transport, and 𝜃𝑟 ∈ [0, 1] is a weight factor for kinetics. 

The entries of Jacobian matrix are formulated as follows,  

(
𝜕𝒈𝑚

𝜕𝒖𝑚
𝑘+1)

𝑖

= (
𝑮

∆𝑡
+ 𝑬𝜃) ⊗ 𝑰𝑁𝑢

+ (𝑮/𝜙𝑚)∑𝜙𝑖𝑚,𝑗𝛼𝑗

𝑁

𝑗=1

𝜃𝑡𝑰𝑁𝑛
⊗ 𝑰𝑁𝑢

− 𝑮𝜃𝑟 (
𝜕𝑹𝑚

𝑘+1

𝜕𝒖𝑚
𝑘+1)

𝑖

 

(A.8) 

(
𝜕𝒈𝑚

𝜕𝒖𝑖𝑚,𝑗
𝑘+1)

𝑖

= −𝜙𝑖𝑚,𝑗𝛼𝑗𝜃𝑡(𝑮/𝜙𝑚)𝑰𝑁𝑛
⊗ 𝑰𝑁𝑢

 
(A.9) 

(
𝜕𝒈𝑖𝑚,𝑗

𝜕𝒖𝑚
𝑘+1)

𝑖

= −𝛼𝑗 𝜃𝑡𝑰𝑁𝑛
⊗ 𝑰𝑁𝑢

 
(A.10) 
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(
𝜕𝒈𝑖𝑚,𝑗

𝜕𝒖𝑖𝑚,𝑗
𝑘+1)

𝑖

= (
1

∆𝑡
+ 𝛼𝑗𝜃𝑡) 𝑰𝑁𝑛

⊗ 𝑰𝑁𝑢
− 𝜃𝑟 (

𝜕𝑹𝑖𝑚,𝑗
𝑘+1

𝜕𝒖𝑖𝑚,𝑗
𝑘+1)

𝑖

 

(A.11) 

in which, 𝑁𝑛 is the number of mesh nodes, 𝑁𝑢 is the number of components, ⊗ represents Kronecker 

product, 𝑰𝑁𝑛
 and 𝑰𝑁𝑢

 are identity matrix with dimensions equal to 𝑁𝑛 × 𝑁𝑛 and 𝑁𝑢 × 𝑁𝑢, respectively.  

The derivatives of reaction rates with respect to components at each node are calculated according to 

the chain rule, that is  

(
𝜕𝑹𝑚

𝑘+1

𝜕𝒖𝑚
𝑘+1)

𝑖

= 𝑼𝑺𝐾
𝑇 (

𝜕𝒓𝑘,𝑚
𝑘+1

𝜕𝒖𝑚
𝑘+1)

𝑖

= 𝑼𝑺𝐾
𝑇 (

𝜕𝒓𝑘,𝑚
𝑘+1

𝜕𝒄𝟏𝑚
𝑘+1)

𝑖

[(
𝜕𝒖𝑚

𝑘+1

𝜕𝒄𝟏𝑚
𝑘+1)

𝑖

]

−1

 

(A.12) 

(
𝜕𝑹𝑖𝑚,𝑗

𝑘+1

𝜕𝒖𝑖𝑚,𝑗
𝑘+1)

𝑖

= 𝑼𝑺𝐾
𝑇 (

𝜕𝒓𝑘,𝑖𝑚,𝑗
𝑘+1

𝜕𝒖𝑖𝑚,𝑗
𝑘+1 )

𝑖

= 𝑼𝑺𝐾
𝑇 (

𝜕𝒓𝑘,𝑖𝑚,𝑗
𝑘+1

𝜕𝒄𝟏𝑖𝑚,𝑗
𝑘+1 )

𝑖

[(
𝜕𝒖𝑖𝑚,𝑗

𝑘+1

𝜕𝒄𝟏𝑖𝑚,𝑗
𝑘+1)

𝑖

]

−1

 

(A.13) 

both are matrices of size 𝑁𝑢 × 𝑁𝑢.  
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B. Analytical solution of reactive transport in 

multicontinuum media for first-order kinetics in 

the Laplace Domain 

For a chemical system satisfies 𝑼𝑺𝑘
𝑇𝒓𝑘,𝑚(𝑥, 𝑡) = −𝒓𝑘,𝑚(𝑥, 𝑡) , 𝑼𝑺𝑘

𝑇𝒓𝑘,𝑖𝑚(𝑥, 𝛼, 𝑡) = −𝒓𝑘,𝑖𝑚(𝑥, 𝛼, 𝑡) , 

and the chemical kinetics follows first-order decay, 𝒓𝑘,𝑚(𝑥, 𝑡) = 𝜅𝒖𝑚(𝑥, 𝑡) , 𝒓𝑘,𝑖𝑚(𝑥, 𝛼, 𝑡) =

𝜅𝒖𝑖𝑚(𝑥, 𝛼, 𝑡), then the governing equation (2.7) and (2.8) in mobile and immobile domains simplify to 

be linear, that is,  

𝜙𝑚

𝜕𝒖𝑚(𝑥, 𝑡)

𝜕𝑡
= 𝐿𝑡[𝒖𝑚(𝑥, 𝑡)] − 𝜙𝑖𝑚 ∫ 𝛼[𝒖𝑚(𝑥, 𝑡) − 𝒖𝑖𝑚(𝑥, 𝛼, 𝑡)]𝑓(𝛼)

∞

0

𝑑𝛼

− 𝜙𝑚𝜅𝒖𝑚(𝑥, 𝑡) 

(B.1) 

𝜕𝒖𝑖𝑚(𝑥, 𝛼, 𝑡)

𝜕𝑡
= 𝛼[𝒖𝑚(𝑥, 𝑡) − 𝒖𝑖𝑚(𝑥, 𝛼, 𝑡)] − 𝜅𝒖𝑖𝑚(𝑥, 𝛼, 𝑡) 

(B.2) 

Inserting equation (B.2) into (B.1) leads to the total governing equation, written as  

𝜙𝑚

𝜕𝒖𝑚(𝑥, 𝑡)

𝜕𝑡
+ 𝜙𝑖𝑚 ∫ 𝑓(𝛼)

𝜕𝒖𝑖𝑚(𝑥, 𝛼, 𝑡)

𝜕𝑡

∞

0

𝑑𝛼 = 𝐿𝑡[𝒖𝑚(𝑥, 𝑡)] − 𝒓𝑘(𝑥, 𝑡) 
(B.3) 

in which, 𝒓𝑘(𝑥, 𝑡) is the total reaction rate that integrates reactions in both mobile and immobile zones,  

𝒓𝑘(𝑥, 𝑡) = 𝜙𝑚𝜅𝒖𝑚(𝑥, 𝑡) + 𝜙𝑖𝑚 ∫ 𝑓(𝛼)𝜅𝒖𝑖𝑚(𝑥, 𝛼, 𝑡)
∞

0

𝑑𝛼 
(B.4) 

Solving equation (B.2), we get the solution of components in the immobile zone, it is given by  

𝒖𝑖𝑚(𝑥, 𝛼, 𝑡) = 𝒖𝑖𝑚
0 𝑒−𝜆𝑡 + ∫ 𝛼𝑒−𝜆(𝑡−𝜏)𝒖𝑚(𝑥, 𝜏)

𝑡

0

𝑑𝜏 

        = 𝒖𝑖𝑚
0 𝑒−𝜆𝑡 + 𝛼𝑒−𝜆𝑡 ∗ 𝒖𝑚(𝑥, 𝑡) 

(B.5) 

in which, 𝒖𝑖𝑚
0  is the initial condition in immobile zones, 𝜆 = 𝛼 + 𝜅 is the decay rate that accounts for 

both mass exchange rate and kinetic rate.  

Assuming 𝒖𝑖𝑚
0 = 0, then substituting equation (B.5) into the total governing equation (B.3), we obtain 

the total governing equation with respect to component only in mobile zone, that is  

𝜙𝑚

𝜕𝒖𝑚(𝑥, 𝑡)

𝜕𝑡
= 𝐿𝑡[𝒖𝑚(𝑥, 𝑡)] − 𝜙𝑖𝑚 [𝑔0𝒖𝑚(𝑥, 𝑡) +

𝜕𝑔(𝑡)

𝜕𝑡
∗ 𝒖𝑚(𝑥, 𝑡) + 𝜅𝑔(𝑡) ∗ 𝒖𝑚(𝑥, 𝑡)]

− 𝜙𝑚𝜅𝒖𝑚(𝑥, 𝑡) 

(B.6) 

in which, 𝑔(𝑡) = ∫ 𝑓(𝛼)
∞

0
𝛼𝑒−𝜆𝑡𝑑𝛼 represents the memory function (Carrera et al., 1998).  

To characterize the total governing equation (B.6), we define characteristic length and characteristic 

transport time, written as  

𝐿𝑐 =
𝜙𝑚𝐷

𝑞
 

(B.7) 

and  
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𝑡𝑐 =
𝐿𝑐

𝑣
=

𝜙𝑚
2 𝐷

𝑞2
 

(B.8) 

In one dimensional, the characteristic length is the longitudinal dispersivity, i.e. 𝐿𝑐 = 𝛼𝐿, due to the 

mechanical dispersion equals to longitudinal dispersivity multiply fluid velocity, i.e. 𝐷 = 𝛼𝐿𝑣.  

Introducing these characteristics into equation (B.6), the dimensionless form of the total governing 

equation (B.6) is obtained, it is given by  

𝜕𝒖𝑚(𝑥𝐷 , 𝑡𝐷)

𝜕𝑡𝐷
=

𝜕2𝒖𝑚(𝑥𝐷, 𝑡𝐷)

𝜕𝑥𝐷
2 −

𝜕𝒖𝑚(𝑥𝐷, 𝑡𝐷)

𝜕𝑥𝐷

− 𝜂 [𝑔0𝒖𝑚(𝑥𝐷 , 𝑡𝐷) +
𝜕𝑔(𝑡𝐷)

𝜕𝑡𝐷
∗ 𝒖𝑚(𝑥𝐷, 𝑡𝐷) + 𝜅𝐷𝑔(𝑡𝐷) ∗ 𝒖𝑚(𝑥𝐷, 𝑡𝐷)]

− 𝜅𝐷𝒖𝑚(𝑥𝐷, 𝑡𝐷) 

(B.9) 

with the definition of dimensionless variables as  

𝜂 =
𝜙𝑖𝑚

𝜙𝑚
, 𝑡𝐷 =

𝑡

𝑡𝑐
, 𝑥𝐷 =

𝑥

𝐿𝑐
, 𝜅𝐷 = 𝜅𝑡𝑐 , 𝛼𝐷 = 𝛼𝑡𝑐 , 𝜆𝐷 = 𝜆𝑡𝑐 

(B.10) 

Given the initial and boundary conditions,  

𝒖𝑚(𝑥𝐷 , 𝑡𝐷 = 0) = 0, 𝑥𝐷 ≥ 0 

𝒖𝑚(𝑥𝐷 = 0, 𝑡𝐷) = 𝒖 , 𝒖𝑚(𝑥𝐷 = ∞, 𝑡𝐷) = 0, 𝑡𝐷 > 0 

(B.11) 

The solution of equation (B.9) is obtained in the Laplace domain, that is  

ℒ{𝒖𝑚} =
𝒖

𝑠
𝑒𝑥𝑝 {[1 − √1 + 4(𝑠 + 𝜅𝐷)(1 + 𝜂ℒ{𝑔})]

𝑥𝐷

2
} 

(B.12) 

in which, ℒ{𝒖𝑚} and ℒ{𝑔} indicate the Laplace transform of 𝒖𝑚(𝑥𝐷, 𝑡𝐷) and 𝑔(𝑡𝐷), respectively.  
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C. Breakthrough curves of species A, B and C for sequential reactions  

    

 

 

Figure C.1 Breakthrough curves of species A, B and C for 𝑞𝑚 = 1.0 [LT-1], thus 𝑡𝑐 = 0.1 [T-1], 𝜏𝑟1𝐷 = 𝜏𝑟2𝐷 = 102, 103 and 104 from top to bottom.  
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Figure C.2. Breakthrough curves of species A, B and C for 𝑞𝑚 = 0.1 [LT-1], thus 𝑡𝑐 = 1.0 [T-1], 𝜏𝑟1𝐷 = 𝜏𝑟2𝐷 = 101, 102 and 103 from top to bottom.   
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Figure C.3. Breakthrough curves of species A, B and C for 𝑞𝑚 = 0.01 [LT-1], thus 𝑡𝑐 = 10.0 [T-1], 𝜏𝑟1𝐷 = 𝜏𝑟2𝐷 = 100, 101 and 102 from top to bottom.  
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D. The relationship between the mass transfer 

rates and the volume fraction of immobile zones   

The mass transfer rate coefficient, 𝛼𝑗, can be quantified by considering diffusion in the biofilm, that 

depends on its size and shape. In general, 𝛼𝑗, can be expressed as: 

𝛼𝑗 = 𝐷𝑏

𝜎𝑏

𝑏𝜙𝑏,𝑖𝑚,𝑗
 (D.1) 

where 𝐷𝑏 [L2T-1] is the diffusion coefficient of biofilm, 𝜎𝑏 [L2L-3] is the specific surface area of biofilm 

which is the surface area of biofilm divided by the total volume, 𝑏 [L] is the size (thickness or radius) 

of biofilm, and 𝜙𝑏,𝑖𝑚,𝑗 is the fraction of the volume of biofilm over the total volume, which is expressed 

as 

𝜙𝑏,𝑖𝑚,𝑗 = 𝑏𝜎𝑏 (D.2) 

Various relations between 𝛼𝑗 and 𝜙𝑏,𝑖𝑚,𝑗 can be deduced, depending on the stage of biofilm growth. 

For stage I (lateral growth) we assume 𝑏 to be constant. The biofilm grows by increasing the specific 

surface area. Then the specific surface area of biofilm can be expressed as a function of the volume 

fraction of biofilm, that is  

𝜎𝑏 =
𝜙𝑏,𝑖𝑚,𝑗

𝑏
 

(D.3) 

Substituting equation (A3) into (A1) gives  

𝛼𝑗 =
𝐷𝑏

𝑏2
 

(D.4) 

It shows that 𝛼𝑗 is constant, which means 𝛼𝑗 ∝ 𝜙𝑏,𝑖𝑚,𝑗
0  or 𝜏𝛼𝑗

∝ 𝜙𝑏,𝑖𝑚,𝑗
0 .  

For stage II (spherical growth), we assume the biofilm to consist of spheres and the number of spheres 

per total volume 𝑛 to be constant. The biofilm grows by increasing the size of the spheres not their 

number. Then, the volume fraction and the specific surface of biofilm are given by 

𝜙𝑏,𝑖𝑚,𝑗 = 𝑛
4

3
𝜋𝑏3 

(D.5) 

𝜎𝑏 = 𝑛4𝜋𝑏2 (D.6) 

According to equation (A5), the size of biofilm can be expressed as a function of 𝑛 and 𝜙𝑏,𝑖𝑚,𝑗 

𝑏 = (
3𝜙𝑏,𝑖𝑚,𝑗

𝑛4𝜋
)
1 3⁄

 
 (D.7) 

in which, 𝑛 can be calculated from a referenced biofilm size 𝑏𝑟𝑒𝑓 and volume fraction 𝜙𝑏,𝑟𝑒𝑓  

𝑛 =
3𝜙𝑏,𝑟𝑒𝑓

4𝜋𝑏𝑟𝑒𝑓
3  

(D.8) 

Substituting equation (A6) into (A1), gives  

𝛼𝑗 = 𝐷𝑏

𝑛4𝜋𝑏

𝜙𝑏,𝑖𝑚,𝑗
 

(D.9) 
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Then by substituting (A7) and (A8) into (A9), we obtain 

𝛼𝑗 = 3𝐷𝑏

1

𝑏𝑟𝑒𝑓
2 (

𝜙𝑏,𝑟𝑒𝑓

𝜙𝑏,𝑖𝑚,𝑗
)

2 3⁄

 
(D.10) 

As 𝐷𝑏, 𝑏𝑟𝑒𝑓 and 𝜙𝑏,𝑟𝑒𝑓 are constant, 𝛼𝑗 ∝ 𝜙𝑏,𝑖𝑚,𝑗
−2 3⁄

 or 𝜏𝛼𝑗
∝ 𝜙𝑏,𝑖𝑚,𝑗

2/3
. 

For stage III we assume 𝜎𝑏 to be constant. The biofilm grows by increasing the thickness of biofilm. 

Then the thickness of biofilm can be expressed as a function of the volume fraction of biofilm, that is  

𝑏 =
𝜙𝑏,𝑖𝑚,𝑗

𝜎𝑏
 

(D.11) 

Substituting equation (A11) into (A1), gives  

𝛼𝑗 = 𝐷𝑏

𝜎𝑏
2

𝜙𝑏,𝑖𝑚,𝑗
2  

(D.12) 

As 𝐷𝑏 and 𝜎𝑏 are constants, 𝛼𝑗 ∝ 𝜙𝑏,𝑖𝑚,𝑗
−2  or 𝜏𝛼𝑗

∝ 𝜙𝑏,𝑖𝑚,𝑗
2 .
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E. Publications and Conference presentations 

Publications in scientific journals  

Wang, J., Carrera, J. & Saaltink, M. W., (June 2021). On the localization of chemical reactions in 

multicontinuum media Water. In preparation for submission.  

Wang, J., Carrera, J., Saaltink, M. W., & Valhondo, C., (October 2020). A general and efficient 

numerical solution of reactive transport with multirate msass transfer. Computes & Geosciences. Under 

second review, Manuscript number: CAGEO-D-20-00371R1. 

Valhondo, C., Carrera, J., Martínez-Landa, L., Wang, J., Amalfitano, S., Levantesi, C., & Diaz-Cruz, 

M. S., (2020). Reactive barriers for renaturalization of reclaimed water during soil aquifer treatment. 

Water (Switzerland). https://doi.org/10.3390/W12041012   

Presentations in Conferences  

Wang, J., Saaltink, M. W. & Carrera, J., Conceptual model of reactive transport incorporated with 

dynamic microbial growth in immobile biofilms. InterPore 2021 online, May 2021, Edinburgh, United 

Kingdom.  

Wang, J., Carrera, J., Saaltink, M. W., Valhondo, C., Reactive Transport Modeling of Microbial-

mediated degradation in MAR. Goldschmidt, August 2019, Barcelona, Spain. 

Wang, J., Carrera, J., Saaltink, M. W., Valhondo, C. & Soler, J., An objective-oriented tool to model 

biogeochemical degradation of emerging organic contaminants in porous media. EGU General 

Assembly, April 2019, Vienna, Austria.  

Presentations in Seminar  

Wang, J., Carrera, J., Saaltink, M. W. A general and efficient numerical solution of reactive transport 

with multirate mass transfer. GHS Seminar, October 2020, Barcelona, Spain, oral presentation.   

Wang, J., Carrera, J., Saaltink, M. W., Valhondo, C. Incorporate biofilm into reactive transport 

modeling in porous media. GHS Seminar, September 2019, Barcelona, Spain, oral presentation.  
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