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Begoña, Rafa, Diego, Cristian, Paula, Ivan, Raimon, Nikos, Albert, Javi, Quim, David(s), Alan,
Jorge, Tomas, Yago, Antonia, Aron, Benson, Ryotaku, Jakob, Chris, Kayla (who technically belongs
to the administrative staff but has nevertheless made my stay much more enjoyable, easy-going
and care-free) and Martin (who technically comes from the IFT, but has nevertheless made an
incredible impact while at UB), have made these years in Barcelona so much better, and because
of their kindness and support (and occasional beer), I hope they will remain my great friends and
collaborators.

Likewise, my overseas friends and researchers, Alex, Cece, Batoul, Sergio, Wayne, Sean, Diandian,
Adolfo, Seth, Gabriel, David, Alexey, Amir, Joaquin, Henry, Arvin, Ven, Pratik, Liz, Chris, Adam,
Misha, Masamichi, Hugo, Geoff and KITP fellows Dongsheng, Mike and Alex and more, have taught
me so much about physics and life, and have made me feel truly respected and welcome in their
respective institutions, Berkeley and Santa Barbara.

Over the years, the number of attended conferences grew steadily, which allowed me to meet
a lot of different people, many of whom, such as Guillaume, Joe, Riko, Ben and Ro remain such
incredible friends; I am very lucky to have met them all. All of these people, from various different
countries and backgrounds, have been an inspiration in their own ways, and have made my life so
much more interesting than I ever could have thought, and for this, I am truly grateful.

Friends and fellows aside, my development as a physicist could not have been possible without
the infinite well of wisdom that is comprised of various professors that I have had the pleasure
of meeting and discussing with. The well consists of David Mateos, Tomeu Fiol, Jaume Garriga,
Donald Marolf, Gary Horowitz, Xi Dong, Netta Engelhardt, and Aron Wall, as well as many others
that I have met throughout these years. I have learned about several different approaches to physics,
all of which have proven to be incredibly useful in various parts of my research. This dissertation
could not have been so diverse without your insights and intuition, and for this, I am truly grateful.

Quite a number of people have made it possible for me to finish this crucial step in my life,
and all of them have helped me in various different ways. But one person stands tall, as a kind
of a bearing pillar, without whom none of this would have been even imaginable. An elaborate
thank-you-paragraph cannot express how much I owe to him, and in fact, I would do it injustice
if I tried to formulate such a thing. His love and tender support, his hugs and playful spirit, the
intricate conversations and silly jokes, all of it, simply said, have shaped me into a person that I
like, and for this, I truly thank you, Mikel.

Finally, I would like to thank the Fundacio Bosch i Gimpera, for providing me with the opportunity
to engage in this Ph.D. under the ERC Advanced Grant GravBHs-692951, and Joan Soto for tutoring
this dissertation. I would also like to thank the KITP for their kindness and hospitality, which in
spite of the pandemic, has been an invaluable experience; this fellowship was supported in part by
the Heising-Simons Foundation, the Simons Foundation, and National Science Foundation Grant No.
NSF PHY-1748958. And lastly, I am very grateful to Raphael, LaVern and Roberto for organizing
my research visit to UC Berkeley, which inspired much of the work that came afterwards.

iv







Contents
1 Introduction 2

2 Generalized Entropy: Faces and Facets 4
2.1 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Examples of Semiclassical Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Quantum Penrose Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 The Black Hole Page Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Science, not Science Fiction 40
3.1 The Classical Theory of Wormholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Traversable Wormholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Time machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Cosmic Censorship Conjectures 74
4.1 Strong Cosmic Censorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Weak Cosmic Censorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Conclusion 85

6 Resumen en Castellano 87

A (Quantum) Expansions in the Schwarzschild Geometry 88

B Multi-hole Construction Details 92

1



1 Introduction
All complete theories are alike; each incomplete theory is incomplete in its own way. Patterns
are seldom, but understanding their origin gets us a little closer to the inner workings of Nature’s
weaving machine. What patterns can we discern in aid of our pursuit for the principal theory of
space and time?

As with all classical theories, we see how General Relativity must describe phenomena that
emerge from more elementary structures. In that sense, it is an effective theory, masking the true,
underlying fabric with its continuous, opaque deceit. Patterns tell us how higher energies and smaller
scales will allow this underlying structure to show its face and reveal the unimaginable: a reason
behind space, and a reason behind time.

But these patterns are also misguiding; this theory cannot be so easily approached. For it
displays a feature that cannot be reproduced or mimicked by any other classical theory: it allows
for a holographic completion. Holography did not reveal the reasons we seek, nor has it let us see
beyond the opaque deceit. But it has given us clues, teasing us to solve them and follow through,
regardless of how apparently absurd the results may be. It showed us how intricate the relationship
is between space, time, and quantum information. And it urges us to explore deeper the connections
between seemingly disparate notions: geometry and entanglement.

A similar sense of urgency was made clear by Gibbons and Hawking in [1], when they uncovered a
peculiar relation between geometry and entropy. A classical saddle of the gravitational path integral,
resulting in an area, is responsible for a deeply quantum microstate counting, an entropy. The fact
that a purely classical, geometric quantity can represent such a principal quantum notion remains
an uncomprehended clue. However, it paved the way to a firmer grasp on how quantum information
intertwines with space and time.

This dissertation is not about the theory of quantum gravity; rather, it is an exploration of
this insight that quantum information structurally affects the building blocks of spacetime. We will
work in the regime of semiclassical gravity, at times accounting for the backreaction of quantum
fields. Our main goal will be to show several distinct ways in which these structural changes can be
seen. For all purposes of this dissertation, we do not need to distinguish whether the semiclassical
expansion ceases to be valid due to Planck-scale or string-scale effects; we are merely concerned with
the breakdown of the semiclassical expansion, not with the mechanism behind it. Chapter One takes
a deeper look into the connection between geometry and entropy. We revisit the original reasoning
leading to their entwinement, and we clarify the different notions of entropy that play a role in it. We
emphasize the recurring theme and the pattern in such a relationship: how the union between area
and entropy makes sense when put together on the same footing, hinting towards a deeper meaning
in a complete theory of quantum gravity. This seemingly simple unification is then shown to lead
to incredible results, ranging from improved conjectures about quantum gravity, to illuminating one
of the most critical problems of modern theoretical physics - the black hole information paradox. In
particular, we will mainly focus on one example of semiclassical statements, the (quantum) Penrose
inequality, and we will show in detail the difficulties one has to overcome for a meaningful conjecture
to hold. Furthermore, we will revise the basic arguments underlying the recent progress regarding
the black hole interior and lay out the possible paths to the interpretation of these striking results.

Chapter Two explores different solutions that classical General Relativity forbade, but quantum
physics advanced. A number of no-go theorems get circumvented, and configurations previously
thought of as impossible become available, and even natural. This is especially clear for solutions such
as traversable wormholes and their inherent use in studies of entanglement structures. Indeed, such
connections will be relevant in gauge/gravity duality for a fuller understanding of the holographic
dictionary. But we will also see the way in which other no-go theorems become easier to infer. In
essence, the creation of closed causal curves was understood as a problem of quantum gravity due to
the incredibly high energies one seems to need for their demise. However, we will show how simple,
low-energy arguments will be enough to shatter the fiction of time machines.
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The final Chapter Three perhaps comes closer to the study of quantum gravity than the previous
ones. We undertake the problem of naked singularities in gravity, and we see how including quantum
effects solidifies some foundational statements while completely fragmenting other ones. In a nutshell,
the strong cosmic censorship conjecture will be shown to be on much firmer ground than previously
thought. Quantum physics will be used to destabilize the relevant Cauchy horizon once and for all.
However, including quantum effects necessarily means we must abandon our naive understanding of
the weak cosmic censorship and embark on a much stranger path towards a meaningful statement
about naked singularities. In doing so, we will discuss the purpose of cosmic censorship and its
interpretation in the realm of quantum gravity.

We finish the dissertation with a summary and a further discussion on the nature of naked
singularities, providing a framework in which these questions can be meaningfully posed. After a
brief overview of recent developments in this research line, we discuss the possible ways in which
we can tackle such a perplexing problem. Namely, the role of critical phenomena in gravitational
collapse is emphasized, and a proposal for a future study is outlined.
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Chapter One

2 Generalized Entropy: Faces and Facets
Statistical mechanics gives us the most fundamental description of Nature as we know it. This is
simply due to the fact that it is entirely based on mathematics, without an inquiry into the various
laws of physics we might impose. It applies to all systems, regardless of the nature of forces that
define the system. And so, it is then of no surprise that even in a theory of space and time, we
find that the principles of statistical mechanics must be obeyed. However, there is a fundamental
difference in the way these principles are obeyed, for the spacetime itself carries the weight of such
a statistical description.

There is perhaps no better way of seeing this fact other than through the lens of black hole
thermodynamics. Bekenstein was famously posed with a question, “What happened to the entropy
of my cup of tea that I have thrown into a black hole?”, which prompted a reply, now simply known
as the “single most important insight into the nature of quantum gravity”: black holes themselves
must have entropy1 [4]. Moreover, this entropy is linear in the area of the black hole horizon, and
depends on the inverse power of ~, making it quite a bit bigger compared to ordinary matter systems,

SBH = Area
4G~ . (1)

However, an area in General Relativity is a geometrical notion, while an entropy, even though its
definitions might vary [5], still constitutes a quantity which is statistical in nature. Does this mean
that the notion of geometry should be taken with a grain of salt, always having in the back of our
minds its inherent statistical features? This question is at the core of today’s research in quantum
gravity and it justifies our previous aggrandizement of Bekenstein’s idea.

Continuing in the regime of semiclassical gravity and leaving the questions of fundamental
nature of quantum gravity for the margins, we arrive at a “modification”2 of the second law of
thermodynamics; namely, the generalized second law (GSL). The GSL is a statement about the
generalized entropy, which is defined as

Sgen = Area
4G~ + Sout, (2)

where the first term refers to the area of black hole(s), and the second to the thermodynamic entropy
of all matter systems outside the black hole(s). The GSL then states that the sum of these two terms
must increase under time evolution. Notice that we introduced this concept in order to preserve the
statistical principles from which we started: had we remained only with the area term, there would
be no notion of the second law in the presence of quantum fields [3], nor in the case when matter
simply falls across the horizon.

The notion of generalized entropy and its corresponding law have made a major impact on
the development of semiclassical gravity. Various classical statements of General Relativity, such
as the singularity theorem, the focusing theorem and many others, now have their semiclassical
counterparts. This development is a result of a procedure in which one simply replaces the area

1Curiously enough, he hesitated from ascribing a temperature to black holes, even though one cannot define the
entropy without it. Perhaps he shied away from this idea due to a colloquium given by Geroch, who argued that
black holes must have zero temperature if we are to run a Carnot cycle with 100% efficiency [2]. Nevertheless, the
issue was settled in less than two years by Hawking, who showed that black holes must have temperature and must,
therefore, radiate, despite his initial motivation to dismantle Bekenstein’s idea [3].

2In fact, the GSL is the usual second law, since only in that form does it apply to a closed system, but due to
historical reasons which we will not explain here, the term “generalized” remained and is now widely used in the
literature.
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in a theorem with the generalized entropy3. It is quite remarkable how much we have managed to
achieve with such a simple idea, as we shall see below.

2.1 Definitions and Notation
We will now introduce the necessary definitions and notation that will be used throughout the
dissertation.

Energy Conditions There are usually a couple of ingredients that go into the assumptions of
classical theorems in General Relativity. However, there is one condition that underlies all of the
classical statements - the Null Energy Condition (NEC), which states

Tabk
akb ≥ 0 (3)

at every point in the spacetime, where ka is any null vector. Physically, the NEC states that an
observer travelling along a lightlike curve measures the energy in their local frame to be positive
at every point in the spacetime. It is not surprising that this is a condition on the stress tensor;
without such a constraint, every metric would be deemed a solution by the Einstein’s equation, no
matter how exotic the metric may be. We use energy conditions in order to restrict ourselves to
a set of physically reasonable spacetimes. The NEC is certainly not the only energy condition we
can apply, but it is the weakest one we can apply to classical fields, for it states that all classical
matter must have positive energy density at every point in spacetime. In other words, all minimally
coupled, classical fields obey this condition.

We would also like to have an analogous condition when quantum effects are present or when we
do not have minimal coupling. In these cases, one uses the Achronal Average Null Energy Condition
(AANEC), which states ∫

γ

Tabk
akb ≥ 0 (4)

where the integral is taken over a complete, achronal null geodesic γ with a tangent vector ka. The
intuition behind the “average” part of the AANEC is simplest to understand if we think about the
Casimir effect. Namely, the Casimir effect is known to produce negative energies by restricting the
modes of the vacuum which are subject to non-trivial boundary conditions. However, the average
energy can result in a positive result. Nevertheless, there have been examples of spacetimes and
systems which even after averaging produce negative energies. Hence, the condition of achronality
had to be added. Achronal simply means that no two points along the null geodesic are connected
by a timelike geodesic. In other words, the achronal null geodesic is the fastest possible way between
any two points along it.

Generalized Entropy The generalized entropy Sgen, was first introduced by Bekenstein [4; 6] as
the total entropy of a system consisting of a black hole and its exterior on a given time slice. The
definition can be extended to apply not only to the horizon of a black hole, but to any Cauchy-
splitting surface σ:

Sgen ≡
A[σ]
4G~ + Sout + . . . , (5)

where A[σ] is the area of σ, and
Sout = −Trρout log ρout (6)

is the von Neumann entropy4 of the state of the quantum fields, restricted to one side of σ:

ρout = Trout ρ . (7)
3In an appropriate way; see examples below.
4See discussion on this point in Sec. 2.2.

5



Here, the state ρ is the global quantum state, and the trace is over the complement region, which
we define as out. The surface σ need not be connected; for example, it may be the union of several
black hole horizons. It also does not need to be compact; for example, it could be a cross-section of
a Rindler horizon.

The von Neumann entropy Sout quantifies the amount of entanglement in the vacuum across σ,
and as such, has divergences coming from short-distance entanglement. The leading divergence is
given by A/ε2, where ε is a short-distance cutoff. However, we can think of the geometric term in
Eq. (5) as a counterterm. The dots indicate the presence of subleading divergences in Sout which
come with their own geometric counterterms. It is expected that the divergences coming from the
renormalization of G and from short-distance entanglement will cancel out [7], so as to keep Sgen a
finite and well-defined quantity. The intuition is that there exists a choice of the RG flow for G, but
also for higher-order coefficients such that Sgen becomes cutoff independent; see the appendix of [7]
for more details.

One can interpret Sgen in two distinct ways. Following the original motivation, one can view the
area-term as a (large) “correction” to the entropy of quantum fields. Alternatively, we can define a
quantum-corrected area of the surface σ:

AQ[σ] ≡ A[σ] + 4G~Sout + . . . , (8)

in a semiclassical expansion in G~. Hence, one can use the notion of generalized entropy to
incorporate quantum effects into certain geometrical objects that derive from the area of surfaces.

Quantum Expansion In order to define what we mean by quantum expansion, we need to make
several choices regarding the classical expansion5. First, there are two sides to σ, Σin and Σout;
let us pick Σout to be the part of the Cauchy slice on which we evaluate our entropy of bulk fields.
Second, there is an additional fourfold choice: there are four null hypersurfaces orthogonal to σ.
They are generated by orthogonal light-rays towards the past or future, and towards ΣL or ΣR,
regardless of the choice of Σout. So, let us pick one direction, for example as shown in Fig. 1.

Figure 1: Left: A spatial surface σ splits a Cauchy surface Σ into two parts. We define the von Neumann
entropy Sout of a quantum state with respect to Σout. To define the quantum expansion Θ at σ, we construct
an orthogonal null hypersurface N , and we consider the response of the generalized entropy to deformations
of σ along N . Right: The null hypersurface N can be divided into pencils of width (i.e. cross-sectional
area) A around its generators. The surface σ is deformed along the null generators, parametrized by λ.
Function V (y) defines the cut across the generators; V (y) = λ = 0 indicates we are back on the surface σ.

5We will see there are eight possible choices, but all of the statements hold regardless of which one we make; we
just need to be consistent.
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The chosen hypersurface N will be terminated by caustics, or more generally, wherever null
generators orthogonal to σ intersect. Now that we have N , we want to see how the generalized
entropy responds to deformations of σ along N .

One generator of N passes through each point y of σ; see Fig. 1. We take λ to be an affine
parameter along this generator, such that λ = 0 on σ, and such that λ increases away from σ; this
then defines a coordinate system (λ, y) on N .

Now, we have to indicate somehow a function that will define for us a cut on N . For example,
a positive definite function V (y) ≥ 0 will define for us a slice of N , which consists of the point on
each generator y for which λ = V . In other words, the function V (y) is used to specify the affine
location of σ and nearby surfaces along a congruence of null geodesics orthogonal to σ.

Any such slice of N splits a Cauchy surface into two parts, as seen in Fig. 2. Therefore, we can
take V (y) to be the argument of a generalized entropy6 functional,

Sgen[V (y)] = A[V (y)]
4G~ + Sout[V (y)]. (9)

Figure 2: The function V (y) splits the Cauchy surface into two parts; the blue line indicates the
shape of our deformation of surface σ. To define the quantum expansion, we move along one of
the generators an affine parameter length ε, while the rest of the slice remains identified with the
original surface σ.

The quantum expansion, like the classical expansion, is defined by deforming a slice in the
neighborhood of one generator y1. To be precise, consider a second slice of N which differs from σ
only in a neighborhood of generators near y1, with infinitesimal area A:

Vε(y) ≡ V (y) + εVy1(y), (10)

where Vy1(y) = 1 in the neighbourhood of y1, and zero elsewhere. Now we can see the change in the
generalized entropy with respect to this deformation,

dSgen

dε

∣∣∣∣
y1

= lim
ε→0

Sgen[Vε(y)]− Sgen[V (y)]
ε

. (11)

6If we neglect the bulk fields, we go back to the classical expansion. Recall, the classical expansion of a surface σ
at a point y ∈ σ is defined as the trace of the null extrinsic curvature at y. However, one can equivalently define the
classical expansion as a functional derivative, θ[σ; y] = 1√

h(y)
δA[V ]
δV (y) , where h represents the area element of the metric

restricted to σ, inserted to ensure that the functional derivative is taken per unit proper area, not coordinate area.
This definition of the classical expansion is needlessly complicated, in that it invokes the entire surface σ, even though
θ depends only on its local extrinsic curvature at y. However, this definition naturally generalizes to the quantum
expansion, Θ, which does depend on all of σ.
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The quantum expansion Θ is now easy to define - this infinitesimal change is divided by the
infinitesimal area A, which makes Θ a finite quantity,

Θ[σ; y] ≡ 4G~√
h(y)

δSgen[V ]
δV (y) . (12)

where
√
h(y) is the (finite) area element of the metric restricted to σ, inserted to ensure that the

functional derivative is taken per unit geometrical area, not coordinate area. The notation Θ[σ; y]
emphasizes that the quantum expansion requires the specification of a slice V (y) and is a function
of the coordinate y on that slice. In other words, Θ is defined as a functional derivative of the
generalized entropy with respect to V (y).

The classical expansion θ depends only on the infinitesimal neighborhood of a null generator. By
contrast, the quantum expansion Θ depends non-locally on the quantum state of matter on the half
of the Cauchy slice, Σout, since the von Neumann entropy of the matter can behave differently at y1
if one changes the state of matter elsewhere on Σout. Moreover, the quantum expansion depends7

on the choice of V(y) away from y1. This non-locality is what made the definition of a quantum
expansion a pretty non-trivial problem to solve.

Regardless, as in the classical case, we can use the notion of expansion to define certain types of
surfaces. Let Θ± be the quantum expansion of the future-directed light-rays orthogonal to a surface
µQ. (As before, we take the + label to refer to the direction of spatial infinity.) If Θ+ ≤ 0 (Θ+ = 0)
and Θ− ≤ 0, then we call µQ a quantum (marginally) trapped surface.

Quantum trapped surfaces, in the semiclassical setting, have some of the properties obeyed by
trapped surfaces in the classical setting. For example, trapped surfaces cannot lie outside the black
hole, assuming the weak cosmic censorship and the Null Energy Condition. When the NEC is
violated, they can; however, quantum trapped surfaces must still lie inside or on the horizon [8]8.

A quantum future holographic screen, simply known as the Q-screen, is a hypersurface foliated
by quantum marginally trapped surfaces. Assuming the quantum focusing conjecture, which we will
review in Sec. 2.2, one can show that Q-screens obey a Generalized Second Law [9].

2.2 Examples of Semiclassical Statements
Having defined the necessary semiclassical notions, we can now see what use have they had in
extending some of the known classical theorems in gravity. In particular, we will briefly cover
the extension of the area theorem, the singularity theorem and the focusing theorem. The next
section will take a closer look at yet another semiclassical statement which derives from the Penrose
inequality.

Generalized Second Law

We touched upon this law in the introductory part of this chapter, but we have not quite emphasized
what role does the GSL hold in gravity. First, it is apparent that the GSL holds for realistic matter
entering a black hole; this has been proven in various different settings [10]. The GSL supersedes
not only the ordinary second law, but also Hawking’s area theorem. When a black hole evaporates,
the NEC is violated since we have negative energy crossing the horizon, and so the area decreases;
see Appendix A. However, the emitted radiation more than compensates for this decrease, and so,
the GSL is preserved.

There is a sense in which the GSL might have fewer ambiguities than the usual second law [11].
Namely, the coarse-graining procedure one needs to perform is more evident in the setting with a

7Note that it does not depend on the choice of the half of Cauchy slice; all Cauchy slices are unitarily equivalent
if we assume bulk unitarity (which we do). Therefore, we can find a suitable Cauchy slice for any deformation V (y).

8This will prove to be important for our formulation of the quantum Penrose inequality in Sec. 2.3. However, there
is still the assumption of weak cosmic censorship; see Sec. 4.2.
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black hole since the horizon naturally defines what constitutes as observable. Also, the notion of
the event horizon gives us a way of understanding the “arrow of time”, which might have seemed
definitional in the statement of the usual second law9. Moreover, the generalized entropy itself is
better defined than its individual parts, as we discussed previously.

However, we might get confused about other aspects of the GSL; namely, we need to emphasize
just what kind of entropy we have in mind. This was extensively discussed in [11; 8], so we will just
briefly cover the most relevant points.

The main issue lies in the various definitions of entropy and the extent of their fidelity. And so,
even though this is textbook material, the definitions vary across textbooks and across materials.
With that in mind, we will discuss certain types of entropies in classical and quantum physics, and
their associated interpretations. First, let us note that there are several layers of physics that one can
talk about. We can have classical thermodynamics, (quantum) statistical physics and (quantum)
information theory.

Entropies Classical thermodynamics establishes the entropy as a sort of a quantifier of how much
internal energy is available for transformations in terms of heat and work. However, “heat” and
“work” are emergent phenomena, derived from a more detailed theory which deals with atoms and
their dynamics. And so, we come to statistical physics, whose job is to derive high level descriptions
by starting from lower level ones and then averaging out a lot of details. When discussing statistical
mechanics, we change the language from using emergent quantities to using more fundamental
quantities, which we denote as microstates. Simply put, a system can exist in a discrete10 (possibly
infinite) set of microstates, where a microstate defines the values of all possible microscopic variables.
What the microscopic variables refer to is up to you to decide: for example, in classical physics,
a microstate can define the position and momentum of every particle, and in quantum physics, it
defines the value of the wavefunction at every point in space.

The macrostate of a system is characterized by a distribution on the microstates and the entropy
of this distribution is given by the Gibbs entropy SG. For a classical system with a discrete set of
microstates, if Ei is the energy of microstate i, and pi is the probability11 that a microstate occurs
during some fluctuations of the system, then the entropy of the macrostate is

SG = −kB
∑
i

pi ln pi, (13)

where kB is the Boltzmann constant (which we will immediately drop from the rest of the dissertation).
Basically, it is a way of measuring the number of microstates that make up the macrostate.

Finally, we reach information theory. It is at this level that we learn to think about entropies in
the context of computer science and information processing. To gain some intuition, suppose we are
dealing with random variables and we learn the value of some variable x. How much information
have we gained about our set of random variables? To answer this question, we introduce the notion
of Shannon entropy, defined as

SS = −
∑
i

pi ln pi, (14)

where pi = p(x = xi), with x a random variable and xi the outcomes, now represent the probabilities
of the different possible values that the random variable takes. And so, our Shannon entropy is a
function of a probability distribution p1, . . . , pn and it quantifies how much information we gain, on

9The black hole event horizon is defined as the boundary of the past of future infinity and it is by definition
lightlike; see Sec 2.3.

10You can always turn a continuous variable into a discrete one by dividing it into very small bins - in phase space
or in a Hilbert space.

11In the case the probability becomes a uniform distribution over all N states, pi = 1/N , the Gibbs entropy reduces
to Boltzmann entropy, SB = kB ln N . In other words, The Gibbs entropy is the generalization of the Boltzmann
entropy holding for all systems, while the Boltzmann entropy is only the entropy if the system is closed and isolated.
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average, when we learn the value of x. An alternative view is that the entropy of x measures the
amount of uncertainty about x before we learn its value. These two views are complementary; we
can view the entropy either as a measure of our uncertainty before we learn the value of x, or as a
measure of how much information we have gained after we learn the value of x [12]. In other words,
this definition quantifies the amount of resources needed to store the information. To quote [12],

“...fundamental measures of information arise as the answers to fundamental questions
about the physical resources required to solve some information processing problem...”

Note that Gibbs entropy is the Shannon entropy for a particular set of random variables; namely,
when the values of the random variable designate energies or other physical properties of microstates.

The discussion so far has been focused mostly on classical aspects of entropy. To finally address
quantum physics, we introduce yet another entropy, the von Neumann entropy12,

SvN = −trρ ln ρ, (15)

where ρ is the density matrix describing our quantum state13. Given that we can always diagonalize
the density matrix, ρ =

∑
i pi |ψi〉 〈ψi|, where pi is the probability to find the eigenstate |ψi〉, we

obtain
SvN = −

∑
i

pi ln pi. (16)

And so, we see that all of these definitions coincide! One therefore needs to be careful when talking
about an “entropy”. In practice, one simply uses (15) to refer to the entropy when talking about
the GSL, which makes sense since it encompasses all other definitions.

Nevertheless, the fact that a distinction exists is exhibited in the types of entropy laws we
can have. For instance, the von Neumann entropy for a density matrix is invariant under unitary
transformations, e.g. time evolution, and so it obeys the GSL but only trivially: dSvN = 0. In other
words, if I know everything about my system, then there is no sense in which my ignorance can
grow. If one wants to talk about a proper second law behaviour, including the increase in entropy,
one needs to perform some sort of coarse-graining.

Here is where we need to make a distinction between gravitational and field theory settings. For
instance, in field theory, one can try to coarse-grain over all unitaries one performs; in this sense,
one would have more knowledge about the system prior to applying unitaries, therefore exhibiting a
second law behaviour14. However, we are more interested in gravitational settings in this dissertation.
And in order to properly talk about entropies in gravity, we will approach this issue holographically.

Quantum Extremal Surfaces The history of holographic entanglement entropy is short, but
we will still restrict our attention only to the most recent developments and refer the interested-
in-full-history reader to the following set of references: the first proposal was made by Ryu and
Takayanagi in [13] for static and stationary cases; the extension to arbitrary Cauchy slices was
made by Hubeny, Rangamani and Takayanagi in [14]; inclusion of perturbative quantum corrections
was done by Faulkner, Lewkowycz and Maldacena in [15], and full, non-perturbative inclusion of
quantum effects was achieved by Engelhardt and Wall [16]. The last paper has made it possible to
obtain a Page curve for an evaporating black hole; we will return to this issue in Sec. 2.4. Here, we
will see how to calculate an entropy in a gravitational setting using the methods of Engelhardt and
Wall.

12See also the discussion in Sec. 2.1.
13There are two types of states in quantum mechanics: pure and mixed. Pure states can be represented by a state

vector, while mixed states cannot and they arise for two different reasons. First, when the preparation of the system
is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and second when one
deals with partitions of the system, which result in entangled states (but one can have pure entangled states as well).

14For more discussion on this aspect, see [8]
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The method is simple and it follows the basic logic of this whole chapter: take an area, replace it
with Sgen, see what happens. In this particular case, we are interested in quantum extremal surfaces
(QES), which are defined as surfaces whose generalized entropy is stationary with respect to all
deformations,

∂`Sgen = ∂kSgen = 0, (17)

where ` and k represent future-directed normal null directions. The reason why we are interested in
these surfaces is because of the way holography works: a bulk defined quantity, such as a QES, will
have its counterpart on the boundary. That counterpart corresponds to the von Neumann entropy
associated to the anchoring region for the QES. There is a caveat though: there can be many such
surfaces in the bulk, but only one, unique von Neumann entropy for a specific region. The beauty
that lies behind all of these proposals is the realization that we must take the minimal QES to
correspond to our boundary entropy.

Now that we know how to calculate entropies in gravity (i.e. by finding the minimal QES), we
can return to the issue of GSL. Note that the GSL holds for many different surfaces (and for many
different horizons) [11], but we will be interested here in the case where we have simply a black hole
made from collapse.

The role of the observer in this holographic setting is played by the boundary anchor; in order
to calculate any entropy, we must pick a slice on which to evaluate this entropy, and this choice sets
a boundary time. And so, it is with respect to this observer that we claim ignorance or knowledge
about our state. Of course, one can talk about the bulk observer as well, but we do not have a
proper understanding of how to associate entropies in that case15.

So now that we have our observer, we can meaningfully pose a question regarding our information
about the state we are interested in, i.e. the density matrix. Following Wall [11], a density matrix
can be interpreted in a fine-grained sense as the complete information about a state, or in a coarse-
grained sense as the information available to an observer. Clearly, this also depends on what region
we have on the boundary: if the whole boundary is given to us, then our knowledge about the state is
complete and the fine-grained entropy should simply be zero. However, in the case we are given only
a part of the boundary, then due to entanglement between our region and the rest of the boundary,
we have a non-trivial answer. These results should be reflected in the bulk calculation as well: when
the whole boundary is given, and entropy is zero, our surface becomes the empty surface. This way
the area is manifestly zero and the bulk von Neumann entropy should now indicate that we have a
pure state. Notice that having an empty surface also means we have a full Cauchy slice. So, if we
believe in unitarity of the bulk, it should come as no surprise that the full, global state is pure. We
will come back to this issue, especially in the context of black hole evaporation in Sec. 2.4, but we
would like to ask what happens to the GSL in this holographic setting?

Remember, the GSL simply looks at how the generalized entropy evolves with respect to time
(or in gravity, from one Cauchy slice to another). If we are given the entire boundary, then it does
not matter what time slice we choose: the GSL will always be satisfied in a trivial sense - it is
simply always zero. Clearly this is not the interesting case. What if we restrict the knowledge of our
observer somehow? As we have just seen, this would mean restricting the access to certain regions
in the bulk. How much access? Well, the GSL was proven in cases when we “stop” at the horizon
and look at the exterior region. Stopping at the horizon also means including the horizon entropy
(the first term in Sgen), so that even if something falls across it, the corresponding increase in the
area will compensate. So, it is only in this coarse-grained16, horizon-stopping sense that we see a
proper second law behaviour. This also indicates that the cut of the horizon with the Cauchy slice
defines what happens to the entropy.

15Unless the observer lies in the asymptotic region of AdS, in which case we can approximately make predictions;
see Sec. 2.4.

16Note that Wall [8] calls this still a fine-grained GSL, even though he acknowledges the fact that stuff can fall
through, that is, that we have effectively an open system.
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However, notice that this will not work for a unitary black hole evaporation. In Sec. 2.4, we will
review some recent progress on the black hole information paradox and see how it gets (partially)
resolved, but for now we only need to know that both systems, the black hole and the radiation,
follow the Page curve. This tells us that the fine-grained entropy starts decreasing after the Page
time, directly contradicting the fine-grained GSL. In hindsight, this does not seem too surprising, for
the second law requires some sort of coarse-graining after all. We could have said that the horizon
plays the role of the coarse-grainer, but if we get “access” to the interior, then we have the complete
information about the system, and no increase in the entropy should occur. Likewise, notice that
we can only gain this access in some non-perturbative sense, since the semiclassical analysis does
not allow us to see beyond the Page time. So, it is also in this sense that this contradiction is
of no surprise, since the proofs of the GSL were made in the proper, semiclassical regime only.
Nevertheless, other coarse-grained versions of the GSL should still hold, i.e. in the case when we
look at the statistical thermodynamic entropy of matter etc.

Quantum Focusing Conjecture

The Penrose singularity theorem and its proof also indicate another important statement of GR: the
focusing theorem17. The basic mechanism behind the focusing theorem relies on two ingredients:
the NEC and the Raychaudhuri equation. The NEC, as we know, is obeyed by classical matter only,
and the Raychaudhuri equation describes the way congruences of geodesics behave under various
energy conditions,

dθ

dλ
= − 1

d− 2θ
2 − σabσab −Rabkakb, (18)

where d is the number of dimensions, Rabkakb is the Ricci tensor contracted by null vectors k,
σab is the shear tensor and θ is the expansion scalar. For our purposes, the shear will not be
important and the Ricci part translates into the stress tensor due to Einstein’s equation. Under
these two ingredients, the focusing theorem simply states that classical matter focuses light rays.
More precisely, the expansion scalar θ cannot increase along a congruence of lightrays, where θ is
the logarithmic derivative of the area spanned by the light-rays:

dθ

dλ
≡ d

dλ

(
dA/dλ
A

)
≤ 0, (19)

where A is an infinitesimal area element spanned by nearby null geodesics, and λ is an affine
parameter. And for the same reasons as in all previous examples, the theorem fails when we try
to incorporate quantum effects, which is why the quantum focusing conjecture (QFC) has been
proposed. Given that we already gave the necessary definitions in Sec. 2.1, it is simple to state what
the QFC is:

dΘ
dλ
≡ d

dλ

(
dSgen/dλ

A

)
≤ 0, (20)

where Θ is the quantum expansion scalar18. The QFC has proven to be quite a useful conjecture:
many known statements are implied or derived from it, such as the covariant entropy bound [18]
and many others, but we also have a completely new statement; namely the Quantum Null Energy
Condition (QNEC). It is surprisingly easy to derive it from the QFC. First, let us rewrite

Θ = θ + 4G~
A

S′out, (21)

17We could have used the quantum focusing conjecture to prove the quantum singularity theorem; however, as we
will see, the QFC is a stronger requirement than the GSL, although they operate in the same, semiclassical regime.
Also, the GSL has been proven in various instances [17], while QFC remains a (powerful) conjecture.

18Technically, this form of the QFC is valid only when the variations are done along the same null generator - it
is the “diagonal” QFC, which is less trivial than the “off-diagonal” counterpart, which follows directly from strong
subadditivity; see [7] for further details.
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and simply expand on (20),

0 ≥ Θ′ = θ′ + 4G~
A

(S′′out − S′outθ)

= −1
2θ

2 − σ2 − 8πG
〈
Tabk

akb
〉

+ 4G~
A

(S′′out − S′outθ).
(22)

Now, the QFC stated in this way allows for a couple of interesting limits. For instance, we can check
what the classical limit gives, ~ → 0. We see that in this case, the classical focusing conjecture is
recovered, as expected. We also see in this limit for θ = σ = 0 that we recover the NEC. However,
something interesting happens under the same condition of vanishing shear and expansion while
keeping the quantum properties: 〈

Tabk
akb
〉
≥ ~

2πAS
′′
out. (23)

This is the quantum NEC, i.e. the QNEC. It is the first lower bound on the local stress tensor in
quantum field theory19. It is stronger than the averaged NEC, it implies the Bekenstein bound [20],
but it also implies the “ant conjecture”20 of Wall [21].

Notice that the QNEC does not depend on G; it is a purely field theory statement. This also
implies that there is a possibility to check the validity of this condition - and this was precisely done
in several lengthy papers, using various methods regarding operator algebras and such [22; 23; 24].
And yet, it is almost trivial to obtain it from the QFC conjecture. Perhaps one can view this as a
new facet of unity in Nature, one that Bekenstein had the first glimpse of. Perhaps, we can view
this as evidence that quantum gravity not only governs the rules of deep singular regions, but also
the information content of relativistic QFTs, and at low energies of all. Perhaps, although we must
remember the regime of validity of the QFC and how exceedingly far away it is from the epicenters
of quantum gravity.

Quantum Singularity Theorem

The original singularity theorem constitutes one of the most important results in General Relativity
[25]. It indicates that the theory must break at some point, and that point is always associated to
either black holes or cosmologies; it is the proof, in some sense, that there must be a theory beyond
classical GR. However, the theorem includes only classical matter and no topology changes, and so
we must ask ourselves if the singularity remains inevitable if we start including quantum effects.
This question was precisely answered by Wall [8] in the regime of semiclassical gravity.

However, before we move on to the quantum generalization of the theorem, we have to address
what we actually mean by a singularity in a precise, mathematical sense. First, a singularity cannot
be regarded as a “place” of some sort: we need a well-defined manifold and metric around every
event we wish to speak of. In this sense, the black hole singularity nor the Big Bang one belong
to the actual manifold, and so, cannot be denoted by a “place” nor “time”. One might think then
that singularities can be defined externally, as a sort of a boundary that surrounds the manifold of
interest. However, this has proven to be a fairly difficult task, even though several approaches exist;
see Sec. 9 in [26] for further discussion. One could try and characterize the existence of singularities
in an indirect way, e.g. by keeping an eye on the Riemann curvature scalar. Unfortunately, not all
singular spacetimes have R blowing up21, and so we must find another criteria.

19Besides the AANEC, which is an integrated energy condition, there is also the smeared condition, dubbed the
SNEC [19]. The SNEC bounds the smeared stress tensor by a c-number, while for QNEC, the bound depends on the
quantum state.

20The conjecture places a lower bound on the energy density in terms of information-theoretic quantities by the use
of QNEC. The author employs an ant in order to survey the field values and to explore what is the minimum amount
of energy she might expect in the land far ahead (1-dimensional land) given everything she knows so far. The answer
differs with respect to classical, quantum and gravitational settings.

21Just cut out a wedge from your favorite smooth manifold; the spacetime will be singular, yet the Riemann scalar
will remain finite.
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It turns out that the most satisfactory answer is given by the presence of “singular leftovers”
or “holes”. We can track these holes by looking at geodesics which have finite affine length, i.e.
which are inextendible in at least one direction, but have only a finite range of affine parameter22.
Such geodesics are called incomplete, and we can use them to classify our spacetimes: a spacetime
is singular if it possesses at least one incomplete geodesic. Only now that we have this definition
can we think about R blowing up or not, and performing a sub-classification based on the behaviour
of the Riemann scalar. However, no definition is perfect and there are many caveats to this one.
For instance, it still does not address all of the examples one can come up with [26]. Nevertheless,
experience has shown that it is the best telltale sign of physically pathological behaviour, and we
use exactly this definition in all theorems where singularities play a role.

Having sufficient faith in the above definition, we can now formulate the original singularity
theorem and outline its proof. In essence, it states that in a globally hyperbolic spacetime which
obeys the NEC, the presence of trapped, compact surfaces T on a connected, non-compact Cauchy
slice Σ indicates that the spacetime is null geodesically incomplete. Recall that trapped surfaces
have null outgoing light rays with negative expansion, which under the Raychaudhuri equation must
reach a caustic23 in a finite affine parameter. And so, the boundary of the future of a trapped
surface is closed and compact, as one can verify in [26]. And, if global hyperbolicity holds, then this
closed and compact surface can be mapped into a closed and compact subspace of the non-compact
Cauchy surface. Why would we want to do that? We are simply evolving the trapped surface back
to the slice on which we began erecting its future boundary. And this is crucial, since the boundary
of a boundary is an empty set, and so, one cannot embed such a closed and compact surface without
boundary as a subspace of a non-compact slice, unless our spacetime is geodesically incomplete.
Therefore, given a trapped surface, we must have singularities24!

Now we can turn to the quantum generalization but first let us recall the definition of a quantum
trapped surface. Suppose that on some Cauchy surface Σ in a globally hyperbolic spacetime, a
compact codimension-2 surface Tq exists, and its exterior is non-compact. If N is the null surface
generated by outward future-directed light rays, and if the generalized entropy is decreasing with
time with respect to future null deformations, then Tq is called a quantum trapped surface; see also
Sec. 2.1. In the classical limit, the generalized entropy is simply the area, so this criteria reduces to
the classical notion of a trapped surface.

It turns out that the proof can be closely related to the proof of the original singularity theorem.
One similarly starts with the assumption of a non-compact Cauchy surface containing a quantum
trapped surface, but instead of the NEC, we now assume that the GSL holds: Sgen cannot decrease
on causal horizons. The GSL implies (by contradiction) that the null generators reach caustics in
finite affine parameter time, and from here, the proof is proceeds as in the classical case. Notice
that we used the fine-grained notion of the GSL. This indicates that this proof will fail say, after the
Page time in an evaporating black hole, although it does not mean there will not be any singularities
left behind: we simply cannot use this proof to show that. However, one might argue that in full
quantum gravity, you would not expect any singularities. After all, they are the label that indicates
the breaking point of our theory, but “the theory of quantum gravity” should be complete in that
sense; we will come back to this issue in Sec. 4.

22For timelike and spacelike geodesics, finite affine “length” is equivalent to finite proper time or length, so the use
of affine parameter simply generalizes the notion of “finite length” to null geodesics.

23A caustic (conjugate point, focal point) is a point where θ → −∞, which happens when the cross-sectional area
vanishes, i.e., when infinitesimally neighboring geodesics intersect.

24Note how compactness plays a crucial role in this proof. If one were to start with a trapped surface on a compact
Cauchy slice, we would not have any problems with the embedding. For example, this is the case of trapped surfaces
in de Sitter spacetime, where we have trapped surfaces and no singularities [27].
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2.3 Quantum Penrose Inequality
Following the trend of simple area replacements, we describe yet another instance of how semiclassical
physics paves new ways25 for understanding certain aspects of quantum gravity. We introduce the
notion of quantum Penrose inequality and its various implications as the first energy bound in a
gravitational setting which depends on purely information-theoretic concepts. But first, we must
describe the (classical) Penrose inequality; see Ref. [28] for a broader review.

Let m be the total mass of an asymptotically flat spacetime. Let µ be a trapped surface that
has minimal area among all surfaces that enclose it, on some Cauchy surface that contains µ. Then

m ≥
√

A[µ]
16πG2 . (24)

Next, we provide detailed definitions and explanations of the terms appearing in this formulation.
Let (M, gab) be a connected Lorentzian spacetime with metric. Let µ be a codimension 1 + 1
compact spacelike submanifold (a “surface”). 26 Let θ± be the expansion of the future-directed
light-rays emanating orthogonally from µ to either side. If θ+ ≤ 0 and θ− ≤ 0 then µ is called
trapped. If θ+ = 0 and θ− ≤ 0 then µ is marginally trapped.

Now let (M, gab) be in addition asymptotically flat. Note that we do not require µ to be
connected; for example in a spacetime where multiple black holes are forming, µ could be the
union of connected marginally trapped surfaces inside some or all of them.

Suppose that the surface µ has an “outer wedge” OW that contains a single asymptotic region.
By this we mean that µ forms the only boundary of any Cauchy surface of a globally hyperbolic
region of space OW that (in, what Wald calls the “unphysical spacetime”, or simply the Penrose
diagram) contains a single copy of spatial infinity, i0. This will be the case for trapped surfaces in
a spacetime with a single asymptotic region. In the case of “two-sided” black hole solutions, it will
hold if µ is homologous27 to a horizon (with either choice of side), but not if µ is contractible. We
will be interested in bounding the mass at spatial infinity [29] from below.

Finally, we assume that there exists a Cauchy surface Σ of OW on which µ is the minimal
area surface homologous to large spheres near i0 (or in the AdS case, homologous to the boundary
sphere) [30]. The purpose of this set of assumptions will become clear as we turn to presenting a
heuristic argument that the Penrose Inequality should hold for µ.

Heuristic argument

The Penrose Inequality was originally intended as a test of cosmic censorship, which guarantees
that an asymptotically flat spacetime with regular initial conditions will be strongly asymptotically
predictable [26]. If this latter property holds, then a compelling argument can be given that the
Penrose inequality must hold; thus, any regular initial data set that violates the Penrose inequality
would likely exclude cosmic censorship.

Roughly speaking, strong asymptotic predictability establishes the existence of Ṽ , a globally
hyperbolic open subset of M that contains any black hole horizons and their exterior, Ṽ ⊃ ¯J−(I+).
(See Ref. [26] for more details.) The black hole region is B ≡ M − J−(I+). The black hole event
horizon is its boundary Ḃ.

Suppose that
Rabk

akb ≥ 0 , (25)
25And papers.
26In the remainder of this chapter, we will specialize to 3+1 dimensional spacetime, so that µ will be a 2-dimensional

surface. Generalization to higher dimensions is trivial.
27Two cycles (closed submanifolds which are not boundaries of any other submanifolds) are said to be homologous,

or equivalently, belong to the same homology class, if they can be continuously deformed into each other.
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as would be the case if Einstein’s equations hold with matter satisfying the Null Energy Condition.
Then any trapped or marginally trapped surface µ must lie in the black hole region:

µ ⊂ B . (26)

For a proof, see Propositions 12.2.2 in Ref. [26]. The key technical assumption is that M be strongly
asymptotically predictable.28

Let H = Ḃ ∪Σ be the slice of the black hole event horizon (possibly with multiple disconnected
components), on the Cauchy surface Σ of OW . Since µ has minimal area on Σ, it follows that the
horizon must be at least as large:29

A[H] ≥ A[µ] . (27)

The Null Curvature Condition, Eq. (25), and strong asymptotic predictability imply that the
area of the event horizon cannot decrease with time [31]. Let H ′ = Ḃ ∪ Σ′, where Σ′ is a Cauchy
surface to the future of Σ. Then

A[H ′] ≥ A[H] . (28)

Physically, it is reasonable to assume that regular initial data will eventually settle down to a
Kerr black hole. In 3+1 dimensions, this follows from the assumption of late-time stationarity, by
the Israel-Hawking-Carter theorems [32]. Letting H ′ be a slice of the horizon at this late time, the
formula for the area of a Kerr black hole implies that

16πG2m2
Kerr ≥ A[H ′] . (29)

The spacetime will not be exactly Kerr, however. One expects that massive fields will have fallen
into the black hole, but there may be massless fields that propagate to future null infinity. Because
this radiation becomes dilute and well separated from the black hole, gravitational binding energy
will be negligible. Hence the ADM mass, m, will be given by the sum

m = mKerr +mrad ≥ mKerr . (30)

Combining the previous four inequalities, we obtain the Penrose conjecture, Eq. (24).
We would like to add a second, somewhat independent heuristic argument for Eq. (24). A future

holographic screen is a hypersurface foliated by marginally trapped surfaces called leaves [18; 33; 34].
Assuming the Null Energy Condition, the area of the leaves increases monotonically along this
foliation [34; 35]. In the spherically symmetric case, the screen eventually asymptotes to the event
horizon (from the interior), so its final area will be equal to the late time event horizon area. Thus the
screen area theorem implies the Penrose inequality in this case. More generally, given a marginally
trapped surface µ, a future holographic screen can be constructed at least in a neighborhood. The
Penrose inequality would follow from the stronger assumption that there exists a future holographic
screen that interpolates from µ to the late-time event horizon, as in the spherical case.

Violation by quantum effects

In this section, we will show that there is a need for a quantum generalization of the classical Penrose
inequality (CPI). We will construct an explicit counterexample that is based on a Boulware-like state
outside a Schwarzschild black hole. It violates the CPI by a substantial, classical amount.

This will be a counterexample to the CPI in the same sense as black hole evaporation is a
counterexample to Hawking’s area theorem: we identify a physically allowed state in which a key

28The same property, ν ⊂ B, follows from Proposition 12.2.3 in Ref. Wald for another class of surfaces called outer
trapped. These would form an alternate starting point from which the classical and quantum Penrose conjectures
could be developed along the same lines as we do here for trapped surfaces.

29Instead of assuming that µ has minimal area on some Cauchy slice of OW , an alternative way of handling this
issue is to replace A[µ] with the minimal area of all surfaces enclosing µ on a given initial Cauchy slice [28]. Verifying
this assumption does not require knowledge of more than the initial slice.
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Figure 3: Left: A null shell collapsing in asymptotically flat spacetime. The classically marginally
trapped surface µ is slightly outside of the event horizon due to the evaporation. It is not clear
that this example violates the CPI. Right: initial data that violates the classical Penrose inequality.
Here µ is the bifurcation surface of the Schwarzschild (Kruskal) solution. Inside a proper distance
dc, the state is the Hartle-Hawking vacuum. Outside of dc,it becomes the Boulware vacuum, which
has negative energy in the near-horizon zone (blue strip). This lowers the mass at infinity by an
O(1) fraction compared to a classical black hole.

assumption of the classical statement, the Null Energy Condition, does not hold, and we verify that
the conclusion fails as well.

However, before we turn to our counterexample, it is worth noting that no obvious violation
of the CPI arises in the “normal” formation and evaporation of a black hole in the Unruh state.
This is interesting, because in this setting the Null Energy Condition is already violated, and other
theorems like the area theorem or the focussing theorem do fail. In order to have full control and
exclude transient effects, let us consider the collapse of a null shell of mass m; see Fig. 3. Then by
causality, there are no corrections to the classical solution on the shell and to its past, where the
spacetime is a portion of Minkowski space. In particular, the marginally trapped surface on the shell
will have the same area as in the classical case, and the CPI will be saturated. (The fact that the
event horizon is inside of this surface is irrelevant.) At later times, we expect the apparent horizon
area to decrease. Since the mass at infinity does not change during evaporation, the CPI will remain
satisfied.

We do not claim that the CPI will hold for all black holes formed from collapse; and even in
the above example, its validity may rely on idealizations, such as treating the collapsing null shell
as infinitely thin and stable. But we would like to exhibit a situation where the CPI is definitely
violated; in order to do this, we will consider a somewhat more artificial (but certainly valid) quantum
state.

To demonstrate a violation of the classical PI by quantum effects, we now consider a Boulware-
like state [36] of a massless scalar field, on one side of a maximally extended Schwarzschild black hole,
at the time-symmetric slice; see Fig. 3. The Boulware vacuum is analogous to the Rindler vacuum.
It corresponds to vanishing occupation number of the modes with support strictly outside the event
horizon. This will contribute some negative energy outside of the black hole, in the near-horizon
region R < r < 3R/2. Far from the black hole, the stress tensor vanishes in the Boulware vacuum.

Note that the classical Penrose inequality, when applied to the bifurcation surface, is classically
saturated. That is, it is saturated if the stress tensor vanishes everywhere outside the black hole.
Thus, any net negative energy in the exterior will lead to a violation of Eq. (24).

The local stress tensor diverges in the Boulware vacuum as the horizon is approached [36; 37].
We regulate this divergence by building wavepackets with support strictly outside of a sphere Hc at
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Figure 4: A typical wavepacket mode in the thermal atmosphere of the black hole, regulated to
have support outside a sphere a proper distance dc outside of the horizon. The classical Penrose
inequality is violated in a Boulware-like state in which such modes have zero occupation number
and negative energy. In a local inertial frame (black Killing vector field, ∂τ , where τ is proper time),
a large fraction of their energy is concentrated near the cutoff dc. The total energy must appear
positive in this frame; this can be satisfied by adding a comparable amount of positive energy inside
of dc. To an asymptotic observer (red Killing vector field, ∂t), the negative energy is spread evenly
over the mode, due to the greater redshift near the horizon. Thus the positive energy beyond the
cutoff has a negligible effect on the ADM mass.

proper distance dc > 0 from the horizon (in this case, from the bifurcation surface). For full control
of the semiclassical expansion, we choose

lP � dc � R . (31)

Roughly speaking, this yields a Hartle-Hawking-like state (vanishing stress tensor) inside of Hc, and
a Boulware-like state outside of Hc.

Integration of the QFT stress tensor computed in Ref. [37], outside the regulator sphere Hc,
yields a QFT contribution to the energy at infinity of order −(lP /dc)2M , where M = R/2G is the
mass of the black hole [38]. Here we will go further; instead of naively gluing to QFT states across
a surface (which is does not generally yield an allowed QFT state), we consider junction effects at
Hc. Positivity of the energy for infalling observers requires some positive energy near Hc, which we
wish to estimate and show to be negligible.

For this purpose it will be useful to analyze the problem mode by mode. This will allow us to
distinguish between two cutoffs that we can freely choose: the angular momentum of the included
QFT modes, and dc. Establishing a small hierarchy between these cutoffs will give us a control
parameter 1/nnode � 1, by which the positive energy at Hc is suppressed at infinity, relative to the
negative contribution.

We will focus on the most relevant modes in the near-horizon zone, which have occupation
number of order one in the thermal ensemble corresponding to the Hartle-Hawking state. These
modes have the property that any wavepacket constructed from them has characteristic wavelength
comparable to its distance from the horizon. Moreover, increasing the occupation number of the
mode by 1 increases the energy at infinity by ~/R.

This set of modes includes s-waves as well as modes with nonzero angular momentum. Here
we will use ` = 0, 1, . . . for the angular momentum quantum number. The number of modes in the
thermal atmosphere can be estimated from the number of nodes in a strictly outgoing Rindler mode
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in an interval beginning at proper distance dc from the horizon and ending at a distance R (for
the spherical modes, which we approximate as propagating freely) or R/(`+ 1) (for the modes with
angular momentum, which we approximate as being reflected by an angular momentum barrier).
See Fig. 4. Hence there are

n` = (2`+ 1) log
(
R/(`+ 1)

dc

)
(32)

linearly independent modes with angular momentum `.
In the Hartle-Hawking state, these modes are all thermally excited withO(1) occupation numbers;

this corresponds to vanishing stress tensor near the horizon. In the Boulware-like state, the modes
are unoccupied. This corresponds to a negative stress tensor; it contributes an energy at infinity of
order −~/R, per mode. We choose a cutoff `max on the angular momentum such that the angular
momentum barrier is somewhat outside the short distance cutoff dc:

log log
(
R/(`max + 1)

dc

)
∼ O(1) , (33)

where the second log enforces a small hierarchy whose purpose will become clear below. From the
previous two equations, the total number of unoccupied modes is

ntotal ≡
`max∑
`=0

n` ∼
R2

d2
c

. (34)

Thus the total energy at infinity of the quantum field will be

Eneg ∼ −
~
R
ntotal ∼ −αM , (35)

where
α = l2P

d2
c

. (36)

The presence of a substantial amount of negative energy outside the black hole may seem suspect.
However, we note that our construction cannot achieve vanishing or negative total ADM mass. Since
the black hole contributes M , the total mass is (1−α)M . Making this negative would require taking
dc . lP , in conflict with Eq. (31), and so would take us outside of the semi-classical expansion.
Moreover, our result is consistent with positive total matter energy in an appropriate neighborhood
of the horizon. This is important since the spacetime can be treated as approximately flat on a
distance scale dc � dflat � R.

To see this, we note that the wavepackets we study have approximately constant Killing energy
per cycle, where a cycle denotes the portion of a wavepacket between two nodes. See Fig. 4. The
local proper wavelength of a given mode grows as the distance from the horizon, but this is precisely
cancelled by the decreasing redshift. Thus from the viewpoint of infinity, each cycle of each mode
contributes an ADM energy (per occupation number) of ~/(Rnnode), where

nnode(`) ∼ log
(
R/(`+ 1)

dc

)
(37)

is the number of nodes or cycles in the wavepacket.
In a local inertial frame, on the other hand, there is no redshift effect. Yet, the proper wavelength

grows exponentially away from the horizon, roughly doubling with every cycle. Thus an O(1) fraction
of the local energy of a mode is contained in the first phase cycle. In the Boulware-like state, this
is the negative energy that must be cancelled. To have positive energy in the local frame, it suffices
to have compensating positive energy just for this first cycle. The positive energy can be localized,
for example, just below dc.
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This positive energy will partially cancel the negative ADM energy of the quantum state, Eq. (35).
But because all cycles of the wavepacket contribute equally to the Killing energy, the correction is
parametrically small, of order |Eneg|/nnode � |Eneg|. In practice, nnode of order a few suffices, so
we will not update Eq. (36). The purpose of the second log in Eq. (33) was to chose the angular
momentum cutoff `max so as to achieve nnode ∼ a few, for all modes involved in the construction.

Finally, we note that the location and area of the marginally trapped surface do not receive
large enough corrections to rescue the classical Penrose inequality. The bifurcation surface remains
marginally trapped when we pass from the classical treatment to the Hartle-Hawking state, since the
stress tensor vanishes there. Our construction keeps the Hartle-Hawking state near the bifurcation
surface, up to corrections that can be suppressed arbitrarily by dialing nnode � 1.

To summarize, one can reduce the mass at infinity from M (in the Unruh state) to (1− α)M in
the Boulware-like state. Since we require that lP � dc for control, this correction is parametrically
small, α � 1. But since the Penrose inequality is saturated classically for a Schwarzschild black
hole, our example violates it.

Moreover, the violation is substantial in the sense that it is not O(~) but O(1). The contribution
from each mode is O(~); but the number of available modes in the thermal atmosphere, at fixed
control parameter lP /dc, is ntotal ∼ O(~−1). Thus, the negative energy of the quantum fields can
cancel off an O(1) fraction of the black hole’s classical mass.

Lessons from the counterexample

The failure of the classical PI in the presence of quantum matter (Sec. 2.3) illustrates the need for
a Quantum Penrose Inequality. It also motivates some of the choices we will make below.

Let us distinguish two different time-scales: the time for the negative energy of the Boulware-like
state to enter the black hole, and the evaporation time. The former is of order the scrambling time
∆ts ∼ R log(R/lP ). The latter is much greater, of order R3/G~.

On the shorter time-scale, the process results in an outcome very similar to that invoked in
motivating the classical Penrose inequality: a Kerr black hole with area Alate and no further
evolution. That is, we neglect evaporation since it occurs on a much greater timescale; and
by construction, no matter that will ever enter the black hole. Thus, the mass should obey
16πG2m2 ≥ Alate.

The key difference to the classical case is that the “late” area need not be greater than the area
of trapped surfaces at earlier times; indeed our counterexample shows that it will not be. However,
we know that the Generalized Second Law (GSL) takes the place of the area theorem in this setting.
Thus, we expect that the generalized entropy of earlier quantum trapped surfaces should be less
than Alate/4G~. And so, the generalized entropy of quantum trapped surfaces should replace the
area of trapped surfaces when we replace the classical by a Quantum Penrose Inequality.

This argument is based on the GSL for the event horizon, and so involves an intermediate step
where one argues that the generalized entropy of a quantum marginally trapped surfaces inside the
black hole will not be greater than that of the event horizon. To avoid this step, we can generalize
the second heuristic argument for the classical Penrose inequality, which was based on the area
theorem for future holographic screens. Q-screens obey a GSL that interpolates directly between
different marginally quantum trapped surfaces. If a suitable Q-screen connects µQ to the late-time
event horizon, this establishes a Quantum Penrose Inequality. Of course this is far from a trivial
assumption; our goal here was only to gain some intuition.

In the above heuristic arguments, it was important that the late-time generalized entropy should
be given just by Alate, i.e., that no entropy remains outside of the black hole. However, this will not
be the case in general examples. This will motivate our choice, below, that the generalized entropy
entering the Quantum Penrose Inequality should be evaluated on slices that remain inside the black
hole. We will discuss this important issue further in Sec. 2.3.
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Figure 5: The Quantum Penrose Inequality bounds the mass at infinity in terms of the generalized
entropy of a quantum marginally trapped surface µQ. The generalized entropy must be evaluated on
the lightsheet L (red line), not on a Cauchy surface Σ of the outer wedge OW [µQ] (shaded region).

Formulation of QPI

We will now obtain a Quantum Penrose Inequality from the classical PI, in three steps. First, we
replace the area with generalized entropy in Eq. (24):

A→ 4G~Sgen ≡ A+ 4G~Sout . (38)

Thus we propose an inequality of the form

m ≥
√

~Sgen

4πG . (39)

Secondly, we must specify the surfaces to which the inequality can be applied. In the classical
case, a surface µ has to be trapped for the Penrose inequality to apply, corresponding to criteria
satisfied by the classical expansion. For the QPI, it is natural to apply the same criteria to the
quantum expansion:

θ → Θ . (40)

Thus in Eq. (39), Sgen is the generalized entropy of any surface µQ that is quantum trapped. We
expect that the most interesting bounds will obtain when µQ is quantum marginally trapped, and
we will only consider this case in all examples below.

Next, we must specify on which achronal hypersurface the generalized entropy appearing in
Eq. (39) should be computed. As we will explain in Sec. 2.3, this cannot be chosen to be a Cauchy
surface of the outer wedge. Instead, we will propose that this hypersurface should be entirely
contained in the “black hole region” B ≡M − J−(I+), i.e., inside or on the horizon.

More precisely, we require that Sgen should be evaluated on the “future portion” of the boundary
of the outer wedge,

L(µQ) ≡ ȮW (µQ)− I−(OW (µQ)) . (41)

See Fig. 5. L is generated by the congruence of future-directed outgoing null geodesics orthogonal to
µQ [26; 39]. Their initial quantum expansion is Θ+ = 0 by construction, so assuming the QFC [7],
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Θ+ ≤ 0 everywhere on L. Hence L will be a (quantum) lightsheet of µQ. Assuming an appropriate
version of weak cosmic censorship, L will terminate on the singularity inside the black hole. (Strictly,
in order to remain in the semi-classical regime, one should terminate L slightly earlier, resulting in
a second area term that can be made small by approaching the singularity.)

Note that the surface µQ must be quantum trapped with respect to L; it need not be quantum
trapped with respect to any other hypersurface, such as a Cauchy surface of OW (µQ). To find a
suitable µQ, consider a null hypersurface N inside the black hole, for example the boundary of the
future of an event q inside the black hole; see Fig. 5. Typically the area of N will increase near q
and later decrease towards the singularity. Hence the area will have a maximum on some cut of N ,
and the generalized entropy of cuts of N (computed with respect to the future of the cuts on N)
will have a maximum on some nearby cut. This cut will be a suitable quantum marginally trapped
surface µQ, and later cuts will also be quantum trapped.

Finally, we must impose a requirement analogous to the minimum area condition imposed on µ
in the classical case. This condition demanded that there exist a Cauchy surface of OW on which no
surface enclosing µQ has area less than µQ. Here, we will instead consider the generalized entropy
of any surface ν enclosing µQ, computed on the boundary of the future of the outer wedge of ν. For
the QPI to apply to a quantum trapped surface µQ, we demand that there exist a Cauchy surface
of OW [µQ] on which no enclosing surface ν satisfies Sgen[ȮW (ν)− I−(OW (ν))] < Sgen[L(µQ)].

To summarize, we propose that the mass at spatial infinity of an asymptotically flat spacetime
satisfies the Quantum Penrose Inequality

m ≥
√

~Sgen[L(µQ)]
4πG , (42)

where Sgen is computed on the future-outgoing lightsheet of µQ, and µQ is any quantum trapped
surface homologous to spatial infinity that has minimal generalized entropy on some Cauchy surface
of its outer wedge, in the sense described above.

We close by discussing a subtlety that introduces a small uncertainty in the formulation of the
QPI. In Eq. (42), we used the classical functional relation between the area and mass of Schwarzschild
black holes; we merely replaced the area with the generalized entropy. In fact, there will be a field-
content-dependent quantum correction to the functional relation itself. However, this correction is
small compared to the difference between our QPI and the classical Penrose inequality.

This is easier to discuss in asymptotically Anti-de Sitter (AdS) space, where the Schwarzschild
black hole can be in thermal equilibrium. In general, the black hole exterior will have nonzero energy
density in equilibrium. This is a kind of Casimir energy associated with the potential well provided
by the near horizon zone. It contributes to the total mass at infinity; but since it stays outside the
black hole, it will not contribute to Sgen[L(µQ)].

By dimensional analysis, one expects each field theory degree of freedom to contribute an amount
of order ~/R to this Casimir energy. In Eq. (42), this is equivalent to changing the area or generalized
entropy by O(c), where c is the number of matter quantum fields. For large black holes in AdS, it
is possible to determine this correction and include it in the QPI. However, we are presently unable
to determine this correction except for large AdS black holes [40].

Since Sgen is O(~−1) and c is O(1), the undetermined Casimir term in Eq. (42) is subleading.
But naively, it is comparable to the refinement we introduced in passing from the classical Penrose
inequality to the QPI. However, the Casimir correction cannot be enhanced by factors proportional
to ~−1. Thus it is much smaller than the violations of the classical Penrose inequality that were
exhibited in Sec. 2.3. Because of the ~−1 enhancement, Eq. (24) can be violated by a classical
amount through quantum effects. Correspondingly, a successful QPI cannot be a small modification
of the classical Penrose inequality. Indeed, it is not: as we shall demonstrate in the next section,
the counterexample to Eq. (24) is evaded by Eq. (42). In this and many other interesting examples,
the Casimir correction is small compared to the difference between Eq. (24) and Eq. (42).
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Figure 6: Black hole formed from the collapse of a null shell (orange line). The classically marginally
trapped surface µ lies a Planckian distance outside of the event horizon. The quantum marginally
trapped surface µQ lies a Planckian distance inside the horizon. The lightsheet L(µQ) captures
∼ log(R/lP ) infalling Hawking modes (orange dashed lines); in the Unruh states these modes are
unoccupied and so contribute negative entropy on L, compared to the Hartle-Hawking state. L
ends at the singularity and does not encounter any later infalling modes (purple dashed lines). The
entropy on L can also be computed using the mutual information, SL = SC − SB + I(L : B).

Evidence for the QPI

We will now analyze the validity of our proposal in a number of examples. In the process, we will
gain some intuition about the key quantity that appears in it: Sgen[L], the generalized entropy of
the future-outgoing lightsheet L of a quantum marginally trapped surface µQ.

Black Hole in the Unruh State

As a first example, consider a black hole formed from collapse of a null shell; see Fig. 6. This is the
example we analyzed in the context of the classical Penrose inequality, at the beginning of Sec. 2.3.
We showed there that the CPI is saturated, since the area of the classically marginally trapped
surface µ immediately after the collapse satisfies

16πG2m2 = A[µ] . (43)

Here we are interested in a quantum marginally trapped surface with largest generalized entropy,
for which the QPI provides the greatest lower bound on the mass. The area of (quantum) trapped
surfaces decreases along with the event horizon, and the contribution from the entropy term is
approximately time-independent. Hence we will again choose the earliest possible surface µQ, right
after the collapse.

The quantum marginally trapped surface µQ must lie inside the event horizon [8], whereas µ lies
outside. Therefore

A[µQ] < A[µ] . (44)

We now turn to estimating Sgen[L]. Strictly, Sgen[L] should be computed from the quantum
state on a global Cauchy surface Σ that contains L. One would first compute the (divergent)
field theory entropy S[L] by tracing over the complement of L on Σ. One would then add the
gravitational counterterms whose leading contribution is A[µQ]. Locally, in a vacuum state, one
expects Sgen ≈ A[µQ]/4G~, where G is the “infrared” value of Newton’s constant that would be
observed at large distances.
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However, the state on L is not a standard vacuum state. L nearly coincides with the black hole
horizon for a time t� ∆ts, where ∆ts is the scrambling time. The vacuum state on the horizon is
the Hartle-Hawking state, which contains ingoing radiation. The ingoing radiation on L is entangled
with modes on the other side of L. This contribution must be canceled by the counterterm so as to
obtain Sgen ≈ A[µQ]/4G~ in the Hartle-Hawking state.

The actual state we consider here is the Unruh state, which does not have this ingoing radiation.
As a result, the lightsheet will contain less entropy than in the vacuum state. Thus

Sgen[L] < A[µQ]
4G~ . (45)

Combined with Eqs. (43) and (44) this establishes that the QPI is satisfied (and not saturated) in
this example.

We would like to go further and estimate the “gap” by which the QPI fails to be saturated in
this example,

∆ ≡ 4πG
~

m2 − Sgen[L] . (46)

We will be interested only in the order of magnitude of this gap and so will make a number of
approximations. We refer to Sec. 2.3 for notation and conventions.

First, we will assume that the higher angular momentum modes, ` > 0, in the near-horizon zone
completely reflect off of the angular momentum barrier and so will behave as if they were in the
Hartle-Hawking state. In this approximation, the Unruh state differs only through the spherical
(` = 0) modes, which we treat as having no angular momentum barrier at all. We also assume that
the ingoing and outgoing s-waves do not interact.

A Planck sized, radially outgoing wavepacket starting a Planck distance from the horizon will
be redshifted in such a way that its proper distance from the horizon remains comparable to its
proper wavelength, while it propagates in the near horizon zone, r . 3R/2. Thus, the number of
independent ingoing s-wave modes captured by L is of order log(R/lP ), as shown in Fig. 6. In other
words, L “sees” what enters the black hole in the first scrambling time after infalling geodesics that
would have crossed µQ (see also Appendix A).

Every such mode would contribute O(1) entropy in the Hartle-Hawking state but is pure in the
Unruh state (since it is in the ground state). The missing entropy, and the gap to saturating the
QPI, is thus

∆ ∼ log R

lP
. (47)

The entropy on null surfaces can have surprising and counter-intuitive properties [41]. As a check
on the above arguments, we verify this result by evaluating Sgen[L] using an alternative method, in
which von Neumann entropies are evaluated only on spacelike hypersurfaces.30

The mutual information of any two systems is defined in terms of the von Neumann entropies of
the individual and joint systems as follows:

I(L : B) ≡ SL + SB − SLB . (48)

Here we consider the lightsheet L and the partial Cauchy surface B shown in Fig. 6. We take B to
be null until it meets the end of the near horizon zone, r = 3R/2, and to coincide approximately
with a constant t hypersurface outside of this radius. To stay in the semiclassical regime, one can
terminate L slightly before the singularity. We can choose this terminal surface to have area cl2P ,
where 1 � c � log(R/lP ). The second inequality ensures that its contribution will be subleading
to our result.

30We thank Aron Wall for suggesting this approach.
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Note that the joint system LB is equivalent by unitary evolution to the purely spacelike Cauchy
surface C. We can thus evaluate the von Neumann entropy on L as

SL = SC − SB + I(L : B) . (49)

Moreover, L and C have the same boundary, µQ, whereas B has a boundary of negligible area. It
follows that

Sgen[L] = Sgen[C]− SB + I(L : B) . (50)
We chose µQ to be just after black hole formation, so there will be no outgoing Hawking radiation
present on C. In the Unruh state, the ingoing spherical modes in the near-horizon zone are
unoccupied, which reduces the entropy by log(R/lP ) compared to the Hartle-Hawking value. Hence

Sgen[C]− A[µQ]
4G~ ∼ log R

lP
. (51)

In our approximation, B captures the same outgoing modes as C, but none of the ingoing modes
that cross L, so SB = 0. There is no data on L that is entangled with data on B, so I(L : B) = 0.
Hence Eq. (49) implies Sgen[L] = Sgen[C] in our example. Since 16πG2m2 = A[µ] = A[µQ] +O(l2P ),
we recover Eq. (47).

Note that the Planck length enters Eq. (47) through the position of the quantum marginally
trapped surface µQ, which is a proper distance of order lP inside of the event horizon (or of µ). It
would appear, therefore, that ∆ could be minimized if one could arrange for µQ to lie a distance
comparable to R inside the horizon. However, this requires a large perturbation of the black hole,
to which the current analysis does not apply. We will revisit this question in Sec. 2.3.

Near-Saturation of the QPI

In the previous subsection, we found that in a newly formed Schwarzschild black hole with no exterior
matter, the QPI will be satisfied but not quite saturated, with a gap of ∆ ∼ log(R/lP ). The gap
is only logarithmic, but it still becomes arbitrarily large for large black holes. Here we show that
the logarithmic gap can be eliminated. Thus, the QPI can be saturated up to a fixed gap of order
a Planck area, which we do not have full control over.

The simplest way to accomplish this is to time-reverse the state of the semiclassical fields on the
partial Cauchy surface C shown in Fig. 6. In our approximation, this will not affect the ` > 0 modes,
but it will put the spherical waves in a time-reversed Unruh state. That is, the outgoing modes will
be unoccupied and the ingoing modes will be occupied, reversing the situation considered in the
previous subsection. Crucially, this modification will not change the mass m at infinity, so we still
have

16πG2m2 = A[µ] = A[µQ] +O(l2P ) . (52)
Because of the restriction to semiclassical modes, there is a cutoff near µQ at least of order lP .

Thus, while the initial conditions we now impose are somewhat unnatural, they will persist only for
one scrambling time ∆ts ∼ R log(R/lP ). After this time, the black hole will begin to evaporate. In
particular, unlike the full Boulware state, there is no singularity at the horizon. Note also that this
state differs from the one we considered in Sec. 2.3 in that the ` > 0 modes are not in the Boulware
vacuum.

The lightsheet L is sensitive only to the ingoing part of the radiation, so its generalized entropy
will be the same as it would be in the Hartle-Hawking state:

Sgen[L] = A[µQ]
4G~ . (53)

Thus we find that the QPI is nearly saturated:

∆ ≡ 4πG
~

m2 − Sgen[L] ∼ O(1) . (54)

25



Perturbative Regime: QPI from the GSL

Next, we will consider the more general case where matter enters into the black hole after its
formation. We consider the same formation process as above. We will again focus on µQ right after
formation so as to obtain the tightest bound. But now we will allow for a nontrivial quantum state
outside of the black hole. This could be an ordinary matter system carrying some thermodynamic
entropy. It could also be a quantum state with negative energy, such as the Boulware-like state that
we considered in Sec. 2.3 as a counterexample to the CPI.

The future-outgoing lightsheet L of µQ will only receive matter that falls into the black hole
within the first scrambling time after µQ; see Fig. 6. To be precise, consider a family of radially
infalling geodesics that are initially at rest at some large radius r � R. The geodesics are all at the
same angle but shifted in time. It is easy to check that the geodesic that passes through µQ and
the last geodesic that reaches L are separated at large radius by a time of order ∆ts ∼ R log(R/lP ).
Any matter that falls in later will hit the singularity before reaching Σ. This statement does not
depend on the initial radius, and it also holds also for ingoing null geodesics; see Appendix A.

In the following subsection, we will consider the effects of matter that falls in after the first
scrambling time and so does not reach L. However, now we will focus on matter that can be
registered on L. By the above argument, we can take this matter to reside within the near-horizon
zone, R < r < 3R/2, on the partial Cauchy surface C. Let H be the portion of the event horizon to
the future of C, and let Sgen[H] be its generalized entropy.

We begin by making a simplifying assumption that will be relaxed below, that all of the matter
that falls across the horizon will also cross L (as opposed to passing through the portion of B
inside the black hole). The quantum marginally trapped surface µQ and the boundary of H have
approximately the same area, so there is a simple relationship between the entropy on H and L:

Sgen[L] = Sgen[H]−∆S[Hlate] +O(1), (55)

where Hlate is the portion of the horizon above a sufficiently late Cauchy slice, when the black hole
has relaxed to equilibrium, but early enough that negligible Hawking radiation has been produced.

We have assumed a state in which there is negligible mutual information between L and Hlate.
For example, if the black hole simply evaporates with no further matter falling in, ∆S[Hlate] is the
(negative) renormalized entropy that exists on the horizon in the Unruh state (due to the missing
infalling modes when to compared the Hartle-Hawking state).

From
Sgen[Hlate]−∆S[Hlate] = Alate

4G~ (56)

and Eq. (55), the QPI follows:

Sgen[L] = Sgen[H]−∆S[Hlate] ≤ Sgen[Hlate]−∆S[Hlate] = Alate

4G~ ≤
4πG
~

m2 . (57)

The first inequality in this sequence is the GSL for event horizons. Note that we have ignored the
O(1) additive uncertainty in Eq. (55) in light of the discussion at the end of Sec. 2.3.

This argument establishes the QPI for a large class of examples, including the Boulware-like
state that served as a counterexample to the classical Penrose inequality in Sec. 2.3. In this case,
Alate (which sets the mass) will be significantly smaller than the area of the trapped surface µ. Here
we use the quantum trapped surface µQ, but its area is almost the same as that of µ. What saves
the QPI is the contribution of the entropy on L, which is negative in this example. Specifically, the
GSL guarantees that the lower bound, Sgen[L], is smaller than the area of µQ by a sufficient amount
for the QPI to hold.

In the case where positive entropy registers on H and L, our QPI is stronger than the classical
Penrose inequality. The lightsheet “knows” that more matter will enter the black hole after µQ, and
the GSL “knows” that this will result in an area increase. Effectively, this larger area becomes the
lower bound on the mass.
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Figure 7: The QPI is threatened by any negative energy (blue worldvolume) that fails to register
on the lightsheet L. We analyze three possibilities but find that none of them leads to a violation
of the QPI. (a) Negative energy outside of the near horizon zone (vertical green line). (b) Negative
energy that enters the black hole soon after µQ but evades L by accelerating outward. (c) Negative
energy that remains near the black hole for more than a scrambling time.

Failed Counterexamples

In the previous subsection, we considered the case where all matter outside the quantum trapped
surface µQ crosses its lightsheet L. Here we generalize to discuss matter for which this does not
happen. In this case, we cannot use the GSL for the event horizon to constrain the relation between
Sgen[L] and the mass at infinity. However, we will give some plausibility arguments for the validity
of the QPI.

In the previous subsections, we argued that the QPI will hold true if all matter outside of µQ
passes through L. We can think of the present situation as a complication where we add matter
that does not satisfy this property. Since this cannot affect S[L], the only way that the QPI can
now be violated is if the matter we added contributes negative mass at infinity. We will now argue
that this is impossible in the semiclassical regime.

Matter outside of µQ can fail to register on L for any of the following three reasons (see Fig. 7):

1. The matter never enters the black hole.

2. The matter enters the black hole during the first scrambling time after C but escapes through
the portion of B inside the black hole.

3. The matter enters the black hole later than a scrambling time after C.

In the first case, the matter can be approximately treated as isolated from the black hole. But
the total mass of isolated systems is positive, so distant systems can never cause violations of the
QPI. (This does not rule out regions with negative energy, but it implies that sufficient positive
energy must be present nearby.)

In the second case, the matter system can be initially near the black hole and so could have
regions of negative energy density (as in the example of Sec. 2.3). However, in order to miss L, it
would have to accelerate outwards after crossing the horizon. This requires positive energy. We will
not attempt to demonstrate here that this always results in a net positive mass contribution; our
goal is only to note that the QPI is not obviously violated in this setup. This question merits further
study.

In the third case, we again must choose the matter system to be close to the horizon if we wish to
give it negative energy. For example, the Boulware-like state of Sec. 2.3 would qualify. However, by
assumption this state would have to be present more than one scrambling time after C. Moreover,
the modes for which it is possible to obtain net negative energy are those that make up the thermal
atmosphere of the black hole; these modes evolve exponentially close to the horizon under backward
time evolution. Thus the state on C would contain transplanckian energy density (similar to a
firewall). The initial state would not be a semiclassical state. This argument is robust and rules out
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Figure 8: Left: the generalized entropy on the slice Σ∞ can be dominated by distant soft particles
(brown) and so does not yield a viable lower bound on the mass. The global Cauchy surface Σglobal
plays a role in an alternative proposal discussed in the main text. Right: the long slice Σlong
captures all of the missing infalling Hawking modes.

an entire class of what naively seemed like promising counterexamples. We view this as nontrivial
evidence in favor of our proposal.

Alternative Proposals

In this section, we consider various alternative conjectures for the quantum Penrose inequality. In
Sec. 2.3, we give counterexamples to proposals that might otherwise seem natural. In Sec. 2.3 we
discuss modifications of our proposal that appear viable, and we explain why we are not currently
advocating for them.

Nonviable Alternatives

We will now discuss several alternative conjectures for a QPI that we considered in the process
of this work. Our goal is to explain our choice in Sec. 2.3, and to illustrate that the problem is
rather constrained. This proves neither that our formulation is unique, nor that it is correct. But
we will see that it is remarkably difficult to find any alternative statement of the QPI that is not
immediately ruled out.

Cauchy surfaces that reach spatial infinity First, we explain why we do not allow Σ[µQ] to
reach outside the black hole. This prohibition is motivated by the asymptotically flat case, to which
we will specialize for now. Let Σ∞ be a Cauchy surface of OW [µQ], in violation of our requirements.
An example is the black slice in the Fig. 8. Let Sgen[Σ∞(µQ)] be the generalized entropy evaluated
on Σ∞. The alternative QPI thus would take the form

m
?
≥
√

~
4πGSgen[Σ∞(µQ)] . (58)
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But it is easy to find a counterexample to Eq. (58): an arbitrary amount of matter entropy can
be placed in regions far from the black hole, at arbitrarily little cost in mass. We now discuss this
in detail.

Consider a dilute gas of N photon wave packets, each of characteristic size λ. Each photon
occupies a region of volume λ3, so the photons can be dilute if they occupy a region of volume Nλ3.
We can take each photon to be in a mixed state (say, of polarizations), and in a product state with
respect to the rest of the universe. Then the gas contributes of order N to the generalized entropy
on Σ.

We take the gas to be very far from the black hole or any other matter, so that gravitational
binding energy to other objects is negligible. The gravitational binding energy of the photon cloud
itself will be negligible if NG~/λ � N1/3λ, so we shall take λ � N1/3lP , where lP ≡ (G~)1/2 is
the Planck length. Then the gas of photons contributes a mass of order N~/λ to the ADM mass.
This mass contribution can be taken to be arbitrarily small by taking λ → ∞ at fixed N without
violating any of the previous assumptions.

We are still free to choose N to take any value we like. Thus we have found a family of initial
data with bounded m but unbounded Sgen[µQ] ≈ c1 + c2N , where c1 and c2 are independent of N .
For large enough N , this leads to a violation of Eq. (58).

Area of marginally quantum trapped surfaces A second alternative conjecture would be to
use only the area of µQ, not its generalized entropy:

m
?
≥
√
A[µQ]
16πG2 . (59)

That is, one would conjecture that Eq. (24) holds if A is taken to be the area of a quantum trapped
surface. This possibility is attractive because the entropy of distant soft radiation would never
contribute to the lower bound in the first place.

However, Eq. (59) is ruled out (among other reasons) by the Boulware-like counterexample to
the classical Penrose inequality. This is because the area of the bifurcation surface will receive only
a correction that can be made parametrically small. This follows from the remarks concerning the
classically marginally trapped surface at the end of Sec. 2.3. The same argument implies that the
marginally quantum trapped surface area receives only a parametrically small correction, which
cannot compete with the large decrease in mass.

Subtracting global entropy; interior generalized entropy Let us revisit the proposal of
Sec. 2.3 and consider the generalized entropy Sgen[Σ∞(µQ)] of a marginally trapped surface µQ,
evaluated on a Cauchy surface that reaches outside of the black hole all the way to spatial infinity.
This proposal suffered from the problem that distant soft modes can contribute unbounded entropy
with bounded energy, so Sgen[Σ∞(µQ)] is unrelated to any lower bound on the mass.

A natural idea is to subtract the von Neumann entropy on a global Cauchy surface (see Fig. 8):

m
?
≥
√

~(Sgen[Σ∞(µQ)]− S[Σglobal]
4πG . (60)

If the distant soft modes have the same entropy in the global state as in the generalized entropy,
then their dangerous contribution will cancel out.

However, this need not be the case. Consider a collapsing star that forms a Schwarzschild black
hole of area A. The entropy of the star can be of order Sstar ∼ (A/G~)3/4 or even Sstar ∼ A/G~ [42].
We can chose the global state to contain only distant soft radiation that purifies the star, so that
S[Σglobal] = 0 and

m =
√
A[µQ]
16πG2 + ε , (61)
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where ε can be arbitrarily small. But then

Sgen[Σ∞(µQ)] ≈ A[µQ]
4G~ + Sstar , (62)

so that Eq. (60) is violated.
The violation in our example remains bounded, since Sstar cannot exceed A[µQ]/4G~ by the

GSL. One might consider absorbing this violation by adding a correction factor of 1/2 to the right
hand side of Eq. (60). But by considering initial data with a second asymptotic region, one can
arrange S[Σglobal] = 0 with unbounded Sgen[Σ∞(µQ)] at fixed m, leading to unbounded violations.

A variation of this idea is to use the generalized entropy in the interior (not the exterior) of the
surface µQ. It is easy to check that it fails for the same reasons.

Possible Modifications of the QPI

We will now discuss an alternative formulation of the QPI that we cannot currently rule out, and
we comment on some of its properties that have led us to reject it as our main proposal.

The basic idea is to consider partial Cauchy surfaces other than L, still bounded by µQ and
remaining inside the black hole. For example, we could assert that

m ≥
√

~Sgen[Σ]
4πG (63)

holds for any achronal hypersurface Σ ⊂ B ∩ OW [µQ] whose only boundary is µQ. This class
includes the lightsheet L, so this conjecture would be strictly stronger than our main proposal. It is
clear that the heuristic arguments in support of QPI in Sec. 2.3 also apply to this family of slices.

There are some clear downsides to this choice. The region B and therefore this family of slices
are defined teleologically. Furthermore, it is not clear to us how one would formulate a minimality
requirement in this case, analogous to the requirement that the classically trapped surface minimize
the area on some Cauchy surface.

A variation would be to insist on a Cauchy surface that is as “long” as possible, i.e., which does
not have any endpoint on the future singularity. Roughly, this means it ends on the future endpoints
of the horizon generators, see Σlong in Fig. 8. This proposal is weaker than the previous one and
neither stronger nor weaker than our main proposal. We will now argue that for an evaporating
black hole this results in a less stringent bound than the one obtained from L.

As discussed in Sec. 2.3, in the Unruh state there is negative entropy falling across the horizon,
due to the missing ingoing modes compared to the Hartle-Hawking state. The long slice will capture
this negative entropy through the entire process of evaporation. (Here we are assuming that the
semiclassical expansion is valid until the black hole area is Planckian in size.) The generalized
entropy on this slice is:

Sgen[Σlong] = A[µQ]
4G~ − γ

A[µQ]
4G~ , (64)

where γ ≥ 1 by the GSL, and the second term arises from the contribution of the missing ingoing
modes on Σ.

It is difficult to compute γ exactly. If γ > 1, then Sgen will be negative. This renders (2.3) ill-
defined. Negative Sgen is also conceptually in conflict with the interpretation of Sgen as an entropy
in the fundamental theory of quantum gravity. This suggests that a careful computation will reveal
that γ = 1, in which case Eq. (2.3) reduces back to the statement of the positivity of the ADM
mass. Along with the downsides mentioned earlier, this conundrum shows that such long slices are
not ideal for formulating the QPI, and that our original formulation seems to be the most fitting
one.
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2.4 The Black Hole Page Curve
We now end this chapter with a slightly different topic; namely, the one of bulk unitarity. The
information paradox was first formulated for black holes in asymptotically flat spacetime. The
S-matrix is expected to be unitary, so pure in-states should be mapped to pure out-states. The
S-matrix is an asymptotic observable even in the presence of gravity, since gravity becomes weak in
a dilute out-state. But Hawking showed that a black hole evaporates into an approximately thermal
Hawking cloud, regardless of how it was formed [43; 44].

Hawking’s result followed from a semiclassical calculation: one solves

Gµν = 8πG〈Tµν〉 (65)

iteratively in powers of G~. Here 〈Tµν〉 = Tr(ρTµν), where ρ = ρHawking is the global state of the
quantum fields. This state is pure at all times; information is lost because the asymptotic observer
has no access to the black hole interior. Tracing over the interior gives the mixed out-state:

ρout,Hawking = Trin ρHawking . (66)

The semiclassical approximation should receive non-perturbative corrections, and these may
restore the unitarity of the S-matrix. But this comes at a steep price. If effective field theory is
valid outside the horizon, a pure out-state implies that a freely falling observer encounters large
excitations (a “firewall”) at the horizon of an arbitrarily large black hole, at least after the Page
time31 [45; 46].

An interesting class of approaches [47; 48; 49] constructs effective interior operators consistent
with a smooth horizon. But this works only for certain classes of states, and only at the cost of
introducing significant non-linearity in the form of state-dependence [50; 51; 52; 53]. It remains
to be seen whether these ideas can be developed into a consistent framework that preserves both
unitarity and the equivalence principle. (See Refs. [54; 55; 56] for some challenges; see Ref. [57] for
a review and further references.)

The AdS/CFT correspondence [58] constitutes the most significant evidence that the S-matrix
remains unitary in the presence of gravity. The initial and final states of a bulk (AdS) scattering
experiment can be mapped to states in the CFT. The CFT is manifestly unitary, so these bulk states
are related by a unitary operator.

However, this does not explain how the information comes out from a bulk perspective. AdS/CFT
has not told us whether and how firewalls form, or if not, how they are evaded. Recent works by
Penington [59] and by Almheiri et al. [60] have the potential to shed some light on this question.
Let us briefly review some background.

The generalized entropy Sgen [4] of a surface σ is the sum of its area and the von Neumann
entropy of the quantum fields in its exterior:

Sgen[σ] = A(σ)
4G~ + S[Ext(σ)] . (67)

A Quantum Extremal Surface (QES) is a surface whose generalized entropy is stationary with
respect to all deformations. Such surfaces play a central role in the quantum-corrected [15; 16] Ryu-
Takayanagi [13]/Hubeny-Rangamani-Takayanagi [14] prescription, which we now briefly summarize.

The von Neumann entropy of a holographic CFT restricted to a given boundary region R can
be computed from the bulk dual as

SCFT[R] = Sgen[Ext(γmin[R])] . (68)

Here γmin is the QES with smallest generalized entropy homologous to R; and Ext(γmin) is chosen
to be the bulk region bounded by R ∪ γmin. This region is called the entanglement wedge of R and
will be denoted EW (R).

31The Page time tPage is defined as the moment when the coarse-grained entropy of the radiation first exceeds the
Bekenstein-Hawking entropy of the black hole.
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(a)
(b)

Figure 9: Semiclassical bulk evolution of a black hole in AdS with global boundary R. The Hawking
radiation is absorbed into an auxiliary system [59; 60]. The entanglement wedges EW (R) and
EW (aux) are shown (a) before and (b) after the Page time. Entanglement wedge complementarity
is assumed here but will not be needed in the setting we describe in Sec. 2.4.

Refs. [59; 60] applied the RT prescription in a peculiar setting. (See Refs. [61; 62; 63; 64; 65] for
some discussions and extensions.) The bulk evolution is computed semiclassically, using the state
ρHawking. In this description, the horizon is manifestly smooth. The Hawking radiation is allowed to
escape from the AdS spacetime into an external bath. Choosing R to be the entire boundary of the
original AdS spacetime containing the black hole, Refs. [59; 60] discovered a novel QES (Fig. 9b):
γ(t) is located approximately one Planck length inside the horizon, at about one scrambling time
before t:

∆ts ∼ β log(S − S0) . (69)

Here β is the inverse Hawking temperature, S is the Bekenstein-Hawking entropy of the black hole,
and S0 is the ground state entropy (for charged black holes).

The newly discovered QES γ(t) competes with the trivial QES, ∅. (The empty surface satisfies
the homology constraint, since the boundary sphere can be contracted to a point; and it is stationary
since there are no points to deform.) Ext(∅) comprises the entire original bulk, whereas Ext(γ)
consists only of the horizon and black hole exterior.32

One finds that before the Page time,33 ∅ is the minimal QES. Hence there is no area term and
the RT prescription yields S[R] = Sbulk, where Sbulk is the global von Neumann entropy in the bulk.
In the semiclassical analysis, the black hole interior exactly purifies the Hawking radiation, so their
von Neumann entropies are equal. Since the radiation is moved to an external system, the bulk von
Neumann entropy is that of the interior “Hawking partner modes.” Hence

S[R](t) = Srad(t) , (t < tPage) , (70)

where Srad is the entropy of the Hawking radiation that has been emitted and transferred to the
auxiliary system by the time t. This quantity grows monotonically.

32The above discussion pertains to a one-sided black hole formed from collapse [59]. For a two-sided (eternal) black
hole [60], one may choose R to be the union of the right and left boundary CFT. Then the newly discovered QES γ
has two components, near the left and right black hole horizon. One could also consider a single component of the
boundary. In this case, the new QES competes with the bifurcation surface γ0.

33If matter is added to the black hole, then the Page transition can occur at multiple times. A new QES of the
type discovered in Refs. [59; 60] will form on every such occasion as soon as the horizon settles down.
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After the Page time tPage, γ becomes the minimal QES, because then Sgen(γ(t)) = A/4G~ < Srad
by definition of the Page time. Hence

S[R](t) = A(t)
4G~ , (t > tPage) , (71)

where A is the area of the black hole. This quantity decreases monotonically.
Therefore, the entropy SCFT[R] follows a Page curve: the entropy grows from 0 to a maximum

at the Page time, so long as γmin = ∅. Then it shrinks back to 0, while γmin = γ. This is exactly as
expected from unitary evolution of the CFT. But it is interesting that it is reproduced by applying
the RT prescription to the semiclassically evolved bulk—precisely the type of evolution that leads
to information loss for asymptotic observers.

The result becomes even more puzzling when we consider the auxiliary system, which contains
the Hawking radiation. The bulk calculation says that this radiation is mixed. But on the other
hand, suppose we choose the auxiliary system to be another CFT (perhaps with much larger central
charge), with its own bulk. One could speculate that its entanglement wedge, EW (aux), should be
the complement of EW (R). Under this assumption EW (aux) should include the interior of the QES
γ(t) after the Page time. After the black hole has disappeared, EW (aux) would still include the
black hole interior as a disconnected universe. In particular this would mean that local operators in
the interior can be realized as operators with support on aux and hence, presumably, as operators
on the Hawking radiation.

To summarize, the results of Refs. [59; 60] are intriguing and puzzling. Bulk evolution is computed
semiclassically, which should result in information loss; yet the RT prescription “fails to fail.” It
predicts a boundary entropy consistent with unitarity, from a bulk calculation that is not. However,
as we emphasized in previous sections, even though the input information of the QES is in some
sense semiclassical, the surface itself is not. Since it has to minimize over the generalized entropy,
which is well-defined in gravity, the prescription seems to know that additional saddles exist beyond
what one would have expected using the methods of quantum field theory in curved spacetimes.
Regardless, one can try to see what kind of consequences this has for bulk physics, on a qualitative
level. But first, let us introduce a simpler setting in which we can be more comfortable asking bulk
questions.

Dyson Sphere in AdS

Given reflecting boundary conditions, sufficiently large black holes in AdS will not evaporate, so the
question of information loss cannot be posed operationally as a scattering problem. Evaporation can
be implemented by imposing absorbing boundary conditions, whereby the radiation is transferred
to an auxiliary system. This approach was recently taken in Ref. [59], and for a two-sided black hole
in Ref. [60], who computed the entropy of the boundary theory and of the auxiliary system using
the Ryu-Takayanagi (RT) proposal [13; 14; 15; 16].

However, the auxiliary system does not live in the same spacetime as the black hole. We would
like to avoid any ambiguities or complications that such a setup may lead to, while still using the
RT proposal to compute the entropy of the boundary theory. In particular, the entanglement wedge
of the auxiliary system is ambiguous unless one assumes entanglement wedge complementarity [60].
Here we will be able to justify this choice.

Indeed, there are alternative ways of allowing a black hole to fully evaporate in AdS. One
possibility is to consider small enough black holes, with tevap < L, where L is the AdS length.
However, this restriction is not necessary if we include a detector sphere with large radius d � L
(i.e., “near infinity”). We will refer to this as a Dyson34 sphere.

The Dyson sphere can be viewed as a laboratory in which the entire scattering experiment takes
place: it prepares the in-state and it measures the out-state. The Hawking radiation is absorbed

34For observant fans of the ancient literature, one may recognize this setting as the Stapledon sphere.
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into a reservoir located on the Dyson sphere. Before the first particle comes out, the reservoir is
initialized in a fiducial state |0〉Dyson. At any later time, an observer on the Dyson sphere may
choose to probe the state of all or parts of the Hawking radiation.

Here we assume that there exists a description of the out-state on the Dyson sphere as a quantum
field theory state (in the sense of QFT on a fixed background). This description becomes exact in
the large radius limit.

The mass and complexity of the Dyson sphere is not limited by fundamental considerations such
as entropy bounds. Its area will be exponential in its proper radius. Therefore, one can consider the
evaporation of an arbitrarily large black hole in AdS. In this regime, tevap � d � L. We will not
distinguish between large and small black holes in what follows.

A Dyson sphere in AdS must be stabilized against the gravitational potential, e.g., with rods
or by giving it an intrinsic tension, like a brane. A static Dyson sphere in AdS can have entropy
proportional to its area [42], a remarkable property not shared by spheres in asymptotically flat
spacetime. (We thank B. Freivogel for reminding us of this result.) However, we are not aware of
in-principle obstructions. Moreover, if the assumption of a Dyson sphere failed, this would mean
that the information problem cannot be operationally posed for large AdS black holes by observers in
AdS. If so, their study would not allow for reliable conclusions about experiments that can actually
be carried out, such as the formation and evaporation of black holes in asymptotically flat spacetime.

We can now consider the formation and evaporation of an AdS black hole in the presence of a
Dyson sphere. As described above, the sphere is initialized in the reference state |0〉Dyson as the
black hole forms. It then absorbs all of the radiation.

Inspired by [59; 60], we will describe the bulk evolution by Hawking’s semiclassical analysis [43].
That is, we compute the out-state using QFT on a curved Schwarzschild background.

Figure 10: Formation and evaporation of a black hole in AdS. The Hawking radiation is absorbed into
a Dyson sphere near the boundary. The bulk evolution is computed semiclassically. Nevertheless, the
Ryu-Takayanagi prescription yields a boundary entropy consistent with unitary boundary evolution.
However, energetic arguments and the extrapolate dictionary imply that the semiclassical bulk state
at late times cannot have a pure-state boundary dual (see [66]). This conclusion depends only on
the largeness of the entropy of the Hawking radiation in the bulk. Because the Dyson sphere can
be probed with arbitrarily dilute local operators, even complicated bulk probes of the Dyson sphere
do not engender large gravitational backreaction, and standard QFT rules should apply.
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In this picture, the global state in the bulk, ρHawking is always pure (Fig. 10). Initially, it consists
of the Dyson sphere and the collapsing matter, each in a pure state:

ρHawking(t0) = |ψ〉inin〈ψ| ⊗ |0〉DysonDyson〈0| . (72)

After the black hole has formed, the bulk can be thought of as consisting of three subsystems. The
first is the collapsed matter inside the black hole, in the state |ψ〉inin〈ψ|. The second is the (mixed)
interior subsystem of the (pure) vacuum state spanning the horizon. The third is the (mixed)
exterior subsystem of the vacuum, which becomes the Hawking radiation and which is absorbed into
the Dyson sphere. Schematically,

|0〉vacuum = N
∏
ω

∞∑
n=0

e−βnω/2|n〉inside ⊗ |n〉outside , (73)

where β is of order the black hole radius, and ω labels modes with support strictly inside or outside
the horizon.

The von Neumann entropy of the Dyson sphere grows as it absorbs the thermal radiation. At
the same time, the von Neumann entropy of the black hole interior grows due to the accumulation of
inside partners of the outgoing Hawking radiation. These two systems purify each other at all times.
Their individual entropy increases strictly monotonically, until the black hole has fully evaporated.
Neither system obeys a Page curve.

All bulk probes of the Dyson sphere are fully described by the state of the Dyson sphere, which
is mixed due to the absorption of thermal Hawking radiation in this model. Therefore, information
is lost to a bulk observer; probes of the Dyson sphere would not be able to reconstruct the pure
state from which the black hole was formed.

An important ingredient in the AdS/CFT dictionary is that the entropy of a boundary region
equals the generalized entropy of the entanglement wedge in the bulk, i.e., the area of the associated
RT surface [13] plus the entropy of the bulk matter in the enclosed region [15; 16]:

SCFT = ART
4G~ + Sbulk . (74)

We will now verify this relation in our example.
The boundary state is pure initially. It remains pure by unitarity of the CFT, so

SCFT = 0 (75)

at all times. But the bulk state is computed only semiclassically, and this leads to information loss
in the bulk. Thus, one might naively expect that Eq. (74) will fail.

However, the RT surface associated with the entire boundary is always the trivial (or empty)
surface. That is, the entanglement wedge includes the entire bulk at all times. And as we have
noted, the global bulk state is indeed pure. Hence

ART = 0 , Sbulk = 0 (76)

at all times, and Eq. (74) holds.
This analysis is different from, and simpler than, the case where radiation is extracted from the

bulk [59; 60]. (Indeed, our main motivation in including a Dyson sphere was to allow us to consider
this simple scenario where no extraction is needed.) In our setup, the quantum extremal surface
near the horizon never dominates in the RT prescription, since the exterior radiation is not removed.
The radiation is merely absorbed into the Dyson sphere, so it remains in the bulk.

We stress that this agreement comes about not because the bulk Hawking radiation is pure in
this model. The entanglement wedge of the whole boundary includes the black hole interior.
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(a) (b)

Figure 11: In a semiclassically evolved bulk state, the Hawking radiation is absorbed and transferred
to a near-boundary reservoir, localized to a small angle. R is a boundary region near the reservoir.
(a) At t1 < tPage, the entanglement wedge EW (R) includes only the reservoir. (b) At t2 > tPage, the
minimal quantum extremal surface γ has a second component near the black hole horizon. EW (R)
now contains the black hole interior.

This is obvious both before and after the Page time (t1 and t2 in Fig. 10), when the black hole
has not fully evaporated. Continuity at the endpoint of evaporation makes it natural at t3 to include
the pinched-off black hole interior in the entanglement wedge, which then again leads to agreement
with Eq. (74).

Thus our single-bulk example shares the feature [59; 60] that the boundary entropy expected
from unitary boundary evolution is correctly reproduced by applying the RT prescription to a
semiclassically evolved bulk. In Refs. [59], the boundary information was distributed over two
systems. Unitarity required that they obey the Page curve, and they were found to do so using RT.
However, this required an additional assumption. We next consider a bipartite version of our setup
in which the Page curve is recovered with no additional assumptions.

Dyson Sphere with a Reservoir

In this subsection we consider a refinement of the previous setup, more closely analogous to the
bipartite configurations studied in Refs. [59; 60]. Consistent with these works, we will show that the
RT prescription applied to a semiclassically evolved bulk reproduces the Page curve for the boundary
dual of each relevant subsystem: the dual to the black hole, and the dual to the Hawking radiation.

However, in those works an ambiguity was encountered (as stressed in [60]): in order to get the
answer demanded by unitarity, one had to assume that the bulk dual of the auxiliary system outside
of the original spacetime should be the complement of the dual of the original CFT, and so should
include the black hole interior after the Page time. This has been criticized [60; 61] as tantamount
to putting in the desired answer.

In our analysis below, we will need not to assume this. We have only a single boundary, and the
inclusion of the interior will follow from the usual homology condition in the RT proposal.

We use the same setup as before. But now we localize the reservoir to a particular region of
small angular scale δres (but arbitrarily large physical scale) on the Dyson sphere; see Fig. 11. The
radiation is absorbed at all angles, but then it is transferred coherently along quantum channels in
the Dyson sphere, into the reservoir.
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Figure 12: Up to a constant contribution from vacuum entanglement between R and R̄, the entropy
of the two complementary boundary regions follows a Page curve. From the boundary point of view,
this is because a system is slowly transferred from R̄ to R. The RT prescription reproduces this
curve from a bulk geometry obtained by semiclassical bulk evolution. However, this bulk dual is
again inconsistent with the extrapolate dictionary (see Sec. 2.4).

Let R be a connected, ball-shaped boundary region centered on the angular position of the
reservoir, with angular radius δR. We choose

β � δR � δres , (77)

where β is the characteristic boundary wavelength associated to the black hole. With this choice,
the entanglement wedge of R will include the reservoir at all times and yet its component connected
to R will stay far from the black hole. The complement region on the boundary is denoted by R̄.

We now apply the quantum-corrected RT prescription [15; 16] to compute SR(t) and SR̄(t), as
the generalized entropy of EW (R) and EW (R̄).

The semiclassically evolved global bulk state is pure at all times, so the bulk entropies on two sides
of any surface must agree. This implies entanglement wedge complementarity in this setting. That
is, R and R̄ will have the same minimal-Sgen quantum extremal surface γ(t). Its complementary
exteriors define the respective entanglement wedges EW (R), EW (R̄), which will have the same
Sgen. Therefore,

SR(t) = SR̄(t) (78)
at all times. This is consistent with unitary evolution of the pure boundary state. We stress that in
our setting this is an implication of RT, not an assumption.

Both entropies contain a divergent piece from vacuum entanglement around ∂R on the boundary.
In order to regulate this piece, we can impose a bulk cutoff far outside the Dyson sphere; or we could
consider the mutual information between R and R̄ − o, the complement of R with a small gap o
between R and R̄ removed, I ≡ SR + SR̄−o − SRR̄−o.

Before the Page time, γ(t) is similar to the RT surface expected for R in the vacuum (Fig. 11a).
EW (R) includes the reservoir and nothing else of relevance. Therefore, SR(t) will increase, and
commensurate with the entropy of the Hawking radiation that has arrived in the reservoir.35

After the Page time, γ(t) will have a second component, namely the new quantum extremal
surface discovered in Refs. [59; 60] (Fig. 11b). This configuration is favored because inclusion of

35Gravitational backreaction from the changing mass of the reservoir could alter the area of γ(t). We prevent this
by initially filling the reservoir with unentangled ballast particles that are moved to distant regions on the Dyson
sphere as the radiation is moved in.
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the interior Hawking partners in EW (R) lowers its generalized entropy compared to the single-
component quantum extremal surface anchored on ∂R. In this configuration, the bulk entropy
of the Hawking radiation in the reservoir does not contribute to SR because its purification (the
interior) is also in EW (R). Hence the only dynamically relevant contribution comes from the area
of the new quantum extremal surface component, i.e., the horizon area. We obtain the Page curve
(Fig. 12) for the reservoir.

Though we have already argued that S(R̄) = S(R), it is instructive to verify directly that the
Page curve results for S(R̄). Before the Page time EW (R̄) contains the black hole interior, but not
the exterior Hawking radiation that has been absorbed into the reservoir. Hence the bulk matter
entropy in EW (R̄) increases. After the Page time, EW (R̄) contains only the black hole exterior but
not the reservoir, so there is negligible matter contribution. The time-dependent component of the
RT surface is at the black hole horizon and so shrinks to zero at the required rate.

Interpretations?

To summarize, we managed to derive a Page curve for a black hole that is evaporating, and for
both subsystems, black hole and the radiation. One way to see why this resolves the information
paradox can be seen through the entanglement wedge reconstruction and the philosophy behind
what it means to regain information. Bekenstein’s argument for associating an entropy to black
holes in the first place relies on verification of the second law of thermodynamics. Similarly, using
the entanglement wedge reconstruction, we can verify that we really have access to the information,
simply by manipulating Hawking radiation [67]. However, we still do not know what mechanism is
responsible for the actual return of the information. Moreover, obtaining a Page curve is not enough
to claim unitarity; it is simply a necessary condition for unitarity. One can imagine cooking up a
non-unitary theory which would still give a pure state at the end of the evaporation. Likewise, if one
had an ensemble average of theories, where each member of the ensemble is unitary, then we could
still have a Page curve, but it would not imply that the state of the radiation needs to be pure.

So, how can we interpret this striking result? As with all things regarding the information
paradox, the interpretations are various, and they depend on various levels of speculation about
quantum gravity. In [66], we explored several interpretations, including the one where we just take
the above calculation in the most direct way - by taking Hawking’s result seriously. It was of no
surprise that we found a contradiction with the standard AdS/CFT dictionary36. However, the issue
of bulk interpretation has still not been resolved (as of writing this dissertation).

As we mentioned, even though we obtain the Page curve, this does not imply that we know what
the state of the radiation is. Naively, one would have said that a Page curve indicates that pure
states must evolve into pure states, therefore cementing the state of the Hawking radiation as pure.
However, some models have shown explicitly that this just is not true. The most detailed model in
which this was shown is the duality between JT gravity and the low energy sector of the SYK model
[68; 69; 67]. We will not go into the details of these models, but simply summarize their result. In
essence, these latest calculations seem to indicate that either new physics must be employed in the
bulk or the AdS/CFT correspondence must be modified in a specific way - to allow a correspondence
between the bulk and an ensemble of boundary theories. How can this be consistent with the Page
curve?

Let us suppose that the theories in the ensemble have naturally identifiable in- and out-states,
but they differ in the details of the interactions. Boundary evolution by the ensemble of theories
would not be unitary: different members of the ensemble would evolve the same in-state to different
out-states. So the ensemble of out-states would be mixed. This would be consistent with obtaining a

36The key point of our argument relies on keeping an eye on the energy of the system. For instance, when the black
hole evaporates completely and all we are left with is a cloud of Hawking radiation, the energy of those Hawking
quanta is exactly matched by excitations on the CFT side. Hence, there are no degrees of freedom left in the CFT to
purify the Hawking cloud, even in principle; see [66] for a more detailed discussion.
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thermal out-state in the bulk. Yet, each member of the theory ensemble is unitary, so the ensemble
average of the late-time entropies would vanish. And this would be consistent with the computation
of the entropy by RT. Hence, this is the sense in which we can have a mixed state giving us Page
curve behaviour.

Complementary calculations using the gravitational path integrals have been done [67; 70], and
although they confirm the Page curve, they differ in their methods enough to have a different level
of confidence regarding ensemble averaging. Naturally, when confronted with such a radical change
in framework, one must try to explain it in some way, even though this might involve physics in
the (possible) deep quantum gravity regime. And so, two schools of thought emerged. First, there
are the ones who accept the challenge of ensemble averaging and are willing to incorporate it in our
current theoretical framework in one way or another37. This includes, among others, the approach
of Marolf and Maxfield and the baby universe models of third quantization [71], together with a
complementary model of Blommaert [72] which solves the factorization problem38 for the Marolf-
Maxfield model, but also a different perspective by Cotler and Jensen on the role of constrained
instantons in three-dimensional bulk theories [73]. The second school of thought regards the ensemble
averaging as sort of an effective description, which can be overcome with some UV insight. Namely,
this includes Vafa and McNamara [74] who approached this problem from the point of view of the
swampland, indicating that ensemble averages must be a feature of low dimensional, low energy
physics. This is supported by the recent calculations of Eberhardt, who managed to compute the
string partition function of AdS3/CFT2 in a particular limit, showing the exact correspondence with
a single boundary theory [75; 76], and also by Saad et al. who showed that in a simplified model of
SYK, one must include “half-wormholes” thereby restoring factorization and indicating the need for
non-self-averaging saddles in the bulk [77].

Clearly, these Page curve calculations have shown us that physics can still very much surprise us,
even if we work in exceedingly simplified models of holography. Whether or not the same methods
will transcend the dimensional barrier is yet to be seen.

37At least for lower dimensions, that is for two- and three-dimensional bulk theories.
38Given two decoupled boundary CFT’s, say L and R, their combined partition function factorizes into a product

of ZLR = ZL × ZR. However, if there exist bulk wormholes which connect the two boundaries, then we lose the
factorization of partition functions: they are manifestly linked. This is known as the factorization problem.
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Chapter Two

3 Science, not Science Fiction
In the previous chapter, we tackled some of the more fundamental aspects of statistical physics and
its role in General Relativity. We have seen how including quantum effects into the structure of
space and time leads us to new puzzles and resolutions in semiclassical gravity. This chapter will
traverse through explicit realizations of such effects in settings previously thought of as mere science
fiction. Naturally, we will explore various aspects of wormholes and their connection to quantum
teleportation, but also shed some light on their tendency to form time machines. Crucially, we
will see how quantum effects allow us to even discuss these issues in a self-consistent way, without
invoking any sort of exotic physics or advanced civilizations39.

We start our journey with a historical overview, setting the scene for exuberant wormhole
revolutions that have been occurring for the past couple of years. We will explain some of the
obstacles that could only be overcome with the aid of quantum physics, and we show a plethora of
solutions, that are now understood to be achievable even within the Standard Model. Finally, we
finish off with a novel approach to understanding the problem of time machines, and we argue, both
holographically and from a low energy perspective, why a whole franchise has to end.

3.1 The Classical Theory of Wormholes
Surprisingly enough, wormhole solutions are as old as the black hole ones; the first wormhole was
found in 1916 by Ludwig Flamm, although today we now think of the same solution as the Einstein-
Rosen bridge (1935). The brief history is laid out in Fig. 13; here we will turn our attention to the
physics behind wormhole constructions and why were they thought of as scientifically uninteresting
until fairly recently.

Note that General relativity allows any smooth Lorentzian manifold to be a spacetime: given a
spacetime geometry, one simply solves Einstein’s equations in order to determine the stress-energy
tensor needed to produce it. Any restrictions on non-trivial phenomena, such as wormholes, must
be given in terms of energy conditions that constrain the set of possible stress-energy tensors.

But what is it about wormhole topology that makes it so hard to realize? Wormholes give rise to
non-equivalent ways of connecting points in spacetime. A geodesic threading a wormhole cannot be
smoothly deformed into one that is not threading it. In other words, wormholes are absolutely nothing
like the spacetime we are used to. Our spatial geometry is the one of approximately Euclidean R3,
which is to say topologically trivial. However, General Relativity allows for all topologies, as we
know. So, where are all of these fancy topologies in our Universe?

This is one of the questions that prompted Friedmann et al. [78] to formulate a topological
censorship theorem40, which states

If an asymptotically flat globally hyperbolic spacetime satisfies the Null Energy Condition,
then every causal curve from past null infinity to future null infinity is deformable to a
curve that lies in the asymptotically flat region.

In other words, Friedmann et al. tell us that non-trivial topologies can exist41; however, we are
unable of observing or probing them. Why? Well, in order for an observer to perform any sort of
an experiment, she must have causal access to the thing she wants to experiment on/observe, but
also a way for her probe to get back to her.

39Although they have been responsible for a worldwide interest in this area of physics.
40As an experienced reader of this dissertation, you can already see how we are going to get around this theorem.
41One could have simply noted that we see no non-trivial topological structures because they are not there. Luckily,

such a boring resolution will be proven false shortly.
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Since information propagates on causal paths, if no such path exists to and from a possible
wormhole, our observer cannot deduce anything about its existence! In fact, our observer would
note that it is just another black hole that she is probing, and she would move on to other, more
feasible research projects.

Figure 13: Wormhole timeline: Flamm finds the first solution in [79]; Weyl gives the first name
as “one-dimensional tubes” in [80]; Einstein and Rosen rediscover Flamm’s solution in [81]; Wheeler
comes up with a catchy name in [82]; first (exotic) constructions of traversable wormholes were done
independently by Ellis and Bronnikov in [83; 84]; a more popular construction of exotic traversable
wormholes was laid out by Morris, Thorne and Yurtsever in [85; 86]; key wormhole physics was
developed by various people in the 90’s, most of which is beautifully explained and summarized in a
book which was written by Visser [87]; fast-forward to the new century, one of the most important
energy conditions is found by Graham and Olum in [88]; GSL and AANEC are related and Wall
shows that short wormholes cannot exist [8]; Gao, Jafferis and Wall construct the first non-exotic
traversable wormhole in the context of AdS/CFT [89]; their model was extended by Maldacena
and Qi, who constructed an eternal traversable wormhole (within AdS/CFT) [90]; first construction
outside of AdS/CFT was done in a perturbative manner by Fu, Grado-White and Marolf in [91]
and a non-perturbative construction was realized by Maldacena, Milekhin and Popov in [92]; later
on, Maldacena and Milekhin managed to make a humanly traversable wormhole in [93]. Many
contributions have been left out; the ones that are presented are supposed to serve as a wormhole
history guide.

The topological censorship theorem was subsequently proven in [78], with an additional weakening
of one the assumptions: instead of the NEC, they proved wormholes cannot exist even with ANEC;
see [94] for an intuitive presentation of the proof. However, we saw from the previous chapter in
Sec. 2.1 that quantum fields satisfy the achronal ANEC. Why does this additional condition change
the proof of the theorem?
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In order to understand how why ANEC is not enough, we consider two geodesics in a spacetime
containing the wormhole, let us call them γa and γb. They both start and end at the same point;
however, one of them, say γa threads the wormhole, while the other one takes the ambient space
path; see Fig. 14.

Figure 14: Two geodesics in a wormhole geometry. One threads the wormhole, while the other
one connects the mouths in the ambient spacetime. The AANEC can be applied to the achronal
geodesic, which depends on which one of the two is the fastest, i.e. prompt. In the case of a long
wormhole, the achronal geodesic is γb, and so we can have negative energy supporting the wormhole.

From the Raychaudhuri equation, we know that the change in the (classical) expansion of γa
must be negative at first, but in order to “get out” of the wormhole, there needs to be a point in
which it becomes positive,

θ′ = − 1
d− 2θ

2 − σ2 − Tabkakb, (79)

However, this is only possible if we overturn the negative signs in the Raychaudhuri equation with a
positive term. The only way this can be achieved is if NEC gets violated! Alright, but what about
the ANEC? The ANEC allows us to have some negative energy as long as the overall, averaged
contracted stress tensor is positive. But we can easily violate this condition simply by looking at
the Casimir effect on a cylinder, which is what wormhole basically is: in essence, we can arrange
for a constant Casimir effect, therefore making even the average NEC non-positive. But we need
negative energy in order to make a wormhole possible! So, how can one evade these no-go results?

This is where the achronality condition comes in. Recall that the AANEC requires that the
stress tensor along the fastest null geodesic, on average has to be positive. So, all we have to do
in order to allow the existence of traversable wormholes, is to thread the wormhole with the non-
fastest geodesic! In other words, if the geodesic γb is shorter than γa, then we can have a traversable
wormhole. By shorter, we mean that it takes a shorter amount of (asymptotic) time to go along
γb than along γa; proper time can be as short as one wants and it does not place any restrictions
on traversability. A good way to ensure your wormhole is allowed, is to make it longer than the
ambient space distance between the wormhole mouths.

In summary, traversable wormholes are allowed under two conditions: if we manage to overturn
the sign in Raychaudhuri’s equation, via quantum effects or non-minimal coupling, and if we make
the wormhole length longer than the ambient distance between the mouths. In the following Sec. 3.2,
we will see some explicit examples of traversable wormhole constructions, and we will see how to
generalize these constructions to n-partite systems. In Sec. 3.3 of this chapter, we will see how the
AANEC serves another purpose - chronology protection in wormhole spacetimes.
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3.2 Traversable Wormholes
We have seen the way in which quantum effects play a central role in constructions of traversable
wormholes; some prominent examples constitute [89; 90; 92; 91; 95; 96; 97] among others; see also
[98; 99] for studies of the dynamical production of such traversable wormholes.

However, quantum effects in gravity are typically difficult to control unless they are in some
sense small. For this reason, the above constructions of traversable wormholes can be thought of
as starting with background spacetimes that contain an almost traversable wormhole that can be
rendered traversable with small corrections. In classical solutions satisfying the null energy condition,
this generally requires the background to contain a bifurcate horizon having no causal shadow4243;
see Fig. 15. Naively then, it might seem as if traversable wormholes are constrained to connect only
two regions of spacetime having a single mouth in each region, as backgrounds with more interesting
connectivity require some sort of finite causal shadow, and this in turn necessitates a larger amount
of negative energy to make the wormhole traversable.

Figure 15: Left: A bifurcate horizon in a two-sided asymptotically flat spacetime. Right: A spacetime
with a causal shadow (shaded in pink).

Nevertheless, we show that constructions with higher connectivity can still be controlled. Our
analysis begins with the more familiar two-mouth asymptotically flat wormholes of [92], enhanced by
including a large number Nf of four-dimensional massless fermions. We then perturb this solution
by adding a small black hole to the bottom of the wormhole throat. Wormholes are very fragile,
and semiclassical black holes have large masses in Planck units, so one may worry that the insertion
of this small black hole could destroy traversability. However, the extreme redshift deep in the
wormhole throat allows semiclassical black holes to sit in the bottom and leave traversability intact.
Indeed, we show that one can actively pass a small black hole through a wormhole mouth and place
it at the bottom of the throat without destroying it.

We can also take this small black hole to contain an additional wormhole that connects to another
distant region of spacetime. This new wormhole can then be made traversable with further quantum
effects in a manner similar to the original, two-mouth wormhole. The resulting spacetime will then
habe fundamental group F2, the free group on two generators. This differs from the fundamental
group F3 that would be obtained by adding three separate two-mouth wormholes connecting three
distant regions of spacetime A,B,C in pairs AB, BC, and AC; see Fig. 16.

42A causal shadow is defined as a bulk region which is causally disconnected from the boundary, see [100] for more
details.

43Though the wormholes of [92] are not explicitly written in this form, [97] gave a similar construction which could
be written as a perturbation around a bifurcate horizon.
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Figure 16: Left: A two-dimensional analogue of our spatial topology has two handles. The actual three-
dimensional space has fundamental group F2, the free group on two generators. Right: A space with three
wormholes connecting regions A,B,C in pairs AB, BC, AC has three handles. In three dimensions, the
fundamental group would be F3.

The above construction also has interesting implications for the quantum states of wormholes.
First, the ability to add a small black hole to a two-mouth traversable wormhole indicates additional
traversable excited states beyond those anticipated in the analyses of [90; 92]. Second, at least
when embedded in AdS/CFT, our three-mouth traversable wormhole appears to involve a new
entanglement structure different from the thermofield-double-like entanglement associated with two-
mouth wormholes; see Sec. 3.2.

Review of two-mouth traversable wormholes

We will first review the construction of the two-mouth traversable wormholes in four-dimensional
asymptotically flat space of [92]. As described in the appendix C of [101], the implementation of
our construction of multi-mouth wormholes using the two-mouth asymptotically flat traversable
wormholes of [97] proves to be more difficult.

As explained in the previous section, building a traversable wormhole requires some source
of average negative null energy, so that

∫
dλTabk

akb < 0 for k null and λ an affine parameter.
Intuitively, this is because null rays moving into the wormhole throat initially converge, but need
to diverge to exit the other side. This focusing/defocusing of light rays is controlled by the null
energy through the Raychaudhuri equation, with positive null energy causing null rays to focus and
negative null energy causing them to defocus. Classical matter, which obeys the null energy condition
Tabk

akb > 0, is thus insufficient to construct a traversable wormhole. Quantum effects, however,
can give rise to negative null energy (e.g. Casimir energy) when certain boundary conditions are
imposed on quantum fields, as can happen in the presence of non-trivial topology.

Black hole construction We will review the derivation of near-extremal, near-horizon metric for
the Reissner-Nordstöm (RN) black hole. The metric of the RN black hole has the following form:

ds2 = −
(

1− 2MGN
r

+ r2
e

r2

)
dt2 +

(
1− 2MGN

r
+ r2

e

r2

)−1
dr2 + r2dΩ2, (80)

A = q

2 cos θdΦ, dΩ2 = dθ2 + sin θ2dΦ. (81)

Here re is the horizon radius of extremal RN black holes of chargeQ (quantized and dimensionless),
which is

re =
√
πlP

Q

g
, (82)

where g is the coupling constant of the U(1) gauge field and

lP =
√
GN (83)
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is the Planck length.
The horizon is obtained by solving f(r) = 0, where f(r) = 1 − 2MGN

r + r2
e

r2 . We obtain the
location of the horizon at r = r+, where r± are the solutions to f(r) = 0, given by:

r± = MGN ±
√
M2G2

N − r2
e . (84)

With these solutions, we can rewrite f(r) as

f(r) = (r − r+)(r − r−)
r2 . (85)

In order to obtain the temperature of the black hole, we can go near the horizon, where we will have
a Rindler patch and hence can calculate the temperature of the black hole by reading off the surface
gravity. Going near the horizon means that we can write r = r+ + ξ2, where ξ2 � 1, and so:

f(r) ≈ f(r+) = (r − r+)(r+ − r−)
r2
+

= ξ2 r+ − r−
r2
+

. (86)

From here we get:

ds2 = −ξ2 r+ − r−
r2
+

dt2 +
r2
+

r+ − r−
1
ξ2 4ξ2dξ2 + r2

+dΩ2, (87)

where we used that dr2 = 4ξ2dξ2. Now we make a coordinate change in order to get the Rindler
metric:

4r2
+

r+ − r−
ξ2 = x2 → 4ξ2dξ2 = (r+ − r−)2

4r4
+

x2dx2. (88)

Putting these changes back into the metric (87), we obtain the Rindler metric:

ds2 = −κ2x2dt2 + dx2 + r2
+dΩ2, (89)

where κ = r+ − r−
2r2

+
represents the surface gravity of the RN black hole. Now the temperature is

obtained easily:
T = κ

2π = r+ − r−
4πr2

+
. (90)

In order to get the entropy of the black hole, we use the Bekenstein-Hawking formula, which
relates the area of the black hole horizon, A = 4πr2

+, and the entropy:

S = A

4GN
=
πr2

+
GN

. (91)

At extremality, when r+ = r− = re = MGN , the temperature T → 0, and so, near extremality,
we can expand the mass and the entropy in terms of the temperature.

Going back to the location of the horizon (84) and writing M = M0 + ∆M , where M0 = re/GN ,
we can expand to the leading order in

√
∆M44:

r± = (M0 + ∆M)GN ±
√

(M2
0 + 2M0∆M + ∆M2)G2

N − r2
e

= M0GN ±
√

2∆MreGN ,
(92)

44We are expanding only up to
√

∆M , since that is the lowest order for ∆M . If there was no square root, we would
expand it to linear order, as is usually done.
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where we have neglected higher order terms in ∆M . Putting this expression into the formula for
temperature (90), we can write ∆M as a function of temperature:

T =
√

2∆MreGN
2πr2

e

→ ∆M = 2π2r3
eT

2

GN
. (93)

Now we can write the expression for the mass of a near-extremal black hole:

M = re
GN

+ 2π2r3
eT

2

GN
+O(∆M)). (94)

Getting the expression for the entropy is straightforward as well:

S =
πr2

+
GN

= πG−1
N (M2

0G
2
N + 2M0GN

√
2∆MreGN +O(∆M))

= πr2
e

GN
+ 2πre

GN

√
2∆MreGN +O(∆M)

= πr2
e

GN
+ 2πre

GN
2πr2

eT +O(∆M).

(95)

So finally we get:

S = πr2
e

GN
+ 4π2r3

eT

GN
+O(∆M). (96)

We can now proceed to see how the near-horizon, near-extremal metric for the RN black hole
will look like. We can write the function f(r) as:

f(r) = 1− 2GN
r

(M0 + ∆M) + r2
e

r2

=
(

1− re
r

)2
− 4π2r3

eT
2

r

= 4π2r2
eT

2
(

(r − re)2

4π2r4
eT

2 − 1
)

= 4π2r2
eT

2(ρ2
r − 1),

(97)

where we have used the fact the metric is near-extremal, meaning r ≈ re and where we have
introduced a new coordinate, ρr = r − re

2πr2
eT

. We will also introduce a new time coordinate, namely
τr = 2πTt. Finally, in these new coordinates, we have obtained the metric for the near-horizon,
near-extremal RN black hole:

ds2 = r2
e [−dτ2

r (ρ2
r − 1) + dρ2

r

ρ2
r − 1 + dΩ2]. (98)

We see that this metric is actually that of AdS2×S2 and that it is valid under certain assumptions.
Namely, we have assumed first that the black hole is near-extremal:

r± = M0GN ±
√

2∆MreGN

= re ± 2πr2
eT

= re(1± 2πreT ),
(99)

where we see the appropriate condition of extremality: 2πreT � 1.
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This near-horizon metric is AdS2 × S2 with the AdS2 factor presented in Rindler coordinates.
Note, however, that the S2 factor has constant size in (98). To make a traversable wormhole that
connects different portions of asymptotically flat space, the metric must be modified to allow the
size of the S2 to vary, so that the black hole spacetime can be sewn onto the asymptotically flat
region. One may take this variation to be slow, with the perturbation away from AdS2 × S2 being
of the form

ds2 = r2
e

(
−(1 + ρ2 + γ)dτ2 + dρ2

1 + ρ2 + γ
+ (1 + φ)dΩ2

)
, (100)

where φ and γ are small functions that, respectively, encode the changing size of the sphere and a
perturbation of the AdS2 factor. Now τ and r are global coordinates for the AdS2 factor, which
make it appear easy to send causal signals from one side to the other45.

From the Raychaudhuri equation, spacetimes of the form (100) satisfying the null energy condition
must have φ(ρ) monotonic. But connecting the throat region to the asymptotic regions at both ends
requires that the spheres S2 grow at both the wormhole mouths, and therefore φ must grow in both
directions at large |ρ|. Completing the construction in a solution of Einstein-Hilbert gravity thus
requires the introduction of negative energy.

The construction of [92] creates negative Casimir energy by using the magnetic field of the
black hole and a massless, charged fermion field. The magnetic field creates localized Landau levels
near each field line, which gives a large number Q of effective 1+1 dimensional massless fermions.
As shown in Fig. 17, field lines that loop through the wormhole yield 1+1 dimensional theories on
S1×R. Since constant φ yields the exact solution (98) with vanishing stress-energy, a small negative
stress-energy suffices to allow growth of φ at large positive and negative ρ so long as the negative
stress-energy threads the entire wormhole and this growth is correspondingly slow.

Figure 17: The traversable wormhole of [92]. Magnetic field lines thread the wormhole, while fermions
localize into their lowest Landau level near each field line. For field lines that form closed loops (for example,
in blue), this creates effective 1+1 dimensional massless theories on S1×R whose Casimir energy makes the
wormhole traversable.

Ref. [92] showed that the energy of such wormholes differs from the energy of two disconnected
extremal black holes by the amount46

E = r3
e

GN `2
− NfQ

6

(
π

π`+ dout
− 1

4`

)
, (101)

45Note that by going from Rindler to global AdS we have effectively gone below the extremality bound, M < Q,
which would imply a naked singularity. However, it is with quantum effects that we can write this solution in a
consistent way, and form a wormhole instead of the singularity. If we only had positive energy, the geometry down
the near-extremal RN throat would be Rindler AdS2 (times S2), which has a black hole horizon and hence a non-
traversable wormhole. Instead, the negative energy makes the asymptotic geometry down the RN throat to be global
AdS2 (times S2), which is a wormhole

46This assumes a simplified model for fermion propagation in the exterior region; see [92] for details.
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where π` is equal to the “length” of the throat in an appropriate conformally rescaled metric, dout
is the separation between mouths in the exterior region, and Q is the integer magnetic charge of the
black holes.

The first term in (101) is the energy above extremality of a near-extremal RN black hole, and
although it is a classical contribution, it can be small when ` is large. It can thus be offset by the
second, quantum contribution from the Casimir energy. Minimizing (101) determines the equilibrium
wormhole length. When dout � ` one gets

` = 16r3
e

GNNfQ
∼ Q2lP

Nf
(102)

so that the wormhole binding energy is

Emin = −NfQ16` = −
N2
f g

3

256π3/2QlP
. (103)

This solution requires that dout � Q2lP /Nf , but it is also possible to find configurations with
dout � Q2lP /Nf , in which the balance is achieved between the two quantum terms in (101) with
the classical energy being negligible. In this case energy minimization gives ` = dout/π. The binding
energy is still Emin ∼ −NfQ/` but this is now much smaller than in (103), since ` is much larger
than in (102).

We emphasize that the magnetic field lines must form closed loops in order to generate Casimir
energy. This requires that both wormhole mouths be placed in the same asymptotic region of
spacetime. As a result, the mouths attract each other gravitationally. As long as the initial
separation dout between the mouths is sufficiently large, the wormhole will remain open for long
enough to cross it before collapsing – the time to merger is ∼ d

3/2
out (which is just the time for two

point masses to collide starting from rest), while the transit time along the throat is parametrically
O(dout). However, additional structure can be added to create longer-lived traversable wormhole
solutions. This can be achieved by introducing an external magnetic field (in GR, this would be a
Melvin flux tube [102]) tuned to keep the mouths apart, or by attaching cosmic strings that pull
them (exact solutions exist for both mechanisms [103; 104]). Alternatively, instead of balancing
them into exact (though unstable) equilibrium, one can set the mouths into a long-lived Keplerian
orbit around each other, as proposed in [92]. Though this orbiting will cause the wormhole mouths
to radiate gravitational and electromagnetic waves and hence eventually coalesce, the time scale for
this to happen is d3

out, and so again much longer than the time needed to traverse the wormhole
when the wormhole mouths are sufficiently far apart. Additionally, as noted in [97], it is possible
to create a more complicated stable solution by anchoring cosmic strings to some stable spherical
shell at a finite distance. This approach uses several strings to attach each black hole to the shell,
with each string anchored to a different location on the shell. Stability arises from the fact that the
angles between the strings depend on the location of the black holes.

It is expected that the wormhole throat must be longer than the distance between the wormhole
mouths, though the wormholes of [97] approximately saturate this bound in certain limits. In d > 4
this is a sharp bound that follows from, for example, the Generalized Second Law [8], or in AdS/CFT,
from boundary causality [105]. These statements prohibit wormholes from being the fastest causal
curves between distant points, and indeed the travel time through wormholes of [92] is longer by a
factor of order unity.47

47However, in d = 4 asymptotically flat spacetimes, the Shapiro time-delay associated with the wormhole mouths
means that the fastest causal curve between two distant points always lies far from the center of mass. Thus, the sharp
bounds mentioned above are always trivially satisfied, and a sharp, local bound is lacking for wormhole transit times.
However, it may be possible to derive sharper local bounds by considering either the quantum focusing conjecture [7],
or by considering short wormhole’s tendency to form time machines [87].
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Gravitational construction

Given the two-mouth wormhole described above, our idea for constructing multi-mouth traversable
wormholes is simple: place a small, near-extremal black hole in the throat of a larger-mouth
wormhole, and extend it into a wormhole with another small mouth in the same asymptotic region
as the larger mouths. Technically, the insertion of the two small mouths in the initial large wormhole
solution is a straightforward (if possibly tedious) problem of matched asymptotic expansions: the
small mouths can be treated as perturbations of, respectively, the throat and the asymptotic region,
while the effects of the latter on the mouths are incorporated as tidal perturbations of the near-
extremal Reissner-Nordström black hole. In our paper [101], we explain how to obtain the solution
to this perturbation problem. For our purposes here, we simply need the lowest order in the matched
asymptotic expansion, in which the backreaction of the mouths is neglected. We will only go beyond
this order in Sec. 3.2, where we calculate how the insertion of the small mouth modifies the energetics
in the backreacted solution.

Matching the geometry of the small mouths onto the background spacetime is thus a generic and
unproblematic part of the construction, but there are other aspects that must be dealt with more
carefully. One still fairly simple question is that of mechanical equilibrium (and possibly stability)
of the new configuration; this arises at the first order in the matched asymptotic expansions, as we
explain in [101]. Another problem is how to achieve the negative energies that make the throats
traversable. The answers to these questions vary depending on the details of the model we choose
– in other words, on the tools of which we avail ourselves for the construction. We may restrict
ourselves to working within the same theory as [92], with only fields and matter available in the
Standard Model (specifically, a Maxwell field and light fermions electrically coupled to it, in addition
to gravity) – or the Beyond-the-Standard-Model dark sector of [93] – to construct our multiboundary
traversable wormholes. Or, instead, we may resort to a larger set of tools, as did [97] (using e.g.
cosmic strings as may appear in, say, grand unified theories), and aim at a ‘proof of principle’ that
such wormholes are possible with reasonable matter and field content, e.g., satisfying basic energy
conditions, and possibly within the landscape of string theory. Allowing only Standard Model tools
of course makes the task more difficult.

Multi-mouth wormhole construction guide

We begin by asking how equilibrium can be achieved when one introduces a new wormhole mouth
into the throat of the wormholes constructed in [92]. If near-extremal magnetic RN solutions
approximately describe all three mouths in a magnetic field background, then equilibrium should
not be hard to achieve. A uniform magnetic field can be approximated by the field in between
two large, static magnetic sources (even nonlinearly in GR [106]). The third mouth can thus be
thought of as sitting in a uniform, static magnetic field. This will push the third mouth to one side,
but the deep gravitational well can be used to make the forces on this mouth balance at a finite
displacement; in [101], we work out how this problem is solved when constructing the backreacted
solution. Configurations with a small black hole in the throat in equilibrium can thus be found.

However, from a purely mechanical perspective, perhaps the simplest possibility is to let the small
black hole be charged under a different U(1) gauge field than the bigger mouths. This of course
introduces physics beyond the Standard Model. Equilibrium configurations can then be found that
preserve the natural reflection symmetry of the two-mouth solution, with the new source sitting in
equilibrium at the bottom of the throat.

We must also consider the external mouth to which the mouth in the throat connects. This third
external mouth will face stability issues similar to those described for the two-mouth wormhole above,
which can then be resolved in similar ways. In particular, even if the configuration is unstable, it can
still be sufficiently long-lived to allow the throats to be traversed so long as the additional black hole
remains small. This is so even though the addition of the small mouth in the throat will increase the

49



time required to traverse the larger wormhole due to a Shapiro-like time delay that we will analyze
in Sec. 3.2.

Having described the mechanics involved with adding the third mouth, let us now move on to the
problem of achieving negative Casimir energies that thread the associated wormhole. The effective
two-dimensional massless fermions used to build the original two-mouth wormhole will still travel
along magnetic field lines, which form loops along the non-contractible cycles of the wormhole and
thus provide negative Casimir energies. Some of these non-contractible field lines will thread the
third mouth and hold it open as desired.

We get more varied possibilities if we enlarge our toolbox beyond the Standard Model. For
instance, still using the magnetic line mechanism of [92], we can allow for three U(1) gauge fields,
and three flavors of fermions electrically coupled to each of the gauge fields. Then, with each pair of
the mouths having opposite magnetic charges under one of the U(1)’s,48 the fermions travel along
field lines in an independent manner.

Cosmic strings with zero modes traveling along loops of string provide the requisite Casimir
energy in a simpler manner. We may use it in a hybrid fashion, by adding the third mouth to the
magnetic-line model of [92] and thread it with two cosmic strings, each separately linked to the two
big mouths; or else, if that hybrid is deemed too ugly to regard, replace the fermions in the original
two mouths with a cosmic string as in [97] in addition to the two new cosmic strings, one along each
new cycle. An explicit example is given in Fig. 18.

Figure 18: Left: A three-mouth wormhole, held in mechanical equilibrium by cosmic strings. The cosmic
strings needed for Casimir energy are omitted here for illustrational clarity, but would wrap the compact
cycles around each pair of mouths. We take the small mouth to be charged under a different U(1) symmetry
than the previous black holes, with charge qe. This is done to maintain the symmetry of the solution. Field
lines from this small mouth in the throat will flow through the wormhole and exit through the large mouths,
giving them each a charge qe/2. The other small mouth is placed equidistant between the larger mouths,
but off the axis connecting them, to avoid overlapping with the compact strings that are needed to generate
Casimir energy (otherwise, the compact string would run down this small wormhole mouth, and not directly
around the non-contractible cycle of the wormhole handle). We can then add two more cosmic strings that
run in from infinity along the y−axis. The tension of these strings is equal, and can be chosen to compensate
for the magnetic and gravitational forces. The tension of the original string that stretches along the x−axis
can then be increased to compensate for the additional force on the large wormhole mouths from the small
wormhole mouth. Right: The top view.

Finally, notice that the assumption about a hierarchy of mouth sizes, i.e., very different charge
numbers in the big and small mouths, can be achieved within the Standard Model, while keeping
the mouth geometries semiclassical, given the large separation between the electroweak and Planck
scales. However, we will see later that the energetics of the throat demand that the number of flavors

48More precisely, the two big mouths can have charges (Q1, Q2, 0), (−Q1, 0, Q3) and the small one (0,−Q2,−Q3),
with |Q1| � |Q2|, |Q3|. This also allows easily for symmetric equilibrium positions for the small mouth.
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Nf be large in order to allow the insertion of the small mouth. Following [92], the Standard Model
may provide as many as Nf = 54.

Thus, while many potential constructions are possible, the cosmic string method of [97], possibly
augmented with additional gauge fields, serves to prove that it is possible to construct multi-mouth
wormholes sufficiently long-lived to be traversable. Their existence within the Standard Model,
following the methods of [92], also seems likely, even if its detailed investigation is more complicated.

Size limits on the third mouth

As described in [92], the traversability property is extremely fragile, as it can be destroyed by
perturbations of a small-but-finite size. We should therefore study more carefully just how large
the third mouth can be. In particular, we should note that the semiclassical analysis used above
requires the third mouth to be larger than the Planck length, indeed, larger than

√
Nf lP , since a

very large number of species Nf restricts the validity of the semiclassical description to length scales
>
√
Nf lP . We should understand the conditions under which these constraints can be satisfied.

As reviewed in Sec. 3.2, from the standpoint of the Raychaudhuri equation, the key point is
that the positive mass of the small mouth creates a focusing effect within the wormhole throat that
counteracts the defocusing effect of the negative Casimir energy. If the focusing effect of the small
mouth is too large, the topological censorship arguments of [78] require the throat to collapse and for
traversability to be destroyed. We expect that this places an upper bound on the mass of the small
black hole such that its energy, as measured from outside the wormhole, does not exceed the binding
energy of the wormhole. We now perform an analysis that confirms this expectation precisely.

We start with the solution for the wormhole interior as described in [92], which we then perturb
with a localized source for the small black hole deep inside the throat. As we have seen, the geometry
in this region is described by a metric of the form of (100), where the small functions γ and φ will
be treated to linear order.

The Einstein equations are sourced by the Maxwell field stress-energy tensor, the Casimir
energy from the fermions, and the small wormhole mouth. The former two contributions were
computed in [92], and for the latter we introduce a number of useful simplifications. First, since
the additional wormhole mouth is small we can understand its backreaction by treating it as a
localized, delta-function mass source. This is a codimension-three source, and although it is possible
to perturbatively solve for its backreaction, we will simplify the problem further. We are interested
in the effect of the source on the overall size of the S2 along the throat – which is controlled by
the scalar field φ in (100) – and we can smear the source over the S2, so it acts as a codimension-
one, domain wall defect on the throat. This is a good approximation for studying the gravitational
effect of the small mouth at distances in the throat larger than re. With this simplification, the
geometry varies only along the throat direction ρ, and then φ and γ are obtained by solving ordinary
differential equations.

It will be sufficient to solve the (ττ) equation. To linear order in φ and γ the Einstein tensor
takes the form

Gττ = γ − (1 + ρ2)(−1 + ρφ′ + (1 + ρ2)φ′′)− (1 + ρ2)φ . (104)

The corresponding stress tensor consists of magnetic energy density, fermion Casimir energy, and
localized mass source,

Tττ = Tmag
ττ + T fer

ττ + T δττ , (105)

which are given by

Tmag
ττ =− 1

4g2 gττF
2 = 1

8πGN
((1 + ρ2)(1− 2φ) + γ),

T fer
ττ =− α

8πGN
, T δττ = β

4πGN
δ(ρ) .

(106)
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We have placed the source at the center of the throat ρ = 0. In the next section we will consider off-
center positions (the off-center displacement created by the electric interaction between the charged
black holes is discussed in [101]). Furthermore we have defined49

α = GNQNf
4πr2

e

, β = GNm

re
, (107)

with m the mass of the small black hole. We have smeared it over the sphere S2 of radius re, so we
can trust the solution for |ρ| larger than one, but not near ρ = 0.

The Einstein (ττ) equation now involves only φ and not γ, and takes the form

(1 + ρ2)φ′′ + ρφ′ − φ = α

1 + ρ2 − 2β δ(ρ) . (108)

We solve this as
φ(ρ) = α(1 + ρ arctan ρ)− β|ρ| . (109)

The contribution β|ρ| from the small black hole is the gravitational potential that a mass creates in
1 + 1 gravity, which is how gravity along the throat behaves over scales larger than its thickness re.
As anticipated, we see the focusing effect of the mass m, which makes φ decrease as |ρ| grows. If β is
large enough, then at distances |ρ| > 1 (where our approximations hold) this effect could overcome
the defocusing of the negative Casimir energy and the throat would close, as φ must increase towards
the wormhole exits in order to connect to the asymptotic regions. Therefore we will limit β to values
such that φ grows for large |ρ|. This gives

β <
π

2α , (110)

which tells us that the maximum mass of the small black hole that we can put in the wormhole is

m <
NfQ

8re
. (111)

This m is locally measured in the vicinity of the small black hole, deep within the throat, while the
energy as measured outside the wormhole is redshifted by a factor of re/`, giving

Ebh <
NfQ

16` , (112)

that is,
Ebh < |Emin| (113)

where Emin is the energy gap between traversable and non-traversable wormholes that we saw earlier
in (103).

Writing the constraint (111) in the form

m <
1

8
√
π
gNfmP , (114)

where the Planck mass is mP = 1/lP , we see that at weak coupling g we need Nf � 1 for the small
mouth to remain semiclassical, with m � mP . Indeed the actual semiclassicality condition when
many fermion species are present, namely, m�

√
NfmP , can also be satisfied for Nf � 1.

The bound on the size of the small mouth may be even more stringent than (113), since we
expect that the radius of the small mouth cannot exceed the throat radius, that is, we must have

GNm < re . (115)
49In order to get the dimensions of the source term correctly, bear in mind that ρ is dimensionless and physical

lengths are in units of re.
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This bound will be more stringent than (111) whenever

re <

√
NfQ

4π lP , (116)

or equivalently when

Q <
g2Nf
4π2 . (117)

We need Q/g � 1, and actually Q/g �
√
Nf , in order for the black holes to be semiclassically

valid (see (82)), and the coupling will naturally be g . 1. Still, (117) allows situations where, due
to the presence of a large number of fermions Nf , the small black hole reaches its maximal size
while the original throat is still far from collapsing. The reason is that Nf enhances the binding
energy of the wormhole while not affecting the classical size relations (115). Conversely, when (117)
does not hold, the binding energy is sufficiently small, such that a black hole much smaller than the
throat radius can nevertheless be heavy enough to overwhelm the negative Casimir energy, and thus
collapse the wormhole. In this case, the approximations that lead to (113) hold well and the bound
can be regarded as accurate.

From this analysis we conclude that, if traversability is to be preserved, the addition of the third
mouth should not lift the energy of the system above that of two disconnected large extremal black
holes. More generally, we expect that multi-mouth wormholes always have lower energy than a
collection of disconnected extremal black holes.

One may also ask about applying our construction to the perturbative two-mouth wormholes of
[97]. In that case, the wormhole only remains open for a short time, and so can only be traversed by
causal curves that start early enough at past null infinity. The addition of the small mouth makes
this restriction even more stringent. We analyze it in [101], concluding that the bound on the mass
of the small mouth is stronger than (113) by an additional factor of `p/re. Correspondingly, larger
numbers of fermions Nf are thus required for the third mouth to enter the semiclassical regime while
preserving traversability of the original throat.

Lowering the small mouth down the throat

The previous subsection dealt with configurations with a small mouth that is already at the bottom
of the wormhole throat. Now we want to investigate if it is indeed possible to lower a mass m to that
place, starting from a position near the big wormhole exit. Since the wormhole is fragile, we carefully
lower the mass in a Geroch-like adiabatic process. Standing at the wormhole mouth, we attach the
mass to a string which we slowly release into the wormhole, so that the system is in equilibrium
at every moment while the mass is lowered. In contrast to the conventional Geroch process, when
the small mass reaches the bottom of the wormhole it will be at its equilibrium position, and it will
remain there when we remove the string. However, one may worry that this process could destroy
the wormhole. We have already seen that when the mass m sits at the bottom of the wormhole, its
energy cannot be larger than the bound (110) without collapsing the throat. We want to make sure
that the energy that we are dropping into the wormhole as we lower the mass remains sufficiently
small throughout the entire process.

We thus generalize our previous study to now hold the mass at an arbitrary height ρ = ρ0 ≥ 0.
Then the stress tensor of the (smeared) mass is

T δττ = β

4πGN
(
1 + ρ2

0
)
δ(ρ− ρ0) , (118)

where β is the same parameter for the mass m as in (107). The factor (1 + ρ2
0) accounts for the

fact that, since we keep fixed the black hole mass m as measured locally at ρ = ρ0, the energy
conjugate to the time τ varies with the redshift along the wormhole tube. Note that this stress
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tensor is suitable if our small black hole is charged under a different U(1) compared to the original
mouths; otherwise, we should introduce a charged shell.

To counterbalance the gravitational potential that pulls down on the mass, we employ a cosmic
string whose tension pulls it upwards. Since the mass is smeared on S2, the string will also have to
be smeared, so the stress tensor is a step function of the form

8πGN (Tτ τ )string = 8πGN (Tρρ)string = − T

4πr2
e

Θ(ρ− ρ0) . (119)

The string tension T will be determined by solving the Einstein equations. The energy equation
(ττ) now becomes

(1 + ρ2)φ′′ + ρφ′ − φ = α

1 + ρ2 − 2β δ(ρ− ρ0)− T

4π Θ(ρ− ρ0) . (120)

When we require that the solution is continuous at ρ = ρ0 we find that the tension must take the
value

T = 8πρ0

1 + ρ2
0
β . (121)

This tension remains finite all throughout the lowering process. It vanishes for ρ0 →∞ and ρ0 → 0,
which is as expected since these correspond to the beginning of the process and to the moment when
we release the mass at its final equilibrium position. The solution for φ is readily found to be50

φ(ρ) = α(1 + ρ arctan ρ)− 2β
1 + ρ2

0
(Θ(ρ− ρ0)(ρ− ρ0)− kρ) . (122)

The integration constant k depends on details of the physics of the lowering, and in particular on
ρ0, but we expect it to vary in the range

0 ≤ k ≤ 1/2 . (123)

When the mass is at ρ0 → ∞, we expect to have k = 0, which corresponds to just having an
additional mass m at one mouth and no strings, without any effect at the other mouth at ρ→ −∞.
Instead, when the mass reaches the bottom at ρ = 0 we will have k = 1/2, which is the fully
symmetric solution that we obtained in (109).

Earlier we saw that the condition that the wormhole remains open is that φ grows for large |ρ|.
In the solution (122) this requires that

2β
1 + ρ2

0
(1− k) < π

2α . (124)

This bound becomes very weak when ρ0 is large. When ρ0 → 0, so that k → 1/2, we recover the
previous bound (110). Without the detailed dependence of k on ρ0 we cannot know for certain
whether a more stringent condition occurs at some finite ρ0 6= 0. Nevertheless, it is clear that when

β < C
π

2α , (125)

that is,
m < C

NfQ

8re
= C

8
√
π
gNfmP , (126)

with C a number ∈ [1/2, 1], then we can safely lower the full mass m to the bottom without collapsing
the wormhole.

Since the object being lowered can be a semiclassical black hole of mass m if Nf � 1, this result
also implies that information can be safely transmitted through the wormhole in single batches of
the order of the black hole entropy 4π(m/mP )2. It may be interesting to explore further how this
type of analysis constrains the rates of information transfer through wormholes.

50See Appendix B for the complete solution to Einstein’s equations.
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Signaling between mouths

Suppose that two parties, A and B, use the original two-mouth wormhole to exchange messages.
What are the consequences of inserting a third, small mouth operated by c? From the gravitational
perspective, there are two different kinds of effects. First, the message sent by A (a particle or
a wave) may be partly absorbed by the small mouth and thus be received by c and not B. The
wormhole has then become a leaky pipeline. The absorption probability is proportional to the area
of the small mouth, and thus to c, and can also have a dependence on the small mouth’s angular
position in the S2 of the large throat.

Due to the relation between traversing a wormhole and quantum teleportation, these effects will
have counterparts in the entanglement structure of the three-mouth wormhole. In the absence of
specific realizations it is difficult to be precise, but some qualitative features are plausibly realized.
The leakiness of the line will likely appear as soon as a channel for a third party is added, with
losses plausibly proportional to the number of degrees of freedom that c holds. The angular
dependence requires a more detailed understanding. In a wormhole where the throat geometry
is well approximated by AdS2×S2, any dual description will contain a sector modelled by quantum-
mechanical degrees of freedom charged under an approximate SO(3) (or SU(2)) symmetry group.
Then, A and B can control the angular position on the sphere of the messages they exchange
by selecting qubits with appropriately chosen charge distributions. Having information about this
angular position is essential if A and B intend to communicate efficiently with c: the subset of degrees
of freedom of their many-qubit system that hold the entanglement with c must carry appropriate
SO(3) charges.

A second effect is due to the Shapiro time delay that the signal will experience as it travels in
the vicinity of the small mouth within the throat. That is, if the small mouth is placed in the throat
geometry (100), then the signal that A sends to be B will take an additional time to arrive. As
measured by an observer in the throat, this delay is given by the familiar Shapiro formula

δt ∼ 2m log
(

4`2

b2

)
, (127)

where we have used the AdS2 scale ` as an infrared cutoff and where b is the distance of closest
approach of the signal to the small mouth. This distance b may be translated into an angular
difference between the positions in S2 of the mouth and the initial signal. However, the delay
measured by A and B is much larger due to the strong redshift or order ∼ `/re at the bottom of
the AdS2 throat. Here we might suppose that the increased travel-time can be correlated with an
increased complexity in decoding the teleported message.

Entanglement structure

A rather different construction of a traversable three-mouth wormhole was recently described in
[107]. That analysis began with a non-traversable three-boundary wormhole asymptotic to AdS3
and added boundary interactions similar to those in the original work by Gao, Jafferis, and Wall [89].
In particular, by taking a limit where the horizons that shroud the original non-traversable wormhole
become both very large and very hot, much as in [108], the causal shadow becomes exponentially
thin along large regions of the horizon. In fact, in such regions the wormhole geometry becomes
exponentially close to that of the BTZ version of the Einstein-Rosen bridge. It is thus straightforward
to apply a local version of the analysis of [89] to show that appropriate boundary interactions can
make the wormhole traversable between any two boundaries.

The fact that the analysis of [107] largely reduces to that of [89] is associated with the fact that the
entanglement structure of the non-traversable three-boundary wormhole reduces in this limit (and
in the relevant regions of the boundary) to the entanglement structure of the thermofield double.
To be specific, in the region where the causal shadow separating boundaries A and B becomes very
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thin, the corresponding parts of the dual field theory on boundaries A and B are exponentially
well approximated by a thermofield double state [108]. In particular, neglecting exponentially small
corrections we may say that this part of boundary A is entangled only with boundary B and has no
entanglement with C. In this sense, the traversability of the three-mouth wormhole constructed in
[107] is associated only with bipartite entanglement; thus, multipartite entanglement plays no role.

In contrast, multiparty entanglement seems likely to play an important role in the three-mouth
traversable wormhole constructed in the current work. To make the discussion precise, we consider
an asymptotically AdS version of our construction in which each of the three mouths is associated
with a separate asymptotic region (the negative energy then comes not from fermion loops but from
operator insertions at the mouths as in [89; 90; 107]). Our three-mouth wormhole then becomes a
three-boundary wormhole. In the limit where the AdS scale ` is large compared with the radii of
the throats, the local geometry of the throats will be identical to that of the asymptotically flat case
described in the main text.

To argue for the possible importance of multiparty entanglement in our case, let us first recall
from [109] that multiparty entanglement may be quantified by considering the entanglement wedge
WAB of the joint AB system and computing

M3 := 2EW (AB)− I(A : B), (128)

where EW (AB) is the entanglement wedge cross section entropy [110] and I(A : B) is the mutual
information between A and B. In particular, EW (AB) is 1/4G times the area A(ΣABmin) of the
minimal surface homologous to both A and B within the entanglement wedge, where the homology
condition now allows the homology surfaces to have additional boundaries at finite boundaries of
WAB , the entanglement wedge of AB. In particular, the surface ΣABmin will generally intersect the
minimal surface ΣC that computes the entropy of boundary C, and indeed will split it into two parts
ΣAC and ΣBC . As a result, since SAB = SC for our wormhole, we may rewrite M3 in the form

4GM3 =
(
A(ΣABmin) +A(ΣAC)−A(ΣA)

)
+
(
A(ΣABmin) +A(ΣBC)−A(ΣB)

)
, (129)

where ΣA,ΣB are the minimal surfaces homologous to boundaries A and B in the usual sense.
The right hand side of (129) is now manifestly positive since, for example, ΣA is homologous to
ΣABmin ∪ ΣAC and is also by definition minimal within that homology class; see Fig. 19.

Figure 19: A three-mouth wormhole. ΣABmin is the minimal surface homologous to both A and B that stays
within the entanglement wedge of AB (orange). ΣAC (dark blue) and ΣAC (purple) are the portions of ΣC ,
split by ΣABmin, such that ΣABmin ∪ ΣAC is homologous to A and ΣABmin ∪ ΣBC is homologous to B.
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Furthermore, in the limit used in the main text in which the AdS scale ` and the radii of the
large mouths are much larger than the radius of the third small mouth, it is clear that the third
small mouth sets the only scale in the problem. Thus in that case, dimensional analysis guarantees
that 4GM3 will be first order in the area of the third small mouth, or in other words, that M3 is
first order in the corresponding entropy: M3 ∼ SC .

This shows that our construction applies in the limit where the multi-mouth wormhole has
significant multiparty entanglement. The remaining question is therefore whether this multiparty
entanglement plays an important role in our wormhole’s traversability. While a complete analysis
of this question is beyond the scope of the current work, the further remarks below appear to point
in this direction.

Let us briefly consider the locations of ΣA,ΣB , and ΣC . In [108; 111], it was found that narrowing
of the entanglement shadow region between these three surfaces, so that the separation between
some two of these surfaces becomes small relative to their distance to the third, was indicative
of a region of mostly bipartite entanglement between the corresponding boundaries. In contrast,
regions where the distance between the various entangling surfaces is roughly the same between each
pair of surfaces might naturally be taken as a signal of tripartite entanglement. In particular, [111]
associated large amounts of multipartite entanglement to certain AdS black holes whose temperature
was small compared to the AdS scale, while [108] showed that states dual to hot black holes are
well-approximated by sewing together various copies of |TFD〉 states. See Fig. 20 below.

Figure 20: A cold AdS3 three-mouth wormhole. At any point on one entangling surface, the distance to
the other two entangling surfaces is roughly the same. This suggests strongly tripartite entanglement.

Recall also that our analysis of back-reaction suggested that one mouth (C) must remain small
relative to the other two. We thus assume that this is so. Before we add in C, the extremal surfaces
associated with A and B coincide and lie at the bottom of the AB throat. In the limit where C is
much smaller than A and B, it will have little effect on the geometry far from C. Thus the extremal
surfaces associated with A and B will remain close over most of their area, and in particular at the
top of the wormhole in Fig. 21 below. This indicates that there is still strong two-party entanglement
between A and B, as one would expect since SC � SA, SB .

On the other hand, the extremal surface associated with C will remain close to the bottom of the
small wormhole throat. Since the only scale in the problem in the region near C is the size of ΣC ,
the separation in this region between any two minimal surfaces will be comparable to the scale of
ΣC itself. The fact that e.g. the separation in this region between ΣA and ΣB is comparable to the
separation between ΣA and ΣC then indicates that multiparty entanglement plays an important role
in this region of the geometry, and thus presumably also in making this region traversable. More
physically, one might rephrase this remark by stating that a signal entering the wormhole through
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mouth C must then find itself for some non-trivial amount of time in the entanglement shadow
region which, due to the entanglement with C, fails to be part of either of the entanglement wedges
of A or B alone. One thus expects that the three-party entanglement of the field theory dual is
required to describe propagation of the signal in this region.

Figure 21: The extremal surfaces associated with the mouths of a multi-mouth wormhole in asymptotically
flat space are depicted, with one mouth C much smaller than the other two, A and B. In this limit, the
extremal surfaces associated with A and B remain close together over most of their area, and in particular
much closer than their distance to the extremal surface associated with C, which sits at the bottom of the
small wormhole throat.

The large bipartite entanglement between A and B is consistent with the idea that C has little
effect on signals being sent between A and B. But it would be interesting to consider quantum
mechanical duals in more detail, as well as the quantum teleportation protocols associated with
traversing the wormhole in the bulk in analogy with the discussions of e.g. [89; 112; 113; 114]. In
particular, if the entanglement of C with A and B is indeed mostly of the multi-party sort, then
the dual description of sending a signal from C to either one of A or B must necessarily involve
all three systems. While this idea may at first seem unfamiliar, it is consistent with the fact that
the asymptotically flat region of our gravitational solution does in fact provide interactions between
each pair of mouths AB, AC, and BC.

3.3 Time machines
In the previous section, we have seen how to construct traversable wormholes in a self-consistent
way. However, these new solutions also bring with them new questions. One may wonder about
their relation to quantum teleportation [115], and/or evidence for their existence in our night skies
etc. However, one may also wonder if they can be turned into time machines, as various papers from
some decades ago would suggest.

It is not hard to come to this conclusion: wormholes can connect two different points in space,
but also in time; can they be made then to connect non-time-ordered spacetime points? And naively,
it really does seem like there are no obstructions to building a time machine. In fact, it was even
shown [116] that traversable wormholes generically tend to turn into time machines! Naturally, such
a conclusion is pretty radical; after all, causality is one of the most fundamental principles on which
all of physics is based on. So, there were in general two51 ways to get around this point: either
traversable wormholes cannot exist, or there must be some reason why they cannot be turned into
time machines. Given our previous section, it seems there must be some mechanism which prevents
the formation of time machines.

The leading conjecture about the non-existence of time machines goes back to Hawking and
his chronology protection principle. In essence, Hawking argues that we might try to make a
wormhole into a time machine, but in doing so, we will encounter a singularity before we close

51We could also talk about two additional possibilities: maybe time travel is allowed, but then it must obey self-
consistency conditions, or maybe causality is an emergent phenomena, even at low energies. Luckily, we will see that
option 2 seems to be the correct one, so we do not need to worry about rewriting physics (just yet).
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the (timelike and/or lightlike, i.e. causal) curves. His argument is based on the expectation value
of the renormalized stress tensor at a chronology horizon52, which will lead to a divergence as we
try to make a causal geodesic into a closed one. In other words, it appears that any attempt to
transform a wormhole into a time machine results in large vacuum polarization effects, which disrupt
the internal structure of the wormhole, thereby preventing time machine formation.

However, notice that by invoking a divergent stress tensor in a gravitational background, we are
immediately lead into the regime of quantum gravity: these types of divergences are indicating a
failure of our semiclassical treatment and calling for a smoother explanation in terms of quantum
gravity variables. This does not mean that this barrier will go away somehow if we re-analyze it in
our tentative theory of quantum gravity; however, it is unable to tell us what is the mechanism that
leads to it. All we can really say is that backreaction effects will prevent closed causal curves from
forming.

Is there a way to understand chronology protection in a different way, without invoking quantum
gravity effects? We will argue in the next sections that the answer is yes, essentially via two routes:
first, we will give a heuristic argument why chronology protection must occur way before Planck
scale physics kicks in, and second, we will complement the first result by analyzing time machines
in holography, arguing that the divergent stress tensor on the boundary leads to a geodesically
incomplete bulk. But first of all, we will start off by explaining the apparent mechanism behind the
wormhole transformation into a time machine, and give a simple model of Frolov and Novikov in
which we can perform exact calculations.

Time machines from wormholes

In this section, we will present a simple recipe for creating a time machine out of a traversable
wormhole, following Visser [87]. Indeed, the recipe consists of only three steps:

1. Acquire a traversable wormhole;

2. Induce a time-shift between the wormhole mouths;

3. Bring the mouths close together.

We see that we have already completed the first step in Sec. 3.2, and so, we can proceed to the next
step. However, before we do so, we have to emphasize that these steps in Visser’s book revolve around
traversable wormholes which are not self-consistent. In other words, traversable models in the time
before Gao, Jafferis and Wall [89], have all consisted of fixed backgrounds and some “exotic” matter
fields with negative energy which would keep the wormhole from collapsing. Moreover, the role of
achronicity was not yet fully understood, and so many of these models have short wormholes, or
even zero-length ones. Ultimately, we will see that this was the main reason why it was not realized
that time machines cannot exist: a self-consistent model was not yet found, thereby allowing all
kinds of non-consistent physics to seemingly occur.

Nevertheless, for pedagogical purposes, we will go through the argumentation of how one would
arrange for a wormhole time machine to form. And so, first, we must define what we even mean by
a time machine:

Definition 1: If a spacetime M contains a closed causal curve γ, then M contains a causality-
violating time machine, and the curve γ traverses the time machine.

Notice that the whole spacetime need not be a time machine! It is enough to have a “causality-
violating region” in order to be referred to as a time machine.

In this case, we will have a boundary separating the causality-obeying region from the other one,
so we have a notion of a Cauchy horizon, that is, a causality horizon:

52We will define this notion shortly.
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Definition 2: The future causality horizon of a spacetime M is the boundary of the causal future
of the causality-violating region,

H+(J) ≡ ∂[J+(J0(M))], (130)
where J0(M) is the set of all points in M which make up the causality-violating region, ∂ is a symbol
for a boundary and J+ indicates we take the future domain of dependence (causal future), that is,

J+(p) ≡
{
q ∈M

∣∣∃ a future-directed causal curve from p to q
}
. (131)

Intuitively, one can refer to the example of the Kerr black hole: the inner horizon in that case is
also a causality-horizon, and all points beyond this horizon, towards the Kerr singularity, belong to
the causality-violating region of this spacetime.

Now that we know what a time machine is, we can proceed with our steps to constructing one.
So, step two tells us we should induce a time-shift between the mouths - what does this mean? In
essence, this amounts to desynchronizing the clocks at each of the mouths. In other words, we can
induce it by sending one of the mouths on a twin-paradox trip or, maybe putting a massive object
next to one of the mouths. The point is to rely on (special or general) relativistic time dilatation
– going through the wormhole then connects you to different times. One can see the effect this
will have if we let the time shift become large enough: the gravity of a massive object would slow
time near one wormhole mouth, so that a time difference between the ends of the wormhole would
gradually accumulate.

And that leads us to the final step three: bringing the mouths close together53. How close?
Well, until the time it takes you from and to one of the mouths is shorter than the time shift you
have induced! Consider a wormhole where two mouths A and B are identified (one can put a tube
between them, but for simplicity we will first assume that the tube is short enough that its length
can be neglected). Viewed from the outside, the two mouths are far apart and moving inertially, at
rest relative to each other, so time runs at the same rate in both of them. At some moment bring
a black hole close to mouth B - if there is a tube joining the mouths we assume that it remains
approximately the same as before. The two mouths remain identified at all times, so an observer
jumping into one mouth comes out of the other almost immediately (if there’s a short tube joining
them, jumping into one mouth and coming out of other can be done in a very short time). On the
other hand, when the observer compares the clocks in the two mouths through the external space,
she will see that, due to the gravitational dilation caused by the nearby black hole, the clock near
B slows down relative to that near A. At a sufficiently late time, this time difference will have
accumulated to become larger than the light travel time between A and B through the external
space. So, across the external space, mouth A is in the causal past of mouth B. It’s then clear that
there are closed causal curves.

Additionally, let us say that after this much time difference has accumulated, an observer leaves
from near mouth A and travels across the external space to mouth B. When arriving there, she
jumps into the wormhole and traverses it in almost no time, to appear at A at a time earlier than
she began the external trip: she has moved to her causal past on a closed causal curve.

Note that even if we have a tube between the mouths which is is initially longer than the
external distance, the effect will still be present54, provided one waits long enough for mouth A to
age sufficiently relative to mouth B, and that the tube length remains approximately constant all
the time, i.e. it looks like in order to prevent the formation of a time machine, the tube should grow
longer and longer as time dilation accumulates.

This is a nice story, of course, but we would like to see how well does the story hold up in
actual models of spacetime time machines. And for this, we will turn in Sec. 3.3 to the well-
established model of Frolov and Novikov [116], in which they showed, under certain assumptions,

53Notice that we could have avoided the third step if we had let the second step last long enough; step three would
then simply be “Take a seat and wait”. However, we found that having a definitive third step makes the construction
more pedagogical.

54Disregarding backreaction.
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how traversable wormholes generically end up becoming time machines. However, before turning to
concrete calculations, we will present a heuristic argument for why time machines cannot form, even
in semiclassical General Relativity.

Heuristic argument using the AANEC

The key point when discussing the formation of time machines is the realization of closed causal
curves; one of the reasons why wormholes provide an apparently easy method to form such curves is
due to their inherent structure which allows for non-contractible cycles. However, the same inherent
structure cannot be supported without obeying certain energy conditions, that is, the AANEC.
This energy condition already restricted the set of all allowed (physical) wormholes; for instance,
we cannot have a self-consistent solution with a wormhole whose length is shorter than the ambient
space distance. Can we use the AANEC then to restrict time machines as well? Yes, and in fact,
it was shown in the original paper which established the AANEC [117] that time machines are
impossible under this energy restriction. And given that one can derive the AANEC from the fine-
grained Generalized Second Law (GSL) [118], discussed in the first chapter in Sec. 2.1, one can prove
the absence of time machines using the GSL as well. So, what is this section then about if we already
know time machines cannot exist? What these papers [117; 118] show is that the AANEC/GSL is
incompatible with time machines: simply, having one excludes the other. But what they do not
show is the hierarchy of validity, that is, when does the AANEC/GSL restrict the time machine
formation: at the moment of formation, or sooner? In this section, we will show that the AANEC
must act well before the time machine is formed, thereby indicating that no divergence of the stress
tensor will be necessary to prevent the time machine formation; low energy, semiclassical physics
will be enough.

In essence, the AANEC is applied to a null geodesic which represents the shortest path between
wormhole mouths; this is why only long wormholes are allowed, since the AANEC then applies only
to the exterior distance. However, in a setting where we are inducing a time shift, and slowing
down time at one of the mouths, we are shortening the effective length/time of the wormhole throat.
Conversely, the ambient distance between the mouths gets prolonged by the time shift. In other
words, before we make a time machine, we first need the make the wormhole the shorter path - and
that manifestly violates the AANEC in the throat. Notice that we are making the wormhole shorter
in the sense of how much time it takes to traverse it, and not literally elongating it. Regardless, the
AANEC applies to the geodesic which takes the shortest amount of time, and so it gets violated in
the throat.

Let us expand a bit on this argument with some simple calculations. We will denote the proper
time for exterior asymptotic observers by T and by t the proper time of observers at rest inside the
wormhole55. Exterior distance will be denoted by D and the wormhole length by L. Now, we will
need to discuss the mouths of the wormhole separately, and we introduce appropriate parameters
which will track our time-shifting for each mouth. In other words,

Mouth 1: t = eφ1T, Mouth 2: t = eφ2T, (132)

where φi represent the gravitational potentials one induces when, for instance, bringing a massive
body next to one of the mouths to induce a time shift; see Sec. 3.3. We will assume that T = t = 0 as
initial conditions, when all clocks, internal and external, are synchronized, and so φ1 = φ2 initially.
Inducing the time shift then amounts to making one of the potentials bigger, say φ2 > φ1, which
makes the second mouth “run faster”, that is, the first mouth heavier. So, how can we make a time
machine in this setup? In order to achieve this, we have to enter the heavier mouth and exit through
the lighter one - this will allow us to “come back before we started” if φ2 is large enough.

55If there are gravitational redshifts within the wormhole, then we simply need to know how the internal time hooks
up to the exterior time at the two mouths.
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However, we will also gain energy in this process: the energy is not conserved! In other words,
our gravitational field is non-potential. In [116], it is explained how this feature of non-potentiality
gives rise to time machines. And there can be many reasons behind this feature, but here we will
be content with presenting one way: the difference in the potentials comes from identifying mouths
which have different masses M1 and M2, and same radius R. We will be using a simple model of
Schwarzschild black holes for wormhole mouths. Then eφi = 1 −Mi/R, where φi = −Mi/R, and
when M1 > M2 then φ1 < φ2 < 0. We will denote the difference between the potentials as

∆φ = φ2 − φ1 > 0. (133)

Now, in order to get some intuition of how time machine formation works, we will first analyze the
case of a zero-length wormhole. In that case, when we enter the first mouth at some exterior time
T , which in wormhole time parametrization is t = eφ1T , we emerge at the second mouth also at
time t, since L = 0, and this translates to some exterior time T ′ which is equal to e−φ2t, that is
T ′ = e−∆φT . Now, a time machine is formed when two conditions are satisfied

T ′ = e−∆φT < T (134)

but also
|∆T | < L+D = D. (135)

We can approximate 1− e−∆φ ∼ ∆φ, which then gives

T > Tc = D

∆φ. (136)

So, we see that we make closed loops when the exterior time T to traverse the distance D becomes
larger than the same distance, re-scaled by the time shift. In other words, the effective distance (in
this case, only the exterior one) has shrunk due to the time shift.

Now we can take up a more serious example with a finite-length wormhole throat. for instance,
described by

ds2 = −dt2 + dr2 +R2dΩ2, (137)
and now it takes some time to cross the wormhole, since it has finite length L. We can denote this
time as ∆t = t′ − t. So, again, one enters the heavier mouth at time T = e−φ1t, arrives at the other
mouth at time t′ = t+ L, which correspond to the exterior time to T ′ = e−φ2t′ = e−∆φT + e−φ2L.
Now, in order to close the loop, one travels back to the first mouth using the exterior path and
arrives at mouth 1 at time T ′′, which is given by

T ′′ = D + T ′ = D + e−∆φT + e−φ2L. (138)

As before, the time machine forms when T ′′ < T , that is,

e−φ2L+D < ∆φT, (139)

or in other words, when we reach the critical point

Tc = e−φ2L+D

∆φ . (140)

Notice that the wormhole length is allowed to be as long as we want: given any L, there exists a
time Tc for which we form closed causal curves; we just have to wait a bit longer.

This proves wrong the common lore that “time machines only happen with short wormholes”. In
any case, we can simplify the expression by putting φ2 � 1, which gives

Tc = L+D

∆φ . (141)
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Now that we see what is the condition to form a time machine, we would like to see what
conditions does the AANEC impose. In other words, we want to see when the exterior light ray
arrives later than the interior one, thereby making the wormhole path a shorter one. The race starts
at exterior time T = e−φ1t, as before. But now we send two light rays: one through the wormhole
(inner light ray) and one through the exterior (outer light ray). We see that the light rays arrive at

T out = D + T, T inn = e−φ2t′ = e−φ2L+ e−∆φT, (142)

and so,
T out > T inn (143)

when
T >

e−φ2L−D
∆φ , (144)

which for φ2 << 1 reduces to
T > T achr = L−D

∆φ , (145)

while
T > Tc = L+D

∆φ . (146)

Since T achr < Tc, we see that the AANEC gets violated before we form a time machine! The only case
where these two times become comparable is for very long throats, L� 1, and one might say that at
that point we need to revert back to the divergent stress tensor resolution. However, there are bounds
on the length of the throat, even from above [92]. In essence, for very long throats, the temperature
of the black holes gets very small, leading us outside the regime of thermodynamics and allowing for
fluctuations similar in size to excitations of our supporting field. In other words, quantum gravity
fluctuations become relevant and we cannot trust our solution anymore. It seems then that quantum
gravity does kick for large L, one way or another. Nevertheless, for all intermediate stages, it is clear
the time machines must be ruled out on the basis of AANEC, at times sufficiently earlier than the
time for the formation of closed causal curves, and when only physics well-below the Planck scale is
involved.

A simple toy model

The previous section established a heuristic argument for why AANEC prevents time machine
formation well before the causality horizon forms. In this section and the next one, we will show
complementary results to the heuristic argumentation. In particular, the main question we will want
to answer is how the bulk physics changes if one forms a time machine on the boundary? Clearly,
such a boundary theory will be pathological, and one might think that such a pathology will be
naturally translated into the bulk. However, the results that we find seem to indicate a different
kind of a resolution; namely, our bulk will develop some sort of a geodesic incompleteness, while the
causality horizon is completely pushed to the boundary. However, before we analyze this solution,
we first introduce the simple toy model we will be working with.

The geometry of a spherically symmetric wormhole can be written in the form

ds2 = −e−2Φ(λ)dt2 + dλ2 +R2(λ)dΩ2 . (147)

We take R(λ) to be a U-shaped function (not necessarily symmetric) of λ ∈ (−∞,+∞), with
R2 → λ2 as |λ| → ∞. R has a minimum Rmin at finite λ, corresponding to the wormhole neck.
The wormhole tube is the region where R is approximately constant, R ' Rmin, and the mouths are
where the behavior R ' |λ| sets in.
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The gravitational potential Φ(λ) is finite everywhere, so there are no horizons. We assume that
Φ(λ) → Φ±∞ as λ → ±∞. Typically, these asymptotic values will be reached not far from the
mouths. We will be interested in the case where the gravitational field differs at the two mouths,
Φ+
∞ 6= Φ−∞. We may always set one of these two asymptotic values to 1.

In this geometry the two mouths live in different asymptotic regions of the universe: the spatial
topology is R× S2, with the two asymptotic regions lying at the two ends of R. We will have the
wormholes connected within the same space, so that it is possible travel between the two mouths
in the ‘outside universe’. The spatial topology then changes to S1 × S2 − {∞}, with the S1 factor
being the trajectories that thread the wormhole. This connection distorts the wormhole geometry
away from spherical symmetry (the two mouths attract each other), but we will still consider the
above geometry to be a good approximate description near each of the mouths. We do not assume
that the tube is short, neither compared to Rmin nor to the outside distance between mouths.

When Φ+
∞ 6= Φ−∞, a time-shift will grow between the sides. A particle traveling in a circular

trajectory along the wormhole (by going between the two mouths along a path in the outside
universe, and then back to the initial mouth through the wormhole tube) will experience a net
gravitational force, and will get accelerated—it will gain or lose energy along the way56, i.e. the
gravitational field is non-potential.

AdS2 time machine The 1 + 1 geometry seen by a particle, i.e. the metric along its worldline,
traveling in a circle along the wormhole is of the form57

ds2 = −e−2φ(λ)dt2 + dλ2 , (148)

where points along λ are periodically identified, λ ∼ λ+Lλ, with Lλ the total length of the wormhole
circle. We assume that φ is not periodic, φ(0) 6= φ(Lλ), but rather the time coordinates t at λ = 0
and t′ at λ = L are related by

e−φ(Lλ)t′ = e−φ(0)t . (149)

That is, time runs at different rates at different values of λ (since they are at different gravitational
field), and when a particle traveling around the circle comes back to the initial position, it will
have gained (or lost) energy. This is possible because the identification breaks the time-translation
symmetry, so energy is not conserved in this geometry. When backreaction effects are included, the
mass of the two mouths will change to account for these energy transfers.

This spacetime can always be conformally transformed to the form

ds2 = −e−2σ/`2dt2 + dσ2 (150)

(with constant `2) by a change of coordinates involving only λ and σ but not t. This transformation
uniformizes the path, while retaining the growing time shift between the mouths. The new geometry
is locally the same as the Poincaré metric in AdS2 with curvature radius `2, but we are identifying
points in it in such a way that

(t, σ) ∼ (e∆t, σ + Lσ) , (151)

with
∆ = Lσ

`2
> 0 . (152)

We will use the spatial coordinate
x = `2e

σ/`2 , (153)
56This energy corresponds to a transfer of mass between the two mouths, which makes the heaviest mouth heavier,

the lightest mouth lighter: an unstable process.
57If we consider fields propagating in the wormhole, this geometry will be appropriate as long as only s-waves are

excited in the wormhole tube, and the outside path is very short. This is the situation in [92].
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in terms of which
ds2 = `22

−dt2 + dx2

x2 = −4`22
dx+dx−

(x+ − x−)2 , (154)

where the latter is expressed in null coordinates x± = t ± x. The orbifold Poincaré spacetime is
obtained by identifying58

(t, x) ∼ (e∆t, e∆x) , (155)

with ∆ > 0, and we take as fundamental domain

t ∈ (−∞,∞) , x ∈ (1, e∆) . (156)

This is a Lorentzian orbifold, with winding orbits that are spacelike as long as |t| < x, but become
null when |t| = x, and timelike when |t| > x. Therefore, we see that by taking a quotient of AdS2
by this discrete group we obtain a generic description of time machines built using wormholes.

Frolov computed the renormalized stress tensor for a conformal scalar field in this geometry in
[119]. It takes the form

Tµνdx
µdxν = F (∆)

((
dx+

x+

)2
+
(
dx−

x−

)2
)

+ R

24πgµνdx
µdxν . (157)

The last term is simply the trace anomaly in AdS2. The effects of the orbifold appear in the traceless
part, with a function F (∆) that is not very simple. We see that the stress tensor diverges as one
approaches the causality-horizon, x− → 0.

Holographic dual of a time machine

In order to discuss a holographic dual of any boundary spacetime, we need to introduce the formalism
of holographic reconstruction, which we revise here.

AdS3 bulk reconstruction In an AdS3 bulk, the Fefferman-Graham expansion truncates exactly
to the form found by de Haro et al. in [120],

ds2 = `2

z2

(
dz2 +

(
gij + z2g

(2)
ij + z4

4 g
(2)

i
kg

(2)
kj

)
dxidxj

)
. (158)

Indices are raised and lowered with the boundary metric gij (we omit the index (0)). The term g
(2)
ij

determines the stress tensor as
g

(2)
ij = 1

2

(
tij −Rgij

)
, (159)

where R is the scalar curvature of gij and tij is the ‘geometric stress tensor’, which satisfies

∇itij = 0 , tii = R , (160)

and yields the physical holographic stress tensor as

Tij = `

16πGtij = c

24π tij . (161)

We work mostly with tij and not Tij . We can also use its traceless part,

t̂ij = tij −
1
2Rgij , (162)

58These are not boosts, which instead act as x+ → eβx+, x− → e−βx− (and are not isometries of Poincaré AdS),
but constant rescalings, which are elements of the isometry group SL(2,R).
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in terms of which
g

(2)
ij = 1

2
(
t̂ij −

1
2Rgij

)
. (163)

Now we insert this into (158) to obtain

ds2 = `2

z2

[
dz2 +

[((
1− R

8 z
2
)2

+ t̂2

32z
4
)
gij + z2

2

(
1− R

8 z
2
)
t̂ij

]
dxidxj

]
, (164)

where we denote
t̂2 ≡ t̂ij t̂ij , (165)

and we have used that59

t̂i
k t̂kj = t̂2

2 gij . (166)

This generic form of the reconstructed exact bulk metric separates cleanly the pure-trace and
traceless parts of the metric.

For reference, if we use tij instead of t̂ij , the reconstruction takes the form

`2

z2

[
dz2 +

[(
1− R

2 z
2 + R2 + t2

32 z4
)
gij + z2

2

(
1− R

8 z
2
)
tij

]
dxidxj

]
, (167)

where
t2 ≡ tijtij = t̂2 + 1

2R
2 . (168)

Consider the case where the boundary metric is written in null coordinates x± = t± x as

gijdx
idxj = −g(x+, x−)dx+dx− (169)

so that g+− = −g/2, g+− = −2/g,60 and

t̂ijdx
idxj = t̂+(dx+)2 + t̂−(dx−)2 , (170)

t̂2 = 8
g2 t̂+t̂− . (171)

Then

ds2 = `2

z2

[
dz2 −

((
1− R

8 z
2
)2
g + t̂+t̂−

4g z4
)
dx+dx− + z2

2

(
1− R

8 z
2
)(
t̂+(dx+)2 + t̂−(dx−)2)] .

(172)
For instance, the BTZ black hole is recovered for gij = ηij (so R = 0) and constant t̂tt = t̂xx = µ;

in null coordinates, this is g = 1, and t̂+ = t̂− = µ/2. The dimensionless constant is in that case
µ = 8GM . For µ = −1 we recover global AdS3.

We can now apply this to Frolov’s wormhole time machine spacetime, which is a quotient of the
Poincaré AdS2 geometry, with

g = 4
(x+ − x−)2 (173)

(so that R = −2), and with the CFT traceless and conserved stress tensor

t̂± = − α

(x±)2 , (174)

59The square of a traceless 2× 2 matrix is proportional to the identity.
60It is often convenient to write g = e2φ. Then R = −2�φ = 8e−2φ∂2

+−φ.
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where α is a parameter characterizing the holographic stress tensor which, as we will show, is
determined by a regularity condition in the bulk.

We obtain the (local) geometry of the holographic bulk dual of the wormhole time machine as

ds2 = `2

z2

[
dz2 −

((
1 + z2

4

)2 4
(x+ − x−)2 + α2

16

(
1
x+ −

1
x−

)2
z4
)
dx+dx− (175)

− z2

2

(
1 + z2

4

)
α

((
dx+

x+

)2
+
(
dx−

x−

)2)]
. (176)

If we introduce a coordinate σ for the proper length along z,

z = 2e−σ (177)

we obtain (setting ` = 1)

ds2 = dσ2 −
(

cosh2 σ
4

(x+ − x−)2 + α2

4

(
1
x+ −

1
x−

)2
e−2σ

)
dx+dx− (178)

− α

2

(
1 + e−2σ

)((
dx+

x+

)2
+
(
dx−

x−

)2)
. (179)

This geometry is, by construction, locally AdS3; we will study its global properties.
When α = 0 we recover the metric of AdS3 foliated by AdS2 slices at constant z or σ. In this

case, z ranges over z ∈ (0,∞), i.e. σ ∈ (−∞,+∞) with symmetry under z/2 ↔ 2/z, σ ↔ −σ.
The two asymptotic ends of the interval then correspond to identical complementary halves of the
AdS3 boundary. The boundary of the AdS2 slices at x+ − x− → 0 meets the AdS3 boundary at the
junction between the two half-boundaries.

When α 6= 0 this symmetry is broken. We will see below how this affects the global properties
of the spacetime.

The metric is time-dependent, even though the boundary metric is (locally) static. The reason
is that the CFT stress tensor is time-dependent. Nevertheless, the Euclidean continuation of the
geometry will be real, since the metric is time-reversal invariant. This is because the boundary CFT
geometry, i.e. the 1 + 1 time machine spacetime, is time-reversal invariant (Poincaré AdS2 is static,
and although the identifications break the timelike isometry, they preserve time-reversal symmetry),
and so is the CFT stress tensor too. More explicitly, the time dependence comes from(

1
x+ −

1
x−

)2
= 4x2

(t2 − x2)2 (180)

and from (
dx+

x+

)2
+
(
dx−

x−

)2
= 2 t2 + x2

(t2 − x2)2

(
dt2 + dx2

)
− 8tx

(t2 − x2)2 dtdx , (181)

which Wick-rotate to real expressions since t appears quadratically.

Conical regularity and discrete identifications The 3-dimensional metric is invariant under
the transformation x± → e∆x±, which is generated by the Killing vector

k = x+ ∂

∂x+ + x−
∂

∂x−
(182)
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on surfaces of constant z, constant σ. The norm of k is

|k|2 = −

(
2x+x−(4 + z2) + αz2(x+ − x−)2

)2

16x+x−(x+ − x−)2z2 . (183)

Then, k is spacelike where x+x− < 0 (the ‘right’ wedge |t| < x)61, and timelike where x+x− > 0
(the ‘up’ and ‘down’ half-wedges |t| > x > 0). The norm vanishes where

z = zmax = 2√
− α

2x+x− (x+ − x−)2 − 1
, (184)

or
σ = σmin = 1

2 ln
(
− α

2x+x−
(x+ − x−)2 − 1

)
. (185)

One may wonder whether this locus corresponds to a Killing horizon of k, i.e. a null hypersurface
generated by the Killing vector where it becomes null, or instead to a point (actually a worldline of
points in the 3D spacetime) where spacelike trajectories approach zero length. We can see that it
is the latter case and not the former, since (for α > 0) the condition that z in (184) is real can only
be satisfied in the wedge x+x− < 0 where k is spacelike. Therefore, k remains spacelike around the
points (184), where its orbits have zero length and therefore are fixed points (and not null horizons)
of k.62 Moreover, when α > 1/2 this fixed-point set exists in all of the wedge x+x− < 0 for some
real value z = zmax. Then, at any given values of (x+, x−) within this wedge, the bulk extends in
the range z ∈ (0, zmax]. Conversely, at the boundary z = 0 the fixed points lie along the two null
boundaries of the wedge, namely x+ → +∞ with x− → 0−, and x− → −∞ with x+ → 0+. When
α = 1/2 the fixed point reaches out to z = +∞ at x+/x− = −1, i.e. t = 0.

In order for the spacelike orbits of k close off smoothly, without any conical singularities at the
fixed points of k, points along these orbits must be identified with appropriate periodicity. That is,
we must identify

ln x± ∼ ln x± + ∆ , (186)

i.e.
x± ∼ e∆x± (187)

with the value63

∆ = lim
|k|→0

2π(
∂µ|k|∂µ|k|

)1/2 = 2π√
2α− 1

, (188)

or, equivalently,

α = 1
2 + 2π2

∆2 , (189)

which in turn informs us, through (161) and (174), that the traceless component of the stress tensor
of the dual CFT is

T̂ijdx
idxj = −c

(
1

48π + π

12∆2

)((
dx+

x+

)2
+
(
dx−

x−

)2)
(190)

(the trace part is simply the Weyl anomaly in AdS2 and we omit it since it has no consequences
of interest to us). The identifications (187) have been imposed by the necessity of regularity in the

61Recall that in the boundary metric we consider x ∈ (0,+∞) and t ∈ (−∞,+∞).
62k also has a fixed-point set at x+ = x− = 0, but this is of no interest to us.
63This is the same as follows from the Wick-rotated form of the surface gravity of a Killing horizon.
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bulk; they imply the appearance of closed causal curves in the regions where k is timelike. This
happens at every value of z ∈ (0, zmax] whenever we cross into the region x+x− > 0. So all of this
part of the 3D geometry is a time-machine spacetime.

The result (190) is the holographic computation of the stress tensor of a strongly coupled CFT
with large central charge c, in an AdS2 time-machine spacetime with time-shifting parameter ∆. It
differs from Frolov’s result for a single, free conformal scalar field, but both calculations agree in the
limit where ∆� 1.

The dual bulk geometry

What do we know about the bulk? The main metric of the bulk is given by

ds2 = 1
z2

(
dz2 −

((
1 + z2

4

)2 4
(x+ − x−)2 + z4

16

( 1
x+ −

1
x−

)2)
dx+dx−

− z2

2

(
1 + z2

4

)((dx+

x+

)2
+
(dx−
x−

)2))
,

(191)

where we have put ` = 1 without loss of generality, and α = 1 for simplicity. Certain coordinate
transformations will give us different metrics for two different patches of this bulk: the one where
closed causal curves exist and another where they don’t.

Rindler patch This patch is described by the metric

ds2 = 1
z2

[
dz2 −

(
1 + z2

4 + z2

2 cosh2 η
)2 dη2

cosh2 η
+
(

1 + z2

4 −
z2

2 cosh2 η
)2 dρ2

cosh2 η

]
. (192)

We obtained this metric from the main one (191) by employing the following transformation:

x± = ±eρ±η (193)
Notice that such a transformation in Minkowski spacetime would transform to the Rindler wedge;

hence the name. However, (192) is time-dependent on η. The Rindler metric is isomorphic to a
patch of global AdS3, which we can see by using the following coordinate transformation:

t(z, η) = η − arctan
( 4 + z2

z2 sinh 2η

)
, (194)

r(z, η) = 1
z cosh η

(
1 + z2

4

(
1− 2 cosh2 η

))
, (195)

φ(ρ) = ρ. (196)
Using this transformation, we get

ds2 = −(1 + r2)dt2 + dr2

1 + r2 + r2dφ2. (197)

The reason why we obtained a patch, and not the complete global AdS3 is due to the range of
validity of these coordinates. It is well known that global AdS3 covers the whole AdS3, meaning
r ∈ [0,∞), t ∈ (−∞,∞) and φ ∈ [0, 2π).

This patch is described by z ∈ [0, zmax], where

zmax = 2√
− (x+−x−)2

2x+x− − 1
. (198)
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This zmax makes sense only if x+x− < 0, which is true in this patch since x− < 0; this can be seen
from the transformation to Rindler coordinates. Written in terms of Rindler coordinates,

zmax = 2√
2 cosh2 η − 1

, (199)

and therefore, η ∈ (−∞,∞). Looking at the z coordinate range, we see that z = 0 corresponds
to r = ∞ and z = zmax to r = 0, which is good, since that is the fixed point based on which we
deduced it was isomorphic to global AdS3 in the first place. We also see that t is basically controlled
by η as the first term, since the arctan gives only finite contributions.

All of these findings seem compatible with the entire global AdS3, but now let us see why that
is not the case. We have seen the range for η and that it has to cover the whole real line. However,
if we were to put η = ∞ in the coordinate transformation for r, we would get r = −∞, since the
leading contribution would come from −z cosh η and obviously, if η =∞, then r = −∞. So it would
seem that the Rindler coordinates cover more than the global AdS3. The only way to fix this is
to send z = 0 at the same time, rendering the limit undetermined. But z = 0 corresponds to the
boundary, which would be r =∞ in global AdS3. We see that we need to compare how the functions
grow. If z grows faster than cosh η, then we obtain z = 0, and hence the boundary, before η = −∞.

Let us rewrite the coordinate transformation to global AdS3 in terms of x± coordinates. In order
to do so, first we write the coordinates:

ρ = 1
2 log

(
−x+x−

)
, η = 1

2 log
( x+

−x−
)

(200)

Since we know x− < 0, we can write x̃− = −x−. In that case, we have

r(x+, x̃−, z) = 2
√
x+x̃−

z(x+ + x̃−)

(
1 + z2

4 −
z2

8
(x+ + x̃−)2

x+x̃−

)
, (201)

t(x+, x̃−, z) = 1
2 log

(x+

x̃−

)
− arctan

( 4 + z2

z2

2

(
x+

x̃− − x̃−

x+

)), (202)

φ(x+, x̃−) = 1
2 log

(
x+x̃−

)
. (203)

The first thing we can notice is the expression for φ. We know that in global AdS3, φ ∈ [0, 2π).
Since it is given in terms of x±, this must mean x± are periodic as well. Indeed, this is the case, since
x± periodically identified is what we used to construct the time machine i.e. closed causal curves
in the first place. We know that ln x± ∼ ln x± + ∆, where ∆ = 2π in the case α = 1. Plugging
in the φ equation, we see a perfect match. However, this means that ln x± ∈ [0, 2π), which would
translate to x± ∈ [1, e2π)64. We see that x± = 0 does not belong in this patch nor the other, since
the identification is the same in that case as well. This seems strange since on the boundary we
have a Cauchy horizon forming for x− = 065. This means that the Cauchy horizon only exists on
the boundary, as we send z to 0.

Another important detail is that η now does not have the range that we said it has! It cannot
possibly be equal to ±∞ if we restrict the domain of x± to some finite values. Nevertheless, we
obtain full global AdS3, just without the points t = ±∞ which correspond to x± = 0.

64For x̃−, this is the same range with an overall minus sign.
65This is for the future Cauchy horizon, which is the one Frolov analyzed. There is a corresponding past Cauchy

horizon on x+ = 0.
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Milne patch Now we want to do a similar analysis for the Milne patch, which is given by

ds2 = 1
z2

(
dz2 −

(
1 + z2

4 + z2

2 sinh2 ξ
) dν2

sinh2 ξ
+
(

1 + z2

4 −
z2

2 sinh2 ξ
) dξ2

sinh2 ξ

)
. (204)

The coordinate transformations to the global AdS (197) are

r(z, ξ) = 1
z sinh ξ

√(
1 + z2

4

)2
+ z4

4 sinh2 ξ cosh2 ξ, (205)

φ(z, ξ) = ξ + arctan
(

4 + z2

z2 sinh 2ξ

)
, (206)

t(ν) = ν, (207)

i.e. ν is the global AdS3 time. We see clearly that there are no real solutions for the fixed point,
and so, this cannot be full global AdS3 just based on symmetries. In terms of x± coordinates, which
give

ν = 1
2 log

(
x+x−

)
, ξ = 1

2 log
(x+

x−

)
, (208)

we can write the transformation to the global AdS where x− > 0 now, as the following

r(x±, z) = 2
√
x+x−

z(x+ − x−)

√(
1 + z2

4

)2
+ z4

64

(
(x+)2 − (x−)2

x+x−

)2
, (209)

φ(x±, z) = 1
2 log

(x+

x−

)
+ arctan

(
4 + z2

z2

2
(x+)2−(x−)2

x+x−

)
, (210)

t(x±) = 1
2 log

(
x+x−

)
. (211)

We see that t has to be periodic in the same way φ was periodic in the Rindler patch. There
are no real solutions for r = 0, but we can still find a minimum, since we see that r →∞ for z = 0
and for z → ∞, given fixed x±. We can determine rmin by solving ∂zr(x±, z) = 0 for z and then
plugging that z back into r. This gives us

∂zr = 0→ zmin = 2
√

2x−x+

((x−)4 + 2(x−)2(x+)2 + (x+)4)1/4 , (212)

which in turn gives

rmin = x+ + x−

x+ − x−
, (213)

φmin = 1
2 log

(x+

x−

)
+ arctan

(
x+ + x−

x+ − x−

)
, (214)

under the condition that x+ > x−; otherwise, we would get negative r or complex valued z. It
is interesting to turn back to the original Frolov coordinates of t and x, in which case this bound on
r becomes

rmin = t

x
. (215)

This rmin exists for all z. Since we are in the Milne patch, that means x+x− > 0, or put
differently, t2 > x2.
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And so, if we put t = x (which corresponds to the future Cauchy horizon), we get rmin = 1.
Therefore, there is a sort of a “hole” in the cylinder of a particular shape that depends on what
coordinates we use.

Let us try and plot this “hole”. In the main coordinates, we have x+, x− and z, where z
measures the depth of the AdS3 cylinder. In global AdS3 coordinates, r plays the same role as z.
In our spacetime, r still plays the same role, although it gets distorted by x±, since r = r(x±, z).
Nevertheless, we can plot a heuristic plot of x± and r, just to get a feeling for how this geometry
might look like. First, let us plot in terms of t and x coordinates instead of x±. Now, there are two
regions that we are covering: t > x, which corresponds to the Milne patch, and t < x, which is the
Rindler patch. There is a line separating both regions, t = x, which also corresponds to the Cauchy
horizon, but we will not focus on that for the moment. Now, x is periodically identified, while t
is not, although we can talk about both coordinates just in some fundamental region (1, A), where
A is the period of x. This gives us the picture of a cylinder: t is the height (and we restrict the
height to be from 0 to A) and x is describing the base circle. The line separating the two patches is
a spiral on a cylinder (a.k.a. a straight line on a plane). Now, it is a little bit difficult to imagine
the shape of the hole when given the entire spacetime, since the shape depends on the values of t
and x. Therefore, let us instead focus on time slices and build a picture by stacking those slices.

A time slice is a constant slice at a given time, let’s say t = τ . Since we need t = x line as a
reference for the slices, we can imagine a circle and indicate at some point of the circle where t = τ .
Now we need to see what happens for x: for t > x, we have a Milne patch and for t < x, we have
the Rindler patch. Also, t = x corresponds to the boundary between two patches and to rmin = 1
(although it is not described by none of the patches). Let’s move towards x = 1, the origin of x.
Then τ/x is becoming larger and larger, corresponding to the hole becoming larger and larger. In
other words, rmin maps a spiral that ends at x = 1, i.e. rmin = τ . Rough picture is given in Fig. 22.

Figure 22: Time slice of the time machine bulk dual.

The Milne patch is shaded blue, while the Rindler patch is shaded green. The hole has been left
white. The slice depicted in Fig. 22 is just at some particular time τ . As τ gets bigger, the hole
gets bigger as well. Eventually, τ = A in which case we have made a full circle and the entire slice
is covered by the Milne patch (since there is no x that is smaller than t).
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However, if we keep shrinking τ , eventually we will get to τ = 1, in which case the whole bulk
will be covered by Rindler coordinates. In that case, we will still have a discontinuity at rmin = 1,
but the rest will be regular. Now, we have covered the region t ∈ [1, A] and we need to cover the
whole real line. Getting bigger values of t is again proportional to [1, A] since we are identifying x
in that way. The cylinder line t = x will get more stretched, since we have to take into account the
way A multiplies all values, but the main bulk features will be similar to those depicted in Fig. 22.
The negative case, t ∈ [−1,−A] will have a similar story unwinding as in the positive t case. All
that is left to cover is the (−1, 1) interval of t and it is fairly easy to see that it will be completely
covered by the Rindler coordinates, since x will always be bigger than the values in that interval.
And so, we obtain our bulk.
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Chapter Three

4 Cosmic Censorship Conjectures
We end this dissertation with an analysis of one of the most fundamental aspects of General
Relativity: the cosmic censorship [25; 121; 26]. We have seen in Sec. 2.2 that in the semiclassical
approximation singularities become inevitable. But does this mean we can actually observe them?
In other words, does the existence of a singularity imply the existence of a black hole? This is the
key question the cosmic censorship is meant to answer.

In essence, the cosmic censorship states that naked singularities, i.e. ones not ” covered” by a
horizon, cannot be visible to a distant observer (weak form), or even to an infalling observer (strong
form). As we see, cosmic censorship conjectures comes in two different flavors, and even though
their names might indicate some sort of a hierarchy (strong vs. weak), they truly are independent
statements about the nature of singularities in gravity. Therefore, we will analyze them separately
in the following sections.

But first, we will elaborate on the meaning of the term “naked singularity” and make our
definitions more precise. For instance, it would naively seem that we can violate the cosmic
censorship very easily: we could just simply write down any spacetime with a naked singularity!
General Relativity allows for any spacetime to be a solution; one simply has to solve the Einstein’s
equation in order to determine the stress tensor that sources such a solution. However, recall that
the set of physically interesting solutions is determined by imposing certain energy conditions on
the stress tensor. Moreover, simply writing down a naked singularity beats the purpose of stating
the cosmic censorship in the first place - if we start with bad initial conditions, would it be really
that surprising that we end up with bad final results?

And so, since we are interested in physical scenarios, we would like to consider singularities
which form as a result of some time evolution66 and for which stress tensors obey reasonable energy
conditions. In other words, we will require the equations of motion to admit a well-defined initial
value formulation, and the matter source to obey (in classical settings) the null energy condition.
Furthermore, we will also consider only fundamental matter sources, i.e. not the ones which clearly
exist as an effective approximation (e.g. perfect fluid). Singularities formed by effective theories
might be a simple indication that our effective description breaks down, and not that the spacetime
ends.

This may seem like a lot of restrictions, and although they are all very well physically motivated,
one may wonder if the problem becomes too trivial if we constrain it enough. However, we will show
that this is far from being the case. In fact, we will show that the strong version is strongly believed
to be correct, and that the weak version must ultimately be wrong, and we will show that both
of these statements must be true but only when we include quantum effects. In this sense, we are
changing the original formulation and motivation of Penrose, who envisioned these conjectures as
a mean of pushing the limits of classical General Relativity, but on the other hand, we are making
stronger claims, pushing the limits of semiclassical gravity.

4.1 Strong Cosmic Censorship
The strong cosmic censorship (SCC) asserts that no infalling observer can ever have a naked
singularity in her past. However, more precisely, the SCC is in its core, a statement about Cauchy

66One can wonder about the status of cosmological singularities and whether or not they fall under some sort of a
cosmic censorship. The original formulation by Penrose [121] was put forth as an almost phenomenological statement
about black hole singularities. The Big Bang singularity is a past singularity and not a result of a gravitational
collapse, and so it does not technically fall in this category. That is not to say that the question is not interesting or
relevant, but simply that the current formulation cannot encompass such scenarios.
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horizons and their stability, and so, we will first introduce in an intuitive manner some relevant
concepts.

Recall that in General Relativity, the values of fields in a spacetime are uniquely determined by
their values at an initial time within the domain of dependence of this initial data surface. However,
it may occur that the spacetime under consideration extends beyond this domain of dependence,
and fields, therefore, are not entirely determined by their initial data. The boundary of the region
determined by the initial data is called the Cauchy horizon; see Fig. 23.

Figure 23: : An example of a Cauchy horizon (orange), denoted by H+(Σ). The domain of dependence
(purple) D+(Σ) represents how much we can reconstruct from the initial data slice Σ. Left In this example,
one point has been taken out of the spacetime, making the Cauchy horizon non-trivial. The blue line
indicates a curve we cannot reconstruct from Σ, since it exits the domain of dependence. Right: The
gray region is obtained by analytic continuation, not by the evolution of field equations, and so, it is a new
universe. Fields are therefore, uniquely determined in the purple region, but not in the gray one

Notice that in the case of a maximally extended solution, such as the Reissner-Nordström black
hole, the region beyond the Cauchy horizon (inner horizon) is only analytically extended; it goes
beyond the domain of dependence of the t = 0 slice, and so, we cannot reconstruct any data beyond
this Cauchy horizon, but we can still mathematically define it. In fact, this is one of the main
difficulties of stating an interesting strong cosmic censorship conjecture. Since we can mathematically
perfectly well define the region beyond this horizon, then the strong cosmic censorship is trivially
false: all geodesics in the gray region in Fig. 23 have the timelike singularity in their past. However, if
this was the case, we would have a huge problem, especially regarding the AdS/CFT correspondence.
Indeed, if there were no problems when crossing the horizon, then we could imagine a situation
where we would send a signal from some initial slice Σ to some other slice Σ′ which lies beyond
the boundaries of the domain of dependence of Σ (this would be some slice in the gray region in
Fig. 23). This signal could then propagate from one CFT, defined in our Σ-reconstructable universe,
to another in the Σ′-reconstructable one. But this would be absurd! Under the assumption of the
AdS/CFT correspondence, each CFT in this setting would be dual to its own bulk, and each CFT
would have its own associated Hilbert space. But then, how can we exchange signals between two
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quantum field theories which do not share a Hilbert space? If this was the case, then our CFT could
not be the UV completion of the bulk theory, and the holographic principle would be false. The
argument that we sketched out here has been discussed in many more details by Engelhardt and
Horowitz in [122], in which they discuss also further holographic consequences of the “no transmission
principle” for quantum field theories.

So, we see that smooth Cauchy horizons of this type cannot be true if we are to be guided by
the holographic principle. Moreover, we can examine a more physical setting in the bulk sense, e.g.
by sending an observer into her impending doom into the black hole, and asking what happens at
the horizon. In fact, this kind of a thought experiment is what prompted Penrose to formulate his
conjecture [123], since it seems that no observer can survive the tidal forces associated to the inner
horizon.

Let us briefly cover the argument Penrose made. Say we have two observers, the notorious duo,
Alice and Bob. Alice stays outside of the black hole, while continuously sending signals to Bob, who
decided to make a fatal jump into the black hole; see Fig. 24.

Figure 24: The thought experiment which prompted Penrose to formulate his strong cosmic
censorship conjecture. Bob gets fried at the Cauchy horizon due to an infinite blueshift effect.
In other words, as the crossing moment is approached, he witnesses the entire history of the exterior
universe compressed in a finite duration of his proper time.

Alice reaches the future infinity i+ at infinite proper time, while the infalling Bob reaches the
Cauchy horizon in finite proper time. Now, Alice is sending periodic (according to her time) light
signals into the black hole, and these arrive more and more frequently at Bob according to his
time. Similarly, fields that oscillate only moderately near i+ will oscillate extremely rapidly near
the Cauchy horizon. In other words, there will be an infinite blueshift effect as one approaches the
Cauchy horizon! And so, Bob is bound to fry at H+.

We can make a slightly more precise formulation of the strong cosmic censorship then: it is
the statement that a Cauchy horizon does not exist in practice. The slightest perturbation of the
metric/matter will become sufficiently singular that solutions cannot be extended beyond the Cauchy
horizon. And so, if SCC holds, the Cauchy horizon will be converted into a final singularity, beyond
which we cannot extend the metric, and determinism will hold.
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It seems, therefore, that even though we can mathematically continue across the Cauchy horizon,
the physics is telling us we should not be able to do so. The goal is then to find a suitable
formulation of the strong cosmic censorship which would be physically reasonable and correct (and
also, interesting enough). And after almost 50 years since its initial formulation, we have finally
started to converge on one. The history of the strong cosmic censorship is a fascinating one, and it
is beautifully summarized in the recent papers of Dias, Reall and Santos in [124] and by Hollands,
Zahn and Wald in [125]. We will only outline the most relevant aspects here.

The basic question of strong cosmic censorship was pinned down to which level of differentiability
should we use for a proper formulation. For instance, Penrose-like arguments show that the spacetime
is not C2-extendible, since curvature invariants blow up at the Cauchy horizon. But is that enough?
Our observers do not have to be destroyed by the tidal forces while crossing – geodesics only involve
first derivatives of the metric, and so are spared from the C2 arguments. Moreover, it was proven
that metric is C0-extendible, that is to say that we can continuously extend the metric across the
Cauchy horizon.

However, what matters is not that we can extend the metric formally, but if under physically
reasonable conditions, an observer can cross the Cauchy horizon. This then translates into evolving
the matter fields with equations of motion and analyzing the crossover. Now, equations of motion
technically require C2 from the metric and matter fields (which we have shown to be enough for
a singular Cauchy horizon). However, there exist solutions which are not C2 but which are still
physical (e.g. shock waves). And so, we can construct weaker solutions of the equations of motion;
basically smearing the fields and then evolving them. A weak solution in this context must have
locally square-integrable Christoffel symbols. With this specification, we come to the Christodoulou
formulation:

The maximal Cauchy development is generically intextendible in a black hole spacetime
with locally square-integrable Christoffel symbols.

This formulation of the strong cosmic censorship was proven for Reissner-Nordström and Kerr black
holes in asymptotically flat spacetimes. But what about other values of the cosmological constant? It
turns out that this formulation is still valid for most λ < 0 spacetimes, with an apparent exception in
three dimensions, which we will discuss shortly. However, the positive cosmological constant seemed
more problematic due to the competing redshift effect which dilutes the oscillations of the matter
fields across the horizon, making it seem like Bob can pass through the Cauchy horizon67.

To see clearly what happens for black holes in de Sitter, it is instructive to look at the form of
the stress tensor for a scalar field as we approach the inner horizon H+. In [125], it was found that
the stress tensor has the following form

Tvv ∼
D

v2−2β , (216)

as v → 0−. Here β depends on the black hole parameters, while D depends on the solution. For
instance, β corresponds to the λ = 0 case, and we see that then the stress tensor diverges at the
inner horizon. However, there exist physically reasonable black hole parameters for which β ≥ 1/2,
indicating a smooth Cauchy horizon, thereby violating the Christodoulou formulation of the strong
cosmic censorship.

Nevertheless, there is an important detail that one must bear in mind here: all of the examples
which violate this formulation of the SCC are classical in nature; namely, the stress tensor is the one
of classical matter fields, which obey the NEC. How does the inclusion of quantum effects change
the outcome, if at all?

67Another way to think about the effect of the cosmological constant is to realize how big the exterior of the black
hole is: in the case of asymptotically flat spacetimes, the infalling observer sees the infinite history of the exterior,
while in de Sitter there is only a finite amount of excitations we can put in, so the Bob cannot be that affected by
it. This point of view also emphasizes that small black holes will always have a greater blueshift on the inner Cauchy
horizon.

77



The case of Reissner-Nordström black holes in de Sitter spacetime in two and four dimensions
was critically analyzed in [125], in which they performed an extensive analysis of the quantum stress
tensor of a massless scalar field across the Cauchy horizon. And what they found is quite encouraging:
the expectation value of the quantum stress-energy tensor for a free scalar field generically diverges
as the inner horizon is approached from the outside!

In order to discuss the evolution of quantum fields in curved spacetimes, one needs to specify the
analogue of regular initial data. Hollands, Zahn and Wald used a common condition known as the
Hadamard condition for quantum states, which essentially says that the UV structure of quantum
states should be the same as in Minkowski. Using such states within the framework of semiclassical
gravity, they managed to show that the expectation value of the stress tensor diverges in a stronger
or equal sense with respect to the one coming from classical fields, and it takes the form

〈Tvv〉ψ ∼
C

v2 + . . . , v → 0−, (217)

where the . . . indicate subleading terms and C ∼ O(~). And if the stress tensor diverges at the
Cauchy horizon, then we cannot extend even the weak solutions. This parameter C depends on black
hole parameters, but it does not depend on the state, making (217) a fairly generic result. Although
the analysis is done explicitly for the class of Reissner-Nordström solutions with a cosmological
constant, according to [125], it can be adapted to yield the same conclusions when rotation is
present. Other quantum probes of the inner horizon reach essentially the same results [126; 127].
This lends great confidence to the idea that strong cosmic censorship is enforced by quantum physics
when classical physics may not do it.

Let us reexamine what the results of these works imply. Backreaction from the quantum fields
is accounted for by solving the Einstein equations for a perturbation of the BTZ black hole sourced
by the renormalized stress-energy tensor. If this were divergent at the inner horizon, then the
correction to the geometry would become large. Although perturbation theory would cease to be
valid in that region, it is clear that the new geometry would be significantly changed, likely creating
high curvatures outside the inner horizon. If, instead, the stress tensor is finite, as [128; 125] find for
the BTZ black hole, then the backreaction at the inner horizon will be moderate, with no signs of
a singularity. In order to fully account for the backreaction one would need to solve simultaneously
both the Einstein equations and the quantum field theory as a coupled system, but this is too hard
a problem. Nevertheless, one may take the perturbative study to the next order by solving for the
quantum field theory in the first-order-corrected black hole geometry, and then backreact again with
the resulting renormalized stress tensor.

It is at this stage that the situation will change at the inner horizon of the BTZ black hole. The
quantum-corrected geometry where we must recalculate the renormalized quantum stress tensor will
not possess the same high degree of symmetry of the initial classical solution. In particular, it will no
longer be a spacetime of constant negative curvature with discrete identifications. In the absence of
any symmetry protection, the stress tensor at the inner horizon is expected to diverge in the generic
form (217) with a non-zero coefficient C, since the quantum corrections will affect it. This will then
create a large backreaction on the inner horizon, thus implementing strong cosmic censorship.

The first-order perturbative backreaction effects of the quantum stress tensor of a free conformal
scalar in BTZ [129] have not been properly derived yet68. As we have explained, they are expected
to leave the inner horizon geometry non-singular, but also altered from its highly symmetric initial
form. Here, we will follow a different approach to solving this problem, one which supports our
arguments above, while also casting them into a different, helpful light.

68The calculations in [130; 131], which found a singular inner horizon, have been criticized in [128] as making
improper use of the stress tensor beyond the Cauchy horizon.
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Holographic dual analysis

We employ a holographic approach to solving the quantum field theory in the BTZ black hole
background and computing its gravitational backreaction, following the work of [132; 133].

It was argued in [133] that the three-dimensional system of the BTZ black hole and a conformal
quantum field theory in its presence is dual to a four-dimensional solution of the Einstein theory
with a negative cosmological constant, specifically the AdS C-metric with rotation. This spacetime
contains a black hole that follows an accelerating trajectory in AdS4. In the construction of [132],
part of the spacetime is cut off by a brane that slices across the black hole horizon, so the (2 + 1)-
dimensional geometry induced on the brane has a black hole. Via holography [134; 135; 136], such
geometries provide solutions to the Einstein equations

Rµν −
1
2Rgµν −

1
`23
gµν + · · · = 8πG3〈Tµν〉 , (218)

where gµν is the three-dimensional metric induced on the brane, the . . . represent possible higher-
curvature corrections, `3 and G3 are the effective three-dimensional AdS radius and Newton’s
constant, and 〈Tµν〉 is the renormalized stress energy tensor of the quantum conformal fields (with
a cutoff) that are dual to the four-dimensional bulk gravity.

When the bulk theory is classical, the results for the quantum CFT correspond to the leading
order in a 1/N expansion, where N is a measure of the number of strongly-coupled conformal
degrees of freedom in the field theory.69 We emphasize that the classical bulk solution yields the
complete gravitational backreaction of the CFT to leading order in the 1/N expansion. That is, to
this order, these effects are included not as linearized gravitational perturbations but fully non-linear
effects. This is an improvement over the conventional perturbative approach to backreaction that we
discussed above. Note also that the leading order in the 1/N expansion consists of planar diagrams
with arbitrary number of loops, so it is not the same as the perturbative loop expansion.

There is one subtlety in this dual construction when the theory on the brane has a negative
cosmological constant, `3 6= 0. Namely, there is no massless graviton localized on the brane, but a
massive graviton bound state [136]. As a result, gravity on the brane behaves in a three-dimensional
way up to distance scales of the order of the inverse of the bound state mass, but becomes four-
dimensional at longer scales. However, we do not find any indication that this is relevant for our
analysis.70

The construction of [132] allows a very explicit description of the solution and its properties, of
which we will only give the details that are needed here. The geometry on the brane, which we refer
to as the quantum-corrected BTZ black hole (qc-BTZ), takes the form

ds2 = −
(
r2

`23
−M + J2

4r2 −
α(M,J)

r

)
dt2 + dr2

r2

`2
3
−M + J2

4r2 − α(M,J)
r

+ r2
(
dφ− J

2r2 dt

)2
, (219)

where we have set G3 = 1/8. The quantum corrections from the CFT are encoded in α(M,J).
The explicit form, including certain subtle global aspects, is given in [138], but it is not particularly
illuminating and in any case we will not require it. Suffice to say that α > 0.

This spacetime does not satisfy the Einstein-AdS equations, Rµν = −(2/`23)gµν , but it is fairly
straightforward to identify the stress-energy tensor that sources it,71

〈Tµν 〉 = α(M,J)
2πr3 diag(1, 1,−2) + 3Jα(M,J)

4πr5 δµt δ
φ
ν . (220)

69Actually, this would be ∼ N3/2 for the CFT on the worldvolume of N M2-branes dual to AdS4.
70One might suppose that this is why there is an upper bound on the mass and area of the black holes localized

on these branes [132]. However, the holographic calculations of [137], discussed below, also find an upper bound on
the mass, even though the geometry of the BTZ black hole in that model is fixed and not dynamical. Note also that
[132] dealt with these infrared effects in another manner, introducing a second brane.

71Since gravity on the brane is dynamical, we can obtain the holographic stress tensor by simply extracting the
‘right-hand side’ of the Einstein equations on the brane.
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This result can be compared with two other computations of the quantum stress-energy tensor in
the BTZ black hole: [129] for a free conformal scalar field, and [137] for a holographic CFT dual to
a four-dimensional bulk. It is important to note that the use of the AdS/CFT duality in the latter
is very different than ours, specifically in two respects: (i) the BTZ geometry in [137] lies at the
asymptotic boundary of AdS4, so there is no gravitational backreaction on it; (ii) although the bulk
solution employed in [137] is obtained from a rotating black hole, namely the Kerr-AdS4 solution,
the construction involves double Wick rotations and bulk coordinate transformations, with effect
that the horizons of the boundary BTZ black hole are not part of—i.e. slices of—the horizons of
the original Kerr-AdS4 black hole. We will return to these points in our later discussion.

Let us first compare these three calculations when J = 0. Then, the results of [129] and [137] have
the same structure as (220), only with different functions α(M). The latter is expected: [129] refers
to different conformal matter, and although in the two holographic setups the CFT is the same,
(220) includes self-consistently its backreaction on the geometry (219), which [137] does not. Since
only α(M) changes between these results, it is natural to conjecture that the stress tensor of any
conformal field in the static BTZ black hole will have the same structure, and that the backreacted
geometry will generically take the form of (219) with J = 0.

When J 6= 0 the holographic result of [137] has the same form as (220), but the one in [129]
reproduces only some aspects for small J . The differences for finite J are naturally attributed to
weak vs. strong coupling effects.

The quantum-corrected properties of the horizons in (219) are easily computed. For instance,
their temperatures and angular velocities are

T± = ± 1
2π

(
r±
`23
− J2

4r3
±

+ α

2r2
±

)
, Ω± = J

2r2
±
. (221)

Here r± are the quantum-corrected horizon radii in (219), which are the positive roots of the quartic
equation

r4

`23
−Mr2 + J2

4 − αr = 0 . (222)

If α is small, then
r± = r0

± ±
α

2
√
M2 − J2/`23

+O(α2) , (223)

where the classical BTZ values are

r0
± = `3

(
M ±

√
M2 − J2/`23

2

)1/2
. (224)

It is easy to see that the quantum corrections raise the temperature of the horizons for all α > 0,
which is in line with the observed reduction of their entropy [132].

The qc-BTZ solution (219) has a curvature singularity at r = 0, which is a ring singularity when
J 6= 0.72 But the most important feature for us is that the geometry (219) and the stress tensor
(220) are smooth at the inner horizon r = r−. So we may be led to conclude that strong cosmic
censorship is violated in this black hole.

However, as we discussed, this construction only yields the quantum-corrected geometry to
leading-order in the 1/N expansion of the conformal theory (planar diagrams), for which the dual
gravitational bulk theory is purely classical. At finite order in N , the effects of quantum fields in the
bulk—at the very least, graviton loops—must be included. Such effects are not easy to compute,
but we will not need them explicitly in order to reach our main conclusion.

72This is clearer after changing t→ t− Jφ/2, see [132].
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Let us consider the properties of the four-dimensional bulk solution which on a brane slice yields
the qc-BTZ geometry (219). It was shown in [132] that this four-dimensional black hole has a
structure qualitatively like that of the four-dimensional Kerr black hole (or Kerr-AdS4): a ring
singularity, and regular inner and outer horizons, which in the brane section (219) are at r = 0 and
r = r±. Indeed, the Kerr black hole is recovered in the limit that the bulk black hole is small, while
for larger size it has a pancaked shape; and the Kerr-AdS4 solution is recovered when the brane
tension is sent to zero.

What will the effect be of quantum fields that propagate in this four-dimensional geometry?
Given the similarity of the bulk black hole with the Kerr solution, we expect the generic divergent
behavior (217) at the inner horizon. As a consequence, the backreaction of this bulk quantum effect
will be enough to make the Cauchy horizon singular, in the bulk and also on the brane section,
therefore implementing strong cosmic censorship in the BTZ black hole.

An apparent difficulty for extending the methods and conclusions of [125] to our setup refers
to the boundary conditions for the field, which differ from those that one would impose in Kerr of
Kerr-AdS4. In the presence of the brane, the natural boundary condition for the bulk fields is Z2-
orbifold symmetry. Admittedly, a specific analysis would be needed to establish conclusively that this
modification does not entail a cancellation of the divergence (217), but we find this very unlikely.
The study of [125] strongly suggests that this behavior is generic except in very special, highly
symmetric situations that fine-tune it away. The brane construction in the rotating AdS C-metric
is, if anything, less symmetric than the Kerr solutions: unlike the latter, it does not have a Killing
tensor; the Z2 symmetry on the brane is also present in Kerr-AdS4 as reflection symmetry on the
equatorial plane—this plane is actually the “tensionless brane” limit of the brane construction; and,
in addition, the asymptotic boundary in the AdS C-metric is a distorted version (not conformally
flat) of the one in Kerr-AdS4. So, since all the boundary conditions in our bulk geometry are similar
but less symmetric than in the Kerr solutions, there do not appear to be the conditions for special
protection against any divergences.

Observe that we may also invoke the (extended) conclusion of [125] directly for the three-
dimensional geometry (219), and possibly similarly quantum-corrected BTZ black holes even when
they do not have a holographic bulk counterpart. Our dual construction strengthens the argument
by placing it in the class of instabilities of inner horizons of Kerr-type black holes. In this regard,
we have invoked bulk quantum effects since they yield large and robust divergences. But classical
gravitational perturbations in the Kerr solutions are also expected to become singular on the Cauchy
horizon, even though their strength and the extent to which they enforce strong cosmic censorship
is a subtle matter [139]. It is very plausible that classical perturbations in our bulk geometry will
develop a similar singularity which would extend to the brane black hole. From the three-dimensional
point of view, these would be perturbations of the quantum CFT state at leading (planar) order in
1/N . That is, the inner horizon of the qc-BTZ black hole could be unstable to quantum fluctuations
already at leading order in 1/N .

Finally, it is interesting to discuss an apparently similar holographic reasoning put forward in
[128]. There it was observed that the holographic CFT stress tensor in the BTZ black hole obtained
in [137] (which, as we discussed above, has the same form as (220)) is finite at the black hole
inner horizon. It was then speculated that 1/N corrections, i.e. quantum bulk effects—in that
model could spoil the smoothness of the Cauchy horizon. If this were the case, the implementation
of strong cosmic censorship would not require including backreaction on the geometry. This is
certainly an interesting possibility, already suggested in [128; 125], but it is not clear how to argue
for it in the model of [137]. While it may be interesting to investigate this further, we believe that
it is not necessary to do so in order to conclude in favor of strong cosmic censorship in BTZ, once
the consequences of backreaction are factored in.

To summarize, the cancellations that protect the finiteness of the renormalized stress tensor at the
BTZ inner horizon are very fragile, and cannot be expected to survive when backreaction effects are
included beyond the leading order. The generic divergence found in [125] is then expected to prevail.
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A holographic dual construction gives us a concrete result for how the first-order backreaction
changes the geometry, and also specific expectations for higher orders: although the inner horizon
of the qc-BTZ solution is indeed smooth, through its bulk dual it will be as sensitive to quantum
instability as it is in the Kerr black hole.

So we conclude that the BTZ black hole is not an outlier: strong cosmic censorship must apply
to it as much as it does to other higher-dimensional black holes.

We now turn to the question of weak cosmic censorship, and to what does its (in)validity imply
for the quantum structure of space and time.

4.2 Weak Cosmic Censorship
Contrary to what the name suggests, the weak cosmic censorship conjecture is by far the most
influential one in modern theoretical physics. If true, it tells us something very deep about the nature
of singularities in quantum gravity; namely, that they are inaccessible to the outside observers. But
if wrong, it gives us a glimmer of hope that one day we might be able to experimentally (and
theoretically) detect a relic of the underlying quantum structure of gravity. It is clear that both
outcomes provide a good motivation to study closely the weak cosmic censorship.

Today, there is a plethora of evidence that WCC must be wrong in the most basic sense of its
formulation. However, we will see that in another sense, it is also very much right, in that it may
reveal an underlying principle which one might dub the quantum cosmic censorship. In order to
understand a bit better why both outcomes seem to be at play, we will first go through the accepted
formulation and its known violations; these will lead us to conjecture a deeper statement, which we
still do not understand completely. For a review on the subject of weak cosmic censorship and its
various (attempted) violations, see e.g. [140].

We will follow the formulation put forth in [26]:

Let (Σ, hµν , Kµν) be an asymptotically flat initial data set for Einstein’s equation with
(Σ, hµν) a complete Riemannian manifold. Let the matter sources be such that Tµν
satisfies the dominant energy condition73 and the coupled Einstein-matter field equations
are of the form �φ(x) = F (x, φ,∇µφ), where F is a smooth function of its variables.
In addition let the initial data for the matter fields on Σ satisfy appropriate asymptotic
falloff conditions at spatial infinity. Then the maximal Cauchy evolution of these initial
data is an asymptotically flat, strongly asymptotically predictable spacetime.

The energy condition is necessary to restrict to reasonable choices of matter fields, and the particular
form of the equations is required if we are to discuss the fundamental matter sources; see Sec. 4.

This formulation is particular to asymptotically flat spacetimes, but extensions have been worked
out for other values of the cosmological constant as well. For instance, a recent result by Engelhardt
and Folkestad in [141] shows that an operational meaning of the cosmic censorship is preserved in
AdS; namely, they show (using holography) that trapped surfaces remain behind the horizon for
large AdS black holes. This result is important since many theorems in General Relativity rely on
trapped surfaces lying behind horizons, and so, [141] answer the awkward question of what happens
to entire textbooks on General Relativity if weak cosmic censorship is violated (at least for AdS).

Since its initial formulation, there have been many attempts to violate the weak cosmic censorship,
since it is notoriously hard to actually prove, and so, finding a counterexample works as an alternative
approach. Many of the apparent violations are solved by invoking some relevant physical constraints,

73The dominant energy condition asserts that for every future-directed timelike vector field ξa, the vector field
−Tabξ

b must be a future-directed causal vector. For instance, an observer with four-velocity ξa interprets −Tabξ
b

as energy-momentum four-current density of matter that he sees. In this sense, the speed of energy flow of matter
can never be observed to be faster than the speed of light. It is satisfied by all reasonable classical matter and is
necessary for the classical singularity theorems. However, nothing truly changes if one uses the NEC in the formulation;
eventually, we will see that even the NEC will not be enough to save the WCC from the forthcoming violations.
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such as the Coulomb potential barrier [142] or the Weak Gravity Conjecture (WGC) [143; 144; 145;
146]74. However, we now have solid evidence of certain violations that cannot be resolved. All of
these violations can be placed into three categories, and although we will see that they all involve
similar scales and behaviour, it is instructive to discuss them separately first. These three are:
Gregory-Laflamme instability, critical collapse, and black hole evaporation.

A black string in 4+1 dimensions suffers from the Gregory-Laflamme instability [147]. Further
evolution causes the string to become arbitrarily thin in some regions [148; 149] and so arbitrarily
high curvatures become visible to a distant observer. Violations of this type also include a collision
of black holes in higher dimensions [150; 151], which for certain values of impact parameters, exhibit
the thinning of the horizon in the same manner as the black string does.

In 3+1 dimensions, there exist fine-tuned initial data sets that one can use for a gravitational
collapse, and that exhibit a self-similar behavior near the threshold of formation of a black hole [140;
152; 153; 154]. At the threshold, a naked singularity forms, and in AdS spacetime, one can even
obtain a signal at the boundary from such an event; this was realized and analyzed by Chesler and
Way in [155].

In the above two categories, the initial data satisfy the dominant energy condition, as required
by the weak cosmic censorship. The black string is not asymptotically flat, but one expects that it
can be truncated at a sufficiently great length so that local evolution far from the ends still leads
to a naked singularity. Similarly, all examples fall within the regime of validity of the conjectured
formulation.

As for the third example, it is physically (very) relevant but it does not obey the dominant
energy condition: a black hole that evaporates completely. In this case, treating the spacetime as a
classical manifold, a naked singularity is inevitable [156; 157].

It is only in this example that we have explicitly involved quantum effects. But this is pointing us
to a resolution of all three violations: clearly, it makes no sense to treat the spacetime as a classical
manifold near the endpoint of evaporation (i.e., arbitrarily close to the naked singularity). When
the curvature formally exceeds the Planck curvature, the semiclassical expansion breaks down, and
a classical geometric description of the spacetime need not exist.

We see also that all three violations are in some sense “mild”; they occupy a small region of space
and they last a short amount of time (at least, that is what the data is pointing to). This realization
has been made by Emparan in [158], and a modified version of the weak cosmic censorship has been
proposed. Here, we will only emphasize the key point: the realization that these violations are still
too small to allow for any meaningful (bulk) observation. It is in this sense that the spirit of cosmic
censorship still holds. But now we arrive at a puzzle: why should it still hold?

The reasoning behind the original formulation, which was classical in nature, was to spare the
asymptotic observer from the failure of her own, classical theory. Such a dramatic event, such as the
end to space and time, should not be physically observable nor tampered with. However, one would
expect that the underlying theory of quantum gravity would “smooth out” these singularities in
some way; probably not by directly removing them, since many consistency checks require some sort
of a barrier (e.g. strong cosmic censorship in Sec. 4.1), but some description in terms of quantum
gravity variables should definitely exist. Otherwise, our proposed theory of quantum gravity would
be incomplete. So, if our singularity is resolved and completely describable by some quantum gravity
physics, then why does it seem like the theory still wants to hide something? Remember, there are
no large violations of the cosmic censorship, not even with quantum effects included. And from
the recent results on weak gravity conjecture, quantum gravity itself is telling us we should not be
looking for bare singularities.

74To be more precise, the weak gravity conjecture is a conjecture about quantum gravity itself. So, it seems that in
cases where one can apply WGC, the cosmic censorship is reinforced, therefore prompting a conclusion that cosmic
censorship must be obeyed for theories which come as consistent truncations of a proper UV-complete theory of
quantum gravity. However, we will see that this cannot be true as it is put, but it might be true in a more loose sense,
as we will shortly see.
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Perhaps our view is too naive. Let us go back to the case of an evaporating black hole. Our
standard picture tells us that the black hole shrinks until it reaches Planck size, at which point some
unknown quantum-gravity-process takes over and dissolves the Planck-sized object into radiation; all
we are left with in the end is some thermal radiation. But this standard picture is based on Hawking’s
calculation (and some common sense extrapolation). However, Hawking’s standard picture cannot
be right, as was recently (directly) shown; not only is the Planck-sized endpoint in question, but also
the rest of the picture right after the Page time! The islands that we seem to get indicate there must
be a complete change of framework, especially when dealing with late-time regimes of semiclassical
gravity. In other words, we are in no sense guaranteed that there will ever be a Planck-sized endpoint
as a result of black hole evaporation.

So, perhaps, this is the way quantum gravity resolves the question of cosmic censorship: there is
no quantum cosmic censorship because you never even get to talk about such situations in the first
place. But what about the other two categories? Even though their endpoints result in a similar
picture as for the evaporating black hole, the way they get to that point is completely different.
This is especially emphasized in [158]: it is purely classical evolution that leads to the formation of
naked singularities. And classical evolution occurs on much shorter scales compared to the quantum
evolution; for instance, Hawking’s analysis shows that tevap ∼M3

bh, which is excruciatingly long for
a typical black hole. However, all studies of critical collapse and GL-like instabilities have been done
with classical fields only; evolving quantum fields on dynamical backgrounds is an important, but
extremely difficult problem. Why is this important? Recall in Sec. 4.1 that the way we established
the strong cosmic censorship will hold is through the evolution of quantum fields across the Cauchy
horizon. So, perhaps we can conjecture, based on the current picture of black hole evaporation and
confidence gained from strong cosmic censorship, that quantum effects will prevent critical collapse
and GL-like instabilities from resulting in a Planck-sized endpoint. In other words, there would not
be any need to cosmic censorship since one never even reaches such scales in the first place. Notice
the difference with the logic of quantum cosmic censorship: we are not saying quantum gravity effects
will dissolve the singularity, but claiming that quantum effects will kick in sooner and Planck-sized
endpoints will never even form.

In order for this bold claim to have any chance of being tested, one must try to implement
such a resolution. Given the difficulty associated with the evolution in GL-like settings, perhaps
a simpler setting might be in the context of critical collapse. One would then need to find a self-
similar quantum solution and try to collapse it into a black hole. Some approaches have already
been employed; see [159] for an analysis of quantum fields on self-similar backgrounds, and [160]
for a review on other approaches. However, these works rely on first-order semiclassical effects;
self-consistent analysis would be extremely difficult to achieve. But perhaps it is a step in the right
direction.

There is one more issue that was not discussed: cosmological singularities. Our entire discussion
has been focused on singularities stemming from black objects, but cosmological singularities are
just as prevalent in General Relativity as “black singularities”. Unfortunately, we have very little to
say about cosmological settings; in fact, no suitable formulation of a cosmological cosmic censorship
currently exists in the modern literature. And it is not clear there should be one; after all, the
Big Bang singularity is in the causal past of all of us. However, one might argue that inflation
itself acts as a sort of a cosmic censor, preventing us from probing the region near the Big Bang by
washing away all information regarding it. Clearly, this does not resolve all types of cosmological
singularities. But perhaps it provides the zeroth step in the right(?) direction.
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5 Conclusion
Analyzing the effects of quantum physics in various gravitational setups has been the recurring
theme throughout this dissertation. Of course, different effects come in different sizes. For instance,
we discussed gravitational setups that required, in some sense, very large quantum effects. The
black hole Page curve in Sec. 2.4 could not have been derived if it were not for an accumulation of
Hawking radiation, which made it possible for the minimal entropic configuration to switch saddles.
Similarly, traversability of wormholes in Sec. 3.2 would still be in domain of science fiction if we had
not employed a large number of quanta to thread the wormhole, which kept it open with negative
energy. And naturally, the holographic setups for boundary time machines in Sec. 3.3, as well as
the strong cosmic censorship in the brane BTZ black hole in Sec. 4.1, involve (by definition) a large
number of degrees of freedom of the boundary theory, for our semiclassical bulk to be valid.

However, some of our discussions did not require any large numbers. The quantum Penrose
inequality in Sec. 2.3 incorporated a definition of a quantum expansion scalar, which takes into
account quantum physics, but is not constrained to large numbers of quanta; the same goes for
all semiclassical statements in Sec. 2.2 which are based on the Generalized Second Law and its
derivatives. The arguments we laid out against the formation of time machines in Sec. 3.3 only relied
on the validity of the achronal average null energy condition (AANEC), which is conjectured to hold
for all semiclassical, self-consistent theories on all spacetimes; the AANEC does not differentiate
the various degrees of freedom we might excite in such theories, and so, our argument falls into the
category of not-necessarily-large quantum effects. Not only that, the analysis of validity of strong
cosmic censorship in generic spacetimes in Sec. 4.1 only emphasized the role of quantum fields in
well-behaved (Hadamard) states; it did not rely on parametrically large numbers of excitations.

Regardless of their size, quantum effects have been making crucial differences in the study of
spacetime since the fate of a cup of tea thrown into a black hole came into question. What might
have been regarded as just a slight modification to the laws of General Relativity turned out to have
enormous consequences for the way we think about black holes, cosmology, and Nature itself. And
there is no doubt that there are many more surprises to come.

Outlook
Our discussion on the validity of weak cosmic censorship in Sec. 4.2 currently cannot be placed into
any of the above categories. We have seen that the original formulation fails in various classical
contexts, and we noted that quantum effects (of all sizes) seem to solidify this claim. However, the
story is far from over: we gave arguments in favor of a bolder statement, supported by the confidence
we gained in the analysis of the black hole information paradox and the strong cosmic censorship.
Namely, that quantum effects will prevail at some point, and lead to no visible signatures of naked
singularities. The boldness of the claim can perhaps be best understood for the process of black
hole evaporation: the standard picture of a black hole which shrinks until Planck (or string) scale,
dissolving into radiation - cannot be trusted. Clearly, evaporation does happen; we are not disputing
this fact. However, the fact is that we cannot say with certainty what happens after the Page time
(especially not after the recent developments). In fact, we might be (very) tempted to conjecture
even that the black hole undergoes a transition into a wormhole of some sort, or perhaps, that it
pinches off a baby universe at a finite scale before the semiclassical breakdown. But we will not go
so far; merely leave it for the reader’s imagination.

Nevertheless, we can support such striking claims in more indirect way as well. After all, our
conjecture encompasses all known violations of the weak cosmic censorship, which include critical
collapse and Gregory-Laflamme-like instabilities. Given that these violations occur under a purely
classical evolution, they are easier to study without information-theoretic ambiguities which might
plague discussions of the black hole interior. In particular, one can utilize the approach of Chesler
and Way in [155] and study what kind of a signal would a naked singularity produce at the boundary.
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What Chesler and Way found might sound somewhat trivial; after all, they see a divergent quantity
on the boundary when a divergence of another kind happens in the bulk. However, this has (at least
one) crucial consequence: the stress tensor becomes singular at the boundary, thereby restricting
the boundary theory to times only prior to this event; extensions above this time slice would be
prohibited. But the naked singularity formed by critical collapse is no different than the one formed
by Gregory-Laflamme instability or black hole evaporation; indeed, this is proposal of Emparan in
[158], which is supported by quite a bit of evidence, discussed in the paper.

So, let us extrapolate for the moment the results of Chesler and Way and say that all naked
singularities in the bulk would have a similar effect on the boundary, leading to a cutoff of the
boundary theory. Now we can see how perplexing this would be: every time we had a small black
hole in AdS, or any other mechanism for the formation of naked singularities, we would need to
restrict the validity of our boundary theory. Given that we can always simply form a small black
hole and let it evaporate, this would clearly lead to an effective demise of the gauge/gravity duality.

Clearly, this is not ideal (to say the least): we do not want our best understood framework for
tackling the problem of quantum gravity to be so fragile that it collapses together with a black
hole. And we will not accept such a pessimistic scenario, but give two ways out: either the naked
singularity never forms, or the signals of naked singularities made through other means are not so
strong (meaning, not leading to a divergent quantity on the boundary). The first option goes along
the lines of our conjecture, while the second one is currently being researched in [161]. In essence,
we are looking at the dynamical evolution of GL in AdS spacetimes, but also making the analogous
analysis obtained by Chesler and Way for GL-like singularities; analytic (preliminary) results are
indicating a similar behaviour of the stress tensor at the boundary, supporting claims of [155].

Let us briefly expand on the types of calculations we are performing. These results are based on
the self-similar behaviour exhibited near the threshold of the singularity formation: the key feature
in critical collapse is the emergence of self-similarity as an intermediate attractor for near-critical
solutions [152; 162], and so, it makes sense to work with self-similar solutions. Using such solutions,
one can calculate the effect they have on the boundary, for both scalar and gravitational modes,
by focusing on the high frequency spectrum of both types of modes. The resulting operators on
the boundary are self-similar in nature and have a linear divergence. In particular, it was shown
that gravitational modes lead to a divergent stress tensor. However, the analysis is linear, and it
misses a lot of details, yet it agrees with the full, dynamical evolution of [155]. We have done an
analogous linear analysis in the case of the GL-instability in [161], and found similar behaviour at
the boundary. Regardless, for a clear, complete picture of the Gregory-Laflamme instability, we
must perform dynamical evolution in the bulk.

We have seen that currently we have one, solid example of a singular stress tensor at the boundary,
and we are in the process of checking the rest. But is it not enough to say that this one example
exhibits such a staggering behaviour? We claim that it is, and such behaviour must be prohibited,
even for non-generic settings, such as the one of critical collapse. This leads us back to option
one as a resolution to an apparently fragile holographic correspondence. Given that these signals
propagate due to the self-similar nature near the threshold, perhaps we can take this as a hint as
to what would be needed to overcome such a signal. Indeed, our proposed quantum effects must
be strong enough for the self-similar threshold to break down; namely, they must overcome the
attractor that is responsible for self-similarity. Whether or not this happens only near the threshold,
or some time before, is something we cannot answer at this moment, but it is a question we can pose
purposefully, paving the way for more definitive approaches to the problem of naked singularities in
General Relativity.

It is clear that we have come far in our study of space and time and their limits. Indeed, looking
through the decades and even centuries, there is no point in the history of science better than today
for asking and suitably tackling such problems. We uncovered a number of unexpected hints and
clues as to what the underlying theory of space and time might be. But the future embraces the
unknown, and is bound to reveal new puzzles and questions.
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6 Resumen en Castellano
Como es propio de toda teoŕıa clásica, la Relatividad General no puede aspirar a ser más que
una teoŕıa efectiva, cuyo campo de estudio se reduce al de fenómenos emergentes de estructuras más
elementales. Sin embargo, se trata de una teoŕıa dificil de tratar al poseer propiedades no compartidas
por el resto de teoŕıas clásicas: una descripción holográfica. A pesar de no haber proporcionado
todas las respuestas que buscábamos acerca de la naturaleza del espacio y del tiempo, la holograf́ıa
ha jugado un papel fundamental; en especial mostrandonos una conexión entre nociones tan dispares
como la información cuántica y la geometŕıa, similar a la conexión que Gibbons y Hawking [1] dieron
a conocer entre el área y la entroṕıa. Esta tesis tiene como objetivo el estudio de casos en los que
esta relación se vuelve manifiesta, usando el régimen semiclásico de gravedad.

El primer caṕıtulo profundiza en la conexión entre área y entroṕıa y algunas de las consecuencias
que esta implica: la formulación semiclásica de la Desigualdad de Penrose y las posibles intepretaciones
relativas al interior de los agujeros negros. El segundo caṕıtulo se adentra en el estudio de escenarios
prohibidos por la Relatividad General pero que resultan accesibles, y naturales, al considerar efectos
cuánticos. Se centra en los agujeros de gusano y su relación con el entrelazamiento cuántico (a traves
de la dualidad “gauge/gravity”), aśı como en la imposibilidad de transformarse en máquinas del
tiempo. El caṕıtulo tercero es el que más avanza hacia el régimen cuántico de la gravedad, explorando
el problema de las singularidades desnudas y la Hipótesis de la Censura Cósmica. Se muestra cómo
la versión fuerte sale reforzada tras un análisis semiclásico, mientras que la versión débil requiere
de nuevas reinterpretaciónes para su adaptación a la nueva realidad cuántica. Finalmente se ofrece
un resumen junto con una discusión adicional sobre la naturaleza de las singularidades desnudas,
con un pequeño repaso sobre los avances en este campo y las posibles rutas que tomar, haciendo
hincapié en el papel del colapso cŕıtico gravitatorio y proponiendo una ĺınea de investigación más
allá de esta tesis.
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A (Quantum) Expansions in the Schwarzschild Geometry
Classical Solution and Semiclassical Corrections
The Schwarzschild metric is

ds2 = −
(

1− R

r

)
dt2 + dr2

1−R/r + r2dΩ2 . (225)

where R = 2GM is the Schwarzschild radius. In ingoing Eddington-Finkelstein coordinates,

ds2 = −
(

1− R

r

)
dv2 + 2dv dr + r2dΩ2 , (226)

where
v = t+ r∗ , r∗ = r +R log | r

R
− 1| , dr

dr∗
= 1− R

r
. (227)

Ingoing radial null congruences are at constant v, so dv = 0. Outgoing null congruences satisfy
dv = 2dr∗, so

v = 2r∗ + const . (228)
We are interested in their expansion,

θ = dA/dλ

A
(229)

in terms of a convenient affine parameter, λ.
To find λ, first note that r is an affine parameter. This follows because A = 4πr2, so

θ = 2
r

dr

dλ
; (230)

and Raychaudhuri’s equation in the vacuum, for spherical symmetry, reduces to

dθ

dλ
+ 1

2θ
2 = 0 . (231)

This implies that dr/dλ must be constant for any affine λ. We can take that constant to be 1 if we
like, and choose another constant of integration so that r = λ.

However, this choice is not convenient for outgoing lightrays, because we are interested in radial
null congruences near and on the event horizon,

|r −R| � R . (232)

Intuitively, the radius r does not change much for these congruences, so small changes in r correspond
to large motions along the congruence. On the horizon, r is degenerate, and inside the black hole,
r runs towards the past.

To remedy this, let us consider the coordinate distance c = r−R from the horizon. We will work in
the near-horizon limit of Eq. (232), i.e., to first order in c/R� 1. For example, r∗ = R+R log(|c|/R)
in this approximation; and by Eq. (228), an outgoing congruence satisfies v = 2R log(|c|/R)+ const.
Inverting this, we find

c = c0e
v/2R (233)

where c0 is the coordinate distance from the horizon at v = 0. This is the quantity that vanishes
on the horizon and goes negative inside, so we can define a nondegenerate, always future-directed
parameter by choosing λ = c/c0. This is affine since λ = (r −R)/c0 and r is affine.

To summarize, we choose the affine parameter

λ = ev/2R (234)
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on outgoing null geodesics near the horizon. By Eq. (230), the expansion of any such congruence is
given by

θ = 2c0
R

, (235)

where we again used r − R � R. All surfaces on the event horizon have c0 = 0 and hence θ = 0;
they are marginally outer trapped. It is easy to check that these are the only such surfaces.

Any null vector tangent to the outgoing congruences must be proportional to ∂t + ∂r∗ . Let ka
be the particular null vector associated to the affine parameter λ. From Eq. (234) we have

k = d

dλ
= 2R

λ

d

dv

∣∣∣∣
cong

= R

λ
(∂t + ∂r∗) , (236)

For the second equality, we used that on the outgoing congruence t = (v+const)/2, r∗ = (v−const)/2.
For all ingoing spherical congruences in the region covered by the ingoing Eddington-Finkelstein

coordinates, −r is a future-directed nondegenerate affine parameter. Thus Eq. (230) implies that
their expansion, θl, is everywhere negative. This establishes that every spherical cut of the event
horizon is marginally trapped, i.e., satisfies θ = 0 and θl ≤ 0.

To treat quantum matter as a small perturbation, we expand the Einstein equation, Gab =
8πG〈Tab〉, in powers of G~, to first order. (We drop the expectation value symbol below.) In this
approximation, we can compute matter effects on the expansion of congruences by integrating the
Raychaudhuri equation,

dθ

dλ
= −1

2θ
2 − σ2 − 8πGTkk . (237)

Here Tkk = Tabk
akb, and ka = ( d

dλ )a is the affine tangent vector to the null congruence. The shear
term vanishes for the spherical congruences we consider. In general, the θ2 term will be O((G~)0)
and thus dominant.

However, here we will be interested in surfaces where classical and quantum effects compete.
Such surfaces must have θ ∼ O(G~) classically. By Eq. (235) they are found in a neighborhood
|c| ≤ O(G~) of the event horizon. Hence θ2 ∼ O((G~)2) will be negligible in the region of interest,
and Eq. (237) reduces to

θ(λ)− θ(λ0) = −8πG
∫ λ

λ0

Tkk . (238)

Classically Trapped Surfaces During Evaporation
We will now compute the effect of the quantum stress tensor for the Unruh state [37] on the position
of (marginally) trapped surfaces in the Schwarzschild geometry.

The renormalized stress tensor in the Unruh vacuum takes the form

〈U |T b
a |U〉ren

r−→2M−−−−−→ L

4πR2

(
f−1 −1
f−2 −f−1

)
, (239)

where f = (1−R/r), R = 2M , a and b range over t and r, and

L ∼ ~
R2 (240)

is the luminosity of the black hole. Lowering indices we find

〈U |Tab |U〉ren
r−→2M−−−−−→ L

4πR2

(
−1 −f−1

−f−1 −f−2

)
, (241)

Using

∂r∗ = dr

dr∗
∂r =

(
1− R

r

)
∂r , (242)
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we can express the null vector k in (t, r) coordinates,

k = R

λ

(
∂t +

(
1− R

r

)
∂r

)
= kt∂t + kr∂r . (243)

and we obtain

〈Tµνkµkν〉 =
〈
Tttk

tkt
〉

+ 〈Trrkrkr〉+ 2
〈
Ttrk

tkr
〉

= − L

πλ2 = − ~
πR2λ2

(244)

Next we compute the change in the expansion induced by the above quantum stress tensor. We
consider a black hole at the onset of evaporation, for which there is no Hawking radiation outside the
near horizon zone yet. Thus we expect the geometry to revert to the classical vacuum Schwarzschild
solution far from the black hole. And so, to find the corrected expansion, we integrate backwards
from λ =∞ to find the shift:

δθ ≡ θ(λ)− θ(∞) = −8πG
∫ λ

∞
〈Tµνkµkν〉 dλ′ =

= 8πG
∫ λ

λ0

~
πR2λ′2

dλ′ = −8G~
R2λ

.

(245)

To find the (classically) marginally trapped surfaces in the Unruh state, we solve

θ(0) + δθ = 0 , (246)

where θ(0) is the uncorrected classical expansion given in Eq. 235. Using c = c0λ, we find that the
classical marginally trapped surfaces are located at

cMTS ∼
G~
R

(247)

in the quantum-corrected geometry. Very near the horizon, we can treat the radial coordinate to be
essentially R to zeroth order.

An alternative useful notion of distance is the proper radial distance from the horizon, `, which
satisfies

d` = dr√
1− R

r

'
√
R

dr√
r −R

−→ ` ' 2
√
R(r −R) ∼ (Rc)1/2 (248)

Since G~ = l2p, we see that the trapped surfaces are about a Planck length outside the horizon:

`MTS ∼ O(lp). (249)

Thus, the area of the classical marginally trapped surface is increased by the quantum correction,
by

∆AMTS ∼ G~ = l2P (250)

Quantum Trapped Surfaces During Evaporation
We still consider the quantum-corrected geometry in the Unruh state, so the classical expansion is
given by

θ = θ(0) + δθ ∼ c0
R
− G~
R2λ

. (251)

The generalized entropy is
Sgen = A

4G~ + S , (252)
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where S = −Tr ρ log ρ and ρ is the quantum state in the region exterior to the Cauchy-splitting
sphere. The quantum expansion Θ is (4G~ times) the rate of change of the generalized entropy, per
unit area, under shape deformations. In the spherically symmetric case,

Θ = θ + 4G~
A

dS

dλ
, (253)

Quantum marginally trapped surfaces are characterized by Θ = 0.
The Generalized Second Law (GSL) states that any outgoing radial congruence on or outside

the event horizon must satisfy Θ ≥ 0, so the quantum marginally trapped surfaces must lie inside
the horizon [8]. By Eq. (251), θ < 0 on and inside the horizon. We see from Eq. (253) that the GSL
requires

4G~
A

dS

dλ
= −αθ|H , (254)

where H refers to the horizon. We take α− 1 ∼ O(1), in line with Page’s explicit calculation for an
evaporating black hole in the Unruh state [163].

Combining these results and neglecting factors of order unity where appropriate, we find

Θ = θ − αθ|H = c

Rλ
− G~
R2λ

+ α
G~
R2λ

. (255)

Setting Θ = 0 yields
c

Rλ
= −(α− 1) G~

R2λ
−→ c ∼ −G~

R
. (256)

Using the proper area, we find
∆AQMTS ∼ −l2P . (257)

Thus, the quantum marginally trapped surfaces are a proper distance of order the Planck length
inside of the horizon.

Figure 25: The future outgoing lightsheet of µQ (top red line) is crossed by two ingoing radial null
geodesics at v1 (at µQ) and v2 (at the singularity). Their Schwarzschild time difference at fixed r is
the scrambling time, ∆ts.

We will now show that the “duration” of the lightsheet75 L of a quantum marginally trapped
surface µQ is of order of scrambling time

∆ts ∼ R log R

lP
. (258)

75A lightsheet is defined as a null hypersurface with everywhere non-positive expansion θ ≤ 0. A quantum lightsheet
is defined analogously with respect to the quantum expansion Θ ≤ 0.
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This assumes that µQ is about one Planck length inside of the event horizon, as would be the case for
an isolated, slowly evaporating black hole. Of course, the points on L are null or spacelike separated.
What we mean by the “duration” of L is the amount of time, as measured at large radius r, for
which it will be the case that matter falling in radially from this radius will cross L (see Fig. 25).

We will approximate the infalling matter as ingoing radial null geodesics; the result would be
the same for timelike geodesics starting at rest at large radius. Let the earliest geodesic crossing
L be at v = v1 in the Eddington-Finkelstein coordinates defined in Appendix A. It will meet L at
µQ, whose radius satisfies R− rµQ ∼ l2P /R. The last geodesic that meets L will do so where L hits
the singularity, at r = 0. The lightsheet L is characterized by u = const, where u is the ingoing
Eddington-Finkelstein coordinate, u ≡ t− r∗. Here r∗ is the tortoise coordinate defined in Eq. 227.
Since r∗ depends only on r, we have

∆t = t2 − t1 = r∗(rµQ)− r∗(0) = rµQ +R log R

l2P /R
∼ ∆ts . (259)

A similar analysis demonstrates that the scrambling time is how long it takes a geodesic to
propagate from about a Planck distance outside the horizon to the edge of the near-horizon zone,
at r = 3R/2.

B Multi-hole Construction Details
In Sec. 3.2 we presented the solution for the φ perturbation when we have a mass m (smeared on
the S2) at a height ρ = ρ0 in the throat of the wormhole, suspended from a cosmic string. Here we
give the solution to the entire set of Einstein’s equations. The (ρρ) equation

ρφ′ − φ = − α

1 + ρ2 −
T

4π Θ(ρ− ρ0) , (260)

is automatically satisfied by (122) with tension T given by (121). The remaining equation, along
the sphere directions, is

γ′′ + (1 + ρ2)φ′′ + 2ρφ′ + 4φ = 0 , (261)

which is solved by

γ =− α
(
(ρ2 + 3)ρ arctan ρ+ ρ2 − ln

(
1 + ρ2))

+ β

1 + ρ2
0

(
|ρ− ρ0|(1 + ρ2) + 2ρ0(ρ− ρ0)2Θ(ρ0 − ρ)− 3ρ0ρ

2 + (1− 2k)ρ3) . (262)

The condition (124) ensures that γ decreases at large |ρ|. This criterion could also have been taken
as the condition for being able to match the wormhole to the exterior mouth and thus keep it open.

If we set ρ0 = 0 and k = 1/2 we obtain the solution for γ for the configurations in Sec. 3.2.
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