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Abstract

In the first part of the thesis, we study the problem of recovering the structure
underlying large Gaussian graphical models or, more generally, partial correlation
graphs. In high-dimensional problems it is often too costly to store the entire sample
covariance matrix. We propose a new input model in which one can query single
entries of the covariance matrix. We prove that it is possible to recover the support
of the inverse covariance matrix with low query and computational complexity. Our
algorithms work in a regime when this support is represented by tree-like graphs
and, more generally, for graphs of small treewidth. Our results demonstrate that for
large classes of graphs, the structure of the corresponding partial correlation graphs
can be determined much faster than even computing the empirical covariance
matrix.

In the second part of the thesis, we study the broadcasting problem when the
underlying tree is a random recursive tree. The root of the tree has a random
bit value assigned. Every other vertex has the same bit value as its parent with
probability 1− q and the opposite value with probability q, where q ∈ [0, 1]. The
broadcasting problem consists in estimating the value of the root bit upon observing
the unlabeled tree, together with the bit value associated with every vertex. In a
more difficult version of the problem, the unlabeled tree is observed but only the bit
values of the leaves are observed. When the underlying tree is a uniform random
recursive tree or a linear preferential attachment tree, in both variants of the problem
we characterize the values of q for which the optimal reconstruction method has
a probability of error bounded away from 1/2. We also show that the probability
of error is bounded by a constant times q. Two simple reconstruction rules are
analyzed in detail. One of them is the simple majority vote, the other is the bit value
of the centroid of the tree. We also analyze a third reconstruction rule which is more
complex but works for all q where reconstruction is theoretically possible.
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Chapter 1

Introduction

This thesis contains a study of two problems of combinatorial statistics. The
first one is structure learning for partial correlation graphs and the second one is
the broadcasting problem on certain families of random recursive trees. In the next
sections we explain each of these problems and provide an overview of the results
of the thesis, accompanied with an overview of related work.

1.1 Structure recovery for graphical models and par-
tial correlation graphs

Consider a Gaussian random vector X = (X1, . . . , Xn) and its covariance matrix
Σ. Let K be the inverse covariance matrix and (Kij)1≤i,j≤n be its entries. The matrix
K encodes conditional independence relations. In particular, its entries satisfy that

Kij = 0 ⇐⇒ Xi ⊥⊥ Xj | X[n]\{i,j} , (1.1.1)

where the notation Xi ⊥⊥ Xj | X[n]\{i,j} denotes that Xi is conditionally independent
of Xj given X[n]\{i,j} and [n] is the set {1, . . . , n}; see, for instance, Lauritzen [60].
The set of Gaussian vectors that satisfy the same independence relations of this type
is called Gaussian graphical model. We are therefore interested in learning the graph
corresponding to the zeros of K, that is, a graph with n vertices where an edge ij
exists if an only if Kij 6= 0 (we call this the partial correlation graph). We assume
that we have access to entries σij of the covariance matrix Σ, through queries to a
covariance oracle. The covariance oracle takes a pair of indices i, j ∈ [n] as an input
and outputs the corresponding entry σij of Σ. Assuming that n is very big, we
would like to store the least possible number of entries σij. Our problem can be
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formalized as follows.

• Given access to entries of the covariance matrix Σ, learn which entries of Σ−1

are non-zero using only a small fraction of all the entries of Σ.

We call the above problem structure recovery. Learning the partial correlation graph
of Gaussian graphical models is the primary motivation of this work, but the results
are presented in a more general framework. In the Gaussian setting, the partial
correlation graph encodes the conditional independence relations. Therefore, we
refer to the problem generally as structure recovery for partial correlation graphs and
we do not assume Gaussianity, even though we use the Gaussian setting to motivate
some results and tools. It should be noted that there are interesting interpretations of
K also in the non-Gaussian setting and we give relevant references in Section 1.1.1.

We propose a series of algorithms for structure recovery, assuming that the
partial correlation graphs satisfy certain sparsity conditions. The assumed sparsity
is related to how much the graph resembles a tree. We give an algorithm for trees,
one for graphs with small 2-connected components, and one for graphs of small
treewidth (all these notions are precisely defined below). These algorithms are
actually able to estimate K itself and not only learn the partial correlation graph. It
should be stressed that the proposed algorithms invert a symmetric positive definite
matrix and the analysis can be detached from its statistical connection and impact.

When an algorithm takes as input an entry σij, we say that it performs a covariance
query (or just a query) and we refer to the total number of queries as query complexity.
The motivation for the use of covariance queries is that Σ might be too large to
even store. In fact, our goal is to learn the partial correlation graph using o(n2)

queries, since Θ(n2) time is needed just to write down and store the covariance
matrix–this is the starting point for a big part of the relevant literature and we
provide references in detail in Section 1.1.1.

1.1.1 Related work

Learning the graph structure underlying probabilistic graphical models is a
problem with a long history; see Drton and Maathuis [32] for a recent exposition. In
the classical setting, when the number n of variables is reasonably small, this can be
done by using stepwise selection procedures based on information criteria like BIC,
AIC, or using the likelihood function; see Højsgaard, Edwards, and Lauritzen [44,
Section 4.4] for a discussion.

In high-dimensional scenarios the methods proposed for Gaussian graphical
models have become particularly successful. Here the graphs are encoded by ze-
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ros in the inverse covariance matrix (or precision matrix) K. Specifically, an edge
is present in the graph if and only if the corresponding element of K is not zero
and so LASSO-type learning procedures can be applied Banerjee, Ghaoui, and
d’Aspremont [7], Yuan and Lin [92]. The link between the entries of K and coeffi-
cients obtained by linearly regressing one variable against the rest gave rise to the
so-called neighbor selection methods, see Meinshausen and Bühlmann [68]. In all
these theoretical developments, the sample complexity required for learning the
underlying graph is well understood. On the other hand, in these studies either
computational issues played a secondary role or the computational budget was
relatively large as all known methods require computing the sample covariance;
see, for example, Cai, Liu, and Zhou [18], Dasarathy, Singh, Balcan and Park [25].
Hsieh, Sustik, Dhillon, Ravikumar, Poldrack [45] perform a careful analysis of the
optimization objective used in earlier methods, which leads to a divide-and-conquer
algorithm that can be applied to large data sets. More recently, Zhang, Fattahi, and
Sojoudi [94] devised another scalable procedure based on thresholding the sample
covariance matrix followed by a novel optimization procedure. However, the com-
putational complexity of these approaches is still of at least quadradic order as a
function of the number of variables.

In a growing number of applications, the number of variables n is so large
that a computational cost of order n2 becomes prohibitive. This means that even
writing down or storing the covariance matrix (or an estimate of it) is not practical,
rendering all aforementioned approaches unfeasible. This requires a different
approach to structure recovery, which addresses the computational issues much
more carefully. This computationally conscious approach has become more popular
in the recent years where, in selected scenarios, it was possible to study the trade-off
between statistical accuracy and computational complexity, see Chandrasekaran,
and Jordan [20], Rudi, Camoriano, Rosasco [83]. Examples where this approach is
useful occur in some applications in biology, such as the problem of reconstructing
gene regulatory networks from large scale gene expression data. Hwang, Lee, and
Bang [47] give an extensive discussion of computational challenges of massive
amounts of gene expression data and note that issues of computational complexity
made researchers rely on pairwise notions of dependence; see, for example, Chan,
Stumpf, and Babtie [19], Zhang, Zhao, He, Lu, Cao, Liu, Hao, Liu, and Chen [95].
Scalable algorithms are also of interest in phylogenetics, where the problem is to
reconstruct the evolutionary relationships between tens to hundreds of thousands
of DNA sequences Price, Dehal, and Arkin [79], Brown and Truszkowski [14, 13].
Another example leading to large networks is building human brain functional
connectivity networks using functional MRI data. In this setting, the data are
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usually aggregated to obtain a data set with a moderate number of variables that
can be processed with current algorithms Huang, Li, Sun, Ye, Fleisher, Wu, Chen,
and Reiman [46].

In the case where the true underlying graph is a tree, the Chow-Liu algorithm
Chow and Liu [22] is a widely used computationally efficient algorithm to search
for the tree that maximizes the likelihood function. The method was originally
proposed for categorical variables but it works in a much more general context
with the Gaussian likelihood or any other modular criterion such as BIC, AIC as
discussed by Edwards, De Abreu, and Labouriau [34]. In our setting the Chow-Liu
algorithm is equivalent to computing a maximum-weight spanning tree in the
complete graph with edge weights given by the absolute values of the correlations
between any two variables. Although the Chow-Liu algorithm is relatively efficient
and it has good statistical properties, the computational cost is of order Ω(n2),
which may be prohibitive in large-scale applications.

Similar ideas to this thesis have appeared in Jagadish and Sen [48], but the
results did not go further than trees and the actual algorithms are different than
the ones presented here. In a different context, similar ideas for Bayesian networks
appear in Bello and Honorio [9].

In our main result for structure recovery, the proposed algorithm works un-
der the assumption of small treewidth. Graphs with bounded treewidth form an
important class of sparse graphs that have played a central role in graph algo-
rithms. The class of graphs with small treewidth includes series-parallel graphs,
outerplanar graphs, Halin graphs, Apollonian networks, and many others, see
Bodlaender [11] for a general reference. Treewidth is known to be an essential pa-
rameter in inference and structure recovery for graphical models Chandrasekaran,
Srebro, and Harsha [21], Kwisthout, Bodlaender, and van der Gaag [59], Wainwright
and Jordan [90]. Moreover, bounded treewidth graphs have long been of interest
in machine learning due to the low computational cost of inference in such mod-
els Chandrasekaran, Srebro, and Harsha [21], Karger and Srebro [54], Kwisthout,
Bodlaender, and van der Gaag [59]. Current heuristics of treewidth estimation in
real-world data have indicated small treewidth in various cases of interest Abu-Ata
and Dragan [1], Adcock, Sullivan, and Mahoney [2], Maniu, Senellart, and Jog [67].

The main motivation of this work was learning Gaussian graphical models but
our results are interesting in a much broader family of distributions. Vanishing
partial correlations correspond to conditional independence in the Gaussian case
but also in the non-paranormal case of Liu, Lafferty, and Wasserman [62], Liu,
Han, Yuan, Lafferty, and Wasserman [61]. In general, partial correlation graphs
inform only about linear dependences but there are still interesting situations when
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much more is implied by vanishing partial correlations Rossell and Zwiernik [82].
In the tree case, conditional independence is implied not only for Gaussian and
non-paranormal data but also for binary variables, or more generally, in situations
where the dependence of adjacent variables in the tree is linear; see Zwiernik [96]
for more details.

1.1.2 Overview of the results on structure recovery

In the biggest part of this study, we abstract away from statistical considerations.
In particular, we propose the following input model for our analysis. The entries σij
can be accessed through queries to a covariance oracle. The covariance oracle takes a
pair of indices i, j ∈ [n] as an input and outputs the corresponding entry σij of the
matrix Σ. This is an idealized scenario that makes the main ideas more transparent.
In practice, of course, these covariances are not exactly available as they are often
estimated from data. This setup is meaningful in applications in which one may
estimate, relatively easily and accurately, the covariance between any given pair of
variables. Importantly, one does not need to estimate the entire covariance matrix.
In the last section of Chapter 2, we discuss conditions under which the idealized
covariance oracle may be replaced by a noisy version.

The query complexity of an algorithm is the number of entries of the covariance
matrix Σ queried during the execution of the algorithm. The main findings of
this work show that, in many nontrivial cases, the graph underlying the graphical
model of X can be recovered with only O(n polylog(n)) queries using randomized
algorithms. The computational complexity of the proposed algorithms is also
quasi-linear. This is a significant decrease in complexity compared to the quadratic
complexity of any recovery algorithm that uses the entire (estimated) covariance
matrix as a starting point.

Of course a so stated problem cannot be solved in full generality and the algo-
rithms need to rely on the sparsity of K induced by bounds on related parameters
of the underlying graph such as maximum degree and treewidth. We propose
randomized procedures that recover the correct graph and have low query and
computational complexity with high probability. This work is devoted to a careful
analysis of three main cases: trees, graphs with small 2-connected components, and
graphs with small treewidth. Our main result is an algorithm for each of the three
cases, which recovers the correct graph with query and computational complexity
O(n polylog(n)).

Formulating simplified versions of the main results, we use the notation Oα

to denote that the complexity order contains a factor depending on parameters α.
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For a given graph G over vertex set [n] = {1, . . . , n}, we denote byM(G) the set
of covariance matrices Σ satisfying Kij = 0 for all ij /∈ E(G). By G(Σ) we denote
the partial correlation graph associated to the covariance matrix Σ. Moreover, we
say that Σ ∈ M(G) is generic to signify that it belongs to a dense open subset Γ
ofM(G) where certain desirable properties - to be defined - hold. Our first result
studies computationally efficient ways to learn a tree.

Theorem 2.2.8 (Simplified version). Suppose G(Σ) is a tree T with n vertices and
maximum degree ∆(T) ≤ d. Then there is an algorithm that outputs the correct tree and,
with probability at least 1− ε, works in time and query complexity Oε,d(n log2 n).

We also show that these bounds are essentially optimal and the dependence on
the maximum degree is essential.

Our second result is for graphs with small 2-connected components and small
degree of the block-cut tree; see Section 1.3.1 for formal definitions.

Theorem 2.2.10 (Simplified version). Let G(Σ) be a graph of n vertices whose largest
2-connected component has size at most b and whose maximum degree of the block-cut
tree is at most d. If Σ ∈ M(G) is generic, then there is an algorithm that outputs the
correct graph and, with probability at least 1− ε, works in time and query complexity
Oε,d,b(n log2 n).

Our main result is a randomized algorithm that is able to recover efficiently the
partial correlation graph as long as it has bounded treewidth and maximum degree.
(In fact, the algorithm remains efficient when both parameters grow slowly with n.)

Theorem 2.4.4 (Simplified version). Let G be a graph with n vertices, treewidth at most
k, and maximum degree at most d. If Σ ∈ M(G) is generic, then there is an algorithm that
outputs the correct concentration graph and, with probability at least 1− ε, works in time
and query complexity Oε,k,d(n log5 n).

The algorithm we propose not only reconstructs the partial correlation graph but
it also computes the inverse covariance matrix K. Since there are at most kn edges
in a graph with treewidth k, there is no contradiction with the stated computational
complexity.

The case when Σ is observed with error leads to additional complications. Solv-
ing this problem in full generality is beyond the scope of this work. In order to
present the main ideas and some bottlenecks, in the final section of Chapter 2 we
study the problem of recovering tree models when only a noisy covariance oracle is
available.
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1.2 The broadcasting problem

Moving to the second problem under study, we consider a broadcasting process on
a tree to be the propagation of a message (let us say a bit value in {0, 1}) from one
node to all the rest, possibly corrupted. Our goal is to estimate the initial message.
We assume that the tree is created dynamically at times 0, 1, . . . , n, through a random
process.

Consider random recursive trees defined as follows. At time i (beginning from
time 0), the vertex with label i enters the system and attaches to a vertex j (then j is
called the parent of i and i is called the child of j) with probability:

P {i ∼ j} = 1
i

.

This is called the uniform attachment model (we denote it shortly by UA) or the
uniform random recursive tree, since every recursive tree, that is, a tree whose labels
are nondecreasing when moving at any path beginning from vertex 0, has the same
probability to appear. This model has been extensively studied, hence we refer the
reader to the book Drmota [31] for an overview and references on this model.

If

P {i ∼ j} =
D+

j (i) + β

∑j<i(D+
j (i) + β)

,

where β > 0 is a parameter and D+
j (i) is the outdegree of vertex j at time i, then

this is the linear preferential attachment model with parameter β. This is defined in a
similar way as the classical preferential model (or plane-oriented recursive tree), where,
instead of the outdegrees, one uses the total degrees. The results are formulated
and proved in the linear preferential attachment model but all the proofs can be
immediately transferred to the latter case as well. For convenience, we refer to the
model as preferential attachment (or just PA), but we mean the linear preferential
attachment model. This model is also well studied and we refer the reader again to
Drmota [31].

We now consider that a bit value is passed from parents to their children, begin-
ning from vertex 0 and proceeding recursively as follows: with probability 1− q
the child vertex maintains the bit of its parent, otherwise it flips.

We study two problems, the first one is called root-bit reconstruction and the
second one is called reconstruction problem from leaf-bits. In the former, we are given
access to the shape of the tree and the bit values at the vertices but we do not know
the time labels of the vertices, and we want to estimate the bit value of the root
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vertex 0. In the second problem, we want to answer the same question but only
observing the shape and the bit values of the leaves, that is, all the vertices of degree
equal to one. In a concise way:

• Given access to a random unlabelled tree produced by either uniform attach-
ment or preferential attachment and the bit values of the vertices, estimate the
bit value of vertex zero.

• In a more difficult variant, answer the same question given only the bits of
vertices with degree one (the leaves).

One estimates the value of the root bit B0 by a value b̂ ∈ {0, 1}. The probability
of error (or risk) is denoted by

R(n, q) = P
{

b̂ 6= B0

}
.

We study the optimal risk

R∗(n, q) = inf R(n, q) , (1.2.1)

where the infimum is taken over all estimators b̂. In particular, we are interested in

R∗(q) = lim sup
n→∞

R∗(n, q) .

If R∗(q) < 1
2 , we say that reconstruction is possible. We would like to know for which

q reconstruction is possible, as well as upper bound R∗(q) with a function of q.
We analyze three different estimators b̂ in both models, for all parameters β. The

first one is the majority rule, that is, the bit value of the majority of the observed
vertices. The second estimator returns the bit value of the centroid vertex defined
later. The third estimator requires the existence of a particular structure in the tree
with positive probability and, under conditioning on that event, the bit value of the
root can be guessed correctly with non-trivial probability.

1.2.1 Related work

The broadcasting problem on trees has a long and rich history. The form studied
here was proposed by Evans, Kenyon, Peres, and Schulman [37]. We refer to this
paper for the background of the problem and related literature. In the broadcasting
problem of [37], a bit is transmitted from each node to its children recursively,
beginning from the root vertex. Each time the bit is transmitted between two nodes,
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the value of the bit is flipped with some probability. The authors study the problem
of reconstructing the bit value of the root, based on the bit values of all vertices at
distance k from the root. They establish a sharp threshold for the probability of
reconstruction as k goes to infinity, depending on the tree’s branching number. Some
older papers are Kesten and Stigum [55], where the known as Kesten-Stigum bound
was established for reconstruction in the case of complete d-ary trees, and Bleher,
Ruiz, and Zagrebnov [10], where its converse was shown for the symmetric case
and two colours. In fact, for optimal reconstruction in this case it is enough to
know only the census at level k, i.e., the number of nodes of each colour Mossel and
Peres [78]. What is more, it can be shown that any recursive algorithm is suboptimal
comparing to majority in the class of periodic trees Mossel [73]. In the general case,
the Kesten-Stigum threshold for reconstruction holds when only census information
is available Mossel and Peres [78]. However, in many instances it is possible to
reconstruct under this threshold when also the configuration is observable and the
channel is binary asymmetric or q-ary symmetric Mossel [74]. In fact, in Sly [85]
the author showed the converse direction of the Kesten-Stigum threshold for the
3-ary symmetric channel, when d is large, and also that the bound is not tight for
q ≥ 5. A recent paper Jain, Koehler, Liu, and Mossel [49] resolves a more general
conjecture made in Evans, Kenyon, Peres, and Schulman [37], that any recursive
algorithm (notably also recursive majority) is suboptimal, i.e., there is a noise level
where reconstruction is possible information-theoretically but the algorithm is not
better than a random guess.

The authors in Janson and Mossel [52] studied the perturbed reconstruction problem,
where the observed vertices at the k-th level get some extra noise. In Moitra,
Mossel, and Sandon [71], the authors examine circuit reconstruction algorithms
and establish related complexity results. In Makur, Mossel, and Polyanskiy [66],
the authors study the broadcasting problem in random directed acyclic graphs,
equipped with a boolean function at each node. In that case, they give an example
where reconstruction is possible with layers of size Θ (log (k)).

The broadcasting problem is closely related to various problems in different
contexts. It is connected to the phylogenetic problem, i.e., the reconstruction of
phylogenetic trees from molecular data on its leaves (see Mossel [75], Daskalakis,
Mossel, and Polyanskiy [26, 27]). It also has ties with spin glass theory in physics
Mézard and Montanari [69], Bleher, Ruiz, and Zagrabnov [10]. Moreover, it has
ties with the community detection problem in the stochastic block model Mossel,
Neyman, and Sly [77]. That happens since, intuitively, a neighbourhood of a node
in that model resembles a Galton Watson tree, and the labels of its child-nodes have
occurred by applying a noisy channel between them and the parent node.
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In Mossel [76], the author gives a survey of results on recovering the initial bit
in trees with given root and observable bits in some fixed distance from the root. In
Mossel [73], the author studies the n-level broadcasting problem in periodic trees,
when using recursive algorithms. The author finds a threshold value that does not
depend on the shape of the initial tree, but only on its number of leaves.

As far as we know, the broadcasting problem has not been studied for random
recursive trees. In the vast majority of the literature on the broadcasting problem, the
location of the root is assumed to be known. Of course, in this case the reconstruction
problem is meaningful only if the bit values near the root are not observed. The
types of trees that are generally considered are such that, even if the root is not
identified, it is easy to locate. In the problems that we consider, the trees are random
recursive trees where localizing the root is a nontrivial issue. Hence, both the
root-bit reconstruction problem and the problem of reconstruction from leaf bits are
meaningful. The structure of the tree plays an important role in the solution of both
problems.

The problem of localizing the root in different models of random recursive
trees (the inference-of-the-root problem) has been studied by Haigh [40], Shah and
Zaman [84], Bubeck, Devroye, and Lugosi [15]. For diverse results on closely related
problems, see Curien, Duquesne, Kortchemski, and Manolescu [24], Bubeck, Mossel,
and Rácz [17], Bubeck, Eldan, Mossel, and Rácz [16], Khim and Loh [56], Jog and
Loh [53], Lugosi and Pereira [64], and Devroye and Reddad [80].

1.2.2 Overview of the results on broadcasting

We first present our main findings for the uniform attachment model. One of the
main results is that the trivial lower bound R∗(q) ≥ q/2 is tight, up to a constant
factor (to see the lower bound, note that with probability q vertex 1 has different bit
than the root and then they are statistically indistinguishable).

Theorem 1.2.1. Consider the root-bit reconstruction problem in a uniform random recur-
sive tree. Then

q
2
≤ R∗(q) ≤ q

for all q ∈ [0, 1]. In the reconstruction problem from leaf bits,

q
2
≤ R∗(q) ≤ 13q

for all q ∈ [0, 1].
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Our other main result is that for the random recursive tree, we characterize the
values of q for which R∗(q) < 1/2.

Theorem 1.2.2. Consider the broadcasting problem in a uniform random recursive tree.

1. In the root-bit reconstruction problem R∗(q) < 1/2 if and only if q ∈ [0, 1).

2. In the reconstruction problem from leaf bits, R∗(q) < 1/2 if and only if q ∈
[0, 1/2) ∪ (1/2, 1).

Note that in the reconstruction problem from leaf bits, one obviously has
R∗(1/2) = 1/2. This follows from the fact that, when q = 1/2, the bit values
on the vertices of the tree are independent unbiased coin tosses. With probability
tending to one, the root of the tree is not a leaf and therefore its bit value is not
observed. In all other cases (except when q = 1), an asymptotic probability of error
strictly smaller than 1/2 is achievable.

Perhaps the conceptually simplest method is the majority rule that simply counts
the number of observed vertices with both bit values and decides according to the
majority. Denote by b̂maj the majority. (In case of a voting tie we may arbitrarily
define b̂maj = 0.) This simple method has surprisingly good properties. Indeed, we
prove the following bound.

Theorem 1.2.3. Consider the broadcasting problem in a uniform random recursive tree.
Denote the probability of error of the majority vote by

Rmaj(n, q) = P
{

b̂maj 6= B0

}
.

For both the root-bit reconstruction problem and the reconstruction problem from leaf bits,
the following hold.

1. There exists c > 0 such that

lim sup
n→∞

Rmaj(n, q) ≤ cq for all q ∈ [0, 1] .

2.
lim sup

n→∞
Rmaj(n, q) < 1/2 if q ∈ [0, 1/4)

and
lim sup

n→∞
Rmaj(n, q) = 1/2 if q ∈ [1/4, 1/2] .
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A quite different approach is based on the idea that, if one is able to identify
a vertex that is close to the root, then the bit value associated to that vertex is
correlated to that of the root bit, giving rise to a meaningful guess of the root bit.
The possibilities and limitations of identifying the root vertex have been thoroughly
studied in recent years; see Section 1.2.1 for references.

A simple and natural candidate for an estimate of the root is the centroid of
the tree. In order to define the centroid of a tree T, we need some notation. The
neighborhood of a vertex v, that is, the set of vertices in T connected to v, is denoted
by N(v).

Define φ : V(T)→ R+ by

φ(v) = max
u∈N(v)

∣∣∣V (Tv
u↓
)∣∣∣ ,

where Tv
u↓ is the subgraph of T which contains the vertices whose unique path to v

passes from u. Moreover, define a centroid of T by

v∗ = arg min
v∈V(T)

φ(v) .

It is well known that a tree can have at most two centroids. In fact, φ(v∗) ≤ |V(T)|
2

and there are at most two vertices that attain the minimum value. If there are two
of them, then they are connected with an edge (Harary [43]).

Equipped with this notion, now we may define an estimator b̂cent of the root bit
in a natural way: (1) in the root-bit reconstruction problem, b̂cent = Bv∗ is the bit
value of an arbitrary centroid v∗ of T; (2) in the reconstruction problem from leaf
bits, let v∗ be a centroid of T, let v◦ be a leaf closest to v∗, and let b̂cent = Bv◦ be the
associated bit value.

We call this estimator the centroid rule.

Theorem 1.2.4. Consider the broadcasting problem in a uniform random recursive tree.
Denote the probability of error of the centroid rule by

Rcent(n, q) = P
{

b̂cent 6= B0

}
.

For the root-bit reconstruction problem,

lim sup
n→∞

Rcent(n, q) ≤ q for all q ∈ [0, 1]
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and
lim sup

n→∞
Rcent(n, q) ≤ log 2

2
≈ 0.34 for all q ≤ 1/2 .

For the reconstruction problem from leaf bits,

lim sup
n→∞

Rcent(n, q) ≤ 13q for all q ∈ [0, 1] .

Moreover,
lim sup

n→∞
Rcent(n, q) < 1/2 for all q < 1/2 .

Clearly, Theorem 1.2.4 implies Theorem 1.2.1. In order to prove Theorem 1.2.2,
we need to construct an estimator of the root bit that performs better than random
guessing when q ∈ (1/2, 1). This is given by a more involved construction that will
be precisely defined in the main body of the thesis.

We also show analogues of all the aforementioned theorems for the preferential
attachment model. We defer their statement to the relevant sections of the thesis.

1.3 Basic definitions and notation

In this section we give a bulk of basic definitions that will be used throughout
the thesis, for easy future reference.

1.3.1 Graph-theoretic definitions

A graph G(V, E) is a pair of finite sets V = V(G) and E = E(G) called vertices
(or nodes) and edges, where E is a set of subsets of V of size two. We typically write
uv instead of {u, v} to denote an edge and our graphs are simple, that is, u 6= v. A
subgraph of G is a graph G′ = (V′, E′) such that V′ ⊆ V and E′ ⊆ E. For V′ ⊆ V,
denote by G[V′] the graph (V′, {uv ∈ E|u, v ∈ V′}), called the induced subgraph of
G on V′. If S ⊂ V we write G \ S to denote G[V \ S]. A path between u and v is
a sequence of edges v0v1, v1v2,. . . ,vk−1vk with v0 = u and vk = v. We allow for
empty paths that consist of a single vertex. Two vertices u, v ∈ V are connected if
there is a path between u and v. For v ∈ V, the set N(v) = {u ∈ V|uv ∈ E} is the

neighborhood of v, deg(v) def.
= |N(v)| is its degree, ∆(G)

def.
= maxv∈V deg(v) denotes

the maximum degree of G, and |V| is the size of G.
A graph on n ≥ 3 vertices is a cycle if there is an ordering of its vertices v1, . . . , vn,

such that E = {v1v2, . . . , vn−1vn, vnv1}. A graph is connected if all u, v ∈ V are
connected. A tree is a connected graph with no cycles.
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A connected component of G is a maximal, with respect to inclusion, connected
subgraph of G. A set S ⊆ V separates A, B ⊆ V in G if any path from A to B contains
a vertex in S. Then S is called a separator of A and B in G. When S is of minimum
size, it will be called a minimal separator. Note that we allow A and B to intersect, in
which case A∩ B needs to be contained in every separator of A and B. Denote by CS

the set of connected components of the graph G \ S. If S separates two disjoint sets
A and B, then for every u ∈ A \ S and v ∈ B \ S, u, v lie in two different connected
components of G \ S. We will call a separator S balanced if all C ∈ CS are small in
some appropriate sense that will be made precise each time.

A graph is 2-connected if for any vertex v, G \ v is connected. If V′ ⊆ V is
maximal, with respect to inclusion, such that G[V′] is 2-connected, then G[V′] is
a 2-connected component or block of G. For a given graph G, let B be the set of 2-
connected components of G and let A be the set of cut-vertices, that is, vertices that
belong to more than one 2-connected components. The block-cut tree bc(G) of G is a
bipartite graph on A ∪ B where an edge between a ∈ A and B ∈ B exists if a ∈ B.
A block-cut tree is a tree (see [43, Theorem 4.4]). In Figure 2.1 in Section 2.1, we
provide an example of a graph and its block-cut tree.

Two graphs G1(V1, E1), G2(V1, E2) are equivalent under graph isomorphism if there
exists a bijection φ : V1 → V2 such that ({a, b} ∈ E1) ⇔ ({φ(a), φ(b)} ∈ E2). If
G1 = G2, we say that φ is an automorphism of G1.

A graph is rooted if we distinguish one of its vertices as the root. A rooted tree
with root ρ is called d-ary if all vertices are either leaves or have degree d + 1, apart
from ρ which has degree d. Moreover, if all vertices up to distance k− 1 from ρ have
degree d + 1 and the rest are leaves, we say that the tree is a complete d-ary tree of
depth k. Here the distance of two vertices is considered to be the number of edges
in the smallest path that connects them. The depth of a rooted tree is the largest
distance from the root to another node.

The outdegree of a node in a rooted tree is its total degree minus 1, apart from
the root vertex, whose degree is considered equal to its outdegree.

1.3.2 General notation

Let functions g(n), f (n) : R+ → R+. We will say that g(n) is O( f (n)) when
lim supn→∞

g(n)
f (n) < ∞ and Ω( f (n)) when lim infn→∞

g(n)
f (n) > 0. Moreover, we will

say that g(n) is o( f (n)) when lim supn→∞
g(n)
f (n) = 0. If the variable with respect

to which we take the limits is unclear, we make it precise with a subscript (e.g. a
function f (n) could be on(1)).

We will denote by |S| the size of a set S, that is, the number of elements in it.
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Unless specified otherwise, the size of a graph will be consider the number of its
vertices.

The notation def.
= denotes definition. The acronym i.i.d. stands for independent

identically distributed. The acronym a.s. stands for almost surely. The notation d⇒
stands for convergence in distribution and dTV(X, Y) stands for the total variation
distance between the random variables X, Y. In general, calligraphic characters will
refer to random variables and plain characters to a fixed realization. For instance,
Tn will refer to a random tree of n + 1 vertices, when viewed as a random variable.
In parallel, Tn will refer to a tree graph of n + 1 vertices that is a realization of Tn.
Moreover, n-subscripts denote time when it is not otherwise specified.

1.4 Thesis outline

In Chapter 2 we provide proofs for the results concerning structure learning in
graphical models and partial correlation graphs. In Chapter 3 we provide proofs
for the results concerning the broadcasting problem.
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Chapter 2

Structure learning in graphical
models and partial correlation graphs

The results in this chapter are joint work with Gábor Lugosi,
Jakub Truszkowski, and Piotr Zwiernik.

2.1 Preliminaries

Let Σ = [σij] be an n× n symmetric positive definite matrix and let K def.
= Σ−1.

For a given graph G over vertex set [n] = {1, . . . , n}, denote byM(G) the set of
covariance matrices Σ satisfying Kij = 0 for all ij /∈ E(G). If Σ is a covariance matrix
of a Gaussian random vector X then the condition Σ ∈ M(G) can be equivalently
formulated through a set of conditional independence statements because of the
equivalence (see [60])

Kij = 0 ⇐⇒ Xi ⊥⊥ Xj | X[n]\{i,j}. (2.1.1)

For a given Σ, the partial correlation graph G(Σ) = ([n], E) is the graph with E =

{ij|Kij 6= 0}. The problem we deal with is the following:

• We are given access to individual entries of Σ. We want to learn the support
of K observing only a small fraction of Σ.

Given a vector x ∈ Rn and a subset A ⊂ [n] denote by xA the subvector of x
with entries xi for i ∈ A. Similarly, for sets A, B ⊆ [n] and a matrix M ∈ Rn×n, let
MA,B denote the restriction of M to rows in A and columns in B. Write MA for MA,A.
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If Σ is the covariance of X then ΣA,B = cov(XA, XB). In this article we extensively
use the following result of Seth Sullivant, Kelli Talaska, and Jan Draisma, which
translates zero restrictions on a positive definite matrix K in terms of minors of Σ.

Theorem 2.1.1. [87, Theorem 2.15] Let G be a connected graph with vertex set [n].
We have rank(ΣA,B) ≤ r for all Σ ∈ M(G) if and only if there is a set S ⊆ [n] with
|S| ≤ r such that S separates A and B in G. Consequently, rank(ΣA,B) ≤ min{|S| :
S separates A and B}. Moreover, there exists a dense open subset Γ ofM(G) such that
equality holds for all matrices in Γ.

We call Γ a generic set. By a slight abuse of terminology, we call covariance matrices
Σ in Γ, as well as the corresponding random vectors X, generic.

In this paper we assume that G(Σ) is connected or, equivalently by Theorem 2.1.1,
that Σ has no zero entries. Without this assumption the problem quickly becomes
impossible to solve. For example, whether G(Σ) has zero or one edge can only be
decided after seeing the entire covariance matrix.

Assumption 1. The graph G(Σ) is connected.

Moreover, we assume that the genericity condition of Theorem 2.1.1 holds.

Assumption 2. The matrix Σ ∈ M(G) is always to be generic, or equivalently, for
every A, B ⊆ V, rank(ΣA,B) = min{|S| : S separates A and B}.

This assumption gives us the following important result that translates small
sets of covariance queries into information about the underlying concentration
graph G(Σ).

Lemma 2.1.2. Under Assumption 2, rank(ΣAC,BC) = rank(ΣA,B) if and only if C is a
subset of a minimal separator of A and B in G(Σ).

Here and throughout we use the convention of writing A ∪ B as AB in subindices.

Proof. By Assumption 2, rank(ΣAC,BC) is the size of a minimal separator of A ∪ C
and B ∪ C, and rank(ΣA,B) is the size of a minimal separator of A and B. Since
rank(ΣAC,BC) = rank(ΣA,B), there is a minimal separator of A∪ C and B∪ C that is
also a minimal separator for A and B. By construction, this separator contains C.

The following characterisation of graphical models over trees will be useful.
This result is well known for Gaussian tree models (see, for example, Zwiernik [96]),
but it is actually a purely algebraic result that holds in generality.
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Figure 2.1: A graph, its cut-vertices (in squares) and its 2-connected components
(circled by dotted curves), and the corresponding block-cut tree.

Lemma 2.1.3. If Σ ∈ M(T) for a tree T, then for every i, j ∈ V, the normalized entries
ρij = σij/

√
σiiσjj for i, j ∈ V satisfy the product formula

ρij = ∏
uv∈ij

ρuv, (2.1.2)

where ij denotes the unique path between i and j in T. Also, if the normalized entries ρij in
Σ satisfy (2.1.2) for some tree T then Σ ∈ M(T).

For the sequel, recall the notation in Section 1.3.1.

2.2 Recovery of tree-like structures

In this section we discuss in detail procedures for learning trees and graphs
with small 2-connected components. A graph is 2-connected if for any vertex v,
G \ v is connected. If V′ ⊆ V is maximal, with respect to inclusion, such that G[V′]
is 2-connected, then G[V′] is a 2-connected component or block of G. Note that the
requirement of small 2-connected components does not imply that the graph is
sparse, that is, a linear number of edges.

For a given graph G, let B be the set of 2-connected components of G and let A
be the set of cut-vertices, that is, vertices that belong to more than one 2-connected
components. The block-cut tree bc(G) of G is a bipartite graph on A ∪ B where an
edge between a ∈ A and B ∈ B exists if a ∈ B. A block-cut tree is a tree by [43,
Theorem 4.4]. See Figure 2.1 for an example of a graph and its block-cut tree.

We will propose two learning procedures, one for recovering trees and one for
recovering graphs with small 2-connected components. Both of them are divide-
and-conquer type algorithms. First, we determine a cut vertex that splits the graph
into relatively small pieces, then we identify the pieces and proceed recursively.

18



Therefore, the starting point of our analysis is to identify, at each step of the algo-
rithm, a cut vertex that is balanced.

2.2.1 Centrality and balanced separators

Let Cv be the set of connected components of G \ v and

c(v) def.
=

1
|V| − 1

max
C∈Cv
|C|. (2.2.1)

Denote by v∗ a vertex that attains the minimum such value, that is,

v∗ = argmin
v∈V

c(v) .

If G is a tree, v∗ is called a centroid. It is a well-known fact (see [43, Theorem 4.3], for
instance) that a tree can have at most two centroids and c(v∗) ≤ 1

2 ·
|V|
|V|−1 .

In the first phase we efficiently find vertices with c(v) ≤ α for a fixed α < 1.
To that end, we introduce a measure of vertex centrality, called s-centrality and
denoted by s(v). This can be used as a surrogate for c(v) and its minimizer can be
approximated efficiently. For v ∈ V, s-centrality is defined as

s(v) def.
=

1
(|V| − 1)2 ∑

C∈Cv
|C|2. (2.2.2)

Moreover, v◦ def.
= argminv∈V s(v).

Lemma 2.2.1. Let graph G. For every vertex v ∈ G, we have s(v) ≤ c(v) ≤
√

s(v).
Moreover, s(v◦) ≤ c(v∗).

Proof. Let v ∈ V and Cv = {C1, . . . , Cm}. The first inequality follows from

s(v) ≤ 1
(|V| − 1)2

m

∑
j=1
|Cj|max

i
|Ci| =

|V| − 1
(|V| − 1)2 max

i∈[m]
|Ci| = c(v) .

To show c(v) ≤
√

s(v), consider the vector p = (p1, . . . , pm) with pi =
|Ci|
|V|−1 . Then

c(v) = ‖p‖∞ and s(v) = ‖p‖2
2. The second inequality simply follows from the

fact that ‖p‖∞ ≤ ‖p‖2 for every p ∈ Rm. To show the last inequality note that
s(v◦) ≤ s(v∗) by the optimality of v◦ and s(v∗) ≤ c(v∗) by the first inequality that
we proved.
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The procedure sCentral outlined in Algorithm 1 finds, with high probability, a
vertex v̂ with s(v̂) close to s(v◦). For each vertex v ∈ V the algorithm approximates
s(v) by randomly sampling a few pairs u, w of vertices in V \ {v} and checking
if v separates u and w. By Lemma 2.1.3, this can be accomplished by checking if
ΣuvΣvw = ΣuwΣvv, or equivalently, if det(Σuv,vw) = 0.

The algorithm outputs a vertex with smallest approximate value of s(v).

Algorithm 1: sCentral(V)

Parameter: κ;
ŝ(v) := 0 for all v ∈ V;
for all v ∈ V do

for i = 1 to κ do
Pick u, w uniformly at random in V \ {v} ;
if det(Σuv,vw) 6= 0 then

ŝ(v) := ŝ(v) + 1
κ ;

Return arg minv ŝ(v);

Proposition 2.2.2. Let G(V, E) be a graph. The time and query complexity of computing
v̂ = sCentral(V) (in Algorithm 1) are both O (|V|κ). Moreover, for any δ > 0,

P (s(v̂) ≥ s(v◦) + 2δ) ≤ 2|V| exp
(
− 2δ2κ

)
.

Proof. The time and query complexity are obtained in a straightforward way. For
the second statement note that, for every v ∈ V, κŝ(v) is a binomial random variable
with mean κs(v). Hence, by Hoeffding’s inequality and the union bound, we obtain

P[max
v
|ŝ(v)− s(v)| ≥ δ] ≤ 2|V| exp

(
− 2δ2κ

)
.

Let v̂ be the output of Algorithm 1. We obtain

P[s(v̂) ≥ s(v◦) + 2δ] ≤ P[s(v̂)− ŝ(v̂) + ŝ(v◦)− s(v◦) ≥ 2δ] (since ŝ(v̂) ≤ ŝ(v◦))

≤ P[max
v
{|ŝ(v)− s(v)|} ≥ δ]

≤ 2|V| exp
(
− 2δ2κ

)
.

We now show that, with high probability, Algorithm 1 finds a vertex v̂ with low
centrality c(v̂).
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Proposition 2.2.3. For any graph G(V, E), if s(v) < s(v◦) + 2δ, then

c(v) <
√

s(v◦) + 2δ ≤
√

c(v∗) + 2δ.

In particular, if G(V, E) is a tree with |V| ≥ 4, and δ < 1
6 , then c(v) < 1.

Proof. It follows from Lemma 2.2.1 and the fact that for trees

c(v∗) ≤ 1
2
· |V||V| − 1

≤ 2
3

.

Proposition 2.2.2 and Proposition 2.2.3 imply the following, upon fixing δ = 1/8.

Corollary 2.2.4. If G(V, E) is a tree, |V| ≥ 4, and v̂ = sCentral(V) (in Algorithm 1),
then

P

(
c(v̂) >

√
11
12

)
≤ 2|V| exp(−κ/32).

In Proposition 2.2.3 we used the fact that for trees c(v∗) ≤ 2
3 if |V| ≥ 4. In

general, for graphs with small 2-connected components we rely on the following.

Lemma 2.2.5. Suppose G(V, E) is a connected graph. Let d ≥ 2 be a bound on the
maximum degree of the block-cut tree of G, and let b be a bound on the size of the largest
2-connected component of G. If |V| > db, then

c(v∗) ≤ 1− 1
2d

.

Proof. If |V| > db then b < |V| and therefore G has a cut vertex. Let C∗ be the
largest connected component in Cv∗ and let B∗ be the 2-connected component of G
such that v∗ ∈ B∗ and B∗ \ {v∗} ⊆ C∗; see a depiction in Figure 2.2. We can assume
that there exists a cut vertex of G in B∗ \ {v∗}, because otherwise B∗ = C∗ ∪ {v∗}
and then clearly |V| ≤ db. For each cut vertex v 6= v∗ in B∗, let kv be the number
of all vertices in the union of all the connected components of Cv excluding the
component containing B∗ (grey blobs in Figure 2.2). By construction, ∑v 6=v∗ kv =

|C∗| − |B∗| and there are at most d− 1 such vertices. If v = arg maxv 6=v∗ kv, then
kv ≥ 1

d−1(|C∗| − |B∗|). Denote by C the largest connected component of G \ {v}.
By optimality of v∗, C must be equal to the connected component containing the
complement of C∗. Thus we have

|C∗| ≤ |C| ≤ (|V| − 1− |C∗|) + |B∗|+ (|C∗| − |B∗| − kv)
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Figure 2.2: Illustration of the proof of Lemma 2.2.5

≤ (|V| − 1− |C∗|) + |B∗|+ d− 2
d− 1

(|C∗| − |B∗|)

Now simple algebra and the fact that |B∗| ≤ b allow us to rewrite this inequality as

c(v∗) ≤ 1− 1
d

(
1− b
|V| − 1

)
.

To conclude the proof, notice that b
|V|−1 ≤ 1

2 if |V| ≥ db + 1.

Proposition 2.2.3 and Lemma 2.2.5 imply that whenever s(v) < s(v◦) + 2δ and
δ < 1

4d then c(v) < 1. By choosing δ = 1
8d , the following corollary follows from

Proposition 2.2.2.

Corollary 2.2.6. Let G = (V, E) be a graph with |V| > db and let v̂ = sCentral(V).
Then

P

(
c(v̂) >

√
4d− 1√

4d

)
≤ 2|V| exp

(
− κ

32d2

)
.

2.2.2 Recovering a tree

In this section we present procedure ReconstructTree (Algorithm 2), which
efficiently recovers the structure of the tree T = G(Σ). We start the procedure
by running ReconstructTree([n]). The algorithm updates an edge set Ê that is
initiated as Ê = ∅. At each call, if |V| > 1, V gets partitioned into sets V1, . . . , Vm by
procedure ComponentsTree (Algorithm 3) and the edge set Ê gets updated. Then,
ReconstructTree recurses into all the generated sets.
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ComponentsTree(V) picks a central vertex w = sCentral(V). Then it sorts, in
descending order, the absolute values of the pairwise correlations ρuw = Σuw√

ΣuuΣww
,

where u ∈ V \ {w}, and places them in an ordered list B. For every vertex u in the
list, the algorithm checks whether there exists an already known neighbour v of
w that separates u from w, or equivalently, if det(Σuw,vw) 6= 0; see Section 2.2.1. If
this is the case, then it adds u to the connected component where v belongs after
removing w. Otherwise, a new connected component is registered that corresponds
to the vertex u and the edge uw is added in Ê. In the end, ComponentsTree returns
the vertex sets of all such connected components V1, . . . , Vm. The edges between w
and each of the m neighbours in the m connected components are added to Ê.

Algorithm 2: ReconstructTree(V)

Ê := ∅;
if |V| > 1 then

V1, . . . , Vm ← ComponentsTree(V);
for i from 1 to m do

ReconstructTree(Vi);
Return Ê;

Algorithm 3: ComponentsTree(V)

// uses a global Ê when is called by ReconstructTree

w← sCentral(V);
N := ∅;
Sort |ρuw| for u ∈ V \ {w} in decreasing order and put them in list B;
for every u in the order of B do

t := true;
for all v ∈ N do

if det(Σuw,vw) 6= 0 then
Vv ← Vv ∪ {u}; t := f alse;

if t=true then
Ê← Ê ∪ {uw};
N ← N ∪ {u}, Vu ← {u};

Return all Vu for u ∈ N;

Proposition 2.2.7. Algorithm 2 is correct; that is, if G(Σ) is a tree T, then algorithm
ReconstructTree([n]) returns Ê = E(T).
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Proof. After every call of ComponentsTree(V) it holds that
⋃m

i=1 Vi = V \ {w},
hence ReconstructTree([n]) always terminates.

For every w ∈ [n], either {w} is one of the components V1, . . . , Vm that are
returned by ComponentsTree(V) (call such a vertex terminal) or this does not
happen and w is the output of sCentral(V) in one of the calls of the subroutine
ComponentsTree (call such a vertex central).

Initially the algorithm picks a vertex w = sCentral([n]), which induces the
partition of [n] \ {w}, Cw = {V1, . . . , Vm}. The vertices u ∈ [n] \ {w} are examined
in descending order with respect to |ρuw|. Let v ∈ N(w) be adjacent to w and let u
be any other other vertex in the same connected component C ∈ Cw as v. Then v
separates u and w and, in particular, by Lemma 2.1.3 we have |ρvw| > |ρuw|. This
shows that, for any C ∈ Cw, the vertex v in C which is a neighbour of w comes
earlier in the order specified in the algorithm than any other vertex in C. Hence,
v ∈ N (c.f. Algorithm 3) and for all other u ∈ C it holds that det(Σuw,vw) 6= 0. This
shows that in the first call of ComponentsTree the algorithm:

(i) adds to Ê the edges between the central vertex w and its neighbours in T,

(ii) assigns all vertices to their connected components in Cw.

Since each G[Vi] is a tree, the same argument can be applied to subsequent
calls of ReconstructTree. Hence, by induction, these two properties hold at
any call of the algorithm ComponentsTree. In particular, Ê ⊆ E(T). To show the
opposite inclusion first note that if uv ∈ E(T) and u or v is central, then uv ∈ Ê by
(i). Moreover, if u, v are both terminal, then there is some call of ComponentsTree
that places them in different sets Vi. Then by (ii), there is no edge uv in E.

The subroutine sCentral is a probabilistic component of the algorithm that is
essential to obtain good complexity bounds.

Theorem 2.2.8. Suppose G(Σ) is a tree T([n], E) with maximum degree ∆(T) ≤ d. Fix
ε < 1 and define κ = d32 log

(
2n2

ε

)
e to be the parameter of Algorithm 1. Then, with

probability at least 1− ε, Algorithm 2 requires time and queries of the order

O
(

n log(n)max
{

log
(n

ε

)
, d
})

.

Proof. First we analyze the complexity of one call of ComponentsTree(V). By
Proposition 2.2.2, the call of sCentral(V) takes time and queries of the order
O
(
|V|κ

)
. We then query |V| pairwise correlations and sort them, which takes

time O(|V| log |V|). Partitioning V into sets Vi takes time and queries both of order
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O(d|V|) since |N| ≤ d. For all calls of ReconstructTree(Vi) in a recursion level
(i.e., distance from the first ReconstructTree call in the recursion tree), it holds
that Vi ∩ Vj = ∅. Hence, in each recursion level the time complexity is of order
O(n log n + nκ + nd) and the query complexity is of order O(nκ + nd).

Assume first that v̂ = sCentral(V) satisfies c(v̂) ≤ α :=
√

11/12 in each
call with |V| ≥ 4. In this case the recursion depth is at most log1/α(n) + 4 and,
overall, the algorithm has time complexity O

(
n log(n)(log(n) + κ + d)

)
and query

complexity O
(
n log(n)(κ + d)

)
. Since κ = O(log(n/ε) + log d), the announced

bounds follow.
It remains to show that, with the given choice of κ, with probability at least 1− ε

we get that c(v̂) ≤ α in each call with |V| ≥ 4. By Corollary 2.2.4, in a single call
the probability that c(v̂) > α is at most 2|V| exp(−κ/32), which is further bounded
by 2n exp(−κ/32). As ReconstructTree([n]) runs, the procedure sCentral is
called at most n times, which is the total number of available vertices. From the
union bound, the probability that in at least one call v̂ = sCentral(V) satisfies
c(v̂) > α is at most 2n2 exp(−κ/32). Demanding the latter to be at most ε, we
obtain the indicated value for κ and the desired result.

2.2.3 Graphs with small blocks

We now present an algorithm that recovers concentration graphs with small
2-connected components and small maximum degree of the block-cut tree. The
procedure ReconstructSB (Algorithm 4) takes as input a vertex set V and, like in
the tree case, updates the global variable Ê, which is initially set as Ê := ∅. If V is
small enough, that is, |V| ≤ db, then the algorithm reconstructs the induced graph
over V by directly inverting the matrix ΣV . Otherwise it calls ComponentsSB, which
first finds a vertex w = sCentral(V) and returns sets C ∪ {w} for all C ∈ Cw. This
part of the algorithm is similar to ComponentsTree(V), but the edges incident with
w are not recovered at this stage.

Algorithm 4: ReconstructSB(V)

if |V| > db then
V1, . . . , Vm ← ComponentsSB(V);
for i from 1 to m do

ReconstructSB(Vi);
else

Ê← Ê ∪ E(G(ΣV,V));

25



Algorithm 5: ComponentsSB(V)

w← sCentral(V);
N := ∅; // contains one vertex from each C ∈ Cw

for all u ∈ V \ {w} do
if there exists v ∈ N, det(Σuw,vw) 6= 0 then

Vv ← Vv ∪ {u};
else

Vu ← {u};
N ← N ∪ {u};

return Vu ∪ {w} for all u ∈ N;

Proposition 2.2.9. Algorithm 4 is correct; that is, if Σ ∈ M(G) and Σ is generic then
ReconstructSB([n]) returns Ê equal to E(G).

Proof. Assume we are on the first call of ReconstructSB. If n ≤ db then the
algorithm outputs G(Σ), which, by definition, is the correct graph. If n > db, then G
contains a cut vertex, so with probability 1 a cut vertex w will be eventually found
by sCentral([n]) at some call of ComponentsSB. Let C1, . . . , Cm be the connected
components of G \ {w}. The sets Vi produced by this call of sCentral([n]) corre-
spond to the sets C1 ∪ {w}, . . . , Cm ∪ {w}. This is clear by Lemma 2.1.2: a vertex u
belongs to the same connected component as v in G \ {w} if and only if w does not
separate u and v in G. Note also that for any A, B ⊂ Vi any minimal separator of A
and B is contained in Vi. In particular, by Theorem 2.1.1,

(i) For every Vi, the edge-set of G[Vi] is the same as the edge-set of the graph of
the marginal distribution, G(ΣVi).

By induction, statement (i) holds for every call of ReconstructSB.

Theorem 2.2.10. Let G([n], E) be a graph whose maximum degree of the block-cut tree is
bounded by d, and let b be a bound on the size of the largest 2-connected component. Fix
ε < 1 and define κ = d32d2 log

(
2dn

ε

)
e to be the parameter of Algorithm 1. If Σ ∈ M(G),

Σ is generic and G(Σ) connected, then with probability at least 1− ε, Algorithm 4 runs
with query and time complexity of order

O
(

d4n log(n)
(

log
(n

ε

)
+ b2

))
and O

(
d4n log(n)

(
log
(n

ε

)
+ db3

))
Proof. First we analyze the complexity of one call of ComponentsSB(V). If |V| ≤
db then G(ΣV,V) is obtained. Since matrix inversion takes at most cubic time,
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the time and queries required are O(d3b3) and O(d2b2) respectively. If |V| > db
in ReconstructSB(V), then ComponentsSB(V) is called, which calls sCentral(V).
By Proposition 2.2.2, the call of sCentral(V) takes time and queries of the order
O
(
|V|κ

)
. The latter provides the splitting vertex w and then V is split into at most

d sets Ui = Vi ∪ {w}. This last step takes O(|V|d) queries and time. Hence, each
call ReconstructSB(V) requires

O
(
|V|κ + |V|d + d2b2

)
and O

(
|V|κ + |V|d + d3b3

)
queries and time, respectively.

Let U1, . . . , Ur be the sets on which the algorithm recurses on the i-th level of the
recursion tree. By construction, these sets are not disjoint and, for each v ∈ V, at
most d copies of it are created during the algorithm. Hence, in each recursion level
there are at most nd vertices, implying that ∑r

i=1 |Ui| ≤ nd and that r ≤ nd. Using
the complexity bounds for a single call of ReconstructSB, we get that any recursion
level in the recursion tree requires

O
(

ndκ + nd3b2
)

and O
(

ndκ + nd4b3
)

queries and time, respectively.

Assume first that v̂ = sCentral(V) satisfies c(v̂) ≤ α
def.
=
√

4d− 1/
√

4d in each
call. In this case the recursion depth is at most log1/α(n) and overall the algorithm
requires

O
(

dn log(n)
log (1/α)

(
κ + d2b2

))
and O

(
dn log(n)
log (1/α)

(
κ + d3b3

))
queries and time, respectively. Since κ = O(d2 log(n/ε)) and 1/ log(1/α) ≤ 20d,
we obtain the expressions in the statement of the theorem.

It remains to show that with the given choice of κ, with probability at least
1− ε, we get that c(v̂) ≤ α in each call. By Corollary 2.2.6, in a single call the
probability that c(v̂) > α is at most 2|V| exp

(
− κ

32d2

)
. As ReconstructSB([n])

runs, the procedure sCentral is called at most dn times. From the union bound,
the probability that in at least one call v̂ = sCentral(V) satisfies c(v̂) > α is at most
2dn exp(−κ/(32d2)). This is at most ε for the indicated value of κ.
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2.2.4 A lower bound

In this section we show that the result of Theorem 2.2.8 is optimal up to logarith-
mic factors, in the sense that one cannot reconstruct trees with maximum degree d
with less than Ω(dn) covariance queries. We should note that this lower bound is
implied by the results in King, Li, and Zu [57]. We give an alternative proof that fits
directly in our context.

Let X be the class of n× n covariance matrices whose concentration graph is a
tree. We write T(Σ) for the tree induced by Σ ∈ X . We also denote by Xd the class
of covariance matrices whose concentration graph is a tree of maximum degree
bounded by d. In our construction we use the characterization of the class X given
in Lemma 2.1.3.

We first prove that any algorithm that recovers the correct tree (without any
restriction on the maximum degree) needs to access the covariance oracle Ω(n2)

times.
In order to formalize such a statement, let Ak be the class of all randomized

algorithms that query the covariance oracle at most k times. An algorithm A ∈ Ak
outputs the tree T (A). The probability of error of algorithm A for Σ ∈ X is denoted
by

P(A, Σ) = P {T (A) 6= T(Σ)} ,

where the probability is with respect to the randomization of the algorithm A. The
quantity of interest is the minimax risk

R(Ak,X ) = inf
A∈Ak

sup
Σ∈X

P(A, Σ) .

R(Ak,X ) expresses the worst-case probability of error of the best algorithm that
takes at most k covariance queries.

Theorem 2.2.8 implies that there exists a constant c > 0 such that, for every ε > 0,
we have R(Ak,Xd) ≤ ε whenever k > cn log(n) (d + log(n/ε)). In this section we
prove that this upper bound is tight up to logarithmic factors.

We start with the case d = n− 1 (i.e., no restriction on the maximum degree)
since this simpler case already contains the main ideas. The lower bound for
R(Ak,Xd) follows by a small adjustment.

Theorem 2.2.11. For all k ≤ (n
2),

R(Ak,X ) ≥ 1
2
− k

(n− 1)2 .
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Figure 2.3: An illustration of the construction in the proof of Theorem 2.2.11, with
n = 6, {I, J} = {2, 3}, and B = 0 (left), B = 1 (right).

In particular, R(Ak,X ) ≥ 1/2− o(1) whenever k = o(n2).

Proof. In order to prove the lower bound, we define a probability distribution D
on the set X and write

R(Ak,X ) ≥ inf
A∈Ak

EΣ∼DP(A, Σ) .

Next we specify how a random symmetric matrix Σ, distributed according to D, is
generated. Σ is defined by a collection of independent random variables: let B be
a Bernoulli random variable with parameter 1/2, let U1, . . . , Un−1 be independent
random variables, uniformly distributed on [0, 1], and let I, J be different indices
in [n − 1], uniformly distributed over all (n − 1)(n − 2) such pairs. Then Σ =

Σ(B, U1, . . . , Un−1, I, J) is defined as follows; see Figure 2.3. (We index the n columns
and rows from 0 to n− 1.)
• Σi,i = 1 for all i = 0, . . . , n− 1.
• Regardless of B, I, J, we have Σ0,i = Ui for all i = 1, . . . , n− 1.
• If B = 0, then Σi,j = UiUj for all i, j ∈ {1, . . . , n− 1}, i 6= j. Note that in this case,
by Lemma 2.1.3, the concentration graph is a star with vertex 0 as a center (and
therefore indeed Σ ∈ X ).
• If B = 1, then Σi,j = UiUj for all i, j ∈ {1, . . . , n − 1} such that i 6= j and
{i, j} 6= {I, J}. Moreover, ΣI,J = min(UI , UJ)/ max(UI , UJ). In this case, again by
Lemma 2.1.3, the concentration graph is a tree in which vertex 0 has degree n− 2,
every vertex i /∈ {I, J} has degree 1 and is attached to vertex 0, and vertices 0, I, J
form a path such that, if UI < UJ , then J is the middle vertex and if UI > UJ , then I
is the middle vertex.

Regardless of what the algorithm A is, it is unable to distinguish between
Σ(0, U1, . . . , Un−1, I, J) and Σ(1, U1, . . . , Un−1, I, J) before the entry ΣI,J is queried.
(No other entry of Σ provides any information about ΣI,J .) In other words, if B,
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Figure 2.4: Three trees made from a ternary tree, by removing the parent edge of at
most one leaf from each 3-ary branch and attaching it to another leaf of the same
branch.

U1, . . . , Un−1, and I, J are fixed and Σ = Σ(B, U1, . . . , Un−1, I, J), then

P(A, Σ) ≥ 1
2

E
(
1(I,J) is not queried|(I, J)

)
.

Thus, for any algorithm A,

EΣ∼DP(A, Σ) ≥ 1

2(n−1
2 )

∑
{i,j}⊂[n−1]:i 6=j

E
(
1(i,j) is not queried|(I, J) = (i, j)

)
≥ (n−1

2 )− k

2(n−1
2 )

(by symmetry)

proving the theorem.

For the class of covariance matrices Xd whose concentration graph is a tree
with maximum degree bounded by d, we have the following bound. Its proof is
similar to that of Theorem 2.2.11. To avoid repetitions, we do not detail the proof.
The only difference is that the class of trees that support the distribution D now
includes the complete d-ary tree of height h of n = (dh+1 − 1)/(d− 1) vertices and
its modifications such that, in each d-ary branch at the leaf level, one can remove a
leaf and attach it to another one of the same branch (see Figure 2.4 for such instances,
made from a ternary tree).

Theorem 2.2.12.
R(Ak,Xd) ≥

1
2
(1− o(1))
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whenever k = o(nd).

2.3 Separators in bounded treewidth graphs

In the next two sections, we deal with the main results of the paper. We show
that a large and important class of sparse concentration graphs can be reconstructed
efficiently with O(n polylog n) correlation queries. The class includes all graphs
with bounded treewidth and bounded maximum degree.

The algorithm we propose is a divide-and-conquer algorithm. The main idea is
that, once one finds a small set of vertices (a separator) whose removal decomposes
the graph into small connected components, and these components are identified,
one may recurse in these components. The nontrivial task is to find such separators
efficiently.

Our algorithm starts by taking a random sample W of the vertices, of size
proportional to the treewidth of G. Then we find a separator of W of size at most
k + 1 that splits the vertices of W into two sets of comparable size. We argue that,
with high probability, such a separator exists. We also prove that this separator is a
balanced separator of the entire vertex set. Removal of this separator decomposes
the graph into connected components of significantly reduced size. We identify
these components using a linear number of queries. Then the algorithm recurses
into each of the components. In this section we discuss the first splitting of the
graph. How to subsequently recurse into the smaller subsets is described in detail
in Section 2.4.

A tree decomposition of a graph G(V, E) is a tree T with vertices B1, . . . , Bm, where
Bi ⊆ V satisfy

1. The union of all sets Bi equals V.

2. If Bi and Bj both contain v, then all vertices Bk of T in the unique path between
Bi and Bj contain v as well.

3. For every edge uv in G, there is Bi that contains both u and v.

The width of a tree decomposition is the size of its largest set Bi minus one. The
treewidth of a graph G, denoted tw(G), is the minimum width among all possible
tree decompositions of G.

A key property of bounded-treewidth graphs is that they have small “balanced”
separators. To precisely define a balanced separator, we generalize the notion of
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centrality (2.2.1) for any set S ⊂ V by writing

c(S) def.
=

1
|V \ S| max

C∈CS
|C| , (2.3.1)

where recall that CS is the set of connected components of the graph induced by
V \ S. We will call a separator S balanced when c(S) ≤ 0.93. We start by noting that
every graph with bounded treewidth has a small balanced separator.

Proposition 2.3.1. (see e.g. Bodlaender [11, Theorem 19]) If tw(G) ≤ k then G has a
separator S such that |S| ≤ k + 1 and

c(S) ≤ 1
2
· |V| − k
|V| − (k + 1)

.

Remark. By [11, Lemma 11], if tw(G) ≤ k then tw(H) ≤ k for every subgraph
H of G. In particular, one can recursively split a graph into subgraphs of small
treewidth using small balanced separators.

2.3.1 Finding a separator of two sets

Let G(V, E) be a graph and let Σ ∈ M(G) be generic. We give an algorithm
that finds a minimal separator of two subsets A, B ⊂ V. By Assumption 2, the size

of such a minimal separator is r def.
= rank(ΣA,B). Denote by S(A, B) the set of all

minimal separators of A and B in G. Denote by U the set of all vertices that lie in
some minimal separator in S(A, B).

Lemma 2.3.2. A vertex v ∈ V lies in U if and only if rank(ΣAv,Bv) = r.

Proof. This follows immediately from Lemma 2.1.2.

Lemma 2.3.2 together with Lemma 2.1.2 give a simple and efficient procedure to
find an element in S(A, B), detailed in Algorithm 6.

Proposition 2.3.3. Let G(V, E) be a graph and let Σ ∈ M(G) be generic. For any
A, B ⊂ V with M = max{|A|, |B|}, Algorithm 6 finds a minimal separator of A and B
with query complexity O(|V|M2) and computational complexity O(|V|M3).

Proof. By Lemma 2.3.2, the first loop finds the set U of all vertices that lie in a
minimal separator of A and B. This loop has O(|V|M2) and O(|V|M3) query and
computational complexity, respectively.
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Algorithm 6: ABSeparator(A, B)
U := ∅;
r := rank(ΣA,B);
forall v ∈ V do

if rank(ΣAv,Bv) = r then
U ← U ∪ {v};

C ← {v0} for an arbitrary v0 ∈ U;
forall u ∈ U \ {v0} do

if rank(ΣACu,BCu) = r then
C ← C ∪ {u} ;

return C;

We now take an arbitrary vertex v0 ∈ U and show that the second loop of
the algorithm finds a minimal separator of A and B that contains v0. Start with
C = {v0} and note that, since v0 ∈ U, there exists S ∈ S(A, B) containing v0. In
each iteration of the second loop we add u ∈ U \ {v0} to C if rank(ΣACu,BCu) = r.
Therefore, by Lemma 2.1.2, we update C ← C ∪ {u} if and only if there exists (not
necessarily unique) S ∈ S(A, B) such that C ∪ {u} ⊆ S. By Assumption 2, |S| = r
and so, if |C∪ {u}| = r then S = C∪ {u} and the rank condition will not be satisfied
for the subsequent vertices in the loop (showing correctness of the algorithm). If
|C ∪ {u}| < r then C ∪ {u} is a strict subset of S and all the remaining vertices in
S \ (C ∪ {u}) appear in the second loop after u. We conclude correctness of the
algorithm.

Since |U| ≤ |V| and r ≤ M, the number of queries and computational complex-
ity of the second loop are O(|V|M2) and O(|V|M3), respectively, which concludes
the proof.

2.3.2 Balanced separators in G

In Section 2.3.1 we provided an efficient procedure that finds a separator for a
given pair of sets A, B ⊂ V. In this section we show how to construct such a pair
of small sets so that the obtained separator is, with high probability, a balanced
separator for the entire graph G.

Our approach to finding a balanced separator is to base the search on a random
subset W ⊂ V of size m which can be handled within our computational budget.
To argue why our randomization works and guide the choice of the parameter m
we rely on VC-theory initiated by Vapnik and Chervonenkis [89]. Let FS be the set

33



of all connected components in CS and their complements in V \ S. Let

Fk
def.
=

⋃
S:|S|≤k

FS , (2.3.2)

that is, C ∈ Fk if it is a connected component of G \ S for some S with at most k
elements, or C is a union of all but one such components.

Definition 2.3.4. We will call a set W ⊆ V a δ-sample for Fk if for all sets C ∈ Fk,

|C|
|V| − δ ≤ |W ∩ C|

|W| ≤ |C||V| + δ . (2.3.3)

We now present conditions that assure that a uniformly random sample W from
the vertex set V is a δ-sample with high probability. A subset W ⊂ V is shattered
by Fk if W ∩ Fk = {W ∩ C : C ∈ Fk} is the set of all subsets of W. Define
the VC-dimension of Fk , denoted by VC(Fk), to be the maximal size of a subset
shattered by Fk. The following follows from the classical Vapnik-Chervonenkis
inequality (see Devroye and Lugosi [28] for a version that implies the constants
shown here):

Theorem 2.3.5. Suppose that VC(Fk) = r, δ > 0, and τ ≤ 1/2. A set W obtained by
sampling m vertices from V uniformly at random, with replacement, is a δ-sample of Fk
with probability at least 1− τ if

m ≥ max
(

10r
δ2 log

(
8r
δ2

)
,

2
δ2 log

(
2
τ

))
. (2.3.4)

A key property of the set Fk is that its VC-dimension is bounded by a linear
function of the treewidth k.

Lemma 2.3.6 (Feige and Mahdian [38]). Let G(V, E) be a graph and, for a fixed k, let
Fk for be the set defined in (2.3.2). Then VC(Fk) ≤ 11 · k.

Remark. The statement of this lemma in Feige and Mahdian [38] uses a universal
constant. Their proof however allows one to specify this constant to be 11.

We now show that a δ-sample admits a balanced separator.

Proposition 2.3.7. Let G(V, E) be such that tw(G) ≤ k, and let W ⊂ V be a δ-sample of
Fk+1 satisfying |W| ≥ 6(k + 1). If δ ≤ 1

24 , then we can partition W into two sets A, B
such that |A|, |B| ≤ 2|W|

3 and a minimal separator S of A and B has at most k + 1 elements.
Moreover, for any such partition, max(|A \ S|, |B \ S|) ≤ 4

5 |W \ S|.
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In the latter proposition we refer to Fk+1 and not Fk, in order to be consistent
with Proposition 2.3.1.
Before we prove this result we formulate two useful lemmas.

Lemma 2.3.8. Let U =
⋃d

i=1 Ci be a partition of a set U into disjoint sets such that
|C1| ≥ · · · ≥ |Cd| > 0. If |C1| ≤ α|U| for α ≥ 2

3 , then there exists t ∈ {1, . . . , d} such
that

(1− α)|U| ≤
t

∑
i=1
|Ci| ≤ α|U| .

Proof. Obviously there exists t such that the upper bound is true. Let us consider
the largest such t. Then ∑d

i=t+1 |Ci| ≤ |U|
3 . If also ∑t−1

i=1 |Ci| < |U|
3 , then |Ct| > |U|

3 .
But the latter implies ∑t−1

i=1 |Ci| > |U|
3 , by the ordering of the |Ci|, a contradiction.

For the second lemma, let

λ
def.
= 1− k + 1

|V| (2.3.5)

and note that |V\S||V| ≥ λ for all S such that |S| ≤ k + 1.

Lemma 2.3.9. Suppose W ⊂ V is a δ-sample for Fk+1 and let S ⊂ V with |S| ≤ k + 1. If
C ∈ CS, then

λ · c(S)− δ

λ + 2δ
≤ |W ∩ C|
|W \ S| ≤

λ · c(S) + δ

λ− 2δ
. (2.3.6)

Proof. Using (2.3.3), we get

|W ∩ C|
|W \ S| ≤

( |C|
|V| + δ

)
· |W||W \ S| ≤

(
c(S) · |V \ S|

|V| + δ

)
· |W||W \ S| .

To bound the last expression, let C̄ = V \ (C ∪ S). Since C, C̄ ∈ Fk+1, we get

|W \ S|
|W| =

|C ∩W|
|W| +

|C̄ ∩W|
|W| ≥

( |C|
|V| +

|C̄|
|V| − 2δ

)
=
|V \ S|
|V| − 2δ .

A similar argument gives an upper bound for |W\S||W| , which after taking reciprocals
gives

1
|V\S|
|V| + 2δ

≤ |W|
|W \ S| ≤

1
|V\S|
|V| − 2δ

. (2.3.7)
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This gives the upper bound in (2.3.6) because

|W ∩ C|
|W \ S| ≤

c(S) |V\S||V| + δ

|V\S|
|V| − 2δ

≤ λc(S) + δ

λ− 2δ
,

where the last inequality follows by the fact that the middle expression is a decreas-
ing function of |V\S||V| and |V\S||V| ≥ λ. This establishes the upper bound in (2.3.6). The
lower bound follows by similar arguments.

Proof. [Proof of Proposition 2.3.7] Let S∗ be a minimizer of c(S) among all S ⊂ V
such that |S| ≤ k + 1. By Proposition 2.3.1, c(S∗) ≤ 1

2 ·
|V|−k

|V|−(k+1) , which is further

bounded by 11/20 if |V| ≥ 6(k + 1). By Lemma 2.3.9, if C ∈ CS∗ then

|W ∩ C|
|W \ S∗| ≤

11
20 λ + δ

λ− 2δ
.

The right-hand side is an increasing function of δ and the maximum for δ ≤ 1
24 is

(11
20 λ + 1

24)/(λ− 1
12), which is bounded by 2

3 because λ ≥ 5
6 (recall the definition of

λ in equation (2.3.5) and that |V| ≥ |W| ≥ 6(k + 1)). This shows that W \ S∗ can be
partitioned into disjoint subsets W ∩ C for C ∈ CS∗ , all of size at most 2

3 |W \ S∗|. By
Lemma 2.3.8, we can group these sets into two groups A′ and B′ where each has
size at most 2

3 |W \ S∗|. To show the first claim let A, B be any two sets partitioning
W that satisfy A \ S∗ = A′, B \ S∗ = B′. We next show that there is a choice of A, B
that gives max(|A|, |B|) ≤ 2

3 |W|. This is done by allocating the elements of W ∩ S∗

in a balanced way between A′ and B′ so that both A′ and B′ get at most 2
3 of the

elements in W ∩ S∗. This can be always done if W ∩ S∗ has at least two elements. If
W ∩ S∗ is empty, the statement is trivial. If |W ∩ S∗| = 1 we consider two cases (i)
|A′| < |B′| and (ii) |A′| = |B′|. In case (i) we allocate the element in W ∩ S∗ to A′.
In that case

|A| = |A′|+ 1 ≤ |B′| = |B| ≤ 2
3
|W \ S∗| ≤ 2

3
|W|.

In case (ii), we again allocate the element in W ∩ S∗ to A′ and use the fact that
|A′| = |B′| = 1

2 |W \ S∗|, which gives

|B| ≤ |A| = |A′|+ 1 =
1
2
|W \ S∗|+ 1 =

1
2
|W|+ 1

2
≤ 2

3
|W|,

where the last inequality holds always if |W| ≥ 3. This proves the first claim.
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To show the second claim, assume max(|A|, |B|) ≤ 2
3 |W|. Since |W| ≥ 6(k + 1)

we have |W \ S| ≥ 5(k + 1) ≥ 5|W ∩ S|. Now

max(|A \ S|, |B \ S|) ≤ 2
3
|W| ≤ 2

3
(|W \ S|+ |W ∩ S|) ≤ 2

3

(
1 +

1
5

)
|W \ S|,

which completes the argument.

2.3.3 Separating and splitting

We now present the procedure Separator that finds a balanced separator in G.
When the separator is found, decomposing the graph into connected components is
straightforward and is given in the procedure Components.

The algorithm starts by choosing a sample W ⊂ V. Then it looks for a partition
of W into two sets A, B such that |A|, |B| ≤ 2

3 |W| and the rank of ΣA,B is small.
In Proposition 2.3.10 we argue why such a partition exists with high probability.
Then the algorithm uses ideas of Section 2.3.1 to efficiently find a minimal separator
S of A and B in G; by construction |S| = rank(ΣA,B). At this moment a purely
deterministic part of the process begins. Given S, the algorithm decomposes V into
connected components in CS. This is done using rank conditions like in the tree-like
case.

Algorithm 7: Separator
Pick a set W by taking m vertices uniformly at random, where m satisfies
(2.3.4) with r = 11k and δ = 1/24;

Search exhaustively through all partitions of W into sets A, B with
|A|, |B| ≤ 2

3 |W|, minimizing rank(ΣA,B);
If no such balanced partition exists, output any partition A, B of W;
S← ABSeparator(A, B);
return S

The next proposition shows that Algorithm 7 outputs a balanced separator with
high probability.

Proposition 2.3.10. Let G(V, E) be a graph with tw(G) ≤ k, and |V| ≥ 6(k + 1)
vertices and let Σ ∈ M(G) be generic. Let τ ∈ (0, 1). Then, with probability at least
1− τ, Algorithm 7 finds a separator S in G such that |S| ≤ k + 1 and |C| ≤ 0.93|V| for
each connected component C ∈ CS.

Proof. The procedure starts by choosing a sample W ⊂ V. The size of the sample
m is chosen so that, with probability at least 1− τ, W is a δ-sample for Fk+1. A
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Algorithm 8: Components(V)
S← Separator(V);
r ← |S|;
R← ∅; // will contain one vertex from each C ∈ CS

for v ∈ V \ S do
notFound← True;
for u ∈ R do

if rank(ΣuS,vS) = r + 1 then
Cu ← Cu ∪ {v};
notFound← False;

if notFound then
Cv ← {v}; // create new component Cv ∈ CS

R← R ∪ {v};
return S and all Cv for v ∈ R;

sufficient condition for m follows by Theorem 2.3.5 and Lemma 2.3.6. Note that this
condition also assures that |W| ≥ 6(k + 1).

Since δ = 1/24, by Proposition 2.3.7, we can partition W into two sets A, B
such that |A|, |B| ≤ 2|W|

3 and any minimal separator S of A and B has at most k + 1
elements. Moreover, for any such partition |A \ S|, |B \ S| ≤ 4|W\S|

5 . Now we only
need to show that for each connected component C ∈ CS of G, |C| ≤ 93

100 |V|. Indeed,
if C∗ is the maximal component in CS then |W∩C∗|

|W\S| ≤ 4
5 . Since C∗ lies in Fk+1, we get

|C∗ ∩W|
|W \ S| ≥

( |C∗|
|V \ S|

|V \ S|
|V| − δ

) |W|
|W \ S|

(2.3.7)
≥

c(S) |V\S||V| − δ

|V\S|
|V| + 2δ

.

The expression on the right-hand side is an increasing function of |V\S||V| and |V\S||V| ≥
λ, which gives that

|C∗ ∩W|
|W \ S| ≥

λ |C
∗|

|V\S| − δ

λ + 2δ

Since |C
∗∩W|
|W\S| ≤ 4

5 , δ ≤ 1
24 , and λ ≥ 5

6 , we get that |C
∗|

|V\S| ≤ 93
100 .
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2.4 Recovery of bounded treewidth graphs

In this section we present an algorithm for reconstructing graphs with bounded
treewidth. Let G([n], E) be a graph and let Σ ∈ M(G) be generic. To recover G
from Σ we follow a similar divide-and-conquer strategy as in the previous sections.
First, a balanced separator S is chosen and then the algorithm recurses into all the
components in CS. There is however a complication. If C ∈ CS, then G[C ∪ S] is
not equal to the graph of ΣCS, unless for each C ∈ CS the set of vertices in S that
are linked to C by an edge is a clique of G; see Frydenberg [39, Theorem 3.3]. The
condition holds, in particular, when S is a clique, but in our case there is no way to
assure that in general. If it does not hold, then the graph of G(ΣCS) is strictly bigger
than the subgraph G[C ∪ S]. The next example illustrates this phenomenon.

Example. Consider the four-cycle given below together with the corresponding
covariance and precision matrices

1 2

34

Σ =


7 −2 1 −2
−2 7 −2 1
1 −2 7 −2
−2 1 −2 7

 K =
1

24


4 1 0 1
1 4 1 0
0 1 4 1
1 0 1 4


Then {1, 3} separates 2 and 4 but the graph G(Σ123) is the complete graph over
{1, 2, 3} because

 7 −2 1
−2 7 −2
1 −2 7

−1

=
1
96

 15 4 −1
4 16 4
−1 4 15

 .

An easy way around this problem is by noting that Gaussian graphical models
are closed under conditioning and this probabilistic statement has a useful alge-
braic counterpart. The graph of the conditional covariance is obtained from G by
removing the vertices in the conditioning set and all the incident edges. This means
that the edges in G[C] can be recovered from the conditional covariance matrix

ΣC|S
def.
= ΣC,C − ΣC,SΣ−1

S,SΣS,C. (2.4.1)

More concretely, we have the following basic result.

Lemma 2.4.1. If S separates C from the rest of the graph, then KC,C = (ΣC|S)−1.
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This result can be argued by standard properties of the Gaussian distribution,
as KC is the inverse of the conditional covariance matrix ΣC|[n]\C; see, for example,
equation (C.3) in Lauritzen [60]. If S separates C from the remaining vertices then,
by conditional independence, this conditional covariance matrix is equal to ΣC|S.
We should stress however that Lemma 2.4.1 holds without assuming Gaussianity;
the statement is purely algebraic.

This result shows that in order to keep information about the induced subgraph
G[C], it is important to keep the information about the separating set. To see
how this is done, it is helpful to study the situation in Figure 2.5. Suppose that
S separates G into several components one of which is C. We then recurse our
algorithm on C by conditioning on S. In the next step we use the matrix ΣC|S to find
a balanced separator S′ of G[C]. We then recurse on the corresponding components
C1, C2, C3, C4. Note that in the next step it is not enough to condition on S′ to study
G[C2] because it is connected to the rest of the graph through S. Therefore, in this
recursive call we need to work with the conditional covariance matrix ΣC2|SS′ .

The dependence on separating sets requires a modification of the algorithms
that we use to decompose the graph. Instead of working on the covariance matrix,
they should be working on the conditional covariance matrix. Note however, that
rank queries for ΣA,B|S with A, B ⊂ C are equivalent to rank queries on ΣAS,BS.
Indeed, by the Guttman rank additivity formula (see e.g. [93, Section 0.9])

rank(ΣAS,BS) = rank(ΣS) + rank(ΣA,B|S) = |S|+ rank(ΣA,B|S). (2.4.2)

Therefore, the algorithms ABSeparator(A, B), Separator, Components have their
simple modifications ABSeparator(V, A, B, S), Separator(V, S), Components(V, S),
where a set S disjoint from V is added to both the row and the column set in all the
rank queries. For completeness we explicitly provide these algorithms in Section 2.5.

In Algorithm 9 we present the complete algorithm which relies on routine
Reconstruct, which is then called recursively in Algorithm 10. With a fixed bound
k on the treewidth of G, the main algorithm returns the precision matrix K = Σ−1.

Algorithm 9: Main algorithm

K̂ ← 0 ∈ Rn×n

Fix m satisfying (2.3.4) with r = 11k and δ = 1
24

Reconstruct([n], ∅)

At each call of Reconstruct(V, S), if the input vertex set V is larger than the
fixed threshold m, then Separator(V) (called during the procedure Components)
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S′

C1

C2
C3

C4

S

C

Figure 2.5: Components found during subsequent recursive calls to Reconstruct.
The algorithm needs to keep track of the separators found at all levels, as C2 and C3
are connected by both S′ and S.

finds a balanced separator S′ of G[V]. Then the procedure Components finds all
connected components Ci in G[V] \ S′. Subsequently, Reconstruct recurses in all
these components replacing S with S ∪ S′ as in Figure 2.5.

Most edges in K are only reconstructed in the final recursive calls. Consider the
situation in Figure 2.5. Suppose that Reconstruct(C, S) makes a recursive call to
Reconstruct(C1, S ∪ S′). If |C1| ≤ m, then Reconstruct(C1, S ∪ S′) computes KC1 ,
which by Lemma 2.4.1 is equal to the inverse of ΣC1|SS′ . The matrices KC1S′ and KS′S′

can be computed in a similar way as described in the lemma below.

Lemma 2.4.2. Suppose C ∈ CS and that C is further decomposed into S′ and the connected
components {C1, . . . , Cd} (as in Figure 2.5). Let K denote Σ−1. The submatrix KC has a
block structure with KCi,Cj = 0 for i 6= j and

KCi,S′ = −KCi ΣCi,S′|SΣ−1
S′|S, KS′ =

(
I|S′| −

d

∑
i=1

KS′,Ci
ΣCi,S′|S

)
Σ−1

S′|S,

where Im denotes the m×m identity matrix.

Proof. There are no direct links between Ci and Cj in G and so KCi,Cj = 0 for i 6= j.
Lemma 2.4.1 gives the identity KCΣC|S = I|C|. Taking the Ci-rows of KC and the
S′-columns of ΣC|S we get from this identity that

KCi ΣCi,S′|S + KCi,S′ΣS′,S′|S = 0,
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which implies the first equality. Taking the S′-rows and S′-columns we get

d

∑
i=1

KS′,Ci
ΣCi,S′|S + KS′ΣS′|S = I|S′|,

which implies the second formula.

Algorithm 10: Reconstruct(V, S)
if |V| > m then

C1, . . . , Cd, S′ ← Components(V, S); // see Section 2.5
for i from 1 to d do

K̂Ci ← Reconstruct(Ci, S ∪ S′);
K̂Ci,S′ ← −K̂Ci ΣCi,S′|SΣ−1

S′|S
K̂S′ ←

(
I|S′| −∑d

i=1 K̂S′,Ci
ΣCi,S′|S

)
Σ−1

S′|S;

else
return K̂V

Theorem 2.4.3. Reconstruct([n], ∅) correctly recovers K.

Proof. The correctness of Components([n], ∅) was already shown in Proposi-
tion 2.3.10. Using the discussion given in the beginning of this section, we can
easily adjust this proof for any call of Components(V, S). This, together with
Lemma 2.4.1, implies that in each call of Components(V, S):

(i) If u, v are put in different components components then Kuv = 0.

(ii) It holds that KCi = (ΣCi|SS′)
−1.

By (i) all (zero) entries in KCi,Cj are correctly recovered. By (ii) all the entries of KCi

obtained by inverting ΣCi|SS′ are correct. By Lemma 2.4.2, also KCi,S′ and KS′,S′ are
correctly recovered.

Theorem 2.4.4. Let G([n], E) be a graph with treewidth tw(G) ≤ k and maximum degree
∆(G) ≤ d. Let Σ ∈ M(G) be generic with G(Σ) connected and let m in Separator

satisfy (2.3.4) with r ≥ 11k, δ ≤ 1
24 , and τ ≤ 1

3 . Then, with probability at least 1− 1
n8 , the

query complexity of Reconstruct is of the order

O
(
(2O(k log k) + dk log n)k2n log3 n

)
,
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and the time complexity is of the order

O
(
(2O(k log k) + dk log n)k3n log4 n

)
.

Before we prove this result, a number of remarks are in order.
Remark. The choice of τ ≤ 1/3 in Theorem 2.4.4 is arbitrary; any other choice
would only change the constant factors in the complexity bounds and the probability
of exceeding the stated query and time complexity. Moreover, we note that the
total probability of error can be made arbitrarily small. In the following proof we
show that the recursion depth is O (log n) with high probability. Then, executing
the algorithm O(log 1

ε ) times (each time stopping if it does not finish in the time
limit stated in Theorem 2.4.4) we get at least one timely execution of the algorithm
with probability 1− ε, regardless of n. The complexity only changes by a factor of
O(log 1

ε ).
Remark. As it is seen from the proof, the assumption of bounded degree can
be relaxed. It can be substituted by the assumption that removing O(k log n) ver-
tices decomposes the graph into at most a polylogarithmic number of connected
components. In other words, one may weaken the bounded-degree assumption
by suitable assumptions on the fragmentation of the graph. We refer to Hajiaghayi
and Hajiaghayi [41] and Hajiaghayi and Nishimura [42] for more information on
this notion. An example of a graph with unbounded degree for which our recon-
struction method works is the wheel graph (i.e., the graph formed by connecting a
central vertex to all vertices of a cycle of n− 1 vertices). This graph has treewidth 3,
maximum degree n− 1 but low fragmentation.
Remark. The problem of computing the treewidth of a graph given its adjacency
matrix is NP-hard Arnborg, Corneil, and Proskurowski [4] (see Bodlaender, Drange,
Dregi, Fomin, Lokshtanov, and Pilipczuk [12] for an account on the history of the
problem and references on current results). Hence it is not surprising to have an
exponential dependence on treewidth. Note however that in our case we do not
have access to edge queries but to separation queries, in contrast to the traditional
setting. We are not aware of algorithmic results in this setting. We expect that
similar hardness results should hold but proving such hardness seems non-trivial
and outside of the scope of this study.
Proof. [Proof of Theorem 2.4.4] We refer to all operations in Reconstruct([n], ∅),
excluding operations in subsequent calls Reconstruct(Ci, S′), as the zeroth recur-
sion level of the algorithm. Similarly, the operations of all Reconstruct(Ci, S′) for
i = 1, . . . , d apart from their subsequent calls are called the first recursion level. We
extend this definition iteratively to the t-th recursion level for t > 1.
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Assume initially that Components never fails, that is, |S′| ≤ k + 1 and for each
connected component C ∈ CS it holds that |C| ≤ 0.93|V|, as stated in Proposi-
tion 2.3.10. We will bound the total probability of failure later in the proof. Since
the algorithm recurses on sets Ci of size at most 0.93|V|, the recursion depth (maxi-
mal number of recursion levels) is at most log100/93 n, which is of order O(log(n)).
Moreover, in each call of Reconstruct(V, S) always |S| = O(k log n).

We start with the analysis of Components(V, S). Assume first that |V| > m and
write s = |S| and s′ = |S′|. Finding a balanced partition A, B of W in Separator is
achieved by exhaustively searching all < 2m balanced partitions and computing the
rank of the associated matrices ΣASS′,BSS′ , which gives query complexity O(2m(m +

s)2) and time complexity O(2m(m + s)3) for this step. Taking into account that
m = O(k log k) and s = O(k log n), we obtain complexity

O(2ms2) and O(2ms3)

for queries and time, respectively. Then, given a balanced split, the procedure
ABSeparator(V, A, B, S) finds a separator of A and B in O(|V|(m + s)2) queries
and O(|V|(m + s)3) time. This bound can be obtained by a simple modification
of Proposition 2.3.3, which gives bounds for ABSeparator(A, B). Hence we obtain
complexity

O(|V|s2) and O(|V|s3)

for queries and time, respectively.
Since removing at most s′ vertices of degree at most d splits the graph into

at most ds′ connected components, splitting V into the connected components Ci
requires O(|V|s′ds) queries and O(|V|s′ds3) time, and since s = O(k log n), this
gives query and time complexity bounds

O(|V|dk2 log n) and O(|V|dk4 log3 n).

In the case where |V| ≤ m , we obtain queries and time of the orderO(s2) andO(s3)

respectively. These terms are dominated by the terms that appeared for earlier steps
of the algorithm and will be ignored in what follows. Overall, at each recursion level
this part of the algorithm requires

O
(

n2mk2 log2 n + nk2 log2 n + ndk2 log n
)

queries and
O(n2mk3 log3 n + nk3 log3 n + ndk4 log3 n)
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time, since the vertex sets V are disjoint and there can be up to O(n) calls to
Separator at the bottom levels of recursion. Using the fact that m = O(k log k) and
simplifying, we obtain:

O
(

2O(k log k)k2n log2 n + dk2n log2 n
)

(2.4.3)

queries and
O(2O(k log k)k3n log3 n + dk4n log3 n) (2.4.4)

time.
After calling Components(V, S), Reconstruct obtains K̂Ci (we focus on a fixed

recursion level so we can ignore the recursive call of Reconstruct(V, S)) and com-
putes the matrices K̂Ci,S′ . After these matrices are computed for all components
Ci, the algorithm computes K̂S′,S′ . For these computations we need to calculate
the conditional covariance matrices ΣCi,S′|S and ΣS′|S. The time to compute each
ΣCi,S′|S = ΣCi,S′ − ΣCi,SΣ−1

S ΣS,S′ requires O(|Ci|s + s2) and O(|Ci|s2 + s3) queries
and time, respectively, hence

O(|V|s + s2dk log n) and O(|V|s2 + s3dk log n),

for all Ci. Computing K̂Ci,S′ = K̂Ci ΣCi,S′|SΣ−1
S′ requires onlyO(k2) additional queries

(we use s′ ≤ k + 1). The time complexity of this computation is dominated by the
time needed to compute K̂Ci ΣCi,S′|S. A naive method of computing K̂Ci ΣCi,S′|S would
require O(|Ci|2k) time, which is too time-consuming for our purposes. However,
we can take advantage of the fact that the subgraph G[Ci] has treewidth at most
k (by the remark following Proposition 2.3.1) and the number of edges in such a
graph is at most |Ci|k. This implies that there are at most k|Ci| non-zero entries in
K̂Ci and so the multiplication takes time O(k2|Ci|). Considering all Ci, we obtain
time complexity

O(k2|V|)
for this step. Finally, to compute K̂S′ we need additional O(sk) queries for ΣS,S′ and
O(|V|k2 + dk3) time to compute K̂S′ . However, since s = O(k log n), these terms
are clearly dominated by complexity of the preceding steps in the algorithm and so
they will be ignored in what follows. Overall, at each recursion level this part of the
algorithm requires

O
(

ns + ns2dk log n
)

and O(ns2 + ns3dk log n + k2n)
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queries and time respectively. Using the fact that m = O(k log k) and s = O(k log n)
and simplifying, we obtain:

O
(

kn log n + dk3n log3 n
)

(2.4.5)

queries and
O(k2n log2 n + dk4n log4 n) (2.4.6)

time.
The total complexity for a fixed recursive level are obtained by combining (2.4.3)–

(2.4.6). Taking into account the recursion depth O(log(n)) we get the stated overall
complexity bounds.

Let Ii be the indicator variable that the i-th call of Components succeeds. This
happens with P(Ii = 1) = 1− τ ≥ 2/3. Let α = 0.93. Consider a given recursion
path from the root to a leaf in the recursion tree. There are at most log1/α n calls with
Ii = 1 in such a recursion path. Since the Ii are independent, we can use Hoeffding’s
inequality to bound the probability that we have less than log1/α n successes in
N = 3 log1/α n calls:

P

(
N

∑
i=1

Ii <
1
3

N

)
≤ e−

2
9 N = n−

2
3 log(1/α) ≤ n−9.

This argument implies that a fixed path from the root to a leaf in the recursion tree
is logarithmic with high probability. There are at most n such paths. Hence, by the
union bound and the condition for n, the probability that there exists one of them
with more than logarithmic length is bounded by 1/n8.

2.5 Modified algorithms

Here we present the modified versions of Algorithms 6, 7, and 8 that use condi-
tional covariance information, as described in Section 2.4.
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Algorithm 11: ABSeparator(V, A, B, S)
U := ∅;
r = rank(ΣAS,BS);
forall v ∈ V do

if rank(ΣASv,BSv) = r then
U ← U ∪ {v};

C ← {v0} for some v0 ∈ U;
forall u ∈ U \ {v0} do

if rank(ΣASCu,BSCu) = r then
C ← C ∪ {u} ;

return C;

Algorithm 12: Separator(V, S)
Pick a set W ⊂ V by taking m vertices uniformly at random, where m
satisfies (2.3.4) with r = 11k and δ = 1/24;

Search exhaustively through all partitions of W into sets A, B with
|A|, |B| ≤ 2

3 |W|, minimizing rank(ΣAS,BS);
If no balanced partition exists, output any partition A, B of W;
S′ ← ABSeparator(V, A, B, S);
return S′

Algorithm 13: Components(V, S)
S′ ← Separator(V, S);
r := |S′|+ |S|;
R← ∅; // will contain one vertex from each C ∈ CS′

for v ∈ V \ S′ do
notFound← True;
for u ∈ R do

if rank(ΣuSS′,vSS′) = r + 1 then
Cu ← Cu ∪ {v};
notFound← False;

if notFound then
create Cv = {v};
R← R ∪ {v};

return S′ and all Cj;
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2.6 Tree reconstruction using noisy covariance oracles

In this paper we focus on the noiseless setting when entries of a matrix Σ ∈
M(G) may be accessed by a learner and these values are available exactly, without
error – this is our “covariance oracle.” In other words, we have shown that in
many cases it is possible to invert the positive definite matrix Σ after seeing a tiny,
adaptively chosen, fraction of its entries.

In many learning problems, the entries of Σ are not available exactly. This is the
case in statistical problems when Σ is an unknown covariance matrix of a random
vector X and its entries may be estimated from data. In this section we discuss how
the results of this work may be extended to situations when covariances may not be
observed exactly, for example, due to statistical fluctuations.

Here we limit ourselves to the study of the case when the underlying graph G is
a tree. We show how Algorithm 2 may be modified to handle noise and establish
sufficient conditions that guarantee correct recovery. Along similar lines, one may
also modify the other algorithms introduced in this paper (for recovery of tree-like
graphs and graphs of bounded treewidth). However, the details are somewhat
cumbersome and go beyond the scope of this work.

In order to simplify the presentation, we assume that all diagonal elements of Σ
are equal to 1, that is, Σ is a correlation matrix with entries σij for i 6= j. The extension
of the general case is straightforward, at the price of visually more complicated
formulas.

In the discussion that follows, we assume that the noisy covariance oracle, when
queried for the (i, j)-th entry of Σ, returns a value σ̂ij ∈ [−1, 1] satisfying

max
ij

∣∣σ̂ij − σij
∣∣ < ε (2.6.1)

for some ε ∈ (0, 1). We assume that σ̂ii = 1 for all i. In a statistical setting when Σ
is the covariance matrix of a random vector X and one may obtain independent
samples of X, it is easy to construct such a noisy covariance oracle. We discuss this
in more detail at the end of the section.

In the noise-free case we required that the graph G(Σ) is connected and generic,
or, equivalently, Σ does not have any entry in {−1, 0, 1}. In the presence of noise,
because of problems of identifiability, we need stronger assumptions on the entries
of Σ corresponding to edges of the graph. In particular, we assume that there exist
constants 0 < δ < γ < 1 such that

δ ≤
∣∣σij
∣∣ ≤ γ for all ij ∈ E . (2.6.2)
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By the product formula (2.1.2), this implies that for any two distinct i, j ∈ V,∣∣σij
∣∣ ≥ δD ,

where D is the diameter of the graph. Although the diameter of G played no
role in the noise-free setting, in the noisy case the recovery guarantees crucially
depend on D. In particular, our recovery guarantees are only meaningful when
D is logarithmic in 1/ε. To see why this happens, note that under assumption
(2.6.2), |σij| ≤ γd(i,j) where d(i, j) denotes the distance of vertex i and vertex j in the
tree. This value becomes indistinguishable from zero by the noisy covariance oracle
unless d(i, j) < log(1/ε)/ log(1/γ).
Remark. The assumption that the diameter of G is small is relatively mild. Many
important real life examples of complex networks have small diameter – these
are the so-called small-world networks. For example the diameter of the world
wide web, with way over billion nodes Van den Bosch, Bogers, and Kunder [88],
is around 19 Albert, Jeong, and Barabási [3], while social networks with over six
billion individuals are believed to have a diameter of around six Milgram [70].
Small-world networks have also found applications in brain study Smith Bassett
and Bullmore [8].

Next we show how Algorithm 2 may be modified so that it tolerates noise of
magnitude ε – in the sense of (2.6.1).

Algorithm 2 uses the covariance oracle in order to check whether det
(
Σij,jk

)
= 0

for triples of vertices i, j, k, or equivalently, whether σijσjk = σik. Also, the algorithm
sorts all the correlations σuw for a fixed w. We show that both of these steps can be
correctly executed with a noisy covariance oracle if

ε ≤ 1
8

δD(1− γ2) . (2.6.3)

Under (2.6.3), we may choose a value τ such that

τ > 3ε and τ ≤ δD
(

1− γ2
)
− 3ε .

In order to test whether σijσjk = σik, we use the decision

if
∣∣σ̂ijσ̂jk − σ̂ik

∣∣ < τ accept

if
∣∣σ̂ijσ̂jk − σ̂ik

∣∣ > τ reject .
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To see why the decision is correct, observe first that for all i, j ∈ [n],∣∣σijσjk − σ̂ijσ̂jk
∣∣ = ∣∣σjk

(
σij − σ̂ij

)
+ σ̂ij

(
σjk − σ̂jk

)∣∣ ≤ 2ε . (2.6.4)

Hence, if σijσjk = σik, then ∣∣σ̂ijσ̂jk − σ̂ik
∣∣ ≤ 3ε < τ

and the decision is correct.
We now treat the case where σijσjk 6= σik. We consider two cases.

Case I: There exists a vertex m that separates all i, j, k, that is,

σimσmk = σik and σjmσmk = σjk .

In this case ∣∣σijσjk − σik
∣∣ =

∣∣∣σimσ2
jmσkm − σimσkm

∣∣∣
= |σik|

∣∣∣σ2
jm − 1

∣∣∣
≥ δD

(
1− γ2

)
. (2.6.5)

But then, arguing as above,∣∣σ̂ijσ̂jk − σ̂ik
∣∣ ≥ ∣∣σijσjk − σik

∣∣− 3ε

≥ δD
(

1− γ2
)
− 3ε > τ

and the decision is once again correct. It remains to consider
Case II: Either i separates j and k or k separates i and j. Without loss of generality,
assume the latter, so that σij = σikσjk. Then

∣∣σijσjk − σik
∣∣ =

∣∣∣σikσ2
jk − σik

∣∣∣
= |σik|

∣∣∣σ2
jk − 1

∣∣∣
≥ δD

(
1− γ2

)
.

Hence, similarly to Case I, we have∣∣σ̂ijσ̂jk − σ̂ik
∣∣ ≥ ∣∣σijσjk − σik

∣∣− 3ε
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≥ δD
(

1− γ2
)
− 3ε > τ ,

which proves correctness of the testing procedure.
The only other ingredient of Algorithm 2 that uses the covariance oracle per-

forms queries of the form |σuw| < |σvw|. In the presence of a noisy covariance oracle
satisfying (2.6.1), we may use the following rule:

if |σ̂uw| < |σ̂vw| − 2ε accept

if |σ̂vw| < |σ̂uw| − 2ε reject

otherwise do either .

We now show that the decision rule accepts and rejects correctly. In the first two
cases, the decision is clearly correct. Hence, we only need to examine the case when

|σ̂uw| ≥ |σ̂vw| − 2ε and |σ̂vw| ≥ |σ̂uw| − 2ε

happen simultaneously. In such case,

||σ̂uw| − |σ̂vw|| ≤ 2ε .

which implies
||σuw| − |σvw|| ≤ 4ε .

In terms of the ordering of correlations, it is enough that for a central vertex w in
Algorithm 3 the following holds: if

(i) w does not separate u and v and

(ii) v is the neighbor of w

then |σ̂vw| > |σ̂uw|. Indeed, note that the only thing that matters is that, at each step
of the algorithm, all vertices in the same connected component of G \ w are sorted
after the unique neighbour of w that belongs in that component. But if (i) and (ii)
hold then

||σuw| − |σvw|| = |σvw|(1− |σuv|) ≥ δ(1− γ) > 4ε ,

where the last inequality follows by (2.6.3).
This concludes the proof of correctness of the modified procedure under condi-

tion (2.6.3).
We close this section by noting that a noisy covariance oracle satisfying (2.6.1)

may easily be constructed when Σ is the covariance matrix of a zero-mean random
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vector X = (X1, . . . , Xn). All one needs is that, for each pair of indices i, j ∈ [n]
queried by the algorithm, one may obtain N i.i.d. samples of the pair (Xi, Xj). For
example, if all components of X have a bounded fourth moment, say EX4

i ≤ κ for
all i ∈ [n] for some κ > 0, then Var(XiXj) ≤ κ, and therefore one may use robust
mean estimators (see, e.g., [63, Theorem 2]) to estimate σij = E[XiXj] in a way that
σ̂ij satisfy (2.6.3) (simultaneously, for all i, j ∈ [n]), with probability at least 1− η,
whenever

N ≥ 32
(κ

ε

)2
log

n
η

.
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Chapter 3

Broadcasting on random recursive
trees

The results in this chapter are joint work with Louigi Addario-Berry,
Luc Devroye, and Gábor Lugosi.

3.1 Preliminaries

Let Tn be a rooted tree on n + 1 vertices, whose vertices are labeled in the set
{0, 1, . . . , n} and the root has label 0. The parent pi of a vertex i ∈ {1, . . . , n} is the
unique vertex on the path between the root and vertex i that is connected to i by
an edge (accordingly, vertex i is called a child of pi). Each vertex is assigned a bit
value Bi ∈ {−1, 1} generated by the following random mechanism: the root bit
obtains a bit uniformly at random, while all other vertices have the same bit value
as their parent with probability 1− q and the opposite value with probability q,
where q ∈ [0, 1]. In other words, for i ∈ {1, . . . , n}

Bi = Bpi Zi ,

where Z1, . . . , Zn are independent random variables taking values in {−1, 1} with
P{Zi = −1} = q.

In the broadcasting problem one wants to guess the bit value of the root, upon
observing the bit values of a subset of vertices in the tree. We first consider the
variant of the problem where one observes the tree Tn without labels, together
with the bit value associated with every vertex. Note that since the vertex labels
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are not observed, the identity of the root is not known. We call this the root-bit
reconstruction problem. Then we consider a more difficult version of the problem,
where the unlabeled tree is observed but only the bit values of the leaves (that is,
vertices that are not parents of any vertex) are observed. We refer to this variant as
the problem of reconstruction from leaf bits.

We will consider these problems when the underlying tree is a random recursive
tree. Such trees are grown starting from the root vertex 0, by adding vertices
recursively one-by-one according to some simple random rule. The two random
rules that will be studied in the sequel are the uniform attachment model and the linear
preferential attachment model (we will also refer to the model simply as preferential
attachment). The two models will be defined in the respective sections.

Both reconstruction problems that we defined are binary classification problems,
where one guesses the value of the root bit B0 by an estimate b̂. The probability of
error (or risk) is denoted by

R(n, q) = P
{

b̂ 6= B0

}
.

We study the optimal risk

R∗(n, q) = inf R(n, q) , (3.1.1)

where the infimum is taken over all estimators b̂. In particular, we are interested in

R∗(q) = lim sup
n→∞

R∗(n, q) .

Clearly, R∗(n, q) ≤ 1/2 for all n and q and a principal question of interest is for what
values of q one has R∗(q) < 1/2 and how R∗(q) depends on q in both problems and
under the various random attachment models.

We assume, for simplicity, that the generating mechanism of the tree and the
value q are known to the statistician.

3.2 Broadcasting on uniform attachment trees

In the uniform attachment tree, for each i ∈ {1, . . . , n}, vertex i attaches with an
edge to a vertex picked uniformly at random among vertices 0, 1, . . . , i− 1.

Before discussing root-bit estimators, we make an easy observation.

Lemma 3.2.1. In the root-bit reconstruction problem and the reconstruction problem
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from leaf bits on a uniform attachment tree, R∗(q) ≥ q/2. In particular, R∗(1) = 1/2.
Moreover, R∗(0) = 0.

Proof. With probability q, the bit values of vertex 0 and vertex 1 are different. Since
these two vertices are statistically indistinguishable after their labels are removed,
on this event any classification rule has probability of error 1

2 .

We can recover the maximum likelihood estimator of B0, using existing results
for the inference of the root problem that was described in Chapter 1. To describe such
a classification rule with minimal probability of error, we first have to introduce
some definitions.

A recursive labeling of a rooted tree T = Tn on n + 1 vertices is a labeling of the
vertices of the tree with integers in {0, 1, . . . , n} such that every vertex has a distinct
label, and the labels on every path starting from the origin are increasing. (Thus,
the root has label 0.)

Write V (T) for the set of vertices of a tree T. Given vertices u, v ∈ V (T), we
denote by Tv

u↓ the subtree of T that contains all vertices whose path to v includes u.
For a vertex v ∈ V (T), we denote by Aut (v, T) the number of vertices equiva-

lent to v under graph isomorphism. Formally,

Aut (v, T) = |{w ∈ V (T) : ∃ graph automorphism φ : T → T where φ (v) = w}|

Let u1, . . . , uj be the children of v and consider the subtrees T0
u1↓, . . . , T0

uj↓. These
subtrees belong to rooted graph isomorphism classes S1, . . . , Sm. For i ∈ [m], let

`i be the number of representatives of Si, formally `i
def.
=
∣∣∣{k ∈ [j] : T0

uk↓ ∈ Si

}∣∣∣.
Moreover, Aut

(
T0

v↓
)

def.
= ∏m

i=1 `i!.
It is shown in Bubeck, Devroye, and Lugosi [15, Proposition 1] that, given a tree

T on n + 1 vertices, for any node u ∈ T, the number of recursive labelings of T such
that u has label 0 equals

n!

Aut
(

Tu
u↓
)
· ∏v∈V(T)\(L(T,u)∪{u})

(
|Tu

v↓| ·Aut
(

Tu
v↓
)) ,

where L(T, u) is the set of leaves of Tu
u↓. Since every recursive tree is equally likely in

the uniform attachment model, as a consequence we have that, given an unlabeled
tree T, the likelihood of a vertex u being the root is proportional to the function

λ(u) =
1

Aut (u, T)∏v∈V\L(T,u)

(∣∣∣Tu
v↓
∣∣∣ ·Aut

(
Tu

v↓
)) . (3.2.1)
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Hence we immediately obtain the following.

Corollary 3.2.2. For the root-bit reconstruction problem on a uniform random recursive
tree T, the following estimator b∗ of the root bit B0 minimizes the probability of error:

b∗ =

 1 if ∑
u∈V(T):Bu=1

λ(u) > ∑
u∈V(T):Bu=0

λ(u)

0 otherwise.

In other words, P{b∗ 6= B0} = R(n, q).

The analysis of the optimal rule described above seems difficult. Instead, we
analyze various other classification methods.

3.3 The majority rule

In this section, we analyze the majority rule. We denote by b̂maj the majority
vote among all bit values. Our result can be summarized as follows.

Theorem 3.3.1. Consider the broadcasting problem in a uniform attachment tree. Denote
the probability of error of the majority vote by

Rmaj(n, q) = P
{

b̂maj 6= B0

}
.

For both the root-bit reconstruction problem and the reconstruction problem from leaf bits,
the following hold.

There exists c > 0 such that

lim sup
n→∞

Rmaj(n, q) ≤ cq for all q ∈ [0, 1] .

Moreover,
lim sup

n→∞
Rmaj(n, q) < 1/2 if q ∈ [0, 1/4)

and
lim sup

n→∞
Rmaj(n, q) = 1/2 if q ∈ [1/4, 1/2] .

Observe that the number of vertices in the uniform random recursive tree Tn

with bit value B0 is distributed as the number of black balls in a Pólya urn of black
and white balls with random replacements defined as follows: initially, there is one
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black ball in the urn. For i = 1, 2, . . ., at time i, a uniformly random ball is selected
from the urn. The ball is returned to the urn together with a new ball whose color
is decided according to a Bernoulli(q) coin toss. If the value is 1 (which happens
with probability q), the color of the new ball is the opposite of the selected one.
Otherwise the new ball has the same color as that of the selected ball.

Such randomized urn processes have been thoroughly studied. In particular,
early results can be traced back to Wei [91] and depend on results by Athreya and
Karlin [6] concerning random multi-type trees. More recently, Janson [50] and
Knape and Neininger [58] proved general limit laws that may be used to analyze
the probability of error of the majority rule.

Instead of using these limit laws, our starting point is a decomposition of the
uniform random recursive tree defined below. This methodology allows us to
prove the first inequality of Theorem 3.3.1 in an elementary way. Moreover, this
decomposition may be used to treat the case of the reconstruction problem from
leaf bits in a straightforward fashion. The same technique will also prove useful in
analyzing the majority vote in the linear preferential attachment model.

In Sections 3.3.3 and 3.3.4 we use Janson’s limit theorems to derive qualitative
results on the probability of error of the majority rule.

In this entire section we assume without loss of generality that q ≤ 1/2. The
conclusions of the theorem hold trivially for q ≥ 1

2 .

3.3.1 A decomposition of the URRT

It is convenient to decompose our random process as follows. First, a uniform
attachment tree Tn is generated in the standard way, without attached bit values.
Then we identify all nodes apart from the root as follows:

• with probability 2q, they are marked. Then there is a coin flip ξ that takes
values uniformly at random in {−1, 1} and determines if a marked node takes
the same bit value as its parent or not (in which case we say it flips).

• with probability 1− 2q they are not marked. These nodes do not flip and thus
have the same bit value as their parent.

The root and marked nodes become roots of subtrees that are disjoint and shatter
the uniform recursive tree into many pieces. Each of the subtrees consists of nodes
of the same bit value and the roots have the bit value of their original parent if ξ = 1
and different otherwise (if ξ = −1). We recall that nodes are numbered 0 through n,
where 0 is the root. The node variables are, for node i:
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i

Figure 3.1: Illustration of the decomposition of a tree. The vertices enclosed by a
circle are marked. The subtree that is enclosed by a dotted curve is T̃i. The subtree
that is enclosed by a dashed curve is T0

i↓.

• pi ∈ {0, . . . , i− 1}: the uniform random index of its parent

• mi ∈ {0, 1}: a Bernoulli(2q) random variable (1 indicates marking)

• ξi ∈ {−1, 1}: a Rademacher random variable used for flipping bit values
(P [ξi = 1] = 1

2 ).

For each i ∈ {1, . . . , n}, pi, mi, and ξi are independent. For our convenience, we will
consider bit values in {−1, 1} instead of {0, 1}. Let Bi be the bit value in {−1, 1} of
node i and assume B0 = 1. We set

Bi =

{
Bpi , if mi = 0 (no marking) or if mi = 1, ξi = +1 (no flipping)
−Bpi , if mi = 1 and ξi = −1 .

Formally, Bi = (miξi + (1−mi)) Bpi . Note that

• The shape of Tn depends only upon p1, . . . pn.

• The decomposition of the tree into subtrees depends upon p1, . . . pn and
m1, . . . , mn.

• The bit counting algorithm (that outputs the majority) uses ξ1, . . . , ξn as well
as the two other sequences.

58



Let T̃i be the maximal size subtree of T0
i↓ with root i and homogeneous bit values,

such that all its vertices apart from i are unmarked (i can be either marked or
unmarked). See Figure 3.3.1 for an illustration. We write Ni = |T̃i|.

3.3.2 Linear upper bound for the probability of error

Here we prove the first part of Theorem 3.3.1, that is, that there exists a universal
constant c such that

lim sup
n→∞

Rmaj(n, q) ≤ cq for all q ∈ [0, 1] . (3.3.1)

Taking c ≥ 8, we may assume that q ≤ 1/8. We will first consider that we have
access to all bit values.

The difference between the number of nodes of value 1 and those of value −1 is
given by

∆ def
= N0 +

n

∑
i=1

NiBpi ξimi.

In this formula, we only count subtrees corresponding to vertices with mi = 1, and
add the vertex count Ni to the Bpi ξi side. As the ξi’s are independent of the rest of
the variables, we have

E [∆] = E [N0] . (3.3.2)

Also, by first conditioning on everything but the ξi’s, we have

E
[
∆2
]
= E

[
N2

0

]
+

n

∑
i=1

E
[

N2
i B2

pi
mi

]
= E

[
N2

0

]
+ 2q

n

∑
i=1

E
[

N2
i

]
.

So,

Var [∆] = Var [N0] + 2q
n

∑
i=1

E
[

N2
i

]
.

By Chebyshev’s inequality,

P
{

b̂maj 6= B0

}
≤ P {∆ ≤ 0} ≤ Var [∆]

(E [∆])2

=
Var [N0]

(E [N0])
2 + 2q

∑n
i=1 E

[
N2

i
]

(E [N0])
2 .

In Lemmas 3.3.5, 3.3.6, and 3.3.7, stated and proved in Section 3.3.5, we establish
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bounds for the first and second moments of Ni. These bounds imply (3.3.1) as
follows.

Let us write ζ(α) = ∑∞
i=1 1/iα for the Riemann zeta function. Also, we write

ζ̃(α) = ∑∞
i=1(log i)/iα. Note that both functions are finite and decreasing for α > 1.

By Lemmas 3.3.5 and 3.3.7,

Var [N0]

(E [N0])
2

≤ 2qe4(4 + e)ζ(2− 4q) + 2qe4n−(1−4q) + 12e5q2ζ̃(2− 4q) + 4e4q2n−(1−4q) log n

≤ c1q + c2q2 + on(1)

with c1 = 2e4(4 + e)ζ(3/2) and c2 = 12e5ζ̃(3/2), where we used the fact that ζ and
ζ̃ are decreasing functions and that q ≤ 1/8.

On the other hand, by Lemmas 3.3.5 and 3.3.6,

∑n
i=1 E

[
N2

i
]

(E [N0])
2 ≤ e4(4 + e)ζ(2− 4q) + n−(1−4q)e3 ≤ c1

2
+ on(1) .

Hence, for all q ≤ 1/8,

P
{

b̂maj 6= B0

}
≤ 2c1q + c2q2 + on(1) ,

proving (3.3.1).
In Section 3.3.6, we will see that similar estimates hold for the first and second

moments of the leaf counts in Ni. Therefore, a similar computation holds also for the
reconstruction problem from leaf bits (in Section 3.3.6 we provide a more detailed
discussion on that).

3.3.3 Majority is better than random guessing for q < 1/4

In this Section, we show the second part of Theorem 3.3.1, that is,

lim sup
n→∞

Rmaj(n, q) <
1
2

for all q <
1
4

. (3.3.3)

To this end, we will apply the limit theorems for Pólya urns with randomized
replacements that can be found in Janson [50].

Consider first the model when bit values are observed at every vertex of the
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tree. Recall that the number of vertices with bit value B0 may be represented by
the number of white balls in a Pólya urn of white and black balls, initialized with
one white ball. At each time, a random ball is drawn. The drawn ball is returned
to the urn, together with another ball whose color is the same as the drawn one
with probability 1− q and has opposite color with probability q. The asymptotic
distribution of the balls is determined by the eigenvalues and eigenvectors of the
transpose of the matrix of the expected number of returned balls. In this case, the
matrix is simply (

1− q q
q 1− q

)
,

whose eigenvalues are 1 and 1− 2q. If q < 1/4, by [50, Theorem 3.24],

∆−E∆
n1−2q

converges, in distribution, to a random variable whose distribution is symmetric
about zero and has a positive density at 0. Since

E∆
n1−2q ≥

1
eΓ(2− 2q)

by (3.3.2) and the calculations in Lemmas 3.3.3 and 3.3.5 below, it follows that

lim sup
n→∞

P
{

b̂maj 6= B0

}
≤ lim sup

n→∞
P {∆ ≤ 0}

= lim sup
n→∞

P

{
∆−E∆

n1−2q ≤ −
E∆

n1−2q

}
<

1
2

,

proving (3.3.3).
The majority rule in the leaf-bit reconstruction problem may also be studied

using Pólya urns with random replacements. In this case the urn has four colors,
corresponding to: (1) leaf vertices whose bit value equals B0, (2) leaf vertices whose
bit value equals 1− B0, (3) internal vertices whose bit value equals B0, (4) internal
vertices whose bit value equals 1− B0.

Initially, there is one ball of type (1) and no balls of any other type in the urn.
When a ball of type (1) is drawn, it is replaced by a ball of type (3). With probability
1− q, an additional ball of type (1) is added to the urn, and with probability q a ball
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of type (2) is added, etc. The resulting replacement matrix is
−q q 1 0
q −q 0 1

1− q q 0 0
q 1− q 0 0


The eigenvalues of this matrix are 1, 1− 2q,−1,−1, and once again [50, Theorem
3.24] applies. Reasoning as previously and using Lemma 3.3.8, we have that for
q < 1/4,

lim sup
n→∞

P
{

b̂maj 6= B0

}
<

1
2

.

3.3.4 Majority is not better than random guessing for q ≥ 1/4

In this section, we show the third part of Theorem 3.3.1, that is,

lim sup
n→∞

Rmaj(n, q) =
1
2

for all q ∈ [1/4, 1/2] . (3.3.4)

The case q > 1
4 follows from the decomposition of Tn that we have introduced

and the following lemma:

Lemma 3.3.2 (Rogozin, 1961 [81]). Let η1, . . . , ηn be i.i.d. Bernoulli
(

1
2

)
random vari-

ables. Then for any α1, . . . , αn, all nonzero,

sup
x

P

{
n

∑
i=1

ηiαi = x

}
≤ γ√

n

for some universal constant γ, uniformly over all choices of α1, . . . αn.

Indeed,

P
{

b̂maj 6= B0

}
≥ P {∆ < 0} = P

{
n

∑
i=1

NiBpi miξi < −N0

}

=
1
2

P

{∣∣∣∣∣ n

∑
i=1

NiBpi miξi

∣∣∣∣∣ > N0

}
(by symmetry)

≥ 1
2

E

[(
1− 2γ(N0 + 1)√

∑n
i=1 mi

)
+

]
.
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The inequality above follows by first conditioning on all but the ξi’s and using
Lemma 3.3.2. The latter expression is further lower bounded by

1
2

(
E

[(
1− 2γ(N0 + 1)√

qn

)
+

]
−P

{
n

∑
i=1

mi < qn

})

≥ 1
2

(
1− 2γE [N0 + 1]√

qn

)
+

−P {Binomial(n, 2q) < qn} (by Jensen’s inequality)

=
1
2
− on (1) ,

since E [N0] = o
(√

n
)

when q > 1
4 by Lemma 3.3.5.

In the “critical” case q = 1/4, we may once again use the Pólya urn representa-
tion and the limit theorems in Janson [50]. Indeed, by working as in Section 3.3.3,
[50, Theorem 3.23] applies and it implies that

∆−E∆
n1/2 log n

converges in distribution to a normal random variable. Since

E∆
n1/2 log n

= o (1)

by Lemmas 3.3.3 and 3.3.5, we have

lim sup
n→∞

P
{

b̂maj 6= B0

}
≥ lim sup

n→∞
P {∆ < 0}

= lim sup
n→∞

P

{
∆−E∆

n1/2 log n
≤ − E∆

n1/2 log n

}
=

1
2

.

A similar computation can be performed for the case when only leaf-bits are
observed.

3.3.5 The study of Ni

We will estimate the first and second moments of the random variables (Ni)0≤i≤n
(recall their definition from subsection 3.3.1). We begin with some auxiliary lemmas.
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Lemma 3.3.3. For all i ≥ 0 and constant α ≥ 0,

n−1

∏
t=i

(
1 +

α

t + 1

)
=

Γ (α + n + 1)
Γ (n + 1)

· Γ (i + 1)
Γ (α + i + 1)

.

Proof.
n−1

∏
t=i

(
1 +

α

t + 1

)
=

∏n−1
t=0

(
α+1+t

1+t

)
∏i−1

t=0

(
α+1+t

1+t

) . (3.3.5)

Also,
n−1

∏
t=0

(
α + 1 + t

1 + t

)
=

Γ (α + n + 1)
Γ (α + 1) Γ (n + 1)

,

implying that (3.3.5) equals

Γ (α + n + 1)
Γ (α + 1) Γ (n + 1)

· Γ (α + 1) Γ (i + 1)
Γ (α + i + 1)

=
Γ (α + n + 1)

Γ (n + 1)
· Γ (i + 1)

Γ (α + i + 1)
.

Lemma 3.3.4. For n ≥ 1 and α ∈ [0, 1],(
n + 1

e

)α

≤ Γ (α + n + 1)
Γ (n + 1)

≤ (n + 1)α .

Proof. If Gamma (n + 1) denotes a Gamma random variable with parameters
(n + 1, 1), then

Γ (α + n + 1)
Γ (n + 1)

=

∫ ∞
0 xα+ne−xdx∫ ∞

0 xne−xdx

= E
[
Gamma (n + 1)α]

≤ (E [Gamma (n + 1)])α = (n + 1)α ,

by Jensen’s inequality. We show the lower bound by induction on n. For n = 1 it
holds for all α ∈ [0, 1], since

(2
e
)α ≤ 1 ≤ Γ (2 + α) . For larger n, we have:

Γ (α + n + 1)
Γ (n + 1)

=
n + α

n
· Γ (α + n)

Γ (n)
≥ n + α

n

(n
e

)α
≥
(

n + 1
e

)α

,

where the first inequality follows by induction hypothesis and the second since
n+α

n ≥
(

n+1
n

)α
.
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Lemma 3.3.5. For all i ≥ 0 and q ≤ 1
2 ,

e−1
(

n + 1
i + 1

)1−2q
≤ E [Ni] ≤ e

(
n + 1
i + 1

)1−2q
.

Proof. The statement follows immediately by Lemmas 3.3.3 and 3.3.4 by noting
that

E [Ni] =
n−1

∏
t=i

(
1 +

1− 2q
t + 1

)
. (3.3.6)

To see that (3.3.6) holds, define Yi = 1 and, for t ∈ {i, . . . , n− 1}, let

Yt+1 = Yt + β1−2qβYt/(t+1) .

where each appearance of βx denotes an independent Bernoulli(x) random variable.
Clearly, Yt is distributed as the number of vertices counted by Ni and which have
label at most t. Hence Ni has the same distribution as Yn. For all t ≥ 1, by
conditioning on Yt we see that

E [Yt+1] = E [Yt]

(
1 +

1− 2q
t + 1

)
,

from which (3.3.6) is immediate.

Lemma 3.3.6. For all i ≥ 0 and q ≤ 1
2 ,

E
[

N2
i

]
≤
(

n + 1
i + 1

)2−4q
e2(1−2q) (4 + e) + e (1− 2q) .

Proof. As in Lemma 3.3.5, we use the random variables (Yt)i≤t≤n, where Yt is
distributed as the number of vertices with label at most t that are counted by Ni.

Then Ni
d
= Yn. Let us set α = 1− 2q, f (t) = (1− 2q) E[Yt]

t+1 , and xt = E
[
Y2

t
]
. Then it

is easy to confirm the recurrence

xi = 1, xt+1 = xt

(
1 +

2α

t + 1

)
+ f (t) , i ≤ t ≤ n .

The solution is given by

xn = xi

n−1

∏
t=i

(
1 +

2α

t + 1

)
+

n−1

∑
s=i+1

n−1

∏
t=s

(
1 +

2α

t + 1

)
f (s− 1) + f (n− 1) .
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Combining the Lemmas 3.3.3, 3.3.4, 3.3.5, and the bound f (t) ≤ α
(

t+1
i+1

)α e
t+1 ,

xn ≤ xi

(
n + 1
i + 1

)2α

e2α +
n−1

∑
s=i+1

(
n + 1
s + 1

)2α

e2α+1α

(
s

i + 1

)α 1
s
+ αe

=

(
n + 1
i + 1

)2α

e2α

(
1 +

n−1

∑
s=i+1

sα · eα (i + 1)α

s (s + 1)2α

)
+ αe

≤
(

n + 1
i + 1

)2α

e2α

(
1 +

eα

i + 1
+

n−1

∑
s=i+2

eα (i + 1)α

s1+α

)
+ αe

≤
(

n + 1
i + 1

)2α

e2α

(
4 + eα (i + 1)α

∫ ∞

i+1

1
s1+α

ds
)
+ αe

=

(
n + 1
i + 1

)2α

e2α

(
4 +

eα (i + 1)α

α (i + 1)α

)
+ αe

≤
(

n + 1
i + 1

)2α

e2α (4 + e) + αe .

Replacing α by 1− 2q, we have

E
[

N2
i

]
≤
(

n + 1
i + 1

)2−4q
e2(1−2q) (4 + e) + e (1− 2q) .

Recall the notation ζ(α) = ∑∞
i=1 1/iα and ζ̃(α) = ∑∞

i=1(log i)/iα.

Lemma 3.3.7. Var(N0) is bounded by

2qe2(4+ e)(n+ 1)2−4qζ(2− 4q)+ 2nqe2 + 12e3q2(n+ 1)2−4qζ̃(2− 4q)+ 4e2q2n log n .

Proof. Knowing the parent selectors p1, . . . , pn and the coin flips ξ1, . . . , ξn, we
have that N0 is a function of the independent random variables m1, . . . , mn. Note
that resampling one of them, say mi, does not change the value of Ni. Moreover,
resampling mi can change N0 by at most Ni: if before resampling we had mi = 0
and T̃i ⊂ T̃0, and after resampling we have mi = 1, then N0 decreases by Ni; also,
if before resampling we had mi = 1 and after resampling we have mi = 0, then T̃i
might become a subtree of T̃0 and then N0 increases by Ni. Hence, by the Efron-Stein
inequality ([35, 86]),

Var(N0|p1, . . . , pn, ξ1, . . . , ξn) ≤
n

∑
i=1

2q(1− 2q)E
[

N2
i |p1, . . . , pn, ξ1, . . . , ξn

]
.
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Writing Z0 = E [N0|p1, . . . , pn, ξ1, . . . , ξn], we have

Var(N0) = E Var(N0|p1, . . . , pn, ξ1, . . . , ξn) + Var(Z0) ≤ 2q
n

∑
i=1

EN2
i + Var(Z0) .

The first term on the right-hand side may be bounded using Lemma 3.3.6, by

2q
n

∑
i=1

EN2
i ≤ 2qe2

n

∑
i=1

((
n + 1
i + 1

)2−4q

(4 + e) + 1

)
≤ 2qe2(4 + e)(n + 1)2−4qζ(2− 4q) + 2nqe2 .

To bound Var(Z0), let δi be the distance between the root and node i in T̃0. These
distances are a function of p1, . . . , pn only and, therefore, we have

Z0 = ∑
v
(1− 2q)δv = 1 +

n

∑
j=1

(1− 2q)δj .

We define
Zj = ∑

v∈T0
j↓

(1− 2q)δv−δj , 0 ≤ j ≤ n .

Let Z′i denote the modification of Zi when the random variable pi is replaced
by an independent copy p′i and the other values p1, . . . pi−1, pi+1, . . . , pn are kept
unchanged. Define similarly the variables δ′i . Observe that if pj is replaced by p′j,
then

Z0 − Z′0 = Zj

(
(1− 2q)δj − (1− 2q)δ′j

)
whose absolute value is at most

Zj (1− 2q)min
(

δj,δ′j
) (

1− (1− 2q)|δj−δ′j |
)
≤
{

0, if δj = δ′j
Zj2q|δj − δ′j|, else

Therefore, by the Efron-Stein inequality,

Var [Z0] ≤
1
2

n

∑
j=1

E

[
Z2

j 4q2
(

δj − δ′j
)2
]

= 2q2
n

∑
j=1

E
[

Z2
j

]
E

[(
δj − δ′j

)2
]

(by independence)
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By Jensen’s inequality, E
[

Z2
j

]
≤ E

[
N2

j

]
. Moreover,

E

[(
δj − δ′j

)2
]
= 2Var

[
δj
]
≤ 2 log j (3.3.7)

by well-known properties of uniform random recursive trees (Devroye [29]). There-
fore,

Var [Z0] ≤ 4q2
n

∑
j=1

E
[

Z2
j

]
log j

≤ 4q2
n

∑
j=1

E
[

N2
j

]
log j

≤ 4q2
n

∑
j=1

((
n + 1
j + 1

)2−4q
e2 (4 + e) + e2

)
log j

(by Lemma 3.3.6)

≤ 12e3q2(n + 1)2−4q
n

∑
j=1

log j

(j + 1)2−4q + 4e2q2 log(n!)

≤ 12e3q2(n + 1)2−4qζ̃(2− 4q) + 4e2q2n log n .

3.3.6 Majority of the leaf bits

We have proved Theorem 3.3.1 for the root-bit reconstruction problem. It remains
to show the analogous statements for the reconstruction problem from leaf bits, that
is, for the case when b̂maj denotes the majority vote among the bit values observed
on the leaves only. We can show this with a slight adaptation of the proof presented
in the previous section.

Recall that Ni is the maximum number of unmarked vertices in a subtree rooted
at i in T0

i↓ (i is included and can be marked or not marked). Let Ni be the number of
them that are leaves. It suffices to show that the first and second moments of Ni
satisfy inequalities analogous to those of Lemmas 3.3.5, 3.3.6, and 3.3.7.

The next lemma establishes the desired analogues of Lemmas 3.3.5 and 3.3.6.
This suffices to prove (3.3.1) by the same argument as before. (The corresponding
extension of Lemma 3.3.7 is straightforward and is omitted.)

68



Lemma 3.3.8. For all i ≤ n,

1
24e

(
n + 1
i + 1

)1−2q
− i

4ne
≤ E

[
Ni
]
≤ e

(
n + 1
i + 1

)1−2q

and

E
[

N2
i

]
≤
(

n + 1
i + 1

)2−4q
e2(1−2q) (4 + e) + e (1− 2q) .

Proof. The upper bounds for the expectation and the second moment clearly hold
by the fact that Ni ≤ Ni and by Lemma 3.3.5.

Recall from the proof of Lemma 3.3.5 that for t ∈ {i, . . . , n− 1}, Yt denotes the
number of vertices that are counted by Ni and whose label is at most t. Similarly,
define Yt as the number of leaves in the same subtree. Then, Yn is distributed as Ni.
For t ∈ {i + 1, . . . , n}, we have

E
[
Yt
∣∣Yt−1, Yt−1

]
= Yt−1 +

1− 2q
t

(
Yt−1 −Yt−1

)
,

since given Yt−1, Yt−1, with probability 1−2q
t
(
Yt−1 −Yt−1

)
the number of leaves

increases by one (1− 2q is the probability that the new vertex is unmarked). Hence

at
def.
= EYt satisfies, for t ∈ {i + 1, . . . , n},

at = at−1

(
1− 1− 2q

t

)
+ f (t) ,

where f (t) = 1−2q
t EYt−1. Solving the recurrence we have

an ≥
n−1

∑
j=i

f (j + 1)
n

∏
k=j+1

(
1− (1− 2q)

k

)

≥
n−1

∑
j=i

1− 2q
e (j + 1)

(
j + 1
i + 1

)1−2q j
n

(by Lemma 3.3.5)

≥ 1− 2q

2ne (i + 1)1−2q

∫ n−1

j=i
x1−2qdx

≥ 1

4ne (i + 1)1−2q

(
(n− 1)2−2q − i2−2q

)
≥ 1

24e

(
n + 1
i + 1

)1−2q
− i

4ne
.
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3.4 The centroid rule

In this section, we analyze the centroid rule, that is, our guess for B0 will be the
bit value of a particular vertex called the centroid. In order to define the centroid of
a tree T, we need some notation.

Recall that the neighborhood of a vertex v, that is, the set of vertices in T connected
to v, is denoted by N(v). Define φ : V(T)→ R+ by

φ(v) def.
= max

u∈N(v)

∣∣∣V (Tv
u↓
)∣∣∣

and define a centroid of T by

v∗ def.
= arg min

v∈V(T)
φ(v) .

It is well-known that a tree can have at most two centroids and if there are two
of them, then they are connected with an edge. Moreover, φ(v∗) ≤ |V(T)|

2 (see, for
instance, Harary [43]).

We can now define an estimator b̂cent of the root bit as follows: (1) in the root-bit
reconstruction problem, b̂cent = Bv∗ is the bit value of an arbitrary centroid v∗ of T;
(2) in the reconstruction problem from leaf bits, let v∗ be a centroid of T, let v◦ be a
leaf closest to v∗, and let b̂cent = Bv◦ be the associated bit value.

We call b̂cent the centroid rule.

Theorem 3.4.1. Consider the broadcasting problem in a uniform random recursive tree.
Denote the probability of error of the centroid rule by

Rcent(n, q) = P
{

b̂cent 6= B0

}
.

For the root-bit reconstruction problem,

lim sup
n→∞

Rcent(n, q) ≤ q for all q ∈ [0, 1]

and
lim sup

n→∞
Rcent(n, q) ≤ log 2

2
≈ 0.34 for all q ≤ 1/2 .
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For the reconstruction problem from leaf bits,

lim sup
n→∞

Rcent(n, q) ≤ 13q for all q ∈ [0, 1] .

Moreover,
lim sup

n→∞
Rcent(n, q) < 1/2 for all q < 1/2 .

In the rest of this section, we prove Theorem 3.4.1.
Assume first that we observe all bit values. First notice that, with high probabil-

ity, the centroid of a uniform random recursive tree is unique:

Lemma 3.4.2. If Tn is a uniform random recursive tree on n + 1 vertices, then

P{Tn has two centroids} =
{

0 if n is even
4

n+3 if n is odd.

Proof. Recall that the number of recursive trees on n + 1 vertices equals n! and
each of them are equally likely.

Any tree with an odd number of vertices has a unique centroid, so the first half
of the statement follows trivially. For odd n, if the tree has two centroid vertices
L, R, then there exist two disjoint subtrees of 1

2 (n + 1) vertices, each containing one
of the centroids (there exists a central edge LR). Call these subtrees left and right
subtree. The left subtree contains vertex L and the right subtree contains vertex R.
We may assume, without loss of generality, that the label of L is smaller than the
label of R. Then vertex 0 belongs to the left subtree. Moreover, the two subtrees
correspond to unique recursive trees of 1

2 (n + 1) vertices, after suitable relabelling
that respects the relative ordering of the labels.

To count the number of recursive trees with two centroids, note that there are(
n + 1

n−1
2

)
ways of choosing the labels in the left subtree, excluding the label of L.

Then there are are n−1
2 + 2 remaining labels. The label of vertex R is smaller than all

its descendants and larger than the label of L. Hence L has the smallest available
label and R has the second smallest available label. Once the labels in the left subtree
(and therefore in the right subtree) are fixed, there are

((
n−1

2

)
!
)2

ways of selecting
the recursive trees that correspond to each. Hence,

P{Tn has two centroids} =

(
n + 1

n−1
2

)
·
((

n− 1
2

)
!
)2

n!
=

4
n + 3

.
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Let Dn (or D when it is clear from the context) be the edge distance between the
root and v∗ in Tn. In Moon [72], it is shown that the probability that the root is a
centroid is asymptotically positive. In particular, Moon proves

lim inf
n→∞

P{δn = 0} → 1− log 2 ,

where δn is the distance between the root and the closest centroid to the root. Hence,
for all q ≤ 1/2,

lim sup
n→∞

P
{

b̂cent 6= B0

}
≤ 1

2
− 1

2
lim inf

n→∞
P{Dn = 0} (3.4.1)

=
1
2
− 1

2
lim inf

n→∞
P{δn = 0}

(by Lemma 3.4.2)

=
1
2
− 1

2
(1− log 2) , (3.4.2)

proving the second statement of Theorem 1.2.4.
Given D, the number of changes of the bit value on the path between the root

and v∗ is Binomial(D, q). Thus,

P
{

b̂cent 6= B0

}
= E

[
1{Binomial(D,q) is odd}

]
=

1−E
[
(−1)Binomial(D,q)

]
2

=
1−E

[
(1− 2q)D

]
2

≤ qED . (3.4.3)

We can bound the expectation with direct computation, as in the following Lemma.
This implies a linear bound for the risk.

Lemma 3.4.3. Let d(i, j) denote the distance of vertices i and j in Tn (a random recursive
tree). The distance Dn = d(v∗, 0) between the centroid and the root satisfies for all positive
integers t

P{Dn ≥ t} ≤ 2(t + 1)2−t + on (1) .

In particular,

EDn ≤
9
2
+ on (1) .
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Proof. The centroid v∗ satisfies
∣∣∣V(T0

v∗↓)
∣∣∣ ≥ n

2 and therefore

P{v∗ = i} ≤ P
{∣∣∣V(T0

i↓)
∣∣∣ ≥ n

2

}
.

In order to bound this probability, note that
∣∣∣V(T0

i↓)
∣∣∣ evolves according to the

number of white balls in a Pólya urn process. Initially the urn contains one white
and i black balls. At each time t = 1, . . . , n − i, a ball is drawn randomly from
the urn and it is returned in the urn together with an additional ball of the same
color. If Wt denotes the number of white balls at time t, then

∣∣∣V(T0
i↓)
∣∣∣ has the same

distribution as Wn−i. By elementary identities for the distribution of Pólya urns
(see, e.g., Mahmoud [65, Theorem 3.1]), for any k ∈ {1, . . . , n},

P {Wn−i = k} = i
n

i−1

∏
j=1

n− k− j + 1
n− j

.

Since k ≥ n/2, when j > 1 each term in the product is at most 1
2 . When j = 1, the

corresponding term is bounded by 1
2

(
1 +O

(
1
n

))
. Then,

P{v∗ = i} ≤ ∑
k≥n/2

P {Wn−i = k} ≤ i2−i
(

1 +O
(

1
n

))
.

Since each vertex whose distance to the root is at least t must have index at least t,
we immediately obtain

P{D ≥ t} ≤ P {∃i ≥ t : v∗ = i} ≤∑
i≥t

i2−i (1 + on (1)) = 2(t + 1)2−t (1 + on (1)) .

Hence,

ED = ∑
t≥1

P{D ≥ t} ≤ 3 + (1 + on (1)) ∑
t≥4

2(t + 1)2−t =
9
2
+ on(1) .

The above lemma implies that P
{

b̂cent 6= B0

}
≤ 9q

2 . This constant is in fact
tighter, by the following result of Moon.

Theorem 3.4.4. ([72, Theorem 2.1]) Let δn be the depth of the centroid that is closest
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to the root. Then for any n ≥ 0,

E [δn] =

{ n
n+2 for n odd
n−1
n+2 for n even.

It follows that in the root-bit reconstruction problem, the centroid rule satisfies

lim sup
n→∞

Rcent(n, q) ≤ q for all q ∈ [0, 1] ,

which is the first statement of Theorem 3.4.1.
To complete the proof of Theorem 3.4.1, it remains to consider the reconstruction

problem from leaf bits. Recall that in this case the centroid rule localizes a leaf vertex
that is closest to a centroid and guesses the root bit B0 by the bit value at this leaf.

The missing step for proving the linear upper bound for the asymptotic proba-
bility of error is the following lemma, stating that in a uniform random recursive
tree, the expected distance of the nearest leaf to the root is bounded.

Lemma 3.4.5. Consider the uniform random recursive tree Tn and let

∆n
def.
= min

i: vertex i is a leaf
d(i, 0) ,

where d(i, 0) denotes the distance between the root and vertex i. Then, for all n,

E∆n ≤ 11 +O
(

n−1−3 log(3/e)
)

.

In particular,
lim sup

n→∞
E∆n ≤ 11 .

Proof. We write ∆ for ∆n and start with the decomposition

E∆ ≤ 2 + 3(log n)P{∆ > 2}+ ∑
i>3 log n

P{∆ ≥ i} .

To bound P{∆ > 2}, we show that with probability at least

1− 3
log n

(1 + on (1)) ,

Tn has a leaf at depth 2. Let Ai be the event that i is a leaf, and Bi the event that

d (i, 0) = 2. Let X =
n
∑

i=d2n/3e
1Ai∩Bi be the number of leaves at distance 2 from the
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root, among the vertices d2n/3e, . . . , n. We bound the mean and variance as follows.

First, note that Ai =
n⋂

j=i+1

{
pj 6= i

}
and Bi =

i−1⋃
j=1

{
pi = j, pj = 0

}
. Then Ai and

Bi are independent and

P {Ai} =
n

∏
j=i+1

(
1− 1

j

)
=

i
n

and P {Bi} =
i−1

∑
j=1

(
1
i
· 1

j

)
=

Hi−1

i
,

where Hi denotes the sum ∑i
j=1 1/j. Thus,

EX =
n

∑
i=d2n/3e

(
i
n
· Hi−1

i

)
= (1 + on (1))

log n
3

.

We now turn to the calculation of E
{

X2}. For 2n/3 ≤ i < k ≤ n we have

P {Ak|Ai} =
n

∏
l=k+1

P {pl 6= k|pl 6= i} =
n

∏
l=k+1

(
1− 1

l − 1

)
=

k− 1
n− 1

,

so

P {Ak ∩ Ai} = P {Ai}P {Ak}
(k− 1) n
k (n− 1)

=

(
1 +O

(
1
n

))
P {Ai}P {Ak} . (3.4.4)

Moreover, P {Bi ∩ Bk|Ai ∩ Ak} = P {Bi ∩ Bk|pk 6= i}, which is equal to

i−1

∑
j=1

P
{

pi = pk = j, pj = 0|pk 6= i
}

+
i−1

∑
j=1

k−1

∑
l=1
l 6=j

P
{

pi = j, pj = 0
}

P {pk = l, pl = 0|pk 6= i}

=
1

k− 1
· Hi−1

i
+

i−1

∑
j=1

k−1

∑
l=2
l 6=j

P
{

pi = j, pj = 0
}

P {pk = l, pl = 0|pk 6= i} .

Since k ≥ 2n/3, we have

P {pk = l, pl = 0|pk 6= i} = 1
k− 1

· 1
l
=

(
1 + o

(
1
n

))
P {pk = l, pl = 0} .
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To handle the j = l term, we note that

i−1

∑
j=2

P
{

pi = j, pj = 0
}

P
{

pk = j, pj = 0
}
=

1
k · i

i−1

∑
j=1

1
j2

= O (1) · 1
k · i .

It follows that

P {Bi ∩ Bk|Ai ∩ Ak} =
(

1 +O
(

1
n

))
P {Bi}P {Bk}+

Hi−1 −O (1)
i (k− 1)

, (3.4.5)

Then E
[
X2] is equal to

∑
2n/3≤i≤n

∑
2n/3≤k≤n

P {Ai ∩ Bi ∩ Ak ∩ Bk}

= ∑
2n/3≤i≤n

P {Ai ∩ Bi}+ 2 ∑
2n/3≤i<k≤n

P {Bi ∩ Bk|Ai ∩ Ak}P {Ai ∩ Ak}

= ∑
2n/3≤i≤n

P {Ai ∩ Bi}+ 2 ∑
2n/3≤i<k≤n

(
1 +O

(
1
n

))
P {Ai ∩ Bi}P {Ak ∩ Bk}

+2 ∑
2n/3≤i<k≤n

P {Ai ∩ Ak}
Hi−1 −O (1)

i (k− 1)

(by (3.4.4),(3.4.5) and independence of Ai, Bi)

≤
(

1 +O
(

1
n

))(
(EX)2 + ∑

2n/3≤i≤n

(
P {Ai ∩ Bi} −P {Ai ∩ Bi}2

))
+ on (1)

≤ (EX)2 +
1
3

log n (1 + on (1))

Recalling that EX =
(

1 +O
(

1
n

))
log n

3 , it follows that

P {X = 0} ≤ Var {X}
(E {X})2 ≤

3 (1 + on (1))
log n

.

It remains to bound ∑i>3 log n P{∆ ≥ i}. For that, it is enough to bound
∑i>3 log n P{d(n, 0) ≥ i}, where d(n, 0) is the depth of vertex n. By standard re-
sults on uniform random recursive trees (see Devroye [29]), d(i, 0) is distributed
as ∑i

j=1 Yj, where the Yj are independent Bernoulli random variables with P{Yj =

1} = 1/j. We will employ a Chernoff bound for sums of independent Bernoulli
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variables in order to bound P {d(n, 0) ≥ i}. Since for all 1 ≤ k ≤ n,

E
[
eλYk

]
= 1 +

1
k

(
eλ − 1

)
≤ exp

(
1
k

(
eλ − 1

))
,

by independence we have that

P {d(n, 0) ≥ i} ≤ exp (−λi) · ∏
k≤n

exp
(

1
k

(
eλ − 1

))
= exp

(
Hn

(
eλ − 1

)
− λi

)
= exp

(
i− Hn − i log

i
Hn

)
, (3.4.6)

if we set λ = log
(

i
Hn

)
. By (3.4.6), for all i > 3Hn,

P{∆ ≥ i} ≤ P {d(n, 0) ≥ i} ≤ exp
(

i− Hn − i log
i

Hn

)
≤ 1

n
e−i log(3/e) .

Thus,

∑
i>3 log n

P{∆ ≥ i} = O
(

n−1−3 log(3/e)
)

.

Collecting terms, the proof of the lemma is complete.

Let ṽ1 be a leaf vertex that is closest to the centroid v∗ and ṽ2 be a leaf vertex
that is closest to the root. Then the distance of ṽ1 to the root is bounded as follows:

d(ṽ1, 0) ≤ d(ṽ1, v∗) + d(0, v∗) ≤ d(0, ṽ2) + 2d(0, v∗) = ∆ + 2D ,

where D = d(v∗, 0). Hence, by Lemmas 3.4.2, 3.4.4, and 3.4.5, we conclude that

lim sup
n→∞

Ed(ṽ, 0) ≤ 13 .

Combining the above display with the derivation in (3.4.3), we complete the proof
of the third statement in Theorem 3.4.1.

The fourth statement of Theorem 3.4.1 follows with a similar argument as the
second statement.
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x1

x2

xk−1

xk

≤ εn
tk

≥ εn
10tk

sizes n
tk

(1± ε)

t

t

x0

Figure 3.2: A depiction of condition (ii) in the event Et,k that is described in Defini-
tion 3.5.2.

3.5 Reconstruction is possible in UA

In this section we prove the following theorem.

Theorem 3.5.1. Consider the broadcasting problem in a uniform random recursive tree.

1. In the root-bit reconstruction problem R∗(q) < 1/2 if and only if q ∈ [0, 1).

2. In the reconstruction problem from leaf bits, R∗(q) < 1/2 if and only if q ∈
[0, 1/2) ∪ (1/2, 1).

To that end, we will define an event Et,k and a vertex x0 given Et,k (see Defini-
tion 3.5.2). Our procedure will be the following:

- If Et,k happens, then return the colour of x0.

- Otherwise, flip a coin.

We will show that P {Et,k} is bounded away from zero and, conditioning on Et,k,
the colour of x0 is the correct one with probability larger than 1

2 (for large n).
Recall the definitions of Aut and Aut from Section 3.2.

Definition 3.5.2. (see also Figure 3.2) Fix integers t, k > 3 such that k ≤ t and let
ε ∈ (0, 1

2tk ). Let Et,k denote the event that the following conditions are satisfied:

(i) Tn contains a complete rooted t-ary subtree D of height k (we denote its
root-vertex by x0 and its leaves by L (D)).
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(ii) Let T be an arbitrary subtree of Tn which is maximal subject to the constraint
that |T ∩ D| = 1. Let v be the unique vertex in T ∩ D. If v ∈ D \ L (D), then
T has at most εn

tk vertices and at least εn
10tk vertices. If v ∈ L (D), then T has at

most (1 + ε) n
tk vertices and at least (1− ε) n

tk vertices.

(iii) Let T1, T2 be two different subtrees of Tn that are maximal subject to the
constraint |T1 ∩ D| = |T2 ∩ D| = 1. If T1 and T2 intersect D on vertices of the
same depth (in D), then they are different as unlabelled rooted trees.

(iv) For all v ∈ D \ L (D), Aut (v, Tn) = Aut
(

Tx0
v↓
)
= 1.

We now present the proof of the theorem. The auxiliary Lemmas that it uses are
proved subsequently.
Proof. (Theorem 3.5.1) We begin with the first part of Theorem 3.5.1, where we
observe all bit values.

Recall that x0 is the root vertex of D. Consider large enough t, k that are fixed
and k ≤ t. Also, fix ε ∈ (0, 1

2tk ). Let pi be the probability that a vertex at distance i
from the root 0 has the same bit value as the root, B0. Then pi follows the recurrence

pi = (1− q)pi−1 + q(1− pi−1)

with initial conditions p0 = 1. Solving the recurrence, we find

pi =
1
2

(
1 + (1− 2q)i

)
. (3.5.1)

Let D denote the set D \ L (D). Then we have

P
{

Bx0 = B0
∣∣Et,k

}
≥

k−1

∑
i=0

P
{

Bx0 = B0
∣∣Et,k, 0 ∈ D, d (0, x0) = i

}
P
{

0 ∈ D, d (0, x0) = i
∣∣Et,k

}
≥ exp

(
− k

tk

)(
1− 1

tk−1

)2 ∑k−1
i=0 piti

(
∏i

j=1
1

tj−1

)
∑k−1

i=0 ti
(

∏i
j=1

1
tj−1

) + on (1)

(by Lemma 3.5.3 below)

= exp
(
− k

tk

)(
1− 1

tk−1

)2 ∑k−1
i=0

1
2

(
1 + (−1)i (2q− 1)i

)
ti ∏i

j=1
1

tj−1

∑k−1
i=0 ti ∏i

j=1
1

tj−1

+ on (1) .

(by equation (3.5.1))
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For large t,

k

∑
i=0

ti
i

∏
j=1

1
tj − 1

= 1 +
t

t− 1
+

t2

(t− 1) (t2 − 1)
+ · · · = 2 +O

(
1
t

)

and

k

∑
i=0

(−1)i ((2q− 1)t)i
i

∏
j=1

1
tj − 1

= 1− (2q− 1)t
t− 1

+
(2q− 1)2t2

(t− 1) (t2 − 1)
+ . . .

= 1− (2q− 1) +O
(

1
t

)
,

and therefore lim infn→∞ P
{

Bx0 = B0
∣∣Et,k

}
is lower bounded by

exp
(
− k

tk

)(
1− 1

tk−1

)2
1

2
+

1
2
·

1− (2q− 1) +O
(

1
t

)
2 +O

(
1
t

)
 ,

which in turn is equal to
2− q

2
+O

(
1
t

)
>

1
2

for large t. Since lim infn→∞ P {Et,k} > 0 by Lemma 3.5.4 below, there exists a
choice of the parameters t and k such that the procedure that guesses Bx0 if the
event Et,k occurs and guesses a random bit otherwise is positively correlated with
B0. This completes the proof of the first statement.

For the second statement of Theorem 3.5.1, we need to show a similar statement
as before, when only the leaf bits are observed. The problem here is that even when
the tree Tn has the structure described in Definition 3.5.2, the root of the complete
t-ary subtree D is not a leaf and therefore its bit value is not observable. However,
the root of a random recursive tree is attached to a leaf with probability that is
bounded away from zero, as n goes to infinity. In fact, the number of leaves of
the root converges in distribution to a Poisson Po(1). This follows by representing
the random recursive tree as a uniformly random permutation, where the subtrees
hanging from the root represent the cycles of the permutation; then we can apply
standard results for uniformly random permutations (see for instance Arratia,
Barbour, and Tavaré [5, Theorem 1.3]).

Choose t and k as previously. Let E′t,k be the event that the four conditions listed
in Definition 3.5.2 are satisfied and moreover a leaf v of Tn is attached to the root
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of the subtree D. Then the following procedure has a probability of error bounded
away from 1/2:

- If E′t,k does not occur then flip a coin.

- If E′t,k occurs, then:

� If q < 1
2 , then set b̂ = Bv.

� If q > 1
2 , then set b̂ = 1− Bv.

Since lim infn→∞ P{E′r,k} > 0 and Bx0 is positively correlated with B0, we have that

lim inf
n→∞

P
{

b̂ = B0

}
>

1
2

,

as desired.

It remains to show the two Lemmas that are used in the previous proof.

Lemma 3.5.3. Let t, k > 3 with k ≤ t and let ε ≤ 1
2tk . Let D denote the set D \

L (D). Then for all i = 0, 1, . . . , k− 1, lim infn→∞ P
{

0 ∈ D, d (0, x0) = i|Et,k
}

is lower
bounded by

exp
(
− k

tk

)(
1− 1

tk−1

)2 ri ∏i
j=1

(
1

tj−1

)
∑m<k tm ∏m

j=1

(
1

tj−1

) .

Proof. We first lower bound P
{

0 ∈ D|Et,k
}

. Notice that under the event Et,k, if

0 6∈ D, then either T0
1↓ contains at least

(
1− 1+ε

tk

)
n vertices or it contains at most

(1 + ε) n
tk vertices. By standard results of the theory of Pólya urns (Eggenberger and

Pólya [36]),
∣∣∣T0

1↓
∣∣∣ converges, in distribution, to a uniform random variable on [0, 1].

Hence,

P
{

0 ∈ D|Et,k
}

= 1− 2 (1 + ε)

tk + on (1)

≥ 1− 1
tk−1 + on (1) ,

by the assumptions on ε, t. It remains to derive a lower bound for

P
{

d(0, x0) = i
∣∣0 ∈ D, Et,k

}
= ∑

v∈D:d(v,x0)=i

P
{

0 = v
∣∣0 ∈ D, Et,k

}
.
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Recall the definition of the function λ(u) from (3.2.1) and that, given an unlabeled
tree, the probability that vertex u is the root is proportional to λ(u). Hence, defining
for i = 0, 1, . . . , k− 1

Wi = ∑
v∈D:d(v,x0)=i

λ(v)
λ(x0)

,

we have that
P
{

d(0, x0) = i
∣∣0 ∈ D, Et,k

}
=

Wi

∑k−1
j=0 Wj

.

Under the event Et,k, for all u ∈ D we have Aut (u, Tn) = 1 and Aut
(

Tx0
u↓
)
= 1.

Hence, if xi ∈ D has depth i in D and x0x1 . . . xi is the path in D that connects it to
the root of D, then for all j = 1, . . . , i− 1,

λ(xj+1)

λ(xj)
=

∣∣∣Txj
xj+1↓

∣∣∣∣∣∣Txj+1
xj↓
∣∣∣

≥
n

tj+1 (1− ε)

n− n
tj+1 (1− ε)

(since
∣∣∣Txj

xj+1↓

∣∣∣ ≥ tk−j−1 · n
tk (1− ε) n)

=
1

tj+1 − 1

(
1− εtj+1

tj+1 − 1 + ε

)
≥ 1

tj+1 − 1

(
1− 1

tk

)
,

since ε ≤ 1
2tk . Thus,

λ(xi)

λ(x0)
≥

(
1− 1

tk

)k i

∏
j=1

(
1

tj − 1

)

≥
(

1− k
tk

) i

∏
j=1

(
1

tj − 1

)

≥
(

1− 1
tk−1

) i

∏
j=1

(
1

tj − 1

)
,

since k ≤ t. Similarly,

λ(xj+1)

λ(xj)
≤

n
tj+1 (1 + ε) + tk

n− n
tj+1 (1 + ε)− tk
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≤
(

1
tj+1 − 1

)(
1 +

1
tk

)
+ on(1)

and

λ(xi)

λ(x0)
≤

(
1 +

1
tk

)k i

∏
j=1

(
1

tj − 1

)
+ on(1)

≤ exp
(

k
tk

) i

∏
j=1

(
1

tj − 1

)
+ on(1) .

Putting these estimates together, we obtain the statement of the lemma.

Finally, we show that the probability of Et,k is bounded away from zero.

Lemma 3.5.4. Let t, k > 3. Then lim infn→∞ P {Et,k} > 0.

Proof. Fix t and k. After the insertion of M def.
= tk+1−1

t−1 vertices, the probability that
the uniform random recursive tree TM is isomorphic to a complete t-ary tree D of
height k is positive and depends only on t and k. Let us call this event EI . This event
clearly implies condition (i) in Definition 3.5.2.

In what follows, we work on the conditional probability space defined by the
event EI . Let u1, . . . , utk be the vertices of height k in D and v1, . . . , vM′ be the rest of

the vertices in D (note for the sequel that M′ def.
= M− tk). For every such vertex vi

(or uj accordingly), we define Tx0
vi↓ to be the maximal subtree of Tx0

vi↓ that intersects

D only at vi. Then the vector
(∣∣∣Tx0

v1↓
∣∣∣ , . . . ,

∣∣∣Tx0
vm↓
∣∣∣ ,
∣∣∣Tx0

u1↓
∣∣∣ , . . . ,

∣∣∣Tx0
utk↓
∣∣∣) behaves as

a standard Pólya urn with M colors, initialized with one ball of each color. As n
goes to infinity, the proportions of the balls of each color converge to a Dirichlet
distribution Dir (1, . . . , 1).

We define Ω as the set that contains all (x1, . . . , xM) ∈ RM that satisfy the
conditions

(i) ∑M
i=1 xi = 1

(ii) xtk+1, . . . , xM ∈
(

ε
tk − ε

t3k , ε
tk

)
(iii) x1, . . . , xtk−1 ∈

(
t−k
(

1− M′ε
tk

)
− ε

t3k , t−k
(

1− M′ε
tk

)
+ ε

t3k

)
.

The set Ω satisfies condition (ii) in Definition 3.5.2. Let us verify this. The propor-
tions xtk+1, . . . , xM do so obviously. For the proportions x1, . . . , xtk−1, we have that
M′
tk + 1

t2k ≤ 1 and 1
t2k − M′

tk ≤ 1. Hence each one of them belongs in the right range
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(
1
tk (1− ε) , 1

tk (1 + ε)
)

. It remains to verify that xtk = 1−∑i 6=tk xi is also necessarily
in the same range. For that, it is enough to notice that xtk is at most

1− M′ε
tk +

M′ε
t3k −

tk − 1
tk

(
1− M′ε

tk

)
+

ε(tk − 1)
t3k ≤ 1

tk (1 + ε)

and at least

1− M′ε
tk −

tk − 1
tk

(
1− M′ε

tk

)
− ε(tk − 1)

t3k ≥ 1
tk (1− ε) .

Combining the previous two paragraphs, we have that

P {(ii) |EI} ≥
∫

Ω
dDir(1, . . . , 1) > 0 .

Therefore, conditions (i) and (ii) jointly hold with probability bounded away from
zero.

Conditioning on event EI , condition (iii) of Definition 3.5.2 clearly holds with
probability converging to one, since t, k are fixed.

Finally, we check condition (iv), assuming that (i), (ii), (iii) hold. We abbreviate
by A the event that conditions (i), (ii), (iii) hold. Let v ∈ D and S1, . . . , Sk be
the maximal rooted subtrees of Tn that are contained in Tx0

v↓ and whose roots are
connected with an edge to v. Denote by nv the number of vertices of the subtree
Tx0

v↓. By property (ii), we have that nv = Ω(n).
We call an SiSj-conflict the event where Si

∼= Sj as rooted unlabelled trees.

Moreover, we denote by C(nv)
i the number of indices j such that

∣∣Sj
∣∣ = i. We would

like to show that

lim inf
n→∞

P
{

there is no SiSj-conflict |A
}
> 0 .

To this end, it suffices that the quantity

lim inf
nv→∞

(
P
{
∀i ≤ √nv, C(nv)

i ≤ 1|A
}
−P

{
∃SiSj-conflict where |Si| >

√
nv|A

})
is strictly positive.

Claim 3.5.5. For any j >
√

nv,

P
{

C(nv)
j ≥ 2|A

}
≤ P

{
C(nv)√

nv
≥ 2

}
+O

(
n−3/2

v

)
.
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Proof. The multiset {|S1|, . . . , |Sk|} is distributed as the multiset of cycle lengths
of a uniformly random permutation of

∣∣∣Tx0
v↓
∣∣∣− 1. In view of Arratia, Barbour, and

Tavaré [5, Lemma 1.2],

P
{

C(nv)
j = m|A

}
=

1
jmm!

bnv/jc−m

∑
`=0

(−1)`

j``!
. (3.5.2)

Then

P
{

C(nv)
j ≥ 2|A

}
= ∑

m≥2

1
jmm!

bnv/jc−m

∑
`=0

(−1)`

jl`!

< ∑
m≥2

 1√
nv

mm!

b√nvc−m

∑
`=0

(−1)`

j``!
−

b√nvc−m

∑
`=bnv/jc−m+1

(−1)`

j``!


= P

{
C(nv)√

nv
≥ 2|A

}
+ ∑

m≥2

1√
nv

mm!

b√nvc−m

∑
`=bnv/jc−m+1

(−1)`+1

j``!

≤ P
{

C(nv)√
nv
≥ 2|A

}
+

1
nv

∑
m≥2

1
m!

b√nvc
∑
`=1

1
j``!

≤ P
{

C(nv)√
nv
≥ 2|A

}
+

e
nv

(
1√
nv

+
1
nv

+ . . .
)

= P
{

C(nv)√
nv
≥ 2|A

}
+O

(
n−3/2

v

)
,

and the claim follows.

Let (Z1, . . . , Znv) be a vector of independent Poisson variables Zi with mean 1
i . It is

known (see for instance [5, Lemma 1.4]) that

dTV

((
C(nv)

1 , . . . , C(nv)
b

)
, (Z1, . . . , Zb)

)
≤ 2b

nv + 1
, (3.5.3)

where dTV denotes the total variation distance. Then,

P
{
∀i ≤ √nv, C(nv)

i ≤ 1
}
≥ ∏

i≤√nv

P

{
Poisson

(
1
i

)
≤ 1

}
− 2
√

nv

nv + 1
(by (3.5.3))

= ∏
i≤√nv

exp
(
−1

i

)(
1 +

1
i

)
− 2
√

nv

nv + 1
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≥ exp (− log (
√

nv + 1)) (
√

nv + 1)− 2
√

nv

nv + 1

= 1− 2
√

nv

nv + 1

and

P
{
∃SiSj-conflict with |Si| >

√
nv|A

}
≤ ∑

k>
√

nv

P
{

C(nv)
k ≥ 2|A

}
≤ ∑

k>
√

nv

P
{

C(nv)√
nv
≥ 2|A

}
+O

(
n−1/2

v

)
(by Claim 3.5.5)

≤ nv

m=
√

nv

∑
m=2

1√
nv

mm!

b√nvc−m

∑
`=0

(−1)`
√

nv
``!

+O
(

n−1/2
v

)
(by (3.5.2))

≤ O
(

n−1
v

)
+O

(
n−1/2

v

)
.

By independence and since t, k are fixed the claim then holds for all v ∈ D with
constant probability. We may now conclude that for large n, for all v ∈ D we have
Aut

(
Tx0

v↓
)
= 1 with positive probability.

Finally, the constraints on the subtree sizes from (ii) imply that any automor-
phism of Tn restricts to an automorphism of D. It follows that when (ii) holds, for
any v ∈ D \ L (D), any automorphism φ of Tn with φ (v) 6= v must permute the set
of subtrees of Tn which intersect L (D) in exactly one vertex. It follows that if (i),(ii)
and (iii) all hold, then no such automorphism can exist, i.e., Aut (v, Tn) = 1.

3.6 Linear preferential attachment

In this section we consider linear preferential attachment trees. In this model,

P{i ∼ j} =
D+

j (i− 1) + β

∑i−1
k=0 D+

k (i− 1) + β
,

where β > 0 is a parameter and D+
j (i− 1) denotes the outdegree of vertex j at time

i− 1. We will extend the results of the previous section in the linear preferential
model.
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3.6.1 The majority rule in preferential attachment

Just like in the case of uniform attachment, the asymptotic probability of error is
bounded by a constant multiple of q both in the root-bit reconstruction problem and
in the reconstruction problem from leaf bits. Interestingly, the break-down point
of the majority rule is not at q = 1/4 anymore. The critical value depends on the
parameter β and it is given by

γ(β) = min
(

β + 1
4β

,
1
2

)
.

Note that this value is always larger than 1/4 and therefore the majority rule has a
better break-down point than in the case of uniform attachment, for all values of β.
Moreover, when β ≤ 1, the majority vote has a nontrivial probability of error for all
values of q < 1/2.

Theorem 3.6.1. Consider the broadcasting problem in the linear preferential attachment
model with parameter β > 0. For both the root-bit reconstruction problem and the recon-
struction problem from leaf bits, there exists a constant c such that

lim sup
n→∞

Rmaj(n, q) ≤ cq for all q ∈ [0, 1] .

Moreover,
lim sup

n→∞
Rmaj(n, q) < 1/2 if q ∈ [0, γ(β)) ,

and
lim sup

n→∞
Rmaj(n, q) = 1/2 if q ∈ [γ(β), 1/2] .

The proof of the linear bound follows exactly the same steps as the correspond-
ing proof of Theorem 3.3.1, only here Lemmas 3.6.2, 3.6.3 take the role of Lem-
mas 3.3.5, 3.3.6, 3.3.8. Note that the bound on Var(δj) in (3.3.7) that is used in
the proof of Lemma 3.3.7, is similar in the preferential attachment model (see for
instance [30, Theorem 2.7, Section 7]). Hence we omit this proof.

For the other two assertions, the proof follows the same steps as in Section 3.3.4,
and Section 3.3.3, only now the replacement matrix encodes the expected change of
the weight of each of the four categories of nodes. The weight of a set A of vertices
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is defined by β |A|+ ∑v∈A D+
v . We obtain the following matrix:

−βq β (1− q) βq βq
β + 1 1 0 0

βq βq −βq β (1− q)
0 0 β + 1 1


The eigenvalues of the transpose of this matrix are β + 1, β + 1− 2βq,−β,−β and
then [50, Theorems 3.23, 3.24] can be immediately applied as before, in combination
with Lemmas 3.6.2 and 3.6.3.

All that is left is to prove analogues of Lemmas 3.3.5, 3.3.6, 3.3.8 in the preferential
attachment model.

The difference with respect to uniform attachment is that, in the preferential
attachment model, knowing Ni at time n− 1 is not enough to determine the proba-
bility that Ni increases in the next time step. This is because the vertices counted by
Ni do not only have connections between them but also with other external vertices.
So we introduce the weight wj, for j ≥ i. Recall that T̃i denotes the maximal size
subtree of T0

i↓ with root i and all other vertices unmarked. Also Ni = |T̃i|. As in
Section 3.3.6, Yj denotes the number of vertices u ∈ T̃i, such that u ≤ j. Moreover,
Yj is the set of vertices u ∈ T̃i such that u ≤ j. Then

wj
def.
= ∑

v∈Yj

(
D+

v (j) + β
)
= β ·Yj + ∑

v∈Yj

D+
v (j) . (3.6.1)

Similarly to Lemmas 3.3.3 and 3.3.4, it is easy to see that for any positive a, b < 1,

e−1
(

n + 1− α

i + 1− α

)b
≤

n−1

∏
j=i

(
1 +

b
j + 1− α

)
≤ e

(
n + 1− α

i + 1− α

)b
. (3.6.2)

Recall that in order to show the linear upper bound for the risk, we may assume
that q < 1/8 (otherwise a linear bound holds trivially).

Lemma 3.6.2. Let r = 1− 2βq
β+1 , r1 = 1

β+1 , and assume that q < 1/8. Then for any i ≤ n,

3β

8 (β + 1) e

(
n + 1− r1

i + 1− r1

)r
− 3β

4e (β + 1)
≤ E [Ni] ≤

βe
1 + β

(
n + 1− r1

i + 1− r1

)r
+

1
β + 1
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and

E
[

N2
i

]
≤ 4

(1 + β)2

(
βe + βe2(1 + β) + re2(1 + β)2

)(n + 1− r1

i + 1− r1

)2r
.

Proof. We have

E [wn|wn−1] = wn−1

(
1 +

2q + (1 + β) (1− 2q)
n (β + 1)− 1

)
,

since if Yn is chosen by the new vertex n, then with probability 2q we have wn =

wn−1 + 1 (n is marked) and with probability 1− 2q we have wn = wn−1 + 1 + β (n
is unmarked). Taking expectations and expanding the resulting recurrence, we have

E [wn] = β
n−1

∏
j=i

(
1 +

r
j + 1− r1

)
≤ βe

(
n + 1− r1

i + 1− r1

)r
(3.6.3)

by (3.6.2) and the fact that wi = β. Similarly,

E [wn] ≥ βe−1
(

n + 1− r1

i + 1− r1

)r
. (3.6.4)

For the second moment, we use a similar argument as in for the first moment and
obtain

E
[
w2

n|w2
n−1

]
= w2

n−1 +
(1− 2q)wn−1

(β + 1) n− 1

(
2 (1 + β)wn−1 + (1 + β)2

)
+

2qwn−1

(β + 1) n− 1
(2wn−1 + 1)

≤ w2
n−1

(
1 +

2r
n− r1

)
+

wn−1 (β + 1) r
n− r1

.

Taking expectations and setting f (j) = r (β + 1)
E[wj−1]

j−r1
, we obtain the following

recurrence for an
def
= E [wn]:

an ≤ an−1

(
1 +

2r
n− r1

)
+ f (n)

≤ β
n−1

∏
j=i

(
1 +

2r
j + 1− r1

)
+

n−2

∑
j=i

f (j + 1)
n−1

∏
k=j+1

(
1 +

2r
k + 1− r1

)
+ f (n)

(since wi = β )
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≤ βe
(

n + 1− r1

i + 1− r1

)2r
+

n−1

∑
j=i

rβe2 (1 + β)

j + 1− r1

(
j + 1− r1

i + 1− r1

)r (n + 1− r1

j + 1− r1

)2r

(by (3.6.2) and (3.6.3))

=

(
n + 1− r1

i + 1− r1

)2r
(

βe + rβe2 (1 + β) (i + 1− r1)
r

n−1

∑
j=i

(j + 1− r1)
−r−1

)

≤ βe
(

n + 1− r1

i + 1− r1

)2r
+

(
n + 1− r1

i + 1− r1

)2r
+ rβe2 (1 + β) (i + 1− r1)

r

·
(∫ n

i
(x + 1− r1)

−r−1 dx +
1

(i + 1− r1)
r+1

)

≤
(

βe + βe2(1 + β) + re2(1 + β)2
)(n + 1− r1

i + 1− r1

)2r
.

By (3.6.3) and Yn = 1
1+β + wn

1+β , we have

E [Yn] ≤
βe

1 + β

(
n + 1− r1

i + 1− r1

)r
+

1
β + 1

. (3.6.5)

Moreover,

E [Yn|Yn−1, wn−1] = Yn−1 +
(1− 2q)wn−1

(β + 1) (n− r1)
.

Taking expectations and expanding the resulting recurrence we obtain the following

E [Yn] =
(1− 2q)

β + 1

n−1

∑
j=i

E
[
wj
]

j + 1− r1

≥ (1− 2q)
β + 1

n−1

∑
j=i

βe−1
(

j+1−r1
i+1−r1

)r

j + 1− r1
by (3.6.4)

=
β (1− 2q)

e (β + 1) (i + 1− r1)
r

n−1

∑
j=i

(j + 1− r1)
r−1

≥ β (1− 2q)
e (β + 1) (i + 1− r1)

r

∫ n−1

i
(x + 1− r1)

r−1 dx

≥ 3β

4e (β + 1) (i + 1− r1)
r
(
(n− r1)

r − (i + 1− r1)
r)

(since q <
1
8

and
1− 2q

r
≥ 3

4
)
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≥ 3β

8e (β + 1)

(
n + 1− r1

i + 1− r1

)r
− 3β

4e (β + 1)

The upper bound for the second moment follows by Yn = 1
1+β + wn

1+β , hence

E
[
Y2

n
]
≤ 4E[w2

n]
(1+β)2 , and the previous computations.

Denote by Yj the number of leaf vertices in Yj.

Lemma 3.6.3. Let r = 1− 2βq
β+1 , r1 = 1

β+1 , and assume that q < 1/8. For any i ≤ n,

β

8e (β + 1)

(
n + 1− r1

i + 1− r1

)r
− 3β

8e (β + 1)
≤ E

[
Ni
]
≤ βe

1 + β

(
n + 1− r1

i + 1− r1

)r
+

1
β + 1

and

E
[

N2
i

]
≤ 4

(1 + β)2

(
βe + βe2(1 + β) + re2(1 + β)2

)(n + 1− r1

i + 1− r1

)2r
.

Proof. The upper bounds clearly hold by the fact that Y j ≤ Yj and Lemma 3.6.2.
Let us denote by wj the weight of the set of leaves in Yj (recall the weight function
defined in (3.6.1)). Notice that wn = βYn. Hence,

E
[
Yn|Yn−1, wn−1, wn−1

]
= Yn−1 +

1− 2q
(β + 1) (n− r1)

(wn−1 − wn−1)

= Yn−1 +
1− 2q

(β + 1) (n− r1)

(
wn−1 − βYn−1

)
= Yn−1

(
1− β (1− 2q)

(β + 1) (n− r1)

)
+

wn−1 (1− 2q)
(β + 1) (n− r1)

.

We can assume that i ≤ n− 2, since otherwise the result can be confirmed immedi-
ately. Let f (n) = 1−2q

(β+1)(n−r1)
E [wn−1]. Then, an

def
= E

[
Yn
]

satisfies

an = an−1

(
1− β (1− 2q)

(β + 1) (n− r1)

)
+ f (n)

≥
n−2

∑
j=i

f (j + 1)
n−1

∏
k=j+1

(
1− β (1− 2q)

(β + 1) (k + 1− r1)

)

≥
n−2

∑
j=i

β (1− 2q)
e (β + 1) (j + 1− r1)

(
j + 1− r1

i + 1− r1

)r j + 1− r1

n + 1− r1
(by (3.6.4))
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≥ β (1− 2q)
e (β + 1) (n + 1− r1)

(i + 1− r1)
−r
∫ n−2

i
(x + 1− r1)

r dx

≥ 3β

8e (β + 1)

(
1
3

(
n + 1− r1

i + 1− r1

)r
− 1
)

.

3.6.2 The centroid rule in PA

For the performance of the centroid rule, we have the following analog of
Theorem 3.4.1 for linear preferential attachment trees. The proof parallels the
arguments of Section 3.4.

Theorem 3.6.4. Consider the broadcasting problem in the linear preferential attachment
model with fixed parameter β > 0. For both the root-bit reconstruction problem and the
reconstruction problem from leaf bits, there exists a constant c such that

lim sup
n→∞

Rcent(n, q) ≤ cq for all q ∈ [0, 1] .

In particular, c ≤ β
β+1 in the root-bit reconstruction problem and c ≤ 2 + 2β

β+1 +

3(β+1)
β e

3β+1
β+1 in the reconstruction problem from leaf bits. Moreover,

lim sup
n→∞

Rcent(n, q) < 1/2 for all q ≤ 1/2 .

To show the theorem, we work as in Section 3.4. For brevity, we omit overlapping
arguments and we only fill in the missing points. Recall that the estimator b̂cent is
the bit value of the centroid v∗ of the tree. In case there are two centroids we pick
one uniformly at random. However, the probability of this event tends to zero, see
Wagner and Durant [33, Lemma 15].

We can bound the expectation of D (that is, the distance between the root and
v∗) with direct computation.

Lemma 3.6.5. Consider the broadcasting problem in the linear preferential attachment
model with fixed parameter β > 0. Let D be the distance between the centroid v∗ and the
root. Then for all positive integers t > 2,

P{D ≥ t} ≤ 8(t + 1)2−t
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and
ED ≤ 9 .

Proof. We follow the argument of Lemma 3.4.3 and keep the same notation. Here
again we have an urn, but a ball is picked proportionally to its weight (defined
in (3.6.1)). Assume i > 2 and let r1 = 1

β+1 . Then

P {Wn−i = k} =

(
n− i
k− 1

)∏k−1
j=1 (jβ + j− 1)∏n−k

j=i (jβ + j− 1)

∏n
j=i+1 (jβ + j− 1)

=

(
n− i
k− 1

)∏k−1
j=1 (j− r1)∏n−k

j=i (j− r1)

∏n
j=i+1 (j− r1)

≤
(i− r1)∏k−2

j=0 (n− i− j)∏n−k
j=1 (j− r1)

∏n
j=1 (j− r1)

≤
(i− r1)∏n−k

j=1 (j− r1)

∏n−i−k+2
j=1 (j− r1)∏n

j=n−i+2 (j− r1)

=
(i− r1)∏n−k

j=n−i−k+3 (j− r1)

∏n
j=n−i+2 (j− r1)

=
i− r1

n− i + 2− r1

(
n− i + 3− k− r1

n− i + 3− r1
· · · n− k− r1

n− r1

)
≤ i− r1

n− i + 2− r1

(
n− k− r1

n− r1

)i−2

(since
n− k− r1 − x

n− r1 − x
is decreasing with x)

≤ i− r1

n− i + 2− r1

(
n/2− r1

n− r1

)i−2

(since k ≥ n/2 )

=
i− r1

n− i + 2− r1

(
1
2

)i−2

≤ 2i
n

(
1
2

)i−2

(since i ≤ (n + 2) /2 )

Hence
P{v∗ = i} ≤ ∑

k≥n/2
P {Wn−i = k} ≤ 4i2−i
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and
P{D ≥ t} ≤ P {∃i ≥ t : v∗ = i} ≤ 4 ∑

i≥t
i2−i = 8(t + 1)2−t .

Consequently,

ED = ∑
t≥1

P{D ≥ t} ≤ 3 + 4 ∑
t≥4

2(t + 1)2−t = 9 .

However, tighter results are already existent.

Theorem 3.6.6. (Wagner and Durant [33, Theorem 9, Theorem 11]) Let δn be the
depth of the centroid closest to the root and Ln be its label at time n. Then

lim
n→∞

E [δn] =
β

β + 1
and lim

n→∞
P {Ln = 0} = 1− β

(
21/(1+β) − 1

)
.

We may combine the above theorem and equation (3.4.1) as follows.

lim sup
n→∞

P
{

b̂cent 6= B0

}
≤ 1

2
− 1

2
lim inf

n→∞
P{D = 0}

=
1
2
− 1

2
lim inf

n→∞
P{δn = 0}

=
1
2
− 1

2

(
1− β

(
21/(1+β) − 1

))
<

1
2

.

The rest follows directly by combining Theorem 3.6.6 and equation (3.4.3).
To show Theorem 3.6.4 in the case of reconstruction from leaf-bits, we prove the
following lemma.

Lemma 3.6.7. P {∆ > 2} ≤ β(2β + 1)(1 + β)
− 1

β+1 e
β−1
β+1 n−

1
β+1 +O

(
1
n

)
.

Proof. Denote by N1 the set of vertices i ≤ dn/2e at distance one from the root. For
vertex u such that dn/2e < u ≤ n, we write Yu for the indicator that u attaches to a

vertex in N1 (say it attaches to u1) and also an independent Bernoulli
(

D+
u1
(dn/2e)

D+
u1 (u−1)

)
coin flip is successful. We add the last condition so that

P{YuYv = 1} = P{Yu = 1}P{Yv = 1} ,

for any u, v such that v > u > dn/2e. We write Xu for the indicator that u is
connected with an edge to N1 and is a leaf. Then, Xu = YuZu, where Zu is the
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indicator that no vertex t > u attaches to u. Moreover,

P{Zv = 1|YuYv = 1} = P{Zv = 1|Yv = 1}

when v > u, and

P{XuXv = 1} = P{Zu = 1|ZvYuYv = 1}P{Zv = 1|YuYv = 1}P{YuYv = 1} .

Combining the previous observations, we have that for v > u the covariance
Cov (XuXv) is equal to

P{Zv = 1|YuYv = 1}P{YuYv = 1} (P{Zu = 1|ZvYuYv = 1} −P{Zu = 1|Yu = 1}) .

But

P {Zu = 1|YuYvZv = 1} =
u

u + 1− 1
β+1

· · · v− 2
v− 1− 1

β+1

·
v− β

β+1

v
· · ·

n− 1− β
β+1

n− 1

≤ u

u + β
β+1

· · · v− 2

v− 2 + β
β+1

· v

v + β
β+1

· · · n− 1

n− 1 + β
β+1

and

P {Zu = 1|Yu = 1} =
u

u + 1− 1
β+1

· · · n− 1
n− 1

β+1

=
u

u + β
β+1

· · · n− 1

n− 1 + β
β+1

.

Therefore, for w (N1) = ∑i∈N1

(
D+

i (dn/2e) + β
)
, we have

Cov (XuXv) ≤
1− v− 1

v− 1 + β
β+1

 ·E{ w (N1)

(β + 1) u− 1

}2

≤ 2
n
·E
{

w (N1)

(β + 1) u− 1

}2

≤ 8

n3 (β + 1)2 ·E {w (N1)}2 ,

since v > u ≥ n/2 + 1. Moreover,

EXu =

 u

u + β
β+1

· · · n− 1

n− 1 + β
β+1

 ·E{ w (N1)

(β + 1) u− 1

}
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≥ e−
β

β+1 ·E
{

w (N1)

(β + 1) n

}
.

Then, by Chebyshev’s inequality and the previous bounds,

P

 ∑
i>dn/2e

Xi = 0

 ≤

∑
i≥dn/2e

Var(Xi) + ∑
i 6=j

i≥dn/2e

Cov(XiXj)

(
∑

i≥dn/2e
EXi

)2

≤ e
2β

β+1 (β + 1)
E {w (N1)}

+O
(

1
n

)
.

Moreover E {w (N1)} ≥ (1+β)
β+2
β+1

eβ(2β+1) · n
1

β+1 , which concludes the proof. To see that,
notice that its expectation satisfies the recurrence

an = αn−1

(
1 +

1/ (β + 1)
n− 1/ (β + 1)

)
+ bn

where bn =
βE[w(0)]n
n(1+β)−1 , hence

an ≥ b1 ·
n−1

∏
i=1

(
1 +

1/ (β + 1)
i + 1− 1/ (β + 1)

)

≥ b1

e

(
n + 1− 1

β+1

2− 1
β+1

) 1
β+1

by (3.6.2)

≥ b1

e

(
β + 1

2β + 1

) 1
β+1

n
1

β+1

=
(1 + β)

β+2
β+1

eβ(2β + 1)
· n

1
β+1

By Lemma 3.6.7 and [31, Theorem 6.50],

E∆ =
n−1

∑
i=0

P {∆ > i}
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≤ 2 + β(2β + 1)(1 + β)
− 1

β+1 e
β−1
β+1 + ∑

i>n1/(β+1)

P {∆ > i}+ on (1)

= 2 + β(2β + 1)(1 + β)
− 1

β+1 e
β−1
β+1 + on (1) .

As in Section 3.4 and using Theorem 3.6.6, Lemma 3.6.7, we have that, if ṽ is a leaf
vertex that is closest to the centroid v∗, then

lim sup
n→∞

Ed(ṽ, 0) ≤ E[∆ + 2D] ≤ 2 +
2β

β + 1
+ β(2β + 1)(1 + β)

− 1
β+1 e

β−1
β+1 .

This completes the proof of the first part of Theorem 3.6.4 for the reconstruction
problem from leaf bits. The second part follows from the fact that the root is the
centroid of the tree with probability bounded away from zero, combined with the
fact that the expected distance of the nearest leaf is bounded, as shown above.

3.7 Reconstruction is possible in PA

In this section, we show an equivalent of Theorem 3.5.1 in the case of linear
preferential attachment.

Theorem 3.7.1. Consider the broadcasting problem in the linear preferential attachment
model.

1. In the root-bit reconstruction problem R∗(q) < 1/2 if and only if q ∈ [0, 1).

2. In the reconstruction problem from leaf bits, R∗(q) < 1/2 if and only if q ∈
[0, 1/2) ∪ (1/2, 1).

Let us denote by [n] the set {0, . . . , n} and by Πn the set of all permutations of [n].
We call history a pair (Tn, π) where Tn is a recursive tree and π ∈ Πn. Intuitively, a
history is a recursive tree on which we have applied a vertex relabelling according to
π. We assume that we observe Tn after applying a uniformly random permutation
on its vertex labels. We will denote the outcome of this process by t̃n.

Given t̃n and a vertex u ∈ t̃n, we define the set hist(t̃n, u) as the set that contains
all histories (Tn, π) such that

(i) Tn and t̃n are isomorphic as unlabelled rooted trees, where Tn has root 0 and
t̃n has root u. In other words, Tn is compatible to t̃n with root u.

(ii) π gives a graph isomorphism between Tn and t̃n that maps 0 to u (that is,
π(0) = u).
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We denote by recur(t̃n, u) the set of recursive trees that are compatible with t̃n, if we
assume that u is the root.

In the proof of [23, Theorem 8], the authors show that

∑
(Tn,π)∈hist(t̃n,u)

P {Tn} = |Aut(t̃n)|

 1
|Aut(t̃n, u)| ∑

tn∈recur(t̃n,u)
P {Tn = tn}

 ,

where Aut(t̃n) is the set of graph automorphisms of t̃n and Aut(t̃n, u) is the set of
vertices that are equivalent to u in t̃n under graph automorphism. Notice that the
second factor is equal to the likelihood of vertex u being the root vertex and the first
factor only depends on the topology of t̃n. Hence, maximizing the expression

∑
(Tn,π)∈hist(t̃n,u)

P {Tn} (3.7.1)

is equivalent to maximizing the maximum likelihood function (in the problem
where one guesses the tree’s root vertex).

Well-known tree models such as uniform attachment, preferential attachment 1,
and the diffusion model can be shown to satisfy the condition of shape exchangeabil-
ity [23, Theorem 4]. This condition requires that, given t̃n, any compatible recursive
tree has the same probability. It is a well-known fact that the number of histories
beginning from a vertex u in a tree of n + 1 vertices is equal to

n! ∏
i∈[n]\u

1
|Tu

i↓|
. (3.7.2)

It is easy to show this claim, but one can also confirm in [23, Proposition 5]. This
implies that, in the aforementioned models, the maximum likelihood estimator
for root finding is the minimizer of ∏i∈[n] |Tu

i↓|. (Note that, as a consequence, the

Aut
(

Tu
v↓
)

factor in 3.2.1 can actually be dropped.)
The model of linear preferential attachment that we study does not satisfy shape-

exchangeability. However, it almost does, and that will help us prove theorem 3.7.1.

Lemma 3.7.2. Assume the linear preferential attachment model. Then for any two neigh-

1Let us make precise that the preferential attachment model in [23] uses the total degrees of the
vertices and not the outdegrees, so it is not identical to the model that we study here.
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bouring vertices u, u′ ∈ t̃n, we have

λ(u)
λ(u′)

=
(deg(u)− 1 + β)(deg(u′)− 2 + β)

(deg(u)− 2 + β)(deg(u′)− 1 + β)
·

∣∣∣Tu′
u↓
∣∣∣∣∣∣Tu

u′↓

∣∣∣ , (3.7.3)

where λ(u) is the likelihood that u is the root vertex.

Proof. By [23, Theorem 8], we have that

λ(u) = ∑
(Tn,π)∈hist(t̃n,u)

P {Tn}

and a similar statement also holds for λ(u′), recalling (3.7.1). Observe that all
recursive trees that are compatible to t̃n with root a fixed vertex u have the same
probability, since the set of outdegrees of t̃n remains the same. Hence

λ(u) =
n!p∗(u)

∏i∈[n]\u |Tu
i↓|

,

where p∗(u) is the probability of an arbitrary Tn ∈ recur(t̃n, u) and using (3.7.2).
Now one needs to observe that ∏i∈[n] |Tu

i↓| and ∏i∈[n] |Tu′
i↓ | only defer in |Tu′

u↓|
and |Tu

u′↓|. Moreover, p∗(u) is equal to

∏
i 6∈{u,u′}:
deg(u)>1

(deg(i)− 2 + β)deg(u)−1

∏n
i=2 (i (1 + β)− 1)

· (deg(u)− 1 + β)deg(u)−1
(
deg(u′)− 2 + β

)
deg(u′)−1

where the notation (a)k stands for the falling factorial a(a− 1) . . . (a− k + 1) and
deg( · ) denotes the total degree of a vertex. A similar expression holds for the value
p∗(u′). The proof is concluded upon noticing that the first factor is the same in both
p∗(u) and p∗(u′).

We would like to repeat the proof of section 3.5, this time for the linear preferen-
tial attachment model. We first show an analogue of Lemma 3.5.3, using the same
notation. We will consider the event Ẽt,k that is similar to the event Et,k defined in
Definition 3.5.2.

Definition 3.7.3. We define Ẽt,k as the event where all conditions in Definition 3.5.2
are satisfied, with one difference: the quantities Aut( · ) are not restricted.
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Lemma 3.7.4. Assume the linear preferential attachment model with parameter β > 0. Fix
k, t > 3 with k ≤ t and let ε ≤ 1

2tk . Then for all i = 0, 1, . . . , k− 1,

lim inf
n→∞

P
{

0 ∈ D, d (0, x0) = i|Ẽt,k
}

is lower bounded by(1− 1 + ε

tk

) β
β+1
−
(

1 + ε

tk

) β
β+1

 exp
(
− k

tk

)(
1− 1

tk−1

) ti ∏i
j=1

(
1

tj−1

)
∑m<k tm ∏m

j=1

(
1

tj−1

) .

Proof. Given that the event Ẽt,k is true, if 0 6∈ D then either T0
1↓ contains at

least n
(

1− 1+ε
tk

)
vertices or it contains at most (1 + ε) n/tk vertices. The vector(

w
(

T1
0↓
)

, w
(

T0
1↓
))

behaves as a Pólya urn with diagonal replacement matrix

(
1 + β 0

0 1 + β

)

and initial vector (1 + β, β). Hence 1
n

∣∣∣T0
1↓
∣∣∣ converges in distribution to a random

variable Beta
(

β
1+β , 1

)
(see [65, Theorem 3.2] or [51, Theorem 1.4] for the more

general setting). We have that

P

{
Beta

(
β

β + 1
, 1
)
≤ 1 + ε

tk

}
=

(
1 + ε

tk

) β
β+1

and

1−P

{
Beta

(
β

β + 1
, 1
)
≤ 1− 1 + ε

tk

}
= 1−

(
1− 1 + ε

tk

) β
β+1

consequently

P
{

0 ∈ D|Ẽt,k
}

=

(
1− 1 + ε

tk

) β
β+1
−
(

1 + ε

tk

) β
β+1

+ on (1) .

It remains to derive a lower bound for

P
{

d(0, x0) = i
∣∣0 ∈ D, Et,k

}
= ∑

v∈D:d(v,x0)=i

P
{

0 = v
∣∣0 ∈ D, Et,k

}
.

100



Recall that λ(u) denotes the likelihood that vertex u is the root. As in Section 3.5,
we define for i = 0, 1, . . . , k− 1,

Wi = ∑
v∈D:d(v,x0)=i

λ(v)
λ(x0)

.

We have that
P
{

d(0, x0) = i
∣∣0 ∈ D, Ẽt,k

}
=

Wi

∑k−1
j=0 Wj

.

Assume that xi ∈ D has depth i in D and x0x1 . . . xi is the path in D that connects
it to the root of D. By Lemma 3.7.3 and working as in the proof of Lemma 3.5.3, we
have for all j = 1, . . . , i− 1,

λ(xj+1)

λ(xj)
≥ 1

tj − 1

(
1− 1

tk

)
·
(deg(xj+1)− 1 + β)(deg(xj)− 2 + β)

(deg(xj+1)− 2 + β)(deg(xj)− 1 + β)

=

(
1 +O

(
1

γ(n)

))
· 1

tj − 1

(
1− 1

tk

)
,

since we have conditioned on Ẽt,k, where 1
γ(n) is a random variable defined as

follows:
1

γ(n)
de f
= max

i∈D

∣∣∣∣1− degn(i)− 1 + β

degn(i)− 2 + β

∣∣∣∣ .

Moreover,

λ(xi)

λ(x0)
≥

(
1 +O

(
1

γ(n)

))
·
(

1− 1
tk−1

) i

∏
j=1

(
1

tj − 1

)
.

Similarly,
λ(xj+1)

λ(xj)
≤
(

1 +O
(

1
γ(n)

))
·
(

1
tj − 1

)(
1 +

1
tk

)
and

λ(xi)

λ(x0)
≤

(
1 +O

(
1

γ(n)

))
· exp

(
k
tk

) i

∏
j=1

(
1

tj − 1

)
.

Given that Ẽt,k and 0 ∈ D holds, we have 1
γ(n) → 0 almost surely. Putting these

estimates together, we obtain the statement of the lemma.

Lemma 3.7.5. Let t, k > 3. Then lim infn→∞ P
{

Ẽt,k
}
> 0.
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Proof. Let M = (t − 1)−1(tk+1 − 1) and M′ = M − tk. First, observe that TM
is a t-ary tree of depth k with positive probability. This implies condition (i) of
Definition 3.5.2.

Conditioning on the above event, we continue with condition (ii) of defini-
tion 3.5.2. We use again the set Ω that contains all (x1, . . . , xM) ∈ RM such that

(i) ∑M
i=1 xi = 1

(ii) xtk+1, . . . , xM ∈
(

ε
tk − ε

t3k , ε
tk

)
(iii) x1, . . . , xtk−1 ∈

(
t−k
(

1− M′ε
tk

)
− ε

t3k , t−k
(

1− M′ε
tk

)
+ ε

t3k

)
.

Ω is an open set inside the (M− 1)-simplex that satisfies condition (ii) of Defini-
tion 3.5.2 (if we view each xi as the proportion of vertices contained in the i-th
subtree). Now let u1, . . . , utk be the vertices of height k in D and v1, . . . , vM′ be the
rest of the vertices in D. For every such vertex vi (or uj accordingly), we define Tx0

vi↓
to be the maximal subtree of Tx0

vi↓ that intersects D in only at vi. Then the random
vector (

w
(

Tx0
v1↓
)

, . . . , w
(

Tx0
vM′↓

)
, w
(

Tx0
u1↓
)

, . . . , w
(

Tx0
utk↓
))

behaves as a Pólya urn with M colors and diagonal replacement matrix (1 + β) · IM,
initialized with t + β for the first M′ colours and with 1+ β for the rest tk. As n goes
to infinity, the vector

1
n

(
w
(

Tx0
v1↓
)

, . . . , w
(

Tx0
vM′↓

)
, w
(

Tx0
u1↓
)

, . . . , w
(

Tx0
utk↓
))

converges to a distribution with positive density in the (M− 1)-simplex. The same
does the vector

1
n

(∣∣∣Tx0
v1↓
∣∣∣ , . . . ,

∣∣∣Tx0
vM′↓

∣∣∣ ,
∣∣∣Tx0

u1↓
∣∣∣ , . . . ,

∣∣∣Tx0
utk↓
∣∣∣) .

Consequently, P {(ii)|(i)} ≥ P {Ω|(i)} > 0.
Condition (iii) holds asymptotically almost surely, just by the convergence of

1
n

(∣∣∣Tx0
v1↓
∣∣∣ , . . . ,

∣∣∣Tx0
vM′↓

∣∣∣ ,
∣∣∣Tx0

u1↓
∣∣∣ , . . . ,

∣∣∣Tx0
utk↓
∣∣∣) (the probability that the proportions in

two different coordinates is the same tends to zero).
The first part of condition (iv) also holds with positive probability, arguing as in

the proof of Lemma 3.5.4.

The rest of the proof of Theorem 3.7.1 follows through as in Section 3.5.
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