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INTRODUCTION

Obesity has become a problem for most of the developed countries and is now also
becoming a problem in developing countries, becoming a burden for the health systems in
many areas. It is a multifactorial disease with a complex development, from simple fat mass
accumulation to a series of comorbidities that worsens life quality and expectancy. Several
factors act together in a complex interplay in the development of obesity: systemic
inflammation, alterations in the gut microbiota, and modifications in lipid metabolism are
factors appearing during obesity, and their role as causal, or consequence of obesity is still

unclear.

A significant amount of research has been, is being, and will be done in order to cast some
light on the etiology of obesity, to understand it and to learn how to fight it. Many studies
are performed in humans, centered on the outcomes after bariatric surgery, which is the best
available treatment at the moment. Many are performed on animal models, offering a
controlled environment and accessibility to tissues, necessary for studying the molecular

mechanisms behind the effects of bariatric surgery.

In this thesis, we offer the result of five years of research, studying the effect of a high-fat
diet in a rat model, combined with bariatric surgery together, or not, with a change to a
standard diet. We describe the subsequent anatomical changes, the modifications in liver

composition, and in gut microbiota, all factors in the complexity of obesity.

1.1. OBESITY

In the 20th century, the development of modern medicine led to advances in the prevention
and control of infectious diseases, decreasing mortality rates and increasing life expectancy
in most of the developed countries (1,2). However, the decrease in mortality rates by

infectious diseases have been followed by the rise of deaths by non-communicable diseases
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INTRODUCTION

(NCD), which are the first cause of death in the modern world. The most common NCD

are cancer, cardiovascular diseases (CVD), and obesity, accounting for more than 70% of

the global deaths (1,2).

1.1.1. DEFINITION

Obesity, together with overweight, is defined by the World Health Organization (WHO) as
“the abnormal or excessive fat accumulation that may impair health” (3). Overweight and
obesity are classified in adults by several methods, but the most commonly used is the Body
Mass Index (BMI), also known as the Quetelet Index, which is the ratio of weight by height
squared (kg/m? (4,5). The resulting number is classified in categories that define the
nutritional status, with a BMI equal or over 25 an indicator of overweight, and a BMI equal
or over 30 an indicator of obesity in to different degrees (table 1). A morbid obese subject
is defined as someone with an obesity class III or with an obesity class II together with

comorbidities (6).
Table 1. BMI and the corresponding nutritional status.

BMI Nutritional status

<185 Underweight
18.5-24.9 Normal weight
25.0-29.9 Pre-obesity
30.0-34.9 Obesity class 1
35.0-39.9 Obesity class 11
> 40 Obesity class 111

The use of BMI is not as accurate as other anthropometric measurements, but its simplicity
makes it a powerful tool; however, it fails in identifying the location of the fat accumulation,
as it only in children correlates with the amount of visceral white adipose tissue (visceral
WAT) (5,6). A common procedure in a risk population is to combine the measurements of
BMI and waist circumference, as it offers a more accurate assessment of the risks of several
comorbidities with obesity, such as CVD, stroke, blood lipid alterations, non-alcoholic fatty

liver disease (INAFLD) and glucose homeostasis problems (7).

Obesity is one of the main health concerns as is linked to several diseases and comorbidities,

and has replaced tobacco as the first life-style risk factor causing premature death; it is
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estimated to reduce life expectancy between 5-20 years, mostly due to higher cardiovascular
death, and entails an elevated cost for the health systems in many countries due to related
endocrinological diseases and CVD (2,6,8,9). Obesity is a growing global problem that needs

to be treated, as well as prevented.

1.1.2. EPIDEMIOLOGY

Obesity has triplicated its prevalence for the last 45 years, increasing to pandemic levels; the
WHO estimated that in 2016 there were more than 1.9 billion adults in the world living with
overweight, accounting for 39% of the adult population (figure 1). Of those, 650 million
were obese (13% of the adult population) (2,3). Known for its supposed good habits and
Mediterranean diet, Spain is surprisingly one of the countries with an elevated prevalence of
weight problems (3). In 2012, more than half of the Spanish population (54%) was

overweight, of which 17% were obese.

Prevalence (%)
<20.0

20.0-39.9
B 40.0-50.9
W =500

. Not applicable

No data

Prevalence (%)

<10.0

B 10.0-199
B 200200
W =300

B vot appiicable

No data

Figure 1. Overweight (upper) and obesity (lower) prevalence in the world, among

adults, in 2016. Image from global health observatory, WHO (9).
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In 2016 the prevalence of obesity increased with 4,6%, although the prevalence of
overweight lowered to 39% (10). Far from being a solved problem, the WHO estimates that

by 2030 obesity prevalence in Spain will increase up to 28% of the adult population (11).

Together with the increasing obesity rates in the adult population, developed societies are
facing an added problem as younger populations are also being affected, with overweight
appearing at earlier ages. Worldwide, obesity rates in children and teenage populations have
increased dramatically, three-folding since the 70s” and with an estimated 126 million children
living with obesity in 2016 (12,13). Spain was ranked as the second from top European
countries with the highest overweight and obesity percentages in the last Children Obesity
Surveillance Initiative (13) and the ratios seem to increase, as shown in a study from 2018
showing 54% of overweight in children under 9 years old (14). This is of special concern, as
children and adolescents with weight problems have a higher risk of developing diabetes and
depression, as well as becoming either overweight or obese when they reach adulthood. In a
more recent study, Spain was placed as the 4™ ranking European country with the highest

rate of people under 19 years old living with obesity (13).

1.1.3. CAUSES

People with obesity have been stigmatized for years, viewed as lazy, lacking willpower, and
unable to follow a diet, but the causes of the obesity pandemic do not rely on the choices
and attributes of the individual alone (15,16). Although the fundamental cause of obesity is
an imbalance between the calories ingested and the calories expended, this imbalance is
heavily influenced by the surrounding environment, and by socio-economic and dietary
factors that take part in a complex interplay with genetic and hormonal factors (figure 2)

(2,16,17).
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Expended
calories
Ingested - -
calories >
|
Modified by
l | I
External factors Internal factors Gut Microbiota
- Environmental - Hormones - Diversity alterations
- Socio-economic - Ageing - Energy harvest
- Dietary —> - Sex — Inflammation
- Western diet - Metabolism - SCFA
- High-fat - Genetic factors
- Higher né - Mood disorders

PUFA

Figure 2. The energy imbalance leading to obesity and several factors that influence it. Marked
in bold, factors discussed in this work. Abbreviations n6 PUFA stands for n6 polyunsaturated

fatty acids; SCFA for short chain fatty acids. Adapted from Blaher 2019 (2).

1.1.3.a) External factors

ENVIRONMENTAL AND SOCIO-ECONOMIC
The obesity trends, far from being stopped, are increasing in the developed countries and
spreading to developing countries, such as Africa and Asia, that are adopting westernized
food habits and lifestyle (13,16). The obesogenic environments, defined as “the sum of
influences that the surroundings, opportunities or conditions of life have on promoting
obesity in individuals or populations”, have an impact on the whole society but to a higher
degree on lower-income families (17). Together with increased sedentarism -a common trait
in our society- and genetic predisposition, they are the main drivers of the obesity pandemic
that no country has yet succeeded to manage (2,6,7,17,18). In the past, obesity was linked to
a wealthy status, being a disease of the rich, but the western diet (WD), described in the next

section, has shifted the obesity ratios towards the socio-economically challenged population

(13,19).

DIETARY

As commented above, in the last decades, developed societies have changed their food

policies, as well as their alimentary habits, leading to an industrialized environment and food

|SV)
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production. This has increased the consumption of calorie-dense but nutrient-poor foods,
such as fast food, as well as increased portion sizes and elevated consumption of sweet

beverages, altogether leading to the apparition of obesogenic environments (5,17,20).

The WD is considered the single biggest risk factor for the development of obesity, offering
cheap, hyper-caloric, highly palatable food with poor nutritional value (13,19). It is
characterized by overconsumption of unhealthy foods consisting mainly of sweets, soft
drinks, fat-rich foods, and red and processed meats, together with lower consumption of
healthy foods such as fish, vegetables, whole grains, and fruit (16,19). Besides, the more well-
known associated problems, such as insulin peaks after the intake of food with a high
glycaemic index, the WD is also characterized by an imbalanced fatty acid intake (21). The
higher intake of fried food together with the use of vegetable cooking oils from sunflower
or canola, rich in linoleic acid (LA, 18:2, n-6), increase the ratio of n6:n3 polyunsaturated
fatty acids (PUFA), which is associated with obesity and metabolic syndrome (22,23). This
imbalance, together with an increased saturated fatty acid (SFA) intake and other

components of the WD, contributes to the permanent low-grade inflammation present in

obesity and other NCD (21).

1.1.3.b) Internal factors
HORMONAL
Obesity is also influenced by several hormones in our body and even though they are not a

direct cause for it, they regulate how fat is distributed in the body or mediate in the satiety

regulation. Some of the most studied are the following:

e LEstrogens
Estrogens -populatly known as feminine hormones- seem to play an important role in
determining where the fat is stored in the body, as estrogen receptors have been localized on
the surface of adipocytes. They also play a role in protecting against obesity, as they are

involved in the mechanisms regulating hunger and energy expenditure (24).

e Leptin
Leptin is an anorexigenic hormone mainly produced in the adipose tissue and the gastric
mucosa, but also in salivary glands. Its effects were discovered as early as in the 1950s but
the molecule was not identified until 1994. It is a key hormone maintaining weight stability
as it regulates both satiety and energy expenditure by interacting with the hypothalamus (25—

27). The release of gastric leptin is stimulated through several factors related to meal ingestion
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and digestion, such as different intestinal neuropeptides and higher insulin levels in order to
induce satiety after a meal and thus, decrease food intake (2). Obese people tend to be
hyperlipidaemic, as leptin levels correlate with the amount of adiposity mass in the body, and
a period of over-eating leads to increased circulating leptin levels which in turn lead to the
development of leptin resistance. The effects are decreased satiety feeling after meals and
lower energy expenditure, which worsens obesity prognosis and adds difficulty in losing
weight with the help of traditional therapies such as dieting (2,9,25). On the other hand,
genetic leptin deficiency also leads to obesity, but is a rare mutation in humans and not a

common cause of obesity (20).

e Ghrelin
Discovered in 1999, ghrelin is a hormone produced mainly in the gastric fundus, but also in
other parts of the intestinal tract, involved in weight homeostasis (25,28). It is an orexigenic
hormone, stimulating appetite by interacting with the hypothalamus, and thus is considered
the antagonist of leptin. Ghrelin contributes to obesity by promoting the maintenance of the
actual body weight. Consequently, ghrelin levels increase while dieting or losing weight,
promoting the hunger sensation even after meals and impedes long-term positive results and
leads to regaining of weight (25,29). Genetic mutations related to ghrelin can also be found,
like in patients with Prader-Willi syndrome, where ghrelin levels are higher and patients suffer

from insatiable hunger and obesity (25).

e Adiponectin
The adipose tissue secretes adiponectin, a hormone participating in the regulation of glucose
and lipid metabolism. Even though is not responsible for obesity itself, adiponectin plays a
role in several of the comorbidities associated with obesity, as well as having the capacity to

protect from chronic inflammation (30,31).

e Others
There are other hormones involved in the development of obesity and its comorbidities.
Incretins are gut hormones involved in glucose regulation by stimulating insulin secretion
after a meal. The most studied are glucose-dependent insulinotropic polypeptide (GIP) and
glucagon-like peptide 1 (GLP-1), both secreted in the intestine (32,33). GLP-1 also acts in

the attention and reward system of the brain, decreasing hunger (15).

&)
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GENETIC
Besides the environmental causes, other factors are contributing to high obesity rates. It is
well accepted that genetics have a lesser role, but they increase the risk of weight gain by
interacting with the obesogenic environment (5). There are several loci linked with obesity
and they influence BMI, as shown in studies with twins, where monozygotic twins had a
more similar adipose tissue distribution compared to dizygotic twins. Epigenetics also plays
a strong role, as seen in experiments with rodents and in human observations where parents
with a higher BMI had children with a higher risk of developing obesity. Still, the observed
effect of the genes is mixed with the one exerted from the household environment as seen

in studies with adoptive children, shading the true effect of genetics (34,35).

MOOD DISORDERS

Mood disorders are an often neglected factor in obesity, as an elevated percentage of obese
subjects suffer from depression and anxiety, and a reciprocal link exists between them: obese
individuals have a higher risk of being depressed, and depressed people have a higher risk of
becoming obese (36,37). More obvious is the relationship between obesity and eating
disorders, such as binge-eating disorder, or night-eating disorder, both related to psychiatric
disorders (38). In light of this, psychosocial factors should also be taken into account in the

etiology of obesity, as well as in the treatment (39).

1.1.3.c) Gut microbiota
In 2004, Bickhed et al. found that gut microbiota (GM) was able to regulate the fat storage
in mice in 2004 (40), suggesting a connection between GM and obesity. Much research has
been done on this topic, trying to elucidate the relationship between microbiota and obesity,
as GM has come on to the scene as a novel factor in the development of obesity. The gut
microbiome is a highly adaptive system that is strongly influenced by diet, among other
factors. Differences in the diet lead to substantial differences in the composition of the

microbiota, which may favor the obesity outcome (33,41).

The GM and its relation with obesity will be properly introduced in chapter 1.4 .
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1.1.4. RELATED COMORBIDITIES

Obesity, as mentioned before, is linked to several comorbidities that are responsible for the
shortened life expectancy, many of which are clustered under the name of metabolic
syndrome (figure 3) (5). They are the result of a long and progressive process in which the
energy imbalance due to the higher calorie intake together with a low energy expenditure
leads to an over-accumulation of adipose tissue and low-grade systemic inflammation (2,15).
How fat is distributed in the body is metabolically relevant and influence the development
of comorbidities: android obesity, with abdominal fat depositions surrounding the internal
organs, is associated with most of the comorbidities and higher mortality-rate, while gynoid
obesity, with subcutaneous fat deposition in parts like hips, is considered a less harmful or

even protective type of obesity (5,6,42,43).

/ Stroke

Cardio-vascular diseases
Atherosclerosis
Hypertension
Dyslipidemia

Sleep apnea

Non-alcoholic

fatty liver . g
ty Insulin resistance

Gallstones Diabetes

Pancreatitis
Gut microbiota

alterations
Systemic

inflammation
Cancer

Figure 3. Comorbidities associated with obesity. In bold, comorbidities discussed in this work. Adapted

from Dietz,2015 (7).
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It is important to note that between 10 to 30% of obese people do not show the
comorbidities associated with obesity and are thus considered metabolically healthy obese
(MHO) subjects. MHO individuals have more subcutaneous fat deposition and a lower
amount of fat deposited in visceral organs. Still, MHO subjects have a higher risk of
developing diabetes and other comorbidities than lean subjects and are thought to be a

transition stage towards becoming unhealthy (6,43,44).

Once a meal is ingested, digested and absorbed through the small intestine and carried to the
liver through the portal vein, the remaining excess calories are transformed into triglycerides
(TG), a highly energetic molecule that is hydrolyzed by the lipoprotein lipase (LPL) (45) and
stored in the adipocytes of the WAT , which acts as a buffer avoiding that free fatty acids
(FFA) causing lipotoxicity in the organism. The stored TG can later be transformed through
lipolysis into fatty acids (FA) and glycerol and used as an energy source when needed (31,46).
The adipocyte has a limited capacity to increase its volume in order to accumulate more TG,
but a constant TG overflow surpasses the adipocyte capacity for hypertrophy, causing several
internal malfunctions such as mitochondrial dystrophy and impaired glucose transport.
Hypertrophic adipocytes lose their capacity of producing the functional amounts of
adiponectin, inducing inflammation, a key factor determining the emergence of

comorbidities (24,31).

1.1.4.a) Low-grade inflammation

The former mentioned leads to a permanent low-grade inflaimmation that characterizes
obesity. Besides surpassing the buffer capacity of adipocytes, the constant higher calorie
intake, accompanied by a lower expenditure, increases the ectopic fat accumulation in non-
adipose tissue, such as the muscle or the liver, leading to lipotoxicity that damages the cells
and causes inflimmation. Although the order of apparition is not fully clear yet, the
inflammation of the adipose tissue is accompanied by macrophage infiltration, which leads
to further inflammation (47). The macrophage infiltration is also seen in the liver, with the
apparition of a higher number of Kupffer cells (48). The inflamed adipose tissue and liver

are responsible for the liberation of pro-inflammatory cytokines (49).

Besides the caloric excess, the diet composition may also contribute to the inflammatory
process in the body. Inflammation and its resolution are mediated by peptides (cytokines),
proteins, and lipid-derived mediators (50). The dietary imbalance in the n6:n3 PUFA ratio
affects the production of specialized pro-resolving mediators (SPM), molecules responsible

for the clearance and resolution of inflammation that derives from n6 and n3 PUFA
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(21,50,51). The higher n6:n3 ratio lead to a lesser capacity of inflammation resolution, as well
as increased pro-inflammatory lipid mediators that contribute to maintaining the permanent

low-grade inflammation (21,52).

1.1.4.b) Non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease is the most common liver disease in developed countries,
affecting 25% of the adult population, up to 70% of the population with Diabetes Mellitus
type 2 (DM2) in Europe, and 65% of people with obesity type I or II (53-55). NAFLD is a
multifactorial disease, closely related to insulin resistance (IR) and metabolic syndrome (54).
When the adipocyte ability to store TG fails, there is an increase in circulating FFA and TG.
Together with TG from dietary sources and de novo lipogenesis (IDNL), they accumulate in
the liver, causing lipotoxicity, inflammation, and damage to the liver structure (53-55).
Although NAFLD is a multifactorial disease, it is closely related to IR and metabolic
syndrome (53,54).

1.1.4.c) Insulin resistance and Diabetes Mellitus type 2

Insulin resistance is one of the other main comorbidities of obesity. Lipotoxicity, increased
visceral fat accumulation, and increased pro-inflaimmatory molecules and toxic metabolites
derived from the adipose tissue directly affect glucose metabolism and contribute to the
impairment of insulin signaling through several mechanisms (15,24,56). As a consequence of
IR, the pancreas increases insulin secretion, raising the levels of circulating insulin, which
also contributes to the inflammatory state, and is linked to the process of atherosclerosis and
later to CVD (49,56). The combination of IR, higher levels of circulating glucose and insulin,

and genetic factors contribute to 3-cell dysfunction, ending up in DM2 (15).

1.1.4.d) Dyslipidemia
Obesity is also characterized by hypertriglyceridemia, elevated plasma FFA, increased small
and dense low-density lipoproteins (LDL) with reduced cholesterol esters, leading to
increased small dense LDL, and lower levels of the beneficial high-density lipoproteins
(HDL) (57). The hepatic synthesis of TG and very low-density lipoproteins (VLDL) is
increased due to the higher influx of FFA from the adipose tissue to the liver, together with

the developing IR and a worsened FFA clearance. Dyslipidemia is one of the factors behind
the elevated CVD risk in obesity (15,57).
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1.2. TO TACKLE OBESITY

The high obesity rates have led to an elevated concern on how to manage this problem.
Obesity is too often not considered as a progressive disease, so the initial overweight stages
are many times ignored until obesity is consolidated (2). To manage obesity there are several

approaches, including behavioral interventions and bariatric surgery.

1.2.1. DIET

Behavioral interventions involving diet and exercise are the most common approaches to
treat obesity and the associated comorbidities. There are several types of diet, but most of
them rely on a calorie restriction which can be more or less pronounced, from low-calorie
diets (800-1500 kcal/day) to very-low calorie diets (less than 800 kcal/day) (58). Diets may
also vary by composition, most of the diets reduce either carbohydrate (ketogenic diets) or
fat as a way to reduce the calorie content, but some diets may also have increased healthy

unsaturated fats (Mediterranean diet) (7,58—060).

Besides the weight loss itself, diet can be used to reduce the severity of several comorbidities
and it is well known that even a modest weight loss is beneficial (7). Thus, a calorie-restricted
diet is usually advised for NAFLD patients, which improves the plasmatic markers for liver
alterations and the degree of hepatic steatosis. Another benefit of weight loss following
dieting is the improvement of IR. Weight loss is more successful and long-lasting when it is

accompanied by exercise (7,58,61).

Despite the benefits and the simplicity of losing weight through diet modifications, this
approach is often directed only to people with overweight and is far from being an optimal
solution when morbid obesity is well stablished. The achieved weight loss is usually modest
and many patients show difficulties in following a diet, and even with success, patients tend

to regain weight in the following 5 years (9,62).
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1.2.2. BARIATRIC SURGERY

Bariatric surgery (BS), a surgical intervention against obesity, is the most effective treatment
for higher degrees of obesity to lose weight and reduce comorbidities (9,63). It is
recommended for patients that have tried to lose weight without success, or that had been
unable to maintain the achieved weight loss for a prolonged period of time, or that has with
a BMI equal or over 40 kg/m2 or between 35 and 40 kg/m2 while also presenting

comorbidities (64).

1.2.2.2) Origins

Bariatric surgery, from the Greek baros -Bapoc- meaning weight, were developed in the early
1950s as a metabolic surgery “an operative manipulation of a normal organ or organ system
to achieve a biological result for a potential health gain” and is currently the most effective
treatment against obesity (63). The jejunoileal bypass was the first surgery tested and
consisted of excluding a large part of the small intestine from the nutrient flow, and thus,
producing weight loss through malabsorption. Despite producing a significant weight loss it

was later discarded due to the severe complications, but gave rise to new variations (9,63).

1.2.2.b) Description
The most common procedures currently used are the Roux-en-Y gastric bypass (RYGB),
the adjustable gastric band (AGB), and the vertical sleeve gastrectomy (VSG) (figure 4). They

have substantial differences and can be categorized as malabsorptive, restrictive, or both,

RYGB AGB VSG

Figure 4. The most common types of bariatric surgery. The restrictive and malabsorptive Roux-en-Y
gastric by-pass (RYGB), and the restrictive adjustable gastric band (AGB) and vertical sleeve gastrectomy
(VSG). From Stefater, 2012 (9).
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depending on the mechanism used to lose weight, although all share a mechanistic trait which
is a physical restriction of the stomach (65). The stomach is an organ directly involved with
satiation. The proximal part dilates before a meal in order to increase its capacity as food
storage, while the distal part is responsible for triturating the food into small pieces so that
they can pass the pylorus. Satiety after a meal is regulated by the capacity of the stomach and

how fast it empties, among other factors (62).

ROUX-EN-Y GASTRIC BYPASS
The RYGB has been the most performed BS for many years and is both a malabsorptive
and restrictive technique. It consists of creating a small gastric pouch, thus restricting the
stomach capacity, where the jejunum is connected, bypassing the duodenum and part of the

jejunum, to create malabsorption (9,65). It removes the pylorus, increasing the gastric

emptying (62).

/‘\DJUST‘\B]AIC GASTRIC BAND
The AGB is a restrictive procedure where a silicon band filled with saline is placed on the
upper part of the stomach, reducing its capacity. It’s surgically simpler but the effects are

much humbler than the other two procedures, which is leading to a decreased popularity (9).

VERTICAL SLEEVE GASTRECTOMY
The VSG is also thought of as a restrictive procedure, up to 80% of the stomach is resected,
leaving a sleeve-like pouch with severely reduced capacity without altering the intestinal
nutrient flow. Although the pylorus is left intact, it is also associated with accelerated gastric
emptying (9,62). Despite being the newest technique of the three, it has quickly gained
popularity worldwide, as is surgically simpler than RYGB, requires less convalescence time.
In addition, VSG does not show the malabsorption problems associated with RYGB,
providing a minimal risk for vitamin deficiency or malnutrition and becoming the most

performed BS in 2017 in the United States (63,66—68).

1.2.2.c) Effects

Obese patients who undergo BS experience improvements soon after the surgery. Visible
effects are observed in the first months as there is an elevated decrease in body weight,
especially in RYGB and VSG, which is also more rapid and sustained than in AGB patients
(69). After one year of BS, anthropometrical parameters are also improved as can be seen in

reduced waist circumference and more importantly, many comorbidities are improved, such
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as several metabolic parameters related to metabolic syndrome, improved NAFLD lesions
(70,71), and a less atherogenic profile of the plasmatic lipids (72). Interestingly, VSG patients
show similar results to RYGB patients, indicating that much of the improvements seen after

BS are not related to the associated malabsorption (67,73).

The mechanisms behind the positive effects of VSG are still largely unknown, but there are

several potential mechanisms involved:

- Energy-balance related: VSG is a restrictive surgery leading to reduced intake, which
can not alone account for the weight loss, as studies with calorie restriction do not
achieve the same results (74). As other BS, VSG patients have an increased gastric

emptying, which is associated with increased satiety (75).

- Regulation of gut hormones: Following VSG, there is a reorganization of several gut
hormones such as reduced ghrelin, reduced Peptide YY, or increased GLP-1. They
have an impact on hunger and satiety, although the exact mechanism remains

unknown as there are contradictory data (76,77).

- Reorganization of the vagal nerve-brain axis: The vagal nerve is responsible for much
of the gut-brain communication and is coupled to the stomach to sense the
distension and engage satiation signals crucial for the appetite regulation (78,79).
VSG largely damages the connections with the stomach, uncoupling recompense
signals and increasing satiety, altering the complex network between the central

nervous system and peripheral signals that regulate hunger and satiation (70).

- Gut microbiota: In recent years, the GM has been proposed as a potential mediator
of the positive effects after VSG. Its role in obesity will be discussed in the next

chapters.

1.2.3. DIET AFTER BARIATRIC SURGERY

One of the common features of the three most common BS types is the reduction of
stomach capacity, which determines the amount of food ingested during meals. For patients
undergoing BS, food is gradually introduced during the first four weeks adding textures and
new foods each week until food intake is normalized by the end of the first month after

surgery (80). The dietary recommendations after BS consist of eating a high-protein, low-
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carbohydrate and low-fat diet of 1500 kcal, consisting of a 25% protein, 45% carbohydrates,
and 30% fat (81). At the same time, a turn to healthier habits is strongly advised, with
recommendations for a higher intake of fruit and vegetables, and reduction of calorie-dense
foods such as sweets and fried foods. Maintaining a correct diet seems to be crucial for
achieving a satisfactory weight loss after BS, as well as for maintaining the desired weight.
Higher reductions of calories in the first year correlate with higher weight loss in the
following years (80—82). Non-adherence to a correct diet is one of the causes of weight regain

after BS (83,84) which affects up to 30% of patients during the 5 years after BS (84,85).

1.3. RODENTS AS AN ANIMAL MODEL FOR OBESITY

Animal models are an indispensable tool in research, but also their use is a source of debate
and criticism in our society. The limitation of the 7 vitro techniques and the ethical restrictions
in obtaining human samples still make animal models necessary for research, as humans and

animals, especially mammals, share many molecular pathways and diseases (86).

The most commonly animal model used for the study of obesity and its comorbidities are
rodents, as they are economical, easy to manipulate, and a well-characterized mammalian
model. Several available modified strains are used as models for both obesity and DM2, such
as the hyperphagic obese and Zucker and Koletsky rat strains, both with mutations on the
Leptin receptor, but obesity can also be induced, through mechanically, chemically, or dietary

methods in non-modified strains (35).

1.3.1. DIET-INDUCED OBESITY

Diet-induced obesity (DIO) is a widely used method consisting on the administration of
high-calorie diets to animal models to increase their body weight and induce the apparition
of obesity-related comorbidities. It resembles the developmental process of obesity in
humans, and thus, allow researchers to study the effect of diet on genes and metabolism

during the increasing weight phase and the apparition of comorbidities (19,35). There are

44



INTRODUCTION

several DIO diets with different macronutrient composition, which can be enriched with
sugars, fats, or both. The high-fat diet (HFD), the cafeteria diet (CAF), and the high-fat
high-sugar diet (HFHS) are the most commonly used, with their respective ingredient

variations (87,88).

The HFD is a fat-enriched diet, with 30 to 80% of the calorie content coming from fat. Rats
have a nutritional requirement of 5% of fat content in their diet, and the administration of
an HFD lead to increased body weight and the following apparition of obesity related
conditions, such as IR (figure 5) (87,88). HFD can induce obesity more rapidly and
efficiently than diets based on carbohydrates and low in fats, and thus, is a very popular diet

used in the study of obesity (87).

Figure 5. Comparison between a control and a DIO rat. Right, a

rat fed with a standard chow diet. Left, a DIO rat in our study,

after 11 weeks of a HFD.

The type of fat used in HFD is an important source of variability between studies. Usually,
diets are enriched with mammal-derived fats (lard, or beef tallow) rich in SFA, with more
capacity of inducing obesity than diets enriched with vegetable fats (soybean, olive, and
coconut oil) richer in monounsaturated fatty acids (MUFA) and PUFA (35,87-89). The FA
in the diet exert different effects: SFA are more obesogenic as they end up mainly stored in
the adipose tissue, while MUFA and PUFA are prioritized as an energy source and stored to
a lesser degree (87,88); an elevated concentration of PUFA can actually help reduce the

weight gain as they increase satiety, as seen in HFD enriched with fish oil (87,90); SFA from
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animal origin, with long-chained FA, are more effective inducing obesity and IR than vegetal

SFA, composed mainly by medium-chain FA (35,88).

Animals on an HFD show a rapid increase in body weight during the first two weeks of diet
administration, but this increase tends to reduce and stabilize in the following weeks as the
food intake decreases. This reduction is explained by two mechanisms, a complex, and a
simple, that may work together: an auto-compensation of the high caloric density of the
HFD (88,91,92), and a loss of interest for the HFD after getting used to the new, more
palatable, taste (35).

1.3.2. BARIATRIC SURGERY EXPERIMENTS IN RODENTS

As mentioned eatlier, bariatric surgery has become the most effective and durable treatment
against obesity. However, despite its popularity, most of the underlying mechanisms behind
the improvements seen in body weight and metabolic parameters remain unknown (93).
Although much research is performed in subjects undergoing bariatric surgery, many factors
that are key for the understanding of the ongoing molecular processes after BS cannot be
evaluated in individuals/humans (94) and thus, most of the surgical procedures have been
established in rodent models, the most common being RYGB and VSG (95). The use of
rodents in the study of BS has multiple advantages, as it allows us to observe the effects of

BS in controlled situations of diet and environment that can be modified (93,95).
Rodent models offer (93,95):

- The opportunity of having detailed information about the feeding patterns after BS,

which is usually a tricky point in many human studies.

- The possibility of adding controlled changes in diet in order to compare the effects

combined with BS, as well as having diet controls.
- The use of sham-operated controls to compare with animals undergoing BS.

- The use of knock-out rodents for obesity related genes, and thus observe the

differences in the BS outcome.

VSG in rats was established in 2007, with the procedure resembling the intervention

performed in humans (96). A 60-70% proportion of the stomach is resected, removing
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mainly the fundus which is responsible for ghrelin production and leaving a gastric tube
without altering the pylorus or the rest of the gastrointestinal tract (figure 6) (96,97). The
effects are similar to the ones in humans: A rapid reduction in body weight in the first two
weeks (mainly from the adipose tissue), the maintenance of lower body weight, and the

improvement of glucose homeostasis (93,95,98).

Fundus

B Greater
Antrum . P curvature

Figure 6. Vertical sleeve gastrectomy in a rat stomach. The dashed line indicates the

resection line performed in VSG. From Lopez et al. 2010 (97).

Despite the initial weight loss, rats start to recover weight in the third week after BS, although
without reaching the pre-surgery weight, thus maintaining a lower weight compared to non-
operated controls (98,99). It has been observed that rats change their meal patterns after BS,
eating smaller amounts but increasing their meal frequency, as a way to compensate for the
mechanical restriction imposed by the reduced stomach pouch (95,99). Experiments in pait-
fed animals -eating the same amount as rats subjected to VSG do- also show an elevated
weight reduction, as well as some improvements in glucose metabolism, showing that eating
less is crucial in the benefits seen after VSG (93). Interestingly, a study performed on VSG-
rats exposed to food-restriction situations showed that VSG rats still had the capacity to
overeat. When the restriction was over, rats ate bigger amounts to compensate for the weight
loss, in the same way non-operated rats did. This shows that although the capacity for
overeating is intact after VSG, the drive for doing it is suppressed in normal conditions (99).
This fact argues against the initial ideas that the benefits of VSG arise only from the
mechanical restriction, and that there are other factors involved, as the rest of the digestive

tract remains unaltered (93,99).
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1.4. GUT MICROBIOTA

With the technological advances in the last years, the GM —a highly plastic microbial
community living in our intestines- has become the center of interest for many researchers.
The possibility to analyze a bacterial community by the analysis of the ribosomal 16S, without
being dependent on culture-methods, has led to the discovery of a new world inside us.
Commensal bacteria, once seen as a potential threat to the host system, are now being seen

as a necessary counterpart in several processes regulating the host homeostasis (100—102).

1.4.1. DESCRIPTION

The GM is the collection of living microorganisms inside our body, a population that exceeds
100 trillion, and that outnumber by a factor of 10 the number of host cells. It is composed

of archaea, bacteria, fungi, and virus, although most research is often centered on the

bacterial part (100,103).

1.4.1.a2) Composition

The GM is a diverse, and dynamic community that has co-evolved with the host, ending up
in constituting a more or less common microbial set. In humans, two major phyla dominate
the GM: the Bacteroidetes and the Firmicutes, accounting for more than 60% of the
microbiota (104—1006). The phylum Actinobacteria is sometimes also counted as one of the
main phyla, but with fewer numbers than the other two. The rest of the microbiota is
composed of the phyla Proteobacteria, Verrucomicrobia, and others (figure 7) (102,104—
107). The most common taxa found in each phylum are Enerococcus for Firmicutes, Bacteroides
for the Bacteroidetes, Bifidobacteria for Actinobactetia, Lactobacillus, Clostridinm, and Escherichia

coli for Proteobacteria and Akkermansia Mucinphilla for Verrucomicrobia (101,108).
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Figure 7. The most common genera of bacteria living in the mammalian gut. Adapted

from Arumugam 2011. (1006).

The microbiota is in constant change, as it is easily modified by environmental non-host
dependent factors, such as child delivery methods, family microbiota composition, genetics
or aging; or directly influenced by the host, such as diet, antibiotic use, habitat, etc. (102,107).
The intestine is also able to regulate the microbiota, secreting antimicrobial peptides (AMPs)

that modulate its composition (101).

Although many of the pathways are redundant between species, ensuring that the metabolic
functions are maintained and stable, it is important to mention that the most abundant
species do not necessarily correspond to the most common functions. Non or low abundant
species can account for specific beneficial functions for both the host and the microbiota
itself that are crucial, even though their numbers are small (106,109). This adds some
difficulty in understanding the role that different bacteria have. Metagenomics, the study of
the genes present in the GM environment, is thus often necessary to fully understand the
exact functions and adjudicate a role for determinate bacteria (106). Categorizing the GM at
lower taxonomical levels can be a powerful tool for diagnostics and thus attracts a big
interest. However, despite the many studies being performed, a consensus for a clear
characterization remains elusive. It has been observed that some taxa tend to cluster together
in what is called enterotypes, which might represent optimal functional groups of bacteria.
Still, more research and standardization need to be done to understand the full potential of

bacterial compositional clusters (106,110).
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1.4.1.b) Diversity

As in all ecosystems, diversity is an important and desirable factor in the GM. At an early age
of an individual, the microbiota has a reduced diversity but it rapidly evolves, adapts, and
stabilizes with time after exposure to the environmental factors mentioned above (102,110).
A diverse microbiota offers more adaptability and better stress responses, as well as
redundancy for key functions, ensuring a well-functioning microbiota even when there are

modifications in composition (100).

1.4.2. THE FUNCTION OF THE GUT MICROBIOTA

The complex ecosystem that is the GM is often regarded as a whole metabolic organ, able
to change and adapt to the host. With 100 times more genes than their human hosts, they
provide for different advantages in what is in effect a symbiotic relationship with the host,
regulating several processes. The host and the microbiota have a complex relationship in
which they work together to maintain the homeostasis and the correct functioning of
immunity and epithelial integrity, which contributes to the protection against pathogens

(figure 8) (100,102,111).

Function of the gut microbiota

Metabolic

- Fermentation of non-digestible products

Protective

- Pathogen displacement
- Generation of short chain fatty acids - Competition for nutrients
- Salvage of energy source - Competition for receptors

- Vitamin synthesis - Production of anti-microbial factors

Structural Immune

- Regulation of epithelial cell turnover - Induction of secretory IgA

- Promotion of epithelial cell differentiation - Induction of oral tolerance
- Fortification of epithelial barrier - Shaping the immune microenvironment

- Stabilization of tight junctions

Figure 8. Functions of the GM. Text adapted from Yu, 2012 (101).
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1.4.2.a) Anaerobic reactor

The GM colonizes the whole of our gastrointestinal tract but is in the intestine where it gains
its most well-known functions, working as an anaerobic bioreactor. Our diet contains, or
should optimally contain, a big portion of complex plant polysaccharides -such as cellulose
and pectin- and resistant starch that mammals are unable to digest, offering substrate for

microbial processes (104).

It is thought that the colonization of the mammalian intestine occurred early in the evolution,
developing a symbiotic relationship in which the host provided for food and environment
to the microbiota and, in exchange, the microbiota could digest the otherwise undigestible
products, providing this additional function to mammals without the necessity to develop

genes for it (100).

Besides energy, the metabolic process offered by the GM produces vitamins such as
ascorbate, biotin, cobalamin, folate, pantothenate, thiamine, riboflavin, and vitamin K,

beneficial for the host (106,111,112).

1.4.2.b) Short chain fatty acids

The undigested dietary fibers pass the small intestine and reach the large intestine where they
are anaerobically fermented by the GM, mainly in the caecum and the ascending colon. The
fermentation process produces energy and short chain fatty acids (SCFA), mainly acetate,
propionate, and butyrate, that are used in the intestine, or absorbed and carried through the
portal vein (109,113). The SCFA are one of the main energy sources for the enterocytes, and
butyrate also has an important role in colonocyte differentiation and colonic cancer

prevention (101,109).

1.4.2.c) The gut barrier

The gastrointestinal tract is the largest surface in the body that is in constant contact with
the external environment. The gut epithelial is formed by a single layer of intestinal epithelial
cells TEC) and acts as a physical defense barrier against pathogens (101,111). The IEC, with
their characteristic brush-like microvilli, are united by tight junctions, which allows the
diffusion of small molecules and water through paracellular permeability. For larger
molecules such as peptides, the transcellular permeability allows passage by means of

transporters (101).
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The GM is located on the microvilli, separated by a mucus layer that avoids the physical
contact between the two and thus, prevents possible translocation of microbial products
from the lumen to the interior. The mucus is a net-like structure formed by glycans (mainly
mucin-2) secreted by specialized IEC called goblet cells (101,112,114). Commensal
microbiota helps to maintain the integrity and well-functioning of the gut barrier: they
stimulate the mucus secretion through the produced SCFA, which stimulates the secretion
of mucin and facilitate the assembly of tight-junctions between the IEC, as well as degrade

shed elements of the mucus layer and exfoliated epithelial lining cells (100,111,114).

The intestinal epithelial has a high turnover -it can be renovated in one week- helping to keep
the homeostasis and the correct permeability of the gut barrier. Studies in germ-free animals
have shown a decreased turnover rate, an altered microvilli formation, and a higher sensibility
to the toxicity of dextran sodium sulfate, a compound used to cause damage to colonic cells,
indicating the importance of the commensal microbiota in maintaining a healthy gut barrier

(101,111,112).

1.4.2.d) Immunity

Apart from the physical defenses, the gut barrier is immunologically reinforced by
phagocytes and lymphocytes, that are infiltrated in the lamina propria under the IEC, forming
lymphoid structures. They produce cytokines, chemokines, and antimicrobial products into
the mucus layer that are able to modulate the composition of GM, as well as being beneficial
for the maintenance of the gut barrier, and at the same time, the GM plays a role in the

development of the lymphoid structures (101,112,114).

The GM is, in fact, essential for the well-functioning of the innate immunity. Studies in germ-
free mice shown a weakened immune system and young mice under antibiotic treatment had
an increase in pro-inflammatory responses, as well as a higher risk of inflammatory disease
(111). The pattern recognition receptors (PRRs) of the intestinal immune system, such as
the toll-like receptors (TLRs), interact with the microbial products from the commensal
microbiota, such as lipopolysaccharide (LPS). These interactions are necessary for the good
development of the intestinal immune system: they activate the innate immunity, help with
the recognition of multiple bacterial components, increase tolerance against microbial
products, and are necessary for the TLRs to be able to protect the epithelial from injury,

among other beneficial effects (111,112,115,116).
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At the same time, the microbiota also offers a possible threat and can trigger diseases in
circumstances where the immunity is weakened (114). The production of AMPs helps to
control the population of commensal bacteria and changes along the intestinal tract, being
higher in the ileum and lower in the colon, where a higher concentration of bacteria is needed

for the fermentation process (117).

1.4.3. MICROBIOTA IN OBESITY

The increasing knowledge about the composition and the role of the GM led to further
investigations attempting to elucidate its connections with several diseases, obesity being one
of the most studied. It has been shown that the microbiota is different in obese subjects,
whether humans or rodents, which led to an important question: Is the GM one of the causes

of obesity? Or are GM modifications a side effect of obesity?

The identification of the role of the GM in the development of obesity can suppose a new

target for fighting it.

1.4.3.2) Dysbiosis

The ingestion of a HFD has clear effects on the microbiota, especially when compared to
control counterparts. The alterations in taxonomical composition and bacterial diversity and
richness —a loss in species and in number- lead to dysbiosis, an imbalance in the regular
microbiota (figure 9) (118). Dysbiosis results in the loss of homeostasis of the gut barrier
which affects the intestinal mucosa (112). At the molecular level, these alterations lead to a
disruption in the tight-junctions, resulting in a damaged intestinal epithelial (119). In normal
situations, a well-functioning gut barrier does not allow the crossing of bacterial components,
such as LPS, from the lumen to the inside (101), but a weakened barrier integrity has
increased permeability, allowing the translocation of bacterial products (119). In fact,
genetically obese mice and lean mice consuming an HFD showed elevated plasmatic levels
of LPS, which correlated to increased adiposity and inflammation markers (120,121).
Interestingly, those effects can be partially reversed by the administration of probiotics or

antibiotics (121,122).
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In humans, obese patients also present dysbiosis, together with an elevated basal level of
activated TLLR4 and LPS, which is also seen in DM2 patients. Interestingly, an elevation in
circulating ILPS after a meal rich in fat has been observed (122,123). Still, observations in
human patients are complex, as feeding conditions (time, meal composition) are less

standardized, and subjects present a higher variability (122).
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Figure 9. Progression from healthy intestine barrier to dysbiosis. In the healthy state,
epithelial cells are hold together through the tight junctions, and commensal bacteria and the
mucus layer contribute to the gut barrier, protecting the intestinal epithelial from other
bacteria. In the disruption state, there is some disruption of the balance, with the mucus layer
and the tight junctions uniting the IEC are decreased. In the dysbiosis state, the intestinal
barrier is damaged, there is no protection on the intestinal epithelia and bacterial products are

translocated into the blood capillary (101, 112, 118, 119).

1.4.3.b) Modulation of the energy balance
The microbiota has been proposed to be a key player in obesity through its capacity to
regulate energy intake and expenditure. In 2004, Bickhed et al. published a study where it
was shown that germ-free mice had less weight gain and less fat deposition compared to
normal mice. Not only that, but germ-free mice receiving a microbiota transplant also had a
higher body weight and higher fat deposition despite having a reduced chow intake (40).
Other studies also showed that germ-free mice were also unaffected from a high-caloric WD
(124,125) and genetically obese mice were identified as having a microbiota with an increased
capacity for energy harvesting (126). Despite the promising results, later studies challenged

the former data, showing no association between shifts in the microbiota and markers of
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energy harvesting (127) and indicated that germ-free mice were not protected from the

effects of a HFD (128).

More research is still needed to fully understand how the microbiota can affect the energy
balance, in more standardized conditions. At the moment, there are several suggested

mechanisms in which the microbiota may modulate the energy balance:

ANGIOPOIETIN-LIKE PROTEIN 4
Angiopoietin-like protein 4 (ANGPTLA4) is a protein inhibitor of the LPL. Components of
the GM are inhibitors of ANGPTL4 in the intestinal epithelium, increasing levels of LPL
and resulting in higher deposition of T'Gs in the adipocytes (40,100,129).

SHORT CHAIN FATTY ACIDS

As products of fermentation, SCFA have been proposed to increase the energy content in
food (126). Also, SCFA are seen as mediators in the crosstalk between gut and peripheral
tissues (130). The role of SCFA during energy modulation is unclear, and data can be
contradictory, pointing to a complicated relationship between SCFA and obesity. On one
hand, SCFA are increased in obese subjects, but the values tend to normalize with time
(127,131), on the other, the supplementation of SCFA in mice protected them from obesity
and DM2 (102). SCFA may have a role in appetite regulation, as they affect gut hormones
such as GLP-1, leptin, ghrelin, as well as affecting lipogenesis, but more research is needed

to elucidate the mechanism (33,41,102,132).

INCREASED LIPOGENESIS
The produced SCFA enter the blood circulation and acetate and butyrate are used as

substrate for DNL giving rise to more newly synthesized TG, while propionate inhibit it

(133).

1.4.3.c) An obese phenotype?

One of the objectives of many studies has been to identify a determinate microbiota
composition during obesity. Initial studies saw that obese mice had a higher ratio of
Firmicutes: Bacteroidetes (due to decrease in the Bacteroidetes portion) when compared to
their lean counterparts, establishing a so-called obese-phenotype (105,126,134) that was also
seen in humans (105). However, this ratio was challenged by several other studies observing
the inverse shift and thus contradicting the stated ratio (119,135,136) and the observed

taxonomical shifts have been found to be more dependent on a HFD than on obesity itself

u
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(127,137,138). Also, a statistical analysis of several microbiota data found no significant
relationship between obesity and taxonomic composition, with higher variation between

studies than between each lean vs obese cohort (139).

The elevated number of factors influencing the microbiota studies makes it difficult to
determinate of a common phenotype or a consensus in the taxonomical shifts seen in obesity,

but despite this, it is clear that a HFD markedly alters the composition of the GM.

1.4.4. GUT MICROBIOTA AND BARIATRIC SURGERY

The GM is heavily affected by BS, as it physically modifies parts of the gastrointestinal tract.
Many studies have been performed in the last years, investigating the modifications exerted
by BS on GM, as it has been hypothesized that it could play a major role in the benefits
following BS. Indeed, BS leads to many taxonomical shifts, affecting several taxa, but many
of the taxa modifications are study-dependent and not consistent between studies, which

difficult the identification of a common component (140).

Despite the difficulties in identifying key taxa modifications after BS, it has been observed
that many of the post-BS modifications are linked to the improvements seen after BS, such
as improved glucose homeostasis, decreased adiposity, and decreased inflaimmatory state
(123,140). It is thought that those improvements are related to the GM, as BS has proven to
increase microbial restoration and to contribute to partial recovery from the dysbiotic state
seen in obesity (123). This suggests that GM can act as a key regulator during the metabolic

recovery after BS.

56



2. HYPOTHESIS AND OBJECTIVES






HYPOTHESIS AND OBJECTIVES

As introduced in the previous chapter, an unbalanced, unhealthy diet is one of the main
causes leading to obesity and the apparition of comorbidities. Bariatric surgery is currently
the most effective and durable treatment against obesity. Despite being a commonly
performed technique is still much investigated, as the mechanisms by which the weight is
reduced and the comorbidities are improved are still largely unknown. Implementing
healthier dietary habits after BS appears to be decisive to maintain the obtained benefits,
besides the mechanistic restriction of the BS. On the other hand, dieting alone is also
described to have beneficial effects if well implemented. Based on this information, we

established the following hypothesis:

A high-fat diet will induce modifications on a rodent model, such as increasing
adiposity, unbalancing the gut microbiota, and modifying the fatty acid composition
of several organs. The deleterious effects produced by the high-fat diet will be partly
improved by either vertical sleeve gastrectomy or by a change of diet, while the
combination of both actions will have a synergistic effect and a better outcome than

both actions alone.

To explore this hypothesis the following objectives were formulated:

e Identify the major modifications caused by the HFD on adiposity, gut microbiota

composition, and fatty acid composition in tissues.
e Study the effects caused by VSG when the high-fat diet is continued.
e Study the effects caused by a change of diet alone.

e Study the effects caused by a combination of VSG and a change of diet.
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This dissertation is presented as the compilation of two published articles, as well as a third
unpublished article, prepared for submission. All three manuscripts have the PhD student, Joana

Rossell, as the first author. Also, non-published data is added in this section.

The results presented here, in form of article or with the unpublished material, are based on a set
of 54 Sprague Dawley rats that were subjected under two main variables: diet and surgery. In turn,
each main variable was divided into 3 sub-variables, resulting in 9 final groups that combine
different diets and surgical approaches. During the process of elaborating the articles and as a
suggestion from referees, there has been some changes in the nomenclature to define the different
groups. To avoid confusions, we will briefly explain the study design and the different names for
the groups (figure 1, article 2; figure 1, article 3): Animals were separated in three diet groups: One
fed a standard chow diet, becoming the Control (C) group. The second fed a HFD during the
whole experiment, becoming the DIO group (named D in article 2, and HF in article 3). The last
was fed a HFD during the first 8 weeks, and then changed to standard chow for the last 4 weeks,
becoming the diet-change (DC) group (named DIO+C and D+C in article 1, D+C in article 2,
and DC in article 3). At week 8, animals on each group were divided in three further groups (n=06)
and were subjected to no surgery (NS), simulated surgery (Sham) or VSG. The final groups, as will
be named in the discussion, are the following: C-N§, C-sham, C-VSG; DIO-NS, DIO-sham, DIO-
VSG; DC-NS, DC-sham, and DC-VSG.
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La Dra. Julia Peinado Onsurbe, Catedratica del Departamento de Bioquimica y Biomedicina Molecular
de la Facultad de Biologia de la Universidad de Barcelona, desea hacer constar que Joana Rossell
Rusifiol ha sido doctoranda y colaboradora en nuestro grupo de investigacion desde el afio 2012.

El trabajo que ha realizado durante el desarrollo de su tesis ha estado enmarcado dentro de proyectos
de obesidad morbida, en los cuales figuro como IP, subvencionado por el Fondo de Investigacién
Sanitaria del Instituto de Saludo Carlos IlI.

El modelo de tesis por articulos no permite poner de manifiesto todo el trabajo realizado previamente
a la publicacion de los articulos, pero es muchisimo mas amplio de lo que en dichos articulos se puede
presentar.

El primer articulo se publicé en la prestigiosa revista Obesity Surgery, especializada en cirugia de la
obesidad, situada en el primer decil dentro del &rea de Surgery y cuyo indice de impacto (2017) es de
3.607. El titulo del articulo es “Diet Change After Sleeve Gastrectomy Is More Effective for Weight Loss
Than Surgery Only”y Joana Rossell figura como primera autora, siendo el Gltimo firmante el Dr. Baena-
Fustegueras, el cirujano que llevé a cabo la cirugia bariatrica en las ratas. En este articulo se hacen
constar los cambios antropométricos que tienen lugar en las ratas obesas y controles durante un
determinado periodo de tiempo. Se ponen de manifiesto también, en dicho articulo, los cambios en el
peso de todos los tejidos del animal. Todo el trabajo que consta en este trabajo fue llevado a cabo por
Joana Rossell, excepto en el momento del sacrificio de los animales en que fue ayudada por los
colaboradores del grupo de investigacion.

El segundo articulo se ha publicado en la revista European Journal of Nutrition especializada en
nutricion, situada en el primer cuartil dentro del area de Nutrition and Dietetics y cuyo indice de impacto
(2019) es de 4.664. El titulo del articulo es “Diet change affects intestinal microbiota restoration and
improves vertical sleeve gastrectomy outcome in diet-induced obese rats”y Joana Rossell figura como
primera autora, siendo el tltimo firmante el Dr. Klas |. Udekwu del Departmento de Biociencia Molecular
del Instituto Wenner-Gren de la Universidad de Estocolmo en Suecia, donde Joana Rossell se desplazé
durante unos meses para realizar un estudio pormenorizado de la composicién bacteriana de los ciegos
de las ratas que habiamos operado en Barcelona.

El tercer articulo que se presenta en esta tesis tiene por titulo “Combination of diet and bariatric surgery
promotes healthier changes in fatty acid profiles in the livers of obese rats”. Al igual que en los otros
dos articulos, Joana Rossell figura como primera firmante y como segundo firmante esti el Dr.
Domingo que nos ha prestado su inestimable ayuda en el andlisis de los &cidos grasos del higado de
las ratas que operamos para el primer articulo. El articulo todavia no se ha publicado, pero esta
preparado para enviar a la revista Journal of Lipid Research, situada en el primer cuartil dentro del area
de Bioquimica y con un indice de impacto de 4.560 (2019).

Por lo que se refiere a todo el trabajo que ha realizado Joana Rossell en el laboratorio, no solo ha

demostrado su gran disponibilidad e interés sino también su capacidad para el poner a punto diferentes
técnicas que nos seguiran siendo de gran utilidad en nuestro trabajo de investigacion.

67



ARTICLES

Por otra parte, ha adquirido una gran experiencia en la valoracion de diferentes parametros bioquimicos
y ha demostrado su gran valia y su capacidad para acometer cualquier tipo de tarea relacionada con
su campo de trabajo.

Tanto nuestro grupo de investigacibn como yo misma, estamos plenamente satisfechos del
rendimiento de Joana Rossell y del trabajo de investigacion que ha desarrollado, considerandola
altamente cualificada para llevar a cabo cualquier tipo de trabajo de investigacion.

Por otra parte, desearia hacer constar, que nuestro Departamento ha potenciado siempre los estudios
bioquimicos, y de biologia molecular aplicados a la biomedicina y actualmente figura como uno de los
mas prestigiosos del pais. A pesar de estar formado por mas de trescientos colaboradores entre
profesores, doctorandos y becarios espafioles y extranjeros, los criterios de seleccion son bastante
estrictos en cuando a la formacion de nuestros colaboradores, méritos que creemos reline
suficientemente Joana Rossell.

Barcelona a 1 de Octubre de 2020

Dra. Julia Peinado Onsurbe
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Abstract

Background Baratric surgery with or without diet change has
become one of the most effective treatments for obesity. The
objective of this study was to observe the effects of vertical
sleeve gastrectomy (VSG) and diet change in Sprague-
Dawley rats on both body and tissue weights.

Methods Eighteen rats were fed with a standard chow diet
(SCD) (C group), and 36 rats were fed with a high-fat diet
(HFD) (diet-induced obesity (DIO) group). After 8 weeks, the
animals underwent VSG, sham surgery or no surgery (NS).
After surgery, a third of the rats fed with the HFD changed to
the SCD (DIO + C group). Body weight, food and energy
intake were recorded daily during the experiment (12 weeks).
Food efficiency (%) (FE) was determined from weekly weight
gain and weekly kilocalorie consumed measurements.
Results The DIO group had higher and significant weight
gain than the C group at the time of surgery (p < 0.001). The
major weight loss (WL) was observed in the DIO + C-VSG
group, during the 4 weeks after surgery. Adipose tissues in the
DIO + C-VSG group were drastically reduced and had a
weight similar to those in the C-VSG group.

Conclusion VSG and the diet change combination led to a
greater WL, which was maintained during the 4 weeks post-
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surgery, leading to a normalization of body weight. VSG and
diet change also affected most of the tissues, not only adipose,
showing a global change in whole body composition.

Keywords Sleeve gastrectomy - Experimental models -
Diet-induced obesity - DIO rats

Abbreviations

SCD Standard chow diet

VSG Vertical sleeve gastrectomy

HFD High-fat diet

DIO Diet-induced obesity

WL Weight loss

FE Food efficiency

BAT, eWAT and Brown adipose tissue, epididymal white

pWAT adipose tissue, and perirenal white
adipose tissue

Introduction

Obesity is one of the major health problems in our society,
leading to increased morbidity and mortality rates. Although
many attempt a lifestyle modification [1, 2], bariatric surgery
(BS) is the most effective and durable treatment for obesity
and its co-morbidities [3-5], especially when combined with
nutritional education and therapy [6-8].

Vertical sleeve gastrectomy (VSG) is a restrictive, non-
reversible technique in which a resection of the stomach is
performed, leaving a sleeve-like gastric pouch. VSG has in-
creased its popularity, becoming the second most common
procedure, due to a lesser surgical complexity [9, 10]. The
effects of VSG are maintained weight loss, reduced hyperten-
sion and improved insulin sensitivity and diabetes mellitus,
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among others [11, 12]. However, the exact mechanism of
these effects is still unknown.

Animal models have been widely used in the study of obe-
sity, using genetic- or diet-induced obese animals [13—-18],
and VSG in rodents is described [19-22].

Obese patients change their lifestyle after VSG to im-
prove the effects of BS. We designed an experiment
where rats fed with a high-fat diet (HFD) changed to a
standard chow diet (SCD) after SG. Our objective was to
document and describe the VSG performed and the
changes observed in the body and tissue weights, changes
that are difficult to observe in obese patients.

Materials and Methods
Animals

The animal protocol was approved by the Ethical
Committee for Animal Experimentation of the University
of Lleida (CEEA. 04-05/12). Male Sprague-Dawley rats
(9 weeks old, weight 315.7 £ 5.4 g) from the breeding
house of the University of Lleida were housed in pairs in
polypropylene cages under controlled conditions (22 °C,
12/12-h day-night cycle, 40-78 % humidity). Eighteen ani-
mals (C group) were fed a SCD with a calorie composition
of 20% protein, 13% fat and 67% carbohydrate (Tekland
Global, 2014C, Envigo), and 36 animals (DIO group), in
order to induce obesity, were fed a HFD with a calorie
composition of 18% protein, 21% carbohydrate and 60%
fat (fatty acid profile—37% saturated, 47 % monounsaturat-
ed and 16% polyunsaturated) (TD.064 14, adjusted calories
60/fat, Envigo). Food and water were given ad libitum, and
the consumption and animal body weight were measured
three times a week at the same time (08:30 to 09:30).

Study Design

After 8 weeks of diet (SCD or HFD), animals were divided
into three groups with six C animals and 12 DIO animals and
underwent VSG, simulated surgery (sham) or no surgery
(NS). Six animals of each DIO group were switched to the
SCD (DIO + C) to mimic the dietary modification after BS in
humans. Thus, the following subgroups were established: C-
NS, C-sham, C-VSG, DIO-NS, DIO-sham, DIO-VSG, DIO +
C-NS, DIO + C-sham and DIO + C-VSG. All animals were
sacrificed after 12 weeks.

Surgery
Animals under sham or VSG were housed in metabolic cages

at 48 h pre-surgery and had 12 h of preoperative fasting, keep-
ing water ad libitum until 1 h before the operation.
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Enrofloxacina was given 48 h before surgery as an antibiotic
prophylaxis. Anaesthesia was induced by isoflurane, com-
bined with O,, 0.3-0.5 L/min cage, and maintained with
xilacina (Rompun® 2%, 2 g/mL) and ketamina (Imalgene®
10%, 10 g/mL). The surgical area was shaven and sterilized
prior to a laparotomic supraumbilical incision. The liberation
of gastrosplenic adherences and the ligation and section of
gastro-omental vessels was conducted at the greater curvature
and pyloric antrum (Fig. 1). Delimitation ofthe gastric tube by
two vascular clamps at the fundus and pyloric antrum and a
third at 0.5 cm from the others covered the whole stomach.
Gastric resection involved 70-80% of the whole stomach (up-
per curvature and fundus), resecting along the third clamp and
leaving the edges to suture by the two other clamps. The first
suture was performed from the fundus to the antrum; the sec-
ond suture was performed with invaginating stitches; the third
suture closed the midline laparotomy incision via continuous
suture (Fig. 1). The sham surgery consisted of the same pro-
cedure, but the stomach remained intact. After surgery, 10 mL
of saline was administered subcutaneously to prevent dehy-
dration. Analgesia (buprenorfina) was administered during
24 h post-surgery and given orally with antibiotics
(enrofloxacina) for the following 3 days. Food reintroduction
after surgery was performed progressively, with the introduc-
tion of normal food on the fifth day. The surgery mortality rate
was 11.1%. All applicable institutional and national guidelines
for the care and use of animals were followed.

Sample Collection

Animals were sacrificed by decapitation at week 12 after a 12-
h fast. Blood samples were collected in tubes containing
EDTA. Plasma was obtained through centrifugation
(2500 rpm, 15 min, 4 °C). Tissues were collected, weighed,
frozen and stored at —80 °C.

Data Analysis

‘Weight data are expressed as the mean = SEM. Data were
analysed by two-way ANOVA followed by Bonferroni post-
test using Prism 5.0 (GraphPad Corp., San Diego, CA, USA).
A p < 0.05 was considered statistically significant.

Results

Food Intake and Weight Evolution Before Surgery

The DIO group had a higher weight gain (Fig. 2), and
significant differences between groups appeared from
day 4 (p < 0.05) and were maintained (p < 0.001) until

week 8. The C weights tended to stabilize at week 6,
reducing daily weight gain.

@ Springer
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Fig. 1 Vertical sleeve
gastrectomy procedure in rats
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Anova 2 ways (p value):
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Fig.2 Body weight curves for the C and DIO groups from week 1 to week 8, prior to surgery. The data are expressed in grammes as the mean + SEM.
Two-way ANOVA (anova-2). White dots indicate the C group: black squares indicate the DIO group
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Energy intake (kcal/animal/day) was significantly different
between C and DIO groups (p < 0.001). FE showed no sig-
nificant differences (Table 1).

Food Intake and Weight Evolution in the DIO and C
Groups After Surgery

Figure 3 shows the weight loss evolution after surgery. The
NS rats continued to gain weight during the next 4 weeks
(from 8 to 12 weeks). Energy intake range was significantly
different between the C and DIO groups (p < 0.001). FE was
similar in the DIO (3.10%) and C (2.82%) groups (Table 1).

The C-sham group (Fig. 3) lost 11% (week 9, p < 0.001)
and 5% (week 10) but increased 1% (week 12) compared to
the week 8 values. The DIO-sham group lost less weight than
the C-sham group and started gaining weight at week 10 (4%
vs. week 8), up to 10% (week 12). The DIO-sham group
restored the initial food intake (Table 1) slower than the C-
sham group butingested more kilocalorie (p < 0.001, except at
week 10). The C-sham group recovered FE (Table 1) a week
before (week 10) the DIO-sham group (week 11).

The C-VSG group (Fig. 3) lost 12, 8 and 3% (weeks 9,
10 and 11, respectively) after surgery. The DIO-VSG
group lost 16, 15, 8 and 5% at weeks 9 through 12.
Between weeks 8 and 10, the food and energy intake be-
tween the groups was significantly different. FE began to
equilibrate at week 12 (Table 1).

Food Intake and Weight Evolution in the D10 + C Group
After Surgery

The DIO + C-NS group gained 3% while the DIO-NS
group gained 11% at week 12 (Fig. 3). Although higher
food intake (Table 1), energy intake was lower than the
DIO-NS group. FE (Table 1) was significantly lower than
the DIO groups (p < 0.001).

The DIO + C-sham group (Fig. 3) had a greater WL than C-
sham or DIO-sham groups up to week 12. Food intake was
significantly higher than the C and DIO groups at week 12 and
was similar to the DIO + C-NS group.

Figure 3 shows that the DIO + C-VSG group had the
highest WL during all weeks, being 50% higher than the
DIO-VSG group at week 12. The DIO + C-VSG group had
a WL of 23, 20, 13 and 10% at weeks 9, 10, 11 and 12,
respectively (p < 0.001), with significant differences when
compared to the other groups. Food intake (Table 1) was less
than the DIO + C-NS, C-VSG (except week 12) and DIO-
VSG (except week 10) groups. From week10, the energy in-
take was similar to the C-VSG group, but only at week 11 did
we find significant differences between the DIO + C and DIO-
VSG groups. At week 12, there were no FE differences be-
tween the VSG groups (Table 1).
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Effect on Tissues in the DIO and C Groups After Surgery

Sham and VSG surgeries caused a decrease in both body
and tissue weights (Table 2). The C-sham group showed
a significant reduction of 23, 40 and 36% in brown
adipose tissue (BAT) (p < 0.05), epididymal white adi-
pose tissue (eWAT) (p < 0.01) and perirenal white adi-
pose tissue (pWAT) (p < 0.01), respectively, compared to
the C-NS group. VSG in the C group caused a weight
reduction in most of the tissues, e.g. liver (8%, p = ns),
thymus (33%, p < 0.05), eWAT (70%, p < 0.01) and
pWAT (74%, p < 0.001).

The DIO-NS group had increased liver (p < 0.001), heart
(p < 0.001), eWAT (p < 0.001) and pWAT (p < 0.001), among
others, compared to the C-NS group. The DIO-sham group had
some significantly increased lung (p < 0.001) and brain
(p < 0.05) weights when compared to the DIO-NS group. The
DIO-VSG group compared to the DIO-NS group had decreased
liver (15%, p < 0.01), heart (17%, p < 0.001), BAT (70%,
p <0.001) and pWAT (36%, p < 0.01) weights, among others.
Four tissues had increased weights: spleen (41%, p < 0.01),
stomach (30%, p < 0.05), thymus (3%, p = ns) and adrenal
glands (32%, p < 0.001).

Effect on Weight Loss in Tissues and Organs
in the DIO + C Group After Surgery

In the DIO + C-sham group, we observed a significant de-
crease in lung (p < 0.001), thymus (p < 0.05), BAT (19%),
eWAT (16%) and pWAT (31%) weights. Some of the tissues
in DIO + C-VSG group that decreased compared to the DIO +
C-NS group were liver (40%, p < 0.001), heart (32%,
p < 0.001), brain (13%, p < 0.05), BAT 65% (p < 0.001),
eWAT (84%, p < 0.001) and pWAT (85%, p < 0.001).

Discussion

Overweight and obesity may be prevented by dietary modifi-
cations. Diets rich in fat not only induce obesity in humans
[23, 24] but also in animals [25-27]. In this work, we studied
rats fed with a HFD that underwent VSG and how VSG af-
fects the body and tissue weight when combined with a dietary
change, as it is usually performed in humans.

The most recent review [25] about the amount of fat re-
quired to induce obesity in animals concluded that the best
method to induce obesity in animals was to use semi-purified
HFD containing 40% of kilocalorie from animal fat.

In both rats [17] and mice [27], a positive relationship
has been found between the amount of fat in diet and
body or fat weight. In the animals we used in our exper-
iments, both in C and DIO, we also have observed this
correlation, which at week 12 was very high in VSG rats
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vs. body weight (r = 0.725, p < 0.001) or vs. fat pad
(r = 0.861, p < 0.001), in sham rats was less vs. body
weight (r = 0.504, p = 0.046) or fat pad (r = 0.588,
p < 0.05) and did not exist in NS rats.
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o Fig. 3 Weight loss evolution at weeks 9, 10, 11 and 12. Data are
expressed in %, difference between pre-surgery weight minus post-
surgery weight and pre-surgery weight. Two-way ANOVA (anova-2)
and Bonferroni post-tests were used to study the interactions between
the effects of diet and the effects of surgery. In all cases, the surgery
and diet effect was p < 0.0001. Clear bars stand for C, light dotted bars
for DIO, and grid for DIO + C. The symbol (°) indicates the differences
between sham or VSG for each group and NS; the symbol (*) indicates
the differences between VSG and sham; the symbol (*) indicates the
differences between C vs. DIO and DIO + C: the symbol (%) indicates
the differences between DIO vs. DIO + C. One symbol, p < 0.05; two
symbols, p < 0.01; three symbols, p < 0.001. ns non-significant

Some studies have indicated that the development of obe-
sity is prevented in humans [28] and rats [29] when the in-
crease in dietary fat is accompanied by an increase in protein
(high protein/carbohydrate (P/CH) and low carbohydrate/fat
(CH/F) ratios). Once obesity is established, as for example in
our DIO + C animals that have been fed with HFD (ratio
P/CH = 0.30 and CH/F = 12) and switched to standard diet
at week 8, despite the change in ratio (ratio P/CH = 0.86
CH:F = 0.80), they had less weight during the following
weeks than the rest of DIO group, which contrasts with that
described by other authors [30].

The D + C-sham group had the highest food intake at week
12, and the D + C-VSG group was the only VSG group that
had a higher intake than at pre-surgery, surprising because
80% of the stomach was resected. Despite this, the DIO + C
groups had a considerable reduction in calorie intake due to
the dietary change, comparable to the reduction observed in
the DIO-VSG group. It is possible that the DIO + C groups try
to compensate for the lower caloric density of the food by
increasing their intake amount [31-33].

Perhaps, a limitation of our study was the length of
time taken to induce obesity in DIO (12 weeks, 8 weeks
for DIO + C) and thus be able to check whether as other
authors have observed [34] that rats that switched from
HFD to standard chow after 17 weeks returned to control
levels of body weight and composition, while rats that
switched after 30 weeks did not. It has also been observed
that animals that were fed with HFD during 12 weeks
underwent BS and then changed to standard diet, and they
started to regain weight after 12 days [35, 36]. We also
observed that D + C-VSG group behaved similarly to the
C groups at week 12, especially when compared to the C-
VSG group, having a similar body (415 vs. 393 g) and
tissue weight. They differed completely from the DIO
groups, having much lower body and tissue weights de-
spite having been on the same diet for 8 weeks. D + C-
VSG group started to regain weight after 12 days.

There are controversial data in the literature about the
time the rats begin to gain weight after VSG. Thus, al-
though our C-VSG animals start at the fourth week, as
described by other authors in Wistar rats [19], other au-
thors observed that after VSG, animals fed with a HFD
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and switched to a SCD began to recover at the second week
(as our animals did) [36]. Other strains such as Zucker [37]
or Long-Evan recovered from the first week [38].

In an experiment similar to ours but carried out in Wistar
[39], the rats reached a final weight of 572 + 19 g after
12 weeks of diet with 59% of the calories from fat (our
highest DIO weight was 655 = 24 g). They obtained higher
eWAT in DIO-NS (21.7 £ 1.9 vs. 11.3 £ 1.2 g in our rats),
in DIO-sham (18.9 £ 0.9 vs. 11.6 + 1.3 g) and in D1IO-VSG
groups as well (14.0 = 1.1 vs. 6.9 = 1.2), even if the WL
compared to the DIO-NS group was lower (35%) than in
our rats (39%). However, our data from pWAT were 1.2
times higher than the data described in another article from
the same group [40]. These differences can be attributed
both to the different ratio of P/CH or P/F or because dif-
ferent strains can have a variable response to HFD,
resulting in animals gaining excess weight more rapidly
than others [14].

In the DIO + C-VSG group, adipose tissues retum to values
similar to the C-VSG group, which shows that the diet change
combined with surgery is more effective than surgery alone, as
we do not see that decrease in the DIO-VSG group. Dietary
change alone is not sufficient either, as the DIO + C-NS group
gains less weight than the NS groups, but adipose tissues are
maintained. Liver weight in the DIO-VSG group falls below
the value described by other authors [39].

‘We found it interesting that the stomach after VSG (a re-
section of almost 80%) had a higher weight than NS in the C
and DIO groups. We observed abdominal adhesions and scar
tissue, but not in the DIO + C-VSG group. The stomach is
reported to suffer macroscopic modifications after VSG [36],
although other authors did not find differences [41].

Other organs also changed weight after VSG in the
DIO or DIO + C groups. Increased adrenal weight (nor-
malized by body weight) coupled with reduced thymus
weight has been described in RYGB-treated rats, suggest-
ing an elevated hypothalamo-pituitary-adrenocortical
(HPA) axis tone, but not in VSG-treated rats [38].
Additionally, HFD-induced obesity has been described
to increase the HPA axis response to acute stress [38].
Other authors [22] observe a heart hypertrophy in VSG
rats but we observed a decrease.

Conclusions

VS8G and a diet change combination leads to a major decrease
in body weight. Effects are observed not only in adipose tis-
sues, as is expected, but also in other tissues not related to
obesity, also contributing to a greater maintained WL during
4 weeks. These changes lead to a normalization of both body
weight and adipose tissues, up to C-NS levels, showing the
importance of a nutritional change after VSG.
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Abstract

Purpose Obesity, a worldwide health problem, is linked to an abnormal gut microbiota and is currently most effectively
treated by bariatric surgery. Our aim was to characterize the microbiota of high-fat fed Sprague—Dawley rats when subjected
to bariatric surgery (i.e., vertical sleeve gastrectomy) and posterior refeeding with either a high-fat or control diet. We
hy pothesized that bariatric surgery followed by the control diet was more effective in reverting the microbiota modifications
caused by the high-fat diet when compared to either of the two factors alone.

Methods Using next-generation sequencing of ribosomal RNA amplicons, we analyzed and compared the composition of the
cecal microbiota after vertical sleeve gastrectomy with control groups representing non-operated rats, control fed, high-fat
fed, and post-operative diet-switched animals. Rats were fed either a high-fat or control low-fat diet and were separated into
three comparison groups after eight weeks comprising no surgery, sham surgery, and vertical sleeve gastrectomy. Half of
the rats were then moved from the HFD to the control diet. Using next-generation sequencing of ribosomal RNA amplicons,
we analyzed the composition of the cecal microbiota of rats allocated to the vertical sleeve gastrectomy group and compared
it to that of the non-surgical, control fed, high-fat fed, and post-operative diet-switched groups. Additionally, we correlated
different biological parameters with the genera exhibiting the highest variation in abundance between the groups.

Results The high-fat diet was the strongest driver of altered taxonomic composition, relative microbial abundance, and
diversity in the cecum. These effects were partially reversed in the diet-switched cohort, especially when combined with
sleeve gastrectomy, resulting in increased diversity and shifting relative abundances. Several highly-affected genera were
correlated with obesity-related parameters.

Conclusions The dysbiotic state caused by high-fat diet was improved by the change to the lower fat, higher fiber control
diet. Bariatric surgery contributed significantly and additively to the diet in restoring microbiome diversity and complexity.
These results highlight the importance of dietary intervention following bariatric surgery for improved restoration of cecal
diversity, as neither surgery nor change of diet alone had the same effects as when combined.
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intestinal immunity and integrity [1]. Additionally, the gut
microbiota has metabolic functions, regulating homeostasis
and modifying the capacity for energy harvesting and has
thus been proposed as a contributor to the development of
obesity [2-4].

Along with producing dietary-induced obesity (D) in
rodents [5], the high-fat diet (HFD) causes alterations in
the microbial community assemblage when compared to
control animals [6—8]. Obese animals have lower microbial
diversity and perturbed abundances of the major gut phyla,
Firmicutes and Bacteroidetes. It has been demonstrated
that these changes in diversity are more dependent on diet
than on weight gain or obesity itself [7, 9, 10] and can be
reversed with calorie/fat restricted diets [11, 12]. The ratio
of Bacteroidetes:Firmicutes was previously correlated
to obesity [2, 6] but new analyses claims that no exact
relationship can be established [13, 14]. Nevertheless, these
alterations lead to a dysbiotic state, resulting in leaky gut
and metabolic endotoxemia (i.e., low grade elevation of
plasma LPS), potential drivers of the inflammatory response
characteristic of obesity [9, 15, 16].

Bariatric surgery (BS), mainly Roux-en-Y gastric bypass
(RYGB) and vertical sleeve gastrectomy (VSG), is presently
the most effective treatment for obesity. Both procedures
have similarly successful results despite being anatomically
different: VSG consists of stomach resection and unchanged
intestinal tract, and RYGB consists of stomach resection
and modified intestinal tract, the first part of the small
intestine being bypassed causing also malabsorption [17-
21]. The main benefits associated with BS are a significant
and sustained weight loss and improved insulin resistance
[22]. However, BS is also associated with several potential
complications depending on the specific surgery: RYGB is
associated with increased risk of malnutrition and blood
glucose fluctuations, as well as being a more complicated
surgery; VSG patients have higher risk of developing
gastroesophageal reflux disease [23-25]. Due to the similar
benefits with less severe complications VSG popularity as
the preferred BS is increasing [26]. Studies in both animal
models and humans have shown that BS causes changes in
the microbial community, several of which show apparent
correlation with the health improvements seen following BS
[8, 27-30].

This is the continuation of a previous article, where rats
after being fed either a control diet or HFD for 8 weeks
underwent either no surgery, simulated (Sham) surgery,
or VSG [18]. Half of the HFD-fed rats were then changed
to the control diet for the remaining 4 weeks, emulating
dietary recommendations for weight loss (increased fruit and
vegetables, reduced fat) after BS [31, 32]. We previously
found that the combination of diet change and VSG in rats
exerted a major effect on the weight of body and organs,
reducing them to control levels. Due to the relationship
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between obesity and gut microbiota previously described, we
decided to analyze the effects that diet and surgery had on
the gut microbiome itself. The aim of the current study was
to analyze the cecal microbiota using 16S RNA analysis, and
describe what effect the experimental parameters—HFD,
dietary switch, surgery, or combinations of the above—had
on the gut microbiome.

Materials and methods
Animals

The animal protocol was approved by the Ethical Committee
for Animal Experimentation of the University of Lleida
(CEEA. 04-05/12). Male Sprague—Dawley rats (9 weeks
old, weight 315.7+5.4 g) from the breeding house of the
University of Lleida were pair-housed in polypropylene
cages under controlled conditions (22 °C, 12/12-h day-night
cycle, 40-78% humidity).

Study design

Eighteen animals were fed a control diet (C group) with a
calorie composition of 20% protein, 67% carbohydrate, and
13% fat (Tekland Global, 2014C, Envigo), and 36 animals
were fed a HFD (D and posterior D+ C group) with a calorie
composition of 18% protein, 21% carbohydrate, and 60%
fat (TD.06414, adjusted calories 60/fat, Envigo). Detailed
composition of both diets is found in Online Resources
1. Food and water were given ad libitum. After 8 weeks,
animals were divided into three groups (six C and 12 D
animals per group) and underwent no surgery (NS), Sham,
or VSG. Animals continued on their designated diet for four
more weeks, apart from six animals of each D group that
were then switched back to control diet (D + C), establishing
the following subgroups: C-NS, C-Sham, C-VSG, D-NS,
D-Sham, D-VSG, D+C-N§, D+C-Sham, and D+C-VSG
(Fig. 1). VSG and sham interventions were performed
according to previously described procedures [18]. In
brief, VSG animals had 70-80% of their stomach removed
under anesthesia while Sham animals underwent the same
operative procedure but their stomach remained intact.
Both Sham and VSG animals received antibiotic treatment
(Enrofloxacina, 10 mg/kg every 12 h) for 5 days (2 days pre-
surgery as a prophylactic treatment, and the following three
days post-surgery). Surgery had a mortality rate of 9.25%
during the first two days post-surgery.

Sample collection

Animals were sacrificed by decapitation at week 12 after a
12 h fast. Blood samples were collected in tubes containing
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Fig. 1 Experiment design and group distribution. Rats were fed either
the control diet (red line) or HFD (blue line) for 8 weeks. At week
eight, each diet group was then divided in three (n=6), and subjected
to one of the three surgical situations: No Surgery, Sham surgery or
VSG. Half of the HFD-fed rats were then switched to the control diet
(green line). Rats continued the allocated diet until week 12

EDTA and plasma was obtained through centrifugation

(2500 rpm, 15 min, 4 °C). Caeca were collected, snap-frozen

in liquid nitrogen and stored at — 20 °C. Epididymal and

perirenal adipose tissues were collected, weighed and stored
-20°C.

DNA extraction

DNA was extracted from cecum samples using either the
QIAamp Fast DNA Stool Mini kit or the DNA easy Power
Soil Kit (QIAGEN., Hilden, Germany). The concentration of
DNA was assessed using the Quant-iT PicoGreen dsDNA
Assay kit (ThermoFisher, Massachusetts, USA). DNA
samples were stored at — 20°C.

Sequencing and analysis of 165 amplicon data

Isolated DNA was amplified with forward primer 341F:
(CCTACGGGNGGCWGCAG) and reverse primer 805R:
(GGACTACHVGGGTWTCTAAT) targeting the V3—
V4 hypervariable region of the coding sequence for the
16S small ribosomal RNA, rRNA. Amplified DNA was
sequenced on an [llumina MiSeq machine, using the MiSeq
v3.0 reagent kit leading to 2x 300 bp paired-end reads.
Initial demultiplexing was done with the default Illumina
MiSeq Control Software (2.6.2.1). Down-stream quality
control, trimming, filtering, merging of forward and reverse
reads, chimera removal and identification of amplicon
sequence variants (ASV) was performed with the R software
version 3.4.2 (https://www.R-project.org), using the DADA?2
R package version 1.6 [33, 34]. Metabolic reconstruction
from 16 s amplicon data of KEGG pathways ko04973
(carbohydrate digestion and absorption) and ko0D0071 (fatty
acid degradation) was done from normalized to even depth
ASV abundance tables for the top 100 most abundant taxa
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created using the above described method, followed by
submission to the Piphillin server using the KEGG database,
release of October 2018, and a cut-off sequence similarity
value of 95% [35].

Biochemical parameters

Glucose was enzymatically analyzed in a METROLAB
2300 auto-analyzer (RAL, Laboratory Techniques, Spain);
glucagon and leptin were measured using an ELISA
kit (R&D, USA), insulin and unacylated ghrelin were
measured using an ELISA kit (Bertin Bioreagent, France),
all according to the manufacturer’s protocols.

Glucose homeostasis indicators

Glucose homeostasis was measured by the insulin
sensitivity index (ISI), the homeostatic model assessment
of insulin resistance (HOMA-IR) and the homeostatic
model assessment of p cell function (HOMA-p) calculated
according the formulas: ISI= 1/fasting glucose fasting
insulin; HOMA-IR =fasting insulin fasting glucose/22.5;
HOMA-p =20 x fasting insulin/(fasting glucose — 3.5).

Data analysis and statistics

Body weight gain (BWG) was calculated by subtracting
initial body weight from measured body weight at posterior
time. The adiposity index was calculated as the sum of
epididymal and perirenal adipose tissues/body weight x
100. Body weight values were expressed as mean + SEM.
Differences in BWG were analyzed by a repeated measure
ANOVA with Mauchly’s sphericity test followed by GG
corrections, using the R software. Body weight gain at week
12 and biochemical parameter differences were analyzed by
a two-way ANOVA followed by a Tukey post-test. Graphics
and statistical analysis of gut microbiota were done with
the Phyloseq package version 1.20.0 [36]. Taxa were
expressed as relative abundances with expressed values as
the mean of each group. The Alpha diversity was determined
using Shannon and Simpson indices and differences were
analyzed by a two-way ANOVA followed by a Tukey
post-test. Beta diversity was estimated by Non-Metric
Multidimensional Scaling (NMDS) and differences were
analyzed by PERMANOVA. The DeSeq2 R package [37]
was used to analyze differentially abundant taxa on genus
level (false discovery rate (FDR) <0.01 and log,-fold change
(log, FC) >I10l) associated with the various combinations
of diet and surgery. The correlation analysis between
differentially abundant genera and biochemical parameters
was assessed by Spearman’s correlation method using the R
software, coefficients were plotted on a heatmap using the
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corrplot package. Differences were considered significant
when P values <0.05.

Results
General parameters

Results on body and organ weight were previously published
[18] and are thus not described in detail here. Body weight
gain was significantly higher after 1 week of HFD in the
D group (P <0.001) and continued to be so during the
whole experiment (except D-VSG and D + C-VSG). At the
end of the experiment, the BWG for D-VSG was close to
C-NS, while D+ C-VSG was similar to both C-Sham and
C-NS (Fig. 2a). Adiposity index was similar for all the NS
groups, D+ C-Sham, D-Sham, and D-VSG, higher than in
C-VSG and D + C-VSG. Leptin decreased significantly in
C-VSG and D + C-VSG groups, while Ghrelin was lower in
all the D groups. The maintained HFD tended to increase
insulin levels and thus HOMA-IR but was not significant.
Surgery had some effect only for the C and the D +C groups,
especially with respect to ISI, were D+ C-VSG showed the
best insulin sensitivity (Fig. 2b).

Diversity

Alpha diversity—diversity in each group, calculated by
Shannon and Simpson Indices—ranked the D groups as
the least diverse, and the control C-NS as the most diverse
(Fig. 3a). Sham and VSG surgery negatively affected

a Body weight gain (g)

400 400 A

300 300 4

200 4

200

100

{miully

Surgery: =™

Week

Qa 8 10 1z

Fig.2 a The D group had a higher body weight gain from week one
(P<0.001). At week eight, half of the D animals switched from the
HFD to the control diet, and all were divided into surgery groups NS,
Sham or VSG. At week 12, VSG had a significantly lower BWG than
Sham or NS in the same diet group, especially for D+C (P <0.001).
b Different parameters at week 12. The adiposity index was lowered
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b Adiposity index

Sham

diversity in C and D-groups, but combined with the dietary
switch, increased diversity for D+ C. Taken as a whole,
diet was the main factor affecting alpha diversity, together
with the combination of diet and surgery, while surgery
alone had less of an effect (and no effect in the Simpson
Index) (Two-way ANOVA, P<0.01).

Non-Metric Multidimensional Scaling (NMDS), based
on Bray—Curtis dissimilarities, was used to assess the
beta-diversity—differences in taxonomic abundances
between samples—(Fig. 3b) showing that diet and VSG
had a very significant impact (P <0.001, PERMANOVA).
Constrained ordination showed diet as the strongest
factor separating samples on the first, most explanatory
axis, and thus, the strongest factor driving the separation
of populations between C and D groups. The D samples
formed a distinct, and more defined, group compared
to the other two diets. Interestingly, the D+ C groups
showed less defined clustering, with samples scattered
intermediately between clusters representing the D and
C cohorts, most evident for D + C-Sham and D 4+ C-VSG,
which overlapped with the C-VSG group. Surgery also
had a significant impact, resulting in a tight clustering for
C-VSG when compared to the respective NS and Sham.

Modifications in relative abundances of cecal
microbes

Diet and surgery induced substantial differences between
groups. The microbiota was dominated by the phyla
Bacteroideres and Firmicutes, which accounted for more
than 80% of the microbiome in all groups (Fig. 4a).

Ghrelin
ab

HOMA-IR

by the combination of VSG and diet switch. Leptin was affected
by VSG. Ghrelin was reduced in D groups. Insulin Sensitivity
Index increased in D+C-VSG. No significant changes were seen in
Insulin or HOMA-IR. P values<0.001 (***) and a—c correspond for
significantly different groups (Tukey post-test)
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Fig. 3 Diversity measures. a Shannon and Simpson indices showing
sample alpha diversity. The bottom and top of the boxplot indicate
the first and third quartile, whilst the line inside the box show the
median. Diversity was reduced by both Sham surgery and VSG in
all groups. D samples had the lowest diversity except for D+C-NS
in the NS situation. P values <0.001 (*#%), P values<0.01 (**) and
a—c correspond for significantly different groups (Tukey post-test). b

On average, the maintained HFD in D increased the
Bacteroidetes fraction, but this fraction was normalized
after the switch to the control diet in D+ C groups. The
diet change also increased the relative abundance of
Verrucomicrobia, up to 16.31%, in the D + C-NS, but not in
the antibiotic treated D 4+ C-Sham and D +C-VSG groups.
Importantly, these two groups showed a strong similarity
at the phyla level to the C-NS and C-Sham groups. On the
other hand, surgery increased the relative abundance of
Firmicutes in D-VSG compared with D-NS (42.43% vs
37.10%, resp.), while reducing Proteobacteria (0.87% vs
4,05%, resp.). In the C groups, no substantial differences
were seen between C-NS and C-Sham, but VSG reduced
the Firmicutes levels (51.41%). At the family level (Fig. 4b),
the D groups had higher Bacteroidaceae abundance, drastic
reductions in Bacteroidales_S24-7 (less than 5%) and
reduced Ruminococcaceae abundance (also observed in
D + C-NS) compared with C. The family Rikenellaceae
was reduced after Sham or VSG, but only in HFD-fed
groups. D+ C-NS and D-VSG similarly had higher levels
of Erysipelotrichaceae (2.65% and 3.92%). VSG reduced
the amount of several families in the Firmicutes phylum,
such as Christensenellaceae, Clostridiaceae, Clostridiales,
and Defluviitalaceae. Diet and surgery significantly
increased or decreased some genera (mainly belonging to
the Firmicutes phylum) when compared to their respective
C group (Online Resource 2). Several Ruminococcaceae
decreased in both D and D+ C in the NS groups, as
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Beta diversity. The non-metric Multidimensinal Scaling (NMDS) plot
for the bacterial communities in our samples based on Bray—Curtis
dissimilarities. D groups, C-NS and C-VSG formed distinct clusters.
PERMANOVA analysis: Surgery (P <0.001). Diet (P <0.001). D+C
samples formed less defined clusters. but were very distinct from D
samples and were overlapping the C-VSG and C-Sham groups

well as several genera belonging to Lachnospiraceae
(Acetifactor, Cellulosilyticum, and Lachnospiraceae_
NK4A136_group) which also increased in D+ C-Sham.
The groups D+ C-VSG, D-Sham and D-VSG had fewer
significantly different genera with respect to their control
matching groups. The Lachnospiraceae_NK4A 136_group
was common in all groups but responded differently to each
experimental situation.

Correlation between cecal bacteria and other
parameters

To observe possible associations between the 30 genera
showing highest change in the dataset showing significant
change and diverse biological parameters, we performed
a correlation analysis between them. Figure 5 shows a
plot of Spearman’s correlation coefficient for significant
correlations. We observe that the genus Akkermansia
strongly correlated to the adiposity index and to the
carbohydrate digestion pathway related to the formation
of short chain fatty acids. Erysipelatoclostridium had
similar correlations in addition to Blautia. Bacteroides.
Faecalitalea, and Terrisporobacter being inversely
correlated with ghrelin.
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Discussion communities. However, the significance is downplayed by

In this work we investigated the effect of HFD, VSG
(accompanied by dietary switch or not) and change of
diet alone on the Sprague—Dawley rat cecal microbiota,
a follow-up of our earlier work reporting on weight loss
results [18]. The combined effect of diet and surgery had
distinctive effects on the microbiota in line with previous
reports [8. 28, 30]. In addition to this, an obvious effect
attributable to pre-operative antibiotic prophylaxis is
noted, reflected in the effects observed in the Sham-
operated cohort of this study. This reasoning is entirely
in line with the ecological theory where, at the species
level, functional redundancy is prevalent in such complex
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therapy-oriented efforts in attributing pathophysiology to
individual microbes, such as in the absence of a direct
effect (e.g., toxin production by the causative pathogen)
where the community function (host phenotype) may not
be reliant on a singular organism. We have thus exclusively
approached how surgery (VSG, Sham surgery or, No
Surgery) combined with dietary variables (control diet,
HFD. or HFD switched to control diet post-operatively)
affect the gut microbiota.

The relative abundance of the main phyla was
strongly affected by diet, and high levels of Bacteroidetes
accompanied by concomitant low levels of Firmicutes
were noted for the D cohort (Fig. 4a) as shown in previous
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Fig.5 Graphic representation of the Spearman correlation
coefficients between the significantly altered genera obtained by
DESeq and different parameters such as adiposity index, biochemical
parameters, and KEGG pathways. Positive correlations are shown in
green color and negative correlations in red color. The color intensity
and the circle size are proportional to the correlation coefficients.
Only genera with significant correlations (<0.05) are shown

studies [10, 38]. The maintained HFD also altered diversity,
separating the D populations from both C and D +C, no
matter the surgical approach (Fig. 3b), and lowered the
alpha diversity (Fig. 3a). an indication of dysbiosis [39].
The HFD is said to have a lesser negative influence on the
alpha diversity than other obesogenic diets (such as the one
mimicking the western diet used by Bortolin et al. [40].
Nevertheless, we observed a pronounced reduction that
persisted after the switch of diet alone. Alpha diversity was
also affected by VSG. but to a lesser degree than by the
change of diet, although VSG only removes the glandular
part of the stomach and leaves the intestine intact [28].
Nonetheless, both C and D groups subjected to VSG had
reduced alpha diversity, similar to what has been seen in
humans and animals [41, 42], but also to Sham surgery,
suggesting the effects of the antibiotic Enrofloxacina were
the primary cause rather than the surgery itself. Interestingly,
the combination of antibiotic and diet change increased
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alpha diversity for D +C-Sham and D+ C-VSG. This
could imply that a wipeout effect from the antibiotic was
needed to achieve a more beneficial microbiota restoration
after the change of diet. This highlights the strong, but
often-neglected effect of pre-operative antibiotics on the
microbiome (highlighted in a recent review [43]). More
research is thus warranted towards further understanding of
how antibiotic choices may be amenable pre-operatively in
the re-establishment of a healthy microbiota.

The D +C groups were of particular interest in this study
as the diet switch to the control diet, even in the absence of
other factors, resulted in major compositional differences
in the HFD-fed rats showing a partial restoration of the
original microbiota. This is in line with other studies [4]
where a significant reduction in the relative abundance of
Bacteroidetes and an increase in Firmicutes compared to
D was reported. As we showed previously [18], ‘recovery’
(i.e., net weight and adipose tissue reduction) was better
achieved in the group combining diet switch and VSG. In
this study, we observed improvements in BWG, adiposity
index, leptin, ghrelin and ISI, returning to control values in
the D +C-VSG group (Fig. 2a, b). Furthermore, D 4+ C-VSG
rat microbiomes had a closer resemblance to the C groups
on the phylum level (Fig. 4a) but still differed at family level
(Fig. 4b), proving the difficulties of proper restoration of the
microbiota after a diet-induced perturbation, especially at
lower taxonomy levels, as seen in other studies with HFD-
fed rodents [6, 15, 44]. Once more, this remains a strong
indicator of community-level synergistic effects, and argues
against single microbial species causality.

While not disregarding the possibility of redundant
species function, changes in abundance of specific taxa
warrants attention; Akkermansia muciniphila, the only
member of Verrucomicrobiaceae, is described as a marker
of improved host health [45]. This species was elevated in
D+ C-NS (Fig. 4b) and seems to be directly affected by
antibiotic administration, as levels were not increased in
D + C-Sham or D + C-VSG. A. mucinphila was positively
associated with several parameters related to obesity (Fig. 5)
but also with increased adiposity. Several of the genera
found in Fig. 5 contain species that produce short chain fatty
acid (SCFA). The SCFAs are involved in the maintenance
of the intestinal epithelium and have been associated with
obesity and its comorbidities, alongside with improvements
in intestinal inflammation [46-50]. Indeed, we found
correlations—both negative and positive—between
significantly changed genera and the chosen parameters. and
we observed similar correlation patterns for the following
taxa; (Akkermansia, Blautia and Erysipelatoclostridium, or
Ruminiclostridium and Ruminiclostridium-6). Again, this
may highlight the synergistic effects at the community level,
instead of pin-pointing single species as causative agents.
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To maximize the weight loss associated with VSG and
stabilize the microbiome, a diet-switch combined with
probiotic administration may maximize health gains by
counteracting HFD effects and reduce body weight [39,
51]. The aforementioned A. mucinphila is a proposed
probiotic, implicated in combating obesity and metabolic
syndrome [45, 51]. Accordingly, any prospective probiotic
cocktail devised to facilitate weight loss would likely
require extensive testing in multiple dietary backgrounds.
Another line of reasoning regarding optimal weight loss
after BS is the effect of VSG on SCFA-producers, resulting
in reductions of butyrate and decreased LPS translocation
(leaky gut) relevant to tight junction regulation in the
intestinal epithelium [40]. Clearly, more work is needed
to clarify the nature of probiotics, SCFA-producers and
several other organisms in host physiology, but also and
perhaps more importantly, the intricate structures and
relationships between and among taxa at the community
level. Approaching exact numbers and true abundances will
require more in-depth analyses combining deep sequencing
and reverse transcriptomics to identify actively dividing
populations stimulated by each intervention.

The difficulties associated with extending results from
animal models to human interventions are diverse and
widely acknowledged. Rodents allow for the inclusion of
controls necessary for the optimal evaluation of multiple
variables and their effects on gut microbiota. However, to
facilitate easier comparisons in such studies, a need exists
to standardize diets. Such improved diets are currently being
developed in several instances [13], as the standard HFD is
an inadequate representation of western food habits, believed
to be responsible to some extent for the obesity pandemic.
Also, an additional no-surgery antibiotic-treated group
would have been useful in evaluating this effect, and opens
up avenues for further investigation on future studies.

In conclusion, this study provides evidence that a
controlled diet following VSG is key to increasing alpha
diversity and restoring the HFD-perturbed taxonomomic
composition of the microbiota. It highlights the effect of
antibiotic exposure in the pre-operative stage, hinting at
its importance in microbiome modulation caused by the
procedure. Gut microbiota alterations may be beneficial
during recovery of healthy body weight after bariatric
surgery. Further studies are needed to elucidate the intricate
relationship that gut microbiota, diet, weight loss, antibiotics
and BS have. Modulation may represent a new plausible
target in improving the outcome of interventions against
obesity.
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Abstract: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated
with obesity and metabolic syndrome. Calorie-restricted diets are often advised as a treatment, but bariatric
surgery is the best option to treat both obesity and NAFLD in an effective and durable way. We aimed to assess
the effects of diet, bariatric surgery, or a combination of diet and bariatric surgery on fatty acid compositions in
the livers of obese rats. Sprague Dawley rats were fed a high-fat diet to induce obesity. They were then subjected

to a control diet, a vertical sleeve gastrectomy (VSG), or both, before the analysis of their hepatic fatty acid
compositions. Obese rats had lower saturated fatty acid levels and higher monounsaturated and polyunsaturated
fatty acid amounts. Changing diet reduced the amount of hepatic fat without affecting most of the fatty acid
composition, while VSG alone elicited few changes. The combination of dietary change and VSG reversed most
of the effects of the high-fat diet, thus demonstrating that it was the most effective way of reversing the hepatic
changes seen in obesity.

Keywords: High-fat diet; fatty acid; lipid metabolism; obesity; fatty liver; sleeve gastrectomy; bariatric surgery

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and one of the several
comorbidities associated with obesity. It is also closely associated with insulin resistance and metabolic syndrome
(1-3). The accumulation of visceral fat in obese patients is linked to a higher influx of triacylglycerides (TG) to
the liver, which leads to the increased hepatic TAG levels seen in NAFLD (3-5). Elevated levels of non-esterified
fatty acids (NEFA) and other derivatives of fatty acid (FA) metabolism cause hepatic inflammation, contributing
to the later stages of NAFLD such as non-alcoholic steatohepatitis and irreversible hepatic damage (2, 3).

Dietary fat is a source of essential (EFA) and non-essential FAs. Fatty acids have important structural and
molecular roles, participate in cell signaling, and are involved in the resolution of inflammatory processes (6, 7).
Unbalanced fat-enriched diets are one of the main factors leading to obesity and NAFLD (3, 8). In rodents, a
prolonged high-fat diet (HFD) is traditionally used to induce obesity, increasing body weight and inducing several
metabolic changes (9).

NAFLD is often improved with calorie-restricted diets (2, 10), although bariatric surgery (BS) is considered
the most effective treatment of both NAFLD and obesity, significantly reducing the hepatic fat content (5, 11).
Vertical sleeve gastrectomy (VSG) is a restrictive procedure that has recently become the most widely performed
BS, promoting weight loss and improving insulin resistance and blood lipid profiles. Furthermore, it involves less
surgical complexity and fewer drawbacks, such as risk for nutritional deficiencies, compared to other types of BS
(11-13).

We designed an experiment in which diet-induced obese rats were subjected to VSG, a dietary intervention
(i.e, a change to control diet), or a combination of both. Our objective was to study how HFD, VSG, and diet
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change affect the liver and alter its FA profile and metabolism. Due to sampling limitations, these changes are
difficult to assess in obese patients. In this study, we observed that the HFD increased adiposity in the whole body
and liver, also affecting hepatic FA profiles. These modifications were mostly reversed only when VSG was
combined with a change of diet.

2. Materials and Methods

Animals

Male Sprague Dawley rats (9 weeks old, weighing 315 + 5 g) from the breeding house of the University of
Lleida were maintained in an environmentally controlled animal facility. The animals were divided into three
main groups (n = 18). The control (C) group was fed a standard chow diet (CD) that provided 20% of the calories
from protein, 67% from carbohydrates, and 13% from fat (Teklad Global, 2014C, Envigo) (see complete
composition in Table 1).

Table 1. Diet composition.

CD HFD
Diet composition g/kg % calories g/kg % calories

Protein 143 20 235 18.4
Carbohydrate 480 67 273 21.3
Fat 40 13 343 60.3
Fatty acid composition  g/kg % fat g/kg % fat
Saturated 6 15.0 125 36.4
Monounsaturated 7 175 161 46.8
Polyunsaturated 21 52.5 54 15.8

MA (C14:0) - - 5 1.4
PA (C16:0) 5 12.5 80 23.4

POA (C16:1) - - 10 2.8
SA (C18:0) 1 2.5 39 11.5
OA (C18:1) 7 175 147 42.8
LA (C18:2) 20 50.0 47 13.7

ALA (C18:3n-3) 1 2.5 6 1.6

Detailed compositions of the control diet (CD) (Teklad Global 14% Protein Rodent Maintenance Diet, 2014) and high-fat diet
(HFD) (TD.06414; Adjusted Calories Diet, 60 kcal from fat) obtained from Envigo (Indianapolis, USA). ALA, alpha-linolenic
acid; LA, linoleic acid; MA, myristic acid; OA, oleic acid; PA, palmitic acid; POA, palmitoleic acid; SA, stearic acid.

The high-fat (HF) group was fed an HFD that provided 18% of the calories from protein, 21% from
carbohydrates, and 60% from fat (TD.06414; adjusted calories, 60/fat, Envigo). The diet-change (DC) group was
fed an HFD in the first eight weeks of the experiment, before switching to the CD in the last 4 weeks of the study.
Food and water were given ad libitum, and intake and body weight were measured three times a week. In week 8,
each group was further divided into three groups: one that received no surgery (NS), one in which surgery was
simulated (Sham), and one that underwent a VSG. Thus, the following groups were established (figure 1): C-NS,
C-Sham, C-VSG, HF-NS, HF-Sham, HF-VSG, DC-NS, DC-Sham, and DC-VSG. The protocol was approved by
the Ethical Committee for Animal Experimentation of the University of Lleida (CEEA 04-05/12) and of the
University of Barcelona (CEEA 8676).
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Figure 1. Study design showing the division into three main groups: C fed a control diet, and DC and HF fed a
high-fat diet. At week 8, the DC group changed to control diet. All the groups were then divided into three further
groups and subjected to Sham surgery (S), vertical sleeve gastrectomy (VSG) or no surgery (NS).

)

Surgery

Sham surgery and VSG were performed as described by Rossell et al. (14). Briefly, 80% of the stomach was
removed in the VSG groups, while an incision into the abdominal cavity but no stomach resection was performed
in the Sham groups. The mortality rate due to surgical complications was 9.25% during the two days post-surgery.
Food was reintroduced progressively after surgery, with normalization on the fifth day. Animals were maintained
for four more weeks in the new conditions until euthanasia.

Sample collection

Animals were euthanized by decapitation in week 12 after a 12-h fast. Blood samples were collected in tubes
containing EDTA and plasma was obtained through centrifugation (500 g for 15 min at 4°C). Liver and perirenal
and epididymal white adipose tissue pads (counted together and referred to henceforth as “fat pads”) were
collected, weighed, frozen, and stored at -80°C.

Plasma analysis

Triacylglycerides, NEFA, total cholesterol (Chol), HDL cholesterol (cHDL), LDL cholesterol (cLDL), and
glucose levels in the plasma were enzymatically analyzed using a colorimetric method (RAL, Laboratory
Techniques, Spain). Monocyte chemoattractant protein-1 (MCP-1), glucagon, and insulin levels were analyzed
with commercial ELISA kits. Glucose homeostasis was calculated with the following formulas: insulin sensitivity
index (I1SI) = 1/(fasting glucose (mmol/l) x fasting insulin (mlU/I)); the homeostatic model assessment of insulin
resistance (HOMA-IR) = (fasting glucose (mmol/l) x fasting insulin (mIU/I))/ 22.5; and the homeostatic model
assessment of B cell function (HOMA-B) = 20 X fasting insulin/(fasting glucose — 3.5).

Hepatic lipid extraction and quantification

Total hepatic lipid extraction was performed using the hexane:isopropanol method. Hepatic samples (500
mg) were incubated with 2 mL of hexane:isopropanol (3:2, v/v) overnight at room temperature in an orbital. 0.3
mL of 0.47 M sodium sulfate was added to the sample before it was vortexed and centrifuged. The hexane (top
phase) containing the lipid fraction was transferred to a new vial, dried, and weighed.

Lipid quantification was performed using thin-layer chromatography (TLC). Lipid extraction samples were
dissolved in chloroform and spotted onto silica gel TLC plates (Merck). Plates were developed in hexane, ether,
and formic acid solvent, before visualization with copper sulfate.
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Quantification of liver fatty acid compositions

Liver fatty acid composition was determined as fatty acid methyl esters (FAME) after a methylation reaction,
using the method of Lepage and Roy (15). Gas chromatography-mass spectroscopy (GCMS) was performed on a
Shimadzu GCMS-QP2010 Plus gas chromatograph/mass spectrometer (Shimadzu Co., Kyoto, Japan), operated
with a split/splitless injector, a Shimadzu AOC-20i autoinjector, and a Shimadzu AOC-20s autosampler. The
SupraWAX-280 column was used (Teknokroma Analitica SA, Sant Cugat del Vallés, Barcelona, Spain), while
the GCMS solution software was applied to process the acquired data. FAME peaks were identified through mass
spectra and by comparing the elution pattern and relative retention times of the FAMEs using a reference FAME
mixture (GLC-744 Nu-Chek Prep. Inc., Elysian, Minnesota, USA). Results are expressed in relative amounts
(molar percentage of total fatty acids).

The FAs identified were (in alphabetical order): arachidonic acid (AA), C20:4n-6; alpha-linolenic acid
(ALA), C18:3n-3; dihomo-y-linolenic acid (DGLA), C20:3n-6; docosahexaenoic acid (DHA), C22:6n-3;
docosapentaenoic acid (DPA), C22:5n-3 and C22:5n-6; eicosapentaenoic acid (EPA), C20:5n-3; gamma-linoleic
acid (GLA), C18:3n-6; linoleic acid (LA), C18:2n-6; lignoceric acid (LIG), C24:0; myristic acid (MA), C14:0;
oleic acid (OA), C18:1n-9; palmitic acid (PA), C16:0; palmitoleic acid (POA), C16:1n-7; stearic acid (SA), C18:0;
and vaccenic acid (VAC), C18:1n-7.

The activities of the enzymes involved in FA metabolism were estimated as the product-to-precursor ratios
of individual FAs as follows: stearoyl-CoA desaturase 1 (SCD1) activity as the ratio of 16:1n-7/16:0; stearoyl-
CoA desaturase 18 (SCD18) activity as the ratio of 18:1n-9/18:0; elongase activity as the ratio of 18:1n-7/16:1n-
7, delta-6 desaturase (A6D) activity as the ratio of 18:3n-6/18:2n-6; and delta-5 desaturase (A5D) activity as the
ratio of 20:4n-6/20:3n-6. In addition, de novo lipogenesis (DNL) was estimated as the ratio of 16:0/18:2n-6 and
the EFA status index (EFASTI) as the ratio of (3n-3 +>'n-6)/(3.n-7+) n-9), based on absolute fatty acid amounts
(141).

Statistical analysis

Results are presented as mean = SEM. Normally distributed quantitative variables were assessed by the
Shapiro-Wilk test. Skewed data were logarithmically transformed. The effect of diet, surgery, and their interaction
was analyzed with a two-way ANOVA. Significant results were analyzed with Tukey’s test to identify statistically
significant differences between the groups. Statistical comparisons were considered significant at P < 0.05. All
statistical analyses were performed using the R program (www.R-project.org).

3. Results

3.1. General characteristics

The HFD increased body weight and fat depositions in the HF-NS group, which remained high after
changing the diet in the DC-NS group (Table 2). VSG significantly reduced body weight and fat pad weight in
the animals fed the HFD, especially when combined with dietary change in the DC-VSG group (36.4% and 86.4%,
respectively, compared to the HF-NS group). The livers of the rats in the HF-NS group had three times the fat
content of those in the animals of the C-NS group, with increased levels of esters and TGs, as well as alteration
in liver appearance. Only dietary change significantly reduced the amount of hepatic fat. There were no differences
between the Sham and NS groups (Table S1).

3.2. Fatty acid profile in liver tissues

Both surgery and diet led to several changes in liver FA profiles (Table 3). No differences were seen between
the Sham groups and their respective NS groups (Table S2). The proportion of saturated fatty acids (SFA)
decreased in animals on the HFD (mainly PA), but increased in the VSG groups (mainly LIG). Monounsaturated
fatty acids (MUFA) showed the opposite pattern. The HFD significantly increased OA levels (the HF-NS group
had 180% more OA levels than the C-NS group), which decreased with dietary change, especially when combined
with surgery in the DC-VSG group. Polyunsaturated fatty acid (PUFA) levels decreased in rats fed the HFD,
but increased in those that underwent VVSG and a dietary change. The HFD lowered both n-3 and n-6 PUFA levels.
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VSG significantly reduced body weight and fat pad weight in the animals fed the HFD, especially when combined
with dietary change in the DC-VSG group (36.4% and 86.4%, respectively, compared to the HF-NS group). The
livers of the rats in the HF-NS group had three times the fat content of those in the animals of the C-NS group,
with increased levels of esters and TGs, as well as alteration in liver appearance. Only dietary change significantly
reduced the amount of hepatic fat. There were no differences between the Sham and NS groups (Table S1).

3.3. Fatty acid profile in liver tissues

Both surgery and diet led to several changes in liver FA profiles (Table 3). No differences were seen between
the Sham groups and their respective NS groups (Table S2). The proportion of saturated fatty acids (SFA)
decreased in animals on the HFD (mainly PA), but increased in the VSG groups (mainly L1G). Monounsaturated
fatty acids (MUFA) showed the opposite pattern. The HFD significantly increased OA levels (the HF-NS group
had 180% more OA levels than the C-NS group), which decreased with dietary change, especially when combined
with surgery in the DC-VSG group. Polyunsaturated fatty acid (PUFA) levels decreased in rats fed the HFD,
but increased in those that underwent VSG and a dietary change. The HFD lowered both n-3 and n-6 PUFA levels.

3.4. Fatty acid ratios, estimated enzyme activities, and essential fatty acid status index

Several ratios and enzyme activities were estimated from the analyzed FA profiles (Table 4). No differences
were seen between the Sham groups and their respective NS groups (Table S3). The AA/EPA ratio increased in
all the groups after VSG, while the AA/DHA ratio decreased in the HF groups although there were few differences
between the groups. Diet was the only factor that affected the MUFA/PUFA ratio, with higher values in the HF-
NS group.

The HFD lowered SCD1 activity, but only in the HF groups, as the change of diet led to higher values. ASD
activity was also lower in the HF groups, remaining so even with the change of diet in DC-NS. The HFD had the
opposite effect on SCD18 activity, increasing it in the HF groups, especially when compared to the C groups.

The HFD decreased the EFASTI (59% in the HF-NS group). Changing back to the CD had no effect on the
EFASTI, but increased it when combined with VSG in both the C-VSG and DC-VSG groups.
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4. Discussion

In this study, we analyzed hepatic FA compositions and other biochemical parameters in rats fed an HFD.
We also analyzed the changes in FA composition after changing to the CD, VSG, or after a combination of the
two.

The HF groups presented increased hepatic fat content (mass and percentage), twice the amount of esters,
three times the levels of TAG, higher MUFA concentrations, and a higher n-6/n-3 PUFA ratio, which are also
seen in NAFLD (17-19). The higher influx of fat leading to hepatic accumulation was diet-related, as the fat intake
in the HF groups was 700% higher than in the animals fed the CD. The variations in DNL indicated that this was
not a source for the differences seen in the HF groups. We did not measure -oxidation, but this may be another
source of the increase in hepatic fat content; it has been reported to be reduced in animals fed an HFD due to
modifications in the lipid membranes of peroxisomes (20, 21), decreasing FA consumption and increasing its
accumulation. We also found that the HF-NS group showed increased AA/EPA and AA/DHA ratios compared to
the C-NS group, in accordance with the pro-inflammatory FA profile previously observed in NAFLD (22).
Interestingly, the levels of the inflammatory plasma marker MCP-1, an indicator of macrophage infiltration,
remained similar between the groups, although it has been reported to be increased by HFDs (23).

The HF groups presented lower SFA and higher MUFA fractions, despite the high proportions of SFA and
MUFA in the HFD (36% and 47%, respectively). This might be explained by the use of lard as the main source
of fat, which, though rich in SFA, also has a high amount of OA. High OA intake is also associated with NAFLD
and inflammation (18, 21, 24), but may reduce the parameters associated with metabolic syndrome such as
hypertriglyceridemia (25). Indeed, we observed that plasma TAG levels were decreased by the HFD. The PUFA
fraction was also decreased by the HFD, as described previously (19, 23). This is an interesting finding, given that
the HFD contained more LA and ALA than the CD. Both n-3 and n-6 PUFAs have important roles in maintaining
cell membrane fluidity and in cell signaling (6), and seem to be involved in obesity. A high PUFA intake can
inhibit DNL, and n-3 PUFAs limit hepatic TAG accumulation (18). However, we did observe a higher TAG
accumulation. Moreover, n-3 PUFAs are anti-inflammatory, as ALA is a precursor of long-chain PUFAS
(LCPUFAS). Furthermore, both EPA and DHA are precursors of specialized pro-resolving molecules, such as
protectins and resolvins, which are responsible for the resolution of inflammatory processes (7). Lower levels of
n-3 PUFAs might impair this resolution, leading to the continued inflammatory state characteristic of obesity and
NAFLD (26). Supplementation with EPA and DHA has been reported to improve steatosis and hepatic
inflammation (23, 27).

We observed a positive correlation between SCD1 activity and the percentage of hepatic fat (Figure 1(a);
Pearson correlation R =-0.52, P < 0.01) and also between SCD18 activity and the percentage of hepatic fat (Figure
1(b); Pearson correlation R = 0.75, P < 0.001), as previously reported (28, 29). The percentage of hepatic fat
negatively correlated with the AA/DHA ratio (Figure 1(c); Pearson correlation R = -0.42, P = 0.029). SCD1 and
SCD18 regulate the desaturation of SFA to MUFA. SCD18 desaturates the FAs synthesized through DNL to OA,
which is stored as TAG (6). In our study, the HF groups had higher estimated SCD18 activity without changes in
DNL. This may have been due to the higher OA content in the HFD, which may affect the estimation of SCD18
activity even though the estimation of desaturase activities correlates with mRNA expression (19).
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Figure 2. Pearson correlation between the percentage of hepatic fat and (a) SCD1 activity, (b) SCD18 activity, (c)
the AA/DHA ratio, and (d) EFASTI.

Switching from the HFD to the CD in the DC groups mainly improved the hepatic fat content, as well as
hepatic ester and TAG levels, which recovered (understanding recovery as returning to values similar to those of
the C groups). The DC groups also showed normalized SFA and improved MUFA values. Although VSG also
altered SFA and MUFA values, there was no combined effect of VSG and dietary change. However, only a few
parameters were altered by VSG alone, since most of the data analyzed showed no differences between NS and
VSG when the groups were kept on the HFD. The DC-VSG group showed improvements in many of the FA
levels, ratios, and enzyme activities, several of which recovered to control values. This finding was particularly
interesting as changing to a healthier diet (DC-NS) reduced hepatic fat content (as also observed in humans (30)),
but did not reverse several of the molecular changes caused by the HFD. The combination of dietary change and
VSG proved to be the best solution for NAFLD, as demonstrated by the recovery of several parameters such as
the PUFA fraction, other FAs, SCD18 activity, A5D activity, and the EFASTI. The improvement in the EFASTI,
which negatively correlated with the percentage of hepatic fat (Figure 1(d)), is interesting as it indicates the status
of EFAs and, thus, the availability of FAs for the synthesis of specialized pro-resolving molecules in order to
resolve inflammation (7). Another interesting finding is the reduction in LA and ALA, in the C-VSG and DC-
VSG groups compared to their respective NS groups, despite a similar intake. This may have been due to their
increased use as precursors to deal with the ongoing postsurgical inflammation, since the AA/EPA and AA/DHA
ratios were also increased (30). In addition, the AA/DHA ratio negatively correlated with the percentage of hepatic
fat (Figure 1(c)), indicating a higher basal inflammatory state in the obese animals. in the increases in these ratios
tended to be lower in the HF-VSG than in the C-VSG, possibly indicating a deficient inflammatory response after
surgery.

We stress that many of the recovered parameters had values that were closer to those of the C-VSG group
than the C-NS group, as VSG also affected the non-obese C groups. It is now understood that the benefits of VSG
are not only due to reduced intake: rats compensate for the effects of VSG by increasing the number of smaller
meals (20, 31).We observed an almost normalized intake after 4 weeks (except in the HF-VSG group, where it

104



ARTICLES

remained lower; Table S4). We recently saw a similar trend in gut microbiota (32), which was affected by VSG
regardless of the diet. In the present study, combined treatment (the DC-VSG group) showed improvements in
animals that had initially received the HFD, but the microbiome was not fully restored and its values were closer
to those of the rats in the C-VSG group, indicating that there are still some unknown mechanisms underlying the
effects of VSG.

This study presents some limitations. The HFD used did not have added sugar, and so was not representative
of the Western diet in humans. Furthermore, the fact that the diets were not EFA-balanced may have affected
some of our results, although we observed higher EFA levels in the CD-fed animals. We also analyzed the FAs
without separating the different fractions, and enzyme activities were estimated rather than measured. Despite
these limitations, however, our study also has important strengths, such as the complex design analyzing dietary
change and VSG both as separate variables and in combination, using controls for each variable.

5. Conclusion

Liver FA compositions, as well as the activities of several enzymes associated with hepatic FA metabolism,
were altered in an HFD-induced NAFLD model. The HFD led to obesity, higher fat accumulation, modified FA
compositions, and a pro-inflammatory FA profile. The combination of dietary change and VSG was the most
effective in reversing the hepatic consequences of HFDs. The changes in FA composition and the activities of
enzymes involved in FA metabolism in HFD-induced fatty livers may dysregulate resolvins and protectins,
contributing to the inflammatory state seen in NAFLD. Further studies are necessary to elucidate this; however
what is clear is that these changes can be reversed by combining VSG and dietary change.

Supplementary Materials: Table S1. General characteristics (all surgical groups); Table S2. Fatty acid profile in liver
tissues (all surgical groups); Table S3. Indices, ratios, and enzyme activities in the liver (all surgical groups); and Table
S4. Intake (calories and nutrients) at week 12.
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In this section we will present a global overview of the results obtained in this study, which
are published in the two articles, written in the third article, and also further unpublished
material. For that, we will start by analyzing the intake evolution for each diet and group
during the 12 weeks of the experiment, and how it was modified by the surgical options. We
will proceed with how diet and surgery affected the anthropometrical parameters (body
weight (BW) and organ weight), followed by the effect on the biochemical parameters. Later,
we will analyze the changes in GM. Finally, we will end with the effects of diet and surgery

on the FA composition in brain tissue, liver tissue, and visceral WAT.

4.1. FOOD INTAKE

In this study, we fed the C group a standard chow diet , and the HF and DC groups a HFD.
The HFD had a calorie composition of 18 % protein, 21% carbohydrates, and 60% fat, with

lard (rich in SFA) as the main component (for comparison to chow diet, table 1, article 3).
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Figure 10. Pre-surgery daily intake. Daily intake per week and animal, in grams

and in calories, for each diet during the first 8 weeks. HFD stand for high-fat diet.
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During the first 8 weeks of study, all the groups had a similar daily intake (g), but the groups
fed a HFD had a much higher calorie intake when compared to the group fed a chow diet

(p<0.01, Welch’s t-test) due to the higher caloric density of the HFD (figure 10).

At the end of the 8" week, animals underwent one of the surgical options: no surgery (NS),
simulated surgery (sham) or VSG. The DC group, that had been fed a HFD, changed then
to the chow diet. The change of diet was intended to represent the change in dietary habits
that occur when humans follow a diet with reduced calorie content, combined or not with
BS. The NS groups continued the following 4 weeks with a similar intake than in the previous
weeks, with HF-NS maintaining the higher calorie consumption, but DC-NS now was eating

less amount of calories ingested due to the change of diet (figure 11).
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Figure 11. Post-surgery daily intake. Daily intake per week, in grams (upper panel) and in
calories (lower panel), for each diet during the four last weeks, with surgery and change of
diet taking place at week 8. C stands for control group, and HF for high fat group, DC for
diet change group.

There was a reduction in the intake at week 9 for sham groups, probably as a result of the
pre-operative fasting. Daily intake was increased at week 10, with C-sham eating as C-NS. At

week 11, HF-sham was also eating a similar amount as HF-NS. At the end of the study, sham
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groups were eating the same amount as NS groups, except for DC-sham, that after a different
feeding evolution, ended up with the highest intake in grams, but still eating fewer calories
than the HF group. The intake in all groups was heavily affected by the VSG, probably due
to the post-operatory diet which consisted of two days with a semi-fluid diet, followed by a
progressive reintroduction of food pellets mixed with liquid. At the 10® and 11" week, food
intake progressively increased in all groups until the food intake was similar to the NS groups.
At week 12, chow diet-feed groups tended to decrease the amount of food ingested, but only
HF-VSG was eating significantly fewer calories than its unoperated match. The amount of

calories that DC-VSG ingested at this point was similar to both C-VSG and HF-VSG.

4.2. EFFECT ON ANTHROPOMETRICAL

PARAMETERS

4.2.1. EFFECT ON BODY WEIGHT

The increased energy intake in the HFD-fed groups caused a higher body weight gain
(BWG), visible from the first week of the experiment and maintained during the 8 first weeks
(figure 2-a, article 2). The higher weight gain translated into a higher body weight in the
HFD-fed group (HF and DC groups) compared to the group fed the chow diet - at week 8
(figure 2, article 1). There was a tendency to a reduced BWG after the 6* week in C-groups,

while HF kept the BWG at a similar pace during the first 8 weeks.

After the 8" week, the groups without surgery (C-NS, HF-NS, and DC-NS) continued
increasing their body weight, with C-NS still having a moderate growth compared to HF-NS
(figure 12). The change from HFD to chow diet did not seem to affect much the weight
gain in DC-NS at the beginning, as DC-NS kept a similar BWG, with a higher BW than HF-
NS (figure 2-a, article 2). After the 10" week, DC-NS slowed down the BW increase, unlike
HF-NS, stabilizing its weight until the end of the study at week 12. After sham surgery, all
groups lost weight compared to their pre-surgery weight at week 8 (% weight loss, figure3,
article 1), but all started to regain weight at week 9. All groups caught up their pre-surgery

weight at the end of the 12" week but at a different pace depending on the diet, with HF the
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first as the weight loss was small, followed by DC-sham, and lastly C-sham, catching up after
the 11" week.

NS Sham VSG
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Figure 12. Post-surgery body weight. Evolution of the body weight after surgery, separated by

surgical option: No surgery (NS), simulated surgery (sham) or vertical sleeve gastrectomy (VSG).

Color lines represent the different diet groups: control (C), diet change to chow diet (DC), and
high fat (HF)

After VSG is when we have the most pronounced weight decreases in our study. All groups
suffered big reductions in weight, being DC-VSG the group that lost the most. After the 9"
week, HF-VSG and DC-VSG started to regain weight, although none of the three groups

catch up the pre-surgery weight. Besides leading to a higher weight loss, the change of diet
also contributed to a lower BWG, compared to HF-VSG.

4.2.2. EFFECT ON ORGAN WEIGHT

Besides affecting the whole body weight, the HFD, the diet change, and the surgical

intervention also affected the weight of some organs (figure 13). As described in the first
article, (table 2, article 1), the HFD increased the amount of WAT, mostly the lumbar but
also the epidydimal depot, the liver, the kidney, and also the heart. There was no difference
in organ weight between HF-NS and DC-NS. No differences were neither observed between
sham and their respective NS groups, except for DC-sham, where kidneys weighted less than

in DC-NS, (3.3+0.2 vs 3.3%0.1). After VSG, the size of WAT was heavily reduced, especially
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in DC which reduced from 38.4 g in DC-NS to 5.5 g. The liver, the size of which was
increased in the groups that were fed a HFD, was also reduced after VSG in HF and DC
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Figure 13. Organ weight expressed as the mean (g), or as relative percentage (%), per group at week 12. AG
stands for adrenal glands, BAT for brown adipose tissue, eWAT for epidydimal white adipose tissue, IWAT
for lumbar white adipose tissue.

groups. We did not record any difference in the stomach weight in the VSG groups

compared to either sham or NS.

Besides increasing in weight, the liver of the HF rats had a higher amount of fat (2.8% in
HF-NS, compared to 0.94 in DC-NS), an increase reflected in the higher amount of hepatic
TG (table 2, article 3). Interestingly, hepatic fat was not affected by surgery but only by diet.
The change of diet in DC reduced the amount of hepatic fat but remained still higher than

in C groups. On the other hand, the amount of TG was reduced to C levels with the change

of diet.

4.3. EFFECT ON BIOCHEMICAL PARAMETERS

The use of a HFD in animal models is known to be a useful and effective method to induce

obesity and also the associated metabolic alterations such as dyslipidemias and IR.
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4.3.1. LIPID PROFILE

We analyzed the plasma lipid profile to measure the changes induced by the HFD and how
VSG modified them. We did not observe any of these alterations that indicate the apparition
of dyslipidemia (table 2, article 3), despite the higher body weight and higher WAT weight
in HF-NS and DC-NS. There were no significant differences in total cholesterol (Chol),
HDL, LDL, and NEFA between C-NS, HF-NS, or DC-NS. Regarding TG, levels dropped
during the feeding with a HFD, and increased with the change of diet towards the levels of
C-NS. The VSG increased levels of C and LDL in rats fed with chow diet (C-VSG and DC-
VSG) but did not in HFD-fed animals.

4.3.2. GLUCOSE HOMEOSTASIS

We also measured glucose and several parameters related to glucose homeostasis (figure 2-
b, article 2, and table 2, article 3). We did not observe any differences between groups in
glucose values, but we found increased values of glucagon in HF groups, as well as a tendency
to higher insulin levels in HF groups too. Insulin levels remained stable in HF-VSG, but
when surgery (and also sham) was combined with the diet change, it heavily reduced its levels.
In fact, insulin levels in DC-sham or DC-VSG were lower than in C groups, even though
the differences were not significant. This decrease in insulin, without altering the glucose
levels, led to a higher insulin sensitivity index (ISI) in DC-sham and DC-VSG, and also
tended to be higher in C-sham and C-VSG. A similar pattern for the homeostatic model

assessment for IR (HOMA-IR), and for $ cell (HOMA-B).

4.3.3. HORMONES

The hormones leptin and ghrelin were also measured in this study (figure2-b, article 2).
Leptin tended to increase in groups fed a HFD, without being significantly different from C-
NS. Neither sham nor the change of diet alone affected leptin levels. On the other hand,
VSG reduced leptin levels, but only in the groups that were currently fed with a chow diet.
Unacylated ghrelin tended to be lower in the HFD-fed groups, but only as long as the diet

continued. The change to a chow diet increased ghrelin values to control levels.
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Leptin positively correlated with the amount of fat (sum of the epidydimal and lumbar WAT)

J .
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Figure 14. Pearson correlation between leptin and
amount of adipose tissue

4.4, EFFECT ON THE GUT MICROBIOTA

The GM community was heavily affected by the administration of the HFD and by the

different surgical variables.

4.4.1. DIVERSITY

The HF groups had reduced alpha-diversity (figure 3-a, article 2), which translates in a
reduction of the number of species found in the gut. The change of diet did not improve the
alpha-diversity and remained low in DC-NS. The VSG, but also sham, contributed to further
lower the alpha-diversity in HF groups, but also in C. Interestingly, when surgery (either VSG
or sham) was combined with the change of diet it increased the richness of species living in
the gut, restoring the richness to C-NS levels. Regarding beta-diversity (figure 3-b, article
2), the diversity of species compared to other samples, or how similar samples are between
them, the HF groups were clustered together despite undergoing surgery. The DC groups
behaved similarly, with a more widespread pattern, but clustered together, ovetlapping some

of the area corresponding to the C groups.
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4.4.2. TAXONOMY

We have also observed changes in the taxonomy in our study, with the HF groups having a
higher portion of the Bacteroidetes phylum, dominated by the Bacteroidaceae family, while the
Bacteroidales $24-7 was heavily reduced (figure 4, article 2). We can see that several families
do not longer appear in the HF-sham and HF-VSG, in accordance with what was shown in
the diversity plots. On the other hand, the group DC-NS, which continued having a low
richness diversity, seems to have restored some of the taxonomical variances at the family
level. Not only that, but the phylum VVerrucomicrobia, scarcely present in the C groups, appears
here with approximately 20% of the relative abundance. This detail is interesting and shows
how complex the interpretation of GM data can be, as an increased number of families can

still translate into a reduced number of species.

4.4.3. SHORT CHAIN FATTY ACID ANALYSIS

Circulating SCFAs were measured in plasma samples by gas chromatography combined with
mass spectrometry (GC-MS), following the same methodology as for the analysis of FA as
in article 3. Circulating SCFAs (acetic, butyric, and propionic) were affected by the

combination of diet and surgery (figure 14).
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Figure 15. Circulating levels of acetic, butyric and propionic. Surgical groups: No surgery (NS), simulated
surgery (sham) or vertical sleeve gastrectomy (VSG). Color groups bars represent the different diet groups:
control (C), diet change to chow diet (DC), and high fat (HF). Data are expressed as means £ SEM. Data
were analyzed by a two-way ANOVA and Tukey’s test was performed for all the groups in which the
Surgery:Diet (S:D) interaction was significant. Different letters indicate significantly different means (p <

0.05) from other means in the plot, while common letters imply no differences between means.
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Acetic content was the highest of the three measured SCFA. No differences were seen
between sham and NS. In general, values tended to increase with the HF, but decreased
when combined with VSG in HF-VSG. On the other hand, combining VSG with standard
chow tended to increase acetic concentration. Butyric tended to reduce with the sham surgery
but increased in C-VSG. Propionic was increased after surgery in C-VSG, and DC-VSG also

tended to increase. Propionic was reduced in all groups, compared to C-NS.

The values of SCFA were correlated with the biochemical parameters and also with the liver
estimated enzymatic activities and the different FA (figure 15). Acetic and butyric positively
correlated with plasmatic lipid profile, except for TAG, while propionic correlated negatively

with glucagon. Regarding liver results, acetic and butyric correlated positively with DNL
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Figure 16. Correlogram showing Spearman correlation coefficient values between SCFA and biochemical
parameters (upper) and estimated liver enzyme activity and FA (lower). Non-significant results (p<0.05) are

shown in white.

4.5. EFFECT ON FATTY ACID COMPOSITION

Due to the use of a HFD to induce obesity, and the accumulation of fat in the liver of obese
subjects and animals, we analyzed the FA composition of three organs: the liver, for its role

as a metabolic organ, the WAT, for its role as energy storage and a place where fat is
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ectopically accumulated during obesity, and the brain, for being an organ with a lipidic
composition. An added interest in analyzing the FA composition is the few studies published
about it and the difficulty to do such analyses in humans. Regarding the FA composition
data, the article with the liver data is under review, and the data of WAT and brain are in the

article writing process.

4.5.1. FATTY ACID PROFILE IN LIVER TISSUE

Besides increasing in fat content, there were several changes in the FA composition of the
liver (table 3, article 3). While the SFA decreased when animals were fed a HFD, and
increased when animals underwent VSG, the MUFA portion showed an inverse pattern.
When looked in detail, the MUFA oleic acid (OA) increased in the HF groups, decreasing in
HF-VSG. The change to the chow diet also contributed to a further decrease, so that DC-
VSG had no differences in OA when compared to C groups. As for PUFA, the proportions
decreased with the HFD, and had a partial recovery with the change to chow diet. The HFD
also decreased the activity of stearoyl-CoA desaturase 1 (SCD1), estimated as a product-to-

precursor ratio.

The hepatic OA content positively correlated with the amount of hepatic fat.
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Figure 17 Pearson correlation between hepatic fat

and oleic acid liver content
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4.5.2. FATTY ACID PROFILE IN WHITE ADIPOSE TISSUE

The analysis of visceral WAT FA profile was performed with the same methodology as the

analysis of the FA profile in the liver, specified in article 3.

The different surgical options, the ingestion of a HFD, and the change back to a standard
chow modified several of the FAs forming the WAT (table 2). Sham did affect the profile
of several FAs, but not as much as VSG. The proportion of SFA increased in the HF groups,
especially due to higher palmitic acid (PA) and stearic acid (SA) proportions, but decreased
with the change of diet in DC-NS. The proportion of the saturated SA remained higher with
the change to control diet, surgery, or the combination of both. The MUFA proportion was
mainly affected by the changes in the OA profile, which heavily increased by the HFD. The
change to control diet in DC reduced its levels, especially when combined with surgery in
DC-VSG, without reaching the values for C groups. Palmitoleic acid (POA) showed an
inverse pattern, decreasing with the ingestion of a HFD and increasing after VSG in the C
and DC groups. Concerning PUFA, we observed an inverse pattern again. Proportions of
PUFA, both n3, and n6, decreased with the HFD, and increased with the change of diet,
remaining lower than C-NS. When combined with surgery, DC-VSG tended to increase,
while C-VSG decreased. Looking into detail, the levels of linoleic acid (LA) and gamma-
linoleic acid (GLA) decreased with the HFD. The LA increased with the change of diet, but
without reaching the C levels, although no effect was seen in GLA. Surgery increased the LA
and GLA values in both HF and DC, but had the opposite effect on C, decreasing the

content.

4.5.3. FATTY ACID PROFILE IN BRAIN TISSUE

The analysis of visceral brain FA was performed with the same methodology as the analysis

of the FA in the liver, specified in article 3.

The FA composition in brain samples was scarcely affected by either diet or surgery, and
most of the profiles remained stable (table 3), no differences were seen between NS and
respective sham groups. The SFA proportion, despite being affected by the different diets,

showed no differences between groups. In detail, the saturated myristic acid (MA) increased
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with the HFD, but was normalized with either with surgery, change of diet, or both
combined. Regarding MUFA, only surgery had some effect, like in POA, where VSG tended
to increase its values (except in DC-VSG). A similar pattern was observed for PUFA, with a
tendency of lower proportions in VSG groups. On the other hand, the essential LA increased

with VSG, as well as n6 docosapentaenoic acid (DPA n6) who showed a similar tendency.
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DISCUSSION

Obesity, as well as other diseases, is a complex situation that can be influenced by multiple
variables, which difficult the study in humans, and makes the use of animal models a valuable
complementary tool. As we mentioned in the introduction (1.3. Rodents as an animal model
for obesity), the study of obesity has benefited from the use of animal models to whom
obesity is induced, either genetically or dietary, in a controlled environment. The induction
of obesity through diet, in the DIO models, has allowed the scientists to observe not only
the final stages where obesity is established, but the progression from a normoweight to the
different stages of overweight and obesity, investigating the physiological evolution of the

process.

Inducing obesity

In this study, we successfully induced obesity after the administration of a HFD. The group
fed a HFD had a higher calorie intake that was maintained during the 8 weeks pre-surgery,
but also during the 4 following weeks in the NS groups. The recorded intake was stable, in
both chow and HFD groups. We did not observe an initial higher intake in the first weeks
of a HFD, described in other studies(35,142), which normalizes after some time. Apparently,
rats find an improved palatability in the HFD, and thus increase the intake until they become
used to the new taste (92). As a consequence of the elevated calorie content, the BW of the
HFD-fed group was 32% higher than the chow-fed group (591 * 16.1 g, compared to 447
1 11.3 g) at week 8. The observed weight difference between groups is similar or higher than
other studies also inducing obesity with a HFD (94,98,143) The bodyweight of C-NS and
HF-NS groups (no surgery, nor change of diet) continued unaltered until the end of the study
and were used as controls. As expected, the adipose tissue of the HF-NS, i.e. estimated as
the sum of the eWAT and IWAT, was increased and represented almost 50% of the total
organ weight. The liver, which also increased weight, had a greater content of fat (almost 3
times more than the C-NS) indicating the possible apparition of hepatic steatosis, a common

comorbidity in obesity (59,144,145). The higher fat content also affected the physical
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appearance of the liver, with the HF-NS liver having a paler coloration compared to the one

from C-NS (figure 18).

Figure 18. Appearance of a C-NS liver and a HF-NS liver.

After the 12 weeks of diet, the HF-NS group did not show alterations on the circulating lipid
pool that could indicate the apparition of dyslipidemia, as other groups described (146). Not
only that, but the continued HFD led to a decrease in TG in HF-NS, which we found
surprising and contradicts the studies that associate a HFD with hypertriglyceridemia
(143,144). Nevertheless, a decrease in TG after a HFD was already described (145,147,148),
and it was associated with a reduction in hepatic TG secretion (147). This reduction seems
to be a side effect of the stress that a HFD exerts on the endoplasmic reticulum, which in
turn limits the secretion of apolipoprotein B100, necessary for the formation of VLDL.

Others have observed the apparition of dyslipidemia only when the HFD was supplemented
with Chol (148).

The apparition of alterations in the glucose metabolism is also associated with both obesity
and the use of a HFD in animal studies. In our case, we did not observe any differences in
glucose levels between C-NS and HF-NS, but we observed a tendency to increased levels of
insulin, and a worsened HOMA-IR and HOMA-8 in the HFD-fed group. Taking those
parameters together, we can speculate that there was a tendency toward developing IR, a
previous stage to become diabetic, in the HFD-fed animals, showing a worsened glucose
homeostasis. Previous studies have found similar results, with no alterations in glucose
values, but altered insulin and HOMA-IR (142). Other authors have found glucose
alterations with the use of a HFD, although the altered glucose parameters are more related

to diets higher in sugar, CAF diets, or HFHS diets (70).

The use of a HFD is not exempt from debate. The HFD is one of the most used diets in
research studies about obesity and related comorbidities as dyslipidemias (146,149-151),
NAFLD (59,144,152), as well as for GM modifications (127,138,153,154), but it has several
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drawbacks. The HFD lacks the variety and heterogeneity present in the human western diets,
and the elevated high-fat content is not representative enough of the human dietary habits,
with a maximum of 30% of the total ingested calories coming from fat, together with the
lack of refined sugars (35). Other diets have been developed and are a feasible alternative,
such as the CAF, another DIO diet which consists of supplementing a standard food with
human snacks, high in sugar and fat, and low in fiber and micronutrients, making it more
representative to the human dietary habits (91). But despite the benefits of resembling the
WD diet, the snacks used in different CAF diets may vary, altering the diet composition
between experiments; and rodents may show preferences over a type of snack than another,
creating intake differences in the same experiment. The lack of standardization makes it
difficult to reproduce (35). Also, snack supplementation may lead to nutritional deficiencies,
due to the lower nutritional concentration, while adding additives such as preservatives that
may interfere with the experimental outcome (92). There are currently new diets that are
more representative of the human WD, that are standardized, and that may offer a more
appropriate diet than the HFD used in this study (92,155). Besides the different views on the
HFD, another factor we did not take into account was the choice of chow diet, as some
advice the use of refined low-fat diets as CD, instead of standard controls chows that are less

standardized and may add more variability than the lower fat content ones (156).

Tackling obesity

Two actions were taken in this study in order to tackle obesity: the performance of a dietary
intervention (DC-groups), i.e. changing from a HFD to a chow diet; and a VSG (VSG
groups). These two actions were combined in the group DC-VSG, which aimed to simulate

a behavioral change, after VSG.

Changing diet had little impact on the amount of ingested food, and we only observed a
modest increase in the 11" and 12" weeks in all DC groups. Both VSG and sham groups
lowered the intake in the first-week post-surgery, much of it due to the food-restriction prior
to surgery (and after surgery in the VSG groups). Surprisingly, VSG and sham groups showed
a rapid increase in their intake which contributed to the recovery of the pre-surgery intake
already after two weeks, similarly to what is described (157). Other groups have registered a
maintained lower intake for several weeks (98,158). Itis described that rats try to compensate

fasting situations, and that VSG rats have the capacity to increase meal frequency due to the
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physical restriction of the reduced stomach (95,99). In our study, we measured the food
consumption every two days, and thus we did not take into account the feeding pattern. It
could be plausible that rats were compensating the previous fasting situation by increasing
their feeding frequency, as we did not observe any dilatation in the stomachs of VSG-rats as
others have (94,157). Despite the recovered intake, all VSG groups tended to eat less calories

compared to the pre-surgery intake at week 8.

The change to chow diet did not reduce BW, although it did reduce the growth rate, leading
to a trend towards BW stabilization for DC-NS after the 9" week. On the other hand, all
VSG groups had a clear reduction in BW, as was expected. We observed a generalized
reduction in the first week, with DC-VSG being the one losing the most, with a reduction of
more than 20% of the pre-surgery weight. Other authors recorded the maximal weight loss
in the second week which is probably due to the maintained lower intake (98). In our study,
rats started to regain weight from the second week on, but at the end of the study the BW
continued below the pre-surgery weight. In other studies, rats started regaining weight after
the first week (159) and even recovered the pre-surgery weight around the third week
(96,160). It is important to mention that rats keep gaining weight during their whole adult
life. A rat that is not gaining weight, or gaining less than the habitual weight is also regarded

as a weight loss, and thus the desired effect of the VSG (95).

The observed weight reduction in VSG groups was mainly distributed in the adipose tissue,
as earlier described (99). Some studies observe an adipose redistribution after VSG, with
more subcutaneous adiposity and reduced visceral and lumbar fat (159). Even though we
also took samples of visceral and subcutaneous WATSs, we only weighted the epidydimal and
lumbar fat depots, making it impossible to assess if there also was a redistribution in our
study. The liver, which is an organ typically affected during obesity, and in which VSG is
known to improve its condition (152), normalized its weight after VSG in both HF and DC
groups. On the other side, the hepatic fat content was only affected by diet. The VSG
intervention had no effect on hepatic fat content when the HFD continued. Although not
significant, there was a tendency to a higher decrease when the change of diet was combined
with VSG. Taking into consideration that we performed an almost 80% resection of the
stomach, we expected that the remaining pouch of VSG animals would weigh less than their
NS counterparts, but we could not find any significant differences. After VSG, the stomach
might have been dilated (94,157) but it could also be due to the formation of scarring tissue

and adherences, visible upon post-mortem visual examination of the stomachs (data not
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shown). On the other hand, in 2010, Frithbeck and collaborators already described that both
sham and VSG operated obese Zucker rats showed cardiac hypertrophy, as well as an
improvement in blood pressure, although it was not clear if both data were related (161). We

observed the inverse result, with lesser weight after VSG in HF and DC.

The diet change did not have much effect on the altered glucose metabolism, nor did VSG
in the groups that continued with the HFD, as described in previous studies (158,162). In a
study investigating the diabetes recurrence after BS it was observed that continuing a HFD
reversed the improvements after VSG, due to re-impaired insulin sensitivity (163). On the
other hand, we observed a drastic improvement in the group that combined VSG together
with a change to chow diet. Surprisingly, the improvement was also seen in the sham group,
which indicated that the stomach resection was not responsible for this improvement. The
improvement of glucose metabolism after VSG is thought to be due to several factors such
as calorie restriction and hormone regulation, with ghrelin as one of the involved hormones
(62). We were surprised to not observe any difference in ghrelin levels between VSG and NS
groups, as ghrelin is described to be decreased after VSG (25,29,158). Ghrelin production is
often attributed mostly to the stomach, but it has also been described to take place in the
intestine and the WAT, which may compensate for the decreased stomach production after
VSG (33). Leptin, increased in the groups fed with a HFD even after the diet change, strongly

correlated with the adipose tissue mass (figure 14), as already described (164).

Modulating the gut microbiota

As already described, the prolonged feeding with a HFD led to substantial changes, in
diversity and composition, in the GM, leading to the characteristic dysbiosis
(127,137,138,153,165). It is now clear that the “obese phenotype” seen in animal and human
studies rely more on factors like diet rather than on obesity itself (134,137,138). In our case,
we could observe some minor positive effects in the DC-NS group, such as improved beta
diversity and taxonomical shifts, even though the BW was similar to HF-NS. On the other
hand, no improvements were seen in HF-VSG, despite having a lower BW than HF-NS.
Our data support the fact that GM alterations are mostly related to diet, and not to body
weight itself. Interestingly, we did observe that in combination with VSG (or with sham) the
diet change increased the richness of species living in the gut, restoring the alpha diversity to

C-NS levels. This might be due to the use of a non-refined chow diet that may add a higher
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content of fiber which in turn benefits the microbiota wellbeing (156) especially when it is
combined with VSG or sham. Both surgery types share in common the administration of
enrofloxacin as prophylactic antibiotic treatment during the pre and the post-operative care.
The effect that antibiotic administration on the GM community was not taken enough into
account at the beginning of the study. We would have benefited from including a NS group
exposed to the same conditions as Sham and VSG groups (i.e. antibiotic, analgesic, and
fasting), even though some authors describe a GM normalization after 7 days of antibiotic
administration (Vaughn 2017). This extra group would have provided useful information
regarding the effect of the antibiotic per se, without the added surgical stress, as seen in other
studies (134). Besides the deleterious effect, the antibiotic administration had a positive
outcome when combined with the change of diet, as mentioned above. It might be that the
antibiotic treatment prior to surgery, and the consequent wipe-out of species, was necessary
in order to facilitate bacterial recolonization and recover some GM community lost after the

HFD (166-168).

One of the main products of GM are the SCFAs, whose role in obesity is still discussed. The
SCFAs are described to be increased during obesity (33,41,169), but are also linked to
beneficial health effects such as improved glucose homeostasis and appetite regulation
(130,170). Many studies focus on fecal SCFA concentration, but we choose to analyze the
plasmatic levels of SCFAs instead of fecal levels, as circulating SCFAs are more linked to
metabolic markers (130). As expected, acetic was the main circulating SCFA, as butyrate is
mainly used by colonocytes as an energy source (109). Our obese groups did not show
increased levels of SCFAs, and only acetic had a modest tendency to be increased with the
HFD in HF-NS group. On the contrary, we found higher levels in the C groups, with higher
concentrations of acetic and butyric in the C-VSG groups, and higher propionic in the C-NS
group. As SCFAs are described to influence several hormones and lipogenesis
(33,41,102,130,132), we correlated the SCFAs results with our biochemical parameters
(figure 16, upper chart), and with liver FA and enzymes (figure 16, lower chart).
Concentrations of acetic and butyric acid positively correlated with plasmatic lipid profile,
except TAG and NEFA, which we found interesting as we could not see signs of
dyslipidemia. On the other hand, propionic positively correlated with TAG, and negatively
with glucagon. We did not find any correlation between the analyzed SCFAs and the
hormones leptin, ghrelin, or insulin, as others have found (33,130), but the exact relationship

between these parameters is still uncertain (33).
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Regarding FA and lipid metabolism, circulating levels of acetic acid are described to correlate
with some lipid profile values, DNL, and Chol formation in the liver, while propionic inhibit
the lastly mentioned (171,172). Also, several studies point out that SCFAs are used as a
substrate for DNL (109,173). We do observe a positive correlation between acetic or
propionic and DNL or Chol, even though DNL was unaltered in our study. Regarding
propionic, we could not observe any negative correlation with DNL and, on the contrary,
we found that it was positively correlated with SCD1, as well as the FAs PA, POA, and VAC.
The enzyme SCD1 is closely related to DNIL, and PA is one of the major DNL products
(174,175).

Although it is a common feature seen in many scientific articles, focusing on specific
microbes and attribute determinate roles to them is controversial, as GM is flexible and
adapts depending on the external factors (diet, housing, animal strain) (35), as well as many
species being functionally redundant with others (41,100,176). Still, two families captured
our attention in our study. First, the family Verrucomicrobiaceae, with Akkermansia Mucinphylla
as the only member of this family, that increased with the change of diet in the DC-NS group,
representing almost a 20% of the total abundance (article 2, figure 4). This increase was not
observed when the change of diet was combined with surgery, suggesting that antibiotic
administration hindered the rise of this family. .A. Mucnphylla is considered a beneficial
organism, associated with improved glucose metabolism and lower adiposity (177). In our
study A. Mucinphylla positively correlated with HOMA-IR, but also with adiposity (article 2,
figure 5), which may suggest that changing diet alone positively affected the GM
composition, without reducing body weight. Second, the family Bacteroidales $24-7, which was
almost depleted in the HF groups (article 2, figure 4). In agreement with our results,
reductions of this family are associated with loss of diversity, observed during feeding with
a HFD, and even with harmful situations such as dextran sodium sulfate induced colitis (178—
180). An increase in Bacteroidales $24-7 is seen when those situations are either treated, or
improved, and is even associated with improvement in NAFLD (178-181). In accordance
to what is described, we observed that restored abundances in the DC-VSG, after the
combination of change of diet with surgery, but not with the diet change alone, or with the

VSG if the HFD were continued.
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Fatty acid composition and metabolism

The feeding with a HFD led to several modifications in the FA composition of the liver and
visceral WAT (article 3, table 2; table 3; and resumed in figure 19). One of the biggest
modifications was the increase in MUFA, mainly OA, in the HF groups which surprised us
at first, as we expected a higher portion of SFA due to the elevated amount of fat in the diet.
Nonetheless, the HFD, composed mainly of lard, had 20 times more SFA than the chow
diet, but also 20 times more MUFA. The higher MUFA in a lard-based diet might be
unexpected at first, but mammalian fats have PA and OA as the main FA components
(182,183). The calorie excess derived from diet, either from fat as in our study, or from

carbohydrates, is cleared through the formation of TG (31,45,40).
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Figure 19 Levels of the FA at the 12th week in Liver, visceral WAT and brain tissue, expressed in
molar percentage (%0). In saturated fatty acids (SFA): Myristic acid (MA), palmitic acid (PA), and
steatic acid (SA). In monounsaturated fatty acids (MUFA): Oleic acid (OA), palmitoleic acid (POA),
and vaccinic acid (VAC). In polyunsaturated fatty acids (PUFA), the n3 PUFA «-Linolenic
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acid (DGLA) and Gamma-linolenic acid (GLA)
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The enzymes of the stearoyl-CoA desaturases (SCDs) family incorporate a desaturation in
the SFA transforming them into lesser deleterious MUFA, such as from SA to OA, which
are incorporated into phospholipids, Chol esters, and TG, and finally stored in the AT
(21,31). The SCDs are enzymes described to be increased during obesity (184,185), as was
SCD18 in our study (table 4, article 3). Due to both the increased dietary content, but also
the elevated estimated SCD activity, the OA was highly elevated in the HF-NS compared to
C-NS, both in the liver or in the visceral WAT tissue. As expected, the amount of hepatic fat

positively correlated with the OA content (figure 17).

The change of diet and the VSG had a similar effect on the FA composition of both liver
and visceral WAT. The content of OA was reduced in both cases, probably as a consequence
of the weight lost after VSG in HF-VSG, or due to the reduction of dietary OA intake in the
DC-NS. The other FA had modest modifications, several of them were too small to be
significant. Changes after RYGB or after diet intervention gave similar modifications in
human serum samples, except for n3 PUFAs which decreased with surgery but increased
with the dietary intervention (186). Our visceral WAT results agree with those findings as we
observed a similar variation in HF-VSG and DC-NS when compared to HF-NS, with
decreased MUFA and increased PUFA. In our study, n6 PUFA differed instead of n3,
increasing in DC-NS but not in HF-VSG, probably due to the maintenance of the HFD after
VSG. Interestingly, we observed a better improvement in the composition of both tissues
when the change of diet and VSG were combined. As Walle et al mention in their work with
human patients (186), dietary intake of MUFAs and PUFAs were determinant for their
respective FA profile, while the SFA profile was more weight loss-related. We benefit from
an animal model with a controlled environment and diet, knowing that the modifications

observed are due to controlled interventions.

On the other hand, the FA composition of the brain tissue remained mostly stable (table 3),
as seen in other studies (187). The different FAs have mainly structural roles in the brain.
One of the main components of myelin is OA (188), which accounted for approximately
15% of the FA composition in our results. The PUFAs are an essential neuronal cell
component, with AA being present in all neuronal cells, and DHA present in neuronal
membranes (189) as well as contributor to brain signaling (190). Our results are consistent
with the former described, as we quantified OA as the main MUFA, and AA and DHA as
the two main PUFA. In general, FAs in the brain remain stable, non-affected by neither diet

nor surgery modifications. The composition of membrane phospholipids in the brain is
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influenced by the n6/n3 PUFA ratio (189), which also remained stable in our study. The
brain fatty acid composition is affected by aging more than by diet, as seen in a study by
Gimenez da Silva et al. They fed mice with a HFD or a high-carbohydrate diet and observed
initial differences that fade towards the end of the experiment. The group fed a HFD had a
faster lipid accumulation in the brain, but after 56 days there were almost no differences
between diets, resulting in a similar amount of FA (191). As our study was 12 weeks long,
the initial differences that might have appeared with the HFD were probably faded when
samples were analyzed. Brain FA composition is mostly stable, but disturbances on it are

related to several neurological and neurodegenerative disorders in humans (192).

The FAs, besides their role as molecules for energy storage, also have an important role in
the composition of cell membranes, as well as a signaling molecules. The balance between
FA ratios determined by the ratios between SFAs, MUFAs, and PUFAs, rather than specific
FA, tend to be stable, as modifications in the saturation of the FA alters cell membranes
properties, such as fluidity, stability, but also functionality (182,193). For example,
modifications on the lipidic composition of the mitochondrial membrane are described to
alter mitochondrial respiration (194) or associate with metabolic syndrome (195). In our
study, the ratio SFA/MUFA tissue decreased in the HF-groups, as well as in the DC-NS, in
liver and visceral WAT. Despite a significant result, it is difficult to interpret how membrane
fluidity is affected by our results as FA composition was analyzed for the total lipids of the
sample. Other studies analyze the FA compositions of different lipid fractions, i.e. TG, Chol
esters and phospholipid fractions, allowing the identification of separate structures
(186,196,197). It is plausible that our results were mainly affected by the increased fat content
in both liver and visceral WAT tissue and thus, not marking membrane alterations. This adds
some difficulties when comparing our results with other studies, as the lipid profile varies

between TG, Chol esters and phospholipid fractions, while we have a total amount value.

Besides the structural roles, the PUFA have been studied for their signaling properties,
especially during injury and inflammation. The n3 and n6 PUFA serve as precursors of SPM,
modulators of the resolution, and clearance of the inflaimmation occurring in the body
(50,51) (figure 20). Also, the AA present in cell membranes is released when cell injury
occurs, in order to form eicosanoids and modulate inflammation, among other functions
(182). Having in mind that rats fed a HFD ingested higher proportions of both LA and ALA
(supplementary table 4, article 3) it is interesting to see that both LA and ALA, as well as
general PUFA levels, were decreased in both liver and visceral WAT. The lower PUFA
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values, despite the higher intake, may indicate that PUFAs are more used. Knowing that

obesity is characterized by a low inflammatory state, we may hypothesize that there is a bigger

usage of the SPM molecules, in order to contain inflaimmation.
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Figure 20. Biosynthesis of fatty acids and the derived anti-inflammatory and pro-inflammatory products.

Adapted from Hussain et al (188), and Spike et al. (50). In pink, the saturated fatty acids. In light blue, the

monounsaturated fatty acids. In dark blue, the n3 polysaturated fatty acids. In yellow, the n6 polysaturated

fatty acids. Highlighted with the red contour, the essential PUFA.

We feel that it is important to mention that the analyzed desaturases activities in our study

were estimated as a product-to-precursor ratio, a methodology criticized by some authors.

Estimated activities are described to correlate with the mRNA (198) and are used in many

studies (184,185,198-200). Even though, it would have been preferrable to have data on

desaturase mRINA expression, we lacked the means to analyze it for this study and thus, we

decided to continue presenting the data but mentioning the possible drawback.

The complex interplay: connecting the dots

As we have seen, obesity is a multifactorial disease that begins with an imbalance between

the calories ingested versus the expended. Besides the increased body weight and adipose

tissue mass, it is associated with altered parameters that lead to comorbidities. Glucose
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homeostasis, several hormones, FA metabolism, and GM composition are the ones studied
in this work. It has become lately clear that the apparition of comorbidities is the result of a
complex interplay between multiple factors and alterations. The studied parameters in this
work (the HFD, the adipose tissue, the GM, and the FA composition), have been analyzed
individually and treated as independent factors, but have a role in this interplay, contributing
to the disease progression (figure 21). Here, as a final thought, we try to put these parameters

together, to see a global result.
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Figure 21. The interplay between the studied parameters. The high fat diet cause modifications in adiposity,
gut microbiota and fatty acid composition that lead to further modifications contributing to low grade
inflammation. The combination of diet change and sleeve gastrectomy improved the initial modifications
caused by the high fat diet. The parameters studied in this thesis appear in black color, connected with solid

lines. Parameters not studied appear in grey color, connected with dashed lines.

The characteristic low-grade inflammatory state in obesity has been mainly associated with
adipose tissue. The inadequate diet, in this case a HFD, with the subsequent increased calorie
intake, that increases fat mass to a point where adipocytes cannot cope with the TAG influx,
would lead to ectopic fat deposition in the liver and other organs, as we have seen in our
results (table 2, article 3). The infiltration of macrophages in WAT and liver has been
studied for long as one of the main sources of the low-grade inflammation (47—49). On the
other hand, due to a reduced intake of fibers and increased consumption of fats (and sugars
in the WD), the GM community starts losing diversity, which translates into the loss of

beneficial commensal species and taxonomical shifts. The consequent dysbiosis, observed in
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this work, weakens the gut-barrier allowing infiltration of bacterial products, such as LPS or
flagellin (201). Once these bacterial products reach the bloodstream, are recognized by the
TLR4 and TLR 5, starting a signaling cascade that contributes to the low-grade inflammation,

in what is called metabolic endotoxemia (21,201).

As the third player seen in this work, the intake of a HFD lead to substantial changes in the
FA composition of the liver and visceral WAT. The long chain FA (LCFA) belonging to the
PUFA family have important roles as precursors for the SPM (50). Studies have shown that
a HFD, rich in SFA, is linked to increased pain response, as well as prolonged inflammation
after surgery in animal models. Some authors attributed this response to altered regulation
of the immune system, increased endoplasmic reticulum stress (which is involved in pain
perception), and the alteration of pro-inflammatory markers and pain modulators (145,202).
However, they did not analyze inflammation resolution, and thus we cannot know if it may
be related with the observed FA alterations. Both studies observed a normalization after

some weeks of switching to the chow diet.

Future perspectives: Could we take more advantage of

bariatric surgery?

Obesity and related comorbidities are one of the main burdens of health care systems around
the globe. To stop this increasing problem, governments should work towards policies
against sedentarism, as well as implementing interventions and recommendations
encouraging a healthier diet (2,16,17,20). As the formerly mentioned approach are long-term
interventions, bariatric surgery is currently the best option to treat obesity, and despite being
a common procedure, it is widely studied to elucidate the mechanism of action, as well as
how to improve its benefits. Also, there is much being studied regarding diet and the different

effects that some foods have on the organism.

Having in mind that BS is a major surgery and that there is an antibiotic administration as
well as a need to change dietary habits, the post-surgery scenario might be suitable to add
dietary modifications that could increase the benefits from this intervention. The antibiotic
administration leads to the loss of many species, offering an opportunity to beneficial species
to colonize when given the right situation. Studies with prebiotics have proved beneficial for

hepatic lipid metabolism, and even helped counteract the effects of the HFD (172,176,203).
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Other types of dietary interventions that can accompany VSG may be supplementation of
SCFA or n3 PUFAs. Supplementation with SCFAs has proven beneficial in decreasing TAG
and improving IR without increasing BW in HFD mice (172). On the other hand,
supplementation with PUFA has also proven beneficial for lipid metabolism and hepatic
steatosis (197,204,205)by suppressing hepatic lipogenesis (195), and could contribute to a
better resolution of the inflaimmation. Fecal microbiota transplant, i. e. transplanting
microbiota from a healthy donor into patients with altered microbiota, is also a potential

method to treat obesity and the associated diseases that are currently studied (169).

What is clear in our study is that animals benefitting from a change of diet after VSG had an
improved outcome compared to the ones who continued with the HFD after surgery.
Continuing with the HFD counteracted many of the beneficial effects attributed to VSG, as
we could see in several biochemical parameters that did not improve, or in the maintained
dysbiosis. At the same time, a change of diet alone was not enough to revert the effects
caused by a prolonged HFD, as we observed in maintained body weight and hepatic fat
content. Combining VSG with a change of diet led to the highest weight reduction, the
highest reduction of adipose tissue, the most improved glucose homeostasis, improved GM,
and improved FA profile. All the former only were restored to C levels when both studied

variables, surgery, and change of diet, were combined.
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The results of our research presented in this thesis provide complementing evidence that the
combination of VSG and a change of diet is able to improve, and even revert, most of the

modifications caused by the high-fat diet. The main conclusions are:

- The HFD increased BW and adiposity in the body and liver, reduced GM diversity,
altered GM composition, and modified FA composition in WAT and liver. All the
aforementioned effects are linked to the comorbidities associated with obesity.

- Animals continuing on a HFD and subjected to VSG reduced BW but did not reduce
hepatic fat, nor could improve GM diversity and composition. Thus, surgery alone
was not sufficient to revert the effects of the HFD.

- Switching from a HFD to a chow diet did not reduce BW but reduced hepatic fat,
and did not improve GM diversity, but restored some of its taxonomy. Despite some
improvements, diet change alone was not enough to revert the effects of the HFD.

- The combination of diet change and VSG had a higher BW reduction, reduced
hepatic fat, improved glucose homeostasis, increased GM diversity and partially
restored GM taxonomy, and also partially reverted the modifications in FA
composition in liver and WAT. Thus, the combination of both treatments is the most
effective intervention to ameliorate obesity /the effects of diet-induced obesity.

- Taking into consideration the effect of antibiotic administration prior to surgery on
GM, the benefits of the VSG and the change of diet might be enhanced with
prebiotics or SCFA supplementation with prebiotics or SCFA, which improve GM

dysbiosis and contribute to GM restoration.
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