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Abstract
This dissertation consists of two independent chapters on economic and finan-
cial forecasting. The first chapter introduces a nonlinear forecasting framework
that combines forecasts of the sign and absolute value of a time series into con-
ditional mean forecasts. In contrast to linear models, the proposed framework
allows different predictors to separately impact the sign and absolute value of the
target series. An empirical application using the FRED-MD dataset shows that
forecasts from the proposed model substantially outperform linear forecasts for
series that exhibit persistent volatility dynamics, such as output and interest rates.
The second chapter, coauthored with Christian Brownlees, provides an extensive
comparison of methods to forecast downside risks to GDP growth for a panel of
24 OECD economies. We consider forecasts constructed from standard quantile
regressions as well as from conditional volatility models. Our evidence suggests
that standard volatility models such as the GARCH(1,1) are at least as accurate as
quantile regressions.

Resum
Aquesta dissertació consta de dos capı́tols independents sobre previsió econòmica
i financera. El primer capı́tol introdueix un modelo de predicció no lineal que
combina les previsions del signe i del valor absolut d’una sèrie temporal en previ-
sions mitjanes condicionals. A diferència dels models lineals, el modelo proposat
permet que diferents variables afectin per separat el signe i el valor absolut de la
sèrie d’interés. Una aplicació empı́rica que utilitza el conjunt de dades FRED-MD
mostra que les previsions basadas en el modelo proposat superen substancialment
les previsions lineals per a sèries que presenten dinàmiques de volatilitat persis-
tents, com la producció industrial i els tipus d’interès. El segon capı́tol, coauto-
rado con Christian Brownlees, proporciona una àmplia comparació de mètodes
per predir els riscos negatius per al creixement del PIB per a un grup de 24 eco-
nomies de l’OCDE. Considerem les previsions construdes a partir de regressions
quàntils estàndard, aixı́ com a partir de models de volatilitat condicional. La nos-
tra evidència suggereix que els models de volatilitat, com el GARCH (1,1), són
almenys tan precisos com les regressions quantils.
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Preface
Whether employed by policymakers as a basis for policy discussions or by

financial market participants as a risk management tool, forecasting is a central
topic in economics. This thesis consists of two self-contained chapters on forecas-
ting economic time series. The first chapter focuses on producing point forecasts
for the conditional mean of a random variable. The second chapter studies the
construction of interval forecasts for the growth rates of gross domestic product
(GDP) for 24 OECD economies. Interval forecasts provide a measure of uncer-
tainty about future economic conditions and are widely used by central banks and
international institutions alike.

The first chapter of this thesis studies the construction of conditional mean
forecasts. Several economic time series exhibit strong evidence of volatility per-
sistence and yet weak, if any, evidence of linear conditional mean predictability.
I introduce a non-linear forecasting framework that exploits conditional volatility
dynamics by combining forecasts of the sign and absolute value of a time series
into conditional mean forecasts. Among other results, I show that the conditio-
nal mean may be accurately approximated by the product of the mean squared
error optimal sign and absolute value forecasts. In contrast to linear models, the
proposed framework allows different predictors to separately impact the sign and
absolute value of the target series, thus being able to capture potentially non-linear
dynamics. In an application to the FRED-MD dataset, a dataset containing seve-
ral macroeconomic series for the United States, I compare the performance of
forecasts based on the proposed framework with that of a number of standard fo-
recasting models such as Principal Components regression, Ridge and LASSO.
I find that forecasts based on the proposed framework substantially outperform
linear forecasts for series with persistent volatility dynamics, such as output and
interest rates.

In the second chapter of the thesis, “Backtesting Global Growth-at-Risk” which
is coauthored with Christian Brownlees, we compare several methods to construct
quantile forecasts of GDP growth. More commonly known as Growth-at-Risk
(GaR), such forecasts have recently become a standard tool in policymakers’ to-
olbox. We conduct an extensive out-of-sample backtesting exercise of GaR pre-
dictions for 24 OECD countries. We consider forecasts constructed from quantile
regressions, the standard tool employed by policymakers and central banks, and
GARCH models. The quantile regression forecasts are based on several measures
of downside risks to GDP, including the national financial conditions index. Our
results show that quantile regression and GARCH forecasts have a similar perfor-
mance. In fact, if anything, our evidence suggests that standard volatility models
such as the GARCH(1,1) are more accurate in predicting downside risks to GDP
than the widely used quantile regressions.
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Capı́tol 1
Composite Absolute Value and Sign
Forecasts

1.1 Introduction

Forecasting macroeconomic and financial time series is a challenging task. A
ubiquitous finding in the economic forecasting literature is that linear models for
the conditional mean improve only marginally, if at all, over simple benchmarks
(Stock and Watson, 2007; Goyal and Welch, 2008). In contrast, standard volatility
models have shown considerable success in capturing volatility dynamics (Engle,
1982; Andersen et al., 2006; Brownlees et al., 2011) and there is evidence of di-
rectional predictability (Leung et al., 2000; Diebold et al., 2007; Nyberg, 2011).
Several explanations are available for the unconvincing performance of linear con-
ditional mean forecasts. The predictable component of the target series may be
small relative to the unpredictable error term, in which case even a correctly spe-
cified model will display only mild gains over simple benchmarks. Alternatively,
this finding may be taken as evidence of model misspecification, implying that the
class of models considered is not rich enough to exploit all available information.

In this work, I introduce composite absolute value and sign (CAVS) forecasts,
a nonlinear forecasting framework that exploits predictability in signs and abso-
lute values to generate conditional mean forecasts.1 Based on the fact that any
random variable Yt can be written as |Yt|sign(Yt), CAVS forecasts are defined as
a function of mean squared error (MSE) optimal sign and absolute value fore-
casts. In contrast to linear models, in which conditional mean predictors must
impact both the sign and absolute value, CAVS allows for different predictors to

1I assume throughout that the sign of the target series is not constant, as would be the case for
series expressed in growth rates.

1
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separately affect each of the components of the target series. In contrast to ge-
neral nonlinear models, CAVS forecasts are simple to interpret and are designed
to exploit two specific features that figure prominently in the macroeconomic and
financial forecasting literature: volatility and sign predictability.

I introduce a framework to formalize CAVS forecasts and study its properties.
The proposed framework is employed to establish three results. First, the condi-
tional mean can be written as the product of MSE optimal forecasts of signs and
absolute values as well as a covariance term that can be explicitly modeled. If
the underlying data-generating process (DGP) is additive with symmetric shocks,
the covariance term will be small relative to the variance of the shocks. Second, I
provide an upper bound to the MSE of CAVS forecasts that scales with the losses
in sign and absolute value forecasting. This result highlights that CAVS-based
forecasts are particularly suited for series that exhibit persistent volatility dyna-
mics, and hence absolute value predictability. Third, I study a nonlinear DGP in
which variables may affect signs and absolute values differently. I show that, for
this DGP, the MSE of the best linear predictor increases quadratically with the de-
gree of nonlinearity. A simulation study highlights that departures from linearity
generate substantial MSE gains for CAVS models.

The proposed framework is applied to the FRED-MD dataset (McCracken
and Ng, 2016), which consists of 128 monthly financial and macroeconomic time
series. I construct and evaluate 1, 3, 6, and 12 months ahead forecasts for the
conditional mean, the absolute value and the sign of each series in the dataset. It
is well-known that when the number of predictors is large, dimension reduction
techniques may improve forecast accuracy (Stock and Watson, 2012; Ng, 2013;
Kim and Swanson, 2014). I consider principal components regression (PCR), rid-
ge and LASSO as the baseline linear models. CAVS forecasts are constructed as
the product of sign and absolute value forecasts, and a number of specifications
may be entertained. I consider CAVS-PCR, CAVS-Ridge, and CAVS-LASSO as
the baseline CAVS models. Each baseline model is constructed using the same
method to forecast both the sign and the absolute value of the target variable. In
addition to the baseline CAVS models, I consider absolute value forecasts impli-
ed by a GARCH(1,1), sign forecasts obtained by a variety of machine learning
algorithms, as well as combinations of sign and absolute value forecasts cons-
tructed using different methods to forecast each component. Detailed results are
presented for the series considered in Kim and Swanson (2014). These include
the unemployment rate, personal income less transfer payments, the 10-year tre-
asury rate, the consumer price index, the producer price index, nonfarm payroll
employment, industrial production, M2 money stock, and the S&P 500 index. In
addition to the variables considered in Kim and Swanson (2014), I present detai-
led results for the federal funds rate, which may be of particular interest to private
sector forecasters.

2
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A number of findings emerge from the empirical application. First, CAVS-
based directional and conditional mean forecasts outperform their linear counter-
parts for the majority of the selected series across all horizons considered. In par-
ticular, CAVS-based forecasts are substantially more accurate than linear forecasts
for the federal funds rate, industrial production, nonfarm payroll employment, and
the S&P 500 across all horizons. Among the linear models considered, ridge and
LASSO display similar performance and outperform PCR, particularly for short
forecast horizons. All baseline CAVS specifications considered perform similarly,
with CAVS-Ridge modestly outperforming CAVS-LASSO and CAVS-PCR.

Second, I compare the performances of CAVS-Ridge and PCR for all compo-
nents of the FRED-MD dataset. CAVS-Ridge outperforms PCR for the majority
of the FRED-MD components, and is particularly successful for series that exhi-
bit persistent conditional volatility dynamics, such as interest rates, stocks, and
output series. As the forecast horizon increases, the CAVS-Ridge performance
gains become widespread, outperforming PCR for about 75% of the FRED-MD
components. Notably, these findings remain qualitatively the same for any choice
of CAVS specification and linear benchmark considered.

Finally, I explore a number of alternative CAVS specifications. In addition
to combinations between signs and absolute values obtained by PCR, Ridge, and
LASSO, I consider absolute value forecasts based on a GARCH(1,1) and sign
forecasts obtained from random forests (Breiman, 2001), AdaBoost (Freund and
Schapire, 1995), k-nearest neighbors (kNN; see Devroye et al., 1996) and neu-
ral networks (NN; see White, 2006). All specifications perform similarly, with
GARCH(1,1)-Ridge displaying modest gains over the baseline CAVS specifica-
tions. Among the machine learning algorithms, the most accurate forecasts are
achieved by methods based on regression trees. In particular, random forests pro-
duce more accurate forecasts when compared to the baseline CAVS specifications
for 20% of the selected series. Additionally, I consider forecast combinations and
model selection strategies. In line with Timmerman (2006) and Diebold and Shin
(2019), I find that forecast averaging performs better than model selection. In ad-
dition, I find that forecast averages that include CAVS forecasts outperform those
that do not. Overall, the results support the view that exploiting nonlinearities
in macroeconomics series improves forecast accuracy (see also Marcellino, 2002;
Clements et al., 2004; Terasvirta, 2006).

It is important to emphasize that this is not the first paper to consider the de-
composition Yt = |Yt|sign(Yt). When applied to stock returns, Diebold and Chris-
toffersen (2006) argue that both of the right-hand side components are predictable,
yet their product is not. Anatolyev and Gerko (2005) apply this decomposition to
develop a market timing test, whereas Rydberg and Shephard (2003) employ it to
model the dynamics of trade-by-trade price movements in a market microstruc-
ture setting. Closely related to this work, Anatolyev and Gospodinov (2010) and

3
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Anatolyev and Gospodinov (2019) model excess returns by combining a multipli-
cative error model for the absolute values, a dynamic binary model for signs, and
a copula for their interaction. In fact, the CAVS framework is a special case of
the decomposition model proposed in Anatolyev and Gospodinov (2010) where
the independence copula is employed. As noted in Anatolyev and Gospodinov
(2010), employing the independence copula avoids the most effort-consuming in-
gredient of the decomposition model – the evaluation of the conditional expected
cross-product of signs and absolute values.

This paper is related to the macroeconomic forecasting literature, which in-
cludes work by Stock and Watson (2002, 2012), Kim and Swanson (2014), and
Cheng and Hansen (2015), among others. Additionally, this work also relates to
the literature on nonlinear forecasting methods in economics. This includes work
by Clements et al. (2004), Terasvirta (2006), and White (2006), among others.

The remainder of this chapter is structured as follows. Section 1.2 introduces
the CAVS framework, Section 1.3 contains a simulation study, and Section 1.4
presents the empirical application. Concluding remarks follow in Section 1.5.

1.2 CAVS Forecasts

1.2.1 Notation and Definition
Let {Yt} denote a zero mean scalar time series of growth rates2 and {Xt} with
Xt ∈ Rn a time series of t − 1 measurable predictors. In this work, I consider a
forecaster whose objective is to construct a forecast of Yt given Xt that minimizes
the MSE. It is well known (see Brockwell and Davis, 1991) that the MSE optimal
forecast of Yt given Xt is the conditional expectation

µ(Xt) = E
[
Yt

∣∣∣Xt

]
= arg min

m∈M
E
[(
Yt −m(Xt)

)2
]
,

whereM is the collection of measurable functionsm ofXt having finite variance.
The methodology introduced in this paper builds on a decomposition of the

conditional mean into the product of the conditional expectations of the absolute
value and sign of the target variable. It is straightforward to verify that the identity
Yt = |Yt|sign(Yt) implies that the conditional mean may be expressed as

µ(Xt) = E
[
|Yt|
∣∣∣Xt

]
E
[
sign(Yt)

∣∣∣Xt

]
+ Cov

(
|Yt|, sign(Yt)

∣∣∣Xt

)
. (1.1)

The representation in (1.1) highlights that the optimal forecast for Yt given Xt can
be written as the product of MSE optimal absolute value and sign forecasts and

2I assume that E[Y 2
t ] <∞ throughout.

4
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a conditional covariance term. This decomposition motivates the introduction of
CAVS forecasts, a nonlinear forecasting framework that exploits componentwise
predictability in the absolute value and sign to approximate the conditional mean.

Formally, denoting by CA and CS collections of functions for the absolute value
and the sign of Yt, CAVS forecasts are defined as

µCAVS(Xt) = m∗A(Xt)m
∗
S(Xt) + c(Xt) , (1.2)

where

m∗A(Xt) = arg min
m∈CA

E
[(
|Yt| −m(Xt)

)2]
, (1.3)

m∗S(Xt) = arg min
m∈CS

E
[(

sign(Yt)−m(Xt)
)2]

, (1.4)

c(Xt) = Cov
(
|Yt|, sign(Yt)

∣∣∣Xt

)
. (1.5)

It is important to emphasize that CAVS forecasts do not generally coincide with
the conditional mean. In particular, if CA and CS do not include the optimal fo-
recasts µA(Xt) = E

[
|Yt|
∣∣Xt

]
and µS(Xt) = E

[
sign(Yt)

∣∣Xt

]
respectively, the

CAVS forecast will differ from the conditional mean.
It is widely documented in the economic forecasting literature that linear mo-

dels for the conditional mean may exhibit poor out-of-sample performance (Stock
and Watson, 2007; Rossi, 2013). Nonlinear models are typically able to approxi-
mate arbitrary functions (White, 1990). This flexibility comes at the expense of
increased computational complexity, heightened risks of overfitting, and difficul-
ties of interpretation (White, 2006), and the evidence regarding the performance
of nonlinear models in macroeconomic and financial time series is inconclusive
(Clements et al., 2004; Terasvirta, 2006). In contrast to general nonlinear models,
the CAVS framework is designed to exploit two specific features that figure pro-
minently in the macroeconomic and financial forecasting literature: volatility and
sign predictability (see Diebold and Christoffersen, 2006).

The interpretation of the CAVS forecast is straightforward: it is the expected
magnitude of the next realization weighted by the probability that it will be posi-
tive (or negative). In fact, the CAVS forecast is the MSE optimal forecast given
knowledge of either the sign or absolute value of the next realization. Compu-
tationally, the construction of CAVS forecasts requires the estimation of models
for the absolute value and sign of the target series. The results from the empi-
rical application show that CAVS forecasts based on generalized linear models
— which are simple to compute — add substantial flexibility when compared to
linear models for the conditional mean.

To make the CAVS definition operational, the forecaster must specify appro-
priate functions for the absolute value, the sign, and the covariance term c(Xt).

5
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The absolute value of the target series may be modeled as generalized linear
functions of the predictors. Alternatively, building on the empirical success of
GARCH models (Engle, 1982; Brownlees et al., 2011), absolute value forecasts
may be constructed based on conditional volatility forecasts.

A number of possibilities are available to construct sign forecasts. First, one
may employ standard generalized linear models, such as logit and probit, to fo-
recast the signs. Alternatively, the machine learning literature has put forward
a number of methods to forecast binary random variables and their associated
probabilities. In the empirical application, generalized linear models as well as
nonparametric methods are used to construct probability forecasts. Note that the
sign forecast used in the construction of CAVS forecasts is based on the MSE
(of signs) and hence is a probabilistic, rather than binary, forecast. The MSE is a
natural choice in this setting as it elicits the (componentwise) conditional expecta-
tion. Alternative combinations of componentwise loss functions may be explored,
particularly for forecasting under different loss functions.

Finally, I remark that the conditional covariance of signs and absolute values
is often negligible for forecasting purposes. Empirically, Anatolyev and Gospodi-
nov (2010) find evidence of weak dependence between the conditional signs and
absolute values of excess returns. In fact, Proposition 3 shows that, for additive
models with symmetric shocks, c(Xt) is small relative to the irreducible MSE and
may therefore be ignored for forecasting purposes.

1.2.2 Theoretical Results
This section provides a number of theoretical results for CAVS forecasts. Throug-
hout this section, I express Yt as the sum of the conditional mean and an unpre-
dictable error term:

Yt = µ(Xt) + σuut , ut
i.i.d∼ D(0, 1) , (1.6)

where E[Yt] = 0, E[Y 2
t ] < ∞ and D is a distribution with mean zero and unit

variance. I assume throughout that E[|Yt||Xt] ≤ c < ∞ for all Xt and some
c ∈ R. All proofs are presented in the Appendix.

Bounding the loss of CAVS forecasts. Forecasts of economic series are typi-
cally based on misspecified approximations to the conditional mean (see White,
2006). The following proposition provides an upper bound for the MSE of CAVS
forecasts that depends the approximating properties of CA and CS .

Proposition 1. The MSE of the CAVS forecast given in (1.2) is such that

E
[(
Yt − µCAVS(Xt)

)2]
≤ σ2

u + a1E
[(
µS(Xt)−m∗S(Xt)

)2
+
(
µA(Xt)−m∗A(Xt)

)2]
,

6
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where a1 > 0 is a constant.

Proposition 1 shows that the accuracy of CAVS forecasts depends on the
accuracy of the approximations to µA(Xt) and µS(Xt). If µA(Xt) ∈ CA and
µS(Xt) ∈ CS , the CAVS forecast is equivalent to the conditional mean. A large
body of research has documented the good forecasting performance of standard
volatility models (see Andersen et al., 2006; Brownlees et al., 2011). This obser-
vation suggests that, for series with persistent volatility dynamics, µA(Xt) may
be accurately approximated. In addition, Diebold and Christoffersen (2006) show
that conditional volatility dynamics implies directional predictability, and Leung
et al. (2000) document evidence of sign predictability in excess of that captured
by linear models for the conditional mean. Taken together, these observations
suggest that componentwise approximations to the conditional mean may be able
to leverage volatility and sign predictability into accurate conditional mean fore-
casts.

Proposition 1 assumes that the forecaster knows c(Xt), the conditional cova-
riance of signs and absolute values. In practice, this is typically not the case. The
forecaster may explicitly model this term. Alternatively, the next proposition des-
cribes the MSE of CAVS forecasts when c(Xt) is unknown and set to 0 in (1.2).

Proposition 2. The MSE of the forecast constructed as m∗A(Xt)m
∗
S(Xt) is such

that

E
[(
Yt −m∗A(Xt)m

∗
S(Xt)

)2]
≤ σ2

u + a2E
[(
µS(Xt)−m∗S(Xt)

)2
+
(
µA(Xt)−m∗A(Xt)

)2]
+ 2E

[
c(Xt)

2
]
,

where a2 > 0 is a constant.

Proposition 2 shows that the excess risk, in MSE terms, incurred due to setting
c(Xt) to 0 in the construction of the CAVS forecast is additive and proportional
to E[c(Xt)

2]. Next, I show that E[c(Xt)
2] is small relative to σ2

u, the irreducible
uncertainty.

Proposition 3. Considering the representation given in (1.6) and assuming D is
a t distribution with ν > 2 degrees of freedom, then

E
[(
Yt − µA(Xt)µS(Xt)

)2]
≤ (1 + γ)E

[(
Yt − µ(Xt)

)2]
,

with γ ≈ 0.04187.

Proposition 3 provides an upper bound to the contribution of the conditio-
nal covariance term — the approximation error obtained from a componentwise
approximation of µ(Xt) — to the overall MSE. Combining this result with Pro-
position 2 yields the following corollary.

7
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Corollary 1. Consider the representation given in (1.6) and assumeD is a t distri-
bution with ν > 2 degrees of freedom. Then, the MSE of the forecast constructed
as m∗A(Xt)m

∗
S(Xt) is such that

E
[(
Yt −m∗A(Xt)m

∗
S(Xt)

)2]
≤ 1.05σ2

u + a2E
[(
µS(Xt)−m∗S(Xt)

)2]
+ a2E

[(
µA(Xt)−m∗A(Xt)

)2]
,

where a2 is the same as in Proposition 2.

Corollary 1 shows that the MSE of the CAVS forecast constructed by neglec-
ting c(Xt) is driven by the losses in sign and absolute value forecasting. Taken
together, Propositions 1 – 3 highlight that CAVS forecasts may provide suitable
approximations to the conditional mean, especially when the componentwise fore-
casts are accurate approximations of their targets. Next, I present a DGP in which
accurate approximations are available for each of the components, yet linear mo-
dels for the conditional mean are not able to exploit all available information.

Linear forecasts in a nonlinear setting. Consider the following DGP:

Yt =
∣∣X ′t(β + δe1)

∣∣sign(X ′tβ) + ut, ut
iid∼ D(0, σ2

u) , (1.7)

where X = (x1,t, x2 t)
′, e1 = (1, 0), and δ ∈ R. This choice of functional form

allows x1 to affect the sign and absolute value of the target variable differently.
Note that linear models are obtained by setting δ = 0. In contrast, as |δ| increa-
ses, the resulting model exhibits weak linear conditional mean predictability with
strong sign and absolute value predictability. In addition, κ = β1+δ

β1
controls the

size of δ relative to β1, thus parameterizing departures from linearity in this mo-
del. Both the absolute value and the sign of Yt may be accurately approximated
by generalized linear models, yet linear models for the conditional mean will have
poor performance as |κ− 1| increases.

Proposition 4. Consider the model given in (1.7) with β1 = β2 = β and Xt ∼
DX(0, σ2I). The MSE of the best linear predictor is given by

E
[(
Yt −X ′tβ∗

)2]
= σ2

u + β2κ2
(
σ2 − E[x2

1S(κ)]2

σ2
− E[x1x2S(κ)]2

σ2

)
− 2β2κE[x1x2S(κ)]

(E[x2
1S(κ)]

σ2
+

E[x2
2S(κ)]

σ2

)
+ β2

(
σ2 − E[x2

2S(κ)]2

σ2
− E[x1x2S(κ)]2

σ2

)
,

where β∗ = argminβ E
[(
Yt−X ′tβ

)2]
and S(κ) = sign(x2

1 tκ+x1 tx2 t(1+κ)+

x2
2 t).

8
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Proposition 4 provides an exact formula for the MSE of the best linear pre-
dictor in a model where variables impact the sign and absolute value of the target
differently. Although no closed formula solution is available for the expectations
involved, they can be evaluated by numerical methods. In addition, the order of
the MSE of the best linear predictor can be computed for large κ.

Corollary 2. There exists a κ0 such that for all κ > κ0,

E
[(
Yt −X ′tβ∗

)2]
≥ a3κ

2 ,

where a3 > 0 is a constant that depends on E[x2
1 tS(κ)],E[x2

2 tS(κ)] and E[x1 tx2 tS(κ)].

Corollary 2 shows that, for large enough κ, the MSE of the best linear predic-
tor grows with κ2. The next section contains detailed simulation results for this
model.

1.3 Simulation Study
In this section, I carry out a simulation study to numerically evaluate the perfor-
mance of CAVS forecasts. I consider two simulation settings. In addition to the
model given in (1.7), I simulate from the following model:

Yt =
∣∣X ′tβ∣∣sign(X ′t(β + δe1)) + ut, ut

iid∼ N(0, 1) . (1.8)

Both models are nonlinear in x1 yet approximately linear in x2, and nest a linear
model when κ = 1. The nonlinearity in model (1.7) arises due to increases in the
coefficient attached to x1 in the absolute value component. This implies that the
variance of the target variable increases with κ = β1+δ

β1
. In contrast, the nonline-

arity in model (1.8) arises on the sign component, and hence does not influence
the variance of the target variable. In both models, departures from linearity are
obtained by varying κ. Each predictor is an i.i.d draw from a standard Gaussian
distribution. Three forecasting strategies are compared. First, I consider the line-
ar forecast obtained by ordinary least squares regression of Yt on Xt. Second, I
consider the CAVS forecast in (1.2) constructed by setting c(Xt) to 0. Finally, I
consider a CAVS forecast where c(Xt) = 0 and sign forecasts are obtained from
a probit regression of 1{Yt > 0} on Xt.

FIGURE 1.1 ABOUT HERE

Figure 1.1 illustrates the MSE ratios of each forecasting strategy relative to the
best linear predictor for the two simulation settings considered. Values below 1
indicate that the MSE of a given strategy is smaller than that of the linear forecast.

9
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Solid lines represent the CAVS forecasts constructed by setting c(Xt) = 0, whe-
reas dashed lines represent the CAVS forecasts constructed with c(Xt) = 0 and
sign forecasts based on a probit regression. The results from both simulation set-
tings are similar. For large values of κ or for κ ≈ 0, CAVS forecasts substantially
outperform the linear forecast. In particular, for large κ, CAVS forecasts display
the strongest performance gains on the DGP in which nonlinearities arise in the
absolute value of the target series. In contrast, for κ ≈ 0, CAVS forecasts display
the largest gains on the DGP in which nonlinearities arise in the sign of the target
series. For κ ≈ 1, the benefits of exploiting the existing nonlinearities are outper-
formed by the cost of neglecting the conditional covariance term by setting c(Xt)
to 0, and linear models that ignore the nonlinearities will perform better than a
CAVS forecast that does not model the conditional covariance term. Overall, the
simulations highlight that deviations from linearity — such as different predictors
impacting different components of the target series — generate sizable gains for
CAVS forecasts.

1.4 Empirical Application
I employ the framework introduced in this work to forecast the components of the
FRED-MD dataset (McCracken and Ng, 2016), which consists of 128 monthly
financial and macroeconomic series. As in McCracken and Ng (2016), series are
arranged in eight groups: (1) output and income; (2) labor market; (3) housing;
(4) consumption, orders and inventories; (5) money and credit; (6) interest and
exchange rates; (7) prices; and (8) stock market. Detailed results are presented
for a subset of the selected series considered in Kim and Swanson (2014). Addi-
tionally, I also report results for the Fed Funds rate, which may be particularly of
interest to private sector forecasters.

All series are transformed as suggested in McCracken and Ng (2016). In par-
ticular, some series are not expressed in growth rates.3 Series that do not change
signs over the whole sample are excluded from the forecast comparison, but are
kept as predictors to forecast the remaining variables. Additionally, the suggested
transformations assume price series are integrated of order two, implying that the
transformed series are twice differenced. This may hamper sign predictability.
Details of the data and their transformations can be found in McCracken and Ng
(2016). Five series with more than 10 missing observations are dropped from the
dataset.4 The remaining missing values are replaced by the unconditional mean of

3For example, series in the housing group are the logs of housing starts, and hence are always
positive.

4These are: New orders for consumer goods (ACOGNO), New orders for nondefense capi-
tal goods (ANDENOx), Trade weighted U.S. Dollar Index: Major currencies (TWEXMMTH),
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the series computed over the whole sample. After all transformations, the panel
consists of data for 123 series from March 1959 to January 2020, corresponding
to 731 months.

There is a large literature on macroeconomic forecasting. Stock and Wat-
son (2002, 2007, 2012) introduce diffusion index models and document the good
performance of PCR for macroeconomic forecasting. Kim and Swanson (2014)
compare the forecasting performance of a variety of dimension reduction techni-
ques, and find that PCR is improved when combined with other shrinkage-based
techniques. Cheng and Hansen (2015) consider forecast averaging methods, and
find that model averaging improves over PCR at longer horizons and performs on
par with other shrinkage methods at shorter forecast horizons. Most of these stu-
dies focus on linear models and emphasize the issues related to the dimensionality
of the data.

In contrast, Stock and Watson (1999), White and Swanson (1997), Marcellino
(2002), and Bai and Ng (2008) examine nonlinear forecasts of economic variables.
There is mixed evidence regarding the performance of nonlinear models. Stock
and Watson (1999) find limited evidence of univariate nonlinear models impro-
ving upon linear forecasts, and that the best nonlinear models are typically tightly
parameterized. White and Swanson (1997) find that flexible nonlinear models are
particularly suitable for forecasting at longer horizons and document evidence of
nonlinearities in nine macroeconomic series. Marcellino (2002) documents subs-
tantial evidence of exploitable nonlinearities in a number of macroeconomic series
in the European Monetary Union, and Bai and Ng (2008) find that allowing for
nonlinearities in the construction of the factors may improve the accuracy of PCR
forecasts. See Clements et al. (2004), White (2006), and Terasvirta (2006) for
extended discussions on forecasting economic variables with nonlinear models.

1.4.1 Forecasting Methodology

I carry out a pseudo out-of-sample forecasting exercise on the FRED-MD dataset.
I construct and evaluate conditional mean, absolute value and sign forecasts for
h = 1, 3, 6 and 12 months ahead for 113 series.5 Following Stock and Watson
(2012) and Boot and Nibbering (2019), all models include 4 lags of the dependent
variable on the predictive regression, and dimension reduction techniques are ap-
plied to the remaining predictors. Forecasts are produced recursively starting from
January 1985 until the end of the sample.

consumer sentiment index (UMCSENTx), and the VXO volatility index (VXOCLSx).
5These are the 123 series considered with the exception of those that do not change sign in the

evaluation period.
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Linear Forecasts

Principal components regression For each series in the panel and at each out-
of-sample period T , PCR forecasts are constructed using

Ŷ PCR
T+h(r) =

4∑
p=1

ρ̂pYT−p+1 +
r∑
i=1

λ̂iF̂i T ,

where F̂i T is the i-th principal component of {Xt}Tt=1, and Xt denotes a vector
of predictors. The predictive regression is estimated by ordinary least squares,
and forecasts are constructed for r = 1, . . . , 100. Following Boot and Nibbering
(2019), for each out-of-sample period T, I choose,

r∗ = arg min
1,...,100

T∑
t=T−60

(
Yt − Ŷt(r)

)2

,

and take the PCR forecast to be Ŷ PCR
T+h(r

∗).

Penalized regression For each series in the panel and at each out-of-sample
period T , penalized forecasts are constructed using the model:

ŶT+h(λl, l) =
4∑
p=1

ρ̂pYT−p+1 +X ′T β̂ ,

where

(ρ̂1, . . . , ρ̂4, β̂) = argmin
1

T

T∑
t=4

(
Yt+h −

4∑
p=1

ρ̂pYt−p+1 +X ′tβ̂
)2

+ λgl(β)

and where λ is a tuning parameter, g1(β) = 2
∑n

i=1 |βi| is the LASSO penalty,
and g2(β) =

∑n
i=1 β

2
i is the ridge penalty. Following Boot and Nibbering (2019),

LASSO forecasts are constructed for log(λ) ∈ {−30,−29.7, . . . , 0}, whereas rid-
ge forecasts are constructed for log(λ) ∈ {−15,−14.7, . . . , 15}. I then select, for
each out-of-sample period T and choice of l,

λ∗l = argmin
λ

T∑
t=T−60

(
Yt − Ŷt(λ, l)

)2

,

and the LASSO forecasts are given by Ŷ LASSO
T+h (λ∗1, 1), and ridge forecasts by

Ŷ Ridge
T+h (λ∗2, 2).
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CAVS Forecasts

Absolute value forecasts Absolute value forecasts are obtained using the same
baseline methods employed to construct linear conditional mean forecasts, with
minor adjustments. In particular, the target variable is |YT+h| rather than YT+h,
and a larger set of predictors Wt = (X ′t, |X ′t|) is considered.6 In addition to
PCR, ridge, and LASSO, I consider absolute value forecasts implied by an AR(4)-
GARCH(1,1) model:

YT+1 =
4∑
p=1

ρ̂pYT−p+1 + σT+1|TuT+1, uT+1
i.i.d∼ D(0, 1)

σ2
T+1|T = ω + α

(
YT −

4∑
p=1

ρ̂pYT−p

)2

+ βσ2
T ,

where D is a distribution with zero mean and unit variance. Forecasts are cons-
tructed as:

|YT+1|G =
1

B

B∑
b=1

∣∣∣ 4∑
p=1

ρ̂pYT−p+1 + σT+1û
b
T+1

∣∣∣ ,
where ûb is a draw from the GARCH filtered residuals (Barone-Adesi et al., 2008).
Forecasts for h > 1 are obtained by iterating the model forwards (Brownlees and
Souza, 2020).

Sign forecasts Similarly to absolute value forecasts, sign forecasts are construc-
ted employing the baseline methods to forecast the signs of the target variable,
with a few adjustments. First, the target variable is ZT+h = 1{YT+h > 0}. For
Sign-PCR, a logit regression based on the same factors (F̂T ) created to forecast
YT+h is estimated. Sign-Ridge and Sign-LASSO are estimated by penalized ma-
ximum likelihood.7 In addition to PCR, ridge and LASSO, I consider a number
of machine learning algorithms to construct sign forecasts. In particular, I con-
sider random forests (Breiman, 2001), AdaBoost (Freund and Schapire, 1995),
k-nearest neighbors (Devroye et al., 1996) and neural networks (White, 2006).
All tuning parameters are selected on the basis of past predictive performance.

6The absolute value is taken coordinate wise.
7The grid for λ is constructed based on the whole sample and is given by ε, . . . , λmax, where

ε ≈ 0 and λmax is the λ value such that all coefficients in the model are zero (see Friedman et al.,
2010).
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Baseline CAVS forecasts CAVS forecasts are constructed as the product of sign
and absolute value forecasts, and a number of specifications may be entertained. I
consider a set of baseline CAVS specifications where the same method is used to
forecast signs and absolute values, and denote them as CAVS-PCR, CAVS-Ridge,
and CAVS-LASSO.

Forecast combinations

In addition to baseline linear and CAVS models, I explore the performance of
forecast combinations. First, I consider model selection based on past predicti-
ve performance for both CAVS and linear forecasts. The linear forecast is based
on the model (PCR, ridge, or LASSO) that minimizes the MSE over the last 60
months. In contrast, model selection in the CAVS framework amounts to choosing
the best forecasting strategy for each component. Component-specific models are
chosen by their predictive performance in forecasting the appropriate target va-
riable, where performance is measured by the MSE. Second, I consider equally
weighted forecast combinations based exclusively on linear or CAVS forecasts. I
consider 12 CAVS specifications to average over: the permutations of PCR, Rid-
ge and LASSO, in addition to GARCH-based absolute value forecasts. In con-
trast, there are 3 linear specifications to average over. Finally, I consider a hybrid
forecast given by the average of the two previously constructed equal weighted
forecasts.

Forecast evaluation As is standard in the forecasting literature, I evaluate con-
ditional mean forecasts by their pseudo out-of-sample MSE, defined as

MSEim =
1

T

T∑
t=1

(
Ŷi t(m)− Yi t

)2
,

where i = 1, . . . , n denotes the target series, T the number of pseudo out-of-
sample observations, and Ŷi t(m) is the forecast for Yi t based on method m.
Diebold-Mariano tests (Diebold and Mariano, 1995) of superior predictive abi-
lity are carried out to assess whether strategies improve forecast accuracy relative
to the PCR benchmark. In particular, denoting by εt+h(m) model m’s predicti-
on error, the null hypothesis of the DM test considered is H0 : E[ε2t+h(m)] <
E[ε2t+h(PCR)]. The test statistic is constructed as the sample analog of E[ε2t+h(m)]−
E[ε2t+h(PCR)], scaled by a heteroskedasticity and autocorrelation robust estimator
of its standard deviation.

Directional forecasts are evaluated by the proportion of incorrect sign fore-
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casts, defined as

DLim = 1− 1

T

T∑
t=1

1{sign(Yi t) = sign(Ŷi t(m))} .

Assuming Hi t(m) = 1{sign(Yi t) = sign(Ŷi t(m))} ∼ Ber(pm), interest lies in
verifying whether pm = pPCR for the remaining forecasting strategies m. In other
words, I test whether model m has the same probability of correctly classifying
the sign of the next realization relative to the PCR benchmark. Following Chris-
toffersen (1998), a likelihood ratio test is conducted to test the null hypothesis of
pm = pPCR.

In addition to comparing forecasts across models, forecasts are compared
against a benchmark constructed from the unconditional distribution of the tar-
get variable. If a model outperforms the unconditional benchmark, we say there is
evidence of predictability, that is, the conditioning set improves forecast accuracy.
Conditional mean predictability is assessed by DM tests of each strategy relative
to the recursively estimated unconditional mean of each variable.

1.4.2 Empirical Results
Results for Selected Series

TABLE 1.1 ABOUT HERE

Table 1.1 reports the ratio of the MSE of each forecasting strategy relative
to PCR for each selected series and forecast horizon. Numbers below 1 imply
that the strategy considered outperforms PCR. Best performing strategies for each
series and forecast horizon are highlighted in boldface. DM tests of superior pre-
dictive ability are carried out and stars denote significance levels. CAVS-based
forecasts are the MSE best for the majority of series across all forecast horizons
considered, substantially outperforming linear forecasts for the Federal funds, in-
dustrial production, nonfarm payroll employment, and the S&P 500 uniformly
across forecast horizons. In particular, for the Federal funds, the best CAVS spe-
cification displays MSE reductions of about 15, 18, 6, and 3% relative to the best
linear model at h = 1, 3, 6, and 12 months ahead, respectively. CAVS-Ridge is the
best performing specification, selected as the MSE best across all series and fo-
recast horizon combinations 25% of the time, followed by CAVS-LASSO, PCR,
and CAVS-PCR, which are the MSE best 20, 17, and 15% of the time, respec-
tively. For h = 1 month ahead forecasting, Ridge is the best performing linear
model for 5 out of the 10 selected series, followed by LASSO and PCR, the best
performing linear models for 4 and 1 series, respectively. CAVS-Ridge is the best
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performing CAVS specification for 5 out of the 10 selected series, followed by
CAVS-PCR and CAVS-LASSO, the best performing CAVS specifications for 3
and 2 series, respectively. This ranking remains largely unchanged for h = 3 and
h = 6 months ahead forecasts. For h = 12 months ahead, Ridge is the best per-
forming linear model for 7 out of 10 series, followed by PCR, the best performing
model for 3 series. LASSO is not the best linear model for any series. Among
CAVS specifications, CAVS-Ridge dominates CAVS-PCR and is the best CAVS
specification for 7 out of 10 series. CAVS-LASSO is the best performing CAVS
specification for the remaining 3 series.

Overall, the good performance of the baseline CAVS forecasts highlights that
exploiting directional and volatility predictability yields more accurate macroeco-
nomic forecasts for the selected series. In particular, CAVS-Ridge forecasts are,
on average, 6.5% more accurate than PCR forecasts, displaying the largest gains
among all the baseline models considered.

Results for all FRED-MD components

Next, I provide a comparison of CAVS-Ridge and PCR for all FRED-MD com-
ponents.

FIGURE 1.2 ABOUT HERE

Figure 1.2 reports the ratios of the MSE of CAVS-Ridge relative to PCR for all
FRED-MD components, sorted by groups. Values below 1 indicate that CAVS-
Ridge forecasts outperforms PCR. Colors indicate significance at the 10% level
(gray), 5% level (dark-gray), or 1% level (black), based on a DM test of supe-
rior predictive ability. A number of findings emerge from inspection of Figure
1.2. First, CAVS-Ridge outperforms PCR for the majority of series and across
all horizons, with particularly strong performance for series that exhibit persistent
volatility dynamics, such as interest rates, output, and stocks series. Second, as
the forecast horizon increases, CAVS-Ridge performance gains become wides-
pread, outperforming PCR for 53, 80, 67, and 75% of series for h = 1, 3, 6, and
12 months ahead, respectively. Finally, CAVS-Ridge — and CAVS forecasts in
general — display poor performance for series that are not expressed in growth
rates. In particular, none of the series that are in the top 90% quantile of MSE
ratios — i.e., series for which CAVS provides MSE increases greater than 12.6%
— are expressed in growth rates. This is the case for all price series, most mo-
ney, and a few labor series, all of which are twice differenced. Additionally, some
series in the interest and exchange rate groups are expressed as spreads. Because
spreads rarely change signs, CAVS forecasts generally display poor performance
for these series — in stark contrast to its good performance for their growth rates
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counterparts. For example, CAVS-Ridge provides 33% more accurate forecasts
of the first differences of the 3-month treasury bill when compared to PCR. By
contrast, PCR provides 5% more accurate forecasts of the spread constructed as
the 3-month treasury bill minus the federal funds rate relative to CAVS-Ridge.
Overall, the results highlight that CAVS-Ridge compares favorably to PCR, parti-
cularly for series that display persistent volatility dynamics.

Componentwise Forecast Accuracy

Directional forecasts Directional forecasts of macroeconomic series are objects
of interest in their own right (see Pesaran and Timmerman, 1992; Sinclair et al.,
2010, among others). I compare the performance of directional forecasts implied
by CAVS and linear forecasts for the selected series.

TABLE 1.2 ABOUT HERE

Table 1.2 reports the directional loss ratio of each forecasting strategy relative
to the sign of the linear PCR forecast for each selected series and forecast horizon.
Note that signs of CAVS forecasts directly target the sign of the series considered
by construction. Numbers below 1 imply that the strategy considered outperforms
PCR. Best performing strategies for each series and forecast horizon are highligh-
ted in boldface. Likelihood ratio tests of superior predictive ability relative to the
linear PCR benchmark, as described in Section 1.4.1, are carried out and stars
denote significance levels. CAVS-based directional forecasts outperform their li-
near counterparts for the majority of series and across all horizons considered. In
particular, CAVS-based directional forecasts are more accurate for the four series
for which CAVS display the largest gains relative to linear forecasts. For most
of the remaining series, CAVS-based directional forecasts perform on par with
their linear counterparts. In particular, CAVS directional forecasts are outperfor-
med by linear forecasts for the CPI and M2 series. This finding highlights that
twice differencing may hamper sign predictability, particularly at short forecast
horizons. Moreover, CAVS-based directional forecasts provide substantial impro-
vements relative to their linear counterparts at intermediate forecast horizons. The
performance of all CAVS specifications is similar. CAVS-Ridge is the best direc-
tional forecasting strategy for the most series across all horizons, but performance
gains relative to CAVS-LASSO and CAVS-PCR are modest. Among directional
forecasts based on linear models, Ridge and LASSO perform similarly at h = 1
month ahead forecasting. PCR is the best performing linear model for horizons
greater than 1 month ahead. Overall, CAVS-based directional forecasts are more
accurate than their linear counterparts, highlighting that there is sign predictability
in excess of that implied by linear models for the conditional mean. In particular,
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the results show that directly targeting the sign yields more accurate directional
forecasts than forecasts based on the sign of conditional mean forecasts.

Absolute value forecasts The performance of CAVS forecasts hinges on sign
and absolute value predictability. This section reports the results for the perfor-
mance of absolute value forecasts for the selected series.

TABLE 1.3 ABOUT HERE

Table 1.3 reports, for each forecasting strategy, selected series, and forecast
horizon, the MSE of absolute value forecasts relative to a PCR benchmark. I re-
port results for the absolute values of linear forecasts, as well as absolute value
forecasts that directly target the absolute values of the series considered. Num-
bers below 1 imply that the strategy considered outperforms PCR. Best perfor-
ming strategies for each series and forecast horizon are highlighted in boldface.
DM tests of superior predictive ability are carried out and stars denote signifi-
cance levels. Absolute value forecasts based on a standard AR(4)-GARCH(1,1)
are selected as the MSE best forecast for the majority of series across all forecast
horizons. For h = 1 month ahead, GARCH-based forecasts exhibit sizable per-
formance gains relative to linear models for the absolute value. This finding high-
lights that standard time series models are able to accurately model conditional
volatility dynamics for macroeconomic series, and that the added value of exoge-
nous predictors is modest (see also Brownlees and Souza, 2020). As the forecast
horizon increases, all models that target the absolute value perform similarly, with
GARCH-based forecasts modestly outperforming their linear counterparts. Ove-
rall, Tables 1.2 and 1.3 show that there is componentwise predictability in excess
of that implied by linear models.

Additional Results

Alternative CAVS specifications I explore whether alternative CAVS specifica-
tions can improve forecasting performance relative to the baseline CAVS models
considered. In particular, given the good performance of the GARCH(1,1) in fo-
recasting absolute values, I consider 4 absolute value forecasting strategies (PCR,
ridge, LASSO and GARCH) and 3 sign forecasting strategies (PCR, ridge and
LASSO), leading to 12 possible combinations of signs and absolute values.

TABLE 1.4 ABOUT HERE

Table 1.4 reports the MSE of CAVS-based forecasts relative to that of PCR,
for each of the selected series and forecast horizons. The first and second rows
denote the absolute value and sign forecasting strategy, respectively. Numbers
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below 1 imply that the strategy considered outperforms PCR. Best performing
strategies for each series and forecast horizon are highlighted in boldface. DM
tests of superior predictive ability relative to PCR are carried out, and stars denote
significance levels. In line with Tables 1.2 and 1.3, CAVS forecasts based on
the standard GARCH (the best performing absolute value model), and ridge (the
best performing sign model), are the MSE best for the most series and forecast
horizon combinations considered. However, performance across all CAVS models
is similar, suggesting that standard CAVS specifications are sufficient to exploit
the relevant nonlinearities.

Machine learning sign forecasts. I consider whether CAVS forecasts can be
improved upon by employing machine learning algorithms to forecast the signs.

TABLE 1.5 ABOUT HERE

Table 1.5 displays results for selected series. For each series and forecast hori-
zon, I report the ratios of the MSE of the CAVS specification considered relative to
PCR forecasts. Best performing methods according to each criteria are highligh-
ted in boldface, and stars represent significance according to a DM test, evaluated
at the 5% significance level. The most successful machine learning algorithm is
random forests. CAVS forecasts where the sign forecasts are constructed from
random forests outperform baseline CAVS forecasts for 2 out of the 10 series con-
sidered. Perhaps surprisingly, no other machine learning algorithm outperforms
the baseline CAVS forecasts. It is important to emphasize that I consider stan-
dard implementations of the machine learning algorithms. It is well-known that
training machine learning models requires a degree of experimentation (White,
2006). This implies, in particular, that careful tuning of each model’s parameters
could improve accuracy.

Models against an unconditional benchmark. I compare models in terms of
their ability to outperform forecasts based on the recursively estimated unconditi-
onal mean.

TABLE 1.6 ABOUT HERE

Table 1.6 reports, for each FRED-MD group and forecast horizon, the percen-
tage of series in each group for which each strategy outperforms the unconditi-
onal mean forecasts according to a DM test at the 5% significance level. Best
performing methods are highlighted in boldface. For h = 1 month ahead, both
CAVS-based and linear forecasts outperform the unconditional mean benchmark
for the majority of the series. In particular, CAVS-based forecasts outperform the
unconditional mean benchmark more often than linear forecasts for labor, money,
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and interest rates series. In contrast, linear forecasts outperform the unconditional
mean benchmark more often than CAVS-based forecasts for consumption and pri-
ces series. The performance of all models is similar in the remaining series. For
h > 1 months ahead, CAVS-based forecasts outperform the unconditional mean
more often than linear models for nearly all groups across all horizons. In particu-
lar, at h = 6 months ahead, CAVS-based forecasts outperform the unconditional
mean for up to 40% of the Output series, in contrast to linear models, which out-
perform the unconditional mean for up to 25% of the series. Overall, CAVS-based
forecasts outperform a unconditional mean benchmark for more series and across
longer forecast horizons than linear models.

Model selection and forecast averaging. I consider the performance of forecast
combinations, as described in Section 1.4.1.

TABLE 1.7 ABOUT HERE

Table 1.7 reports the MSE of each forecast combination strategy relative to
that of PCR, for each selected series and forecast horizon. Numbers below 1 imply
that the strategy considered outperforms PCR. Best performing strategies for each
series and forecast horizon are highlighted in boldface. DM tests of superior pre-
dictive ability relative to PCR are carried out, and stars denote significance levels.
Forecasts constructed by model averaging generally outperform those constructed
by model selection for both linear and CAVS forecasts. Additionally, linear model
averaging significantly outperforms PCR for nearly all series at all horizons consi-
dered. Moreover, forecast combinations that include CAVS forecasts outperform
those based exclusively on linear models for the majority of series considered,
and are particularly well-suited for intermediate forecast horizons. Finally, simple
forecast combinations of linear and nonlinear models are a competitive strategy.
Overall, the findings reported in Table 1.7 are in line with those reported in Table
1.1, suggesting that series characteristics, rather than specific modelling choices,
are the determinants of whether CAVS will perform favorably compared to linear
forecasts.

1.5 Concluding Remarks
This paper introduces CAVS forecasts, a nonlinear framework that combines fo-
recasts of the sign and absolute value of a time series into conditional mean fo-
recasts. In contrast to linear models, in which variables that affect the mean of
the target variable must affect both its sign and absolute value, the proposed fra-
mework allows different predictors to affect either the sign, the absolute value, or
both.
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I provide a number of theoretical results for CAVS forecasts. First, I show that
the conditional mean can be written as the product of MSE optimal forecasts of
signs and absolute values and a covariance term that can be explicitly modeled.
If the underlying DGP is additive with symmetric shocks, the covariance term
is small relative to the variance of the shocks and therefore may be ignored for
forecasting purposes. Second, I show that the performance of CAVS forecasts
hinges on the ability to accurately forecast each of the components of the target
series. This result highlights that CAVS-based forecasts are particularly suited
for series that exhibit persistent volatility dynamics, and hence absolute value
predictability. Third, I study a nonlinear DGP in which variables may affect signs
and absolute values differently, and show that the MSE of the best linear predictor
increases quadratically with the degree of nonlinearity.

The proposed methodology is applied to forecast each of the components of
the FRED-MD dataset. I find that CAVS forecasts substantially outperform line-
ar forecasts in series that exhibit strong conditional volatility dynamics, such as
Output and Interest Rate series, and the performance gains remain sizable across
forecast horizons. Moreover, I find that CAVS-based directional forecasts outper-
form linear forecasts for the majority of the selected series considered, across all
horizons. Additionally, I document that CAVS forecasts outperform the recursi-
vely estimated unconditional mean benchmark for more series and across longer
horizons than linear forecasts. Finally, I find that forecast combinations that inclu-
de CAVS forecasts outperform those based exclusively on linear models for the
majority of series and across all horizons considered. Overall, the empirical appli-
cation highlights that exploiting directional and volatility predictability improves
forecast accuracy in macroeconomic series.
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Figura 1.1: Simulation Study

MSE ratios: nonlinearities in the absolute value
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MSE ratios: nonlinearities in the sign
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This figure illustrates the findings of the simulation study. It depicts the MSE ratios of each
strategy considered over the linear benchmark. The x-axis represents distance to linearity, which
increases with |κ − 1|. Solid lines represent sign forecasts based on correctly specified models,
whereas dashed lines represent sign forecasts based on a misspecified probit regression. Values
below 1 indicate that the MSE of a given strategy is smaller than that of the linear forecast.
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Figura 1.2: MSE ratios for all FRED-MD components
h = 1
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This figure reports the ratio of the MSE of the equally weighted CAVS forecast relative to that
of the equally weighted linear forecast. Values below 1 indicate that CAVS forecasts outperform
PCR forecasts. Colors indicate that CAVS combinations outperform linear combinations at the
10% level (gray), 5% level(dark-gray), or 1% level (black), based on a one-sided DM test.
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Taula 1.1: Linear and CAVS Forecasts

Linear CAVS

h Series Ridge LASSO PCR Ridge LASSO

1

Fed Funds 0.725∗∗∗ 0.662∗∗∗ 0.692∗∗ 0.582∗∗∗ 0.573∗∗∗

Ind. Prod. 0.930∗∗∗ 0.982 0.891∗∗∗ 0.874∗∗∗ 0.894∗∗∗

Nonfarm Empl. 0.985 1.023 0.922∗ 0.941 0.926∗

S&P 500 0.954∗∗∗ 0.958∗∗ 1.011 0.944∗∗∗ 0.961∗∗

Unemp. 0.980 0.987 0.946 0.982 1.014
M2 (Real) 0.972 0.968 1.000 0.981 0.960
PPI: FG 0.967∗ 0.941∗∗ 1.134 0.995 0.995
10-Year T. Rate 0.948∗∗ 0.969 1.039 0.995 1.006
CPI 0.902∗∗∗ 0.874∗∗∗ 1.224 1.051 1.058
RPI ex. Rec. 1.019 1.038 1.069 1.122 1.138

3

Fed Funds 0.940∗ 0.971 0.763∗∗∗ 0.808∗∗∗ 0.818∗∗∗

Ind. Prod. 0.912∗∗∗ 0.960 0.878∗∗∗ 0.860∗∗∗ 0.874∗∗∗

Nonfarm Empl. 0.897∗∗∗ 0.947 0.854∗∗∗ 0.826∗∗∗ 0.856∗∗∗

S&P 500 0.988∗∗ 0.986∗∗ 1.000 0.983 0.980∗

Unemp. 1.022 1.051 1.047 1.088 1.100
M2 (Real) 0.963∗ 0.966 0.987 0.983 0.992
PPI: FG 0.997 1.000 0.975∗∗ 0.979∗∗ 0.978∗∗

10-Year T. Rate 0.970∗ 0.972 0.966∗ 0.947∗∗∗ 0.951∗∗

CPI 0.972∗∗ 0.971∗∗ 0.987 0.980 0.984
RPI ex. Rec. 1.006 1.020 0.990 1.002 1.017

6

Fed Funds 0.739∗∗∗ 0.815∗∗∗ 0.690∗∗∗ 0.708∗∗∗ 0.727∗∗∗

Ind. Prod. 0.980 0.994 0.950∗∗ 0.943∗∗∗ 0.964∗∗

Nonfarm Empl. 0.886∗∗∗ 0.915∗∗ 0.853∗∗∗ 0.807∗∗∗ 0.788∗∗∗

S&P 500 0.994 0.992 0.991 0.983∗ 0.982∗

Unemp. 1.006 1.011 1.107 1.091 1.105
M2 (Real) 0.916∗∗∗ 0.954∗ 0.953∗ 0.933∗ 0.932∗

PPI: FG 0.984∗∗ 0.984∗∗ 0.985 0.965∗∗∗ 0.964∗∗

10-Year T. Rate 0.973 0.970 0.973 0.940∗∗ 0.955
CPI 0.998 0.996 1.013 1.001 1.006
RPI ex. Rec. 1.002 1.003 1.002 1.004 1.015

12

Fed Funds 0.839∗∗∗ 0.902∗∗ 0.826∗∗∗ 0.807∗∗∗ 0.814∗∗∗

Ind. Prod. 0.921∗∗∗ 0.947∗∗∗ 0.923∗∗∗ 0.890∗∗∗ 0.892∗∗∗

Nonfarm Empl. 0.979 1.051 0.802∗∗∗ 0.797∗∗∗ 0.805∗∗∗

S&P 500 0.991∗∗ 0.992∗ 0.989 0.982∗∗ 0.982∗∗

Unemp. 1.023 1.019 1.081 1.071 1.094
M2 (Real) 0.924∗∗∗ 0.952∗∗ 1.014 0.968 0.992
PPI: FG 1.015 1.022 1.025 1.021 1.026
10-Year T. Rate 0.983∗ 0.990 1.015 0.985 0.991
CPI 1.001 1.008 1.027 1.015 1.015
RPI ex. Rec. 0.969∗∗ 0.973∗ 0.909∗∗∗ 0.900∗∗∗ 0.897∗∗∗

This table reports the MSE of each forecasting strategy (columns) relative to that of PCR,
for each of the selected series and forecast horizon. Numbers below 1 imply that the strategy
considered outperforms PCR. Best performing strategies for each series and forecast horizon are
highlighted in boldface. If no method is highlighted, the PCR benchmark is the best performing
method. DM tests of superior predictive ability relative to the PCR are carried out, and stars denote
significance levels. (∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01).
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Taula 1.2: Directional Forecasts

Linear CAVS: Sign

h Series PCR(%DL) Ridge LASSO PCR Ridge LASSO

1

Fed Funds 40.24 0.994 0.970 0.994 0.976 0.947
Ind. Prod. 31.19 0.947 0.985 0.924 1.023 1.008
Nonfarm Empl. 11.43 0.958 0.938 1.000 0.938 0.875
S&P 500 36.67 0.968 0.942 0.994 0.935 0.942
Unemp. 57.38 1.004 1.021 0.938 0.967 0.992
M2 (Real) 26.67 0.893 0.884 1.045 0.911 0.902
PPI: FG 32.86 1.051 1.014 1.159 1.014 0.971
10-Year T. Rate 40.95 1.023 1.023 1.012 0.988 1.017
CPI 34.52 0.945 0.952 1.200 0.966 1.014
RPI ex. Rec. 25.71 0.991 0.972 0.963 0.954 0.954

3

Fed Funds 50.48 1.100 1.261 0.853∗∗∗ 0.915∗ 0.872∗∗∗

Ind. Prod. 33.49 1.000 1.007 0.914 1.007 1.014
Nonfarm Empl. 13.16 1.036 1.036 1.073 1.055 1.036
S&P 500 40.19 0.976 0.970 0.946 0.917 0.887∗

Unemp. 54.31 1.018 1.035 1.048 1.057 1.026
M2 (Real) 29.43 1.016 0.992 0.927 0.976 0.976
PPI: FG 51.91 1.018 1.037 0.977 0.954 0.954
10-Year T. Rate 52.87 1.109 1.059 0.977 0.941 0.946
CPI 51.20 1.000 1.009 0.855∗∗∗ 0.869∗∗∗ 0.855∗∗∗

RPI ex. Rec. 24.64 1.068 1.049 1.049 1.078 1.087

6

Fed Funds 52.53 1.009 1.018 0.917∗ 0.931 1.028
Ind. Prod. 35.66 0.980 0.986 0.966 0.966 0.973
Nonfarm Empl. 15.90 1.030 1.076 0.955 0.939 1.015
S&P 500 38.55 1.000 0.975 0.981 0.975 0.950
Unemp. 56.14 1.017 1.000 1.052 1.056 1.056
M2 (Real) 28.19 1.051 1.085 1.068 1.000 1.017
PPI: FG 52.29 0.982 1.000 0.940 0.931 0.949
10-Year T. Rate 50.84 1.043 0.962 0.976 0.948 0.957
CPI 51.57 1.000 0.977 0.897∗∗ 0.897∗∗ 0.902∗∗

RPI ex. Rec. 24.82 1.000 0.981 0.971 0.990 1.000

12

Fed Funds 50.86 1.014 1.202 1.067 1.091 1.168
Ind. Prod. 35.70 0.966 0.966 0.966 0.966 0.966
Nonfarm Empl. 20.29 0.928 0.928 0.940 0.916 0.928
S&P 500 37.65 0.974 1.006 0.974 0.961 0.987
Unemp. 58.19 1.071 1.042 1.042 1.034 1.038
M2 (Real) 32.27 0.955 1.053 0.977 0.992 0.992
PPI: FG 48.41 0.970 0.995 0.914∗ 0.944 0.934
10-Year T. Rate 46.45 1.074 1.021 1.095 1.105 1.084
CPI 46.70 1.000 1.031 0.932 0.901∗ 0.916
RPI ex. Rec. 26.41 0.981 1.009 0.981 0.981 1.009

This table reports, for each selected series and forecast horizon, the directional loss ratio of
each sign forecasting strategy relative to the sign of the linear PCR forecast. Linear sign forecasts
are the signs of the linear forecasts constructed, whereas the remaining forecasts are obtained
by directly targeting the sign of the series considered. Numbers below 1 imply that the strategy
considered outperforms PCR. Best performing strategies for each series and forecast horizon are
highlighted in boldface. If no method is highlighted, the PCR benchmark is the best performing
method. Likelihood ratio tests of superior predictive ability relative to the linear PCR benchmark,
as described in Section 1.4.1, are carried out. Stars denote significance levels. (∗p < 0.1,∗∗ p <
0.05,∗∗∗ p < 0.01).
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Taula 1.3: Absolute Value Forecasts

Linear CAVS: Absolute Value

h Series Ridge LASSO PCR Ridge LASSO GARCH

1

Fed Funds 0.679∗∗∗ 0.590∗∗∗ 0.862 0.752∗∗∗ 0.699∗∗∗ 0.568∗∗∗

Ind. Prod. 1.056 1.076 0.778∗∗∗ 0.714∗∗∗ 0.741∗∗∗ 0.807∗∗∗

Nonfarm Empl. 0.980 1.064 0.981 0.994 1.000 0.917∗

S&P 500 1.006 1.030 0.639∗∗∗ 0.636∗∗∗ 0.633∗∗∗ 0.637∗∗∗

Unemp. 1.086 1.111 0.862∗∗∗ 0.849∗∗∗ 0.860∗∗∗ 0.856∗∗∗

M2 (Real) 1.007 1.014 0.910∗ 0.902∗∗ 0.890∗∗ 0.925∗

PPI: FG 0.955∗∗ 0.927∗∗ 0.805∗∗∗ 0.794∗∗∗ 0.803∗∗∗ 0.700∗∗∗

10-Year T. Rate 1.006 1.002 0.833∗∗∗ 0.809∗∗∗ 0.797∗∗∗ 0.738∗∗∗

CPI 0.910∗∗ 0.894∗∗ 0.869 0.838∗∗ 0.866∗ 0.731∗∗∗

RPI ex. Rec. 0.994 1.007 0.768∗∗ 0.760∗∗ 0.751∗∗ 0.854

3

Fed Funds 0.946 0.935 0.941 0.890 0.955 0.810∗∗

Ind. Prod. 1.005 0.952∗ 0.775∗∗∗ 0.760∗∗∗ 0.777∗∗∗ 0.762∗∗∗

Nonfarm Empl. 0.921∗ 1.019 1.017 0.975 0.981 0.908∗

S&P 500 1.017 1.009 0.586∗∗∗ 0.582∗∗∗ 0.589∗∗∗ 0.578∗∗∗

Unemp. 1.055 1.072 0.704∗∗∗ 0.715∗∗∗ 0.725∗∗∗ 0.708∗∗∗

M2 (Real) 0.984 0.981 0.829∗∗∗ 0.806∗∗∗ 0.812∗∗∗ 0.857∗∗∗

PPI: FG 1.001 0.986∗∗ 0.537∗∗∗ 0.512∗∗∗ 0.515∗∗∗ 0.465∗∗∗

10-Year T. Rate 1.092 1.091 0.666∗∗∗ 0.627∗∗∗ 0.626∗∗∗ 0.564∗∗∗

CPI 1.023 1.017 0.580∗∗∗ 0.563∗∗∗ 0.578∗∗∗ 0.555∗∗∗

RPI ex. Rec. 0.998 1.005 0.911∗∗∗ 0.905∗∗∗ 0.904∗∗∗ 1.010

6

Fed Funds 0.975 0.938 0.913 0.909 0.995 0.951
Ind. Prod. 0.966∗∗ 0.954∗∗ 0.780∗∗∗ 0.779∗∗∗ 0.785∗∗∗ 0.810∗∗∗

Nonfarm Empl. 0.891∗∗∗ 0.840∗∗∗ 0.895∗ 0.866∗∗ 0.866∗∗ 0.835∗∗∗

S&P 500 1.019 1.031 0.588∗∗∗ 0.579∗∗∗ 0.581∗∗∗ 0.571∗∗∗

Unemp. 1.079 1.087 0.666∗∗∗ 0.652∗∗∗ 0.648∗∗∗ 0.652∗∗∗

M2 (Real) 0.952∗ 0.977 0.813∗∗∗ 0.783∗∗∗ 0.781∗∗∗ 0.805∗∗∗

PPI: FG 1.024 1.029 0.540∗∗∗ 0.536∗∗∗ 0.536∗∗∗ 0.491∗∗∗

10-Year T. Rate 0.950∗∗ 0.967∗ 0.622∗∗∗ 0.613∗∗∗ 0.649∗∗∗ 0.577∗∗∗

CPI 1.016 1.011 0.583∗∗∗ 0.576∗∗∗ 0.576∗∗∗ 0.582∗∗∗

RPI ex. Rec. 0.995∗ 0.986∗∗∗ 0.915∗∗∗ 0.914∗∗∗ 0.921∗∗∗ 0.954

12

Fed Funds 1.018 1.002 1.035 1.088 1.301 1.199
Ind. Prod. 1.047 1.026 0.948 0.894∗∗ 0.906∗∗ 0.952
Nonfarm Empl. 0.788∗∗∗ 0.777∗∗∗ 0.866∗∗ 0.861∗∗ 0.860∗∗ 0.842∗∗∗

S&P 500 1.018 1.013 0.609∗∗∗ 0.597∗∗∗ 0.602∗∗∗ 0.596∗∗∗

Unemp. 1.079 1.051 0.672∗∗∗ 0.651∗∗∗ 0.649∗∗∗ 0.642∗∗∗

M2 (Real) 0.940∗∗∗ 0.974 0.885∗∗∗ 0.848∗∗∗ 0.844∗∗∗ 0.820∗∗∗

PPI: FG 1.040 1.042 0.608∗∗∗ 0.602∗∗∗ 0.609∗∗∗ 0.581∗∗∗

10-Year T. Rate 1.052 1.039 0.596∗∗∗ 0.571∗∗∗ 0.592∗∗∗ 0.563∗∗∗

CPI 1.003 0.997 0.641∗∗∗ 0.622∗∗∗ 0.622∗∗∗ 0.630∗∗∗

RPI ex. Rec. 1.033 1.048 0.964 0.956 0.951 0.989

This table reports the MSE of absolute value forecasts, for each forecasting strategy relative
to that of PCR, for each of the selected series and forecast horizons. Absolute values of linear
models are the absolute values of the linear forecasts constructed. Numbers below 1 imply that
the strategy considered outperforms PCR. Best performing strategies for each series and forecast
horizon are highlighted in boldface. If no method is highlighted, the PCR benchmark is the best
performing method. DM tests of superior predictive ability relative to the PCR are carried out and
stars denote significance levels. (∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01).
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Taula 1.5: Machine Learning Forecasts

Series PCR Ridge LASSO RF Adab. k-NN NN

Fed Funds 0.587 0.582 0.584 0.473 0.540 0.577 0.829
Ind. Prod. 0.877 0.874 0.903 0.880 0.892 0.937 1.115
Nonfarm Empl. 0.898 0.941 0.940 0.903 1.154 1.197 1.581
S&P 500 1.008∗∗∗ 0.944∗∗∗ 0.960∗∗∗ 0.986∗∗∗ 1.043∗∗∗ 0.988∗ 1.076
Unemp. 0.956 0.982 1.011 0.977 1.017 1.043 1.260
M2 (Real) 0.997 0.981 0.971 1.095 1.075 1.119 1.113
PPI: FG 1.142 0.995 0.996 1.215 1.256 1.233 1.173
10-Year T. Rate 1.034 0.995 1.009 1.018 1.025 1.036 1.251
CPI 1.193 1.051 1.068 1.107 1.123 1.165 1.212
RPI ex. Rec. 1.074 1.122 1.136 1.015 1.028 1.055 1.219

This table reports the results for select series. For each series, the table reports the ratios of
the MSE of the CAVS specification considered relative to PCR forecasts. The absolute values
employed in this CAVS forecast are obtained by Ridge, and the sign forecasts are based on the
methods in the columns. Best performing methods are highlighted in boldface and stars represent
significance of a superior predictive ability test relative to the PCR forecast at 5% significance
level. If no method is highlighted, the PCR benchmark is the best performing method.
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Taula 1.6: Predictability

Linear CAVS

h Series PCR Ridge LASSO PCR Ridge LASSO

1

Output 37.50 68.75 50.00 68.75 68.75 68.75
Consumption 85.71 85.71 71.43 57.14 71.43 71.43
Labor 82.76 89.66 82.76 93.10 93.10 86.21
Money 50.00 57.14 57.14 35.71 64.29 57.14
Stocks 25.00 100.00 75.00 25.00 100.00 100.00
Interest and Exc. 45.00 55.00 45.00 60.00 95.00 85.00
Prices 85.00 95.00 95.00 45.00 60.00 65.00
FRED-MD 63.64 77.27 69.09 62.73 79.09 75.45

3

Output 12.50 43.75 31.25 56.25 62.50 50.00
Consumption 28.57 28.57 28.57 42.86 42.86 42.86
Labor 58.62 65.52 62.07 68.97 72.41 65.52
Money 0.00 7.14 7.14 7.14 7.14 7.14
Stocks 0.00 0.00 0.00 0.00 0.00 0.00
Interest and Exc. 30.00 35.00 35.00 40.00 35.00 35.00
Prices 0.00 0.00 0.00 0.00 0.00 0.00
FRED-MD 24.55 32.73 30.00 37.27 38.18 34.55

6

Output 18.75 25.00 18.75 25.00 43.75 37.50
Consumption 28.57 28.57 28.57 28.57 28.57 28.57
Labor 68.97 75.86 65.52 68.97 72.41 72.41
Money 0.00 0.00 0.00 0.00 0.00 0.00
Stocks 0.00 0.00 0.00 0.00 0.00 0.00
Interest and Exc. 25.00 30.00 30.00 35.00 35.00 25.00
Prices 0.00 0.00 0.00 0.00 0.00 0.00
FRED-MD 27.27 30.91 27.27 30.00 33.64 30.91

12

Output 0.00 6.25 6.25 6.25 37.50 31.25
Consumption 0.00 14.29 0.00 28.57 28.57 28.57
Labor 31.03 37.93 27.59 41.38 48.28 41.38
Money 7.14 7.14 7.14 7.14 7.14 7.14
Stocks 0.00 0.00 0.00 0.00 0.00 0.00
Interest and Exc. 25.00 25.00 20.00 30.00 25.00 25.00
Prices 5.00 5.00 0.00 5.00 5.00 0.00
FRED-MD 14.55 18.18 12.73 20.91 26.36 22.73

This table reports the results for each group in the FRED-MD, as well as for the dataset as
a whole. For each group and forecast horizon, this table reports the percentage of series within
a group for which each method outperforms an unconditional mean benchmark according to a
DM test at the 5% significance level. Best performing methods for each group are highlighted in
boldface.

29



“thesis” — 2021/9/28 — 18:18 — page 30 — #46

Taula 1.7: Forecast Combinations

Model Selection Forecast Averaging

h Series Linear CAVS Linear CAVS Hybrid

1

Fed Funds 1.000 0.580∗∗∗ 0.719∗∗∗ 0.574∗∗∗ 0.538∗∗∗

Ind. Prod. 0.970∗∗ 0.880∗∗∗ 0.951∗∗∗ 0.867∗∗∗ 0.891∗∗∗

Nonfarm Empl. 1.000 0.946 0.953∗∗ 0.892∗∗ 0.901∗∗∗

S&P 500 0.969∗ 0.948∗∗∗ 0.964∗∗∗ 0.960∗∗∗ 0.951∗∗∗

Unemp. 0.987 0.996 0.969∗∗ 0.973 0.946∗∗

M2 (Real) 0.978 1.001 0.967∗∗ 0.956 0.973
PPI: FG 0.941∗∗ 0.981 0.961∗∗ 1.010 0.957∗∗

10-Year T. Rate 0.994 1.001 0.954∗∗∗ 1.000 0.940∗∗

CPI 0.874∗∗∗ 1.066 0.907∗∗∗ 1.084 0.946
RPI ex. Rec. 1.000 1.080 1.015 1.103 1.023

3

Fed Funds 1.000 0.792∗∗∗ 0.930∗∗ 0.785∗∗∗ 0.842∗∗∗

Ind. Prod. 0.951∗∗∗ 0.873∗∗∗ 0.939∗∗∗ 0.863∗∗∗ 0.897∗∗∗

Nonfarm Empl. 1.003 0.822∗∗∗ 0.910∗∗∗ 0.828∗∗∗ 0.843∗∗∗

S&P 500 0.995 0.987 0.990∗∗ 0.986 0.986∗

Unemp. 1.002 1.061 1.018 1.076 1.023
M2 (Real) 0.973 0.982 0.969∗ 0.981 0.964∗

PPI: FG 1.002 0.983 0.998 0.977∗∗ 0.986∗∗

10-Year T. Rate 0.991 0.967∗∗ 0.973∗∗ 0.950∗∗ 0.962∗∗∗

CPI 1.000 0.986 0.975∗∗ 0.979 0.973∗∗

RPI ex. Rec. 1.003 0.981 1.006 0.998 0.989

6

Fed Funds 0.807∗∗∗ 0.717∗∗∗ 0.796∗∗∗ 0.705∗∗∗ 0.730∗∗∗

Ind. Prod. 0.980 0.949∗∗ 0.985 0.945∗∗∗ 0.957∗∗∗

Nonfarm Empl. 0.902∗∗∗ 0.817∗∗∗ 0.904∗∗∗ 0.796∗∗∗ 0.818∗∗∗

S&P 500 1.000 0.986 0.994 0.983∗ 0.987∗

Unemp. 1.003 1.089 0.996 1.096 1.021
M2 (Real) 0.918∗∗∗ 0.935∗ 0.949∗∗∗ 0.936∗ 0.931∗∗

PPI: FG 0.999 0.970∗∗ 0.988∗∗ 0.970∗∗ 0.975∗∗∗

10-Year T. Rate 1.002 0.952∗ 0.965∗∗ 0.949∗ 0.946∗∗

CPI 0.998 1.008 0.997 1.002 0.993
RPI ex. Rec. 1.004 1.015 1.002 1.006 1.005

12

Fed Funds 1.000 0.820∗∗∗ 0.869∗∗∗ 0.807∗∗∗ 0.829∗∗∗

Ind. Prod. 0.953∗∗∗ 0.909∗∗∗ 0.943∗∗∗ 0.896∗∗∗ 0.920∗∗∗

Nonfarm Empl. 0.997 0.791∗∗∗ 0.984 0.789∗∗∗ 0.857∗∗∗

S&P 500 0.996∗ 0.978∗∗∗ 0.994∗∗ 0.984∗∗ 0.984∗∗∗

Unemp. 1.019 1.076 1.006 1.077 1.021
M2 (Real) 0.929∗∗∗ 0.948∗ 0.948∗∗∗ 0.984 0.938∗∗∗

PPI: FG 1.000 1.023 1.010 1.020 1.010
10-Year T. Rate 0.994 0.992 0.987∗ 0.993 0.984
CPI 1.003 1.014 1.002 1.018 0.999
RPI ex. Rec. 0.980 0.911∗∗ 0.977∗∗ 0.899∗∗∗ 0.935∗∗∗

This table reports the MSE of each forecast combination strategy (columns) relative to that of
PCR, for each of the selected series and forecast horizon. Numbers below 1 imply that the strategy
considered outperforms PCR. Best performing strategies for each series and forecast horizon are
highlighted in boldface. If no method is highlighted, the PCR benchmark is the best performing
method. DM tests of superior predictive ability relative to the PCR are carried out, and stars denote
significance level. (∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01).
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Apèndix A
Appendix

A.1 Proofs
Proof of proposition 1. We need to show that

E
[(
Yt − µCAVS(Xt)

)2]
≤ σ2

u + a1E
[(
µS(Xt)−m∗S(Xt)

)2
+
(
µA(Xt)−m∗A(Xt)

)2]
where we assume that µA(Xt) = E[|Yt||Xt] ≤ ã1 for all Xt. We begin by expanding

E
[(
Yt − µCAVS(Xt)

)2]
= σ2

u + E
[(
µ(Xt)−m∗A(Xt)m

∗
S(Xt)− c(Xt)

)2]
= σ2

u + E
[(
µA(Xt)µS(Xt)−m∗A(Xt)m

∗
S(Xt)

)2]
= σ2

u + E
[(
µA(Xt)

(
µS(Xt)−m∗S(Xt)

)
+m∗S(Xt)

(
µA(Xt)−m∗A(Xt)

))2]
= σ2

u + E
[
||M ′ε||2

]
with M = (µA(Xt) , m

∗
S(Xt))

′ and ε =
(
µS(Xt)−m∗S(Xt) , µA(Xt)−m∗A(Xt)

)′
.

Noting that

||M ||2 = µA(Xt)
2 +m∗S(Xt)

2, and

||ε||2 =
(
µS(Xt)−m∗S(Xt)

)2
+
(
µA(Xt)−m∗A(Xt)

)2
,

we can apply Cauchy-Schwarz’s inequality to obtain

||M ′ε||2 ≤ ||M ||2||ε||2

≤ (1 + µA(Xt)
2)||ε||22

=
(
1 + µA(Xt)

2
)((

µS(Xt)−m∗S(Xt)
)2

+
(
µA(Xt)−m∗A(Xt)

)2)
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where we have used the fact that |m∗S(Xt)| ≤ 1. Next, because µA(Xt) ≤ c for all Xt by
assumption, we have

E
[(
Yt − µCAVS(Xt)

)2]
≤ σ2

u + E
[(

1 + µA(Xt)
2
)((

µS(Xt)−m∗S(Xt)
)2

+
(
µA(Xt)−m∗A(Xt)

)2)]
≤ σ2

u + E
[(

1 + c2
)((

µS(Xt)−m∗S(Xt)
)2

+
(
µA(Xt)−m∗A(Xt)

)2)]
≤ σ2

u + a1E
[(
µS(Xt)−m∗S(Xt)

)2
+
(
µA(Xt)−m∗A(Xt)

)2]
,

where a1 = 1 + c2.

Proof of Proposition 2. Note that

E
[(
Yt −m∗A(Xt)m

∗
S(Xt)

)2]
= σ2

u + E
[(
µ(Xt)− µCAVS(Xt) + µCAVS(Xt)−m∗A(Xt)m

∗
S(Xt)

)2]
= σ2

u + E
[(
µ(Xt)− µCAVS(Xt) + c(Xt)

)2]
Next using the fact that (a− b)2 ≤ 2(a2 + b2), we write

E
[(
µ(Xt)− µCAVS(Xt) + c(Xt)

)2]
≤ 2E

[(
µ(Xt)− µCAVS(Xt)

)2
+ c(Xt)

2
]

Applying Proposition 1, we have

E
[(
Yt −m∗A(Xt)m

∗
S(Xt)

)2]
≤ σ2

u + 2E
[
c(Xt)

2
]

+ 2a1E
[(
µS(Xt)−m∗S(Xt)

)2]
+ 2a1E

[(
µA(Xt)−m∗A(Xt)

)2]
,

setting a2 = 2a1 yields the proposition.

Proof of proposition 3. Let u ∼ tν denote a t-distributed random variable with mean zero
and ν > 2 and define h(x) : R→ R+, v(x) : R→ [−1, 1] and g(x) : R→ R as

h(x, ν) = Eu[|x+ u|],
v(x, ν) = 2Fν(x)− 1 and,

g(x, ν) = h(x, ν)v(x, ν) .

where Fν is the cumulative distribution function of u. Note that

h(x, ν) =

∫ ∞
−∞

(x+ u)sign(x+ u)fν(u)du

=

∫ ∞
−x

(x+ u)fν(u)du−
∫ −x
−∞

(x+ u)fν(u)du

= 2

∫ ∞
−x

ufν(u)du+ xv(x)

= 2
(ν + x2

ν − 1

)
fν(x) + xv(x),
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and the squared approximation error is given by

D(x, ν) =
(
x− g(x, ν)

)2
=
(

4xFν(x)(1− Fν(x))− 2
(ν + x2

ν − 1

)
fν(x)(2Fν(x)− 1)

)2
.

Denote D(x) = limν→∞D(x, ν), and let x∗(ν) = arg maxx∈RD(x, ν). Proceeding
numerically, it can be verified that D(x∗(ν), ν) is increasing in ν, which implies

D(x, ν) = (x− v(x, ν)h(x, ν))2 ≤
(
4x∗Φ(x∗)(1− Φ(x∗))− 2φ(x∗)(2Φ(x∗)− 1)

)2
≈ 0.04187 ,

where x∗ = arg maxx∈R
(
4x∗Φ(x∗)(1− Φ(x∗))− 2φ(x∗)(2Φ(x∗)− 1)

)2.

Proof of proposition 4. Let X ∼ N (0, σ2I) and write

Yt = |x1κβ1 + x2β2|sign(x1β1 + x2β2) + ut , ut ∼ D(0, 1)

The OLS estimate for β∗1 is given by

β∗1 =
1

σ2
E
[
x1|x1κβ1 + x2β2|sign(x1β1 + x2β2)

]
=

1

σ2
E
[
|x1||x1κβ1 + x2β2|sign(x1)sign(x1β1 + x2β2)

]
=

1

σ2
E
[
|x2

1κβ1 + x1x2β2|sign(x2
1β1 + x1x2β2)

]
=

1

σ2
E
[
(x2

1κβ1 + x1x2β2)sign(x2
1β

2
1κ+ x1x2β1β2(1 + k) + x2

2β
2
2)
]

Proceeding analogously for β∗2 , we have

β∗2 =
1

σ2
E
[
(x1x2κβ1 + x2

2β2)sign(x2
1β

2
1κ+ x1x2β1β2(1 + k) + x2

2β
2
2)
]

Further, under the assumption that β1 = β = β2, we have

β∗1 =
1

σ2
1

βE
[
(x2

1κ+ x1x2)sign(x2
1κ+ x1x2(1 + κ) + x2

2)
]
, and

β∗2 =
1

σ2
2

βE
[
(x1x2κ+ x2

2)sign(x2
1κ+ x1x2(1 + κ) + x2

2)
]

Let S(κ) = sign(x2
1κ+x1x2(1+κ)+x2

2) and denote by a = E
[
x2

1S(κ)
]
, b = E

[
x2

2S(κ)
]

and c = E
[
x1x2S(κ)

]
.

E
[(
Yt −X ′tβ∗

)2]
− σ2

u = E
[(
β(x1κ+ x2)S(κ)− β x1

σ2
E
[
(x2

1κ+ x1x2)S(κ)
]]

− E
[
β
x2

σ2
E
[
(x1x2κ+ x2

2)S(κ)
])2]
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and we can write the scaled excess MSE as:

β−2
(
E
[(
Yt −X ′tβ∗

)2]
− σ2

u

)
= E

[(
(x1κ+ x2)S(κ)− x1

σ2
E
[
(x2

1κ+ x1x2)S(κ)
]

− x2

σ2
E
[
(x1x2κ+ x2

2)S(κ)
])2]

= E
[(
S(κ)x1κ+ S(κ)x2 −

x1

σ2
κa− c

σ2
x1 −

c

σ2
κx2 −

x2

σ2
b
)2]

= E
[(
κ
(
S(κ)x1 −

x1

σ2
a− x2

σ2
c
)

+ x2

(
S(κ)− b

σ2

)
− x1

σ2
c
)2]

.

Noting that S(κ) ≤ 1 for all κ and that E
[
x2

2S(κ)
]
≤ E

[
x2

2

]
, it is clear that the order of

the first term will determine the order of β−2
(
E
[(
Yt −X ′tβ∗

)2]
− σ2

u

)
for large κ. For

the first term, we have

E
[
κ2
(
S(κ)x1 −

x1

σ2
a− x2

σ2
c
)2]

= κ2E
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S(κ)x1 −

x1

σ2
E[x2

1S(κ)]− x2

σ2
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= κ2E

[
x2

1 +
x2

1

σ4
E[x2

1S(κ)]2 +
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2

σ4
E[x1x2S(κ)]2

]
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σ2
E[x2
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σ2
E[x1x2S(κ)]2

= κ2
(
σ2 − 1

σ2
E[x2

1S(κ)]2 − 1

σ2
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)
.

For the second term, we have

E
[
x2

2S(κ)2 − x2
2

b2

σ4

]
= σ2 − b2

σ2
,

for the third term, we have

E
[x2

1

σ4
c2
]

=
c2

σ2
.

For the cross-products, we have:

E
[ c
σ2
x1x2S(κ)− b

σ2

x1x2

σ2
c
]

=
c2

σ2
,

and

E
[
κ
(
S(κ)x1 −

x1

σ2
a− x2

σ2
c
)x1

σ2
c
]

= κ(
ac

σ2
− ac

σ2
) = 0 ,

and finally

E
[
κ
(
S(κ)x1 −

x1

σ2
a− x2

σ2
c
)(
x2S(κ)− x2

b

σ2
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= − κ

σ2
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Combining everything, we have

β−2
(
E
[(
Yt −X ′tβ∗

)2]
− σ2

u

)
= κ2

(
σ2 − 1

σ2
(a2 + c2)

)
− 2κ

c(a+ b)

σ2
+ σ2 − b2

σ2
− c2

σ2

= κ2
(
σ2 − E[x2

1S(κ)]2

σ2
− E[x1x2S(κ)]2

σ2

)
− 2κE[x1x2S(κ)]

(E[x2
1S(κ)]

σ2
+

E[x2
2S(κ)]

σ2

)
+
(
σ2 − E[x2

2S(κ)]2

σ2
− E[x1x2S(κ)]2

σ2

)
.

To compute the order of the MSE, note that for κ > 1 we have

1

σ2
E[x2

1S(κ)]2 − 1

σ2
E[x1x2S(κ)]2 <

1

σ2
E[x2

1S(1)]2 − 1

σ2
E[x1x2S(1)]2 = σ2

which implies that, for κ > 1,

0 <
(
σ2 − 1

σ2
E[x2

1S(κ)]2 − 1

σ2
E[x1x2S(κ)]2

)
< σ2 ,

and E
[
κ2
(
S(κ)x1 − x1

σ2a− x2
σ2 c
)2]
∝ κ2 for large κ, which proves Corollary 2.
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Capı́tol 2
Backtesting Global Growth-at-Risk

2.1 Introduction

In recent years, the focus of policymakers on downside risk has substantially in-
creased (Prasad et al., 2019; Caldera Sanchéz and Röhn, 2016), which has mo-
tivated the development of tools to assess the likelihood and extent of extreme
events of key economic variables (Adrian et al., 2019; Ghysels et al., 2018). In
particular, the International Monetary Fund (IMF) has recently popularized a risk
measure for GDP growth called Growth-at-Risk (GaR), which is the worst-case
scenario GDP growth at a given coverage level and is the analog of the classic
Value-at-Risk (VaR) used in risk management. Several institutions currently rou-
tinely publish GaR for major world economies.1 Despite GaR’s rapid success, its
out-of-sample predictive performance has not been extensively studied.2

The main objective of this paper is to conduct an out-of-sample empirical eva-
luation of GaR predictions at different horizons for a panel of OECD countries.
We consider GaR predictions constructed from quantile regression and GARCH
models. Our evaluation strategy is based on the classic backtesting methodology
developed in the risk management literature. Our analysis uncovers a number of
empirical findings and identifies best practices.

We explore different types of multi-country GaR forecasts that supervisory
institutions may consider. Recall that the univariate (1 − p)% GaR is defined
as the lower one-sided prediction interval that contains future realizations of GDP
growth of a given country with (1−p)% coverage probability. We consider two ge-
neralizations of univariate GaR called marginal GaR and joint GaR. The (1−p)%

1See, for example, IMF (2017) and ECB (2019).
2Adrian et al. (2019, 2018) evaluate the accuracy of predictive densities for USA GDP growth.

However, the accuracy of the prediction intervals for GDP growth remains relatively unexplored.
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marginal GaR is defined as the prediction region that contains the GDP growth of
each country with (1− p)% coverage probability. Stated simply, marginal GaR is
the region obtained by stringing together the univariate GaR prediction intervals
of each country. In particular, the forecasts published by the IMF may be interpre-
ted as marginal GaR. The (1 − p)% joint GaR is defined as the prediction region
that contains the GDP growth of all countries with (1−p)% coverage probability.
A number of methods are available to construct joint GaR and we rely on Bonfer-
roni’s method and the bootstrap joint prediction regions (BJPR) method of Wolf
and Wunderli (2015). To the best of our knowledge, this is the first paper that
addresses joint GaR prediction. We emphasize that marginal and joint GaR pre-
dictions serve different purposes and a detailed comparison of these predictions
is provided in what follows. In this work we consider both types of predictions
simply to provide a comprehensive assessment of GaR predictive ability.

Notably, the primary focus of this paper is to construct and evaluate prediction
regions rather than predictive densities. Although both problems are of interest,
we focus on prediction regions for two reasons. First, international organizations
and central banks typically publish prediction regions, which should thus be eva-
luated properly. Second, evaluation metrics that assess the goodness-of-fit of the
entire (or part of the) density do not necessarily identify the methods that are bet-
ter suited to capture downside risk as measured by specific quantiles. That being
said, for completeness, we also carry out a predictive density evaluation exercise.

We construct marginal and joint GaR on the basis of quantile regression and
GARCH models. One of the appealing features of quantile regression, which has
been used extensively in the GaR literature, is that it allows direct linkage of down-
side risk predictors to the quantiles of GDP growth. GARCH models are routinely
used to construct VaR forecasts in the risk management literature yet, somehow
surprisingly, are rarely used in the GaR literature. To the best of our knowledge,
this is the first paper that compares the two approaches out-of-sample.3 We con-
sider a number of quantile regression specifications based on country-specific and
global variables, including the national financial conditions index (NFCI) (Adri-
an et al., 2019), credit-to-GDP statistics (Borio and Lowe, 2002), housing prices
(Claessens et al., 2008), economic uncertainty indexes (Baker et al., 2016; Ahir
et al., 2018), a geopolitical risk index (Caldara and Iacoviello, 2018) and market
risk measures (Faust et al., 2013; Estrella and Hardouvelis, 1991). Among the-
se variables, the NFCI is considered to be one of the most relevant predictors of
downside risk by the GaR literature. We also remark that most of the predictors
used in this study (NFCI included) are not constructed in real-time and have look-

3Adrian et al. (2019) report that in their analysis they also employ a GARCH model; however,
the paper only reports estimation and out-of-sample results for a conditionally heteroskedastic mo-
del in which the variance dynamics are driven by the NFCI (as opposed to past squared prediction
errors as in a GARCH).
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ahead bias. Furthermore, we consider a set of GARCH models: GARCH(1,1),
GJR-GARCH(1,1), Factor GARCH(1,1) and a GARCH(1,1) augmented with the
NFCI as an exogenous conditional variance predictor. The relative scarcity of
GARCH applications in macroeconomics may be due to the short time series
available for estimation. We overcome this hurdle by using composite estima-
tion (Pakel et al., 2011), which exploits cross-sectional commonality in GARCH
dynamics to obtain precise parameter estimates.

We backtest the marginal and joint GaR forecasts by using a battery of tools
developed in the risk management literature. We employ several variants of the
dynamic quantile test of Engle and Manganelli (2004) to assess whether the GaR
predictions are efficient with respect to different information sets. Additionally,
the marginal GaR forecasts are evaluated using the tick loss, which is a loss func-
tion commonly used to assess the accuracy of VaR predictions (Giacomini and
Komunjer, 2005). We compare quantile regression and GARCH with benchmarks
based on the historical unconditional distribution of GDP growth rates.

We study GaR predictive ability for a panel of 24 OECD countries from
1973Q1 to 2016Q4. We first conduct an in-sample analysis based on the enti-
re sample and then recursively forecast and evaluate the marginal and joint GaR
from 1983Q4 to 2016Q4.

Our backtesting results shows that quantile regression and GARCH forecasts
have a similar performance. If anything, our evidence suggests that standard
volatility models such as the GARCH(1,1) are more accurate, even though the
GARCH(1,1) uses no information other than GDP growth. This is remarkable
considering that most of the quantile regression predictors (including the NFCI)
have a look-ahead bias that may not be negligible.4 For marginal GaR, GARCH
typically has better backtesting performance than quantile regression across all
evaluation metrics considered. In particular, GARCH performs better than the
quantile regression based on the NFCI, which is the best performing quantile re-
gression specification. A superior predictive ability test comparison based on the
tick loss shows that the GARCH(1,1) outperforms the quantile regression based
on the NFCI for at most six countries across all horizons. In contrast, the quan-
tile regression based on the NFCI outperforms the GARCH(1,1) for at most two
countries across all horizons. For joint GaR, GARCH forecasts based on BJPR
have substantially better backtesting performance than those based on quantile re-
gression in conjunction with Bonferroni.5 Additionally, in the robustness section
we show that GARCH density forecasts are more accurate than quantile regres-
sion density forecasts constructed using the methodology of Adrian et al. (2019).

4We remark that the NFCIs are estimated from a dynamic a factor model with time-varying
parameters and such models tend to have fairly high filtering uncertainty at the sample endpoints.

5The comparison with quantile regression should be taken with caution as the BJPR cannot be
applied to quantile regression.
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Overall, despite the popularity of quantile regression for downside risk prediction,
this paper suggests caution against relying too heavily on this technique.

There are a number of possible explanations for our findings. First, quantile
regression rely on specifying an appropriate set of downside risks predictors that
measure specific sources of distress. Their relevance and predictive ability may
vary over time. In fact, additional robustness checks in the Appendix show that the
out-of-sample performance of quantile regression based on the NFCI deteriorates
if the period starting from the Great Financial Crisis is excluded from the valida-
tion sample. Moreover, it is unclear whether financial conditions are a relevant
downside risk predictor during the covid-19 pandemic of 2020. In contrast, a pure
time series model such as a GARCH that is agnostic about the specific sources
of distress in the economy may be more robust for prediction. Second, capturing
the dynamics of conditional quantiles is empirically challenging in a macro en-
vironment where time series information is scarce, especially if the interest lies
in extreme quantiles. Thus, a volatility model may be better suited for quantile
forecasting even if it is misspecified.

This paper is related to various strands of literature. First, it is related to the
rapidly growing literature on GaR. This includes work by Adrian et al. (2019),
Plagborg-Møller et al. (2020), Carriero et al. (2020), De Nicolò (2019), Beutel
(2019), Chavleishvili and Manganelli (2019), and Adrian et al. (2018). Our work
also relates to the literature on interval forecast evaluation and backtesting in risk
management. This includes work by Giacomini and Komunjer (2005) and Chris-
toffersen (1998). This paper is also connected to the literature on dynamic quantile
models; see, for example, Engle and Manganelli (2004) and White et al. (2015).
Finally, our work is related to the literature on the impact of financial distress
on real activity, including works by Allen et al. (2012) and Brownlees and Engle
(2017).

The remainder of this paper is structured as follows. Section 2.2 details the
methodology, and Section 2.3 presents the empirical evidence. Concluding re-
marks follow in Section 2.4. We provide additional methodological details and
empirical results in the Appendix.

2.2 Forecasting Growth-at-Risk

2.2.1 Marginal and Joint Growth-at-Risk Definitions

Let Yi t denote the GDP growth rate of country i = 1, . . . , n for period t =
1, . . . , T . The h-step-ahead (1 − p)% marginal GaR is defined as the predicti-
on region GaRM

t+h|t = (GaRM
1 t+h|t,∞)×· · ·× (GaRM

nt+h|t,∞) such that for each
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i we have

Pt(Yi t+h ≤ GaRM
i t+h|t) = p,

where Pt(·) is the probability measure conditional on the information set available
in period t. That is, the (1−p)% marginal GaR is the prediction region that should
contain the GDP growth of each country with (1 − p)% probability. The h-step-
ahead (1− p)% joint GaR is the prediction region GaRJ

t+h|t = (GaRJ
1 t+h|t,∞)×

· · · × (GaRJ
n t+h|t,∞) such that

Pt
(

at least one growth rate Yi t+h is not in GaRJ
t+h|t

)
= p. (2.1)

That is, the (1 − p)% joint GaR should contain the GDP growth of all countries
with (1 − p)% probability. We suppress the dependence of GaR on the coverage
level (1− p)% to avoid burdening notation. The marginal GaR prediction region
is unique6 and determined by the conditional quantiles of the GDP growth rate
of each country. In contrast, the joint GaR prediction region is not uniquely de-
termined by its definition, and a number of procedures are available to construct
such regions. Marginal GaR is a natural generalization of univariate GaR for a
panel of countries. However, marginal GaR may be considered to be a myopic
global risk measurement tool as it measures the downside risks for each country
individually. In contrast, joint GaR is designed to measure downside risk in the
case of a system-wide event7 and produces a prediction region that contains the
growth rates of all countries simultaneously with the desired coverage probability.

Building upon Wolf and Wunderli (2015) and Romano and Wolf (2007), we
introduce a more general joint GaR prediction region (see also Romano et al.,
2010, p. 95). Defining the joint GaR prediction region on the basis of the event
“at least one growth rate Yi t+h is not in GaRJ

t+h|t” as in (2.1) may be excessively
restrictive, even for moderately large panels. This definition may, in turn, lead to
prediction regions that are excessively large and of little practical use. Therefore,
we introduce the h-step-ahead (1 − q)%/(1 − p)% joint GaR as the prediction
region GaRJq

t+h|t = (GaRJq
1 t+h|t,∞)× · · · × (GaRJq

n t+h|t,∞) such that

Pt
(

at least dqne growth rates Yi t+h are not in GaRJq
t+h|t

)
= p,

where dxe denotes the smallest integer greater than or equal to x. That is, the
(1− q)%/(1− p)% joint GaR should contain the GDP growth of (1− q)% of the

6Throughout this paper, we assume that the conditional cumulative distribution function of the
GDP growth rate of each country is invertible, which guarantees the uniqueness of the conditional
quantiles and the corresponding marginal GaR prediction region.

7That is, the event “at least one growth rate Yi t+h is not in GaRJ
t+h|t”.
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countries with (1−p)% probability. Defining the prediction region on the basis of
a less stringent event leads to smaller and potentially more informative regions. In
practice, q may be chosen such that a large fraction of the entire system, for exam-
ple, 95%, is within the prediction region with the prescribed coverage probability.
Let us also emphasize that the event “at least dqne growth rates Yi t+h are not
in GaRJq

t+h|t” may be more interesting from a global risk monitoring perspective,
irrespective of the panel dimensions. For example, in 2019Q3, global recession
fears were triggered by weak growth figures for 5 economies.

A number of remarks are in order. It is important to emphasize that unlike
Adrian et al. (2019), we focus on predicting the h-step ahead GDP growth rate rat-
her than the (average) cumulative h-step ahead GDP growth. Both are commonly
encountered target variables of interest in the macro-econometrics literature (Faust
and Wright, 2013; Stock and Watson, 2006). Here, we focus on the h-step ahe-
ad growth rate as we are interested in assessing for how many quarters ahead
covariates and/or exploiting GDP dynamics deliver more accurate forecasts than
predictions based solely on the historical unconditional distribution of GDP. We
remark that the literature documents that the NFCI is significant (in-sample) for
the cumulative h-step ahead GDP growth up to 1 year ahead (Adrian et al., 2019)
or even (roughly) 2 years ahead (Adrian et al., 2018). This evidence prompts the
question of how persistent the information content of the NFCI is. That being
said, for completeness in the empirical application we also consider cumulative
h-step ahead GaR prediction.

The forecasts published by the IMF can be interpreted as marginal GaR. By
construction, when the number of countries is large, the probability of observing a
GDP realization of at least one country outside the marginal GaR region is clearly
much larger than one minus the nominal marginal coverage. In fact, in our empiri-
cal analysis, we document at least one GDP realization outside the 95% marginal
GaR prediction region every 3 quarters for all forecasting methods considered.
This feature may not be appealing from a global risk monitoring perspective. In
contrast, the probability of observing a GDP realization of any country outside the
joint GaR region is equal to one minus the nominal joint coverage. We think of
joint GaR as a stress GaR measure that is well suited to monitor global downside
risk.

It is also important to emphasize the difference between constructing the uni-
variate GaR for the average of the countries in a panel versus constructing the joint
GaR of all countries in the panel. We argue that a supervisory institution may be
interested in tracking the GaR of all countries jointly rather than an average. This
may be particularly important if a supervisory institution is concerned about the
fact that the distress of a small yet systemic group of countries may jeopardize the
entire system. In fact, in the 2011 European sovereign debt crisis, the turmoil in
the Eurozone originated from smaller periphery economies.
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The coverage properties of the considered GaR prediction regions are rela-
tive to a single, fixed horizon. Instead, one may be interested in constructing
prediction regions that provide uniform coverage simultaneously across all hori-
zons. Although we do not consider alternative GaR definitions, we note that the
methodology of Wolf and Wunderli (2015) enables the construction of such pre-
diction regions. Moreover, the joint GaR prediction region defined in this work
is rectangular. Other possibilities may be explored (for example, one may defi-
ne an elliptical joint GaR region). However, we believe that a rectangular joint
GaR region is natural, easy to interpret and overall, well suited for global risk
monitoring.

In conclusion, we remark that we do not take a strong stand with respect to
which regions should be constructed and reported. Our work is mainly concerned
with providing a comprehensive assessment of the predictive ability of different
types of GaR predictions that may be entertained by international organizations
such as the IMF, BIS or ECB.

2.2.2 Models for Growth-at-Risk
Quantile Regression

Quantile regression was popularized by Adrian and Brunnermeier (2016) in the af-
termath of the great financial crisis as a tool to construct downside risk measures
and is routinely used to construct GaR predictions. In the quantile regression fra-
mework, the conditional quantiles of GDP growth are modeled as linear functions
of a set of quantile predictors. More precisely, the h-step-ahead p% conditional
quantile of {Yi t} is given by

Qp(Yi t+h|It) = αpi + βpi 0Yi t + βpi 1Xi1 t + . . .+ βpiKXiK t, (2.2)

where Qp(Yi t+h|It) denotes the p% quantile of Yi t+h conditional on the informa-
tion set available in period t, which is denoted by It, and Xi k t for k = 1, . . . , K
denotes the set of predictors for country i.

To make the model in (A.6) operational, one must specify an appropriate set
of predictors. In this work, we consider a moderately large set of candidates based
on the evidence established in the literature. The precise set of variables that we
explore is enumerated in Section 2.3.1, where we introduce the data used in our
analysis.

The parameters in (A.6) are estimated by minimizing the tick loss, which is
given by

TLp =
1

T

T∑
t=1

ρp(Yi t −Qp(Yi t|It−h) ),

43



“thesis” — 2021/9/28 — 18:18 — page 44 — #60

where ρp(x) = x
(
p− 1{x<0}

)
. We refer to Koenker and Basset (1978) for the

details of the estimation of quantile regression. In the forecasting application,
we also rely on a LASSO-type estimation of quantile regression to regularize the
estimates of more expensively parameterized specifications.

GARCH

GARCH models are the workhorse of volatility forecasting (Brownlees et al.,
2011) and are routinely used to construct VaR predictions. In this work, we cons-
truct GaR forecasts on the basis of the following GARCH-type specification:

Yi t+1 = µi t+1|t +
√
σ2
i t+1|t Zi t+1 Zi t+1

i.i.d∼ DZi
(0, 1), (2.3)

where µi t+1|t denotes the 1-step-ahead conditional mean, σ2
i t+1|t is the 1-step-

ahead conditional variance and DZi
(µ, σ2) is a location-scale distribution with

mean µ and variance σ2. The 1-step-ahead conditional distribution of the GDP
growth rates implied by (A.1) is

Yi t+1|It ∼ DZi
(µi t+1|t, σ

2
i t+1|t),

which indicates that the innovation distribution DZi
determines the shape of the

conditional distribution. The 1-step-ahead p% conditional quantile of {Yi t} is
then given by

Qp(Yi t+1|It) = µi t+1|t +
√
σ2
i t+1|tF

−1
Zi

(p), (2.4)

where F−1
Zi

(·) is the inverse cumulative distribution function of DZi
. In general,

the h-step-ahead conditional distribution for h > 1 is not available in closed form,
and simulation techniques similar to the ones used in Brownlees and Engle (2017)
must be applied to estimate the p% conditional quantile. In this case, the h-step-
ahead p% conditional quantile is

Qp(Yi t+h|It) = F−1

Ỹi t+h|t
(p), (2.5)

where Ỹi t+h|t denotes a simulated realization of the process in period t+ h, given
the path of the GDP growth rates observed up to period t. This value is obtained
by iterating the dynamic model defined in (A.1); therefore, we label the quantile
forecast in (2.5) as iterated. Section A.1 of the Appendix details the simulation
algorithm for this computation.

To make the model in (A.1) operational, the conditional mean µi t+1|t, condi-
tional variance σ2

i t+1|t and innovation distribution DZi
must be specified. For the

conditional mean, we rely on an AR(1) model. The conditional variance equation
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is key to quantile forecasting, and we entertain a number of GARCH specificati-
ons. First, we consider the standard GARCH(1,1),

σ2
i t+1|t = σ2

i (1− αi − βi) + αiε
2
i t + βiσ

2
i t, (2.6)

where εi t is the AR(1) residual, and the variance equation parameters satisfy the
constraints σi > 0, αi > 0, βi ≥ 0 and αi + βi < 1. Additionally, we consider the
GJR-GARCH(1,1), which takes into account asymmetry in conditional volatility
dynamics, the Factor GARCH(1,1), which decomposes volatility dynamics into
systematic and idiosyncratic components, and a GARCH(1,1) whose conditional
variance equation is augmented with the NFCI as an exogenous predictor. We
describe the models in detail in the Appendix. Finally, the innovation distribution
DZi

is estimated nonparametrically.
GARCH models are estimated by quasi-maximum likelihood. A challenge in

the estimation of GARCH models when applied to macro time series is that mo-
derately large samples are needed to obtain stable parameter estimates (Brownlees
et al., 2011). This problem becomes more relevant when carrying out a recursive
estimation for prediction. Thus, we choose the following estimation strategy. In
the in-sample analysis, we estimate GARCH models individually for each country
based on (standard) quasi-maximum likelihood. In the out-of-sample analysis, we
rely on a panel GARCH estimation procedure known in the literature as com-
posite likelihood (Pakel et al., 2011). Composite likelihood estimation enhances
efficiency by pooling information across series. This is particularly advantage-
ous in the beginning of the out-of-sample forecasting exercise where the length
of the in-sample estimation window is small. We describe this procedure in the
Appendix.

2.2.3 Constructing Marginal and Joint Growth-at-Risk
The (1− p)% marginal GaR prediction region is uniquely determined by the con-
ditional quantiles of the GDP growth rates and is obtained by stringing together in-
dividual quantiles. That is, the lower endpoints of the prediction region GaRM

t+h|t
are, for i = 1, . . . , n,

GaRM
i t+h|t = Qp(Yi t+h|It),

where Qp(Yi t+h|It) is set equal to (A.6) for quantile regression or (2.4) and (2.5)
for GARCH.

The (1 − p)% joint GaR prediction region can be constructed using different
methods. We note that Wolf and Wunderli (2015) contains an extensive discussion
of the construction of joint prediction regions, and we refer the interested reader
to that paper for additional background. The first method that we consider, for
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illustrative purposes, is labeled “joint marginal” and is the prediction region ob-
tained by setting the joint GaR equal to the marginal GaR. The joint marginal GaR
can be considered the naı̈ve joint GaR that would be constructed if one ignored
that the marginal and joint coverage properties differ. The second method that we
consider is called Bonferroni’s method. It follows from Bonferroni’s inequality
that joining univariate p/n% quantile forecasts will yield a region with uniform
coverage of at least (1−p)%. The Bonferroni-based (1−p)% joint GaR, which we
denote byGaRJ,B

t+h|t, is the prediction region with lower endpoints for i = 1, . . . , n
given by

GaRJ,B
i t+h|t = Qp/n(Yi t+h|It).

Note that Bonferroni’s inequality does not account for cross-sectional dependence
information; therefore, the inequality usually provides overly conservative regi-
ons with joint coverage much greater than (1 − p)% (thus, much larger regions).
The third and final method that we consider is the BJPR of Wolf and Wunderli
(2015), which is a bootstrap-based procedure that allows for the construction of
joint prediction regions under fairly general assumptions. Despite its wide appli-
cability, the BJPR requires a model for the GDP growth rates and in this work,
can be applied only to GARCH models. The BJPR-based (1 − p)% joint GaR,
which is denoted byGaRJ,BJPR

t+h|t , is the prediction region with lower endpoints for
i = 1, . . . , n given by

GaRJ,BJPR
i t+h|t = µi t+h|t + d1

pσi t+h|t, (2.7)

where µi t+h|t is the h-step-ahead conditional mean, σi t+h|t is the h-step-ahead
conditional volatility and d1

p is the p% quantile of U1
t , with U1

t being the smallest
value of the vector (Z̃1 t+h|t, . . . , Z̃n t+h|t)

′, with Z̃i t+h|t = (Ỹi t+h|t − µi t+h|t)/σi t+h|t
and Ỹi t+h|t defined as in Section 2.2.2. Typically, d1

p is unknown and can be appro-
ximated by resampling. Section A.1 of the Appendix provides a bootstrap algo-
rithm to estimate this quantile. Wolf and Wunderli (2015) show that BJPR-based
regions have an asymptotic coverage of (1− p)%.

The (1− q)%/(1− p)% joint GaR can also be constructed on the basis of the
BJPR method. The BJPR-based (1− q)%/(1− p)% joint GaR, which is denoted
by GaRJq,BJPR

t+h|t , is the prediction region with lower endpoints for i = 1, . . . , n
given by

GaRJq,BJPR
i t+h|t = µi t+h|t + ddqnep σi t+h|t,

where µi t+h|t is the h-step-ahead conditional mean, σi t+h|t is the h-step-ahead
conditional volatility and ddqnep is the p% quantile of U dqnet , with U dqnet being the
dqne-th smallest value of the vector (Z̃1 t+h|t, . . . , Z̃n t+h|t)

′ and with Z̃i t+h|t defi-
ned as above.
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2.2.4 Backtesting
We measure the accuracy of GaR predictions using standard backtesting tools
from the VaR evaluation literature. We define the average empirical coverage of
the marginal GaR and the empirical coverage of the joint GaR, respectively, as

ĈM =
1

n

n∑
i=1

(
1

T

T∑
t=1

1{Yi t>GaRM
i t|t−h

}

)

and

ĈJ =
1

T

T∑
t=1

1⋃n
i=1{Yi t>GaRJ

i t|t−h
}.

Accurate GaR forecasts are expected to have an empirical coverage close to the
nominal coverage. The average lengths of the marginal and joint GaR predictions
are defined as

L̂M =
1

n

n∑
i=1

(
1

T

T∑
t=1

Q̂0.99(Yi)−GaRM
i t|t−h

)

and

L̂J =
1

n

n∑
i=1

(
1

T

T∑
t=1

Q̂0.99(Yi)−GaRJ
i t|t−h

)
,

where Q̂0.99(Yi) denotes the (unconditional) 99% empirical quantile of the i-th
series estimated on the entire sample. All else being equal, GaR forecasts with a
smaller length are typically preferred. We measure length with respect to the 99%
quantile as most methods considered in this work generate values of GaRM

i t|t−h
and GaRJ

i t|t−h that are smaller than this quantity.8 We also note that the “size”
of a prediction region is usually measured by its volume. We report the average
length instead, which is more natural in this context.

We backtest GaR forecasts on the basis of the dynamic quantile test of Engle
and Manganelli (2004). To explain this test, we must first introduce the notion of
a hit sequence. For marginal GaR, we define the hit sequence of the i-th series as
HM
i t = 1{Yi t≤GaRM

i t|t−h
}−p, that is, a sequence of binary random variables that are

8In the empirical application, all the quantile regression models that we consider have at most
2 observations per country such thatGaRM

i t|t−h > Q̂0.99(Yi) orGaRJ
i t|t−h > Q̂0.99(Yi). In these

cases, we set the length to 0. This is not the case for the GARCH models. This rule slightly biases
the results in favor of the quantile regression models.
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equal to 1−pwhen the t-th realization of the i-th series is below its corresponding
marginal GaR and −p otherwise. Analogously, for joint GaR, we define the joint
hit sequence as HJ

t = 1⋃n
i=1{Yi t≤GaRJ

i t|t−h
}− p. Let W1 t, . . . ,WK t denote a set of

auxiliary predictors observed in period t, and consider the regression

Ht+h = c0 +
K∑
k=1

ckWk t + ut+h, (2.8)

where Ht may denote either HM
i t or HJ

t , and ut is an error term. Optimal GaR
forecasts generate zero-mean m-dependent hit sequences with dependence para-
meter m = h9 (Christoffersen, 1998). This result implies that if the GaR forecasts
used to construct the hit sequence are optimal, the coefficients of the regression
in (2.8) are zero. Thus, the dynamic quantile test is based on testing the null H0 :
c0 = . . . = cK = 0 against the alternative H1 : ck 6= 0 for some k = 0, . . . , K.
Following Engle and Manganelli (2004), the dynamic quantile test statistic is
constructed using an appropriately tailored Wald test that takes into account them-
dependence structure of the hit sequence. We backtest GaR forecasts on the basis
of variants of the dynamic quantile test that rely on different choices of auxiliary
predictors to assess optimality with respect to different information sets. First,
we consider the dynamic quantile test based on no auxiliary predictors, which
allows us to test whether GaR forecasts are unconditionally optimal in the sense
of having correct unconditional coverage. Next, we consider the dynamic quan-
tile test based on setting the auxiliary predictors to the lags of the hit sequence.
This is the most common form of the test used in the literature, and it allows us
to assess whether the hit sequence is optimal with respect to the information set
generated by the hit sequence itself. In addition to the standard dynamic quantile
tests described above, in the empirical exercise, we employ dynamic quantile tests
based on setting the auxiliary predictors to a set of downside risk predictors. In
our analysis, we use the dynamic quantile test to assess the out-of-sample optima-
lity of GaR forecasts as well as to evaluate the in-sample goodness-of-fit of our
models.

Finally, marginal GaR forecasts are evaluated on the basis of a loss function.
Noting that marginal GaR forecasts are determined by quantile forecasts, we eva-
luate the performance of competing predictions on the basis of the average tick
loss, defined as

TLMp =
1

n

n∑
i=1

(
1

T

T∑
t=1

ρp(Yi t −GaRM
i t|t−h)

)
.

9A sequence of random variables X1, X2, . . . is m-dependent for some m > 0 if for any i, we
have that X1, . . . , Xi is independent of Xi+j , Xi+j+1, . . . when j ≥ m.
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The tick loss is a proper loss function to evaluate quantile forecasts (Giacomini
and Komunjer, 2005) and is the loss minimized in the estimation of the quantile
regression.

2.3 Empirical Analysis

2.3.1 Data

We construct GaR forecasts from a balanced panel of GDP growth rates for 24
OECD countries that spans from 1961Q1 to 2019Q1.10 The sample comprises all
countries for which GDP data are available since at least 1973Q1 to match some
of the predictors used in the quantile regression analysis. GDP growth rates are
defined as the quarterly percentage change in seasonally adjusted real GDP and
are obtained from the OECD database.

Quantile regression requires specifying a set of downside risk predictors. The
list of variables that we entertain builds on the evidence established in the literatu-
re and contains both country-specific and global predictors. We consider country-
specific variables, namely, the national financial conditions index (NFCI), credit-
to-GDP gap and growth (CG and CR), term spread (TS), housing prices (HP), the
World Uncertainty Index (WUI), and economic policy uncertainty (EPU). Additi-
onally, we consider global predictors such as the global real activity factor (GF),
stock variance (SV), credit spread (CS), and the geopolitical risk index (GPR).
The details on the data availability, construction and imputation can be found in
the Appendix.

2.3.2 In-sample Analysis

In-sample Quantile Regression Analysis

We begin by reporting the estimation results of a set of baseline quantile regres-
sions used to gauge the explanatory power of each predictor. For each country
i = 1, . . . , n, each forecast horizon h = 1, . . . , 4 and each predictor k = 1, . . . , K,
we estimate the 5% quantile regression given by

Q0.05(Yi t+h|It) = α0.05
i + β0.05

i 0 Yi t + β0.05
i 1 Xik t, (2.9)

10Australia (AUS), Austria (AUT), Belgium (BEL), Canada (CAN), Denmark (DNK), Fin-
land (FIN), France (FRA), Germany (DEU), Greece (GRC), Iceland (ISL), Ireland (IRL), Italy
(ITA), Japan (JPN), South Korea (KOR), Luxembourg (LUX), Mexico (MEX), the Netherlands
(NLD), Norway (NOR), Portugal (PRT), Spain (ESP), Sweden (SWE), Switzerland (CHE), the
U.K. (GBR) and the U.S.A. (USA).
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which is similar in spirit to the linear regression specifications used to test for
Granger causality. The quantile regression in (2.9) based on the NFCI is used as
a benchmark and is called QR-NFCI. To simplify comparisons, for each predic-
tor Xik t, the corresponding quantile regression given by (2.9) is estimated using
the subset of observations in which both the predictor Xik t and the NFCI are
available, which in most cases, corresponds to the sample where the NFCI is avai-
lable. The predictors are standardized to have a mean of zero and a variance of
one throughout this section to ease the interpretation of the quantile regression
coefficients.

TABLE 2.1 ABOUT HERE

Table 2.1 reports the summary estimation results. The table reports the fo-
llowing for each forecasting horizon and predictor: the sample period used for
estimation; the quartiles of the estimated βi 1 coefficient across countries; the per-
centage of countries for which the βi 1 coefficient is significant at the 5% signi-
ficance level; and the percentage increase in the in-sample average tick loss over
the baseline QR-NFCI model. The models are sorted by the average percentage of
significance of each predictor across horizons. We remark that quantile regression
based on the CS and the uncertainty indexes (EPU, WUI and GPR) are estimated
on shorter samples. The NFCI is a strong predictor of downside risk, especially at
shorter horizons, which is consistent with the findings in Adrian et al. (2019). In
particular, the NFCI has a negative impact on the 5% quantile for the vast majo-
rity of countries considered, and its coefficient is significant for up to 75% of the
series. The TS improves the average tick loss over longer horizons and is relevant
for up to 50% of the series. The GF is relevant for up to 30% of the series, despite
not improving the average in-sample fit. The remaining variables only marginally
improve the fit. Overall, our results confirm the prominence of the NFCI and show
that a few additional regressors may be of value in predicting downside risks to
GDP growth. In particular, the TS, GF, CS, HP and SV may be useful additional
predictors, especially at longer horizons.

Next, we consider a number of multivariate quantile regression specifications
to assess whether alternative combinations of the predictors emphasized above
improve the fit relative to the baseline QR-NFCI. Despite its potential, we do not
consider the CS due to its shorter sample availability. We estimate the multivariate
quantile regression for the 5% quantile for each country in the panel from 1973Q1
to 2016Q4, the period for which NFCI data are available.

TABLE 2.2 ABOUT HERE

Table 2.2 reports the summary estimation results. The table reports the fo-
llowing for each specification: the quartiles of the estimated coefficients across
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countries; the percentage of countries for which the estimated coefficients are
significant; the percentage of countries for which the dynamic quantile test ba-
sed on the last four lags of the hit sequence is not rejected; and the average tick
loss. All tests are performed at the 5% significance level. The NFCI maintains
its prominence when additional regressors are included in the baseline QR-NFCI
specification. TS and GF are relevant for a number of countries, and their rele-
vance increases with the forecast horizon. HP and the SV provide only minor
improvements. Overall, the in-sample results confirm that the NFCI is the main
downside risk predictor, and a few other variables (the TS and GF) may improve
prediction.

In-sample GARCH Analysis

Next, we estimate the four GARCH specifications for each country in the panel
to obtain insights into the volatility dynamics of the series. The GARCH models
are estimated by quasi-maximum likelihood using data from 1961Q1 to 2016Q4.
After estimating these models, we compute the skewness and kurtosis of the GDP
growth rates standardized by their corresponding conditional volatility to learn the
shape of the conditional GDP growth distribution.

TABLE 2.3 ABOUT HERE

Table 2.3 reports the summary estimation results. The table reports the fo-
llowing for each forecasting horizon and GARCH specification: the quartiles
of the estimated coefficients across countries; the quartiles of the skewness and
kurtosis of the standardized residuals across countries; the average tick loss for
p = 0.05 (computed over the dates for which the NFCI is available); the percenta-
ge of series for which a likelihood ratio test of the null hypothesis of no volatility
dynamics is not rejected; the percentage of series for which the null hypothesis
of no ARCH effects in the standardized residuals is not rejected; and the percen-
tage of times for which the dynamic quantile test for p = 0.05 based on the last
four lags of the hit sequence is not rejected. All tests are performed at the 5%
significance level. The Factor GARCH(1,1) results refer to the parameters of the
idiosyncratic volatility dynamics. In the following, we focus our discussion on the
GARCH(1,1) results. The remaining specifications provide analogous findings.11

The GARCH(1,1) estimation results show that the majority of countries exhibit
persistent volatility dynamics, with the median persistence being 0.927. After
GARCH filtering, the standardized GDP growth rates do not have residual ARCH

11The GJR-GARCH results show little evidence of asymmetries, and the GARCH-NFCI show
that once the NFCI is included, the estimated persistence parameter α + β is smaller than in the
case of the GARCH(1,1).
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effects for the vast majority of countries. Additionally, the dynamic quantile test
shows no evidence of residual tail dynamics after accounting for time-varying vo-
latility for the vast majority of the series. Regarding the shape of the conditional
distribution of GDP growth, we find no systematic pattern for skewness and that
all series exhibit moderately fat tails. In particular, we find no significant evi-
dence of conditional skewness for the USA.12 This result may appear to starkly
contradict the findings of Adrian et al. (2019) who emphasize that the conditio-
nal distribution of GDP growth is negatively skewed. However, the conditional
distribution implied by the models considered in Adrian et al. (2019) and by the
GARCH models in this section are based on different specifications and conditi-
oning information sets. Our result implies that negative skewness is not a robust
feature of the conditional distribution of GDP growth since it depends on the choi-
ce of the model and information set.

2.3.3 Out-of-sample Analysis
We recursively estimate the quantile regression and GARCH specifications con-
sidered in this study for each quarter from 1973Q1 to 2016Q4 and construct out-
of-sample forecasts starting from 1983Q4. We consider a number of forecasting
models. For quantile regression based forecasting, in addition to the specifications
reported in Table 2.2, we consider a model that employs LASSO variable selecti-
on on specification (4) augmented with CR, which is the only remaining variable
not previously considered and available throughout the entire estimation period.13

For GARCH-based forecasting, we employ the four specifications previously des-
cribed estimated by composite likelihood. We construct marginal and joint GaR
forecasts at the 95% coverage level, which is the level used by the IMF. Starting
the forecasting exercise from 1983Q4 implies that our out-of-sample validation is
based on approximately 75% of the available data.

FIGURE 2.1 ABOUT HERE

Figure 2.1 displays a plot of different types of GaR regions for the USA.
The figure displays the 1-step-ahead 95% marginal GaR, 90%/95% joint GaR,
95%/95% joint GaR and 95% joint GaR. All regions are constructed on the basis
of the GARCH(1,1) model14 introduced in Section 2.2.2, and the joint regions are
based on the BJPR procedure described in Section 2.2.3. The regions depicted

12The skewness of the standardized GARCH(1,1) residuals for the USA is -0.0014 and is not
significant.

13We do not consider CG, which has a slightly worse in-sample performance than CR.
14Figures A1 and A2 in the Appendix display further marginal and joint GaR plots for the G7

countries.
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throughout this section are computed out-of-sample. A natural concern regarding
joint prediction regions is their length. As shown in Figure 2.1, the joint GaR
for the USA is, on average, 1.5% larger than the marginal GaR. In practice, this
is a fairly wide and not particularly informative prediction region. By contrast,
the (1 − q)%/95% joint GaR regions are substantially smaller than the 95% joint
GaR. In particular, the 95%/95% joint GaR is, on average, 0.5% larger than the
marginal GaR. Overall, the (1− q)%/95% joint GaR prediction regions provide a
balance between the slightly weaker notion of joint coverage and regions that are
not excessively wide. This class of regions produces cautious lower bounds for
GDP growth rates that simultaneously hold for a prespecified fraction of countries
and a given coverage probability.

We backtest marginal and joint GaR forecasts using the tools introduced in
Section 2.2.4. To assess the optimality of GaR forecasts with respect to different
information sets, we consider four variants of the dynamic quantile test. The first
test, labeled DQ Unc., is based on including no auxiliary predictors in the dyna-
mic quantile test regression in (2.8). The second test, labeled DQ Hits, is based
on setting the auxiliary predictors equal to the first four lags of the hit sequence
generated by the GaR forecasts. The third test, labeled DQ NFCI, is based on
setting the auxiliary predictors equal to the first four lags of the NFCI. The last
test, labeled DQ Real, is based on setting the auxiliary predictors equal to the first
four lags of GDP growth. The dynamic quantile tests employed for marginal GaR
backtesting are based on each countries’ individual auxiliary predictor series. To
backtest joint GaR forecasts, we use the global NFCI as defined in Section B of
the Appendix and the first principal component of the GDP growth rates. Some
of the quantile regressions include the variables against which optimality is being
tested; therefore, this battery of tests is particularly instructive to assess whether
these quantile regressions effectively exploit the information content of the pre-
dictors.

We use historical benchmarks to evaluate the accuracy of the marginal and
joint GaR forecasts. For marginal GaR, the benchmark is the recursively estima-
ted unconditional quantile of the GDP growth rates for each country. For joint
GaR, the benchmark is constructed based on the BJPR procedure described in
Section 2.2.3, with the conditional mean and variance forecasts replaced by their
recursively estimated unconditional counterparts.

Marginal GaR Forecasting

TABLE 2.4 AND 2.5 ABOUT HERE

Table 2.4 reports the summary backtesting results for 95% marginal GaR pre-
diction. The table reports the following for each horizon and forecasting method:

53



“thesis” — 2021/9/28 — 18:18 — page 54 — #70

the average empirical coverage; the average length; the percentage of series for
which the backtesting tests are not rejected at the 5% significance level; and the
average tick loss for the historical benchmark, with the percentage improvements
for the remaining models considered. We begin by comparing the performance of
each model according to the battery of backtesting tests. The unconditional dy-
namic quantile test shows that the majority of models provide adequate coverage
for at least approximately 50% of the countries. The remaining dynamic quantile
test results show that for the majority of countries and horizons, quantile regressi-
on and GARCH models are optimal with respect to information sets that include
the lagged NFCI, the series of lag hit sequences or the lagged GDP growth rates.
Additionally, the GARCH models typically have better backtesting performance
than the quantile regression specifications. Remarkably, GaR forecasts based on
GARCH models are efficient with respect to the information set that contains the
NFCI more often than the QR-NFCI. At longer horizons, no model has a subs-
tantially better backtesting performance than the historical benchmark. Next, we
compare the performance of each model according to the tick loss. At 1 step
ahead, the baseline QR-NFCI performs best among the quantile regression mo-
dels and improves tick loss by approximately 4% relative to the historical bench-
mark.15 The largest specification considered has the worst tick loss performance.
GARCH models exhibit gains of approximately 12% compared to the historical
benchmark. At 2 steps ahead, among the quantile regression models, only the ba-
seline specification modestly performs better than the historical benchmark. All
GARCH specifications perform similarly and are approximately 7% better than
the historical benchmark. At forecast horizons greater than 2, no quantile regres-
sion specification performs better than the historical benchmark, and GARCH
models show only modest improvements. Table 2.5 complements these results
with a Diebold-Mariano superior predictive ability test comparison analysis based
on the tick loss. The table shows that the evidence of outperformance among the
various methods is not strong. The QR-NFCI outperforms the GARCH(1,1) for
at most two countries across all horizons, whereas the GARCH(1,1) outperforms
the QR-NFCI for at most six countries across all horizons.

TABLE 2.6 ABOUT HERE

Table 2.6 provides detailed univariate GaR forecasting results for the intersec-
tion of countries in our sample and the countries considered in IMF (2017). We re-
port the results for the historical benchmark, the QR-NFCI – the best-performing
quantile regression – and the GARCH(1,1). The table reports, for each country

15Table A11 in the Appendix extends this finding to the set of bivariate quantile regressions
including the lagged GDP and each potential predictor considered.
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and forecast horizon, the empirical coverage, the length, the p-value of the uncon-
ditional dynamic quantile test and the tick loss. We also perform Diebold-Mariano
equal predictive ability tests based on the tick loss between the GARCH(1,1) and
QR-NFCI. In terms of empirical coverage, for the majority of countries, we can-
not reject the null of correct unconditional coverage at the 5% significance level
for all models and horizons. In terms of the tick loss, the GARCH(1,1) typically
achieves the smallest loss. Additionally, the GARCH(1,1) significantly outper-
forms the QR-NFCI for approximately 3 countries out of 12 across all horizons,
whereas the QR-NFCI never significantly outperforms the GARCH(1,1).

Overall, the results convey that quantile regression models and the QR-NFCI
in particular do not have better performance than the standard GARCH(1,1). Mo-
reover, the GARCH-NFCI results show that GARCH(1,1) predictions are not im-
proved by including the NFCI. At longer horizons, no model outperform the his-
torical benchmark.

Joint GaR Forecasting

TABLE 2.7 ABOUT HERE

Table 2.7 reports the summary backtesting results for 95% joint GaR predic-
tions. The table reports the following for each model and forecast horizon: the
empirical coverage; the average length; and the p-values of the backtesting tests
considered. All tests are evaluated at the 5% significance level. The empirical co-
verage of all forecasts varies substantially and depends on the method used for the
construction of the joint GaR. The joint marginal GaR forecasts and Bonferroni-
based quantile regressions undercover by a wide margin. The poor performance
of the Bonferroni-based quantile regression models is due to the small number
of observations and the extreme quantile being forecast to construct the Bonfer-
roni region. The Bonferroni-based GARCH region also undercovers by a small
margin, especially at short horizons. The BJPR-based GARCH region produces
regions with coverage close to the nominal for all horizons considered. In parti-
cular, the null hypothesis of correct unconditional coverage cannot be rejected for
any horizon.

Overall, the joint GaR forecasts based on the GARCH(1,1) paired with the
BJPR method have a better performance than the benchmark and forecasts based
on quantile regressions.

Robustness Analysis

TABLE 2.8 ABOUT HERE
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Real-time Forecasting One of the advantages of the GARCH(1,1) relative to
the QR-NFCI is that real-time forecasting is relatively straightforward to imple-
ment. The NFCI is obtained from smoothed estimates of a dynamic factor model
and is likely subject to filtering uncertainty at the sample endpoints. To provide
more insights on the real-time performance of the GARCH(1,1), we compare the
marginal GaR GARCH(1,1) forecasts against the historical benchmark. We cons-
truct quarterly real-time forecasts from 2000Q1 to 2019Q4 based on vintage data
obtained from the OECD-MEI database. Specifically, we predict GDP growth at
horizon t+ h by using the latest available data vintage that contains GDP at time
t but not t + 1.16 Table 2.8 contains the results of the forecasting exercise. The
table reports the coverage and tick loss for the 12 IMF countries and the average
coverage and average tick loss for the entire panel for both forward and cumu-
lative growth rates. The results show that the GARCH(1,1) typically achieves
the best performance in terms of the tick loss for most countries across all hori-
zons. The Diebold-Mariano superior predictive ability test results show that the
GARCH(1,1) outperforms the historical benchmark for 7 out 12 IMF countries
one quarter ahead. However, the evidence of outperformance rapidly decays as
the prediction horizon increases.

TABLE 2.9 ABOUT HERE

Cumulative Growth Forecasting We carry out GaR prediction for the (ave-
rage) cumulative h-step ahead GDP growth based on GARCH and quantile re-
gression models, in the spirit of Adrian et al. (2019). The exercise is designed
following the same steps of the main forecasting exercise described in Section
2.3.3 with the h-step ahead growth rate replaced by the cumulative h-step ahead
GDP growth.17 Table 2.9 contains the marginal GaR prediction results for the
cumulative growth. The backtesting tests and the tick loss provide essentially the
same evidence reported for the h-step ahead growth rates. In particular, the QR-
NFCI is the best performing quantile regression specification. However, it does
not have better performance than any of the GARCH specifications. Table 2.5
complements these results with a Diebold-Mariano superior predictive ability test
comparison analysis based on the tick loss. As in the case of the h-step ahead
growth rates, the evidence of outperformance among the various methods is not
strong, and in particular, the QR-NFCI outperforms the GARCH(1,1) for at most
two series across all horizons. Tables A1 (in the Appendix) and 2.8 contain the

16If there is no data vintage that includes the value at t but not t + 1, we keep the first revision
that includes the value at time t.

17It is straightforward to modify the algorithms for the computation of the marginal and joint
GaR forecasts (provided in the Appendix) for the h-step ahead growth rate to compute the analo-
gous forecasts for the h-step ahead cumulative growth.
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joint GaR prediction results and the real-time marginal GaR prediction results for
the cumulative growth, respectively. Again, the overall evidence is consistent with
the findings reported for the h-step ahead growth rates.

Density Forecasting For each country, quarter and forecasting model (either
based on the GARCH or quantile regression), we follow Adrian et al. (2019) and
interpolate the 5%, 25%, 75% and 95% quantiles with the skewed Student’s t
distribution of Azzalini and Capitanio (2003). The densities obtained are then
evaluated on the basis of the log predictive score (LPS), a proper scoring rule
for density forecasts. For completeness, we assess each models performance on
different parts of the distribution on the basis of the weighted LPS (Amisano and
Giacomini, 2007).18 Table A2 of the Appendix reports our findings. We find
that the density forecasts obtained by quantile regression seldom perform better
than the historical benchmark. In particular, the density implied by the QR-NFCI
modestly improves over the historical density forecasts on the left tails for up to
two quarters ahead. In contrast, GARCH-based densities perform better than the
historical density benchmark uniformly across forecast horizons.

Additional Robustness Checks A number of additional robustness checks are
included in the Appendix. In particular, we consider (i) alternative sample periods
for the out-of-sample prediction exercise, (ii) alternative GaR coverage levels,
(iii) alternative GARCH specifications, (iv) the backtesting performance of pa-
nel quantile regressions (as opposed to individual country estimation) and (v) the
backtesting performance of GARCH models estimated via individual country es-
timation (as opposed to panel estimation). Overall, these checks provide evidence
that is in line with the findings of this section.

2.4 Conclusions

In this work, we conduct an out-of-sample backtesting exercise of GaR fore-
casts for a panel of major world economies on the basis of quantile regression
and GARCH models. We rely on the standard battery of tools developed in the
risk management literature to assess accuracy. Our backtesting results shows that
quantile regression and GARCH forecasts have similar performance. If anything,
our evidence suggests that standard volatility models such as the GARCH(1,1) are
more accurate, even though the GARCH(1,1) uses no information other than GDP

18The different weighting functions allow the evaluation of the goodness-of-fit over different
ranges of the support of the GDP growth rates.
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growth. The majority of contributions in the GaR literature favor quantile regressi-
on. Quantile regression is a natural methodology in this context that directly links
downside risk to predictors of interest to economists and policymakers. However,
if interest lies in forecasting, then our evidence suggest caution against relying too
heavily on this technique.
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Figura 2.1: GAR PREDICTION REGIONS COMPARISON FOR THE USA
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This figure displays the 1-step-ahead 95% marginal GaR, 90%/95% joint GaR, 95%/95% joint
GaR and 95% joint GaR for the USA. The lightest region represents the marginal GaR region, and
the darkest region represents the 95% joint GaR for the 24 countries considered. The gray regions
are OECD recession dates. We also plot the USA GDP growth rate (black line) and the average
GDP growth rate over the sample period (dashed black line).

59



“thesis” — 2021/9/28 — 18:18 — page 60 — #76

Taula 2.1: IN-SAMPLE BIVARIATE 5% QUANTILE REGRESSION ANALYSIS

Estimation h

Window 1 2 3 4

NFCI
1973Q1
2016Q4

Coef. −0.49
[−0.79−0.30]

−0.39
[−0.64−0.16]

−0.33
[−0.47 0.00]

−0.22
[−0.34 0.06]

Sig. 75.00 50.00 37.50 16.67
TL 0.1170 0.1239 0.1276 0.1298

TS
1973Q1
2016Q4

Coef. 0.31
[0.15 0.47]

0.33
[0.24 0.50]

0.29
[0.13 0.44]

0.28
[0.10 0.45]

Sig. 41.67 50.00 37.50 33.33
∆TL −5.47 −1.54 0.00 1.49

GF
1973Q1
2016Q4

Coef. 0.06
[0.02 0.11]

0.07
[0.04 0.12]

0.08
[0.00 0.12]

0.04
[−0.01 0.12]

Sig. 16.67 16.67 29.17 20.83
∆TL −7.85 −4.16 −1.76 −0.68

HP
1973Q1
2016Q4

Coef. 0.13
[−0.04 0.34]

0.08
[−0.02 0.25]

0.11
[−0.05 0.32]

−0.02
[−0.26 0.19]

Sig. 25.00 16.67 16.67 16.67
∆TL −6.90 −4.27 −2.17 −0.94

SV
1973Q1
2016Q4

Coef. −0.43
[−0.50−0.24]

−0.28
[−0.66−0.13]

0.03
[−0.15 0.13]

0.08
[−0.06 0.19]

Sig. 29.17 29.17 4.17 4.17
∆TL −1.42 −2.42 −2.24 −1.71

CG
1973Q1
2016Q4

Coef. −0.12
[−0.28 0.22]

−0.17
[−0.43−0.02]

0.04
[−0.25 0.23]

−0.14
[−0.30 0.06]

Sig. 8.33 20.83 12.50 12.50
∆TL −8.42 −3.85 −3.42 −1.98

CS
1986Q2
2016Q4

Coef. −0.27
[−0.50−0.07]

−0.15
[−0.49−0.01]

−0.04
[−0.27 0.07]

0.06
[−0.05 0.17]

Sig. 33.33 8.33 8.33 4.17
∆TL 3.91 0.83 0.17 −0.26

EPU
1985Q1
2016Q4

Coef. −0.18
[−0.32 0.01]

0.03
[−0.07 0.20]

0.04
[−0.02 0.15]

0.04
[−0.22 0.28]

Sig. 16.67 8.33 12.50 12.50
∆TL 1.41 0.14 −0.10 −0.71

CR
1973Q1
2016Q4

Coef. −0.11
[−0.29 0.07]

−0.05
[−0.42 0.04]

0.06
[−0.17 0.18]

−0.17
[−0.38−0.02]

Sig. 8.33 12.50 12.50 12.50
∆TL −7.54 −4.29 −1.98 −1.43

WUI
1996Q1
2016Q4

Coef. 0.10
[−0.03 0.31]

0.18
[−0.01 0.30]

0.15
[−0.11 0.32]

0.13
[−0.17 0.42]

Sig. 12.50 8.33 4.17 4.17
∆TL −0.42 0.01 0.54 −0.49

GPR
1985Q1
2016Q4

Coef. 0.04
[−0.03 0.15]

0.05
[−0.01 0.19]

0.07
[−0.01 0.22]

0.17
[0.07 0.25]

Sig. 0.00 0.00 0.00 4.17
∆TL −2.45 −0.32 −2.80 −3.32

This table reports the following for each forecast horizon and predictor: the period used for
estimation; the quartiles of the estimated coefficients; the percentage improvement in the tick loss
relative to a quantile regression with lagged GDP and NFCI; and the percentage of series for which
the predictor is significant at the 5% significance level. All quantile regressions are of the form
Qp(Yi t+h|It) = αp

0 + βp
0Yit + βp

1Xik t, where Xik t is the variable of interest. Significance is
assessed on the basis of (block) bootstrap standard errors with blocks of length 4.
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Taula 2.3: IN-SAMPLE GARCH ANALYSIS

GARCH GARCH-NFCI GJR-GARCH F-GARCH

φ 0.104
[−0.014 0.332]

0.104
[−0.014 0.332]

0.104
[−0.014 0.332]

0.104
[−0.014 0.332]

λ − − 0.512
[0.381 0.617]

−

σ2
u 1.257

[0.935 1.833]
1.257

[0.935 1.833]
1.257

[0.935 1.833]
1.257

[0.935 1.833]

Pers. 0.927
[0.826 0.982]

0.778
[0.344 0.952]

0.936
[0.822 0.980]

0.973
[0.935 0.985]

β 0.696
[0.460 0.759]

0.519
[0.000 0.775]

0.684
[0.453 0.754]

0.751
[0.658 0.896]

NFCI − 0.024
[0.000 0.085]

− −

γ − − 0.086
[−0.097 0.146]

−

Skew. −0.053
[−0.224 0.238]

−0.016
[−0.276 0.234]

−0.047
[−0.275 0.305]

−0.031
[−0.205 0.238]

Kurt. 4.552
[3.942 5.853]

4.180
[3.523 4.916]

4.346
[3.742 6.386]

4.669
[3.656 5.755]

LR Test 100.00 100.00 100.00 100.00

ARCH-LM 95.83 91.67 95.83 100.00

TL 0.1195 0.1175 0.1199 0.1165

DQ Hits 91.67 79.17 83.33 83.33

This table reports the following for each of the GARCH models considered: the quartiles of
the estimated coefficients; the quartiles of the skewness and kurtosis of the standardized GARCH
residuals; the tick loss; the percentage of countries for which a likelihood ratio test of the null
hypothesis of no persistence is not rejected; the percentage of series for which the null hypothesis
of no ARCH effects on each model’s standardized residuals is not rejected; and the percentage
of series for which the dynamic quantile test based on the last four lags of the hit sequence is
not rejected. We perform an additional likelihood ratio test for the null hypothesis that γ = 0 on
the GJR-GARCH model. The test is rejected for 16.67% of the series. Similarly, likelihood ratio
tests for β = 0 and θNFCI = 0 in the GARCH-NFCI specification are rejected for approximately
45.83 and 50% of the series, respectively. In particular, for the USA, both tests are rejected. All
tests are performed at the 5% significance level. The likelihood ratio tests are computed based
on the Gaussian likelihood. Additionally, the conditional volatility of the factor is described by
β = 0.195, and the persistence is 0.714. The details of the estimated models can be found in the
Appendix.
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Taula 2.4: 95% MARGINAL GAR FORECAST EVALUATION

h Method Model Cov. Length Unc. Hits NFCI Real TL

1

Benchmark Historical 94.44 5.422 70.83 41.67 58.33 62.50 0.1398

NFCI 92.77 5.170 66.67 41.67 79.17 62.50 3.88
NFCI+TS 91.13 5.079 54.17 45.83 50.00 54.17 -0.09

QR NFCI+TS+GF 90.72 5.086 58.33 50.00 45.83 58.33 -1.19
Full 89.39 5.147 37.50 29.17 29.17 33.33 -19.14
LASSO 90.25 5.151 50.00 29.17 50.00 45.83 -6.86

GARCH

GARCH 93.34 5.115 75.00 66.67 87.50 87.50 11.97
GARCH-NFCI 94.44 5.200 95.83 70.83 83.33 91.67 11.68
GJR-GARCH 93.31 5.116 75.00 66.67 87.50 87.50 11.79
F-GARCH 93.47 5.130 62.50 54.17 87.50 79.17 14.84

2

Benchmark Historical 94.47 5.427 75.00 87.50 91.67 75.00 0.1410

NFCI 92.75 5.257 75.00 75.00 79.17 70.83 0.47
NFCI+TS 90.62 5.166 62.50 87.50 79.17 75.00 -3.99

QR NFCI+TS+GF 91.13 5.187 66.67 83.33 83.33 75.00 -4.22
Full 89.54 5.172 54.17 79.17 54.17 70.83 -36.40
LASSO 90.55 5.157 54.17 66.67 66.67 62.50 -8.46

GARCH

GARCH 94.15 5.245 87.50 91.67 87.50 91.67 7.80
GARCH-NFCI 95.04 5.374 95.83 87.50 100.00 95.83 8.76
GJR-GARCH 93.99 5.245 87.50 91.67 87.50 91.67 7.07
F-GARCH 94.15 5.275 83.33 83.33 87.50 87.50 7.51

3

Benchmark Historical 94.36 5.433 75.00 87.50 95.83 87.50 0.1420

NFCI 92.69 5.314 66.67 83.33 75.00 75.00 -3.74
NFCI+TS 90.42 5.195 62.50 62.50 66.67 70.83 -9.40

QR NFCI+TS+GF 90.80 5.238 66.67 62.50 75.00 75.00 -9.19
Full 89.04 5.256 50.00 58.33 54.17 58.33 -31.19
LASSO 89.46 5.231 54.17 66.67 54.17 58.33 -14.19

GARCH

GARCH 93.85 5.316 91.67 87.50 95.83 87.50 3.66
GARCH-NFCI 95.32 5.464 91.67 91.67 95.83 91.67 4.40
GJR-GARCH 93.88 5.316 91.67 91.67 95.83 87.50 3.33
F-GARCH 94.04 5.352 91.67 79.17 91.67 91.67 3.54

4

Benchmark Historical 94.32 5.440 75.00 91.67 87.50 83.33 0.1427

NFCI 92.09 5.324 75.00 79.17 79.17 87.50 -11.09
NFCI+TS 90.31 5.214 66.67 83.33 66.67 87.50 -12.44

QR NFCI+TS+GF 89.79 5.174 66.67 79.17 70.83 75.00 -15.00
Full 88.79 5.187 54.17 70.83 62.50 62.50 -48.39
LASSO 88.82 5.194 58.33 70.83 62.50 70.83 -19.63

GARCH

GARCH 93.86 5.341 91.67 91.67 87.50 91.67 2.85
GARCH-NFCI 95.38 5.502 87.50 87.50 95.83 91.67 2.36
GJR-GARCH 93.83 5.339 91.67 91.67 87.50 91.67 2.81
F-GARCH 94.09 5.376 87.50 91.67 95.83 91.67 3.00

This table reports the following for each forecast horizon and forecasting method: the average
empirical coverage; the average length; the percentage of series that pass GaR adequacy tests at
the 5% significance level (DQ Unc, Hits, NFCI and Real); and the percentage improvement in
each model’s average tick loss relative to the historical benchmark. The performance of the best
forecasting method in terms of the tick loss is highlighted in boldface.
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Taula 2.5: Superior Predictive Ability Test Pairwise Comparison

Forward Cumulative
h Historical QR-NFCI GARCH GARCH-NFCI Historical QR-NFCI GARCH GARCH-NFCI

1

Historical - 0.00 4.17 0.00 - 0.00 4.17 0.00

QR-NFCI 16.67 - 4.17 0.00 16.67 - 4.17 0.00

GARCH 37.50 16.67 - 16.67 37.50 16.67 - 16.67

GARCH-NFCI 37.50 16.67 4.17 - 37.50 16.67 4.17 -

2

Historical - 12.50 0.00 0.00 - 12.50 0.00 0.00

QR-NFCI 16.67 - 4.17 4.17 16.67 - 4.17 8.33

GARCH 20.83 12.50 - 12.50 25.00 20.83 - 20.83

GARCH-NFCI 16.67 12.50 12.50 - 20.83 16.67 4.17 -

3

Historical - 20.83 0.00 0.00 - 4.17 0.00 0.00

QR-NFCI 4.17 - 8.33 4.17 8.33 - 4.17 8.33

GARCH 8.33 16.67 - 20.83 20.83 12.50 - 12.50

GARCH-NFCI 8.33 12.50 16.67 - 16.67 4.17 16.67 -

4

Historical - 20.83 4.17 8.33 - 4.17 0.00 8.33

QR-NFCI 4.17 - 0.00 4.17 4.17 - 0.00 8.33

GARCH 8.33 25.00 - 29.17 4.17 12.50 - 4.17

GARCH-NFCI 8.33 12.50 8.33 - 0.00 4.17 4.17 -

This table reports the results of the pairwise Diebold-Mariano tests of superior predictive
ability at the 5% significance level. Each entry represents the percentage of countries for which
the model in the column is outperformed by the model in the row.

64



“thesis” — 2021/9/28 — 18:18 — page 65 — #81

Taula 2.6: 95% MARGINAL GAR FORECAST EVALUATION: IMF COUNTRIES

h Country Historical QR NFCI GARCH
Cov. Length Unc. TL Cov. Length Unc. TL Cov. Length Unc. TL DM

1

AUS 99.24 5.016 0.025 0.0943 99.24 5.015 0.025 0.0958 96.21 4.431 0.523 0.0734∗∗∗ -4.390
CAN 95.45 3.728 0.811 0.0937 94.70 3.365 0.873 0.0684 90.91 3.263 0.031 0.0714 0.402
DEU 96.21 4.792 0.523 0.1291 95.45 4.508 0.811 0.1165 95.45 4.714 0.811 0.1265 1.388
ESP 90.15 5.182 0.011 0.1045 91.67 5.209 0.079 0.1032 92.42 5.052 0.175 0.0700∗∗∗ -3.960
FRA 93.18 3.804 0.338 0.0628 90.15 3.693 0.011 0.0504 93.94 3.872 0.576 0.0570 0.787
GBR 97.73 5.359 0.151 0.1007 96.21 5.230 0.523 0.0813 96.21 4.844 0.523 0.0803 -0.071
ITA 90.91 3.735 0.031 0.0922 95.45 3.730 0.811 0.0796 91.67 3.535 0.079 0.0599 -1.460
JPN 87.12 4.616 0.000 0.1464 88.64 4.753 0.001 0.1357 90.91 4.994 0.031 0.1245 -1.096
KOR 97.73 9.091 0.151 0.2191 96.97 8.501 0.299 0.2116 95.45 7.832 0.811 0.1870 -0.806
MEX 93.18 4.201 0.338 0.2137 96.97 4.236 0.299 0.1604 90.15 3.878 0.011 0.1869 0.924
SWE 97.73 5.796 0.151 0.1352 92.42 5.682 0.175 0.1577 96.21 5.514 0.523 0.1251∗∗ -2.088
USA 97.73 3.377 0.151 0.0909 93.94 2.929 0.576 0.0705 95.45 2.841 0.811 0.0685 -0.316

2

AUS 99.24 5.023 0.026 0.0940 99.24 5.097 0.026 0.1006 96.95 4.500 0.276 0.0718∗∗∗ -8.988
CAN 96.18 3.733 0.649 0.0949 93.13 3.404 0.473 0.0930 93.13 3.343 0.412 0.0859 -0.827
DEU 96.18 4.802 0.558 0.1279 94.66 4.680 0.869 0.1313 94.66 4.735 0.881 0.1421 0.884
ESP 90.08 5.185 0.164 0.1076 88.55 5.050 0.052 0.0921 93.89 5.075 0.691 0.0895 -0.503
FRA 93.13 3.811 0.505 0.0648 93.13 3.970 0.511 0.0615 95.42 3.940 0.882 0.0590 -0.441
GBR 97.71 5.365 0.277 0.1019 94.66 5.092 0.916 0.0861 95.42 4.881 0.883 0.0945 0.445
ITA 90.84 3.739 0.237 0.0939 94.66 3.878 0.901 0.0950 93.13 3.692 0.472 0.0835∗ -1.929
JPN 87.02 4.617 0.000 0.1492 87.79 4.921 0.001 0.1411 86.26 4.872 0.000 0.1551 1.554
KOR 97.71 9.084 0.141 0.2186 96.95 8.455 0.276 0.2082 96.18 8.206 0.491 0.2073 -0.091
MEX 93.13 4.218 0.498 0.2215 93.89 4.619 0.584 0.2274 90.84 3.686 0.038 0.2300 0.128
SWE 97.71 5.801 0.195 0.1349 96.95 5.869 0.400 0.1400 96.18 5.497 0.601 0.1306 -1.096
USA 97.71 3.384 0.250 0.0921 91.60 3.020 0.204 0.0782 93.89 2.778 0.690 0.0765 -0.162

3

AUS 99.23 5.030 0.026 0.0942 100.00 5.015 0.009 0.0929 98.46 4.703 0.066 0.0818∗∗∗ -3.297
CAN 96.15 3.739 0.659 0.0954 92.31 3.581 0.373 0.0897 92.31 3.414 0.398 0.0969 0.494
DEU 96.92 4.811 0.349 0.1268 96.92 4.659 0.349 0.1274 95.38 4.728 0.870 0.1334 0.510
ESP 90.00 5.187 0.160 0.1098 84.62 5.084 0.038 0.1225 91.54 5.072 0.295 0.1046∗ -1.723
FRA 93.08 3.816 0.495 0.0663 93.85 3.939 0.686 0.0722 94.62 3.931 0.896 0.0682 -1.458
GBR 97.69 5.370 0.283 0.1035 96.15 5.242 0.693 0.0985 96.15 4.871 0.690 0.0996 0.074
ITA 90.77 3.743 0.231 0.0953 84.62 3.632 0.005 0.1139 91.54 3.745 0.317 0.0979 -1.381
JPN 86.92 4.617 0.000 0.1501 88.46 4.845 0.001 0.1443 85.38 4.769 0.000 0.1527 0.990
KOR 97.69 9.093 0.144 0.2191 96.92 8.501 0.283 0.2106 96.92 8.308 0.283 0.2048 -0.520
MEX 93.85 4.233 0.665 0.2229 96.15 4.733 0.567 0.2092 90.00 3.980 0.052 0.2347 0.877
SWE 97.69 5.806 0.200 0.1362 98.46 5.936 0.105 0.1429 96.15 5.482 0.611 0.1299∗ -1.661
USA 96.92 3.390 0.500 0.0923 96.92 3.262 0.408 0.0844 96.15 3.005 0.681 0.0839 -0.049

4

AUS 99.22 5.036 0.027 0.0945 99.22 5.081 0.027 0.0965 98.45 4.740 0.068 0.0827∗∗∗ -5.113
CAN 96.12 3.744 0.669 0.0960 96.12 3.845 0.669 0.0953 94.57 3.581 0.881 0.1033 0.636
DEU 96.90 4.819 0.357 0.1264 95.35 4.612 0.859 0.1269 96.90 4.727 0.357 0.1319 0.852
ESP 89.92 5.189 0.155 0.1102 81.40 5.043 0.026 0.1542 89.15 5.075 0.132 0.1152∗∗ -2.117
FRA 93.02 3.822 0.485 0.0662 89.92 3.909 0.256 0.0781 93.80 3.905 0.678 0.0714 -0.684
GBR 97.67 5.376 0.288 0.1039 95.35 5.159 0.906 0.1006 96.12 4.930 0.699 0.1048 0.320
ITA 90.70 3.746 0.226 0.0951 86.82 3.606 0.009 0.1145 91.47 3.725 0.253 0.1029 -0.956
JPN 86.82 4.617 0.000 0.1508 89.92 4.893 0.057 0.1525 87.60 4.834 0.010 0.1492 -0.274
KOR 97.67 9.102 0.148 0.2194 96.12 8.537 0.582 0.2376 96.12 8.247 0.574 0.2017∗∗ -1.998
MEX 93.80 4.248 0.655 0.2239 96.90 4.813 0.357 0.2029 89.92 3.975 0.051 0.2303 0.820
SWE 97.67 5.811 0.205 0.1363 96.12 5.905 0.622 0.1560 97.67 5.605 0.261 0.1361∗∗ -2.510
USA 97.67 3.396 0.288 0.0926 94.57 3.154 0.874 0.0946 95.35 2.987 0.906 0.0864 -1.278

This table reports detailed backtesting statistics for selected countries. The performance of the
best model in terms of the tick loss is highlighted. We perform Diebold-Mariano tests of equal
predictive ability between the tick loss of the quantile regressions based on the NFCI and that of
the GARCH(1,1). ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10.
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Taula 2.7: 95% JOINT GAR FORECAST EVALUATION

h Method Model Cov. Length Unc. Hits NFCI Real

1

Benchmark Historical 90.91 7.976 0.031 0.003 0.024 0.121

QR + Bonf.

QR-NFCI 51.52 6.111 0.000 0.000 0.000 0.000
NFCI+TS 34.85 5.834 0.000 0.000 0.000 0.000
NFCI+GF+TS 34.09 5.673 0.000 0.000 0.000 0.000
Full 25.00 5.563 0.000 0.000 0.000 0.000
LASSO 38.64 7.111 0.000 0.000 0.000 0.000

GARCH + Marg.

GARCH 35.61 5.115 0.000 0.000 0.000 0.000
GARCH-NFCI 43.94 5.200 0.000 0.000 0.000 0.000
GJR-GARCH 36.36 5.116 0.000 0.000 0.000 0.000
F-GARCH 33.33 5.130 0.000 0.000 0.000 0.000

GARCH + Bonf.

GARCH 87.12 7.320 0.000 0.000 0.000 0.000
GARCH-NFCI 84.09 7.055 0.000 0.000 0.000 0.000
GJR-GARCH 86.36 7.293 0.000 0.000 0.000 0.000
F-GARCH 85.61 7.302 0.000 0.000 0.000 0.000

GARCH + BJPR

GARCH 94.70 7.747 0.873 0.021 0.619 0.455
GARCH-NFCI 95.45 7.783 0.811 0.004 0.535 0.828
GJR-GARCH 94.70 7.708 0.873 0.021 0.619 0.455
F-GARCH 95.45 7.605 0.811 0.319 0.575 0.872

2

Benchmark Historical 88.55 7.886 0.016 0.999 0.026 0.108

QR + Bonf.

QR-NFCI 54.20 6.595 0.000 0.999 0.031 0.000
NFCI+TS 39.69 6.241 0.000 0.000 0.000 0.000
NFCI+GF+TS 40.46 6.157 0.000 0.000 0.000 0.000
Full 31.30 5.864 0.000 0.000 0.000 0.000
LASSO 41.98 7.560 0.000 0.000 0.000 0.000

GARCH + Marg.

GARCH 44.27 5.245 0.000 0.000 0.999 0.000
GARCH-NFCI 53.44 5.374 0.000 0.000 0.000 0.999
GJR-GARCH 42.75 5.245 0.000 0.999 0.999 0.000
F-GARCH 44.27 5.275 0.000 0.000 0.000 0.000

GARCH + Bonf.

GARCH 87.79 8.050 0.008 0.999 0.000 0.297
GARCH-NFCI 86.26 7.534 0.001 0.999 0.000 0.098
GJR-GARCH 87.02 8.034 0.006 0.999 0.000 0.326
F-GARCH 89.31 7.893 0.029 0.998 0.256 0.077

GARCH + BJPR

GARCH 94.66 8.464 0.899 0.999 0.597 0.999
GARCH-NFCI 95.42 8.668 0.862 0.000 0.592 0.990
GJR-GARCH 94.66 8.442 0.899 0.999 0.597 0.999
F-GARCH 95.42 8.175 0.869 0.106 0.583 0.996

3

Benchmark Historical 88.46 7.858 0.028 0.999 0.016 0.228

QR + Bonf.

QR-NFCI 51.54 6.570 0.000 0.999 0.000 0.000
NFCI+TS 33.85 6.262 0.000 0.000 0.000 0.000
NFCI+GF+TS 32.31 6.122 0.000 0.000 0.000 0.000
Full 30.77 5.930 0.000 0.999 0.000 0.000
LASSO 39.23 7.953 0.000 0.000 0.000 0.000

GARCH + Marg.

GARCH 46.15 5.316 0.000 0.000 0.999 0.000
GARCH-NFCI 54.62 5.464 0.000 0.000 0.000 0.999
GJR-GARCH 46.15 5.316 0.000 0.000 0.999 0.000
F-GARCH 46.15 5.352 0.000 0.000 0.000 0.000

GARCH + Bonf.

GARCH 89.23 8.049 0.055 0.999 0.999 0.244
GARCH-NFCI 84.62 7.543 0.000 0.999 0.999 0.001
GJR-GARCH 89.23 8.023 0.055 0.999 0.999 0.244
F-GARCH 89.23 7.959 0.008 0.205 0.999 0.055

GARCH + BJPR

GARCH 94.62 8.425 0.887 0.339 0.533 0.932
GARCH-NFCI 94.62 8.452 0.887 0.339 0.533 0.932
GJR-GARCH 94.62 8.392 0.887 0.339 0.533 0.932
F-GARCH 95.38 8.247 0.859 0.969 0.467 0.742

4

Benchmark Historical 87.60 7.761 0.021 0.999 0.105 0.049

QR + Bonf.

QR-NFCI 48.06 6.587 0.000 0.000 0.000 0.000
NFCI+TS 34.11 6.335 0.000 0.000 0.000 0.000
NFCI+GF+TS 33.33 6.167 0.000 0.000 0.000 0.000
Full 23.26 5.878 0.000 0.999 0.000 0.000
LASSO 35.66 7.834 0.000 0.000 0.999 0.000

GARCH + Marg.

GARCH 46.51 5.341 0.000 0.000 0.000 0.000
GARCH-NFCI 57.36 5.502 0.000 0.000 0.000 0.000
GJR-GARCH 45.74 5.339 0.000 0.000 0.000 0.000
F-GARCH 45.74 5.376 0.000 0.000 0.003 0.000

GARCH + Bonf.

GARCH 89.92 8.051 0.084 0.325 0.572 0.014
GARCH-NFCI 85.27 7.657 0.005 0.000 0.999 0.100
GJR-GARCH 89.15 8.035 0.061 0.360 0.393 0.217
F-GARCH 88.37 7.943 0.015 0.171 0.999 0.999

GARCH + BJPR

GARCH 95.35 8.393 0.886 0.316 0.631 0.900
GARCH-NFCI 94.57 8.506 0.876 0.500 0.588 0.857
GJR-GARCH 95.35 8.366 0.886 0.316 0.631 0.900
F-GARCH 96.12 8.333 0.616 0.983 0.645 0.934

This table reports the following for each forecast horizon and forecasting method: the ave-
rage empirical joint coverage; the average length; and the p-values of the GaR adequacy tests
considered (DQ Unc., Hits, NFCI and Real).
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Taula 2.8: 95% MARGINAL GAR FORECAST EVALUATION: REAL-TIME

GARCH

Forward Cumulative

h Country Historical GARCH Historical GARCH
Cov. TL Cov. TL Cov. TL Cov. TL

1

AUS 100.00 0.0836 98.73 0.0648∗∗∗ 100.00 0.0837 98.73 0.0648∗∗∗

CAN 96.20 0.0976 94.94 0.0761∗∗∗ 96.20 0.0976 94.94 0.0761∗∗∗

DEU 94.94 0.1275 93.67 0.1137∗ 94.94 0.1275 93.67 0.1137∗

ESP 93.67 0.1220 86.08 0.0861 93.67 0.1254 86.08 0.0861
FRA 93.67 0.0706 93.67 0.0543 94.94 0.0682 93.67 0.0543
GBR 96.20 0.1079 96.20 0.0978 96.20 0.1080 96.20 0.0978
ITA 89.87 0.1215 89.87 0.0830∗∗ 89.87 0.1208 89.87 0.0830∗∗

JPN 89.87 0.1717 89.87 0.1390 89.87 0.1720 89.87 0.1390
KOR 98.73 0.1323 96.20 0.1188∗∗ 98.73 0.1316 96.20 0.1188∗

MEX 97.47 0.2362 97.47 0.1444∗∗ 97.47 0.2376 97.47 0.1444∗∗

SWE 93.67 0.2931 92.41 0.2913 93.67 0.2933 92.41 0.2913
USA 97.47 0.0874 96.20 0.0752∗ 97.47 0.0876 96.20 0.0752∗

World 94.41 0.1637 92.56 0.1513 94.46 0.1638 92.56 0.1513

2

AUS 100.00 0.0837 98.73 0.0666 100.00 0.0603 98.72 0.0447
CAN 96.20 0.0976 94.94 0.0795∗∗∗ 96.15 0.0932 94.87 0.0736∗∗

DEU 94.94 0.1275 93.67 0.1199 92.31 0.1190 91.03 0.1128
ESP 93.67 0.1254 89.87 0.0822 89.74 0.1289 84.62 0.0912
FRA 94.94 0.0682 93.67 0.0632 94.87 0.0707 93.59 0.0596
GBR 96.20 0.1080 96.20 0.1003 94.87 0.1009 94.87 0.0970
ITA 89.87 0.1208 89.87 0.1018 89.74 0.1203 88.46 0.1026
JPN 89.87 0.1720 89.87 0.1595 88.46 0.1320 89.74 0.1266
KOR 98.73 0.1316 98.73 0.1231 96.15 0.1106 96.15 0.1192
MEX 97.47 0.2376 97.47 0.2185 96.15 0.2089 96.15 0.1825∗∗

SWE 93.67 0.2933 89.87 0.2734 94.87 0.1885 93.59 0.1935
USA 97.47 0.0876 94.94 0.0768 96.15 0.0786 97.44 0.0683
World 94.46 0.1638 93.62 0.1505 92.79 0.1393 92.09 0.1300

3

AUS 100.00 0.0833 98.73 0.0724 100.00 0.0486 100.00 0.0372
CAN 96.20 0.0978 96.20 0.0844∗∗∗ 96.10 0.0910 96.10 0.0706∗∗

DEU 94.94 0.1279 94.94 0.1223 92.21 0.1124 89.61 0.1090
ESP 93.67 0.1269 93.67 0.0998∗∗ 88.31 0.1346 88.31 0.1022∗∗

FRA 94.94 0.0680 93.67 0.0671 93.51 0.0666 92.21 0.0619
GBR 96.20 0.1081 96.20 0.1022 93.51 0.0933 93.51 0.0992
ITA 89.87 0.1205 92.41 0.1114 93.51 0.1091 87.01 0.1102
JPN 89.87 0.1685 89.87 0.1723 89.61 0.1220 89.61 0.1231
KOR 98.73 0.1296 98.73 0.1208 96.10 0.0999 93.51 0.1025
MEX 97.47 0.2282 97.47 0.2291 94.81 0.1968 94.81 0.1909
SWE 93.67 0.2939 93.67 0.2094 93.51 0.1970 87.01 0.1866
USA 94.94 0.0874 94.94 0.0851 96.10 0.0752 94.81 0.0720
World 94.25 0.1632 94.15 0.1549 92.32 0.1341 90.48 0.1334

4

AUS 100.00 0.0834 98.73 0.0728 100.00 0.0433 100.00 0.0346
CAN 96.20 0.0972 96.20 0.0867 94.74 0.0758 92.11 0.0698
DEU 94.94 0.1282 94.94 0.1225 90.79 0.1104 86.84 0.1063
ESP 93.67 0.1277 93.67 0.1049∗∗ 86.84 0.1421 86.84 0.1104∗∗

FRA 94.94 0.0674 93.67 0.0707 92.11 0.0686 93.42 0.0644
GBR 96.20 0.1082 96.20 0.1062 93.42 0.0902 92.11 0.1015
ITA 91.14 0.1197 89.87 0.1158 89.47 0.1021 86.84 0.1007
JPN 89.87 0.1683 89.87 0.1754 90.79 0.1090 92.11 0.1161
KOR 98.73 0.1299 98.73 0.1241 96.05 0.0717 93.42 0.0817
MEX 97.47 0.2118 97.47 0.2342 94.74 0.1751 94.74 0.1811
SWE 93.67 0.2943 93.67 0.2177 92.11 0.1251 90.79 0.1382
USA 94.94 0.0876 94.94 0.0863 94.74 0.0739 93.42 0.0756
World 94.20 0.1620 93.99 0.1537 90.84 0.1320 89.75 0.1371

This table reports detailed backtesting statistics for the cumulative and forward growth rates for
selected countries. The performance of the best model in terms of the tick loss is highlighted. We
also report the Diebold-Mariano test of superior predictive ability on the tick loss of each model
against the historical benchmark. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10.
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Taula 2.9: 95% MARGINAL GAR FORECAST EVALUATION: CUMULATIVE

GROWTH

h Method Model Cov. Length Unc. Hits NFCI Real TL

1

Benchmark Historical 94.44 5.422 70.83 41.67 58.33 62.50 0.1398

NFCI 92.77 5.170 66.67 41.67 79.17 62.50 3.88
NFCI+TS 91.13 5.079 54.17 45.83 50.00 54.17 -0.09

QR NFCI+TS+GF 90.72 5.086 58.33 50.00 45.83 58.33 -1.19
Full 89.39 5.147 37.50 29.17 29.17 33.33 -19.14
LASSO 90.25 5.151 50.00 29.17 50.00 45.83 -6.86

GARCH

GARCH 93.34 5.115 75.00 66.67 87.50 87.50 11.97
GARCH-NFCI 94.44 5.200 95.83 70.83 83.33 91.67 11.68
GJR-GARCH 93.31 5.116 75.00 66.67 87.50 87.50 11.79
F-GARCH 93.47 5.130 62.50 54.17 87.50 79.17 14.84

2

Benchmark Historical 93.73 4.899 87.50 66.67 70.83 83.33 0.1085

NFCI 91.98 4.730 70.83 87.50 75.00 83.33 2.26
NFCI+TS 88.17 4.598 50.00 66.67 70.83 75.00 -3.28

QR NFCI+TS+GF 88.96 4.635 58.33 50.00 62.50 66.67 -4.10
Full 87.69 4.640 29.17 58.33 33.33 54.17 -18.71
LASSO 88.36 4.635 50.00 75.00 70.83 54.17 -10.74

GARCH

GARCH 93.10 4.769 87.50 79.17 62.50 87.50 10.17
GARCH-NFCI 94.66 4.887 95.83 95.83 79.17 100.00 9.63
GJR-GARCH 93.10 4.772 87.50 79.17 62.50 95.83 9.63
F-GARCH 93.61 4.785 95.83 83.33 75.00 79.17 11.68

3

Benchmark Historical 93.14 4.722 95.83 75.00 70.83 87.50 0.0995

NFCI 91.09 4.616 70.83 62.50 70.83 87.50 -3.70
NFCI+TS 87.63 4.493 62.50 62.50 66.67 79.17 -10.70

QR NFCI+TS+GF 88.62 4.524 58.33 79.17 79.17 83.33 -10.02
Full 86.89 4.514 41.67 70.83 79.17 75.00 -32.36
LASSO 86.63 4.479 45.83 79.17 66.67 70.83 -16.62

GARCH

GARCH 92.37 4.639 91.67 83.33 75.00 87.50 4.68
GARCH-NFCI 94.20 4.789 95.83 83.33 91.67 95.83 5.12
GJR-GARCH 92.31 4.641 87.50 83.33 83.33 91.67 3.96
F-GARCH 92.60 4.666 87.50 87.50 83.33 91.67 3.78

4

Benchmark Historical 92.44 4.611 95.83 79.17 91.67 87.50 0.0948

NFCI 90.31 4.557 75.00 83.33 83.33 87.50 -7.13
NFCI+TS 86.37 4.417 45.83 66.67 66.67 70.83 -15.93

QR NFCI+TS+GF 86.14 4.421 50.00 54.17 79.17 66.67 -17.81
Full 84.46 4.397 37.50 58.33 41.67 66.67 -49.40
LASSO 85.05 4.379 37.50 50.00 58.33 70.83 -28.74

GARCH

GARCH 91.63 4.571 87.50 70.83 87.50 91.67 1.92
GARCH-NFCI 93.35 4.715 91.67 83.33 95.83 91.67 1.82
GJR-GARCH 91.51 4.575 87.50 79.17 83.33 87.50 1.10
F-GARCH 91.96 4.593 83.33 75.00 87.50 91.67 0.41

This table reports the following for each forecast horizon and forecasting method: the average
empirical coverage; the average length; the percentage of series that pass GaR adequacy tests at
the 5% significance level (DQ Unc, Hits, NFCI and Real); and the percentage improvement in
each model’s average tick loss relative to the historical benchmark. The performance of the best
forecasting method in terms of the tick loss is highlighted in boldface.
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Apèndix A
Appendix

A.1 Methodology

A.1.1 Simulation Algorithms
This section describes the simulation based procedure employed to construct GaR
prediction regions. Algorithm 1 contains the pseudo-code of the procedure that
we employ to construct marginal GaR predictions (in the case of the AR(1)-
GARCH(1,1)). Algorithm 2 contains the pseudo-code of the procedure that we
employ to construct joint GaR predictions on the basis of the BJPR method (in
the case of the AR(1)-GARCH(1,1)).
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Algorithm 1 MARGINAL GAR ALGORITHM FOR THE AR(1)-GARCH(1,1)
MODEL
INPUTS:

(i) Y : the T × n matrix of GDP growth rates with (t, i) entry given by Yi t

(ii) µ: the T × n matrix of conditional means with (t, i) entry given by µi t

(iii) σ2: the T × n matrix conditional variances with (t, i) entry given by σ2
i t

(iv) θ: parameter vector the AR(1)-GARCH(1,1) θ = (θ′1, . . . , θ
′
n) with θi =

(φi 0, φi 1, σ
2
i , αi, βi)

(v) p: the quantile of interest

(vi) h: forecast horizon

(vii) S: number of bootstrap replications.

PROCEDURE:

1. Construct the T×nmatrix of residuals Ẑ with (t, i) entry given by Ẑit = (Yi t−µi t)/
√
σ2
i t

2. Construct the S×1 vectorB with (s) entry given by bs, uniform draw from {1, . . . , T−h}

3. For i in {1, . . . , n} do

For s in {1, . . . , S} do

Construct the bootstrap innovation Z̃s
i j for j = 1, . . . , h where Z̃s

i j =

Ẑi bs+j−1

For j in {1, . . . , h} do

If j = 1 do

µi T+1|T = φi 0 + φi 1Yi T

σ2 s
i T+1|T = σ2

i (1− αi − βi) + αi(Yi T − µi T )2 + βiσ
2
T ,

Ỹ s
i T+1|T = µi T+1|T +

√
σ2
i T+1|T Z̃

s
i j

else

µs
i T+j|T = φi 0 + φi 1Ỹ

s
i T+j−1|T

σ2 s
i T+j|T = σ2

i (1 − αi − βi) + αi(Ỹ
s
i T+j−1|T − µs

i T+j−1|T )2 +

βiσ
2 s
T+j−1|T

Ỹ s
i T+j|T = µs

i T+j|T +
√
σ2 s
i T+j|T Z̃

s
i j

4. Construct the marginal GaR region as GaRM
T+h|T = (F̂−1

Ỹ1T+h|T
(p),∞) × . . . ×

(F̂−1
ỸnT+h|T

(p),∞), where F̂−1
Ỹi T+h|T

(p) is the p-th empirical quantile of {Ỹ s
i T+h|T }

S
s=1

for i = 1, . . . , n.

OUTPUT: The h-step-ahead (1− p)% marginal GaR region GaRM
T+h|T70
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Algorithm 2 JOINT GAR ALGORITHM FOR THE AR(1)-GARCH(1,1) MODEL
INPUTS:

(i) Y : the T × n matrix of GDP growth rates with (t, i) entry given by Yi t

(ii) µ: the T × n matrix of conditional means with (t, i) entry given by µi t

(iii) σ2: the T × n matrix conditional variances with (t, i) entry given by σ2
i t

(iv) θ: parameter vector the AR(1)-GARCH(1,1) θ = (θ′1, . . . , θ
′
n) with θi =

(φi 0, φi 1, σ
2
i , αi, βi)

(v) q: the percentage of the system for which coverage is desired; q = 0 is (1− p)% joint GaR.

(vi) p: the quantile of interest

(vii) h: forecast horizon

(viii) S: number of bootstrap replications.

PROCEDURE:

1. Carry out steps 1 to 3 of Algorithm 1

2. Construct the S × n matrix W̃ with (s, i) entry given by w̃s i = (Ỹ s
i T+h|T −

µ̂i T+h|T )/
√
σ̂2
i T+h|T where µ̂i T+h|T and σ̂2

i T+h|T denote the mean and variance of

Ỹi T+h|T across the S simulations.

3. Define Udqnes as the dqne-smallest element of {w̃s i}ni=1

4. Compute ddqnep as the p% empirical quantile of {Udqnes }Ss=1

5. Construct the (1 − q)%/(1 − p)% joint GaR region as GaRJq,BJPR
T+h|T =

(GaRJq,BJPR
i T+h|T ,∞) × · · · × (GaRJq,BJPR

nT+h|T ,∞) where GaRJq,BJPR
i T+h|T = µ̂i T+h|T +

d
dqne
p

√
σ2
i T+h|T for i = 1, . . . , n.

OUTPUT: The (1− q)%/(1− p)% joint GaR region GaRJq,BJPR
T+h|T
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A.1.2 Additional GARCH Methodology
GARCH Specifications. We rely on the following GARCH-type specification
for the GDP growth rates

Yi t+1 = µi t+1|t +
√
σ2
i t+1|t Zi t+1 Zi t+1

i.i.d∼ DZi
(0, 1), (A.1)

where µi t+1|t denotes the 1-step-ahead conditional mean, σ2
i t+1|t is the 1-step-

ahead conditional variance and DZi
(µ, σ2) is a location-scale distribution with

mean µ and variance σ2. For the conditional mean, we rely on an AR(1) model,
that is,

µi t+1|t = φi 0 + φi 1Yi t.

For the conditional variance, in addition to the GARCH(1,1) model described
in the text, we rely on the different conditional variance specifications described
below.

The GJR-GARCH model of ? models the conditional volatility as

σ2
i t+1|t = σ2

i (1− αi − βi − 1/2γi) +
(
αi + γi1{εi t<0}

)
ε2
i t + βiσ

2
i t+1|t,

where εi t = Yi t − φi 0 − φi 1Yi t−1.

The Factor GARCH (?) assumes that εi t can be decomposed into two ortho-
gonal components, namely, a common factor and an idiosyncratic shock series. In
particular, we have

εi t = λi hεF t + ξi t,

where λi h is the loading of each series on the common factor, εF t is the com-
mon factor and ξi t is an idiosyncratic shock that is uncorrelated with the common
factor. In the Factor GARCH model, these shocks have time-varying volatility

Vart(εF t+1) = σ2
F t+1 and Vart(ξi t+1) = σ2

I i t+1,

which follow a GARCH(1,1) process

σ2
I i t+1|t = σ2

i (1− αi − βi) + αiξ
2
i t + βiσ

2
I i t|t−1

σ2
F t+1|t = σ2

F (1− αF − βF ) + αF ε
2
F t + βFσ

2
F t|t−1.

We refer the reader to ? for details of the estimation of the Factor GARCH. We
note that εF t is estimated as the first principal component of (ε1 t, . . . , εn t)

′.
Lastly, we consider a model labelled GARCH-NFCI, that is a GARCH-X mo-

del that includes the NFCI as a predictor of conditional volatility. The conditional
volatility in the GARCH-NFCI model is given by

σ2
i t+1|t = σ2

i (1− αi − βi − κiθi) + αiε
2
i t + βiσ

2
i t+1|t + θiXi t,
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where εi t = Yi t−φi 0−φi 1Yi t−1, κi = E[Xi t]/σ
2
i and Xi t is the NFCI of country

i at time t.1

Direct GARCH Modeling. We define the direct GARCH model as

Yi t+h = µi t+h|t +
√
σ2
i t+h|t Zi t+h Zi t+h|Ft ∼ DZi

(0, 1), (A.2)

where µi t+h|t is the h-step-ahead conditional mean, σ2
i t+h|t is the h-step-ahead

conditional variance andDZi
(0, 1) denotes a zero-mean and unit-variance location-

scale distribution. The specification in equation (A.2) is labeled “direct”, as it di-
rectly models the h-step-ahead growth rate Yi t+h as a function of the information
set available in period t (?). The h-step-ahead conditional distribution implied by
(A.2) is

Yi t+h|It ∼ DZi
(µi t+h|t, σ

2
i t+h|t),

and the corresponding h-step-ahead p% conditional quantile is given by

Qp(Yi t+h|It) = µi t+h|t +
√
σ2
i t+h|tF

−1
Zi

(p), (A.3)

where F−1
Zi

(·) is the inverse cumulative distribution function of DZi
.

To make the model in (A.2) operational, one must specify the conditional mean
µi t+h|t, the conditional variance σ2

i t+h|t and the innovation distribution DZi
. The

conditional mean equation is an h-step-ahead direct AR(1) process, that is,

µi t+h|t = φi 0 + φi hYi t.

The conditional variance is a direct version of the standard GARCH(1,1), that is,

σ2
i t+h|t = σ2

i (1− αi − βi) + αiε
2
i t + βiσ

2
i t+h−1|t−1, (A.4)

where εi t = Yi t − µi t|t−1 with µi t|t−1 being the 1-step-ahead conditional mean
implied by an AR(1) process, and the variance equation parameters satisfy the
constraints ωi > 0, αi > 0, βi ≥ 0 and αi + βi < 1. Note that when h = 1,
the model in (A.4) corresponds to the standard GARCH(1,1) specification. It is
straightforward to see via recursive substitution that this is equivalent to

σ2
i t+h|t =

ωi
1− βi

+ αi

∞∑
k=0

βki ε
2
i t−k, (A.5)

1Clearly, this model relies on NFCI data to be estimated. Therefore, the estimation window
may differ from the remaining methods.
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which emphasizes that the direct GARCH(1,1) h-step-ahead conditional variance
is an exponentially weighted average of present and past GDP growth shocks.

We estimate the direct GARCH(1,1) by a naı̈ve QML estimator that maximizes
the Gaussian pseudo-log-likelihood given by

θ̂ = argmax
θ

T−h∑
t=1

−1

2
log σ2

i t+h|t −
1

2

(Yi t+h − µt+h|t)2

σ2
i t+h|t

.

We remark that we label this estimator “naı̈ve” since it does not take into account
the serial dependence of the multi-step innovations of the model.

Pooled GARCH Estimation. In this work, we rely on a panel GARCH estima-
tion approach named composite likelihood (CL), which is described in detail in
Pakel et al. (2011). We describe the approach for the panel GARCH(1,1) specifi-
cation given by

Yi t+1 =
√
σ2
i t+1|tZi t+1 Zi t+1 ∼ DZi

(0, 1)

σ2
i t+1|t = σ2

i (1− α− β) + αY 2
i t + βσ2

i t|t−1,

where σ2
i > 0, α, β > 0 and α + β < 1. In particular, we emphasize that in

the equation above, the dynamic coefficients α and β are common across series,
whereas the unconditional variance parameter σ2

i is series specific. We are interes-
ted in estimating the common parameters θ = (α, β)′ and the nuisance parameter
γ = (σ2

1, . . . , σ
2
n). CL estimation consists of relying on a two-step procedure to

estimate these parameters. In the first step, the γ parameter vector is estimated by
the sample variance of each series, that is,

γ̂i = σ̂2
i =

1

T

T∑
i=1

Y 2
i t ,

and in the second step, the θ parameter vector is estimated by maximizing the
so-called composite likelihood given by

θ̂ = argmax
θ

T−1∑
i=1

1

n

n∑
i=1

(
−1

2
log σ̂2

i t+1|t −
1

2

Y 2
i t+1

σ̂2
i t+1|t

)
,

where
σ̂2
i t+1|t = σ̂2

i (1− α− β) + αY 2
i t + βσ2

i t|t−1.

The properties of this estimator are studied in Pakel et al. (2011).
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A.2 Data Construction Details

In this section, we provide details of the data construction and imputation. Note
that some of the predictors that we consider are not available for the entire sam-
ple period, and some of the country-specific predictors are not available for all
countries. Moreover, some of the predictors have missing values.

National Financial Conditions: The IMF has constructed and made availa-
ble the NFCIs for 11 advanced and 10 emerging market economies. Indexes for
advanced economies start in 1973Q1, whereas indexes for emerging market eco-
nomies start in 1991Q1. The last observation available for all indexes is 2016Q4.
Similarly to IMF (2017), we construct a measure of Global NFCI as the average
of the country-specific available observations at each point in time. For countri-
es for which the NFCI exists but starts later than 1973Q1, we impute the initial
observations with the Global NFCI, which is standardized to have unit variance
and multiplied by the standard deviation of the series for which the imputation
is needed. This procedure guarantees that the imputation maintains the original
series scale properties. We perform this procedure for Canada, Italy, South Ko-
rea, Mexico, Spain, Switzerland and Sweden. Additionally, we assign the Global
NFCI to countries that do not have their own NFCI published. This is the case for
Austria, Belgium, Denmark, Finland, Greece, Iceland, Ireland, Luxembourg, the
Netherlands, Norway and Portugal. For the remaining countries – Australia, Fran-
ce, Germany, Japan, the United Kingdom and the United States – we directly use
the data provided by the IMF. The NFCI data are available from the IMF’s website
(https://www.imf.org/∼/media/Files/Publications/GFSR/2017/October/chapter-3/
csv-data/data-appendix.ashx?la=en).
Credit Spread: We use the US credit spread, which is available in the St.Louis
Fed website (https://fred.stlouisfed.org/series/BAA10Y) as a proxy for the credit
spreads for all countries considered. The data are available at a daily frequency:
we use the last observation in each quarter to represent the quarterly value for this
series. Missing observations are replaced by the average of the two adjacent non-
missing observations.
Credit Gap and Credit to GDP Ratio: We use the credit statistics available on
the BIS website (https://www.bis.org/statistics/c gaps.htm). The data start from
1961 and cover all countries in our sample, with the exception of Iceland. We
consider the first differences of the credit gaps and the log differences of the cre-
dit ratios. We construct a measure of the global credit gap and global credit ratio
as the averages of available observations at each point in time. For Iceland, we
impute the global credit gap. To handle missing observations in all other countri-
es, we use the global credit gap standardized to have unit variance and multiplied
by the standard deviation of each series.
Term Spread: We construct the term spread as long-term interest rates minus
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short-term interest rates. We obtain long and short term interest rates from the
OECD website (https://data.oecd.org/interest/long-term-interest-rates.htm and
https://data.oecd.org/interest/short-term-interest-rates.htm ). Term spreads are avai-
lable for all countries in our sample. We construct a measure of global term spre-
ads, which we scale appropriately to impute the missing data for individual coun-
tries.
Stock Variance: We construct a measure of realized volatility as the mean of the
squared daily returns of the S&P500 obtained from the CRSP.
House Prices: We use property price statistics available on the BIS website
(https://www.bis.org/statistics/pp/pp detailed.xlsx) to construct our measure of hou-
sing prices. We use the data from each countries’ statistical agency whenever pos-
sible. We consider pure prices of all residential dwellings whenever possible. For
Japan and Greece, we resort to the price per square meter. We construct a mea-
sure of global property prices, which we use to impute missing observations. We
note that the BIS does not publish property prices for Iceland; therefore, we use
the global property prices for this country. The property statistics for Japan are
available on a semiannual basis, and we thus impute quarterly data as the average
of two adjacent observations.
World Uncertainty Index: We use the World Uncertainty Index made available
on the economic policy uncertainty website (https://www.policyuncertainty.com/
wui quarterly.html). For Iceland and Luxembourg, we use a Global World Uncer-
tainty Index constructed as the average WUI of all countries in our sample. The
WUI makes up for a balanced panel, and, therefore, there is no need to impute
data on the time series.
Economic Policy Uncertainty Index: We consider Baker et al. (2016)’s Eco-
nomic Policy Uncertainty index for Australia, Canada, France, Germany, Italy,
Mexico, South Korea, the United Kingdom and the United States. Similarly cons-
tructed indexes are available for Japan (?), Greece (?), Ireland (?), the Netherlands
(?), Spain (?) and Sweden (?). For the remaining countries, we use a Global EPU
constructed as the average of all available observations at each point in time. The
quarterly index is computed as the mean of the daily index over each quarter.
Geopolitical Risk Index: We consider Caldara and Iacoviello (2018)’s monthly
Geopolitical Risk Index. We construct the quarterly index by averaging daily ob-
servations.

A.2.1 Real-time GaR Prediction Data

We construct quarterly real-time forecasts from 2000Q1 to 2019Q4 based on vin-
tage data obtained from the OECD-MEI revisions database (https://www.oecd.org/sdd/
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oecdmaineconomicindicatorsmei.htm) .2 For each country and quarter t, we cons-
truct a dataset that contains GDP at time t but not t+1.3 For some countries, some
editions of GDP data are shorter – i.e., they have less observations – than previous
releases. In such cases, the dataset is constructed by merging the short edition
with the observations lost from the long edition. If this procedure generates bre-
aks in the series, then we drop all observations up to the breakpoint.4 Finally, we
use the latest available vintage at the time of writing (see footnoote 2) to backtest
the forecasts.

A.3 Additional Tables and Figures

A.3.1 Additional Robustness Checks

This section reports the tables described in Section 2.3.3 of the paper and a number
of additional robustness checks.

Alternative Sample Periods We assess the robustness of our results to alterna-
tive out-of-sample specifications. First, we consider the period from 1983Q4 to
2007Q4 as our out-of-sample. Stopping short of the great financial crisis allows
us to evaluate the extent to which our findings are influenced by the latest crisis
episode. Next, we consider a second out-of-sample specification from 1996Q1 to
2016Q4. Based on a longer estimation window, this exercise is intended to verify
whether our findings are driven by short estimation periods. Table A.3 reports
the backtesting results for the historical benchmark, QR-NFCI and GARCH(1,1).
First, for marginal GaR, we find that in the pre-crisis sample specification, the QR-
NFCI performs worse than the historical benchmark across all horizons conside-
red, whereas the GARCH(1,1) displays strong performance gains. In the second
sample specification, the QR-NFCI performs better than the historical benchmark
for up to 2 quarters ahead. Moreover, GARCH(1,1) retains its good forecas-
ting performance and improves the tick loss over the tick loss of the historical
benchmark for all horizons considered. Next, for the joint GaR, we find that the
BJPR-based GARCH(1,1) is the only method that provides satisfactory prediction
regions across all sample specifications and forecast horizons considered.

2Data downloaded on 06/06/2020
3If there is no data vintage that includes GDP at time t but not t+ 1, we keep the first revision

that includes GDP at time t.
4We define a break as a consecutive change in GDP larger than 20 times the average change

within a given revision, both in absolute values.
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Alternative Coverage Levels. We assess the robustness of our findings to alter-
native coverage levels. In particular, we consider the 99%, 90%, 85% and 80%
coverage levels. Table A.4 of the Appendix highlights that the GARCH models
provide a smaller average tick loss than the QR-NFCI across all quantiles and fo-
recast horizons considered. Moreover, after two quarters ahead, the QR-NFCI is
outperformed by the historical benchmark for all coverage levels considered. In
addition, the GARCH models outperform the historical benchmark for forecas-
ting the 99% quantile at one quarter ahead but are outperformed for all longer
horizons. The performance of the QR-NFCI deteriorates at more extreme quan-
tiles. As shown in Table A.5 of the Appendix, the standard GARCH(1,1) model
in conjunction with the BJPR produces GaR regions with the correct coverage for
all coverage levels.

Alternative GARCH Specifications. We investigate the robustness of our fin-
dings to alternative specifications of the conditional mean, the variance and inno-
vation distribution, and alternative forecasting strategies (direct or iterated). First,
we model the conditional mean of the GDP growth rates with an AR(4) process
and regress the series of the GDP growth rates on a constant (labeled Constant).
Second, we entertain a model where the conditional mean of GDP is modeled
as an AR(1) process and the conditional variance is constant. Third, we explore
the impact of parametrizing the GARCH innovation distribution to a skewed Stu-
dent’s t distribution.5 Lastly, we consider direct forecasts of the conditional mean
and volatility dynamics. Section A.1.2 provides details of the direct GARCH mo-
del. Table A.6 reports the summary backtesting results for the marginal and joint
GaR forecasting with the alternative model specifications considered. According
to the backtesting tests, all models that allow for time-varying volatility dynamics
exhibit similar performance. In terms of the tick loss, the time-varying volatility
models dominate the model with constant variance. Overall, the GARCH-based
GaR regions constructed with parsimonious conditional mean specifications per-
form better than those constructed with larger models, and iterated GARCH fo-
recasts generally exhibit lower tick loss and produce smaller regions than their
direct counterparts. We emphasize that all GARCH specifications considered out-
perform the QR-NFCI in terms of the tick loss.

Panel QR Specification. We follow Adrian et al. (2018) and model the conditi-
onal quantiles with the following specification:

Qp(Yi t+h|It) = αpi + βpi 0Yi t + βp1Xi1 t + . . .+ βpKXiK t . (A.6)

5We use the skewed Student’s t distribution introduced in ?.
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Accordingly, we allow each country to have its own intercept and autoregressive
parameters, and we restrict the remaining coefficients to be the same across all
countries. We do this in an attempt to improve the QR forecasts by estimating the
model parameters from the entire panel rather than from individual countries. The
model is estimated by minimizing the sum of individual tick losses. Table A.7
reports our findings. In particular, we find that the panel quantile specifications
are outperformed by their country-specific counterparts in forecasting one quar-
ter ahead. For longer horizons, the panel quantile specifications present modest
performance gains but are nonetheless outperformed by GARCH models.

Univariate GARCH Estimation. We explore the extent to which composite
likelihood estimation is relevant in the construction of accurate GARCH-based
GaR forecasts. We construct and backtest GaR forecasts based on GARCH mo-
dels that are estimated individually for each country. Tables A.8 and A.9 report
our findings. We keep the QR models for comparison purposes, and the QR re-
sults are those reported in Tables 2.4 and 2.7 of the main paper. We find that
the GARCH models that use cross-sectional information produce GaR forecasts
with slightly better performance according to the tick loss than their univariate
counterparts. Generally, the results reported in Section 2.3.3 remain qualitatively
the same. In particular, GaR forecasts based on a univariate GARCH estimation
display correct coverage and are optimal with respect to the information sets that
include the NFCI for most series considered.

(1 − q)%/95% Joint GaR Forecasting. As a final robustness check, we cons-
truct and backtest the (1 − q)%/95% joint GaR regions. The joint GaR regions
considered in this exercise are constructed on the basis of the BJPR introduced in
Section 2.2 and the forecasting procedure described in Section 2.3.3. Table A.10
reports the summary backtesting results for q = 5% and the q = 10% BJPR-
based historical and GARCH joint GaR. For comparison purposes, we also report
the results for the joint GaR. The table reports the following for each forecast
horizon, model and GaR region considered: the empirical coverage; the average
length; and the p-values of the backtesting tests considered. We find that both
models exhibit empirical coverage close to the nominal level. In fact, we cannot
reject that all (1 − q)%/95% joint GaR regions provide the correct unconditional
coverage for either of the models. However, the GARCH-based regions are more
accurate according to the majority of the backtesting tests and thus prevail over
the historical benchmark.
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Taula A.1: 95% JOINT GAR FORECAST EVALUATION: CUMULATIVE

h Method Model Cov. Length Unc. Hits NFCI Real

1

Benchmark Historical 90.91 7.976 0.031 0.003 0.024 0.121

QR + Bonf.

QR-NFCI 51.52 6.111 0.000 0.000 0.000 0.000
NFCI+TS 34.85 5.834 0.000 0.000 0.000 0.000
NFCI+GF+TS 34.09 5.673 0.000 0.000 0.000 0.000
Full 25.00 5.563 0.000 0.000 0.000 0.000
LASSO 38.64 7.111 0.000 0.000 0.000 0.000

GARCH + Marg.

GARCH 35.61 5.115 0.000 0.000 0.000 0.000
GARCH-NFCI 43.94 5.200 0.000 0.000 0.000 0.000
GJR-GARCH 36.36 5.116 0.000 0.000 0.000 0.000
F-GARCH 33.33 5.130 0.000 0.000 0.000 0.000

GARCH + Bonf.

GARCH 87.12 7.320 0.000 0.000 0.000 0.000
GARCH-NFCI 84.09 7.055 0.000 0.000 0.000 0.000
GJR-GARCH 86.36 7.293 0.000 0.000 0.000 0.000
F-GARCH 85.61 7.302 0.000 0.000 0.000 0.000

GARCH + BJPR

GARCH 94.70 7.747 0.873 0.021 0.619 0.455
GARCH-NFCI 95.45 7.783 0.811 0.004 0.535 0.828
GJR-GARCH 94.70 7.708 0.873 0.021 0.619 0.455
F-GARCH 95.45 7.605 0.811 0.319 0.575 0.872

2

Benchmark Historical 98.47 7.886 0.102 0.781 0.707 0.677

QR + Bonf.

QR-NFCI 46.56 5.406 0.000 0.000 0.000 0.000
NFCI+TS 29.77 5.163 0.000 0.000 0.000 0.000
NFCI+GF+TS 34.35 5.125 0.000 0.999 0.000 0.000
Full 23.66 4.957 0.000 0.000 0.000 0.000
LASSO 36.64 5.950 0.000 0.000 0.000 0.000

GARCH + Marg.

GARCH 40.46 4.769 0.000 0.999 0.000 0.000
GARCH-NFCI 50.38 4.887 0.000 0.000 0.999 0.000
GJR-GARCH 41.98 4.772 0.000 0.000 0.000 0.999
F-GARCH 43.51 4.785 0.000 0.000 0.999 0.000

GARCH + Bonf.

GARCH 87.79 6.377 0.035 0.588 0.234 0.999
GARCH-NFCI 87.79 6.215 0.038 0.391 0.000 0.668
GJR-GARCH 87.79 6.365 0.035 0.588 0.234 0.999
F-GARCH 87.02 6.289 0.007 0.000 0.999 0.999

GARCH + BJPR

GARCH 93.89 6.383 0.715 0.641 0.990 0.999
GARCH-NFCI 93.13 6.483 0.585 0.804 0.844 0.895
GJR-GARCH 93.89 6.377 0.715 0.641 0.990 0.999
F-GARCH 93.89 6.358 0.715 0.641 0.990 0.999

3

Benchmark Historical 97.69 7.858 0.204 0.787 0.713 0.684

QR + Bonf.

QR-NFCI 47.69 5.114 0.000 0.000 0.000 0.000
NFCI+TS 29.23 4.812 0.000 0.000 0.000 0.000
NFCI+GF+TS 31.54 4.815 0.000 0.000 0.000 0.000
Full 23.08 4.770 0.000 0.000 0.000 0.000
LASSO 36.92 5.326 0.000 0.000 0.000 0.000

GARCH + Marg.

GARCH 40.77 4.639 0.000 0.999 0.000 0.000
GARCH-NFCI 50.00 4.789 0.000 0.000 0.999 0.000
GJR-GARCH 40.77 4.641 0.000 0.000 0.000 0.000
F-GARCH 44.62 4.666 0.000 0.000 0.000 0.000

GARCH + Bonf.

GARCH 84.62 5.949 0.004 0.007 0.917 0.080
GARCH-NFCI 83.85 5.798 0.005 0.000 0.747 0.258
GJR-GARCH 84.62 5.943 0.004 0.007 0.917 0.080
F-GARCH 83.08 5.903 0.001 0.000 0.001 0.000

GARCH + BJPR

GARCH 90.00 6.015 0.134 0.463 0.003 0.522
GARCH-NFCI 90.00 6.105 0.134 0.463 0.003 0.522
GJR-GARCH 90.00 6.003 0.134 0.463 0.003 0.522
F-GARCH 90.00 6.008 0.134 0.463 0.003 0.522

4

Benchmark Historical 97.67 7.761 0.295 0.000 0.254 0.254

QR + Bonf.

QR-NFCI 44.19 4.945 0.000 0.000 0.000 0.000
NFCI+TS 31.78 4.685 0.000 0.000 0.000 0.000
NFCI+GF+TS 33.33 4.659 0.000 0.000 0.000 0.000
Full 24.03 4.598 0.000 0.000 0.000 0.000
LASSO 35.66 5.078 0.000 0.000 0.000 0.999

GARCH + Marg.

GARCH 40.31 4.571 0.000 0.000 0.999 0.000
GARCH-NFCI 50.39 4.715 0.000 0.000 0.000 0.000
GJR-GARCH 40.31 4.575 0.000 0.000 0.999 0.999
F-GARCH 42.64 4.593 0.000 0.000 0.000 0.000

GARCH + Bonf.

GARCH 84.50 5.713 0.011 0.177 0.181 0.052
GARCH-NFCI 80.62 5.569 0.001 0.044 0.000 0.999
GJR-GARCH 83.72 5.708 0.004 0.108 0.396 0.000
F-GARCH 84.50 5.701 0.019 0.470 0.349 0.999

GARCH + BJPR

GARCH 89.92 5.989 0.130 0.325 0.150 0.540
GARCH-NFCI 86.05 5.811 0.026 0.303 0.066 0.745
GJR-GARCH 89.15 5.981 0.105 0.278 0.201 0.666
F-GARCH 89.15 5.928 0.107 0.326 0.006 0.080

This table reports the following for each forecast horizon and forecasting method: the ave-
rage empirical joint coverage; the average length; and the p-values of the GaR adequacy tests
considered (DQ Unc., Hits, NFCI and Real).
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Taula A.2: PREDICTIVE DENSITY EVALUATION

h Method Model Unweighted Left Tails Body Right Tails

1

Benchmark Historical 1.4933 0.8191 0.3722 0.6742

QR-NFCI -0.78 3.40 5.84 -5.86
QR-NFCI+TS -9.87 -7.88 -4.41 -12.27

QR QR-NFCI+TS+GF -15.92 -14.32 -4.79 -17.86
Full -21.41 -23.59 -10.44 -18.77
Lasso -23.36 -26.88 -12.81 -19.08

GARCH

GARCH 9.89 10.41 11.87 9.26
GARCH-NFCI 11.14 14.47 15.23 7.10
GJR-GARCH 9.84 10.29 11.95 9.30
F-GARCH 10.23 10.56 10.50 9.84

2

Benchmark Historical 1.4999 0.8248 0.3735 0.6752

QR-NFCI -2.71 0.93 -0.91 -7.17
QR-NFCI+TS -11.99 -10.57 -8.15 -13.71

QR QR-NFCI+TS+GF -14.20 -13.80 -7.35 -14.69
Full -32.43 -31.10 -24.87 -34.05
Lasso -29.55 -27.70 -21.77 -31.82

GARCH

GARCH 6.71 5.46 8.53 8.24
GARCH-NFCI 9.42 11.66 12.82 6.68
GJR-GARCH 6.73 5.31 8.59 8.46
F-GARCH 6.89 5.86 7.30 8.15

3

Benchmark Historical 1.5016 0.8271 0.3741 0.6745

QR-NFCI -13.36 -10.51 -7.29 -16.86
QR-NFCI+TS -23.58 -20.71 -15.10 -27.10

QR QR-NFCI+TS+GF -26.06 -17.16 -15.97 -36.98
Full -33.30 -29.74 -26.51 -37.66
Lasso -29.15 -25.33 -22.98 -33.82

GARCH

GARCH 4.38 2.89 4.81 6.21
GARCH-NFCI 6.93 9.47 9.69 3.82
GJR-GARCH 4.28 2.63 4.92 6.30
F-GARCH 4.14 2.91 3.78 5.66

4

Benchmark Historical 1.5045 0.8284 0.3751 0.6761

QR-NFCI -16.47 -16.61 -9.77 -16.30
QR-NFCI+TS -34.13 -31.25 -25.45 -37.67

QR QR-NFCI+TS+GF -38.80 -37.61 -25.81 -40.24
Full -48.55 -43.31 -40.70 -54.97
Lasso -40.90 -40.97 -30.14 -40.82

GARCH

GARCH 3.02 1.21 3.66 5.25
GARCH-NFCI 5.31 7.57 7.70 2.55
GJR-GARCH 3.09 1.23 3.78 5.36
F-GARCH 3.15 1.67 3.13 4.95

This table reports the percentage improvement in each model’s average weighted log predic-
tive score relative to the historical benchmark for each forecast horizon, forecasting method and
weight function. The performance of the best forecasting method in terms of the score functions
considered is highlighted in boldface.
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Taula A.6: Robustness Check: Alternative GARCH Specifications

Panel A: Marginal GaR

h Model Cov. Length Unc. Hits NFCI Real TL

1

Constant Mean 93.69 5.141 83.33 70.83 83.33 87.50 0.1214
AR(4) 93.37 5.096 70.83 62.50 75.00 79.17 0.1281
AR(1)+Cons. Var. 94.19 5.357 66.67 45.83 58.33 70.83 0.1455
Skew-t 93.06 5.071 70.83 54.17 83.33 79.17 0.1222
Direct 93.34 5.115 75.00 66.67 87.50 87.50 0.1231

2

Constant Mean 94.12 5.248 87.50 83.33 87.50 87.50 0.1319
AR(4) 93.83 5.212 79.17 83.33 70.83 79.17 0.1304
AR(1)+Cons. Var. 93.89 5.343 70.83 70.83 91.67 75.00 0.1420
Skew-t 93.07 5.123 75.00 91.67 79.17 75.00 0.1298
Direct 93.19 5.156 87.50 91.67 83.33 83.33 0.1298

3

Constant Mean 94.01 5.317 91.67 70.83 91.67 95.83 0.1366
AR(4) 94.13 5.321 91.67 87.50 95.83 83.33 0.1409
AR(1)+Cons. Var. 93.11 5.334 70.83 87.50 87.50 83.33 0.1468
Skew-t 92.66 5.132 87.50 91.67 79.17 83.33 0.1347
Direct 93.04 5.180 95.83 79.17 83.33 91.67 0.1352

4

Constant Mean 94.12 5.334 91.67 87.50 91.67 95.83 0.1382
AR(4) 94.22 5.360 91.67 100.00 87.50 83.33 0.1392
AR(1)+Cons. Var. 92.96 5.336 70.83 79.17 75.00 83.33 0.1483
Skew-t 92.51 5.139 79.17 100.00 79.17 87.50 0.1375
Direct 92.47 5.148 79.17 87.50 87.50 79.17 0.1393

Panel B: Joint GaR

h Model Cov. Length Unc. Hits NFCI Real

1

Constant Mean 96.97 7.863 0.299 0.330 0.558 0.786
AR(4) 93.94 7.536 0.576 0.745 0.637 0.470
AR(1) + Const. Var. 87.12 7.912 0.000 0.005 0.000 0.001
Skew-t 93.18 7.199 0.338 0.002 0.343 0.661
Direct 94.70 7.747 0.873 0.021 0.619 0.455

2

Constant Mean 95.42 8.442 0.862 0.000 0.592 0.990
AR(4) 94.66 8.313 0.885 0.000 0.592 0.990
AR(1) + Const. Var. 87.79 7.894 0.003 0.999 0.999 0.015
Skew-t 94.66 7.633 0.899 0.999 0.597 0.999
Direct 94.66 7.750 0.899 0.999 0.597 0.999

3

Constant Mean 93.85 8.351 0.609 0.475 0.187 0.827
AR(4) 93.85 8.464 0.614 0.225 0.388 0.802
AR(1) + Const. Var. 83.08 7.875 0.000 0.015 0.000 0.011
Skew-t 94.62 7.916 0.887 0.339 0.533 0.932
Direct 94.62 7.950 0.887 0.339 0.533 0.932

4

Constant Mean 95.35 8.297 0.886 0.316 0.631 0.900
AR(4) 94.57 8.338 0.859 0.301 0.631 0.900
AR(1) + Const. Var. 83.72 7.868 0.000 0.001 0.000 0.000
Skew-t 96.12 8.113 0.616 0.983 0.645 0.934
Direct 94.57 7.707 0.876 0.500 0.588 0.857

This table reports the forecasting exercise performed with alternative models for the conditio-
nal mean, variance and distribution innovation, and the forecasting exercise performed with direct
forecasts. Panel A of this table reports the results for the marginal GaR, and Panel B reports the
results for the joint GaR. For each forecast horizon and forecasting method, we report the average
empirical coverage, the average length, the percentage of the series that pass GaR adequacy tests at
the 5% significance level (DQ Unc., Hits, NFCI and Real) for the marginal GaR and the p-values
of each test for the joint GaR. Additionally, for the marginal GaR, we report the average tick loss
of each model considered.
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Taula A.7: ROBUSTNESS CHECK: PANEL QUANTILE REGRESSIONS

h Method Model Cov. Length Unc. Hits NFCI Real TL

1

Benchmark Historical 94.44 5.422 70.83 41.67 58.33 62.50 0.1398

QR-NFCI 94.26 5.315 75.00 41.67 70.83 75.00 1.47
QR QR-NFCI+TS 93.18 5.227 62.50 37.50 70.83 50.00 1.88

QR-NFCI+TS+GF 91.45 5.373 66.67 50.00 58.33 58.33 -26.14
Full 93.72 5.306 66.67 45.83 70.83 58.33 4.04

GARCH GARCH 93.34 5.115 75.00 66.67 87.50 87.50 11.97

2

Benchmark Historical 94.47 5.427 75.00 87.50 91.67 75.00 0.1410

QR-NFCI 94.34 5.419 70.83 79.17 91.67 87.50 0.40
QR QR-NFCI+TS 92.81 5.220 75.00 70.83 83.33 79.17 -1.02

QR-NFCI+TS+GF 91.06 5.491 58.33 62.50 58.33 75.00 -24.42
Full 92.49 5.221 75.00 79.17 83.33 75.00 0.44

GARCH GARCH 94.15 5.245 87.50 91.67 87.50 91.67 7.80

3

Benchmark Historical 94.36 5.433 75.00 87.50 95.83 87.50 0.1420

QR-NFCI 93.78 5.424 79.17 79.17 87.50 83.33 -4.23
QR QR-NFCI+TS 93.04 5.253 79.17 70.83 79.17 79.17 -2.65

QR-NFCI+TS+GF 92.63 5.555 79.17 70.83 70.83 75.00 -19.38
Full 92.18 5.281 62.50 87.50 79.17 83.33 -2.17

GARCH GARCH 93.85 5.316 91.67 87.50 95.83 87.50 3.66

4

Benchmark Historical 94.32 5.440 75.00 91.67 87.50 83.33 0.1427

QR-NFCI 94.32 5.482 79.17 83.33 79.17 83.33 -3.00
QR QR-NFCI+TS 92.64 5.317 66.67 66.67 79.17 87.50 -3.08

QR-NFCI+TS+GF 93.35 5.525 79.17 91.67 66.67 75.00 -18.98
Full 91.67 5.318 70.83 66.67 79.17 83.33 -8.80

GARCH GARCH 93.86 5.341 91.67 91.67 87.50 91.67 2.85

This table reports the results for the panel QR specifications, along with the GARCH results to
ease comparison. For each forecast horizon and forecasting method, this table reports the average
empirical coverage, the average length, the percentage of the series that pass GaR adequacy tests
at the 5% significance level (DQ Unc, Hits, NFCI and Real) and the percentage improvement in
each model’s average tick loss relative to the historical benchmark. The performance of the best
forecasting method in terms of the tick loss is highlighted.
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Taula A.8: 95% MARGINAL GAR FORECAST EVALUATION: UNIVARIATE

GARCH

h Method Model Cov. Length Unc. Hits NFCI Real TL

1

Benchmark Historical 94.44 5.422 70.83 41.67 58.33 62.50 0.1398

NFCI 92.77 5.170 66.67 41.67 79.17 62.50 3.88
NFCI+TS 91.13 5.079 54.17 45.83 50.00 54.17 -0.09

QR NFCI+TS+GF 90.72 5.086 58.33 50.00 45.83 58.33 -1.19
Full 89.39 5.147 37.50 29.17 29.17 33.33 -19.14
LASSO 90.25 5.151 50.00 29.17 50.00 45.83 -6.86

GARCH

GARCH 93.02 5.086 83.33 58.33 79.17 87.50 9.53
GARCH-NFCI 93.94 5.164 95.83 70.83 87.50 95.83 13.48
GJR-GARCH 92.96 5.122 83.33 66.67 75.00 79.17 7.42
F-GARCH 93.09 5.119 70.83 50.00 79.17 79.17 13.99

2

Benchmark Historical 94.47 5.427 75.00 87.50 91.67 75.00 0.1410

NFCI 92.75 5.257 75.00 75.00 79.17 70.83 0.47
NFCI+TS 90.62 5.166 62.50 87.50 79.17 75.00 -3.99

QR NFCI+TS+GF 91.13 5.187 66.67 83.33 83.33 75.00 -4.22
Full 89.54 5.172 54.17 79.17 54.17 70.83 -36.40
LASSO 90.55 5.157 54.17 66.67 66.67 62.50 -8.46

GARCH

GARCH 93.64 5.255 87.50 79.17 87.50 95.83 4.08
GARCH-NFCI 94.47 5.362 91.67 79.17 91.67 87.50 8.10
GJR-GARCH 93.48 5.267 83.33 95.83 87.50 95.83 3.62
F-GARCH 96.63 5.751 91.67 75.00 95.83 95.83 2.41

3

Benchmark Historical 94.36 5.433 75.00 87.50 95.83 87.50 0.1420

NFCI 92.69 5.314 66.67 83.33 75.00 75.00 -3.74
NFCI+TS 90.42 5.195 62.50 62.50 66.67 70.83 -9.40

QR NFCI+TS+GF 90.80 5.238 66.67 62.50 75.00 75.00 -9.19
Full 89.04 5.256 50.00 58.33 54.17 58.33 -31.19
LASSO 89.46 5.231 54.17 66.67 54.17 58.33 -14.19

GARCH

GARCH 93.56 5.318 87.50 87.50 91.67 83.33 0.37
GARCH-NFCI 95.06 5.479 95.83 87.50 100.00 95.83 2.95
GJR-GARCH 93.72 5.327 87.50 87.50 87.50 91.67 -0.05
F-GARCH 97.34 6.155 91.67 91.67 100.00 95.83 -6.73

4

Benchmark Historical 94.32 5.440 75.00 91.67 87.50 83.33 0.1427

NFCI 92.09 5.324 75.00 79.17 79.17 87.50 -11.09
NFCI+TS 90.31 5.214 66.67 83.33 66.67 87.50 -12.44

QR NFCI+TS+GF 89.79 5.174 66.67 79.17 70.83 75.00 -15.00
Full 88.79 5.187 54.17 70.83 62.50 62.50 -48.39
LASSO 88.82 5.194 58.33 70.83 62.50 70.83 -19.63

GARCH

GARCH 93.73 5.364 95.83 87.50 95.83 95.83 0.51
GARCH-NFCI 95.03 5.541 87.50 91.67 87.50 100.00 0.43
GJR-GARCH 93.83 5.379 87.50 83.33 95.83 100.00 -0.21
F-GARCH 97.74 6.414 75.00 87.50 100.00 95.83 -12.36

This table reports the following for each forecast horizon and forecasting method: the average
empirical coverage; the average length; the percentage of the series that pass GaR adequacy tests
at the 5% significance level (DQ Unc, Hits, NFCI and Real); and the percentage improvement in
each model’s average tick loss relative to the historical benchmark. The performance of the best
forecasting method in terms of the tick loss is highlighted in boldface.
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Taula A.9: 95% JOINT GAR FORECAST EVALUATION: UNIVARIATE GARCH

h Method Model Cov. Length Unc. Hits NFCI Real

1

Benchmark Historical 90.91 7.943 0.031 0.003 0.024 0.121

QR + Bonf.

QR-NFCI 51.52 6.111 0.000 0.000 0.000 0.000
NFCI+TS 34.85 5.834 0.000 0.000 0.000 0.000
NFCI+GF+TS 34.09 5.673 0.000 0.000 0.000 0.000
Full 25.00 5.563 0.000 0.000 0.000 0.000
LASSO 38.64 7.111 0.000 0.000 0.000 0.000

GARCH + Marg.

GARCH 32.58 5.086 0.000 0.000 0.000 0.000
GARCH-NFCI 35.61 5.164 0.000 0.000 0.000 0.000
GJR-GARCH 31.06 5.122 0.000 0.000 0.000 0.000
F-GARCH 31.82 5.119 0.000 0.000 0.000 0.000

GARCH + Bonf.

GARCH 84.09 7.149 0.000 0.000 0.000 0.000
GARCH-NFCI 81.82 6.719 0.000 0.000 0.000 0.000
GJR-GARCH 82.58 7.123 0.000 0.000 0.000 0.000
F-GARCH 85.61 7.168 0.000 0.000 0.000 0.000

GARCH + BJPR

GARCH 91.67 7.656 0.079 0.001 0.004 0.057
GARCH-NFCI 93.18 7.250 0.338 0.002 0.016 0.597
GJR-GARCH 91.67 7.650 0.079 0.001 0.004 0.057
F-GARCH 93.94 7.484 0.576 0.141 0.093 0.332

2

Benchmark Historical 89.31 7.901 0.024 0.999 0.036 0.126

QR + Bonf.

QR-NFCI 54.20 6.595 0.000 0.999 0.031 0.000
NFCI+TS 39.69 6.241 0.000 0.000 0.000 0.000
NFCI+GF+TS 40.46 6.157 0.000 0.000 0.000 0.000
Full 31.30 5.864 0.000 0.000 0.000 0.000
LASSO 41.98 7.560 0.000 0.000 0.000 0.000

GARCH + Marg.

GARCH 40.46 5.255 0.000 0.000 0.000 0.000
GARCH-NFCI 43.51 5.362 0.000 0.000 0.000 0.999
GJR-GARCH 38.17 5.267 0.000 0.000 0.000 0.000
F-GARCH 64.89 5.751 0.000 0.999 0.999 0.000

GARCH + Bonf.

GARCH 88.55 7.975 0.061 0.999 0.999 0.000
GARCH-NFCI 83.21 7.206 0.000 0.999 0.999 0.000
GJR-GARCH 86.26 7.975 0.007 0.999 0.999 0.973
F-GARCH 93.13 8.759 0.477 0.257 0.097 0.495

GARCH + BJPR

GARCH 93.89 8.373 0.718 0.999 0.601 0.896
GARCH-NFCI 93.89 8.419 0.718 0.999 0.601 0.896
GJR-GARCH 93.89 8.357 0.718 0.999 0.601 0.896
F-GARCH 97.71 9.287 0.195 0.902 0.715 0.809

3

Benchmark Historical 88.46 7.797 0.028 0.999 0.016 0.228

QR + Bonf.

QR-NFCI 51.54 6.570 0.000 0.999 0.000 0.000
NFCI+TS 33.85 6.262 0.000 0.000 0.000 0.000
NFCI+GF+TS 32.31 6.122 0.000 0.000 0.000 0.000
Full 30.77 5.930 0.000 0.999 0.000 0.000
LASSO 39.23 7.953 0.000 0.000 0.000 0.000

GARCH + Marg.

GARCH 42.31 5.318 0.000 0.000 0.999 0.999
GARCH-NFCI 50.00 5.479 0.000 0.999 0.999 0.999
GJR-GARCH 40.77 5.327 0.000 0.000 0.999 0.999
F-GARCH 71.54 6.155 0.000 0.000 0.999 0.999

GARCH + Bonf.

GARCH 86.15 7.955 0.018 0.000 0.000 0.154
GARCH-NFCI 83.08 7.329 0.000 0.938 0.999 0.243
GJR-GARCH 83.85 7.989 0.002 0.999 0.999 0.000
F-GARCH 93.85 9.699 0.626 0.420 0.162 0.684

GARCH + BJPR

GARCH 93.85 8.409 0.708 0.999 0.560 0.971
GARCH-NFCI 93.85 8.302 0.708 0.999 0.560 0.971
GJR-GARCH 93.08 8.417 0.522 0.999 0.515 0.817
F-GARCH 97.69 10.301 0.200 0.907 0.596 0.811

4

Benchmark Historical 84.50 7.732 0.031 0.999 0.044 0.170

QR + Bonf.

QR-NFCI 48.06 6.587 0.000 0.000 0.000 0.000
NFCI+TS 34.11 6.335 0.000 0.000 0.000 0.000
NFCI+GF+TS 33.33 6.167 0.000 0.000 0.000 0.000
Full 23.26 5.878 0.000 0.999 0.000 0.000
LASSO 35.66 7.834 0.000 0.000 0.999 0.000

GARCH + Marg.

GARCH 44.96 5.364 0.000 0.999 0.000 0.000
GARCH-NFCI 52.71 5.541 0.000 0.000 0.000 0.000
GJR-GARCH 41.09 5.379 0.000 0.000 0.000 0.000
F-GARCH 76.74 6.414 0.000 0.999 0.999 0.000

GARCH + Bonf.

GARCH 86.82 7.985 0.017 0.004 0.999 0.715
GARCH-NFCI 83.72 7.447 0.001 0.999 0.999 0.090
GJR-GARCH 84.50 8.031 0.003 0.000 0.999 0.223
F-GARCH 94.57 10.242 0.849 0.921 0.714 0.721

GARCH + BJPR

GARCH 93.80 8.346 0.723 0.082 0.512 0.818
GARCH-NFCI 93.02 8.408 0.512 0.526 0.705 0.620
GJR-GARCH 92.25 8.367 0.420 0.999 0.456 0.743
F-GARCH 99.22 10.911 0.027 0.477 0.447 0.406

This table reports the following for each forecast horizon and forecasting method: the ave-
rage empirical joint coverage; the average length; and the p-values of the GaR adequacy tests
considered (DQ Unc., Hits, NFCI and Real).
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Taula A.10: Robustness Check: (1− q)%/95% Joint GaR

h Region Model Cov. Length Unc. Hits NFCI Real

1

95% Joint GaR Historical 90.15 7.952 0.011 0.005 0.004 0.034
GARCH 93.94 7.749 0.576 0.000 0.446 0.535

95% / 95% Joint GaR Historical 93.18 6.106 0.338 0.005 0.000 0.014
GARCH 90.91 5.996 0.031 0.000 0.001 0.162

90% / 95% Joint GaR Historical 92.42 5.741 0.175 0.000 0.000 0.019
GARCH 93.94 5.642 0.576 0.000 0.005 0.275

2

95% Joint GaR Historical 90.08 7.933 0.042 0.999 0.037 0.133
GARCH 95.42 8.503 0.862 0.000 0.592 0.990

95% / 95% Joint GaR Historical 92.37 6.106 0.343 0.999 0.000 0.000
GARCH 95.42 6.308 0.899 0.965 0.717 0.001

90% / 95% Joint GaR Historical 93.13 5.741 0.487 0.000 0.999 0.012
GARCH 92.37 5.747 0.406 0.999 0.138 0.002

3

95% Joint GaR Historical 90.00 7.930 0.054 0.999 0.012 0.999
GARCH 95.38 8.426 0.874 0.033 0.508 0.917

95% / 95% Joint GaR Historical 93.08 6.106 0.424 0.756 0.079 0.000
GARCH 94.62 6.479 0.907 0.524 0.515 0.999

90% / 95% Joint GaR Historical 93.08 5.742 0.477 0.999 0.286 0.030
GARCH 93.08 5.813 0.608 0.073 0.698 0.999

4

95% Joint GaR Historical 88.37 7.928 0.019 0.999 0.105 0.049
GARCH 95.35 8.377 0.886 0.316 0.631 0.900

95% / 95% Joint GaR Historical 92.25 6.101 0.327 0.116 0.363 0.185
GARCH 95.35 6.575 0.903 0.987 0.710 0.836

90% / 95% Joint GaR Historical 92.25 5.741 0.347 0.326 0.454 0.163
GARCH 92.25 5.926 0.455 0.134 0.762 0.415

This table reports the summary backtesting results for the (1−q)%/95% joint GaR for q = 5%

and q = 10%, alongside the joint GaR. For each forecast horizon and forecasting method, we
report the average empirical coverage, the average length, and the p-values of the GaR adequacy
tests (DQ Unc., Hits, NFCI and Real).
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A.3.2 Additional Tables and Figures
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Figura A.1: 95% MARGINAL GAR AND 95%/95% JOINT GAR FOR G7 COUN-
TRIES
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This figure displays the time series plots of the sequence of the 1-step-ahead 95% joint and mar-
ginal GaR predictions obtained from the GARCH(1,1) model for the G7 countries from 1983Q4 to
2016Q4. The lightest shaded region is the marginal GaR, and the darkest shaded region represents
the 95%/95% joint GaR. The gray regions are the OECD recession dates. We also plot the GDP
growth rate of each country (black line) and the average GDP growth rate over the sample period
(dashed black line).
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Figura A.2: 95% MARGINAL GAR FOR G7 COUNTRIES: QR AND GARCH
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This figure displays the times series plots of the sequence of the 1-step-ahead 95% joint and
marginal GaR predictions obtained from the QR by using the NFCI for the G7 countries from
1983Q4 to 2016Q4. The blue shaded region is the marginal GaR constructed with GARCH(1,1),
and the red shaded region is the GaR constructed with QR-NFCI. The gray regions are the OECD
recession dates. We also plot the GDP growth rate of each country (black line) and the average
GDP growth rate over the sample period (dashed black line).
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Taula A.11: Out-of-sample QR Screening

Date h

Availability 1 2 3 4

Historical
1961Q2
2016Q4

∆%TL -4.036 -0.476 3.603 9.987
%DM 0.000 12.500 20.833 20.833

CS
1986Q2
2020Q1

∆%TL -5.143 -10.930 -14.764 0.185
%DM 8.333 0.000 0.000 4.167

HP
1970Q3
2019Q3

∆%TL -5.896 -3.023 0.460 7.647
%DM 0.000 8.333 0.000 8.333

EPU
1985Q1
2019Q3

∆%TL -6.042 -12.085 -14.906 -1.381
%DM 8.333 4.167 8.333 4.167

AR(1)
1961Q2
2016Q4

∆%TL -7.245 -3.413 2.330 7.474
%DM 0.000 12.500 16.667 16.667

CG
1962Q3
2019Q1

∆%TL -8.189 -4.439 0.262 6.051
%DM 0.000 4.167 8.333 16.667

TS
1964Q3
2019Q2

∆%TL -8.548 -4.531 -3.270 4.328
%DM 4.167 16.667 12.500 25.000

SV
1950Q1
2019Q3

∆%TL -8.947 -10.844 -7.268 -5.323
%DM 0.000 0.000 0.000 4.167

GF
1961Q2
2016Q4

∆%TL -9.108 -3.187 0.795 8.281
%DM 0.000 4.167 12.500 16.667

CR
1952Q3
2019Q1

∆%TL -10.927 -4.755 -1.281 5.178
%DM 8.333 0.000 12.500 16.667

GPR
1985Q1
2016Q4

∆%TL -12.800 -9.635 -8.735 -0.728
%DM 4.167 4.167 12.500 8.333

WUI
1996Q1
2019Q3

∆%TL -19.966 -20.144 -29.381 -26.952
%DM 8.333 0.000 0.000 0.000

This table reports the summary out-of-sample results for the bivariate QR models. For each
candidate predictor and forecast horizon, we report the dates for which the predictor is available,
the percentage improvement in the average tick loss relative to the baseline QR-NFCI and the
percentage of countries for which the predictor outperforms the QR-NFCI, according to a DM test
conducted at the 5% significance level.
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