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Summary

Model selection problems consists in looking for the best model given a set
of proposed models and the data. This is used by scientists every day when
we try to find the explanations of the phenomena that happens around us.
In the scientific method there are two steps that are critical, the observation
and the hypothesis. It’s natural to think that when a scientist tries to solve
a model selection problem, he/she have to think in the data that he have
collected and if he have a good idea, then take advantage of it to perform
the model selection problem. But this world is not perfect, and our data has
some error and may be our hypothesis is wrong, so our model that we get is
wrong too.

In this thesis we want to study the interplay of the likelihood and the prior
in the Bayesian inference process in the case of model selection problem. The
Bayes theorem has two important terms: the likelihood and the prior. The
likelihood tell us how likely is our data given our model, and the prior is the
information that we think a priori that is true. The prior is a probability
distribution of models, that we choose given an hypothesis that we have,
putting a high prior probability to these models that we think that are the
correct one. If our prior is wrong, then we are going to fail in our predictions,
and if it’s right we are going to make better predictions.

To study this interplay between the likelihood and the prior we are going
to solve a couple of problems: the recommender system and the symbolic
regression. The recommender system problem consists in from known user
preferences we try to predict unobserved ones. Here our data are ratings that
user give to items. In this problem we want to analyze how extra information
of the users and items (gender, type of item, nationality...) can affect to the
inference procedure. Here, the hypothesis that we use was that similar users
would rate similar ratings to similar items and vice-versa. So, the prior in
this case will contain the information of the metadata. To make this study we

UNIVERSITAT ROVIRA I VIRGILI 
TRANSITIONS IN BAYESIAN MODEL SELECTION PROBLEMS: NETWORKBASED 
RECOMMENDER SYSTEM AND SYMBOLIC REGRESSION 
Oscar Fajardo Fontiveros



used a generative model, the Mixed-Membership Stochastic Block Model, a
Bayesian framework, and synthetic data to control correlation of the ratings
with the metadata. We studied all the possible scenarios, where the data
can be correlated to the metadata and see how it can affect to the accuracy.
In fact, when metadata is full correlated with the data, the best option is to
use the metadata. If there is no correlation, the metadata would made the
prediction worse. But if there is a high correlation, using both, metadata
and data, would get the best performance.

The last problem that we studied was the symbolic regression. This
problem consist in to find the best model through the space of mathematical
closed-form expressions. This model has to fit the data and also not be very
complex. Here we want to study when, given a dataset with noise, we can
detect the true model or not. We use the Bayesian machine scientist that
uses a Bayesian formulation. This procedure use as a prior the corpus of the
Wikipedia and looks for models with similar attributes than known models
to avoid choose complex expressions. We used this procedure in synthetic
data where we control the noise of our data and we already know the true
models, so we can know if we are wrong or not. What we get is that for low
noise levels, the algorithm can identify models with similar complexity, but
for higher noises levels the algorithm proposes simpler models because fits
better with the noise.
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Chapter 1

Introduction

1.1 Likelihood and prior in a diagnose prob-

lem

In 2006 and 2007 Gerd Gigerenzer proposed the following problem to 1000
gynecologist attending to a course in risk communication [26]:

Assume you conduct breast cancer screening using mammography in a
certain region. You know the following information about the women in this
region:

• The probability P (cancer) that a woman has breast cancer is 1%.

• If a woman has breast cancer, the probability P (positive|cancer) that
she tests positive is 90%.

• If a woman does not have breast cancer, the probability P (positive|no cancer)
that she nevertheless tests positive is 9%.

A woman tests positive. She wants to know from you whether that means
that she has breast cancer for sure, or what the chances are. What is the best
answer?

1. The probability that she has breast cancer is about 81%.

2. Out of 10 women with a positive mammogram, about 9 have breast
cancer.
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Chapter 1

3. Out of 10 women with a positive mammogram, about 1 has breast can-
cer.

4. The probability that she has breast cancer is about 1%.

To solve this problem let us note that the pieces of information that
we have about the test are probabilities and we want to compute which is
the probability that a woman who tests positive has actually breast cancer
P (cancer|positive). The test seems very accurate with a high probability of
making the right diagnosis and a low probability of making you the wrong
one. However, if the woman from the problem tests positive, that means
that she seems unlucky, because a priori the probability that a woman has
the disease is low. To compute P (cancer|positive) we have to use the Bayes
Theorem:

P (H|E) =
P (E|H)P (H)

P (E)
(1.1)

where H is our hypothesis in our case is that she has breast cancer, E is the
evidence in our case, the results of the test. Using Bayesian nomenclature,
P (E|H) is called the likelihood and tells us how probable our observation
is given the hypothesis. P (H) is the prior, that is the probability that our
hypothesis is true a priori, that is without any observations. P (H|E) is the
posterior, that is the plausibility that our hypothesis is the true given the ob-
served evidence. The prior needs to be established with general information
about the problem, in our case, the prevalence. The likelihood is established
through the observations that we made. If we rewrite Eq. 1.1 in terms of
our data from the problem and introduce the numerical values we get:

P (cancer|positive) =
P (positive|cancer)P (cancer)

P (positive)

=
P (positive|cancer)P (cancer)

P (positive|cancer)P (cancer) + P (positive|no cancer)P (no cancer)

= 10%

So that the correct answer is option number 3. That means that 9 women
over 10 who test positive, are wrongly diagnosed. As a curiosity, only 21% of
the gynecologists gave the correct answer to the question, and 60% of them
would have diagnosed the patient with breast cancer.
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Section 1.2. BAYES THEOREM APPLIED TO MODEL SELECTION

This example illustrates that accurate does not imply predictive and we
can ask: Why is this happening?. To answer this question let’s check the
numbers. As we said before, the test is ”accurate” in that it has a 90%
probability to give a positive result if somebody has cancer. However, the
problem is that breast cancer is not common. Due to the low prevalence of
the disease, it makes it less plausible to have cancer even with a positive test
result.

Now, let’s focus on this question from a Bayesian point of view. Before
our patient has been tested, we know that she had a 1% probability of having
cancer. After she got the results of the test, we updated our posterior to a
10%, in other words, the probability of having cancer increased by one order
of magnitude. And that is how the likelihood works, when we have new
observed information, our beliefs of the hypothesis are updated.

Now imagine that a priori we do not know anything, so we do not have
the information about the prevalence, or any genetic information about
our patient. In this case the prior is equally distributed so P ( cancer) =
P (no cancer) = 50%. In this case our posterior after the test is done would
be 91%. In this case the posterior is almost equal to the likelihood; in fact, it
only depends on the likelihood distribution and because the test is accurate,
a positives results leads to posterior that is also high.

As a conclusion of the problem we considered, we have introduced the
Bayes theorem, a theorem that helps us to verify hypothesis given our prior
information of the problem (represented in the prior) and the observations
(likelihood). If the prior is low, eventually the posterior of our hypothesis
will be low, and the same will happen if the likelihood is also low. Now,
we are in a position to make a couple of reflections. With a more accurate
test, we could increase the posterior; but with a worse test the posterior
would decrease. The same would happen with the prior, if we had some
extra information like genetic information, our prior would also change the
posterior. If our patient has a gene that makes her more probable to have
cancer, the posterior would increase; otherwise the posterior would decrease.

1.2 Bayes theorem applied to model selection

Up to here we have introduced the basic components for Bayesian Inference.
Now let us consider a more general case. Imagine that we observe some data
D. This dataset can be anything: a set of points {(xi, yi)|i ∈ N}, the ratings
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Chapter 1

that people give to a set of products or movies and so on. We want to find
from all the possible models M ∈ M that can generate D, the model M∗

that best explains D. From a Bayesian point of view, this model M∗ should
be the most probable one given the data D, in other words, the model that
maximizes the posterior P (M |D), with:

P (M |D) =
P (D|M)P (M)

P (D)
(1.2)

Note that the likelihood has the information of how the model M fits the
data D, in other words, how likely it is that my data have been generated
by model M . The prior encapsulates my a priori explanation that model
M is the correct model. Having no additional information about the model
P (M) = constant translates into an uniform distribution, so that, all the
models are equiprobable. If our information is wrong, the prior would assign
a low probability to the real model, but if it is right, it will assign a high
probability.

In most cases, the models M that we want to verify depend on parameters
θ. For example the intercept and the slope of a linear model with form
y = mx + n where θ = {m,n}. In this case we have to marginalize the
posterior integrating P (M, θ|D) to get P (M |D), so:

P (M |D) =

∫
Θ

P (M, θ|D)dθ =
1

P (D)

∫
Θ

P (D|M, θ)P (M |θ)P (M)dθ (1.3)

In both expressions, 1.2 and 1.3, the estimator to get the most plausible
model is the posterior. There are several ways to find it, using Markov-Chain
Montecarlo (MCMC), or using the Maximum a Posterior (MAP) algorithm
(Ref. [38]).

Let’s make an analysis from the information-theoretic point of view of
Eq. 1.3. To do that, we rewrite Eq. 1.3 as:

P (M |D) =
1

P (D)

∫
Θ

P (D|M, θ)P (M |θ)P (M)dθ =
1

P (D)
e−D(M) (1.4)

Here D(M) is the description length:

D(M) ≡ − logP (D,M) = − log

∫
Θ

P (D|M, θ)P (M |θ)P (M)dθ (1.5)
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Section 1.3. LIKELIHOOD VS. PRIOR

This is the length in nats (natural digits) that we need to jointly describe
our model and our data. As we said before, the most plausible model is that
one that maximizes the posterior P (M |D). From Eq. 1.4 it follows that the
model that maximizes P (M |D), must minimize the description length. In
the literature this is the so called minimum description length principle [27,
58].

If we take P (M) outside the integral in Eq. 1.5, we can split the descrip-
tion length in two terms:

D(M) = DL(D|M) +DP (M), (1.6)

where DL(D) is the contribution of the description length of the likelihood
of the model given the data that is

DL(D|M) ≡ − log

∫
Θ

P (D|M, θ)P (M |θ)dθ (1.7)

and DP (M) is the log-prior that is:

DP (M) ≡ − logP (M) (1.8)

Observing Eq. 1.6 we can see that the most plausible model will be
that one that minimizes the sum of DL(D|M) and DP (M). Here we can
recover the discussion from the last section but applied to the model selection
problem. Observe that, as before, the posterior depends on the likelihood
and the prior, and the plausibility of each model will be a combination of
both.

1.3 Likelihood vs. prior

The likelihood and the prior, tell us about different aspects of the model,
one tells us how well the model fits the data and the other is the information
about the a priori plausibility of a model. To illustrate the consequence of
having these two terms, we are going to make an analogy with a physical
model, the Ising model, and the ferromagnetic to paramagnetic transition.

The Ising model [8, 9, 11] is a model of a ferromagnet. Suppose that
we have N magnetic particles (spins), distributed in a square lattice in a
thermal bath. These spins can point up or down and they interact with their

15
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Chapter 1

nearest neighbours with a negative energy coupling. The orientation of the
spins depends on the orientation of their nearest neighbours and the thermal
fluctuations. We can characterize the overall state of the system measuring
the magnetization, that is the sum of the spins in the system. If all the
spins point in the same direction, the magnetization in absolute value is not
zero (ferromagnetic state), but if are not aligned the magnetization is zero
(paramagnetic state). Because the system is in a thermal bath, the system
is in a state (orientation of spins) that minimizes the Helmholtz free energy
F defined as:

F = U − TS (1.9)

Where U is the internal energy of the system, T the temperature of the
thermal bath and S the entropy of the system. U depends of the configuration
of the system: if two spins point in the same direction, U will decrease but
if they point in different directions the energy will increase. The term TS
is the entropic term of F and tells us how strong are the fluctuations in the
spin configuration due to the thermal bath.

If the temperature is close to zero, F ≈ U and, the energetic term dom-
inates over the entropic term. That means that the system will reach the
equilibrium when all the spins point in the same direction, being our system
a ferromagnet. As we increase the temperature, the fluctuations increase as
TS starts to contribute to minimize F . Because of the fluctuations, some
spins start to point in a different direction, in other words, we start to have
a disordered system. This disorder will increase as we increase the tempera-
ture. That means also that the magnetization of the system will decrease. At
a certain temperature, all the spins will be fluctuating from up to down, loos-
ing all the magnetization. In this case the entropy dominates over the energy,
the system is in a disordered state that we called paramagnetic. Therefore
this system has two different behaviours depending on which term of the
Helmholtz free energy prevails: the energy or the entropy.
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Section 1.3. LIKELIHOOD VS. PRIOR

T0
Figure 1.1: Representation of a system of 100 spins at different temper-
atures Three examples of a system of 100 spins at different temperature. On the
left we have a system at T = 0 where the internal energy dominates and all spins
points at the same direction. In the middle we have a system with T 6= 0 (below
the transition), and as a consequence some spins point in the opposite direction,
the entropic term starts to have a presence. On the right we have a system at
high temperature and its spin point randomly to one direction or the other, the
entropic term dominates completely over the Helmholtz free energy.

This example can be used to make an analogy with our model selection
problem. In the model selection problem we need to minimize the description
length D(M,D) (analogous to F ) that is the sum of two terms of different
nature, the first one is the data and the second one is the prior knowledge
about our problem.

If we do not have any data, D = DP , in other words, my predicted
model will be one that minimizes the description length of the model. In
fact that model is the most plausible according to prior distribution. As we
add some data, the contribution of the likelihood to the description length is
also increased and starts to play a role. For N →∞, the prior contribution
to the description length is negligible respect the prior one, so D ≈ DL and
our selected models will be data driven.

Imagine that suddenly we have data with a lot of noise and we start to
lower the noise. In this scenario, because the models do not fit well the data,
the selected models will be also prior driven. As the noise decreases the log-
likelihood will start to play a role in the model selection problem and our
selected models will be both, data driven and prior driven models. Note that
we are not talking about how good is our selected model. In the model driven
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regime, our prior distribution can assign to the real model a low probability,
being our prior a bad prior.

As in the Ising model, here we have different situations where depending
in how good our data are, our models have different nature:data driven, prior
driven and a mixture of both.

1.4 Objectives

We have just seen how Bayes theorem works in model selection. Also, we
have explained an interplay between the prior and the likelihood that, de-
pending in the data and how good is our prior, we can get different types of
models based on the prior distribution or the data. To study this interplay
between prior and likelihood we propose two problems that we solve using
Bayesian inference. The first problem is the recommender system problem
where we have metadata of the linked items. We propose a mixed member-
ship stochastic block model to make the predictions but, we put as a prior the
metadata. To play with the prior quality we generate different datasets with
different metadata correlation, letting us to study well how the transition of
how metadata becomes more important as we increase the correlation. The
second problem that we studied is the symbolic regression problem using the
Machine Scientist method. Here we start from five formulas and then we
generate different datasets with different noise levels and use the Machine
Scientist to try to recover the formulas. Unlike the first problem where we
change the goodness of the prior, here we change the goodness of the data
to see the transition of the performance of the algorithm.
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Transitions in the accuracy of
recommender systems when we
consider node metadata

2.1 Introduction

In this chapter we are going to study our first case study, a recommender
system. The recommender system is a common problem in computer science
where from known user preferences we try to predict unobserved ones (Ref.
[71]). Here, our observations are ratings ri,j ∈ RO that an user i gives to
an item j. Ratings can be a number, a binary value (for example like or
dislike) and items can be movies, songs, books, etc (Ref. [72]). Besides
our observed ratings, we have more information about the users and items:
the user’s gender, the age, the type of the item... This extra information
can (or not) be related with our observed data, so it can be usefull (or not)
to make predictions. According to the vice president of product of Netflix,
Todd Yelling said that most of the data that they have about their users is
”garbage” when you want to predict new preferences [73]. In this chapter
we are going to discuss how this extra information, in which from now now
we call metadata, can help us make predictions by introducing this into the
inference process. From a Bayesian point of view, we are going to consider
the known preferences as the likelihood, and the metadata as the prior of
our problem and see the interplay between these two terms when we want to
make new predictions.
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Recommender system techniques can be classified in three different groups:
content-based filtering, collaborative filtering and hybrid filtering (Ref. [17]).
Content-based filtering approaches (Ref. [13, 40, 59, 72]) consist in recom-
mending similar items to those we know that our target user prefers. This
approach uses the user’s history but does not take into account other user’s
preferences. For example, if we know that our user likes action movies, it
is very reasonable to recommend him/her action movies. This approach
assumes that we can represent an item using a vector X = (x1, x2, ..., xn)
where xi is a feature that can be represented by a number, a string or a
binary value. This can term obtained from either item’s keyword, metadata
or text description. This term can be for example a term frequency-inverse
document frequency (TF-idf) (Ref. [5, 43]), where each term is weighted
by the importance of it in the considered item with respect to the rest of
items. Then, you can assign a profile vector to each user with a vector
X(u) = (x1, x2, ..., xn) constructed aggregating the terms of items who the
user liked or bought. Once we profile our user, we can use a similarity mea-
sure (cosine similarity for example) to find the items that are most similar
to our user’s profile.

sim(X(u), X(j)) =
X(u) ·X(j)

||X(u)|| ||X(j)||
(2.1)

Alternatively to content-based some can use collaborative filtering (CF) ap-
proaches (Ref. [21, 23, 30]) These methods consist in finding similarities
between users and items to make predictions instead of only focusing in the
history of an individual like the content-based filtering. These techniques
exploit similarities between preferences of users to make recommendations.
There are two types of CF methods: memory-based and model based.

Memory-based CF (also known as neighbour-based CF) techniques (Ref. [15,
23, 24]) use similarity measures calculated from explicit user-item ratings to
find neighbours of users (user-user approach) or items (item-item approach),
and then generate predictions from the similarities. One example of similar-
ity measure is the cosine similarity. Let’s consider that for item i we have a
vector ~i ∈ RN where N is the number of users so that in = 1 if user n has
rated i and in = 0 otherwise. The similarity between items i and j is:

sim(i, j) =
~i ·~j∣∣∣∣∣∣~i∣∣∣∣∣∣ ∣∣∣∣∣∣~j∣∣∣∣∣∣ (2.2)
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FOR RECOMMENDATION USING METADATA AS PRIORS

So, the predicted link ru,i is computed doing the average over the neighbours
of item i, ∂i:

ru,i =

∑
j∈∂i (sim(i, j)ruj)∑
j∈∂i (|sim(i, j)|)

(2.3)

Model-based CF (also known as latent factor models) (Ref. [23, 29, 32,
41]) are techniques that try to model user’s ratings assuming that a latent
factor space exists for both items and users. One of the most famous methods
is Matrix Factorization (MF), that consists in factorizing the ranking matrix
RO as the product of two matrices:

RO = PQ (2.4)

Where P is a N × K matrix where N is the number of users, K is the
dimension of the latent space, and Q is a M ×K matrix. We can interpret
the vector that each row of P is a vector pi that is a feature vector of user
i, similar the content-based techniques’ vectors. As we show later in 2.4,
MF assumes that the rating of user u gives to item i is proportional to the
closeness between the two in this space.

2.2 Mixed-Membership Stochastic Block Model

for recommendation using metadata as

priors

2.2.1 Mixed-membership Stochastic Block Models

Another model-based collaborative filtering approach, that originates from
the problem of link prediction in complex networks (Ref. [59]), Mixed-
Membership Stochastic Block Model (MMSBM) [47, 56, 62, 69]. This ap-
proach is amenable to Bayesian inference and has been shown to perform
better than MF in recommendation tasks (Ref. [47]). To use this method
as a recommender system we map the recommender system problem to a
link prediction one. To do that we have to reconsider our data as a bipartite
network (Ref. [16, 45]), a network with two types of nodes: users connected
to items. The links between users and items are labeled with the ratings (fig.
2.1).

The MMSBM assumes that:
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Genre 1

Genre 2

Gender

Age

(a)

(b)

(c)

Figure 2.1: Multipartite mixed-membership stochastic block model
with labeled links. (a), We cast the recommendation problem (in which one
aims to predict how users will rate certain items) into a network inference prob-
lem. Here, users rate movies with three possible ratings (green, orange or red).
Additionally, we have excluding attributes for users (two excluding genders and
three excluding age groups, represented by different shades of the same color) and
non-excluding attributes for movies (two movie genres; the connection to these
attributes is binary, yes/no, but in general it does not need to be). Similar to
ratings, we represent these attributes as bipartite networks. Although we frame
our description of the model in terms of recommendations or link prediction in a
bipartite network, the problem of link prediction in regular unipartite networks
is just a particular case in which user nodes and item nodes are the same. (b)
Each bipartite network in the multipartite network is modeled using a mixed-
membership stochastic block model (see text). The individual block models are
coupled by the user and item membership vectors (θ and η, respectively), shown
in (c) along with all other model parameters and their dimensions (see text).

1. Nodes are distributed into groups. In other words, users are organized
in groups that can be interpreted as a set of users that rate similarly
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the same items. Items are organized in groups that are rated similarly
by the same users.

2. Each node (user or item) can belong to each groups (of users or items)
at the same time with a a finite probability. The vector of probabilities
is called membership vector.

3. The probability that user u gives rating rui to item i depends only on
the group membership of u and i.

Using the above assumptions we can model the bipartite network of users
who rate movies and predict new preferences as the labels of the links.

Our system has N users and M items and our observed ratings RO are
labels ri,j ∈ [0, R]. We define θi as the normalized membership vector of K
groups of user i, and each element θiα represents the probability that user i
belongs to group α (with

∑
α θiα = 1). Similarly, ηj is the normalized mem-

bership vector of item j; ηjβ represents the probability that item j belongs
to group β. Finally, pαβ(r) is the probability that a user in group α and an
item in group β are connected with a rating r. The normalization condition
here is

∑
r pαβ(r) = 1. Finally, the probability that a user i rates an item j

with a rating rij is:

P [rij = r] =
∑
αβ

θiαηjβpαβ(r) . (2.5)

2.2.2 Multipartite Mixed-Membership Stochastic
Block Models to incorporate node metadata

The parameters θ, η and pαβ(r) that we are looking for are that ones that
maximize the probability P (θ,η,p|RO). Applying the Bayes theorem we
get:

P (θ,η,p|RO) ∝ P (RO|θ,η,p)P (θ,η,p)

≡ LR(θ,η,p)P (θ,η,p) , (2.6)

where LR(θ,η,p) = P (RO|θ,η,p) is the likelihood of the model and
P (θ,η,p) is the prior over model parameters. According to Eq. (2.5), the
likelihood is
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LR(θ,η,p) =
∏

(i,j)∈RO

[∑
αβ

θiαηjβpαβ(rOij)

]
. (2.7)

The prior can be modeled in different ways, in case of a uniform prior
MMSBM works fine when we perform predictions in recommender systems.
Here we want to consider the use of metadata as a prior and then study how
this metadata affects the inference process. The use of metadata as a prior
was previously studied [22, 42, 48, 49, 50, 53, 56, 61, 63], but here we want to
consider a new model that is to add metadata. First of all, let’s consider the
relationship between users (or items) and their metadata as another bipartite
network. Merging the users/items-metadata bipartite networks to the users-
item bipartite network, we get a multipartite structure (Fig. 2.1 a). With
this model, we can consider that each bipartite network can be modeled as a
MMSBM. If our metadata is non-excluding, meaning that each user (or item)
can have assigned different attributes elements of this metadata (movie genre
for example where a movie has more than one genre), the probability that
any node i is linked with attribute element g with label a is:

P [aig = a] =
∑
αγ

θiα ζgγ q̂αγ(a) (2.8)

where ζgγ is the membership vector of attribute g and q̂αγ(a) is the prob-
ability that a user in group α has an attribute of type a for an attribute in
attribute group γ.

In case that the metadata is an excluding element, that is that each node
can be linked to only one element (user’s age for example, a person can only
has one age), the probability that user i has an excluding attribute e (that
is, the probability that the link ei` between user i and attribute node ` is of
type e) is

P [ei` = e] =
∑
α

θiαqα(e) , (2.9)

where qα(e) is the probability that a user of group α has an attribute of
type e, and

∑
e qα(e) = 1.Note that equations. 2.8 and 2.9 can be applied

also to items’ metadata changing θiα by ηjβ.
This extension of the MMSBM is inspired by the works of Hric, Peixoto

and Fortunato (Ref. [48]) and Newman and Clauset (Ref. [49]). The advan-
tages of our approximation are that it includes also non-exclusive metadata
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(unlike Ref. [49]) and it can consider excluding and non-excluding metadata
together. Also our model can introduce as many attributes as you want,
giving to the model more flexibility. Our model also allows no having all
attributes from nodes.

From here, we are going to assume that the most plausible membership
parameters are that ones that fit better not only the rating bipartite net-
work, but also the metadata bipartite networks. That means that when we
are inferring ratings, we have to consider the overall multipartite network.
In other words, we use the ”likelihoods” of the metadata bipartite networks
as our prior for the group memberships. For excluding metadata, its contri-
bution to the prior Eq. 2.6 will be the likelihood of the bipartite network of
the k-th non-excluding metadata LAk(θ,η, q), that is:

LAk(θ,η, q) =
∏

(i,`k)∈AOk

[∑
α

θiαq
k
α((eOk )i`k)

]
, (2.10)

where `k is the k-th non-excluding attribute and the product is over all
nodes i for which we observe attribute `k.

For the k-th non excluding attribute we have

LAk(θ,η, ζ, q̂) =
∏

(i,g)∈AOk

[∑
αγ

θiαζ
k
gγ q̂

k
αγ((a

O
k )ig)

]
. (2.11)

where the product is over all observed associations between nodes i and
attributes g within the k-th class of non-excluding attributes.

Applying Bayes theorem to Eq. 2.6 we get:

P (θ,η, ζ,p, q, q̂|RO, AO) ∝ LR(θ,η,p)×
×

∏
k

LAk(θ,η, ζ, q, q̂)×

× P (θ,η, ζ,p, q, q̂) (2.12)

Where we take into account both types of metadata. If we take the
logarithms of Eq. 2.12 to better decompose the influence of our observed
ratings (represented by the likelihood) and the metadata (represented by the
prior):
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logP (θ,η, ζ,p, q, q̂|RO, AO) = LR(θ,η,p) +
∑
k

LAk(θ,η, ζ, q, q̂) + C; ,

(2.13)
where LR(θ,η,p), LAk(θ,η, ζ, q, q̂) are the log-likelihoods of ratings and

metadata, respectively and C ≡ − logP (RO, AO), that is constant because
does not depend on the parameters. Here we can observe better that when we
try to find the parameters that maximize P (θ,η, ζ,p, q, q̂|RO, AO) we have
to take into account the whole multipartite network with the same weight,
in other words, we are assuming that they have the same importance when
we want to perform predictions. However, we can find situations in which
metadata is not helpful. We can have ratings generated by mechanisms
that doesn’t have any relationship with metadata, like homophilia, where
we assume that all users with the same gender have the same interests. To
control of this we add an hyperparameter, similar to Refs. [42, 63], for each
metadata that multiplies its log-likelihood:

π(θ,η, ζ,p, q, q̂|RO, AO) = LR(θ,η,p) +
∑
k

λkLAk(θ,η, ζ, q, q̂) , (2.14)

where λk is the hyperparameter that we add, π(θ,η, ζ,p, q, q̂|RO, AO)
is the hyperparametrized log-posterior. We define λk as a non negative hy-
perparamter. λk contains the importance of the metadata in the inference
process (Fig 2.2). If λk = 0 we have that the posterior is equal to the likeli-
hood and we are not going to take into account the metadata when we make
predictions. For low values of λk = 0, we start to see the metadata and it
will have the a few impact when we try to predict. For λk = 1, we observe
the whole multipartite network and we recover Eq. 2.13. For λk → ∞,
the metadata visibility is bigger than our observed ratings, and metadata
overshadows the observed ratings when we want to make predictions. That
means that the groups that we are going to find will take only into account
the metadata, that is assuming that nodes with similar attributes have simi-
lar group memberships and therefore similar ratings (see Fig. 2.2). The study
of the predictive power of our model in these different scenarios will be the
main focus of this chapter.
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Genre 1
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Age
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1

Figure 2.2: Schematic representation of how the hyperparameter λ con-
trols the contribution of metadata to the posterior. In this figure we sup-
pose, for simplicity of representation, that users and movies metadata have the
same hyperparameter λuser = λitem = λ. As we said before, for λ = 0 we can
only see the contribution of the observed ratings. As we increase the value of λ
we start to take into account the influence of metadata in the inference process.
When λ = 1, metadata and observed ratings has the same importance. When λ
is too large the effect of metadata is too strong that basically we are only taking
into account metadata to perform predictions.

Each sum of Eqs. 2.13 and 2.14 will contribute different only depending
of the size of the observed ratings (for the likelihood) and the size of the
observed metadata (for the prior). If for example we have infinite number of
observed ratings, LR(θ,η,p) and LAk(θ,η, ζ, q, q̂) will be infinite and then
the metadata contribution will be useless because with only our observed
ratings we can make predictions perfectly. But that is something that some-
times we can not control, we can not guarantee to collect a huge amount of
ratings and we can not neither have all the metadata of a certain attribute.

2.3 Expectation maximization equations

We aim to maximize the parametric log-posterior in Eq. (2.13) as a func-
tion of the model parameters θ,η,p, ζ, q and q̂. Because logarithms of
sums are hard to deal with, we use a variational trick that first introduces
an auxiliary distribution p(x) with

∑
x p(x) = 1 into a sum of terms as∑

x x =
∑

x p(x) (x/p(x)). Then because
∑

x p(x) (x/p(x)) = 〈x/p(x)〉 we
can use Jensens’ inequality (Ref. [1, 10, 39]) log〈y〉 ≥ 〈log y〉 to write
log [

∑
x p(x) (x/p(x))] ≥

∑
x p(x) log [x/p(x)].
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Because both rating and attribute terms in Eq. (2.13) contain logarithms
of sums, we introduce an auxiliary distribution for each of the terms as
follows. For the ratings, we have

LR =
∑

(i,j)∈RO
log
∑
αβ

θiαηjβpαβ(rOij)

=
∑

(i,j)∈RO
log
∑
αβ

ωij(α, β)
θiαηjβpαβ(rOij)

ωij(α, β)

≥
∑

(i,j)∈RO

∑
αβ

ωij(α, β) log
θiαηjβpαβ(rOij)

ωij(α, β)
(2.15)

where ωij(α, β) is the auxiliary distribution.
For the term corresponding to excluding node attributes we have

LAk =
∑

(i,`k)∈AOk

log
∑
α

θiαq
k
α(i`k)

=
∑

(i,`k)∈AOk

log
∑
α

σki`k(α)
θiαq

k
α(i`k)

σi`k(α)

≥
∑

(i,`k)∈AOk

∑
α

σki`k(α) log
θiαq

k
α(i`k)

σki`k(α)
(2.16)

where σki`k(α) is the auxiliary distribution, and to simplify the notation we

have defined qkα(i`k) ≡ qkα(
(
eOk
)
i`k

).
Finally, for the term corresponding to non-excluding node attributes we

have

LAk =
∑

(i,g)∈AOk

log
∑
αγ

θiαζ
k
gγ q̂αγ(ig)

=
∑

(i,g)∈AOk

log
∑
αγ

σ̂kig(α, γ)
θiαζ

k
gγ q̂αγ(ig)

σ̂kig(α, γ)

≥
∑

(i,g)∈AOk

∑
αγ

σ̂kig(α, γ) log
θiαζ

k
gγ q̂αγ(ig)

σ̂kig(α, γ)
(2.17)

where σ̂kig(α, γ) is the auxiliary distribution, and to simplify the notation we

have defined q̂kα(ig) ≡ q̂kαγ(
(
aOk
)
ig

).
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Note that, in Eqs. (2.15)-(2.17) above, the equality is satisfied when maxi-
mizing with respect to the auxiliary distributions. By solving these optimiza-
tion problems we obtain:

ωij(α, β) =
θiαηjβpαβ(rOij)∑

α′β′ θiα′ηjβ′pα′β′(r
O
ij)

, (2.18)

σki`k(α) =
θiαq

k
α(i`k)∑

α′ θiα′q
k
α′(i`k)

, (2.19)

σ̂kig(α, γ) =
θiαζ

k
gγ q̂αγ(ig)∑

α′γ′ θiα′ζgγ′ q̂α′γ′(ig)
. (2.20)

Therefore, the auxiliary distributions have the following interpretations:
ωij(α, β) is the contribution of user group α and item group β to the prob-
ability that user i gives item j a rating rOij ; σ

k
i`k

(α) is the contribution of
user group (or item group) α to the probability that user (item) i has at-
tribute type (eOk )i`k in the k-th excluding attribute; and, finally, σ̂kig(α, γ)
is the contribution of groups α and γ to the probability that, for the k-th
non-excluding attribute, the association between node i and attribute g is of
type (aOk )ig.

To maximize the parametric log-postirior, we are going to compute the
Lagrangian L of the sum of all the likelihoods and priors:

L =
∑

(i,j)∈RO

∑
α,β

ωij(α, β) log
θiαηjβpαβ(rOij)

ωij(α, β)
+

+
∑
k

λk
∑

(i,a)∈AOk

σki`k(α) log
θiαq

k
α(i`k)

σki`k(α)
+

+
∑
k

λk
∑

(i,g)∈AOk

∑
αγ

σ̂kig(α, γ) log
θiβζ

k
gγ q̂αγ(ig)

σ̂kig(α, γ)
−

−
∑
i

φi
∑
α

(θiα − 1)−
∑
j

ρj
∑
β

(ηj,β − 1)−
∑
α,β

εαβ
∑
r

(pαβ(rOij)− 1)−

−
∑
α

τα
∑
a

(qkα(i`k)− 1)−
∑
g

αg
∑
γ

(ζkgγ − 1)−
∑
β,γ

κβγ
∑
r

(q̂αγ(ig)− 1)

Where φi, ρj, εαβ, τα, αg and κβ,γ are the Lagrange multipliers that we
have to find to compute the parameters.
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2.3.1 Calculation of the parameters

Calculation of θiα

Computing the partial derivative respect θiα and put it equal to 0, we get:

∂L

∂θiα
=
∑
j∈∂i

ωij(α, β)

θiα
+
∑
k

λk
∑
a∈∂i

σki`k(α)

θiα
+
∑
l

λl
∑
g∈∂j

σ̂lig(α, γ)

θiα
− φi = 0

(2.21)
Solving 2.21 for θiα we have:

θiα =

∑
j∈∂i

∑
β ωij(α, β)

φi
+
∑
k

λk

∑
a∈∂i σ

k
i`k

(α)

φi
+
∑
l

λl

∑
g∈∂i σ̂

l
ig(α, γ)

φi

(2.22)
Now sum over α in both sides:

1 =

∑
j∈∂i 1

φi
+
∑
k

λk

∑
a∈∂i 1

φi
+
∑
l

λl

∑
g∈∂i 1

φi
(2.23)

Where we have take into account the normalization of θiα, ωij(α, β), σki`k(α)
and σ̂lig(α, γ).

Solving 2.23 for φi and replacing it in 2.22, we obtain:

θiα =

∑
j∈∂i

∑
β ωij(α, β) +

∑
k λk

∑
a∈∂i σ

k
i`k

(α) +
∑

l λl
∑

g∈∂ik
∑

γ σ̂
l
ig(α, γ)

di +
∑

k λkδ
k
i +

∑
l λl∆

l
i

(2.24)
Where di is the degree of user i in the network of ratings, δki = 1 if user

i has exclusive attribute `k and zero otherwise , and ∆l
i ≡ |∂il|.

Calculation of ηjβ

Computing the partial derivative respect ηjβ equal to 0 we get:

∂L

∂ηjβ
=
∑
i∈∂j

∑
α

ωij(α, β)

ηjβ
+
∑
k

λk
∑
a∈∂j

σkj`k(α)

θjα
+
∑
l

λl
∑
g∈∂j

σ̂lig(α, γ)

ηjβ
− ρj = 0

(2.25)
where ∂kj is the set of k-th attributes associated with item j. Note that for
the attributes we change θiα for ηjβ. Solving 2.25 for ηj,β we have:

ηjβ =

∑
i∈∂j

∑
α ωij(α, β)

ρj
+
∑
k

λk

∑
a∈∂j σ

k
j`k

(α)

ρj
+
∑
l

λl

∑
g∈∂j σ̂

l
ig(α, γ)

ρj

(2.26)
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Now sum over β in both sides:

1 =

∑
i∈∂j 1

ρj
+
∑
k

λk

∑
a∈∂kj

1

ρj
+
∑
l

λl

∑
g∈∂lj

1

ρj
(2.27)

Where we have take into account the normalization of ηjβ, ωij(α, β), σki`k(α)
and σ̂lig(α, γ).

Solving 2.27 for ρj and replacing it in 2.22, we obtain:

ηjβ =

∑
i∈∂j

∑
α ωij(α, β) +

∑
k λkσ

k
j`k

(β) +
∑

l λl
∑

i∈∂kj

∑
γ σ̂

l
ij(β, γ)

dj +
∑

k λkδ
l
j +
∑

l λl∆
l
j

(2.28)
where dj is the degree of item j in the network of ratings, and ∆l

j = |∂j l|. As
before, the term σkj`k(β) is equal to zero if item j does not have attribute `k,

so that δkj = 1 if item j has exclusive attribute `k and zero otherwise.

Calculation of pαβ(rOij)

Computing the partial derivative respect pαβ(rOij) equal to 0, we get:

∂L

∂pαβ(rOij)
=

∑
(i,j)∈RO|ri,j=r

ωij(α, β)

pαβ(rOij)
− εαβ = 0 (2.29)

Solving 2.29 for pαβ(rOij) we have:

pαβ(rOij) =

∑
(i,j)∈RO|ri,j=r ωij(α, β)

εαβ
(2.30)

Now sum over r in both sides:

1 =

∑
(i,j)∈RO

∑
r ωij(α, β)

εαβ
(2.31)

Where we have take into account the normalization of pαβ(rOij). Solving 2.31
for εαβ and replacing it in 2.30, we obtain:

pαβ(rOij) =

∑
(i,j)∈RO|ri,j=r ωij(α, β)∑

(i,j)∈RO ωij(α, β)
(2.32)
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Calculation of qkα(e)

Computing the partial derivative respect qkα(e) equal to 0, we get:

∂L

∂qkα(e)
=

∑
(i,`k)∈AOk |(e

O
k )i`k=e

σki`k(α)

qkα(e)
− τα = 0 (2.33)

Solving 2.33 for qkα(e) we have:

qkα(e) =

∑
(i,`k)∈AOk |(e

O
k )i`k=e σ

k
i`k

(α)

τα
(2.34)

Now sum over e in both sides:

1 =

∑
(i,`k)∈AOk

σki`k(α)

τα
(2.35)

Where we have take into account the normalization of qkα(i`k). Solving 2.35
for τα and replacing it in 2.34, we obtain:

qkα(e) =

∑
(i,`k)∈AOk |(e

O
k )i`k=e σ

k
i`k

(α)∑
(i,`k)∈AOk

σki`k(α)
(2.36)

Calculation of ζkgγ

Computing the partial derivative respect ζkgγ equal to 0, we get:

∂L

∂ζkgγ
=
∑
g∈∂kg

∑
α

σ̂kig(α, γ)

ζkgγ
− αg = 0 (2.37)

Solving 2.37 for ζkgγ we have:

ζkgγ =

∑
g∈∂kg

∑
α σ̂

k
ig(α, γ)

αg
(2.38)

Now sum over γ in both sides:

1 =

∑
g∈∂kg

1

αg
(2.39)
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where we have taken into account the normalization of ζkgγ and σ̂kig(α, γ).

Solving 2.39 for αg and replacing it in 2.22, we obtain:

ζkgγ =

∑
g∈∂kg

∑
α σ̂

k
ig(α, γ)

∆k
g

, (2.40)

where ∂kg is the set of nodes associated with attribute g, and ∆k
g = |∂gk|.

Calculation of q̂αγ(a)

Computing the partial derivative respect q̂αγ(a) equal to 0, we get:

∂L

∂q̂αγ(a)
=

∑
(i,g)∈AOk |(a

O
k )ig=a

σ̂kig(α, γ)

q̂αγ(a)
− κα,γ = 0 (2.41)

Solving 2.41 for q̂αγ(a) we have:

q̂αγ(a) =

∑
(i,g)∈RO σ̂

k
ig(α, γ)

κα,γ
(2.42)

Now sum over a in both sides:

1 =

∑
(i,g)∈AOk |(a

O
k )ig=a σ̂

k
ig(α, γ)

κα,γ
(2.43)

Where we have take into account the normalization of q̂αγ(a). Solving 2.43
for κα,γ and replacing it in 2.42, we obtain:

q̂αγ(a) =

∑
(i,g)∈AOk |(a

O
k )ig=a σ̂

k
ig(α, γ)∑

(i,g)∈AOk
σ̂kig(α, γ)

(2.44)

2.3.2 Summary of the parameters:

As a summary, we can classify the parameters that we have to compute
as auxiliary functions, membership matrices and probability matrices. The
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auxiliary functions are:

ωij(α, β) =
θiαηjβpαβ(rOij)∑

α′β′ θiα′ηjβ′pα′β′(r
O
ij)

,

σki`k(α) =
θiαq

k
α(i`k)∑

α′ θiα′q
k
α′(i`k)

,

σ̂kig(α, γ) =
θiαζ

k
gγ q̂αγ(ig)∑

α′γ′ θiα′ζgγ′ q̂α′γ′(ig)
.

The membership matrices are:

θiα =

∑
j∈∂i

∑
β ωij(α, β) +

∑
k λkσ

k
i`k

(α) +
∑

l λl
∑

g∈∂ik
∑

γ σ̂
l
ig(α, γ)

di +
∑

k λkδ
k
i +

∑
l λl∆

l
i

,

ηjβ =

∑
i∈∂j

∑
α ωij(α, β) +

∑
k λkσ

k
j`k

(β) +
∑

l λl
∑

i∈∂kj

∑
γ σ̂

l
ij(β, γ)

dj +
∑

k λkδ
k
j +

∑
l λl∆

l
j

,

ζkgγ =

∑
i∈∂kg

∑
α σ̂

k
ig(α, γ)

∆k
g

.

And the probability matrices are:

pαβ(r) =

∑
(i,j)∈RO|r0ij=r

ωij(α, β)∑
(i,j)∈RO ωij(α, β)

qkα(e) =

∑
(i,`k)∈AOk |(e

O
k )i`k=e σ

k
i`k

(α)∑
(i,`k)∈AOk

σki`k(α)

q̂kαγ(a) =

∑
(i,g)∈AOk |(a

O
k )ig=a σ̂

k
ig(α, γ)∑

(i,g)∈AOk
σ̂kig(α, γ)

To find the parameters, we use an expectation-maximization algorithm
(Ref. [4, 6, 7]), where the details can be find it in the Appendix B. An
implementation of this algorithm, that we developed, can be found in a
GitHub repository (Ref. [64]).
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Section 2.4. SYNTHETIC DATA

2.4 Synthetic data

We first use synthetic data to validate the expectation-maximization infer-
ence approach and to investigate the role of introducing node attributes. We
generate synthetic data as shown in Fig. 2.1. Here and throughout the val-
idations in the coming sections, we quantify link prediction performance by
measuring rating prediction accuracy, that is, the fraction of correctly pre-
dicted ratings in cross-validation experiments, using k-fold cross-validation
for k = 5 (see Appendix A for more information). Then, for each accuracy,
we divided it by the accuracy with λuser = λitem = 0 and make the logarithm:

α (λuser, λitem) ≡ log
acc (λuser, λitem)

acc(0, 0)
(2.45)

With that we can see how good are our predictions respect no having meta-
data. If it is negative, that means that our predictions get worst. If it is
equal to 0, there is no improvements, and if it is positive, using metadata
improves the predictions.

Our synthetic rating networks consist of 200 users and 200 items, parti-
tioned into K = 2 groups of users and L = 4 groups of items. Users have an
excluding attribute labeled ”male” or ”female”, and items have an excluding
attribute labeled from 0 to 3, which may represent four different genres.

In the simplest case, in which ratings and attributes are completely cor-
related, all female users have membership vectors θf = (0.8, 0.2); conversely,
all male users have θm = (0.2, 0.8). Similarly, an item with attribute a has a
membership of 0.8 to group a and 0.067 to all other groups. Finally, for the
probabilities that a user from group α is connected to an item of group β,
we selected the following matrices:

p(r = 0) =

(
0.1 0.1 0.1 0.8
0.8 0.1 0.1 0.1

)
,

p(r = 1) =

(
0.1 0.1 0.8 0.1
0.1 0.8 0.1 0.1

)
,

p(r = 2) =

(
0.8 0.8 0.1 0.1
0.1 0.1 0.8 0.8

)
.

To simulate partial correlation c or even no correlation (c = 0) between
membership vectors and attributes, we reassign, with probability 1 − c, the

35

UNIVERSITAT ROVIRA I VIRGILI 
TRANSITIONS IN BAYESIAN MODEL SELECTION PROBLEMS: NETWORKBASED 
RECOMMENDER SYSTEM AND SYMBOLIC REGRESSION 
Oscar Fajardo Fontiveros



Chapter 2

node attribute to a value selected uniformly at random among all possibilities
(2 for users and 4 for items).

For the experiments reported in Fig. 2.3, we consider a number |RO| = 400
of observed ratings (that is, 1% of all generated ratings), and all attribute
links. Although the synthetic data are created with item genre as an ex-
cluding attribute, we carry out the inference process assuming that genre
is a non-excluding attribute, which is what one would likely assume in real
settings where the generating model is unknown.
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Figure 2.3: Predictive performance and effect of metadata on synthetic
ratings. We create synthetic ratings from 200 users on 200 items, with differ-
ent levels of correlation c between ratings and node attributes (see text). We
then use 5-fold cross-validation to calculate the performance of the expectation-
maximization equations at predicting unobserved ratings. In particular, we take
as a reference the predictive accuracy π0 of the algorithm when all attributes are
ignored (λuser = λitem = 0), and measure relative accuracy α for a given pair
(λuser, λitem) as the log-ratio α(λuser, λitem) = log [π(λuser, λitem)/π0]. The value
α(λuser, λitem) = 0 (dashed line) thus indicates no change with respect to the refer-
ence π0, and α(λuser, λitem) > 0 (respectively, α(λuser, λitem) < 0) indicates predic-
tions that are more (less) accurate than those obtained by ignoring node attributes.
The maximum possible relative performance (dotted line) is obtained when each
rating is assigned the exact probability that was used to generate it. For each
value of the correlation ((a)-(b), full correlation, c = 1; (c)-(d), c = 0.75; (e)-(f),
c = 0.50; (g)-(h), no correlation, c = 0) we show the variation of α(λuser, λitem) with
λitem for different values of λuser (left), and the whole dependence of α(λuser, λitem)
on both λuser and λitem (right).
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We infer the values of the model parameters using the expectation-
maximization equations, and use the inferred parameters to predict unob-
served ratings in the bipartite ratings network. We do this for different levels
of correlation c between the ratings and the attribute networks (Fig. 2.3),
from a situation c = 1 in which the attributes are perfectly correlated with
user and item membership vectors (all male users belong to one group and
have identical parameters, and all females belong to another group with dif-
ferent parameters; items with each genre belong to the exact same mixture
of groups) to a situation c = 0 in which user and item memberships and
attributes are completely uncorrelated (Fig. 2.3).

Since we focus on sparse observations in which the number of observed
ratings is low (only 1% of all ratings), model parameters cannot be inferred
accurately from the ratings alone. Therefore, when we only consider the
observed ratings RO and ignore all attributes AO by setting λuser = λitem =
0 in Eq. (2.13) (λuser and λitem correspond to the user and item attribute
networks, respectively), the prediction of unobserved links is suboptimal,
that is, the inferred probabilities of unobserved links differ significantly from
the actual probabilities used to build the network.

When there is perfect correlation between node attributes and group
memberships, considering the attributes AO by setting λuser > 0 and λitem > 0
should in principle help in the inference process. In fact, since attributes
are perfectly correlated to group memberships, in the limit λuser → ∞ and
λitem → ∞ nodes will be forced into the correct groups and predictions
should be near optimal. This is what we observe in our numerical experi-
ments (Fig. 2.3a). Interestingly, as we increase the weight of the attributes in
the log-posterior from λuser = λitem = 0, the effect on prediction accuracy is
not smooth. Rather, below certain threshold values of λuser and λitem, using
the attributes does not have any significant effect on prediction accuracy.
Then, at those threshold values, a transition occurs and prediction accuracy
increases abruptly until it reaches its theoretical maximum, as expected.

When attributes and ratings are completely uncorrelated (Fig. 2.3d),
the role of attributes is reversed. Predictions are equally suboptimal at
λuser = λitem = 0, but then, as λuser and λitem cross certain threshold values,
predictions suddenly worsen as user and item nodes are forced into groups
that are uncorrelated with their real membership vectors and, thus, with the
observed ratings.
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Figure 2.4: Transition between data-dominated and metadata-
dominated inference regimes. For the synthetic data in Fig. 2.3, we plot
the log-posterior π(θ,η, ζ,p, q, q̂|RO, AO) as a function of the hyperparameter
λ = λitem = λuser for three models: the model that maximizes the data likelihood
LR, the model that maximizes the metadata likelihood LA, and the model that
maximizes the posterior when two previous cases cross (that is, have equal poste-
riors). The position of the crossing coincides with the transitions and the maxima
observed in Fig. 2.3
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Unlike the extreme cases of total correlation or zero correlation, when at-
tributes are partly correlated with the true group memberships of the nodes,
the change in performance is not monotonic as we increase the importance of
the attributes. As before, when λuser and λitem are small enough, we observe
no difference with the situation in which the attributes are ignored entirely.
In the other extreme, when λuser → ∞ and λitem → ∞ user and item nodes
are forced into groups that match partly, but not perfectly, the true group
memberships of the nodes, so the performance may increase or decrease with
respect to the situation with no attributes, depending on whether the correla-
tion is higher (Fig. 2.3b) or lower (Fig. 2.3c). However, we find that the most
predictive models in this case are those at intermediate values of λuser and
λitem, precisely at the transition region where both the observed ratings and
the observed attributes play a role in determining the most plausible group
memberships. In this case, the inferred node memberships do not coincide
with either those that maximize LR of those that maximize LAk .

To understand the transition from the rating-dominated to the attribute-
dominated regime, we study the posterior of the two extreme models cor-
responding to the maximum a posterior estimates obtained by expectation-
maximization for λuser = λitem = 0 and for λuser = λitem → ∞ (Fig. 2.4).
These are the most plausible models when only data (ratings) and only meta-
data (attributes) are taken into consideration, respectively. Regardless of
the correlation between ratings and attributes, we find that the transition in
predictability in Fig. 2.3 coincides with the region where the data-dominated
and metadata-dominated posteriors cross. By considering Eq. (2.13) we see
that this must be the case. Indeed, for each attribute network we find three
regimes—one dominated by the LR term, one dominated by the LA term,
and one in which both terms are comparable. Unless there is perfect or
almost perfect correlation between attributes and node memberships, any
improvement in predictive power must come from considering both the ob-
served ratings and the observed attributes, and therefore in the transition
region.
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Section 2.5. THEORETICAL INTERPRETATION OF THE
TRANSITION

2.5 Theoretical interpretation of the transi-

tion

To better understand this transition, we look at the posterior of the two mod-
els corresponding to the maximum a posterior estimates for λuser = λitem = 0
and for λuser = λitem → ∞ (Fig. 2.4). These are the most plausible models
when only data (ratings) and only metadata (attributes), respectively, are
taken into consideration.

If we draw upon the analogy between Bayesian statistics and statistical
mechanics [2, 3, 19], we can equate the log-posterior to the (minus) free en-
ergy of a physical system, and interpret the crossover in terms of a transition
in which λ plays the role of the tuning (temperature-like) parameter. Within
this framework, these extreme models are the dominating maxima in the
posterior landscape (or, by analogy, the states of the system at the two sides
of the transition) and, therefore, the predictability crossover occurs when the
data-dominated and metadata-dominated log-posteriors cross, that is, for a
value λ∗ such that

LR0 + λ∗LA0 = LR∞ + λ∗LA∞ (2.46)

or

λ∗ =
LR0 − LR∞
LA∞ − LA0

. (2.47)

Here, the subindex 0 (or ∞) indicates the quantities corresponding to the
model that maximizes the posterior for λuser = λitem = 0 (respectively, λuser =
λitem → ∞), and we group all attributes in a single term LA. As we show
in Fig. 2.4, we find that, indeed, the transition in predictability in Fig. 2.3
coincides (at least in order of magnitude) with the point where the data-
dominated and metadata-dominated log-posteriors cross.

Importantly, all log-likelihoods are extensive quantities. Therefore, the
dependency on the number of observed ratings NR and attributes NA can
be made explicit by defining intensive (that is, per-link) log-likelihoods `R =
LR/NR and `A = LA/NA. Then

λ∗ ∼ NR

NA

, (2.48)

and at the transition point λ∗ we have that both LR ∼ NR and λ∗LA ∼ NR

are of the same order. By considering Eq. (2.13) we see that this must be
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the case. Indeed, for each attribute network we find three regimes—one
dominated by the LR term, one dominated by the LA term, and one in
which both terms are comparable. Unless there is perfect or almost perfect
correlation between attributes and node memberships, any improvement in
predictive power must come from considering both the observed ratings and
the observed attributes, and therefore in the transition region that we have
identified.

2.6 Real data

Finally, we analyze two empirical data sets and study whether we observe
the same behaviors as in synthetic networks. First, we consider the 100K
MovieLens data set Ref. [44], which contains 100,000 ratings of movies by
users. Age and gender attributes are available for users, which we model
as excluding attributes (Fig. 2.5). Movies have genre attributes, which we
model as non-excluding attributes. The relative weights of user and movie
attributes are given by the parameters λusers and λitems.

Just as in the synthetic networks with small but finite correlation, we
observe an intermediate value of λuser and λitem that provides more accurate
rating predictions than either considering the observed ratings alone or con-
sidering the node attributes alone. This behavior is similar when we consider
age only, gender only, or age and gender simultaneously. As in synthetic net-
works, the optimal combination of rating data and node metadata occurs for
values of λ such that the ratings network and the attributes networks have
comparable contributions to the log-posterior.

Second, we consider a data set on the votes of 441 members of the U.S.
House of Representatives in the 108th U.S. Congress [33] (Fig. 2.6). Between
Jannuary 2003 and Jannuary 2005, these representatives voted on 1,217 bills,
casting one of 9 different types of vote, which, following previous analyses,
we simplify to Yes, No, and Other [33]. In this data set, “users” are the
representatives and “items” are the bills. The ratings represent the votes of
the representatives on the bills. For representatives, we have attribute data
indicating their party and state, which we model as excluding attributes.
Although all votes of all members are recorded in the data set (in total,
536698 votes), for the purpose of our analysis we infer the parameters of the
multipartite mixed-membership stochastic block model using 1% of the data,
and predict the remaining 99% (and repeat this using each 1% of the data
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Figure 2.5: Predictive performance and effect of metadata on the
MovieLens data set. As in Fig. 2.3, we take as a reference the predictive
accuracy π0 of the algorithm when all attributes are ignored (λuser = λitem = 0),
and measure relative accuracy α for a given pair (λuser, λitem) as the log-ratio
α(λuser, λitem) = log [π(λuser, λitem)/π0]. We consider three different attributes
user nodes: (a)-(b), age; (c)-(d), gender; (e)-(f), age and gender combined. We
plot the whole range of λuser (left), and zoom into the intermediate (shaded) region
of λuser in which predictions are more accurate than the reference (right).

as training set).
Again, the effects of introducing the attributes in the inference process are

very similar to those we encounter in synthetic data (Fig. 2.6). When using
only the state of the representatives, we observe a behavior that is compat-
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Figure 2.6: Predictive performance and effect of metadata on the U.S.
Congress data set. As in Fig. 2.3, we take as a reference the predictive accuracy
π0 of the algorithm when all attributes are ignored (λuser = 0), and measure
relative accuracy α for a given λuser as the log-ratio α(λuser) = log [π(λuser)/π0].
We consider three different attributes for user nodes: Party, State, and party and
State simultaneously.

ible with small but finite correlation between attribute and voting patterns,
since the optimal predictive performance is observed at intermediate values
of λuser. Rather, when we consider party affiliation we observe a behavior
that is compatible with almost perfect correlation between attribute and vot-
ing behavior. Indeed, in this case the predictive performance of the model
increases monotonically with λuser, with an abrupt transition at λuser ≈ 1,
just as for perfectly correlated attributes in synthetic data. When state and
party are combined into a single excluding attribute (for example, “Democrat
from Texas” is a group), we observe a behavior compatible with strong (but
imperfect) correlation between attributes and voting behavior. In this case,
predictive accuracy does not improve monotonically with λuser because, for
very large values, representatives are forced into small groups that are more
prone to fluctuations, that is, the model overfits the data thus worsening the
predictive power with respect to considering large groups associated to party
affiliation alone.
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2.7 Discussion

In this chapter we show that there is an evidence that metadata can help
us in the inference problem. Also, thanks to the mechanism that we have
used to add metadata to our inference problem we could study how this
metadata effects the inference process and see the interplay between data
and metadata.

We observed that metadata can help us depending if satisfies a couple
of conditions at the same time. The first one is that metadata is correlated
with our data, else our predictions will get worse when metadata is included.
The second condition is that amount of metadata and data have to be such
that their likelihoods (LR and LA) are of the same order. If this condition is
not fulfilled, you will be able to make predictions with just the information
with the highest likelihood.
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Transition in the detectability
of closed-form mathematical
models from noisy data

3.1 Introduction

In this chapter we analyze our second and final case study, a symbolic re-
gression problem. In particular we study the interplay between the noise the
observed data, the size of the dataset and the detectability of the true model
that generated the data, i.e. the ability of an algorithm to find the true
model. To this end, we will use a symbolic regression approach to obtain
models from data.

Finally, symbolic regression is the task of identifying a closed-form model
y = F (x) from a certain dataset D = {(y1,x1), (y2,x2), ..., (yN ,xN)}. This is
in contrast to traditional regression, in which one starts by proposing a model
(linear regression, logistic regression or any other closed-form expression) and
then only adjusts the parameters that better fit the data to the proposed
model. Some computational approaches have been developed to that purpose
(Ref. [25, 31, 34, 46, 67]) We start by defining precisely the problem that we
want to solve. Consider that the true model that our data comes from is y =
F (x, θ) of K variables x = {x1, x2, ...xK} and L parameters θ ∈ RL. As note
earlier, our dataset D is a set of points D = {(y1,x1), (y2,x2), ..., (yN ,xN)}
and we are going to assume that each point has an error εk so yk = F (xk, θ)+
εk. Symbolic regression looks for the best closed-form expression f(x) in a
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space of mathematical closed-form expressions. In symbolic regression we
want the simplest models that satisfy the Occam Razor principle and fit the
data well.

There are a several methods of symbolic regression in the literature, which
can be classified in three categories: genetic programming methods, sparse
regression methods, and a mixture of both methods. Genetic programming
methods [20, 31, 57] start from a random generated closed-form expression
that is represented as a network tree, where each internal node is a mathe-
matical operation (sum, multiplication, sine...) and each leave is a variable
or a parameter (Fig. 3.1). These trees are generated randomly and then
new ones are generated using Darwinian natural selection and genetic oper-
ations. An example of Darwinian procedure is Darwinian reproduction. It
is ”asexual” and consists in selecting a random expression from our popu-
lation according to some selection method based on fitness. After selecting
our expressions, they are copied to another population that will be the new
generation. An example of a genetic procedure is the genetic crossover or
recombination. It consists in selecting two parents with the same criteria as
before. Then for each selected parent, a piece of the tree is randomly selected
and then these pieces of trees swapped. Genetic programming methods let
us explore a large space of closed-form models, with no restrictions in the
number of parameters, variables and mathematical functions. However, it
cannot guarantee that the best models are explored with higher frequency.

*
/

-
-1 -2

2 r

/

sin

T

*

*

Figure 3.1: Examples of expressions represented by networks trees.
Three examples of closed-form expressions and their network trees representations.
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Section 3.2. THE BAYESIAN MACHINE SCIENTIST

The other major class of methods to perform symbolic regression are
sparse regression methods ([36, 46, 52, 54, 55]). These methods assume that
the closed-form function f (x(t)) consists of a linear combination of a few
”basis functions” {Bi}, so that

f (x(t)) = a0 +

NR∑
i=1

aiBi(x(t)), (3.1)

where ai are the sparse coefficients and Bi are the library of functions that
are candidates. Then, we force the elimination of the functions that are not
good performing a sparse regression.

Often, differential equations are well described using this approach be-
cause their forms often follows the assumption of linearity on relatively simple
basis functions.

In general, these methods consists in propose that f (x(t)) is a linear
combination of basis functions that are candidates. The restriction of the
model being a linear combination of simple functions limits the space of
functions that these methods can explore.

In this chapter we are going to use a Bayesian approach to symbolic re-
gression, the Bayesian machine scientist (Ref. [65, 66, 68, 70]). This method
intrinsically tries to fit the data and includes a measure of the structural com-
plexity of the model. The goodness of fit is encoded in the likelihood and the
complexity of the model in the prior. The Bayesian machine scientist can
successfully recover the true generating model for synthetic data (Ref. [65]).
With this in mind, we study how the quality of the data affects this problem
and give an explanation from a Bayesian point of view.

3.2 The Bayesian machine scientist

Let us start by defining precisely the problem that we want to solve. Consider
that the true model that our data comes from is y = F (x, θ) of K variables
x = {x1, x2, ...xK} and L parameters θ ∈ RL. Our dataset D is a set of
points D = {(y1, x1), (y2,x2), ..., (yN ,xN)} and we assume that each point
has an error εk so yk = F (xk, θ)+εk. This error is assumed to be an unbiased
Gaussian error.

The Bayesian machine scientist assigns to each closed-form expression fi
a plausibility p(fi|D) given by:

49

UNIVERSITAT ROVIRA I VIRGILI 
TRANSITIONS IN BAYESIAN MODEL SELECTION PROBLEMS: NETWORKBASED 
RECOMMENDER SYSTEM AND SYMBOLIC REGRESSION 
Oscar Fajardo Fontiveros



Chapter 3

p(fi|D) =
p(D|fi)p(fi)

p(D)
(3.2)

Because fi has parameters associated that we do not know, we need to inte-
grate the log-likelihood over all the parameters, so we have that:

p(fi|D) =
1

p(D)

∫
Θi

p(D|fi, θi)p(fi|θi)p(fi)dθi =
1

p(D)
e−D(fi), (3.3)

where the integral is over all the space Θi of possible values of parameters,
and p(fi) is the prior over the expressions. D(fi) is the description length
that we defined in chapter 1.

D(fi) = DL(D|fi) +DP (fi), (3.4)

where DP (M) is (minus) the log-prior that is:

DP (fi) ≡ − log p(fi) (3.5)

and DL(D) is the contribution to the description length of the integrated
likelihood of the model:

DL(D|fi) ≡ − log

∫
Θ

p(D|fi, θ)p(fi|θ)dθ (3.6)

In this case, DL(D, fi) is hard to compute because of the integral. For
that reason, we make an approximation. In particular we assume that the
likelihood p(D|fi, θi) is peaked around the maximum θ∗i . Using the Laplace
approximation, we get that the log-likelihood can then be approximated as:

DL(D, fi) ≈ −
B(D, fi)

2
, (3.7)

where B(D, fi) is the Bayesian Information Criterion (BIC) that is defined
as:

B(fi) ≡ −2 log p(D|fi, θ∗) + L logN (3.8)
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3.2.1 The Bayesian machine scientist naturally per-
forms the two requirements of symbolic regres-
sion

We note that Eq. 3.3 is the posterior that we show in chapter 1 applied
to the symbolic regression problem. That means that the best model will
be that one that minimizes the description length D. Because D is (minus)
the sum of the logarithms of the prior and the integrated likelihood, this
formalism allows us to fulfill the two requirements of symbolic regression
to find a closed-form expression. On the one hand we have the integrated
likelihood, that by definition tells us how likely is our model to generate our
data, giving us a measure of fitness. On the other hand we have the prior,
that encapsulates previous knowledge of the problem, including the fact that
our model has to be simple.

To compute the likelihood, we assume that our observations are indepen-
dent and that the errors εi are Gaussian around fi. That means:

p(D|fi, θi) =
∏

(yk,xk)∈D

1

sy
√

2π

∫
Θi

e
−

(yk−fki (x;θ))
2

2s2y dθi, (3.9)

where the best estimator of s2
y is the mean square error of fi(x). This error is

different to the noise amplitude s2
ε . To see the relationship between s2

y and s2
ε

we need to take into account the discrepancy between fi and the true model
F , that we call it δ ≡ F − fi, and that εk = yk − F (xk; θ) we have that:

s2
y =

〈
δ2
i

〉
+
〈
ε2i
〉
− 2 〈δiεi〉 (3.10)

For large N , we have that 〈δiεi〉 decreases as
√
N , so it is small compared

to 〈δ2
i 〉 and 〈ε2i 〉. Also, 〈ε2i 〉 ≈ sε, so:

s2
y =

〈
δ2
i

〉
+ s2

ε (3.11)

Therefore we see that the observational error is the combination of two
sources of errors (Ref. [12]): a random error and a systematic error. The
random error is the one that you will always get when you repeat a measure.
It is an error that is intrinsic to the measure and cannot be reduced. In
our case is the noise of our samples sε. The systematic error is due to the
imprecision of the model, and can be reduced by improving the model.
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With regards of the prior, and in the spirit of Occam’s razor, the prior has
to catch the complexity of the models and assign a high plausibility to simple
models. The way that the Bayesian machine scientist fulfills this condition
is using a maximum entropy prior such that the statistical properties of
models sampled from it are similar, to those in an empirical corpus of 4080
mathematical expressions extracted from Wikipedia.

To define the prior distribution over mathematical expressions, we took
into account that mathematical expressions can be represented as network
trees (Fig. 3.2). These trees are similar to the network trees from genetic
programming, whose internal nodes are functions (operations) and whose
leaves are variables and parameters. To model the distribution of trees we
use an approach based on exponential random graph models (Ref. [28, 37,
35]), where we want to generate trees that preserves the statistical properties
from the corpus. These statistical properties are the average number and the
square of the number of mathematical operations in the expressions. The
prior that fulfils these attributes is

p(fi) =
∑
o∈O

[
αono(fi) + βon

2
o(fi)

]
(3.12)

where the sum is over all the operations o ∈ O, where O = {sin, cos,+, ∗, ...}.
αo and βo are hyperparameters that are fitted using least squares. no(fi) and
n2
o(fi) are the average number and the square of the number of mathematical

operation o in the expression.

3.2.2 Sampling from the posterior distribution using
MCMC

We have seen how the Bayesian machine scientist naturally looks for a closed-
form expression that fits the data thanks to the likelihood and is as simple
as possible thanks to the prior. Now we need to find the most plausible
expression given our data, that is, the expression that maximizes p(fi|D). To
do that we use a Markov chain Monte Carlo (MCMC) (Ref. [18]) procedure
that allows us to explore the space of models and sample from p(fi|D).

We represent closed-form expressions as network trees where each internal
node are functions or operations, and the leaves are parameters and variables.
To explore the space of closed-form expressions we propose three different
moves. These moves are accepted or rejected with different frequency, using
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Elementary
tree replacement

Elementary
tree replacement

Root
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Root
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Node
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Node
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Figure 3.2: Network tree representation of closed-form expressions and
MCMC moves. Here we represent one closed form expression and the move-
ments that the Bayesian machine scientist uses to generate new expressions. The
three movements are root addition/removal where a root is added/removed from
the closed-form expression. In elementary tree replacement, an elementary tree
(subtree with at least one operation) is substituted by another elementary tree.
And in node replacement, a node that can contain a variable, a function or a
parameter is replaced by another one.

the Metropolis-Hashting rule: root addition/removal, subtree replacement
and node replacement (Fig. 3.2). The code used to perform can be found in
a repository (see [60]).

3.3 Transition on the detectability of the

models

Imagine that we want to find the true model that generated a dataset D =
{(y1,x1), (y2,x2), ..., (yN ,xN)}. The question that we want to address is
when is it possible to identify F (xk, θ) as a function of the noise amplitude
and the number of observed points. On the one hand, with a finite number
of points, it seems reasonable that when εk is low, the Bayesian machine
scientist can identify F (xk, θ). On the other hand, when the noise is too
large, it is not possible to find the true model and the Bayesian machine
scientist will propose a simple model, which consists in a constant or a linear
model, that are the most plausible a priori closed-form expression. Given
these considerations, we want to study what happens in the middle, that
is, when data can give us some clue about the true model despite the noise.
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Specifically, we want to characterize the transition from the detectable region
(characterized by low noise and informative data) to the undetectable region
(that is, when data has too much noise the true model to be detected).

3.3.1 Synthetic data

To study this transition we make experiments with synthetic data that come
from known closed-form expressions. The closed-form expressions that we
use are selected from sampling the prior distribution explained in the last
section and they are two-dimensional. Then we generate ND = 40 datasets
D = {(y1,x1), (y2,x2), ..., (yN ,xN)} where x = (x1, x2) for each closed-form
expression yk = F (xk, θ) + εk, N is the number of points in the dataset and
εk is a random number sampled from a normal distribution N (0, sε). The
closed-form expressions that we have chosen are:

F1(x1, x2) = a1(x2 + b1)x1 cos(x1), x1, x2 ∈ [−2, 2] (3.13)

F2(x1, x2) =
x2

1a
x1x2
2

x1 + b2

, x1, x2 ∈ [−2, 2] (3.14)

Here ai and bi are the parameters from the expression Fi. Their values are:
a1 = −1.1935, b1 = −2.7828, a2 = 1.2214 and b2 = 3.1. We can see that F1

and F2 are continuous functions in the domains that we have defined.
For each dataset we use the Bayesian machine scientist to sample from

the posterior p(fi|D), and select the most plausible closed-form expression
fi. Then we compare the description length of the sampled closed-form
expression D(fi) with the description length of the real model D(F ). If
D(fi) < D(F ), it means that the information that you need to encode the
data and the model fi is shorter than with F , so fi is a better description of
the data than F and that implies that the true model cannot be detected.
For each level of noise amplitude sε and each number of points N , we can
compute the fraction of datasets D for which the true model is detectable.
We repeat this for different noise amplitudes and sizes and plot them in
figures 3.3 a and c for expressions F1 and F2 respectively.

When the noise amplitude is low, the true model is always detected.
When the noise amplitude is increased, the detectability remains almost at
100% until it reaches a certain noise amplitude, where it decreases suddenly
to zero. As we can see in figures 3.3 a and c, the transition occurs at different
noises amplitudes levels depending on the size of the dataset and the model
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itself. As the size of the dataset increases, the transition occurs at higher
levels of noise amplitude.
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Figure 3.3: Detectability and relative mean square error of the pre-
dicted expressions. In panels a and c we show the detectability for different
number of points of the expressions that we use to make our study. We perform
one MCMC procedure to each of our 40 datasets. To each sample, we get the
best model (that one that has the minimum description length), getting a total
of 40 models. We compare their description length with the description length of
the true model and compute the fraction of sampled models that have equal or
greater description length than the true model (detectability). In panels b and d
we show the root mean square error (RMSE) divided by the standard deviation of
the noise amplitude sε. These means are computed over the 40 sampled models
from the Bayesian machine scientist. The vertical line shows us where analytically
the transition occurs (see Eq. 3.18).
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3.3.2 The Bayesian machine scientist proposes simple
models to reduce the observed error

The explanation of the transition, from a Bayesian point of view, is similar
to the transition of the recommender system studied in chapter 2. As we said
in the last section, the Bayesian machine scientist looks for the model that
minimizes the description length D, which in turn is the sum of the likelihood
and prior’s contribution to the description length (DL and DP respectively).
DL can be computed as:

DL = N log
(
sy
√

2π
)
−
∑

(yk,xk)∈D
(
yk − fki (x; θ∗)

)2

2s2
y

− L+ 1

2
logN

=
N

2
log s2

y +

∑
(yk,xk)∈D

(
yk − fki (x; θ∗)

)2

2s2
y

+
L+ 1

2
logN +

N

2
log 2π

=
N

2
log s2

y +
N

2
− L+ 1

2
logN +

N

2
log 2π, (3.15)

where s2
y is the standard deviation of a Gaussian, and its maximum likelihood

estimator is the mean square error of fi. Note that we add +1 next to the
number of parameters. That is because when we fit the parameters of our
model θ, we also fit sy.

For low sε, the Bayesian machine scientist proposes expressions with
longer description length, that is, more complex models. When the noise
is increased to the transition region, the observed error starts to increase too
(Fig. 3.3b, d). That is because the models proposed by the Bayesian machine
scientist are similar in complexity, but implies an increase in δ. To reduce
the description length the Bayesian machine scientist reduces the description
length through the prior proposing simpler models with low contribution to
the description length. When that happens, the error of the complex models
is similar to the simpler models.

We can see this in more detail in figure 3.4 for expressions F1 and F2 where
we show the DP distributions. We can observe that for low noise amplitudes,
the Bayesian machine scientist does not typically find an expression with a
lower prior than that of the true model. In fact, they have a complexity sim-
ilar to the true model. When we reach the transition, the Bayesian machine
scientist starts to sample models that are less complex than the true model
and some of them are constants or just one variable (f = x1 or f = x2).
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For large noise amplitudes, the Bayesian machine scientist finds the simplest
models for all the datasets.
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Figure 3.4: Distribution of the prior contributions of the description
length for F1 and F2. Distribution of the prior contributions of the description
length for F1 (panel a) and F2 (panel b). Each curve represents one MCMC
sampling of the dataset of the Bayesian machine scientist. We plot, from the
stationary state, the distribution of DP of each repetition and for each noise level
sε. The blue doted line represents the prior contribution to the description length
of the true model DP (Fi). The origin of DP is set to the simplest model.
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Chapter 3

For low noise amplitudes, the Bayesian machine scientist tries to predict
the true model with the contribution of the data and the prior, so our pre-
dicted models are both prior and data based. But for high noises, the data
are dominated by the noise, so the data contribution is negligible and our
predicted models are only prior based.

3.3.3 The description length gives us evidence about
the transition

Until now we have been analyzed the transition as a function of the observa-
tion error sε. Now we characterize the transition in terms of the description
length. From now we concentrate in the case of N = 100. In this study, we
compute, the mean minimum description length and plot it in figure 3.5. We
also compute, for each dataset, the description length of the true model and
the description length of the simplest model, the constant model f = cte.
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Figure 3.5: Description lengths as a function of the noise intensity.
Description lengths for the simplest model f = cte (grey curve), the true model F
(green line) and the models with the lowest description lengths fi founded by the
Bayesian machine scientist for the case of N = 100. The constant that we put as
the simplest model is the mean of yk. Each point is the mean of the description
length obtained from the 40 datasets with a confidence interval of 99.7%. The
vertical line shows us where analytically the transition occurs (see Eq. 3.18).

We see that the description length of the minimum description length
models that has been found, has two different behaviours: For low noises,
the description length follows the same behaviour as the description length
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of the true model. In the transition, it changes its behaviour and it converges
to the description length of the simplest model. That suggests that we can
compute analytically where the transition happens, in this case, when the
description lengths of the true model and the simplest model are the same.
To do that, we recover the expression of DL and put it in the description
length, so:

D =
N

2
log s2

y +
N

2
− L+ 1

2
logN +

N

2
log 2π − log p (3.16)

If we impose that D(f = cte) = D(F ), we get that:

s2
y(F )

s2
y(f = cte)

=
(
NL−1p2(F )

) 1
N (3.17)

where for convenience, and without loss of generality, we impose that DP of
any model without operation is equal to zero.

Taking into account, the dependence of s2
y with the systematic error (Eq.

3.11), we have that we can rewrite equation 3.17 as:

s2
ε,transition =

〈δ2
i 〉

(NL−1p2(F ))−
1
N − 1

(3.18)

In figures 3.3 and 3.5 we show a vertical line in the position where the-
oretically the transition occurs. We can see, that our predicted value of the
transition is similar to the observed ones.

3.3.4 The study applied to a function with discontinu-
ities of first kind with infinite jump

Until now, we have performed our study of the detectability to continuous
functions that are continuous and well-behaved in the considered regions.
Now we repeat the same study on a function with a discontinuity of first
kind with an infinite jump. This discontinuities are characterized by the di-
vergence to infinity of the limit of the function when the dependent variables
tends to where the discontinuity is. The function that we are going to study
is:

F3(x1, x2) =
a3x2

a3x1 + bx23 + x2

, x1, x2 ∈ [−2, 2] (3.19)
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Chapter 3

F3 has a discontinuity of first kind with infinite jump in the curve C : a3x1 +
bx23 + x2 = 0. In figure 3.6a we can see the detectability transition, and
also with the same behaviour respect the size of the dataset. The difference
between the continuous functions and the discontinuous cases is apparent
from in figure 3.6b, where the observed error increase exponentially as the
noise intensity decreases. The reason for that is because of the systematic
error 〈δ2〉 is too high because of the divergence in C. That implies that with
low noise, the error is too high, but at the same time, models that predict the
rest of the function well are sampled. For higher noise, simplest models are
optimal because we are only seeing noise. Also, we can see that the predicted
value of sε,transition does not match with the observed one. That means that
the mechanism of the transition is different in this case.
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Figure 3.6: Detectability and relative mean square error of the pre-
dicted expressions. In panels a,c and e we show the detectability for different
number of points of the expressions that we use to make our study. We perform
40 different MCMC procedures to sample 40 proposed models and compare their
description length with the description length of the true model. We compute
the fraction of sampled models that have equal or greater description length than
the true model (detectability). In panels b,d,f we show the root mean square error
(RMSE) divided by the standard deviation of the noise amplitude sε. These means
are computed over the 40 sampled models from the Bayesian machine scientist.
The vertical line shows us where analytically the transition occurs (see Eq. 3.18).

To see what happens with the prior, we studied the DP distribution of
F3 (Fig. 3.7). In this case, for low noises we have some sampled models
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with lower complexity than F3, similar than the transition regime for F1 and
F2. When the relative RMSE is equal to one, almost all the distributions
are picked at 0, meaning that we are in the detectability regime and all the
proposed models are the simplest models.
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Figure 3.7: Distribution of the prior contributions of the description
length for F3. Distribution of the prior contributions of the description length for
F3. Each curve represents one MCMC procedure of the Bayesian machine scientist.
We plot, from the stationary state, the distribution of DP of each repetition and
for each noise level sε. The blue doted line represents the prior contribution to
the description length of the true model DP (Fi). The origin of DP is set to the
simplest model.

And finally, we analyze the description length evolution as before (Fig.
3.8). We can see that before the transition, models better than the simplest
model are found, but they are worse than the true model. The most interest-
ing thing, but at the same time mysterious, happens after the transition. In
this case better models than the true and simplest models are found. At the
same time, the simplest model and the true model have the same amount of
description length in the detectability regime. For this phenomena, we still
do not have any explanation of why it happens.
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Figure 3.8: Description lengths as a function of the noise intensity for
F3. Description lengths for the simplest model f = cte (grey curve), the true model
F (green line) and the models with the lowest description lengths fi founded by
the Bayesian machine scientist for the case of N = 100. The constant that we put
as the simplest model is the mean of yk. Each point is the mean of the description
length obtained from the 40 datasets with a confidence interval of 99.7%. The
vertical line shows us where analytically the transition occurs (see Eq. 3.18).

3.4 Discussion

In this chapter we have discussed the role of the likelihood and the prior in a
symbolic regression problem using the Bayesian machine scientist. We found
a transition from a regime we can detect models similar to the true model, to
another where simple solutions driven by the prior are found. This transition
is controlled by the noise and the volume of the data that we have.

We also discovered that the continuity plays a roll in this study. When
the true model is continuous in its domain, we can see a peak in the ob-
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served error. This is because complex functions start to not fit well and
simple functions fit better after the transition. But if the function has a
discontinuity of first kind with infinite jump, the error will be larger than the
noise amplitude that generated the data. As the noise increase, the error de-
crease until because more simpler models are proposed until the undetectable
regime is achieved. For this case, we have more questions to answer. We still
don’t have any answer to why the error decrease equally independently of
the number of points. Also, despite we can find the transition point when
the function is continuous only looking to the error, we cannot find it when
the function is not continuous.
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Chapter 4

Conclusions and perspectives

The principal objective of this thesis was to study the interplay between the
likelihood and the prior in model selection problems. The importance of that
relies in the fact that the likelihood has the information of how probable our
data is given the proposed model, and the prior is a bias that we impose
to favour models that we believe that are correct a priori. To show light
of this interplay in complex situations we select a couple of problems: the
recommender system using metadata and the symbolic regression. To make
a better study, we use synthetic data because its versatility to control the
experiments.

The recommender problem consists in predicting whether a user is going
to like an item or not given information about the user preferences. What we
want to study here is how extra information about the users and the items
(metadata) can affect to the accuracy of our predictions. We used a prob-
abilistic model, the Mixed-Membership Stochastic Block Model (MMSBM),
and a Bayesian framework to add the metadata. We create datasets of rat-
ings, with 200 users and 200 items and 400 ratings. We compute the accuracy
our datasets for different levels of rating-metadata correlations and different
values of the importance of metadata controlled by an hyperparameter. For
low values of the hyperparameter, the MMSBM only sees the data, if it is
equal to one, see all the data and metadata together and if it’s large, it only
see the metadata. So with this hyperparameter we can control the domi-
nance of the prior (large values of the hyperparameter) over the likelihood
(low values of the hyperparameter).

What we conclude was that data effects to the accuracy depending of
the correlation and the amount of observed rating and observed metadata.
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If metadata is highly correlated with metadata, we get that the accuracy
improves when we are using metadata. If ratings are not correlated with
metadata, the accuracy gets worse than not using metadata. Importantly,
for metadata to have an effect, the amount of data and metadata needs to
have similar contributions to the prior.

The second problem that we use to interplay of prior and likelihood is
the symbolic regression problem. This problem consist in to find the best
model through the space of mathematical closed-form expressions that that
fits the data and is simple. Here what we want to study is how the noise of
data can affect to the detectability of the true model that generated the data.
We used the Bayesian machine scientist that looks for the models with the
shortest description lengths. The role of measure the fitness of the dataset is
given by the likelihood and the role of measure the simplicity of the model
is given by the prior. To perform our study we generate 40 datasets for
different noises levels and three known expressions. What we observed was
an abrupt transition from a detectable regime where the Bayesian machine
scientist could identify expressions with similar complexities than the true
model, and a regime where the Bayesian machine scientist can not identify
the true model and simpler expressions than the true model were proposed
instead.

This transition is characterized by the noise amplitude and the number of
points of the datasets. This transition takes place because, as we increase the
noise amplitude, the observed error of the proposed model also is increased.
The observed error is increased until the Bayesian machine scientist can not
longer see the model and it only sees the noise. In this point when both,
the true model and the simplest model, have the same observed error, the
description length of the true model and the simplest model are equal. After
that, the models that fit better the data are simple models that has a large
prior. That is translated into a reduction of the prior contribution of the
description length. This argument is true except for non continuous functions
with a discontinuity of first kind with infinite jump. In that case, the observed
error is high for low level noises but the algorithm still proposes models with
similar complexity. But in the indetectability regime, the Bayesian machine
scientist proposes simple models. The explanations of this phenomena is
because the increase of the discrepancy of the sampled models with the true
model in the divergence. One possible solution might be the increment of
number of points in the divergence.

To conclude this book, we have seen how the interplay of the data and the
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prior determines the type of the predicting models and effects to the quality
of our predictions. In the case of the recommender system we have a data
regime versus a metadata (represented by the prior) regime and both interact
through the accuracy. In the case of symbolic regression, in the detectability
regime we have that both, likelihood (the data) and the prior have a role in
the inference process. But for high noise amplitudes, the Bayesian machine
scientist can only predicts the noise proposing simple models with the largest
prior.

We think that this work can help to better understand the Bayesian
inference process from the point of view of the balance of the data and the
prior.
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Appendix A

k-fold cross-validation

In science, is very important to make good predictions. When we train a
dataset of size N , it is important to the model that we are training has the
lowest error possible, but also, it is important that we can make predictions
to unseen. If our predictions have a low error given our dataset but do not
predict unseen data, we say that our model is overfitted. In figure A.1 we
can see that using a 9th degree polynomial we reduce the error to 0 because
is the best curve that fits nine points, but if we make predictions beyond the
observed range, we are going to make huge errors.

0 2 4 6 8
x

0

10

20

30

y

Real model
Non overfitted model
Overfitted model
Data

Figure A.1: Representation of overfitting using polynomial regression.
In blue we can see the real model, the dots represent the nine points data with
noise and the dashed lines are adjusted models. We use polynomial regression to
find the dashed models, in orange we use a 1st degree polynomial and in green a
9th degree polynomial.
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Chapter A

Overfitting usually happens because our model is to complex that can
only predict our dataset as we can see in figure A.1. One way to avoid
overfitting, is splitting our dataset in two: a training set that usually have at
least a 60% of the dataset, and a test set that contains the rest. The training
set is the subset of the dataset that we use to train our model, and the test
set is used to validate the trained model.

A common method used to split the data is k-fold cross validation (Ref.
[14, 51]). Here we split the dataset in k equally and random distributed small
datasets. Then we choose one of these splits as a test set and the rest as a
training set (Fig. A.2).

Later we train our model and get the estimator given this selection. After
that, we change the training set and repeat until we get k estimators of what
we want to measure (Fig. A.2). The final measured estimator will be the
mean of every measure of the estimator given the different datasets. One
advantage of the k-fold cross validation is the reduction of the variability in
the estimator, gaining more generality in our measures.

Fold 1 Fold 2 Fold 3 Fold 5Fold 4

Fold 2 Fold 4 Fold 5Fold 1 Fold 3

Fold 1 Fold 2 Fold 4 Fold 5Fold 3

Fold 4Fold 1 Fold 2 Fold 5Fold 3

Fold 5Fold 1 Fold 2 Fold 4Fold 3

Figure A.2: Representation of how k-fold cross validation works. Repre-
sentation of how k-fold cross validation works for k = 5. In green the training set
used for training the algorithm. In red we have the test set to verify the trained
model with unseen data. We can see that for each test set we compute an esti-
mator, in this case the log-fold change, to later compute the relative improvement
α.
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Appendix B

Expectation-maximization
algorithm

To obtain a maximum of the posterior we start by berating random initial
conditions for each model parameter θ,η,p, ζ, q, q̂.

Then we perform iteratively two steps until the model parameters con-
vergence:

1. Expectation step: compute the auxiliary functions ωij(α, β), σki`k(α),
and σ̂kig(α, γ) using current values for θ,η,p, ζ, q, q̂ using Eqs. 2.18,
2.19 and 2.20.

2. Maximization step: Compute the new values for the model parameters
using the values for the auxiliary functions and Eqs. 2.24, 2.28, 2.32,
2.36, 2.40 and 2.44.

Because the posterior landscape is very rugged, to make predictions we
perform the EM algorithm 10 times and consider all of the models to estimate
the average probability that user i rates item j with rating r (see [47]) as
follows:

〈p(rij = r|RO, AOk )〉 ≈ 1

N

N∑
n=1

pn(rij = r|RO, AOk , (. . . )) (B.1)

where (. . . ) = {θ,η,p, ζ, q, q̂}, and pn(rij = r|RO, AOk , (. . . )) is the proba-
bility that user i rates item j with rating r in run n of the EM algorithm.
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[65] Roger Guimerà et al. “A Bayesian machine scientist to aid in the so-
lution of challenging scientific problems”. In: Science Advances 6.5
(2020). issn: 23752548. doi: 10.1126/sciadv.aav6971.

[66] Ignasi Reichardt et al. “Bayesian Machine Scientist to Compare Data
Collapses for the Nikuradse Dataset”. In: Phys. Rev. Lett. 124.8 (Feb.
2020), p. 84503. doi: 10 . 1103 / PhysRevLett . 124 . 084503. url:
https://link.aps.org/doi/10.1103/PhysRevLett.124.084503.

[67] Silviu-Marian Udrescu and Max Tegmark. “AI Feynman: A physics-
inspired method for symbolic regression”. In: Science Advances 6.16
(Apr. 2020). doi: 10.1126/SCIADV.AAY2631. url: https://www.

science.org/doi/abs/10.1126/sciadv.aay2631.

[68] Oriol Artime and Manlio De Domenico. “Percolation on feature-
enriched interconnected systems.” eng. In: Nature communications 12.1
(Apr. 2021), p. 2478. issn: 2041-1723 (Electronic). doi: 10 . 1038 /

s41467-021-22721-z.

79

UNIVERSITAT ROVIRA I VIRGILI 
TRANSITIONS IN BAYESIAN MODEL SELECTION PROBLEMS: NETWORKBASED 
RECOMMENDER SYSTEM AND SYMBOLIC REGRESSION 
Oscar Fajardo Fontiveros

https://doi.org/10.1007/978-3-030-06222-4{\_}11
https://bitbucket.org/rguimera/machine-scientist/src/no_degeneracy/
https://bitbucket.org/rguimera/machine-scientist/src/no_degeneracy/
https://bitbucket.org/rguimera/machine-scientist/src/no_degeneracy/
https://github.com/oscarcapote/Multipartite_MMSBM
https://github.com/oscarcapote/Multipartite_MMSBM
https://doi.org/10.1126/sciadv.aav6971
https://doi.org/10.1103/PhysRevLett.124.084503
https://link.aps.org/doi/10.1103/PhysRevLett.124.084503
https://doi.org/10.1126/SCIADV.AAY2631
https://www.science.org/doi/abs/10.1126/sciadv.aay2631
https://www.science.org/doi/abs/10.1126/sciadv.aay2631
https://doi.org/10.1038/s41467-021-22721-z
https://doi.org/10.1038/s41467-021-22721-z


Chapter 4
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