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Abstract

An algebraic variety defined over a field is said to have Diophantine stability

for an extension of this field if the variety does not acquire new points in the

extension.

Diophantine stability has a growing interest due to recent conjectures of Mazur

and Rubin linked to the well-known Lang conjectures, generalizing the celebrated

Falting’s theorem on rational points on curves of genus grater or equal than 2.

Their framework is characteristic zero, and we shall focus on the analogous and

related questions in positive characteristic.

More precisely, the aim of the thesis is to initiate the study of Diophantine

stability for curves and surfaces defined over finite fields. First we prove the

finiteness of the finite field extensions where an algebraic variety can exhibit

Diophantine stability (DS) in terms of its Betti numbers (the genus in the case

of curves, the Hodge diamond in the case of surfaces, etc.)

Then, we analyze the existence of curves with Diophantine stability. More

precisely, for curves of genus g ≤ 3 we give the complete list of (isomorphism

classes of) DS-curves, and we also provide data on the candidate Weil polynomials

for DS-curves of genus g = 4 and 5. For curves of large genus, we exhibit certain

families of DS-curves: Deligne-Lusztig curves, Carlitz curves, ....

Finally, we also aim to make a contribution on surfaces defined over finite

fields with Diophantine stability. From the classification of surfaces of Enriques-

Munford-Bombieri we derive partial results and a census of DS-surfaces.

Keywords : Curves and surfaces over finite fields, Diophantine stability.
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Chapter 1

Diophantine stability

In this chapter we introduce the basic terminology and some of the known facts

about the objects that constitute the main characters of this memoir. In par-

ticular, we review the notions of the Hasse-Weil Zeta function attached to a

projective non-singular algebraic variety along with its Weil polynomials, Betti

numbers, closed points, etc. We also review the Künneth formula that will be

used later. The key concept that shall be present through all chapters is that of

Diophantine stability.

1.1 Zeta function

Let V be a non-singular d-dimensional projective algebraic variety over the finite

field Fq of size q. The generating function

ζV (t) = exp

(
∞∑
m=1

Nm

m
tm

)

where Nm = #V (Fqm) is called the Zeta function of V . The Weil conjectures [41]

proven by Dwork and Deligne [14], [10], [11] state:
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1. (Rationality) We have

ζV (t) =
P1(t)P3(t) . . . P2d−1(t)

P0(t)P2(t) . . . P2d(t)

where Pi(t) ∈ Z[t]. Always, P0(t) = 1− t and P2d(t) = 1− qdt.

2. (Riemann hypothesis) Writing

Pi(t) =

βi∏
j=1

(1− αijt)

all the reciprocal roots satisfy |αij| = qi/2.

3. (Poincaré duality) One has the functional equation

ζV (q−dt−1) = ±qdE/2tEζV (t)

where E is the Euler characteristic of V . In particular, the polynomials

Pi(t) and P2d−i(t) have the same degree and the sets of their reciprocal

roots satisfy

{αi1, αi2, . . . } = { qd

α2d−i,1
,

qd

α2d−i,2
, . . . }

4. (Betti numbers) If V can be seen as a good reduction of a non-singular

projective algebraic variety Y over a number field embedded in the field of

complex numbers, then the degree βi = degPi(T ) is the ith Betti number

of Y (C).

The Weil conjectures in the special case of algebraic curves were conjectured

by Emil Artin (1924). The case of curves over finite fields was proved by Weil,

finishing the project started by Hasse’s theorem on elliptic curves over finite

fields. The rationality part of the conjectures was proved first by Dwork (1960),

using p-adic methods. Grothendieck (1965) and his collaborators established the

rationality conjecture, the functional equation and the link to Betti numbers by
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using the properties of étale cohomology, a new cohomology theory developed by

Grothendieck and Michael Artin for attacking the Weil conjectures. The analogue

of the Riemann hypothesis was the hardest to prove. Finally, Deligne (1974) was

able to prove it, using the machinery of Grothendieck and his school build up on

initial suggestions from Serre.

First example. Consider the projective space V = Pd. One shows that the even

Betti numbers are β2i = 1 and the odd β2i+1 = 0, so that we have

ζ(t) =
1

(1− t)(1− qt) . . . (1− qdt)
.

Indeed, the number of points is given by

#Pd(Fqm) = (qm(d+1) − 1)/(qm − 1) = 1 + qm + q2m + · · ·+ qdm .

1.2 Betti numbers

Informally, Betti numbers refer to the number of times that an object can be

“cut” before splitting into separate pieces. The βi are called Betti numbers in

honour of the Italian mathematician Enrico Betti, who had taken the first steps

of this kind to extend Riemann’s work. It was only in the late 1920s that the

German mathematician Emmy Noether suggested how the Betti numbers might

be thought of.

From the computational point of view, it might be worth to notice the diffi-

culties to compute the Betti numbers for an arbitrary algebraic variety given by

a system of defining equations. Also it is a difficult question to ask whether there

are examples of algebraic varieties with a prescribed set of Betti numbers βi.

However, for certain families of algebraic varieties, such as curves and abelian

varieties, the corresponding Betti numbers are well known. Moreover, we dispose

of certain properties of the Betti numbers. For instance, by Hodge symmetry, we
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know that β2i+1 ≡ 0 (mod 2).

1.3 Weil polynomials

With regard to the polynomials Pi(t) =
∏βi

j=1(1−αijt) with |αij| = qi/2, it is also

common to consider the corresponding monic reciprocal polynomials

Li(t) =

βi∏
j=1

(t− αij) ,

The polynomials Li(t) are called Weil polynomials (or L-polynomials), and their

roots αij are called Weil qi/2-numbers. The relation between them is

Li(t) = tβiPi(1/t) .

The Weil polynomials can be seen as the characteristic polynomial of the Frobe-

nius acting on the étale cohomology of the variety.

Observe that for a given Betti number βi, there are only a finite number of Weil

polynomial candidates Li(t). Indeed, the coefficients of the monic polynomial

Li(t) =
∑βi

k=0 aikt
k satisfy

|aik| ≤ | symk(αi1, . . . , αiβi)| ≤
(
βi
k

)
qik/2 .

For instance, in the case of elliptic curves one has L1(t) = q2 + at + t2 with

|a| ≤ 2q1/2. There are smart techniques to compute a list of candidate Weil

polynomials. For instance, in the case when i is even, notice that the polynomial

Ui(t) = Li(q
i/2t) is a root-unitary polynomial (all roots in the unit circle) with

integer coefficients and leading coefficient qβii/2.

For future use, we also introduce the real Weil polynomials hi(x) that have

roots the real numbers µj = αij + αij for 1 ≤ j ≤ βi whenever βi is even. The
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real Weil polynomials have degree βi/2 and satisfy

Pi(t) = tβi/2hi

(
qit2 + 1

t

)
.

Given Pi(t), we can find hi(x) by means of the t-resultant

Rest(q
it2 + 1− tx, Pi(t)− tβi/2hi(x)) ,

and vice versa, given hi(x), we can find Pi(t) by means of the x-resultant

Resx(q
it2 + 1− tx, Pi(t)− tβi/2hi(x)) .

1.4 Cohomology constrains

The cohomology of a particular type of varieties imposes further conditions among

the reverse Weil polynomials Pi(t). With regard to this, Tate was able to do some

refinement of the Weil conjectures for certain types of varieties.

Let us just mention a couple of examples. For abelian varieties, all the poly-

nomials Pi(t) depend only on the first one P1(t). Indeed, if

P1(t) =

2g∏
j=1

(1− tαj)

then

Pi(t) =
∏

1≤j1<···<ji≤2g

(1− tαj1 . . . αji)

Moreover, Tate-Honda theorem describes the possibilities for the first polynomial

P1(t) attached to simple abelian varieties over finite fields [39].

Another example in this direction is Taelman’s results in [38] describing some

constrains for the Weil polynomials attached to K3 surfaces, or Rybakov’s obser-

vations in [34] for hyperelliptic surfaces as well. We also refer to [24] and [19] for

related computational aspects of Zeta functions.
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1.5 Naive inequality

From the Weil conjectures, the number of points Nm = #V (Fqm) of a non-singular

d-dimensional projective variety V over Fq satisfies the formula

Nm =
2d∑
i=0

(−1)i
βi∑
j=1

αmij .

We get the inequality

|Nm − (1 + qdm)| =

∣∣∣∣∣
2d−1∑
i=1

(−1)i
βi∑
j=1

αmij

∣∣∣∣∣ ≤
2d−1∑
i=1

βi∑
j=1

|αmij | ≤
2d−1∑
i=1

βiq
im/2 .

Since we have βi = β2d−i, we can rewrite the inequality as

|Nm − (1 + qdm)| ≤
d∑
i=1

βi(q
im/2 + q(2d−i)m/2) .

Some questions arise: are the Betti numbers bounded for a fixed dimension d?

Can one apply optimization (and dual optimization) à la Serre-Oesterlé for op-

timal varieties (those with maximum number of points over Fq)? Are optimal

varieties useful tools for Coding Theory as in the case of curves?

1.6 Diophantine stability

We borrow the term Diophantine stability from Mazur [28] and Mazur-Rubin [29].

The concept of Diophantine stability applies to a sprawling number of scenarios.

For a given algebraic variety V over a field K, we shall say that V has Dio-

phantine stability (or V is a DS-variety) if there exists a proper extension L/K

such that V (L) = V (K).

Over number fields, Diophantine stability is closely related to the Lang Con-

jectures [26]. Just to mention one particular challenging open problem in this

direction, we underline the question posed by Mazur-Rubin in the case of curves
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defined over a number field K: Does the set of number fields where the curve

fails to have DS determines the curve up to K-isomorphism?

In this memoir, we shall concentrate on the study of non-singular projective

varieties V with DS over finite fields Fq. That is, we are looking at cases where

the variety V verifies V (Fqm) = V (Fq) for some m > 1.

Proposition 1. Let V be a non-singular projective variety of a given dimension d

and given Betti numbers βi over a finite field. If V is a DS-variety for Fqm/Fq,

then the pair (q,m) is chosen from a finite set.

Proof. Suppose that V (Fq) = V (Fqm) for some m > 1. One the one hand, we

have that N1 = #V (Fq) belongs to the interval centered in 1 + qd and radius∑2d−1
i=1 βiq

i/2 since

|N1 − (1 + qd)| ≤
2d−1∑
i=1

βiq
i/2 .

On the other hand, Nm = #V (Fqm) belongs to the interval centered in 1 + qdm

and radius
∑2d−1

i=1 βiq
im/2 since

|Nm − (1 + qdm)| ≤
2d−1∑
i=1

βiq
im/2 .

Since we are assuming that N1 = Nm with m > 1, we need to show that the

intersection of these two intervals is always empty except for a finite number of

pairs (q,m). Thus, let us show that if q and m are large enough, then

(1 + qd) +
2d−1∑
i=1

βiq
i/2 < (1 + qmd)−

2d−1∑
i=1

βiq
im/2 .

The above inequality is equivalent to

2d−1∑
i=1

βi(q
i/2 + qim/2) < qmd − qd .
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Clearly, we have

2d−1∑
i=1

βi(q
i/2 + qim/2) <

2d−1∑
i=1

βi(q
(2d−1)/2 + q(2d−1)m/2) < qmd − qd

when qm � 0.

1.7 Closed points

The Zeta function of an algebraic variety V over Fq admits the following product

formula [35]. We have

ζV (t) =
∏
x∈V cl

(1− tdeg(x))−1

where V cl denotes the set of closed points of V and deg(x) is the degree of x. A

closed point x = [P ] is an equivalent class of points P in V (Fq) under the Galois

action over Fq. The degree of x is the degree of the field extension of Fq generated

by the coordinates of P .

In practice, it is very useful also to write the Zeta function as

ζV (t) =
∞∏
d=1

(1− t)−ad

where ad denotes the number of closed points of V of degree d.

It follows that one has the relation with the number of points Nm = |V (Fqm)|

given by:

Nm =
∑
d|m

d ad ,

and using the Möebius inversion formula we also have

ad =
1

d

∑
d′|d

µ(d′)Nd′ .
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1.8 Künneth formula

Let X and Y be two non-singular projective algebraic varieties over Fq. The

Künneth theorem [18] for the `-adic cohomolgy states that for any integer k, one

has an isomorphism

Hk(X × Y ;Q`) ∼=
⊕
i+j=k

H i(X;Q`)⊗Hj(Y ;Q`).

For singular homology, the above isomorphism is a natural isomorphism. The

map from the sum to the homology group of the product is called the cross

product. More precisely, there is a cross product operation by which an i-cycle

on X and a j-cycle on Y can be combined to create an (i+ j)-cycle on X×Y ; so

that there is an explicit linear mapping defined from the direct sum toHk(X × Y ).

A consequence of the above isomorphism is that the Betti numbers of X × Y

can be determined from those of X and Y . More precisely, if

pZ(t) =
∑
k≥0

βk(Z)tk

denotes the Poincaré polynomial of a variety Z (the coefficients βk(Z) are the

Betti numbers of Z), then one has the equality

pX×Y (t) = pX(t)pY (t).

One can take advantage of this formula to derive partial knowledge on the Zeta

function of X × Y in terms of the Zeta functions of X and Y .
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Chapter 2

DS-Curves

In this chapter we focus on Diophantine stability for the case of curves. Of

course, an important tool to this aim is the Zeta function of the curve. The

rationality and the functional equation for the Zeta functions of curves are an

easy consequence of the Riemann-Roch theorem. In particular, it can be deduced

that the sign in the functional equation is always +1 for curves. Here we shall

provide a census of DS-curves of low genus, and provide some other examples

including Deligne-Lusztig curves and Carlitz modules.

2.1 Admissible intervals

By the Hasse-Weil-Serre bound, the number of points on a (projective, smooth,

geometrically irreducible) curve C of genus g ≥ 1 defined over a finite field Fq
satisfies

|#C(Fqf )− (qf + 1)| ≤ g b2
√
qfc ,

for every integer f ≥ 1. In this chapter we are interested in the cases where C

is Diophantine stable (or simply, C is a DS-curve) for a proper extension Fqf/Fq;

that is, it holds

C(Fq) = C(Fqf ) .
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With this aim, we introduce the following notations

Nq,f (g) = max
X

#X(Fqf )

nq,f (g) = min
X

#X(Fqf )

where X runs over the genus-g curves defined over Fq. We denote as usual

Nq(g) = Nq,1(g), and also let nq(g) = nq,1(g). A genus-g curve over Fq with Nq(g)

rational points is called optimal. A genus-g curve over Fq with nq(g) rational

points will be called pessimal.

With regard to the optimal bound Nq(g), there are many references available

as well as the website manYPoints.org (see [36], [40]). In the cases of lack of

information on Nq(g), special mention deserves Oesterlé’s bound Nq(g) ≤ Bq(g)

since it can be used often to beat Serre-Weil’s upper bound q + 1 + g b2
√
qfc.

Optimal curves have centered (and still do) the attention of researchers for several

decades due to its applications, such as in Coding Theory; however, notice that

much less is known on pessimal curves.

For every f > 1, we shall consider the intervals

Iq,f (g) = [nq(g), Nq(g)] ∩ [nq,f (g), Nq,f (g)] ,

and we say that (q, f) is an admissible pair relative to g when

Iq,f (g) 6= ∅ .

Admissible pairs encode the possible proper extensions Fqf/Fq where a genus-g

curve has a chance to have DS (if there is any such a curve).

Proposition 2. Let g ≥ 1. The set of all admissible pairs (q, f) relative to g is

a finite set.

Proof. Assume that Iq,f (g) is non-empty for some f > 1. By the Hasse-Weil
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bound theorem, the following inequalities hold:

qf + 1− 2 g
√
qf ≤ nq,f (g) ≤ Nq(g) ≤ q + 1 + 2 g

√
q .

Hence,

qf ≤ q + 2 g
√
q + 2 g

√
qf .

Taking logarithms with base q, one has

f ≤ logq

(
q + 2 g

√
q + 2 g

√
qf
)

= logq

(
2 g
√
qf

(
1 +

q + 2 g
√
q

2 g
√
qf

))
.

By using f ≥ 2, we get

f ≤ 2 logq(2 g)+2 logq

(
1 +

q + 2 g
√
q

2 g
√
qf

)
≤ 2 logq(2 g)+2 logq

(
1 +

q + 2 g
√
q

2 g q

)
.

On the one hand, for a given finite field size q, we see that the number of possible

degrees f is bounded above. On the other hand, the genus g being fixed, one has

f < 2 as q grows due to the fact limx→∞ logx a = limx→∞ log a/ log x = 0. We

conclude that the number of admissible pairs (q, f) relative to g is finite.

As we have already mentioned, in contrast with optimal curves, no much is

known about pessimal curves, even for small values of g. For that reason, it is

difficult to have exact information on the intervals Iq,f (g). The following tables

contain the values (q, f) satisfying the inequality

qf + 1− gb2
√
qfc ≤ q + 1 + gb2√qc.

In particular, the tables include the set of admissible pairs (q, f) for genus g ≤ 5.
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g = 1

q f

2 2, 3

3 2

4 2

g = 2

q f

2 2, 3, 4

3 2, 3

4 2

5 2

g = 3

q f

2 2, 3, 4, 5

3 2, 3

4 2, 3

5 2

7 2

8 2

9 2

g = 4

q f

2 2, 3, 4, 5, 6

3 2, 3, 4

4 2, 3

5 2

7 2

8 2

9 2

11 2

g = 5

q f

2 2, 3, 4, 5, 6

3 2, 3, 4

4 2, 3

5 2, 3

7 2

8 2

9 2

11 2

13 2

Remark 1. We do not claim that Iq,f (g) is non-empty necessarily for all values

in the above tables. But we do claim that if the interval Iq,f (g) is non-empty then

the admissible pair (q, f) should appear in the tables. Moreover, we warn the

reader that it can happen that Iq,f (g) is non-empty but there is no DS-curve of

genus-g for the extension Fqf/Fq. For instance, this is the case for genus-2 and

the admissible pair (4, 2) as we shall see.
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2.2 Genus 1

The case of elliptic curves is by far the easiest. In the following table (and

successives), the first column displays the admissible pairs (q, f) relative to g

for which there exist DS-curves; the second column shows defining equations of

(representatives of the isomorphism classes of) DS-curves for Fqf/Fq. The third

column indicates the number of points N = #C(Fq) = #C(Fqf ).

Proposition 3. The following table displays the set of (isomorphism classes of)

genus one curves with DS.

(q, f) C N

(2, 2) y2 + y = x3 + x 5

(2, 3) y2 + y = x3 + 1 4

y2 + y = x3 + x 5

(3, 2) y2 = x3 + 2x+ 1 7

(4, 2) y2 + y = x3 9

Proof. For every admissible pair (q, f) one proceeds by inspection of the isomor-

phism classes of elliptic curves over Fq which can be listed very easily.

Remark 2. Notice that the elliptic curve C : y2 + y = x3 in the last row is in

fact defined over F2 and satisfies #C(F4) = #C(F16) = 9 but #C(F2) = 3.

2.3 Genus 2

As for genus-2 curves over finite fields Fq, the list of isomorphism classes is prac-

ticable for small values of q so that we can get easily the sublist of DS-curves for

that genus.
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Proposition 4. The following table displays the isomorphism classes of DS-

curves of genus g = 2 along with the admissible pairs (q, f).

(q, f) C N

(2, 2) y2 + (x2 + x) y = x5 + x3 + x2 + x 3

y2 + x y = x5 + x 4

y2 + y = x5 + x3 5

y2 + (x3 + x+ 1) y = x5 + x4 + x3 + x 6

(2, 3) y2 + y = x5 + x3 + 1 1

y2 + x y = x5 + x2 + x 2

y2 + y = x5 + x4 5

(3, 2) y2 = x5 + 2x4 + 2x3 + 2x 5

(3, 3) y2 = x6 + x4 + x2 + 1 8

(5, 2) y2 = x5 + 4x 6

Proof. To create the table, we have used the database on isomorphism classes of

curves of small genus over finite fields elaborated by Sutherland [37].

Remark 3. According to the tables in Section 2.1, a priori the cases (q, f) =

(2, 4) and (4, 2) have a chance to appear for genus-2 DS-curves. Both cases are

excluded by inspection of the representatives of isomorphism classes of curves. For

instance, in the case (q, f) = (4, 2), it turns out that the interval I4,2(2) = [0, 10]∩

[7, 33] is non-empty, but there are not genus-2 curves over F4 with N = #C(F4) =

#C(F16) for N = 7, 8, 9 or 10. The minimal difference #C(F16)−#C(F4) among

the genus-2 curves defined over F4 turns out to be 2 and it is attained by the curve

y2 + (x2 + x) y = α (x5 + x3 + x2 + x) .

In the equation above and hereafter, for non-prime fields we let α denote a Con-

way generator of the finite field Fq = Fp(α); that is, α is a root of the Conway

polynomial defining the extension Fq/Fp where p is the prime characteristic.
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2.4 Genus 3

For genus-3 curves, things begin to get more intricate. Still we can make use of

Sutherland’s database. However, the database does not cover yet all the isomor-

phism classes of genus-3 curves defined over the finite fields for all the cases with

potential presence of Diophantine stability. To be more precise, from Sutherland’s

database, we lack the following isomorphism classes of genus-3 curves:

• Hyperelliptic curves over F4;

• Hyperelliptic curves over F8;

• Non-hyperelliptic curves over F7;

• Non-hyperelliptic curves over F8.

Luckily, we shall be able to either justify the absence of DS-curves or to find

the ones with Diophantine stability in the isomorphism classes under-construction

in Sutherland’s database. Hence, we can (and do) provide the complete list of

DS-curves of genus 3.

Theorem 1. The following tables display, for every pair (q, f), all the genus-3

DS-curves over finite fields. We first display the hyperelliptic curves followed by

the plane quartics defining equations for the non-hyperelliptic curves.

17



(q, f) C N

(2, 2) y2 + (x+ x2) y = x7 + x6 + x5 + x 3

y2 + (x+ x2) y = x7 + x6 + x5 + x4 + x2 + x 3

y2 + x y = x7 + x6 + x2 + x 4

y2 + x y = x7 + x6 + x5 + x 4

y2 + (x2 + x4) y = x5 + x4 + x3 + x 4

y2 + y = x7 + x6 5

y2 + (x4 + x2 + x+ 1) y = x7 + x5 + x4 + x3 5

y2 + (x4 + x2 + x) y = x6 + x3 + x2 + x 5

y2 + (x4 + x+ 1) y = x7 + x5 + x4 + x3 + x2 + x 6

x4 + x3y + y4 + x2y + y3 + x+ 1 0

x4 + x3y + y4 + x3 + x 1

x4 + xy3 + y4 + x3 + x2y + xy2 + x 1

x3y + xy3 + y4 + x2y + x 2

x3y + xy3 + y4 + xy2 + x 2

x4 + x3y + xy3 + x3 + xy2 + y2 + x 2

x4 + x2y2 + xy3 + x3 + x2y + y2 + x 2

x3y + xy3 + y4 + x3 + x 3

x4 + x3y + x3 + y3 + x 3

x3y + x2y2 + x2y + y3 + x 4

x3y + x2y2 + x3 + y3 + y2 + x 7
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(q, f) C N

(2, 3) y2 + (x2 + x+ 1) y = x7 + x6 + x5 + x4 + x3 + x+ 1 1

y2 + (x4 + x+ 1) y = x8 + x5 + x+ 1 2

y2 + (x4 + x) y = x8 + x7 + x5 + x 2

y2 + x y = x7 + x2 + x 2

y2 + (x4 + x2) y = x8 + x4 + x2 + x 2

y2 + (x4 + x2 + 1) y = x2 + x+ 1 2

y2 + (x4 + x+ 1) y = x6 + x5 + x4 + x3 + 1 2

y2 + (x2 + x) y = x7 + x6 + x5 + x 3

y2 + y = x7 3

y2 + (x2 + x+ 1) y = x7 + x6 + x5 + x2 + x+ 1 3

y2 + y = x7 + x6 + x4 + 1 3

y2 + x y = x7 + x6 + x5 + x 4

y2 + (x4 + x+ 1) y = x6 + x4 + x3 + x2 + x+ 1 4

y2 + (x3 + 1) y = x7 + x4 4

y2 + (x4 + x2) y = x4 + x 4

y2 + (x4 + x+ 1) y = x8 + x4 + x2 + x 4

y2 + (x4 + x2 + 1) y = x4 + x 6

y2 + (x4 + x+ 1) y = x6 + x5 + x3 + x 6

x4 + x2y2 + y4 + x2y + xy2 + x 3

x2y2 + x3 + y3 + x2 + xy + x 4

x4 + xy3 + x2y + y2 + x 4

x3y + y4 + x3 + x 5

x2y2 + y4 + x3 + x2y + xy2 + x 5
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(q, f) C N

(2, 4) x3y + x2y2 + x3 + y3 + y2 + x 7

(2, 5) y2 + (x4 + x+ 1) y = x8 + x6 + x5 + x4 + x3 + x2 4

y2 + (x4 + x2 + 1) y = x4 + x 6

x4 + x2y2 + y4 + x2y + xy2 + x2 + xy + y2 + 1 0

(3, 2) y2 = x7 + 2x6 + x5 + x4 + x3 + 2x2 + 1 5

y2 = x8 + 2x5 + 2x4 + 2x2 + 2x 6

y2 = 2x7 + 2x4 + 2x3 + 2x2 + 1 6

y2 = x7 + x6 + 2x5 + x4 + x3 + 2x2 + 2x 6

y2 = x7 + 2x6 + 2x5 + x3 + x2 + 2x+ 1 7

y2 = x8 + 2x7 + x6 + 2x3 + 2x2 + 1 7

y2 = x8 + 2x6 + x4 + 2x3 + 2x2 + x+ 1 8

x4 − x2y2 − y4 + x3 − x 1

x4 + x2y2 − y4 + x3 − x 1

x4 − x3y − y4 + x3 − xy − x 1

x4 − x3y − y4 + xy2 − x 2

x4 + x3y − y4 + x3 − x2y + xy2 − x 2

x4 + x3y + x2y2 + y4 − x2 + xy + x 2

x4 + x3y − xy3 + x3 + x2y − y2 − x 2

x4 + x3y + x2y2 − xy3 − x3 − x2 − y2 − x 2

y4 − x3 + x 4

x3y + y4 − xy2 + x 5

x2y2 − y4 + x3 − x 10

(3, 3) y2 = 2x8 + 2x7 + x6 + 2x5 + x4 + 2x2 + x+ 2 3

y2 = x8 + 2x7 + 2x6 + 2x5 + x2 + x 4

y2 = x7 + x6 + 2x5 + x4 + x3 + x2 + 2x 4

y2 = x8 + x4 + 2x2 + 1 4

y2 = x8 + 2x7 + 2x5 + 2x4 + x3 + x+ 1 8
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(q, f) C N

(4, 2) y2 + (x2 + x+ 1) y = x7 + x6 + x5 + x3 + x2 + x 7

y2 + (x4 + x2 + 1) y = x5 + x2 8

y2 + (x4 + x2 + x+ 1) y = x5 + x3 + x2 + x 9

αx4 + αx3 y + αx2 y2 + x+ y4 1

αx4 + α2 x3 y + α2 x2 y2 + x+ y4 1

α2 x4 + αx3y + αx y3 + x+ y4 2

αx4 + α2 x3 y + α2 x y3 + x+ y4 2

α2 x4 + x3 y + αx2 y2 + α2 x2 y + x y3 + αx y2 + x y + x+ y2 2

x4 + x3 + αx2 y2 + αx2 y + x y3 + α2 x y2 + x y + x+ y2 2

x3y + x2y2 + x3 + y3 + y2 + x 7

x4 + xy3 + x2y + y2 + x 14

x4 + x2y2 + y4 + x2y + xy2 + x2 + xy + y2 + 1 14

(5, 2) y2 = x7 + x5 + 3x3 + x 10

(9, 2) x4 + y4 + z4 28

Proof. The proof follows the same arguments as for genus ≤ 2 by inspection

but, in addition, we must analyze the cases not covered in Sutherland’s database.

To do so, we shall explain in Sections 2.5 and 2.6 how to obtain the list of all

candidate L-polynomials for (potential) DS-curves of genus g attached to the pair

(q, f). If the list is empty, we are done. It happens to be so in all the cases under-

construction on Sutherland’s database, except for the genus-3 cases: hyperelliptic

with (q, f) = (4, 2), and non-hyperlliptic with (q, f) = (7, 2).

As for the case hyperelliptic with (q, f) = (4, 2), we proceed to build the

census of all (isomorphism classes of) hyperelliptic curves over F4. We present

the Magma code in the Appendix, which is an adaption of the code provided by

Xarles in [42] for hyperlliptic curves over F2. There are 2162 isomorphism classes
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of hyperelliptic curves over F4, of which three are DS-curves for F42/F4; in fact,

these three DS-curves can be defined over F2.

With regard to the non-hyperelliptic case with (q, f) = (7, 2), we proceed as

follows. By using the Algorithm Two in Section 2.6, one finds that there is a

unique candidate L-polynomial:

L(t) = (t2 + 5 t+ 7)(t4 − 13 t2 + 49) .

The real Weil polynomial of L(t) turns out to be:

h(x) = P1(x)P2(x) = (x+ 5)(x2 − 27) .

Recall that the roots of the real Weil polynomial h(x) are µi = αi + αi, where αi

are the roots of L(t). Since the resultant of P1(x) and P2(x) equals −2, we can

apply Theorem 1 and Theorem 2 in [21]. Thus, if there is a genus-3 curve C with

the given Weil polynomial, then it must be a double cover of a curve D such that

either:

(a) D is a genus-2 curve with Weil polynomial t4 − 13t2 + 49, or

(b) D is a genus-1 curve with Weil polynomial t2 + 5t+ 7.

Case (a) does not work, because there is no genus-2 curve with Weil polyno-

mial t4 − 13t2 + 49, by using either Algorithm Two again or by the Theorem on

page 335 of [27].

So we must be in case (b). Note that #D(F7) = 13. We can ask how many

of these rational points of D split in the double cover C −→ D, and how many

ramify, and how many are inert. Since we have #C(F7) = 13 and #C(F49) = 13,

no rational points of D are inert, so every rational point either splits or is ramified

in the double cover C −→ D. If we let S be the number of split points and R be
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the number of ramified points, then

S +R = #D(F7) = 13

2S +R= #C(F7) = 13,

so S = 0 and R = 13. But from the Riemann–Hurwitz formula, we see that

only 4 geometric points of D ramify. Thus, (b) cannot hold either.

We reach to the conclusion that such quartic curve over F7 with the above

Weil polynomial does not exist and this completes the classification of DS-curves

of genus 3 over finite fields.

The task of supplying the isomorphism classes of curves for genus g ≥ 4

defined over finite fields (even of small size) gets quickly impracticable and it is

at present out of reach; with the exception for genus g = 4 over F2, for which

Xarles has been able to elaborate the complete list of isomorphism classes in [43].

In fact, we shall deal with this case in Section 2.7. Before discussing cases with

larger genus, we manage two algorithms to produce the list of candidates for the

L-polynomials of DS-curves of a fixed genus.

2.5 Algorithm One

The following algorithm offers a first approach to examine the presence or absence

of DS-curves over finite fields.

Input: An integer g ≥ 1 and a pair (q, f) where q is a prime power and f > 1.

Output: A complete list of L-polynomial candidates for DS-curves of genus g for

Fqf/Fq. The empty list means the absence of DS-curves for these values.

Let ad denote the number of places (closed points) of degree d for a curve of

genus g defined over Fq. Clearly, the DS condition implies that some number ad
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must be zero since one has

Nn = #C(Fqn) =
∑
d|n

dad .

However, observe that the converse is not necessarily true: one could have a6 = 0

and absence of DS, since it might happen the number of points over Fq6 to be

N6 = a1 + 2a2 + 3a3 + 6a6 with a1a2a3 6= 0. We do not know such an example.

The Algorithm One consists in the following steps:

Step 1. Create the list of integers a1 in [qf + 1− gb2q(f/2)c, Ng(q)] provided that

the interval is non-empty, whenever we know the optimal value Ng(q); otherwise,

we use Oesterlé’s bound or q + 1 + gb2q1/2c instead.

Step 2. Choose a double-positive function F (t)� 0, F (t) = 1+2
∑

n≥1 cn cos(nt).

We can (and do) take F (t) such that cn = 0 for all n > g and c1 6= 0. From the

Weil-Serre explicit formulas (see [36], page 96), on has

∑
d≥2

dad

∑
d|n

cnq
−n/2

 ≤ g +
∑
n≥1

cnq
n/2 + (1− a1)

∑
n≥1

cnq
−n/2 ,

so that we get the list of all positive integers [a1, a2, a3, . . . , ag] satisfying the

inequality above. Since all the coefficients of the ad in the above inequality are

non-zero for d ≤ g, we can guarantee that the list of candidates [a1, a2, a3, . . . , ag]

is a finite list. Whenever f ≤ g, we keep only the candidates [a1, a2, a3, . . . , ag]

such that af = 0 (if any).

Step 3. For each candidate [a1, a2, a3, . . . , ag], we form the real Weil polynomial

h(x) =

g∏
i=1

(x− ui) ∈ Z[x]

with ui = πi + πi. To this end, we first compute the reverse of the L-polynomial
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P (t) =
∏g

i=1(1− πit)(1− πit) by using the Zeta function of the eventual curve

Z(t) =
∏
d≥1

1

(1− td)ad
=

P (t)

(1− t)(1− qt)
.

Step 4. We pass a Sturm filter; that is, we form the Sturm sequence attached

to h(x) in order to check whether or not all the roots of h(x) are real and

belong to the interval [−2
√
q, 2
√
q]. In this step the most part of candidates

[a1, a2, a3, . . . , ag] are suppressed.

Step 5. Finally, we discard all the cases where the polynomials h(x) are not

“strongly relatively prime”. That is, if h(x) factors over Z[x] as P1(x)P2(x) with

resultant Resx(P1, P2) = ±1 then h(x) does not arise from a curve. See Serre’s

book [36], Theorem 2.4.1.

Step 6. If f > g then compute af from [a1, a2, a3, . . . , ag] and the rational expres-

sion of the Zeta function Z(t) in order to check whether af is zero or not. More

precisely, we can use the Möebius inversion formulas

Nn =
∑
d|n

dad and an =
1

n

∑
d|n

µ(
n

d
)Nd .

where Nd = qd + 1− sd with sd =
∑2g

i=1 π
d
i and |πi| = q1/2.

There are two delicate points in the above algorithm. The first one is choosing

an appropriate double-positive function in Step 2. Even with a good choice

of F (t) � 0, it can happen that we end up with an enormous list of candidates

[a1, a2, . . . , ag] making the algorithm unfeasible. Indeed, observe that every ad

should range from 0 up to a certain bound which makes the algorithm explode

very quickly if the bound is not sharp enough. To avoid these problems, we can

proceed with an alternative route as presented in the next Section. The idea is to

select the candidates just letting each ad range over a shorter interval of positive

integers.
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2.6 Algorithm Two

To improve the above algorithm collecting the candidate reverse L-polynomials

P (t) for DS-curves, we fix g and q, and then start with the formal identity

(1− t)(1− qt)
(1− t)a1(1− t2)a2 . . . (1− tg)ag

= P (t)
∏
d≥g

(1− td)ad ,

where again ad denotes the number of places of degree d. The rational function

on the left-hand side of the equality has no pole at t = 0 (it takes the value 1)

so that we can rewrite it as
∑g

n=0Ant
n + O(tg+1). As for the right-hand side, it

takes the form P (t)[g]+O(tg+1), where P (t)[g] is the truncated polynomial cut-off

of P (t) up to degree g. The q-palindromic properties of the L-polynomial allow

us to reconstruct the degree-2g polynomial P (t) from
∑g

n=0Ant
n. Here, we are

considering the coefficients Ai = Ai(a1, . . . , ag) as formal polynomial expressions

in the variables a1, . . . , ag.

Now, by means of the resultant

Rest(q t
2 − t x+ 1, P (t)− tgh(x)) ,

we get the (potential) real Weil polynomial

h(x) = xg +H1x
g−1 + · · ·+Hg−2x

2 +Hg−1x+Hg

where each Hi = Hi(a1, . . . , ag) is a polynomial expression in Q[a1, . . . , ag].

Proposition 5. For every 1 ≤ i ≤ g, the polynomial Hi(a1, . . . , ag) has multi-

degree (1, 0, . . . , 0) in the variables (ai, ai+1, . . . , ag). In other words, we can write

Hi = Hi(a1, a2, . . . , ai) linearly in the variable ai.

Proof. First, we prove that the degree g polynomial P (t)[g] =
∑g

n=0Ant
n, trun-

cated of the reverse L-polynomial P (t) up to O(tg+1) with indeterminate coeffi-

cients Ak = Ak(a1, a2, . . . , ag), satisfies the reverse statement. That is, we want
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to show that every polynomial Ak = Ak(a1, a2, . . . , ag) = Ak(a1, a2, . . . , ak) does

not depend on ak+1, . . . , ag and it is of degree one in the variable ak. We have

A0(a1, a2, . . . , ag) = 1 and A1(a1, a2, . . . , ag) = a1 − (q + 1). The polynomial

Ak(a1, a2, . . . , ag) is the kth coefficient of the Taylor series of

(1− t)(1− qt)
(1− t)a1(1− t2)a2 . . . (1− tg)ag

=

(1− t)(1− qt)(1− t)−a1(1− t2)−a2 . . . (1− tg)−ag =

(1− t)(1− qt)

(
∞∑
n=0

(
−a1
n

)
(−t)n

)(
∞∑
n=0

(
−a2
n

)
(−t)2n

)(
∞∑
n=0

(
−ag
n

)
(−t)gn

)

where
(
α
n

)
denotes the generalized binomial number. To compute the coefficient

of tk we only need to take care of the partial product

(1− (q + 1)t− qt2)
k∏
i=1

(
∞∑
n=0

(
−ai
n

)
(−t)in

)
.

Therefore Ak = Ak(a1, a2, . . . , ag) = Ak(a1, a2, . . . , ak) does not depend on the

variables ak+1, . . . , ag. The unique contribution of ak into the coefficient of tk

occurs in

(1− (q + 1)t− qt2)

(
∞∑
n=0

(
−ak
n

)
(−t)kn

)

and it is equal to −
(−ak

1

)
= ak.

The claim on the coefficients of the real Weil polynomial h(x) follows from

the equality

P (t) = tgh

(
qt2 + 1

t

)
.

Indeed, letting P (t) =
∑2g

n=0Ant
n with Ak = qk−gA2g−k for k > g, and
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h(x) =
∑g

n=0Hnx
g−n with H0 = 1, one has

2g∑
n=0

Ant
n = tg

(
g∑

n=0

Hn

(
qt2 + 1

t

)g−n)
=

g∑
n=0

Hn(qt2 + 1)g−ntn =

g∑
n=0

Hn

g−n∑
k=0

(
g − n
k

)
qkt2k+n =

2g∑
n=0

 n∑
k=0

k≡n(2)

Hk

(
g − k

(n− k)/2

)
q(n−k)/2

 tn .

Hence, for 0 ≤ n ≤ 2g, it holds

An =
n∑
k=0

k≡n(2)

Hk

(
g − k

(n− k)/2

)
q(n−k)/2 .

The matrix of the corresponding linear system is lower triangular and invert-

ible. Thus, the inverse matrix is upper triangular and it follows that Hi =

Hi(a1, . . . , ai) and of degree one in ai as desired, since we have proved the same

property for the polynomials Ai = Ai(a1, . . . , ai) for i ≤ g and Ai = qi−gA2g−i for

i > g.

The roots of h(x) must be real and contained in the interval [−2
√
q, 2
√
q].

The same assertion holds also for the derivatives of h(x). Then, we proceed by

recursion as follows.

Start with a candidate of length one [a1], with a1 in the Hasse-Weil-Serre

interval. By increasing i from 2 to g, suppose we have the list of partial candidate

sequences of length i − 1. For each one of the candidates [a1, a2, . . . , ai−1], we

substitute these values it into the (g − i)th derivative

h(g−i)(x) = Ti(x) + t(ai)

where Ti(x) is a degree-i polynomial in Q[x] with no constant term, and t(ai) =

(g − i)!Hi(a1, . . . , ai−1, ai) is a linear polynomial in Q[ai] due to Proposition 5.

Obviously, we do not know how to compute the roots of h(g−i)(x) since we do

not know the value of ai, but we can (and do) compute the roots of Ti(x)′ ∈ Q[x].
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Let α1, . . . , αi−1 be the roots of Ti(x)′. By recursion, we know that all of them

are real and belong to the interval [−2
√
q, 2
√
q] since they are also the roots of

h(g−i+1)(x). We also let α0 = −2
√
q and αi = 2

√
q. For even i, let denote

m = max
j odd
{Ti(αj)} M = min

j even
{Ti(αj)}

and, for odd i, let

m = max
j even
{Ti(αj)} M = min

j odd
{Ti(αj)} .

Finally, it remains to solve the linear inequalities in integers

0 ≤ ai , t(ai) ≤ min{M, |m|}

when i is even, or

0 ≤ ai , t(ai) ≤ min{|M |,m}

when i is odd, since we want the translates h(g−i)(x) = Ti(x) + t(ai) to have all

the roots in [−2
√
q, 2
√

2].

Let us illustrate the Algorithm Two with an example.

The elephant silhoutte. Take genus g = 5 and finite field of size q = 2. Assume

we start with [a1] = [9]. Formally, the real Weil polynomial is given by

h(x) = x5 + 6x4 + (10 + a2)x
3 + (6a2 + a3)x

2+

1

2

(
a22 + 29a2 + 12a3 − 20 + 2a4

)
x+

(3 a22 + a2a3 + 27a2 + 16a3 + 6a4 − 12 + a5) .

The fourth derivative h(4)(x) = 24(6 + 5x) has root α = −6/5, and the third

derivative is

h(3)(x) = 6(10x2 + 24x) + 6(10 + a2) .
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So T2(x) = 6(10x2 + 24x) and T2(−6/5) = −432/5. Hence, we want

6(10 + a2) ≤ 432/5 = 86.4

which amounts to a2 ≤ 4. At this point, our list of partial length 2 candidates is

[9, 0], [9, 1], [9, 2], [9, 3], and [9, 4]. Keep going on the procedure, at some point we

get the partial candidate [9, 0, 0, 2]. A priori, since we know that N5 = a1 +5a5 ≤

25 + 1 + 2g
√

25 = 89.5685, we must have a5 ≤ 16. But our strategy performs

better. The real Weil polynomial attached to the sequence [9, 0, 0, 2, a5] is

h(x) = x5 + 6x4 + 10x3 − 8x+ a5 .

In the figure below, the elephant silhouette corresponds to the plot of the poly-

nomial T5(x) = x5 + 6x4 + 10x3−8x and it suggests that the possible values of a5

(if any) are very limited once we have obtained the previous values [a1, a2, a3, a4].

-4 -3 -2 -1 1

-20

-15

-10

-5

5

10

Indeed, one has that the unique polynomial h(x) obtained as a translation

by positive integers from T5(x) and having the five reals roots in [−2
√

2, 2
√

2] is

achieved by a5 = 0.

The example above corresponds to the DS-curve of genus 5 over F2 with

[a1, a2, a3, a4, a5] = [9, 0, 0, 2, 0] given by the affine equation

y4 + (x2 + x+ 1)y2 + (x2 + x)y + x7 + x3 = 0 .
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Its reverse L-polynomial is:

32t10 + 96t9 + 160t8 + 192t7 + 184t6 + 144t5 + 92t4 + 48t3 + 20t2 + 6t+ 1 .

Remark 4. We present in the Appendix the code of a Mathematica program that

we have elaborated to perform the search of candidate L-polynomials following the

above Algorithm Two. It should be notice that, a posteriori, we learned the inclu-

sion of the function Weil polynomials() in Sagemath [13] (after version 9.1).

However, it should be noticed that this Sage function is less efficient with regard

our purposes since its functionality does not require the sequence of numbers of

points for the (eventual) curve to be a sequence of positive integers.

2.7 Genus 4

Recall that the list of admissible pairs (q, f) for curves of genus g = 4 is given by

the values in the table:

g = 4

q f

2 2, 3, 4, 5, 6

3 2, 3, 4

4 2, 3

5 2

7 2

8 2

9 2

11 2

Xarles in [43] gives an algorithm to build the complete list of isomorphism

classes of genus-4 curves over F2. Hence, we can extract from that list the genus-

4 DS-curves over F2.
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When the size of the finite field is q > 2, we must content ourselves producing

the list of candidate L-polynomials for DS-cruves by means of the Algorithm Two

presented in Section 2.6. Serre and Howe-Lauter’s resultant methods allow us to

eliminate some candidates. Nonetheless, the final list of curves (over F2) along

with the list of candidate L-polynomials (for q > 2) is too large to be included in

this memoir. Instead, we refer to the web page:

https://web.mat.upc.edu/joan.carles.lario/DS.html

where the corresponding data can be read.

Now, we display the data about the ratio between candidate L-polynomials

with DS and the total amount of candidate L-polynomials:

(q.m) # DS # total

(2, 2) 188 1 645

(2, 3) 193 1 645

(2, 4) 36 1 645

(2, 5) 44 1 645

(2, 6) 0 1 645

(3, 2) 457 10 963

(3, 3) 110 10 963

(3, 4) 0 10 963

(4, 2) 693 45 763

(4, 3) 9 45 763

(5, 2) 409 132 839

(7, 2) 41 705 593

(8, 2) 8 1 371 739

(9, 2) 4 2 484 783

(11, 2) 0 6 718 947

Let us illustrate how results of Serre and Howe-Lauter can be used to discard

some of the DS-candidates. To this end, we shall recall the criteria used to
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eliminate the existence of curves with certain real Weil polynomials or to ensure

the existence of double-covers with real Weil polynomial a factor of the given one.

Throughout, we shall make use of the isogeny class of abelian varieties at-

tached to the real Weil polynomial by the Tate-Honda theorem (see [39], [17]).

First, we have the following Serre’s criterion in [36].

Theorem 2 (Serre (2020), Theorem 2.4.1). Suppose the real Weil polynomial h

of an abelian variety factors in Z[x] as h1h2, where h1 and h2 are nonconstant

polynomials with resultant(h1, h2) = ±1. Then there is no curve with real Weil

polynomial h.

Howe in [20] gives a method to tell whether or not an isogeny class of ordinary

abelian varieties contains a principally polarized variety. An isogeny class that

does not contain principally polarized varieties does not contain Jacobians. Thus,

we can use this criterion to eliminate DS-candidates.

Recall that equivalent conditions for a g-dimensional abelian variety A over

Fq to be ordinary are:

(i) The coefficient of tg in its Weil polynomial is coprime to q.

(ii) The constant term of its real Weil polynomial h is coprime to q.

(iii) If p is the prime divisor of q, then the p-torsion subscheme A[p] is the

product of a reduced group scheme and a local group scheme with reduced

dual.

The above results of Howe were generalized and, in particular, derived in the

following practical criterion:

Theorem 3 (Howe-Lauter (2012), see [22]). If a curve C has real Weil polynomial

h = h1h2, where the reduced resultant of h1 and h2 is 2, then C is a double cover

of a curve D whose real Weil polynomial is either h1 or h2.
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Here, the reduced resultant of h1 and h2 is defined as follows. Let ri be the

radical of hi; that is, the product of the prime factors of hi. Let n be the positive

generator of the ideal (r1, r2) ∩ Z. We call n the reduced resultant of h1 and h2.

Let us apply these criteria to the case (q,m) = (4, 3). For every DS-candidate,

we list its Weil polynomial along with its real Weil polynomial:

Case L(t) h(x)

a (t− 2)4(t2 + 2t+ 4)2 (x− 4)2(x+ 2)2

b (t− 2)2(t2 + t+ 4)(t2 + 2t+ 4)2 (x+ 2)(x3 + x2 − 13x− 23)

c (t2 + 2t+ 4)2(t4 − 2t3 + t2 − 8t+ 16) (x− 4)(x+ 3)(x+ 2)2

d (t2 + 2t+ 4)(t6 − 14t3 + 64) (x+ 2)2(x2 − 2x− 7)

e (t2 + 2t+ 4)(t6 + t5 − t4 − 15t3 − 4t2 + 16t+ 64) (x+ 2)(x3 − 12x− 14)

f (t− 2)2(t2 + 3t+ 4)(t2 + 2t+ 4)2 (x− 4)(x+ 1)(x+ 2)2

g (t2 + t+ 4)2(t2 + 2t+ 4)2 (x+ 2)2(x+ 3)2

h (t2 + t+ 4)(t2 + 3t+ 4)(t2 + 2t+ 4)2 (x+ 1)(x+ 3)(x+ 2)2

i (t2 + 2t+ 4)2(t2 + 3t+ 4)2 (x+ 1)2(x+ 2)2

Case a: The reduced resultant of h1(x) = (x− 4)2 and h2(x) = (x+ 2)2 is equal

to 6. Thus, we cannot apply neither Serre’s or Howe-Lauter criteria.

Case b: The resultant of h1(x) = x + 2 and h2(x) = x3 + x2 − 13x− 23 is equal

to −1. Serre’s criterion applies so that there is not any DS-curve in this case.

Case c: The different choices of h1 and h2 give rise to reduced resultants −6, 7,

and 42 so that we cannot apply the above criteria.

Case d: The resultant of h1(x) = (x+ 2)2 and h2(x) = x2 − 2x− 7 is equal to 1.

Serre’s criterion applies so that there is not any DS-curve in this case.

Case e: The resultant of h1(x) = x+ 2 and h2(x) = x3 − 12x− 14 is equal to 2.

Howe-Lauter criterion ensures that C is a double-cover of a curve D with real

Weil polynomial either x + 2 or x3 − 12x − 14. From the real Weil polynomials
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we obtain the following possibilities:

# of points over Fq F4 F42 F43

genus(C) = 4 8 18 8

genus(D) = 1 7 21 49

genus(D) = 3 6 14 24

The Hurwitz formula yields to

2 genus(C)− 2 = 2(2 genus(D)− 2) +R

where R denotes the number of ramified points in the double-cover C −→ D.

Since R ≥ 0, it follows that the case genus(D) = 3 cannot occur. The other

possibility is that D is an elliptic curve over F4 and R = 6. From the values of

the above table, we deduce that the ramified points of D in C should be defined

over F4. Hence, all 21 points in D(F42) must split in C(F42) but C(F42) has only

18 points. Thus, we also get a contradiction in this case.

Case f: The different choices of h1 and h2 give rise to reduced resultants −5, 6,

and 30 so that we cannot apply the above criteria.

Case g: The resultant of h1(x) = (x + 2)2 and h2(x) = (x + 3)2 is equal to 1.

Serre’s criterion applies so that there is non DS-curve in this case.

Case h: The reduced resultant of h1(x) = x + 1 and h2(x) = (x + 3)(x + 2)2 is

equal to 2. Howe-Lauter criterion ensures that C is a double-cover of a curve D

with real Weil polynomial either x + 1 or (x + 3)(x + 2)2. From the real Weil

polynomials we obtain the following possibilities:

# of points over Fq F4 F42 F43

genus(C) = 4 13 31 13

genus(D) = 1 6 24 54

genus(D) = 3 12 24 24
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Again the Hurwitz formula yields to a contradiction when genus(D) = 3. Thus,

we can assume that D is an elliptic curve with #D(F4) = 6. Since C is a double-

cover of D, in this case, #C(F4) ≤ 12 which is a contradiction.

Case i: The resultant of h1(x) = (x + 1)2 and h2(x) = (x + 2)2 is equal to 1.

Serre’s criterion applies so that there is non DS-curve in this case.

Summarizing, in this case we have reduced the number of candidates form 9

to 3.

2.8 Genus 5

Recall that the list of admissible pairs (q, f) for genus g = 5 is given by the values

in the table:

g = 5

q f

2 2, 3, 4, 5, 6

3 2, 3, 4

4 2, 3

5 2, 3

7 2

8 2

9 2

11 2

13 2

The aim of this section is to present the statistics of candidate L-polynomials,

along with some examples of genus-5 DS-curves.

In the following tables, for every admissible pair (q, f), the first row displays

the number of points N1 = a1 = #C(Fq) of an eventual DS-curve C, and the

second row gives the number of candidate L-polynomials obtained through our

Algorithm Two.
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(q, f) = (2, 2)

N1 0 1 2 3 4 5 6 7 8 9

#L 26 80 176 275 311 234 115 39 9 1

(q, f) = (2, 3)

N1 0 1 2 3 4 5 6 7 8 9

#L 45 105 200 272 258 171 82 28 9 1

(q, f) = (2, 4)

N1 0 1 2 3 4 5 6 7 8 9

#L 47 107 135 132 108 75 29 9 2 0

(q, f) = (2, 5)

a1 0 1 2 3 4 5 6 7 8 9

#L 13 3 30 61 42 13 16 6 3 1

(q, f) = (2, 6)

N1 0 1 2 3 4 5 6 7 8 9

#L 3 8 13 5 6 7 4 0 0 0
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(q, f) = (3, 2)

N1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

#L 88 276 649 1225 1869 2187 1999 1584 1132 503 194 63 21 9

(q, f) = (3, 3)

a1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

#L 28 94 226 388 503 421 394 354 268 94 22 6 6 0

(q, f) = (3, 4)

a1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

#L 1 3 2 10 9 11 2 3 1 0 0 0 0 0

(q, f) = (4, 2)

N1 0 1 2 3 4 5 6 7 8 9

#L 184 475 1041 1824 2706 3901 4904 4983 4284 3356

N1 10 11 12 13 14 15 16 17

#L 2604 1987 910 368 152 66 29 11

(q, f) = (4, 3)

N1 0 1 2 3 4 5 6 7 8 9

#L 1 5 22 41 40 12 6 33 52 72

N1 10 11 12 13 14 15 16 17

#L 51 19 4 2 1 1 1 1
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(q, f) = (5, 2)

N1 0 1 2 3 4 5 6 7 8 9

#L 40 225 713 1469 2017 1959 2089 4219 5983 5849

N1 10 11 12 13 14 15 16 17 18 19

#L 4539 3089 2013 1523 1367 502 169 56 21 7

N1 20

#L 4

(q, f) = (5, 3)

N1 0 1 2 3 4 5 6 7 8 9

#L 0 0 0 0 0 0 0 0 0 0

N1 10 11 12 13 14 15 16 17 18 19

#L 0 0 0 0 0 0 1 0 0 0

N1 20

#L 0

(q, f) = (7, 2)

N1 0 1 2 3 4 5 6 7 8 9

#L 0 1 42 202 410 224 11 1 1 11

N1 10 11 12 13 14 15 16 17 18 19

#L 291 2343 3107 2312 1204 471 183 79 71 188

N1 20 21 22 23 24 25 26 27 28

#L 225 72 25 9 4 2 2 1 1
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(q, f) = (8, 2)

N1 0 1 2 3 4 5 6 7 8 9

#L 0 0 0 11 57 26 0 0 0 0

N1 10 11 12 13 14 15 16 17 18 19

#L 0 0 49 965 1071 544 145 15 0 0

N1 20 21 22 23 24 25 26 27 28 29

#L 0 0 41 38 10 2 1 0 0 0

(q, f) = (9, 2)

N1 0 1 2 3 4 5 6 7 8 9

#L 0 0 0 1 9 4 0 0 0 0

N1 10 11 12 13 14 15 16 17 18 19

#L 0 0 0 0 15 252 213 91 20 1

N1 20 21 22 23 24 25 26 27 28 29

#L 0 0 0 0 1 81 31 13 7 4

N1 30 31 32 33 34 35

#L 2 1 1 1 1 1
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(q, f) = (11, 2)

N1 0 1 2 3 4 5 6 7 8 9

#L 0 0 0 0 0 0 0 0 0 0

N1 10 11 12 13 14 15 16 17 18 19

#L 0 0 0 0 0 0 0 0 0 0

N1 20 21 22 23 24 25 26 27 28 29

#L 0 0 0 0 0 0 0 0 0 0

N1 30 31 32 33 34 35 36 37 38

#L 0 0 0 0 0 0 0 0 0

(q, f) = (13, 2)

N1 0 1 2 3 4 5 6 7 8 9

#L 0 0 0 0 0 0 0 0 0 0

N1 10 11 12 13 14 15 16 17 18 19

#L 0 0 0 0 0 0 0 0 0 0

N1 20 21 22 23 24 25 26 27 28 29

#L 0 0 0 0 0 0 0 0 0 0

N1 30 31 32 33 34 35 36 37 38 39

#L 0 0 0 0 0 0 0 0 0 0

N1 40 41 42 43 44

#L 0 0 0 0 0
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Some examples of genus-5 curves with DS taken from [40] and [31]:

(q, f) Defining equation of a genus-5 DS-curve [a1, a2, a3, a4, a5]

(2, 2) x6 + x5y + x3y3 + y6 + x5 + x4y + x3y + x2y2 + xy3+ [4, 0, 6, 4, 3]

y4 + x2y + xy2 + y3 + xy + x+ y + 1

(2, 5) y4 + (x2 + x+ 1)y2 + (x2 + x)y + x7 + x3 [9, 0, 0, 2, 0]
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2.9 Delinge-Lusztig curves

In the middle 70’s, Delinge and Lusztig were able to give an explicit description

of the irreducible representations of the semi-simple finite groups of Lie type [12].

These representations can be read from the `-adic cohomology of the so-called

Deligne-Lusztig algebraic varieties which are defined over finite fields. In this

section, we make the observation that, in the one-dimensional case, Deligne-

Lusztig curves turn out to be DS-curves.

2.9.1 Hermitian curves (type 2A2).

Here q denotes a square prime-power, and q0 = q1/2. The hermitian curve is

defined by the affine equation:

C : xq0+1 + yq0+1 + zq0+1 = 0 .

It is an optimal curve (in fact, it is a maximal curve) of genus g = (q− q0)/2 over

Fq. Its Weil polynomial is

L(t) = (t+ q0)
2g .

An easy computation shows that

#C(Fq) = #C(Fq2) = q30 + 1 = q + 1 + 2gq1/2 .

2.9.2 Suzuki curves (type 2B2)

Here, q = 22e+1 and q0 = 2e for e ≥ 1. The Suzuki curve is defined by the affine

equation:

C : yq − y = xq0(xq − x) .

It has genus g = q0(q − 1) and its Weil polynomial is

L(t) =

(
t− q1/2−1 + i√

2

)g (
t− q1/2−1− i√

2

)g
= (t2 + 2q0t+ q)g .
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An easy computation shows that

#C(Fq) = #C(Fq2) = #C(Fq3) = q2 + 1 .

2.9.3 Ree curves (type 2G2)

Now, we take q = 32s+1, q0 = 3s for s ≥ 1. The Ree curve is given by the

equations

C : yq − y = xq0(xq − x) , zq − z = xq0(yq − y)

It has genus g = 3
2
q0(q − 1)(q + q0 + 1). Its Weil polynomial is

L(t) = (t2 + q)
1
2
q0(q−1)(q+3q0+1)(t2 + 3q0t+ q)q0(q

2−1)

One readily checks that

#C(Fq) = #C(Fq2) = #C(Fq3) = #C(Fq4) = #C(Fq5) = 1 + q3 .

2.10 Carlitz curves

Carlitz initiated the study of functions fields that play an analogous role to that

of cyclotomic fields in algebraic number theory (see [8], [7]). In this section, we

shall deal with no-singular curves attached to the Carlitz modules. Our aim is to

point out that Carlitz curves can be a good source of DS-curves. First, we recall

their definition. We refer to [32], [9], [16], and [1] for detailed expositions on the

arithmetic of Carlitz extensions.

Let M ∈ Fq[t] be a monic polynomial of degree ≥ 1. The M -torsion Carlitz

module

ΛM = {γ ∈ Fq(t) : [M ](γ) = 0} = 〈λM〉

is a finite 1-dimensional Fq[t]-module via the Carlitz action determined by recur-
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sion and linearly:

[t](x) = xq + tx , [tn](x) = [t]([tn−1](x)) , [1](x) = x .

Let KM = Fq(t, λM). The Carlitz extension KM/Fq(t) attached to M is

an abelian extension unramified outside the primes dividing M∞. The Car-

litz action induces an isomorphism between (Fq[t]/M)∗ and the Galois group

Gal(KM/Fq(t)):

(Fq[t]/M)∗ −→ Gal(KM/Fq(t)) , Q 7→ σQ : λM 7→ [Q](λM) .

Let ΦM(x) be the M -th Carlitz polynomial defining the extension KM ; that

is,

ΦM(x) =
[M ](x)∏

Q|M

ΦQ(x)

where Q runs the monic polynomials dividing M of degree less than degM , and

Φ1(x) = x. The minimal polynomial of λM over Fq(t)[x] is the irreducible Carlitz

polynomial ΦM(x).

The M -torsion field KM can be regarded as the function field of an algebraic

curve defined over Fq, that we shall denote here by XM and call it the Carlitz curve

of level M . Our aim is to show the Diophantine stability of XM in a particular

example for an specific M . We should point out that experimentally we have

found that Carlitz curves tend to be DS-curves and, with no doubt, this deserves

further study.

We shall take M = t3 in F2[t]. The corresponding Carlitz extension is KM =

F2(t,ΛM) = F2(t)[x]/(x4 + (t2 + t)x2 + t2x + t). The unique places that can be

ramified are t and the infinite place ∞ = 1/t. It is well-known that the integral

closure of Fq[t] in KM is Fq[t][λM ] (see [32], Proposition 12.9, page 207).
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Thus, we can argue as follows. As for t, one checks that

ΦM(x) = x4 + (t2 + t)x2 + t2x+ t ≡ x4 mod t

so that t ramifies with ramification index 4. As for the infinite place 1/t, we must

look at the corresponding Newton polygon attached to

ΦM(x) =
∑4

i=0 cix
i =x4 + (t2 + t)x2 + t2x+ t

=x4 + (1/t)−2(1 + 1/t)x2 + (1/t)−2x+ (1/t)−1

i

ord∞(ci)

(0, 1)

(1, 2) (2, 2)

(4,0)

Since there is a unique segment of slope −1/4 and base of length 4 that means

that the quartic polynomial ΦM(x) has four different roots of valuation 1/4 with

respect to the place at infinity. In other words, the infinite place of Fq(t) splits

completely in KM .

Let g be the genus of the Carlitz curve XM of level M . In this case, the

different of the Carlitz extension KM is D = (t)8. By the Hurwitz genus formula,

we have: 2g− 2 = 4 (2 · 0− 2) + deg(D) = −8 + 8 = 0. It follows that g = 1. The

Zeta-function of the curve XM is given by

ZM(T ) =
∏
d≥1

1

(1− T d)ad
,

where ad denotes the number of places of XM of degree d. For n ≥ 1, let Nn =

#XM(Fqn). Recall that Nn =
∑

d|n dad and ad = 1
d

∑
d′|d µ( d

d′
)Nd′ .

Here, all prime polynomials will be assumed implicitly to be monic. The
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following table displays the factorization of ΦM(x) mod π in (F2[t]/π)[x], for

primes π ∈ F2[t] of degree d ≤ 5; the third column labeled “type” indicates the

degrees of the irreducible factors of the quartic polynomial ΦM(x) mod π. The

fourth column displays the number ad of places of XM of degree d.

d π type ad

1 t [1]4 a1 = 5

1 t+ 1 [4]

1 ∞ = 1/t [1, 1, 1, 1]

2 t2 + t+ 1 [4] a2 = 0

3 t3 + t+ 1 [4] a3 = 0

3 t3 + t+ 1 [2, 2]

4 t4 + t+ 1 [4] a4 = 5

4 t4 + t3 + 1 [1, 1, 1, 1]

4 t4 + t3 + t2 + 1 [4]

5 t5 + t2 + 1 [2, 2] a5 = 4

5 t5 + t3 + 1 [1, 1, 1, 1]

5 t5 + t3 + t2 + t+ 1 [4]

5 t5 + t4 + t2 + t+ 1 [4]

5 t5 + t4 + t3 + t+ 1 [4]

5 t5 + t4 + t3 + t2 + 1 [2, 2]

Observe that the elliptic curve XM over F2 is a DS-curve. Indeed, we have

a2 = a3 = 0 and therefore XM(F2) = XM(F4) = XM(F8). It is worth to explain

why a4 = 5. One should analyze the primes π in F2[t] of degree d′ dividing 4.

First, we get four rational places lying over the prime π = t4 + t3 + 1 of degree

d′ = 4 since ΦM(x) mod π splits completely in (F2[t]/π)[x]. Second, one more

place arises from the prime π = t + 1 of degree d′ = 1: indeed, the polynomial
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ΦM mod t+ 1 is irreducible in F2[x] and it factors as

ΦM(x) mod t+ 1 = (x+ α)(x+ α + 1)(x+ α2)(x+ α2 + 1)

in F24 [x]. Here, α denotes the Conway generator of F∗24 . Finally, we must consider

the prime π = t2 + t+ 1 of degree d′ = 2. The polynomial ΦM mod π factors into

irreducibles as

(x2 + (α2 + α)x+ α3 + α + 1)(x2 + (α2 + α)x+ α3 + α2 + 1)

in F24 [x]. Thus, this prime does not give any contribution to places of degree 4.

Summing up, one gets a4 = 5. As for degree-5 places, one gets that a5 = 4 since

it only incorporates the four places over the prime π = t5 + t3 + 1. The sequence

of numbers of places extends as:

[a6, a7, a8, a9, a10, a11, a12, . . . ] = [10, 20, 25, 60, 100, 180, 345, . . . ] .

Of course, the number of points Nn and the number of places ad are determined

by the first N1 = a1 in this example, since the curve XM has genus one.

For the general case (any M), the refinement of the analogous Dirichlet the-

orem for function fields asserts that there are always primes π in Fq[t] with

π ≡ 1 mod M and deg(π) = d for every degree d ≥ d0, with d0 effectively

computable in terms of the genus of XM . Hence, ad 6= 0 for d large enough.

However, as it has been mentioned, Carlitz curves tend to be DS-curves.
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Chapter 3

DS-surfaces

Max Noether(1844-1921) said in the book of Federigo Enriques [15]: “Algebraic

curves are created by God, algebraic surfaces are created by devil.”

Noether initiated the systematic study of algebraic surfaces, and Castelnuovo

proved important parts of the classification. Enriques completed the classifica-

tion of complex projective surfaces. Later, Kodaira extended the classification

including non-algebraic compact surfaces. The analogous classification of surfaces

in positive characteristic was achieved by Mumford and Bombieri-Mumford in a

series of three articles [30], [5], [6].

In this chapter, the letter X will denote a non-singular projective algebraic

surface. Some general references for the theory of surfaces are [2], [3] and [44].

We also refer to [4] for computational aspects related to surfaces.

Among the most important birational invariants ofX there are the plurigenera

Pn = dimH0(Kn), for n ≥ 1, where K denotes the canonical bundle of X.

The Kodaira dimension κ of X is defined in terms of the growth rate of their

plurigenera. More precisely, κ = −1 if all Pn = 0, and otherwise is the smallest
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number such that Pn/n
κ is bounded. It turns out that the Kodaira dimension κ

is either −1, 0, 1, or 2.

For 0 ≤ i, j ≤ 2, the Hodge numbers of X are hi,j = dimHj(X,Ωi), where

Ωi is the sheaf of differential i-forms. They are arranged in the so-called Hodge

diamond:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

By Serre duality, we have h0,0 = h2,2 = 1 and hi,j = h2−i,2−j. All Hodge numbers

are birational invariants, except h1,1 which increases by 1 under blowing up a

single point. If the surface is Kähler then hi,j = hj,i. Since we are interested in

projective algebraic surfaces, the shape of the Hodge diamond is

1

h1,0 h1,0

h2,0 h1,1 h2,0

h1,0 h1,0

1

For complex surfaces, the Betti numbers of X are defined by βi = dimH i(X).

They can be obtained from the Hodge diamond by adding the Hodge numbers

for each row:

β0 = β4 = 1 , β1 = β3 = 2h1,0 , β2 = h1,1 + 2h2,0 .

The Euler characteristic ofX is defined by E(X) =
∑4

i=0(−1)iβi. The irregularity

q = q(X) of X is the dimension of the Picard variety and the Albanese variety as-
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sociated with X. For complex surfaces (but not always for positive characterisitic)

we have q = h1,0. The holomorphic Euler characteristic is χ(X) = h0,2− h0,1 + 1.

Finally, c2 = E and c21 = K2 = 12χ− E are called the Chern numbers of X.

Any surface is birational to a non-singular surface. A non-singular surface

is called minimal if it cannot be obtained from another non-singular surface by

blowing up a point.

Every surface X is birational to a minimal non-singular surface, and this

minimal non-singular surface is unique if X has Kodaira dimension ≥ 0 (or is

not algebraic). Algebraic surfaces of Kodaira dimension −1 may be birational to

more than one minimal non-singular surface.

3.1 Sign of the functional equation

At the beginning of Chapter 2, we mentioned that the Riemann-Roch theorem

implies the rationality and the functional equation of the Zeta function for curves.

In particular, for that case one also obtains that the sign of the functional equation

is always +1. In the usual references, it is common not to give further information

on the sign of the functional equation for varieties of larger dimension. For future

use, let us compute the sign in the case of surfaces.

Let X over Fq be a non-singular projective surface. Its Zeta function

ζX(t) =
P1(t)P3(t)

P0(t)P2(t)P4(t)

is a rational function and satisfies the functional equation:

ζX

(
1

q2t

)
= ±qEtEζX(t) .

We want to determine the sign ±1. We have

Pi(t) =

βi∏
j=1

(1− αijt)
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with |αij| = qi/2. In particular, one has P0(t) = 1− t and P2(t) = 1− q2t. Recall

that E = E(X) denotes the Euler characteristic of the surface X; that is, the

alternate sum β0 − β1 + β2 − β3 + β4.

Proposition 6. With the above notations, the sign of the functional equation for

ζX(t) is (−1)E.

Proof. Let us compute

ζ

(
1

q2t

)
=

P1

(
1
q2t

)
P3

(
1
q2t

)
P0

(
1
q2t

)
P2

(
1
q2t

)
P4

(
1
q2t

) .
On the one hand, we have

P0

(
1

q2t

)
= −P4(t)/(q

2t)

and

P4

(
1

q2t

)
= −P0(t)/t, .

As for the middle term P2(t), we compute

P2

(
1
q2t

)
=

β2∏
j=1

(
1− α2j

1

q2t

)
=

β2∏
j=1

(
q2t− α2j

)
q2β2tβ2

=

β2∏
j=1

(α2jα2jt− α2j)

q2β2tβ2
=

β2∏
j=1

α2j

β2∏
j=1

(α2jt− 1)

q2β2tβ2

=

qβ2(−1)β2
β2∏
j=1

(1− tα2j)

q2β2tβ2
=
qβ2(−1)β2P2(t)

q2β2tβ2
.

Similarly, we get

P1

(
1
q2t

)
(−1)β1q−β1t−β1P3(t)

P3

(
1
q2t

)
(−1)β1q−β1t−β1P1(t) .
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Putting altogether, we obtain

ζX

(
1

q2t

)
= (−1)β2(qt)2−2β1+β2ζX(t)

as we wanted.

3.2 Minimal surfaces

The old italian school realized that birational equivalence is a sensible relation up

to which algebraic varieties may be classified. Two algebraic varieties are bira-

tional if they contain isomorphic dense Zariski-open subsets. Any birational mor-

phism between smooth surfaces can be factored as a finite sequence of blowups.

A surface X is minimal if any birational morphism X → X ′ to any other

surface X ′ is an isomorphism. As we already mentioned in the introduction of

this chapter, every smooth surface Y is birational to a minimal non-singular

surface X. If Y is of nonnegative Kodaira dimension, then there exists a unique

minimal model X of Y , and X can be constructed from iterated blow downs of

(−1)-curves.

The Minimal Model Program for algebraic varieties of arbitrary dimension

seeks to construct birational models which are as simple as possible. It is currently

an active research area within algebraic geometry. In the case of surfaces, the

program has been achieved: any surface can be obtained as a blow-up of a minimal

surface X. Except for Kodaira dimension −1, minimal surfaces are unique within

birational equivalence classes.

As a consequence, the classification (up to birational equivalence) of surfaces

can be reduced to the classification of minimal surfaces, and this goal was attained

by Enriques (charcateristic 0) and Bombieri-Mumford (characteristic > 0).

As we shall see, in our aim to search for DS-surfaces over finite fields we can

restirct ourselves to minimal surfaces as well.
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3.3 Enriques-Bombieri-Mumford’s classification

In a series of three papers Bombieri-Mumford extended the Enqrique’s classifica-

tion of minimal surfaces to positive characteristic. From now on, we assume that

X is a minimal non-singular projective surface. We can read the classification

from the following table:

κ(X) X

−1 rational (q = 0) or ruled (q > 0)

0 K3, Enriques, abelian surfaces, hyperelliptic (bielliptic)

1 some cases of elliptic surfaces

2 surfaces of general type

3.3.1 Kodaira dimension −1

If the irregularity of X is q = 0, then X is a rational surface (Castelnuovo’s

theorem). A rational surface means that it is birational to the projective plane P2.

The minimal rational surfaces are P2 itself and Hirzebruch surfaces Σn for n = 0

or n ≥ 2. The possible Hodge diamonds are:

1

0 0

0 1 0

0 0

1
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for the projective plane, and

1

0 0

0 2 0

0 0

1

for the Hirzebruch surfaces.

Examples of rational surfaces are: P2, P1 × P1 = Σ0, Hirzebruch surfaces Σn,

quadrics, cubic surfaces, del Pezzo surfaces, the Veronese surface. Many of these

examples are non-minimal.

If the irregularity q > 0, then X is a ruled surface. In that case, there is a

smooth morphism X → C, where C is a curve of genus g ≥ 1 (the case g = 0

corresponds to the Hirzebruch surfaces and are rational). Any ruled surface is

birationally equivalent to P1×C for a unique curve C. Their Hodge diamond is:

1

g g

0 2 0

g g

1

Examples of ruled surfaces are: the product of any curve of genus g > 0 with P1.

3.3.2 Kodaira dimension 0

The following table displays the classification due to Mumford-Bombieri-Munford

for positive characteristic.
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β1 β2 X

0 22 K3

0 10 Enriques

4 6 abelian surfaces

2 2 hyperelliptic

It should be noticed that there are non-classical Enriques surfaces (only in

characteristic 2) and quasi-hyperelliptic surfaces (only in characteristics 2 and 3),

meaning that there is a variation on the corresponding Hodge diamond although

this fact is not apparent with regard to the Betti numbers.

Examples of K3 surfaces: degree-4 hypersurfaces in P3, and Kummer surfaces

(quotients of abelian surfaces by the automorphism -1, then blowing up the 16

singular points).

Examples of Enriques surfaces: quotients of K3 surfaces by a group of order 2

acting without fixed points (when chacrateisitic 6= 2).

Examples of abelian surfaces: a product of two elliptic curves, the Jacobian

of a genus-2 curve, modular abelian surfaces.

Examples of hyperelliptic surfaces: over the complex field, they are quotients

of two elliptic curves by a finite group of automorphisms, giving rise to seven

families of such surfaces. Over fields of characteristic 2 and 3 there are some

extra families given by taking quotients by non-étale group schemes.

3.3.3 Kodaira dimension 1

Every surface of Kodaira dimension 1 is an elliptic surface; that means, there is

a surjective morphism X → B, where B is a base curve and the fibers are all but

finitely many irreducible curves of genus one. In characteristic 2 and 3 we should

relax the condition to quasi-elliptic surfaces meaning that they admit degenerate

elliptic curves as fibers; that is, rational curves with a single node. The converse

is not true: an elliptic surface can have Kodaria dimension −1, 0, or 1. Whenever
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B has genus at least 2, X has Kodaira dimension 1. However, it can happen B

to have genus 0 or 1 and the Kodaira dimension of X to be κ = 1.

Examples of surfaces of Kodaira dimension 1: E × B, where E is an elliptic

curve and B a curve of genus at least 2.

3.3.4 Kodaira dimension 2

These are called surfaces of general type, and it turns out that they are the major-

ity. For any fixed values of the Chern numbers c21 and c2, there is a quasi-projective

scheme classifying the surfaces of general type with these Chern numbers. But

very little is known about these moduli spaces. There are several constrains on

the Chern numbers of a minimal surface of general type: c21, c2 > 0, c21 ≤ 3c2

(Bogomolov-Miyaoka-Yau inequality), 5c21 − c2 + 36 ≥ 0 (Noether inequality),

c21 + c2 ≡ 0 (mod 12).

Examples of surfaces of Kodaira dimension 2: the product of two curves of

genus at least 2, a hypersurface of degree at least 5 in P3, Hilbert modular surfaces,

etc.

3.4 DS-surfaces are minimal

In this section, we want to show that in order to find DS-surfaces we can restrict

ourselves to minimal surfaces.

Proposition 7. If X is a DS-surface, then X is a minimal surface.

Proof. Suppose that X is not minimal. With no loss of generality, we can assume

that X is obtained by blowing up a point P of a minimal surface X0 over Fq.

According to Rybakov (see Lemma 2.7 [33]), we have

ZX(t) = ZX0(t) (1− qrt)−1
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where r is equal to the degree of the point P . Now, taking logarithms we get

logZX(t) = logZX0(t)− log (1− qrt)

Thus, we have ∑
n≥1

Ñn
tn

n
=
∑
n≥1

Nn
tn

n
+
∑
n≥1

qrn
tn

n

where

Ñn = #X(Fqn) , Nn = #X0(Fqn) .

Therefore, for all n ≥ 1, it follows

Ñn = Nn + qrn , Ñ1 = N1 + qr .

If X is a DS-surface, then we should have Ñ1 = Ñn for some n > 1. This implies

Nn = N1 + qr − qrn < N1

which is a contradiction since n > 1.

3.5 Hirzebruch surfaces

As we have already mention, Hirzerbruch surfaces Σn, for n = 0 or n ≥ 2, have

Hodge diamond

1

0 0

0 2 0

0 0

1

so that their non-zero Betti numbers are β0 = 1 and β2 = 2. Some other surfaces

(minimal or not) share the same Hodge diamond, among others: quadratic sur-
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faces, and Beauville surfaces (which are of general type). Over Fq, all of them

have Zeta function that looks like:

ζX(t) =
1

(1− t)P2(t)(1− q2t)

with P2(t) =
∏2

j=1(1− αjt) in Z[t] satisfying |αj| = q. The number of points is

Nm = 1 + q2m + αm1 + αm2

and hence |Nm − (1 + q2m)| ≤ 2qm.

Proposition 8. There are not Hirzebruch surfaces with DS.

Proof. First, we note that the chance for a Hirzebruch surface to have DS occurs

only for q = 2 and N1 = N2 = 9. Therefore, we get α = 2(1 +
√

3i). But, |α| = 4

and it should be 2.

3.6 Ruled surfaces

As it was already mentioned, any (minimal) ruled surface X is isomorphic to

P1 × C for a unique curve C of genus g ≥ 1. Since we have

#X(Fq) = #P1(Fq) ·#C(Fq) ,

the only possibility for X to have DS is when #C(Fq) = #C(Fqm) = 0 for some

m > 1.

This rises the question of classifying all curves having DS due to the absence

of points. Examples of these curves can be found in Chapter 1 Section 2.4. For

instance, the genus-3 curves:
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(q,m) C N

(2, 2) x4 + x3y + y4 + x2y + y3 + x+ 1 0

(2, 5) x4 + x2y2 + y4 + x2y + xy2 + x2 + xy + y2 + 1 0

3.7 Hyperelliptic surfaces

Let X/Fq be a hyperelliptic surface. According to the Betti numbers of X, its

Zeta function must be

ζX(t) =
P1(t)P3(t)

(1− t)P2(t)(1− q2t)
,

with

P1(t) = 1− bt+ qt2

P3(t) = 1− qbt+ q3t2

P2(t) = 1− at+ q2t2

for some integers a, b satisfying |a| ≤ 2q and |b| ≤ 2
√
q. From this, one readily

checks that the unique extensions Fqm/Fq whereX can have Diophantine stablility

are limited to q = 2 with m = 2, 3, or q = 3 with m = 2.

By inspection, we get the information of the possible Zeta functions arising

from hyperelliptic surfaces with Diophantine stability:

q = 2 m = 2 ζX(t) N1 = N2

(a, b) = (−1,−2)
(1 + 2t+ 2t2)(1 + 4t+ 8t2)

(1− t)(1 + t+ 4t2)(1− 4t)
10

(a, b) = (2,−2)
(1 + 2t+ 2t2)(1 + 4t+ 8t2)

(1− t)(1− 2t+ 4t2)(1− 4t)
13
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q = 2 m = 3 ζX(t) N1 = N3

(a, b) = (−4,−1)
(1 + t+ 2t2)(1 + 2t+ 8t2)

(1− t)(1 + 2t)2(1− 4t)
4

(a, b) = (1,−1)
(1 + t+ 2t2)(1 + 2t+ 8t2)

(1− t)(1− t+ 4t2)(1− 4t)
9

(a, b) = (2,−2)
(1 + 2t+ 2t2)(1 + 4t+ 8t2)

(1− t)(1− 2t+ 4t2)(1− 4t)
13

(a, b) = (3,−1)
(1 + t+ 2t2)(1 + 2t+ 8t2)

(1− t)(1− 3t+ 4t2)(1− 4t)
11

Observe that for this case (a, b) = (2,−2), one has N1 = N2 = N3 = 13 so

that the eventual hyperelliptic surface will have Diophantine stability for F22/F2

and F23/F2.

After analyzing the finite number of cases for q = 3, we reach to the conclusion

that there are no candidates for Zeta functions corresponding to hyperelliptic DS-

surfaces defined over F3.

Remark 5. It should be pointed out that we have taken into consideration also

the quasi-hyperelliptic surfaces that occur in Munford-Bombieri classification and

which are defined over finite fields of characteristic 2 and 3. These surfaces do

not arise as reduction of surfaces defined over fields of characteristic zero.

3.8 Enriques surfaces

An Enriques surface X over Fq is characterized by the fact that its Kodaira

dimension κ = κ(X) equals 0 and has Betti numbers are β1 = 0, β2 = 10. The

Zeta function of X looks like

ζX(t) =
1

(1− t)P2(t)(1− q2t)
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where P2(t) is a degree-10 polynomial in Z[t] with reciprocal roots αj satisfying

|αj| = q and P2(0) = 1. The number of points satisfies

Nm = #X(Fqm) = 1 + q2m +
10∑
j=1

αmj .

Hence, we have

|Nm − (1 + q2m)| ≤ 10qm .

For q = 2 and 3, we get the following admissible intervals

q N1 N2 N3 N4 N5

2 [0, 25] [0, 57] [0, 145] [97, 417] [705, 1345]

q N1 N2 N3

3 [0, 40] [0, 172] [460, 1000]

For q ≥ 4 there is no room to achieve DS, therefore the unique options are in

characteristic 2 for F2m/F2 with m ≤ 3 and characteristic 3 for F3m/F3 with

m ≤ 2.

Again, in order to get all possible Zeta functions for the Enriques surfaces

with DS, we explore the first integer coefficients of their Weil polynomials

L2(t) =
10∏
j=1

(t− αj) = t10 + a1t
9 + a2t

8 + a3t
7 + · · · ∈ Z[t] .

Using the Girard-Newton formulas, we have

N1 = 1 + q2 +
10∑
j=1

αj = 1 + q2 − a1

N2 = 1 + q4 +
10∑
j=1

α2
j = 1 + q4 + a21 − 2a2

N3 = 1 + q6 +
10∑
j=1

α3
j = 1 + q6 + a31 + 3a1a2 + 3a3
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and also

a1 = 1 + q2 −N1

a2 =− (a21 + 1 + q4 −N2) /2

a3 = (3a1a2 − a31 + 1 + q6 −N3) /3 .

In order to have N1 = N2, we need

a2 = 6 +
a1(a1 + 1)

2
for q = 2;

a2 = 36 +
a1(a1 + 1)

2
for q = 3.

In order to have N1 = N3, we need necessarily q = 2 and

a3 = 20 +
a1(1 + 3a2 − a21)

3
.

The above discussion helps us to list the candidate L-polynomials of all the DS-

Enriques surfaces. We display the results obtained with the help of Sage in the

following tables. Since the Euler characteristic is even in the case of Enriques
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surfaces, we should take into account only the sing +1 in the functional equation.

q = 2 N1 = N2 #DS

0 1364

1 3069

2 5927

3 10107

4 15106

5 19250

6 20726

7 18839

8 14610

9 9760

10 5617

11 2836

12 1281

13 551

14 220

15 89

16 36

17 16

18 6

19 2

20 0

21 0

22 0

23 0

24 0

25 0

q = 2 N1 = N3 #DS

0 1

1 5

2 23

3 43

4 41

5 15

6 9

7 40

8 67

9 82

10 63

11 26

12 9

13 4

14 3

15 1

16 2

17 1

18 1

19 0

20 1

21 0

22 0

23 0

24 0

25 0
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q = 3 N1 = N2 #DS

0 0

1 0

2 0

3 1

4 6

5 31

6 108

7 306

8 653

9 1138

10 1697

11 2168

12 2433

13 2433

14 2168

15 1697

16 1138

17 653

18 306

19 108

20 31

21 6

22 1

23 0

24 0

25 0
...

...

40 0
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3.9 K3 surfaces

There is an abundant literature on K3 surfaces; among them, we refer to [23].

Let X be a K3 surface over Fq; that is, a non-singular projective surface with

trivial canonical bundle and irregularity zero. Its Zeta function looks like

ζX(t) =
1

(1− t)P2(t)(1− q2t)

where P2(t) is a degree-22 polynomial in Z[t] with reciprocal roots αj satisfying

|αj| = q and P2(0) = 1. For every m ≥ 1, the number of points satisfies

Nm = #X(Fqm) = 1 + q2m +
22∑
j=1

αmj .

Hence, we have

|Nm − (1 + q2m)| ≤ 22qm .

The following table displays the intervals with the admissible number of points:

N1 N2 N3 N4 N5 N6

q = 2 [0, 49] [0, 105] [0, 241] [0, 609] [321, 1729] [2689, 5505]

q = 3 [0, 76] [0, 280] [136, 1324] [4780, 8344] . . .

q = 4 [0, 105] [0, 609] [2689, 5505] . . .

q = 5 [0, 136] [76, 1176] [12876, 18376] . . .

For q ≥ 7 one gets always empty intersections. The only extensions where a K3

surface can have DS are given by:

[F2m : F2] for m = 2, 3, 4;

[F3m : F3] for m = 2;

[F4m : F4] for m = 2;

[F5m : F5] for m = 2.

66



As before, we can manage to count the number of candidate L-polynomials for

K3 surfaces with DS. For example, we display only the results for (q,m) = (2, 2),

where it turns out that the number of points a priori can be between 34 and 49.

q = 2 N1 = N2 #DS

34 3581

35 805

36 173

37 41

38 9

39 2

40 0

41 0

42 0

43 0

44 0

45 0

46 0

47 0

48 0

49 0

3.10 Quartic surfaces

Smooth quartic surfaces are a particular type of K3 surfaces. In [25] we can find

the complete list of isomorphism classes of quartic surfaces over F2. There are

528,257 classes, among them we find the 16 cases with DS (fifteen cases for F4/F2

and one for F9/F3).
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To obtain the equation of the quartic, one should proceed as follows. The dig-

its of “Quartic” written as a 35-bit integer are the coefficients of the quartic mono-

mials in lexicographically order to form the homogenous quartic f ∈ F2[w, x, y, z]
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defining the quartic surface. For instance, the third quartic surface 2158252442

is given the equation

w3z + wx3 + wy3 + wyz2 + wz3 + xy2z + xyz2 + xz3 + y4 + yz3 + z4 .

3.11 Campedelli surfaces

The non-singular projective surfaces X of general type sharing the Hodge dia-

mond:

1

0 0

0 8 0

0 0

1

are called numerical Campedelli surfaces. The Zeta function of X over Fq is

ζX(t) =
1

(1− t)P2(t)(1− q2t)

where P2(t) is a degree-8 polynomial in Z[t] with reciprocal roots αj satisfying

|αj| = q and P2(0) = 1. The number of points satisfies

Nm = #X(Fqm) = 1 + q2m +
8∑
j=1

αmj .

Hence, we have

|Nm − (1 + q2m)| ≤ 8qm .

By inspection of the admissible intervals, the chances to have DS are reduced to

the cases:
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q = 2 N1 = N2 ∈ [0, 21]

N1 = N3 ∈ [1, 21]

q = 3 N1 = N2 ∈ [10, 34]

In order to get all possible Zeta functions for the numerical Campedelli sur-

faces with DS, we explore the first integer coefficients of the Weil polynomial

L2(t) =
8∏
j=1

(t− αj) = t8 + a1t
7 + a2t

6 + a3t
5 + · · · ∈ Z[t] .

Using the Girard-Newton formulas, we have

N1 = 1 + q2 +
8∑
j=1

αj = 1 + q2 − a1

N2 = 1 + q4 +
8∑
j=1

α2
j = 1 + q4 + a21 − 2a2

N3 = 1 + q6 +
8∑
j=1

α3
j = 1 + q6 + a31 + 3a1a2 + 3a3

and also

a1 = 1 + q2 −N1

a2 =− (a21 + 1 + q4 −N2) /2

a3 = (3a1a2 − a31 + 1 + q6 −N3) /3 .

In order to have N1 = N2, we need

a2 = 6 +
a1(a1 + 1)

2
for q = 2;

a2 = 36 +
a1(a1 + 1)

2
for q = 3.

In order to have N1 = N3, we need necessarily q = 2 and

a3 = 20 +
a1(1 + 3a2 − a21)

3
.
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We have used the resultant of polynomials in order to derive the above con-

ditions on the coefficients.

This is helpful in order to speed the search of Weil polynomials arising from

DS. The following Sage code provides the candidate Weil polynomials for q = 2.

Notice that the sign in the functional equation should be +1 since β2 is even.

from sage.rings.polynomial.weil.weil_polynomials import WeilPolynomials

q = 2

for N1 in range(22):

a1 = (1+q^2)-N1

a2 = 6 + a1*(a1+1)/2

WP = WeilPolynomials(8,q^2,sign=1,lead=[1,a1,round(a2)])

it = iter(WP)

s = 0

for wp in it:

s+=1

# print(wp)

print(N1,' ',s)

}

The following tables provide the counting for the number of candidates of

L-polynomials attached to the DS-surfaces of numerical Campedelli type.
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q = 2 N1 = N2 #DS

0 24

1 64

2 124

3 202

4 281

5 354

6 390

7 356

8 280

9 190

10 116

11 65

12 31

13 17

14 8

15 4

16 1

17 0

18 0

19 0

20 0

21 0

q = 2 N1 = N3 #DS

0 0

1 1

2 0

3 0

4 0

5 0

6 1

7 2

8 2

9 0

10 0

11 1

12 0

13 1

14 0

15 1

16 0

17 0

18 0

19 0

20 0

21 0
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q = 3 N1 = N2 #DS

10 1

11 1

12 1

13 1

14 1

15 0

16 0

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 0

33 0

34 0
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3.12 General type

From the moduli point of view, surfaces of general type are those less understood

among the classification of surfaces. Examples of surfaces of general type are the

products X × Y where X and Y are curves of genus ≥ 2. For that reason, it is

worth to link the Zeta function of X × Y with the Zeta function of each.

Proposition 9. Let X, Y be curves over Fq of genus g and g′, respectively. Then,

we have

ζX×Y (t) =
P1(t)P1(qt)

(1− t)P2(t)(1− q2t)

with

P1(t) =P1,X(t)P1,Y (t)

P2(t) = (1− qt)2
∏

1≤i≤g
1≤j≤g′

(1− αiβjt)

where P1,X(t) =
∏

1≤i≤g(1−αit) and P1,Y (t) =
∏

1≤j≤g′(1−βjt) are the numerators

of the Zeta functions of X and Y , respectively.

Proof. The formula is a direct application of the Künneth formula presented in

Section 1.8.

Example. Consider the genus-2 curves over F2 defined by:

X : y2 + x y = x5 + x

Y : y2 + y = x5 + x3 .

Their respective Zeta functions are

ζX(t) =
4t4 + 2t3 + t+ 1

(1− t)(1− 2t)

ζY (t) =
4t4 + 4t3 + 2t2 + 2t+ 1

(1− t)(1− 2t)
.
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The Zeta function of X × Y turns out to be:

ζX×Y (t) = 20 t+ 10 t2 +
272 t3

3
+ 54 t4 + 120 t5 +

2080 t6

3
+

12760 t7

7
+ · · ·

The sequences of number of points are:

NX = [4, 4, 16, 24, 24, 64, 88, 288, 520, 1104, 2072, 3936, 8168, 16048, . . . ]

NY = [5, 5, 17, 9, 25, 65, 145, 289, 449, 1025, 1985, 4353, 8065, 16385, . . . ]

NX×Y = [20, 20, 272, 216, 600, 4160, 12760, 83232, 233480, 1131600, 4112920, . . . ]

Notice that the curves X and Y are DS-curves, and also X × Y is a DS-surface.

Proposition 10. Let X and Y be curves over Fq. Then X × Y is a DS-surface

for Fqm/Fq if and only if both X and Y are DS-curves for Fqm/Fq .

Proof. The claim follows from the equalities

# (X × Y )(Fqm) = #X(Fqm) ·#Y (Fqm) ≥ #X(Fq) ·#Y (Fq) = # (X × Y )(Fq)

along with #X(Fqm) ≥ #X(Fq) and #Y (Fqm) ≥ #Y (Fq).
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Appendix A

Code: Genus-3 Hyperelliptic

Curves over F4

Here we present the Magma program code used to find the complete list of iso-

morphism classes of genus-3 hyperelliptic curves defined over F4:

// The fields and polynomial ring

K:=GF(4);

K2:=GF(4^2);

K3:=GF(4^3);

K4:=GF(4^4);

A<x>:=PolynomialRing(K);

// The genus

g:=3;

//First we compute all hyperelliptic curves:

//Hyperelliptic Genus g curves can be written as

// y^2+q*y=p

//where deg(q)<=g+1 and deg(p)<=2*g+2
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//if max(2*deg(q),deg(p))=2*g+1 or 2*g+2

//(plus some conditions for non singularity)

//The set of polynomials of degree <= 2*g+2 -- K^(2*g+3)

V11:=VectorSpace(K, 2*g+3);

//The set of polynomials of degree g+1 -- K^(g+2)

V5:=VectorSpace(K,g+2);

P4:=Sort([&+[v[i]*x^(i-1): i in [1..g+2]]: v in V5]);

//We take out the zero polynomial

Exclude(~P4,A!0);

//Now we compute one degree <g+2 polynomial under the action of PGL(2,K)

PP4:=Seqset(P4);

P4:=[];

GL2:=GL(2,K);

while not(IsEmpty(PP4)) do

p:=Rep(PP4);

PPp:={Numerator((A[2,1]*x+A[2,2])^(g+1)*Evaluate(p,(A[1,1]*x+A[1,2])/(A[2,1]*x+A[2,2]))): A in GL2};

p:=Min(PPp);

Append(~P4,p);

PP4 diff:=PPp;

end while;

Sort(~P4);

P4;
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//The set of possible A-numbers for hyperelliptic curves will be ANumbers

//The hyperelliptic curves (as two polynomials) will be saved in CurvesH

ANumbers:={};

CurvesH:={};

//First we compute all curves and save the A-numbers

//and the curves

for q in P4 do

//for any pol u of deg<g+2, we have iso

//preserving q given by

//[p,q] to [q,p+u^2+q*u]

Gq:=[A: A in GL2 | Numerator((A[2,1]*x+A[2,2])^(g+1)*Evaluate(q,(A[1,1]*x+A[1,2])/(A[2,1]*x+A[2,2]))) eq q];

V11q:=[];

SVq:=Set(V11);

Vq:=[];

for v in V5 do

u:=&+[v[i+1]*x^i: i in [0..g+1]];

uq:=u^2+q*u;

Append(~Vq,V11![Coefficient(uq,i): i in [0..2*g+2]]);

end for;

while not(IsEmpty(SVq)) do

v:=Rep(SVq);

Sv:={v+u: u in Vq};

Sv:={&+[v[i+1]*x^i: i in [0..2*g+2]]: v in Sv};

Sv:={Numerator((A[2,1]*x+A[2,2])^(2*g+2)*Evaluate(v,(A[1,1]*x+A[1,2])/(A[2,1]*x+A[2,2]))): A in Gq,v in Sv};

Sv:={V11![Coefficient(v,i): i in [0..2*g+2]]: v in Sv};
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Append(~V11q,Min(Sv));

SVq diff:=Sv;

end while;

for v in V11q do

p:=&+[v[i]*x^(i-1): i in [1..2*g+3]];

if Max([2*Degree(q),Degree(p)]) gt 2*g then

try D:=HyperellipticCurve(p,q);

if Genus(D) eq g then

Ns:=[#Points(BaseChange(D,GF(#K^i))): i in [1..g]];

Include(~ANumbers,Ns);

Include(~CurvesH,[p,q]);

end if;

catch e;

end try;

end if;

end for;

end for;

DS:=[];

CDS:=[];

corbes:=SetToSequence(CurvesH);

for c in corbes do

D:= HyperellipticCurve(c[1],c[2]);

Ns:=[#Points(BaseChange(D,GF(#K^i))): i in [1..g]];

if Ns[1] eq Ns[2] then

Include(~DS,Ns);

Include(~CDS,c);

end if;

end for;
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q1<t> := PolynomialRing(RationalField());

z4<x,y,z,w> := PolynomialRing(IntegerRing(),4);

f := x^2*y^2*z^2+w^2*y^2*z^2+w^2*x^2*z^2+w^2*x^2*y^2+x*y*z*w*(x^2+w^2);

Nm := [];

for m := 1 to 3 do

P3 := ProjectiveSpace(GF(2^m),3);

S := Scheme(P3,f);

time

Nm[m] := #Points(S) ;

end for;

Nm;
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Appendix B

Code: Algorithm Two

In this appendix we represent the code for Algorithm Two discussed in Section 2.6.

We have used Mathematica software.

Inter[g_,q_,f_]:={q^f+1-g Floor[2Sqrt[q^f]],q+1+g Floor[2Sqrt[q]]}

DivisorsPol[pol_]:=Module[{fac},

fac = First@Transpose@Drop[FactorList[pol],1];

Return@Map[Apply[Times,#]&,Drop[Subsets@fac,1]]]

Strongly[p_]:=Module[{dd,P1,P2,res},

dd = Drop[DivisorsPol@p,-1];

For[i=1,i<=Length@dd,i++,

P1 = dd[[i]];

P2 = Factor[p/P1];

res = Resultant[P1,P2,x];

If[res==-1 || res==1,Return[False]]];

Return[True]]
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LPoly[g_,q_,N_,f_]:=Module[{HL,TT,TC,coefL,L},

HL = Series[(1-qt)/((1-t)^(N-1)*

Apply[Times,Table[(1-t^i)^f[[i-1]],{i,2,g}]]),{t,0,g}]//Normal;

TT = CoefficientList[HL,t];

If[Length@TT < g+1, TT=Join[TT,Table[0,{i,1,g+1-Length@TT}]]];

TC = Table[TT[[i]] q^(g+1-i),{i,g,1,-1}];

coefL = Join[TT,TC];

Return@Apply[Plus,Table[coefL[[i]] t^(i-1), {i,1,2g+1}]]]

HPoly[g_,q_,N_,f_]:=Module[{tmp,H,th,coefh},

tmp = First@Last@FactorList@Resultant[qt^2+1-tx,LPoly[g,q,N,f]-t^g H,t];

th = Coefficient[tmp,H];

coefh = CoefficientList[(th H-tmp)/th,x];

Return@(Apply[Plus,Table[coefh[[i]] x^(i-1),{i,1,g+1}]]//Factor)]

Candidates[g_,q_,a1_,f_]:=Module[{},

h = HPoly[g,q,a1,Table[a[i],{i,2,g}]];

l = {{a1}};

ll = {};

For[i=2,i<=g,i++,

For[k=1,k<=Length@l,k++,

H = D[h,{x,g-i}]/. Table[a[j] -> l[[K]][[j]],{j,1,i-1}];

alpha= x/. NSolve[D[H,x],Reals,50];

ti = Coefficient[H,x,0];

T = Expand[H-ti];

gt = Length@(CoefficientList[T, x])-1;
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If[gt==3,

yesq = Floor@Simplify@(T/. x -> N[- 2Sqrt@q,50]);

ydret = Ceiling@Simplify@(T/. x -> N[ 2Sqrt@q,50]);

tmp = Numerator@Factor@((ti /. a[i] -> c));

aa = (c /. Solve[- ydret <= tmp && tmp <= - yesq && c >= 0, Integers]);

For[s=1,s <= Length@aa,s++,

G = (H /. a[i] -> aa[s]);

If[CountRoots[G,{x,-2N[Sqrt[q],50],2N[Sqrt[q],50]}] == i ,

AppendTo[ll,Flatten[{l[[k]], aa[[s]]}]];

];

];

];

If[gt==4,

extm = Map[(T/.x -> #) &,N[alpha,50]];

vals = Join[{(T/.x -> N[-2Sqrt@q,50])},extm,{(T/.x -> N[2Sqrt@q,50])}];

valmax = Min[vals[[1]],vals[[3]],vals[[5]]];

valmin = Max[vals[[2]],vals[[4]]];

If[valmin <= valmax,

tmp = Numerator@Factor@((ti /. a[i] -> c));

aa = (c /.Solve[-Floor@valmax-1 <= tmp && tmp <= -Floor@valmin+1 && c >= 0, Integers]);

For[s=1,s <= Length@aa,s++,

G = (H /. a[i] -> aa[[s]]);

If[CountRoots[G,{x,N[-2Sqrt[q],50], N[2Sqrt[q],50]}] == i,

AppendTo[ll,Flatten[{l[[k]],aa[[s]]}]]]

];

];

];
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If[gt==5,

extm = Map[(T /. x → #) &,N[alpha,50]];

vals = Join[{(T /. x → N[-2Sqrt@q,50])},extm,{(T /. x → N[2Sqrt@q,50])}];

valmax = Min[vals[[2]],vals[[4]],vals[[6]]];

valmin = Max[vals[[1]],vals[[3]],vals[[5]]];

If[ valmin <= valmax,

tmp = Numerator@Factor@((ti /. a[i] -> c));

aa = (c /.Solve[-Floor@valmax-1<=tmp && tmp<=-Floor@valmin+1 && c>=0, Integers]);

For[s=1,s <= Length@aa,s++,

G = (H /. a[i] -> aa[[s]]);

If[CountRoots[G,{x,N[-2Sqrt[q],50],N[2Sqrt[q],50]}] == i,

AppendTo[ll,Flatten[{l[[k]],aa[[s]]}]]

];

];

];

];

If[ gt != 3 && gt != 4 && gt != 5,

vals = Map[Simplify@(T /. x -> #) &,N[alpha, 50]];

valmax = Max@vals;

valmin = Min@vals;

tmp = Numerator@Factor@((ti /. a[i] -> c) - Floor@Max[Abs@valmax,Abs@valmin]);

aa = (c /. Solve[tmp <= 0 && c >= 0,Integers]);

For[s=1,s<=Length@aa,s++,

G = (H /. a[i] -> aa[[s]]);

If[CountRoots[G,{x,N[-2Sqrt[q],50],N[2Sqrt[q],50]}] == i ,

AppendTo[ll,Flatten[{l[[k]],aa[[s]]}]];

];

];
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];

];

If[f <= i, l = Select[ ll, #[[f]] == 0 &], l = ll];

ll = {};

];

Return[l]]

Serre[g_,q_,a_]:=Strongly@HPoly[g,q,a[[1]],Table[a[[i]],{i,2,g}]]

//Example: counting

Inter[4, 3, 2]

{- 14, 16}

Table[{i, Count[Map[Serre[4, 3, #] &, Candidates [4, 3, i, 2]], True]}, {i, 0, 16}]

{{0, 4}, {1, 6}, {2, 21}, {3, 48}, {4, 68}, {5, 79}, {6, 84}, {7, 78},

{8, 40}, {9, 17}, {10, 8}, {11, 3}, {12, 1}, {13, 0}, {14, 0}, {15, 0}, {16, 0}}

tot = % // Transpose // Last

{4, 6, 21, 48, 68, 79, 84, 78, 40, 17, 8, 3, 1, 0, 0, 0, 0}

Apply[Plus, tot]

457
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//Example:

Select[Candidates[5,2,0,2],Serre[5,2,#]&]

{{0,0,0,8,3},{0,0,1,5,5},{0,0,1,6,5},{0,0,1,8,6},

{0,0,1,9,6},{0,0,1,10,6},{0,0,2,2,7},{0,0,2,3,7},

{0,0,2,5,8},{0,0,2,6,8},{0,0,2,7,8},{0,0,2,8,8},

{0,0,2,8,9},{0,0,2,9,9},{0,0,2,10,10},{0,0,3,1,9},

{0,0,3,3,10},{0,0,3,4,10},{0,0,3,5,10},{0,0,3,6,11},

{0,0,3,7,11},{0,0,3,8,12},{0,0,4,4,12},{0,0,4,5,14},

{0,0,4,6,14},{0,0,4,7,15}}

The above list contains the sequences of number of places ad of degree d

{a1, a2, a3, a4, a5}

for the candidate L-polynomials of the genus-5 DS-curves for F22/F2 with

a1 = N1 = 0 = N2 = a2

if any.
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Institute of Higher Scientific Studies IHES 52(1):137–252.

[12] P. Deligne & G. Lusztig (1976). ‘Representations of reductive groups over

finite fields’. Annals of Mathematics 103(1):103–161.

[13] T. S. Developers (2020). ‘SageMath, the Sage Mathematics Software System

(Version 9.1)’. https://www.sagemath.org .

[14] B. Dwork (1960). ‘On the rationality of the zeta function of an algebraic

variety’. American Journal of Mathematics 82(3):631–648.

[15] A. Emch (1916). ‘Federigo Enriques, Vorlesungen über projektive Geome-

trie’. Bulletin of the American Mathematical Society 22(5):251–251.

[16] M. Gebhardt (2002). ‘Constructing function fields with many rational places

via the Carlitz module’. Manuscripta mathematica 107(1):89–99.
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