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Abstract 
 

With the increasing availability of genome-scale data for genetic research, molecular 
population geneticists need to work with more complex models, which cannot be done in a 
time-fashion using the standard coalescent methods. This scenario led to the development of 
several alternative numerical simulation applications. Despite the ever-increasing access to 
High Performance Computing (HPC) clusters in the academy, it is not being leveraged in the 
field of population genetics. Parallelizing existing applications is hard to achieve by developers 
without a comprehensive understanding of the HPC, and new applications only take 
advantage of multiprocessing capabilities from a single computer. 

This thesis proposes a technique to parallelize coalescent applications and effectively use all 
the available processing power from an HPC cluster. We use a strategy to reduce the intra-
node communications in the message-passing paradigm. This solution allows for getting 
better scalability for coalescent applications that require generating millions of replicas. As a 
result, population geneticists can use the standard coalescent tools for running Approximate 
Bayesian Computation (ABC) analysis without relying on less accurate applications. 

We have evaluated our strategy parallelizing the de facto standard coalescent application and 
run experiments at genome-scale in a real HPC cluster. We have obtained significant 
performance gains in tuning different aspects of our approach, leading to a 4x speedup over 
our initial parallelization, which accounted for a 50x speedup over the reference coalescent 
application. 

 

Keywords: HPC, parallel programming, population genetics, coalescence, sequential 
Markov coalescent 
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Resum 
 

Amb la creixent disponibilitat de dades a escala de l'genoma per a la investigació genètica, els 
genetistes de poblacions moleculars han de treballar amb models més complexos, el que no 
pot fer-se en un temps determinat utilitzant el mètode coalescent estàndard. Aquest escenari 
va dur a el desenvolupament de diverses aplicacions alternatives de simulació numèrica. Tot i 
l'accés cada vegada més gran a les agrupacions de computació d'alt rendiment (HPC) a 
l'acadèmia, no s'està aprofitant en el camp de la genètica de poblacions. L'establiment de 
paral·lels entre les aplicacions existents és difícil d'aconseguir pels desenvolupadors sense una 
comprensió completa de la HPC, i les noves aplicacions només aprofiten les capacitats de 
multiprocessament d'una sola computadora. 

En aquesta tesi es proposa una metodologia per establir un paral·lelisme entre les aplicacions 
coalescents i utilitzar eficaçment tota la potència de processament disponible d'un grup 
d'HPC. La metodologia introdueix una estratègia per reduir les comunicacions intra-node en 
el paradigma de pas de missatges. Aquesta solució permet obtenir una millor escalabilitat per 
a les aplicacions coalescents que requereixen la generació de milions de rèpliques. Com a 
resultat, els genetistes de poblacions poden utilitzar les eines coalescents estàndard per 
executar l'anàlisi de Computació Bayesiana Aproximada (ABC) sense dependre d'aplicacions 
menys precises. 

Hem avaluat la nostra estratègia establint un paral·lelisme amb l'aplicació coalescent 
estàndard de facto i executant experiments a escala de l'genoma en un conglomerat HPC real. 
Afinant diferents aspectes de la nostra metodologia, hem obtingut importants guanys de 
rendiment, donant lloc a una velocitat de 4x per sobre de la nostra paral·lelització inicial, que 
representava una velocitat de 50x per sobre de l'aplicació coalescent de referència. 

 

Paraules clau: HPC, programació paral·lela, genètica poblacional, coalescència, 
coalescència seqüencial de Markov 
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Resumen 
 

Con la creciente disponibilidad de datos a escala del genoma para la investigación genética, 
los genetistas de poblaciones moleculares tienen que trabajar con modelos más complejos, lo 
que no puede hacerse en un tiempo determinado utilizando el método coalescente estándar. 
Este escenario llevó al desarrollo de varias aplicaciones alternativas de simulación numérica. 
A pesar del acceso cada vez mayor a las agrupaciones de computación de alto rendimiento 
(HPC) en la academia, no se está aprovechando en el campo de la genética de poblaciones. El 
establecimiento de paralelos entre las aplicaciones existentes es difícil de lograr por los 
desarrolladores sin una comprensión completa de la HPC, y las nuevas aplicaciones sólo 
aprovechan las capacidades de multiprocesamiento de una sola computadora. 

En esta tesis se propone una metodología para establecer un paralelismo entre las aplicaciones 
coalescentes y utilizar eficazmente toda la potencia de procesamiento disponible de un grupo 
de HPC. La metodología introduce una estrategia para reducir las comunicaciones intra-nodo 
en el paradigma de paso de mensajes. Esta solución permite obtener una mejor escalabilidad 
para las aplicaciones coalescentes que requieren la generación de millones de réplicas. Como 
resultado, los genetistas de poblaciones pueden utilizar las herramientas coalescentes 
estándar para ejecutar el análisis de Computación Bayesiana Aproximada (ABC) sin depender 
de aplicaciones menos precisas. 

Hemos evaluado nuestra estrategia estableciendo un paralelismo con la aplicación coalescente 
estándar de facto y ejecutando experimentos a escala del genoma en un conglomerado HPC 
real. Afinando diferentes aspectos de nuestra metodología, hemos obtenido importantes 
ganancias de rendimiento, cuadruplicando el speedup de nuestra paralelización inicial, la cual 
representaba una mejora de 50x sobre la aplicación coalescente de referencia. 

 

Palabras clave: HPC, programación paralela, genética poblacional, coalescencia, 
coalescencia secuencial de Markov 
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CHAPTER 1 
1 Introduction 
Computer science can be divided into several areas, each one intended to address problems 
from different disciplines, spanning biology, chemistry, physics, and even cognitive science. 
Regardless of the domain, a commonality is going after ever more resource-intensive 
problems, where the resource can be computational, memory, storage, or a combination of 
them. One of such disciplines is bioinformatics, where High Performance Computing (HPC) 
is used in many fields, for example, molecular biology, genomics, and population genetics, just 
to name a few. 

The cost of genome sequencing has substantially reduced over the past quarter-century, with 
total costs1 figures per Megabase of DNA sequence dropping below $0.008 in 2020 vs. $5200 
in 2001. [1]. This cost reduction had contributed to democratizing the use of whole-genome 
data in genetic research, especially in the evolutionary and population genetics field. 

Population genetics plays a significant role in human genetic research, linking hypothesis on 
sequence variation with empirical observations. Computer simulation software has long been 
used to explore analytically intractable genetic models [2].   

Continuous advances in numerical simulation and the wide availability of computational 
resources allow researchers to use numerical simulation to test mathematical models in virtual 
populations, and even analyze genetic data [[3], [4]]. Consequently, a plethora of simulators 
are available, each tailored to a specific scenario, forcing molecular population geneticists to 
choose a simulator depending on the research being conducted. 

In this chapter, we present an overview of coalescent based-simulation applications and HPC 
systems, the challenges this kind of application poses for parallelization, related studies, and 
we conclude by presenting our thesis proposal. 

1.1 The Standard Coalescent and Simulation 
Research in the genetics population field was supported by mathematical modeling for over 
90 years. Empirical testing of theoretical models is practically impossible for organisms with 

 

1. Including labor, utilities, sequencing instruments, and indirect costs. 
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long generation times. Computer simulation software has traditionally been used to explore 
analytically intractable genetic models, providing insights about how patterns of genetic 
variation within and between populations have been shaped. 

Existing simulation applications from population genetics fall into two classes, forward-in-
time and backward-in-time. The latter, also known as the standard coalescent, is the 
mainstream process used in molecular population genetics because of its efficiency and 
flexibility [5]. 

Several software simulation applications have been developed along the years, being Hudson’s 
ms [6] the most widely coalescent simulator [2]. The essence of this application is applying 
the Monte Carlo method to generate an Ancestral Recombination Graph2 (ARG) for an initial 
sample of chromosomes and then placing random mutations over the resulting ARG. The ARG 
is constructed by stochastically simulating evolutionary events (such as coalescence, 
migration, or recombination) occurring on the ancestral material of sampled alleles backward 
in time until the Most Recent Common Ancestor (MRCA) to all the alleles is found [7]. This 
application is computational intractable when handling very large samples (i.e., genome-scale 
data sets) and recombining genomic regions, and complex population substructures [[8], [9]]. 

1.2 High Performance Computing 
High Performance Computing (HPC) is used to solve large problems via supercomputers, fast 
networks, and massive storage devices. 

The lazy programmer era of waiting for faster hardware to improve the performance of a 
program is over.  If we want to exploit the new generation of processors, we must write parallel 
programs [10]. 

Most applications have not been structured to exploit parallelism [11], nor have they been 
designed for HPC and multicore hardware. Population genetics’s applications (e.g., Hudson’s 
ms and variants) are not an exception. 

Parallelizing an existing application requires more work than just rewriting the code to use 
some parallel library (e.g., OpenMP, MPI, CUDA, etc.). This is just the tip of the iceberg. 
Achieving sustained gains of performance at scale requires understanding HPC system 
components' interactions, both from software and hardware, algorithms, libraries, 
programming interfaces, and many more aspects. 

 

2 An ancestral recombination graph is a directed graph, where each node represents a chromosome 
contributing some genetic material to the present-day sample. 
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Implementing a parallel version of an existing application is not different. The developer needs 
to have a complete understanding of all these interactions. Thus she can identify the limiting 
factors for scalability and make the right trade-offs during the implementation. Besides the 
complexity associated with grasping how all the moving pieces work together, this process will 
probably differ depending on the application domain. 

In this section, we focus on the factors that need to be considered when parallelizing coalescent 
applications. We begin with multiprocessors, the parallel architecture models, and the 
multicore/manycore architectures, which are the essence of any HPC cluster these days. We 
continue with a description of the processor-memory-performance gap, which is of particular 
interest for coalescent applications. Then, we cover the programming models and 
parallelization techniques. Finally, we review the performance evaluation topic, where we 
provide definitions for the performance metrics of interest. 

1.2.1 Multiprocessors and Parallel Architectures 

We adhere to the definition provided by Hennessy and Patterson in [10]: 

A multiprocessor can be defined as computers consisting of tightly couple 
processors whose coordination and usage are typically controlled by a 
single operating system and that share memory through a shared address 
space. 

Multiprocessors exploit thread-level parallelism (TLP) through two different software models, 
parallel processing, and request-level parallelism. The former means dividing a problem into 
tasks and execute these tasks simultaneously, while the latter refers to the execution of an 
independent process that may originate from different users. Both models rely on multi-
threading, a technique to execute multiple threads in an interleaved fashion on a single 
multiple-issue processor. The amount of work assigned to each thread is usually dubbed as 
the grain size. It is essential to differentiate TLP from instruction-level parallelism (ILP), as a 
thread may comprise hundreds to millions of instructions, making it possible to exploit data-
level parallelism with TLP [10]. 

1.2.2 Architectural Models 

Many parallel architectures have been proposed to address parallel processing, leading to 
parallel computers' classification according to different factors. These classifications, usually 
called taxonomies, help us to think about solving problems in parallel computing. 

Michael Flynn proposed and developed a classification over 50 years ago, focusing on how 
processing elements interact with data [12], often referred to as Flynn’s taxonomy. This 
classification classifies a parallel computer according to two independent dimensions, 
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instruction, and data. Each dimension can have only single or multiple states, leading to the 
following definitions: 

• SI (Single Instruction): All processors execute the same instruction. 

• MI (Multiple Instruction): Different processors may execute different instructions. 

• SD (Single Data): All processors operate on the same data. 

• MD (Multiple Data): Different processors may operate on different data. 

Then, a taxonomy of four paradigms is provided: 

• Single Instruction - Single Data (SISD) 

• Multiple Instruction - Single Data (MISD) 

• Single Instruction - Multiple Data (SIMD) 

• Multiple Instruction - Multiple Data (MIMD) 

SISD is a paradigm that makes sense for computers with a single processor. The current 
tendency is to have processor architectures with over one processing unit, even in the low-end 
processor range (e.g., RaspberryPi). This paradigm may be considered obsolete. 

MISD implies several processors, each receiving different instructions operating on the same 
data stream. The output of one processor becomes the input of the next processor. It is an 
extremely rare paradigm often classified by the community as impossible to implement [13]. 
Other authors argue that neural networks and data flow machines are examples of this 
architecture [14]. 

SIMD hardware allows us to work on multiple data items in parallel with a single instruction. 
For example, adding a constant value to each element of an array in parallel. Processing units 
following the SIMD paradigm are referred to as SIMD units or vector units [15]. 

When seen from a software viewpoint, this paradigm can be reformulated as SPMD, where all 
processors use the same program, and they operate on multiple data streams. For example, a 
climate model is a single program, comprising an atmospheric, ocean, and ice component 
with independent data and instructions (i.e., multiple data) in each component. 

SIMD may be inefficient in case of load imbalance, which could degrade the performance 
because processors become idle while waiting for other processors to finish their work [16]. 

Another source of inefficiency is branch divergence. For example, let’s consider the following 
pseudo-code containing a for-loop over an array, where a computation is done depending on 
a branch condition: 

for i=0, n 
 if A(i) > 0 then 
  A(i) = A(i) + 1 
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 else 
  A(i) = A(i)*2 
end 
 

In this case, only one instruction can be sent at a time in SIMD. Therefore, utilization is 
decreased by 50% since the system needs to issue instructions for both branches. 

Finally, we have the MIMD paradigm, which describes almost all parallel computers today, 
including personal computers. Unlike SIMD, which has synchronous and deterministic 
execution, MIMD can be synchronous or asynchronous, deterministic, or non-deterministic. 

Flynn’s taxonomy is not the only work for classifying parallel architectures. Other 
classifications based on different factors exist—for example, Feng’s classification and 
Handler’s classification [13]. Feng’s classification differentiates parallel architectures based 
on the number of bits processed in parallel. Handler’s classification categorizes parallel 
architectures on the number of processor control units (PCU), the number of arithmetic 
control units (ACU), and the number of bit-level circuits (BLC). Finally, other authors 
proposed modifications to Flynn’s taxonomy. For example, Duncan’s taxonomy includes 
pipelined vector processors [17]. 

1.2.3 Multicore and Manycore Processors 

The industry has shifted away from designing higher speed processors, which are not power-
efficient in computation. Still, transistors are invested in adding more execution units3 on a 
single chip. As shown in Figure 1, the trend for designing higher speed processors has 
stopped around 2005 [11]. 

 

3. We also interchangeably refer them as cores throughout the document. 
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Figure 1. Processor speed evolution along the years (log scale). This figure shows how processors are not 
following the increasing speed trend since 2005. (c) 2013 Jim Jeffers and James Reinders, used with permission. 

The multi-threading strategy eventually evolved into cloning the processor to full extent, 
moving from one large and fast superscalar processor to smaller and not as powerful multicore 
processors. Increasing power and silicon costs grew faster than performance, influencing both 
the clock frequency and the number of cores that can be put into a single chip. This led to the 
manycore architecture, which is often designed with many tiny cores, offering a massive 
parallelism level that can be exploited by proper code designed to run on such architecture. If 
all cores are similar, then the architecture is referred to as homogeneous manycore 
architecture. Otherwise, it is referred to as heterogeneous manycore architecture [[10], [15]]. 

In the last two decades, manycore and multicore processor architectures have rapidly gained 
tremendous popularity, becoming the state of practice. Although there is no formal distinction 
between manycore and multicore, the common consensus is that manycore processors contain 
a larger number of physical cores to achieve a higher degree of explicit parallelism. For 
example, Intel’s Xeon Phi Knights Landing architecture (code name KNL), with up to 72 
processor cores on a single chip [18]. Multicore processors typically contain fewer but faster 
cores designed to deliver high performance for both serial and parallel applications. One such 
example is the SkyLake-SP (code name SKX) processor family, with up to 28 processor cores 
per socket [19]. 

1.2.4 Processor-Memory Performance Gap 

Processors are much faster than memory, making them sit idle waiting for data, especially 
with processors using in-order execution. This is commonly known as the memory wall [20], 
and frequently reported in the literature as the processor-memory performance gap [21]. The 
processor-memory performance gap is a limitation, also referred to as the von Neumann 
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bottleneck, which especially dominates the performance of applications with workloads that 
exhibit memory-intensive behaviors [[22], [23]].  

Much research has been done on reducing memory access latencies, such as lockup-free 
caches, prefetching, speculation (superscalar computing), and multi-threading. Many of these 
architectural solutions entailed increasing bandwidth requirements, which ultimately became 
a more fundamental impediment to high performance [24]. Other approaches have been taken 
to solve the memory bandwidth issue, such as the Process-in-memory (PIM) technology, and 
three-level cache hierarchies. This last approach addresses the bandwidth requirements for 
high-end processors with multiple cores, which have more significant bandwidth 
requirements than for single cores. For example, the Intel Core i7 6700 processor has a total 
peak demand bandwidth of 409.6 GiB/s [10]. 

1.2.5 Parallelization and Programming Models 

Designing and developing parallel programs has traditionally been a manual process, but 
approaching the parallelization in a fully automated way is also an option. A parallelizing 
compiler analyzes the source code, identifies opportunities for parallelism, often addressing 
loops as the most frequent target for automatic parallelization, and finally converts the serial 
program into a parallel program. A semi-automated approach could consist of using compiler 
directives to help the compiler in the parallelization process. Chances to embrace automatic 
parallelization (either entirely or semi-automated) are high in case of time or budget 
constraints. However, several important caveats might apply to automatic parallelization, 
such as erroneous results and performance degradation. 

On the other hand, manually developing parallel programs is a time consuming, complex, and 
error-prone process. Additionally, there is not a strictly mechanical process we can follow. 
However, all is not lost. A methodology comprising four steps, known as Foster’s methodology 
[25], can be leveraged to develop parallel programs: partitioning, communication, 
agglomeration, and mapping. 

In the partitioning step, computation is divided into small tasks, and focus is put on 
identifying tasks that can be executed in parallel. Then, communication needs among tasks 
are identified in the communication step. During agglomeration, tasks can be aggregated into 
a single composite task, if it makes sense. Finally, tasks are assigned to processes/threads 
(including aforementioned composite tasks) in the mapping step, in a way that 
communication is minimized, and work is balanced across the processes/threads. We observe 
that partitioning and communication steps focus on exploiting parallelism, while 
agglomeration and mapping steps focus on performance gain. 
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The potential performance obtained from the parallelization process does not end with 
Foster’s methodology, but it heavily depends on the programming model we use. 

MIMD architectures can roughly be divided into shared memory, distributed memory, and 
hybrid architectures. From a developer's point of view, a shared memory computer can be 
depicted as a collection of processors connected to global memory. On the other hand, a 
distributed memory computer can be seen as a collection of processors, each with local 
memory and an interconnect used to communicate with other processors. Finally, 
architectures are combining both shared memory and distributed memory components. We 
will review these three classifications in the following sections, where we detail what 
programming models make more sense to use in each one of them. 

1.2.5.1 Shared Memory 

In shared memory (SM) architectures, the memory is globally accessible to all available 
processors, which may have local copies of a global memory subset, using a cache coherency 
technique to maintain copies' consistency. 

Significant advantages from this architecture have a global address space, leading to fast data 
sharing between processing elements (i.e., reduced communication latency), without explicit 
communication. This kind of architecture is sometimes called uniform memory access (UMA), 
since all processors have a uniform latency from memory, regardless of the memory 
organization. 

Disadvantages from this architecture include potential bottlenecks in the shared memory to 
the CPU path, forcing developers to implement synchronization properly. 

Another potential problem with SM architectures is false sharing, which especially applies to 
SMP system, where each processor has a local cache. False sharing occurs when threads 
running on different processors refer to different locations within the same cache line (e.g., 
array data structures) [26]. Unlike true sharing, which can be addressed by programmatic 
synchronization constructs, false sharing may not be visible within the application [27]. Its 
associated performance penalty could significantly degrade performance. Thus several tooling 
for false detection has been produced, usually requiring heavy instrumentation and could 
incur high overhead [[28], [29]]. 

POSIX threads (or Pthreads) and OpenMP are both APIs for SM programming, being the latter 
the dominant language today [30].  

OpenMP is an Application Program Interface (API) that defines a set of compiler directives 
used to achieve multi-threaded shared memory parallelism. It follows an explicit 
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programming model known as the fork-join model, giving the programmer full control over 
the parallelization process. Thread communication is achieved by sharing variables [31]. 

The fork-join model comprises a master thread executing sequentially until a parallel region 
is found. A set of threads is then created (i.e., forked), which are executed in parallel. When all 
threads complete the work, they synchronize (i.e., join), and the master thread continues 
executing sequentially. The number of threads is independent of the number of processors. If 
we have more threads than available processors, then all threads will not run in parallel, but 
one after another. When there are more processors than threads, we will have idle processors, 
which translates into bad efficiency. 

1.2.5.2 Distributed Memory 

Distributed memory (DM) architectures can be depicted as a collection of processor-memory 
pairs connected by a network [31]. Unlike SM architectures, DM has different memory latency 
and bandwidth, depending on whether a processor is accessing the memory locally or from 
another processor. This architecture is also called non-uniform memory access (NUMA) [10]. 

This type of architecture has several advantages. For example, the memory is scalable with the 
number of processors. Another advantage is the ability to make use of commodity parts, which 
makes this architecture potentially cost-effective. 

On the other hand, the developer is responsible for many of the details of the inter-process 
communication. However, it could also be seen as an advantage, as the developer has full 
control of operations flow. Another potential disadvantage is the added complexity of 
distributed data structures. 

When a process (or program) running on one processor-memory pair requires data located in 
a different processor-memory pair, then a technique known as message passing is used. 

Communication is often an essential aspect of performance and correctness in distributed 
memory systems. Messages are like handshakes, involving two partners, a sender and a 
receiver. 

Sending a message is relatively slow, with startup times (i.e., latency) taking thousands of 
cycles. Typically, once the message has started, the additional time per byte (i.e., bandwidth) 
is relatively small. 

Some useful approaches may be taken for reducing the effect of latency: 

• Reduce the number of messages by mapping communicating entities on the same 
processor. 

• Bundle small messages having the same sender and receiver, and send a combined 
message instead. 
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• Avoid processes asking for data, but send data early as soon as it is ready. 

There are other aspects of message passing systems worth considering. If communication is 
blocking, we can read deadlock if processors cannot proceed until message communication is 
finished. This can be avoided by carefully coordinating all the processors, but a most 
straightforward approach to prevent deadlock is using non-blocking communication, which 
allows a processor to send a message before the receive operation is finished. 

Most recent versions of MPI provide one-sided communication operations that might boost 
performance. It avoids handshaking for sending messages, but a process can take an item from 
memory and puts it into the memory of a different process, running on whatever node. 

One of the most known implementations of message passing is the Message Passing Interface 
(MPI). There are many MPI implementations, being Open MPI [[32], [33]], between the most 
widely used today in HPC. 

1.2.5.3 Hybrid Architectures 

Most parallel computers today combine both SM and DM components, making what is known 
as hybrid architecture. Placing accelerators, such as Graphics Processing Units (GPUs) and 
CPUs, with shared access to the main memory, makes hybrid architectures complex to 
program. 

Accelerators and GPUs play an essential role in supercomputers. For example, coprocessors 
account for 56% of peak FLOPs in the Tianhe-2A supercomputer, and GPUs provide around 
98% of peak FLOPs in the Summit supercomputer. Although very important, accelerators and 
GPUs are not mandatory for achieving the highest performance. The counterexample is the 
Fugaku supercomputer, which captured the TOP500’s first place with 100% ARM-based 
architecture [34]. 

GPUs are massively parallel multiprocessors based on the manycore architecture, with 
hundreds of cores per processor, combining SIMD fine-grain parallelism and slightly coarse-
grained MIMD. Leveraging the parallelism from GPUs require executing mutually 
independent tasks over large data entries. Not all problems are data-parallel. Therefore, 
depending on the algorithm, its highly parallel structure does not necessarily lead to better 
efficiency than general-purpose CPUs.  

Different levels of parallelism can be achieved by combining programming paradigms. For 
example, OpenMP can be combined with MPI for maintaining sustained performance gains at 
a finer granularity. If accelerators like GPUs are present, then parallelization can be further 
exploited via CUDA or compiler directives. The drawback is that programmers must know 
several languages, resulting in code harder to debug, analyze, and maintain. 
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The greater availability of hybrid architectures is entailing a different parallelization 
paradigm. It is hard leveraging both SM and DM architectures by solely using OpenMP, MPI, 
CUDA, or similar programming languages. The hybrid programming strategy is getting more 
and more traction, being MPI + OpenMP a popular choice.  

1.2.6 Programming Paradigms 

Regardless of the parallel architecture, distribution, and control of work between processors 
are not always the same, but programming paradigms heavily influence it. 

One such paradigm is divide-and-conquer [14], a strategy that iteratively partitions a problem 
into subtasks of the same size, achieving the smallest possible tasks. It comprises three 
operations, divide, compute, and join, leading to a tree type program structure. 

Another well-known paradigm is pipelining, a useful technique for improving throughput, 
defined as task completion rate per unit time.  Following a functional decomposition, a 
program is divided into subtasks, where subtask one must be completed to start the next 
subtask. 

Another fundamental strategy is the manager-workers pattern4 [35]. The basic idea is having 
a manager keep track of many tasks and a set of workers performing the tasks. The manager 
assigns tasks to the workers, which communicates back the results once the task is done. 

The manager has a different meaning depending on the architecture. With DM, a manager is 
usually a processor, while in the case of SM, a manager can be a shared data structure (e.g., a 
queue). 

Sometimes the manager may become a bottleneck because of the number of messages sent to 
the workers. A naïve approach is sending many tasks at once. Another approach uses multiple 
manager/worker teams, with some communication between managers, where every worker 
might play the manager role. 

In DM architectures, we have the situation that a worker might run out of tasks or have too 
many. Therefore, the worker needs to communicate, either asking for more work or asking for 
help in doing the assigned tasks. 

Another problem with the manager-worker paradigm lives in load balancing. We cannot get 
high performance if we are always waiting for some slow worker. 

 

4. Usually referred as “master-worker” or “master-salve” in the literature. 
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1.2.7 Performance Evaluation 

We cannot evaluate performance by only focusing on individual factors, but we need to 
evaluate the application-system interplay. 

When determining how efficient the parallel code is, we need to consider how the time is spent. 
For example, the time spent in communications to other processors, time waiting for a 
message to be received, or the wasted time waiting for other processors. 

We need an unbiased metric for determining whether program A's performance is better than 
program B's performance.  

Hennessy and Patterson provide a formula for the speedup metric in their seminal textbook 
[10] that we can adapt to our needs. Instead of comparing a task using an enhancement versus 
a task without using such an enhancement, we compare a parallel version of a program versus 
its serial form. First, we define serial and parallel time: 

• SerTime(n) = Time of best serial program to solve A for input of size n. 

• ParTime(n, p) = Time of the parallel program to solve A for input of size n, using p 

processors. 

1.2.7.1 Amdahl's Law and Speedup 

Amdahl’s law is a formulation showing that given an enhancement applied to a program, the 
improvement gains we can get are limited by the program's fraction that does not contain the 
enhancement [36]. Amdahl suggested that general-purpose parallel computing was not viable, 
and effort should focus on improving the serial part of programs. 

We can redefine our previous formulas based on Amdahl’s concepts.  Let s be the fraction of 
time on operations that are performed serially (i.e., a fraction of ParTime(n, p)): 

!"#$%&'(), +) ≥ .'#$%&'()) /0	 +	1	 − 	0+ 5 

Therefore, we could define the speedup as: 

.+''67+(), +) 	= 	 1
0	 +	1	 − 	0+

 

Additionally, we can formulate the speedup is limited to the serial fraction s, irrespectively of 
how many processors are used: 

0	 < 	.+''67+	 <= 	1/0 

Amdahl’s law has been put in question by researchers in the parallel computing community. 
For example, Gustafson [37] questioned Amdahl’s law's validity as he reported near-linear 
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speedup when working with multiprocessors. His work turned out into an alternative of the 
speedup formula, coined “scaled speedup”5, and also referred to as Gustafson’s Law: 

.<"='60+''67+	 = 	+	 + 	0(1	 − +) 

 

Suggesting that Amdahl’s law is inappropriate in the context of MPP, as Gustafson did, is not 
valid, as shown by Yuan Shi [38], but both laws are equivalent. 

We rely on the total execution time as the basis for performance evaluation: 

.+''67+(), +) 	= 	 .'#$%&'())ParTime(), +) 

1.2.7.2 Linear and Superlinear Speedups 

If speedup equals p, then we say the program has linear speedup, but if the speedup is bigger 
than p, we say the program has super-linear speedup. 

Reasons for linear speedup can be attributed to overheads, such as communication, 
synchronization, input/output and memory access, and load imbalance. 

Using Amdahl’s law for scalability analysis presents two fundamental challenges: 

• Determining what the serial fraction is. 

• Having the same number of total instructions for both serial and parallel programs. 

There is a special kind of serial algorithm, known as non-structure persistent (NSP). 
Depending on the inputs, at least one parallel version requires fewer instructions than the best 
serial implementation [38]. Therefore, we can achieve super-linear speedup as a side-effect of 
the parallelization process. Another valid reason for super-linear speedup can be attributed to 
the larger memory capacity of parallel computers. When a big problem is put on a small 
amount of RAM, many data will probably be sent back and forth to the disk. Having much 
more RAM increases the chances of having a higher fraction of the program in RAM instead 
of disk, which translates into better performance.  

1.2.7.3 Scalability and Efficiency 

We create applications for solving problems that cannot be manually addressed, either 
because of time restrictions, spatial restrictions, or both.  If we focus on the spatial aspect, we 
find that increased load is common for performance degradation [39]. 

 

5. Gustafson used N to denote the number of processors. 
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Scalability is a term we use to describe an application's ability to cope with larger problem 
sizes [31] and qualify the performance degradation.  

When dealing with HPC and parallel program performance, scalability is associated with a 
program's ability to use more resources in parallel [40]. In our case, we are interested in using 
more processors. We find two scalability types: weak scalability and strong scalability, 
which we can tightly couple to the speedup's evolution as we add more processing elements 
[41]. This makes the so called efficiency metric, which helps us to determine what good 
enough performance means when linear speedup cannot be achieved  [31]: 

EFF%<%')<G(), +) 	= 	 .'#$%&'())
+(!"#$%&'(), +)) 

If we simultaneously increase the problem size and the number of processors involved, and 
the efficiency is kept fixed, the application has weak scalability. Suppose we keep the problem 
size fixed while increasing the number of processors, and the efficiency is kept fixed. In that 
case, the application is said to have strong scalability (what Amdahl considered in his 
research). 

We could be tempted to assume that achieving weak scalability is easier than strong scalability, 
but this could become a fallacy depending on the architecture. For example, depending on the 
memory hierarchy we have, the working dataset could not fit in a multicore processor's last 
level cache. In such a case, the efficiency could be worse for weak scalability than strong 
scalability [42]. 

1.3 Related Studies 
The coalescent theory provides an efficient framework for the study of molecular diversity 
within and between species that revolutionized the field of population genetics. Since the first 
application's appearance implementing the standard coalescent, Hudson’s ms [6], population 
geneticist started to switch from empirical and historical approaches to a theoretical approach 
leveraging numerical simulation. 

Genetic diversity is studied under many different evolutionary and demographic scenarios. 
Depending on the model's emphases, a wide variety of applications for simulating data had 
emerged over the years. Some applications put the focus only on selection, recombination, 
demographics, population structure, migration. Others try to address biologically realistic 
models by handling several evolutionary processes at the same time. 

We start with Hudson’s ms, which allows recombination, migration, variable population size, 
and produce a genealogy, but does not cover different mutation models nor variable 
recombination rates. SPLATCHE [43] simulates diversity taking environmental heterogeneity 
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into account, but does not model selection nor recombination. SelSim [44] allows modeling 
both selection and recombination but leaves out variable population size and produces no 
genealogy. Simcoal2 [45] includes the possibility to simulate datasets with arbitrary 
recombination rates between partially linked loci, enabling the possibility of multiple 
coalescent events per generation and complex migration patterns, but lack of selection. 

Good examples of improvements on top of Hudson’s ms are mlcoalsim [46], including 
selection. Another one is msHot [47], which incorporates crossover and gene conversion 
hotspots. 

Finally, we may find applications including codon or amino-acid evolution models, such as  
NetRecodon [48]. 

Next-generation sequencing (NGS) [49] has democratized access to genome data, making 
genome-scale data commonplace in genetic research. Disagreements between expectation and 
observation started to be reported, such as discrepancies in linkage disequilibrium predictions 
[50]. This situation sparked the need to model more complex evolutionary scenarios  [8] (e.g., 
hotspots of recombination). Simulating large regions of DNA became computationally 
intractably by coalescent simulators, a scenario that is exacerbated when using large 
recombination rates. Then, approximations to the coalescent for working at genome-level with 
large recombination rates were propose. Most relevant examples are the sequentially Markov 
coalescent (SMC) [51], with fastsimcoal2 [52] as the reference implementation, and MaCS 
[53]. 

Several works have explored optimizations to the standard coalescent, resulting in variants 
that can manage genome-scale data. We find alternative implementations of the exact 
coalescent, including algorithmic and data structure optimizations, such as scrm [54] and 
msprime [55]. Moreover, we also find approximations to the coalescent, such as the 
sequentially Markov coalescent and the Markov Chain Monte-Carlo. 

Approximated methods solve the issue of working at genome-level with large recombination 
rates; however, these algorithms have been reported to suffer a loss of accuracy and fail to 
capture important evolutionary events. For example, when sampling populations separated 
by reduced gene flow [56]. Another reported issue relates to ignoring type 2 recombination 
events (from Marjoram and Wall’s classification [51]), which may impact the mean and 
variance of most recent common ancestor times when simulating long sequences [57]. 
Consequently, approximate methods have not been wide-adopted in the population genetics 
community, where Hudson’s ms is still the reference application.  
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1.4 Motivation 
Plummeting DNA sequencing costs has democratized access to hundreds of millions of 
reference genomes, rocketing the study of genomic variation in the last years. Population 
genetics is no longer restricted to a small set of anonymous loci6, but it utilizes genomic data 
more often. 

Research in population genetics is driven through three different lines: (i) research in statistics 
and methods to measure variability; (ii) develop software for the analysis of high throughput 
data; (iii) perform computational simulations of evolutionary models to analyze and interpret 
the available data. 

Population genetics is hypothesis-driven science. The coalescent standard is the dominant 
paradigm used to generate in silico data that is later used for hypothesis testing. Moving from 
genetic data to whole-genome data makes the population geneticists increasingly rely on High 
Performance Computing (HPC) clusters. 

Generation of genealogy samples is of little use if it cannot be done in a viable time-frame. The 
ability to efficiently compute demographic and mutational parameters is critical as genomic 
data become increasingly large. For example, the computational time is a decisive factor for 
many studies, such as Approximate Bayesian Computing (ABC), which requires millions of 
simulations to analyze complex evolutionary models [58]. 

Designing applications targeting HPC environments platforms is nontrivial. Parallel 
programming requires in-depth knowledge of multicore and manycore architectures, skills in 
several programming paradigms (e.g., MPI, CUDA, and OpenMP), and it makes debugging 
and reproducibility harder. On the other hand, introducing new applications designed from 
scratch is also nontrivial. Proving that a new application produces accurate data as existing 
reference applications is very challenging. 

By definition, coalescent applications are based on a stochastic process, where replica samples 
are independently generated from each other, exhibiting embarrassingly parallel properties. 
This characteristic opens the door for parallelization, leading to potential improvements in the 
execution time. Some research has been done on exploiting multi-threading, such as 
mlcoalsim [[46], [48]], but it did not consider the other major issue from coalescent 
applications: they are memory eager. 

 

6 Loci is the plural of locus, which refers to the place on a chromosome where an allele resides. An allele 
is the bit of DNA at that place. A locus can be seen a template for an allele. Thus, an allele is an 
instantiation of a locus. 



Introduction 

 
 

17 

Despite parallelizing an application can alleviate the execution time and lead to manage bigger 
problems than can be achieved with reference applications (i.e., Hudson’s ms), it still does not 
fully solve the scenario of working at genome-scale. A population geneticist is at a crossroad, 
deciding whether to use a reference coalescent application, potentially tuned to run in parallel 
on a fat node, or taking the risk and use an approximate application such as MaCS.  

Considering all aspects described above, this thesis's motivation is proposing a blueprint for 
parallelizing coalescent applications, enabling population geneticists to work at genome-scale. 
Our strategy is to parallelize the reference coalescent application and take advantage of the 
full computational potential of HPC systems commonly available in research departments. 
Therefore, population geneticists can potentially take a step forward in their analysis without 
stepping out of the comfort zone of working with the standard coalescent. 

1.5 Objectives 
This thesis proposes a blueprint for parallelizing standard coalescent applications, allowing 
molecular population geneticists to experiment with complex evolutionary models with long 
genomic regions and large recombination rates. We focus on message passing and HPC 
systems to accomplish this goal. 

With this scope, we have developed the following specific objectives: 

• Identify the reference coalescent applications used in population genetics, targeting 
both singlelocus and multilocus analysis. 

• Conduct a performance analysis of coalescent applications. The complexity of 
evolutionary models is a determining factor regarding compute and memory 
resources. The objective is to determine which parameters have the most impact on 
memory, compute, and execution time, regardless of whether the experimentation is 
done at a genetic or genomic level. 

• Design and implement a parallelization strategy for the reference application. 

• Coalescent applications do not look different in structure. Features and optimizations 
aside, the two-step algorithm for generating a replica must remain. Therefore, we have 
the stretch goal of extending our parallelization approach to other coalescent 
applications. From the many options out there, we believe that parallelizing mlcoalsim 
will add value to the population genetics community. We will be delivering parallelized 
versions for both single-locus and multi-locus analysis and paving the way to apply the 
same parallelization approach to further coalescent. 

• Include our parallelized coalescent applications in the ngasp platform [59]. 

1.6 Contributions 
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We have designed and implemented a technique to parallelize standard coalescent 
applications used for singlelocus analysis. The technique includes a strategy to reduce the 
computing and communication gap using a masterless master-worker approach. As a result, 
this technique reduces the total execution time of standard coalescent applications, increasing 
the efficient use of an HPC system's computational resources. Thus, it is possible to run faster 
coalescent simulations generating whole-genome genealogies with long recombination rates. 
The software is publicly available at https://github.com/cmontemuino/msparsm. 

We adapted and applied the parallelization strategy to mlcoalsim, an application used for 
multilocus analysis. The code is publicly available and can be used as a starting point for one 
of the open lines of investigation: https://github.com/cmontemuino/mlcoalsim-v2. 

This work is included in the ngasp [59] package, spanning software to analyze high throughput 
data, such as analyzing genome variability using NGS data. We contribute toward 
understanding the effects of selection due to domestication by scanning the levels and patterns 
of genomic variation in commercial interesting organisms such as Sus scrofa (pig), Cucumis 
genus (melon, cucumber), or Prunus genus (peach, almond). 

1.7 Organization of the Thesis 
The organization of this thesis is as follows. In Chapter 2, we provide a primer and population 
genetics and how its dependency on computer simulation. We present the proposed 
parallelization approach in Chapter 3. We show the iterations to improve our solution's 
scalability, and then we finish with a proposal to parallelize a multilocus coalescent 
application. Chapters 4 covers the experimental results, where we describe the experimental 
setup and provide insights about our findings. We provide our conclusions and open lines of 
investigation in Chapter 5. We conclude in Chapter 6 with the bibliography.
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Chapter 2 
2 Population Genetics and Computer Simulation 
In this chapter, we start introducing the population genetics field. We discuss approaches to 
scientific research, and especially the relevance of computer simulation. Finally, we describe 
the coalescent standard and approximate methods in detail. 

2.1 Population Genetics  
Knowing the genetic structure of any species is utopic. It would require a complete description 
of every individual's genome and spatial location at one instant of time. As soon as new 
individuals are born, this description gets incomplete. Natural populations are always 
changing. Population genetics is a theoretical area of genetics that does not try to get a 
complete description of species but focuses on the evolution of few loci in a population [60]. 

Population genetics is concerned mainly with genetic variation within species. This variation 
results from finding different nucleotides at a specific site of independently sampled alleles, 
known as single nucleotide polymorphisms (SNPs). Population geneticist’s quest is finding 
what evolutionary forces could have led to such divergence between individuals within the 
same species. For example, the identification and characterization of SNPs that confer 
increased susceptibility to complex human diseases, such as Type 2 diabetes and breast cancer 
[61].  

Geneticists study population-level change in three ways: empirical, historical/comparative, 
and theoretical [4]. 

The empirical approach involves observing living populations over time and direct 
experimentation with the variables that affect population variation. The most obvious 
limitation of this approach is studying organisms with long generation times. 

The historical/comparative approach consists of observing differences within existing 
populations and trying to infer population histories. This method is limited by various 
assumptions, such as the constant-rate molecular clocks or the neutrality of synonymous 
polymorphisms7. 

Finally, the theoretical approach involves studying how hypothetical populations might 
behave in forward-time, starting from an initial population, or in backward-time, starting 
from the observed sample and in the present generation. The main limitation of this 

 

7 Also called mutations in the literature. 
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mathematical modeling is that it requires significantly simplifying the proposed models. Thus, 
mathematical models need to be tested. One way to do this is by returning to the empirical 
approach and study living populations through many generations to validate the theory. As 
commented already, the empirical approach is not practical. An alternative is generating in 
silico data and test the models in virtual populations. It is for this reason that numerical 
computer simulation is used in population genetics. 

2.2 Computer Simulation 
Population geneticists use a variety of computer simulation applications. Each of these 
applications has been designed with different modeling emphases, covering just a subset of 
evolutionary and demographic scenarios. 

Existing simulation applications fall into two classes, forward-in-time and backward-in-time. 
The forward-in-time approach is designed to start from an initial population and track its 
evolution under various genetic models, over multiple generations, with samples usually 
drawn from either the final or one of the last several generations. The backward-in-time 
approach also referred to as the standard coalescent [62], takes a lineage approach. For each 
gene, a sample of copies is followed back in time to the most recent common ancestor (MRCA). 
Then it introduces genetic information into the generated genealogy, such as mutations, going 
forward from the MRCA up to the current generation. 

2.2.1 Forward-in-time Simulation 

This simulation strategy allows to track an entire population of individuals (and all their 
chromosomes) and observe population properties at any generation. This high accuracy comes 
at a high computational cost. Execution times are quadratic with respect to the population 
size. Therefore, most forward simulators can simulate small populations. For example, 10400 
individuals in humans have become very challenging already [63]. Its application is usually 
preferred in studies that require investigating the whole population's evolution or alternative 
when working at a short-time scale [[2], [61]]. 

There are many forward-in-time simulation applications (see [8] for a comprehensive list).  
The oldest ones are FPG and EASYPOP [64]. FPG simulates a population of constant size 
undergoing various evolutionary processes, such as mutation, recombination, natural 
selection, and migration. It allows for a total genome length of up to 1000 segments, each 
limited to 32 SNPs, limiting its usage to model a genome of up to 3.2 Mbp8. EASYPOP [65] 
has been optimized for maximum speed and makes a way more efficient use of the memory. 

 

8 Mega base pairs 
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It allows managing thousands of SNPs, as long as there is enough memory in the machine 
where it executes. 

Another classic forward-in-time simulator are simuPOP [66] and SFS_CODE [67]. SimuPOP 
provides a general-purpose simulation environment that can be used to simulate various 
chromosome types (e.g., autosome, chromosome X and Y) and arbitrary mating schemes. 
However, running complex models requires the geneticist to write its own macros (in the 
Python language). SFS_CODE  is the state-of-the-art forward simulator [63]. It can be run on 
an HPC cluster by manually partitioning the experiment and aggregating the output results 
when processing finishes. 

Memory management is one of the most fundamental issues of forward-in-time simulators. 
Dynamic memory allocations invoked in the inner parts of nested loops quickly dominate 
runtimes. Recent research has been proposed to alleviate the memory allocation issue. For 
example, Libgdrift [68] implements several performance code optimizations, such as reusing 
allocated memory and using array-like structures to leverage reference principles' spatial and 
temporal locality. 

Finally, the use of GPU processing has been proposed for certain types of forward-in-time 
simulations. For example, GO Fish [69] is a CUDA-based implementation targeting the single-
locus Wright-Fisher forward algorithm, which is considered embarrassingly parallel. 

2.2.2 Coalescent Simulation 

Contrary to the individual-based approach of forward-in-time simulation, the coalescent 
works on a sample DNA fragment's genealogy. Therefore, the coalescent is more 
computationally efficient than forward-in-time simulations. The difference in execution time 
gets more significant when population sizes are large relative to sample size [2]. 

One crucial feature from the standard coalescent is that recombination events are not 
independent. It significantly impacts runtimes, making it scale more than quadratically with 
the genetic region's length [51]. 

Hudson’s ms [6] is the reference implementation of the standard coalescent. This application 
generates many independent replica samples (i.e., genealogies) under different parameters 
users specify to represent a model under study. Besides being very flexible from a feature point 
of view and computationally intractable when simulating long genomic regions, Hudson’s ms 
does not support all possible scenarios required by geneticists. For example, including 
recombination and gene conversion hotspots (e.g., msHot [47]) and allowing selection and 
analysis of multi-locus data in linked and independent regions (e.g., mlcoalsim [46]). 
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In Figure 2, we see the global replica process generation of Hudson’s ms. At the bottom, each 
replica sample is independently and sequentially generated by an orchestration module split 
up into two independent steps: Genealogy Construction and Mutation Assignment. Genealogy 
construction is driven by three routines simulating a random set of recombination, migration, 
and coalescence events. The mutation assignment step works over the ARG produce by step 1, 
generating the different segregation loci to produce the final chromosomes. The stochastic 
feature of the coalescence process is based on the Monte-Carlo method.  

 

Figure 2. Schematic representation of Hudson’s ms process to generate a set of replica samples. 

The first step is to build the ARG and put it into an array-based data structure. In Figure 3, we 
show how the ARG nodes represent each chromosome’s segment's history. Each node points 
to the start segment. Then, a parent-child structure is used to represent the history. The ARG 
is shared by the three-event routines from step 1 (recombination, migration, and coalescence), 
updating it as soon as one event occurs. 
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Figure 3. Data structure of the ARG node. Given n samples, the first n nodes are the tips of the tree. The 
remaining node is the ancestral to the sampled chromosomes. 

The complete ARG structure is the input of step 2, where mutations are randomly assigned 
(following a Poisson distribution), and the replica samples data is finally produced. Hudson’s 
ms uses several global shared variables. One such variable maintains the ARG state, which is 
updated by the recombination and mutation steps. Another variable is used to maintain all 
the replica samples used to generate an output file when the algorithm finishes generating all 
the request replicas. 

The coalescent is a stochastic process that requires millions of simulations to obtain 
probability distributions for each parameter included in a proposed evolutionary model. Many 
of the algorithms using the coalescent for parameter estimation use Markov chain Monte Carlo 
(MCMC) sampling. 

Research in molecular population genetics does not end with the genealogies generated by a 
coalescent application. A usual next step is validating the evolutionary model used as input 
of the coalescent application and ultimately determine what model is the best fit. It requires 
an analysis that is an iterative and nonlinear procedure, including sampling, markers, 
population inference, and evolutionary coalescent model testing steps [70]. 

Two statistical techniques are used for estimating parameters, namely Maximum Likelihood 
(ML) and Bayesian inference. Bayesian inference uses prior knowledge of the parameter 
values to obtain probability distributions, while ML uses single-point estimates with 
confidence intervals. Analytical validation can be applied to species with simple evolutionary 
history, but more complex species (e.g., the human species) may require to make use of 



Population Genetics and Computer Simulation 

 
 

24 

Approximated Bayesian Computation (ABC) [71]. In Figure 4, we can see an overview of the 
validation process using ABC. 

 

 

Figure 4. Simplified process for validating an evolutionary model with ABC. 

The general idea consists of proposing an evolutionary model; choosing summary statistics 
capturing the structure of the data; simulate millions of replicas that are equivalent to the 
observed data in several populations and sampled individuals; filtering simulations with 
similar summary statistics to the observed data; selecting the model with the highest 
probability; estimating parameter value, and conducting quality controls to decide whether 
the proposed model is either accepted or rejected. 

2.2.3 Approximate Methods 

The standard coalescent suffers when simulating whole-genome data with large 
recombination. More computationally efficient approximated approaches have been 
proposed, namely the Sequentially Markov Coalescent (SMC) [72] and Markovian Coalescent 
Simulator (MaCS) [53]. 

SMC assumes that the recombination process operates as a Markov process, allowing it to 
scale linearly with the genetic region's length. The improvement in execution time comes at 
the cost of approximating the full ARG, incurring in loss of accuracy when compared against 
the standard coalescent. 

MaCS is a modification of the SMC algorithm sitting between SMC and the standard 
coalescent. It is slower than the SMC algorithm, but it produces virtually identical data to the 
standard coalescent data. MaCS is way faster than Hudson’s ms, especially when simulating 
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large genetic regions. For example, simulating a total of 10 million replicas with a genetic 
region of 100 Mbp, a sample size of 100, and a scaled recombination rate parameter of 100, 
MaCS has been reported to execute in less than 3 minutes, while Hudson’s ms required 13 
days to complete [53]. 

Approximated methods can suffer a loss of accuracy for specific evolutionary models. For 
example, SMC can be a poor approximation when modeling features such as the length of 
admixture blocks. On the MaCS side, while it is possible to adjust its accuracy by increasing a 
parameter. If the increase goes beyond a specific limit, then it can result in a worse 
approximation [55]. Other reported loss of accuracy includes sampling populations separated 
by reduced gene flow [56] and potential issues associated with ignoring type 2 recombination 
events (from Marjoram and Wall’s classification [51]), which may impact the mean and 
variance of the most recent common ancestor times when simulating long sequences [57]. 

Alternative implementations of the exact coalescent also include algorithmic and data 
structure optimizations, such as scrm [54] and msprime [55], which do not exhibit all the 
issues mentioned earlier to SMC and MaCS. 

While SMC (and variants) based applications scale well in terms of simulating genome-scale 
sequences, they do not scale well in terms of sample size. Therefore, tools implementing the 
standard coalescent are still being released—for example, msms [73] and msprime [55]. 
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CHAPTER 3 
3 Parallelizing Coalescent Applications 
This chapter presents our proposal for parallelizing coalescent applications, which focuses on 
exploiting coarse-grain parallelism with the manager-worker paradigm and minimizing the 
communications with a masterless approach. 

3.1 Application Characterization 
Unveiling computation and I/O hotspots is the first step to determine whether a fine grain or 
coarse grain parallelization approach makes more sense. In this section, we want to show how 
computation is distributed among the algorithm steps and the sequential application's output 
process to determine whether a fine-grained parallelization approach could make sense. 

Depending on the target species, a molecular population geneticist may require to use many 
evolutionary parameters. Each parameter has a potential impact on the temporal, or spatial 
space, or both. As we already mentioned in previous chapters, it is already known that 
coalescent applications suffer from large DNA regions with large recombination rates. As 
suggested by domain experts, we include the mutation rate and initial and the number of 
chromosomes. 

We show the impact of each parameter in Figure 5 and Figure 6. 

 

Figure 5. Impact on the spatial space to generate one single replica, changing the DNA region size, mutation 
rate (theta), recombination rate (rho), and the number of chromosomes (nsam). An initial experiment is taken as 
a baseline, and then each one of the evolutionary parameters is double in size. We can observe how nsam has a 
more significant impact than other parameters. 
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Figure 6. Impact on the temporal space, using the same setup as Figure 5 

As there is no biological interest in working with a large number of chromosomes, and given 
that we know in advance that the target is working at genome-scale, then we proceeded to 
measure the time and memory consumption for recombination and mutation rates only. 

Figure 7 (a) shows how much time Hudson’s ms application spends in computing and I/O 
processing to generate the samples, given a fixed mutation rate and a variable recombination 
rate. In Figure 7 (b), we characterize the memory consumption, but this time we variate both 
recombination and mutation rates. 

 

Figure 7. a) Time spent to generate the ARG, distributed into the algorithm’s steps, and I/O processing. b) 
Maximum resident set size as a function of recombination and mutation parameters. 

We found the recombination rate is the evolutionary parameter that most significantly 
impacts both total execution time, and memory consumption. The mutation rate determines 
how bit the output file will be, translating into more I/O time processing. It becomes negligible 
when the recombination rate increases over 400. 
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3.2 Coarse Grain Parallelization 
For analysis requiring millions of replica samples, each independently generated, translates 
into sequentially running steps 1 and 2 from ms millions of times. The result of each of these 
computations does not depend on the results from any other computation. This is an 
embarrassingly parallel problem [74]. 

The high degree of data dependency among routines from step 1 (see Figure 2) and between 
steps 1 and 2 prevents using a fine grain parallelization approach without completely 
refactoring the source code. We propose to apply the manager-worker pattern to parallelize 
Hudson’s ms application, which is a natural fit for Monte Carlo applications [[75], [76]]. 

Our first approach to parallelize Hudson’s ms was msPar [77]. We show the manager-worker 
model in Figure 8. 

 

Figure 8. Manager-Worker topology from msPar. The manager process iterates over the available workers, 
asking them to generate a replica sample. Each worker executes the original Hudson’s ms logic and sends back 
a message with the generated replica. The manager aggregates all the received replicas and generates the final 
output. 
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The replica sampling orchestration from Fig. 7 is assigned to the manager with the following 
algorithm: 

managerProcessingLogic() { 
 initialize and distribute RNG 9seeds to workers 
 while there are replicas to generate 
  find an idle worker 
  if there is an idle worker 
   assign replica generation to worker 
  else 
   retrieve generated replica from workers 
 end 
} 

The manager also maintains a pool with idle workers. In the beginning, all workers are idle 
and the pool is full. When one replica is assigned to one idle worker, the worker is removed 
from the pool. Moreover, after one worker has generated its assigned replica, it sends a 
message to the manager, and the manager adds this worker back to the idle pool. When the 
manager reads the generated replica sent by workers, it determines if more replicas need to 
be generated and send a signal to the worker to let it know whether to wait for more request, 
or stop working. 

Each worker is waiting for a request of replica generation, and then run both step 1 and 2 to 
generate one replica and then transmits it back to the master. Following is the pseudo-code 
for worker’s processing: 

workerProcessingLogic() { 
 receive seeds and initialize local RNG 
 read evolutionary parameters 
 while worker is active { 
  run step 1 
  run step 2 
  send replica to manager 
  receive activation signal 
 end 
} 

The input arguments and output remains unchanged from the original application, but we 
include additional arguments to setup the parallelization strategy. If the target environment 
consists of m cores, the parallelization is performed by dividing the N replicas evenly amongst 
m-1 cores, and the remaining core plays the role of the manager. 

The manager-worker is implemented with the MPI programming model. We spawn worker 
processes and map them to hardware processors in the system, each one using its local 
memory. We specifically use the Open MPI parallel library [32]. 

 

9 Random Number Generator 
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The manager-worker's quality of random number streams is guaranteed by using the RNG 
(Random Number Generator) twice. The RNG seeds specified as input parameters are used to 
initialize the manager’s RNG. Then the manager generates a set of random numbers ultimately 
used by each worker as seeds to initialize their RNG. 

3.3 Communication Patterns and Memory Management 
Modeling complex organisms with large recombination rates translates into an exponential 
increase in memory consumption. If we work with large genomic regions, then the situation 
gets even worse. 

When generating several millions of replicas, for example, in the case of feeding ABC 
experiments, in addition to the time spent on generating the replicas, the higher number of 
messages flowing through the manager-worker can limit the scalability of our parallel 
approach. 

We modified the initial manager-worker implementation, improved memory management at 
the MPI process level, and improved communication patterns to ease communication 
overhead. The resulting implementation is msParSm [78]. 

We use the Cross Memory Attach (CMA) mechanism to improve the intra-node 
communications [79]. We use the OpenMPI’s vader BTL [80], whose design is influenced by 
the single-copy RDMA-like capabilities provided by XPMEM, implementing both SEND and 
RDMA transfer protocols. Vader BTL allows MPI processes to directly read/write data to a 
different process’s virtual memory space without passing through the kernel space. Thereby, 
latency for exchanging messages between workers and managers co-located on the same node 
could be lowered since one copy operation can be saved. This mechanism contrasts with the 
other one used by msPar, known as sm BTL (shared-memory BTL). The sm BTL mechanism 
follows a copy-in/copy-out pattern: when an MPI process X sends a mes sage to a process Y, 
the message is first copied from the X’s buffer to the shared memory, and then the receiver 
(i.e., the process Y) copies the message from the shared memory into a buffer. 

To take further advantage, we have changed the manager-worker topology used by msPar. In 
msParSm, we have one manager process per compute node (hereafter referred to as node 
manager) and one global manager process that coordinates the M node managers (where M is 
the number of compute nodes). Each manager node coordinates the co-located worker 
processes, returning an aggregated message with all of the generated samples back to the 
global manager. It is important to note that there will be one node hosting two manager 
processes: the global manager and the node manager. We show a simplified version of the 
manager-worker topology in Figure 9. 
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Figure 9. Manager-Worker topology from msParSm. 

Using non-blocking MPI collectives, we also enabled to generate while waiting for local worker 
communications. Thereby, the potential loss of processing power compared to msPar is 
compensated as much as possible. In a setup with M compute nodes and P cores per node, in 
msPar, we have a total number of M*P − 1 dedicated worker processes, while in msParSm, 
the number is M*(P − 1) − 1. 

For the use case of geneticists using a single node (e.g., a single fat node or even a workstation), 
the application will not use a global manager, but a single manager that is also going to 
generate replica samples. 

Another improvement we made is allowing workers co-located with the global master to 
directly output the generated samples, thus saving MPI point-to-point communications with 
the node manager. 

3.4 Approaching Multilocus Analysis with the Hierarchical Manager-
Worker 
Multilocus data cannot be easily analyzed using Hudson’s ms simulator, forcing geneticists to 
use a different application. We analyzed the mlcoalsim application [46] because it is based on 
Hudson’s ms. Therefore, we continue working on software that is accepted by academia. 

The mlcoalsim simulator is a modification of Hudson’s ms that uses MPI to parallelize the 
generation of replicas per locus. It follows the same approach as Hudson’s ms to regarding 
memory structures. In Hudson’s ms, one ARG is generated for each generated genealogy, 
while mlcoalsim generates as many ARGs as loci per genealogy, optionally in parallel. The 
ARG is maintained into a global shared variable updated by all the routine steps, exhibiting 
the same dependency issue as Hudon’s ms. 

While Hudson’s ms compute is structured as a two-level nested loop, mlcoalsim is structured 
as a three-level nested loop. The first level loop iterates over loci, and the inner two-level loop 
encapsulate Hudson’s ms logic. Current mlcoalsim’s parallelization consists of implementing 
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a simple manager-worker. It spawns as many MPI processes as loci required per genealogy 
(i.e., the first level loop). The evolutionary model passed as an input file is parsed and put into 
a memory structure, which is broadcasted to all the involved MPI processes. Each MPI process 
runs the full Hudson’s ms logic (i.e., the inner two-level loop), and the generated genealogy is 
sent to a manager process using MPI blocking point-to-point communications. Finally, the 
resulting information is aggregated, and the manager process generates several output files.  

The number of loci per genealogy limits the maximum degree of parallelization of mlcoalsim. 
It cannot use more MPI processes than the number of loci. For example, if we have a compute 
node with 48 cores, the application will not run if we specify to spawn 48 MPI process, but the 
loci number is 10. We are forced to indicate using 10 cores only, leading all the other available 
cores to remain idle. Consequently, the efficiency of mlcoalsim can significantly degrade. 

In Figure 10, we show how mlcoalsim is parallelized following the same approach as 
msParSm.  

 

Figure 10. mlcoalsim is parallelized using a hierarchical manager-worker model. It allows to run simulations on 
several nodes, and also to work with a larger number of loci than available cores. 

The higher manager coordinator allows us to run experiments on an HPC cluster and approach 
larger problems. The manager node lifts the limitation of using a larger number of cores than 
specified loci per genealogy replica. We show more details about how to run this new version 
in Appendix B. 

The parallelization of mlcoalsim propels the use of an HPC cluster to generate multiple 
replicas in parallel, but it also introduces new questions. Preventing load imbalance implies 
having HPC nodes generating genealogies from different replicas and loci. Processing time 
and memory consumption for each genealogy are not necessarily homogenous. Determining 
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the right chunk size might require addressing dynamic policies and get feedback about the 
underlying cluster usage to maximize its utilization. Finding the right trade-off between 
scheduling overhead and load imbalance might be challenging. 

Our parallelization of Hudson’s ms has used a homogeneous HPC cluster, and we specifically 
made requests to get dedicated nodes while running our experiments. In the case of 
mlcoalsim, targeting a heterogenous cluster, using a non-dedicated node assignation policy, 
or both, might require contemplating using a weighting algorithm. A potential complementary 
approach could be starting with an initial chunk size and reduce it throughout the execution. 
An extensive review of the self-scheduling literature is required: [81], [82], [83], [84], [85], 
[86]. 
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CHAPTER 4 
In this chapter, we evaluate and discuss the different parallelization approaches presented in 
chapter 3. 

4 Experimental Results 

4.1 Coarse-Grain Approach 
In this section, we evaluate the coarse grain parallelization using the manager-worker 
paradigm. We show that msPar can achieve significant speedup values and much better 
execution times on an HPC cluster than Hudson’s ms version. 

4.1.1 Experimental Setup 

We evaluate the coarse grain manager-worker implementation's performance by executing 
msPar on an HPC cluster, allocating up to three nodes in exclusive mode. Each node is 
configured with two Intel Xeon X5660. The X5660 is a six-core processor with Hyper-
Threading Technology, running at 2.80 GHz, 12MB L3 cache, and 96 GB of dynamic random 
access memory (DDR-RAM). This configuration gives us 12 physical processors per compute 
node, but we can get 24 logical processors per node due to the Hyper-Threading technology. 

We designed a suite of test cases to be simple enough (i.e., without population structure), 
considering only recombination, mutation, genetic region, and sample size, focusing our 
attention on the performance evolution when the recombination ratio changes. We decided to 
use a scaled10 mutation rate of 640, which being not too high; it is big enough to let the 
mutation assignment step to get some computation. 

We selected a sample size of 200 chromosomes and a region of 10e6 bp (base pairs), 
considered by geneticists as big for genetic analysis and quite close to what is required in the 
multilocus genomic analysis [53]. 

We use Hudson’s ms as a baseline application that serves as a basis for comparison. We run 
Hudson’s ms in one of the nodes, with exclusive mode allocation enabled. 

Suppose evolutionary parameters do not change from one replica to another (as in this setup). 
In that case, differences in the execution time and memory consumption for each replica 

 

10. All neutral parameters are given by per-site rates 4N, where N is the current population 
size. 
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generation will be negligible. For the recombination rate, we decided to start with a scaled 
value of 2560 because, combined with the other parameters, it makes ms consume enough 
memory (1.3 GB). We doubled it until we reached 10240, which is considered a considerable 
recombination rate. 

The number of generated replicas was set in 528 for two reasons: first, we wanted ms to 
execute during enough time (2.75 hours in the minimal setup) for measuring. Second, it allows 
our manager-worker application to distribute work fairly well in the case of 72 workers. 

4.1.2 Discussion 

In this section, we present the performance metrics obtained during the experimentation.  We 
investigate the speedup and efficiency as a function of increasing numbers of processors. 

We oversubscribed the MPI processes per node from 12 to 24. This directly impacts the 
efficiency numbers, as it will be taken into account the 24 logical processors due to the Hyper-
Threading technology, instead of the 12 physical processors in each compute node. 

In Figure 11 (a), we show the normalized speedup of msPar compared to the sequential 
version. 

 

Figure 11. Speedup and efficiency of msPar compared against Hudson’s ms. a) Speedup obtained with 24 cores 
(1 node), 48 cores (2 nodes), and 72 cores (3 nodes). b) Efficiency showing how well the parallelization goes as 
long as more cores are used for computation. 

We observe degradation in performance for the case of maximal recombination rate. As we 
can observe in Figure 12, each MPI process consumes ~16 GB to generate a genealogy with a 
maximum recombination rate (i.e., 10240). Therefore, having 24 MPI processes running with 
this problem size implies exhausting the physical node memory (~380 GB consumed vs. 96 
GB available). A performance penalty because of page swapping can explain the performance 
degradation. Another explanation for the performance degradation can be attributed to the 
increase of inter-node communications. 
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In Figure 11 (b), we show the efficiency obtained as long as more cores are used for 
computation. We observe a significant drop-off when generating genealogies with maximum 
recombination rate, which is aligned with our previous observation regarding the speedup. 

 

Figure 12. Average resident set size consumed by each MPI process when running the experiments with mspar.  

The most important contribution for the geneticist is the reduction of the overall running time. 
Table 1 shows the overall running time ms and msPar take to complete different problem sizes. 
The first column of the table is the recombination rate used (i.e., the problem size). The second 
column indicates the execution time of ms. The next three columns show the execution time 
of msPar, using 72, 48, and 24 cores. 

Table 1. Execution times (in ‘d’ days, ‘h’ hours, and ‘m’ minutes) for both ms and msPar. 

   msPar  

Recombination ms 72 48 24 

2560 2h45m 4m 6m 12m 
5120 24h40m 35m 53m 1h44m 
10240 7d18h5m 8h11m 12h36m 24h2m 

 
From this table, we see that a significant improvement is achieved regarding the time a 
researcher should wait for getting results. 
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4.2 Hierarchical Manager-Worker 
This section shows the performance and scalability gains resulting when using a hierarchical 
manager-worker and taking advantage of the vader BTL mechanism. 

We compare our solution to the fastest application that implements the sequential Markov 
coalescent algorithm, MaCS [53]. This application approximates the calculation of 
recombination. It achieves execution times in orders of magnitude lower than Hudson’s ms, 
especially with large recombination rates. Additionally, MaCS can work with recombination 
rates larger than Hudson’s ms. 

4.2.1 Experimental Setup 

Evaluation is done on an HPC cluster, where we allocate up to eight nodes in exclusive mode. 
Each node is configured with two Intel Xeon X5660. The X5660 is a six-core processor with 
Hyper-Threading Technology, running at 2.80 GHz, 12MB L3 cache, and 96 GB of DDR-RAM. 
This configuration gives us 12 physical processors per compute node, making a maximum 
compute power of 96 cores (we did not enable Hyper-Threading in this setup). 

We compare msParSm with Hudson’s ms and MaCS in terms of execution time, using two 
case studies configured with fixed population mutation rate values (i.e., θ = 4Nµ, where N is 
the current population size and µ is the mutation rate per site). The first case approximates 
the estimated human average variability per nucleotide. In contrast, the second case matches 
the estimated D. melanogaster average (θ = 0.001 and 0.005 values, meaning that 1 and 5 are 
differences between two random individuals for every 1000 sites, respectively). 

The number of generated replicas is set at 300, each one with 100 chromosomes (sample size). 
The genetic region contains 10e6 bp, and population recombination per site (4Nρ, where ρ is 
the mutation rate between two contiguous sites) ranges from 0.0005 to 0.08. Both 
evolutionary models exhibit no population genetic structure. 

4.2.2 Discussion 

We evaluated the performance of msParSm by analyzing the speedup and efficiency as a 
function of increasing numbers of compute nodes. 

In Figure 13, the speedup of msParSm using Hudson’s ms as a baseline is shown, which was 
registered in case study 1. We observe a high parallel efficiency of msParSm and a substantial 
increase in speed concerning sequential Hudson’s ms version. Nevertheless, for the case of 
maximal recombination (Figure 13 (d)), we observe a slight performance degradation. If we 
look at Figure 14 (d), then we observe the node memory was mostly exhausted by the MPI 
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processes (90 GB in use out of 96 GB available). It does suggest the performance degradation 
is the result of page swapping. 

 

Figure 13. Speedup analysis of case study 1 using Hudson’s ms as a baseline. The x-axis counts the total number 
of physical cores per allocated node (i.e., 12 cores for 1 node, 24 cores for 2 nodes, etc.). Different 
recombination rates are registered in subfigures a) to d), starting with 4Nρ = 1000 in (a), and doubling it through 
the remaining subfigures (c to d) until reaching scaled recombination of 4Nρ = 8000. 

 

 

Figure 14. Obtained speedup for case study 1. Grouping is the same as Figure 13. 

In Figure 15, we see a similar behavior as for case study 1. We observe a worse performance 
for a lower recombination rate (Figure 15  (a)), but performance for other recombination rates 
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are similar. An explanation for this behavior is associated with the message payload exchanged 
between MPI processes. The average message with sample data is 4.5 times higher for case 
study 2, suggesting that the time spent in communication is less relevant as long as the 
recombination rate increases. 

 

Figure 15. Obtained speedup for case study 2. Grouping is the same as Figure 13. 

In Figure 16, we can observe how the node’s main memory is exhausted when the maximal 
recombination rate is reached (Figure 16 (d)), regardless of the number of involved cores, 
explaining why the efficiency is impacted. 

 

Figure 16. Average consumed memory for case study 2, following the same setup as in Figure 15 



Experimental Results:Hierarchical Manager-Worker 

 
 

40 

Table 2 shows the average time Hudson’s ms, MaCS, msPar, and msParSm spent running both 
case studies using different problem sizes (i.e., recombination rate values) is given. We observe 
how the execution time of msParSm is orders of magnitude faster than Hudson’s ms, faster by 
a factor than msPar, and significantly better than MaCS in most configurations, mainly when 
the mutation rate is higher. 

Table 2. Comparison of average time cost (in minutes) between ms, MaCS, msPar, and msParSm. The 
execution times of both msParSm and msPar are grouped in function of the number of cores used for 
computation. A combination of font styles and the background color is used to facilitate the reading: values in 
italics are related to msPar, while bold style is used for msParSm; shaded table cells indicate cases that the 
execution time of both msParSm and msPar are worse than MaCS. 

Rho ms MaCs msParSm / msPar 

 96 cores 48 cores 24 cores 12 cores 

Case study 1 

1000 3.81 3.82 0.08 / 0.44 0.12 / 0.44 0.21 / 0.64 0.40 / 0.59 

2000 28.77 7.16 0.45 / 2,75 0.76 / 2.75 1.47 / 3.91 3.05 / 3.42 

4000 322.80 13.76 4.23 / 19.57 7.60 / 26.07 14.57 / 28.48 29.64 / 30.52 

8000 2605.58 26.86 35.15 / 149.48 62.78 / 214.36 120.02 / 223.98 240.12 / 249.5 

Case study 2 

1000 3.95 5.80 0.22 / 1.14 0.21 / 1.22 0.26 / 1.61 0.44 / 1.37 

2000 34.85 9.14 0.51 / 3.33 0.78 / 3.53 1.52 / 4.89 3.09 / 4.23 

4000 320.30 15.88 4.30 / 20.02 7.67 / 27.61 14.78 / 29.43 30.12 / 32.03 

8000 2602.00 29.32 35.05 / 151.35 62.75 / 222.60 119.03 / 224.18 239.47 / 249.27 

 

Although the parallel execution of msParSm is behind MaCS in the case of large recombination 
rates, the scalability of the presented msParSm is superior to msPar, as the number of 
computing resources increases, with the possible limitation of the available memory on each 
node. 
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4.3 Multilocus Applications 
This section shows the performance and scalability gains resulting when applying the 
hierarchical manager-worker from section 3.3 to a coalescent application intended for 
multilocus analysis. We show that the same strategy used in msParSm can be applied to the 
mlcoalsim simulator. 

4.3.1 Experimental Setup 

Evaluation is done as a microbenchmark in a single computer, configured with an Intel i7-
9750H six-core processor, running at 2.60GHz, 12MB L3 cache, and 32 GB of DD-RAM. 

We compare the parallel version with mlcoalsim in terms of execution time. The case study 
simulates five loci from an autosome and five loci from X-chromosome in a mammal species. 
The population analyzed suffered a bottleneck defined in prior 1 after a time defined in prior 
2. The number of generated replicas is set at 10e6, each one with 100 chromosomes. 

4.3.2 Discussion 

We evaluated the performance of mlcoalsim by analyzing the speedup as a function of 
increasing numbers of cores. This application is already capable of running in parallel when 
generating multilocus replicas. We applied the same hierarchical manager-worker approach 
from msParSm to mlcoalsim. This new version focuses on minimizing the intra-node 
communications but also to leverage an HPC cluster for parallelizing the generation of 
genealogies (mlcoalsim parallelization is at loci-level) 

In Figure 17, we observe that mlcoalsim struggles in effectively using all the available 
computing power when enabling MPI processing. In contrast, the enhanced parallel version 
achieves better speedups as more cores are used. 
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Figure 17. Speedup analysis of enhanced parallelization when compared against the original mlcoalsim. Blue 
bars correspond to the speedup of mlcoalsim when enabling processing with MPI. Green bars correspond to the 
speedup obtained by parallelizing mlcoalsim with the approach as with msParSm. 

Integrating the hierarchical manager-worker into mlcoalsim is more straightforward than in 
the case of Hudson’s ms. Its poor scalability can be attributed to sub-optimal use of the Open 
MPI library and memory management. Our parallel version includes several improvements 
regarding pointers (especially char arrays), and it also uses the vader BTL for one-sided 
communications. 

This application reflects our initial rationale regarding how applications are usually 
parallelized in the population genetics field: mlcoalsim includes a parallelization approach but 
is not designed to use all the power of an HPC cluster. The utilization of many nodes would 
require splitting the data, run several application instances, and finally aggregate the results. 
Additionally, it has the limitation that the number of loci cannot be bigger than the number of 
available cores. Therefore, even splitting the data into chunks, using a heterogenous cluster, 
could be challenging if one of the allocated nodes has fewer cores than the loci being modeled. 
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CHAPTER 5 
5 Conclusions and Future Work 
The increasing availability of whole-genome data provides an unprecedented opportunity to 
understand species' history and geographic structure. Molecular population geneticists have 
been striving to design alternative algorithms to the coalescent and generate synthetic data in 
a viable time-frame. Such alternatives, which enable to experiment at genome-scale, use 
approximations that suffer from loss of accuracy. Additionally, these applications fail to 
effectively work on HPC clusters, mainly because of the inability to create parallel software, 
either explicitly by a developer or automatically by a compiler. Parallel programs are hard to 
develop, debug, and maintain. Thus, the adoption of parallel computing in the population 
genetics field has not been mainstream. 

This thesis represents a step towards parallelizing coalescent applications that benefit from 
coarse grain parallelism. In this thesis, we have designed a manager-worker framework that 
extracts parallel performance from the de facto exact coalescent implementation, Hudson’s 
ms. We have shown that parallelizing the application using the manager-worker paradigm can 
consistently obtain parallel speedups without compromising the original application's 
accuracy and flexibility. This thesis makes the following contributions: 

• We have shown that the manager-worker paradigm effectively parallelizes coalescent 
applications, especially when each chunk's computation is large enough to hinder the 
communication overhead. Our initial application, msPar, allows the geneticists to 
work with moderated complex evolutionary models in an HPC cluster, getting the same 
accuracy from the exact coalescent process. 

• We have implemented a second version, msParSm, that uses a hierarchical manager-
worker and optimizations for intra-node communication. This approach achieves high 
parallel efficiency figures (>70%) when working with large recombination rates. Using 
this application, we can outperform MaCS in most cases, even when running the 
application in one single node. 

• We showed that parallelizing a coalescent application can be done without modifying 
the core logic. This approach applies to applications that first generate genealogies and 
then throw down mutations in a separate process. However, the method may also 
apply to applications that approximate the coalescent by merging these two processes, 
such as cosi2 [87].  

• We have applied the same parallelization technique to a different coalescent simulator, 
mlcoalsim. In essence, the minimum effort needed to be done is separating the logic 
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into compartments, apply a manager-worker model, and iterate with logic inside the 
worker. 

•  

5.1 Future Work 
This thesis gives rise to some open lines and future work: 

• Explore load balance on heterogeneous HPC clusters. Reasons for the limited 
scalability of the presented approaches can be associated with communication 
overhead, synchronization loss, false sharing, NUMA locality, bandwidth bottlenecks, 
etc. While all these are potential reasons for poor scalability, load imbalance may have 
a more profound impact, especially for generating replicas with priors data, and 
running experiments on heterogeneous clusters. The performance issues associated 
can be mitigated by developing a solution for efficiently distributing the work based on 
the underlying HPC system's heterogeneity. 

• Try using a fully distributed (i.e., master-less) approach for parallelization. This 
approach consists of having no manager process and all processing elements assuming 
the role of workers. A decentralized system could potentially provide more accurate 
dynamic scheduling and better load balancing. 

• Explore the parallelization with a hybrid programming approach. Given the increasing 
availability of multicore and manycore architectures in HPC clusters, it is more than 
doubtful if running one MPI process per cores is appropriate to exploit parallelism. 
The hybrid parallel programming strategy often combines MPI with OpenMP, where 
MPI is used for internode communication, and OpenMP for parallelization within the 
node. An interesting line of study is determining if using the MPI-3 shared memory 
programming model is better than the MPI/OpenMP approach, especially in manycore 
architectures. 

• Test the parallelization strategy with multilocus applications. Multilocus applications 
provide more parallelization opportunities than the standard coalescent (e.g., 
mlcoalsim, an extension to Hudson’s ms). A potential line of investigation could be 
designing a hierarchical manager-worker model that combines the aforementioned 
master-less approach with hybrid programming, and potentially load balancing 
strategies when using a heterogeneous HPC cluster. 

• Explore parallelizing forward-in-time applications, which can be used for 
understanding the effects of selection. Contrasting to coalescent applications used to 
study a population sample, forward-in-time applications focus on studying the whole 
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population. Fine-grain parallelization might be a better approach to parallelize 
forward-in-time applications.  

5.2 List of Publications 
The work presented in this thesis has reported the following publications: 

• C. Montemuiño, A. Espinosa, J.-C. Moure, G. Vera-Rodríguez, S. Ramos-
Onsins, and P. H. Budé, “msPar: A Parallel Coalescent Simulator,” in 
Euro-Par 2013: Parallel Processing Workshops, D. an Mey, M. Alexander, 
P. Bientinesi, M. Cannataro, C. Clauss, A. Costan, G. Kecskemeti, C. 
Morin, L. Ricci, J. Sahuquillo, M. Schulz, V. Scarano, S. L. Scott, and J. 
Weidendorfer, Eds. Springer Berlin Heidelberg, 2013, pp. 321–330. 
This work focuses on parallelizing the de facto coalescent application using a coarse 
grain approach, implementing the manager-worker model. We showed that it is 
possible to run the application on an HPC cluster, and obtain acceptable speedups 
when working with long genomic regions. 

 

• C. Montemuiño, A. Espinosa, J. C. Moure, G. Vera, P. Hernández, and S. 
Ramos-Onsins, “Approaching Long Genomic Regions and Large 
Recombination Rates with msParSm as an Alternative to MaCS,” Evol 
Bioinform Online, vol. 12, pp. 223–228, Oct. 2016, doi: 
10.4137/EBO.S40268. 
This work proposes the use of a hierarchical manager-worker to overcome the 
scalability issues from mspar. This paper shows the performance gains obtained from 
the manager-worker approach, and the optimizations to lower the intra-node 
communication overhead. 
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Appendix A – msparsm 
Full code at: https://github.com/cmontemuino/msparsm  

The msParSm application is an evolution of msPar, the parallel version of the coalescent 
simulation program ms, which removes the limitation for simulating long stretches of DNA 
sequences with large recombination rates without compromising the accuracy of the standard 
coalescence. 

Pre-requisites 
• Linux GNU Compiler 4.9.1 (or greater) 

• OpenMPI 1.10.1 (other releases in the branch 1.10 should be fine)  

• Version 1.8.x could potentially be fine, but please notice that msParSm was not 
thoroughly tested with such a version. 

• CMake 3.5.1 (or greater) OR GNU Make 3.81 (or greater) 

How to Build 
There are two ways of building msParSm: CMake and Make. If you have installed CMAKE 
with a version greater than 3.5.0, go with CMake; otherwise, you should use Make. 

cmake <src-path> -DCMAKE_INSTALL_PREFIX=<install-path> 
make install 

 

Binary files will be put into the bin folder (which is already git ignored). 

How to Use 
Usage is the mostly the same as with traditional ms, but you need to run it through OpenMPI. 
Next example will run the application using 4 threads: 

mpirun -n 4 bin/msparsm 10 20 -seeds 40328 19150 54118 -t 100 
-r 100 100000 -I 2 2 8 -eN 0.4 10.01 -eN 1 0.01 -en 0.25 2 0.2 
-ej 3 2 1 -T > results.out 
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Appendix B – mlcoalsim-v2 
Full code at: https://github.com/cmontemuino/mlcoalsim-v2  

Quick Start 
This project requires both OpenMPI and CMake. 

If you are running on Mac OSX and you happen to use Homebrew, then you might want to 
check a custom for installing OpenMPI: https://github.com/cmontemuino/homebrew-
custom  . 

Enabling MPI in the IDE 
If you open the project with a contextual IDE, for example, CLion, then you will notice that all 
the code related to MPI will not be "clickable." One way to resolve this is by setting the 
environment variable WITH_MPI. You just need to provide whatever value to it. 

How to Build 
Please refer to the maskfile.md file that contains a section for building the project. 

How to Run the Examples 
Several examples are provided in the examples folder. You can run most of them in the 
following way: 

mpirun -np 4 build/mlcoalsimXmpi_ZnS  
examples/example00/Example1locus_1pop_mhit0_rec100.txt 
build/Example1locus_1pop_mhit0_rec100.out 
 
# Without MPI: 
# build/mlcoalsimX  
examples/example00/Example1locus_1pop_mhit0_rec100.txt 
build/Example1locus_1pop_mhit0_rec100.out 

In the case of the example01 and example10, where a "prior" file is being used, you need to 

switch the directory first. For example: 

pushd examples/example10 
mpirun -np 4 ../../build/mlcoalsimXmpi  Example10loci.txt 
../../build/Example10loci.out 
popd 

Other examples you might want to run: 

• build/mlcoalsimX 
examples/example00/Example1locus_1pop_mhit0_rec100.txt 
build/Example1locus_1pop_mhit0_rec100.out 
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• mpirun -np 4 build/mlcoalsimXmpi 
examples/example00/Example1locus_1pop_mhit0_rec100.txt 
build/Example1locus_1pop_mhit0_rec100.out 

• build/mlcoalsimX_ZnS 
examples/example00/Example1locus_1pop_mhit0_rec100_S20_n100.tx
t build/Example1locus_1pop_mhit0_rec100_S20_n100.out 

• mpirun -np 4 build/mlcoalsimXmpi_ZnS 
examples/example00/Example1locus_1pop_mhit0_rec100_S20_n100.tx
t build/Example1locus_1pop_mhit0_rec100_S20_n100.out 
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