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It is the source of light in all luminous objects.
It is beyond the material darkness and is unmanifested.

It is knowledge, It is the object of knowledge,
and It is the goal of knowledge.

It is situated at the heart of everything.

– Bhagavad Gita 13.18, 1st
M. BCE





ABSTRACT

This thesis describes experimental work to generate and characterise single photons

and photon pairs, with frequency content suitable for controlled interaction with cold

rubidium atoms. We describe a photon-pair source, consisting of a cavity-enhanced

spontaneous parametric down-conversion (CE-SPDC) system, followed by Fabry-Perot

interferometer (FPI) �lters, that produces narrowband photon pairs that have a band-

width of ≈ 5MHz. Both photons from the photon-pair source are matched to the D1

line in atomic rubidium. Type-II phase matching, a tuneable-birefringence resonator

andMHz-resolution pump tuning are used to achieve independent frequency control

over each photon in the pair with MHz precision, enabling them to excite di�erent

hyper�ne transitions in rubidium. We have designed and implemented tuneable FPI,

also with ∼MHz control over their resonance frequencies, to isolate a single frequency

mode-pair from the CE-SPDC source. The �lters have ∼ 90% on-resonance transmission

and extinguish unwanted frequency components by over 20 dB. The thesis includes

predictions of the two-photon spectra at the output of the CE-SPDC source, and also

after the �lters, based on existing theoretical models of CE-SPDC. We measure the two-

photon linewidth, the number of modes in an emission cluster and the spacing between

clusters, the second-order cross-correlation and heralded autocorrelation functions,

and �nd good agreement with predictions. We demonstrate independent tuneability

of the signal and idler frequencies by atomic absorption spectroscopy with the �ltered

CE-SPDC output as the light source.

We also report a technique to resolve narrow frequency di�erences between photons

with a high frequency resolution. The technique, which we call autoheterodyne charac-

terisation, can measure the photon-pair joint spectra by detecting the time-correlation

beat-note when nondegenerate photon-pairs interfere at a beamsplitter. It implements

a temporal analog of the Ghosh-Mandel e�ect with one photon counter and a time-

resolved Hong-Ou-Mandel interference with two. We provide a complete theoretical

description of the process and show how the distribution of sum and di�erence frequen-

cies in the photon-pair spectrum can be obtained from measured correlation functions.

Through a power spectral analysis of the correlation measurements, the strengths,
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linewidths and relative frequencies of the spectral content in the two-photon state is

obtained. With this, it is possible to quantify the contribution of undesired frequency

modes when a single mode output is required. We analyse the application of this tech-

nique to photon-pairs that are produced by narrowband pumping and are strongly

anti-correlated in frequency, and to pairs with reduced frequency correlations produced

by broadband pumping. Experimentally, we demonstrate this technique using photon-

pairs from the �ltered CE-SPDC source described in the previous paragraph, that have

a frequency separation of ∼ 200MHz. From the results, we quantify the performance

of the �lters and verify the accuracy of our model for the two-photon joint spectra from

this source.
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RESUMEN

Esta tesis describe trabajos de laboratorio, que tienen como objetivo generar y carac-

terizar fotones individuales y pares de fotones, aptos para interactuar con átomos fríos.

Para este �n, el espectro conjunto o contenido en frecuencia de los fotones pares es

de particular interés. El átomo considerado en la tesis es rubidio. Primero describimos

una fuente de pares de fotones, basada en el proceso de conversión paramétrica descen-

dente espontánea (spontaneous parametric down-conversion, SPDC por sus siglas en

inglés), aumentada por un resonador óptico (cavity-enhanced SPDC, o CE-SPDC). Este

proceso genera pares de fotones de banda estrecha, con un ancho de banda de≈ 5MHz.
Ambos fotones producidos por la fuente concuerdan en frecuencia con la línea D1 del

rubidio atómico. La coincidencia de fases (phase matching) de tipo dos, un resonador de

birrefringencia ajustable, y una bomba de frecuencia ajustable con resolución de unos

MHz, son usados para conseguir control independiente sobre la frecuencia de cada

fotón del par, con precisión de MHz, permitiendo que exciten diferentes transiciones

hiper�nas del rubidio. Diseñamos e implementamos �ltros Fabry-Perot sintonizables,

también con una precisión de control de ∼MHz en su frecuencia de resonancia. Con

dichos �ltros, demostramos la selección de pares de fotones que provienen, cada uno,

de un solo modo del resonador, y por lo tanto con un ancho de banda de�nido por

dicho modo. Los �ltros tienen una transmisión del ∼ 90% en resonancia y extinguen

componentes fuera de banda en 20 dB. Calculamos el espectro conjunto de los pares

de fotones producidos, tanto a la salida de la fuente, como después de lo �ltros, a base

de modelos teóricos de CE-SPDC. Medimos el ancho de banda de ambos fotones, el

número de modos de emisión en un cúmulo, el espaciado espectral entre grupos de

modos cuasi-resonantes, y las funciones de correlación cruzada de segundo orden y

de autocorrelación anunciada, y resultan estar en buen acuerdo con las predicciones.

Demostramos un ajuste independiente de la frecuencia del fotón signal y del fotón idler

mediante espectroscopía de absorción con la salida del CE-SPDC como fuente de luz.

También presentamos una técnica para distinguir diferencias estrechas de frecuencia

entre fotones con una gran resolución en frecuencia. Esta técnica, a la que llamamos

caracterización autoheterodina, permite medir el espectro conjunto de un par de fotones
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mediante la detección de la correlación en tiempo de su batido (beat-note) cuando el par

de fotones no-degenerados inter�ere en un divisor de haz. Esta técnica implementa un

análogo temporal al efecto Ghosh-Mandel con un contador de fotones y una interferencia

Hong-Ou-Mandel con resolución temporal con dos. Proporcionamos una descripción

teórica completa del proceso y mostramos como la distribución de la suma y diferencia de

frecuencias en el espectro del par de fotones puede obtenerse a partir de las medidas de las

funciones de correlación. Mediante el análisis del espectro de las medidas de correlación,

se obtienen las amplitudes, anchos de línea y frecuencias relativas del contenido espectral

del estado conjunto de los dos fotones. Con esto, es posible cuanti�car la presencia de

modos indeseados de frecuencia cuando se requiere una salida monomodo. Analizamos la

aplicación de esta técnica a pares de fotones producidos por bombeo de banda estrecha y

fuertemente anti-correlacionados en frecuencia, y a pares con correlaciones de frecuencia

reducidas producidos por bombeo de banda ancha. Experimentalmente, demostramos

esta técnica usando pares de fotones generados por la fuente descrita en el párrafo

anterior, con una separación en frecuencia de ∼ 200MHz. A partir de los resultados,

cuanti�camos el desempeño de los �ltros y veri�camos la exactitud de nuestro modelo

para el espectro conjunto de los dos fotones provenientes de la fuente CE-SPDC con

�ltros.
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1
INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

States containing one or a few photons have been used to elucidate many aspects of

quantum mechanics such as quantum interference e�ects [1], entanglement [2] and

violation of Bell’s inequalities [3]. They have been used to study light-matter interactions

and �nd applications in quantum computing [4] and quantum sensing [5]. However,

since photons hardly interact with each other, most of the phenomena studied so far with

nonclassical light as the input to an optical process, concern linear optics. In such cases,

the phenomenon studied is revealed through light-matter interactions in which the

response of the material to the input photons is the same for every photon irrespective

of the number of photons. There is far less work on quantum light-matter interactions

built upon the coherent interaction of nonclassical light with a single isolated quantum

system, or an isolated small ensemble of such systems, where the response of the

material to few-photon �elds is no longer linear. For example, fundamental processes

like stimulated emission, critical to lasers and other essential technologies, have to

date not been studied at the level of a single quantum emitter in free space coupled to

single photons. There are theoretical studies that predict modi�cations to the statistics

of exotic quantum states of light (such as chaotic, bunched/antibunched, squeezed

photons) when they interact with a single quantum emitter [6]. The signatures of

quantum interference e�ects such as the Hong-Ou-Mandel e�ect are expected to be

modi�ed in the regime of quantum light-matter interactions due to the nonlinearity

in the response of quanta of matter to photons [7–9]. The experimental investigation

of such predictions remains to be explored. Exploring light-matter interactions at the

level of individual quanta may further our understanding of basic processes in light-
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introduction

matter interaction, and help to translate this knowledge to advancements in quantum

technologies. Such studies are important for applications of quantum nonlinear optics,

where photon-photon interactions are mediated by a few atoms or in hybrid quantum

networks where atoms/ions/molecules serve as memories, repeaters or processing units

of the quantum information encoded in photons.

Since its �rst demonstration in the 1970s, spontaneous parametric down-conversion

(SPDC) has become a ubiquitous technique to produce nonclassical states of light for

photonic quantum technology [10]. Although the art of production and manipulation

of quanta of light had a head start with SPDC, the trapping and manipulation of single-

quanta of matter has matured in parallel since the 80s. Starting with the resonance

�uorescence experiment of Kimble and Mandel in 1977 [11], and continuing with cavity

QED experiments from the 1980s forward [12, 13] signatures of the interaction of

light with individual atoms inside cavities began to emerge from physics laboratories.

The �rst single neutral atom was isolated in a cavity in 1999 [14]. Advancements in

ion trapping [15, 16] greatly increased the capacity for atomic control and increased

the interaction time available between light and atoms. Beginning with the work of

Schlosser et al. in 2001 [17], individual trapped single neutral atoms became readily

available, held in far-o�-resonance traps (FORTs), a.k.a. “optical tweezers,” in which

a trapping beam is strongly focused to create a wavelength-dimension conservative

potential well. The same high-NA optics can be used for e�cient collection of atomic

�uorescence, making the individual atoms detectable. Starting with the pioneering work

of Tey et al. in 2009 [18, 19], it became possible to strongly couple travelling-wave

photons to individual atoms, using the same high-NA focusing optics. This opened the

possibility to study many physical processes that were masked by the arti�cial boundary

conditions of cavity QED, including transmission phase shifts by an atom on light [20],

and time-reversal of the emission process [21]. These works were performed with weak

coherent states from lasers. Over the years, individual quanta of several other types

of material systems, such as molecules [22] and impurities in solids [23] have been

successfully isolated and probed with classical light [24]. With the present technological

advancements in preparing single quanta of both light and matter, we are progressing

into the era of exploring quantum light-matter interactions.

The coherent interaction of nonclassical light with a material quantum systems re-

quires a resonant or near-resonant optical response of the material, to achieve a strong

interaction with propagating [19] or cavity-bound [25] photons. Recently, it has been

2



1.2 ce-spdc for spectrally tailored photons

shown that the optical response achieved is stronger when the input photons are spec-

trally [26] and temporally [27] tailored to match the targeted transition. This requires

narrowband photons, as strong transitions in atoms and molecules typically have a nar-

row bandwidth, in the order ofMHz. Light-matter quantum interface technologies with

applications in quantum information processing and networking, e.g. entanglement-

swapping with memory-compatible photons, will require photons or photon pairs that,

in addition to being narrowband, are pure, indistinguishable [28] or entangled [29, 30].

This requires control over the spatial mode, frequency, correlations and bandwidth of

photons with minimal contamination by photons of unwanted frequencies.

1.2 CE-SPDC FOR SPECTRALLY TAILORED PHOTONS

In SPDC, high-frequency “pump” photons from a laser spontaneously decay to produce

time-correlated pairs of lower-frequency “signal” and “idler” photons in a nonlinear

crystal. The photons from SPDC are typically broadband. They can be made suitable

for interaction with atoms after bandwidth reduction through spectral �ltering, at the

cost of brightness [31]. However, this loss in brightness can be avoided through cavity

enhanced spontaneous parametric down-conversion (CE-SPDC). Since CE-SPDC was

�rst demonstrated [32], it has become the workhorse method for producing narrowband

photon-pairs with tailored properties to match a material system [33]. In CE-SPDC, the

process of SPDC occurs inside an optical resonator that resonates the down-converted

�elds. The resonator both enhances the spectral brightness of the resonant signal-idler

frequencies via the Purcell e�ect [34], and in�uences the spatial modes, frequencies

and bandwidths of the down-converted photons. CE-SPDC has proven to be a reliable

technique to generate bright [35] and narrowband photons for interaction with matter

[36–42]. Photons with linewidths on the order of MHz and even 100s of kHz [41]

have been produced with his technique. Several works have used heralded single

photons from CE-SPDC to excite single trapped atoms, quantum dots and solid state

quantum memories [43–51]. Heralded photons from two separate sources have been

used to entangle two remote solid-state memories [52]. However, few studies so far

have interfaced both photons from a down-converted pair with a single material system

[5].

Previously reported narrowband, material-resonant sources could tune one of the

output photons, sometimes over a large range [49], with a consequent e�ect on the

3
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other photon’s frequency. That is, the signal and idler photon could not be tuned

independently. Such sources are not well suited for several tasks in quantum-light matter

interactions that require independent tuning of the CE-SPDC signal and idler. Driving

multi-photon processes in a single material system, or direct interaction with distinct

systems are examples of such tasks. Most material systems of interest have multiple,

closely-spaced internal levels due to hyper�ne splitting. Multi-photon processes among

these internal levels, e.g. stimulated Raman transitions, involve photons of di�erent

frequencies. In most cases, the isolated material quanta experience environment-induced

energy shifts, e.g. crystal �eld shifts in impurities in solids or trap-induced level shifts

in atoms. To address speci�c transitions in these, a general-purpose CE-SPDC source

should have independent tuning of the frequencies of signal and idler, derived from

an absolute frequency reference, e.g. an atomic or molecular spectroscopic feature.

Such a source opens the way to studies of resonant multi-photon e�ects at the most

fundamental, individual-quantum level. One major motivation for such studies are the

many proposals for strong photon-photon interactions [53–59], of interest to quantum

information processing. For example, sub-wavelength arrays of neutral atoms support

sub-radiant states [60] that can exhibit topological protection [59] and unprecedented

optical properties [61]. Strong photon-photon interactions [62] that could be harnessed

for photonic quantum-information processing, and photonic bound states [63, 64] are

predicted in such arrays. To date these mechanisms have only been tested with classical

light [65–67]. Exploring this physics motivates nonclassical light sources in which both

photons are resonant to an atomic transition and are independently tuneable. This

thesis describes the development of such a light source [68] and its characterisation.

1.3 INTRODUCTION TO THESIS WORK

The primary goal of this thesis has been to prepare a photon-pair source based on

CE-SPDC, for resonant excitation of a single rubidium (
87

Rb) atom trapped at the focus

of four high-NA lenses [69, 70]. To restate the requirements for interfacing multiple

photons with a single atom, the photon source used would have to be su�ciently bright

and supply single-mode (in frequency), narrowband photons resonant with the atom.

Additionally, the frequency of the photons would need to be tuneable to address light-

shifted transitions (which could have an order of magnitude comparable to the transition

bandwidth) or to excite various hyper�ne levels (which may have frequency spacings
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2 − 3 orders of magnitude greater than the light induced shifts). This requirement

motivates us to ensure our source produces single-mode, narrowband, atom-resonant

photon-pairs with independent control over the frequency of each photon in the pair.

Speci�cally the source is designed to produce photons resonant to the 52S1/2 → 52P1/2

line, a.k.a the D1 line in neutral atomic rubidium, which has resonance at ∼ 794.7nm
and a natural linewidth of 5.7MHz. Rubidium is a well-developed system for strong

light-matter interactions in free space [17, 19, 71–74] and the geometry of the atom

trap is su�ciently versatile to change the trap con�guration to an array or cloud of

atoms [70]. Thus, the source has also been developed to be versatile, to enable a range

of possible experiments on light-matter interactions at the D1 line. The photons from

a down-converted pair are polarised perpendicular to each other and can be easily

entangled if needed. While both photons from the source are resonant to the D1 line,

their individual frequencies can be adjusted withMHz resolution and a over range in

the order ofGHz, to address di�erent transitions or compensate for transition frequency

shifts. The signal-idler photons delivered are single-mode, in the sense that signal and

idler each come from a respective single cavity mode, with a consequent restriction

of the frequency content of these photons. Light not resonant to the atom is thus

suppressed, which will reduce background noise in atom-photon experiments. Using a

combination of time-correlated photon counting and atomic spectroscopic methods, we

demonstrate a single mode output and independent tuneability over the D1 line.

The frequency correlations of SPDC photon-pairs, including time-frequency entan-

glement, are of particular importance. In some applications these correlations are used

to encode quantum information [75, 76]. In others, the frequency correlations are an

undesired side-channel that reduces nonclassical interference [77]. These correlations

are revealed through analysis of the joint spectral amplitude (JSA) or joint spectral

intensity (JSI) of the down-converted photon-pair. In broadband SPDC applications, it

is possible to directly measure the JSI using monochromators or other passive �lters

[78, 79]. Techniques such as Fourier transform spectroscopy using Mach-Zehnder inter-

ferometers [80] and temporal magni�cation of photons where a “time lens” is used to

compress the photons’ bandwidth and elongate the temporal spread [81] have also been

used to measure the JSI of broadband photons. Nonclassical interference can also be a

tool to characterise nonclassical frequency correlations; the Hong-Ou-Mandel (HOM)

[1] interference visibility has been used to characterise broadband photon-pairs from a

single source [77, 79, 82] and from di�erent sources [83, 84]. However, there are hardly
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any techniques to characterise the JSI of narrowband photons, which require MHz

precision in frequency resolution. On developing a narrowband source with �ne fre-

quency control over the produced photons, we were faced with the need to progressively

develop methods to characterise these photons, measure their spectrum and verify their

quality, i.e., the extent to which the frequency content is limited to a single cavity mode.

We thus developed autoheterodyne characterisation (AHC), a high-resolution technique

to measure photon-pair joint spectra through time-resolved coincidence detection after

interference on a beamsplitter.

1.4 STRUCTURE OF THE THESIS

The thesis is broadly divided into two parts. Part-I is focussed on the system that delivers

tuneable, single-mode photon-pairs matched in frequency and bandwidth to the Rb D1

line. It comprises chapters that detail the construction of the CE-SPDC source, the design

of resonance-tuneable Fabry-Perot �lters that select a single frequency mode from the

CE-SPDC output and the design implemented to achieve independent control over the

signal-idler frequencies from the source. Analysis of the signal/idler spectrum through

spectroscopy measurements is included here. While the CE-SPDC apparatus is designed

to produce photon-pairs that can interact with this single system, our techniques can

be readily applied to other wavelengths for interaction with other material systems or

combinations of them. Part-II of the thesis is focussed on correlation measurements for

characterising photons from the source. We �rst analyse the statistics of the photons

from our source using established measurement methods. We use time-correlated photon

counting to obtain the intensity cross- and autocorrelation functions, which can be

compared against model predictions. We then perform a more complete characterisation

of the two-photon JSI using AHC. We provide a thorough mathematical analysis of AHC.

We model the JSA and JSI from our source with varying levels of detail and simulate

the results from AHC for the various models. We also show the usefulness of AHC to

characterisation of frequency correlations in two-photon states from SPDC.

The thesis is organised as follows:

Part-I

• Chapter 2 is dedicated to the core of the system - the CE-SPDC source. The

chapter begins with a brief theoretical introduction to the two-photon state from
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SPDC and to how the two-photon joint spectrum is modi�ed in cavity-enhanced

SPDC. The speci�cs of the design of our CE-SPDC source are provided. Attributes

of cavities and CE-SPDC such as the clustering e�ect, two-photon linewidth

etc., are de�ned and values speci�ed for our design. Simulations of the spectral

structure from the source and experimental measurements of the down-converted

spectrum through di�erence frequency generation (DFG) are presented.

• Chapter 3 describes the design and construction of tunable �lters capable of e�-

ciently transmitting a single CE-SPDC mode while blocking all other modes. First

the modi�cation to the two-photon JSA from CE-SPDC on �ltering is analysed.

The �lter parameters required to ensure a single frequency mode pair output are

discussed. The details of the �lter design provided and the signal spectrum after

the �ltering is simulated. Experimentally, the tuneable-�lter is used to map and

adjust the spectrum of the signal from CE-SPDC.

• Chapter 4 deals with the lasers and control-systems around the core CE-SPDC

source that enable frequency tuning of the produced photons. This is achieved

through an interconnected frequency stabilisation scheme that controls the pump,

CE-SPDC cavity length and crystal temperatures based on an atomic reference.

We experimentally demonstrate the independent tuneability by rubidium vapour

absorption spectroscopy.

Part-II

• Chapter 5 introduces the second order cross- and autocorrelation measurements,

which are established methods to characterise SPDC photons. We apply these

tests to the CE-SPDC output photons. We report �gures of merit important for

an atom-photon experiment such as brightness, heralding e�ciency, correlation

time and suppression of multi-photon emission.

• Chapter 6 presents AHC as a tool to characterise narrow frequency features

in pair source outputs. It contains the theoretical framework that provides an

interpretation of the physics involved in AHC. It presents simulations and ex-

perimental demonstrations of AHC results from our source. We also simulate

the results for broadband pumping to show how the technique may be used to

characterise two-photon states with reduced frequency correlations between the

photons in the state.
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• Chapter 7 summarises the important results in the thesis, suggests improve-

ments that can be made to the experimental set-up and outlines the topics for

investigation immediately following this thesis work.
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Part I

N A R R O W B A N D , S I N G L E - M O D E , I N D E P E N D E N T LY

T U N E A B L E & AT O M - R E S O N A N T P H O T O N - PA I R S





2
CAVITY-ENHANCED SOURCE OF PHOTON PAIRS

As mentioned in the introduction, a large part of this thesis work was dedicated to

preparing a source of correlated photon-pairs that are in a single frequency-mode,

resonant to the D1 line in rubidium and with a linewidth comparable to the same. This

chapter is focussed on the photon-pair source and the theory relevant to that. The

photons are produced by a process of cavity-enhanced spontaneous parametric down-

conversion (CE-SPDC) where only the down-converted �elds are resonant in the cavity.

For completeness, a brief theoretical description of the most important phenomena that

in�uence the spectrum from the source is presented �rst, following which a detailed

description of the set-up is given. We then present calculations and experiments to

characterise the spectrum.

2.1 INTRODUCTORY THEORY

2.1.1 Nonlinear frequency conversion and SPDC

As light passes through a material medium, it induces polarisation. Depending on the

medium, the polarisation density P̃(r, t), at a position r and at a time t, induced in it by

the optical electric �eld Ẽ(r, t) may or may not be linearly dependent on the electric �eld.

The polarisation density is related to the electric �eld through the electric susceptibility

of the medium (χ). Media in which the polarisation density has a nonlinear relationship

with the incident electric �eld(s) are called nonlinear media and their susceptibilities

χ(n) are described by rank- (n+1) tensors. Such media are used for parametric nonlinear

frequency conversion of light, where electro-magnetic waves of di�erent frequencies

exchange energy with each other through the nonlinear response of a medium, with their
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total energy conserved. In this thesis we are concerned with processes that involve a χ(2)

medium. In such second-order frequency convertion processes, the Fourier amplitude

of the nonlinear polarisation P(ωn +ωm) at a frequencyωn +ωm is related to the

Fourier amplitudes of the input electric �elds E(ωn) and E(ωm) at frequencies ωn

andωm according to [85]

Pa(ωn +ωm) =
∑
bc

∑
(nm)

χ
(2)
abc(ωn +ωm;ωn,ωm)Eb(ωn)Ec(ωm). (2.1)

Here the indices abc refer to the Cartesian components of the �eld and (nm) indicates

thatωn +ωm is �xed althoughωm andωn vary in the summation.

From the 1960s, several quantum mechanical theories for parametric processes have

been developed [86–88]. Spontaneous parametric down-conversion (SPDC) is one such

process where a high energy “pump” photon spontaneously decays into two photons

of lower energy (“signal” and “idler”), within a medium that shows χ(2) nonlinearity.

SPDC was �rst suggested as a source of photon pairs in 1970, both in the USSR by D. N.

Klyshko [89] and in the US by Burnham and Weinberg [90]. Burnham and Weinberg

also experimentally demonstrated photon-pair production in an ammonium dihydrogen

phosphate crystal and analysed the energy and momentum conservation among the

�elds involved. A full quantum theory of SPDC was derived by Hong and Mandel in

the 1980s [91]. They used this to predict and explain several nonclassical phenomena

such as violation of Bell’s inequalities [92] and quantum interference e�ects [1, 93, 94],

thereby proving the intrinsic quantum character of the light from the SPDC process.

It is beyond the scope of this thesis to restate these SPDC theories. There are several

papers and theses that discuss this in detail. Here we restate the results fround in the

PhD thesis of Andreas Ahlrichs [95], which is particularly thorough.

Joint Spectral Amplitude and Intensity

We consider the signal (subscript-s) - idler (subscript-i) two-photon state from SPDC of

a pump photon (subscript-p) with a spectral distribution s(ω ′p), in a crystal of length

l. We restrict the discussion to collinear propagation of all the �elds involved. When

the signal and idler are initially described by the vacuum state (|0s〉 |0i〉 ≡ |0, 0〉), the

nonvacuum part of the time-evolved two-photon state, after a long interaction time and

to the �rst order in χ(2) is [95],
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|ψ〉 = πlκ

∫
dωi

∫
dωs

∫
dω ′p s(ω

′
p)

× δ(ω ′p −ωs −ωi)sinc (∆k l/2) â†s(ωs)â
†
i(ωi) |0, 0〉 . (2.2)

Here â
†
s(ωs) and â

†
i(ωi) signify the creation of a signal photon of frequencyωs and an

idler photon of frequencyωi respectively, δ(ω ′p−ωs−ωi) is the energy conservation

condition between the produced signal-idler photons and the annihilated pump photon

with frequency ω ′p. sinc (∆k l/2) is the phase matching function which depends on

the momentum mismatch ∆k = kp − ks − ki among the �elds along the direction of

propagation. Here,

κ =
i
 h

χ
(2)
e�

2
Ep Es Ei (2.3)

is a constant,  h is Planck’s constant, and Ep is the pump amplitude
1
. Eε (where

ε ∈ {s, i}) is a factor in the Fourier amplitude of the quantised signal/idler optical

electric �eld
2
, speci�ed at a frequencyω0ε,

Eε ≡

√
 hω0ε

2ε0n(ω0ε)cA

√
1

2π
, (2.4)

where ε0 is the permittivity of free space, n(ω0ε) is the refractive index in the medium

at the frequencyω0ε, c is the vacuum speed of light and A is the quantisation area. Eε

is related to the quantised �eld operator Ê
(+)
ε (t) 3

for ε ∈ {s, i} according to,

Ê
(+)
ε (t) = Eε

∫∞
−∞ dω̃ε âε(ω̃ε) e−iω̃εt (2.5)

where t is time and âε(ω̃ε) is the creation operator â creating a photon in mode ε

with a frequency ω̃.

The expression for the two-photon state can be further simpli�ed to,

|ψ〉 = πlκ

∫
dωi

∫
dωs s(ωs +ωi)sinc (∆k l/2) â†s(ωs)â

†
i(ωi) |ψ0〉

≡ κ

∫
dωi

∫
dωs f(ωs,ωi)â†s(ωs)â

†
i(ωi) |0, 0〉 . (2.6)

1 The pump is treated as a classical wave.

2 Eε is slowly varying over the range of frequencies that have a signi�cant amplitude in the down-converted

state, which is why it has been pulled out of the integral in Equation 2.5.

3 Here we have neglected the position dependence of the electric �eld since we are only interested in a single

spatial mode of the �elds involved.
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As can be seen from Equation 2.6, the signal and the idler photons’ frequencies are

jointly described by f(ωs,ωi)- the Joint Spectral Amplitude (JSA). The JSA of the

state from SPDC in a free-space crystal is proportional to the product of the pump spectral

shape s(ωs +ωi) and the phase matching function l sinc (∆k l/2). More speci�cally,

for a monochromatic pump with central frequencyωp, s(ω ′p)→ δ(ωp −ω
′
p) and the

two-photon state is,

|ψ〉NB = πlκ

∫
dωi

∫
dωs

× δ(ωp −ωs −ωi)sinc (∆k l/2) â†s(ωs)â
†
i(ωi) |0, 0〉

≡ κ

∫
dωi

∫
dωs fNB(ωs,ωi)â†s(ωs)â

†
i(ωi) |0, 0〉 , (2.7)

where fNB is the two-photon JSA for narrowband pumping.

The rate of production of down-converted photon pairs is proportional to the square

magnitude of the two-photon state.

〈ψ|ψ〉 = |κ|2
∫
dω ′i

∫
dω ′s

∫
dωi

∫
dωs

×f∗(ω ′s,ω ′i)f(ωs,ωi) 〈0, 0| âs(ω ′s)âi(ω ′i)â†s(ωs)â
†
i(ωi) |0, 0〉

= |κ|2
∫
dωi

∫
dωs|f(ωs,ωi)|2, (2.8)

on applying the commutation relations [âε(ωε), â
†
ν(ω

′
ν)] = δε,νδ(ωε −ω

′
ν) for

Kronecker delta function δε,ν and Dirac delta function δ(ωε−ω
′
ν)whenν, ε ∈ {s, i},to

simplify the �rst line to the next. The population of pairs produced is distributed with

a probability density that is proportional to |f(ωs,ωi)|2 which is the Joint Spectral

Intensity (JSI). From Equation 2.6 we �nd,

|f(ωs,ωi)|2 ∝ l2sinc2 (∆k l/2) . (2.9)

2.1.2 Phase matching

From Equation 2.9, the e�ciency of the SPDC process is dependent on the length of the

crystal (l) and on the mismatch of wave-vectors (∆k) among the �elds. For a collinear

process, where all the involved �elds propagate in the same direction,∆k = kp−ks−ki

is the mismatch of the �eld momenta along the direction of propagation. The momenta
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are related to the respective frequenciesω, frequency dependent refractive indicesn(ω)

and the vacuum speed of light c, according to the dispersion relation k(ω) = ωn(ω)/c.

The produced two-photon state has maximum amplitude for perfect phase matching, i.e.

when ∆k = 0. Perfect momentum conservation or phase matching is achieved when

kp = ki + ks,

ωpnp = ωini +ωsns. (2.10)

Simultaneously, energy conservation mandates

ωp = ωi +ωs (2.11)

to be satis�ed for SPDC to produce photons of frequencyωs andωi. Most transparent

nonlinear media are dispersive and the refractive index increases with frequency, which

makes it di�cult for both energy and momentum conservation to be satis�ed. However,

it is possible to satisfy these conditions in birefringent media, where the refractive

index is additionally dependent on the polarisation of light. The refractive index of

light in any given birefringent medium is determined by the direction of propagation

and �eld polarisation with respect to the optic axis. If the electric �eld is polarised

perpendicular to the plane formed by the propagation direction and the optic axis, it is

called ordinary (o) polarisation and has a refractive index no(ω). If the �eld is polarised

along the plane formed by the propagation direction and the optic axis, it is called

extraordinary (e) polarisation and its refractive index ne(θ,ω) depends on the angle

between the direction of propagation and the optic axis (θ). If phase matching (for any

second order nonlinear process) is achieved when the lower frequency �elds (signal-idler

�elds in SPDC) are polarised along the same direction and are perpendicularly polarised

w.r.t. the highest frequency �eld (the pump in SPDC), the process is said to be type-I

phase matched. If phase matching is achieved when the lower frequency �elds are

perpendicularly polarised w.r.t. each other but one of them is polarised parallel to the

highest frequency �eld, then the frequency conversion process is said to be type-II

phase matched [96].

Phase matching bandwidth

Equation 2.6 shows that the two-photon state will have maximum amplitude at signal-

idler frequenciesω0s andω0i , for which perfect phase matching is achieved. Nonetheless,
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there is a nonzero contribution to the two-photon state even at signal-idler frequencies

ωs andωi, for which there is imperfect phase matching, i.e., for which ∆k 6= 0. This

“tolerance” of the phase mismatch by the frequency conversion process implies that the

state will contain a range of of signal and idler frequencies that conserve energy with

the pump and have momenta such that sinc (∆k l/2) is not zero.

Taylor expanding ks(ωs) and ki(ωi) around ks(ω
0
s) and ki(ω

0
i ), corresponding to

signal-idler momenta that satisfy perfect phase matching (ks(ω
0
s) + ki(ω

0
i ) = kp) for

frequenciesω0s andω0i that satisfy energy conservation (ω0s +ω
0
i = ωp), the phase

mismatch becomes

∆k ≈ kp − ks(ω
0
s) − ki(ω

0
i )

−
∂ks(ωs)

∂ωs

∣∣∣∣
ωs=ω0s

(ωs −ω
0
s) −

∂ki(ωi)

∂ωi

∣∣∣∣
ωi=ω

0
i

(ωi −ω
0
i )

=
(
ω0s −ωs

)(∂ks(ωs)
∂ωs

∣∣∣∣
ωs=ω0s

−
∂ki(ωi)

∂ωi

∣∣∣∣
ωi=ω

0
i

)
, (2.12)

where we have used the strict energy conservation condition that leads to (ω0s −ωs) =

−(ω0i −ωi). Since k(ω) = ωn(ω)/c,

∂k(ω)

∂ω
|ω=ω0 =

1

c

[
n(ω0) +ω0

∂n(ω)

∂ω
|ω=ω0

]
≡ n

(g)

c
≡ 1

v(g)
, (2.13)

where n(g)
is the group index in the medium and v(g) the group velocity. Thus,

∆k ≈
(
ω0s −ωs

c

)(
n
(g)
s −n

(g)
i

)
=

(
ω0s −ωs

)( 1

v
(g)
s

−
1

v
(g)
i

)
. (2.14)

The propagation delay between the signal and idler photon within the down-conversion

crystal is

τo =
l

c

(
n
(g)
s −n

(g)
i

)
= l

(
1

v
(g)
s

−
1

v
(g)
i

)
. (2.15)

The phase matching function can be written in terms of the propagation delay as

l sinc
(
∆k l

2

)
= l sinc

[
(ω0s −ωs)

(τo
2

)]
. (2.16)
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The JSI (Equation 2.9) is then,

|f(ωs,ωp −ωs)|2 ∝ l2 sinc2
[
(ω0s −ωs)

(τo
2

)]
. (2.17)

Thus the group delay between the generated signal and idler frequencies in the crystal

determines the bandwidth of the SPDC process. sinc2 (2πx) = 0.5 when x ≈ 0.22.
Thus the range of frequencies (ω0s −ωs) generated within the full width half maximum

(FWHM) of the SPDC intensity is

∆ωspdc ≈ 2π
4× 0.22
τo

= 2π
0.88
τo

. (2.18)

This is henceforth referred to as the SPDC-bandwidth or phase matching band-

width. This is typically in the order of 100s of GHz to THz.

JSI and crystal length

If perfect phase matching is achieved, the JSI scales quadratically with the length of the

crystal (Equation 2.9) and longer crystals can be used for brighter two-photon states.

However, for a nonzero∆k, arbitrarily long crystals are not useful since there is a critical

crystal length
4 lc = 2π/|∆k| for which the phase matching function is zero. SPDC

occurs at every point within the crystal and at lc the contributions of all the generated

�elds interfere destructively leading to a zero intensity of down-converted �elds.

For degenerate SPDC (i.eωs = ωi = ωp/2 = 2π c/λs) [96],

lc =
2π

|∆k|
=

λs

2np −ns −ni
, (2.19)

where λ is the wavelength, with subscript s indicating that of the signal, nj is the

refractive index of j ∈ {p, s, i} at the corresponding polarisation and frequency.

Quasi-phase-matching

This section is adapted from [96]. Techniques such as quasi-phase-matching (QPM)

have been developed to achieve perfect phase matching at any required signal-idler

4 This is prevanlently called “coherence” length [85, 96] although it is not related to a statistical measure of

the correlations of a wave.
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frequencies. In a crystal with QPM, the nonlinear coe�cient is made to vary with a

periodocity Λ along the length of the crystal such that at a position z in the crystal,

χ(2)(z) = χ
(2)
0

{
1 sin(2πmz/Λ) > 0
−1 sin(2πmz/Λ) < 0.

(2.20)

Physically, this is achieved by reversing the polarity of the dipoles in the material

periodically. The periodically varying nonlinear susceptibility can be expressed as a

Fourier series,

χ(2)(z) =
∑
m

χ
(2)
m e−i 2πmz/Λ (2.21)

where χ
(2)
m are the Fourier coe�cients. For �xed pump, signal and idler frequencies

and �xed directions of propagations w.r.t the crystal axis, themth Fourier component

can be used to achieve perfect phase matching by making Λ = mlc. Considering only

this component of χ(2), the product Ê
(+)
p Ê

(−)
s Ê

(−)
i exp[−i2πm/Λ] is proportional to

exp[i∆k(m)z], where

∆k(m) = kp(ωp, T) − ks(ωs, T) − ki(ωi, T) −
2πm

Λ(T)

= ∆k−
2π

lc
= 0. (2.22)

where the last line follows from Equation 2.19. ∆k(m)
can be made 0 at the required

energy-conserving signal, idler and pump frequencies by tuning the temperature of

the crystal. For the simplest case ofm = 1,Λ = lc and in half the period, i.e., half the

critical length, the polarity of the medium is �ipped once.

2.1.3 Cavity-Enhanced SPDC

The �rst experiments on enhanced parametric frequency conversion processes within

a resonator were reported in the 1960s [97] and theory descriptions were developed

around the same time [98]. However, these dealt with resonators that were operated

close to or above threshold, where the pump power was large enough for the gain from

the parametric process to be greater than the losses in the resonator. The earliest works

on describing the theory of photon-pair production from SPDC within a resonator, in the

far-below threshold regime, were reported in the early 2000s by Lu and Ou [32, 99]. They

calculate the reduction in bandwidth, the output mode structure for type-I and type-II
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down-conversion and the enhancement in brightness per cavity mode in comparison

to the broadband single-pass process. They also experimentally demonstrated SPDC

within a cavity and performed time interval distribution measurements of the output

photons. Towards the end of that same decade, more complete quantum mechanical

models deriving expressions for the JSA and JSI of the two-photon state from SPDC

were developed by M. Scholz et al. [100–102] and by Jeronimo-Moreno et al. [103].

Jeronimo-Moreno et al. used an “unfolded cavity” picture to get an expression for the

JSA and JSI, in which the light passes through an in�nite sequence of crystals whose

outputs coherently sum to give the net CE-SPDC output state [103, equation 4]. They

do not include losses in their model. They provide a closed-form expression for the JSI,

whereas they give the JSA in the form of an in�nite sum, the convergence of which

is not evident. However, their expression for the JSI is more intuitively appealing as

it is in terms of Airy functions that describe cavity resonances. Scholz et al. based

their calculations on quantized �eld operators within the cavity for the down-converted

�elds and used these in the interaction Hamiltonian to obtain the time-evolved two-

photon state. Their expressions for the JSA and JSI are in terms of repeating Lorentzian

resonances. They went further and used this to analyse the statistics of the photons

from CE-SPDC. They developed analytical expressions for correlations functions based

on experimentally accessible parameters.

The two-photon state from CE-SPDC

Due to its more comprehensive nature, we use the model developed by Scholz et al. in

this thesis. We alter the notation by introducing new variables to draw a parallel with

the results from Jeronimo-Moreno et al. We begin by restating the results from [102].

Scholz et al. consider a type-II CE-SPDC process for a narrowband pump of frequency

ωp, in a cavity which is resonant to the down-converted �elds but is transparent to

the pump. The cavity has a linewidth (γ) and Free Spectral Range (FSR) that may be

di�erent for the signal and idler �elds (indicated with subscript s and i respectively) due

to the birefringence and frequency dependent losses in the cavity (see Equation 2.36).
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Figure 2.1: Variables describing the frequency of the signal photon from the CE-SPDC two-

photon state. Black dashed line: phase matching e�ciency for a free-space crystal,

with maximum e�ciency at ω0s and the corresponding partner idler frequency.

Red solid line: CE-SPDC cavity resonances for the signal, weighted by the SPDC

e�ciency at that frequency. The amplitude/intensity for generating a photon at

frequencyωs in our notation is the same as that for generating a photon at frequency

ω0s +msFSRs +Ωs in the notation of Scholz et al.

The two-photon state from CE-SPDC, after a long interaction time is (equation 7 from

[102])

|ψC〉 =

∞∑
ms=−∞

∞∑
mi=−∞

∫∞
−∞ dΩs

∫∞
−∞ dΩi

πα
√
γsγi Fms,mi

(Ωs,Ωi)
(γs2 − iΩs)(

γi
2 − iΩi)

×δ(ωp −ω0s −ω0i −msFSRs −Ωs −miFSRi −Ωi)

×â†s(ω0s +msFSRs +Ωs) â
†
i(ω

0
i +miFSRi +Ωi) |0, 0〉 , (2.23)

whereω0s andω0i are the centre frequencies of two cavity modes for signal and idler,

respectively. ωp,ω0s andω0i satisfy energy conservation and perfect phase matching

in the crystal. ms andmi are mode indices of the resonator modes for the signal and

idler �elds respectively. Ωs andΩi are signal idler frequency detunings relative to the

centres of the lines atω0s +ms FSRs andω0i +mi FSRi respectively (see Figure 2.1).
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In Equation 2.23, Fms,mi
is the phase matching function for the crystal in free space,

Fms,mi
(Ωs,Ωi) = sinc

[
l

2c

{
(msFSRs +Ωs)

(
ns(ω

0
s) +ω

0
s

∂ns(ωs)

∂ωs

∣∣∣∣
ωs=ω0s

)

+(miFSRi +Ωi)×

(
ni(ω

0
i ) +ω

0
i

∂ni(ωi)

∂ωi

∣∣∣∣
ωi=ω

0
i

)}]

× exp
[
il

2c

{
(msFSRs +Ωs)

×
(
ns(ω

0
s) +ω

0
s

∂ns(ωs)

∂ωs

∣∣∣∣
ωs=ω0s

)
+ (miFSRi +Ωi)

×

(
ni(ω

0
i ) +ω

0
i

∂ni(ωi)

∂ωi

∣∣∣∣
ωi=ω

0
i

)}]
. (2.24)

α is related to χ(2)(ωp;ω0i ,ω0i )- the crystal e�ciency for the nonlinear conversion of

ωp toω0s andω0i and to the maximum amplitude of the pump Ep according to

α =
−iEp

16π2ε0cA
χ(2)(ωp;ω0s ,ω0i )

√
ω0sω

0
i FSRsFSRi

ns(ωs)ni(ωi)
. (2.25)

Here A is the transverse quantisation area in the material, ε0 is the permittivity of

free space and other variable de�nitions remain unchanged.

We simplify these expressions. The time evolved two-photon state is calculated

using the time evolution operator, which is a function of the interaction Hamiltonian

describing the nonlinear process. Since the SPDC can occur at any point within the

nonlinear crystal, the Hamiltonian involves an integral along the length of the crystal to

integrate over all the contributions. Scholz et al. set the end of the crystal as the origin

an set the limits of the integral to go from −l to 0. In addition, they normalise it by l (

section 3. in [102]). However, setting the origin to be in the middle of the crystal by

changing the integration limits to −l/2 to l/2, and removing the normalisation will lead

to the phase term exp [· · · ] in Equation 2.24 to be replaced by l. Sinceωp = ω0s +ω
0
i by

de�nition, the δ function in Equation 2.23 impliesms FSRs+Ωs = −(mi FSRi+Ωi).
Applying this to (2.24) and using the results of subsubsection 2.1.2, Equation 2.24 can

be simpli�ed to

F ′ms,mi
(Ωs,Ωi) = l sinc

[
(msFSRs +Ωs)

τo

2

]
. (2.26)
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Although Equation 2.23 can be used to obtain the amplitude for the production of a

signal-idler photon-pair at some frequencies ωs and ωi respectively, the notation used

by Scholz et al. requiresωs andωi to be expressed in terms of the deviations (Ωs and

Ωi) from some cavity resonance (msFSRs and miFSRi) Figure 2.1. In order to express

the JSA directly as a function of some absolute frequencies of signal-idler emission ωs

andωi, we simplify their results and change the notation. We de�ne

ωε ≡ ω0ε +mε FSRε +Ωε (2.27)

where ε ∈ {s, i}. Applying Equation 2.27 to the two-photon state in Equation 2.23 and

to the phase matching function in Equation 2.26, the two-photon state from CE-SPDC

can be expressed as

|ψC〉 = α ′
∫∞
−∞ dωs

∫∞
−∞ dωi fNB(ωs,ωi)

×Γ(ωs,γs,ω0s , FSRs) Γ(ωi,γi,ω0i , FSRi) â†s(ωs) â
†
i(ωi) |0, 0〉 . (2.28)

Here fNB is the JSA for SPDC from the crystal in free space, when pumped by a

monochromatic pump,

fNB(ωs,ωi) = πl δ(ωp −ωs −ωi) sinc

[(
ω0s −ωs

) τo
2

]
. (2.29)

This expression, given in terms of the propagation delay, is equivalent to the one in

Equation 2.7. Γ is a sum of unit-amplitude complex Lorentzian functions and describes

the frequency dependent transmission of an optical electric �eld through a cavity [104]

Γ(ωε,γε,ω0ε, FSRε) ≡
∞∑

mε=−∞
γε/2

γε
2 + i (ω0ε +mε FSRε −ωε)

(2.30)

for ε ∈ {s, i}. The constant α ′ is

α ′ ≡ α 2
√
γs

2
√
γi

, (2.31)

and has been brought out of the integral since it varies slowly over the range of signal-

idler frequencies that are within the phase matching bandwidth.

Thus, the JSA for a two-photon state from CE-SPDC is a product of the JSA for

single-pass SPDC in a free-space crystal and cavity resonances for the signal and idler,

fC(ωs,ωi) ≡ fNB(ωs,ωi) Γ(ωs,γs,ω0s , FSRs) Γ(ωi,γi,ω0i , FSRi). (2.32)
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JSI of photon pairs from CE-SPDC

Similar to Equation 2.8, the square magnitude of the two-photon state is

〈ψC|ψC〉 = |α ′|2
∫∞
−∞ dωs

∫∞
−∞ dωi |fNB(ωs,ωi)|2

×
∞∑

ms=−∞
γ2s/4(

γs
2

)2
+ (ω0s +ms FSRs −ωs)

2

×
∞∑

mi=−∞
γ2i /4(

γi
2

)2
+
(
ω0i +mi FSRi −ωi

)2
= |α ′|2

∫∞
−∞ dωs

∫∞
−∞ dωi |fNB(ωs,ωi)|2

×|Γ(ωs,γs,ω0s , FSRs)|2 |Γ(ωi,γi,ω0i , FSRi)|2

≡ |α ′|2
∫∞
−∞ dωs

∫∞
−∞ dωi |fC(ωs,ωi)|2, (2.33)

which is an integral of the JSI from CE-SPDC |fC(ωs,ωi)|2 over all signal-idler fre-

quencies. Thus |fC(ωs,ωi)|2, which is proportional to the probability density for

the distribution of signal-idler frequencies from CE-SPDC, is a product of the phase-

matching function (the sinc
2

function), and the individual signal and idler cavity reso-

nance functions. The cavity resonances are given by a Lorentzian for each centred at

ω0ε +mεFSRε and a FWHM in angular frequency γε for ε ∈ {s, i}. Thus the output

spectrum consists of those signal-idler frequencies that are within the phase matching

bandwidth for the crystal in free space and are simultaneously resonant in the CE-SPDC

cavity.

The form of the cavity-modi�ed JSI from Equation 2.33 is similar to the expression

for the CE-SPDC JSI developed by Jeronimo-Moreno et al. in [103] (equation 10). The

derivation in [103] holds for a lossless standing-wave cavity. When modi�ed to be

applicable to all types of cavities in general by including losses [95, section 1.3.2] and

multiple mirror re�ectivities, the pair JSI takes the form

|f ′C(ωs,ωi)|
2 = |f(ωs,ωi)|2As(ωs)Ai(ωi), (2.34)

where

Aε(ωε) =
Toc

(1− grt)2

[
1+

(
2F

π

)2
sin
2

(
π
ωε

FSRε

)]−1
≡ TenhA

0
ε(ωε), (2.35)
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Figure 2.2: Schematic of CE-SPDC source. Pump at 397.5nm (blue line) is focussed in the SPDC

crystal (PPKTP) inside a bow-tie cavity. The down-converted light at 795nm (red

line) is resonant in the cavity, which also contains a tuning crystal (KTP), and the

down-converted photons exit via mirror M4. The detectors PD1 and PD2 are used to

probe the cavity resonances at idler and signal polarisations respectively, with the

weak transmission of coherent light through M2 (dash-dotted line). The piezo on

M3 stabilises the cavity length. PBS: polarising beamsplitter, PD: photodiode, λ/2:

half-wave plate

for ε ∈ {s, i}. Here Toc (transmittivity of the out-coupling mirror) = 1− Roc (re�ec-

tivity of the out-coupling mirror), grt (the round trip gain) and F (cavity Finesse)

are attributes of a cavity, details of which are given in subsection 2.2.2. A0ε(ωε) ≡[
1 +

(
2F
π

)2
sin
2

(
π ωεFSRε

)]−1
is the unit-amplitude normalised Airy function and

Tenh ≡ Toc/(1− grt)
2

is the cavity enhancement factor.

2.2 DETAILS OF THE PHOTON-PAIR SOURCE

Having theoretically analysed the joint spectrum of the two-photon state from CE-SPDC

we now describe the photon-pair source, which is based on the same process. First we

describe the design of our CE-SPDC source. We then introduce essential attributes of

cavities and state experimental measures of these attributes for our cavity. Parts of this

section and subsequent sections appear in [68].
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2.2 details of the photon-pair source

2.2.1 Design

The schematic of the CE-SPDC source is given in Figure 2.2. The CE-SPDC optical

resonator is in a bow-tie con�guration of four mirrors, with the two closest to the

SPDC crystal being concave, to produce a cavity mode with a 45 µm beam waist in-

side the SPDC crystal. Mirrors M1 to M3 are coated for 99.9% re�ectivity at 795nm

(R1,R2,R3 = RHR = 99.9%) whereas the outcoupling mirror M4 has nominal re-

�ectivity of (Roc) 93% at this wavelength. Scattering losses from the super-polished,

ion-beam sputtered mirrors are negligible, and the weak transmission of M1, M2 and

M3 is useful for locking and probing the cavity resonances. The cavity length can be

adjusted via a piezo-electric actuator on mirror M3. These four mirrors form a resonator

for the 795nm signal and idler photons. The 397nm pump light is not resonated

because the same mirror coatings are largely transparent for this wavelength with

nominal re�ectivities of < 3% at 397nm. The e�ective cavity length is 610mm. See F.

Wolfgramm et al. [37], and [105] for more details of the cavity construction.

The SPDC occurs in a 20mm long periodically-poled (or quasi-phase-matched)

potassium titanyl phosphate (PPKTP) crystal (henceforth called SPDC crystal), with

a poling period of 9.4 µm to enable type-II phase matching from vertically-polarised

(V) pump to vertically-polarised signal and horizontally-polarised (H) idler beams. The

crystal phase-matching bandwidth was calculated to be ∆ωspdc = 2π× 148GHz [105]

at this wavelength.

The pump is focused into the SPDC crystal, enters the cavity via M1, exits through

M2 and is blocked. The optimal pump waist was calculated to be 22.5 µm from the

Boyd-Kleinman theory [105]. However, to reduce the e�ects of thermal lensing, a waist

of 42 µm was chosen. The pump alignment is discussed in section 2.3.

The cavity also contains an unpoled KTP crystal (tuning crystal) with the same

dimensions as the PPKTP crystal and with the optical axis aligned parallel to that of the

PPKTP crystal. The birefringence of the tuning crystal alters the round-trip optical path

length of the signal relative to the idler and thereby provides a degree of freedom for

independently tuning the signal and idler cavity resonances. This is explained in detail

in chapter 4 which is dedicated to tuneability.

Both the SPDC and tuning crystals are mounted in PTFE (Te�on) ovens with optical

access. The crystals’ temperatures are independently controlled using Peltier elements

and 5 kΩ NTC thermistors, with the controllers being an analog PID (Wavelength
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Figure 2.3: Schematic of set-up for measurements of cavity attributes. Frequency scanned di-

agonally polarised coherent light at 795nm is incident through M4. The weak

transmission of the coherent light through M2 (dash-dotted line), is split according

to polarisation at the PBS. Detectors PD1 and PD2 are used to probe the cavity

resonances at idler and signal polarisations respectively. Inset: Illustrative image

of transmission seen on oscilloscope for V polarised (red curve) and H polarised

(orange curve) probe light. PBS: polarising beamsplitter, PD: photodiode.

Electronics HTC1500) with its set point �xed by a microcontroller (Arduino Uno +

Analog Shield). This technique allows us to control the temperature in steps of ≈ 5mK
and a provides a long-term stability of of 1mK in the crystal temperature.

2.2.2 Attributes of the bow-tie cavity

Here we de�ne some parameters important to describe a cavity and provide measures

of these values for our CE-SPDC cavity. Since we use a bow-tie cavity with a single

out-coupling mirror for our CE-SPDC process, this discussion is made speci�c to such

a cavity. As in the theory sections, we use subscripts p, s and i, to refer to physical

quantities pertaining to the pump, signal and idler respectively. The de�nitions of the

following attributes are taken from [106].

• Free spectral range

The frequency spacing between adjacent frequencies that are perfectly resonant in

the cavity. This depends on the e�ective path length experienced by light within

the resonator. Since the cavity contains birefringent media, the free spectral range

depends on the length (lj) of each material within the resonator (indexed with
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subscript - j) and the polarisation (ε̂) dependent group index in that medium n
(g)
l,ε̂

according to

FSRε =
2πc∑

j n
(g)
j,ε̂ (ωε, Tj) lj

. (2.36)

where ε ∈ {s, i} and ε̂ ∈ {V ,H}5. n
(g)
j,ε̂ (ωε, Tj) is also dependent on the tempera-

ture Tj of the material and so the FSR can be altered by adjusting the temperature

of the crystals inside the cavity.

The FSRs of the signal and idler modes are slightly di�erent due to the birefrin-

gence induced di�erence in optical path length between them. To make a classical

measurement of the cavity FSR, we perform cavity transmission spectroscopy.

We scan the frequency of a 795nm distributed Bragg re�ector (DBR) laser, which

enters the cavity via M4 and is detected behind M2 in a photo detector. We simul-

taneously collect Rb D1 saturated absorption spectra as an absolute frequency

reference. We compare the spacing between adjacent cavity resonances and the

features in the absolute reference to estimate the FSR (Figure 2.3). We match the

polarisation of the light from the DBR laser to the signal/idler modes to obtain

the corresponding FSR. From this we estimated a mean FSR,

FSRmean ≡
FSRs + FSRi

2
= 2π× 496(8)MHz. (2.37)

The di�erence ∆FSR ≡ FSRs− FSRi = 2π× 3.5(1)MHz can be more precisely

estimated by analysing the spectral content at the output of the CE-SPDC source

as will be shown later.

• Round trip time

The time taken by light to complete one round trip through the cavity. The round

trip time is related to the FSR according to

τrt =
2π

FSR
. (2.38)

τrt ≈ 2ns in our cavity.

• Round trip gain and loss

The magnitude of the cavity (round trip) gain (grt) gives the change in the ampli-

5 Note: Throughout the thesis, the FSR is in units of angular frequency.
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tude of the �eld within the cavity after one round trip. For a passive cavity grt <

1.

grt =
√
R1R2R3Roc e

−
∑
j ajlj , (2.39)

where e−ajlj is the amplitude reduction due to loss through each medium (indexed

with j) of length lj and with a voltage absorption co-e�cient aj within the cavity.

The probability that a photon is lost in one round trip through a loss channel

other than the out-coupling mirror is

Ploss = 1−
g2rt
Roc

. (2.40)

From the cavity transmission spectroscopy measurements, we �t the the gain grt

to be 0.95± 0.01 and Ploss to be 0.023± 0.009.

• Cavity escape e�ciency

The probability that a photon is out-coupled via outcoupling mirror as opposed

to being transmitted or scattered out of the cavity mode otherwise. It is de�ned

as [107]

η =
1− Roc

1− g2rt
. (2.41)

We estimate an escape e�ciency of 72% for our cavity.

• Finesse

The �nesse is a measure of the quality of the cavity and gives an estimate of the

resolving power of a cavity when it is used as a frequency �lter. It also gives an

estimate of the number of round trips light makes in a cavity before it leaks out

of the cavity. It is de�ned as

F =
π
√
grt

1− grt
. (2.42)

Based on the grt we expect a �nesse of 61 for the CE-SPDC cavity. But from the

measurement of the cavity linewidth (see below) we estimate a �nesse of 65. Since

the signal and idler have approximately the same wavelength, the �nesse, gain

and losses in the cavity are the same for both.
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• Cavity linewidth

The cavity damping rate γ, also called the cavity relaxation rate, is the rate at

which power decays from the cavity. It gives the spectral width, more precisely

the FWHM width in angular frequency, of individual resonator modes.

γ ≈ FSR
F

. (2.43)

We repeat the cavity transmission spectroscopy measurement with an atomic

reference, outlined earlier, to experimentally measure the linewidth. We ob-

serve transmission resonances of linewidth 8.8(4)MHz, which, when adjusted

for the 1.2(5)MHz short-term linewidth of the DBR laser, implies γ = 2π×
7.6(6)MHz. The resolution of the technique was not su�cient to resolve a

di�erence between the decay rates for the signal and idler modes.

• Ring Down Time

The ring down time τd is the inverse of the linewidth and gives the time after

which the energy in the cavity drops to 1/e of the original value. It can also be

called the cavity decay time.

τd =
1

γ
. (2.44)

It is 21ns for our cavity.

2.3 PHASE-MATCHING TEMPERATURE IDENTIFICATION

We performed SHG of laser light at 795nm within the CE-SPDC cavity to identify the

temperature at which perfect phase matching is achieved at the required signal-idler

frequencies. For this, a frequency stabilised, diagonally polarised, coherent light at

795nm was injected into the down-conversion cavity through the outcoupling mirror

as shown in Figure 2.4. The temperature of the tuning crystal was adjusted such that the

cavity was resonant to both H and V polarisations at the the same frequency, thus the

diagonally polarised input light could excite both modes in the cavity simultaneously.

The cavity length was stabilised to maintain resonance. The temperature of the PPKTP

crystal was changed and for each temperature value, a detector outside the cavity (PD4

in Figure 2.4) measured the power of the generated second-harmonic at 397.5nm. Since

the SPDC crystal is quasi-phase-matched, the power of blue light generated from SHG
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Figure 2.4: Schematic of set-up for SHG in cavity. Frequency stabilised, diagonally polarised

coherent light at 795nm is incident through M4. The weak transmission of the

coherent light through M3 (dash-dotted line), is detected on PD3 and the piezo

actively stabilises the cavity length to ensure maximum signal on PD3. The SHG

generated is detected on PD4 and is used to align the optics for the pump.

follows a sinc
2

function of the SPDC crystal’s temperature as shown in Figure 2.5. The

measurements were performed with 7mW injected before the outcoupling mirror (Pin).

The maximum power of blue light produced was 105 µW. Based on the measured cavity

gain and loss values, we estimate the intra-cavity power to be Pcav = 32± 6× Pin ≈
224mW on resonance. The crystal’s conversion e�ciency is thus ηSHG ≡ PSHG/P

2
cav =

0.21%W−1
.

Besides identifying the temperature for degenerate phase matching, we used the

SHG process to align the pump to the SPDC crystal by optimising the coupling of the

upconverted blue light into the �bre that later is used to direct pump light into the

crystal for the CE-SPDC process.

2.4 ATTRIBUTES OF THE CE-SPDC OUTPUT

From the cavity-modi�ed two-photon JSA (Equation 2.32) it is evident that multiple

factors a�ect the spectrum of the down-converted photons. Only those signal-idler

frequencies that 1) satisfy energy conservation with the pump, 2) fall within the phase

matching function and 3) simultaneously satisfy their individual resonance conditions

within the cavity, will have a non-negligible amplitude of generation. The consequences

of this for the signal-idler joint spectrum are discussed here.

30



2.4 attributes of the ce-spdc output

38 39 40 41 42 43 44 45 46

0

1

2

3

4

Temp of PPKTP (ºC)

S
H
G
po
w
er

(V
)

Figure 2.5: Second Harmonic Generation in CE-SPDC cavity. The PPKTP crystal temperature is

scanned to identify the temperature for optimal phase-matching. Data agrees with

the sinc
2

�t function

• Two-photon linewidth

The condition of simultaneous signal-idler resonance implies that the spectrum

of one of the down-converted photons is not just governed by its own damping

within the cavity but also by the damping rate of its correlated partner. In [102]

it has been shown that, for a monochromatic pump, the individual spectrum of

the signal or idler from CE-SPDC is described by a comb of longitudinal modes

with a FWHM that is smaller than the cavity damping rate at the frequency of

the signal (γs) and the idler (γi). The linewidths of the signal and idler from

CE-SPDC with a monochromatic pump, are equal and are called the two-photon

linewidth. When γ = γs ≈ γi , the two-photon linewidth is [32, 102]

γtp = γ

√√
2− 1 ≈ 0.64 γ. (2.45)

Using the cavity damping rate from subsection 2.2.2 in Equation 2.45, a photon

from our source is expected to have a linewidth of 2π×4.9(4)MHz. This is

similar to the 2π× 5.75MHz natural linewidth of the D1 transition in Rb. We

verify this through correlation measurements discussed in chapter 5.

• Photon-pair escape probability

The pair escape probability gives the probability that both photons in a pair exit
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through the outcoupling mirror and are not lost through some other loss channel.

The pair escape probability is the product of the individual escape probabilities

for the signal and idler [107]. If the mirror re�ectivities and round trip loses are

the same for both down-converted photons,

ηpair = ηsηi =

(
1− Roc

1− g2rt

)2
, (2.46)

where ηs/i is the cavity escape e�ciency for the signal/idler given in Equa-

tion 2.41. In our case ηpair = 52%.

• Cavity enhancement of brightness

The brightness of the down-converted pairs that are resonant in the CE-SPDC

cavity is enhanced by the Purcell e�ect [34]. In the earliest quantum description of

CE-SPDC, Ou and Lu had calculated the brightness enhancement factor per mode

in the CE-SPDC output, by comparing the brightness of all frequencies within the

FWHM of a CE-SPDC tooth with the total brightness from a �ltered single-pass

SPDC process. They report an overal enhancement factor per mode of F3/2F0

in [32] and F3/πF0 [99]. These apply to both type-I and II down-conversion

processes, provided the losses in the CE-SPDC cavity for the down-converted

�elds are the same. Here F0 is the �nesse of the “loss-less cavity” i.e., the �nesse

for the same value of Roc but all other mirrors are perfectly re�ective and there

are no more losses, making grt =
√
Roc and Ploss = 0.

The model developed by Jeronimo-Moreno et al. to describe CE-SPDC, gives

the brightness-enhancement at signal-idler frequencies that are in the centre of

the cavity-resonance. The factor T2enh in equation 2.34 gives the ampli�cation in

brightness at signal-idler frequencies perfectly resonant in the cavity i.e., where

the Airy functions A0s = A0i = 1. From the detailed analysis in [95, See section

1.3.2], for a cavity �nesse & 10,

T2enh =

(
Toc

(1− grt)2

)2
≈ 4

π2

(
F2

F0

)2
. (2.47)

While Scholz et al. did not provide an explicit expression for the brightness

enhancement, this can be easily calculated from their expression for the two-

photon state. For this, we compare the JSA for perfectly-resonant frequenciesω0s ,
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2.4 attributes of the ce-spdc output

ω0i , assumed to satisfy energy conservationω0s+ω
0
i = ωp, for the CE-SPDC and

single-pass scenarios. The state produced by CE-SPDC is given in Equation 2.28,

while that for single-pass generation is given in Equation 2.7. We note that

at perfect resonance, the mode-shape factors appearing in Equation 2.28 are

|Γ(ω0i ,γi,ω0i , FSRi)| ≈ |Γ(ω0s ,γs,ω0s , FSRi)| ≈ 1 in the high-�nesse regime,

so that in fact Equation 2.28 and Equation 2.7 di�er only in that Equation 2.28

contains the global factor α ′, whereas Equation 2.28 contains the global factor κ.

The ratio of brightnesses is thus |α ′/κ|2.

κ is given in Equation 2.3 and α ′ is given by Equation 2.31 and Equation 2.25. α ′

can also be expressed as

α ′ = i
χ(2)

2 h
EpEsEi

√
FSRsFSRi
γsγi

2

π

≈ i
χ(2)

2 h
EpEsEi

√
FsFi

2

π
, (2.48)

where the �eld amplitudes Es and Ei are de�ned in Equation 2.4.

In our case Fs = Fi = F. Taking the ratio of Equation 2.48 and Equation 2.3 we

�nd ∣∣∣∣ακ ′
∣∣∣∣ ≈ 2

π
F. (2.49)

Thus the enhancement in intensity from the CE-SPDC process (for a signal-idler

pair that is perfectly resonant in the cavity) scales as the square of the �nesse

according to ∣∣∣∣ακ ′
∣∣∣∣2 ≈ 4

π2
F2 (2.50)

We note that this is approximately equal to the enhancement from Jeronimo-

Moreno et al. and gives the enhancement at the peak (the line centre) of the cavity

resonances. From these we estimate a brightness enhancement of ∼ 1000 for a

signal-idler pair perfectly resonant in the cavity, as compared to the same pair

of frequencies from a single pass SPDC process. We also note that Equation 2.50

describes the brightness enhancement at the speci�c frequency valuesωs = ω
0
s ,

ωi = ω
0
i , while the two-photon linewidth decreases with increasing �nesse so

that the total brightness contained within a CE-SPDC mode pair increases with

F, but more slowly than F2.
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2.5 THE CLUSTERING EFFECT

Unless speci�c compensation measures are taken [37], a type-II SPDC cavity will have

FSRs 6= FSRi, due to birefringence of the nonlinear media. This FSR mismatch provides

a means to restrict the modes into which photon pairs are generated. For example, if a

signal frequencyω
(0)
s and its energy-conserving partnerω

(0)
i = ωp −ω

(0)
s are both

perfectly resonant, i.e., ifω
(0)
s = lFSRs andω

(0)
i = m FSRi for some integers l and

m, then the frequency of the neighboring signal mode ω
(1)
s = ω

(0)
s + FSRs will be

resonant, but its energy-conserving partner ω
(1)
i = ω

(0)
i − FSRs will not be perfectly

resonant as the resonance will be centred atω
(0)
i − FSRi. While it is possible to avoid

emission on neighboring modes by making the FSR mismatch, ∆FSR ≡ FSRs − FSRi,
large compared to the linewidth [107, 108], if |∆FSR| . γ, there will be signi�cant

emission into at least a few mode pairs close to any ideally-matched pair. This gives

rise to the “clustering e�ect” [107–110]. The output of the CE-SPDC is in clusters of

modes which repeat with a frequency spacing (∆ωcluster) given by [109, see Eq. 25]

∆ωcluster =
FSRs FSRi

|∆FSR|
. (2.51)

If there exists an energy-conserving mode pairω
(l)
s = lFSRs andω

(m)
i = m FSRi for

some l,n ∈ Z, it will be the brightest in the cluster. For an average signal-idler linewidth

γavg = (FSRs + FSRi)/(2F) ≡ FSRmean/F, the modes ν
(l+M)
s and ν

(m−M)
i , for

M ∈ Z, would have half the brightness of ω
(l)
s and ω

(m)
i if M∆FSR = ±γavg/(2).

The same applies to the modes ω
(l−M)
i and ω

(m+M)
i . Thus we can expect the total

number of modes within the FWHM of a cluster to be

Nm = 2M+ 1 =
γ

2|∆FSR|
=

FSRmean

F|∆FSR|
. (2.52)

In what follows, we theoretically estimate and experimentally verify the structure and

spacing of clusters in the CE-SPDC output.
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2.5 the clustering effect

2.5.1 Theoretical modelling of CE-SPDC output

We use the Sellmeier coe�cients for PPKTP from [111] and the cavity parameters to

estimate the number of modes per cluster and cluster spacing. The Sellmeier’s equations

relate the refractive index n at room temperature Tr to the wavelength λ according to

nε̂(λ, Tr) =

√√√√1+∑
j

Bj,ε̂ λ2

λ2 −Cj,ε̂
. (2.53)

Here T is temperature and the coe�cients Bj,Cj take di�erent values depending

on the polarisation of the light (ε̂) w.r.t to the crystal axes. In our case, ε̂ refers to V

for signal and H for idler. The rate of change in refractive index w.r.t temperature is

reported in the following form as a polynomial �t to experimental data

dnε̂(λ, T)
dT

∣∣∣∣
T=Tr

=
∑
j

Dj,ε̂

λj
. (2.54)

So that the temperature-dependent refractive index can be approximated as

nε̂(λ, T) = nε̂(λ, Tr) +
dnε̂(λ, T)
dT

∣∣∣∣
T=Tr

(T − Tr) . (2.55)

The temperature and wavelength dependent group index is

n
(g)
ε̂ (λ, T) = nε̂(λ0, T) − λ

[
∂(nε̂(λ, T))

∂λ

∣∣∣∣
λ=λ0

]
. (2.56)

The crystals in the nonlinear cavity are cut along the x- axis and the signal and idler

photons are polarised along y and z axis respectively. We use the values of the coe�-

cients in Equation 2.53 and Equation 2.54 from [111] and the expression for FSR from

Equation 2.36 to theoretically calculate the signal-idler FSRs. We estimated a |∆FSR|

= 2π× 3.5MHz from this. For modelling the JSI produced by the CE-SPDC, we used

148GHz for the SPDC bandwidth, the classically measured FSRmean= 2π× 496MHz,
γi = γs = 2π× 7MHz and the the estimated ∆FSR of 2π× 3.5MHz in Equation 2.33

or equivalently in Equation 2.34, to plot the signal spectrum from the CE-SPDC source

for a narrowband pump (i.e., settingωi = ωp −ωs). The results are shown in �gures

Figure 2.6. From these calculations we estimated that there would be 3 clusters within

the SPDC bandwidth, spaced by ∆ωcluster = 2π× 68GHz from each other.
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Figure 2.6: Theoretical two-photon JSI from CE-SPDC. The blue solid lines show the CE-SPDC

JSI function |fC(ωs,ωp −ωs)|
2

for a constant ωp. Black dashed line shows the

crystal phase matching function with the crystal tuned such that the degenerate

modes ωi = ωs = ωp/2, are brightest. See subsection 2.5.1 for the function

parameters used for the plots. Top graph shows three clusters allowed within the

phase matching bandwidth. Bottom graph shows closeup of the central cluster. Each

cluster is expected to contain 3 modes within the FWHM.

2.5.2 Cluster analysis through DFG

It was important for us to know the exact structure of the clusters, in order to design

a suitable �lter for a single frequency-mode output. The theoretical predictions of

the cluster structure are reasonably sensitive to the refractive index of the crystals,

which may vary in function of the crystal growth methods. Rather than rely upon such
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Figure 2.7: Schematic of set-up for DFG in cavity. Frequency stabilised, V polarised coherent

light at 795nm (lock light) is incident , counter-propagating to the pump, through

M4. Its transmission (red dotted line) is detected in PD3, which is used to stabilise

the cavity length. DFG occurs between a frequency-scanned high-power V polarised

seed (also incident through M4) and the pump. The weak transmission of the H

polarised DFG (orange dash-dotted line), is detected on PD2 and compared with the

transmission of the seed (red dash-dotted line) seen in PD1.

predictions, we used the stimulated parametric down-conversion process, i.e. di�erence

frequency generation (DFG), to measure the parametric gain of the CE-SPDC [112].

A schematic of the set-up is shown in Figure 2.7. A V polarised locking beam at

frequencyωlock (resonant to F = 2 to F ′ = 1 transition in
87

Rb D1 line) was made to

enter the cavity in the reverse direction, i.e., opposite to the direction of the pump, signal

and idler, and detected in transmission using PD3. The PPKTP crystal was pumped with

about 19mW of pump light with frequency ωp = 2ωlock − 2π× 120MHz. About

28mW of seed light at 795nm, matched in spatial mode, polarisation and direction to

the signal mode, was introduced through M4, as a seed for the DFG process. Light exiting

the cavity through M2 was split by polarisation and detected at PD1 and PD2. The seed

frequency (ωseed) was scanned, and DFG was observed as production of H-polarised

idler light. Since the intensity of the seed changed with the frequency scan, we estimate

the power of the DFG light generated based on the ratio of voltages recorded on PD2

(for the transmitted H-polarised DFG light) and PD1 (for the transmitted V polarised

seed light). The ratio of DFG to seed powers was 0.044.
Figure 2.8 shows the detected idler power seen on PD2, as ωseed was scanned by

over a range of ±2π× 3GHz. The output shows a cluster of modes that contains about
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Figure 2.8: Measurement of one cluster of CE-SPDC emission by DFG. Graph shows idler power

(Pi) generated by DFG, as a function of the change in the input seed frequency

(∆νseed), for �xed cavity length and pump frequency. Here, 2π×∆νseed ≡ ωseed −

ω0seed, where ω0seed is the angular frequency of the seed that corresponds to the

brightest peak in the idler cluster in graph. This is due to the simultaneous resonance

of ω0seed and the idler mode at ωp −ω0seed in the CE-SPDC cavity. Other peaks

from idler modes at ± FSRi,±2 FSRi, . . . have decreasing brightness according to

the mismatch in resonance with the corresponding seed modes 2π × ∆νseed =

± FSRs,±2 FSRs, . . . perfectly resonant in the cavity as the cavity lock light has the

same polarisation as the seed light. A second set of peaks, intermediate between DFG

peaks and of roughly constant amplitude, appear to be due to a small coupling of the

seed beam to a higher transverse mode, and are unrelated to DFG. Background level

of Pi ≈ 0.008 is due to imperfect blocking of the pump light.

3 to 4 modes within the FWHM of the cluster. The �rst cluster was observed when

ωseed was scanned around 2π× 377 099.1(5)GHz, as measured with a wavemeter. The

cluster repeated itself with a period of 2π× 70.7(5)GHz inωseed. From Equation 2.51

with FSRmean = 2π× 496MHz andωcluster = 2π×70.7GHz, we �nd ∆FSR = FSRs −
FSRi = 2π× 3.5(1)MHz.

38



3
TUNEABLE FP FILTERS FOR CE-SPDC OUTPUT

As described in the previous chapter, the output from the CE-SPDC source is in clusters

of modes. To select a single (frequency) mode output from this, we employ a tuneable

Fabry-Perot (FP) �lter, one each in the signal and idler arm. The �lter design aims

for large transmission of a single SPDC cavity emission frequency, simultaneous with

good rejection of other cavity emission frequencies, so that the �ltered output has a

bandwidth similar to the SPDC cavity linewidth. With careful attention to the cluster

structure described in the preceding chapter, we identify parameters for the FP �lter

such that these two objectives can be achieved with a single �lter. First, we theoretically

discuss the modi�cations to the two-photon JSA from CE-SPDC due to the �lters and

analyse the �lter parameters for which the output can be approximated to be in a

single frequency mode. We then describe the design of the �lters we employ, and also

how the design enables the �lter resonances to be tuned. We present measurements

that characterise the �lter performance and use the �lter to perform an independent

characterisation of the spectral structure of the CE-SPDC output. We show that through

spectral analysis of the CE-SPDC output using the �lter, the SPDC crystal temperature

can be better optimised for phase matching as compared to performing SHG in the

cavity (section 2.3). Parts of this chapter were adapted from [68].

3.1 THE FILTER MODIFIED TWO-PHOTON JSA

A spectral �lter can be modelled as a frequency dependent beamsplitter that transmits

a photon incident in spatial mode a to mode c with a frequency dependent amplitude

transmission coe�cient T(ω), or re�ects to mode d with an amplitude re�ection coef-
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�cient R(ω). This can be described with creation operators â†, ĉ†, d̂† corresponding to

modes a, c,d according to [113],

â†(ω) = T(ω)ĉ† +R(ω)d̂†. (3.1)

For a FP �lter with linewidth γf and free spectral range FSRf, with its resonance centred

atω0f , the transmission T(ω) =
√
T0 Γ(ω,γf,ω0f , FSRf). Here

√
T0 is the maximum

on- resonance transmission amplitude and Γ is an in�nite sum of unit/amplitude complex

Lorentzian functions, that describes cavity resonances (introduced in Equation 2.30),

Γ(ω,γ,ω0, FSR) ≡
∞∑

q=−∞
γ/2

γ
2 + i (ω0 + q FSR −ω)

, (3.2)

where q ∈ Z. The transformation to the two-photon state from CE-SPDC (Equation 2.28)

on being transmitted through a pair of �lters with the same �nesse and FSR, one each

on the signal and idler arm, is,

|ψF〉 = α ′
√
T0
√
T0

∫∞
−∞ dωs

∫∞
−∞ dωi fF(ωs,ωi)ĉ†s(ωs) ĉ

†
i(ωi) |0, 0〉 , (3.3)

where

fF(ωs,ωi) = fNB(ωs,ωi)
∏
ν∈{s,i}

Γ(ων,γν,ω0ν, FSRν)

×
∏
ν∈{s,i}

Γ(ων,γf,ω0fν , FSRf)

= fC(ωs,ωi)
∏
ν∈{s,i}

Γ(ων,γf,ω0fν , FSRf). (3.4)

Here fNB(ωs,ωi) is the JSA from single-pass SPDC pumped by a monochromatic

pump, given in Equation 2.29, fC(ωs,ωi) is the JSA from a CE-SPDC process, given

in Equation 2.32. γν and FSRν for ν ∈ {s, i} are the CE-SPDC linewidth and FSR for

the signal and idler respectively. γf and FSRf are the linewidth and FSR of the �lters,

respectively. The JSA after the �lters is a product of the JSA from the CE-SPDC process

and FP �lter cavity resonances.

Similar to Equation 2.33, the rate of down-converted photon pairs available after

�ltering, is proportional to the square magnitude of the post-�lter two-photon state

〈ψF|ψF〉 = |α ′|2 T40

∫∞
−∞ dωs

∫∞
−∞ dωi|fF(ωs,ωi)|2 (3.5)
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where |fF(ωs,ωi)|2 is the JSI from CE-SPDC after �ltering.

|fF(ωs,ωi)|2 ∝ l2π2 sinc2
(
∆k l

2

) ∏
ν∈{s,i}

|Γ(ων,γν,ω0ν, FSRν)|2

×
∏
ν∈{s,i}

|Γ(ων,γf,ω0fν , FSRf)|2 (3.6)

3.1.1 Conditions for single mode output

The amplitude for the transmission of a signal-idler pair with frequenciesω0s andω0i
can be maximised by tuning the �lters’ index frequencies to coincide with those of

the CE-SPDC cavity, i.e., ω0fν = ω0ν (where ν ∈ {s, i}). Additionally, the transmis-

sion of unwanted frequency modesωs = ω
0
s + qsFSRs andωi = ω

0
s + qiFSRi can

be reduced close to zero, by ensuring that the �lter transmission function Γ(ω0ν +

qνFSRν,γf,ω0ν, FSRf) ≈ 0 (for ν ∈ {s, i}) with the appropriate choice of �lter pa-

rameters (FSRf and γf). Mathematically, this means that for a given γs,γi, FSRs and

FSRi, appropriate γf and FSRf can be identi�ed to minimize the integral of |fF|
2

over

frequencies not close to ω0s , ω0i , given the constraint that ω0fν = ω0ν for ν ∈ {s, i}.
Here is a list of conditions that would ensure this, when the �lters’ index frequencies

are made to coincide with those of the CE-SPDC cavity.

• γf � γs/i : The linewidth of the �lter cavity has to be larger than the linewidth

of the CE-SPDC modes to ensure complete transmission of the full spectral width

of the required CE-SPDC mode pair. The two-photon linewidth would be reduced

if this is not satis�ed.

• γf � FSRs/i: The FP linewidth has to be su�ciently smaller than the SPDC cav-

ity’s FSR to ensure adjacent CE-SPDC modes have a small transmission amplitude

through the FP cavity. This will ensure Γ(ω0ν + qνFSRν,γf,ω0ν, FSRf) ≈ 0 for

ν ∈ {s, i}.

• FSRf � Nm FSRmean: The �lter FSR has to be signi�cantly greater than the

width of a cluster, to avoid adjacent �lter resonances from transmitting CE-SPDC

modes with frequencies ω0ν + qνFSRν. The cluster width in frequency is the

product of the number of modes in a cluster (Nm, see Equation 2.52) and the mean

FSR of the CE-SPDC cavity.
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• Either FSRf > ∆ωcluster, or FSRf 6= ∆ωcluster
p for p ∈ Z: To avoid FP �lter reso-

nances from transmitting modes from other CE-SPDC clusters, the best solution

would be to have a �lter FSR that is greater than the cluster spacing ∆ωcluster

(refer Equation 2.51). However, if this is not possible, the cluster spacing should

not be an integer multiple (nor approximately an integer multiple) of the �lter

FSR, since �lter resonances repeat as integer multiples of the FSR.

If the FP �lters employed are designed to satisfy these conditions, and if the �lters’

index frequencies are made to coincide with those of the CE-SPDC cavity, i.e.,ω0fν = ω0ν,

then the two-photon state after the �lters, when pumped by a monochromatic pump, is

well approximated by

|ψF〉 ≈
∫∞
−∞ dωs

∫∞
−∞ dωi f ′F(ωs,ωi)ĉ†s(ωs) ĉ

†
i(ωi) |0, 0〉 , (3.7)

where the JSA of two-photon state after the �lters is,

f ′F(ωs,ωi) = ξ δ(ωp −ωs −ωi)
∏
ν∈{s,i}

γν/2
γν
2 + i (ω0ν −ων)

. (3.8)

We call f ′F the JSA for “perfect �ltering” and consists of a single, i.e., nonrepeating,

complex Lorentzian each for the signal and idler frequency, centred at ω0s and ω0i
respectively, with a linewidth determined by the CE-SPDC linewidth, and the frequencies

anti-correlated according to the energy conservation condition with the narrowband

pump. The contribution from the crystal phase matching function has been reduced

to a constant that is factored inside ξ, since the phase-matching bandwidth is much

greater than the range of frequencies in the �ltered two-photon state. When the central

frequencies of the �ltered signal and idler satisfy perfect momentum conservation with

the pump, ξ = πα ′lT0.

3.2 DESIGN OF TUNEABLE FABRY-PEROT FILTERS

Previous work on FP �lters for CE-SPDC sources has taken a “monolithic” approach,

in which a single piece lens is coated on either side to produce mirrors with desired

re�ectivity [114, 115]. Here, in contrast, we employ a three-element – rather than

monolithic – design to more easily achieve the desired linewidth, FSR and tuning

properties. Our design results in a FP cavity with a higher on resonance transmission
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cba

Figure 3.1: FP �lter assembly. (a) The FP �lter consisting of one concave mirror, an annular

spacer, and a plano mirror in face-to-face contact cemented around the edges with

epoxy and housed in an aluminium oven (image b). (c) Vertical cross section of the

�lter assembly: aluminium box and heat sink are shown in grey, the Peltier element

in red, the mirrors and spacer in shades of blue and the insulator in orange.

than reported with the monolithic design. In comparison to the monolithic design, it is

also less sensitive to mechanical stress from the mounting procedure, which can cause

stress induced birefringence in the �lter [115].

3.2.1 Components and assembly

The cavity is made by one plane mirror and one concave mirror (as shown in Figure 3.1)

with a radius of curvature of −1000mm (LaserOptik mirror substrate part numbers

S-00018 and S-00139). Both mirrors are of fused silica and have low loss ion-beam

sputtered (IBS) multi-layer dielectric mirror coatings on the interior-facing surfaces,

with nominal re�ectivities (R =) 99.2(1)% at 795nm. The mirrors are anti-re�ection

(AR) coated with IBS coatings and re�ectivity < 0.1% on the exterior-facing surfaces.

The absorption losses in the coatings are below 10 ppm and scattering losses from

mirror surfaced below 20 ppm. A suitable separation of the two mirrors is achieved

with a Boro�oat annular spacer of 3.8(1)mm thickness (Lf) with a 5.5mm diameter

hole, (custom made by LaserOptik).

To assemble the �lter, the mirror-spacer-mirror stack is �rst held in face-to-face

physical contact, and then a two-component epoxy (Varian Torr Seal) is applied around

the edges to seal the trapped air space and provide structural rigidity. The resulting

�lter cavity resonance does not shift from sudden pressure changes in the laboratory

from opening/closing the doors or movement of people. Neither does it shift due to
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T2T1 FP Filter

Figure 3.2: Schematic of optics for FP alignment. The beam waist is made to fall on the plain

mirror of the FP assembly and beam curvature at the concave mirror matches that

of the mirror using T1. T2 re-collimates the beam for �ber coupling. T1 and T2:

Telescope 1 and 2.

any impact on the optical table. Thus the �lter cavity is highly insensitive to vibration

and pressure �uctuations and does not need to be stabilised by any active feedback

mechanism.

3.2.2 Alignment

The TEM00 mode in the cavity has a beam waist at the plane mirror, with a spot size of

125 µm. To couple to the TEM00 mode, collimated light of diameter 1.8mm is incident

on a telescope which consists of an acromatic convex lens of focal length f=60mm

(AC254-060-B-ML Thorlabs) and a biconvex lens of focal length f= 25.4mm (LB1761-

B-ML Thorlabs). The telescope (T1) is used to focus the beam with a 125 µm waist, and

the beam has a divergence such that its curvature matches the curvature of the concave

mirror after the length �xed by the spacer (refer Figure 3.2). The �lter is mounted on a

translational stage along the beam direction, to ensure that the waist falls on the plane

mirror. Another telescope (T2) with the same lenses is used to re-collimate the beam

for coupling into �bre.
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Figure 3.3: Transmission spectroscopy of FP �lter. Black curve: Intensity transmission of fre-

quency scanned laser through FP �lter (left axis). Violet curve: Saturated absorption

reference spectrum (right axis), obtained using light from the same laser, split o�

before the �lter. Features in absorption used as a reference to calibrate linewidth and

�nesse of FP �lter. Image shows �lter tuned to be resonant to the
5S1/2 F = 2→

5S1/2 F
′ = 1 transition in

87
Rb.

3.2.3 Attributes

The cavity FSR and linewidth were measured through transmission spectroscopy with

an atomic reference (similar to the procedure in the previous chapter subsection 2.2.2).

The 3.8mm space between the FP mirrors gives the cavity an FSR of FSRf = 2π×
39.4GHz. The linewidth was measured to be γf = 2π× 96.6(9)MHz (see Figure 3.3).

This gives a �nesse of 410. We made two copies of the �lter, one each for the signal and

idler arms. Their maximum on resonance transmissions are 87% and 90%. Finesse and

transmission measurements after two years of use show no signs of degradation.

3.2.4 Resonance tuneability

The FP �lter resonance-frequency, or the signal-idler frequencies at which the maximum

on resonance transmission through the �lters is achieved, is altered by microscopic

changes in the length of the FP cavity (Lf). This is controlled by changing the tem-

perature of the FP �lter. The change in length (∆L) of a material, initially with length
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L, is related to its temperature change (∆T ) through the coe�cient of linear thermal

expansion αL according to,

∆L

L
= αL∆T . (3.9)

The �lter cavity elements were chosen such that the mirrors have a low thermal expan-

sion coe�cient of 5.1× 10−7 K−1
(fused silica) and the spacer has a higher expansion

coe�cient of 3.2× 10−6 K−1
(Boro�oat) so that the FP resonance is primarily in�u-

enced by the spacer’s temperature. The resonance of the �lter can be shifted by 1

FSRf/2π by changing its temperature by 31.7K, while a 5mK change corresponds to a

shift in resonance of approximately 6MHz, based on the values for the coe�cients of

thermal expansion.

The �lter cavity is housed in a custom-built oven, constructed of an aluminium block

with a circular bore to accept the glued mirror assembly, lined with a thermal interface

pad (part number : EYG-S091210DP, from Panasonic electronic components), and with

threaded aluminium end caps to hold the assembly in place. The aluminium block is

insulated with a covering of 3 cm thick polystyrene foam and glued with thermally

conducting epoxy to a Peltier element which in turn is glued to an aluminium heat

dissipater (Figure 3.1 (c)). A 10 kΩ NTC thermistor embedded in the aluminium block

and the Peltier element, are used to control the oven temperature, which is stabilised

the same way as the crystals in the CE-SPDC . The temperature controller is again a

HTC1500 controlled by an Arduino Uno + Analog Shield. The Arduino output voltage

resolution of 150 µV corresponds to minimum resolvable steps of 5mK change in

temperature of the sensor at room temperature. The nonlinearity of the NTC response

results in higher resolution at lower temperatures. The resolution is 2.5mK at 15 °C,

5mK at room temperature and 9mK at 40 °C. Even in the worst case scenario of having

a 10mK temperature resolution, the �lter’s line-center can be tuned to within 6MHz

of a desired signal or idler frequency from the CE-SPDC. This worst-case mismatch

implies < 1% loss of transmission relative to exact resonance.

3.3 CALCULATED OUTPUT AFTER FILTERS

We use expressions for the two-photon JSI from CE-SPDC Equation 2.33 and the FP

intensity transmission function |Γ(ωs,γfs ,ω
0
fs

, FSRf)|2 to model the overlap between

the CE-SPDC spectrum for the signal and the resonances of a �lter in the signal mode.

As shown in Figure 3.4, our �lter complies with the conditions stated in subsection 3.1.1,
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Figure 3.4: Calculated two-photon JSI from CE-SPDC with �lter resonances. Black line shows

sinc
2

crystal phase-matching function with the crystal tuned such that the degen-

erate modes, i.e., ωi = ωs = ωp/2, are brightest. Blue lines show CE-SPDC JSI

|fC(ωs,ωp −ωs)|2 and red lines show FP cavity intensity transmission function

T0 |Γ(ωs,γfs ,ω
0
s , FSRf)|2. Graphs are plotted for the measured parameters of the

bow-tie cavity, FP cavity and phase-matching bandwidth described in the text. The

CE-SPDC resonances are organised into clusters spaced by 68GHz, with the central

cluster shown in (b). When the index frequency of the �lter is matched with a mode

from CE-SPDC (here the brightest-mode as shown in (b)), none of the other CE-SPDC

modes fall within a �lter resonance.

to obtain a single mode output. We use the two-photon JSI after the �lters (Equation 3.6)

when the �lter’s index frequencies coincide with those of the CE-SPDC (ω0fs = ω
0
s), to

model the extinction of unwanted modes (Figure 3.5). From Figure 3.5, the discrimination
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Figure 3.5: Calculated two-photon JSI from CE-SPDC after the FP �lter. Graph shows

|fF(ωs,ωp −ωs)|
2

on the vertical axis and the detuning of the signal frequency

from the degenerate mode ( centred atω0s = ωp/2), on the horizontal axis. As in Fig-

ure 3.4, this shows the JSI for measured parameters of the CE-SPDC and �lter cavities,

when the crystal is tuned such that the degenerate signal-idler mode pair is brightest

and when the signal-arm �lter, described in section 3.2, is tuned such thatω0fs = ω
0
s .

No �lter is present in the idler arm, so that T0|Γ(ωi,γfi ,ω
0
i , FSRf)|2 = 1. If we

de�ne “unwanted” signal photons as those with frequencies |ωs −ω
0
s | > 2γs,

the contribution of unwanted photons is 2.3% within a window 2πc/ω0s ±1nm
when the �lter is set to transmit ω0s . To calculate this, we take the ratio of∫
dωs |fF(ωs,ωp −ωs)|

2
with limits ω0s + 2γs to ω0s + 2π 500GHz, to the

same integral performed with limitsω0s toω0s + 2π 500GHz.
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achieved by the �lter would be greater than 20 dB for all nonselected modes. This is

veri�ed experimentally in chapter 4 and chapter 6.

3.4 CE-SPDC SPECTRUM ANALYSIS WITH FILTER
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Figure 3.6: Analysis of signal photons’ spectrum by scanning FP �lter resonance. Plot shows

signal singles detected after �ltering when CE-SPDC was pumped with 4mW. x-

axis shows frequency detuning of modes from the F = 2 to F ′ = 1 transition in

87
Rb. The �lter resonance is scanned in steps and the singles measured for 4 s in

each step. The output is in clusters of modes as seen from the DFG measurements.

Additionally, due to the 39.4GHz FSR of the �lter cavity, the three clusters within

the SPDC bandwidth are visible in this scan of width≈ 20GHz (see text). The power

asymmetry, between the cluster at ∼ −7GHz and that at ∼ 7GHz is due to the

di�erent phase-matching e�ciency in the SPDC crystal. With temperature tuning of

the SPDC crystal to maximize power in the central cluster (something we did not do),

the powers of the clusters that are red and blue detuned would be more symmetric.

Since the cluster centred on ∼ −7GHz, and that centred on ∼ 0GHz are of similar

brightness, here perfect phase matching is achieved approximately midway between

these two clusters. Thus the optimal phase matching, for data plotted here, is at

a signal frequency about 35GHz red-detuned from the frequency of the F = 2 to

F ′ = 1 transition.

From Figure 3.4, and from Equation 3.6, it is evident that the brightest mode in

the CE-SPDC emission spectrum corresponds to the signal-idler frequency pair for

which perfect phase matching is achieved, since the sinc function gives the maximum

amplitude at this combination of frequencies. Ensuring that the cavity is simultaneously
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Figure 3.7: Analysis of CE-SPDC cluster frequencies using FP �lter and vapour cell. The CE-

SPDC is pumped with 4mW and tuned such that, in the brightest cluster, signal

photons are resonant to the F = 2 to F ′ = 1 transition of
87

Rb. The signal photons

are passed through the FP �lter and a Rb vapour cell and detected with an APD. Filter

temperature is scanned in steps with 4 s acquisition at each temperature. Red �lled

region shows observed singles with the vapour cell at room temperature. Blue curve

shows singles with the vapour cell at 90 °C. The modes from the brightest cluster are

blocked by atomic absorption, with the singles count dropping to the background

level. In contrast, the other two clusters are una�ected. The blue curve is uniformly

weaker and has a lower background level due to a change in alignment.

resonant to the signal-idler modes at frequenciesω0s andω0i , automatically makes them

the central and brightest modes of their respective clusters. However, in order for these

frequencies to contain the maximum photon density, perfect phase matching has to be

achieved at these frequencies. In section 2.3, we described how the phase-matching

temperature is identi�ed by SHG of cavity-resonant light. However, this method to

identify the temperature works only when the required signal and idler are degenerate.

To identify an optimal crystal temperature to produce nondegenerate photon-pairs

where each mode in the pair is resonant to a di�erent atomic transition, sum frequency

generation of coherent light at these frequencies would have to be performed in the

CE-SPDC cavity. We instead identi�ed a simpler alternative to optimise the crystal

temperature by analysing the output spectrum using the �lter as a “spectrometer”.

As described in section 3.2 the resonance of the FP �lter can be adjusted by tuning its

temperature. This feature can be exploited to analyse the signal/ idler spectrum from

the CE-SPDC. For this, the CE-SPDC cavity is made resonant to the signal and idler
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3.4 ce-spdc spectrum analysis with filter

�elds at the respective frequencies required using coherent light. The SPDC process

is pumped with light at the sum of the signal and idler frequencies (described in the

next chapter). The photon pairs produced are split and one of them detected in an APD

after passing through the �lter. As the �lter temperature is scanned and its resonance

shifts, the brightness of the singles detected in the APD varies, thereby revealing the

frequencies and brightnesses of the modes produced by the CE-SPDC process. This is

illustrated in Figure 3.6. The scan of the cavity, which covers about 11GHz on either

side of the F = 2 to F ′ = 1 transition, nonetheless shows the three clusters, predicted

by theory to be found −70GHz, 0GHz and 70GHz relative to this atomic line (see

Figure 3.4a). The clusters are aliased into the range of the scan by multiples of the

39.4GHz FP free spectral range. In this way, the cluster at 70GHz, e.g., is expected

to appear at 70− 2× 39.4 = −8.8GHz, and indeed a cluster is seen at this detuning.

By analysing the brightness of the modes, the discrepancy between the centre of the

SPDC phase-matching envelope (or the frequency for which maximum phase matching

is achieved) and the frequency of the required CE-SPDC cavity mode is determined.

This is then corrected for by changing the temperature of the PPKTP crystal.

This “spectrometer” cannot estimate the absolute frequency of the photons. To verify

that after correcting the SPDC crystal temperature, the brightest mode is indeed resonant

to the atoms, we measure the attenuation of photons on transmission through a hot

vapour cell. The �ltered signal photons are passed through a natural abundance Rb

vapour cell (internal length 10 cm) before they are detected in the APD. We heat the

cell to 90 °C and thereby induce an atomic density su�cient to completely block light

resonant to the F = 2 → F ′ = 1 and 2 transitions in
87

Rb, and F = 3 → F ′ = 2 and

3 transitions in
85

Rb. This was veri�ed by measuring the transmission of coherent

light of ∼ 1mW. These transitions, spaced apart by 816, 702 and 361MHz, with their

individual Doppler broadened linewidths of≈ 550MHz, e�ectively block light within a

3GHzwindow. The �lter frequency was scanned and the singles measurement repeated.

Results are shown in Figure 3.7. The central cluster is strongly absorbed, as can be seen

by comparison with data collected when the cell is at room temperature. This indicates

that the modes are within the Doppler broadened transition lines. The transmission

of the other clusters remains una�ected due to the large frequency spacing between

clusters. It is also noteworthy that the attenuated portion of the spectrum drops to the

background level. This shows that even if there are any “junk photons” i.e., those not
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from the desired cavity mode, that pass the �lter, they must be only within the spectral

range blocked by the vapour.
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4
INDEPENDENT SIGNAL-IDLER TUNEABILITY

In addition to developing a narrowband photon-pair source where both photons are

resonant to an atomic species, the introduction also presented a clear motivation for

developing a photon-pair source that is versatile; where the frequency of each photon in

the down-converted pair can be changed on demand based on the experiment planned

and the atomic transitions involved. Having described in detail the heart of the system,

the �ltered CE-SPDC source for narrowband, single-mode photon pairs, we proceed to

describe how frequency tuneability with ∼MHz resolution is achieved. This chapter

deals with the extended system of lasers and control systems surrounding the source

with which we can independently tune the frequency of each photon in the down-

converted pair. For this, we have implemented an interconnected frequency stabilisation

scheme that �xes the frequencies of the pump, signal and idler photons in relation to

one another. Furthermore, the system also enables independent control over each of the

three abovementioned frequencies. Parts of this chapter were reported in [68].

4.1 INTERCONNECTED FREQUENCY STABILISATION

Figure 4.1 gives an overview of the interconnected frequency stabilisation scheme

and the following subsections give the speci�c details. Figure 4.5 illustrates how the

interconnected frequency stabilising scheme enables the production of signal and idler

photons resonant to two di�erent transitions in the
87

Rb D1 line separated by 816MHz.
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Figure 4.1: Overview of the interconnected frequency stabilising scheme to control pump, signal

and idler frequencies. As described in the text, the cavity length and pump frequencies

are stabilised with reference to light from a DBR laser which is stabilised to an

atomic transition. Acousto-optic modulators AOM1 and AOM2 allow the cavity to

be detuned from the transition, and the PLL o�set lock allows the pump frequency

to be independently controlled. The temperature of the tuning crystal controls the

frequency di�erence between the signal and idler photons. Elements marked S

indicate splitting of beams and do not represent any particular optical element. DBR:

distributed Bragg re�ector, PLL: phase-locked loop.

4.1.1 The reference laser at the D1 line

To ensure that the down-converted photons are resonant to or detuned from a certain

transition in Rb, their frequencies are set in relation to a reference laser stabilised to

the same transition using spectroscopy techniques. Light from a 795nm distributed

Bragg re�ector (DBR) laser, stabilised to the required transition frequency, serves as the

reference. The laser diode is from Photodigm technologies (Photodigm Spectroscopy

Series part number: PH795DBR080T8) and the laser housing is home-built. Thorlabs

temperature and current controllers (TDC200C and LDC202C) are used to control the

laser’s temperature and current. A schematic of the optics and electronics to stabilise

the laser is shown in Figure 4.2. Post beam-shaping, light from the laser is split into

two arms, A and B. Beam A is coupled into �ber. Beam B is double passed through an

acousto-optic modulator (AOM) driven by an ampli�ed voltage-controlled oscillator
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Figure 4.2: Frequency stabilisation scheme for reference laser. Light from a DBR laser at 795nm

is beam shaped at telescope T1 and split into paths A and B. Light in path B is double

passed through an acousto-optic modulator (AOM1), where its frequency is shifted

by ν
AOM1 and frequency side-bands are added from a function generator (FG), via a

voltage-controlled oscillator (VCO) and RF ampli�er. The beam diameter is increased

at telescope T2 and it is double-passed through a hot Rb vapour cell. The signal,

from a transition at ν
ref

, is detected at photo-diode (PD). It is ampli�ed and mixed

with the modulation from the FG to generate the error signal. The error signal is

passed through a low-pass �lter (LPF) and is fed back to the laser current to stabilise

the laser frequency though a PID controller. On being stabilised, the light in arm A

has frequency ν
ref

− ν
AOM1. PBS: Polarising beamsplitter, λ/2: half-wave plate, λ/4

quarter-wave plate.

(VCO) which shifts the frequency of the light by νAOM1 ∈ [150− 170]MHz. The AOM

also adds a modulation to the light at a depth of 6MHz peak to peak (2 V peak to peak at

control VCO’s input) and a frequency of 2.89MHz. The light is then used for saturated

absorption spectroscopy [116]. The frequency of the laser is scanned by scanning its

current. The saturated absorption spectroscopy signal, detected in a Thorlabs �xed-gain

ampli�ed detector (PDA10A-EC) is ampli�ed, and mixed with a reference signal at
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the 2.89MHz modulation frequency to generate an error signal. This is then sent to

a digital proportional integral derivative (PID) controller which is implemented in a

FPGA-based data acquisition board (National Instruments PCIe-7842R). The feedback

from the PID controller controls the laser current. Using this, the laser can be locked at

the zero-crossing of the error signal corresponding to any transition in the rubidium D1

line (νref). A diagrammatic representation of the electronic components for generating

the error signal is also shown in Figure 4.2.

We use the error signal to also estimate the RMS linewidth of the laser on lock.

The error signal generated for the PID lock is, in the regime used here, in which the

modulation frequency is signi�cantly less than the resonance linewidth, well approx-

imated by the derivative of the signal from saturated-absorption spectroscopy. Since

saturated-absorption spectroscopy is a Doppler-free spectroscopy technique, the line

shape of the spectral features obtained from this technique is Lorentzian. So, the error

signal is the derivative of a Lorentzian, and is,

X(∆I) = −V0
∆Iβ2e

2
(
∆I2 +

β2e
4

)2 , (4.1)

where ∆I is the change in laser current relative to the line centre, βe is the linewidth of

the Lorentzian spectroscopy feature (which is broader than the natural linewidth due to

other broadening mechanisms [116]) and V0 is a constant with units of voltage. The

error signal has an in�ection point at ∆I = 0, a maximum at ∆I = −βe
2
√
3
≡ ∆Imax and a

minimum at ∆I = βe
2
√
3
≡ ∆Imin. Since we can measure ∆I at the maxima or minima

of the error signal, we can infer βe from this. Using an oscilloscope, we can measure

the peak to peak voltage of the error signal, which is X(∆Imax) −X(∆Imin) and use

Equation 4.1 to get the value of the contant V0.

The error signal is approximately linear close to the in�ection point, and the laser

frequency �uctuations on lock are expected to be within this regime. The error signal

close to the in�ection point is ,

Xlin(∆I) ≈ −7.8
V0
β2e
∆I. (4.2)

We calculate the RMS laser current �uctuations ∆Irms using Equation 4.2 and the

measured RMS �uctuations Xrms. Due to the linearity of Equation 4.2, this is simply

∆Irms ≈ β2e
7.8V0

Xrms.
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4.1 interconnected freqency stabilisation

The RMS current �uctuations on lock can then be translated to laser frequency

�uctuations by calibrating the change in laser frequency to the change in laser current.

This calibration factor ρ is the ratio of the frequency spacing between any two transitions

found in literature [117] to the change in laser current needed to observe these transitions

in the saturated absorption spectroscopy signal. The RMS linewidth of the laser on lock

is νrms = ρ ∆Irms and is 0.9MHz for our laser on lock.

4.1.2 Pump stabilisation
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Figure 4.3: Frequency stabilisation scheme for pump laser. SHG of the 795nm reference laser is

used to stabilise pump using a beat-note lock as described in text. The undepleted

red light in arm C is used to stabilise the cavity as illustrated in Figure 4.4.

A grating stabilised external-cavity diode laser (ECDL) with a central wavelength at

397.5nm (DLC DL PRO HP from TOPTICA Photonics) is used as the SPDC pump with

frequency νp. The down-conversion process to signal-idler pairs at speci�c frequencies

(νs and νi respectively), requires the the pump to be stabilised to νp = νs + νi. For
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this, the pump is stabilised in relation with the light from the reference laser at 795nm,

which was described previously and which also determines νs and νi.

The frequency locked 795nm laser beam from arm A (at νlaser = νref − νAOM1)

in Figure 4.2, is upconverted to νSHG = 2νlaser, through second harmonic generation

(SHG) as shown in Figure 4.3. The SHG occurs in a collinear type-I phase matched

PPKTP crystal of length 20mm in a single-pass con�guration. The crystal is enclosed

in a Te�on oven and its temperature stabilised using a temperature stabiliser from

Wavelength Electronics (HTC3000) and NTC sensors. Te�on was chosen as an insulator

since it is easily machinable into a required form. The conversion e�ciency to blue

is ≈ 4%W−1
. The upconverted light is separated using a dichroic mirror and mode

matched to light from the pump laser, by mixing on a 50:50 beamsplitter and coupling

into a single mode �ber. The beat note produced at νbeat = |νp − νSHG| is detected

using an ampli�ed silicon detector with a bandwidth of 1.5GHz (FPD310-V from Menlo

Systems). A beat-note signal with su�cient signal-to-noise ratio is obtained when 7 µW

of light at νSHG and 200 µW of light at νp are coupled in �ber. The beat-note (and

consequently νp) is stabilised using a software controlled digital phase-locked loop

(PLL) (frequency synthesizer ADF4111 from Analog Devices, in an evaluation board

EV-ADF411XSD1Z). The evaluation board, manufactured to stabilise the RF frequency

from a VCO, is slightly altered to suit our purposes. The PLL generates a train of charged

pulses that vary in voltage and polarity depending on the di�erence between the detected

beat frequency νbeat and the required beat frequency ν0beat (set via the software). This is

extracted from the evaluation board and sent to an integrator which converts the charge

pulse train to a voltage Vbeat ∝ ν0beat − νbeat ≡ ν0beat − |νp − νSHG|. |Vbeat| increases as

the di�erence between the desired and actual beat signals increases on either side of the

zero-crossing at ν0beat = |νp − νSHG|. The DLC-pro digital controller for the pump laser

uses this signal in an inbuilt side-of-fringe lock to stabilise the laser frequency at the

zero-crossing. The resulting frequency lock allows us to lock the pump laser frequency

within the range 80MHz 6| νp − 2νlaser |6 1.5GHz. The pump frequency is chosen

to achieve the energy conservation condition νs + νi = νp. With this scheme, we can

generate degenerate or nondegenerate photons at 795nm up to a maximum frequency

di�erence between signal and idler photons that is limited by the speed of the beat-note

detector for the blue light.

The short-term linewidth of the pump laser is ∼ 100 kHz, which is small relative to

other linewidths in the system. The (frequency-doubled) light it is referenced to has
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4.1 interconnected freqency stabilisation

a linewidth of twice 0.9MHz, including both fast and slow �uctuations. We expect

the bandwidth of the PLL loop to be at most ∼ 10 kHz, and thus only a fraction of the

reference laser’s �uctuations will be copied onto the pump laser through the beat-note

lock. As a result, we can say that the pump laser linewidth is between 0.1MHz and

2MHz.

4.1.3 Control of signal and idler frequencies

For signal and idler photons at frequencies νs and νi respectively, the down-conversion

cavity must be simultaneously resonant to light at each of these frequencies at the

corresponding polarisation. This section describes how this is achieved.

The 795nm reference light at νlaser = νref − νAOM1, that remains unconverted

after SHG (arm C in Figure 4.3), is double-passed through a second AOM as shown

in Figure 4.4. The AOM shifts the frequency to νlock = νlaser + νAOM2 and adds a

modulation at a depth of 6.5MHz peak to peak and a frequency of 2.7MHz to enable

a dither lock of the SPDC cavity. The tuning range of the AOMs allows νAOM1 and

νAOM2 to be independently set in the range from 150MHz to 170MHz. Thus νlock can

be detuned from the atomic transition frequency at νref by νAOM2 − νAOM1, to account

for ac Stark shifts, a.k.a. “light shifts" in the trapped cold atom(s). This “locking light”

passes through a spinning-blade mechanical chopper, as shown in Figure 4.4, enters

the CE-SPDC cavity via M4 and is matched in spatial mode and polarisation to the

V polarised signal mode of the cavity. A small fraction of this light exits the cavity

by transmission through M2 and is collected on PD2. This signal is demodulated to

obtain an error signal which is fed to a PID mechanism controlling the piezo on M3.

By controlling the piezo, the cavity length is actively adjusted to ensure that the signal

mode of the SPDC cavity is always resonant to νlock. The electronics and PID controller

for stabilising the piezo length are similar to the system used to stabilise the DBR laser.

With the cavity length actively stabilised such that the signal mode at νs = νlock ≡
lFSRs/2π is resonant in the cavity, the idler mode can be stabilised at a frequency

νi = νs +∆ν ≡ m FSRi/2π for some integers l and m. The frequency o�set ∆ν =

(mFSRi− lFSRs)/2π, is �xed by controlling the net birefringence in the cavity. While

the SPDC crystal’s temperature is maintained at a value that gives e�cient phase-

matching, the net birefringence is altered by changing the temperature of the tuning
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Figure 4.4: Schematic of stabilised CE-SPDC cavity. Light in arm C is frequency shifted at AOM2

to ν
lock

= ν
ref

− ν
AOM1 + νAOM2 with frequency side-bands introduced from a FG

via a VCO. Its polarisation is matched to the signal mode in CE-SPDC cavity, and

its transmission through the cavity, detected on PD2, is used to generate an error

signal for the PID controller. The electronic components function similar to the

description in Figure 4.2. The chopper blocks the cavity-detector path taken by

the down-converted photons (dashed line) whenever the laser-cavity path is open,

preventing locking light from reaching the detectors.

(KTP) crystal. Transmission of coherent H polarised light at νi injected via M4 and

measured through any of the HR mirrors, veri�es the resonance of the idler mode.

Since | νp − 2νlaser |6 1.5GHz, νp = νs + νi and νs = νlock = νlaser + νAOM2,

the maximum possible value by which the signal can be blue detuned from the idler is

νs − νi = 1.82GHz and the maximum possible value by which the signal can be red

detuned from the idler photon is νi − νs = 1.18GHz, when νAOM2 = 160MHz.
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4.1 interconnected freqency stabilisation

Figure 4.5: Illustration of frequencies employed in the CE-SPDC source. Scenario shown achieves

the con�guration: νs tuned to the (light-shifted) F = 2 → F ′ = 1 transition and

νi tuned to the (light-shifted) F = 2 → F ′ = 2 transition of the
87

Rb D1 line.

Top graph (“atoms”) shows the saturated absorption spectrum (in blue) with light-

shifted transitions shown below the horizontal axis in green. Middle section (“lasers”)

shows frequency relationships among frequencies described in the text. Frequency

separations are not to scale. Lower section (“cavity”) shows cavity spectrum including

signal (red) and idler (orange) modes. The ∆FSR and γ are exaggerated for clarity.
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4.2 RESULTS: VERIFICATION OF INDEPENDENT TUNEABILITY

4.2.1 Atomic spectroscopy with CE-SPDC photons

To test the independent tuneability of the CE-SPDC signal and idler, we performed

single-photon spectroscopy on a Rb vapour cell of 10 cm length. The cell was heated

to 40 °C, a temperature at which the absorption at di�erent transitions can be clearly

distinguished. For reference, a spectrum under the same conditions was taken with

6 µW of laser light. This low power was chosen to avoid saturation of the spectrum by

optical pumping.

For each measurement, we tuned the signal, idler and pump frequencies using the

techniques described in section 4.1: νlock, and thus νs, was set to a feature of the

D1 saturated absorption spectrum of either one of the rubidium isotopes. νi was

set to νs + ∆ν with ∆ν = 250MHz or −170MHz by temperature tuning of the

tuning crystal. The pump was locked to 2νs + ∆ν to satisfy energy conservation.

Either signal or idler, �ltered with a tuneable �lter tuned to pass the corresponding

frequency, was passed through the vapour cell and detected with an APD. A beamsplitter

before the cell split a portion of the intensity to an auxiliary APD for a simultaneous

measurement of �uctuations in the source brightness. The measured background, i.e.

APD counts with the SPDC turned o� by blocking the pump, was subtracted. The

singles rate was normalised by the measured brightness in the auxiliary APD to obtain

the cell transmission. The cell transmission, thus de�ned, was calibrated by tuning the

CE-SPDC source far from resonance, where the absorption is negligible. As shown in

Figure 4.6, we measured the transmission for signal photons, and for their corresponding

idlers, at seven di�erent frequencies for each of the two di�erent values of ∆ν. Each

data point corresponds to an acquisition time of 12 s at 4mW pump power, which

yielded roughly 20, 000 detections in transparent regions of the spectrum. The results

show good quantitative agreement with the absorption spectrum as measured by a laser.

The signal-idler frequency separations were chosen to provide good coverage of the

atomic absorption spectrum. This demonstrates both the ability to generate correlated,

independently-tuneable photon pairs with MHz precision, and single-mode operation

even as these photons are tuned over a wide range.
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Figure 4.6: Atomic vapour spectra acquired with CE-SPDC photons. Black curves: measured

transmission of a frequency-scanned weak-laser through a heated, natural-abundance

Rb vapour cell. Violet curves: saturated absorption spectrum (right axes) with

another cell and copy of frequency-scanned light, for reference. Red disks and blue

triangles: signal and idler transmission, respectively, through the heated cell. The

CE-SPDC photons were tuned as described in section 4.1 and �ltered to a single-

mode as described in section 3.2. When possible, νs was stabilised to a feature of the

saturated absorption spectrum, while νi was stabilised to (top) νs + 250MHz or

(bottom) νs − 170MHz. At the edges of the spectrum νs was not actively stabilised,

and horizontal error bars indicate the uncertainty in the estimated frequency of the

lock light and consequently the signal/idler photons. Poisson distributed noise in the

detected photons would contribute vertical error bars smaller than the symbols and

are not shown.
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4.2.2 Experimental quanti�cation of single mode output

As seen in Figure 4.6, the minimum transmission of the laser is ≈ 10%, whereas the

minimum transmission of �ltered CE-SPDC light is ≈ 20%, due to contamination

by photons outside the desired spectral mode. To precisely quantify this content, we

repeated the measurement in subsection 4.2.1 with a higher cell temperature of 75 °C

and with the laser and CE-SPDC source (including the FP �lter) tuned to generate

photons at
87

Rb F = 2→ F ′ = 2 transition. We observed a transmission of 7.7% for the

CE-SPDC photons versus 0.04% for the laser, whereas the prediction from Equation 3.6

for the CE-SPDC photons would be 2.3% (see caption of Figure 3.5). Thus 92.3% of

photons at the output of the CE-SPDC and FP �lter system are in a single mode. Possible

explanations for the mismatch with the theoretical estimate include coupling of down-

converted photons to higher order transverse modes in the CE-SPDC or FP cavities and

distortion of the phase-matching pro�le due to imperfect poling of the nonlinear crystal.

We note that the percentage of contamination seen using atoms as a frequency �lter is

much higher than the contamination seen from correlation measurements reported in

chapter 6. Since they appear only in singles measurements but disappear in coincidence

measurements, these “junk” photons may possibly not be a result of the SPDC process,

but rather an outcome of some other process like ordinary �uorescence.
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5
PHOTON CORRELATION MEASUREMENTS

Temporal correlation functions have always been an important tool to characterise the

statistics of a light source. Since Glauber’s pioneering work on introducing a quantum

mechanical formalism to quantify the degree of coherence in sources [118], temporal

correlation functions have become indispensable for investigating nonclassical sources

of light. Today, correlation functions are used for applications ranging from spectral

measurements to quantifying the indistinguishability and spectral purity of photon

states.

In this chapter, we apply measurements of correlation functions, speci�cally second-

order correlation functions, to characterise the photons from our source. While photons

from SPDC are bunched in time since they are produced simultaneously, measuring their

temporal correlations also reveals information about the spectral correlations between

the photon pairs. We discuss and demonstrate how changing the two-photon spectrum

through cavity enhancement and �ltering a�ects the correlation measurements. We

also apply correlation functions to verify that at any given instant, we have a negligible

presence of multiple down-converted pairs in the output from our source. Many of the

results reported in this chapter were also published in [68].

This chapter is structured such that each section is dedicated to a measurement and

is complete with the relevant theory and experimental results. We �rst introduce the

mathematical formalism for a correlation function and then translate it to experimental

measures. We analyse the relation between the second-order temporal statistics of the

photon pairs and their joint-spectrum. We then present and discuss the results from

applying various correlation measurements to our source.

For completeness we begin by recalling some fundamental concepts from [118] on

correlation functions. From the Glauber theory of photodetection, the detection rate
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for joint detection of n photons at times t1, t2, . . . , tn, for a given input state |ψi〉, is

proportional to the nth order correlation function G(n)
,

G(n)(t1, t2, . . . , tn) =
∑
f

| 〈ψf| Ê(+)(tn), . . . , Ê(+)(t2)Ê
(+)(t1) |ψi〉 |2

= 〈ψi| Ê(−)(t1), Ê(−)(t2), . . . , Ê(−)(tn)

×Ê(+)(tn), . . . , Ê(+)(t1) |ψi〉 , (5.1)

which is proportional to the probability density for such an event. Here Ê(−)
and Ê(+)

are the negative and positive parts of the quantised electro-magnetic �eld and

∑
f is the

sum over all possible �nal states |ψf〉 the �eld may be in after the detection process and

we use the completeness relation,

∑
f |ψf〉 〈ψf| = 1, in the last line. The normalised

nth order correlation function is,

g(n)(t1, t2, . . . , tn) =
G(n)(t1, t2, . . . , tn)∏n

j=1 G
(1)(tj)

. (5.2)

5.1 SECOND-ORDER INTENSITY CROSS-CORRELATION FUNCTION

The temporal correlations between the signal (s) and idler (i) in a down-converted pair

are analysed through the second-order cross-correlation function G
(2)
s,i , which gives

the correlation between intensities of the signal and idler �elds [119]. For the signal

detected at ts and the idler at ti,

G
(2)
s,i (ts, ti) = 〈ψ| Ê(−)

s (ts)Ê
(−)
i (ti)Ê

(+)
i (ti)Ê

(+)
s (ts) |ψ〉 . (5.3)

Often we deal with statistically stationary �elds i.e., where the correlation functions of

the �elds are invariant under displacements of the time variable [119]. The correlation

function G(2)
, then depends only on the delay between the detections τ = ti − ts. For

ts = t and ti = t+ τ, G
(2)
s,i (ts, ti) = G

(2)
s,i (t, t+ τ) ≡ G

(2)
s,i (τ), gives the distribution of

detecting an idler photon with a delay τ relative to the detection of a signal photon. The
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5.2 measuring field correlation functions

normalised second order intensity cross-correlation function as a function of the delay

is,

g
(2)
s,i (τ) =

〈
Ê
(−)
s (t)Ê

(−)
i (t+ τ)Ê

(+)
i (t+ τ)Ê

(+)
s (t)

〉
〈
Ê
(−)
i (t+ τ)Ê

(+)
i (t+ τ)

〉〈
Ê
(−)
s (t)Ê

(+)
s (t)

〉 ,

=
G

(2)
s,i (τ)

G
(1)
i (t+ τ)G

(1)
s (t)

, (5.4)

where 〈.〉 is the expectation value over the input state. This can be further simpli�ed

when the �elds are stationary, because G(1)(t+ τ) = G(1)(t), to

g
(2)
s,i (τ) =

G
(2)
s,i (τ)

G
(1)
i (t)G

(1)
s (t)

. (5.5)

5.2 MEASURING FIELD CORRELATION FUNCTIONS

From Glauber’s theory of photo-detection, the expected rate of detecting photons R
(1)(t)

from a �eld Ê for the state |ψ〉 is proportional to

〈
Ê(−)(t)Ê(+)(t)

〉
= G(1)(t), where

〈.〉 is the expectation value over the state |ψ〉. Similarly, the expected “joint counting

rate”
1

R
(2)
1,2(t1, t2) of detecting two photons, one from a �eld Ê1 at time t1 and another

from Ê2 at time t2 is proportional to G
(2)
1,2(t1, t2) [119]. In the experiment, photons

are detected and marked in time with a �nite resolution. The measurement of the

�eld correlations and detection rates do not have an in�nite resolution but are rather

“coarse grained” in time. The precision in the time assigned to a detection, which is also

the smallest resolvable time di�erence between two detections, is called a “bin” and is

indicated with the symbol tb. For an integer k, the statistical average of the number of

photons from �eld Ê1, detected in the kth
bin, i.e., the average number of photons in

the interval [ktb, (k+ 1)tb), is

n̄
(k)
1 =

∫ (k+1)tb
ktb

R
(1)
1 (t1)dt1 ∝

∫ (k+1)tb
ktb

G
(1)
1 (t1)dt1. (5.6)

1 Note that the joint counting rate has units of s−2.
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In a measurement run, n
(k)
1 is the measured number of photon detection events from

�eld Ê1 in the kth
bin

2
. For stationary �elds, G(1)(t) is the same at all times, and so

the photon counting rate is also the same at all times. Thus the sample mean, which is

an unbiased estimator for the average number of photons detected from a �eld Ê1, is

ñ1 =

N∑
k

n
(k)
1

N
, (5.7)

where N is the largest bin number in the measurement. Similarly, the average number

of simultaneous detections of two photons, one from Ê1 in the kth
bin and another from

Ê2 in the lth bin, is

n̄coin(t
(k), t(l)) ∝

∫ (k+1)tb
ktb

dt2

∫ (l+1)tb
l tb

dt1G
(2)
1,2(t1, t2), (5.8)

and can be called the expected number of coincidences detected between �elds 1 and

2 at bins k and l, respectively. Experimentally, the number of coincidence detection

events of this kind in a measurement run is n
(k)
1 n

(l)
2 . For stationary �elds, we are

interested in the total number of coincidences ncoin at a certain delay τ = tb∆ where

∆ = l− k, because only the delay between the detections matters for the G(2)
and

not the absolute values of k tb and l tb as explained previously. Thus the experimental

sample mean, an estimator of the average coincidences at a delay τ = tb∆, at positive

delays (0 6 ∆ < N) is

ñcoin(tb∆) =
1

N−∆

N−∆∑
k=1

n
(k)
1 n

(k+∆)
2 . (5.9)

Usually the total coincidences, ncoin(∆tb) =
∑N
k=1 n

(k)
1 n

(k+∆)
2 , are reported for

measurements of the un-normalised second-order correlation function. To compute the

normalised second-order correlation function, we use Equation 5.8 and Equation 5.6 in

Equation 5.5 to get,

g
(2)
1,2(tb∆) ∝

n̄coin(t
(k), t(k+∆))

n̄
(k)
1 n̄

(k+∆)
2

(5.10)

2 Note that in a single interval of data acquisition, n
(k)
1 can only be either 0 or 1 in our case, since the

photon detectors we use cannot resolve more than one photon arriving within a bin.
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Experimentally, the estimate of this can be calculated using Equation 5.9 and Equation 5.7

as,

N2
∑N−∆
k n

(k)
1 n

(k+∆)
2

N−∆
∑N
k n

(k)
1

∑N
l n

(l)
2

. (5.11)

The expressions given so far are applicable to any two �elds indexed 1 and 2. For the

second-order cross-correlation between the down-converted signal and idler �elds, the

indices 1 and 2 become s and i to indicate the signal and idler �elds respectively.

For all measurements described in this thesis, we detect signal and/or idler photons

with avalanche photodiodes (APDs- Perkin Elmer SPDC-AQ4C) that have a quantum ef-

�ciency of≈ 50%. The detection events are time tagged using a �eld programmable gate

array (FPGA- Arty A7-35T: Artix-7, XC7A35TICSG324-1L from Xilinx, programmed

using the Xilinx Software Development Kit version 2018.3), programmed as a time-to-

digital converter (TDC) with 625 ps resolution. Thus, tb = 625 ps for our experiments.

The detectors have a dark count rate of ∼ 500 counts s−1. The chopper present in the

CE-SPDC system is always on for reasons explained in the previous chapter. For each

measurement, data was acquired for a total integration time Ti, which is related to the

maximum number of bins N, according to N = Ti/tb. The chopper has a duty cycle of

32%. This means that out of the total integration time reported in measurements here,

photons were collected only for 32% of the time. All correlation measurements reported

in this thesis were performed with the chopper on at a frequency of ∼ 100Hz and

reported rates of singles or coincidences are always the rates averaged over the chopper

cycle. The values of coincidences ncoinc(tb∆) are reported for a range of delays (tb∆)

within a coincidence interval Tcoinc such that tb∆ ∈ [−Tcoinc
2 , Tcoinc

2 ].

Assuming independent arrival times for the signal and idler, the rate of accidental

coincidence between the signal and idler, within a certain coincidence interval is

nacc =

∑
k n

(k)
i

Ti

∑
l n

(l)
s

Ti
Tcoin. (5.12)

Coincidences from background was measured to be around 0.1 counts s−1 over a

200ns coincidence window.

5.2.1 Heralding e�ciency

SPDC is not a deterministic source of single photons. However, since the down-converted

photons are produced in pairs, the detection of one down-converted photon “heralds”
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the presence of the other. The heralding e�ciency of a source, ηH is the probability

that a single photon is delivered given the detection of a herald photon [120]. It is

independent of the detection of the heralded photon. To avoid confusion, the heralding

photon can also be called the trigger photon. The heralding e�ciency is calculated as

the ratio of the total coincidences over all delays
3

to the total number of trigger photons

detected. If we take the idler as the trigger and the signal as the heralded photon, the

probability of having a signal available given the detection of the idler Ps|i is [120],

Ps|i = ηH =

∑
∆ ncoin(tb∆)

ηDs
∑
k n

(k)
i

=
Pc|i

ηDs
, (5.13)

where ηDs is the quantum e�ciency of the detector for the signal and Pc|i is the

probability of detecting a coincidence, conditioned on having detected an idler. For

PLossj being the probability that the signal photon is lost in an optical element or interface

indexed j, Ps|i can also be calculated as

∏
j(1− PLossj), where the product includes

each element in the signal arm from the generation in the crystal to just before the

detection.

5.2.2 Coincidence rate

The coincidence rate Rcoin, is the ratio of the total coincidences detected per unit time

per unit pump power. Since the brightness from SPDC scales linearly with pump power

Pp,

Rcoin =

∑
∆ ncoin(tb∆)

Ti Pp
. (5.14)

5.3 G
(2)
s,i (ts, ti) AND THE TWO-PHOTON JSA

The spectral amplitude of an optical �eld s(ω) is de�ned as the Fourier transform (FT)

of the time-varying optical electric �eld and the power spectral density S(ω) = |s(ω)|2,

is the energy in the �eld per unit bandwidth. By the Wiener-Khinchin theorem, the

spectral density function and the �rst-order correlation of a �eld form a Fourier pair,

S(ω) =
1√
2π

∫∞
−∞ dτ G(1)(τ)eiωτ. (5.15)

3 In practice a large coincidence interval is chosen.

72



5.3 G
(2)
s ,i (ts , ti ) and the two-photon jsa

Similarly, the second-order cross-correlation function between the signal and idler

photons in a down-converted pair is closely related to the JSA which is the function

describing their joint spectrum. To show this, we analyse the G
(2)
s,i when the the two-

photon state from SPDC is the input. As seen previously, the signal-idler two-photon

state from SPDC is described by

|ψi〉 =
∫
dωi

∫
dωsf(ωs,ωi) â†s(ωs) â

†
i(ωi) |0s, 0i〉 . (5.16)

where f(ωs,ωi) is the JSA. The detection of a photon each in the signal and idler

mode will annihilate both the photons and leave the state in the vacuum state, so

|ψf〉 = |0s, 0i〉. The G
(2)
s,i (ts, ti) is then,

G
(2)
s,i (ts, ti) =

∣∣∣〈0s, 0i| Ê(+)
i (ti)Ê

(+)
s (ts) |ψi〉

∣∣∣2
=

∣∣∣∣〈0s, 0i| Ê(+)
i (ti)Ê

(+)
s (ts)

∫
dωi

∫
dωsf(ωs,ωi)

× â†s(ωs) â
†
i(ωi) |0s, 0i〉

∣∣∣2
∝

∣∣∣∣ 〈0s, 0i| ∫ dω ′s ∫ dω ′i ∫ dωi ∫ dωs e−iω ′stse−iω ′iti
×f(ωs,ωi)âs(ω ′s)âi(ω ′i)â†s(ωs)â

†
i(ωi) |0s, 0i〉

∣∣∣∣2. (5.17)

Using the commutation relations [âε(ωε), â
†
ν(ω

′
ν)] = δε,νδ(ωε−ω

′
ν) for Kronecker

delta function δε,ν and Dirac delta function δ(ωε −ω
′
ν) when ν, ε ∈ {s, i},

G
(2)
s,i (ts, ti) ∝

∣∣∣∣∫ dωi ∫ dωsf(ωs,ωi)e−iωstse−iωiti∣∣∣∣2
∝ |f̃(ts, ti)|2. (5.18)

In the last line we have introduced the Joint Temporal Amplitude (JTA) which is the

2-D FT of the JSA,

f̃(ts, ti) ≡
1

2π

∫
dωi

∫
dωsf(ωs,ωi)e−iωstse−iωiti

∝ 〈0, 0| Ê(+)
i (ti)Ê

(+)
s (ts) |ψi〉 . (5.19)
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The second order cross-correlation function is proportional to the magnitude squared

of the JTA, and thus can also be called the Joint Temporal Intensity (JTI).

For the speci�c case where the SPDC pump is monochromatic with a frequency

ωp, following Equation 2.7, the JSA can be expanded as f(ωs,ωi) = δ(ωp −ωs −

ωi)g(ωs,ωi), where g(ωs,ωi) is the crystal phase matching function. Consequently,

the JTA can be written as,

f̃(ts, ti) =
1

2π

∫
dωi

∫
dωs δ(ωp −ωs −ωi)g(ωs,ωi)e−iωstse−iωiti (5.20)

Expressing the JTA in terms of a delay τ between the signal detection at ts = t and the

idler at ti = t+ τ

f̃(τ) =
1

2π

∫
dωi

∫
dωs δ(ωp −ωs −ωi)g(ωs,ωi)e−iωiτe−i(ωs+ωi)t

∝
∫
dωs g(ωs,ωp −ωs)e−i(ωp−ωs)τe−iωpt

= e−iωp(t+τ)
∫
dωs g(ωs,ωp −ωs)eiωsτ. (5.21)

Here e−iωp(t+τ) is a global phase that does not a�ect the cross-correlation measure-

ment, leaving,

G
(2)
s,i (τ) ∝

∣∣∣∣∫ dωs g(ωs,ωp −ωs)eiωsτ∣∣∣∣2 . (5.22)

We see that in this scenario of a monochromatic pump, the G
(2)
s,i as a function of

the delay τ between the signal and idler arrival times, is directly related to the 1-D

Fourier transform of the JSA expressed exclusively in terms of either the signal or idler

frequency.

As a consequence of this close relationship between the spectral function describing

two �elds and the second-order intensity cross-correlation between those two �elds, the

G
(2)
s,i (τ) function will vary depending on the two-photon JSA describing the signal-idler

spectrum. In the following sections, we analyse the G
(2)
s,i (τ) from CE-SPDC and �ltered

CE-SPDC, and discuss how features in theG
(2)
s,i relate to features in the spectrum. Going

beyond the Fourier relations, we also try to provide a more intuitive explanation of the

the features observed in theG
(2)
s,i (τ) through an analysis of down-conversion process in

the time domain. We then present experimental results from measurements performed

with our source. Throughout the discussion, we replaceωi =ωp −ωs to restrict it to

the monochromatic-pump scenario.
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5.3.1 G
(2)
s,i (τ) from CE-SPDC

From Equation 2.32, the JSA for a two-photon state from CE-SPDC, fC, is the product

of three functions, one being the two-photon JSA from single-pass SPDC and one each

for the signal and idler frequency response in the cavity. The JTA is a FT of the JSA as

seen in Equation 5.19. Thus, due to the convolution theorem, the JTA from CE-SPDC

f̃C is a convolution of the individual FTs of each of these functions, giving,

f̃C(τ) ∝
(
f̃NB ∗ Γ̃(γs,ω0s , FSRs) ∗ Γ̃(γi,ω0i , FSRi)

)
(τ). (5.23)

Here ∗ indicates convolution and f̃ is the FT of a function f. In particular, Γ̃(γε,ω0ε,
FSRε)(τ) is the FT with respect to ωε of Γ(ωε,γε,ω0ε, FSRε) for ε ∈ {s, i}. To

understand the shape of theG
(2)
s,i from CE-SPDC, we �rst look at the magnitude squared

of the FTs of each of the functions present in the JSA from CE-SPDC.

The sinc function from phase matching in fNB(ωs,ωp −ωs) determines the maxi-

mum range of frequencies present in the spectrum from CE-SPDC. In this sense it is

the “broadest" feature in frequency domain. The magnitude squared of its FT is the

rectangular or “box” function with a width given by the signal-idler relative propagation

delay τo in the crystal (related to the SPDC bandwidth according to Equation 2.18), as

shown in Figure 5.1. This is the “narrowest” feature in time domain and is usually not

resolved in experiment. To intuitively understand the “box” shaped signal-idler arrival

time distribution, we analyse the time-domain picture of SPDC where the photons are

produced at the same time and position in the crystal. Since the photon pair has an

equal probability of being generated at any point within the length of the crystal, they

can be generated at the very end of the crystal and have the least delay between them,

or they can be generated at the beginning of the crystal and acquire a maximum delay

τo between them by the time they leave the crystal. They can also equally well be

generated anywhere in the crystal and acquire an intermediate value of delay. This

results in a box shaped distribution of arrival times.

The other factors of fC are Γ functions that describe the signal/idler cavity frequency-

response functions. We analyse the FTs of them. The Γ function is a convolution of a

comb of Dirac delta functions with comb spacing equal to the FSR, and a single complex

Lorentzian [104]

L(ω,γ) =
γ/2

γ
2 − iω

. (5.24)
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Figure 5.1: Illustration of JSI and JTI from free-space SPDC with a monochromatic pump. Left: JSI

which is the sinc
2

function plotted against the detuning ofωs fromω0s- the frequency

at which perfect phase matching is satis�ed. The SPDC bandwidth ∆ωspdc =

2π×150GHz. Right: box function with a width τo = 2π0.88
∆ωspdc

≈ 6 ps. Green arrow

indicates a Fourier relation between the amplitude functions which give the intensity

functions plotted on either side.

Once again, by the convolution theorem, the FT of Γ is a product of the FT of a comb

(which is also a comb) and the FT of L. We analyse the FTs in parts. Figure 5.2 shows

the temporal intensity function if the spectral amplitude function was 1) f1(ωs) =

L(ωs,γs) i.e., a single complex Lorentzian, 2) f2(ωs) = L(ωs,γs) L(ωp −ωs,γi)
i.e., a product of 2 complex Lorentzians with di�erent line-widths (one each for a single

signal and idler resonance) and 3) f3(ωs) =
∑
mL(ωs −m FSRs,γs) a comb of

complex Lorentzians, which is the same as a Γ function. In scenario 1), |L̃(τ,γs)|2 gives

the probability of detecting a single signal photon outside the cavity given that at τ = 0

there was a signal photon inside the cavity. It drops exponentially in time according

to |L̃(τ,γs)|2 ∝ e−γsτ, with a decay time (Equation 2.44) τd = 1/γs. Whenever a

function describing the spectrum contains a single Lorentzian with linewidth γ as a

factor which describes the narrowest feature in frequency, L̃(τ,γs) is the broadest

feature in time.

In scenario 2) from Figure 5.2, f2(ωs) = L(ωs,γs)L(ωp −ωs,γi), which rep-

resents the signal spectrum when in�uenced by the idler resonance in the cavity. It

is product of a single complex Lorentzian each for the signal and idler with di�erent

linewidths. The resulting spectral shape is no longer exactly a Lorentzian and has a re-

duced FWHM γ, which is less than both γs and γi as illustrated in Figure 5.2. If γs ≈ γi,
γ = γtp ≈ 0.64γs, γtp is the two-photon linewidth de�ned in Equation 2.45. |f̃2(τ)|

2
is
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Figure 5.2: Illustration of spectral intensities (left column) and associated temporal intensi-

ties (right column) for various spectral amplitude functions that are factors of

fC. Three cases are shown: 1) f1(ωs) = L(ωs,γs) for γs = 2π × 7MHz, 2)
f2(ωs) = L(ωs,γs)L(ωp −ωs,γi) for γs = 2π× 7MHz, γi = 2π× 4MHz
and 3)f3(ωs) =

∑M
m L(ωs − m FSRs,γs) for FSRs = 2π × 100MHz and

γs = 2π× 7MHz. Discussion in text. While f) has been plotted for a �xed value of

M, in realityM→∞ and the lines in the comb in f) get narrower asM increases.
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Figure 5.3: SimulatedG
(2)
s,i from CE-SPDC. Function in Equation 5.25 plotted for γs= γi = 2π×

7.6MHz, FSRi = 2π× 494.25MHz, FSRs = 2π× 497.75MHz and τo = 6 ps.

a double exponential with the decay time for positive delays being the inverse of one

linewidth and the decay time for negative delays the inverse of the other linewidth.

While the probability that either a signal or idler from a pair individually leaves the

cavity decays exponentially at the respective decay rate, the JTI |f̃2(τ)|
2

describes the

joint probability of detecting both them separated by a delay τ. For positive values of τ

the JTI describes the probability of detecting a signal at a time τ after the detection of an

idler, and at negative values of τ the JTI is proportional to the probability of detecting

an idler after a delay |τ| from the detecting a signal.

As a last step before presenting the �nal form of the G
(2)
s,i from CE-SPDC, we look

at the shape of |f̃3(τ)|
2

when f3(ωs)
∑M
m = L(ωs −m FSRs,γs) i.e., a series of

repeating complex Lorentzians describing the multi-mode character of the cavity fre-

quency response. This is equal to Γ(ωs,γs,ω0s , FSRs) when M → ∞. See part 3)

in Figure 5.2. As mentioned in the beginning of the paragraph, Γ̃ is the product of a

comb and L̃(τ,γs). The temporal intensity is described by a comb with teeth spaced

by 2π/FSRs and enveloped by the exponentially decaying |L̃(τ,γs)|2 function. In the

time domain picture, light can exit the cavity only after an integer number of round

trips, a situation that is re�ected in the fact that the comb spacing is equal to the round

trip time (de�ned in Equation 2.38).
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Convolving all these individual FTs as shown in Equation 5.23, a �nal expression for

G
(2)
s,i (τ) from CE-SPDC = |f̃C(τ)|

2
can be obtained [102],

G
(2)
s,i (τ) ∝

∣∣∣∣ ∑
mi,ms

1

Υs +Υi

{
e−Υs[τ−

τo
2 ]sinc

(
iτo2 Υs

)
, τ > τ0/2

eΥi[τ−
τo
2 ]sinc

(
iτo2 Υi

)
, τ < τo/2

∣∣∣∣2. (5.25)

Here Υ relates to the linewidth γ, mode index (m) and angular FSR of the signal/idler

mode according to,

Υε =
γε

2
+ imεFSRε (5.26)

for ε ∈ {s, i}.
Figure 5.3 shows a numerically calculated plot of the G

(2)
s,i (τ) from CE-SPDC, for

measured signal-idler linewidths and FSRs of our CE-SPDC cavity. The multiple fre-

quency modes in the signal and idler spectrum translate to a comb under a double

exponential envelope, similar to |f̃3(τ)|
2
. For positive delays, the teeth are spaced by

2π/FSRs and the envelope describes the exponential decay in time of signal-intensity

in the cavity. For negative delays, the teeth are spaced by 2π/FSRi and the envelope

describes the exponential decay in time of the idler’s intensity in the cavity. Similar

to |f̃2(τ)|
2

the G
(2)
s,i (τ) is proportional to the joint probability of detecting the signal

and idler at times ts and ti, respectively, separated by a delay τ = ti − ts. At positive

values of τ, the comb can be understood to be the result of the signal photon leaving

the cavity after more round trips than its partner idler. Similarly, at negative values of

τ, the comb is a consequence of the idler photon staying for more round trips in the

cavity as compared to its partner signal. The peak at zero time implies both signal and

idler in a pair leave after the same number of round trips.

Experimental results

The CE-SPDC source was pumped with 350 µW of pump power. The signal and idler

photons from the CE-SPDC source were separated using a polarising beam splitter (PBS),

detected in APDs and their coincidences measured as described in section 5.2. Results

are shown in Figure 5.4. The results are in agreement with the numerically calculated

plot in Figure 5.3. However, the comb teeth in section 5.2 are not arbitrarily �ne like

the teeth in Figure 5.3 due to the �nite time resolution of the detection process. The

round trip time in the cavity for the signal and idler is 2π/FSRs ≈ 2π/FSRi ≈ 2ns
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Figure 5.4: Measurement of signal-idler intensity cross-correlation from CE-SPDC. Plots show

distribution of signal-idler coincidences at various delays, when CE-SPDC was

pumped with 350 µW of pump power and data collected for an integration time

of 200 s. (a) Shows the coincidence distribution within a coincidence interval of

100ns. (b) The same distribution zoomed-in between 30-55ns to better visualise

the 2ns separation between the peaks.

and is resolved by the 625 ps timing resolution. The resolution, however, is insu�cient

to observe the di�erence in the FSRs.
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5.3.2 G
(2)
s,i (τ) from �ltered CE-SPDC

Equation 3.8 from chapter 3 gives the modi�ed two-photon JSA fF(ωs,ωi), from

�ltering the CE-SPDC output to select a single frequency mode each for the signal

and idler. In the monochromatic pump scenario, fF(ωs,ωp −ωs) is proportional to

the function f2(ωs) illustrated in Figure 5.2. The G
(2)
s,i (τ) for a �ltered single-mode

CE-SPDC source, proportional to |f̃F(τ)|
2

is,

G
(2)
s,i (τ) ∝ |ξ|2

γ2iγ
2
s

(γi + γs)2
×

{ eτγi τ 6 0

e−τγs τ > 0

. (5.27)

Here ξ comes from Equation 3.8.

The normalised second order cross-correlation function for a �ltered single-mode

CE-SPDC source, is related to the pair production rate R according to, [121]

g
(2)
s,i (τ) =

{ 1+ γi
2Re

τγi τ 6 0

1+ γs
2Re

−τγs τ > 0

(5.28)

Similar to the previous section, we use the time-domain picture to understand the

shape of the G
(2)
s,i in Equation 5.27. This function has been derived on the condition

that the decay times of the FP �lters used for �ltering are much shorter than the signal-

idler decay times in the CE-SPDC cavity (refer conditions for single mode output in

subsection 3.1.1). Thus, the G
(2)
s,i function continues to be dominated by the double

exponential envelop pertaining to the CE-SPDC cavity decay rates. However, from the

conditions in subsection 3.1.1, the decay times of the FP �lters used have to be longer

than the round trip times in the CE-SPDC cavity. As discussed in the previous section,

the comb in the un�ltered CE-SPDC G(2)
(Equation 5.25) is a consequence of the the

signal/idler photon in a down-converted pair exiting the CE-SPDC cavity after more

round trips as compared to its parter. Introducing a �lter with a long decay time erases

(or reduces the resolution of) information about the number of round trips taken by a

down-converted photon in the CE-SPDC cavity. Thus the shape of the G
(2)
s,i is a smooth

double exponential if the conditions for a single frequency mode output from a �ltered

CE-SPDC source are satis�ed.

Correlation time: The two-photon correlation time is de�ned as the FWHM of

G
(2)
s,i (τ) [32, 99]. It gives an estimate of the time-window over which the probability of
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Figure 5.5: Measurement of signal-idler intensity cross-correlation from CE-SPDC with a single

signal mode �ltered. Plots show distribution of signal-idler coincidences at various

delays, when CE-SPDC was pumped with 350 µW of pump power and data collected

for an integration time of 200 s. The experimental data are �t with exponential decays

for positive and negative delays to obtain the signal and idler linewidths respectively.

detecting both photons from a down-converted pair is signi�cant. For the G
(2)
s,i (τ) in

Equation 5.27, the correlation time is,

τc = 0.69/γi + 0.69/γs. (5.29)

When γs ≈ γi,
τc ≈ 0.89/γtp, (5.30)

where γtp is the two-photon linewidth de�ned in Equation 2.45.

Experimental results

The CE-SPDC source was pumped with 350 µW of pump power. The signal and idler

photons were split using a PBS after the source, and a single signal frequency mode

selected using the FP �lter described in section 3.2. The down-converted photons were

detected in APDs and coincidences counted as described in section 5.2. As seen from the

results shown in Figure 5.5, when the �lter is introduced, the comb structure previously

seen in Figure 5.4 is washed out from the G
(2)
s,i . This indicates the absence of signal

frequency components detuned from the �ltered mode by less than ± 1.6GHz (the
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Figure 5.6: Measurement of the normalised signal idler cross-correlation from the �ltered CE-

SPDC system. Plot shows g
(2)
s,i (τ) when both the signal and idler are split and

�ltered after CE-SPDC, to contain a single frequency mode each. Measurement was

performed with 500 µW of pump power and for a total integration time of 800 s. The

experimental data are �t with Equation 5.28 to obtain the signal and idler linewidths

and the pair production rate. The error bars are small in comparison to the plot

scales.

inverse of the 625 ps time resolution), as expected from the predicted �lter behaviour.

In combination with the results shown in Figure 3.7, where the absence of unwanted

frequency components outside a 3GHz window was demonstrated, this leads us to

conclude that the output after the �lter can be considered to contain a single spectral

mode for all practical purposes. Refer chapter 6 for a quantitative analysis of the power

contained in unwanted frequency modes after the �ltering. Fitting Equation 5.27 to

the experimental data gives the cavity relaxation rates γs = 2π × 7.0(3)MHz and

γi = 2π × 6.2(1)MHz. The correlation time of the two photons is τc = 33(4)ns.

We also measure the normalised second-order cross- correlation function g
(2)
s,i (τ).

For this, two �lters are used each in the signal and idler arm to select a single mode-

pair. The �ltered signal and idler are detected in APDs and Equation 5.10 is used

to calculate the g
(2)
s,i . The measurement is repeated for various pump powers. A

representative result is shown in Figure 5.6. Fitting Equation 5.28 to all the data, we

get γs = 2π× 6.98(4)MHz and γi = 6.16(24)MHz. We estimate the two-photon

linewidth to be γtp ≈ 0.64× γavg = 2π × 4.2MHz using the average of the signal
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Figure 5.7: Power dependence of total coincidences detected (right axis, blue circles) and g
(2)
s,i (0)

(left axis, red, triangles). All measurements were performed over an 800 s integration

time and the total coincidences summed over a coincidence interval of 200ns. Refer

text for details on �ts. Error bars in the g
(2)
s,i (0) plot are small in comparison to the

plot scale.

and idler linewidths γavg and following the de�nition of the two-photon linewidth in

Equation 2.45.

The orange triangles in Figure 5.7 show g
(2)
s,i (0) for various pump powers Pp. The data

are �t with 1+ γavg/(2βPp). From the �t (orange dashed line) we estimate the pair-

production rate per unit pump in the crystal, β = R
Pp

= 11(5)× 103 pairsmW−1 s−1

in the central mode that we �lter and detect. A pair production rate of

3.4× 106 pairsmW−1 s−1 in a total of 300 frequency modes within the SPDC band-

width, was reported in [105] where the same CE-SPDC cavity was operated such that

di�erence in the signal-idler FSRs was compensated. Our result for the pair product rate

per mode is in rough agreement with this value as 3.4× 106/300 = 11.3× 103 . We

note that the ∼ 300 participating modes in the compensated con�guration is a rough

estimate that does not take precise account of the distribution of brightness among the

cavity modes.

Blue circles in Figure 5.7 show the total number of coincidences

∑
∆ ncoin(∆tb)

detected in a coincidence interval Tcoin = 200ns for various pump powers. The data
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are �t with a linear function of the pump power (blue dotted line) to obtain the coinci-

dence rate (Equation 5.14) Rcoin = 336(25) counts s−1mW−1
. All experimental data

reported is averaged over the chopper duty cycle of 32%. This implies a coincidence rate

of 1050 counts s−1mW−1
when the chopper is open. The accidental coincidences

are consistently 3 orders of magnitude less than the measured coincidences and so have

been neglected.

From the cross-correlation measurements, we get Pc|i = 18(3)% using Equation 5.13

and a heralding e�ciency of ηH = 36(6)% for ηDs = 50%. This matches our estimated

heralding e�ciency of 34% based on the following values for the transmission (1−PLossj

in subsection 5.2.1) of a signal photon through various optical elements until it reaches

the detector: cavity escape e�ciency (η = 72%), coupling e�ciency into �ber after

the CE-SPDC cavity (65%), maximum transmission through �ber to �ber connectors

(∼ 90%), on resonance transmission through the FP �lter cavity (∼ 90%) and �ber and

coupling e�ciency into �ber after the �lter (∼ 90% ).

The measured coincidence rate and the quantum e�ciency of the detectors imply

∼ 4000 pairs s−1mW−1
of correlated photon-pairs in �ber and 720 s−1mW−1

of

heralded signal photons available for cold atom experiments when the chopper is open.

5.4 SECOND ORDER AUTOCORRELATION FUNCTION

The autocorrelation of a �eld quanti�es the extent to which it is correlated with itself.

The second order intensity autocorrelation function gives the distribution of photon

detection times in the same mode, as a function of the delay τ between the detections.

The normalised form of this is [122],

g
(2)
ε,ε(τ) =

〈
Ê
(−)
ε (t)Ê

(−)
ε (t+ τ)Ê

(+)
ε (t+ τ)Ê

(+)
ε (t)

〉
〈
Ê
(−)
ε (t+ τ)Ê

(+)
ε (t+ τ)

〉〈
Ê
(−)
ε (t)Ê

(+)
ε (t)

〉 , (5.31)

where subscript ε is either s for the autocorrelation of the signal mode or i for the idler

autocorrelation. The autocorrelation at 0 delay g
(2)
ε,ε(0) is 2 for a source that exhibits

thermal statistics, 1 for a Poissonian source and 0 for a genuine single photon source

[122].

The autocorrleation of a �eld from SPDC shows completely di�erent statistics de-

pending on whether it is heralded or not. In the absence of heralding, the light displays

thermal statistics and the photons are bunched [123].
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5.4.1 Heralded autocorrelation

Suppressing the emission and quantifying the presence of multi-photon components is

important for applications that require a genuine single photon source. The probability

of generating states with two or more number of pairs from SPDC increases with the

pump power. So, it is important to quantify the single-photon character of the heralded

mode when SPDC is used as a source for heralded single photons. As mentioned earlier,

the autocorrelation at zero delay is zero for an ideal single photon source and this

indicates anti-bunching.

For single quantum emitters such as single atoms or single quantum dots, which

naturally emit anti-bunched light, anti-bunching can be observed with a Hanbury-Brown

and Twiss (HBT) setup, following [11]. The emission from single quantum emitters is

anti-bunched because, following the emission of one photon, the emitter is necessarily

in a low-energy state, and must wait to be excited before it can emit a second photon.

In contrast, SPDC is a parametric process that does not change the state of the material

(the nonlinear crystal), and is driven by a pump beam containing many photons. As a

result, the emission of a photon pair leaves the source perfectly ready to emit another

photon pair. Indeed, through the process of stimulated emission, SPDC is more likely to

emit multiple pairs simultaneously, than it is to emit them separated in time. In other

words, SPDC output is bunched, not anti-bunched.

Nonetheless, it is possible to create anti-bunched beams by SPDC thorough the process

of heralding. Because the signal and idler photons are produced in pairs, detection of

a signal photon indicates, or “heralds,” the presence of at least one photon in the idler

beam. And, assuming the rate of pair production is signi�cantly less than one pair per

correlation time, it is unlikely that there is more than one photon in the idler. In this

way, detection of a signal heralds an idler state that approximates a single photon state,

in the sense that the probability for n=1 photons is reasonably large (limited by the

e�ciencies of the system), and the probability for more than one photon is very small.

This phenomenon can be detected using a three-detector HBT set-up, in which one

detector acts as the herald, and the other two, at di�erent outputs of a beam splitter, are

used for a correlation measurement, but only when the heralding detector �res.

The �rst demonstration of anti-bunching from SPDC was by Fasel and team [124]

who measured the second order heralded-autocorrelation function to demonstrate this.
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5.4 second order autocorrelation function

The normalised idler-heralded signal autocorrelation function (for two detections at t1

and t2 in the signal arm) is [125]

g
(2)
s,s|i(t1, t2|ti) =

〈
Ê
(−)
s (t1)Ê

(−)
s (t2)Ê

(+)
s (t2)Ê

(+)
s (t1)

〉
pm〈

Ê
(−)
s (t1)Ê

(+)
s (t1)

〉
pm

〈
Ê
(−)
s (t2)Ê

(+)
s (t2)

〉
pm

(5.32)

where subscript 〈.〉pm refers to the expectation value over the state post-measurement

of an idler at ti, also called the post-selected state.

For an ideal heralded-single photon source, the heralded second order autocorrelation

function when t1 = t2 = ti = t (zero delay between detections) is expressed as

g
(2)
s,s|i(t, t|t) ≡ g

(2)
s,s|i(0) and is equal to zero. It has been shown by Bocquillon and

colleagues that g
(2)
s,s|i(0)→ 0

∣∣
R→0, i.e., for an SPDC source anti-bunching is achieved in

the low conversion e�ciency regime, where the pump power is low and SPDC brightness

is low [125]. However for large delays, g
(2)
c|i

(t1, t2 →∞|ti) = 1. Experimentally, the

idler-heralded signal autocorrelation can be measured by splitting the signal arm into

two modes indexed s and s ′ and using [125, 126]

g
(2)
s,s|i(0, τ|0) =

N
(2)
s,s ′,i(τ) Ni

Ns,i(0)Ns ′,i(τ)
. (5.33)

Here N
(2)
s,s ′,i(τ) is the count rate of 3-fold coincidences - one detection each in one signal

and the idler arm at the same instant and another detection in the other signal arm

with a τ delay, Ni is the total singles of the idler detected, Ns,i(0) and Ns ′,i(τ) are

number of coincidences between each of the signal arms and idler arm with 0 and τ

delays respectively.

Experimental Results

To perform a measurement of the g
(2)
s,s|i, the signal and idler after the CE-SPDC were

�rst split and individually �ltered to select a single signal-idler mode pair. Then the

signal was then split in a 50:50 beamsplitter (BS) and the transmitted mode detected

in an APD we call APDs and the re�ected mode detected in an APD we call APDs ′ .

The �ltered idler was sent to an APD called APDi. Detection events were collected for

various values of pump power.

We perform the following analysis to compare g
(2)
s,s|i(0) and g

(2)
s,s|i(0, τ|0). We count

the number of idlers (heralds) detected in the delay between coincidences registered
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Figure 5.8: Distribution of signal-signal coincidences per number of heralds detected within the

coincidence delay. Horizontal axis shows x = 1− number of heralds. Each vertical

bar in the histogram associated with bin x, shows total number of coincidences

between APDs and APDs ′ for 1+ x heralds detected within the coincidence delay.

Measurement was performed for a pump power of 3mW and an integration time of

of 600 s. Data are normalised to the average height of outer bins (which is 7760± 28
counts). The height of bin x = 0, which is the number of signal-signal coincidences

in the window between detecting one herald and the next, gives g
(2)
s,s|i(0) = 0.05±

0.002.
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Figure 5.9: The normalised heralded signal autocorrelation as a function of source brightness.

Red points calculated as described in text from measurements over 600 s of integration

time each. Blue dashed line �t to theory developed in [127].
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5.4 second order autocorrelation function

between APDs and APDs ′ . We generate a histogram of the number of coincidences

between APDs and APDs ′ per number of herald events detected in the delay between

these coincidences. The result for data collected at 3mW of pump power is shown in

Figure 5.8.

We measure g
(2)
s,s|i(0) at various values of pump power to study the degradation in

the single-photon character of the signal mode with increasing source brightness. In

Equation 5.33, we take τ = 0 and substitute the count-rates for the 3-fold coincidences,

coincidences and singles with the following expressions

N
(2)
s,s ′,i(0) =

∑
k

∑
∆2

∑
∆1

n
(k+∆1)
s n

(k+∆2)
s ′ n

(k)
i

Ns,i(0) =
∑
k

∑
∆1

n
(k+∆1)
s n

(k)
i

Ns ′,i(0) =
∑
k

∑
∆2

n
(k+∆2)
s ′ n

(k)
i

Ni =
∑
k

n
(k)
i (5.34)

where ∆1 and ∆2 both range from −Tcoinc/2 tb to Tcoinc/2 tb. We look for both 3-fold

and double coincidences within a coincidence interval set by Tcoin = 200ns. This

value for Tcoin was chosen because 200ns is su�ciently greater than the two-photon

correlation time τc which is 33(4)ns, so that outside the window ∆tb ∈[-100ns,

100ns], the coincidence rate drops to the accidental coincidence rate. N = Ti/tb and

Ti = 600 s for each value of pump power. The results are shown in Figure 5.9. The lowest

measured value of g
(2)
s,s|i = 0.025(4) which is over a 100 standard deviations below

the classical threshold g
(2)
s,s|i > 1. The data are �t with equation 24 from [127], where

the impact of imperfect noisy detectors on the outcome of correlation measurements

is studied. From the �t we estimate the g
(2)
s,s|i(0) at 5mW (a typical power to have

su�cient brightness for cold-atom experiments) to be 0.08.
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6
AUTOHETERODYNE CHARACTERISATION

This chapter has been adapted from the following publication [128].

6.1 QUANTUM INTERFERENCEWITH PHOTONS: A BRIEF BACKGROUND

At the outset of the thesis, we highlighted the fundamentally quantum nature of the

light produced by SPDC. The very �rst proofs of this appeared in the 1980s through

demonstrations of quantum interference e�ects, i.e., interference e�ects that could not be

explained with the classical theory of light, using SPDC photons. These demonstrations

followed predictions of such interference e�ects with markedly di�erent signatures

depending on whether the light used is a coherent state or a Fock state [93, 129]. The

very �rst such quantum interference e�ect demonstrated was the Ghosh-Mandel (GM)

e�ect [94]. The GM experiment utilised photons from SPDC that were produced with

equal frequency and polarisation, but with photons in a pair having di�erent momenta,

to observe spatial interference of the two photons emitted by the source. One week

after the publication of the GM article, a second nonclassical interference e�ect was

reported, called the Hong-Ou-Mandel (HOM) e�ect [1], this time bringing signal and

idler to di�erent inputs of a beamsplitter, and observing from which outputs the photons

emerged. Both the GM and HOM e�ects can be illustrated with single-mode calculations.

6.1.1 The Ghosh-Mandel e�ect

In the GM e�ect, two photons impinge on the detection region from di�erent directions.

The e�ect manifests as a position-dependent variation in the coincidences detected. To

calculate this we need to consider both position and time dependence of the quantised
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optical electric �eld in free space. We have neglected the �rst of these so far in this

thesis. The positive frequency part of the position dependent quantised optical electric

�eld is,

Ê(+)(x, t) =
∑

k

i

√
 hωk
2ε0V

âke
i(k·x−ωkt)

(6.1)

where V is the quantisation volume,  h is Planck’s constant and ε0 is the permittivity

of free space. The factor i
√

 hωk
2ε0V

is slowly varying over the frequencies produced by

SPDC, so we treat it as a constant.

We consider the two-photon Fock state from SPDC, |ψ〉 = â†pâ†q |0〉, where âp and

âq are annihilation operators for modes with photon wave-vector p and q, respectively

and at frequenciesωp andωq respectively. The two photons are made incident on a

screen along the x direction. The probability density for detecting singles at a position

x1 on the screen is proportional to the �rst order correlation function

G(1)(x1, t) = 〈ψ| Ê(−)(x1, t)Ê(+)(x1, t) |ψ〉

∝ 〈0| âpâq
[
â†pe

−i(p·x1−ωpt) + â†qe
−i(q·x1−ωqt)

]
×
[
âpe

i(p·x1−ωpt) + âqe
i(q·x1−ωqt)

]
â†pâ

†
q |0〉

= 2 (6.2)

Thus the average rate of singles detected on the screen is the same at all positions and

shows no patterns.

The probability density for coincidences detected at positions x1 and x2 at times t1

and t2 respectively, is proportional to G(2)(x1, t1, x2, t2)

G(2)(x1, t1, x2, t2) = 〈ψ| Ê(−)(x1, t1)Ê(−)(x2, t2)

×Ê(+)(x2, t2)Ê(+)(x1, t1) |ψ〉 . (6.3)
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6.1 qantum interference with photons: a brief background

Here, the only terms that contribute a nonzero value to the expectation over the input

state |ψ〉 are 〈
â†pâ

†
qâpâq

〉
= 1,〈

â†qâ
†
pâqâp

〉
= 1,〈

â†pe
−i(p·x1−ωpt1)â†qe

−i(q·x2−ωqt2) (6.4)

×âqei(q·x1−ωqt1)âpe
i(p·x2−ωpt2)

〉
= ei(q−p)·(x1−x2)e−i(ωq−ωp)(t1−t2),〈

â†qe
−i(q·x1−ωqt1)â†pe

−i(p·x2−ωpt2)

×âpei(p·x1−ωpt1)âqe
i(q·x2−ωqt2)

〉
= e−i(q−p)·(x1−x2)e+i(ωq−ωp)(t1−t2).

The time dependence of the G(2)
vanishes if either t1 = t2 or if ωp = ωq. Under

these conditions, summing the contributions from the terms in Equation 6.5 we get,

G(2)(x1, x2, ) ∝ 2+ 2 cos [(q − p)·(x1 − x2)] . (6.5)

which shows the remarkable feature that, while detection of a photon at any location is

possible, once one photon is detected at x1, there are locations where it is impossible to

�nd the other photon. It was also proven in the 1987 GM article [94] that this behaviour

cannot be reproduced with the semiclassical theory of light, in which classical waves

excite detectors described quantum mechanically to produce discrete detection events.

6.1.2 Hong-Ou-Mandel e�ect

The HOM e�ect, which is a much better known quantum interference e�ect, �nds

plenty of application in quantum technologies such as quantum computing [130],

communication [131] and sensing [5, 132]. The e�ect is seen when identical single

photons are simultaneously incident on a beamsplitter, one on each input face, and

coincidences measured between the output ports. To calculate this, we consider the state

|ψ〉 = â†uâ†v |0〉 where each photon is incident on one face of a 50:50 beamsplitter (the

spatial mode indicated with subscripts u and v respectively). Due to the beamsplitter,

creation operators in the input modes u, v of the beamsplitter are related to creation

operators in the output modesm,n according to,

â
†
u/v

=
1√
2

(
â†m ± â†n

)
. (6.6)

93



autoheterodyne characterisation

Thus, the state |ψ〉 in terms of modesm,n after the beamsplitter is,

â†uâ
†
v |0〉 =

1

2

(
â†m + â†n

)(
â†m − â†n

)
|0〉

=
1

2
(â†mâ

†
m − â†mâ

†
n + â†nâ

†
m − â†nâ

†
n) |0〉 . (6.7)

The e�ect is observed in detectors that are in �xed positions and so is not dependent

on the position of the optical electric �eld. Hence, we go back to neglecting the position

dependence of the quantised electric �eld and use Ê
(+)
κ (t) ∝

∫
dω âκ(ω)e−iωt.

The rate of coincidences detected between the output ports of the beamsplitter at zero

delay between detections is proportional to the G(2)
computed with the state given in

Equation 6.7.

G
(2)
m,n(t, t+ 0) =

〈
Ê
(−)
m (t)Ê

(−)
n (t)Ê

(+)
n (t)Ê

(+)
m (t)

〉
= 0. (6.8)

Thus when identical photons are simultaneously incident in a BS, it is not possible to

observe a coincidence in which one photon leaves by each output port and both photons

get bunched to one output port of the beamsplitter.

6.2 OVERVIEW OF AUTOHETERODYNE CHARACTERISATION

In the introduction (chapter 1) of this thesis, we presented the importance of narrowband

photons pairs with ∼MHz bandwidths for applications in quantum information and for

furthering our understanding of light-matter interactions. Such narrowband photon-

pairs are not easily measured by passive frequency-domain techniques, because of the

very high optical frequency resolution it would require. In such a two-photon Fock state,

�rst-order interference vanishes, producing no observable beat-note. One alternative is

stimulated parametric down-conversion [133], in which laser photons are used to seed

the down-conversion and map the di�erence frequencies generated vs those suppressed

[68, 134]. This technique has potential for use in tomography of the JSA [135], but

requires an additional well-characterised laser source and careful matching of spatial

modes.

Here we present a simpler and more e�cient alternative, a time-domain characterisa-

tion of the two-photon state using nonclassical interference. The JSI is a two-dimensional

function, while the Hong-Ou-Mandel (HOM) interference visibility is a scalar observable.

Thus a characterisation of the JSI even along a single dimension requires many HOM
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Figure 6.1: Principle of the method. Two photons, one in mode A and one in mode B, with

joint spectral amplitude f(ωA,ωB), illustrated in left graph ( color density indi-

cates square magnitude), meet at a 50:50 BS and are detected in modes C and D.

Single-photon-sensitive detectors register the photon arrival times. The correlation

functions G
(2)
C,C(t, t

′), G
(2)
D,D(t, t ′) and G

(2)
C,D(t, t ′) oscillate with t− t ′, revealing

the distributionωA −ωB.

visibility measurements under changing experimental conditions, such as a changing

path length [136, 137]. In contrast, the Ghosh and Mandel experiment [94] (GM), which

measured the spatial interference pattern produced by photons of unequal momentum,

showed how a correlation spectrum can be acquired with a single experimental condi-

tion. This motivates us to look for techniques that give more direct and more e�cient

access to the frequency correlations of interest. Our proposals for narrowband photon

pair characterisation, are extensions of the HOM and GM interference e�ects.

The principle of the method is illustrated in Figure 6.1. Narrowband photon-pairs

with the photons of each pair matched in polarisation and spatial pro�le but with

unequal frequency, are injected, one into port A and the other into port B of a 50:50

beamsplitter (BS). Single-photon-sensitive detectors register photons leaving the BS by

ports C and D, and time-tagging electronics record the arrival times. Many events are

accumulated, and the second order correlation functions G
(2)
κ,µ(t, t ′), κ,µ ∈ {C,D} are

calculated. Information about the JSA can then be inferred from the G(2)
functions. We

refer to this method as autoheterodyne characterisation (AHC), not to be confused with

the single-photon self-heterodyne technique [138].

When photons of di�erent frequency meet at a BS, their arrival-time distribution

becomes modulated at the di�erence of their frequencies. This can be understood as

follows: a detection at C and D with zero time delay, i.e. t = t ′, can happen by two
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channels in con�guration space: either re�ection of both photons or transmission of

both photons. The amplitudes for these channels sum to zero, due to phase factors in the

transmission and re�ection processes. The resulting vanishing of G
(2)
C,D(t, t) and the

corresponding increase of G
(2)
C,C(t, t) and G

(2)
D,D(t, t) is the well-known HOM e�ect [1].

For unequal detection times, one must also consider the phase factors exp[−iωAt−
iωBt

′] and exp[−iωAt ′− iωBt] that apply to the two-re�ection and two-transmission

channels, respectively. The relative phase (ωA −ωB)(t− t
′) between the channels

then induces an oscillation of the G(2)
correlations at the di�erence frequencyωA −

ωB. We refer to this nonclassical interference between distinguishable photons as

the nondegenerate HOM e�ect. Small frequency di�erences between the photons

manifest as long-period oscillations in the relative arrival time distribution, which are

technologically convenient to detect.

This technique implements a variant of the GM e�ect [94]. In GM, photon pairs with

unequal transverse momenta ks,ki are observed to produce a spatial autocorrelation

function G(2)(x− x ′) that is maximum for x− x ′ = 0 and modulated with momentum

ks − ki. The temporal modulation of G
(2)
C,C or G

(2)
D,D, which describes the correlations

of photon pairs with unequal frequencies ωA,ωB in a single output channel, is the

temporal analog of GM. We refer to this as the temporal Ghosh-Mandel e�ect. By

conservation of probability at the BS, the GM and HOM signals must add to give

G
(2)
A,B(t, t

′), the signal-idler cross-correlation, as illustrated in Figure 6.1. As a result,

the two methods give very similar information about the JSA.

6.3 THEORY OF AHC

6.3.1 Preliminaries and De�nitions

The e�ect can be easily calculated. For a two-photon, two-mode state |ψ〉, written in

the general form

|ψ〉 =
∫
dωsdωi f(ωs,ωi)â†s(ωs)â

†
i(ωi) |0〉 , (6.9)

where ωs and ωi are, respectively, the signal and idler angular frequencies, f(ωs,ωi)
is the JSA, and |f(ωs,ωi)|2 is the JSI. In the time-domain,

f̃(ts, ti) ∝
∫
dωsdωif(ωs,ωi)e−iωstse−iωiti (6.10)
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is the joint temporal amplitude (JTA) of the two-photon state.

In AHC, we introduce each mode of the two-photon state at one input face of a

50:50 beamsplitter (BS) and look for correlations at the BS outputs C,D of the form

G
(2)
κ,µ(t, t ′) ≡ |〈0|Ê(+)

κ (t)Ê
(+)
µ (t ′)|ψ〉|2, κ,µ ∈ {C,D}. Here the positive-frequency

part of the �elds at the detector are Ê
(+)
κ (t) ∝

∫
dωâκ(ω) exp[−iωt] and âκ, is

an annihilation operator. Due to the BS, the output �elds are related to the signal-

idler �elds (indicated with subscripts s and i respectively) according to Ê
(+)
C/D

(t) =

1√
2

[
Ê
(+)
s (t)± Ê(+)

i (t)
]
.

6.3.2 Exchange (anti)symmetries in AHC G(2)

We now calculate the second-order correlations after the BS. The nondegenerate HOM

e�ect and the temporal GM e�ect can be understood via exchange symmetries. Consid-

ering �rst the nondegenerate HOM signal, i.e. G
(2)
C,D, we �nd

G
(2)
C,D(t, t

′) =
∣∣∣〈0| Ê(+)

C (t ′)Ê
(+)
D (t) |ψ〉

∣∣∣2
=

∣∣∣∣ ∫ dωsdωif(ωs,ωi)〈0|12 [Ê(+)
s (t) + Ê

(+)
i (t)

]
×
[
Ê
(+)
s (t ′) − Ê

(+)
i (t ′)

]
â†s(ωs)â

†
i(ωi)|0〉

∣∣∣∣2. (6.11)

Here only the following 2 out of the 4 cross terms,

〈0|
[
−Ê

(+)
s (t)Ê

(+)
i (t ′) + Ê

(+)
i (t)Ê

(+)
s (t ′)

]
â†s(ωs)â

†
i(ωi) |0〉 , (6.12)
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contribute to nonzero terms, to give

G
(2)
C,D(t, t

′) ∝
∣∣∣∣ ∫ dωsdωif(ωs,ωi)12 〈0|

[ ∫
dω ′i e

−iω ′itâi(ω
′
i)

×
∫
dω ′s e

−iω ′st
′
âs(ω

′
s) −

∫
dω ′s e

−iω ′stâs(ω
′
s)

×
∫
dω ′i e

−iω ′it
′
âi(ω

′
i)

]
â†s(ωs)âi(ωi) |0〉

∣∣∣∣2
∝

∣∣∣∣∫ dωsdωif(ωs,ωi)12 [e−i(ωit+ωst ′) − e−i(ωst+ωit ′)]
∣∣∣∣2(6.13)

=

∣∣∣∣12 [f̃(t ′, t) − f̃(t, t ′)]
∣∣∣∣2

≡
∣∣f̃A(t, t ′)∣∣2 , (6.14)

where f̃A(t, t ′) ≡ 1
2 [f̃(t

′, t) − f̃(t, t ′)] is the exchange-antisymmetric part of the JTA.

We note that G
(2)
C,D(t, t

′) can also be expressed directly in terms of the exchange-

antisymmetric part of the JSA, as follows:

G
(2)
C,D(t, t

′) ∝
∣∣∣∣∫ dωsdωif(ωs,ωi)12 [e−i(ωst ′+ωit) − e−i(ωst+ωit ′)]

∣∣∣∣2
=

∣∣∣∣ ∫ dωsdωie−iωite−iωst ′ 12f(ωs,ωi)
−

∫
dωsdωie

−iωste−iωit
′ 1

2
f(ωs,ωi)

∣∣∣∣2
=

∣∣∣∣ ∫ dω ′dωe−iωte−iω ′t ′ 12f(ω ′,ω)

−

∫
dωdω ′e−iωte−iω

′t ′ 1

2
f(ω,ω ′)

∣∣∣∣2
=

∣∣∣∣∫ dωdω ′e−iωte−iω ′t ′ 12 [f(ω ′,ω) − f(ω,ω ′)
]∣∣∣∣2

≡
∣∣∣∣∫ dωdω ′e−iωte−iω ′t ′fA(ω,ω ′)

∣∣∣∣2 , (6.15)

where fA(ω,ω ′) ≡ 1
2
[f(ω ′,ω) − f(ω,ω ′)] is the exchange-antisymmetric part of the

JSA. From Equation 6.14 and Equation 6.15, we see that G
(2)
C,D(t, t

′) is the square mag-

nitude of the antisymmetric part of the JTA, or equivalently the 2-D Fourier transform

of the antisymmetric part of JSA.
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In the same way, the temporal GM signals, i.e. G
(2)
C,C and G

(2)
D,D, are related to the

exchange-symmetric part of the JSA.

G
(2)
κ,κ(t, t ′) =

∣∣∣∣∫ dωsdωif(ωs,ωi)
× 1√

2
〈0|Ê(+)

κ (t)Ê
(+)
κ (t ′)â†s(ωs)â

†
i(ωi)|0〉

∣∣∣∣2 (6.16)

where κ ∈ {C,D}. The factor
1√
2

, which does not appear in Equation 6.12, is introduced

to correctly predict the number of two-photon events detected when both photons

leave the beamsplitter by the same output. This is related to the normalisation of the

two-photon state 〈0| Ê(+)
κ (t)Ê

(+)
κ (t ′) ∝ 〈0| âκâκ =

√
2 〈2|.

G
(2)
κ,κ(t, t ′) =

∣∣∣∣ ∫ dωsdωif(ωs,ωi) 1

2
√
2
〈0|
[
Ê
(+)
s (t) + Ê

(+)
i (t)

]
×
[
Ê
(+)
s (t ′) + Ê

(+)
i (t ′)

]
â†s(ωs)â

†
i(ωi)|0〉

∣∣∣∣2
∝

∣∣∣∣∫ dωsdωif(ωs,ωi)
× 1

2
√
2

[
e−i(ωst+ωit

′) + e−i(ωst
′+ωit)

]∣∣∣∣2 (6.17)

=
1

2

∣∣∣∣12 [f̃(t, t ′) + f̃(t ′, t)]
∣∣∣∣2

≡ 1

2

∣∣f̃S(t, t ′)∣∣2 , (6.18)

where f̃S(t, t ′) ≡ 1
2 [f̃(t, t

′) + f̃(t ′, t)] is the exchange-symmetric part of the JTA. Also

G
(2)
C,C(t, t

′) = G
(2)
D,D(t, t

′) ∝ 1
2

∣∣∣∫ dωdω ′e−iωte−iω ′t ′fS(ω,ω ′)
∣∣∣2 and fS(ω,ω ′) ≡

1
2
[f(ω,ω ′) + f(ω ′,ω)], in analogy to Equation 6.15.

6.3.3 Sum and di�erence co-ordinates

It is convenient to work in the sum and di�erence co-ordinates ω± ≡ ωs ±ωi and

t± ≡ t± t ′ to better visualise the results. The JSA in these co-ordinates can be written

as

f̊(ω+,ω−) ≡ f

(
ω+ +ω−

2
,
ω+ −ω−

2

)
. (6.19)
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Applying this transformation of co-ordinates to Equation 6.13 for the nondegenerate

HOM e�ect,

G̊
(2)
C,D(t+, t−) ∝

∣∣∣∣12
∫
dω+dω−f̊(ω+,ω−)

×1
2

[
e−

i
2 (ω+t+−ω−t−) − e−

i
2 (ω+t++ω−t−)

]∣∣∣∣2. (6.20)

This can be simpli�ed to

G̊
(2)
C,D(t+, t−) ∝

∣∣∣∣12
∫
dω+dω−f̊(ω+,ω−)e

−iω+t+/2 i sin (ω−t−/2)

∣∣∣∣2(6.21)

or equivalently to

G̊
(2)
C,D(t+, t−) ∝

∣∣∣∣12
∫
dω+dω−e

−iω+t+/2e−iω−t−/2 f̊A(ω+,ω−)

∣∣∣∣2 ,(6.22)

where the antisymmetric part of parametrised JSA

f̊A(ω+,ω−) =
1

2

[
f̊ (ω+,−ω−) − f̊ (ω+,ω−)

]
. (6.23)

Similarly for the GM e�ect introducing the transformation of co-ordinates to Equa-

tion 6.17 we get

G̊
(2)
C,C(t+, t−) ∝

∣∣∣∣12
∫
dω+dω−f̊(ω+,ω−)

× 1

2
√
2

[
e−

i
2 (ω+t+−ω−t−) + e−

i
2 (ω+t++ω−t−)

]∣∣∣∣2 (6.24)

This can be simpli�ed to

G̊
(2)
C,C(t+, t−) ∝

1

2

∣∣∣∣12
∫
dω+dω−f̊(ω+,ω−)e

−iω+t+/2 cos (ω−t−/2)

∣∣∣∣2(6.25)

or equivalently to

G̊
(2)
C,C(t+, t−) ∝

1

2

∣∣∣∣12
∫
dω+dω−e

−iω+t+/2e−iω−t−/2 f̊S(ω+,ω−)

∣∣∣∣2(6.26)

where the symmetric part of parametrised JSA is

f̊S(ω+,ω−) =
1

2

[
f̊ (ω+,−ω−) + f̊ (ω+,ω−)

]
. (6.27)
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Discussion

The AHC correlation results describe a Fourier transform of the JSA along the ω±

coordinates. When the two-photon state is produced by SPDC, and pumped by a

broadband pump with �eld Ep(t) =
∫
dωpα(ωp)e

−iωpt
, we �nd that f(ω+,ω−) ∝∫

dωpα(ωp)δ(ωp −ω+)g(ω−,ω+) ∝ α(ω+)g(ω−,ω+). When the variation of

the crystal phase matching function over the pump-bandwidth can be neglected, g

becomes independent ofω+ and the JSA factorises as f(ω+,ω−) ∝ α(ω+)g(ω−). The

AHC G(2)
then gives the sine or cosine power spectrum of g(ω−) in the t− dimension

and also gives the Fourier transformed spectrum of α(ω+) via the t+ dimension. For

a monochromatic pump α(ω+) → δ(ω+ −ωp), such that f(ω+,ω−) ∝ δ(ω+ −

ωp)g(ω−), so that G(2)
depends only on t−. In the following section we study the

narrowband, cw-pump case. The use of AHC in the pulsed scenario and to obtain

measures such as entanglement entropy, state purity and Schmidt number [113] is

discussed in the last section.

6.4 MONOCHROMATIC PUMP SCENARIO

For a monochromatic narrowband pump of frequencyωp the two-photon JSA can be

written as,

f(ωs,ωi) =

∫
dω ′pδ(ωp −ω

′
p)δ(ω

′
p −ωs −ωi)g(ωs,ωi)

= δ(ωp −ωs −ωi)g(ωs,ωi), (6.28)

where

∫
dω ′pδ(ωp−ω

′
p) describes the pump frequency distribution and δ(ω ′p−ωs−

ωi) is the energy conservation condition from SPDC. Transforming the JSA to theω±

basis,

f̊(ω+,ω−) = δ(ωp −ω+)g

(
ω+ +ω−

2
,
ω+ −ω−

2

)
. (6.29)

Applying this to Equation 6.21 or Equation 6.25, we see that the AHC G(2)
reduces to

a function of a single variable t−. We now proceed to model the AHC output for our

speci�c case of the output from a �ltered CE-SPDC system.

101



autoheterodyne characterisation

-100 -50 0 50 100
0.0

0.2

0.4

0.6

0.8

Arrival time difference t-t' (ns)

G
C
,D

(2
)

-100 -50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

Arrival time difference t-t' (ns)

G
C
,C

(2
)
+
G
D
,D

(2
)

Figure 6.2: Simulated AHC measurements for narrowband pump, signal-idler beat-note of

100MHz and signal-idler linewidth of 2π× 7MHz. Top: Normalised nondegen-

erate HOM results. Bottom: Normalised temporal GM results. Simulations show

oscillations with a 10ns period, o�set by 180◦ with a double exponential envelop

decaying in accordance with the linewidth.

6.4.1 Modelling AHC results for perfect �lter functionality

We consider the JSA when the �lters select signal-idler frequency modes from the

CE-SPDC output of central frequencyω0s andω0i respectively and perfectly extinguish

all other frequency components from the CE-SPDC. We call this “perfect �ltering”. In

this scenario the two-photon JSA consists of a single Lorentzian line each for the signal

and idler and can be given as in Equation 3.8 as,

f(ωs,ωi) = ξ δ(ωp −ωs −ωi)
∏
ν∈{s,i}

γν/2

γν/2+ i (ω0ν −ων)
, (6.30)
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for some constant ξ. We consider the case when γs = γi = γ. Performing a co-ordinate

transformation to theω± basis,

f̊(ω+,ω−) = ξ δ(ωp −ω+)
γ/2

γ/2+ i
(
ω0s −

ω++ω−

2

) γ/2

γ/2+ i
(
ω0i −

ω+−ω−

2

)
= ξγ δ(ωp −ω+)

1

γ2 + (ω0s −ω
0
i −ω−)2

≡ δ(ωp −ω+)g(ω−), (6.31)

noting thatω0s +ω
0
i = ω+.

Thus the JSA and G(2)
signals can be reduced to a function of a single coordinate.

The symmetric (antisymmetric) JSA in the sum/di�erence coordinates is

f̊S/A(ω+,ω−) = δ(ω+ −ωp)
1

2
[g(−ω−)± g(ω−)] , (6.32)

at which point the integral over dω+ that appears in Equation 6.22 and Equation 6.26

can be performed trivially. G̊
(2)
C,C/D(t+, t−) is seen to be independent of t+,

G̊
(2)
C,D(t−) ∝

∣∣∣∣∫ dω−e
−iω−t−/2

1

2
[g(−ω−) − g(ω−)]

∣∣∣∣2
≡ |g̃A(t−)|

2 .

G̊
(2)
C,C(t−) ∝

1

2

∣∣∣∣∫ dω−e
−iω−t−/2

1

2
[g(−ω−) + g(ω−)]

∣∣∣∣2
≡ 1

2
|g̃S(t−)|

2 , (6.33)

where g̃S(t−) is the exchange-symmetric part and g̃A(t−) is the exchange-antisymmetric

part of the JTA. We henceforth omit the t+ argument when discussing this monochro-

matic pump scenario. Evaluating g̃S/A(t−) and G̊
(2)
C,C/D(t−) for g(ω−) from Equa-

tion 6.31 we get

g̃S/A(t−) ∝ ξ
cos
i sin

[(
ω0s −ω

0
i

) t−
2

]
×

{ e
γt−
2 t− 6 0

e−
γt−
2 t− > 0

, (6.34)

where cos is associated with g̃S(t−) and sin with g̃A(t−).

The exchange-(anti)symmetric part of the JTA is proportional to ξ, and so theG(2)
in

Equation 6.33 proportional to ξ2. Note that the JSI also scaled as ξ2. While g̃S/A(t−)
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oscillates with a periodicity of 2×
[
1
2π

(
ω0s −ω

0
i

)]−1
, G̊

(2)
C,D(t−) oscillates with a

periodicity of

[
1
2π

(
ω0s −ω

0
i

)]−1
. The signals for the temporal Ghosh-Mandel e�ect

(G
(2)
CC or G

(2)
DD) are shifted in phase by π from the nondegenerate HOM signal (G

(2)
CD).

Due to conservation of photon number, G
(2)
CC +G

(2)
DD and G

(2)
CD must sum to give G

(2)
AB,

the output of the SPDC cavity before HOM mixing on the beamsplitter. G
(2)
AB does

not exhibit a beat-note; it’s spectrum is limited to the two-photon bandwidth. The

oscillating components of G
(2)
CC +G

(2)
DD and of G

(2)
CD are thus equal and opposite as

shown in Figure 6.2.

6.4.2 Power spectral density analysis

By looking at the power spectral density (PSD) of G̊
(2)
C,D(t+, t−)

(
PSD

[
G(2)

])
, we get

information about the JSA and JSI. By de�nition, the two-dimensional PSD ofG
(2)
C,D(t, t

′)

is proportional to the square magnitude of the Fourier transform of G
(2)
C,D(t, t

′).

PSD
[
G

(2)
C,D(t, t

′)
]
(ω,ω ′) ∝

∣∣∣∣∫ dtdt ′ ei(ωt+ω ′t ′)G(2)
C,D(t, t

′)

∣∣∣∣2 . (6.35)

This can also be represented in the sum and di�erence coordinates

PSD
[
G̊

(2)
C,D(t+, t−)

]
(ω+,ω−) ∝

∣∣∣∣∫ dt+ dt−
× ei(ω+t++ω−t−)G̊

(2)
C,D(t+, t−)

∣∣∣2 (6.36)

We now show how a spectral feature in the JSI translates to a spectral feature in

PSD
[
G̊

(2)
C,D

]
. For the two-photon state described in Equation 6.31, we note that if

g(ω−) has a peak at some frequency, e.g. ω0− ≡ ω0s −ω0i , then g(−ω−) − g(ω−),

will have a peak at −ω0− and also at ω0−. These give a beat-note in G̊
(2)
C,D(t−) at

frequency |ω0i −ω
0
s |. Note that the frequency doubling (beating of ω0− with −ω0−,

a result of (anti)symmetrisation) cancels the factor of 1/2 due to the use of sum and

di�erence coordinates. We thus see that peaks in g(ω−) will be represented as peaks in

the PSD of G̊(2)
at the same frequencies.

To illustrate this, we simulate AHC resuts using Equation 6.34, and with the spectral

parameters taken from our system, in Figure 6.3. Also shown is the JSI |f̊(ω+ =

0,ω−)|
2
, which illustrates the fact that the line width in the JSI and in the PSD of
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Figure 6.3: Simulated spectra using Equation 6.35, a signal-idler beat-note of 250MHz and

measured CE-SPDC cavity linewidths. Top: PSD of G
(2)
C,D(t−) in log scale, (as in

the manuscript). A pseudo-random noise has been added to simulate the statistical

noise of the G
(2)
C,D acquisition. Middle: same as in the top graph, but on a linear

scale. Bottom: close-up of the feature at 250MHz (in blue), overlain with |f̊(ω+ =

0,ω−)|
2

(in dashed green), showing the agreement of linewidth and line shape.

G̊
(2)
C,D(t−) are the same. The width of the peak in the G(2)

PSD is the spectral width,

along the ω− direction, of the two-photon JSI. This is evident from Equation 6.34,

which shows that the oscillations in the AHC G(2)
, albeit in the t− dimension, decay

exponentially according to the linewidth γ of the CE-SPDC source.

We note that G(2)
, like the JSI, scales quadratically with f (the JSA), and thus that

PSD[G(2)] scales as the fourth power of f. This nonlinear relationship between the JSI

and PSD[G(2)] leads to a number of e�ects. First and most simply, if the the height of a
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peak in the JSA is proportional to ξ (Equation 6.31), the JSI scales as |ξ|2 and PSD[G(2)]

scales as |ξ|4, and is proportional to the square of the height of the corresponding peak

in the JSI. Second, PSD[G(2)] has many of the properties of a convolution (in suitable

coordinates) of the JSI with itself. This, for example, explains the origin of the peak

in PSD[G(2)] around zero frequency. To continue with the example just described, if

|fA(ωs,ωi)|2 has peaks atω0− and −ω0−, then the autoconvolution will (again taking

into account the factor of 1/2 from the change of coordinates) have peaks at zero,ω0−
and −ω0−, as seen in Figure 6.3.) A more complex JSI, e.g. with multiple di�erence-

frequency peaks, would lead to cross-terms at frequencies that are sums and di�erences

of the frequencies represented in the JSI.

6.4.3 Modelling AHC results for imperfect �lter functionality

In the event that the designed FP �lter cavities do not select exclusively a single pair of

signal-idler frequency modes from the CE-SPDC, but instead allow other modes from a

cluster to leak, there will be multiple frequency components in the two-photon state

and the JSA can no longer be described by Equation 3.8. Since the AHC is sensitive

to the di�erence frequencies in the two-photon state, it can be used for a quantitative

measurement of the contamination with unwanted frequency content and thereby assess

the performance of the FP �lters. On the other hand, the AHC results can be simulated

in advance to estimate the tolerances in �lter parameters and this information can be

used to then design a suitable �lter. For this, a complete model for the JSA, taking into

account repeating resonances for both signal and idler in both cavities (CE-SPDC and

FP), can be used in combination with Equation 6.21. To demonstrate this we use the

expression for the JSA from CE-SPDC after a �lter each in the signal and idler arms

given in Equation 3.4, where no simpli�cations have been made from assuming that the

FP �lters perfectly extinguish unwanted frequency modes from the CE-SPDC.

We consider the scenario when the FP �lters are tuned to the preferred CE-SPDC

output modes such that the �lters’ index frequencies coincide with those of the CE-SPDC

cavity, i.e., ω0fν = ω0ν for ν ∈ {s, i}. Under these conditions, transforming the JSA in

Equation 3.4 to theω± basis, and noting that the G(2)
from AHC is only dependent on

t− for a monochromatic pump as discussed previously, we numerically compute the

G(2)
and use it to calculate the PSD[G(2)], for various values of FP linewidth γf. The

summations were truncated to cover only the central cluster. Since contribution from
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Figure 6.4: Simulated G
(2)
C,D and PSD[G

(2)
C,D] for various FP linewidths whenω0− is 250MHz:

(a) and (b): G
(2)
C,D and PSD[G

(2)
C,D] respectively for γp = 2π× 600MHz. (c) and (d):

the same functions for γp = 2π× 400MHz. Note the distortion of the valleys in (a)

and (c) relative to what is seen in Figure 6.2. The PSD results show a peak atω0−/2π

(green arrow) additional peaks (red arrows) at 496MHz, due to leakage of adjacent

CE-SPDC modes and 750MHz, due to leakage of mode pairs with |ω−|/2π =

|250MHz− 2FSR|. The amplitude of the unwanted peaks decreases with increasing

FP �nesse.

fNB(ωs,ωi), which has a spectral width of ∼ 100GHz, does not change appreciably

over the central cluster, which has a spectral width of ∼ 1GHz, we treat fNB as a

constant. Other cavity parameters were set to match experimentally measured values

reported in subsection 2.2.2. Results are shown in Figure 6.4 and Figure 6.5 for a
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Figure 6.5: Simulated PSD[G(2)] for various FP linewidths when ω0− is 250MHz: (a) and (b):

PSD[G(2)] when γf = 2π× 200MHz and γf = 2π× 100MHz respectively. The

contribution of unwanted frequencies (red arrows) drops to within the noise (30 dB

below the main beat frequency) when the FP linewidth is 100MHz.

frequency di�erence of ω0− = 250MHz between the central signal-idler modes ω0s
and ω0i which the �lters are tuned to maximally transmit. Figure 6.5b shows that,

for a FP �lter linewidth of 100MHz, the unwanted modes are 30 dB below the main

peak. For this FP linewidth, the PSD[G(2)] results match Figure 6.3 obtained using the

simpli�ed model for the JSA in Equation 6.30 which assumes “perfect �ltering”. Since

the FP �lters we employ in our experiment have this bandwidth, we can conclude that

the “perfect �ltering” model in Equation 6.30, where the two-photon JSA comprises

a single Lorentzian each for the signal and idler, well describes the actual JSA of the

two-photon state from our CE-SPDC + �lter system. In what follows, we experimentally

verify this.

6.4.4 Experimental results

To perform AHC of the CE-SPDC source, the pump laser, cavity mode and FP mode

frequencies are tuned to produce and pass a single signal-idler mode pair with a fre-

quency di�erenceω0− = ω0s −ω
0
i . The measurement is performed for two values of

ω0−/(2π), 250MHz and 165MHz. Single-mode �bers and linear polarisers ensure

good spatial and polarisation matching when the signal and idler photons arrive at the

BS via spatial modes A and B, respectively. BS output modes C and D are coupled into
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Figure 6.6: Schematic of setup for generation and characterisation of narrowband photon-pairs.

(a) CE-SPDC source, consisting of a bow-tie cavity containing an ECDL-pumped

SPDC crystal (PPKTP) and a second crystal (KTP). Photon pairs are separated by

polarisation. (b) Tuneable FP �lters are used to select desired “teeth” from the

comb of CE-SPDC output modes. (c) Autoheterodyne characterisation. The photons

are set to the same polarisation, interfered on a beam splitter (BS), detected using

avalanche photodiodes (APDs) and time-tagged with an FPGA. KTP - potassium

titanyl phosphate crystal; PPKTP - periodically-poled KTP crystal; PBS - polarising

beam splitter; λ/2 - half-wave plate; FPGA - �eld programmable gate array.

single mode �bers leading to APDs. An FPGA with a resolution of 625 ps (sampling

rate 1.6GHz) is used to time-stamp the APD detections. The experimental set-up is

shown schematically in Figure 6.6

Figure 6.7 shows the observed and predicted G
(2)
C,D for a frequency di�erence of

ω0− = 250MHz between the signal and idler modes. In accordance with the theory, the

results show a clear oscillation with period 4ns, the inverse of 250MHz. The visibility

of the interference is 82%, which is greater than the classical limit of 50% [94], attests

to the fact that the interference was produced by nonclassical states. The predicted

G
(2)
C,D, calculated with γ = 2π× 7.6MHz, agrees with the observed fringe period and

also with the decay rate of the exponential envelope. This implies a FWHM bandwidth

of γ
√√

2− 1 = 2π× 4.9MHz for signal, idler, and di�erence frequency [139]. The
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Figure 6.7: Observed and predicted G
(2)
C,D cross-correlation and spectral analysis. Top: (upper

curve) Histogram of recorded arrival time di�erences with 625 ps time bins, for

ω0− = 2π× 250MHz . (lower curve) Predicted G
(2)
C,D with factors chosen manually

such that the amplitude and visibility match the experimental results. Bottom:

Power spectral density (PSD) of G
(2)
C,D(t−) computed from observed histogram for

ω0− = 2π× 250MHz . The beat-note is clearly seen at 250MHz. Locations at

which spectral contamination might be expected are indicated with red and orange

arrows. The contamination is at least 25 dB below the power level of the desired

beat-note.

AHC measurement was repeated for a signal-idler frequency di�erence of 165MHz,

and thus an oscillation period ≈ 6ns in the G
(2)
C,D was observed Figure 6.8.

The power spectra of the observed G
(2)
C,D forω0−/2π of 250MHz and 165MHz are

shown in Figure 6.7 and 6.8 respectively. Each shows a peak at dc and a Lorentzian peak
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Figure 6.8: Observed G
(2)
C,D cross-correlation and spectral analysis forω0− = 2π× 165MHz .

Top: Histogram of recorded arrival time di�erences with 625 ps time bins, zoomed-in

to show oscillations at 6ns. Bottom: Power spectral density (PSD) of G
(2)
C,D(t−)

computed from observed histogram . The beat-note is clearly seen at 165MHz.

Locations at which spectral contamination might be expected are indicated with red

and orange arrows. The contamination is at least 25 dB below the power level of the

desired beat-note.

at the corresponding ω0−, of the same width and center frequency as the Lorentzian

in the JSI computed from Equation 6.38. The resolution of these spectra is inversely

proportional to the range of t− t ′, which can extend to the full acquisition time. In

practice, the resolution is much �ner than any spectral feature.

Ine�cient extinction of neighbouring CE-SPDC modes by the FP �lter would manifest

as additional signals in the PSD besides one at the expected ω0−. In Figure 6.7, peaks

at 750MHz and/or 350MHz (aliased down from 1250MHz due to the sampling rate

of the FPGA) would indicate leakage of mode pairs withω−/2π = 250MHz± 2 FSR
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Figure 6.9: Temporal GM e�ect. Graph shows the un-normalised autocorrelation detected in

detector C (G
(2)
C,C) after the BS. The oscillations corresponding to the inverse fre-

quency di�erence forω0− = 2π× 250MHz.

(red arrows). A peak at 500MHz (the FSR for both signal and idler) might also be

expected, but is not seen (orange arrow). Similarly, leakage would produce peaks at

765MHz and 435MHz (red arrows), and again 500MHz (orange arrow) in Figure 6.8.

We thus conclude that the FP cavity �ltering succeeds in blocking contributions from

neighbouring CE-SPDC modes and that the combined CE-SPDC and �lter system emits

on one pair of CE-SPDC cavity modes.

Measurement of G
(2)
C,C, showing the temporal GM e�ect, is shown in Figure 6.9 for

ω0− = 2π× 250MHz. Typically SPDC G(2)
autocorrelations require a BS and two

detectors, in order to record photon pairs that arrive spaced by less than a detector’s

dead time, here≈ 40ns. For narrowband photon-pairs, however, it is possible to acquire

the autocorrelation with just one detector, as we do here. The predicted oscillation with

a period of 4ns is clearly observed. The temporal GM e�ect thus o�ers a simple way to

characterize relative frequencies with a single detector. Frequency shifting of one input

photon through nonlinear frequency conversion [140], would allow AHC to measure

spectra with di�erence frequencies outside the the detection electronics’ bandwidth.
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Comment: Spectral resolution and range of AHC

Spectral characterisation by the AHC technique is based on time-correlated photon

counting, not on optical frequency discrimination, e.g. using a monochromator. For this

reason, its spectral resolution is not limited by the resolution of any optical instrument.

It is, rather, limited by frequency resolution of the electronic systems used to record

the photon detections. For the experiment reported here, this limit would be set by

the frequency instability of the electronic clock used in the time-tagging module, and

ultimately by the duration of the acquisition. In practice, these resolution limits allow

measurement of the �nest spectral features of any practical SPDC source and contribute

negligible broadening to the inferred spectra, e.g. those shown in Figure 6.7

The spectral range of the AHC technique is limited by the time resolution (or jitter)

of the detectors and time-tagging electronics. Although not the case for our equipment,

this time resolution can be in the few-picosecond regime with modern detectors and

electronics, giving a ∼ 100GHz beat-note bandwidth for the technique [141]. If the

frequency di�erence to be investigated is larger than this, nonlinear optical frequency

conversion could be used to shift the frequency of one photon while preserving its

nonclassical features [140], and thereby bring the beat-note and sidebands within the

range of the technique.

6.5 BROADBAND PUMP AND PURE-STATE CHARACTERISATION

One major motivation for studying two-photon states is their potential use as heralded

single photon states or in quantum networking, in which photons from di�erent sources

are interfered for purposes such as entanglement swapping. These applications typically

require two-photon states which are approximately a product of two pure single photon

states [28]. In such states, the frequency entanglement between the down-converted

photons is small. When one photon from such a pair is detected, the resulting state –

mathematically described by a partial trace over the original state – shows the partner

photon to be in a pure or nearly-pure state.

The extent of spectral entanglement between the photons in a two-photon state

can be quanti�ed through Schmidt decomposition of the JSA [79, 113, 142]. For this,

the JSA of the composite state is expressed in terms of two sets of independent or-

thonormal functions {Sn(ωs)} and {In(ωi)} for the signal and idler, respectively, such

that f(ωs,ωi) =
∑
n

√
λnSn(ωs)In(ωi). Here λn are called Schmidt coe�cients or
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Figure 6.10: Modelled AHC coincidences G
(2)
C,D for various pump bandwidths, for a CESPDC

cavity bandwidth of 7MHz and ω− = 2π× 250MHz. Oscillations in the co-

incidences along the t− axis correspond to the inverse of the frequency spacing.

The drop in coincidences along the t− axis gives the 2-photon correlation time

or bandwidth. The Gaussian pro�le of coincidences in the t+ axis has a FWHM

which is the inverse of the pump bandwidth. The t+ distribution is centred on

t+ ≈ 0.05 µs, which is the group delay produced by the �lter cavities.

eigenvalues and

∑
n λn = 1. The JSA is perfectly separable if it can be expressed as a

product of some S0(ωs)I0(ωi), in which case the sole Schmidt coe�cient is λ0 = 1. In

this case the signal spectral amplitude is given solely by S0(ωs) while the idler spectral

amplitude is I0(ωi) and the two-photon state is a product of two pure states, one

each for the signal and idler. Figures of merit such as Schmidt number K = 1/
∑
n λ

2
n

and the entanglement entropy Eent =
∑n
i=1 λn log2 λn are useful to characterise the

entanglement in such a bipartite state. The entropy of entanglement ranges from 0 to∞ and the Schmidt number from 1 to 0 for a product state to a maximally entangled

state.

In practice, systems that produce nearly separable two-photon states, typically employ

pulsed pump �elds, which have the e�ect of broadening the JSA along theω+ dimension,

thereby producing signal-idler pairs which are less anti-correlated. Here we study this

scenario and show how AHC can be applied to it.
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We write the pump �eld Ep(t) in terms of its Fourier amplitudes α(ωp)

Ep(t) =

∫
dωpα(ωp)e

−iωpt. (6.37)
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Figure 6.11: JSA for various pump bandwidths inferred from autoheterodyne results. Plots (a)

and (b) correspond to the JSA when the pump is narrowband. In this scenario the

photons are highly correlated with an entanglement entropy of 4.4. Plots (c) and (d)

correspond to a pump bandwidth comparable to the 2-photon bandwidth and thus

there is lesser entanglement with the down-converted photons. The entanglement

entropy in this case is 1.8. Plots (e) and (f) give the JSA for a very broadband pump

and the entanglement entropy here is 0.2, much closer to the limit of 0 for a pure

state.

The two-photon state from the �ltered CE-SPDC system is as in Equation 6.9 above,

with

f(ωs,ωi) ∝
∫
dωpδ(ωp −ωs −ωi)α(ωp)

∏
ν∈{s,i}

1

γν/2+ i (ω0ν −ων)
.(6.38)

Here ω0s,i and γ are the center frequencies and linewidth of two cavity modes. If we

take α(ωp) to be a Gaussian of RMS width σp, we have the JSA for a narrowband SPDC

source with a pulsed pump.

We now show how AHC can be applied to a state generated in this way. The two-

photon state in the sum and di�erence co-ordinates is,

|ψ〉 =
∫
1

2
dω+dω− f̊A(ω+,ω−)â

†
s

(
ω+ +ω−

2

)
â
†
i

(
ω+ −ω−

2

)
|0〉 . (6.39)
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Performing the integral overωp in Equation 6.38 we �nd

f̊A(ω+,ω−) ∝ α(ω+)
1

γ+ i (2ω0s −ω+ −ω−)

1

γ+ i (2ω0i −ω+ +ω−)
. (6.40)

Using this in Equation 6.21 and Equation 6.25, we compute the AHC signals. The

correlation function G
(2)
CD(t, t

′) for various pump bandwidths is shown in Figure 6.10.

The other AHC signals, G
(2)
CC(t, t

′) and G
(2)
DD(t, t

′) look similar, but the “beating,” i.e.

oscillation with t− t ′, is 180◦ out of phase. These signals are directly observable by

measuring the arrival times of the photons at detectors C and D, and provide spectral

information about the JSA. As described in equations Equation 6.21 and Equation 6.25, the

various G(2)
functions can be expressed as the square magnitude of a two-dimensional

Fourier transform (the usual complex Fourier transform along the ω+ axis and either a

sine or cosine transform along theω− axis).

As with more established methods [79], the AHC observations can be compared

against the theoretical model, for validation and to estimate parameters such as γ,

σp and ω0s −ω
0
i . From the modelled JSA, with parameters found by measurement,

the state purity and other �gures of merit can then be computed numerically. The

Schmidt number and entanglement entropy can be estimated by computing the singular

value decomposition on discretising the JSA [113]. Examples are shown graphically in

Figure 6.11.
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CONCLUSION

7.1 SUMMARY OF RESULTS

We have described a CE-SPDC source for tuneable, narrowband, frequency anti-correlated

photon pairs, each of which can be tuned to the same or di�erent transitions in the

rubidium spectrum. The photon source is a type-II phase matched nonlinear crystal,

pumped with a monochromatic pump, within a doubly-resonant optical parametric

oscillator (OPO) operated far below threshold. The tuneability is achieved by controlling

the length of the OPO and temperature tuning the birefringence using an additional

crystal, thereby exerting control over the free spectral ranges of the OPO.

The power decay rate in the down-conversion cavity forV polarised light at 794.7nm
is γs = 2π× 6.98(4)MHz and the cavity power decay rate for H polarised light at the

same wavelength is γi = 2π× 6.16(24)MHz 1
. The FWHM of the signal and idler

modes from CE-SPDC, are equal to the two-photon linewidth γtp = 2π × 4.2MHz.
Due to birefringence in the down-conversion cavity, the FSRs of the down-converted

signal and idler modes are di�erent. As a result, the spectrum of the signal/idler from the

source is in clusters of frequency modes. Through DFG we have measured the frequency

spacing between clusters to be ωcluster = 2π×70.7GHz. This implies a di�erence in

free spectral ranges between the V polarised signal mode and the H polarised idler

mode of ∆FSR = FSRs − FSRi = 2π× 3.5(1)MHz. The mean free spectral range

FSRmean = 2π× 496MHz. The enhancement in spectral brightness at the signal-idler

pair frequencies corresponding to exact cavity resonance scales as the square of the

�nesse and is ∼ 1000 for our down-conversion cavity.

1 Values reported in subsubsection 5.3.2
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A single spectral mode pair is selected from the CE-SPDC output using a frequency

tuneable Fabry-Perot (FP) �lter on each of the signal and idler arms. The FP �lters are

identical in design. Tuneability of the FP �lter is achieved by changing its temperature,

as this alters the length of a spacer that determines the cavity length and its resonance

frequency. The �lter has a power decay rate of γf = 2π× 96.6(9)MHz, a free spectral

range of FSRf = 2π× 39.4GHz and an on resonance maximum transmission of≈ 90%.

The sensitivity of the FP resonance frequency to temperature is 1.24MHzmK−1
. The

resolution with which its temperature can be adjusted is 5mK around room temperature.

The resolution increases with decreasing temperature.

Using an interconnected frequency stabilising scheme that controls the frequencies

of the lasers and cavity resonances, we are able to tune the individual frequencies of

the signal and idler in a down-converted pair from degeneracy to a maximum range of

1.8GHz withMHz resolution

From second order intensity cross-correlations measurements between the down-

converted signal and idler modes, we measure a two-photon correlation time of 33(4)ns.

We estimate a pair-production rate per unit pump power in the crystal to be

11(5)× 103 pairs s−1mW−1
, in the central mode that we �lter and detect. The rate

of coincidences is 1050 counts s−1mW−1
when the chopper is open. We measure a

heralding e�ciency of ηH = 36(6)%. The measured coincidence rate and the quantum

e�ciency of the detectors imply ∼ 4000 pairs s−1mW−1
of correlated photon pairs in

�ber and 720 s−1mW−1
of heralded signal photons available for cold atom experiments

when the chopper is open. Measurements of the heralded autocorrelation function at

zero delay give g
(2)
s,s|i = 0.026(3) at 1mW of pump power.

We have introduced a new technique called autoheterodyne characterisation (AHC)

to quantify the frequency correlations of photon pairs, and applied it to measure the

spectral content from our �ltered CE-SPDC source. By interfering the photons on a

BS and performing Fourier analysis on the temporal auto and cross-correlations, AHC

directly measures the beat-note spectrum with the spectral resolution limited only by

the acquisition time. The technique is simple to implement with one detector via the

temporal Ghosh-Mandel e�ect, or with two detectors via the nondegenerate Hong-Ou-

Mandel e�ect. Here is a partial list of features of a two-photon state that can be obtained

from the method.

• A high-resolution frequency-di�erence spectrum. This includes not just the

frequency spacing between signal and idler photons, but also quantitative mea-

120



7.2 scope for improvement

surement of contamination with other frequencies, e.g. from unwanted cavity

modes. This is fundamental to any narrowband application, including interaction

of photons or photon pairs with atoms, ions, or molecules.

• The time-sum distribution, also with high resolution. This could be useful, for

example, in characterising the pump pulses. This is useful in any application for

which the pump characteristics are important, e.g. producing heralded single

photons in pure states.

• The cavity relaxation time, in cases where a cavity determines the spectral prop-

erties of the the photon pairs. This is seen directly in the double-exponential

envelope of the G(2)(t− t ′) distribution. This is useful for bandwidth matching

of the SPDC photons to material systems such as atoms, and also for bandwidth

matching between di�erent photon sources.

• Information from theG(2)(t, t ′)measurements can be used to validate or disprove

a model for the JSA, and to �nd unknown parameters in that model, e.g. line

widths. This gives basic information about the SPDC process.

• A model-derived JSA can be used to compute correlation strengths, state purity

and entanglement entropy. This is useful in multi-photon interferometry for

several quantum technology applications.

We scrutinise our model for the JSA from our �ltered CE-SPDC source using AHC

and verify that the two-photon spectrum is well described by a single frequency mode

each for the signal and idler. Power spectral analysis of the AHC results show that the

FP �lters extinguish unwanted frequency modes from the CE-SPDC output by over

25 dB.

7.2 SCOPE FOR IMPROVEMENT

As is the case with the �rst implementation of any system, there is room for improving

the performance and ease of use of our experimental set-up too. Here we outline some

immediate improvements that can be implemented in our system, for the bene�t of

future students.

On reading this thesis, one might have noticed that while we claim that signal and

idler photons with any arbitrary value of frequency di�erence between them can be
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obtained using our source, all measurements that utilise nondegenerate photons have

been performed with either 250MHz or around 165MHz of frequency di�erence

between the signal and idler. The reason for this is that we had only one frequency

stabilised laser at 795nm (the reference laser) available for all measurements. To change

the frequency di�erence between the required signal and idler modes, the frequency of

the reference laser was scanned, and its light made diagonally polarised before it enters

the down-conversion cavity, so it may excite both theH polarised idler mode and the V

polarised signal modes in the cavity. The transmission of H and V modes was analysed

in an oscilloscope and the temperature of the tuning crystal adjusted such that an idler

resonance is either midway in frequency between adjacent signal resonances, making

the frequency di�erence ≈ FSRmean/2 ≈ 250MHz, or 1/3rd
in frequency between

adjacent signal resonances, making the frequency di�erence≈ FSRmean/3 ≈ 165MHz.
This technique to determine the frequency di�erence has limited precision, and should

in the future be replaced with a more precise and �exible system. Let us assume we

require an arbitrary frequency di�erence ∆νdiff = νs − νi between the required signal

and idler CE-SPDC modes. At present, the light with frequency νlock, from the frequency

stabilised reference laser, is used to stabilise the cavity such that the frequency of the

signal mode νs = νlock and there is no reference light available to verify the frequency

at which the idler is resonant in the cavity. However, if another laser at 795nm is

available and stabilised at a frequency νlock −∆νdiff, the resonance frequency of the

idler mode can be veri�ed by looking at the transmission of H polarised light from this

laser. For this, the second laser can be stabilised using a PLL lock, referenced to a beat

note with the original reference laser.

The next source of limitation in the range of possible frequency di�erences between

the signal and idler, is the maximum frequency detuning possible between the pump

and the SHG light. This is limited by the bandwidth of the detector for the beat-note

between the SHG and pump light. At present we use a detector with a bandwidth of

1.5GHz and as a consequence, the maximum possible frequency di�erence between

the signal and idler photon is 1.82GHz. This range can be increased by replacing the

existing detector with one that has a larger bandwidth.

The locking mechanism for the CE-SPDC cavity could be improved. A PID circuit,

implemented in a FPGA board, feeds back to the piezo voltage to maintain cavity

resonance. From time to time this PID hits a rail, i.e. reaches its maximum or minimum

output voltage, and the cavity loses lock. This loss of lock is in principle fully avoidable,
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because the FPGA output range includes more than one resonance mode of the cavity.

If, when the controller reaches a rail, it were to jump to the next resonance, the system

could remain locked inde�nitely despite large drifts in temperature and pressure.

The photons from this source will be used for interaction with a single Rb atom in a

dipole trap. The architecture of the atom trap is such that once an atom randomly falls

into the trap, its lifetime in the trap is around a second, during which time it is available

for atom-photon experiments. We observe that, under quiet laboratory conditions,

the CE-SPDC cavity remains on resonance for about 1 second in the absence of active

stabilisation. This suggest the possibility to program the chopper (used in the CE-SPDC

cavity locking scheme), such that when an atom falls into the dipole trap, the chopper

opens the path for the photons to reach the atom for a duration of around a second.

7.3 OUTLOOK

The introduction provided a broad discussion on the applications and relevance of the

techniques developed during this thesis. Here we discuss ideas that we would have

liked to explore during the course of this thesis, but did not due to limitations in time.

7.3.1 Towards atom-photon experiments

Due to the type-II phase matching employed and the control over the spectral properties

of the down-converted photons, the photons from our source can be easily entangled

in the polarisation and/or energy-time degrees of freedom, making them suitable for

quantum networking applications such as entangling di�erent material systems. This

versatile source, capable of producing both correlated and indistinguishable photons,

will also open up possibilities to explore new aspects of matter-induced nonlinearity at

the single photon level and exotic quantum interference e�ects.

The �rst steps towards studying quantum light-matter interactions, would be to

quantify the e�ciency of the interface between the photons from our source and the

cold single Rb atom that other members of our team have trapped. The atom sits at

the centre of 4 high NA lenses that allow us to probe it from di�erent directions. The

�rst step will be to perform heralded single photon-atom measurements, to quantify

the probability of interaction of a single photon with a single atom. For this, we will

send one photon from the pair to the atom and use the other as a herald. The ratio of
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Figure 7.1: Autoheterodyne coincidences G
(2)
C,D for a narrowband pump and ω0− = 2π ×

250MHz. Upper curve shows histogram of coincidences recorded for arrival time

di�erences with 625 ps time bins, when a delay is introduced in the relative path

taken by the photons to the BS. Lower curve shows predicted G
(2)
C,D in the absence

of a relative delay. Experimental results show a clear modi�cation in the G(2)
pro�le

as a consequence of phase sensitivity, when compared with the results in Figure 6.7

where no delay was introduced in the relative path. The experimental results show a

“�at-top” and reduced visibility that can be modelled as a sum of two overlapping

oscillations with a double exponential envelope o�set by a time corresponding to the

relative delay between the photons.

photons that pass through the atom trap undeviated to those collected from the lenses

perpendicular to the direction of probing, will give us the probability of interaction

of a single photon with the atom. This information is important for determining the

duty cycle and repetition rates of our future experiments in order to obtain statistically

signi�cant results.

7.3.2 Future work with AHC

The AHC technique is well suited to characterise narrowband photon sources for

interaction with atoms and ions, which typically require bandwidths below 10MHz.
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The technique may be especially valuable in quantum networking, computing and

simulation with mixed photon-atom systems.

As shown in section 6.5, the technique can be applied to CE-SPDC with pulsed

pumps to characterise the entanglement in the down-converted photons. Since the

technique gives access to the sum frequency information in the down-converted pair

through its Fourier transform, narrow sum frequencies i.e., pump bandwidths less

than or comparable to the CE-SPDC two-photon bandwidth are well resolved by this

technique. Thus, the technique can be readily applied when subMHz to 10s ofMHz

bandwidth pumps are used. Such quasi cw-pumping is common when the pulsing is

used to synchronise photon pair generation from SPDC. However, for larger bandwidth

pump pulses, we would run into two issues. First and foremost, the detector timing

resolution may not be good enough to resolve the sum frequency distribution in this

case. Secondly, we note that the results for broadband pumping in section 6.5 were

derived under the assumption of a single signal-idler mode pair, and may not hold when

a very broadband pump is used. For our �ltered CE-SPDC source, there are multiple

frequency scales involved like the CE-SPDC FSR, the �lter linewidth and �lter FSR. If

the pump bandwidth is comparable or larger than these frequency scales, the spectrum

of the CE-SPDC output and consequently the physics of the AHC results would get

more complicated. This remains to be investigated.

We note that the G(2)(t, t ′) functions in AHC are sensitive to the phases in the JSA

f(ωs,ωi). These phases can be manipulated in a controlled way through delays of signal

and/or idler. We illustrate this in Figure 7.1. Although it is a topic for further research,

we believe this could o�er a convenient way to make a tomographic measurement of

the full JSA, including phases. Proposals for phase detecting in the JSA using variable

path length delays in HOM interferometry have been made [143]. These could be

implemented with narrowband photons and the AHC in a single experimental run

without the need for changing conditions such as the path length.

There have been proposals to use hyper-entangled states for discrimination of all four

Bell states [144]. Since the temporal Ghosh-Mandel e�ect is sensitive to the exchange-

symmetric part of the state and the nondegenerate HOM to the exchange-antisymmetric

part of the state, it would be interesting to investigate how such proposals can be

extended to involve AHC and states entangled in both time-energy and polarisation.
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