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Resumen

Las señales electrocardiográficas, ya sea adquiridas en la piel del paciente (electro-
cardiogamas de superficie, ECG) o de forma invasiva mediante cateterismo (elec-
trocardiogramas intracavitarios, iECG) ayudan a explorar la condición y función
cardíacas del paciente, dada su capacidad para representar la actividad eléctrica del
corazón. Sin embargo, la interpretación de las señales de ECG e iECG es una tarea
difícil que requiere años de experiencia, con criterios diagnósticos complejos para
personal clínico no especialista, que en muchos casos deben ser interpretados du-
rante situaciones de gran estrés o carga de trabajo como en la unidad de cuidados
intensivos, o durante procedimientos de ablación por radiofrecuencia (ARF) donde
el cardiólogo tiene que interpretar cientos o miles de señales individuales. Desde
el punto de vista computacional, el desarrollo de herramientas de alto rendimiento
mediante técnicas de análisis basadas en datos adolece de la falta de bases de datos
anotadas a gran escala y de la naturaleza de “caja negra” que están asociados con
los algoritmos considerados estado del arte en la actualidad. Esta tesis trata sobre
el entrenamiento de algoritmos de aprendizaje automático que ayuden al perso-
nal clínico en la interpretación automática de ECG e iECG. Esta tesis tiene cuatro
contribuciones principales. En primer lugar, se ha desarrollado una herramienta de
delineación del ECG para la predicción de los inicios y finales de las principales
ondas cardíacas (ondas P, QRS y T) en registros compuestos de cualquier con-
figuración de derivaciones. En segundo lugar, se ha desarrollado un algoritmo de
generación de datos sintéticos que es capaz de paliar el impacto del reducido tama-
ño de las bases de datos existentes para el desarrollo de algoritmos de delineación.
En tercer lugar, la metodología de análisis de datos de ECG se aplicó a datos simi-
lares, en registros electrocardiográficos intracavitarios, con el mismo objetivo de
marcar inicios y finales de activaciones locales y de campo lejano para facilitar la
localización de sitios de ablación adecuados en procedimientos de ARF. Para este
propósito, el algoritmo de delineación del ECG de superficie desarrollado previa-
mente fue empleado para preprocesar los datos y marcar la detección del complejo
QRS. En cuarto y último lugar, el algoritmo de delineación de ECG de superficie
fue empleado, junto con un algoritmo de reducción de dimensionalidad, Multiple
Kernel Learning, para agregar la información del ECG de 12 derivaciones y lograr
la identificación de marcadores que permitan la estratificación del riesgo de muerte
súbita cardíaca en pacientes con cardiomiopatía hipertrófica.

Palabras clave: aprendizaje profundo, aprendizaje automático no supervisado,
cuantificación, interpretación, electrocardiograma, electrocardiograma intracavi-
tario.
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Abstract

Electrocardiographic signals, either acquired on the patient’s skin (surface electro-
cardiogam, ECG) or invasively through catheterization (intracavitary electrocar-
diogram, iECG) offer a rich insight into the patient’s cardiac condition and func-
tion given their ability to represent the electrical activity of the heart. However, the
interpretation of ECG and iECG signals is a complex task that requires years of
experience, difficulting the correct diagnosis for non-specialists, during stress-re-
lated situations such as in the intensive care unit, or in radiofrequency ablation
(RFA) procedures where the physician has to interpret hundreds or thousands of
individual signals. From the computational point of view, the development of
high-performing pipelines from data analysis suffer from lack of large-scale an-
notated databases and from the “black-box” nature of state-of-the-art analysis ap-
proaches. This thesis attempts at developing machine learning-based algorithms
that aid physicians in the task of automatic ECG and iECG interpretation. The
contributions of this thesis are fourfold. Firstly, an ECG delineation tool has been
developed for the markup of the onsets and offsets of the main cardiac waves (P,
QRS and T waves) in recordings comprising any configuration of leads. Secondly,
a novel synthetic data augmentation algorithm has been developed for palliating
the impact of small-scale datasets in the development of robust delineation algo-
rithms. Thirdly, this methodology was applied to similar data, intracavitary elec-
trocardiographic recordings, with the objective of marking the onsets and offsets
of events for facilitating the localization of suitable ablation sites. For this purpose,
the ECG delineation algorithm previously developed was employed to pre-process
the data and mark the QRS detection fiducials. Finally, the ECG delineation ap-
proach was employed alongside a dimensionality reduction algorithm, Multiple
Kernel Learning, for aggregating the information of 12-lead ECGs with the ob-
jective of developing a pipeline for risk stratification of sudden cardiac death in
patients with hypertrophic cardiomyopathy.

Keywords: Deep learning, unsupervised machine learning, quantification, inter-
pretation, electrocardiogram, intracavitary electrocardiogram.
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CHAPTER

1

Introduction

1.1. Cardiac anatomy and function

1.1.1. Cardiac anatomy and function

The heart is an organ whose purpose is to pump blood through the blood vessels
to the rest of the body. The heart is is placed in the middle mediastinum of the
thoracic cavity, and is protected and fixed within the thoracic chamber through the
pericardium, a fluid-filled fibro-serous structure that encloses, protects and lubri-
cates the heart [1]. The heart is usually 12 centimeters in length and 8 centimeters
in width, and its apex is oriented towards the left side of the chest, although it is
affected by genetic factors [1]. The heart is structurally organized in four main
chambers and five main vessels. The cardiac chambers are responsible of holding
and pumping blood, and comprise the left ventricle (LV) and the right ventricle
(RV), two cone-shaped structures, as well as the left atrium (LA) and the right
atrium (RA). The main cardiac vessels are responsible of distributing blood to
different regions in the body, and comprise the pulmonary artery, the pulmonary
veins, the aorta and the superior and inferior vena cava. Figure 1.1 depicts the
distribution of the cardiac chambers and main cardiac vessels within the heart.

All cardiac chambers are physically isolated from each other. The ventricles are
separated from the atria by the cardiac skeleton, a structure of dense connective
tissue that surrounds the mitral and tricuspid valves and extends to the origins or
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Figure 1.1: Diagram of the normal cardiac anatomy, depicting the main car-
diac chambers, cardiac vessels and valves. Source: https://commons.
wikimedia.org/.

the aorta and pulmonary trunk [2, 3]. The cardiac skeleton provides structural sup-
port and electrical isolation due to their fibrous composition, allowing atria and
ventricles to contract at different times. The right heart (comprising the RV and
RA), on its behalf, is separated from the left heart (composed of the LV and LA)
by the septum. The septum is mainly composed of cardiac muscle but becomes
fibrous closest to the cardiac skeleton and in its atrial portion, reminiscent of fetal
development (ductus ovale). Surrounding the junction between the atria and the
ventricles lies the coronary sulcus, a structure in which the main trunks of the coro-
nary arteries and veins run [3, 4]. Coronary circulation is responsible of irrigating
the myocardium itself, with the main cardiac arteries feeding oxygenated blood
to the cardiac muscle and the cardiac veins returning deoxygenated blood into the
RA. Coronary circulation returns to the heart through the coronary sinus (CS),
a structure of importance in electrophysiology procedures as the atrial electrical
activity can be explored with a catheter placed in it.

Functionally, the objective of the organ is to pump blood; it is performed through a
four-stage process called the cardiac cycle (Figure 1.2). Phases 1 and 2 correspond
to the relaxation of the heart (diastole) and phases 3 and 4 correspond to myocar-
dial contraction (systole). During phase 1 (isovolumetric relaxation), the cardiac
muscle relaxes after the previous pump: the pulmonary, aortic, mitral and tricus-
pid valves close. During phase 2 (ventricular filling), the ventricles are filled with
blood coming from two main sources: the lungs, in the case of the LV, and the rest
of the body for the RV. Firstly, the mitral and tricuspid valves open and the ven-
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Figure 1.2: Wiggers diagram of aortic, (left) atrial and ventricular pressure related
to the ventricular volume and the phases of the electrocardiogram. The diagram
indicates the different phases of the cardiac cycle (isovolumetric contraction, ven-
tricular ejection, isovolumetric relaxation, ventricular filling) and its relationship
to the electrocardiogram’s waves: P wave (atrial depolarization), QRS wave (ven-
tricular depolarization) and T wave (ventricular repolarization). Adapted from
https://commons.wikimedia.org/.

tricles are passively filled during ventricular and atrial relax relaxation, increasing
their volume to accommodate incoming blood; secondly, the LA and RA contract
to completely fill the ventricles. During phase 3 (isovolumetric contraction), the
ventricles contract, building up pressure. The increased pressure impedes blood
to regurgitate through the mitral and tricuspid valves, but the pressure differen-
tial between the ventricles and the outflow vessels (aorta and pulmonary artery)
is not high enough for the aortic and pulmonary valves to open. Finally, during
phase 4 (ventricular ejection), the aortic and pulmonary valves open and blood is
ejected from the ventricles to the rest of the body, gradually reducing the pressure
differential [3, 5]. The relationship of the different phases of the cardiac cycle
with pressure, volume and electrocardiographic data (Wiggers diagram) has been
depicted in Figure 1.2.

1.1.2. Cardiac histology

Histologically, the heart is composed of cardiac muscle, specialised conductive
tissue, blood vessels and connective tissue. The cardiac muscle, on its behalf, is
composed of cardiomyocytes, which are specialised muscle cells that are able to

3
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Sarcomere
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H zone I band

Z lineM line
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Figure 1.3: Diagram of a myofibril, containing many sarcomeres. When contract-
ing, the space left between the thick filament and the Z line (I band) is reduced,
causing contraction. Adapted from https://commons.wikimedia.org/.

contract when electrically stimulated.

Cardiomyocytes contain myofibrils, which are the cell’s contractile elements. My-
ofibrils are large proteic structures internally arranged in sarcomeres, which are
the smallest contractile unit in cardiac muscle. Sarcomeres are proteic structures
composed of thick actin filaments surrounded by thin filaments (composed of tro-
ponin, actin and tropomyosin), producing contraction when the concentration of
calcium ions within the cell increases, causing the filaments to attract each other
(Figure 1.3). Contraction is performed anisotropically, i.e., the force is larger on
the longitudinal direction of the fibers as compared to the transversal direction.
Contractile force, in turn, reduces the internal volume of the heart, which causes
a rise in blood pressure in the heart, allowing blood to flow to a region of lower
pressure (e.g., the LV builds pressure, causing blood to open the aortic valve and
flowing to the aorta) [6]. Disruptions in the normal functioning of the sarcomeres,
which occurs in some genetic mutations such as in hypertrophic cardiomyopathy
(HCM), can cause the myocardium to contract inefficiently and trigger cardiac re-
modelling, leading to overdeveloped left ventricular myocardium (left ventricular
hypertrophy), and can have fatal consequences, as explored in chapter 5.

Structurally, the components are assembled in a three-layered structure, consisting
in the endocardium, the myocardium and the epicardium. The endocardium is the
innermost layer, in contact with the blood pool, and is composed of smooth mus-
cle cells and connective tissue. It lines the atria, the ventricles and heart valves.
The myocardium is the middle layer and is mainly composed of cardiomyocytes,
capillaries and connective tissue. It is responsible for myocardial contraction. Fi-
nally, the epicardium is the outermost layer of the heart, is composed connective
and adipose tissue and holds blood and lymphatic vessels. It is in contact with the
pericardial fluid, which help avoid damaging the myocardium in blunt trauma [6].

4
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Figure 1.4: Diagram of the electrical conduction system of the heart. The elec-
trical impulse is generated in the sinoatrial node and transmitted to the left atrium
through the Bachmann’s bundle and to the ventricles through the atrioventricu-
lar node (where it is delayed), the His bundle and the left/right bundle branches,
spreading throughout the myocardium thanks to the Purkinje fibers. Source:
https://commons.wikimedia.org/.

1.1.3. Cardiac electrophysiology

As has been outlined in the last section, mechanical activation of the myocardium
is initiated by electrical activations. The exposure of troponin proteins to calcium
ions trigger a chain reaction forcing actin and myosin to bind and, thus, to contract
[7]. Myocardial contraction, however, must be performed in a precise and timely
manner, as the phases of the cardiac cycle must not overlap; e.g., a simultane-
ous atrial and ventricular contraction is undesirable. The structure controlling the
passing of electrical impulses in the myocardium is called the electrical conduction
system of the heart (ECS), and has two main functions: impulse communication,
for quickly connecting distant areas, and heartbeat initiation, for myocardial con-
traction to be produced without external stimuli. The ECS consists in a network of
specialized cardiac cells that present increased conduction velocities and excitabil-
ity, as well as mechanisms for autonomously generating stimuli (automaticity).
Figure 1.4 represents the anatomical pathways that compose the ECS.

Cardiac electrical impulses occur due to changes in voltage across the membrane
of myocardial cells, which produce the release of ionic currents between the in-
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Figure 1.5: Action potential in a normal cardiomyocyte (a) and a pacemaker cell
(b), with the main ionic interchange currents displayed in different parts of the
cardiac cycle. Represented are several action potentials with different colors. The
orange, dash-dotted line represents the threshold potential that triggers the massive
displacement of ions within the cell.

tracellular and extracellular medium via each cell’s ion channels. A full activation
cycle of a cardiomyocyte is coined an “action potential”, and is depicted in Figure
1.5. The main ionic currents involved in an action potential depend on the opening
and closing of sodium (Na+), calcium (Ca2+) and potassium (K+) ion channels,
which are voltage-gated input/output channels of charged atoms present in the cell
membrane. Once the cell’s membrane potential reaches a certain threshold (e.g.,
-65 mV for non-specialized cardiomyocytes), dedicated Ca2+ ion channels open,
binding to the troponin in the sarcomeres and triggering contraction. The electrical
impulse, however, must be communicated to neighbouring cells for contraction to
spread throughout the myocardium, which is performed through “gap junctions”
that allow ions to pass through connecting the cytoplasm of two cells.

The electrical conduction system of the heart

The electrical impulse is generated in the sinoatrial (SA) node, a group of cells
embedded in the wall of the RA. The SA node is connected to the LA through a
band of specialized cells called the Bachmann’s bundle, which quickly transfer the
electrical impulse from the RA to the LA, allowing for synchronous contraction.
The impulse is also transmitted to a structure named the atrioventricular (AV) node,
located at the septal junction between the atria and the ventricles, whose function
is to delay the signal before it traverses to the ventricles, permitting ventricular
filling. The electrical isolation of the cardiac skeleton prevents atrial depolarization
to trigger ventricular contraction, so the electrical impulse is forced to traverse
the AV node to further continue the contraction. The AV node also possesses a
degree of automaticity, being able to initiate the heartbeat in case of dysfunction
of the SA node. The AV node further passes the impulse via the bundle of His
(which branches into the right bundle branch, RBB, and the left bundle branch,
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LBB), a pathway of cells embedded in the interventricular septum. The LBB,
on its behalf, stems into the left posterior and anterior fascicular bundles, which
communicate the impulse to the heart’s walls. The RBB and LBB ramify into
multiple Purkinje fibers, which are responsible of disseminating the impulse to
the rest of the unspecialized cardiomyocytes, causing fast mechanical contraction
[8, 9]. Figure 1.4 depicts the described pathways alongside an overview of the
anatomy for reference.

Automaticity and pacemaker cells

It is important to remind that cardiomyocytes need external stimuli to be activated
and, thus, contract. The external stimuli are produced by a specialized kind of car-
diomyocytes called pacemaker cells, which contain fewer myofibrils as compared
normal cardiomyocytes but can autonomously depolarize. Pacemaker cells present
specific Na+ channels that slowly positivize the cell’s intracellular medium by in-
troducing Na+ ions in the cell, which causes a slow rise in the cell’s voltage and
periodically cause the intracellular medium to reach threshold potential, allowing
the transmission of the electrical impulse to neighbouring cells through gap junc-
tions.

Pacemaker cells, thus, are able to automatically and autonomously initiate electri-
cal impulses. However, the rate at which pacemaker cells depolarize vary among
different regions. As an example, the SA node outpaces any other region in the
heart by producing 60 to 100 stimuli per minute (during rest), thus becoming
the heart’s natural pacemaker. Other regions, however, produce stimuli at slower
rates: the AV node produces 40 to 60 stimuli per second, whereas other cells (e.g.,
Purkinje fibers, whose action potential is most similar to non-pacemaker cells but
present automaticity due to specialized Na+ ion channels) can fire at up to 20
to 40 stimuli per second [7–10]. Non-SA-mediated rhythms are called “escape”
rhythms, whose function is enabling the heart to have alternative sources of au-
tonomous cardiac contraction should the SA node malfunction, but escape rhythms
can cause abnormal alterations in automaticity patterns that can lead to cardiovas-
cular diseases (CVD) and are usually not fast enough to provide sufficient cardiac
output.

Decremental properties of cardiac tissue and unidirectional blocks

An important characteristic of cardiac tissue is its decremental properties, which
causes electrical impulses to be transmitted slower at faster firing rates. Not all
cardiac tissue shows decremental properties: non-specialized cardiomyocytes do
not exhibit decremental behaviour (if healthy), whereas some pacemaker cells do,
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with the canonical example of the AV node. The elucidation of whether some
tissue displays decremental properties is an important diagnostic tool during radio
frequency ablation procedures and in electrophysiology exploration in general, as
damaged tissue exhibits decremental properties whereas some structures naturally
conduct impulses decrementally and, thus, informs about the mechanism of action
of many types of arrhythmias [8, 9]. E.g., the decremental property of the AV
node allows to limit ventricular activity under the circumstance of enhanced atrial
activity, such as during atrial fibrillation (AF) episodes. In chapter 4, an algorithm
is trained with the objective of measuring delays between signals for assessing
physiological decremental properties in the AV node.

Another important characteristic are unidirectional blocks. Unidirectional blocks
occur when a small amount of cardiomyocytes (source) attempt at propagating an
electrical impulse to a large amount of cells (destination). Given that ionic currents
that transmit stimuli to neighbouring cells are partly dissipated to the extracellu-
lar medium, if a cell has to stimulate a too large amount of myocardial mass, the
concentration of ions might be insufficient to make them reach to their threshold
potential, terminating the wavefront at that point. Unidirectional blocks are direc-
tion dependent: a cell might not be able to depolarize a large mass of cells in a
given direction but, if the direction of the stimulus is reversed, that large myocar-
dial mass could depolarize said cell, giving continuity to the electrical current.

1.1.4. General mechanisms of cardiac arrhythmias

Two main mechanisms are responsible for arrhythmia generation: alterations in
impulse generation or in impulse conduction. Although these mechanisms cover
a wide array of possible conditions, this introduction focuses on changes in auto-
maticity and in reentry, which are the most frequent proarrhythmic mechanisms.

Changes in automaticity occur when cells outside the normal location for impulse
generation (the SA node) have a faster firing rate than usual, competing with the
normal wavefront propagation. Increased automaticity could happen in several lo-
cations, giving rise to different types of arrhythmias: atrial fibrillation might be
caused by spontaneous depolarization in a group of cells in the PVs, whereas ven-
tricular ectopic beats happen because of increased automaticity in Purkinje fibers.
Automaticity alterations typically present “warming up” and “cooling down” me-
chanics, as they originate by gradually increasing their frequency until they sta-
bilize at a certain rate and, when they stop, they return gradually to normal sinus
rhythm. Moreover, they can occasionally trigger serious events such as ventricular
fibrillation (VF), leading to systolic heart failure [8, 9].
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A B C D

Figure 1.6: Schematic representation of a reentry mechanism. (A) location of
a lesion (grayed area) in the left ventricle, which contains a region of partially
viable tissue (green). (B) normal conduction in the healthy myocardium, which
depolarizes the myocardium but causes an unidirectional block within the partially
viable tissue (red cross). (C) continuation of the electrical impulse in the partially
viable tissue, causing retrograde conduction, while the medium is repolarizing (red
background). (D) initiation of an electrical impulse not mediated by the electrical
conduction system of the heart, giving rise to a tachycardia.

Reentry mechanisms occur when a depolarization wavefront is continually prop-
agated alongside a circuit, without getting extinguished, competing with the
SA-mediated rhythm. The wavefront causes the rest of the myocardial tissue to
be activated passively, causing untimely mechanical contraction. For reentrant
tachycardias to occur, a part of the circuit must have repolarized (excitable gap),
which is usually (although not always) associated with the existence of an anatom-
ical substrate with unidirectional blocks. That is, there must be: a) an unexcitable
area (e.g., fibrotic or scar tissue) with at least two conduction channels surrounding
it (bundles of partially viable tissue that conduct electricity at a slower rate than
healthy tissue); and b) an unidirectional block when stimulated in the direction of
a normal wavefront. When the wavefront extinguishes, there is a secondary wave-
front originating from the retrograde direction of the unidirectional block, which
is perpetuated. Certain anatomical structures, such as accessory pathways, present
in pathologies like the Wolff-Parkinson-White (WPW) syndrome, or dysfunctions
of the AV node can act as substrate for tachycardias [8, 9]. Figure 1.6 shows a
graphical representation of the mechanism of action of an anatomical substrate.

1.1.5. Surface and intracavitary electrocardiography

The depolarization wavefront traverses the myocardium to cause mechanical con-
traction, which is an invaluable tool to diagnose CVDs affecting the ECS, and can
be measured with a polygraph. In current clinical practice, two main ways are em-
ployed to explore diseases affecting the ECS: the surface electrocardiogram (ECG)
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Figure 1.7: Placement of he electrodes for a standard, 12-lead electrocardio-
graphic exam. (A) details the location of the patches that compose the limb leads
(I, II, III, aVL, aVR, aVF), where the blue arrow represents the direction of the
bipole. (B) represents the spatial disposition of the precordial lead patches. Par-
tially adapted from https://commons.wikimedia.org/.

and the intracavitary electrocardiogram (iECG), also known as intracavitary elec-
trogram (EGM).

Surface ECG

Surface ECG are recordings of the summation of action potentials in a patient’s
skin through electrodes located in different positions. The information captured
in the electrodes has directional meaning, as usual practice displays the bipole
formed by pairs of electrodes (lead); thus, the direction and relative intensity of
the depolarization wavefront can be represented. Thus, whenever a wavefront is
moving in the direction of the bipole, the time-voltage representation of the ECG
will show a positive deflection [8]. The different leads that comprise an ECG act as
alternative “views” of the patient’s cardiac function alongside different directions,
thus being complementary to one another. Although different lead configurations
exist, current clinical practice employ 12 leads: six limb leads (I, II, III and the
augmented limb leads: aVR, aVL and aVF), which record electrical information
of the frontal plane, and six precordial leads (V1, V2, V3, V4, V5 and V6), which
capture information of the axial plane [11]. A graphical representation of the po-
sition of the leads on the chest is depicted in Figure 1.7.
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Figure 1.8: (A) Representation of the waves composing an electrocardiographic
recording, where the red, green and magenta overlays represent the P, QRS and
T waves, respectively (corresponding to atrial depolarization, ventricular depolar-
ization and ventricular repolarization), and where the PQ, TP and QT intervals
are displayed. A schematic representation of a ventricular-mediated beat shown,
missing a P wave, displaying an abnormally wide QRS complex and a change of
cardiac axis. (B) Hex-axial reference system, usually employed to determine the
cardiac axis.

The morphology of an ECG signal is an accurate portrayal of cardiac function,
as its waveform precedes the different phases of the cardiac cycle. Three main
events from the cardiac cycle are visible in the surface ECG as different groups of
deflections (or “waves”) that have distinct morphologies: atrial depolarization (P
wave, corresponding to atrial contraction), ventricular depolarization (QRS com-
plex, composed of Q, R and S waves, corresponding to ventricular contraction)
and ventricular repolarization (T wave, corresponding to ventricular relaxation).
Atrial repolarization (relaxation) is usually masked within the QRS complex and
is often indistinguishable. Between the waves there is an electrical “silence”, or
region of lower amplitude. Silence segments are conjointly named as the waves
they isolate: the silence between the P wave and the QRS complex is named the
PQ segment; between the QRS complex and the T waves, ST segment; and finally,
the TP segment divides the T and P waves. Thus, a full cardiac cycle consists of
the P, PQ, QRS, ST, T and TP segments [11]. Figure 1.8 (A) depicts an example of
a cardiac cycle and Figure 1.2 correlates the phases of the cardiac cycle with ECG
events.

With the ECG’s partially overlapping information of different waveforms across
several leads, clinicians perform differential diagnosis. Given that healthy individ-
uals usually present a relatively stable ECG morphology, deviations from that mor-
phology can be inferred to have clinical meaning. Most common clinical markers
resort to interpreting the heart rate, heart rhythm, cardiac axis, cardiac intervals
and waveform analysis:
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Heart rate measures the number of heartbeats per minute. The easiest way
to measure it is to take the point in the QRS complex with the longest ampli-
tude and average the time to the next QRS for a given amount of time (e.g.,
10 or 30 seconds).

The heart rhythm is a rough description of the rate at which the heart is beat-
ing, characterizing events such as the presence of tachycardia/bradycardia
(accelerated/decelerated heart rates, respectively), ectopic beats or normal
AV coordination (a QRS complex always follows a P wave, i.e., there is no
QRS complexes with P waves missing), among others.

Cardiac axis analysis gives a rough approximation of the direction of a
ventricular depolarization, and is calculated by correlating the angle in the
hex-axial reference system (Figure 1.8 (B)) to the direction of the depolar-
ization wavefront as computed from the amplitudes of the QRS complex in
different leads, which indicate whether the wavefront approaches or departs
from the ECG electrode. In normal sinus rhythm patients, the ventricular de-
polarization is performed starting from the AV node and spreading through-
out the myocardium, so the global waveform lies mostly in the (positive)
direction of lead II (Figure 1.7). Depending on the patient, the QRS axis
would lie within -30 and +90 degrees.

Interval analysis provides information of the duration of the ECG seg-
ments. They are usually performed on the limb leads for easier comparison
with the scientific literature, as those are the leads with most prominent and
easy-to-measure waves. Although the measurements of interest are pathol-
ogy specific, the PR interval, QRS duration and QT interval are usually
measured in clinical practice.

Waveform analysis consists in the interpretation of the relationship between
an ECG morphology and its clinical significance. Although it is a very broad
concept, it will be illustrated with the following example: in patients who
suffer ventricular tachycardia (VT) episodes, the ECG presents several pe-
culiarities: 1) there is usually no visible P wave and, when it is visible, it
is not coordinated with the ventricular response; 2) the QRS wave is ab-
normally long and has a large amplitude; 3) the cardiac axis of the QRS
complex usually differs from the normal sinus rhythm axis. Markers such
as the amplitude of the QRS complex, the existence of delta or J waves or
the presence of fractionation in the QRS complex are computed due to their
diagnostic value.
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Electrocardiographic exams present many advantages: it is an accessible, inex-
pensive and versatile test, and is capable to reliably represent a very large array of
pathologies. Moreover, it is the only way to register the functioning of the ECS
in a non-invasive manner, making it one of the most performed test to diagnose
CVDs.

The ECG, however, is limited by two main factors. Firstly, due to its more dis-
tant relation to cardiac anatomy: deviations from normal sinus rhythm have to be
interpreted under the light of a very wide array of possible contributing factors
to the ECG morphology, such as age, gender, race or any other patient-specific
factors such as cardiac axis deviations [8, 9]. Moreover, ECG traits can go unno-
ticed to non-specialists or even to trained cardiologists, especially in stress-related
situations or when analysing multiple leads for several heart cycles for very long
registries, such as Holter recordings [12]. Secondly, ECG analysis is often reliant
on the definition of a set of structured measurements in the shape of various inter-
vals and segments of the ECG, among others [12]. These measurements (and their
interpretation) are, however, not fully automated to date. Computational methods
can help unburden physicians and researchers by providing objective measure-
ments over clinical data [13] through the development of robust and well-perform-
ing algorithms. Moreover, they can help in discovering new clinical markers that
aid in patient and risk stratification [14–18]. The development of computational
methods to aid in signal quantification and interpretation is the main focus of the
thesis.

Intracavitary Electrograms

Intracavitary electrograms, hereinafter EGM, are recordings of time-voltage in-
formation from action potentials directly on the myocardial surface. EGMs are
recorded invasively, introducing a catheter in the patient’s body, most commonly
through a vein (usually a femoral access, although the vena cava and jugular veins
are used on occasion) [8]. Catheters employed in EP procedures are equipped
with small electrodes used to probe the local voltages, which are visualized as
summations of waveforms occurring at different frequencies, in the endocardial or
epicardial surface. Recorded waveforms are influenced by the distance between
the source of the signal and the electrode, as high-frequency components lose en-
ergy faster than their low-frequency counterparts. Thus, EGMs can be employed to
visualize nearby and distant activations, which have markedly distinct frequential
responses: close activations, usually described as local field (LF), display a mix-
ture of high- and low-frequency components; whereas distant activations, usually
coined far field (FF), only retain their low-frequency components [19]. Examples
of LFs and FFs are schematically depicted in Figure 1.9.
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Figure 1.9: Diagram of catheter positions and recorded electrograms in an electro-
physiology procedure. The Coronary Sinus (CS), right ventricular (RV) and His
Bundle (HIS) catheters are color-coded with the different bipolar electrograms
that produce the depicted signals. The signals depict responses for a physiolog-
ical beat (left, with P wave) and of ventricular origin (right, no P wave). In a
beat mediated by the sinoatrial node (SAN), the generated impulse depolarizes the
atria (CS1-10), travels through the HIS and finally produces a ventricular response
(RV). In a ventricular-mediated response, the earliest activation is recorded in the
RV catheter, traverses the HIS and produces an atrial depolarization.
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EGM information is local and directional. On the first hand, the information cap-
tured by the catheter depends on the electrode size: the larger, the least sensible
it is to capture very small perturbations that might be of diagnostic interest, as
potentials of interest can be masked in larger activations. On the other hand, the
information provided by the catheters is directional, as EGMs record the voltage
difference between two electrodes: the amplitude of an EGM is maximal when the
direction of the depolarization wave is parallel to the axis of the electrodes, and
zero if the wave travels perpendicularly [19].

Diagnosis through catheterization

The possibility opened by EP procedures of exploring the myocardial electrical ac-
tivity allows for interpreting local depolarization patterns to identify areas with ab-
normal EGMs or unexpected behaviours of clinical significance. The local nature
of EGM information is especially useful in radio frequency ablation (RFA) proce-
dures, in which special catheters are used to deliver high-energy waves to damage
the patient’s tissue to correct conduction disorders. The objective of RFA proce-
dures is to prevent arrhythmias from initiating by physically damaging strands of
tissue that participate in arrhythmia perpetuation or present increased automaticity.

In general, clinical diagnosis of cardiac arrhythmias consists in recognizing their
mechanism of action through the analysis of an EGM’s direction of depolarization
and the complexity of its waveform. Additionally, its time or voltage relation-
ship to micro- (EGMs, e.g., time earliest activation) or macro- (surface ECG, e.g.,
peak time of QRS complex) events is measured, which allows the quantification
of important clinical markers such as the local activation time (LAT) within the
cardiac cycle [3]. Local alterations can take shape in many ways, as the ECS is
complex and is composed of intertwined contractile tissue, areas of blocked con-
duction (such as the cardiac skeleton) and preferential electrical pathways, giving
room for a large array of CVDs to arise. As an example, if a dysfunction of the
AV node is suspected, a catheter can be employed to assess whether the electrical
impulse has effectively reached the His bundle.

Waveform analysis

Waveform complexity plays an important role in diagnosing substrate-mediated
arrhythmias, i.e., arrhythmias which occur due to the existence of a proarrhythmic
modification of the local tissue composition (e.g., fibrosis, necrosis) which alters
its conductive properties. Tissues with substrate display very complex electro-me-
chanical behaviour, presenting decremental properties that can provoke reentry-
mediated arrhythmias. Currently, the exploration of substrate-based tachycardias
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Figure 1.10: Schematic representation of common electrograms (EGM) found in
electrophysiological studies with respect to a reference (dotted line). Normal elec-
trograms are often high-frequency waves representing passing electrical impulses
in the catheter’s tip. If the catheter is placed in a fibrotic region, the electrogram
can display fractionation/fragmentation. If the tissue presents decremental proper-
ties, late potentials might arise. Combinations of some characteristic EGMs might
be found during studies and are of diagnostic interest [20].

is based on the identification of EGMs with local abnormal ventricular activities
(LAVA) with respect to the expected waveform.

Different LAVAs have been identified and are currently under exploration in the
scientific literature: late potential (LP) (sometimes subdivided into isolated late
potential, ILP, and into fractionated late potential, FRLP), decrement-evoked po-
tential (DEEP) (also known as hidden slow conduction, HSC [21]), fractionated
potential (FRP) (sometimes subdivided into highly fractionated potential, HFRP,
and into FRLP) [20, 22]. The LP group is characterized by the existence of EGMs
that extend beyond or at the end of the QRS complex [23, 24]. FRP consist in
EGMs with a large number of fractionations, which can be isolated or non-iso-
lated. Finally, DEEPs are locations in the myocardium that present hidden decre-
mental conduction. During EP procedures, a standard diagnosis tool is the appli-
cation of extrastimuli sourcing from a catheter’s electrode. Those extrastimuli are
on-demand activations performed artificially by electrophysiologists that initiate
a controlled depolarization at some known location in the myocardium. Given
decremental properties of anatomical substrates and other cardiac structures, the
application of extrastimuli can be used to evoke decremental conduction at a cer-
tain location in the myocardial surface, which is visualized as a late potential that
was not present before the stimulation [24–26]. Although different clinical mark-
ers are available, the latest expert consensus in VT ablation recommends the usage
of DEEPs for anatomical substrate ablation [27]. Some examples of LAVAs are
shown in Figure 1.10.

The joint information required to diagnose and treat a CVD is, however, difficult to
interpret due to the large amount of EGMs to be analyzed, with the added difficulty
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of their location-dependence [3]. The large amount of recorded information causes
intervention times and long-term success of some complex procedures, such as
VT, to be improvable [28]. High recurrence rates are still hindering RFA proce-
dures, which can be related to the development of new viable tissue within the
substrate (substrate remodelling) or due to incomplete ablation procedures. More-
over, manually tagging DEEP potentials, especially in multi-electrode catheters, is
prohibitively labour-intensive and time consuming [21, 28].

For simplifying EGM visualization and interpretation, 3D electroanatomical map-
ping systems (EAM) have been developed and are used in some EP procedures.
The purpose of EAM systems is to visualize the cardiac anatomy alongside the
electrical activation patterns, which is recorded with special catheters that are able
to triangulate its spatial position within a coordinate system, while also storing the
EGM’s morphology for its posterior analysis [29]. However, despite recent ad-
vances in computational techniques for simplifying EGM analysis, EAM systems
still perform relatively basic signal processing.

1.2. Computer-based analysis of cardiac signals

As it has been stated in the previous sections, ECG and iECG are the main diag-
nostic tools for assessing the electro-mechanical function of the heart. The ECG is
the most accessible tool for cardiac function diagnosis in a non-invasive manner,
being one of the main diagnostic test performed in usual clinical care and in emer-
gency rooms. On the other hand, iECGs are relatively expensive to acquire but are
the only available tool for evaluating local electrical patterns, enabling in-depth
diagnosis through the evaluation of any deviations in the normal functioning of
the ECS.

Despite their advantages and non-interchangeability with other cardiac assessment
tools (such as computed tomography, CT, or magnetic resonance imaging, MRI,
among others), the analysis of cardiac signals lacks automatization as compared
to imaging modalities, even though it predates them. The medical image analysis
community is very active, with hundreds of segmentation, classification and syn-
thetic data generation algorithms being published yearly [30]. Of special interest
are algorithms related to objective data quantification; as opposed to those em-
ployed in classification, data quantification algorithms reduce clinical workload,
can aid in the development of new biomarkers for risk stratification and allow
for more precise diagnostic criteria, instead of concentrating efforts on producing
highly performing, albeit difficult to explain systems [15, 18].

The cardiac signal analysis community has been more focused on automated diag-
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nosis algorithms than on automatic quantification [12, 31–33]. The unavailability
of all-purpose quantification algorithms for cardiac signal analysis has left large
portions of ECG data analysis to electrophysiologists, who oftentimes must per-
form quantifications during the procedures as part of the clinical guidelines leading
to precise diagnosis. Apart from the inconvenience and time-consuming nature of
in-procedure quantification, the process is very operator-dependent. Furthermore,
most of the processing has been based on the application of digital signal process-
ing (DSP) algorithms that allow the computation of higher-level clinical markers
such as rhythm, rate and surrogates of wave morphology [12, 34, 35]. Only re-
cently more modern algorithms based on artificial intelligence (AI), specifically
deep learning (DL), have been employed for fully automatizing the cardiac sig-
nal analysis pipeline. DL-based algorithms have the advantage of incorporating
data pre-processing as a step to be automatically tuned in a data-driven manner,
precluding the need for intensive and difficult-to-tune data pre-processing. In the
following sections, existing solutions will be summarized to give an overview of
the state of the art.

1.2.1. Digital signal processing

Approaches based on digital signal processing (DSP) are often used for perform-
ing ECG/iECG data pre-processing, such as delineation or feature extraction.
DSP-based algorithms transform the data into easier-to-process surrogates of the
signal which include, but are not limited, to the computation of the signal’s deriva-
tive/integral [36–38], wavelet transform (WT) [35, 39, 40], Fourier transform (FT)
[38], phasor transform (PT) [41] or Hermite transform (HT) [34]. Moreover, most
works apply some type of filtering [35–37, 42]. The applied data transformations
are usually coupled with a posterior, experimentally calibrated logic layer that
allows the computation of the final output, such as rule-based or adaptive thresh-
old-based methods [35, 36, 39, 40]. Figure 1.11 exemplifies the usual processing
performed with DSP-based approaches for ECG delineation.

Most DSP-based algorithms are focused of cardiac signal detection or delineation.
Detection algorithms aim at localizing the occurrence of important cardiac events,
whereas delineation algorithms seek to identify the onset and offset of every spe-
cific wave for every specific beat within a recording; i.e., in the case of the ECG,
the computation of the Pon, Poff, QRSon, QRSoff, Ton and Toff fiducials within the
signal. One of the earliest available algorithms is “ecgpuwave”, which consists in
the application of a QRS detector algorithm (Pan-Tompkins, [43], based on deriva-
tive filtering) alongside a combination of band-pass filtering, signal derivative fil-
tering, zero-crossing location and adaptive amplitude-valued thresholds to locate
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Figure 1.11: Usual processing in electrocardiogram (ECG) delineation with dig-
ital signal processing. The ECG is transformed (in the example, with the wavelet
transform, WT) to an easier-to-process proxy for the computation of the fiducials.
Similarly to [35, 40], some information is computed from the data transforma-
tion (in the example, zero crossings), and then aggregated to produce a prediction,
usually through a rule-based algorithm.

the signal’s fiducials [36]. A more streamlined approach was devised by Martínez
et al. [35] employs the wavelet transform in place of the derivative operation to
better characterize the zero crossings that would later be used as onsets and offsets
for each individual wave, and is still used to date [34, 44]. A similar approach
was applied by Alcaine et al. [39, 40] for the identification of wave fiducials in
iECG signals. Many other similar DSP-based alternatives for ECG delineation ex-
ist based on the above described template, involving signal filtering, zero crossing
approximation and decision rules to locate the final fiducials [35, 36, 45].

Other approaches have focused on diagnosis through the computation of data
transformations. Palacios et al. [44] use the WT and the Phase-Rectified Signal
Averaging for exploring periodic repolarization dynamics. Lyon et al. [34] employ
the Hermite transform on the QRS complex as a surrogate of its morphology to ex-
plore biomarkers for the characterization of hypertrophic cardiomyopathy (HCM)
patients through Holter recordings, attempting at linking specific ECG criteria to
the diagnosis of HCM. However, articles that perform data transformations usually
depend on quality signal delineation algorithms, as they are usually employed as
pre-processing step for producing the algorithm’s input.

19



INTRODUCTION

1.2.2. Machine learning

Machine learning is a sub-field of AI comprising a set of algorithms that are able
to adjust their behaviour through “learning” from a set of inputs. The model is
“trained” through tuning the model’s parameters, which govern a set of decision
functions that learn an input-output mapping, process after which the model can be
used to produce predictions on upcoming data. With the recent rise of data-driven
approaches to the forefront of data analysis tools [32], computer-aided diagnosis
algorithms for cardiac signal analysis has also shifted from its DSP-based origins
since the consolidation of deep learning (DL) algorithms.

Machine learning algorithm types

To reduce the very broad scope of available computational solutions, two main
types of algorithms will be explored with respect to their formulation and their
data pre-processing requirements: “classical” machine learning (hereinafter ML)
and DL algorithms. The former fit decision functions with a relatively small num-
ber of parameters and a relatively straight-forward formulation that allow the op-
timization of the decision function, often minimizing a concept of distance. The
latter is a sub-branch of ML based on stacking operations, called “artificial neu-
rons”, which perform the weighted sum through learnable weights over the differ-
ent attributes of an observation, and is usually performed jointly with a non-linear
operation. An artificial neural network (ANN) is an algorithm that stacks several
artificial neurons, so that the input of a certain neuron is the output of the pre-
vious neuron. Stacking a large quantity of trainable, non-linear operations allow
DL algorithms to act as universal approximators of decision functions [46], and
usually out-perform classical ML algorithms by a wide margin. A disadvantage of
DL with respect to other ML algorithms is that the latter can sometimes guarantee
that the algorithm has reached the global minimum of the optimization function,
whereas the former can only assure that a minimum has been reached due to its
stochastic optimization procedure.

Independently from the type of algorithm, ML algorithms can be employed for two
main sub-groups: supervised or unsupervised learning. In supervised algorithms
the model is trained through explicitly defining the expected output of each obser-
vation, so that the model learns a decision function that minimizes the mismatch
between its prediction and the ground truth (GT). The specific task to be performed
with supervised algorithms gives rise to different sub-branches such as classifica-
tion, segmentation (known as delineation for cardiac signals), registration, regres-
sion or pattern recognition, among others. In unsupervised algorithms, the intrinsic
variability contained in the training data is leveraged to obtain a data representation
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Figure 1.12: Categorization of machine learning algorithms. A first division is
produced between supervised and unsupervised models, stemming from the usage
of labels for optimizing the model’s weights. Supervised models branch into clas-
sification, with discrete labels (e.g., True or False), and regression, with contin-
uous labels. Unsupervised models are split into clustering methods, which group
observations according to a similarity metric, and dimensionality reduction al-
gorithms, which structure information for easier observation comparison. Deep
learning algorithms (Artificial Neural Networks, ANN; Fully Convolutional Net-
works, FCN; Recurrent Neural Networks, RNN; Autoencoders, AE; Variational
AE, VAE; Conditional VAEs, CVAE) can be used for a variety of tasks if a match-
ing loss function is employed.

that attempts at minimizing the distance between observations that are “similar”
(as measured by a metric) while maximizing the distance between “dissimilar” ob-
servations. A sub-branch of unsupervised learning, namely dimensionality reduc-
tion (DR) algorithms, are interesting for identifying differences contained within
populations. DR algorithms take observations, for which pairwise distances might
be difficult to measure, and convert them into an alternative representation that is
able to condense the original information. The resulting low-dimensional space
allows for comparing observations more easily, determining which samples are
“similar”. Figure 1.12 schematically depicts the different existing algorithms of
importance for the thesis.
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1.2.2.1. Classical machine learning

Many classical ML algorithms have been used for ECG data processing. Most
of the literature concentrated in employing ML for classification, either using lin-
ear discriminators, support vector machine (SVM), decision trees, hidden Markov
models (HMM) or many other algorithms [38, 47–51]. To increase the predictive
power of ML algorithms, pre-processing steps are usually employed to facilitate
model training and reduce the variability in the input domain. Such pre-processing
is known as “feature engineering”, and is based on the extraction of characteris-
tics (or features) of the input population which allow the algorithm’s developer to
introduce expert knowledge into the model at the cost of being domain-specific.
In the case of ECG analysis, features are extracted through DSP-based algorithms
[38], which are the most straightforward way to manually reduce the complexity
of the input signal. Thus, the ML model substitutes the developer-defined logic
layer that was employed in DSP-based approaches, such as the adaptive threshold.

Three main tasks exist in the literature that employ ML for ECG classification.
Firstly, heartbeat classification is often performed, where a single heartbeat is iso-
lated (either using a window from a detection fiducial or using a full ECG delin-
eation) and classified in the type of heartbeat (e.g., ventricular ectopic or bundle
branch block, among many others). Secondly, for fully automated ECG diagno-
sis, either with wearables or in clinic [47, 51, 52], where whole ECG registries
are analyzed to diagnose arrhythmias or other CVDs. Finally, other approaches
have focused of ECG delineation, in the shape of Gaussian mixture model (GMM)
or hidden Markov models (HMM) [12, 53, 54]. However, classification meth-
ods scale poorly when trained on large datasets, generally underperform when
compared to DSP- and DL-based algorithms and require laborious definition and
extraction of hand-crafted features which hinder their applicability in real-world
scenarios.

Other wide application of ML analysis on cardiac signals is the application of un-
supervised/dimensionality reduction (DR) algorithms [17, 34, 47]. DR algorithms
employ the raw signal or hand-crafted features extracted from the signal as input to
a group of algorithms, such as principal component analysis (PCA), multiple ker-
nel learning (MKL) or linear discriminant analysis (LDA), to explore the distribu-
tion of observations in the output space. DR algorithms operate by transforming
observations into a low-dimensional embedding throught the usage of similarity
metrics, which are computed to estimate the distances between observations in the
input space. Then, the algorithm optimizes a projection into an output space so
that the relative distances between observations are preserved. DR algorithms are
especially useful when exploring clinical markers or features that can aid in risk
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stratification or in biomarker discovery [15, 18, 55].

On the other hand, given the difficulty in acquiring and annotating iECG databases
[56], not many ML-based approaches exist in the literature. Most ML algorithms
employed in iECG analysis have focused on localizing reentry mechanisms, po-
tential ablation sites or propagation patterns [50, 51, 56–59].

1.2.2.2. Deep learning

Deep learning is a branch of ML which uses the artificial neuron (or perceptron) as
the main processing unit/operation, consisting in a non-linear operation performed
over the weighted sum of the algorithm’s inputs. Multiple artificial neurons form
“layers” of relatively simple operations, which are then embedded in multi-layered
structures (also known as “architectures” or “networks”) that are able to produce
much more complex input-output mappings. These multi-layered algorithm, when
accounting for the sufficient number of layers (or sufficiently “deep”), are able to
act as universal approximators, and have the ability to process raw data as in-
put [46, 60, 61]. The artificial neurons can be organized in different topologies,
which give rise to different components that make the most commonly used build-
ing blocks of the most common networks types: the feedforward neural network
(FNN) employs solely artificial neurons; the convolutional neural network (CNN)
uses a convolutional operation as the main building block, which uses a trainable
weight (or “kernel”) whose size is smaller than the input size (known as “kernel
size”) and convolves the kernel with the input; and the recurrent neural network
(RNN), which employs a neuron that produces an output for every time-step, tak-
ing as input both the current time-step’s input as well as the output for the previous
time-step. A schematic representation of artificial neurons is depicted in Figure
1.13.

Once the network’s topology has been defined, the model’s weights are trained
through stochastic gradient descent: for any given input, the model predicts the
output according to its current weight values, which is employed to compute an
error metric or “loss function” and then used for iteratively adjusting the weights
of the model through a process called backpropagation. Loss functions might be
supervised (e.g., computing the Dice score of a segmentation, an L2 error term
or any other metric that uses the expected value of the algorithm as a reference)
or unsupervised (e.g., computing the “separation” of similar samples such as the
Kullback–Leibler divergence, which measures the difference between two proba-
bility distributions). Backpropagation, on its behalf, computes the gradient of the
loss function, allowing to estimate whether an update in an single neuron’s weights
would result in a reduced global error [60]. Given the large scale of datasets em-
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Figure 1.13: Schematic representation of the most widespread artificial neurons
before applying the non-linear operation. (a) depicts the operation performed in
feedforward neural networks. (b) represents convolutional operations found in
convolutional neural networks. (c) shows the basic operation performed in recur-
rent neural networks. In all examples, wi represents the i-th weight; x j, the j-th
input; and yk, the k-th output.

ployed in current data analysis, batch-based, stochastic algorithms have been de-
veloped for approximating the network’s gradient [62–64].

Convolutional Neural Networks

Convolutional layers have several important properties that are especially desir-
able for biomedical data analysis, making convolutional-based architectures the
most employed in medical image/signal analysis. Firstly, the convolutional layer
weights are the same at all positions when convolving the input, which makes
convolutional operations more parameter-efficient and force the weights to gen-
eralize as much as possible. Secondly, the formulation of the convolutional layer
can be extended to N-dimensional inputs, which allow for the analysis of 2D and
3D inputs. Finally, their formulation can be thought of being analogous to the de-
sign of digital filters, providing a solid foundation for comparing the behaviour of
CNNs with carefully hand-crafted DSP or image processing solutions. It has been
demonstrated that earlier layers are generally responsible for computing derivative
filters for input pre-processing, such as detecting edges, and latter layers agglom-
erate the filtered input into larger structures [65]. Figure 1.14 shows a schematic
representation of a CNN.

ECG and iECG analysis is, as was the case with classical ML, mostly based on
classification. DL-based ECG analysis focuses on similar tasks as their ML coun-
terpart, with heartbeat classification and arrhythmia detection as the main focus
[31, 32, 52, 66–71]. These works mostly employ some sort of ResNet variant
[72], which uses convolutional layers alongside feedforward artificial neurons and
a classification loss function (usually cross-entropy) to produce a categorical clas-
sification of the input data. iECG analysis, on its behalf, is centered around au-
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Figure 1.14: Convolutional Neural Network processing of an image (left). Blue
rectangles and purple lines represent intermediate results after operations, and ar-
rows represent operations: convolution (green), downsampling (red), global aver-
age pooling (purple) and fully connected layer (cyan).

tomatic ablation site location through propagation patterns [73–76], employing
similar architectures.

Other approaches have focused on automatic ECG quantification, delineating the
onsets and offset of important waveforms in the recorded trace. Some approaches
have employed some sort of classifier (CNN or RNN) to estimate the probability of
a single sample to be identified as a waveform’s onset or offset [77–79]. Other ap-
proaches have profited from the medical image segmentation literature, applying
the U-Net [80] (a type of fully-convolutional network, FCN, specifically designed
for biomedical image segmentation; Figure 1.15) or some variation of it [81–85].
A corpora of works have attempted at producing ECG delineation directly employ-
ing images or spectral representations as inputs as opposed to 1D traces, but have
also been largely been restricted to classification [86]. Finally, to the best of our
knowledge, no DL-based iECG delineation approach exists to date.

1.2.3. Limitations of machine-learning-based algorithms for cardiac
signal analysis

Although the application of ML for the analysis of cardiac signals has grown
greatly in the last years due to the resurgence of DL methods and to the large
increase in availability of annotated datasets, current state-of-the-art presents sev-
eral drawbacks preventing their widespread adoption. The drawbacks gravitate
towards two main points: the small size of open datasets and the black-box nature
of some algorithms, which prevents model explainability.

From the data availability perspective, most existing datasets before the explosion
of DL counted with a relatively small number of patients (usually below 100).
Although small-scale datasets were sufficient for DSP- and classical ML-based
approaches, where agglomerating information from too large data sources was
computationally challenging or impractical, DL-based approaches usually require
much larger datasets (e.g., ImageNet contains 1,281,167 tagged images [87]). In
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l = 4

Figure 1.15: Example of a fully convolutional network (FCN) topology, which
employ convolutional operations (green arrows), up/downsampling operations
(blue/red arrows) and concatenation operations (orange arrows). Many FCNs are
organized in an encoder/decoder structure, where the encoder processes the input
to obtain an abstracted representation of the input data (bottleneck) whereas the de-
coder transforms the abstract representation and merges it with the high-frequency
information from the unaltered input to produce an output (purple block). In the
figure, N represents the initial number of channels to perform convolution upon.

recent years, however, institutions have started collecting large databases for clas-
sification that greatly outnumber the amount of records contained in public access
initiatives such as PhysioNet [88]. Moreover, although some databases for car-
diac signal quantification exist [89, 90], they face the usual drawbacks of open
databases, namely the small intra- and inter-patient variability; or, in the case of
iECG, no open dataset exists, neither large nor small. To give an overview of the
magnitude difference between public and private study sizes, a open dataset com-
prising 66,101 annotated recordings was released as part of the PhysioNet Chal-
lenge 2020 [52], thus becoming one of the largest public annotated datasets avail-
able for ECG classification. Parallelly, the Telehealth network of Minas Gerais
was recently able to gather a private dataset of 2,470,424 ECG recordings, obtain-
ing a specificity larger than 99% with a relatively simple CNN [91]. The existence
of large-scale datasets is especially relevant due to performance plateauing with
respect to model capacity whilst improvements could still be achieved with larger
data collections, which has been coined as the “unreasonable effectiveness of data”
[92]. However, large datasets remain inaccessible to researchers, forcing scientific
research to manage with limited datasets.

From the explainability point of view, many ML algorithms, most notably
DL-based approaches, lack easy interpretation of the decision function that ulti-
mately maps an input to an output due to several factors. On the one hand, ex-
isting datasets are designed for CVD classification, which many times are used
alongside DL algorithms due to the relative cheapness of annotating labels for
classification as opposed to individual markings for data quantification. Thus,
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most published works applying DL in cardiac signals focus on classification
[52, 66, 70, 71, 88, 91, 93, 94]. On the second hand, the lack of interpretability of
DL algorithms becomes a fundamental drawback in data-sensitive scenarios. Ap-
plying computational solutions in the clinical practice should not aim at providing
closed, uninterpretable diagnostic proposals but at reducing their workload and
at supporting decision-making with increasingly more automated tools [12, 13].
The inability to rationalize the set of characteristics that are internally used by the
model causes a dismissal of the diagnostic responsibility to an algorithm, which
raises the concern of accountability in cases of misdiagnosis or negligence due
to the shift in the evidence-based norms that stand at the core of the diagnostic
process [95]. A middle ground between harnessing the high performance of DL
algorithms and the interpretability of ML- or DSP-based algorithms is to employ
DL models for immediately interpretable tasks such as signal delineation. The
existence of quality quantifiation algorithms would unburden clinical practitioners
from labour-intensive tasks attaining the ability to be easily checked for errors,
effectively extending the capabilities of the users.

The focus of the thesis is to work on these limitations from a computational point
of view. Firstly, our work concentrates on DL-based data quantification by pro-
ducing high-quality delineations of ECG data. Two paths are explored. In chapter
2, a FCN-based network was extensively tested in the various aspects that alter
the model’s capacity (network’s depth, several state-of-the-art architectural mod-
ifications) to assess its capability to produce high-quality delineations. Given its
limitations due to the reduced dataset size, chapter 3 describes the development
of a synthetic data augmentation (DA) methodology for artificially increasing the
dataset size, alongside other state-of-the-art architectural modifications. Although
some works exist for synthetic GT production, they are based on simulating bio-
physical models of the heart, which are generally too slow for massive sample
generation [96], or on the usage of data-driven approaches such as generative ad-
versarial networks (GAN) for generating samples in real time, which both cannot
extend beyond the input data’s manifold and reduces the control on the genera-
tion parameters. The approaches’ pros and cons will be discussed in length in
chapter 3. The combined approach proved sufficient to produce high-quality ECG
delineation, which was then employed for iECG recordings in chapter 4. Finally,
chapter 5 applies the methodology developed for ECG delineation for performing
dimensionality reduction on a population of HCM patients, with the objective of
identifying clinical markers that aid in risk stratification.
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1.3. Motivation and objectives

Cardiovascular diseases are the leading cause of death worldwide, with 20 mil-
lion new cases in European countries in 2017, accounting for up to 30% of global
deaths worldwide [47] and for the highest expenditure in healthcare in Europe
(up to 19% of the total spending in high-income countries) [97]. Clinical practice
requires the quantification of biomarkers during diagnosis for an objective assess-
ment of a patient’s condition. Specifically, the analysis of ECG signals plays a
fundamental role for screening, diagnosis and treatment of conditions affecting
the heart’s ECS. The ECG is one of the main cardiac diagnosis tool, with 300
million annual exams reported in 1999 [98], and is often the first performed test
to assess cardiac function. The iECG, on its behalf, is the main diagnostic tool
preceding and during RFA procedures, which the most recommended treatment
in many cardiac arrhythmias for non-responders to drug therapy [99–101]. De-
spite their importance, computational solutions for ECG quantification are error
prone in complex waveforms, such as in VTs, and leave room for improvement.
In the case of iECGs, no delineation algorithm exists in the literature, with current
solutions solely performing basic detection of the local field component with the
highest amplitude. Both ECGs and iECGs are mostly analyzed with algorithms
based on DSP, but these algorithms are laborious to develop and to adapt to the
wide variability present in routine clinical practice. On the other hand, the rise
of DL has opened a new landscape for the analysis of biomedical data [65], but
the application of said algorithms for cardiac signal analysis is mainly focused in
classification.

The objective of the thesis is to develop high-performing ECG and iECG delin-
eation algorithms to reduce quantification-related workload in clinical environ-
ments. For this purpose, DL models were trained for ECG and iECG signals,
obtaining the onsets and offsets pairs related to each main wave in the analysed
registries. Firstly, an algorithm was developed for ECG delineation, based on re-
trieving the temporal markers corresponding to the onsets and offsets of the P, QRS
and T waves that compose a heartbeat. Given the small scale of available databases
for delineation, a custom synthetic data augmentation algorithm was developed for
maximizing input variability. Secondly, the developed methodology was applied
for the delineation of iECG recordings, localizing individual local activations at
specific locations in the myocardial wall with the objective of identifying different
types of pathological EGMs. Concentrating on quantification tasks allows for ob-
taining better data representations, producing versatile algorithms for their usage
in different scenarios. Thus, as a final contribution, the developed ECG delin-
eation tool and an unsupervised learning algorithm were employed on rest ECGs
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with the objective of characterizing and developing new ECG-based biomarkers
for risk stratification in a population of patients with HCM.

1.3.1. Contributions

Development of an algorithm for the automatic delineation of ECG record-
ings, irrespective of their configuration (number of leads, sampling fre-
quency).

Development of an algorithm for the automatic delineation of iECG record-
ings, irrespective of their configuration (number of electrodes in the catheter,
sampling frequency).

Development of novel synthetic data generation strategy for cardiac signals
(ECGs and iECGs), based on composing traces from wave fundamentals.

Generation of ground truth for an open-source ECG database of patients
with outflow tract ventricular arrhythmias and a private dataset of iECG
recordings.

Delineation of a 12-lead ECG dataset of patients with HCM, alongside a
dimensionality reduction algorithm, for performing risk stratification.

1.3.2. Outline of the thesis

The rest of the document is organized as follows:

Chapter 2 describes the development of a DL-based algorithm for the automatic
quantification of surface ECG signals.

Chapter 3 describes an improvement over Chapter 2’s delineator, in the shape of
a synthetic DA algorithm and architectural modifications.

Chapter 4 describes the application of the developed methodology for ECG de-
lineation for the automatic quantification of iECG signals.

Chapter 5 describes the development of an algorithm based on DR for relating
sarcomeric mutations with ECG phenotypes.

Chapter 6 summarizes the main ideas, contributions, limitations and future di-
rections of the thesis.
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CHAPTER

2

Delineation of the electrocardiogram with
a mixed-quality-annotations dataset using
convolutional neural networks

2.1. Introduction

Surface electrocardiogram (ECG) is the main cardiac diagnostic and monitoring
tool in clinical practice due to its widespread accessibility and ease of use. Usually,
physicians perform visual inspection of the ECG in order to diagnose a patient,
interpreting potential pathological deviations in the waveform. However, these
markers might go unnoticed to non-specialists or even to trained cardiologists,
especially when analysing multiple leads for several heart cycles or in stress-re-
lated situations. Moreover, this analysis is often reliant on the definition of a set
of structured measurements in the shape of various intervals and segments of the
ECG, among others [12].

Computational methods can help unburden physicians of these problems by pro-
viding objective measurements over clinical data [13] or by aiding in the discovery
of potential biomarkers [47, 102]. For these purposes, ECG detection and delin-
eation (hereinafter delineation) is often a prerequisite step, aiding in data structur-
ing [47]. ECG delineation consists in computing the onset and offset locations for

This chapter is adapted from: Jimenez-Perez, G., Alcaine, A. & Camara, O. Delineation of
the electrocardiogram with a mixed-quality-annotations dataset using convolutional neural networks.
Sci Rep 11, 863 (2021). https://doi.org/10.1038/s41598-020-79512-7
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each ECG wave (P, QRS and T waves). Delineation can be performed directly on
all available leads (multi-lead) or on individual leads (single-lead).

Several computational methods exist in the literature for ECG data processing.
To the best of our knowledge, digital signal processing (DSP) algorithms using
the wavelet transform (WT) and rule-based adaptive thresholds are often cited as
state-of-the-art for ECG delineation [35, 45], reaching high precision and recall
values of 95%, 99% and 98% for the P, QRS and T waves. However, these meth-
ods require laborious rule adaptation when extended to morphologies outside the
development dataset; moreover, these algorithms were fine-tuned using the whole
dataset, compromising their generalization.

Although DSP algorithms have historically been used for this purpose, machine
learning (ML) tools are gaining momentum for biomedical applications. Nonethe-
less, and in spite of their good performance, ML methods on the ECG are scarce
and have mainly focused on classification [31]. As suggested by Pinto et al. [33],
this can be caused by the lack of large, manually annotated databases for ECG
analysis, usually including less than a hundred patients.

Classical ML algorithms, in the shape of Gaussian mixture models [53] or hidden
Markov models (HMM) [54], have been applied for ECG delineation. However,
these methods might scale poorly when trained on large datasets and generally un-
derperform when compared to DSP- and other ML-based algorithms. Deep learn-
ing (DL) algorithms, a branch of machine learning capable of assimilating large
amounts of data, have also been used for delineation. Specifically, convolutional
neural networks (CNN) [77, 79], long short-term memory (LSTM) networks [78]
and fully-convolutional networks (FCN) [81, 83]. However, some of these works
solely delineate the QRS wave [77], whereas others only validate their perfor-
mance on sinus rhythm [83] or show reduced performance compared to DSP-based
approaches [78, 79, 81].

In this work we present the adaptation of the U-Net architecture [80], the most
successful FCN for biomedical image segmentation, for ECG delineation. For
this purpose, the U-Net was adapted to one-dimensional data and delineation was
framed as a segmentation task. The developed methodology was tested on the
PhysioNet’s QT database [89], which holds approximately 3,000 two-lead beats
annotated by expert cardiologists having both leads in sight. Given the difficul-
ties posed by the small dataset, with high intra-recording beat redundancy and
large patient variability, several regularization strategies were applied, consisting
in developing ECG-tailored data augmentation (DA) such as baseline wander or
powerline noise, in performing semi-supervised pre-training with automatic labels
and in adding in-built regularizers such as spatial dropout (SDr) and batch nor-
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malization (BN) in the architecture. A large array of architectural variations were
tested for completeness.

The rest of the chapter is organized as follows. Section 2.2 describes the employed
database. Section 2.3 details the methodology followed in this work. Section
2.4 addresses the results obtained by this work. Section 2.5 discusses about the
obtained results and their implications on the feasibility of applying this pipeline
in the clinical practice. Finally, Section 2.6 summarizes this work’s conclusions.
A preliminary version of this work has been reported in [81].

2.2. Materials

The QT database was employed for model training and evaluation [89]. The QT
database is comprised of 105 ambulatory, two-lead recordings of 15 minutes at
250 Hz representing a variety of pathologies, comprising arrhythmia, ischemic
and non-ischemic ST episodes, slow ST level drift, transient ST depression and
sudden cardiac death. Two label sets exist per recording: a manual annotation
performed by an expert cardiologist (“manual”, hereinafter) consisting of approxi-
mately 30 fully delineated beats per recording, and an automatic delineation (“au-
tomatic”) performed on every beat of each recording [37]. The automatic ground
truth is produced in a single-lead manner, whereas the manual dataset is annotated
in a multi-lead fashion. Each annotation set holds nine fiducials per beat: the P
(if present), QRS and T wave detection markers and their respective onsets and
offsets.

Some recordings in the manual dataset had to be partially re-annotated, as they
contained extrasystolic beats that were neither detected nor delineated. Specif-
ically, 112 beats in recordings sel102, sel213, sel221, sel308, sel44 and sel820
were added. Isolated delineations in the manual dataset were also excluded, as
they were unusable for training the algorithm. Records sel232, sel233 and sel36
were discarded given that the annotations were incomplete. A single recording,
sel35, was discarded due to being the only recording in atrial flutter, making it
impossible to abstract this morphology with a single example. A total of 3,246
manual beats and 135,170 automatic beats were available for training.

Lastly, all fiducials for a recording r and lead ` were transformed into binary masks
B:

B(r,`)[n] =

{
1 if n ∈

[
w(r,`)

on [m],w(r,`)
off [m]

]
0..M

0 otherwise
, (2.1)
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Figure 2.1: Database’s manual ground truth as fiducials (left) and as three over-
lapped binary masks (right). Red mask/stars: P wave. Green mask/triangles: QRS
wave. Magenta mask/circles: T wave. The figure depicts the employed notation.

where W (r,`)
i represent the fiducials, with W ∈ {P, QRS, T}, m ∈ [0,M] are the

number of annotated fiducials, and n is the sample number. Given the existence of
three main waves, the information of the different waves was encoded into separate
channels in the label tensor. Figure 2.1 depicts both the original fiducials and the
binary masks.

2.3. Methods

The developed methodology for ECG delineation is depicted in Figure 2.2. The
first step describes the data splitting and management (Section 2.3.1). The sec-
ond step outlines data selection and augmentation methodologies (Section 2.3.1
and Section 2.3.2). The third step summarizes the base architecture and its
additions (Section 2.3.3). The fourth step details the evaluation methodology
(Section 2.3.4). The configurations tested in the third step are listed in Section
2.3.5. We have made our code publicly available in https://github.com/
guillermo-jimenez/ECGDelNet.

2.3.1. Data management and selection

In ML algorithms, data instances are usually divided into train, test and validation
sets in a non-overlapping manner. However, given the high intra-recording and
inter-lead beat similarity of ECG signals, a higher risk of performing an incorrect
data splitting is incurred, assigning similar representations of the same entity to
different sets. Models trained with this flawed splitting incur the risk of memoriz-
ing the data instead of inferring abstract patterns over it, especially in the case of
high capacity models such as DL. According to Faust et al. [102], although un-
desirable, this practice is widespread in ECG-based machine learning procedures.
For avoiding this, 5-fold cross-validation subject-wise splitting was performed.

Single-lead and multi-lead prediction strategies were attempted to address the mul-
ti-view nature of ECG. When using single-lead annotations, the algorithm would
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Figure 2.2: Developed pipeline. Step 1: random shuffle split of subjects (green:
train, purple: test) in 5 folds. Step 2: the (single- or multi-lead) dataset is either
used for training with automatic labels or with manual annotations. In the latter
case, ECG-tailored data augmentation is optionally applied (augmented). Step 3: a
U-Net is instantiated per fold with a selection of execution parameters and trained
with the selected data. Step 4: the fold-wise test sets are predicted and evaluated
against the manual annotations. The employed metrics are precision and recall for
detection and mean ± standard deviation (SD) of the onset and offset markers.

be inputted one lead at a time, producing a segmentation for every lead sepa-
rately. For multi-lead prediction, a single mask would be generated when inputting
all available leads as different channels. To alleviate data scarcity and low in-
tra-recording beat variability, three different training strategies were attempted:
training with manual data, semi-supervised pre-training with automatic labels and
applying a custom DA over manual labels. Semi-supervised pre-training was per-
formed by training the model from scratch using only data annotated with an algo-
rithm in the literature, ECGpuwave [37], without DA. These decisions are schema-
tized in the second step of Figure 2.2.
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2.3.2. Data augmentation

Data augmentation improves a network’s generalization by adding realistic noise
sources to the input data, learning noise-insensitive representations [103], acting
as a de facto regularizer. In this work, we developed six different ECG-tailored
noise sources, computed to have a specific signal-to-noise ratio (SNR) with respect
to an input signal, comprising additive white Gaussian noise (AWGN), random
periodic spikes (RS), amplifier saturation (AS), powerline noise (PN), baseline
wander (BW) and pacemaker spikes (PS):

AWGN[n] = N
(

0,
√

P̃n

)
RS[n] =

√
P̃n
f

k=∞

∑
k=−∞

(δ ∗Sp)
[
n− k 1

f

]

AS[n] =


−x[n]+Sv i f x[n]≥ Sv

−x[n]−Sv i f x[n]≤−Sv

0 otherwise

PS[n] =

{ √
P̃n
f i f n ∈ QRSon

0 otherwise

PN/BW [n] =
√

2P̃n cos
(

2π f
fs

n
)
,

Where N is the normal distribution, P̃n = Ps/10SNR/10 is the noise power,
Ps is the input signal power, fs is the sampling frequency, Sv = pmax |x|
is the saturation value, (a ∗ b)[n] indicates the convolution operation, Sp =
[0,0.15,1.5,−0.25,0.15]T +U (−0.25,0.25) is a custom filter with uniform noise
that models pacemaker spikes and δ is the impulse function.

The first five noise sources were engineered to represent usual and observed vari-
ations in the dataset. Pacemaker spikes were designed to avoid misidentifying
spike-like noise near QRS complexes and for completeness. Powerline and base-
line noises share the same formulation but are instantiated with different hyper-
parameters ( f = 50Hz and f = 0.5Hz, respectively). Some noise in the generat-
ing hyperparameters was added upon generation for maximizing input variability,
given p(i) = p+U (±SNR/10), where U is the uniform distribution. Figure 2.3
depicts an example of the developed noise sources.
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Figure 2.3: Data augmentation strategy example for an ECG recording. Re-ex-
ecution results in slight signal-to-noise ratio (SNR) and frequency ( f ) variations,
altering the final shape of the computed noise.

2.3.3. U-Net architecture

The employed architecture is based on the U-Net [80], which consists in an en-
coder, a bottleneck and a decoder with skip connections between the encoder and
the decoder, as seen in Figure 2.4. The encoder extracts increasingly abstract
representations of the input data through several levels of stacked convolutional
operations and downsampling blocks. The decoder recovers information from the
bottleneck, the nexus between the encoder and the decoder, through convolutional
and upsampling blocks. Skip connections allow for crisper segmentation at the ob-
ject boundaries by direct information transmission from the encoder. In the U-Net,
the number of convolutional filters is doubled after each downsampling block and
halved after each upsampling block. For a clearer exposition, we have grouped
operations in the U-Net architecture into “blocks”, which form “levels”. We de-
fine a “block” as an ordered composition of operations on a tensor x and a “level”
as a set of operations whose results have compatible tensor size. The considered
blocks are convolutional, downsampling, upsampling, and skip connection blocks.
The ordering of operations in the blocks were defined to agree with the image
segmentation literature [72, 104].

In this work, convolutional (C) and separable convolutional (S) operations were
considered, paired with ReLU non-linearities (NL) and regularizers (R) and point-
wise additions A(·, ·). The following blocks were independently explored:

“Vanilla” [80]: y = C(R(N(C(R(N(x))))))

Residual [72]: y = A(C(R(N(C(R(N(x)))))),x)

XCeption [104]: y = A(S(R(N(S(R(N(x)))))),x)
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Figure 2.4: Base U-Net instantiated with 4 levels and 2 convolutional blocks per
level. Blocks represent output tensors, whereas arrows indicate operations. Yel-
low: convolutions; red: pooling; blue: upsampling; black: concatenation. Convo-
lutional operations extract 2lN channels per level, whereas pooling and upsampling
have a kernel size of 2.

To comply with the requirements posed by ECG data and the task at hand, the
U-Net convolutions were replaced by 1D operations, zero padding was applied to
keep input resolution, and a stem (one extra convolutional module right after the
input) was included to mimic classification architectures [104–106]. Lastly, given
an initial model testing phase, the need for stronger regularization than batch nor-
malization was apparent. We opted to apply SDr [107], which randomly drops
entire tensor channels during training, as opposed to standard dropout, where neu-
rons are dropped in an unstructured manner, as well as semi-supervised pre-train-
ing and data augmentation, described in Sections 2.3.1 and 2.3.2, respectively.

2.3.4. Evaluation

The evaluation is inspired by the metrics used in state-of-the-art DSP-based algo-
rithms [35] for comparison purposes. A correspondence matrix H of the corre-
spondence between the true (w) and predicted (ŵ) wave fiducials can be computed
as:

H(r,`)
i j =


1 if (ŵ(r,`)

fid [ j] ∈ [w(r,`)
on [i],w(r,`)

off [i]])
or (w(r,`)

fid [ j] ∈ [ŵ(r,`)
on [i], ŵ(r,`)

off [i]])
0 otherwise

, (2.2)

where r is the subject’s recording, ` is the lead within the recording, wfid (with fid∈
{on, peak, off} and w ∈ {P, QRS, T}) are the onset, peak and offset information
for a specific wave, and i ∈ [0,M] and j ∈ [0,M̂] are the total true and predicted
fiducials, respectively.

The individual lead information for a specific wave is then combined into a single
correspondence matrix through a logical “OR” operator H̄ = OR(H(0), ...,H(L)).
The true positives (TP) for a given recording r were considered as T Pr = ∑ H̄i j.
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False-positives (FP), on their behalf, are elements of w̃(r,`)
fid that did not correspond

to any true fiducial (FPr = M̂− card({(i, j) | H̄i j = 1})). Finally, a false-negative
(FN) is considered when the ground truth displays a beat that is not captured by
a TP (corresponding to FNr = M− card({(i, j) | H̄i j = 1})). The precision (Pr)
and recall (Re) for each r and ` were computed, reporting in this work the overall
performance for all recordings and leads for conciseness. Additionally, the F1
score is also computed for comparing different architectural variations, as a single
figure of merit.

The delineation metrics were computed for the TPs (cases where H̄i j = 1), as no
onset/offset correspondences between the GT and the prediction exist otherwise.
The relative error of the segmentation was computed through the mean (M) and
standard deviation (SD) of the difference of the actual and predicted onsets or
offsets of the correspondences found in Eq. 2.2:

min
i, j,`

w(r,`)
fid [i]− w̃(r,`)

fid [ j] s.t. H̄i j = 1. (2.3)

For comparison purposes, the delineation errors were compared to the within-
dataset bias, in the shape of two different sources of error: the inter-observer and
the inter-lead variability. The first accounts for the difference in criteria used by the
first observer (O1) and the second (O2) when annotating a sub-set of the input data.
The latter accounts for the difference in criteria used by one observer when delin-
eating morphologically similar beats. For this purpose, a running cross-correlation
(normalized so that autocorrelations at displacement 0 equal 1) between all pairs
of delineated waves was computed for all possible overlapping positions. Those
pairs that shared a 99% or higher similarity were marked as true positives (for the
comparison) and accounted for the delineation error. For producing a fair compar-
ison, a window of 40 ms in the onset and offset of the compared delineations was
added.

2.3.5. Experiments

For testing the model’s robustness, this work features a series of variations on the
data level and in the network’s topology. Data-level variations aimed at alleviat-
ing data scarcity through the application of in-built SDr regularization (p = 0.25)
and batch normalization (Section 2.3.3), DA strategies (Section 2.3.2) and semi-
supervised pre-training (Section 2.3.1) for both single- and multi-lead inference
strategies. Given our limited computational budget, no DA was applied during
semi-supervised pre-training.

For each of the data-level variations, a set of topological changes were indepen-
dently tested. These changes took shape in the type of convolutional block em-
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Single-Lead Multi-Lead Martínez [35] Camps [77] Sodmann [79]
10 50 150

P
w

av
e Pr 90.12 94.17 91.03 N/A 79.6 84.6 90.0

Re 98.73 94.70 98.87 N/A 86.8 92.2 98.1
OnE 1.54 ± 22.89 -1.72 ± 17.83 2.0 ± 14.8 N/A N/A N/A N/A
OffE 0.32 ± 15.99 4.01 ± 16.08 1.9 ± 12.8 N/A N/A N/A N/A

Q
R

S
w

av
e Pr 99.14 99.40 99.86 N/A 93.0 98.5 99.9

Re 99.94 99.28 99.80 N/A 92.2 97.7 99.1
OnE -0.07 ± 8.37 -3.83 ± 14.64 4.6 ± 7.7 -2.6 ± 10.8 N/A N/A N/A
OffE 3.64 ± 12.55 5.39 ± 16.77 0.8 ± 8.7 4.4 ± 15.2 N/A N/A N/A

T
w

av
e Pr 98.25 96.36 97.79 N/A 80.2 87.4 97.7

Re 99.88 99.09 99.77 N/A 80.7 87.9 98.3
OnE 21.57 ± 66.29 19.10 ± 66.51 N/A N/A N/A N/A N/A
OffE 4.55 ± 31.11 9.93 ± 46.33 -1.6 ± 18.1 N/A N/A N/A N/A

Table 2.1: Metrics of our best performing single-lead and multi-lead models as
compared to other approaches. The considered metrics are the precision (Pr, %),
recall (Re, %), onset error (OnE, milliseconds in mean ± standard deviation) and
offset error (OffE, milliseconds in mean ± standard deviation). Sodmann [79]
reports results for different window sizes (10, 50, 150 milliseconds), considering
a true positive if their prediction is contained within the window. N/A stands for
“not applicable”.

ployed (“vanilla”, residual, XCeption), the network’s depth (L ∈ [4,5,6,7]) and
the number of convolutional blocks per level (CB ∈ [2,3,4,5,6]) were attempted.
In total, 201 executions were performed testing various configurations, with train-
ing times ranging from 6 hours for the smallest models without pre-training to
several days. The executions were performed in a high performance computing
environment where each configuration was assigned to a single NVIDIA 1080Ti
or NVIDIA Titan Xp GPU. To ensure reproducibility, the same random seed was
employed in all executions. Some aspects were kept constant in all executions,
such as the nonlinearity (ReLU for all blocks and sigmoid for the last block),
convolutional kernel (3) and pooling (2) sizes, loss function (Jaccard), optimizer
(Adam [64]) and random seed (1234).

2.4. Results

2.4.1. Model selection

This section describes the performance comparisons of independent design de-
cisions tested in Section 2.3.5. The pipeline mainly benefited from the applica-
tion of SDr regularization approach, reaching improvements of 1.98%, 3.27% and
7.21% F1 score in the detection of the P, QRS and T waves, and a reductions
of −2.79− 0.83 ms, −0.73± 1.43 ms and 8.06+ 3.90 ms in onset error and of
−2.07− 1.18 ms, +1.88± 2.90 ms and −2.81− 1.32 ms in offset errors in the
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Spatial Dropout
Metric ∆F1 ∆OnE(M±ST D, ms) ∆OffE(M±ST D, ms)
P wave + 1.98% −2.79 − 0.83 −2.07 − 1.18
QRS complex + 3.27% −0.73− 1.43 +1.88− 2.90
T wave + 7.21% +8.06 + 3.90 −2.81 − 1.32

Semi-supervised learning
Metric ∆F1 ∆OnE(M±ST D, ms) ∆OffE(M±ST D, ms)
P wave + 1.85 % −0.18− 4.31 −0.64 − 2.51
QRS complex + 1.07 % +0.08 − 0.74 −0.23 − 1.56
T wave + 1.65 % +1.53− 3.88 −0.36− 4.87

Data augmentation
Metric ∆F1 ∆OnE(M±ST D, ms) ∆OffE(M±ST D, ms)
P wave + 1.22 % +0.86 − 2.10 −0.42− 3.23
QRS complex + 0.63 % +0.26 − 0.90 +0.61 − 1.01
T wave + 0.80 % +3.70 − 0.39 −0.90 + 3.63

Table 2.2: Performance gain comparisons of applying spatial dropout, semi-super-
vised learning and data augmentation, expressed as median difference values in F1
score (%), onset and offset error (OnE and OffE, ms). A positive F1 score indi-
cates a performance increase of the design decision, whereas negative onset/offset
mean or STD errors indicate more precise fiducial location. Bold values represent
best independently performing approaches.

P, QRS and T waves, respectively. Such generalized improvement is also seen
in semi-supervised pre-training and when using DA. Summarized results can be
visualized in Table 2.2. The model performance degraded consistently at higher
capacity models (6 and 7 levels of depth and over 4 blocks per level) whenever SDr
was not applied, but performed very similarly to other model definitions when it
was. Other additions such as the type of convolutional block, width and depth of
the network showed comparable performance throughout all executions.

2.4.2. Best performing model

Both single-lead and multi-lead best performing models feature strong regulariza-
tion techniques in the shape of pre-training with automatic labelled data and SDr
of 25%. The best performing single-lead model, in accordance to the results ex-
pressed above, consists in a model with 5 levels and 3 blocks per level employing
the “vanilla” convolutional block, with P, QRS and T wave precisions of 90.12%,
99.14% and 98.25% and recalls of 98.73%, 99.94% and 99.88% for detection.
The delineation performance shows errors of 1.54± 22.89 ms, −0.07± 8.37 ms
and 21.57± 66.29 ms in the onset and of 0.32± 4.01 ms, 3.64± 12.55 ms and
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4.55±31.11 ms in the offset for delineation, with Dice scores of 88.99%, 92.05%,
88.40% for the P, QRS and T waves, respectively.

The best multi-lead model features 4 levels and 6 blocks per level employ-
ing the “XCeption” convolutional block, reaching P, QRS and T precisions of
94.17%, 99.40% and 96.36% and recalls of 94.70%, 99.28% and 99.09% for de-
tection. The delineation performance deviated from the ground truth 1.54±22.89
ms, 1.54± 22.89 ms and 1.54± 22.89 ms in the onset and 4.01± 16.08 ms,
5.39±16.77 ms and 9.93±46.33 ms in the offset, reaching Dice scores of 88.19%,
92.14%, 89.33% for the P, QRS and T waves, respectively. The optimal network
configuration for both single- and multi-lead is detailed in Table 2.1, whereas
Figures 2.5-2.7 depict several samples from the single-lead and multi-lead ap-
proaches.

2.4.3. Inter- and intra-observer bias

The comparison of the different sources of bias within the database have been
summarized in Table 2.3. The inter-observer bias shows larger or comparable bias
for both single- and multi-lead scenarios in the QRS onsets (3.84 ± 14.17 ms vs.
-0.07 ± 8.37 ms and -3.83 ± 14.64 ms) and offsets (2.74 ± 16.94 ms vs. 3.64 ±
12.55 ms and 5.39± 16.77 ms). The T wave is generally delineated more precisely
by the human operator in its onsets (-9.52 ± 44.85 ms vs. 21.57 ± 66.29 ms and
19.10 ± 66.51 ms) and offsets onsets (5.84 ± 39.84 ms vs. 4.55 ± 31.11 ms and
9.93 ± 46.33 ms).

The intra-observer bias, on the other hand, is consistently larger in the database
as compared to the model’s predictions in the P onset (2.26 ± 42.93 ms vs. 1.54
± 22.89 ms and -1.72 ± 17.83 ms), P offset (7.76 ± 23.28 ms vs. 0.32 ± 15.99
ms and 4.01 ± 16.08 ms), QRS onset (2.56 ± 22.95 ms vs. -0.07 ± 8.37 ms and
-3.83 ± 14.64 ms), QRS offset (2.02 ± 21.9 ms vs. 3.64 ± 12.55 ms and 5.39 ±
16.77 ms) and T onset (-51.96 ± 105.88 ms vs. 21.57 ± 66.29 ms and 19.10 ±
66.5 ms1) for both single- and multi-lead scenarios, respectively. The T offset in
the multi-lead prediction strategy is the only metric that shows worse performance
with respect to the inherent dataset bias (4.53± 42.71 ms vs. 4.55± 31.11 ms and
9.93 ± 46.33 ms), and is within 1 sample (4 ms) difference.

2.5. Discussion

Deep learning techniques show improved performance upon classical approaches
for supervised tasks given sufficient training data [108]. These models can be used
to improve and automate tasks in the medical domain such as image (or signal)
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Inter-observer bias
Onset Error Offset Error
M (ms) SD (ms) M (ms) SD (ms)

P wave N/A N/A N/A N/A
QRS wave 3.84 14.17 2.74 16.94
T wave -9.52 44.85 5.84 39.84

Intra-observer bias
Onset Error Offset Error
M (ms) SD (ms) M (ms) SD (ms)

P wave 2.26 42.93 7.76 23.28
QRS wave 2.56 22.95 2.02 21.9
T wave -51.96 105.88 4.53 42.71

Table 2.3: Onset and offset errors (mean, M ± standard deviation, SD) of the
inter- and intra-observer bias within matching delineations in the ground truth. No
P wave annotations were produced by the second observer.

segmentation, aiding in clinical decision-making [109]. Moreover, these models
can be re-trained on newly acquired data to produce a positive feedback loop that
enhances performance upon usage.

Under this context, this work presents a FCN-based approach for ECG delin-
eation by framing the problem as a segmentation task. Our work exhibits good
detection and delineation performance, with metrics comparable to DSP-based
methods while presenting competitive advantages and increased performance over
ML-based works. A summary of the performance comparison to other approaches
can be seen in Table 2.1. The network has an excellent detection performance, in
both single-lead and multi-lead scenarios, even if trained on a small dataset. The
model was thoroughly explored in its hyperparameters to assess its performance
under different training conditions. Many of these model variations showed in-
consistent performance gains. Only explicit regularization strategies such as SDr,
pre-training on automatic labels and DA consistently improved overall detection
and delineation performance, increasing F1 scores and decreasing onset and offset
errors. These variations demonstrated good detection and delineation performance
in all executions.

We have compared our method with state-of-the-art methods in either DSP and
ML methods. DSP-based approaches, such as Martínez et al. [35] provide a high
delineation performance and are considered state-of-the-art. Our best performing
approach performed on par with these methods in detection (Table 2.1, [35]) with
differences in precision and recall lesser than 1%. Our model, however, produced
higher delineation errors compared to the state-of-the-art, especially in the T wave
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(Table 2.1). The multi-lead approach showed consistently worse performance at
delineation, with up to 15 ms difference in the T wave offset, which can be ex-
plained in two ways. Firstly, our approach is data-driven, so any bias in the QT
database will be learnt by the network. Therefore, the inter- and intra-observer
bias were computed (Table 2.3), demonstrating that our error was below in gen-
eral (or comparable in T offset) to the intrinsic data variability. Some examples of
extreme intra-observer criterion differences are shown in Figure 2.7. Moreover, it
is noteworthy that one mere sample difference is equivalent to 4 ms error, so large
errors are equivalent to small sample differences.

Secondly, the results reported by [35] do not allow for testing generalizability
on other datasets, as they adjusted their algorithm to produce globally minimal
metrics on the whole dataset without using a separate test set, thus their method’s
generalizability remaining untested [12]. A fair numerical comparison between the
approaches is challenging, since the proposed DL-based method produces metrics
on data that the algorithm has not been previously trained on (cross-validation)
and, therefore, no global error minimization is made. The used training method,
however, hints at the ability of our algorithm to generalize on unseen data –which
is a more desirable scenario.

Overall, our approach provides comparable results to DSP-based methods, in spite
of being trained on small amounts of highly biased annotations, while applying
cross-validation with strict subject-wise splitting for ensuring generalization and
obtaining smaller delineation errors than those in the dataset. On the other hand,
DSP-based algorithms require laborious rule re-calibration when extended to other
morphologies, which is heavily time consuming. In this sense, DL-based ap-
proaches such as the proposed model can more easily assimilate newly annotated
data to enhance delineation performance and shorten development once the right
design decisions have been modeled, thus arising as an alternative to DSP-based
methods with great potential.

In contrast with DSP-based approaches, DL methods use a variety of architectures,
providing a good framework for comparison. It is noteworthy, however, that the
majority of the compared literature does not detail how the train/test splitting is
made, leading to potentially misleading model performance, as noted in Section
2.3.1. In general, the proposed method clearly outperforms all other data-driven
approaches found in the literature, obtaining clearly higher detection values and
lower delineation errors. In the following paragraphs, the different works are ana-
lyzed, grouped by type of network.

Although limited bibliography of CNN-based delineation methods exists, these
compare unfavourably to FCN-based approaches. Camps et al. [77] delineated
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Figure 2.5: Examples of correctly predicted samples, depicting samples from
sudden cardiac death (top) and ST change (bottom). Red mask: P wave. Green
mask: QRS wave. Magenta mask: T wave. Representative examples have been
encircled.

Figure 2.6: Examples of incorrectly predicted samples, featuring fused T and
P waves (top) and severe bradycardia (bottom). Red mask: P wave. Green mask:
QRS wave. Magenta mask: T wave. Representative examples have been encircled.

Figure 2.7: Examples of incorrectly annotated ground truth, demonstrating in-
correct T offset location (top) and missed P waves (bottom). Red mask: P wave.
Green mask: QRS wave. Magenta mask: T wave. Representative examples have
been encircled.
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solely the QRS wave, neglecting P and T waves, while attaining delineation per-
formance of −2.6± 10.8 ms and 4.4± 15.2 ms for the QRS onset and offset.
The authors did not report precision or recall metrics, difficulting direct perfor-
mance comparison. Sodmann et al. [79] directly predicted the fiducial’s sample
of occurrence (w) through fully convolutional layers. However, their work suf-
fers from performance pitfalls, achieving differences in performance up to 10%
with respect to DSP-based approaches even with large (∼50 ms) tolerance win-
dows, while disregarding detections with error higher than 250 ms. Moreover, the
authors excluded 23 recordings of the QT database.

A single recurrent formulation employing LSTM has been proposed in the litera-
ture by Abrishami et al. [78]. However, their work featured relatively low preci-
sion for the QRS and T waves (94% and 90%, respectively) and overall low recall
(91%, 94% and 91% for the P, QRS and T waves, respectively), and the authors
did not report delineation performance metrics. This work, however, merits from
having performed subject-wise splitting.

Lastly, Tison et al. [83] published a U-Net based model for the delineation of
12-lead ECGs, similar to our initial attempt published in [81]. Tison et al. pre-
sented an asymmetric U-Net which featured an appended structure at the base level
for producing 12-lead fusion and direct 8-fold upsampling from level 5 to level 2
in the decoder. The authors reported a high Dice score (P wave: 91 ± 3 %; QRS
wave: 94 ± 4 %; T wave: 92 ± 5 %). The authors, however, employed a private
ECG database, discarded recordings with large errors in a downstream task and
heavily rely on HMM-based post-processing for refining the results. Moreover,
their work is restricted to sinus rhythm recordings, compromising its generaliz-
ability on harder-to-delineate pathological beats. Although direct comparison is
difficult in this case, our network needs no post-processing, has been tested against
a standard database and was based on a well-founded architecture.

Besides the competitive delineation performance, we learnt several lessons for pro-
cessing ECG data with DL-based techniques. Firstly, when working with ECG
data, strong regularization techniques such as SDr and DA are of utmost impor-
tance, as the network easily overfitted the training data on the first epoch while
stagnating the validation loss. Secondly, semi-supervised pre-training tags pro-
vides largely increased performance, plausibly due to the larger input data vari-
ability. Given the scarcity of manually annotated data in the QT database, auto-
matically annotated data can give sufficient samples to learn better abstractions,
acting as a regularizer via data [110]. Finally, the application of ECG-based DA
methodologies seemed to increase overall performance of the network, when ac-
cess to a larger database or to low-quality labelling is not possible.
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An especially interesting result is drawn from the comparison of the model per-
formance when producing single-lead and multi-lead predictions. The multi-lead
fiducial computation suffers 1.89% and 4.03% drops in T wave precision and P
wave recall, as well as large (up to 15.22 ms of difference) in onset and offset stan-
dard deviations. These gaps are partially due to the employed evaluation method,
which compares the ground truth to the best predicted fiducial, irrespective of the
lead on which it has been produced. This methodology, adapted from [35] for
comparison with DSP-based methods, is a double-edged sword: while it decou-
ples the performance of the delineation to the specific lead fusion strategy, it also
masks the error it would inevitably produce. A second reason for the difference
in performance is that the multi-lead scenario has half the samples to learn a rep-
resentation from an input space that is doubly as large, as two leads are used as
input.

A last point raised by the results, the model model performance degradation on
higher capacity models, can be explained by the great imbalance between the net-
work’s capacity and the small amount of annotated data. This imbalance makes
it more plausible to fall into local minima without stronger regularization tech-
niques. In this sense, this work adds to the growing evidence that prior knowledge
imposition, such as the applied regularization strategies (SDr, DA, pre-training)
can be more effective than architectural modifications.

Although our network compares positively to other methods in the literature, many
can be improved upon. One of the main limitations of this work is the lack of more
up-to-date databases, containing a higher variability for a wider array of patholo-
gies. Despite ECG usually being the first information registered of the patient’s
cardiac condition, not many large annotated databases for ECG delineation ex-
ist. This might partially explain the systematic errors in the T wave in a reduced
amount of recordings, where the network predicted rises and falls as independent
waves for very long T waves (Figure 2.6). With the current database, counting
with 105 different represented ECG morphologies, our approach remains a proof
of concept. This data scarcity could be alleviated through the application of clever
data techniques, such as further semi-supervised on large, unannotated databases
[111] or through realistic simulation of ECG traces.

Besides the apparent database-related shortcomings, some improvements could be
made in the architecture. Temporal dependencies explicitly modeled with RNNs
[112] or attention-based models [113, 114]. Efficiency-based modifications could
also be explored, such as MobileNet [115], and model compression [116] for de-
ploying the model in CPU-only computers. Finally, domain-specific prior im-
position, model pre-training or alternative segmentation loss development would
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further improve performance. Other DA schemes such as varying the heart rate,
isoelectric line, specific wave shapes (e.g., voltage or width of P, QRS or T waves
within a beat), DA hyperparameter tuning and composing new beats from compo-
nents would also help, but the executions were made to keep an assumable com-
putational budget.

2.6. Conclusions

Despite its potential, DL for cardiac signal analysis is not well established in the
community [12, 47]. Some influencing factors are the lack of large-scale, quality
databases (such as UK BioBank [117] in the imaging community), lack of digi-
tal support (many hospitals still print ECGs), lack of per-beat annotated data and
high waveform variability due to, among others, pathological conditions, uncer-
tainty in lead positioning, body composition, gender or noisy recordings. This
work attempts at helping boost research in the signal-based cardiovascular field by
providing measurements over clinical data, facilitating further downstream tasks
by augmenting clinical decision-making without providing black-box diagnostic
solutions. By bridging the gap between the imaging and the signal communities
for cardiovascular diseases, we demonstrate that a DL model, properly trained and
with an adequate objective function, can provide good delineation with good gen-
eralization. The existing limitations hinder, however, the application of this model
into the clinical practice. Besides the need for accessing a larger pool of data,
prediction efficiency and model compression constraints must be met for its em-
bedding in clinical systems. Possible directions for expansion would be to apply
more extensive semi-supervised pre-training or data augmentation methodologies.

Data Availability

The dataset is publicly available at https://physionet.org/content/
qtdb/1.0.0/.
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CHAPTER

3

Generalizing electrocardiogram delineation:
training convolutional neural networks with
synthetic data augmentation

3.1. Introduction

The electrocardiogram (ECG) is one of the main measurement tools in clinical
practice given its rich insight into the cardiac electrophysiology, its ease of use
and its relative inexpensiveness compared to other diagnostic methods. The ECG
reflects the electrical activity of the heart, which can be logically grouped as a set
of waves corresponding to different phases in the cardiac cycle. Thus, the P wave
corresponds to atrial depolarization, the QRS corresponds to ventricular depolar-
ization and the T wave corresponds to ventricular repolarization [118]. Extracting
these waves (and their corresponding ST, PQ and TP segment pauses) allows the
quantification of objective measurements of the heart’s electrophysiological func-
tion, which can be used to characterize many pathological deviations from normal
sinus rhythm (i.e., absence of P wave in ventricular rhythms or ST segment eleva-
tion/depression in myocardial infarction) [118]. Moreover, these measurements
can be, in turn, employed in algorithms for diagnosis [119], either as clinical
thresholds that indicate deviations from normality or in machine learning algo-
rithms as extracted features for training and testing models [12]. In the case of the

This chapter is adapted from: Jimenez-Perez, G., Acosta, J., Alcaine, A. & Camara, O. Gen-
eralizing electrocardiogram delineation: training convolutional neural networks with synthetic data
augmentation. (Submitted).
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ECG, accurately and automatically measuring the different waves could aid in the
development of more precise decision support systems or monitorization tools by
aggregating information in multiple-lead registries for several heart cycles, which
is a highly time-consuming task that hampers the cardiologists’ workflow [12].

Many computational approaches exist for the automatic quantification of the ECG.
Most of these produce delineation of the electrocardiogram [35, 45, 53, 54, 77–
79, 81–83]. Delineation methods can be divided in two main groups: digital
signal processing (DSP) and machine learning (ML) based methods. The lat-
ter can be further subdivided into deep learning (DL) and non-DL (hereinafter
“hand-crafted”) methods.

Digital signal processing methods [35, 36, 45, 120] have the advantage of explic-
itly imposing priors on the biomarker extraction process, as they usually consist
in a series of data-transformation steps (i.e., application of the wavelet transform
(WT)) that reveal the cutoff points more clearly and a posterior rule-based al-
gorithm for aggregating this partial information. These methods, however, often
generalize poorly to unseen morphologies given their dependence on the produc-
tion of robustly engineered transformation and rule-based aggregation steps [12],
thus becoming more difficult to maintain.

Machine learning methods, on the other hand, have different associated prob-
lems that hinder their widespread adoption. Hand-crafted ML algorithms, in the
shape of Gaussian mixture models [53] or hidden Markov models (HMM) [54],
are difficult to train when using large amounts of annotated samples –which are
becoming commonplace in current state-of-the-art– and usually provide reduced
performance as compared to well-tuned DSP-based or DL-based solutions. The
reason for this is that feature engineering, a key step in hand-crafted ML-based
solutions, is costly and difficult to produce in a robust, fast and comprehensive
manner [47]. DL-based methods [78, 79, 81–83, 85, 121], on their behalf, provide
black-box solutions that are difficult to verify, require large amounts of annotated
data, have difficulties leveraging a priori information and need quality loss func-
tions for obtaining sensible data representations [12, 13, 60, 122]. Specifically,
works found in the state-of-the-art employ convolutional neural networks (CNN)
[77, 79], long short-term memory (LSTM) networks [78] and fully-convolutional
networks (FCN) [81, 83, 85, 121]. However, some of these works solely delin-
eate the QRS wave [77], whereas others only validate their performance on si-
nus rhythm [83, 85, 121] or show reduced performance compared to DSP-based
approaches [78, 79, 81, 85, 121]. Moreover, both hand-crafted- and DL-based
algorithms face difficulties when learning ECG data, given its high beat-to-beat
morphological similarity and the small size of current ECG databases for their
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usage in data-driven approaches.

For addressing the aforementioned issues with DL-based data analysis, a fully-
convolutional network (FCN) model was trained on the QT [89] and Lobachevsky
University (LU) [90] databases with a focus on direct data quantification, i.e., for
producing ECG delineations. Using the U-Net [80] as the base architecture, some
of the previously mentioned DL-based hindrances are addressed in three ways.
Firstly, we developed a novel synthetic data augmentation (DA) method for in-
creasing the database size with a priori information on normal and pathological
ECG behaviour. Secondly, two loss functions were developed: the BoundaryLoss,
which provide enhanced pixel accuracy close to the segmentation borders and is
similar to other approaches in the literature [123, 124], and the F1-InstanceLoss,
which promotes cohesiveness in the predicted pixels regions. Lastly, we explored
different modifications on the base architecture, namely different connectivity pat-
terns such as the W-Net [125, 126], attention-based mechanisms [127] and dif-
ferent number of pooling operations. To the best of our knowledge, these im-
provements have not been explored in the literature for ECG analysis yet. A more
rudimentary delineator has previously been published [82]; however, the current
approach displays key components that allow the algorithm to generalize better
against a wider array of morphologies, such as the application of the synthetic
DA, the novel loss functions and a much wider array of architectural variation
exploration.

The rest of the chapter is organized as follows. Section 3.2 describes the databases
and methodology employed. Section 3.3 summarizes the main results. Finally,
Section 3.4 discusses the obtained results in their context.

3.2. Materials and methods

This section firstly describes the used databases in Section 3.2.1 for then defin-
ing the methodology employed for their analysis. The proposed methodol-
ogy, on its behalf, can be divided into several steps. The first step consists
in the synthetic ECG generation from fundamental segments from a probabilis-
tic rule-based algorithm (Section 3.2.2). The second step involved the defini-
tion and training of a DL architecture, which is subdivided into the description
of the architecture itself (Section 3.2.3) and the employed loss functions (Sec-
tion 3.2.4). Finally, the evaluation metrics are described in Section 3.2.5. A fi-
nal section was added for detailing the specific experiments performed (Section
3.2.6). Our code will be made publicly available in https://github.com/
guillermo-jimenez/DelineatorSwitchAndCompose.
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Recording 151

(a) (b)

Recording 90Recording 95

Figure 3.1: Limitations of existing delineation databases for training deep learn-
ing models. Examples in the LU database: a) High beat-to-beat redundancy within
recordings; b) Incorrectly-annotated ground-truth (top lead) and correction (bot-
tom lead). Color code: P wave (red), QRS wave (green) and T wave (magenta).
Stripped segments highlight the errors.

3.2.1. Databases

The QT [89], the LU [90] and the database from the Ningbo First Hospital of
Zhejiang University [128] (hereinafter the “Zhejiang” database) were employed
for model training and evaluation. Specifically: the QT database was used for
synthetic DA and model training; the LU database, for synthetic DA and evalua-
tion; and the Zhejiang database, for model testing. The QT database contains 105
two-lead ambulatory recordings of 15 minutes at 250 Hz, representing different
pathologies (arrhythmia, ischemic/non-ischemic ST episodes, slow ST level drift,
transient ST depression and sudden cardiac death, SCD) as well as normal sinus
rhythm. The LU database is composed of 200 12-lead recordings of 10 seconds of
length, sampled at 500 Hz, comprising sinus and abnormal rhythms as well as a
variety of pathologies. The Zhejiang database, on its behalf, includes 334 12-lead
outflow tract ventricular arrhythmia (OTVA) recordings of variable size (2.8−22.6
seconds), sampled at 2,000 Hz, and was originally devised for identifying the site
of OTVAs, containing no delineation annotations. These databases are an appro-
priate sample for testing generalizability, since they present heterogeneity in their
represented pathologies, sampling rates, lead configurations (Holter and standard
12-leads) and centers of acquisition.

The existing delineation databases have certain characteristics that hinder the de-
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velopment of reliable delineation algorithms. On the first hand, although they
contain a relatively big amount of delineated cardiac cycles (3,528 and 1,830 an-
notated beats in the QT and LU databases, respectively), these present a high intra-
and inter-patient redundancy (i.e., very similar morphologies in different patients
for certain pathologies or during normal sinus rhythm and very stable ECG beat-
-to-beat morphology in the same trace), which complicates model training due
to reduced population variability (Figure 3.1a). Moreover, given the difficulty
and time-consuming process of delineating an ECG, some registries present de-
lineation errors such as skipped beats or inconsistent onset/offset predictions for
similar morphologies, among others. Those problems were addressed in two ways.
Firstly, those outlier beats were reannotated when necessary with the help of an ex-
pert cardiologist. Secondly, new ground truth (GT) was generated for the Zhejiang
database, which was not annotated for delineation purposes, and reserved for al-
gorithm testing as an independent set. Some examples of annotation corrections
can be seen in Figure 3.1b.

The data and GT, either real or synthesized, were then represented as binary
masks for their usage in DL-based segmentation architectures, where a mask of
shape {0,1}3×N was True-valued whenever a specific sample n∈N was contained
within a P, QRS or T wave (indices 0, 1 and 2, respectively) and False-valued oth-
erwise [82], bridging the gap with the imaging literature. Finally, the joint training
database was split into 5-fold cross-validation with strict subject-wise splitting,
not sharing beats or leads of the same patient in the training and validation sets
[82, 102]. Given that the proposed method employs synthetic DA, the generated
ECGs were also generated using data uniquely from the training set for each fold,
ensuring no cross-fold contamination.

3.2.2. Synthetic data generation

The structure of an ECG can be regarded as a combination of the P, QRS and T
segments, alongside the PQ, ST and TP pause segments, which represent different
phases of the electrical activation of the heart. The ECG is able to represent in its
trace many pathological and non-pathological changes, reflecting slight deviations
in its different constituting segments. The resulting “modular” structure can be
leveraged in data-driven approaches for generating synthetic data.

The developed generation pipeline, depicted in Figure 3.2, consisted in two main
stages: a pre-processing step that prepared the data for its posterior usage and
a DA step that created synthetic ECG traces through composing independently
generated cardiac cycles. The data pre-processing step, on its behalf, involved
cropping the delineated GT (in this case, the QT and LU databases) in its con-
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Figure 3.2: Synthetic electrocardiogam generation pipeline. The data pre-pro-
cessing step consists in: (1) delineating the ground truth; (2) cropping the different
beats contained in the ground truth into their constituent segments (P, PQ, QRS,
ST, T and TP), normalizing the QRS segment to have an absolute amplitude of 1,
and normalizing the rest of the segments’ as the amplitude fraction with respect
to their (normalized) relative QRS; and (3) fitting the amplitudes to a normal dis-
tribution for the QRS wave (fraction with respect to its original amplitude) and
log-normal distributions for the rest of the segments (fraction with respect to the
QRS’ amplitude). The synthetic data generation step, on its behalf, involves (1)
producing a set of global rules that will be common for all synthesized cardiac
cycles (in the example, the registry has bradycardia), (2) producing a set of rules
that will affect each cardiac cycle individually (in the example, the first cardiac
cycle, CC1, skips its P wave to simulate a ventricularly-mediated beat or a very
low amplitude P wave), (3) retrieving the specific segments and their amplitude
relationships from the “bags” of cropped segments for their composition into inde-
pendent cardiac cycles and (4) concatenating the segments into the final synthetic
trace.
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stituent segments and into separate “pools” of segments from which to draw in
subsequent stages. Additionally, the segment’s amplitude (relative to their associ-
ated QRS) was fitted into independent log-normal distributions, which would be
sampled from in the generation step to relate the amplitude of each segment to the
amplitude of the QRS in each cardiac cycle. The QRS segment amplitude was
normalized with respect to the maximum QRS amplitude in the whole registry
(comprising all leads).

The synthetic DA step has several sub-steps. First, a set of global generation rules
that affect all generated cardiac cycles were probabilistically generated for each
sample. These have been limited to ventricular tachycardia (VT), atrial fibrillation
(AF), atrioventricular (AV) blocks, sinus arrest (and its duration) and ST eleva-
tion/depression as a proof of concept. Second, a set of per-cardiac-cycle rules were
generated, such as the presence or absence of each specific segment (P, QRS+T,
PQ, ST, TP and U), whether the cycle corresponded to a ventricular ectopic (larger
QRS amplitude and duration, absence of P wave) or whether there was wave merg-
ing (P with QRS, QRS with T, T with the next cycle’s P). In the first and second
steps, the rules were defined by drawing samples from a uniform distribution and
applying the associated operation (global in the first case and per-cycle in the lat-
ter) in case they surpassed a pre-defined threshold.

Third, a set of segments were randomly selected from the segment “pools”. A
set of operations were then applied when extracting the segments from the pools
as well as on the resulting cardiac cycles to comply with the global and per-cycle
conditions. In particular, these operations comprised setting the segment’s ampli-
tude, interpolating the segment to a randomized number of samples to enforce as
much variability as possible, cropping the segment, merging of the segment with
the next (e.g., merging the T and the P waves, thus enforcing TP segment sup-
pression), sign-correcting the segment to match other cardiac cycles or applying
per-segment elevation/depression.

At last, the final synthetic signal and the GT were composed from the individ-
ual cardiac cycles. A set of post-composition operations were added to further
increase the generated signal’s variability, consisting in adding baseline wander
noise, interpolating to slower or faster rhythms, adding flat line noise at the sig-
nal’s edge, setting the global amplitude (multiplying the amplitude by a factor) and
defining the trace’s starting segment.

An important aspect to synthetic ECG generation is efficiency, as the samples were
generated online rather than offline to avoid restricting the approach to a fixed set
of previously drawn samples. This is, however, only relevant during the training
phases of the model, but can limit the options of operations that can be performed
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Figure 3.3: Randomly drawn samples from the developed synthetic data gener-
ator. The generator is able to produce samples of a variety of conditions such as
ventricular tachycardia or atrial fibrillation, among others. The samples presented
display ventricular ectopics (C, G, H), sinus rhythm (D, E, F), atrial fibrillation (C)
and ventricular tachycardia (A, B), and are generated alongside their ground truth.
Color code: P wave (red), QRS wave (green) and T wave (magenta).

on the algorithm; in fact, many of the chosen additions were limited in their scope
by this constraint, being restricted sometimes to oversimplified operations that of-
fer close-enough approximations of the underlying represented cardiac conditions.
Some randomly drawn samples from the synthetic data generator are shown in Fig-
ure 3.3.

3.2.3. Architecture

The U-Net [80] is a CNN based on an encoder-decoder structure, as depicted in
Figure 3.4. The encoder extracts high-level representations of the input data by
means of convolutional operations, which transform an input tensor by convolving
it with a trainable kernel, and pooling operations, which allow for reducing com-
putational complexity. The decoder, on the other hand, upsamples the high-level
encoder tensor to recover the original input’s resolution while aggregating partial
results obtained in different levels of the encoder. This direct feature aggregation
between the encoder and the decoder, in the shape of tensor concatenation, allows
for finer border definitions while avoiding gradient vanishing problems [80]. As
in the original article, the number of trainable convolutional filters is doubled after
every pooling operation and halved after every upsampling operation.
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Figure 3.4: Representation of the U-Net (encircled in yellow) and W-Net archi-
tectures (encircled in red, containing the U-Net). Both networks are instantiated
with 3 levels and 2 convolutional blocks per level. Arrows represent operations,
while blocks are indicative of output tensors. Convolutional filters are doubled at
each level, so that level Li has 2iN channels per level (with N being the starting
number of channels), whereas pooling and upsampling have a kernel size of 2.
Color code: convolutions (yellow), pooling operations (red), upsampling opera-
tions (blue), concatenation operations (black).

Many authors have experimented with the hyperparameters governing the U-Net,
in the shape of number of convolutional operations (width), the number of upsam-
pling/downsampling pairs (depth), starting number of convolutional filters, type
of convolutional operation, type of non-linearity and presence/absence of other
post-convolutional operations (batch normalization [129], spatial dropout [107]),
among others, which was partially covered in [82] for the QT database.

Other authors have explored refining further architectural changes. Given the myr-
iad of options, we restricted the exploration to the application of the W-Net archi-
tecture due to its good performance in other segmentation domains [130] as well as
the usage of self-attention mechanisms in the shape of efficient channel attention
(ECA). The W-Net [125, 126] involves the application of a second U-Net whose
input is the output of the first U-Net, thus approximately doubling the amount
of parameters for the same number of initial channels. The W-Net also concate-
nates the tensors at the decoder of the first U-Net with the encoder of the second,
similarly to the connections established between the encoder and the decoder of
a “vanilla” U-Net. This secondary structure makes the network deeper, which
usually presents increased performance [106]. Self-attention applies the attention
mechanism to a tensor, thus allowing different elements of the tensor to evaluate
their relative importance for obtaining a certain result. This usually improves over-
all model performance and explainability [68]. ECA, specifically, is an approach
to apply this mechanism to CNNs in an efficient manner [127].
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3.2.4. Loss functions

Two novel loss functions, the BoundaryLoss and the F1-InstanceLoss, were de-
veloped with the objective of enhancing the resulting prediction accuracy in two
ways: the F1-InstanceLoss enforces the retrieval of connected structures so that
a penalty term is induced if the number of predicted and present structures dif-
fer; the BoundaryLoss attempts at adapting more tightly to the target boundary by
means of computing the intersection-over-union of a subset of the original samples
present in a mask, as opposed to the usual Dice score computation. These losses
were based on the application of edge detectors, embedded into convolutional op-
erations (flagged as non-trainable and with fixed weights), allowing automatic dif-
ferentiation for posterior gradient propagation.

The first step consisted in applying the edge detector along all non-batch and
non-channel axes of the input tensors, isolating the segmentation boundary. In
the case of the BoundaryLoss, a large kernel size is employed (K ∈ Rn, n being
an hyperparameter), whereas in the F1-InstanceLoss the kernel size remains small
(K ∈ R3). In this case the Prewitt operator was employed as the edge detector,
which is defined as:

~KF1 =
(
−1 0 +1

)T
, ~KBound =

(
−1 0 ... 0 +1

)T
. (3.1)

The second step took the absolute of the edge-detected tensors for both the pre-
dicted and the GT masks. In the case of the BoundaryLoss, the third step involved
the calculation of the Dice coefficient between the resulting tensors. This has the
advantage of comparing the mask overlap on a reduced pool of pixels, increasing
the precision at the segmentation boundary, as is the case in usual image processing
pipelines. In the case of the F1-InstanceLoss, the third step was based on summing
the border activations along each non-batch and non-channel axis separately for
both the predicted and GT tensors, obtaining the number of discontinuities present
in the binary mask. These discontinuities act as surrogates of the onset/offset pairs
of the binary masks, thus allowing the computation of number of predicted and
GT elements (Pelem and GTelem, respectively) for their usage in usual precision and
recall metrics in a fully differentiable manner. The true positives (TP), false pos-
itives (FP) and false negatives (FN) metrics are then computed by clamping these
values, so that:

T P = |GTelem−max(GTelem−Pelem, 0)|
FP = max(Pelem−GTelem, 0)
FN = max(GTelem−Pelem, 0).

(3.2)
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Figure 3.5: Example of loss functions applied to a sample from the LU database.
The Dice loss measures the overlap between the ground truth mask (GT, top) and
the predicted mask (bottom). The BoundaryLoss computes a secondary mask for
isolating samples surrounding the boundaries of the GT and predictions, thus more
specifically penalizing onsets/offset mistakes. The F1-InstanceLoss locates the on-
sets/offsets pairs of the masks for using these as surrogates of precision and recall
metrics. In the example, the ground truth contains three T waves, whereas only
four T waves have been predicted; the F1-score loss for each individual wave is,
thus, 0, 0 and 0.167, respectively, given the false negative in the T wave. Color
code: P wave (red), QRS wave (green) and T wave (magenta).

Finally, the TP, FP and FN values are then used to compute the smoothed F1-score
between the input and target masks. The computation process of these loss func-
tions is depicted in Figure 3.5.

3.2.5. Evaluation

The model evaluation is based on the computation of detection metrics, i.e., the
model’s precision, recall and F1-Score, and delineation metrics, i.e., onset and off-
set errors on the true positives (mean, M ± standard deviation, SD). The compu-
tation of the metrics consisted in three steps. Firstly, the onset and offset fiducials
were retrieved from the predicted binary mask (described in Section 3.2.1) to ex-
press the sample of occurrence by retrieving the locations of value change (False
to True or vice-versa). Secondly, the GT and predicted fiducials were matched
through a correspondence matrix. Thirdly, the correspondence matrix was used to
compute the detection and delineation metrics.

The correspondence matrices between the true (P, QRS and T ) and predicted (P̂,
ˆQRS and T̂ ) fiducials were computed as:
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Pi j =


1 if P̂fid[ j] ∈ [Pon[i],Poff[i]]

or Pfid[ j] ∈ [P̂on[i], P̂off[i]]
0 otherwise

QRSi j =


1 if ˆQRSfid[ j] ∈ [QRSon[i],QRSoff[i]]

or QRSfid[ j] ∈ [ ˆQRSon[i], ˆQRSoff[i]]
0 otherwise

Ti j =


1 if T̂fid[ j] ∈ [Ton[i],Toff[i]]

or Tfid[ j] ∈ [T̂on[i], T̂off[i]]
0 otherwise

,

(3.3)

where fid∈{on, peak, off} is the specific fiducial to be explored, and i∈ [0,M], j∈
[0,N] are the total true and predicted fiducials for each of the waves, respectively.

These correspondence matrices were used to obtain the detection and delineation
metrics. The detection metrics (TP,FP and FN) were computed as follows: given a
correspondence matrix H, TPs were computed as elements that have been matched
(TP = ∑Hi j); FPs were elements of a predicted fiducial that did not match any el-
ement in the GT, corresponding to the difference between the number of predicted
fiducials and the cardinality of the matches (FP = N− card({(i, j) | Hi j = 1}));
and FNs were computed as elements of the GT that did not match any true fidu-
cial, corresponding to the difference between the number of true fiducials and the
cardinality of the matches (FP = M−card({(i, j) |Hi j = 1})). The TP, FP and FN
were in turn used to compute the model’s precision (Pr), recall (Re) and F1-score.
The delineation error, on its behalf, was computed as the M ± SD of the differ-
ence of the actual and predicted onsets and offsets of the TP in the correspondence
matrix:

min
i, j

wfid[i]− w̃fid[ j] s.t. Hi j = 1. (3.4)

These metrics were employed in turn for assessing the performance on the QT, LU
and Zhejiang databases. In the case of the QT database, to homogenize the eval-
uation criteria with the existing literature, the detection and delineation metrics
were computed for single-lead and multi-lead approaches, where the single-lead is
based on evaluating the performance of both leads in the Holter registry indepen-
dently, and the multi-lead consists in taking, for each beat, the lead that produces
the best adjustment. Contrarily, the LU and Zhejiang databases were evaluated
by fusing the individual lead predictions to obtain a single output prediction for,
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posteriorly, comparing this delineation with the annotated GT. The final prediction
was computed through combining the individual lead results using majority voting
of the 12 leads and the different models resulting from training on separate folds
of the QT database, forming an ensemble.

Finally, these metrics were also used to define the “best” performing model, which
was selected as the one producing good detection performance while attaining
the lowest possible delineation error for the QT (in the validation fold), LU and
Zhejiang databases. This was addressed through the calculation of two figures of
merit: the largest F1-score as detection performance and the smallest SD of the
error as delineation performance for all three databases across all waves, and re-
ported in Section 3.3.1. Moreover, this model ranking was employed for producing
ablations of the different modifications (Section 3.2) by isolating a single modified
factor while leaving the rest of the hyperparameters unmodified. These have been
reported in Section 3.3.2.

3.2.6. Experiments

The model’s performance was tested under an array of complementary tests to ad-
dress the contributions of the different elements to the results. Firstly, the impor-
tance of the synthetic DA was addressed by training the same model architecture
using real and synthetic data (real+synthetic), synthetic data only and real data
only. Identical computational budget was ensured by producing the same number
of batches (with identical batch size) for the same number of epochs by oversam-
pling the training database. Secondly, the importance of the BoundaryLoss and
F1-InstanceLoss was addressed also by doubling the number of executions, with
and without the proposed losses. The Dice score always remained as a baseline
for training in every configuration. Finally, the importance of the architectural
modifications was addressed. Several architectures were tested: U-Net for depths
5, 6 and 7; W-Net for depths 5 and 6; and W-Net with ECA for depth 5. In
all cases, the number of input channels was kept the same in the W-Net as in its
U-Net counterpart, resulting in models with increased number of parameters (ca-
pacity). These were selected to have as many candidate architectures as possible
but without compromising the computational budget of our equipment. In total,
66 different configurations were tested to address the model’s performance.

Some design choices were kept constant to avoid unfeasibly large hyperparame-
ter exploration. All model configurations used the same random seed (123456),
leaky rectified linear unit (ReLU) non-linearities, zero padding for preserving ten-
sor shape, kernels of size 3, batch normalization (BN), spatial dropout (SDr) [107]
(p = 0.25), Adam optimizer [64] (lr = 0.001) and the Dice loss alongside the de-
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This work
(SL)

This work
(ML) [82], SL [82], ML [35] [77]

P
w

av
e Pr 99.27 98.90 90.12 94.17 91.03 N/R

Re 98.38 99.72 98.73 94.70 98.87 N/R
OnE -1.2 ± 17.9 -0.8 ± 13.5 1.5 ± 22.9 -1.7 ± 17.8 2.0 ± 14.8 N/R
OffE 1.1 ± 16.6 -0.6 ± 12.7 0.3 ± 16.0 4.0 ± 16.1 1.9 ± 12.8 N/R

Q
R

S
w

av
e Pr 99.31 99.24 99.14 99.40 99.86 N/R

Re 99.94 99.97 99.94 99.28 99.80 N/R
OnE -0.5 ± 11.2 0.1 ± 7.5 -0.1 ± 8.4 -3.8 ± 14.6 4.6 ± 7.7 -2.6 ± 10.8
OffE 3.7 ± 13.1 1.7 ± 7.8 3.6 ± 12.6 5.4 ± 16.8 0.8 ± 8.7 4.4 ± 15.2

T
w

av
e Pr 98.73 98.24 98.25 96.36 97.79 N/R

Re 99.78 99.97 99.88 99.09 99.77 N/R
OnE 5.8 ± 39.6 5.2 ± 31.1 21.6 ± 66.3 19.1 ± 66.5 N/R N/R
OffE 2.4 ± 51.3 3.8 ± 37.2 4.6 ± 31.1 9.9 ± 46.3 -1.6 ± 18.1 N/R

Table 3.1: Precision (Pr, %), recall (Re, %), onset error (OnE, mean [M] ± stan-
dard deviation [SD], in miliseconds) and offset errors (OffE, M ± SD, in milisec-
onds) of our best performing single-lead (SL) and multi-lead (ML) models in the
QT database. N/R stands for “not reported”.

veloped losses. The BoundaryLoss employed a kernel size of 11 samples. The
ordering of operations after the convolutional operations was defined to agree with
the image segmentation literature (non-linearity → BN → SDr) [72, 104]. All
networks were trained using ECG-centered data augmentation, as described else-
where [82], comprising additive white Gaussian noise (AWGN), random periodic
spikes (RPS), amplifier saturation (AS), powerline noise (PN), baseline wander
(BW) and pacemaker spikes (PS) to enhance the model’s generalizability. All exe-
cutions were performed at the Universitat Pompeu Fabra’s high performance com-
puting environment, assigning the jobs to either an NVIDIA 1080Ti or NVIDIA
Titan Xp GPU, and used the PyTorch library [131].

3.3. Results

3.3.1. Best performing model

The best performing model according to the criteria presented in Section 3.2.5
was a self-attention W-Net model with 5 levels, trained with both real and syn-
thetic data, while excluding the F1-InstanceLoss and the BoundaryLoss. The
model obtained an average F1-score of 99.38% and a average delineation error
of 2.19± 17.73 ms and 4.45± 18.32 ms for the onsets and offsets, respectively,
across all waves and databases. The per-database and per-wave metrics of the
model (precision, recall, onset error and offset error) are reported in Tables 3.1
and 3.2 for completeness.
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Zhejiang
(this work)

LU
(this work) LU ([120])

LU ([36],
via [120]) LU ([85]) LU ([121])

P
w

av
e Pr 97.57 99.62 98.43 98.43 97.69 90.48

Re 98.65 99.81 96.44 96.44 98.01 97.36
OnE 2.46 ± 12.58 8.23± 9.01 2.2 ± 7.4 2.8 ± 7.5 -0.6 ± 17.5 3.4 ± 18.4
OffE 2.87 ± 12.43 3.01±10.40 -6.5 ± 10.7 -7.3 ± 10.1 -2.4 ± 18.4 -4.1 ± 19.4

Q
R

S
w

av
e Pr 99.53 100.00 100.0 99.56 99.93 98.27

Re 99.87 100.00 99.86 99.86 100.0 99.86
OnE 4.72 ± 13.35 4.27± 9.75 15.4 ± 14.6 18.4 ± 14.7 1.5 ± 11.1 1.7 ± 10.0
OffE 3.26 ± 11.91 4.00± 9.14 -3.8 ± 13.6 -5.4 ± 14.3 2.0 ± 10.6 -3.4 ± 12.3

T
w

av
e Pr 98.86 100.00 99.21 99.09 99.37 96.23

Re 99.86 100.00 98.85 98.85 99.68 93.51
OnE 8.73 ± 28.85 18.26±18.21 -1.3 ± 8.8 -2.6 ± 11.4 2.9 ± 23.7 9.2 ± 28.2
OffE -3.77 ± 24.32 -8.84±18.05 -1.2 ± 6.8 -3.3 ± 7.3 -2.4 ± 30.4 -6.0 ± 25.0

Table 3.2: Precision (Pr, %), recall (Re, %), onset error (OnE, mean [M] ± stan-
dard deviation [SD], in miliseconds) and offset errors (OffE, M ± SD, in milisec-
onds) of our best performing model in the LU and Zhejiang databases, obtained
through pixel-wise majority voting of the model developed for each fold trained
on the QT database.

3.3.2. Performance comparison of model additions

The best performing additions were the usage of synthetic DA, where using both
real and synthetic data reported an increased performance of 0.62% on average
with respect to the usage of real-only data. Interestingly, using synthetic data only
for model training still produced increased performance over using real-only data,
surpassing its performance by 0.35% on average. Boxplots of the models grouped
by data source can be visualized in Figure 3.6.

The second-to-best model performance addition was the usage of W-Net, which
produced 0.53% less delineation error and a reduction in its SD of 1.83 ms and
2.20 ms for the onset and offset metrics as compared to its U-Net counterpart (see
Figure 3.6). The third best model addition was the inclusion of the F1-InstanceLoss
and the BoundaryLoss functions, with added predictive performance of 0.26%
F1-score as well as reducing the offset error in 0.07 ms but increasing the onset
error in 0.17 ms (Figure 3.6). The rest of the improvements (usage of self-at-
tention, increase of model capacity) did not show a consistent effect on model
performance.

3.4. Discussion

Deep learning commonly displays improved performance over many hand-crafted
data analysis methodologies for a wide array of tasks [132], due to its ability to
leverage large pools of data, its adaptability to a wide range of tasks, the built-in
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Training data source
F1 Score On/Off Error (STD)

Real
Synthetic
Both

Model topology
F1 Score On/Off Error (STD)

U-Net
W-Net

Loss function
F1 Score On/Off Error (STD)

Dice loss
F1+Bound losses

Figure 3.6: Detection (left; higher is better) and delineation (right; lower is bet-
ter) performance of all models grouped by training data source, model topology
and employed loss function. Synthetic-only data (green) showed higher detection
and delineation performance than real-only data (magenta), whereas using both
sources produced the best results for both detection and delineation performance.
The W-Net (green) showed slightly higher detection and delineation performance
than the U-Net (magenta). Finally, using the F1-InstanceLoss and BoundaryLoss
(green) resulted in models with higher detection performance but slightly lower
delineation performance as compared to using Dice loss only (magenta).
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feature engineering and the availability of of open code and large size datasets
[60]. However, DL algorithms have a series of drawbacks that hinder their im-
plementation in data-sensitive contexts. Firstly, they have a large dependence on
the size of the training data [12], which might be difficult or expensive to acquire
and annotate in many contexts such as in clinical environments. Secondly, DL
models find difficulties when leveraging data priors, i.e., information that the sys-
tem’s designer knows must be implemented in the system. Some examples for the
ECG would be the P wave (which might have imperceptible amplitude or might
be masked within a QRS complex) or the fact that no T wave can exist without
a QRS complex. Finally, the black-box nature of the models, where most works
cannot guarantee that their predictions are not the result from spurious or acausal
relations within the data or data leakage [133].

Some solutions exist for addressing these issues. Data scarcity has been addressed
in the literature through pseudo labels [134] or through synthetic DA, either using
simulations [96] or generative adversarial networks (GAN), but these present effi-
ciency issues (simulations) or face difficulties when extending beyond the training
data manifold (data-driven approaches). Data priors, on their behalf, have been
enforced either by producing representations that explicitly exclude previously
known information via minimizing mutual information [122] or by providing the
specific prior as input data (e.g., by including the label as an input to the model,
such as in conditional GANs [135]), but the ability to explicitly control data-side
priors is still limited. Finally, some authors have attempted to enhance model ex-
plainability through filter visualization methods [136] or attention maps [68], but
these can only act as surrogates of decision rules and need interpreting on their
own. A middle ground for DL on data-sensitive contexts is to employ DL for
quantification tasks, such as segmentation. These intermediate networks do not
provide an instantaneous prediction (e.g., diagnosis), but present the advantage of
being immediately interpretable by an operator [13], avoiding placing confidence
in faulty predictions while enabling many downstream tasks [47]. This, however,
contrasts with the current scientific production; as an example, in the specific case
of DL-based analysis of ECGs, the vast majority of published works focused on
classification, which is often praised by the clinical community [137]. Some au-
thors have mentioned data scarcity, expensiveness of data annotation and lack of
generalizability of existing solutions as the main hindrances for training DL mod-
els for data quantification [12, 13].

This work addresses these issues by producing a network for ECG segmentation.
Given the small size of these databases, the models were enriched with a novel
synthetic DA strategy, which allowed for imposing expert knowledge through
constraining the topology of the generated data. These priors were further en-
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forced in the shape of two novel loss functions by minimizing the boundary er-
ror with respect to the reference (BoundaryLoss) and by maximizing precision
and recall metrics (F1-InstanceLoss). Some approaches exist for ECG delineation
[77, 78, 81–83] but, to the best of our knowledge, no approaches exist in the lit-
erature that combine a quantification task through explicit (rule-based synthetic
DA) and implicit (application of the BoundaryLoss and F1-InstanceLoss functions)
prior imposition.

Performance-wise, the developed models compare favorably with existing
DSP-based and ML-based approaches found in the literature. Our best performing
model surpassed the state-of-the-art in the usual precision and delineation met-
rics. We obtained an average F1 score of 99.38% and onset and offset errors of
2.19± 17.73 ms and 4.45± 18.32 ms with respect to the reference for all waves
in the QT database, as detailed in Table 3.1. These figures represent a precision
gain of up to 8% at some fiducials such as the P wave, recall values nearing 100%
and an overall reduced SD, surpassing the best-performing methods in most cat-
egories. Some delineation metrics, however, present decreased performance as
compared to DSP-based methods, which might be explained by their higher con-
trol on the decision boundaries that produce a certain prediction, as tailored to
specific datasets; to the difficulties at localizing onsets and offsets in smoothly in-
creasing/decreasing waves such as the P and T waves; and to the fact that, at the
250 Hz sampling rate, each sample accounts for a 4 ms difference.

Secondly, the trained model presented good generalization properties when pre-
dicting samples from the QT database (Table 3.1) as well as in the LU [90] and
the Zhejiang [128] databases (Table 3.2). Specifically, the performance on the LU
database surpasses all approaches in the literature and even displays F1-scores of
100% for the QRS and T waves, which hint to both the robustness of our model
and at the relative simplicity of the represented rhythms in the database. The per-
formance on the more challenging Zhejiang database does not reflect reduced per-
formance, providing metrics that closely resemble those of the QT database and,
thus, hinting at the good generalizability of the developed model. A prediction
from the Zhejiang database is depicted in Figure 3.7.

As presented in Section 3.3.2, the increased model performance can be directly
related to the adopted design decisions, i.e., the addition of synthetic DA, the
usage of the W-Net architecture and the implementation of the F1-InstanceLoss
and the BoundaryLoss. The inclusion of synthetic data supposed the best model
addition, consistently improving the performance of the model when comparing
models trained with and without synthetic DA. Interestingly, models trained ex-
clusively with synthetic data also displayed better metrics than those trained only
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Figure 3.7: Delineation prediction of the sample “922551” of the Zhejiang
database, containing a non-sustained ventricular tachycardia. Color code: P wave
(red), QRS wave (green) and T wave (magenta).
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with real data. The second-to-best model modification was the usage of the W-Net
architecture, which can be linked to an increase in model capacity. The third best
addition was the usage of novel loss functions. This addition, although it has been
shown to improve model performance across all runs, was not present in some of
the top models. Further research is needed to assess the mechanism these losses
use to increase model performance. The specific F1 and SD figures for all the
aforementioned model additions have been reported in Section 3.3.2.

As it has been discussed, training a delineation model with synthetic DA demon-
strates some advantages with respect to the state of the art besides purely enhanced
detection and delineation performance. Firstly, it allows for explicit prior imposi-
tion in the synthetic DA process, a philosophy that can be extended to many other
quantification domains (e.g., medical images or intracavitary electrocardiograms,
as in chapter 4). Moreover, the synthetic DA pipeline addresses the lack of gener-
alization of current existing delineation algorithms, reducing the impact of small
databases and low inter-sample variance that has hindered both ML-based and
DSP-based approaches [12]. An illustrative example is the good performance of
the algorithm on the Zhejiang database, which contains rhythms that have been en-
gineered into the synthetic DA but were not part of the training data, such as short
bursts of VT. Finally, the predictions produced by the model were much more
robust than other state-of-the-art approaches. For instance, some approaches dis-
played incoherent predictions, where the rise and fall of hyperacute T waves were
predicted as two separate waves, completely missed waves, mistagged waves, mis-
placed onset/offset pairs or noisy activations spanning 1-2 samples [78, 82].

There are, however, some limitations to the presented approach. Firstly, the set
of rules developed in the synthetic DA is too narrow. Many more conditions
could be represented, and richer modifications over the fundamental ECG seg-
ments (cropped P, QRS, T waves) could be applied, such as addition of delta, J or
epsilon waves, or atrial/ventricular hypertrophy. Secondly, the rise in computation
time tied to the on-the-fly DA, alongside the existing computational and tempo-
ral constraints that are common in the DL literature when training large models,
have limited our ability to provide exhaustive testing on the contributions of each
element to the final result, especially due to the large amount of tunable hyperpa-
rameters. The synthetic generator has been employed with some hyperparameters
that produced visually credible samples, but a rigorous validation is still lacking.
Moreover, despite the efforts placed on generating VT records, and despite the
success in a large percentage of predictions, the network still has difficulties find-
ing the onsets and offsets of very fast VTs/ventricular flutter. This, however, is
to be expected as even trained physicians have difficulties when delimiting said
rhythms. Finally, the network is sensible to input normalization. Given that the
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amplitude was normalized for sinus rhythm QRS to take values in the range [0.5,1]
(thus taken larger values for other rhythms, such as extrasystoles), we have opted
for normalizing the model’s input with a moving average over the signal, with a
window of 256 samples. This criterion could also be improved upon.

3.4.1. Conclusions

This work addresses some of the main challenges in ML-based clinical data anal-
ysis: the uninterpretability of classification-based models, the reduced database
size and the imposition of data priors. For this purpose, we developed a DL-based
pipeline for the automatic quantification of the electrocardiogram through novel
prior imposition strategies in the shape of synthetic DA and shape regularization
losses.

The produced network has demonstrated remarkable detection and delineation
metrics, as well as good generalization when predicting a variety of samples of
different open source databases. This allows its application to a large number of
downstream tasks, allowing the production of automatic and objective metrics over
clinical data, thus becoming an enabling technology for further automatization of
ECG analysis. It, however, presents some limitations. Firstly, the synthetic DA
produces a dependence on input data normalization when predicting input sam-
ples, although windowing and normalizing to the median usually performs well.
Secondly, a larger array of cardiac conditions in the synthetic DA algorithm and a
more in-depth exploration of the generative parameters should be performed. Fi-
nally, a more exhaustive testing of the performance gain of each model addition
could be explored.
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CHAPTER

4

Delineation of intracavitary electrograms
for the automatic quantification of hidden
slow conduction

4.1. Introduction

As mentioned in chapter 1, the heart is an electro-mechanical organ in which its
mechanical contraction (pumping) is triggered by the transmission of an electrical
impulse (conduction) throughout the myocardium. The effect of different cardio-
vascular diseases (CVD) are often reflected in the normal behaviour of the electri-
cal conduction system of the heart (ECS), either caused by disruption of normal
conduction patterns or being reflected in them. Thus, understanding any conduc-
tion deviations is a key tool for diagnosis, which gave rise to minimally invasive
electrophysiology (EP) procedures. These interventions consist in the introduc-
tion of catheters, equipped with small electrodes at their tip, which are used to
measure sums of myocardial action potentials on small areas in the endocardial
or epicardial surfaces. These registries of intracavitary electrocardiogram (iECG)
signals are the main diagnosis and treatment endpoint in procedures such as ra-
dio frequency ablation (RFA), as electrophysiologists interpret electrical activation
patterns on key locations in the myocardial surface to assess whether a conduction

This chapter is adapted from: Jimenez-Perez, G., Arana-Rueda, E., Frutos-López, M., Ca-
mara, O., Pedrote, A. & Acosta, J. A Deep-Learning-based electrogram delineator for Electrophys-
iology procedures. (In Preparation).
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pathology might be responsible for the perpetuation of certain CVD, such as car-
diac arrhythmias (CA) [3, 24].

The depolarization waves in iECG recordings are physically captured as a series
of local activation patterns or electrograms (EGM). In normal cardiac tissue, these
EGMs are visualized as isolated high-frequency deflections corresponding to a
single passing of the depolarization wave. Existence of factors that alter the elec-
tro-mechanical properties of cardiac tissue (CVDs such as myocardial infarction,
remodelling or genetic factors) can alter the morphology of an EGM and cause de-
polarization waves to conduct unevenly on the myocardial surface, which is cap-
tured by diagnosis catheters as fractionations in the local components (local fields,
LF) or as late potentials (LP) in the EGM [20, 22]. Other conditions, such as
atrioventricular reentrant tachycardias (AVRT) or accessory pathways (AP), per-
petuate due to the existence of reentry circuits that bypass the normal sinoatrial
(SA) node impulse origin. These conduction abnormalities are reflected in the
morphology of LFs, which is often used as the main diagnostic markers during
RFA.

Diagnosis of conduction abnormalities is performed by elucidating which portions
of tissue show decremental properties or conduct electricity when they should not.
Decrement occurs when local components are delayed with respect to a reference
(e.g. the QRS complex) when stimulated at faster frequencies, as compared with
the previous cardiac cycle. Decrement might be caused by (a) physiological struc-
tures such as the AV node, in which normal conduction entails decremental con-
duction at the node; and (b) anatomical substrates, where strands of partially viable
tissue present decremental properties and unidirectional blocks that might lead to
reentrant CA. Current clinical guidelines hint at the diagnostic value of decremen-
t-evoked potentials (DEEP, also known as hidden slow conduction, HSC), which
are portions of tissue presenting hidden decremental conduction which are un-
covered using extrastimuli in specific locations in the myocardium [21, 28, 138].
Moreover, some conditions such as APs and AVRTs are diagnosed based on the
presence or absence of decrement of atrial components as measured in the coro-
nary sinus (CS) with respect to the ventricular components, effectively disam-
biguating between AV-mediated conduction or otherwise.

Despite the importance of localizing the distinct local EGM components, which
could aid in localizing target ablation sites during AF interventions or to com-
pare waveforms in VT procedures to assess the existence of decrement, current
software solutions do not perform automatic signal quantification [22]. In simple
procedures, the operators must manually perform interval quantification to assess
the existence of decrement during pacing or extrastimuli protocols. Even 3D elec-

72



4.1. INTRODUCTION

troanatomical mapping systems (EAM), the state-of-the-art solution for complex
RFA procedures, only localize the LFs with the largest deflection within a cardiac
cycle for the computation of diagnostic markers such as the local activation time
(LAT) [22]. Moreover, the relative simplicity of existing quantification algorithms
make them error prone; during RFA procedures, EAM operators must often reas-
sign the detected earliest activation in many locations due to incorrect LAT iden-
tification, to avoid erroneous interpretations of the depolarization wave’s direction
[22]. Some computational solutions for the detection of individual waves exist
[42, 139], but even fewer solutions exist for the delineation of local EGM activa-
tions [40, 140, 141]. Moreover, existing delineation solutions are based on digital
signal processing (DSP) algorithms and suffer the same drawbacks as their elec-
trocardiogram (ECG) counterparts (chapter 2): they are difficult to tune robustly
and, given the case, might perform poorly in too complex signals. Moreover, these
solutions concentrate on the delineation of the wave with the largest amplitude, as
opposed to a full delineation of all EGM components.

In recent times, deep learning (DL) algorithms have gained popularity for the auto-
mated analysis of data, given their minimal pre-processing requirements and their
high performance on a wide variety of tasks, surpassing the state-of-the-art in most
data-driven analyses. In the specific case of cardiac signals, some solutions exist
for the automatic quantification of ECG signals [78, 79, 81–83, 85, 121]. How-
ever, not many algorithms have been developed for analyzing iECG signals, and
they revolve around classification [74]. In this work, and similarly to the setup
used in chapter 3, a fully-convolutional network (FCN) was trained on a dataset of
signals from the CS, retrieved from the Hospital Universitario Virgen del Rocío in
Sevilla, Spain. The dataset was manually annotated for EGM delineation, localiz-
ing the onsets and offsets of all local components (LFs, FFs, stimulation artifacts).
The U-Net [80] and W-Net [125] were used as base architectures alongside a spe-
cialized synthetic data generation method tailored towards iECG signals. More-
over, the Dice loss, which is the usually employed metric for training segmentation
algorithms, was contrasted to the usage of novel losses that favoured a high sen-
sitivity (as opposed to maximizing the F1 score) and minimal delineation error
[123, 124]. Finally, the addition of self-attention mechanisms and their effect on
model performance was explored [127]. To the best of our knowledge, this is the
first developed approach for iECG signal delineation, bridging the gap between
the ECG and iECG communities.

The rest of the chapter is organized as follows. Section 4.2 describes the used
databases, whereas and methodology employed. Section 4.4 summarizes the main
results. Finally, Section 4.5 discusses and contextualizes the obtained results.
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Figure 4.1: Generated ground truth for an intracavitary electrocardiographic
recording at the coronary sinus. The green and magenta overlays represent, re-
spectively, local field activations from the coronary sinus and the ventricular far
field. The recording presents ventricular pacing and decremental properties.

4.2. Materials

A proprietary dataset for the automatic delineation of EGMs was developed in the
Hospital Universitario Virgen del Rocío (Sevilla, Spain). This dataset comprises
312 iECG recordings of variable size taken from 77 distinct patients who under-
went AP or AVRT ablation. The LF and FF activations were annotated indepen-
dently, generating 20,671 local and 13,354 far EGMs. For enabling the prediction
of stimulation onsets, 318 stimulation artifacts were annotated. All interventions
used a decapolar catheter localized in the CS, which registers 5 bipolar EGMs:
CS-P (proximal), CS-1, CS-2, CS-3 and CS-D (distal). The acquisitions were
produced during pacing or application of extrastimuli, during which the decre-
mental properties of the AV node were tested for diagnosis. The iECGs were cap-
tured with a BARD LABSYSTEM PRO EP Recording System© at 1,000Hz sam-
pling frequency, encoded with 16 bits resolution (signed short int, range [-32,768,
32,767], 2.5 µV/bit resolution), and bandpass-filtered within [30, 500] Hz. Figure
4.1 shows an annotated EGM signal. The data was annotated using a custom-built
system, written in Python and using the Bokeh library [142]. The annotation sys-
tem employed chapter 3’s ECG delineator to localize the P, QRS and T waves for
aiding in visually discriminating between LF and FF activations during annota-
tion. Moreover, chapter 3’s model was also used for localizing the QRS complex’s
barycenter to find a common fiducial that allowed the isolation of a single cardiac
cycle of a single electrode pair, which is used as input to the DL model during
training and prediction. The RR’ representation disambiguated better between LF
and FF components (which might have similar frequential properties) and is the
usual processing performed in EAM systems [29].

Due to the lack of externally annotated datasets in the literature and to time con-
straints, the same database was used for model training and evaluation, while en-
suring no patient cross-contamination in different sets. Given the substantial intra-
patient similarity (as discussed in chapter 3.2.1), where two consecutive beats of
the same patient present high correlation, the dataset was split at the patient level,
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comprising all bipolar EGMs of all acquired registries. Thus, 10% of the patients
were selected for validation, 25% for testing and the rest for training (8, 20 and
49 patients, respectively). The training and validation sets were solely employed
for synthetic data generation, whereas the real data contained in the test set was
used for assessing the model’s performance. Similarly to chapter 3.2.1, the anno-
tations were represented as binary masks for their usage as optimization targets in
the segmentation architectures, where a mask of shape {0,1}3×N was True-valued
whenever a specific sample n ∈ [0,N] was contained within a stimulation, LF or
FF activation (indices 0, 1 and 2, respectively) [82]. The value of N depended on
the duration of the cardiac cycle.

4.3. Methods

This section describes the employed methodology for the analysis of iECGs. The
analysis pipeline is very similar to the methodology exposed in chapter 3 with
respect to the DL architecture and evaluation metrics. The main difference lies
within the synthetic data generation pipeline (Section 4.3.1) and in the performed
experiments (Section 4.3.3). The rest of the methodology is shared among the two
approaches.

4.3.1. Synthetic data generation

As discussed in Section 1.1.5, the impulses recorded in the myocardial wall can
represent local activations (local field, LF), which are captured as high-frequency
components, and distant activations (far field, FF), which usually only retain their
low-frequency components. Structurally, iECGs are composed of one or several
LF activations (local potentials and any isolated LP), might contain a FF activa-
tion and segments of electrical silence (or rest) between them. Moreover, some
segments might overlap, as is the case with LF/LPs and FF activations. Taking ad-
vantage of this modular structure, an algorithm for generating synthetic data was
developed in this work. The algorithm has two major steps: data pre-processing,
which crops the original signal into its basic components, and signal generation,
which draws fragments from the independent set of segments and stochastically
composes the signal according to some pre-defined rules. Figure 4.2 schemati-
cally represents the synthetic data generation pipeline.

Data pre-processing

As in chapter 3, data pre-processing involved a series of steps on the annotated
data. Firstly, the ground truth is cropped in its fundamental segments, separating
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Figure 4.2: Schematic representation of the synthetic data augmentation pipeline.
The global conditions govern the selection of fragments and other factors such
as the global amplitude or the noise level of the synthetic registry. After global
rule generation, three cardiac cycles are generated (cle f t , ccenter, cright) and a set of
per-cycle rules are generated (e.g., the cycle might not contain a FF due to an atri-
oventricular block or the cycle contains a stimulation artifact). Then, the specific
segments are drawn from the “sets of segments” (local fields, LF; far fields, FF
and late potentials, LP) alongside their localization and amplitudes (from the com-
puted conditional amplitude distributions). Thirdly, the three cardiac cycles are
independently generated with the rule-based algorithm, localizing each fiducial at
specific positions in each cardiac cycle, where cle f t , ccenter and cright have loca-
tions between [0, 1], [1, 2] and [2, 3], respectively. Finally, the cardiac cycles are
summed and cropped to isolate the central cardiac cycle, producing the final syn-
thesized signal (dotted lines indicate approximate positions of the QRS complex.
The ground truth is generated through the locations of the different fiducials.
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into independent “sets of segments” the LF, FF, LP, stimulation and rest segments.
The FF and rest segments were low-pass filtered (100Hz, 2nd order Butterworth
filter) to suppress any noise or unsegmented LP in its trace. Moreover, each seg-
ment was onset/offset corrected so that the voltage value of the cropped excerpt
started and ended in zero, thus avoiding errors when composing the synthetic sig-
nal. Then, the LF morphologies were subdivided into LF and LP morphologies
according to whether the segment displayed a length shorter than 25 samples as a
rule of thumb.

Secondly, once the segments had been cropped and zero-corrected, their ampli-
tudes were fitted into log-normal distributions, which best resembled the original
data distribution (Figure 4.3, left). Given the very distinct amplitude relationship
of FF and rest segments with respect to the LF’s amplitude (Figure 4.3, right; the
amplitude of the FF and rest segments is relatively higher in cardiac cycles where
the amplitude of the LF is low), the amplitude of the FF and rest segments were
fitted relative to the LF’s amplitude. For this purpose, the amplitude of the LF was
split into 10 bins (dividing the [0,1] interval in increments of 0.1) and, for each bin,
the sub-set of FF and rest segments that accompanied each specific LF fragment
was selected. Once the splitting had been performed, 10 amplitude distributions
were fitted to model the amplitude relationship of the FF and rest segments. The
amplitude of the LF and LP segments, on their behalf, were fitted independently
of the amplitude of any other fiducial.

Finally, once the amplitudes had been fitted, all segments were normalized to their
maximum absolute value (“max abs” scaling), homogenizing their amplitudes in
the [-1, 1] range for posteriorly multiplying them with amplitudes drawn from the
conditional distributions. The inputs to the data generation algorithm are, thus, the
segments as cropped in the different sets of segments and the amplitude distribu-
tions, alongside the generation hyperparameters.

Synthetic trace generation

The synthetic generation step is aimed at producing bipolar EGM traces corre-
sponding to single cardiac cycles for algorithm training. Given the dyssynchrony
existing in some patients between the location of the QRS complex in the surface
ECG and the specific wave locations in the iECG recording (where, e.g., a FF seg-
ment can start after the QRS complex in the surface ECG), three cardiac cycles are
generated for each patient, and the left- and rightmost are cropped to preserve the
context of the central cardiac cycle. Given that some properties might coincide be-
tween the three cardiac cycles, some global conditions that affect all cardiac cycles
are generated, which comprise:
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Figure 4.3: Distribution of amplitudes (left) and conditional amplitudes (right) of
the cropped segments after normalization. The histograms represent, in blue, the
amplitudes of the segments and, overlaid in orange, the result of drawing the same
number of samples from a log-normal distribution fitted with the amplitude data,
demonstrating a good fit (x axis: amplitude; y axis: samples). On the right, the
kernel density estimate distributions of the amplitudes is shown with respect to the
amplitude of the local component with the highest amplitude in the cardiac cycle.
The plots demonstrate a larger segment amplitude at smaller local field amplitudes
(x axis: amplitude of local field; y axis: relative amplitude of segment).
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(bool) Same morphology: whether the waveforms retrieved in the indepen-
dent sets of segments (LFs, FFs, LPs if any and rest) are the same for all
cardiac cycles.

(float) Global amplitude: multiplicative factor for the overall registry am-
plitude, randomly drawn from a normal distribution centered in 1.

(int) Beats per minute: duration of the cardiac cycles, in samples.

(float) Interpolation factor: multiplicative factor (75%-125%) to be used
for interpolating the resulting segment. This changes the cardiac cycle dura-
tion but also extends the variability in the waveforms of the sets of segments
by “compressing” or “expanding” them.

(bool) Has stimulation: whether to include stimulation artifacts in the
recording.

(float) RR’ percentage: percentage of other cycles to preserve; changes in
each execution. E.g. if RR’ percentage is 150%, a 25% of the cardiac cycles
of the left and right are preserved.

(int) Maximum LPs: maximum number of LPs to include in the cardiac
cycle, tied to the RR’ percentage.

(bool) Has atrial fibrillation: whether to include more than one “main” LF
in the cardiac cycle.

(float, float) Noise level, noise factor: parameters governing random Gaus-
sian noise generation. The noise level (random normal centered at 1) indi-
cates the overall noise amplitude whereas the noise factor acts as a (dividing)
normalization term.

(bool) Has baseline: whether to include baseline wander. Currently it is
modelled as a sum of sine waves.

Once the rules affecting all cardiac cycles have been determined, each cardiac
cycle is independently composed and merged into the final waveform. For this
purpose, different segments (LFs, FFs, LFs, LPs and rest segments) and their re-
spective amplitudes are drawn from the sets of segments and amplitude distribu-
tions for each cardiac cycle. Given a pre-defined probability, some segments might
not be drawn for a specific cardiac cycle (e.g., in the case of AV block, no ventric-
ular activation might take place). If the “same morphology” boolean is toggled,
the same segments are drawn for all cardiac cycles, although the amplitudes might
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vary. Finally, each segment is given a relative position (in the [0, 3] range) that lo-
calizes it within the left ([0,1]), central ([1,2]) or right ([2,3]) cardiac cycles. The
leftmost and rightmost cardiac cycles, as mentioned before, are partially cropped
to isolate a single cardiac cycle for its analysis.

After the segments, amplitudes and locations are drawn, the signal is composed.
Firstly, the rest segments and their respective amplitudes are concatenated to form
a baseline upon which to place the rest of the segments. Then, each segment
is multiplied by its amplitude and located in the trace according to its selected
position. For this purpose, the waveforms (zero-corrected at the onset and offset)
are summed to the rest segment baseline starting at a specific index within the
baseline, placing them spatially into the registry. The specific location is recorded
to generate the ground truth as a binary mask, indicating the precise onset and
offset of each accidental. To maximize variability, each segment is given a chance
to be interpolated to 75%-125% its original length and a chance to be merged with
another waveform using Mixup [143], a data augmentation strategy that produces
a linear combination of different waveforms. Finally, once all segments are added
into the baseline, the noise and baseline wander are added to the trace and the final
segment is cropped according to the value of “RR’ percentage” generated in the
global conditions.

4.3.2. Architecture

The U-Net [80] is a convolutional neural network (CNN) which is organized as
an encoder-decoder structure. The encoder-decoder is a type of artificial neural
network (ANN) topology revolving around the usage of an encoder for obtaining
highly abstract data representations (usually tied to reducing input complexity),
and a decoder to leverage this abstracted information into a specific output [60].
In the case of the U-Net, the encoder and the decoder are conformed of convo-
lutional operations, which act similarly to trainable filters and emphasize local
relationships in the data (either spatial or temporal, depending on the data to be
analyzed) and pooling/upsampling operations, which reduce/increase the tensor
size and allow models to contain a larger amount of trainable filters in the last lay-
ers of the encoder. Moreover, the encoder and the decoder are connected by “skip
connections”, which recover the input information at different levels of abstraction
for (a) allowing a more precise definition of segmentation borders which would be
lost with the pooling layers, and (b) preventing problems arising from vanishing
gradients when optimizing the model’s weights [80]. The number of trainable con-
volutional filters is usually doubled after every pooling operation and halved after
every upsampling operation.
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U-NetX
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L3
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Figure 4.4: Representation of the U-Net (encircled in yellow) and W-Net archi-
tectures (encircled in red, containing the U-Net). Both networks are instantiated
with 3 levels and 2 convolutional blocks per level. Arrows represent operations,
while blocks are indicative of output tensors. Convolutional filters are doubled at
each level, so that level Li has 2iN channels per level (with N being the starting
number of channels), whereas pooling and upsampling have a kernel size of 2.
Color code: convolutions (yellow), pooling operations (red), upsampling opera-
tions (blue), concatenation operations (black).

Many alternatives based on the U-Net exist due to its wide usage and overall high
performance [144]. Most works explore altering the model’s original design deci-
sions, such as the number of convolutional operations before any pooling opera-
tion (hereinafter, model “width”), the number of times the model reduces the input
size (model “depth”), number of convolutional filters, employed non-linearity or
choice of regularization [82]. Some authors have even developed heuristics for au-
tomatically adjusting the model’s training parameters and reducing the developer’s
workload [145]. Other authors have attempted at incorporating state-of-the-art ad-
ditions such as self-attention mechanisms [114], which allow the weights of an
operation to be controlled by a secondary set of weights, effectively controlling
feature importance [68]. As an example, in a classification task whose objective
is predict whether a traffic light is red, such attention mechanism might outweigh
the usage of the red color channel as opposed to the green or blue channels. While
some adaptations exist for convolutional operations, this work employs efficient
channel attention (ECA) due to its low impact on prediction times [127].

Other works explore expanding the topology, either by embedding the U-Net
into another structure [125, 126, 146] or by increasing the model’s connectivity
(number of times the output tensors from each convolutional operation are used)
[147, 148]. In this work, the W-Net architecture [125] was employed given its
good performance in other segmentation domains, such as the segmentation of
echocardiographic images [130]. The W-Net involves using two U-Nets, where
the second network takes as input the output of the first network, and employ
“skip connections” not only between each encoder/decoder pair but also between
the decoder of the first U-Net and the encoder of the second. This second U-Net
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increases the model’s capacity, which is usually tied to better performing models
[106]. A visual representation of the U-Net and the W-Net are presented in Figure
4.4.

4.3.3. Experiments

The model performance was assessed by training a wide array of configurations to
test the contribution of all elements in the model. Firstly, the best architectural con-
figuration, similar to those referred to in chapter 3, was assessed by comparing the
performance of the U-Net and W-Net (for depths 5 and 6), both with and without
ECA. Secondly, the effect of using a pre-trained model for the task of ECG delin-
eation, taking the weights from the experiments in chapter 3, was tested. Finally,
the effect of applying a loss function that forces higher sensitivity was explored
by doubling the executions, comprising training models with and without the loss
function. The loss function employed the Prewitt operator described in Equation
3.1 for computing the true positives (TP), false positives (FP) and false negatives
(FN) as described in Equation 3.2, which are in turn employed for computing the
classic sensitivity score: Se(%) = T P/(T P+FN).

Some aspects were kept constant throughout all experiments. On the one hand, as
reported in chapter 2 [82], the application of some regularization strategies such
as SDr or certain types of DA was associated with better performance, so these
were always applied. A random seed (123456) was employed for reproducibil-
ity, the Adam optimizer was used [64], leaky ReLUs [149] were selected as the
non-linearities of choice, and the number of base channels was kept the same (32).
The goodness of fit was evaluated through the computation of the detection and
delineation metrics described in chapter 3. A secondary metric was developed due
to the large number of LPs detected within the confines of FF activations, con-
sisting in avoiding counting these as false positives. Finally, due to limitations
in time and computational budget, training was solely performed using synthetic
data. However, as reported in chapter 3, this was associated with only a slight
decrease in performance as compared to using synthetic and real data, and outper-
formed training the model with real data only. All executions were performed with
a NVIDIA Titan Xp GPU, and used the PyTorch library [131].

4.4. Results

The best performing model according to the global F1 score was a W-Net model
with 6 levels, optimized solely with the Dice loss. The model obtained precisions
of 76.44%, 74.73% and of 100.0%, and recalls of 94.84%, 95.23% and 100.0% for
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Precision (%) Recall (%) Dice (%)
Onset Error
(M ± SD)

Offset Error
(M ± SD)

Local Field 76.44 94.84 77.37 4.20 ± 13.89 -6.45 ± 19.86
Far Field 74.73 95.23 73.22 3.74 ± 19.26 -5.71 ± 21.91
Local+Far Field 90.02 97.53 83.52 9.04 ± 26.09 -10.65 ± 29.32
Stimulation 100.0 100.0 94.78 -0.68 ± 1.27 -

Local Field (≤ 25ms) 75.04 67.98 45.41 1.51 ± 1.41 -5.69 ± 2.91
Local Field (> 25ms) 80.77 96.18 78.68 4.04 ± 13.42 -3.65 ± 16.67

Table 4.1: Precision (%), recall (%), Dice score (%), onset error (mean [M]± stan-
dard deviation [SD], in miliseconds) and offset errors (M ± SD, in miliseconds)
of our best performing model.

localizing LF activations, FF activations and extrastimuli, respectively. The model
also attained an average delineation error of 4.20 ± 13.89 and -6.45 ± 19.86 ms
when localizing the LF’s onsets and offsets, respectively; and of 3.74 ± 19.26 and
-5.71 ± 21.91 ms when estimating the onsets and offsets of the FF. The localiza-
tion of stimulations was very precise, with onset errors of -0.68 ± 1.27 ms. Given
the ambiguity between some segments and the errors in the dataset annotations
(as will be discussed in Section 4.5, a metric was obtained by merging the binary
masks of LF and FF components, which obtained a precision, recall, onset and off-
set errors of 90.02, 97.53, 83.52, 9.04± 26.09 and -10.65± 29.32, respectively. A
detailed description of the per-wave metrics of the model (precision, recall, Dice
score, onset error and offset error) is reported in Table 4.1.

A secondary set of measurements was computed by discarding as false positives
any LF that occurred within the confines of a FF, as described in Section 4.3.3.
With this secondary metric, the model obtained precisions of 91.28%, 77.78% and
of 100.0%, and recalls of 94.86%, 95.25% and 100.0% for localizing LF activa-
tions, FF activations and extrastimuli, respectively. The model had an average
delineation error of 3.89 ± 14.56 and -6.16 ± 20.25 ms when localizing the LF’s

Precision (%) Recall (%) Dice (%)
Onset Error
(M ± SD)

Offset Error
(M ± SD)

Local Field 91.28 94.86 77.37 3.89 ± 14.56 -6.16 ± 20.25
Far Field 77.78 95.25 73.22 3.47 ± 20.03 -5.44 ± 22.82
Local+Far Field 91.39 97.57 83.52 7.85 ± 28.52 -9.67 ± 31.77
Stimulation 100.0 100.0 94.78 -0.68 ± 1.27 -

Local Field (≤ 25ms) 94.53 67.98 45.41 1.51 ± 1.41 -5.69 ± 2.91
Local Field (> 25ms) 94.06 96.19 78.68 4.0 ± 13.51 -3.6 ± 16.76

Table 4.2: Precision (%), recall (%), Dice score (%), onset error (mean [M] ±
standard deviation [SD], in miliseconds) and offset errors (M ± SD, in milisec-
onds) of our best performing model after discarding small local field activations
contained within far field activations.
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Figure 4.5: Boxplots of the contributions of the different model additions to the
overall model performance, divided into the local field (left) and far field (right).
Y axis corresponds to the F1 score.
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onsets and offsets, respectively; and of 3.47 ± 20.03 and -5.44 ± 22.82 ms in the
FF. A more in-depth report of the per-wave metrics of the model is reported in
Table 4.2.

With respect to the model additions, the increased model capacity (either with
W-Net or with more model depth) and model pre-training with the weights result-
ing from chapter 3. Other effects, such as the addition of custom data losses, were
generally detrimental for model performance. Figure 4.5 summarizes the effect of
the different model additions. Finally, some representative examples of the best
performing model’s performance have been plotted in Figure 4.6 and Figure 4.7.
To aid in the discussion, the samples were grouped according to the different types
of errors produced by the network (or absence of). These can be divided into four
main categories: good samples (Figure 4.6, top), annotation errors in the database
(Figure 4.6, bottom), errors due to increased model sensitivity with respect to the
ground truth (Figure 4.7, top) and true network errors (Figure 4.7, bottom).

4.5. Discussion

Electrogram segmentation is a crucial task for advancing in the automatization of
EP procedures. Currently, physicians must manually produce basic measurements
when performing interventions such as AVRT or AP ablation for determining
decremental properties or to measure basic intervals. The development of more ad-
vanced quantification tools is a must for reducing physician workload, intervention
times, complications and intervention cost [22]. However, even state-of-the-art
EAM systems solely perform basic detection of the most salient wave within a
cardiac cycle, which is in turn used as a single figure of merit for derived met-
rics such as the LAT. The incapability of locating each individual wave’s onset
and offset, or simply detecting each wave individually, is limiting; it hampers the
system’s ability to compare wave morphologies, which has become of utmost im-
portance in recent times due to the development of better diagnostic markers for
catheter ablation such as decrement-evoked potentials. DEEPs are detected com-
paratively through the analysis of portions of myocardial tissue that produce LFs
or LPs that are delayed on subsequent cardiac cycles after applying increasingly
faster extrastimuli. However, these components might neither be the most salient,
nor the first/last in a cardiac cycle, which is the criteria usually employed by EAM
systems.

Despite their relative importance, the state-of-the-art for EGM signal analysis
mostly focuses on detection rather than on delineation [42, 139]. The employed al-
gorithms are based on the computation of data transformations, such as the Fourier
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Figure 4.6: ECG reference, predicted fiducials and ground truth from four reg-
istries in the annotation dataset, depicting good predictions (top two) and annota-
tion errors (bottom two).
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transform, the wavelet transform or filtering, which aid in reducing data complex-
ity for producing robust signal detection. In [42], Osorio et al. produced an algo-
rithm based on filtering iECG recordings to discard high-frequency components,
aiding in the robust localization of local components in AF. In [139], Felix et al.
used the WT and a threshold criteria to a similar end, for estimating LFs. In [150],
Faes et al. proposed to estimate LAT from the barycenter of LFs in bipolar EGMs,
after filtering and adaptive thresholding. In [151], Hajimolahoseini et al. used a
Gaussian mixture model (GMM) for the analysis of the natural logarithm of the
signal. Finally, to the best of our knowledge, a single work has been published
which directly attempted at EGM delineation. In [39, 40], Alcaine et al. firstly
delineated onsets and offsets of the QRS complex in the surface ECG, which were
then used as detection windows. Then, the iECG was pre-processed by extracting
its signal envelope and then the WT was used to produce a more robust representa-
tion of the input data. Then, a rule-based algorithm was employed to determine the
onset/offset pair of the LFs associated with the delineated QRS complex, reaching
delineation errors of 2.2 ± 12.4 and -1.9 ± 7.5 (M ± SD) over the 2138 correctly
delineated QRS complexes. This approach, however, is unable to detect and delin-
eate isolated LPs and would fail in the identification of extra LFs in patients with
AF, preventing its usage as a general purpose tool for the analysis of iECG record-
ings. Neither of the aforementioned works in the literature produce detections of
individual waves outside the most salient component and only one work computed
the onsets and offsets of the predicted wave.

The work presented here builds upon the existing detection and delineation lit-
erature by advancing towards an all-purpose iECG analysis system. Similarly to
the approach proposed in chapter 3, a DL model was trained for automatic data
quantification; focusing on quantification counterbalances the drawbacks of DL
algorithms with an application that is immediately interpretable by the operator.
Given the lack of large-scale iECG datasets annotated for delineation, two main
design decisions were made. Firstly, the model was trained with synthetically gen-
erated data from a modest private dataset of 312 iECG recordings taken from 77
distinct patients, with ground truth generated for localizing independent LF and FF
activations (no ventricular repolarization). This synthetic dataset greatly improves
model performance in scenarios where data is scarce, and has been proven to be
even more performant than training on real samples if the data is scarce (chapter
3). Secondly, the prediction pipeline was designed to analyse iECG excerpts of
individual cardiac cycles, whose onsets and offsets were localized with the QRS
complex’s barycenter in the surface ECG, as delineated with chapter 3’s model.
Cropping the iECG recordings into individual cardiac cycles allowed the model to
adjust the prediction of a specific waveform according to whether the LFs (high
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Figure 4.7: ECG reference, predicted fiducials and ground truth from four reg-
istries in the annotation dataset, depicting annotation due to increased model sen-
sibility (top two) and errors attributable to the neural network (bottom two).
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Coronary
sinus 3

Figure 4.8: The smoothness of the wave complicates the definition of the local
field’s offset (red dashed line) and the far field’s onset and offset (cyan and magenta
dashed lines, respectively). Multiple possible onsets/offsets are marked.

frequency components) occurred before or during ventricular depolarization. The
combination these design decisions allowed to alleviate the main limitations found
in initial approaches, producing more versatile networks.

The produced models demonstrated high sensitivity but moderate precision
(around 95% and 75%, respectively, for both LF and FF activations in a held-out
test set). With respect to the onset/offset localization, the models provided a good
fit with respect to the reference (errors of 3.89± 14.56 and -6.16± 20.25 ms when
estimating the LF’s onsets and offsets, respectively; and of 3.47± 20.03 and -5.44
± 22.82 ms at the FF components). Comparing the proposed approach to the ex-
isting literature gives the impression of a reduced algorithm performance: some
DSP-based methods reach precision and recall figures nearing 100% [42, 139] and
half the SD in onset/offset localization [40]. This, however, is misleading for sev-
eral reasons. Firstly, existing algorithms are only concerned with locating a single
LF activation for each cardiac cycle and disregard any other type of activation (e.g.
LP or FF), which difficults direct comparison between methodologies. Secondly,
all datasets are private, preventing a fair comparison of methods; the dataset col-
lected for this work consists of real clinical data and no compromises have been
made with respect to signal quality or difficulty. Thirdly, models that are more
sensible than specific were sought for, and distinguishing subtle LPs from noise is
a challenging task. Finally, the larger delineation errors are to be expected given
smoothness at signal initiation and termination (Figure 4.8) and the lack of an uni-
fied criterion for their definition. Moreover, the overall morphology and location
of specific components is more important for downstream applications than a very
precise definition of a set of onsets/offsets.

Despite performance considerations, the proposed approach has two main advan-
tages. Firstly, and most importantly, a full delineation of all important fiducials
in the registry is performed as opposed to the localization of a single activation
[40, 42, 139]. This is of capital importance for advancing in the quantification
of iECG recordings, as many routine tasks such as the elucidation of decremental
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conduction can only be performed by comparing the localization of specific com-
ponents in subsequent cardiac cycles. Extending the capabilities of what current
quantification algorithms are able to measure can only reduce intervention times
and clinical workloads. Secondly, using a DL model coupled with a synthetic data
generation algorithm allows to control the conditions that would trigger the pre-
diction of a local component (either LFs or LPs), which is beneficial to the task at
hand: the low specificity is a design decision resulting from lowering the threshold
at which a perturbation in the trace can be recognized as a local component (Figure
4.7, top). Thus, the system predicts a large amount of high frequency deflections,
compatible with local components, that are unannotated in the ground truth while
not necessarily erroneous. The difference between the ground truth and the predic-
tions might represent a limitation of the ground truth rather than of the developed
model.

The proposed approach is, however, faced with some limitations that are unique
to EGMs as opposed to surface ECG processing. Firstly, expressing the ground
truth as a binary mask delimitating each local component, which is the traditional
DL-based approach, might clash with some scenarios where the individual local
components should not be merged; difficulties might arise when analyzing highly
fractionated potentials, where predicting a continuous True-valued mask span-
ning the whole fractionation might not be useful for posterior analyses. Secondly,
a compromise with respect to the architectural choice might be of need, as the
model is too computationally complex to be employed on real time (7.88 ms per
cardiac cycle and lead). This, however, might be circumvented by processing the
iECG recordings while the catheter changes position, while the EAM system waits
for respiration cues or as single execution algorithm that allows filtering acquired
points to retrieve those that meet some criteria. Finally, a series of tests could
not be performed due to time limitations at the time of writing this thesis. On
the one hand, the model could not be trained leveraging real data, partially due to
the necessity to improve the quality of the ground truth annotations: many waves
were not correctly delineated and accounted for false positives (Figure 4.6, top),
requiring re-annotation, and more prevalence of fractionated potentials is needed
to assess the generalizability of our approach. On the other hand, the current state
of the rule-based synthetic DA algorithm remains somewhat basic, requiring the
inclusion of more real-world casuistry in it to enhance performance.

4.5.1. Conclusions

The proposed methodology for the analysis of iECG recordings has proven to
be useful in other signal analysis tasks such as ECG delineation, hinting at the
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feasibility of a good-performing, all-purpose EGM annotation tool. Current results
show great promise while being, to the best of our knowledge, the first tool in the
literature allowing the delineation of all local components present in a recording.
The algorithm, based on an encoder-decoder DL architecture, was trained solely
with synthetic data according to a rule-based algorithm that allows for controlling
the generation process.

The algorithm is, however, in a developmental state. Several limitations exist in
the dataset, data generation pipeline and data representation, which need to be
solved to reduce the high number of false positives. Nevertheless, the development
of an all-purpose EGM delineation model is a key tool for unlocking a wide ar-
ray of downstream tasks, ranging from the automatic identification of myocardial
portions of scar presenting DEEPs to the exploration of morphological indicators
that might aid in diagnosis or risk stratification, similarly to the work presented in
chapter 5.
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CHAPTER

5

Characterization of electrocardiographic
patterns relating genotype and phenotype in
patients with hypertrophic cardiomyopathy

5.1. Introduction

Hypertrophic cardiomyopathy (HCM) is a genetic condition that is the leading
cause of sudden cardiac death (SCD) in adolescents and young adults [152], with
an annual incidence of 0.3 to 0.5 per 100,000 [153]. HCM is mostly originated by
mutations in the sarcomere protein genes although, in some cases, its source might
be other genetic diseases (metabolic/neuromuscular diseases, chromosomic abnor-
malities) or other conditions that are similar in behaviour, such as amyloidosis
[153]. HCM causes the myocardium to contract inefficiently due to the presence
of left ventricular outflow tract obstruction (LVOTO), mitral regurgitation (MR),
diastolic dysfunction, ischaemia, arrhythmias or dysautonomia. This disease has a
highly increased risk of SCD due to the interplay between these conditions and the
occurrence of ventricular arrhythmias [34, 154]. The most common sarcomeric
mutations are in the beta-myosin heavy chain (MYH7) and myosin-binding pro-
tein C (MYBPC3) genes, although other genetic markers exist (TNNT2, TNNI3,
TPM1, ACTC1, MYL2, and MYL3) and many others are under scrutiny to address
their association with the disease [153, 155].

This chapter is adapted from: Jimenez-Perez, G.,et al. Characterization of electrocardiographic patterns
relating genotype and phenotype in patients with hypertrophic cardiomyopathy. (In Preparation).
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PHENOTYPE IN PATIENTS WITH HYPERTROPHIC CARDIOMYOPATHY

Patients with risk of SCD are considered for implantable cardioverter defibrillator
(ICD), which can help treat life-threatening ventricular arrhythmia (VA) episodes.
However, ICD device implantation is hampered by the disassociation between the
disease’s aetiology and its pathophysiology, generating a set of criteria with low
specificity [156]. The state-of-the-art risk stratification method suggested by clin-
ical guidelines is the HCM Risk-SCD score [157], which takes parameters such
as age, maximal left ventricular (LV) wall thickness, left atrial (LA) diameter, LV
outflow tract gradient, family history of SCD, non-sustained ventricular tachycar-
dia, and unexplained syncope, most of which are assessed with echocardiography
or MRI [153, 154]. Other markers such as the presence of fibrosis, assessed with
late gadolinium enhancement (LGE) MRI, are being evaluated for their clinical
use [158].

Despite its wide usage in clinical practice, the ECG is not used for HCM due to
a lack of clear understanding between the disease’s pathophysiology and specific
ECG-derived clinical markers. In HCM, 90% of patients present ECG anomalies
such as left ventricular hypertrophy (LVH), left axis deviation (LAD), prominent
Q waves, ST segment displacement or T wave inversions (TWI) [152, 159]. Nev-
ertheless, these clinical markers are non-specific for HCM, which prevents their
usage as a unified set of criteria for diagnosis and complicates risk stratification
[34, 152, 154]. Additionally, the markers explored in the literature are unreliable,
as some studies hint at their diagnostic usefulness whereas others do not [154].
Given these issues, the ECG is preferentially used for population screening, re-
quiring diagnosis confirmation with the aforementioned cardiac imaging modali-
ties [153, 154].

Some authors have explored computational approaches for the diagnosis or risk
stratification of HCM, despite the small cohorts usually present in clinical analy-
sis. However, most of these approaches have been employed for classification. In
[152], Ko et al. trained a convolutional neural network (CNN) with 2,448 patients
diagnosed with HCM and a control group of 51,153 non-HCM patients for the
purpose of automatic diagnostic. Although the authors do not disclose implemen-
tation details, they report an area under the curve (AUC) of 0.96, with a sensitivity
of 87% and a specificity of 90%. Rahman et al. [48, 49] employed support vec-
tor machine (SVM) and random forest classifiers over a population of 221 HCM
patients and 541 controls comprising patients with ischemic or non-ischemic car-
diomyopathies. The authors extracted ECG markers derived from temporal inter-
vals and the raw morphology of delineated ECG recordings, downsampled to 10
samples per lead, generating 504 features per patient and reaching accuracies near-
ing 85%. The classification approach followed by these works, however, causes a
disconnect between the diagnosis and a concrete set of symptoms, disrupting the
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normal hypothetico-deductive method [12, 13, 122].

On the other hand, some authors have attempted at directly addressing this rela-
tionship between aetiology and pathophysiology. Lyon et al. [34] demonstrated
the capability of robust feature extraction coupled with principal component anal-
ysis (PCA), an unsupervised dimensionality reduction (DR) method, for clustering
together patients with similar ECG-based phenotypes. These “phenogroups” were
then related with the presence/absence of HCM through MRI-based markers. In a
population of 85 HCM patients, they concluded that using the QRS morphology
alongside T wave markers allowed the identification of four distinct phenotypes (or
phenogroups): a group displaying short R and deep S waves in lead V4; a group
with short R and long S waves in V4-V6; a group with normal QRS complex
and non-inverted T waves; and a group with TWI and normal QRS morphology.
The last group presented higher HCM Risk-SCD scores by almost a factor of two,
and displayed coexisting septal and apical hypertrophy (p ≤ 0.0001). This work,
however, had three main limitations that hampered its applicability in the general
case: it lacked patient genotyping, had a relatively low event rate and was based
on the extraction of surrogates of morphological markers through digital signal
processing (DSP)-based approaches.

In this work, we take over from Lyon et al. and introduce a novel methodology
for the analysis of fully genotyped HCM patients with ECG recordings. For this
purpose we employ multiple kernel learning (MKL), a more flexible DR algo-
rithm that allows aggregating raw information from the 12 leads simultaneously.
In Section 5.2, information about the study population is provided. In Section 5.3,
the data pre-processing, the methodology for DR and the evaluation criteria are
detailed. In Section 5.4, the results from the analysis pipeline are described. In
Section 5.5, the results obtained in the previous section are discussed under the
light of their relevance for HCM analysis and their comparison with similar works
in the literature. And, finally, Section 5.6 offers a brief summary of the benefits
and limitations of this work.

5.2. Materials

The study population is composed of 103 patients with HCM and 50 screening
patients with family history of HCM or SCD. The patients were recruited from
the Hospital Universitario Puerta de Hierro, Majadahonda, Madrid. All patients
underwent full diagnostic procedure, comprising a 12-lead ECG recording, an
echocardiographic exam and, in some cases, a LGE-MRI for assessing fibrosis.
Then, echocardiographic markers were extracted for the calculation of the HCM
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Risk-SCD score – age, maximal LV wall thickness, LA diameter, LV outflow tract
gradient. Additionally, other markers were extracted for assessing their useful-
ness in diagnosing HCM, mostly related to lifestyle (smoker/nonsmoker), general
markers (body mass index, blood pressure, etc.), functional level (NYHA index),
family history of events [HCM, SCD, heart failure (HF), arrhythmias], clinical
history (unexplained syncope, history of VT, etc.) and LGE-MRI-derived markers
(presence of fibrosis, maximum wall thickness, etc.). Given the small occurrence
of SCD in the population (2 patients), more inclusive events were considered as
endpoints, including the occurrence of VT, unexplained syncope, aborted SCD,
atrial fibrillation (AF) or HF. Every patient was genotyped to assess the presence
of sarcomeric mutations, and categorized as their expressed genotype (MYBPC3,
MYH7, other pathological, variant of uncertain significance (VUS) and the overall
positive/negative). A full description of the extracted clinical markers is shown in
Table 5.1.

5.3. Methods

The employed methodology consisted in several phases, each of which will be
explored in a different section. In Section 5.3.1, the ECG is pre-processed to ob-
tain a common reference system for patient representation. In Section 5.3.2, a DR
algorithm employed to obtain a low-dimensional embedding for easier character-
ization, MKL, is described. Finally, Section 5.3.3 describes the methodology for
grouping observations with similar phenotype (phenogroups) and their analysis.

5.3.1. Data preprocessing

Working with ECG presents several singularities that difficult their usage in ML
algorithns. On the one hand, important information for diagnosis might be spread
over the course of several heartbeats: patients who present atrioventricular (AV)
blocks might display some beats in which the impulse failed to communicate to
the ventricles, displaying a P wave but neither a QRS complex nor a T wave.
On the other hand, events in the ECG might occur at different time intervals, so
segments are misaligned in two different patients. This causes comparing two
ECG recordings from different patients to be a non-trivial matter, where computing
the “similitude” between two heartbeats requires creating a common reference
system that handles these mismatches.

A joint representation was designed to compare ECG morphologies aligned to the
main segments of interest (P, PQ, QRS, ST, T and TP). For this purpose, the full
ECG trace was delineated using the methodology described in chapter 3 [81, 82],
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Screening HCM p-value
GENERAL INFORMATION
Age 42.0 (37.0 - 49.0) 49.0 (42.0 - 60.0) < 0.0001
Female 30 (61.22)% 40 (38.83)% < 0.0001
Body Mass Index 24.16 (22.0 - 28.0) 26.0 (23.7 - 29.0) 0.0148
Systolic blood pressure (mmHg) 130.0 (123.0 - 130.0) 127.5 (120.0 - 140.0) 0.9209
Diastolic blood pressure (mmHg) 77.71 ± 10.4 79.17 ± 10.67 0.9842
MAGNETIC RESONANCE IMAGING/ECHOCARDIOGRAPHIC ANALYSIS
Heart rate (echo) 66.0 (61.0 - 77.5) 61.0 (55.0 - 68.0) < 0.0001
Maximal wall thickness 9.9 (8.3 - 10.3) 18.45 (16.9 - 22.0) < 0.0001
Ejection Fraction 50.82 (44.83 - 56.61) 52.37 (44.23 - 57.49) 0.4774
Fibrosis (Gadolinium Enhancement) 2 (11.76)% 41 (65.08)% < 0.0001
Left atrial diameter 35.0 (33.0 - 37.0) 43.0 (39.0 - 48.0) < 0.0001
COMORBIDITIES
Hypertension 4 (8.16)% 23 (22.33)% 0.0002
Diabetes 3 (6.12)% 5 (4.85)% 0.5709
Chronic kidney disease 0 (0.0)% 2 (1.94)% 0.0890
Sleep apnea syndrome 0 (0.0)% 4 (3.88)% 0.0155
Coronary disease 0 (0.0)% 2 (1.94)% 0.0890
History of heart failure 0 (0.0)% 8 (7.77)% 0.0005
History of arrhythmias 0 (0.0)% 27 (26.21)% < 0.0001
Previous cardiac intervention 0 (0.0)% 27 (26.21)% < 0.0001
GENOTYPE
Genotype positive 21 (42.86)% 103 (100.0)% < 0.0001
Genotype negative 15 (30.61)% 0 (0.0)% < 0.0001
Genotype MYBPC3 16 (32.65)% 55 (53.4)% < 0.0001
Genotype MYH7 5 (10.2)% 33 (32.04)% < 0.0001
Genotype VUS 13 (26.53)% 0 (0.0)% < 0.0001
Genotype other 0 (0.0)% 15 (14.56)% < 0.0001
EVENTS/RISK FACTORS
Implantable Cardioverter Defibrillator 0 (0.0)% 23 (22.33)% < 0.0001
Myocardial infarction 0 (0.0)% 0 (0.0)% 1.0000
Unexplained syncope 2 (4.08)% 12 (11.65)% 0.0090
Aborted Sudden Cardiac Death (SCD) 0 (0.0)% 2 (1.94)% 0.0890
Atrial Fibrillation (AF) 0 (0.0)% 12 (11.65)% < 0.0001
Ventricular Tachycardia (VT) 0 (0.0)% 6 (5.83)% 0.0028
History of non-sustained VT (NSVT) 0 (0.0)% 15 (14.56)% < 0.0001
Family history (FHx) of HCM or SCD 50 (100.0)% 88 (85.44)% < 0.0001
Massive LVH (>30mm) 0 (0.0%) 5 (4.81%) 0.1150
LVOT obstruction (>30 mmHg) 0 (0.0)% 28 (26.92%) < 0.0001
Calcification Mitral Valve (MV) 0 (0.0)% 12 (11.65)% < 0.0001
Calcification Aortic Valve (AV) 0 (0.0)% 6 (5.94)% 0.0047
RISK SCORES
Event 1 (VT, syncope, SCD) 2 (4.08)% 34 (33.01)% < 0.0001
Event 2 (VT, syncope, SCD, AF, HF) 2 (4.08)% 46 (44.66)% < 0.0001
HCM risk 0.95 (0.72 - 1.3) 2.42 (1.92 - 4.42) < 0.0001
Cornell Criteria 1 (2.04)% 41 (39.81)% < 0.0001
Sokolow Criteria 1 (2.04)% 19 (18.77)% < 0.0001
NYHA score I 48 (96.0%) 63 (60.58%) < 0.0001
NYHA score II 2 (4.0%) 28 (26.92%) 0.0008
NYHA score III/IV 0 (0.0%) 13 (12.5%) 0.0090

Table 5.1: Clinical variable distribution of the hypertrophic cardiomyopathy
(HCM) and screening populations. In brackets, mean, range or standard devia-
tion, depending on the distribution of the variable.
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Lead Screening HCM p-value
P

w
av

e
am

pl
itu

de
I 0.09 (0.08 - 0.11) 0.11 (0.08 - 0.14) 0.0031
II 0.16 ± 0.05 0.17 ± 0.05 0.1468
III 0.11 (0.09 - 0.13) 0.11 (0.08 - 0.15) 0.0618
aVR 0.12 ± 0.04 0.13 ± 0.04 0.0549
aVL 0.07 (0.05 - 0.08) 0.08 (0.06 - 0.1) 0.0002
aVF 0.13 ± 0.04 0.13 ± 0.05 0.2415
V1 0.1 (0.08 - 0.12) 0.13 (0.11 - 0.17) < 0.0001
V2 0.08 (0.06 - 0.1) 0.1 (0.08 - 0.13) < 0.0001
V3 0.1 (0.09 - 0.11) 0.12 (0.09 - 0.15) < 0.0001
V4 0.1 ± 0.03 0.11 ± 0.04 < 0.0001
V5 0.09 (0.07 - 0.11) 0.1 (0.08 - 0.12) 0.0290
V6 0.09 ± 0.03 0.09 ± 0.03 0.1415

Q
R

S
w
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e

am
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itu
de

I 0.66 (0.5 - 0.87) 0.99 (0.71 - 1.25) < 0.0001
II 1.21 (0.89 - 1.57) 1.24 (0.89 - 1.93) 0.0123
III 0.8 (0.61 - 1.19) 1.06 (0.72 - 1.86) < 0.0001
aVR 0.91 (0.78 - 1.04) 0.96 (0.76 - 1.3) 0.0024
aVL 0.57 (0.32 - 0.79) 0.85 (0.54 - 1.24) < 0.0001
aVF 0.89 (0.66 - 1.33) 1.02 (0.7 - 1.85) 0.0003
V1 0.99 (0.67 - 1.16) 1.44 (0.92 - 2.01) < 0.0001
V2 1.29 (1.12 - 1.84) 2.08 (1.46 - 2.77) < 0.0001
V3 1.31 (0.89 - 1.63) 2.2 (1.67 - 2.91) < 0.0001
V4 1.33 (1.01 - 1.81) 2.05 (1.45 - 2.68) < 0.0001
V5 1.28 (0.99 - 1.64) 1.56 (1.13 - 2.34) < 0.0001
V6 1.13 (0.91 - 1.3) 1.19 (0.91 - 1.55) 0.0015

T
w

av
e
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itu
de

I 0.22 (0.15 - 0.26) 0.21 (0.14 - 0.29) 0.1658
II 0.32 (0.24 - 0.38) 0.23 (0.16 - 0.33) < 0.0001
III 0.16 (0.11 - 0.22) 0.2 (0.12 - 0.28) 0.0031
aVR 0.27 (0.2 - 0.32) 0.19 (0.15 - 0.27) 0.0001
aVL 0.1 (0.08 - 0.14) 0.16 (0.1 - 0.24) < 0.0001
aVF 0.22 (0.17 - 0.3) 0.19 (0.13 - 0.27) 0.0409
V1 0.15 (0.1 - 0.19) 0.25 (0.17 - 0.36) < 0.0001
V2 0.29 (0.21 - 0.42) 0.38 (0.26 - 0.64) < 0.0001
V3 0.29 (0.17 - 0.52) 0.39 (0.22 - 0.64) 0.0002
V4 0.28 (0.2 - 0.48) 0.28 (0.18 - 0.53) 0.3831
V5 0.3 (0.19 - 0.41) 0.25 (0.15 - 0.41) 0.5344
V6 0.27 (0.18 - 0.37) 0.21 (0.15 - 0.31) 0.0677

Axis P wave (degrees) 50.0 (36.0 - 64.0) 45.0 (27.0 - 62.0) 0.1124
Axis QRS wave (degrees) 48.52 ± 39.55 17.11 ± 51.44 < 0.0001
Axis T wave (degrees) 50.0 (34.5 - 66.0) 40.0 (20.0 - 60.0) 0.0091
T wave inversion (TWI) 5 (3.4)% 152 (49.19)% < 0.0001
P duration (ms) 108.0 (100.0 - 112.0) 116.0 (108.0 - 124.0) < 0.0001
PQ duration (ms) 52.0 (44.0 - 62.0) 56.0 (44.0 - 68.0) 0.0152
QRS duration (ms) 88.0 (84.0 - 92.0) 96.0 (88.0 - 104.0) < 0.0001
ST duration (ms) 96.0 (90.0 - 108.0) 108.0 (100.0 - 120.0) < 0.0001
T duration (ms) 196.0 (184.0 - 208.0) 220.0 (204.0 - 240.0) < 0.0001
TP duration (ms) 292.0 (216.0 - 422.0) 360.0 (296.0 - 452.0) 0.0011

Table 5.2: Electrocardiographic descriptors distribution for the hypertrophic car-
diomyopathy and screening populations. The extracted features are grouped by
amplitudes of the main waves (P, QRS, T) and other characteristics, comprising
axis deviations, T wave inversions and segment durations.
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marking the beginning and end of the P, QRS and T waves. Next, each heartbeat
was independently cropped in PP’ (from the Pon of a beat to the Pon’ of the next).
After this, the length of every segment was independently measured for the whole
dataset, and the maximum value was retrieved independently for each segment
type (88, 100, 94, 80, 204 and 414 samples for the P, PQ, QRS, ST, T and TP
segments, respectively). Then, each segment of each heartbeat was interpolated to
the computed fixed segment length, storing as extra information the ratio between
the real length and the interpolation length. After this process, all heartbeats are
registered so that every segment coincides in size and waves occur at the same
time. The finished ECG traces were amplitude-normalized with respect to the
calibration pulse to facilitate posterior incorporation of new data.

Given the input size limitations of the employed DR algorithm (Section 5.3.2),
the number of cardiac cycles had to be reduced from the original 1397 heartbeats.
For this purpose, the cross-correlation between different cycles was computed for
each patient independently. The cross-correlation (averaged throughout all leads)
served as a ranking for addressing the similarity between beats. The two beats
with the largest mean cross-correlation were selected for each patient, alongside
the beat that presented the highest dissimilarity. Outliers presenting distortion
due to movement/respiration or excessive noise were manually removed. After
this sub-set selection, a total of 459 heartbeats were included for training the DR
algorithm and its posterior analysis. A visual representation of the whole data
pre-processing pipeline is shown in Figure 5.1.

5.3.2. Multiple kernel learning

Multiple kernel learning is an algorithm employed to extract a low-dimensional
embedding from a dataset that contains multiple descriptors per observation (e.g.,
different leads in the ECG) while preserving the relative distances between dif-
ferent observations. This low-dimensional space can be useful to assess whether
different elements in a population share any common set of traits, allowing to ex-
plore the existence of different groups of similar phenotype (“phenogroups”) and
to describe their behaviour in posterior analyses. The MKL algorithm consists in
formulating the dimensionality reduction as a graph embedding problem [160] and
then optimizing the algorithm’s parameters. Formally, given a high-dimensional
dataset X =

{
xi ∈ RdN

}N , the objective of MKL is to find a low-dimensional em-
bedding Y =

{
yi ∈ RM−1

}
, where N is the number of different data descriptors

(e.g., the different leads in an ECG, with N = 12) and xi, with i ∈ 1..M, is the
vector corresponding to the ith observation, of size RdN (the vector’s size need not
coincide in different descriptors).
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(e) (d)

(a) (b)

(c)

Figure 5.1: Pre-processing pipeline exemplified with electrocardiographic (ECG)
recordings of four different patients (only lead I is depicted). Starting from the
unprocessed signal (a), the ECG is delineated (b) using the delineator described
in chapter 4. Then, the cross-correlation between cardiac cycles, taken from P
to the next P (P’), is computed (c). Then, of each registry, the two most similar
and the most dissimilar beats are selected and isolated (d). Finally, the segment
length for each individual segment (P, PQ, QRS, ST, T, TP) is computed, and the
99th percentile is selected as the interpolation length. Finally, each cardiac cycle
is interpolated into a common reference system. Each individual cardiac cycle
has different segment size and onset/offset fiducial locations (red: 251 ms; green:
255 ms; magenta: 149 ms; cyan: 223 ms; blue: 236 ms). After registration, all
segments have the same length (490 ms) and the onset/offsets coincide (e).

A single-descriptor formulation of MKL can be formulated for easier understand-
ing of multiple descriptors. Consider an input data matrix X = [x1,x2, ...,xN ]
(where xi ∈ Rm) which is to be embedded into a lower dimensional space y =
[y1,y2, ...,yN ] (where yi ∈ R). The relationship between elements in the input data
matrix X can be expressed as a full (weighted) graph, where the vertices are each
observation in the space (V = {xi, ∀i = 1..N}) and the edges represent the pair-
wise similarity (measured according to a predefined metric) between two sets of
points (E = {(xi,x j)→R,∀i, j = 1..N}). Thus, the adjacency matrix W represents
the relative distances between each pair of observations, and the degree (D) and
Laplacian (L) symmetric matrices can be computed as:

Dii = ∑i 6= j wi j, ∀i , L = D−W. (5.1)

For producing a low-dimensional embedding of the input data, the coordinates of
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the low-dimensional space y must be estimated from the input data X while pre-
serving the relative similarities that are present in X ; i.e., for a large similarity
between xi and x j, the distance between yi and y j should be small and vice-versa
[160]. If the projection was linear (y = XT v, with v ∈ Rm being the unitary pro-
jection vector), this intuition is formally expressed as the following optimization
problem:

v∗ = argmin
vXBXT v=1

∑
i 6= j

∥∥vT xi−vT x j
∥∥2

wi j,= argmin
vXBXT v=1

vT XLXT v

or, equivalently,

v∗ =argmin
N

∑
i, j=1

∥∥vT xi−vT x j
∥∥2

wi j,

subject to
N

∑
i=1

∥∥vT xi
∥∥2

dii = 1.

(5.2)

This optimization problem can solved by resolving the eigenvalue problem
XLXT v = λXL′XT v which, in turn, allows for: (a) extracting up to N − 1 di-
mensions from the input data, as many eigenvectors can be extracted using this
formulation (V = [v1,v1, ...,vN−1], so Y = XTV ); and (b) sorting the low-dimen-
sional embedding into decreasingly contributing elements, providing a sense of
importance [14, 160].

A non-linear extension to this solution is to project the data into a high-dimensional
Hilbert space (φ : X →F ) through the usage of kernel functions (k : X ×X →
R), so that k(xi,x j) = 〈φ(xi),φ(x j)〉) [160]. These functions are used in many
dimensionality reduction algorithms, such as kernel-PCA [161] and can take many
shapes, as long as they represent an inner product space and the matrix K of the
pairwise distances in the data X is positive definite. An example of such kernel
functions, and the one that will be employed in this work, is the Gaussian kernel
(also known as the radial basis kernel):

k(xi,x j) = exp
(
−
‖xi−x j‖2

2σ2

)
, (5.3)

where σ is a free parameter, which can be computed as the average distance be-
tween each point xi and its k-nearest neighbors (k-NN) [15]. The similarity/affini-
ty/kernel Gram matrix K can be thus computed with the pairwise kernel distances
between each point, such that Ki j = k(xi,x j) = φ(xi) · φ(x j). With this, we can
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assume that the mapping lies in the basis produced by the (kernelized) input data,
so that:

v =
N

∑
i=1

αiφ(xi) =αααTφφφ(X), K = φφφ(X)φφφ(X)T ,

Ki = [φ(xi)φ(x1),φ(xi)φ(x2), ...,φ(xi)φ(xN)].

(5.4)

These terms can be introduced in Equation 5.2, reformulating it to offer a kernel-
ized version of the algorithm:

argmin
ααα

N

∑
i, j=1

∥∥ααα
T Ki−ααα

T K j
∥∥2

wi j

subject to
N

∑
i=1

∥∥ααα
T Ki
∥∥2

dii.

(5.5)

Extension to Multiple Descriptors

The multiple descriptor formulation operates by computing independent similarity
matrices for each descriptor [14, 15]. The dataset would consist in one matrix
per descriptor X = {X ∈ RN×Md}D

d=1, the output space would remain the same
(Y =

{
yi ∈ RM−1

}
) and the affinity matrix would correspond to K ∈ RN×N×D.

A variety of kernel functions can be used different descriptors, allowing for the
computation of the kernel that better suits the descriptor; moreover, the dimensions
of the features should be consistent for different samples of the same descriptor but
does not need to coincide in different descriptors (di 6= d j).

The kernels are employed in two ways. Firstly, a coefficient vector βββ = [β1,β2, ...,
βD] governs the contribution of each descriptor to the global ensemble. Secondly,
the affinity matrices Kd are then used for computing a global affinity matrix, which
measures the relative distance between samples (W = ∑

D
d=1(Kd)

1/αd ), where αd is
a regularization term that prevents descriptors with large variabilities to outweigh
the other descriptors [15]. Finally, this formulation can be used to modify Equation
5.4, so that:

vT
φ(xi) =

N

∑
j=1

D

∑
d=1

α jβdKdi j =ααα
TK(i)

βββ , (5.6)

where K(i) ∈ RN×D corresponds to the kernel distances of an observation xi with
respect to all other observations in the dataset and all descriptors. Plugging these
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terms into Equation 5.2, the MKL formulation becomes:

argmin
ααα,βββ

N

∑
i, j=1

∥∥∥ααα
TK(i)

βββ −ααα
TK( j)

βββ

∥∥∥2
wi j,

subject to
N

∑
i=1

∥∥∥ααα
TK(i)

βββ

∥∥∥2
dii,

βd ≥ 0,∑βd = 1

(5.7)

This equation can be used, as described in the single-descriptor case, for the com-
putation of multiple dimensions in the projection (A = [ααα1,ααα2, ...,αααN ]), while
sharing the kernel coefficients βββ ∈ RD, becoming:

argmin
A,βββ

N

∑
i, j=1

∥∥∥ATK(i)
βββ −ATK( j)

βββ

∥∥∥2
wi j,

subject to
N

∑
i=1

∥∥∥ATK(i)
βββ

∥∥∥2
dii,

βd ≥ 0,∑βd = 1

(5.8)

Given the difficulty of solving the above optimization problem, Lin et al. [14]
devised a two-step optimization algorithm, by means of optimizing the system’s A
and βββ independently, after initializing βββ uniformly to 1/D. The first step consists
in computing A by fixing the value of βββ , and is performed by eigendecomposition.
The second step optimizes the values of βββ while fixing A. Once the values of A and
βββ are optimized, the samples can be projected in the low-dimensional embedding
by computing:

Y = AT
D

∑
d=1

Kdβd , (5.9)

where Y ∈ RN×N−1 contains the projected samples in the output space, each col-
umn corresponding to a different extracted dimensions.

5.3.3. Low-dimensional embedding analysis

Contrarily to supervised approaches, MKL does not cluster together data accord-
ing to a specific label (e.g., presence/absence of a disease) but based on the sim-
ilarity between observations according to a pre-defined metric. The benefit of
unsupervised approaches is that the distribution of labels in the output space is ex-
plored a posteriori, allowing the characterization of correlations found in the data
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Figure 5.2: Analysis pipeline. The pre-processed inputs are projected into a
low-dimensional embedding through the usage of Multiple Kernel Learning. The
observations are then projected into the output space for their characterization, via
multiscale kernel regression, clustering and through clustering along a single di-
mension. Finally, the found phenogroups are correlated to clinical variables of
interest, providing insight into the characteristics of the input dataset.

that might correspond with clinical variables. In this work, this analysis was per-
formed in three ways: a coarse clinical data exploration, clustering and statistical
analysis. An overview of the analysis pipeline is depicted in Figure 5.2.

Output space pre-processing

The data from the populations of HCM patients and patients selected for screening
was projected into a low-dimensional embedding, consisting in 458 dimensions
(3N − 1 dimensions due to taking three cardiac cycles from each patient), and
sorted with respect to their eigenvalues. Firstly, the output space was rotated in
its first and second dimensions to facilitate interpretation of the output space, as
depicted in Figure 5.3. Secondly, given the high correlation between dimensions
in the low-dimensional embedding, an algorithm was employed for determining
the space’s self-correlation when introducing an increasing number of dimensions,
effectively performing feature selection. The algorithm considers the number of
dimensions that are required so that each observation’s neighbours remains the
same up to a given correlation threshold, result that is used throughout the whole
data analysis. In this work, a 95% correlation was employed (Figure 5.4, left).

Coarse exploration

An initial coarse exploration of the output space was performed. For that purpose,
the clinical labels of interest, such as events or specific sarcomeric mutations, were
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projected to coarsely assess their distribution and relative density in the space. Fur-
thermore, the output space was explored through the usage of multiscale kernel
regression (MKR) [162, 163], a regression algorithm that allows for reconstruct-
ing the expected morphology of an observation in the original space at specific
positions in the low-dimensional embedding. For the purposes of this work, the
ECG morphology was reconstructed at high density positions in the output space,
according to the cloud point’s mean (M) and standard deviation (SD): [M-2SD,
M-SD, M, M+SD, M+2SD].

Output space clustering

The patients were grouped using two main methods. Firstly, a simple unsuper-
vised clustering algorithm, k-means (kM) [164] was employed. This algorithm
iteratively adjusts the positions of k cluster centers, assigning the same label to
all points that lie closest to a specific cluster center. The algorithm minimizes
the within-cluster variances, attempting at producing compact clusters (in an Eu-
clidean sense) that span the minimum amount of space with respect to the other
clusters. Although this algorithm is sensitive to the choice of k, the Silhouette score
[165] was used as heuristic to set the number of clusters that had the lowest in-
tra-cluster distance while attaining the highest inter-cluster distance. A secondary
clustering was performed by dividing the output space in equally sized blocks with
respect to the first dimension in the output space, which accounted to most of the
variability in the population. The Silhouette score was also employed to determine
the number of divisions that produce the most compact partitions (Figure 5.5, left).

Clinical variables exploration

Finally, once the clusters were computed, the distribution of clinical markers in
each cluster was analyzed to characterize their phenotype and their relationship to
the clinical markers of interest. This was performed in two ways: firstly, the vari-
ability within each cluster was assessed by visualizing the cluster’s general ECG
morphology, also selecting a representative example of each cluster to better char-
acterize the cluster’s general morphology. Secondly, the effects of the clustering
were assessed by performing statistical analysis of the distribution of the clinical
variables within each cluster. For this purpose, and similarly to the work by Lyon
et al. [34], the Kruskal-Wallis test was performed for non-normally distributed
data, the Chi-square test was used for categorical data and one-way ANOVA was
used for normally distributed data. A statistical significance threshold of 0.0001
was employed.
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Figure 5.3: Rotation of the first two dimensions of the output space, allowing for
a vertical vs. horizontal interpretation of the low-dimensional embedding.

Self-correlation Silhouette Score

Figure 5.4: Self-correlation (left) and Silhouette score (right) of the low-dimen-
sional embedding. Dotted in red, the optimal values chosen for the analysis: 4
dimensions for the self-correlation, surpassing the 95% threshold, and 6 clusters,
corresponding to the largest Silhouette score.
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Figure 5.5: Division of the low-dimensional embedding into equisized strips along
dimension 1. The Silhouette score indicates an optimal data distribution (left,
dashed line indicates highest value) comprising three strips (right, dashed lines
correspond to division values).
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5.4. Results

5.4.1. Baseline population characteristics

The acquired clinical variables were analyzed to assess their contribution to dis-
tinguishing HCM patients (n = 103) from patients selected for screening (n = 50);
the results are presented in Tables 5.1 and 5.2. The HCM patients were slightly
older (49 vs. 42 years, p < 0.0001) and more distinctly male (61.17 vs. 38.78%,
p < 0.0001); they also demonstrated a larger LV wall thickness (18.45 vs. 9.9
mm, p < 0.0001) and LA diameter (43 vs. 35 mm, p < 0.0001); and the highest
amount of comorbidities and fibrosis. Moreover, all HCM patients were genotype
positive, with 55 patients displaying the MYBPC3 variant (53.4%, p < 0.0001),
33 presenting the MYH7 variant (32.04%, p < 0.0001) and 15 having other patho-
logical variants (14.56%, p < 0.0001). The population had a low event rate (2
patients had a SCD episode, prevented by an ICD; not statistically significant), so
other markers were employed to assess risk, comprising VT or AF episodes, as
well as HF or unexplained syncopes. The screening population, however, only
accounted for two patients with unexplained syncope, whereas 46 HCM patients
demonstrated different events (4.08% vs. 44.66%, p < 0.0001). The distribution
of some clinical variables in the output space is depicted in Figure 5.6.

5.4.2. Low-dimensional embedding exploration

After output space rotation and subset selection (Figure 5.4, left), MKR was em-
ployed for determining the variability contained in the main four dimensions. For
this purpose, five representative points for each dimension were defined in the
output space, located at M-2SD, M-SD, M, M+SD, and M+2SD. These five points
were then used for performing MKR, regressing its morphology in the input space.
Figure 5.7 depicts the morphologies associated to these points. The analysis of
these regressions show that most changes concentrate on the morphology of the
QRS, ST and T segments. Dimension 1 (and, to a lesser extent, dimensions 2
and 4) reflects TWI inversions, which are most prevalent in leads I, II, aVR and
V4-V6 when the values in the embedding grow smaller. Dimension 1 also displays
changes in QRS morphology compatible with LAD, with aVF and III becoming
more negative. Finally, dimension 1 also shows a later precordial transition (the
polarity changes from negative to positive from V3-V4, red line in Figure 5.7, to
V4-V5, blue line), ST depression/elevation in most leads, and a wide variability
in segment duration. Dimension 2 mainly represents changes in voltage and in
QRS axis, with smaller values in the embedding representing larger voltages and
a more deviated axis. Moreover, TWI is seen in some leads (I, aVL, V4-V6) and
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ST elevations are present, albeit less pronounced. Dimension 3 principally depicts
morphology changes in the QRS complex in some leads, with prime examples
in leads II and aVF, and TWI in leads aVL and V1. Finally, dimension 4 rep-
resents changes in amplitude in the T and QRS waves, and with LAD deviation.
This dimension, however, is highly correlated to the first three dimensions, so its
contribution is less pronounced.

Some ECG features were also extracted and analyzed to characterize the HCM
population, as summarized in Table 5.2. The HCM patients had larger P and QRS
wave amplitudes, especially in the precordial leads (V1-V6). The T wave ampli-
tudes, on their behalf, were smaller for some leads (most notably in some limb
leads) in HCM patients while larger in others (precordial leads). Moreover, HCM
patients displayed a LAD in the QRS (17.11 vs. 48.52 degrees, p < 0.0001) and T
waves (50 vs 40 degrees, p < 0.0001), a high amount of T wave inversions (49%
vs. 4%. p < 0.0001). Finally, HCM patients presented longer overall intervals,
especially in the P (116 vs. 108 ms), QRS (96 vs. 88 ms), ST (108 vs. 96 ms) and
T (220 vs. 196 ms) segments, all statistically significant (p < 0.0001).

5.4.3. Electrocardiographic-based clustering

The optimal number of clusters for kM were 6 according to the silhouette score,
as depicted in Figure 5.4 (right). The unsupervised cluster distribution, depicted
in Figure 5.8, was then employed to explore stratification of clinical variables, as
summarized in Table 5.3. Clusters 0, 1, 3 and 4 (blue, orange, red and purple
in Figure 5.8) were located in the zone with smaller values in dimension 1 and
were generally correlated with high or intermediate risk and higher event rate.
Cluster 2 (green) was associated with normal phenotype patients, with the lowest
HCM Risk-SCD score, wall thickness, rate of events, comorbidities and geno-
type positive patients. Cluster 5 (brown), predominantly male, corresponded to
the second lowest event rate, wall thickness and HCM Risk-SCD score, but with
high family history of SCD. Cluster 4 (purple) displayed the highest risk of ar-
rhythmias and aborted SCD, presenting a high percentage of genotype positive,
family history of SCD, LAD, TWI and high wall thickness. Cluster 0 (blue), on
its behalf, corresponded to HCM patients presenting obstruction, with the largest
wall thickness, LVOT obstruction and fibrosis (as explored with LGE-MRI) but,
interestingly, with the lowest family history of events. These patients presented
interesting ECG features, with the largest TWI prevalence and the highest overall
limb lead amplitude. All patients in Cluster 0 (blue) were genotype positive, with
the highest percentage of MYBPC3. Cluster 3 (red) had the highest event rate but
did not present any aborted SCD, with all patients being genotype positive (pre-
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Figure 5.8: Cluster distribution and main characteristics of the extracted
phenogroups. Lower values in dimension 1 are correlated with higher event rates
and poorer prognosis. Clusters 2 (green) and 5 (brown) account for the lowest
risk group, whereas Clusters 0, 1, 3 and 4 represent high-risk patients, with high
percentages of genotype positive patients and high event rates. ICD: implantable
cardioverter defibrillator; HCM: hypertrophic cardiomyopathy; LVOT: left ven-
tricular outflow tract; FHx: family history; SCD: sudden cardiac death; VUS:
variant of uncertain significance; TWI: T wave inversion; LA: left atrial; LV: left
ventricular; MV: mitral valve; LAD: left axis deviation; VT: ventricular tachycar-
dia; NYHA: New York Heart Association; GLS: global longitudinal strain.
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CHARACTERIZATION OF ECG PATTERNS RELATING GENOTYPE AND

PHENOTYPE IN PATIENTS WITH HYPERTROPHIC CARDIOMYOPATHY

dominantly MYBPC3). This group had the highest rate of ICD, HCM Risk-SCD
score and fibrosis; and high overall wall thickness and low ejection fraction. On
the other hand, the group did not show LVOT obstruction and had a low fam-
ily history of SCD. Finally, Cluster 1 (orange) was the oldest group and included
patients with the highest comorbidities. Additionally, it was the group with the
second highest event rate, and coincided with the highest amount of aborted SCD,
unexplained syncope, family history of SCD and mitral valve calcification; and an
overall high fibrosis and LVOT obstruction. Finally, the group had also the largest
TWI percentage and overall precordial lead QRS amplitude but normal QRS axis.
Figure 5.9 shows the Cluster centroids for this partition, illustrating some of the
aforementioned differences between groups.

5.4.4. Phenotyping along the dimension with highest variability

A secondary analysis explored the distribution of clinical variables with respect to
clusters formed alongside dimension 1, which accounted for the majority of the
variability of the output space (55.17%) as compared to dimensions 2, 3 and 4
(39.29%, 0.4% and 2.32%, respectively). For this purpose, the space was parti-
tioned in regions of equal size, dividing the space into N strips. The Silhouette
score was computed, establishing the optimal number of divisions to 3 (Figure
5.5). The exploration of the clinical variables associated to this partitioning is
summarised in Table 5.4, where it can be seen that the strip with the smallest val-
ues in dimension 1 presented a larger amount of events (36.96 vs. 16.74 vs. 7.02%
for Strip 0, 1 and 2, respectively, and from bottom to top; p < 0.0001), genotype
positive patients (97.28 vs. 73.49 vs. 61.4%), TWIs (65.22 vs. 16.74 vs. 1.75%,
p < 0.0001), fibrosis (67.5 vs. 43.3 vs. 26.09%, p < 0.0001), wall thickness (18.3
vs. 15.3 vs. 10.3 mm, p < 0.0001) and HCM Risk-SCD score (2.32 vs. 1.57
vs. 1.11, p < 0.0001), among others. A similar analysis performed with a larger
number of points (N = 10) yielded similar results, but in a more granular manner.

5.5. Discussion

Although ECG features are not usually employed for risk stratification in patients
with HCM, unsupervised DR algorithms have shown great promise at characteriz-
ing ECG phenotypes of high SCD risk [34]. This work contributes to this objective
through the development of a pipeline based on automatic ECG delineation, pro-
jection to a common reference system, and the posterior utilization of the raw sig-
nal in DR algorithms. By employing MKL, different descriptors are agglomerated
into a single low-dimensional embedding [14, 15, 160], leveraging the whole ECG
trace to explore how clinical variables relate to the variability found in the multiple
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5.5. DISCUSSION

Strip 0 (blue) Strip 1 (orange) Strip 2 (green) p-value
GENERAL INFORMATION
Age 48.0 (41.5 - 60.5) 47.0 (38.5 - 57.0) 42.0 (40.0 - 49.0) 0.0184
Female 67 (36.41)% 116 (53.95)% 27 (47.37)% 0.0021
BMI 25.0 (23.0 - 29.0) 26.0 (23.0 - 28.34) 24.16 (23.0 - 27.0) 0.1932
SBP 125.0 (120.0 - 140.0) 130.0 (118.5 - 138.5) 130.0 (123.0 - 140.0) 0.9160
DBP 78.41 ± 9.98 82.03 ± 9.97 71.89 ± 12.58 0.0015
MAGNETIC RESONANCE IMAGING/ECHOCARDIOGRAPHIC ANALYSIS
Heart rate 61.0 (57.0 - 68.0) 62.0 (58.0 - 74.0) 63.0 (59.0 - 78.0) 0.0069
MWT 18.3 (16.4 - 21.7) 15.3 (9.9 - 19.0) 10.3 (9.1 - 13.4) < 0.0001
EF 49.81 (43.25 - 56.05) 52.45 (45.12 - 56.88) 56.33 (48.16 - 58.81) 0.0048
Fibrosis 81 (67.5)% 42 (43.3)% 6 (26.09)% < 0.0001
LA diameter 42.0 (38.0 - 47.0) 38.0 (35.0 - 44.0) 37.0 (35.0 - 43.0) < 0.0001
COMORBIDITIES
Hypertension 35 (19.02)% 39 (18.14)% 7 (12.28)% 0.4983
Diabetes 12 (6.52)% 12 (5.58)% 0 (0.0)% 0.1500
CKD 6 (3.26)% 0 (0.0)% 0 (0.0)% 0.0112
SA syndrome 6 (3.26)% 6 (2.79)% 0 (0.0)% 0.3973
Coronary dis. 6 (3.26)% 0 (0.0)% 0 (0.0)% 0.0112
Hx of HF 13 (7.07)% 11 (5.12)% 0 (0.0)% 0.1122
Hx of arrhy. 50 (27.17)% 28 (13.02)% 3 (5.26)% < 0.0001
Previous CI 44 (23.91)% 34 (15.81)% 3 (5.26)% 0.0033
GENOTYPE
Gen+ 179 (97.28)% 158 (73.49)% 35 (61.4)% < 0.0001
Gen- 5 (2.72)% 28 (13.02)% 12 (21.05)% < 0.0001
MYBPC3 99 (53.8)% 90 (41.86)% 24 (42.11)% 0.0442
MYH7 54 (29.35)% 55 (25.58)% 5 (8.77)% 0.0071
VUS 0 (0.0)% 29 (13.49)% 10 (17.54)% < 0.0001
Other 26 (14.13)% 13 (6.05)% 6 (10.53)% 0.0258
EVENTS/RISK FACTORS
ICD 38 (20.65)% 28 (13.02)% 3 (5.26)% 0.0089
MI 0 (0)% 0 (0)% 0 (0)% 1.0000
Syncope 24 (13.04)% 17 (7.91)% 1 (1.75)% 0.0240
Aborted SCD 3 (1.63)% 3 (1.4)% 0 (0.0)% 0.6342
AF 24 (13.04)% 12 (5.58)% 0 (0.0)% 0.0014
VT 11 (5.98)% 7 (3.26)% 0 (0.0)% 0.0995
NSVT 26 (14.13)% 16 (7.44)% 3 (5.26)% 0.0380
FHx HCM/SCD 154 (83.7)% 203 (94.42)% 54 (94.74)% 0.0008
Massive LVH 10 (5.43%) 5 (2.33%) 0 (0.0%) 0.0732
LVOT obst. 43 (23.37%) 32 (14.88%) 6 (10.53%) 0.0270
Calcified MV 19 (10.33)% 11 (5.12)% 6 (10.53)% 0.1153
Calcified AV 9 (5.06)% 9 (4.48)% 0 (0.0)% 0.2585
RISK SCORES
Event 1 68 (36.96)% 36 (16.74)% 4 (7.02)% < 0.0001
Event 2 87 (47.28)% 53 (24.65)% 4 (7.02)% < 0.0001
HCM risk 2.32 (1.81 - 4.54) 1.57 (0.92 - 2.83) 1.11 (0.92 - 2.02) < 0.0001
Cornell 99 (53.8)% 24 (11.16)% 3 (5.26)% < 0.0001
Sokolow 50 (27.17)% 5 (2.33)% 6 (10.53)% < 0.0001
NYHA I 113 (61.41%) 166 (77.21%) 51 (89.47%) < 0.0001
NYHA II 47 (25.54%) 34 (15.81%) 6 (10.53%) 0.0102
NYHA III/IV 24 (13.04%) 15 (6.98%) 0 (0.0%) 0.0046

Table 5.4: Variable distribution of line clustering on dimension 1. A more detailed
description of clinical variables (including events) is included in Table 5.1.
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leads of standard ECGs. MKL allowed the identification of several phenogroups
with distinct risk profiles, from phenotype-negative patients (and mostly genotype-
-negative) to high-risk patient who suffer obstructive HCM or groups with high
prevalence of arrhythmias. This analysis, however, presented some challenges
when performing data pre-processing, as different cardiac cycles differ in the rel-
ative time allocation within the cardiac cycle (e.g., longer T waves or shorter PQ
segments), causing mismatches in the input data when comparing the morphol-
ogy of different patients. To avoid these mismatches, the 12-lead ECG was firstly
cropped in a PP’ interval, and then registered to segments of fixed length, match-
ing every phase of the cardiac cycle (Figure 5.1). Finally, for each patient, the
12-lead ECG and a vector containing the original segment lengths in the cardiac
cycle was retrieved and processed with MKL. This registration to a common ref-
erence system allowed the direct morphological comparison among observations
while retaining temporal information associated to them.

An initial exploration of the output space showed a clear gradation of HCM and
screening patients (Figure 5.8). As analyzed in Section 5.4.2, the HCM and screen-
ing populations mostly differed in the morphology of the QRS complex, T wave
and ST segment, as is usually reported in the literature. Other segments did not
seem to vary greatly in the input data (Figure 5.7). Moreover, analyzing the cap-
tured variability of each dimension allowed the identification of their most impor-
tant contributions to the overall morphology. Dimension 1 was mainly related with
TWI, higher P, QRS and T wave amplitudes, PQ and ST elevation and the majority
of the variability in segment durations (P, QRS, ST, T and TP). Dimension 2 also
reflected changes in QRS amplitude and ST elevation, but a clearer gradation in
QRS axis can be observed. Besides this initial exploration of the output space,
the ECG characteristics of the screening and HCM populations were analyzed,
which hinted at some factors that differentiated both groups (Table 5.2). Out of
the extracted ECG characteristics, LAD in the QRS complex, TWIs, representa-
tive changes in the QRS, ST and T durations and overall increased amplitude in
the QRS complex and in the T wave in precordial leads depicted changes of sta-
tistical significance between the sub-populations. Other imaging markers such as
increased LV wall thickness, more prevalence of fibrosis or increased LA diameter
were also significant. The differences found in our work are consistent with the
findings in the population selected by Lyon et al. [34].

This initial exploration was followed by phenogrouping of the output space. Two
types of clustering were performed: using kM and dividing the space in equisized
strips alongside dimension 1, which encoded the largest variability. Firstly, kM
was used to distinguish groups in the output space in a data-driven manner, where
the optimal number of clusters (6) was selected using the Silhouette score. These
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Figure 5.9: Cluster centroids, color-coded according to their associated cluster.
In low-risk groups (Clusters 2, 5), low overall QRS amplitude is observed, as well
as no T wave inversions. In high-risk groups (Clusters 0, 1, 3 and 4), a higher
prevalence of T wave inversions, axis deviations and ST depressions.
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clusters yielded two low-risk groups and four high-risk groups, as depicted in Fig-
ure 5.8. Some salient features could be identified in these groups according to the
patient’s clinical history. Cluster 4 (purple) characterized patients with high risk of
arrhythmias. Cluster 1 corresponded with patients with a high rate of comorbidi-
ties. Cluster 5 (brown, low risk) was morphologically similar to Cluster 2 (green,
normal phenotype) in most leads, but presented slight left axis deviation (polarity
inversions in leads III, aVL, aVF), overall reduced T wave amplitude and a higher
prevalence of TWI. The groups were also correlated with the relative amount of
genotype positive patients, with Cluster 2 (green) accounting for normal pheno-
type and the lowest amount of genotype positive patients, whereas Clusters 0 and
3 (blue, red) contained genotype positive-only patients. Clustering also allowed
for the differentiation between groups of increased hypertrophy, fibrosis and HCM
Risk-SCD score, with high-risk groups depicting generally increased risk as com-
pared to low-risk groups, which is compatible with the disease’s aetiology [153].
As in other works [34], high-risk clusters contained patients that did not reach
classic ECG-based criteria for HCM, such as Cornell or Sokolow scores [166].

A secondary analysis was performed, dividing dimension 1 into N strips of equal
size (Table 5.4). The Silhouette score was also employed as a single figure of merit
to distinguish the best number of divisions, saturating at three strips (Figure 5.4).
A good match could be found between the Strips and the Clusters found using
kM: Strip 0 roughly corresponded to the high-risk clusters (Clusters 0, 1, 3 and 4);
Strip 1 approximately corresponded to Cluster 5 (low risk, 2nd lowest event rate);
and Strip 2 had a good match with Cluster 2 (normal phenotype, lowest event
rate). The computed Strips correlated strongly with HCM Risk-SCD score, with
smaller values in the 1st dimension presenting worse scores (2.32%, 1.57% and
1.11% for Strips 0, 1 and 2, respectively), and more events (36.96%, 16.74% and
7.02%). Moreover, the gradation along dimension 1 was associated with statisti-
cally significant changes in QRS amplitude, QRS and T wave axis, QRS, T and ST
segment duration and ST elevation (p < 0.0001). This demonstrates the effective-
ness of the presented approach to stratify patients according to ECG features, and
further solidified dimension 1 as the main axis of variability, corresponding with
the most important ECG factors for HCM exploration. However, further research
would be needed to address whether the changes can be related to HCM or any
comorbidities.

Although not many computational approaches exist in the literature, Lyon et al.
[34] developed a similar methodology by utilizing another dimensionality reduc-
tion algorithm (PCA) alongside hand-crafted features extracted from the delin-
eated ECG trace. The hand-crafted features consisted in the first four basis func-
tion coefficients from the Hermite transform, applied to the QRS complex mor-
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phology, and the presence/absence of TWI over the averaged ECG from 30 minute
excerpts. The authors reported that the generated output space allowed the iden-
tification of four main clusters of data, as computed by DBSCAN, another unsu-
pervised algorithm. Posterior analyses demonstrated good separation with respect
to HCM Risk-SCD scores (1A: 4.0%, 1B: 1.8%, 2: 2.1%, 3: 2.5%, p = 0.0001)
over their 85 HCM/38 healthy controls population, suggesting the viability of ECG
for risk stratification. Their findings suggested that TWI in patients with normal
QRS as well as QRS abnormalities in precordial leads V4-V6 (in patients with and
without TWI) had a higher risk of arrhythmia and SCD. Thus, the authors hint at
the role of ECG to capture ionic and structural abnormalities in its trace, being
reflected in the depolarization and repolarization phases. In a similar note to Lyon
et al. [34], our findings seemed to relate clearly the occurrence of TWI, QRS axis
deviations and increased precordial QRS amplitudes to higher risk of HCM; even
coinciding to identify high-risk groups with TWI and normal QRS axis. More-
over, our approach also provided clear separation of populations with respect to
the HCM Risk-SCD scores (Table 5.3): high-clusters 0, 1, 3 and 4 had scores of
2.19%, 2.3%, 2.38% and 2.28%, respectively, whereas low-risk clusters 2 and 5
obtained scores of 1.07% and 1.5%, respectively (p < 0.0001). Our approach,
however, was able to incorporate the full ECG trace in the analysis, uncovering
significant changes in ST elevation, segment durations and late precordial transi-
tions as interesting clinical markers to explore. Furthermore, the computed output
space allowed to establish a gradation of the disease, where patients slowly tran-
sition to areas of higher risk over time, as opposed to including binary markers
such as TWI [34] or to all-or-nothing approaches such as classification approaches
[48, 49, 152].

Limitations and future work

This work, however, presents some limitations. Firstly, a more in-depth character-
ization of the output space is needed, as rationalizing the features that distinguish
a cluster from another is labour-intensive. Although this has partially been per-
formed, the characterization is incomplete, as some contributing factors are statis-
tically significant but poorly explored (e.g., many P wave markers showed statis-
tically significant changes, but these have not been analysed yet), or require more
derived ECG features that would be able to distinguish pathological waves from
normal (e.g., precordial transition, biphasicity of the wave, etc.), which would
make the posterior analysis easier. Another limitation is the employed algorithm:
although MKL has proven its usefulness in similar approaches and in a wide vari-
ety of tasks [15, 18, 55], it scales poorly to large amounts of data, needing to opti-
mize for large tensors that increase computational time as the cube of the number
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of observations. Although clinical problems that are often studied with small-scale
datasets are abundant (due to the difficulty in recruiting a large amount of patients),
a general solution for large-scale problems is of key importance to bridge the gap
between interpretable solutions and the predictive power of deep learning (DL)
algorithms. A final limitation is the dataset itself, where the population is faced
with large amounts of comorbidities and a small amount of SCD-related events,
which might limit the applicability of our approach. Multi-centric approaches for
recruiting a more comprehensive population to address the generalizability of our
approach are required [167]. Moreover, as mentioned by [34], many ECG test
are still performed in non-digital machines, which limit the applicability of this
approach to the general case.

Besides these limitations, this work could be extended to offer a more comprehen-
sive analysis of HCM. Firstly, we are working towards exploring the effects of the
discovered phenogroups in other data descriptors, such as Doppler curves. The
analysis of raw Doppler curves have shown to be challenging, masking the rela-
tionships in the data to produce interpretable results. Producing a similar pre-pro-
cessing for echocardiographic data or including ECG information might aid in
disentangling the information present in Doppler traces. Another extension possi-
bility is the application of sequence analysis [18], which could aid in addressing
changes over time in patients who are suspected of suffering MKL. The analysis of
trajectories in a low-dimensional embedding might further aid in risk stratification,
concentrating on personalized evolution rather than on the analysis of decontextu-
alized cardiac cycles.

5.6. Conclusions

In this work, a pipeline was developed for the analysis of standard ECG record-
ings, addressing the modality’s capability to aid in patient risk stratification. Mul-
tiple kernel learning was employed for this purpose, which is a multi-descriptor
dimensionality reduction algorithm that comparing samples directly in a low-di-
mensional embedding. The multi-descriptor formulation of the algorithm allows
the usage of the raw ECG traces as input, as opposed to hand-crafted surrogates
of ECG morphology and function, and allows for exploring the variability within
the input database. This permitted a better characterization of the output space, al-
lowing the identification of phenogroups that share some morphological and clin-
ical characteristics, clearly discriminating between high-risk and low-risk groups.
Moreover, the space allows to examine the disease’s progression due to its contin-
uous nature, providing a gradation of the characteristics indicative of disease.
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CHAPTER

6

General discussion and conclusions

This thesis has delved into the development of computational algorithms for reduc-
ing clinical workload when processing and interpreting cardiac signals. Specifi-
cally, deep learning (DL) algorithms were selected as the main analysis tool due to
their high performance under a wide array of tasks. This work, however, deviates
from the utilization of data-driven approaches for classification, as the uninter-
pretable nature of these algorithms cause a disconnect in the clinical hypotheti-
co-deductive method, disrupting the link between the specific set of symptoms
that lead to a specific diagnosis. To depart from these methods while profiting
from state-of-the-art computational methods, this thesis has concentrated on cre-
ating high-quality and robust quantification systems. The developed algorithms
can, in turn, be used for a wide variety of downstream tasks, such as decision sup-
port systems, research of risk stratification algorithms and automatization of the
extraction of routine clinical markers.

The main tools employed in cardiac electrophysiology (EP) studies are the elec-
trocardiogram (ECG) and intracavitary electrocardiograms (iECG). The ECG is
the main cardiac diagnostic, screening and risk stratification tool, with million of
exams performed yearly throughout the world. The ECG contains valuable infor-
mation about the normal functioning of the heart during the different phases of
the cardiac cycle, which is reflected on the different waves represented in its trace:
the P, QRS and T waves. iECG recordings, on their behalf, contain valuable local
information regarding the relative timing, amplitude and morphology of local acti-
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vation patterns arising in the myocardial surface as captured with a catheter when
the depolarization wave traverses its electrodes. This information can aid at local-
izing areas that present proarrhythmic properties, such as partially viable tissue in
patients with previous myocardial infarctions (MI) or conduction after pulmonary
veins (PVs) isolation in atrial fibrillation (AF) procedures. This work, thus, aims
at reducing clinical workload by performing cardiac signal delineation. In chapter
2 and chapter 3, an algorithm was developed for the robust delineation of ECG
recordings. In chapter 4, an iECG delineation tool was developed with a similar
methodology employed for surface ECG delineation.

Chapter 2 performed a first exploration of the computational possibilities of DL
algorithms to produce high-quality surface ECG delineation. For that purpose, a
large-scale model ablation was performed around the U-Net, a DL model usually
employed in medical image segmentation, to assess the different design decisions
that would lead to better performing models. To the best of our knowledge, ours
was the first approach to transfer the well-performing algorithms arising in the
medical imaging community to the cardiac signal analysis community [81]. How-
ever, attaining a model with optimal delineation performance proved difficult given
the limitations of the development dataset, which presented high intra- and inter-
patient redundancy and a relatively small sample size. A solution for that problem
was sought in chapter 3. In that work, a novel synthetic data augmentation (DA)
algorithm was developed alongside custom loss functions and more advanced DL
architectures existing in the literature. The main methodological contribution was
the synthetic DA algorithm, consisting in composing plausible traces of cardiac
cycles given a pool of annotated data and a rule-based algorithm for its final ar-
rangement. This algorithm allowed the generation of data samples that reinforced
the algorithm’s performance while extending the scope of the training data, as
the composition was flexible enough to allow for extending beyond the original
data manifold, and facilitating explicit prior imposition, thanks to the rule-based
composition algorithm. This methodology proved useful for producing a high-
-quality algorithm, greatly reducing delineation errors in ECG samples outside
the development dataset in a large number of target applications. The developed
model has proven useful in the analysis of patients with hypertrophic cardiomy-
opathy (HCM), tetralogy of Fallot, long QT syndrome, as well as in patients with
diverse cardiac pathologies undergoing radio frequency ablation or in pre-process-
ing Doppler images for locating cardiac cycles.

The developed methodology for the analysis of surface ECG recordings was
adapted for iECG delineation, as detailed in chapter 4. However, this work posed
its own challenges. Firstly, no open delineation dataset exists for this modality, so
the work was accompanied with ground truth generation for a private dataset. Sec-
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ondly, iECG recordings present waveforms of interest that might overlap, which
is not the case in ECG signals: a local field (LF) activation corresponding to a
late potential (LP) might coincide with a far field (FF) activation; some conditions
can cause the occurrence of escape rhythms, in which the electrical impulse is
generated in the atrioventricular node, causing simultaneous atrial and ventricular
depolarization, which is registered as simultaneous LF and FF activations. Thirdly,
there is ambiguity when distinguishing LF and FF activations in some cases and
their relationship with the underlying phase in the cardiac cycle, as the catheter
probes the electrical activation at specific portions of myocardial tissue that have
different roles in the heart’s electrical conduction system of the heart. Finally, a
delineation that is more sensible than specific is sought for, as delineations would
be compared in a beat-to-beat basis and posterior analysis can aid at discriminat-
ing false positives. Despite these challenges, the model developed with synthetic
DA demonstrated a good sensitivity when localizing local activations and great
promise at localizing areas with decremental activity.

Finally, in chapter 5, the developed ECG delineator was employed for the charac-
terization of a population of patients with HCM, exploring signal-based patterns
that might aid in risk stratification. multiple kernel learning (MKL) was employed,
a dimensionality reduction (DR) algorithm employed for unsupervised exploration
of similitude between observations in a population. Analyzing raw signals, how-
ever, posed a problem that had to be circumvented to draw similarities between
samples: ECG signals present mismatches due to inter- and intra-patient differ-
ences, as asynchronies might arise during the cardiac cycle. This was addressed
through delineating the ECG recordings, for posteriorly registering the different
phases of the cardiac cycles to segments of fixed length, virtually creating a com-
mon reference system. This common reference system permitted to draw infer-
ences from direct morphological comparisons between samples, grouping the data
into pools of patients that shared similar morphologies. Several cluster analyses
of the resulting low-dimensional embedding allowed the identification high-risk
phenogroups, and the characterization of T wave inversion (TWI), left axis de-
viation (LAD), ST elevation and late precordial transitions as interesting ECG
markers for risk stratification.

Limitations and future work

This work, however, presents several limitations that require addressing for im-
proving performance and assessing the real generalizability of the developed anal-
ysis pipelines.

Firstly, the difficulty in generating high-quality delineation approaches for cardiac
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signals are due to the lack of large corpora of annotated data. This is especially the
case in public entities such as universities and hospitals. If public initiatives such
as the creation of coordinated data gathering centers by the European Union [168]
yield results, the need for innovative data augmentation strategies such as those de-
veloped in this work would be barren, as appropriate population variability could
be captured through the retrieval of high-quality annotated data. Moreover, pro-
ject-specific data augmentation strategies are difficult to port to other data modal-
ities or clinical problems. As an example, whereas composing a synthetic signal
in one-dimensional datasets is a feasible (and even computationally inexpensive),
the computational cost of “squaring” the complexity in two-dimensional images
might render these approaches unfeasible in other data domains. Nevertheless,
computational solutions such as self- or semi-supervised approaches are already
being applied to medical image analysis [134, 169]. Besides the difficulties posed
by the small-data nature of these approaches, the developed delineation solutions
face other limitations. On the first hand, the DL field evolves so rapidly that many
modifications could be performed to the baseline architecture, or even its complete
replacement by better-performing models. On the other hand, obvious limitations
exist in the synthetic DA approaches themselves; although they present, in our
opinion, advantages over current data-driven approaches such as generative adver-
sarial networks, due to their ability to extend outside the input data’s manifold and
to control explicit prior imposition, a rule-based approach is time-consuming to
produce and fine-tune, blurring the gap between digital signal processing (DSP)
and DL-based approaches. Despite these challenges, many projects are employing
the currently developed delineation tool with a high success rate, comprising the
analysis of the site of origin (SoO) of outflow tract ventricular arrhythmias or the
development of tools for the analysis of patients with AF, tetralogy of Fallot, Long
QT syndrome in neonates and Brugada syndrome. Moreover, the delineation tool
is also being used to pre-process Doppler images to locate beginnings and ends of
cardiac cycles, simplifying downstream analysis tasks.

Secondly, in the specific case of iECG delineation, the proposed approach might
require a more in-depth adaptation to the data modality further than re-coding the
DA pipeline. A first problem is the existence of overlapping LF activations (or
LPs), although clearly distinguishable, such as in waves that have very different
frequential profile. This has been partially covered in this work, with LFs being
detected within FFs, but further efforts are needed to better localize these waves.
Reformulating the problem as an instance segmentation problem, where the seg-
mentations might be of the same class but pertain to distinct objects, producing
non-overlapping segmentations. A second problem consists in the difficulty even
for human operators to distinguish isolated local components in certain patholo-
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gies with very high firing rate or with highly fractionated electrograms. A lack of
consensus on how to annotate a signal might hinder the adaptation of a fully work-
ing solution. These limitations are, however, consistent with the very experimen-
tal phase of this work, and different solutions will be attempted in the following
months, comprising the implementation of state-of-the-art segmentation architec-
tures, dataset re-annotation, real data incorporation and an overall improvement in
the synthetic data generation pipeline.

Finally, the pipeline developed for HCM risk stratification shows promising re-
sults. However, the specific links between ECG findings and the disease’s patho-
physiology need to be further studied, through proposing specific electrophysio-
logical mechanisms compatible with such morphological changes. Moreover, a
larger patient cohort needs to be recruited to verify the generalizability of the pro-
posed approach, and the findings would benefit from their comparison to findings
in imaging modalities such as echocardiography or magnetic resonance imaging
(MRI). Other markers besides purely ECG-based could also be interesting to ana-
lyze, e.g. by including Doppler traces. Finally, the employed DR algorithm would
also benefit from improving the formulation to one that is able to take into account
much larger cohorts of patients, even comprising other cardiovascular diseases.
Algorithms that agglomerate large data pools will improve the generalizability of
the approach by producing richer low-dimensional embeddings or latent spaces,
where the captured variability is maximal and the inter-dimensional correlation
is minimized. For this purpose, extending the MKL approach by adapting it to
a formulation compatible with batch-based approaches and stochastic optimiza-
tion is a promising venture for expansion. Other approaches such as variational
autoencoderss will also be explored.
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