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Abstract 

Phenology is key to control physicochemical and biological processes, especially 

albedo, surface roughness, canopy conductance and fluxes of carbon, water and energy. 

High-quality retrieval of land surface phenology (LSP) is thus increasingly important 

for understanding the effects of climate change on ecosystem function and biosphere–

atmosphere interactions. Remote sensing is a useful tool for characterizing LSP although 

no consensus exists on the optimal satellite dataset and the method to extract phenology 

metrics. 

I aimed to (i) improve the retrieval of Land Surface Phenology from satellite data, (ii) 

validate LSP with ground observations and near surface remote sensing, and (iii) 

understand the relationships between climate variables and phenology in a climate 

change context, as well as to assess the responses of vegetation to extreme events. These 

three main research objectives are explored in the three chapters of the thesis. 

In chapter 2, I investigated the sensitivity of phenology to (I) the input vegetation 

variable: normalized difference vegetation index (NDVI), leaf area index (LAI), fraction 

of absorbed photosynthetically active radiation (FAPAR), and fraction of vegetation 

cover (FCOVER); (II) the smoothing and gap filling method for deriving seasonal 

trajectories; and (III) the phenological extraction method: threshold, logistic-function, 

moving-average and first derivative based approaches. The threshold-based method 

applied to the smoothed and gap-filled Copernicus Global Land LAI V2 time series 

agreed the best with the ground phenology, with root mean square errors of  ~10 d and 

~25 d for the timing of the start of the season (SoS) and the end of the season (EoS), 

respectively.  

In the third chapter, I took advantage of PhenoCam and FLUXNET capability of 

continuous monitoring of vegetation seasonal growth at very high temporal resolution 

(every 30 minutes). This allows a more robust and accurate comparison with LSP 

derived from satellite time series avoiding problems related to the differences in the 

definition of phenology metrics. I validated LSP estimated from LAI time series with 



 

xv 

 

near-surface PhenoCam and eddy covariance FLUXNET data over 80 sites of deciduous 

broadleaf forest. Results showed a strong correlation (R2 > 0.7) between the satellite 

LSP and ground-based observations from both PhenoCam and FLUXNET for the timing 

of the start (SoS) and R2 > 0.5 for the end of season (EoS). The threshold-based method 

performed the best with a root mean square error of ~9 d with PhenoCam and ~7 d with 

FLUXNET for the timing of SoS, and ~12 d and ~10 d, respectively, for the timing of 

EoS.  

In the fourth chapter, I investigated the spatio-temporal patterns of the response of 

deciduous forests to climatic anomalies in the Northern Hemisphere using LSP derived 

in Chapter 1 and validated in Chapter 1 and Chapter 2, and multi-source climatic data 

sets for 2000–2018 at resolutions of 0.1°. I also assessed the impact of extreme 

heatwaves and droughts on deciduous forest phenology. Analyses of partial correlations 

of phenological metrics with the timing of the start of the season (SoS), end of the season 

(EoS), and climatic variables indicated that changes in preseason temperature played a 

stronger role than precipitation in the interannual variability of SoS anomalies: the 

higher the temperature, the earlier the SoS in most deciduous forests in the Northern 

Hemisphere (mean correlation coefficient of -0.31). Both temperature and precipitation 

contributed to the advance and delay of EoS. A later EoS was significantly correlated 

with a positive standardized precipitation-evapotranspiration index (SPEI) at the 

regional scale (~30% of deciduous forests). The timings of EoS and SoS shifted by >20 

d in response to heat waves throughout most of Europe in 2003 and in the United States 

of America in 2012.  
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1.1. Land surface phenology under climate change  

Phenology is defined as the study of the timing of recurrent biological events (such as 

plant growing, migration and breeding of birds, or emergence of insects), as well as the 

causes of their timing with regard to biotic and abiotic forces, and the relationship among 

phases of the same or different species (Lieth, 1974). In this thesis I focus on the field 

of vegetation phenology, which deals with the seasonal life-cycle phenophases of plants, 

from the start of the greenness to senescence and their biotic or abiotic drivers (Saxena 

and Rao, 2020). Fluctuations in vegetation phenology are related to factors such as 

carbon, energy, and climate within terrestrial ecosystems (Estiarte and Peñuelas, 2015; 

Garrity et al., 2011). 

The scientific discipline of vegetation phenology has a long history. The first robust 

studies date from the 1950s (Schnelle, 1955). However, vegetation phenology has 

received increasing scientific attention in more recent times, by the early 1990s (Bajocco 

et al., 2019; Donnelly and Yu, 2017; Saxena and Rao, 2020) due to the growing evidence 

that the timing of growing stages is mostly dependent on environmental cues (Chuine 

and Regniere, 2017), especially as phenological events are deeply sensitive to climate 

variations (Menzel et al., 2006). Moreover, vegetation phenology has raised an 

increasing interest as a key indicator of climate change (IPCC, 2007, 2013, 2014) due to 

its important role as regulator of processes in terrestrial ecosystems, including carbon 

and water cycle (Peñuelas et al., 2009; Richardson et al., 2013; Verger et al., 2016). 

Unlike human and animals with the ability to quickly move from one region to another, 

vegetation is fixed to a location, with slow and limited migrations, so it has to withstand 

the climatic changes (Saxena and Rao, 2020). Vegetation phenology varies greatly 

between species and geographic gradients (Peñuelas et al., 2009; Zhao et al., 2013), and 

it is the outcome of the interaction of inherent attributes of each specie and their 

sensitivity to external factors, such as radiation (photoperiod) (Borchert and Rivera, 

2001), temperature (Wang et al., 2019), and precipitation (Chuine, 2010; Ibáñez et al., 

2010; Visser et al., 2010; Zhao et al., 2013). Assessing phenological transitions dates 

has played an important role for understanding the climatic drivers of interannual 

variability and for analyzing how vegetations respond to climate conditions 

(Chmielewski and Rötzer, 2001; Cleland et al., 2007; Menzel et al., 2006; Schwartz et 

al., 2006; Walther, 2010). 
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Climate change is recognized for being a direct consequence of greenhouse gas 

emissions, and it is especially reflected in a significant and continuous increase in the 

average temperature of the earth (IPCC, 2007, 2013). The Intergovernmental Panel on 

Climate Change (IPCC) 4th Assessment Report on Impacts, Adaptation and 

Vulnerability highlighted that the average global temperature has risen by 0.85 °C, over 

the period 1880–2012 and projections indicate that it will continue to rise (IPCC, 2007, 

2013). Most studies in the late 1990s and early twenty-first century highlighted that 

elevated temperatures have contributed to the increase of vegetation greening through 

the early leaf unfolding (Chmielewski and Rötzer; Menzel and Fabian, 1999; Zhang et 

al., 2004) and later senescence (Delbart et al., 2008; Menzel and Fabian 1999; Menzel, 

2006), which extends the length of the growing season in most areas of the Northern 

Hemisphere (Saxena and Rao. 2020). 

Global climate change and particularly extreme weather events such as floods, droughts 

and heatwaves are reflected in vegetation phenology anomalies (IPCC, 2007, 2012; 

Tang et al., 2017). Therefore, understanding the responses of vegetation phenology to 

climate extremes is crucial and challenging, considering that climatic projections 

indicate that future anomalies in the climate will become more intense and frequent than 

those experienced in the past decades (IPCC, 2007, 2012; Jentsch et al., 2009; Reichstein 

et al., 2013; Tang et al., 2017; Zheng et al., 2018; Zhao et al., 2018). Studies on 

vegetation and climatic interactions have demonstrated that vegetation phenology 

respond directly to climate, and phenological shifts in turn disturb climate through 

feedback, affecting the CO2 uptake in function of the water availability in the soil, 

regional characteristics, as well as the plant species and location (Atkinson et al., 2013; 

Chen et al., 2018; Keenan et al., 2014; Peñuelas et al., 2001, 2009; Richardson et al., 

2013), which would alter the hydrological cycle through changes in the 

evapotranspiration pattern (Berg et al., 2016; Bonan et al., 2008; Buermann et al., 2013, 

2018; Peñuelas et al., 2009). 

 

 



1. Introduction 

 

20 

1.2. Vegetation phenology estimation 

Traditionally, phenological datasets were compiled from annual ground-based 

observations of the timing of specific phenological events for particular plant species 

based on periodic visual inspection by scientists or by volunteer observers (Morin et al., 

2009; Peñuelas et al., 2002; Richardson et al., 2006; Schwartz et al., 2002, 2013). Human 

observations of plant phenology phases have been conducted for centuries (Templ et al., 

2018). The earliest known phenological data collection date from the ninth century in 

Japan, where local citizens recorded the spring cherry blossoms and maple leaves for 

the timing of autumn (Aono and Kazui, 2008; Aono and Tani, 2014). In the sixteenth 

and seventeenth century records of phenology are also found in England, recording the 

growth of more than 20 different species of plants, including records of tree-leaf out 

from temperate forest (Sparks and Carey, 1995; Thompson and Clark, 2008). In France, 

the scientists and farmers have also a long tradition observing the grapevine phenology 

since the 1950s (García de Cortazar et al., 2017). 

In the late twentieth and early twenty-first centuries, several international initiatives 

including PEP725 (Pan European Phenology), PlantWatch program (Templ et al.,2018; 

Vliet et al., 2003), and USA-NPN (National Phenology Network) (Mayer, 2010), aim to 

manage and coordinate the databases of phenological records, establishing common 

protocols and techniques to support and standardize phenological data collection across 

large geographical areas in order to provide detailed plant phenology data at species-

scale or individual plant scale (Donnelly and Yu, 2017; Morin et al., 2009; Richardson 

et al., 2006; Schwartz et al., 2012; Templ et al., 2018). 

Most of the ground-based observations and phenological networks are usually carried 

out by observing the vegetation and recording only a small choice of phenophases (e.g. 

leaf unfolding, senescence), avoiding the possibility of analyzing the progression of the 

seasonality (Templ et al., 2018). Moreover, the number of ground-based observations 

are insufficiently distributed, mainly near to the cities, agricultural fields, or in low 

altitude areas, and usually are restricted to a few species (Liang et al., 2011). To solve 

these issues, the scientific community has begun to take advantage of (1) near-surface 

observations (Hufkens et al., 2012; Richardson et al., 2009; Sonnentag et al., 2012; 

Zhang et al., 2018) and (2) satellite remote sensing data (Bórnez et al., 2020a, 2020b; 
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Verger et al., 2016; Wu et al., 2014; Zhang et al., 2018), which allow more objective, 

long-term and continuous phenological observations of different plant species over a 

broad area (Morisette et al., 2009). 

Near-surface observations usually includes imagery acquired from visible-wavelength 

digital cameras, such as PhenoCam (Hufkens et al., 2012; Richardson et al., 2009; 

Sonnentag et al., 2012) with RGB (Red, Green and Blue) bands (Wingate et al., 2015; 

Vrieling et al., 2018), and continuous CO2 flux measurements based on eddy covariance 

technique (e.g. FluxNet Network) (Gonsamo et al., 2013; Wu et al., 2013). Near-surface 

observations (e.g. PhenoCam and FluxNet) provide higher temporal resolution and 

greater spatial coverage than ground measurements, allowing to analyze site-level 

phenological variation and mechanisms (Vrieling et al., 2018). Near-surface imagery 

acquired by PhenoCam are based on optical principles similar to those used by sensors 

onboard on satellites, bridging the scale between ground and satellite-based data (Figure 

1.1) (Moura et al., 2017; Sonnentag et al., 2012). 

 

Figure 1.1: Diagram showing the data sources used in the thesis for the phenological estimation, as well 

as their properties regarding the temporal frequency and the spatial coverage and representability of the 

measurements. Ground measurements have the lowest temporal resolution while near surface remote 

sensing data and eddy covariance observations as well as satellite remote sensing provide more frequent 

observations and higher spatial coverage 
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1.2.1. Land surface phenology: the role and importance of remote sensing for 

vegetation monitoring  

Attention to changes in vegetation phenophases such as the start (SoS), end (EoS) or 

length (LoS) of the growing season has increased over the last three decades (Donnelly 

and Yu, 2017) with the use of remote sensing technology and climate models (Daham 

et al., 2019; Shen et al., 2015; Wang et al., 2019), which allows to collect climatic and 

phenological data over larger scales (Donnelly and Yu, 2017). Remote sensing imagery 

has been improving the spatial resolutions ranging from centimeters to kilometers and 

the temporal frequencies ranging from months or weeks to minutes (Xie et al., 2008). 

Therefore, unlike in-situ observations, CO2 flux data or PhenoCam imagery, sensors 

onboard satellites allow to measure phenological events over larger areas. The study of 

the seasonal pattern of variation in vegetated land surfaces from remote sensing is 

commonly known as Land Surface Phenology (LSP) (de Beurs and Henebry, 2005).  

The first monitoring of LSP began with the Landsat I satellite in the early 1970s with 

frequency temporal acquisition of images (16-day) at 30m of spatial resolution (Tucker, 

1979). However, for monitoring vegetation, frequent observations are necessary (Miao 

et al., 2013), so other satellites and sensors have been developed over the last few 

decades for monitoring vegetation with higher temporal resolution, but with lower 

spatial resolution (>250 m), such as the Advanced Very High-Resolution Radiometer 

(AVHRR) sensor launched in the 1980‘s (Duchemt al. 1999; Heumann et al., 2007; 

Lloyd, 1990; Reed et al., 1994), the Moderate resolution Imaging Spectroradiometer 

(MODIS) (Tan et al., 2011; Zhang et al., 2003), Visible Infrared Imaging Radiometer 

Suite (VIIRS) (Liu et al., 2017; Zhang et al., 2018), Système Pour L'Observation de la 

Terre (SPOT)-VEGETATION (VGT) (Atzberger and Eilers, 2011; Verger et al., 2015; 

Xie et al., 2008),  Medium Resolution Imaging Spectrometer (MERIS) (Brown et al., 

2017), PROBA-V (Bórnez et al., 2020a, 2020b, Guzman et al., 2019; Verger et al., 

2017), and more recently, Sentinel-2A/B tandem satellites, which unlike the previous 

ones, have been used for the estimation of LSP at greater spatial resolution ranging from 

10 to 60 m and frequent revisit times <5 d (Addabbo et al., 2016; Descals et al., 2020). 

LSP dynamics reflect the response of vegetation to seasonal and annual changes in the 

climate and hydrologic cycle (de Beurs and Henebry, 2004, 2010). The application of 
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remote sensing imagery to study vegetation phenology and climate relationship found a 

great catalyst with the development of vegetation indices, and its implementation in 

Landsat and the AVHRR sensor in the late 1970s (Jones and Vaughan, 2010). From that 

moment, a broad variety of vegetation products have been developed for the study of 

LSP and climate at multiple scales (Henebry and de Beurs, 2013; Zeng et al., 2020). The 

European Union has developed operational land monitoring services, known as 

Copernicus Global Land Service (CGLS), as continuity of the Global Monitoring of the 

Environment and Security (GMES) (Verger et al., 2014). CGLS provides a series of bio-

geophysical products and vegetation indices (VI), describing the status and dynamics of 

vegetation at global scale from time series of remote sensing observations (Verger et al., 

2014).  

VI and biophysical products use the land surface reflectance through the spectral 

signatures of photosynthetically and non-photosynthetically of green healthy vegetation 

(leaves) over the 0.4–2.6 µm wavelengths (Figure 1.2) to estimate the greenness 

(Gonsamo et al., 2013). The vegetation signature shows low spectral reflectance in the 

visible and middle-infrared wavelengths (high chlorophyll and water absorption) and 

high reflectance in the near-infrared (NIR) wavelengths (Gates, 1970; Zheng et al., 

2020), which aids to monitor the seasonal cycle of vegetation. Time series of VIs and 

biophysical variables are commonly used to identify seasonal transitions in vegetation, 

especially for deciduous forests, since they have a clearly defined seasonal response (e.g. 

Figure 1.3) compared to the small seasonal variations of evergreen vegetation. (Garrity 

et al., 2011; Liu et al., 2016; Melaas et al., 2013). 
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Figure 1.2: The spectral response patterns of vegetation, that remote sensors use to estimate vegetation 

indices. It shows the area of absorption by chlorophyll pigment in the visible spectrum, the reflectance of 

the leaves mainly in the near infrared, and the absorption of radiation by the water content in most of the 

incoming radiation over the shortwave infrared region. Note that the figure shows the average spectral 

signature of the vegetation, which varies slightly between different vegetation types and species. To 

explore the spectral response characteristics of specific species, visit the ASTER Spectral Library 

https://speclib.jpl.nasa.gov/library/ecoviewplot, California Institute of Technology, 2002. 

Among the different vegetation products, most previous approaches for estimating LSP 

have been based on the use of biophysical variables, including the Leaf Area Index (LAI) 

(Bórnez et al., 2020b; Hanes and Schwartz, 2011; Kang et al., 2003; Verger et al., 2015; 

Wang et al., 2017), Fraction of Absorbed Photosynthetic Active Radiation (FAPAR) 

(Meroni et al., 2014; Verger 2016, 2017), the fraction of vegetation cover (FCover) 

(Verger et al., 2016), as well as spectral vegetation indices such as the Normalized 

Difference Vegetation Index (NDVI) (Fischer, 1994; Yu et al., 2003; Wu et al., 2014), 

and Enhanced Vegetation Index (EVI) (Zhang et al., 2003; Wang et al., 2017). All of 

them are associated with the biophysical and biochemical properties of vegetation 

(Gonsamo et al., 2012), being recognized as essential climate variables by the Global 

Climate Observing System (GCOS) (Verger et al., 2014). 

NDVI has been the most widely used index to estimate vegetation phenology because 

of its easy calculation and its broad acceptance into the scientific community (Jeong et 

al., 2011; Myneni et al., 2002; Reed et al., 1994; White et al., 2014). However, 

biophysical variables such the LAI are being increasingly studied to describe plant 

https://speclib.jpl.nasa.gov/library/ecoviewplot
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canopy structure (Figure 1.3) because it represents direct biophysical measures of 

vegetation, estimated by models, and it is more sensitive than NDVI or FPAR for larger 

vegetation amounts (Myneni and Williams, 1994; Verger et al., 2013). It is based on leaf 

development rather than on proxies provided by vegetation indices which avoid 

distortions associated with the canopy structure and the biochemical composition of the 

existing foliage (Richardson et al., 2009; Verger et al., 2014, 2016). 

 

Figure 1.3: Example of determining growing season of vegetation from seasonal patterns of the Leaf Area 

Index (LAI) over deciduous forest. Phenology can be extracted from the seasonal LAI curve (in green), 

as defined in Bórnez et al., 2020b.  Phenological date vary according to the method for phenological 

estimation used. In this example (a) Start of season, (b) Greenup phase, (c) Maximum LAI, (d) Senescence 

phase, (e) End of season, (f) Length of season, (g) Seasonal amplitude are shown. 

Various methods have been developed to estimate phenological transitions from a time 

series of VI and biophysical variables. The main metrics of interest in the studies of LSP 

have been the start (SoS) (White et al., 2009; Liang et al., 2011) and the end of the 

growing season (EoS) due to its importance within the context of climate change 

(Garrity et al., 2011; Menzel, 2002). The methodologies on LSP estimation are mainly 

based on a two-step approach (Verger et al., 2016; Zeng et al., 2020) including (1) curve-

fitting and (2) extraction of phenology metrics. Firstly, the original remote sensing 

products typically have noisy and spurious points, so to perform the curve fitting 

approach smoothing methods are typically applied to the time-series datasets to filter 

and minimize residual noise and fill in the gaps, since noise and missing data in satellite 

time series can introduce uncertainties in the phenological estimates. Several smoothing 

techniques are available, including low pass filtering (LPF), Whittaker smoother, 
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Adaptive Savitzky-Golay filter (SGF), and asymmetric Gaussian function (AGF) 

(Verger et al., 2016). 

Regarding the methods for phenological estimation from the reconstructed daily time 

series, a broad variety of strategies has been designed. The most commonly used 

strategies are based on thresholds (Myneni et al., 1997; White et al., 1997), moving 

averages (Reed et al., 1994), first derivatives (Tateishi and Ebata, 2004; White et al., 

2009), and curvature of piecewise logistic functions (Zhang et al., 2003). De Beurs and 

Henebry (2010) indicated that there is no better method to estimate phenology for all the 

vegetation types and areas. White et al. (2009) and Atkinson et al. (2012) investigated 

the effects of using different methodologies to derive LSP metrics, highlighting that also 

phenological metrics estimation accuracy varies among the different methods and VI or 

biophysical variables. Therefore, the method and variable selected for phenological 

estimation can significantly influence the performance of the phenology extraction from 

the smoothed time series (Kandasamy et al., 2013; Atkinson et al., 2012), and this is 

especially important for analyzing the interrelationships between phenological estimates 

and climate variables. 

Understanding the relationship between the different elements of global climate change 

and LSP is one of the most studied and challenged topics of the 21st century (Sykes, 

2009). The 4th Assessment Report of the IPCC indicated that spring onset has been 

advancing by about 2.3 and 5.2 days per decade since the 1970s to early twenty-first 

century (Parmesan, 2007) and it concluded that phenology “is perhaps the simplest 

process in which to track changes in the ecology of species in response to climate 

change” (IPCC, 2007). In this sense, the LSP estimated in this thesis from remote 

sensing data serves for detecting the response of vegetation to environmental changes at 

multiple scales by analyzing the anomalies in time series. 

1.3. Thesis objectives 

The general objective of the thesis is to analyze the dynamics of vegetation phenology 

in response to climatic change, through the use of satellite imagery from CGLS 

vegetation products. Particularly, I aim to estimate Land Surface Phenology from 

satellite data, validate it with ground observations and near surface remote sensing and 
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understand the relationships between climate variables and phenology in a climate 

change context, as well as to assess the responses of vegetation to extreme events.  

Meeting this goal is challenging due to the wide availability of vegetation variables and 

phenological estimation methods from which phenology metrics can be obtained (de 

Beurs and Hennery, 2010; Schwartz and Hanes, 2010; White et al., 2009), which 

requires a series of previous steps, including the identification of the biophysical variable 

or vegetation index that best assesses the vegetation phenology found in ground 

observations (chapter 2). In order to evaluate the robustness of the phenological metrics 

estimated from satellite, and compared with ground measurement, near surface remote 

sensing and eddy covariance techniques were used by using continuous time series GCC 

(from PhenoCam) and GPP (from FluxNet), which allowed me to validate the results 

(chapter 3). Finally, I analyzed the response of phenology to the changes in climate 

variables as a result of global climate change, focusing on anomalies and extreme 

climatic events (chapter 4). 

The thesis is thus structured in three research chapters: 

Chapter 2. Phenological metrics estimation from remote sensing time series and 

validation with ground measurements 

The objectives of Chapter 2 are (1) to select the best biophysical variable or vegetation 

index for estimating phenological metrics on a global scale within the portfolio of the 

CGLS vegetation products (NDVI, LAI, FCOVER or FAPAR) from time series of the 

sensors SPOT-VGT and PROBA-V, and (2) to define the method that best matched with 

ground data (using PEP725 and NPN). I evaluated four methods for estimating 

phenology: the threshold method based on percentiles, the derivative method, the 

autoregressive moving-average method, and the logistic-function method.  

Chapter 3. Validation of satellite phenological metrics by using near-surface 

remote sensing and eddy covariance flux data  

In the s third chapter, I completed the validation of LSP retrievals developed in Chapter 

2 by taking advantage of continuous measurements of near surface remote sensing 

(PhenoCam) and eddy covariance CO2 flux measurements (FluxNet) at very high 

temporal resolution. The aim was to conduct a more robust and accurate comparison 
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with LSP derived from satellite time series avoiding problems related to the differences 

in the definition of phenological metrics. In this chapter, I evaluated the same four 

methods as in Chapter 2 for estimating phenology: the threshold method based on 

percentiles, the derivative method, the autoregressive moving-average method, and the 

logistic-function method. These methods were applied both to satellite CGLS LAI V2 

time series and ground observations from PhenoCam GCC and eddy covariance flux 

data. 

Chapter 4. Assessment of phenological response to climate and extreme 

events 

In this chapter, I explored the relationship between the LSP estimated from LAI time 

series and climate variables. Specifically, the objectives of this chapter were: (1) to 

identify and quantify statistically the spatial pattern of correlation between the anomalies 

of vegetation phenology and climate (temperature, precipitation and drought) to this way 

identify the main cause of phenological change, (2) to quantify the sensitivity of 

phenology to climate; and (3) to determine the consequences of extreme events on 

phenology in the areas with the highest sensitivity to climate.  
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Abstract 

Land surface phenology has been widely retrieved although no consensus exists on the 

optimal satellite dataset and the method to extract phenology metrics. This study is the 

first comprehensive comparison of vegetation variables and methods to retrieve land 

surface phenology for 1999-2017 time series of Copernicus Global Land products 

derived from SPOT-VEGETATION and PROBA-V data. We investigated the 

sensitivity of phenology to (I) the input vegetation variable: normalized difference 

vegetation index (NDVI), leaf area index (LAI), fraction of absorbed photosynthetically 

active radiation (FAPAR), and fraction of vegetation cover (FCOVER); (II) the 

smoothing and gap filling method for deriving seasonal trajectories; and (III) the method 

to extract phenological metrics: thresholds based on a percentile of the annual amplitude 

of the vegetation variable, autoregressive moving averages, logistic function fitting, and 

first derivative methods. We validated the derived satellite phenological metrics (start 

of the season (SoS) and end of the season (EoS)) using available ground observations of 

Betula pendula, B. alleghaniensis, Acer rubrum, Fagus grandifolia, and Quercus rubra 

in Europe (Pan-European PEP725 network) and the USA (National Phenology Network, 

USA-NPN). The threshold-based method applied to the smoothed and gap-filled LAI 

V2 time series agreed best with the ground phenology, with root mean square errors of 

~10 d and ~25 d for the timing of SoS and EoS respectively. This research is expected 

to contribute for the operational retrieval of land surface phenology within the 

Copernicus Global Land Service. 
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2.1. Introduction 

Phenology is the study of the timing of recurrent biological and seasonal events and their 

biotic and abiotic factors (Beaumont et al., 2015). Studies of plant phenology focus on 

how these events and factors are influenced by seasonal and interannual variations in 

climate and how they modulate abundance and diversity (Beaumont et al., 2015). 

Phenology is, moreover, key to control physicochemical and biological processes, 

especially albedo, surface roughness, canopy conductance and fluxes of carbon, water 

and energy (Peñuelas et al., 2009; Richardson et al., 2013). Phenological metrics are 

thus relevant parameters for modeling land surface processes and the global carbon cycle 

(Wu et al., 2014). 

Phenological metrics are estimated based on ground observations and data derived from 

satellites. Ground observations provide accurate timing of vegetation phenophases but 

cannot cover continuously large-scale areas (Garrity et al., 2011; Yu et al., 2017). 

Satellite sensors with moderate spatial resolutions, including AVHRR, MODIS, 

MERIS, SPOT-VEGETATION and PROBA-V, provide long-term time series of daily 

observations that allow improving the characterization of land surface phenology on a 

global scale (Atkinson et al., 2012; Verger et al., 2016; Zhang et al., 2004). However, 

the noise in the data and missing observations mainly due to cloud contamination may 

induce significant uncertainties in the estimation of phenological metrics (Kandasamy 

et al., 2013; Verger et al., 2013). The literature shows a broad variety of time-series 

processing methods designed to reconstruct gap-filled vegetation seasonal trajectories 

from noisy satellites signals. This includes the best index slope method (Viovy et al., 

1992), mean filters (Reed et al., 1994), moving-window filters (Sweets et al. 1999), 

asymmetric Gaussian functions (Jönsson and Eklundh, 2002), Savitzky–Golay filters 

(Chen et al., 2004) or the Whittaker smoother (Eilers, 2003). However, no single method 

always performs better than others for smoothing vegetation time series (Cai et al., 2017) 

and their performance vary spatially and temporally with land surface conditions and 

cloud influence (Atkinson, et al. 2012; Kandasamy and Fernandes, 2015). 

A broad variety of statistical methods have been designed to extract phenological 

metrics from satellite time series. Metrics typically include the start of the season (SoS), 

the end of the season (EoS), the timing of maximum growth and the length of the 
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growing season (LoS) (Reed et al., 1994; Zhang et al., 2004). De Beurs and Henebry 

(2010) provided a comprehensive review of the exiting phenology retrieval approaches 

that can be classified in four main categories: thresholds and percentile based methods 

(Atzberger and Eilers, 2011; Verger et al., 2016), moving averages (Reed et al., 1994), 

first derivatives (White et al., 2009) and fitted models (de Beurs and Henebry, 2005). 

White, et al. (2009) compared ten different phenology retrieval methods applied to 

AVHRR NDVI in North America and found large discrepancies of up to two months in 

the detection of the SoS.  

In addition to the sensitivity to the smoothing and phenological extraction algorithm, the 

derived phenological metrics are also dependent on the sensor, spatial and temporal 

resolution, processing chain, and satellite data set. The satellite-derived spectral 

vegetation indices (e.g. the Normalized Difference Vegetation Index (NDVI)) vary in 

their strength of phenological prediction across sites and plant functional types (Wu et 

al., 2014). Unlike previous studies based on vegetation indices, the present study aimed 

to characterize the phenology not only with NDVI but also with biophysical variables: 

the leaf area index (LAI), the fraction of absorbed photosynthetically active radiation 

(FAPAR), the fraction of vegetation cover (FCOVER). We used NDVI version V2.1 

(Toté et al., 2017), LAI, FAPAR and FCOVER V1 (Baret et al., 2013) and V2 (Verger 

et al., 2014) time series derived within the Copernicus Global Land Service (CGLS) 

from SPOT-VEGETATION and PROBA-V data. Verger et al. (2017) showed that the 

phenology derived from the interannual climatology of LAI V1 improved other existing 

products including MODIS-EVI when compared to ground observations for the average 

date of the SoS and EoS. However, their study was limited to the baseline LAI 

phenology as derived from a single extraction method. This paper is a continuation of 

the previous paper by Verger et al. (2017) and we address now the interannual variation 

of the yearly phenology, the impact of the input vegetation variable and the phenological 

extraction method. Further, we incorporate LAI, FAPAR and FCOVER V2 that 

improved continuity (no missing data in V2) and smoothness as compared to V1. 

Our study had two main objectives: to select the best biophysical variable or vegetation 

index for estimating phenological metrics on a global scale within the portfolio of the 

CGLS vegetation products (NDVI, LAI, FCOVER or FAPAR) and to define the method 

that best matched the ground data. 



2.2. Materials and Methods 
 

 

33 

2.2. Materials and Methods 

2.2.1. Phenological ground observations 

Ground-based phenological data from PEP725 and USA-NPN were examined, focusing 

on the dates of leaf out and leaf senescence for Betula (birch) in Europe (Figure 2.1a) 

and the USA and for Quercus (oak), Fagus (beech) and Acer (maple) in the USA (Figure 

2.1b). These genera were chosen because they are present in both Europe and the USA 

and have large numbers of records in the combined data set.  

The PEP725 Pan-European Phenology database (Templ et al., 2018) (www.pep725.eu) 

has complete records from 1990 to the present. The phenophases defined in PEP725 are 

based on BBCH (Biologische Bundesanstalt, Bundessortenamt and Chemical industry) 

code (Meier et al., 2009). We used the phenophases corresponding to the first visible 

leaves (BBCH 11) as the reference for the timing of SoS and the date corresponding to 

50% of leaves with autumn coloration (BBCH 94) for the timing of EoS.  

The USA National Phenology Network was established in 2007 to collect, store and 

share historical and contemporary phenological data on a North American scale 

(Schwartz et al., 2012). The data are freely available at https://www.usanpn.org/. This 

network provides measurements of several phenophases. We used the phenophases 

“leaves” which corresponds to first visible leaves and “increasing leaf size” for SoS and 

“colored leaves” for EoS.  

We discarded ground sites with less than four yearly measurements to obtain consistent 

data records over the time series. We used ground-site located pixels. The spatial 

heterogeneity hamper comparing ground-based phenology for individual plants with 

satellite phenology at a resolution of 1 km. We filtered the ground sites located in 

agricultural or urban areas using high-resolution images from Google Earth 

(https://earth.google.com/) and the ESA Land Cover Map (CCI-LC) 

(http://maps.elie.ucl.ac.be/CCI/viewer/index.php). In Europe, we used only the points 

with forest coverages >5% using a tree cover map for European forests (Brus et al., 

2012).  

 

 

http://www.pep725.eu/
https://www.usanpn.org/
https://earth.google.com/
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
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2.2.2. Satellite time series 

The time series of satellite imagery used for estimating the phenological metrics were 

from the SPOT-VEGETATION (1999-2013) and PROBA-V satellites (2014-2017) with 

spatial resolutions of 1 km and temporal frequencies of 10 d. In particular, we used LAI, 

FAPAR, FCOVER V1 (Baret et al., 2013) and V2 (Verger et al., 2014) and NDVI V2.1 

(Toté et al., 2017) products generated within the CGLS 

(https://land.copernicus.eu/global/themes/vegetation) (Table 2.1). 

Time series of LAI, FAPAR and FCOVER V1 and NDVI V2.1 contained frequent 

disturbances caused by residual cloud contamination, atmospheric variability, snow and 

bi-directional effects (Figure 2.2). These time series required the application of 

smoothing and gap filling techniques to generate consistent and gap filled seasonal 

trajectories (section 2.2.3) before the extraction of phenological metrics. The LAI and 

FCOVER V2 products improved over the V1 products in terms of temporal consistency 

and continuity (Figure 2.2). The V2 algorithm included multi-step data filtering, 

smoothing and gap-filling techniques that rendered the products suitable for 

phenological estimation without additional pre-processing. Filtering of outliers is based 

on an upper envelope approach, the pixel climatology (interannual mean) is used to fill 

missing data and a Savitzky-Golay filter is used for the smoothing (Verger et al., 2014). 

 

Figure 2.1: Location of selected phenological ground observations at (a) PEP725 sites for Silver birch 

(Betula pendula) and (b) USA – NPN sites for Red maple (Acer rebrum), Yellow birch (Betula 

alleghaniensis), American beech (Fagus grandifolia) and Nothern red oak (Quercus rubra). 

 

 

https://land.copernicus.eu/global/themes/vegetation
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Table 2.1: Algorithm principles of NDVI V2.1, and LAI, FAPAR, FCOVER V1 and V2. 

 

Figure 2.2: LAI (V1 and V2) and NDVI (V2.1) time series for the PEP725 site 5449 (50º42'20.49"N, 

13º46'59.55"E) representative of birch forest in Europe. 

2.2.3. Smoothing methods 

We tested several smoothing methods for reducing noise and reconstructing gap filled 

seasonal trajectories from CGLS time series (Eerens and Haesen, 2015):  

• WHITTAKER smoother (Atzberger and Eilers, 2011): It minimizes a cost 

function describing the balance between fidelity (quadratic difference between 

estimates and actual observations) and roughness (quadratic difference between 

successive estimates).  

 NDVI 

Version 2.1 

LAI, FAPAR, FCOVER 

Version 1 

LAI, FAPAR, FCOVER 

Version 2 

Inputs  Top of the canopy 

(TOC) reflectances in 

the red and near 

infrared (NIR) 

spectral bands 

Nadir normalized TOC 

reflectances in the red, NIR 

and short-wave infrared 

(SWIR) spectral bands, and 

cosine of the sun zenith 

angle at 10:00 local time 

TOC reflectances in the red, 

NIR and SWIR spectral 

bands, and cosine of the 3 

angles of sun and view 

directions   

Temporal 

composition 

10 d compositing 

period. The maximum 

NDVI value in the 

composition window 

is retained. 

Starting date of 

composition:1st, 11th 

and 21th day of the 

month 

30 d compositing period 

with Gaussian weighting 

(minimum of two valid 

observations) 

Nominal dates: 3rd, 13th and 

21-24th day of each month 

Adaptive compositing within 

15 and 60d semi-periods 

defined by the availability of 

6 valid observations at each 

side of the date being 

processed 

Nominal dates: 10th, 20th 

and last day of the month 

Temporal 

smoothing 

and gap 

filling 

Not applied Not applied Multi-step filtering, temporal 

smoothing and gap-filling  
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• BISE (Best Index Slope Extraction) (Viovy et al., 1992): It retains the good 

observations in a local window and replaces missing or eliminated suspect values 

by linear interpolation.  

• MEAN: A linear interpolation is first applied to fill missing data. A running mean 

filter with a sliding window of 50 d length is then applied.  

• SWETS method (Swets et al., 1999): A linear interpolation is first applied to fill 

missing data. A weighted linear regression over a local window is then applied. 

2.2.4. Methods for extracting phenological metrics 

We tested four state of the art methods to extract phenological metrics from CGLS time 

series (Figure 2.3): 

• Thresholds based on a pixel percentile value: SoS is defined as the day of the 

year (DoY) when a vegetation variable exceeds a particular threshold. EoS is 

defined as the DoY when an index remains below a particular threshold. We 

established dynamic thresholds per pixel based on a percentile of the annual 

amplitude of the vegetation variable (Verger et al., 2016). The selected 

percentiles were determined based on the comparison with available ground 

measurements. We tested the 20th, 30th, 40th and 50th percentiles of the annual 

amplitude for SoS, and the 30th, 40th, 50th and 60th percentiles for EoS. This 

method is also the basis of SPIRITS phenological approach. 

• Autoregressive moving average: A moving average is first computed at a 

randomly chosen time lag (Ivits et al., 2009). We tested time lags from 50 to 150 

d and selected a time lag of 100 d based on the comparison with ground 

measurements. SoS and EoS are then defined as the DOY when the moving 

average curves cross the original curve of the vegetation variable. 

• First derivative: SoS is defined as the DoY of the maximum increase (maximum 

first derivative) in the curve (Tateishi and Ebata, 2004). EoS is defined as the 

DoY of the maximum decrease in the curve. 

• Logistic function: SoS is defined as the DoY of the first local maximum rate of 

change in the curvature of a logistic function fitted to the time series (Zhang et 

al., 2003). EoS is defined as the DoY of the first local minimum rate of change 

in the curvature.  
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Figure 2.3: Schematic representation of SoS (on the left of the peak) and EoS (on the right of the peak) 

retrieved with the four methods for the PEP725 site 4959 (50º42'20.49"N, 13º46'59.55"E) for 2011. The 

black circles correspond to the original LAI data at a 10-d frequency, and the green line corresponds to 

the data interpolated at daily steps, which is used for phenological estimation. 

2.2.5. Methodological approach 

The several satellite-derived vegetation variables, smoothing methods and phenological 

extraction approaches lead to a large number of combinations. We sequentially 

investigated the impact of smoothing, variable and extraction method based on an initial 

set of modalities. The initial modalities were defined a posteriori based on the analysis 

of all the combinations:  

1. Sensitivity analysis of the smoothing method: We used LAI V1 as input dataset 

and the percentile phenology method. 

2. Sensitivity analysis of the vegetation variable: We used the SWETS smoothing 

method and the percentile phenology method. 

3. Sensitivity analysis of the method to extract phenological metrics: We used the 

LAI V2. Note that in this case the application of a smoothing method is not 

required because LAI V2 is already smoothed and gap-filled. 

The analysis 1 and 2 were carried out in Europe and for the validation we used ground 

measurements of Betula Pendula, which showed a greater latitudinal distribution. The 

analysis 3 was performed at the global scale. For the sensitivity analysis 1 and 2, we 

used the Software for the Processing and Interpretation of Remotely Sensed Image Time 
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Series (SPIRITS) (Eerens et al., 2014; Eerens and Haesen, 2015). For the sensitivity 

analysis 3, we used Google Earth Engine (GEE) (https://earthengine.google.org) which 

allowed implementing dedicated algorithms while only the threshold method is available 

in SPIRITS. The input 10 d time series were linearly interpolated at daily steps before 

phenological retrieval. For SPIRITS, the precision of phenological estimates is limited 

by the frequency of the input time series (10 d in our case) (non interpolation). For pixels 

with multiple growing seasons, we computed the phenological metrics for the growing 

season having the highest LAI amplitude. 

The agreement between metric estimates from satellite imagery and ground-based 

measurements was quantified using the slope of the linear regression, the Pearson 

correlation coefficient (R), bias, i.e. the average difference between the satellite-derived 

phenology and the observed date (a positive bias indicated that SoS and EoS occurred 

later than the observed leaf out and autumnal coloring, respectively), the absolute bias 

and root mean square error (RMSE) calculated (e.g. for SoS) as: 

𝑅𝑀𝑆𝐸𝑆𝑜𝑆 = √
1

𝑛
∑ (𝑆𝑜𝑆𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑆𝑜𝑆𝑒𝑠𝑡.)

2𝑛

𝑗=1
                                                            (1) 

where n is the number of samples  

2.3. Results 

2.3.1. Sensitivity analysis of the smoothing method 

The SWETS method performed the best for the reconstruction of seasonal trajectories 

and the estimation of phenological metrics:16 d in terms of RMSE and 1 d in terms of 

bias for the timing of SoS, and 34 d (RMSE) and 12 d (bias) for the timing of EoS (Table 

2.2). 

 

 

 

https://earthengine.google.org/
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Table 2.2: Statistics of comparisons between the derived phenology metrics from reconstructed LAI V1 

time series using the different smoothing methods and PEP725 ground measurements (Betula pendula) 

for the SoS and EoS. The SPIRITS percentile method was used to extract the phenology using 30% of 

LAI amplitude for the SoS and 40% for the EoS.  * Significant correlations with p<0.05 (**p<0.001).  

Metric Method RMSE (d) Bias (d) Abs. Bias (d) R Slope 

SoS WHITTAKER 23.80 -8.16 16.76 0.41 0.76 

"visible BISE 27.22 -7.52 19.84 0.43* 0.89 

leaves" MEAN 23.98 -5.84 18.43 0.39 0.74 

(n=359)  SWETS 16.44 -1.38 17.39 0.49** 0.67 

EoS WHITTAKER 44.56 13.51 31.65 -0.19 -0.12 

"colored BISE 49.45 19.50 37.25 -0.03 -0.10 

leaves" MEAN 44.10 13.18 30.54 -0.08 -0.01 

(n=359)  SWETS 34.28 12.01 28.96 -0.15 -0.19 

       

2.3.2. Sensitivity analysis of the vegetation variable 

The best agreement with ground measurements for the timing of SoS was found for the 

30% threshold of LAI amplitude, 40% of FCOVER, 50% of FAPAR and 50% of NDVI. 

The best metric definitions for the EOS were based on 40% of LAI and FCOVER 

amplitudes and 50% for FAPAR and NDVI. Phenological metrics derived from V2 time 

series improved over V1 for all variables (compare V1 and V2 statistics in Table 2.3).  

Table 2.3: Statistics of comparisons between the derived phenologies from LAI, FCOVER, FAPAR V1 

and V2 and NDVI V2.1 time series and PEP725 ground measurements (Betula pendula) for the start of 

the season (SoS) and end of the season (EoS). The SPIRITS percentile method was used to extract the 

phenology with specific thresholds per vegetation variable and phenological metric. *mark indicates 

significant correlations with p<0.05 (** indicates p<0.001).  

Metric Index Version Definition RMSE (d) BIAS (d) Abs. BIAS (d) R Slope 

SoS LAI V1 30% 16.44 -1.38 17.39 0.49** 0.67 

 (n=359)  V2 30% 12.49 1.65 10.22 0.62** 0.78 

  FCOVER V1 40% 17.25 -4.44 23.54 0.52** 0.74 

   V2 40% 13.95 -4.46 11.21 0.54** 0.95 

  FAPAR V1 50% 31.40 -18.35 31.23 0.48** 0.85 

   V2 50% 23.01 -14.26 13.94 0.57** 0.88 

  NDVI V2.1 50% 20.70 -13.18 15.38 0.25 0.82 

EoS LAI V1 40% 34.28 12.01 28.96 -0.15 -0.19 

 (n=359)  V2 40% 32.72 -6.18 21.12 0.05 0.11 

  FCOVER V1 40% 30.69 -14.33 42.25 -0.13 -0.20 

   V2 40% 25.35 6.42 20.34 0.26 0.38 

  FAPAR V1 50% 44.06 18.75 45.87 -0.23 -0.65 

   V2 50% 39.99 18.61 37.97 -0.04 -0.51 

  NDVI V2.1 50% 48.35 14.75 34.58 0.02 -0.25 
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The best performances for SoS were obtained using the LAI and FCOVER V2 time 

series (Figure 2.4a), with RMSEs of ~12 and 14 d, respectively (Table 2.3). In contrast, 

RMSEs were ~21 and 23 d for NDVI V2.1 and FAPAR V2, respectively (Table 2.3), 

and contained many outliers (Figure 2.4a). SoS was slightly underestimated for all cases, 

except when using LAI (Figure 2.4a). EoS had a higher RMSE (25-48 d) and a lower R 

(<0.3) (Table 2.3). The estimates of EoS from the LAI and FCOVER V2 time series also 

agreed best with ground data although no significant correlations were found (Table 2.3, 

Figure 2.4b). 

 

Figure 2.4: Boxplots of the bias errors for (a) SoS and (b) EoS estimated from the LAI, FCOVER, FAPAR 

V1 and V2 and NDVI V2.1 time series minus the PEP725 ground measurements. An elongated boxplot 

indicates a greater dispersion of the average bias. 
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2.3.3. Sensitivity analysis of the method to extract phenological metrics  

The 30th percentile and SPIRITS applied to LAI V2 provided the best performances 

among the different analyzed methods when compared both with USA-NPN and 

Europe-PEP725 measurements of the SoS (Figure 2.5, Table 2.4). The results for the 

30th percentile and SPIRITS were similar because both methods use the same definition 

of SoS based on the 30% threshold of annual amplitude but the 30th percentile method 

slightly improved SPIRITS in terms of precision (c.f. Figure 2.6a-6b, 2.7a-7b) and 

accuracy (RMSE of 9 vs 14 d for USA-NPN “leaves”, 9 vs 10 d for USA-NPN 

“increasing leaf size” and 11 vs 12 d for PEP725 “first visible leaves” (Table 2.4)) 

because of the daily interpolation applied to the input 10 d data. The logistic function 

also performed well (RMSE from 13 to 18 d) but provided slightly advanced SoS as 

compared to ground measurements (bias from -5 to -9 d). The derivative method 

provided showed higher RMSE (up to 28 d) and positive bias (up to 19 d). The moving-

average method performance the worst (RMSE from 30 to 59 d) and systematically 

advanced the timing of SoS as compared to ground measurements (bias from -24 to -

51d).  

Figure 2.5: Boxplots of the bias error for the SoS estimated from LAI V2 minus the ground measurements 

at the USA-NPN (a) and PEP725 (b) sites. An elongated boxplot indicates a greater dispersion of the 

average bias in each method. 
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Table 2.4: Statistics of comparisons between LAI V2 derived phenology for the start of the season (SoS) 

and end of the season (EoS), and the ground measurements for the various methods (percentiles, logistic 

function, derivative and moving average). *mark indicates significant correlations with p<0.05 (** 

indicates p<0.001).  

Validation source Metric Method RMSE (d) Bias (d) Abs. Bias (d) R Slope 

USA-NPN SoS 30th percentile 9.19 1.59 6.77 0.81** 0.73 

(n=462) "Leaves" SPIRITS 30% 13.75 0.58 7.05 0.60** 0.58 

    Logistic 14.14 -5.25 8.66 0.63** 0.60 

    Derivative 16.82 9.63 12.01 0.68** 0.82 

    Moving average 30.06 -24.33 23.95 0.59* 0.82 

USA-NPN SoS 30th percentile 8.87 -2.20 6.11 0.83** 0.67 

(n=158) "Increaising  SPIRITS 30% 10.40 -3.46 6.18 0.78** 0.67 

  leaf size" Logistic 12.81 -7.24 6.86 0.74** 0.63 

    Derivative 10.04 4.22 7.73 0.83** 0.84 

    Moving average 34.49 -28.07 27.86 0.49* 0.70 

PEP725 SoS 30th percentile 11.50 1.69 9.84 0.60** 0.90 

(n=359) "visible SPIRITS 30% 12.49 1.65 10.22 0.62** 0.78 

  leaves" Logistic 17.96 -9.22 14.21 0.53* 0.71 

    Derivative 28.31 19.19 20.42 0.49* 0.88 

    Moving average 56.24 -51.35 54.27 0.50* 1.14 

USA-NPN EoS 40th percentile 25.61 6.39 17.60 0.14 0.10 

(n=241) "Colored SPIRITS 40% 30.79 -3.69 20.17 0.06 0.07 

  leaves" Logistic 30.70 21.80 23.66 0.10 0.15 

    Derivative 40.40 -10.11 26.70 0.02 0.01 

    Moving average 58.75 50.35 44.26 0.13 0.01 

PEP725 EoS 40th percentile 27.69 -5.15 18.89 0.11 0.15 

(n=359) "Colored SPIRITS 40% 32.72 -6.18 21.12 0.05 0.11 

  leaves" Logistic 30.15 11.91 24.29 0.03 0.28 

    Derivative 64.93 -43.96 48.49 0.00 -0.11 

    Moving average 54.95 37.81 52.55 0.01 0.21 
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Figure 2.6: Scatterplots between the SoS predicted from LAI V2 by the percentile method (a), SPIRITS 

(b), logistic function (c), derivative (d) and moving average (e) compared with the ground phenology 

(USA-NPN “leaves”). Values are given in DoY. Statistics of the comparison are indicated in Table 2.4. 

 

 

Figure 2.7: Scatterplots between SoS predicted from LAI V2 by the percentile (a), SPIRITS (b), logistic 

function (c), derivative (d) and moving average (e) methods and ground phenology (PEP725 “first visible 

leaves”). Values are given in DoY. Statistics of the comparison are indicated in Table 2.4. 
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The different methods provided poorer performances for the EoS (Table 2.4, Figure 2.8). 

The best agreement with ground measurements was found for the 40th percentile method 

(RMSE of 25 d for USA-NPN and 28 d for PEP725 “colored leaves” measurements). 

The logistic function provided similar performances in terms of RMSE but slightly 

overestimated ground measurements (bias from 12 to 22 d). The derivative method 

showed higher scattering (RMSE from 40 to 65 d) and lower correlation than other 

methods (Table 2.4, Figure 2.9 and Figure 2.10). The moving average retrievals showed 

a positive delay as compared to ground data (bias of 38 d for PEP725 and 50 d for USA-

NPN).  

Figure 2.8: Boxplots of the bias error for the EoS estimated from LAI V2 minus the ground measurements 

at the USA-NPN (a) and PEP725 (b) sites. An elongated boxplot indicates a greater dispersion of the 

average bias in each method.  
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Figure 2.9: Scatterplots between the EoS predicted from LAI V2 by the percentile (a), SPIRITS (b), 

logistic function (c), derivative (d) and moving average (e) methods and ground phenology (USA-NPN 

“colored leaves”) for Acer rubrum (green), Betula alleghaniensis (orange), Fagus grandifolia (blue) and 

Quercus rubra (yellow). Values are given in DoY. Statistics of the comparison are indicated in Table 2.4. 

 

 

Figure 2.10: Scatterplots between the EoS predicted from LAI V2 by the percentile (a), SPIRITS (b), 

logistic function (c), derivative (d) and moving average (e) methods and ground phenology (PEP725 

“colored leaves”). Brown for heterogeneous sites (forest cover <50%) and yellow for homogeneous sites 

(forest cover >50%). Values are given in DoY. Statistics of the comparison are indicated in Table 2.4.  
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2.3.4. Spatial patterns of land surface phenology  

Figure 2.11 shows the average timing of SoS, EoS and LoS phenophases at the global 

scale by using the percentile method (30th and 40th percentiles for SoS and EoS, 

respectively) and time series of V2 LAI (1999-2017). The LoS is estimated as the length 

of time between the SoS and the EoS. The derived maps show consistent spatial patterns 

of the seasonality of vegetation at the global scale which is driven by the distribution of 

latitudinal climatic patterns, type of vegetation and topographic elements, among other 

factors (Verger et al., 2015; Zhang et al., 2004). The timing of SoS (Figure 2.11a) and 

EoS (Figure 2.11b) reflected a broad variation in the range of values and their spatial 

pattern at the middle and high latitudes of the Northern Hemisphere strongly depend on 

the thermal and photoperiod latitudinal gradient (Verger et al., 2016).  

The LoS (Figure 2.11c) in some ecoclimatic and biogeographic regions of transition 

such as Sahel shows a broad range of variation from 10 to 200 d following the positive 

north-south gradient of rainfall (Verger et al., 2016). On the contrary, in northern 

latitudes >50º the LoS showed a limited range of variation from 10 to 60 d with shorter 

days at higher latitudes following the latitudinal gradient of temperature and radiation 

(Verger et al., 2016). 
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Figure 2.11: Global Map of average SoS (a), EoS (b) and LoS (c) derived from the LAI V2 time series 

(1999-2017) and the threshold-based method. The continental areas in white are deserts and evergreen 

forests with limited seasonality where phenology was not computed. 

2.4. Discussion and conclusions 

Land surface phenology (LSP) provides a synoptic view of vegetation dynamics and it 

can substantially improve our macroecological knowledge and the representation of 

phenology in earth-system models. Unlike previous studies limited to NDVI, we used 

three additional biophysical variables: LAI, FAPAR and FCOVER generated within 

CGLS from SPOT-VEGETATION (1999-2013) and PROBA-V (2014-2017) satellite 

imagery. We found that the phenology derived from LAI (or FCOVER) was more 

closely related to actual ground observation than the NDVI-derived phenology (Table 
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2.3). LAI-phenology is based on leaf development rather than on proxies provided by 

vegetation indices which are not driven solely by the amount of leaves but also by the 

canopy structure and the leaf biochemical properties (Richardson et al., 2009). LAI is 

more sensitive than vegetation indices such as NDVI to larger amounts of vegetation 

(Myneni and Williams, 1994). In addition, NDVI V2.1 is affected by variations in solar 

zenith and viewing angles and surface reflectance bidirectional effects (Tote et al., 

2017). 

In addition to the vegetation variable, the derived phenology was found to be highly 

sensitive to the retrieval algorithm and processing chain. We found that the retrieved 

phenology performed the best using LAI V2 (Table 2.3) due to the improved continuity 

(no missing data in V2) and smoothness as compared to V1. In V1 products and in NDVI 

time-series, the noise primarily due to cloud contamination and atmospheric effects is 

an important shortcoming in the study of land surface phenology. To overcome this 

limitation, smoothing methods were applied in SPIRITS approach as a pre-processing 

step to phenological retrieval. The choice of the smoothing method introduced 

differences of up to 50% in the performance of the phenology derived from LAI V1 

(Table 2.2). These conclusions agree with previous literature studies highlighting the 

importance of the temporal reconstruction methods (Kandasamy et al., 2013; Verger et 

al., 2013). However, the phenology derived from original LAI V2 (smoothing and gap 

filling was already included in the retrieval algorithm) outperforms the phenology 

derived from the seasonal trajectories derived after smoothing LAI V1 (Table 2.3).  

We tested four state of the art methods to extract phenological metrics: thresholds, 

logistic function, derivative and moving average. Each method has its own strengths and 

limitations (de Beurs and Henebry, 2010). The threshold approach based on a percentage 

of the annual amplitude is simple and robust but it is sensitive to the minimum and 

maximum values that may be affected by noise in the signal. The logistic function 

approach has been widely used (e.g. Zhang et al., 2003) but it is limited to the 

performance of the model fitting (Beck et al., 2006) and it may fail when the curvature 

function is too flat to determine the phenophases (de Beurs and Henebry, 2010). The 

derivative approach based on the maximum increase and decrease of the vegetation 

variable is very sensitive to the noise in the signal and the temporal smoothing and 

composition approach and it cannot represent short growing seasons well, especially 
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when the increase and decrease in the annual time series occur rapidly and abruptly 

(Beck et al., 2006). The moving average approach is based on the assumption that 

vegetation growth follows a well-defined temporal profile and it may fail in cases of 

disturbances and abrupt changes. Further, the selection of the time lag is arbitrary. 

We found that the choice of the extraction method introduced differences >150% and > 

85% in the performance of the SoS and EoS, respectively, derived from LAI V2 when 

compared to ground observations (PEP725 and USA-NPN) (Table 2.4). The percentile 

method agreed the best with ground measurements. The validation over ground 

observations indicated that the 30% threshold of the LAI amplitude was optimal for 

detecting SoS but that a 40% threshold was more suitable for detecting EoS in agreement 

with Verger et al. (2016). The accuracy for SoS using ground observations produced 

overall RMSEs of 9 and 11 d for the date of increasing leaf size and leaf unfolding, 

respectively, for the forests in Europe and the USA. The biases were <2 d (~10 d of 

standard deviation). We found poorer performances for EoS, than SoS, with higher 

RMSE of 25 d (28 d) and a bias of 8 d (-6 d) in USA (Europe). The lower performances 

for the EoS as compared to the SoS is associated to higher uncertainties of both satellite 

(atmospheric effects, snow and poor illumination conditions) (Delbart et al., 2005) and 

ground (the timing of leaf colouring is more subjective and difficult to identify than 

spring phenophases like leaf unfolding) (Estrella and Menzel, 2006) phenology for 

autumn. Richardson et al. (2009) also reported higher variabilities across the canopy of 

the timing and rate of foliar development in autumn than spring.  

The validation of land surface phenology with ground observations presented some 

difficulties, such as the spatial distribution and the spatial representability of the data. 

The ground measurements represent the phenology for a limited number of individual 

plants that are not necessarily the most representative species of the 1-km satellite pixels. 

Conversely, satellite phenology at 1-km resolution represented an integrated response 

across landscapes with diverse species and phenological behaviors. The phenology of 

each species and their characteristics (sizes, ages, homogeneity), though, influenced the 

satellite signal, depending on its abundance within the pixel sampling area and on the 

timing of their phenophases (Delbart et al., 2015). Statistics of the comparison between 

LAI V2 derived EoS using the percentile method and ground measurements improved 

significantly when the analysis is restricted to Acer rubrum in USA-NPN (RMSE of 10 
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d, bias of -6 d and significant correlation (p<0.001) of 0.8 (c.f. Table 2.4)) and to 

homogeneous sites (forest cover>50% based on GEE high resolution imagery) in 

PEP725 (RMSE of 22 d, bias of 6 d and significant correlation (p<0.05) of 0.4 (c.f. Table 

2.4)). 

The differences in the definition of the ground phenophases and satellite metrics hamper 

the comparison. The logistic function and, specially, the moving-average approaches 

systematically advanced the SoS as compared to ground measurements since these 

methods determine the SoS as the timing when the vegetation variable starts to increase 

(Table 2.4). On the contrary, the derivative approach based on the most rapid increase 

of the signal introduces positive delays in the SoS. The opposite trend is observed for 

the EoS (Table 2.4): the logistic function and moving-average show a delay in the 

detection of the EoS while the derivatives advances the timing of EoS. On the other 

hand, ground measurements are subjective and some ambiguity exists in the definition 

of phenophases. In this sense, we found positive bias of 2 d for the SoS retrieved with 

the 30th percentile of LAI amplitude when comparing with USA-NPN “leaves” 

phenophase but negative bias of -2 d when comparing to “increasing leaf size”. Further 

studies will focus on the comparison of the retrieved land surface phenology with 

continuous ground observations from PhenoCam (Zhang et al., 2018). This should 

ultimately lead to propose a standardization in the definition of phenological metrics. 

This research is expected to contribute for the development of a dedicated algorithm for 

the operational retrieval of land surface phenology within CGLS. Validation using 

ground observations was limited to deciduous broadleaf forests. Further studies should 

extend the analysis to other vegetation types. The methods may need to be adapted to 

handle multiple and irregularly occurring vegetation growing cycles. Finally, forecasting 

approaches need to be developed for near-real time land surface phenology retrieval. 
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Abstract 

High-quality retrieval of land surface phenology (LSP) is increasingly important for 

understanding the effects of climate change on ecosystem function and biosphere–

atmosphere interactions. We analyzed four state-of-the-art phenology methods: 

threshold, logistic-function, moving-average and first derivative based approaches, and 

retrieved LSP in the North Hemisphere for the period 1999–2017 from Copernicus 

Global Land Service (CGLS) SPOT-VEGETATION and PROBA-V leaf area index 

(LAI) 1km V2.0 time series. We validated the LSP estimates with near-surface 

PhenoCam and eddy covariance FLUXNET data over 80 sites of deciduous forests. 

Results showed a strong correlation (R2 > 0.7) between the satellite LSP and ground-

based observations from both PhenoCam and FLUXNET for the timing of the start (SoS) 

and R2 > 0.5 for the end of season (EoS). The threshold-based method performed the 

best with a root mean square error of ~9 d with PhenoCam and ~7 d with FLUXNET for 

the timing of SoS (30th percentile of the annual amplitude), and ~12 d and ~10 d, 

respectively, for the timing of EoS (40th percentile).  
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3.1. Introduction 

The study of vegetation phenology and its patterns on a global scale have become more 

important since the late twentieth century for analyzing the effects of climate change 

(Chimielewski and Rotzae, 2001; Peñuelas and Filella, 2001). Remote sensing is a useful 

tool for characterizing land surface phenology (LSP) (Baumann et al., 2017) and global 

changes of vegetation (Wu and Chen, 2013; White et al., 2014; Zhang et al., 2018). De 

Beurs and Henebry (2010) analyzed a broad range of statistical methods designed to 

extract phenological metrics from satellite time series based on threshold percentiles 

(Atzberger et al., 2013; Reed et al., 2003; Verger et al., 2016), moving averages (Reed 

et al., 1994), first derivatives (Tateishi and Ebata, 2004; White et al., 2009), smoothing 

functions (Piao et al., 2006) and fitted models (de Beurs and Henebry, 2005). 

Most literature on LSP has focused on the use of time series of vegetation indices mainly 

derived from MODIS data (Ganguly et al., 2010; Zhang et al., 2006; Zhang et al., 2018). 

In previous studies, we showed the added value of using Copernicus Global Land 

Service (CGLS) leaf area index (LAI) time series derived from VEGETATION and 

PROBA-V data (Bórnez et al., 2020a; Verger et al., 2016). Bórnez et al. (2020a) found 

that the phenological metrics extracted from the CGLS LAI Version 2 (V2) time series 

agreed best with the available human-based ground observations of phenological 

transition dates for deciduous broadleaf forest in Europe (PEP727) and United States of 

America (USA-NPN) as compared to other biophysical variables and NDVI vegetation 

index or previous version V1 of the CGLS products. 

Validating LSP is challenging due, in part, to the differences in the definition of satellite 

metrics and ground phenophases (Schwartz and Hanes, 2009; White et al., 2009). 

Volunteer observers have traditionally collected data for the timing of specific 

phenophases of individual plants Menzel (2002). Human observations of phenology, 

however, are not uniform and may induce uncertainties, despite efforts to establish 

protocols for monitoring phenophases (Denny et al., 2014; Templ et al., 2018; Tierney 

et al., 2013).  

Near-surface remote sensing using conventional red-green-blue (RGB) digital cameras 

provides an alternative to human observations to monitor vegetation phenology 

(Hufkens et al., 2018; Jacobs et al., 2009; Keenan et al., 2014; Richardson et al., 2007, 
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2009) because of their low cost, ease of set up and capacity to collect detailed spectral 

information at high temporal frequencies (Hufkens  et al., 2012) of individual plants, 

species or canopies (Bater et al., 2011) across broad spatial scales (Brown et al., 2016; 

Laskin and McDermid, 2016; Morisette et al., 2009). PhenoCam 

(https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V1.html) is a network of 

digital cameras that currently includes >600 site-years of imagery, with high-quality and 

high temporal resolution providing data of vegetation phenology. Deciduous 

broadleaved forests (68 sites) are the dominant vegetation type within the PhenoCam 

Network (Richardson et al., 2018), and the focus of this study. A growing number of 

studies have compared transition dates derived from the PhenoCam time series of green 

chromatic coordinates (GCC) with satellite phenological metrics derived mainly from 

MODIS data (Hufkens et al., 2012; Klosterman et al., 2014; Melaas et al., 2016; 

Richardson et al., 2018). 

Continuous flux measurements from eddy covariance technique also started to be used 

as a new perspective for estimating LSP at the landscape level (Ahrends et al., 2009; 

Gonsamo et al., 2012, 2013; Noormets et al., 2009; Richardson et al., 2010; Wu and 

Chen, 2013). The flux measurements sites are organized as a confederation of regional 

networks around the world, called FLUXNET. Until the last updated of February 2020, 

the most recent dataset produces was the FLUXNET2015 dataset 

(https://fluxnet.org/data/fluxnet2015-dataset/) which includes data from 212 sites 

(Joiner et al., 2018).  

In this study, we build on our previous work (Bórnez et al., 2020a) and take advantage 

now of PhenoCam and FLUXNET capability of continuous monitoring of vegetation 

seasonal growth at very high temporal resolution, with data every 30 minutes (Hollinger 

and Richardson, 2005, 2009; Xiao et al., 2005, 2009; Yan et al., 2019). This allows a 

more robust and accurate comparison with LSP derived from satellite time series 

avoiding problems related to the differences in the definition of phenology metrics. We 

evaluated four methods for estimating phenology: the threshold method based on 

percentiles (Verger et al., 2016), the derivative method (Tateishi and Ebata, 2004), the 

autoregressive moving-average method (Reed et al., 1994) and the logistic-function 

method (Zhang et al., 2003). These methods were applied both to satellite CGLS LAI 

https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V1.html
https://fluxnet.org/data/fluxnet2015-dataset/
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V2 time series and ground observations from PhenoCam GCC and eddy covariance flux 

towers over deciduous forests to assess the accuracy of LSP retrievals. 

3.2. Materials and Methods 

3.2.1. Study area 

The study was conducted over the North Hemisphere in pixels classified as deciduous 

forests or mixed vegetation according to the annual C3S Global Land Cover for the year 

2018 (http://maps.elie.ucl.ac.be/CCI/viewer/download.php). The validation was done 

over PhenoCam sites distributed across North America and one in Europe, and 

FLUXNET towers sites both in North America and Europe and one in Japan. We 

selected only deciduous forests sites with at least 2 years of available observations. This 

resulted in 64 sites from PhenoCam, and 16 towers of FLUXNET covering a broad range 

of latitudes (30–60°N) and elevations (1-1870 m a.s.l.) (Figure 3.1 and Table A1). 

Figure 3.1: Locations of the selected PhenoCam sites (red) and FLUXNET towers (black) over deciduous 

forests. 

3.2.2. Satellite Data: CGLS LAI 

We used Copernicus land surface products (CGLS LAI V2) derived from SPOT-

VEGETATION (1999–2013) and PROBA-V (2014-2017) data. The spatial resolution 

is 1 km and the temporal frequency is 10 d 

(https://land.copernicus.eu/global/themes/vegetation). 

The algorithm for LAI V2 product (Verger  et al., 2014, 2019) capitalizes on the 

development and validation of already existing products (CYCLOPES version 3.1 and 

MODIS collection 5 products) and the use of neural networks (Verger et al., 2008). The 

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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inputs of the neural networks are daily top of the canopy reflectances from 

VEGETATION and PROBA-V in the red, near-infrared and shortwave infrared spectral 

bands and the sun and view geometry. A multi-step procedure for filtering, temporal 

smoothing, gap-filling and compositing is then applied to the daily estimates to generate 

the final 10 d products (Verger  et al., 2014). 

3.2.3. PhenoCam Data 

We used PhenoCam Dataset V1.0 

(https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V1.html; Richardson et al., 

2017). It provides digital images every 30 min. In each image, a “region of interest” was 

defined manually based on the dominant vegetation type in the camera field of view 

(Richardson et al., 2018) (Figure 3.2). The size of the ROI typically ranges from ~50 to 

~500 m2 (Richardson et al., 2018). The green chromatic coordinate (GCC) index 

(Richardson et al., 2018) was calculated from the red (R), green (G) and blue (B) digital 

numbers (DN) as: 

 

   𝐺𝑐𝑐 =
𝐺𝐷𝑁

𝑅𝐷𝑁+𝐺𝐷𝑁+𝐵𝐷𝑁
   (1) 

 

We used the 90th percentile GCC value and 1 d high quality composites to avoid noise 

from variations in meteorological, atmospheric or illumination conditions (Sonnentag et 

al., 2012). We manually filtered the poor-quality GCC observations and then gap-filled 

the missing data with a locally weighted scatter-plot smoother (lowess)-based filter 

(Richardson et al., 2018). 

 

 

 

https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V1.html
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Figure 3.2: PhenoCam images captured in (a) spring, (b) summer, (c) autumn and (d) winter over the 

NEON.D05.UNDE.DP1.00033 site (46.23°N, 89.54°W). The red rectangle indicates the borders of the 

selected region of interest. 

3.2.4. FLUXNET data 

We used FLUXNET 2015 collection of gross primary production (GPP) flux data over 

16 forest tower sites (Figure 3.1) for the period 2003–2014 (110 site-years) 

(https://fluxnet.org/data/fluxnet2015-dataset/). We used the daily GPP (g C m-2 d-1) 

derived from half-hourly eddy covariance flux measurements using the night time based 

approach (Reichstein et al., 2005; Vuichard and Papale, 2015). We smoothed the series 

of the daily GPP by using a Savitzky–Golay filter based on a second degree polynomial 

and a 30-day smoothing window (Chen et al., 2004; Savitzky and Golay, 1964; Wu et 

al., 2017).  

3.2.5. Methods for Estimating Vegetation Phenology 

We tested four methods for estimating phenology (Table 3.1 and Figure 3.3, (Bórnez et 

al., 2020a) from satellite (CGLS LAI time series) and ground-based data (PhenoCam 

GCC, FLUXNEX GPP) (e.g., Figure A2). The phenological metrics are the timing of 

the start of the growing season (SoS), the end of the growing season (EoS) and the length 

https://fluxnet.org/data/fluxnet2015-dataset/
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of the growing season (LoS). LoS was estimated as the length of time between the EoS 

and the SoS. The CGLS LAI 10 d time series were linearly interpolated at daily steps 

before phenological retrieval. 

Table 3.1: Description of the evaluated methods for the extraction of phenology metrics.  

Method. Reference Principles and parameters 

Threshold based 

on percentiles 

Verger et al., 

2010  

SoS is defined as the first day of the year (DoY) when the vegetation 

variable exceeds a particular threshold. EoS is defined as the DoY when 

an index descends below a threshold. We established dynamic 

thresholds per pixel based on a percentile (10th, 25th, 30th, 40th and 

50th) of the annual amplitude  

Logistic function Zhang et al., 

2003  

SoS is defined as the DoY with the first local maximum rate of change 

in the curvature of a logistic function fitted to the time series. EoS is 

defined as the DoY with the first local minimum rate of change in the 

curvature 

First derivative Tateishi and 

Ebata, 2004 

SoS is defined as the DoY of the maximum increase (maximum first 

derivative) in the curve. EoS is defined as the DoY of the maximum 

decrease in the curve 

Autoregressive 

moving average 

Reed et al., 

1994  

A moving average is first computed at a given time lag (we tested 10–

50 d and selected a 30 d time lag). SoS and EoS are then defined as the 

DoY when the moving-average curves cross the original time series of 

the vegetation index 

 

3.2.6. Validation Approach 

The LSP derived from VEGETATION and PROBA-V LAI V2 time series was 

compared with the LSP estimates using ground data from PhenoCam and FLUXNET 

when the same phenological extraction method was applied (Section 3.1). The statistical 

metrics used for assessing the performance are the root mean square error (RMSE), the 

mean error (bias); the coefficient of determination (R2), slope and intercept of the 

Reduced Major Axis regression (RMA). Further the spatial patterns and latitudinal 

gradients of LSP estimates were assessed in Section 3.2. We used RStudio for the 

statistical analysis, Google Earth Engine (GEE, https://earthengine.google.org) for the 

retrieval of LSP over the North Hemisphere, and ESRI ArcGIS 10.5 and gvSIG-desktop-

2.3.1 for the graphs and maps. 
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Figure 3.3: Illustration of the threshold (a), logistic-function (b), derivative (c) and moving-average (d) 

phenological extraction methods applied to PhenoCam GCC time series of Acadia site (44.37ºN, 68.26ºW) 

for 2014. The green and red points correspond to SoS and EoS, respectively. The different points in panel 

a correspond to the percentiles 10th, 25th, 30th, 40th and 50th. The purple line corresponds to the first 

derivative in c, and to the moving average in d. 

3.3. Results 

3.3.1. Comparison of Satellite and Ground Phenologies 

The coefficient of determination, R2, between the satellite- and ground-based estimates 

from PhenoCam and FLUXNET phenology ranges from 0.01 to 0.81 (p < 0.001) (Table 

3.2). The threshold-based method provided the best performances. The 30th percentile 

of annual amplitude was the best threshold for the SoS (RMSE <9 d, bias <2 d and R2 = 

0.74 with p < 0.001 for CGLS LAI V2 estimates compared to PhenoCam; and RMSE 

<7 d, bias <4 d and R2 = 0.81 with p < 0.001 when compared to FLUXNET) and the 

40th percentile for the EoS (RMSE = 12 d, bias <1 d and R2 = 0.51 with p < 0.001 

compared to PhenoCam; RMSE < 10 d, bias < 5 d and R2 = 0.53 with p < 0.001 compared 

to FLUXNET).    
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Table 3.2: Statistics of the comparison between the SOS and EOS dates retrieved using the LAI, GCC, 

and GPP estimates for the four methods: thresholds, logistic function, derivative and moving average. * 

indicates significant correlations at p < 0.05; **, significant correlations at p < 0.001. The bold type 

highlights the best method. Evaluation over the 64 PhenoCam sites (356 samples (sites × years)) and 16 

FLUXNET towers (110 samples (sites × years)) over deciduous forests in the North Hemisphere (Figure 

3.1). 

Metric Validation  Method RMSE BIAS R2 Slope Intercept 

SoS PhenoCam Threshold (10th percentile) 17.80 -0.53 0.29 1.07 -8.57 

    Threshold (25th percentile) 9.92 1.29 0.61** 1.02 -2.11 

    Threshold (30th percentile) 8.82 1.96 0.74** 1.01 0.7 

    Threshold (40th percentile) 9.05 2.61 0.67** 1.02 -0.39 

    Threshold (50th percentile) 9.45 3.74 0.65** 1.00 2.98 

    Logistic function 10.79 1.21 0.58** 0.99 1.18 

    Derivative 19.27 2.40 0.18 0.93 11.12 

    Moving average 15.49 0.48 0.42* 1.24 -30.9 

SoS FLUXNET Threshold (10th percentile) 16.50 3.54 0.31 0.90 14.03 

    Threshold (25th percentile) 7.91 -2.08 0.7** 1.00 -2.91 

    Threshold (30th percentile) 6.77 -3.56 0.81** 1.03 -8.02 

    Threshold (40th percentile) 7.21 -3.91 0.80** 0.99 -3.24 

    Threshold (50th percentile) 8.42 -5.65 0.77** 1.04 -11.8 

    Logistic function 8.05 -0.42 0.69** 0.94 6.06 

    Derivative 23.63 -14.31 0.19 0.61 41.66 

    Moving average 16.09 1.99 0.37* 0.79 30.13 

EoS PhenoCam Threshold (10th percentile) 15.33 5.59 0.33* 0.88 40.86 

    Threshold (25th percentile) 12.90 2.27 0.45* 0.91 28.12 

    Threshold (30th percentile) 13.49 1.36 0.39* 0.92 22.75 

    Threshold (40th percentile) 12.07 0.65 0.51** 0.95 13.51 

    Threshold (50th percentile) 29.31 7.23 0.09 0.49 142.16 

    Logistic function 17.64 -0.93 0.26 0.82 52.52 

    Derivative 50.74 -1.50 0.03 0.33 179.59 

    Moving average 27.40 2.15 0.01 1.46 -140.06 

EoS FLUXNET Threshold (10th percentile) 10.84 6.25 0.5** 1.00 5.93 

    Threshold (25th percentile) 9.80 5.29 0.55** 1.04 -5.93 

    Threshold (30th percentile) 9.99 4.90 0.44* 1.06 -12.38 

    Threshold (40th percentile) 9.67 4.67 0.53** 1.18 -46.54 

    Threshold (50th percentile) 17.39 9.88 0.18 0.76 71.9 

    Logistic function 10.26 2.97 0.41* 1.10 -26.47 

    Derivative 48.06 32.40 0.01 -0.09 289.18 

    Moving average 31.50 -14.30 0.04 0.53 114.78 
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Figures 4 and 5 show the scatter plots of the comparison of satellite and ground-based 

SoS and EoS retrievals for the four methods. The points were very close to the 1:1 line 

using the percentile and logistic-function methods while the derivative and moving-

average methods produced worse results with more widely dispersed points, especially 

for the timing of EoS. 

The satellite SoS (Figure 3.4, Figure 3.5 and Figure A1) retrieved with threshold and 

logistic-function methods showed RMSE <11 d and bias <2 d compared to PhenoCam, 

and RMSE <8 d and bias <4 d with FLUXNET (Table 3.2). Higher discrepancies for the 

SoS were found with the derivative and moving-average methods: RMSE of 19 d and 

15 d, and bias of 2 d and <1 d, respectively using PhenoCam estimates, and RMSE of 

24 d and 16 d, and bias of –14 d and 2 d, respectively with FLUXNET estimates (Table 

3.2). 

The EoS can be also robustly estimated using remote sensing observations (Figure 3.4, 

Figure 3.5 and Figure A1) although we observed a degradation of performances for all 

the methods for the estimation of the EoS as compared to the SoS: higher dispersion of 

points, higher RMSE and lower correlation for EoS (Table 3.2). The EoS estimates from 

satellite time series of LAI agreed the best with GCC and GPP derived phenology 

metrics using the threshold method followed by the logistic function: RMSE of 12 d and 

18 d, respectively, and biases <1 d compared to PhenoCam, and RMSE of 10 d and bias 

<5 d with FLUXNET (Table 3.2). The performance highly decreased for the derivative 

and moving average methods with RMSE of 50 d and 27 d, respectively, compared to 

PhenoCam, and RMSE of 48 d and 31 d with FLUXNET, and no significant correlation 

(R2<0.2) (Table 3.2). 
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Figure 3.4: Scatterplots for SoS (in green) and EoS (in orange) estimated from CGLS LAI V2 and 

PhenoCam GCC time series by the threshold (10th (a), 25th (b), 30th (c), 40th (d) and 50th (e) percentiles 

of LAI amplitude), logistic-function (f), derivative (g) and moving-average (h) methods. Statistics of the 

comparison are presented in Table 3.2. 
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Figure 3.5: Scatterplots for SoS (in green) and EoS (in orange) estimated from CGLS LAI V2 and 

FLUXNET GPP time series by the threshold (10th (a), 25th (b), 30th (c), 40th (d) and 50th (e) percentiles 

of LAI amplitude, logistic-function (f), derivative (g) and moving-average (h) methods. Statistics of the 

comparison are presented in Table 3.2. 
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3.3.2. Latitudinal Gradients of Satellite and Ground-Based Phenology  

Figure A3 shows the spatial distribution of the GCLS LAI phenological estimates (SoS, 

EoS, and LoS) from 2000 to 2017 over the North Hemisphere using the threshold 

method. The length of the vegetation cycles regularly decreases from 220 days to 80 

days when latitude increases from temperate to boreal regions. The SoS ranges widely 

from late march in the south to approximately mid-July in the north. The SoS is slightly 

earlier in central Europe than in North America for the same latitude. The EoS date 

ranges from early August to December.  

The latitudinal patterns of the timings of SoS and Eos derived from CGLS LAI V2 

(Figure A3) and PhenoCam GCC over deciduous forests from 30ºN to 53ºN in North 

America showed a very good agreement with a gradual decrease in the length of growing 

season of approximately five days per degree of latitude which resulted from symmetric 

variations of 2.5 days per degree of latitude in the start and end of season (Figure 3.6). 

We found a correlation R2 of 0.92 for the timing of SoS and 0.88 for the EoS when 

comparing the average satellite and PhenoCam phenology per latitude. 

Figure 3.6: Latitudinal gradients of average phenological metrics for the start (SoS), end (EoS) and length 

of season (LoS) extracted from CGLS LAI V2 and PhenoCam GCC time series over the PhenoCam 

deciduous sites in North America (Figure 3.1). Data was aggregated in five groups of latitude, taking into 

account the number of sites: 30–34ºN, 34–38ºN, 38–42ºN, 42–46ºN and 46–53°N. 
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3.4. Discussion 

We assessed the agreement of the phenological metrics derived from satellite LAI 

(CGLS LAI V2 from VEGETATION and PROBA-V time series, 1999-2017) with those 

derived from PhenoCam (GCC) and FLUXNET flux towers (GPP) across 80 sites of 

deciduous forests mainly located in North America and Europe. The agreement between 

satellite and ground-based estimates depends on the method used to extract the transition 

dates. We compared four phenology methods: thresholds based on percentiles of the 

annual amplitude (Verger et al., 2016), first derivatives (Tateishi and Ebata, 2004), 

autoregressive moving average (Reed et al., 1994) and a logistic function fitting 

approach (Zhang et al., 2003). Thresholds and logistic function resulted the most robust 

methods and the phenological metrics extracted from CGLS LAI V2 time series were 

strongly correlated with those derived from PhenoCam GCC and FLUXNET GPP. On 

the contrary the derivative and moving average methods showed higher discrepancies 

between satellite and ground estimates specifically for the timing of the EoS. 

The threshold-based method performed the best in terms of accuracy of satellite 

estimates for the timing of the SoS and EoS: RMSE ~ 9 d and bias < 2d for the SoS, 

RMSE ~12 d and bias < 1d for the EoS, and correlation of R2~0.7 compared to 

PhenoCam data; and RMSE <7d and bias < 4d for the SoS, RMSE <10 d and bias < 5d 

for the EoS, and correlation R2~0.8 compared to FLUXNET data. In both PhenoCam 

and FLUXNET comparison, the 30th percentile of the annual amplitude provided the 

best performances for the timing of the SoS and the 40th percentile for the EoS, 

confirming our previous findings (Bórnez et al., 2020a; Verger et al., 2016). These 

thresholds slightly outperformed 10th, 25th and 50th percentiles of the amplitude as 

proposed in PhenoCam Dataset V1.0 for the extraction of the phenological transition 

dates (Richardson et al., 2018). For the sites with concomitant measurements from the 3 

sources of data: satellite LAI, PhenoCam GCC and FLUXNET GPP, we observed that 

the phenology derived from LAI V2 using percentiles 30 and 40 accurately reproduce 

the interannual variation of the SoS and EoS and usually provides an intermediate 

solution between PhenoCam and FLUXNET estimates with differences lower than 10 

days (Figure 3.7). The latitudinal gradient in the northern hemisphere of the CGLS LAI 

V2 phenophases highly agree with PhenoCam observations with an advance (delay) of 
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2.5 days per degree of latitude from low to high latitudes in response to the South-North 

gradient of temperature and photoperiod (Richardson et al., 2013; Schwartz et al., 2006). 

These results are comparable to other studies (Zhang et al., 2004). The spatial variability 

in phenophases can be explained not only by the difference in climatic patterns but also 

by the elevation and soil conditions (Rodriguez et al., 2015). 

Figure 3.7: Interannual variation of the (a) start of the growing season (SoS), and (b) end of season (EoS) 

estimated from the CGLS LAI V2, PhenoCam GCC and FLUXNET GPP with the threshold method 

(percentile 30 for the timing of SoS, and percentile 40 for the timing of EoS) over the Harvard Forest 

(Latitude 42.54º, Longitude –72.17º). 

Detecting phenology from carbon flux and PhenoCam data also faces some challenges 

(Hollinger and Richardson, 2005; Richardson et al., 2009). The flux measurements are 

potentially ~20% biased due to the lack of energy balance closure, instrument response 

time, pathlength averaging and incomplete measurement of nocturnal CO2 exchange  

(Hollinger and Richardson, 2005; Massman and Lee, 2002; Morgenstern et al., 2004) 

which can lead uncertainties in phenology estimates. However, these errors are difficult 

to quantify and correct (Richardson et al., 2009). Furthermore, for some FLUXNET 

sites, there are substantial data gaps due to instrument malfunction or bad data quality 

(Hollinger and Richardson, 2005). In these cases, the gap-filling may lead to uncertainty 

in GPP time series and, consequently, in the phenological estimates (Baldocchi, 2003).  

The scale difference between ~1km VEGETATION and PROBA-V satellite pixels and 

the deca-/hectometric footprints of PhenoCam cameras and flux towers may introduce 

some difficulties for the comparison. This is partially minimized because our validation 

is limited to deciduous forests which tend to form large patches of the same vegetation 

type, reducing the influence of mixed or border pixels (Richardson et al., 2006, 2009; 

Ryu et al., 2014). The mixed signal due to multi-canopy layers may also introduce 

confounding effects since the understorey may have a different phenological cycle (Ryu 
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et al., 2014). The emergence of forest understorey is interpreted in both ground-based 

and satellite observations as an increase in the greening signal. 

The agreement between the PhenoCam, FLUXNET and remotely sensed phenological 

metrics showed generally a higher accuracy for SoS than EoS, consistent with previous 

studies (Bórnez et al., 2020a; Garrity et al., 2011; Hufkens et al., 2012; Liang et al., 

2011; Melaas et al., 2013; Nijland et al., 2016; Richardson et al., 2013). Differences in 

the structure, ecophysiology and dynamics of the vegetation canopy at the start and end 

of the growing season (Klosterman et al., 2014) may partially explain this. The 

phenological dynamics for the timing of EoS tend to vary with species, age, dispersion 

and homogeneity, and can also differ across the same species, with differences of up to 

two weeks within the same ROI (Delbart et al., 2005; Richardson et al., 2006, 2009, 

2010, 2019). Further studies will use high resolution satellite data from Sentinel-2 to 

mitigate these issues and capture the spatial variability of EoS (Snyder et al., 2019). 

Note, however, that monitoring EoS is affected by the intrinsic uncertainties of satellite 

remote sensing at northern latitudes in autumn: atmospheric effects, snow and poor 

illumination conditions (Luquez et al., 2007). 

3.5. Conclusions 

Phenological data from PhenoCam, FLUXNET and satellite remotely sensed data have 

become a broad resource for analyzing the relationships between global change and 

vegetation (Hufkens et al., 2012; Richardson et al., 2018). The network of PhenoCam 

webcams and eddy covariance towers cover only small areas around the camera or flux 

tower (Churkina et al., 2005; Gonsamo et al., 2012). Satellite imagery has the advantage 

of providing continuous spatio-temporal coverage at the global scale. Near-surface 

digital cameras and flux towers have nevertheless become a good tool for characterizing 

local phenology and validate satellite estimates (Klosterman et al., 2014; Migliavacca et 

al., 2011; Richardson et al., 2009; Sonnentag et al., 2012). The high temporal frequency 

of PhenoCam and flux measurements provide continuous time series for applying the 

same phenology extraction methods to ground and satellite time series. This way, we 

avoid some of the issues identified in our previous research (Bórnez et al., 2020a) related 

to the differences in the definition of satellite phenology metrics and ground 

phenophases when PEP725 and USA-NPN data were used for the validation (e.g.; the 
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representativity and spatial distribution of the data as well as the gaps in the time series 

of ground measurements). 

Results validate the land surface phenology estimated from CGLS LAI V2 time series, 

as well as the robustness of PhenoCam and FLUXNET data to analyze vegetation 

phenology. This study has put bounds on the uncertainty in satellite-derived 

phenological transitions, which should allow to analyze changes in the phenological 

distribution pattern and serve as a starting point for other studies that characterize 

anomalies and trends over vegetation phenology, as well as its possible relationship with 

changes in the climate pattern as a result of climate change. 
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Abstract 

Monitoring the phenological responses of deciduous forests to climate is important due 

to the increasing frequency and intensity of extreme climatic events associated with 

climate change and global warming, which will in turn affect vegetation seasonality. We 

investigated the spatiotemporal patterns of the response of deciduous forests to climatic 

anomalies in the Northern Hemisphere using satellite-derived phenological metrics from 

the Copernicus Global Land Service Leaf Area Index and multi-source climatic data sets 

for 2000–2018 at resolutions of 0.1°. Thereafter, we assessed the impact of extreme 

heatwaves and droughts on this deciduous forest phenology. We assumed that changes 

in the deciduous forest phenology in the Northern Hemisphere for the period 2000-2018 

were monotonic and temperature and precipitation were the main climatic drivers. 

Analyses of partial correlations of phenological metrics with the timing of the start of 

the season (SoS), end of the season (EoS), and climatic variables indicated that changes 

in preseason temperature played a stronger role than precipitation in affecting the 

interannual variability of SoS anomalies: the higher the temperature, the earlier the SoS 

in most deciduous forests in the Northern Hemisphere (mean correlation coefficient of -

0.31). Correlations between SoS and temperature were significantly negative in 57% of 

the forests and significantly positive in 15% of the forests (P<0.05). Both temperature 

and precipitation contributed to the advance and delay of EoS. A later EoS was 

significantly correlated with a positive standardized precipitation-evapotranspiration 

index (SPEI) at the regional scale (~30% of deciduous forests). The timings of EoS and 

SoS shifted by >20 d in response to heat waves throughout most of Europe in 2003 and 

in the United States of America in 2012. This study contributes to improve our 

understanding of the phenological responses of deciduous forests in the Northern 

Hemisphere to climate change and climate extreme events.  
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4.1. Introduction 

Interest in understanding the interactions between phenology and climate has increased 

in the last few decades (Ceccherini et al., 2014) because vegetation phenology plays an 

important role in balancing biogeochemical cycles, such as the exchange of water, 

energy, and carbon (He et al., 2018; Peñuelas et al., 2009; Richardson et al., 2013; White 

et al., 2005). Changes in the timing of phenology provide the first signals of adjustments 

in the responses of species to climatic anomalies (Walther et al., 2002). 

Changes in the pattern of distribution of temperatures and precipitation as a consequence 

of global climate change, and the interactions with other cues such as photoperiod, could 

strongly alter vegetation phenology (Bradley et al., 2011; Cleland et al., 2017; IPCC, 

2007, 2012, 2013). Investigating the interactive effects of temperature and precipitation 

on phenology to understand and anticipate the effects of climate change on vegetation 

is therefore crucial (Du et al., 2019). Many previous studies have investigated the 

changes in vegetation phenology as a result of the climate change and the associated 

global warming (de Beurs and Henebry, 2005; Jeong et al., 2011; Piao et al., 2007; Zhou 

et al., 2001). In this sense, the analysis of the sensitivity of vegetation to hydroclimatic 

anomalies is increasingly studied (Ceccherini et al., 2014; Shen et al., 2015), especially 

the role of the temperature on phenology (Cong, et al., 2017; Forrest and Miller, 2010; 

Forzieri et al., 2014; Thackeray et al., 2016; Wang et al., 2007). Previous studies have 

demonstrated that temperature has been one of the most decisive factors affecting 

phenology in the last four decades, with strong correlations between deciduous forest 

phenology and temperature (R2>0.5) in central Europe, China (Estrella and Menzel, 

2006; Lu et al., 2016), and the Mediterranean region, especially with temperatures in the 

months prior to the phenophases (Peñuelas et al., 2002). Phenology is changing in 

response to global warming, leading to an earlier SoS and a later EoS during the last few 

decades in some areas of the Northern Hemisphere (Peñuelas and Filella, 2001; Piao et 

al., 2019), such as North America (Richardson et al., 2013), China (Piao et al., 2006; 

Kang et al., 2018), and Eurasia (Menzel, 2003; Piao et al., 2011). Droughts also play an 

important role where humidity determines vegetation growth (Piao et al., 2015; Ramos 

et al., 2015).  

Global warming has increased the intensity, frequency, and spatial distribution of 

extreme climatic events at global and regional scales (Chen and Sun, 2017; Held and 
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Soden, 2006; Javed et al., 2021; Sheffield and Wood, 2008). Extreme climatic events 

are often accompanied by anomalies of temperature and precipitation (He et al., 2018; 

Ma et al., 2015). These events are characterized by being severe and unique compared 

to average conditions over a particular time series (Butt et al., 2015; Menzel et al., 2011). 

Understanding the responses of phenology to climatic extremes is therefore crucial and 

challenging, because future climatic anomalies will become more intense and frequent 

relative to those in past decades (IPCC, 2007 2013; Jentsch et al., 2009; Reichstein et 

al., 2013; Tang et al., 2017; Zhao et al., 2018; Zheng et al., 2018). Climatic extremes 

early in the 21st century have affected most regions of the Northern Hemisphere, such 

as Europe (Ivits et al., 2014; Reichstein et al., 2007) and North America (Ponce-Campos 

et al., 2013), where heat waves were more common than in previous decades (Fischer 

and Schär, 2010; Trumbore et al., 2015). Some previous studies have also focused on 

assessing the vegetation phenological responses to climate extreme events in Europe 

(Ciais et al., 2005; Gobron et al., 2005; Lorenz et al., 2013) and North America 

(Diffenbaugh, 2005; Ellwood et al., 2013; Karl et al., 2012).  

Remotely sensed data have been widely used to analyze vegetation dynamics and 

estimate phenological metrics at hemispherical and global scale (Bórnez et al., 2020a, 

2020b; Richardson et al., 2009; Verger et al., 2014., 2019). Several phenological 

metrics, including the start of the growing season (SoS) and the end of the season (EoS), 

have been estimated from time series of vegetation indices derived from medium 

resolution satellite instruments such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS), the Advanced Very High-Resolution Radiometer 

(AVHRR), VEGETATION on board the Satellite Pour l'Observation de la Terre (SPOT-

VGT) and PROBA-V (Atkinson et al., 2012; Bórnez et al., 2020a; Delbart et al., 2005; 

Verger et al., 2016; Zhang et al., 2004). Estimates of land-surface phenology (LSP) using 

remotely sensed data play an important role in monitoring terrestrial responses to climate 

change (White et al., 2005). Numerous LSP studies e.g. (Beaubien and Freeland, 2000; 

Chmielewski and Rotzer, 2002; Menzel and Fabian, 1999; Schwartz et al., 2006) have 

been focused on the northern hemisphere. These studies commonly use the NDVI for 

detecting phenological trend and interannual variation (de Beurs and Henebry, 2005; 

Julien and Sobrino, 2009; White et al., 2009), and mainly focus on determining trends 

and investigating the advance for the timing of SoS during the last decades. 
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This is the first study analyzing the response of vegetation phenology to climate 

anomalies by using phenological metrics derived from leaf area index (LAI) time series 

from both SPOT-VGT and PROBA-V sensors that were demonstrated to outperform 

NDVI time series for phenology detection (Bórnez et al., 2020a). Our study focusses on 

understanding the changes and the sensitivity of deciduous forest phenology to the 

anomalies of temperature, precipitation and drought for 2000–2018 in the Northern 

Hemisphere. We assumed that changes in the deciduous forest phenology in the 

Northern Hemisphere for the period 2000-2018 were monotonic and temperature and 

precipitation were the main climatic drivers. Our specific objectives were to: (1) quantify 

the spatial patterns of correlations of the anomalies of deciduous forest phenology with 

precipitation and temperature, (2) identify the main causes of phenological change, (3) 

determine the impact of drought on phenology, (4) quantify the sensitivity of phenology 

to climate, and (5) assess the effects of some climate extreme events (e.g. heat wave) on 

phenology. This study contributes to improve our understanding of the phenological 

response to climate change and climate extreme events in the Northern Hemisphere. 

4.2. Materials and Methods 

4.2.1. Data sources and processing 

4.2.1.1. Study area 

Our study is focused on deciduous forests in the Northern Hemisphere (Figure 4.1) 

where the used LSP retrievals were validated (Bradley et al., 2011; Cleland et al., 2017). 

According to the Intergovernmental Panel on Climate Change (IPCC) predictions (de 

Beurs and Henebry, 2005; Zhou et al., 2001), these northern regions are highly sensitive 

to climate change.  

Figure 4.1: Map showing the study area with the distribution of the deciduous forests analyzed (in green). 

The red dashed lines show the regional areas assessed in section 3.2.  
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4.2.1.2. Land – cover / vegetation map 

Because we focused on deciduous forests, we used a land-cover (LC) map that identified 

this type of vegetation: the Climate Change Initiative (CCI-LC) map series for 2015 at 

a spatial resolution of 300 m, available from the European Space Agency (ESA)  

(http://maps.elie.ucl.ac.be/CCI/viewer/download.php). CCI-LC discriminates 38 

classes of land cover. We resampled the map to 0.1° and analyzed only pixels containing 

deciduous forest. 

4.2.1.3. Vegetation phenology from SPOT VEGETATION and Proba-V data 

SoS and EoS during 2000–2018 were estimated using the time series of Copernicus 

Global Land Service LAI 1km version 2 derived from SPOT VEGETATION (VGT) 

and Prova-V data (Verger et al., 2014) 

(https://land.copernicus.eu/global/themes/vegetation). These metrics were based on 

previous protocols and research (Bórnez et al., 2020a; Bórnez et al., 2020b; Verger, et 

al., 2016) that used dynamic thresholds. This method is based on the percentage of the 

LAI amplitude in each pixel, in which SoS is defined as the day of the year (DoY) when 

LAI exceeds the 30% threshold and EoS is defined as the DoY when LAI overpasses 

the 40% threshold after the growing season. 

4.2.1.4. Rainfall and temperature data sets 

The data for temperature and precipitation were collected from the ERA5 hourly gridded 

data sets from 2000 to 2018 with a spatial resolution of 0.25° 

(https://cds.climate.copernicus.eu/). To achieve higher resolution, we interpolated all 

climatological data from the spatial resolution of 0.25 to 0.1° using a cubic convolution 

that calculated the value of each pixel by fitting a smooth curve based on the surrounding 

16 pixels. Temperature was the air temperature at a height of 2 m, and precipitation was 

the accumulated amount of liquid or frozen water that fell, calculated as the sum of large-

scale and convective precipitation in millimeters.  

We used the mean temperature and accumulated precipitation for the preseason using 

time lags of 1, 3, and 6 months prior to the timings of SoS and EoS. 

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
https://land.copernicus.eu/global/themes/vegetation
https://cds.climate.copernicus.eu/
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4.2.1.5. SPEI 

Drought indices have become useful tools for analyzing, assessing, and estimating the 

dry and humid periods that may impact on phenology (Javed et al., 2021). Various 

drought indices are available, such as the standardized precipitation index (SPI) or the 

Palmer drought severity index (Palmer, 1965) (PDSI), and several recent studies have 

analyzed drought conditions using the standardized precipitation-evapotranspiration 

index (SPEI) (Chen et al., 2015; Wang et al., 2017). SPEI is based on precipitation and 

potential evapotranspiration, which includes the role of temperature in drought severity 

(Beguería et al., 2013; Vicente-Serrano et al., 2010., 2013). SPEI considers drought 

timescales, which represent the cumulative water balance over the previous 1–48 

months. It is based on the Standardized Precipitation Index (SPI) calculation method but 

with improvements to include the potential evapotranspiration (PET). The SPEI uses the 

weekly (or monthly) difference between precipitation and PET (based on Thornthwaite 

method), and it is calculated as a standardized variable, which allows the comparison 

with other SPEI values and climatic variables over time and space (Vicente-Serrano et 

al., 2010). Unlike SPI, SPEI includes the effects of temperature variability on drought 

estimation and therefore, it takes into account the effect of warming processes on 

drought severity (Vicente-Serrano et al., 2010., 2013). 

SPEI data set Version 2.6 was downloaded from the Global SPEI database 

(https://spei.csic.es/database.html) at a spatial resolution of 0.5° and was resampled to 

0.1° for the analysis. This data set is based on the United Nations Food and Agriculture 

Organization (FAO)-56 Penman-Monteith estimation of potential evapotranspiration. 

The complete procedure for calculating SPEI is provided by Vicente-Serrano et al. 

(2010). 

We determined drought severity for the timings of SoS and EoS using different SPEI 

timescales (1, 3, 6, and 12 months), representing the cumulative water balance for the 

timings of preseason and presenescence. Positive SPEI values indicate that humidity is 

higher than the historical median, and negative values indicate a water deficit (Vicente-

Serrano et al., 2010., 2013). The SPEI data were classified into seven categories (Table 

4.1) based on the World Atlas of Desertification (Cherlet et al., 2018) for analyzing 

conditions of wetness or dryness. 

 

https://spei.csic.es/database.html
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Table 4.1: Classification of drought based on SPEI data. 

Range Condition 

SPEI ≤ -2 Extremely dry 

-2 < SPEI ≤ -1.5  Severely dry 

-1.5 < SPEI ≤ -1 Moderately dry 

-1 < SPEI ≤ 1 Near normal 

1 < SPEI ≤ 1.5 Moderately wet 

1.5 < SPEI ≤ 2 Severely wet 

SPEI ≥ 2 Extremely wet 

 

4.2.2. Methodology and statistical analysis  

We first estimated the significant trends in the time series of the estimates (SoS and 

EoS). Secondly, we explored the impacts of anomalies in hydroclimatic variables, such 

as temperature, precipitation, and drought on deciduous phenology throughout the 

Northern Hemisphere for 2000–2018. We applied spatiotemporal response analysis to 

determine the relationships of phenology and climate variables. Moreover, we 

investigated the spatial pattern of the sensitivity of phenology to climate and its 

relationship with preseason and presenescence temperature, precipitation, and drought. 

We thereafter focused on some of the extreme events, including high temperatures, low 

temperatures and severe drought, that have occurred in the last two decades. 

We used different software to calculate and evaluate the effects of climatic variables on 

vegetation phenology. We first used Google Earth Engine (Gorelick et al., 2017) to 

download and process the time series of the hydroclimatic variables and for estimating 

land-surface phenological metrics in the Northern Hemisphere (Bórnez et al., 2020a; 

2020b). We then used RStudio, XLSAT and Idrisi TerrSet for processing and 

statistically analyzing all data. Finally, we used ESRI ArcGIS 10.5 for generating the 

graphs and maps. 

4.2.2.1. Trend analysis  

We calculated the trends in the estimated time series of SoS and EoS before analyzing 

the relationships between phenology and climate. Temporal trends in the data sets were 
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calculated by applying the Theil-Sen (TS) median-slope trend analysis, which is an 

effective method for analyzing the rate of change in observations over a period of time 

(2000–2018 in our study) and is similar to linear least squares regression. TS is based 

on nonparametric statistics (Mann-Kendall) and is independent of the assumptions of 

linear regression. Medians are used to calculate the trend, which is consequently less 

susceptible to noise and outliers (Kang et al., 2018; Sen, 1968; Theil, 1992). The 

equation used to estimate TS slope is: 

TS Slope = Median (
xj−xi

tj−ti
)                                                                      (1) 

where xj and xi are values in years i and j, respectively. We estimated the significance 

of the TS slope using a nonparametric test (Mann-Kendall significance test), which 

provided a standardized Z and the corresponding probability (p). Positive and negative 

slopes indicated that SoS or EoS had delayed and advanced trends, respectively, during 

the study period. The Mann Kendall significance (Z and P) was calculated as: 

z =

{
  
 

  
 

S − 1

√Var (S)
 for    S > 0

j
      0       for S    = 0

 
S + 1

√Var (S)
  for  S < 0

           (2) 

and 

P = 2[1 − ϕ(|z|)]               (3) 

where 

Φ(|z|) =
2

√π
∫ e−t

2
   dt

|z|

0
                      (4) 

We also used the nonparametric Pettitt test method (Pettitt, 1979) to detect the possible 

abrupt change points in the phenological time series. This test allows to identify shifts 

in the average and their significance. The null hypothesis of the Pettitt test is the absence 

of a change point. The empirical significance level (p value) was computed using 

XLSTAT statistical and data analysis software 2021 v.3.1 at a significance level of 5%. 

The non-parametric Pettitt statistical test is defined as:  

Kτ = max|Ut,T|,                                                                                                              (5) 
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𝑤here  

Ut,T = ∑ ∑ sgnn
j=i+1 (xj − xj)

t
i=1                                                                                     (6) 

where t is the period length and n is the number of data in the statistical series. p-value 

and an interval around the p-value was evaluated by using a Monte Carlo method. 

4.2.2.2. Standardized anomalies  

We calculated standardized anomalies in the interannual time series (2000–2018) of 

phenology, temperature, and precipitation. Standardized anomalies were calculated by 

dividing anomalies by the standard deviation. The equation is (Funk et al., 2019): 

Z =
X−μ 

σ
             (7) 

where Z is a standardized anomaly, X is the annual value, and µ and σ are the interannual 

mean and standard deviation, respectively, for each variable analyzed (i.e. the timings 

of SoS and EoS, the mean preseason or presenescence temperature, or the accumulated 

preseason or presenescence precipitation). 

Note that we estimated the anomalies in the time series of temperature and precipitation 

using the mean temperature and the accumulated precipitation for different timescales 

(1, 3, and 6 months) before estimating the timings of SoS and EoS (see section 2.1.3). 

4.2.2.3. Correlations and partial correlation analyses  

We calculated the coefficients for the correlations between the estimated time series of 

phenology (SoS and EoS), temperature, precipitation, and SPEI for different preseason 

lengths. We used two types of correlation analysis to quantify the response of vegetation 

to climatic drivers. We first calculated the linear correlation (Pearson’s correlation) 

between the interannual anomalies of phenology (y) and hydroclimatic variables (x) at 

a significant level of 95%: 

rxy =
n Σxiyi−ΣxiΣyi

√n∑xi
2 − (Σxi)

2   √n ∑yi
2−(Σyi)

2
           (8) 

where rxy is the Pearson correlation coefficient between x and y, n is the number of 

observations, xi is the value of x for observation i, and yi is the value of y for observation 

i. A multivariate linear regression model was used for multivariate cases. 
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We correlated SoS and EoS anomalies with the climatic variables (temperature and 

precipitation) for timescales of 1, 3, and 6 months prior to the dates of SoS and EoS and 

summarized the climatic variables for the preseason periods in which the correlation was 

highest. For SPEI, we used timescales from 1 to 12 months (Vicente-Serrano et al., 

2013).  

We then applied a partial correlation analysis of SoS and EoS using the preseason and 

presenescence climatic variables for the three-time lags (1, 3, and 6 months). The 

precipitation data for the same timescale were used as a constant factor for calculating 

the partial correlation between phenology and temperature. Similarly, the influence of 

temperature was considered a constant for calculating the correlation with accumulated 

precipitation. The partial correlation coefficient between vegetation and mean 

temperature and its significance were tested as: 

rvt.p =
rvt− rvprtp

√(1−r  vp
2 )(1−r  tp

2 )

                      (9) 

where v is the vegetation phenology, t is temperature, p is precipitation, and rvt and rvp 

are the simple correlation coefficients of the phenology (SoS or EoS) with the mean 

preseason or presenescence temperature and accumulated precipitation, respectively. 

Eq. (8) is also valid for calculating the partial correlation between phenology and 

precipitation by changing the order in which the data are entered. The significance of 

the partial correlation coefficients at the 95% level was evaluated using the Student’s t-

test. 

The Pearson’s correlation and partial correlation analysis produced similar maps, so the 

results obtained by partial correlation will be taken into account in subsequent sections 

for analyzing the correlations between phenology, temperature, and precipitation. 

4.2.2.4. Sensitivity analysis  

We used multiple linear regression and sensitivity analysis to further investigate the 

interactions of phenology with temperature, precipitation, and SPEI. The responses of 

the sensitivity of vegetation phenology to the climatic variables corresponded to the 

slopes of the linear regressions between the phenological metrics and the climatic 

variables, representing the unit change in phenological date divided by the unit change 

in temperature, precipitation, or SPEI. 
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4.3. Results 

4.3.1. Analysis of trends and correlations in the 2000–2018 time series 

4.3.1.1. Trends in the time series of estimated phenology 

The Pettitt test confirmed that phenological time series were monotonic and any 

statistically significant change points was detected (p values of 0.74 and 0.86 for SoS 

and EoS, respectively). The temporal trends in SoS for 2000–2018 (Figure 4.2a) were 

significant (P<0.05) for 20.5% of the deciduous forests in the Northern Hemisphere. 

Negative trends, representing an advance in the timing of SoS, and positive trends, 

representing a delay in the timing of SoS, accounted for 61.5 and 38.54% of these pixels, 

respectively (Table B1). Northeastern Europe mainly had negative SoS trends, and 

Russia and North America mainly had positive trends (Figure 4.1a). EoS changed 

significantly in 23.8% of the deciduous forests (Figure 4.5a), with 40.5 and 59.49% of 

these forests having a delayed and advanced EoS, respectively (Table B1). Our results 

indicated that SoS and EoS advanced by 0.08 and 0.1 d/y, respectively. Positive 

significant trends were mainly in northeastern Europe, and negative trends were mainly 

in eastern North America (Figure 4.5a).  

4.3.1.2. Correlation and sensitivity of phenology with climatic variables 

The correlation between SoS anomalies and preseason temperature (Figure 4.3 and 

Figure B1a) indicated that 72.13% of all pixels had significant correlations at P<0.05, 

with negative correlations accounting for 57% of all pixels (Table 4.2). An earlier SoS 

tended to be associated with higher temperatures in 35% of the pixels, and a later SoS 

was associated with lower temperatures in 21% of the pixels (Table B2). Temperature 

and SoS were negatively correlated in Eurasia and eastern North America, with 

coefficient correlations (r) of ~-0.7 and -0.6, respectively (Figure B1).  

The spatial pattern of the distribution of the partial correlations between SoS and 

precipitation was more heterogeneous than the correlation between SoS and 

temperature. The correlation between SoS and precipitation was positive in most pixels, 

accounting for 42% of them (Table 4.2; Figure 4.3b and Figure B1b), which led to 

significant positive correlation advance or delay (20.9% and 21.4%) in the SoS with 

precipitation decrease or increase respectively (Table B2). 
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Table 4.2: Percentage of pixels with significant correlations (P<0.05) between the anomalies of 

phenological events (SoS and EoS) and climatic variables (temperature, precipitation, and SPEI) in the 

Northern Hemisphere for 2000–2018.  

Phenological event Climatic variable Positive (%) Negative (%) 

SoS Temperature 14.94 57.19 

  Precipitation 42.30 20.07 

  SPEI 17.57 9.87 

EoS Temperature 23.57 20.75 

  Precipitation 34.44 28.42 

  SPEI 28.78 9.04 
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The mean sensitivities of SoS to temperature and precipitation were -2.45 d/°C and 0.8 

d/10 mm, respectively (Figure 4.4). The sensitivity to temperature was highest (~-5 

d/°C) in Eurasia and southeastern North America (Figure 4.2b), and the sensitivity to 

precipitation was highest (3 d/10 mm) at latitudes >60°N (Figure 4.2c).   

Figure 4.2: (a) Distribution of trends for the SoS time series in the Northern Hemisphere between 2000 

and 2018 in pixels with significant correlations between phenology and climate (a positive trend indicates 

a delayed SoS, and a negative trend indicates an advanced SoS). Regions with black dots indicate 

significant trends (Mann-Kendall test, P<0.05). For visualization purposes, the size of black dots has been 

increased. (b) Distribution of sensitivity coefficients between SoS and mean preseason temperature (d/°C). 

(c) Distribution of sensitivity coefficients between SoS and preseason accumulated precipitation (d/10 

mm). White indicates unvegetated areas and areas with no deciduous forests, and light gray (in b and c) 

indicates vegetated areas with nonsignificant correlations (P>0.05).  
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Figure 4.3: Frequencies of the correlations between phenology and the climatic variables. Panels a and b 

show the correlations between SoS and temperature and precipitation, respectively. Panels c and d show 

the correlations between EoS and temperature and precipitation, respectively. 

 

 

Figure 4.4: Boxplots of the sensitivities of the timings of SoS (left) and EoS (right) to temperature (ST, 

red), precipitation (SP, blue), and SPEI (SPEI, yellow) before SoS and EoS. Only significant (P<0.05) 

correlation coefficients are shown. 
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The sensitivity analysis (Figure 4.4 and Figure 4.5) indicated that the response of 

phenology to climatic anomalies was lower for the timing of EoS than the timing of SoS. 

The pattern of temperature sensitivity was very heterogeneous, with symmetric  

distributions of positive and negative correlations between temperature and EoS in 23.57 

and 20.75% of the pixels, respectively (Table 4.2, Figure 4.3c). EoS advanced with 

temperature by an average of ~0.5 d/°C (Figure 4.5b). The sensitivity of EoS to 

precipitation had the opposite pattern: the timing of EoS was delayed by an average of 

~0.5 d/10 mm. Correlations were significantly positive (i.e. a delay in the timing of EoS 

with an increase in precipitation) in 34.44% of the study area (Figure B2), with 

sensitivities highest in southern and southwestern Europe (~3 d/10 mm). In contrast, 

28.42% of the pixels had negative correlations (i.e. an advance in the timing of EoS with 

an increase in precipitation), mainly in northeastern Europe and areas of Russia (Figure 

4.5c). 



4.3. Results 

 

 

85 85 85 85 

Figure 4.5: (a) Distribution of trends for the EoS time series in the Northern Hemisphere between 2000 

and 2018 in pixels with significant correlations between phenology and climate (a positive trend indicates 

a delayed EoS, and a negative trend indicates an advanced EoS). Regions with black dots indicate 

significant trends (Mann-Kendall test, P<0.05). For visualization purposes, the size of the black dots has 

been increased. (b) Distribution of sensitivity coefficients between EoS and mean presenescence 

temperature (d/°C). (c) Distribution of sensitivity coefficients between EoS and presenescence 

accumulated precipitation (d/10 mm). White indicates unvegetated areas and areas with no deciduous 

forests, and light gray (in b and c) indicates vegetated areas with nonsignificant correlations (P>0.05). 

4.3.1.3. Response of vegetation phenology to drought using SPEI 

When analyzing the influence of drought on vegetation, we found that SPEI calculated 

using time lags between 1 and 3 months was correlated the best with the timings of SoS 

and EoS in >50% of the pixels (Table B3).  

The Spearman correlations between SoS and SPEI were positive in 52.3% of the 

Northern Hemisphere and were significant (P<0.05) in 17.5% of the pixels (Table 4.2), 
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mostly >60°N in northeastern Europe and North America (Figure 4.6a). The correlations 

were negative (47.6% of the pixels, significant in 9.8%) in northeastern Europe (between 

50° and 60°) in areas where the sensitivity of SoS to SPEI was highest (Figure B3a). 

Correlations between the timings of EoS and SPEI were positive in 58.8% of the study 

area (Table 4.2), with significant correlations for 28.8% of the pixels (P<0.05). The 

correlations were particularly strong in southwestern Europe and northeastern North 

America (Figure 4.6b) in areas where the sensitivity of EoS to SPEI was highest (Figure 

B3b). Drought weakly affected phenology at high northern latitudes (>60°N), where 

temperature (Figure 4.5b), not precipitation (Figure 4.5c), was the main variable limiting 

phenology. The correlations between EoS and SPEI were thus weak. 

 

Figure 4.6: Spatial patterns of the partial correlations between SPEI and (a) SoS and (b) EoS for 2000–

2018 in the Northern Hemisphere. The color scale represents the maximum correlation coefficient for 

each pixel, independently of the SPEI timescale. White indicates unvegetated areas and areas with no 

deciduous forests, and light gray indicates vegetated areas with nonsignificant correlations (P>0.05). 
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4.3.2. Phenological responses to recent climatic extremes 

We analyzed the effects of three heat and cold waves on vegetation phenology in Europe 

and North America. 

4.3.2.1. Effect of the 2003 summer heat wave in western Europe 

2003 was one of the driest and warmest years recorded in the last 30 years in most of 

central Europe (Fischer et al., 2007; Stéfanon et al., 2012). The effects of this extreme 

episode were represented by negative anomalies in the timing of EoS throughout most 

of western Europe (Figure 4.7a). We highlight a region of southern France and 

southwestern Germany where an unstandardized anomaly for the timing of EoS had a 

mean of -22 d. 

 

Figure 4.7: Distribution of the anomalies for the timing of EoS (a) and (b) SPEI before EoS in western 

Europe for 2003. The boxplots (c) show the standardized anomalies between phenology and the climatic 

variables (SoS in dark gray, and EoS in light gray).  
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An intense drought also occurred in 2003, which we identified using SPEI (Figure 4.7b, 

Table 4.3). More than 80% of the pixels indicated an intense drought prior to the timing 

of EoS. Fischer et al. (2007) observed that an early EoS and stress from the lack of soil 

moisture contributed greatly to the suppression of evapotranspiration after the summer 

and that this interaction may have amplified the temperature anomaly by locally 

increasing the flux of sensible heat. Figure 4.7c shows the standardized anomalies 

between phenology and the climatic variables, which allows the visualization of the 

positive temperature anomaly for the timing of EoS and the precipitation deficit for the 

timings of both SoS and EoS. 

Table 4.3: Classification of SPEI data for characterizing drought in the three case studies: Europe, North 

America, and Balkans for 2003, 2012, and 2005, respectively. Two analytical periods are used: preseason 

(for the timing prior to SoS) and presenescence (for the timing prior to EoS). The SPEI timescale with the 

highest correlation in each pixel was considered.  

    SoS (area, %) EoS (area, %) 

Range Condition 

Europe 

2003 

North 

America 2012 

Balkans 

2005 

Europe 

2003 

North 

America 2012 

Balkans 

2005 

SPEI ≤ -2 Extremely dry 0 0.77 0 26.30 3.96 0 

-2 SPEI ≤ -1.5  Severely dry 2.88 9.60 0 29.75 5.56 0 

-1.5 SPEI ≤ -1 Moderately dry 15.96 16.69 0 23.99 4.68 1.04 

-1 < SPEI ≤ 1 Near normal 80.96 72.93 14.44 19.96 52.44 67.56 

1 SPEI ≤ 1.5 Moderately wet 0 0 35.13 0 29.57 28.78 

1.5 SPEI ≤ 2 Severely wet 0 0 35.08 0 3.81 2.40 

SPEI ≥ 2 Extremely wet 0 0 15.35 0 0 0.23 

 

4.3.2.2. Effect of the 2012 spring heat wave in eastern North America 

We analyzed the early spring for 2012 in North America, focusing on southeastern of 

The United States (US). We calculated the interannual anomalies for the phenological 

metrics and climatic variables for each pixel to assess the spatial patterns of the 

phenological responses to the climatic extreme. Previous studies (Ellwood et al., 2013; 

Karl et al., 2012) considered the spring SoS anomaly in 2012 as the earliest spring 

recorded since 1900 across North America (Figure 4.8a). Karl et al. (2012) reported that 
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the anomaly was driven by a strong and stable high-pressure anticyclone that remained 

over much of the northeast from late February to April, causing record high temperatures 

(Figure 4.8b, c) and phenological advancement. 

Spring in many central and eastern areas of North America began between -15 and -30 

d (unstandardized anomalies) before mean SoS for the time series analyzed (2000–2018) 

(Figure 4.8c). The anomalies for the timing of SoS were negative in most of the pixels 

(96.2%) (Figure 4.8a). Figure 4.8c shows the dominant role of temperature in the 

phenological advancement of SoS in 2012, with mean standardized anomalies >2 °C. 

Precipitation was slightly negatively anomalous before the timing of SoS in 2012, but 

with no water stress, and the majority of the pixels (73%) indicated a normal SPEI 

between -1 and 1 (Table 4.3). 

 

Figure 4.8: Distribution of the anomalies for the timing of SoS (a) and (b) preseason mean temperature in 

eastern USA for 2012. The boxplots (c) show the standardized anomalies between phenology and the 

climatic variables (SoS in dark gray, and EoS in light gray).  
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4.3.2.3. Effect of the late 2005 cold wave in the Balkans 

Unlike the two previous analyses, this third case refers to a delayed SoS due to a negative 

temperature anomaly for the timing of the preseason. Figure 4.9a and b shows the SoS 

anomaly and preseason mean temperature for 2005, respectively. The positive anomalies 

of SoS affected much of central and eastern Europe, especially the northern Balkan 

Peninsula and Carpathian Mountains, where positive anomalies were 10 d in most of the 

pixels (80.3%) (Figure 4.9a, c). The average standardized temperature anomaly was ~-

1 °C (Figure 4.9b,c), which greatly delayed the timing of SoS (~10 d). This delay also 

coincided with a positive SPEI. Eighty percent of the pixels represented moderate or 

very high humidities prior to SoS (Table 4.3). 

 

Figure 4.9: Distribution of the anomalies for the timing of SoS (a) and (b) preseason mean temperature in 

the Balkans for 2005. The boxplots (c) show the standardized anomalies between phenology and the 

climatic variables (SoS in dark gray, and EoS in light gray).  
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4.4. Discussion 

Climatic projections indicate a likely increase in temperatures in much of the world, 

especially at the higher latitudes of the Northern Hemisphere (IPCC, 2007, 2012). 

Recent studies (Du et al., 2019; Lin et al., 2017) have also found that extreme climatic 

events have increased in frequency, intensity, and duration, consistent with IPCC 

projections, which will affect many ecosystems, particularly vegetation. Climatic 

variability adds uncertainty in analyzing and predicting the impacts of climate change 

on vegetation phenology (Ma et al., 2015; Peñuelas et al., 2009; Siegmund et al., 2016). 

Previous studies have attributed the recent shifts in phenology to climate change and the 

effects of variations in temperature and precipitation (de Beurs and Henebry, 2005; Shen 

et al., 2015; Vitasse et al., 2009; Zhou et al., 2001). Assessing the pattern of distribution, 

the variability of phenology, and the correlations between phenology and climatic 

variables is crucial for understanding the potential effects of future climate change (Miao 

et al., 2017). Remotely sensed data have been widely used to assess trends in 

phenological time series and their responses to climatic variability. Numerous studies 

have reported that the phenological trends from 2000 to 2018 were lower than the rates 

of change from 1980 to 1999 (Jeong et al., 2011; Wang et al., 2015; Zeng et al., 2011; 

Zhao et al., 2015). De Beurs et al. (2005) and Piao et al. (2006) reported that SoS 

advanced by 6.6 and 7.9 d/decade in North America and China, respectively, between 

1982 and 1999. Jeong et al. (2011) and Zeng et al. (2011), however, found that 

phenological trends declined significantly after 2000, with an advanced for the timing 

of SoS of 0.1–0.2 d/decade, respectively, consistent with our results. Some studies have 

even reported delays of 1 d/decade in the timing of SoS after 2000, specifically in 

western North America (Wang et al., 2015; Zhao et al., 2015).  

In our study we used land-surface phenological metrics at the continental scale derived 

from LAI time series (2000–2018) of the SPOT-VGT and PROBA-V sensors (Bórnez 

et al., 2020a, 2020b). Since the time series start in 2000, the detected trends are limited 

to reduced areas. For this reason, we mainly target on analyzing the correlations between 

phenology and climatic variables and analyzing the responses of phenological anomalies 

to recent climatic events. 



4. Monitoring the responses of deciduous forest phenology to climatic anomalies 

 

 

92 92 

Most previous studies have only emphasized the role of preseason temperature in 

determining SoS, because an increase in the advance of SoS is a consequence of global 

warming (Cleland et al., 2017; Kang et al., 2018; Monahan et al., 2016; Peng et al., 2017; 

Piao et al., 2006; Zhang et al., 2007). Other studies focusing on EoS have recorded a 

delay in senescence, which led to longer growing seasons in some areas of Eurasia and 

North America (Jeong et al., 2011; Liu et al., 2016). We focused on analyzing the 

responses of phenology to mean preseason and presenescence temperatures, 

accumulated precipitation, and drought across the deciduous forests in the Northern 

Hemisphere. Our results indicated that anomalies of temperature and precipitation 

controlled the changes in phenological metrics in the deciduous forests, consistent with 

previous studies (He et al., 2018; Zhou et al., 2016), particularly the anomalies of SoS 

strongly associated with the changes in mean preseason temperature, so this climatic 

variable may have been the main cause of the advance or delay in the start of the growing 

season, affecting 72.1% of the study area (mean r of -0.31) (P<0.05). Correlations were 

significantly negative in 57% of the pixels (P<0.05), i.e. an advance or delay in SoS due 

to higher or lower temperatures, respectively.  

The effects of the relationships between the climatic variables and vegetation on the 

timing of EoS were more complex. The timing of the end of the growing season in 

response to temperature was generally delayed in most pixels. Water stress associated 

with droughts during summer, however, advanced EoS in some regions such as southern 

Europe (Figure B2 and Figure 4.6) with negative anomalies longer than -20 d for the 

timing of EoS throughout most of Europe (in 2003), consistent with other studies 

(Angert et al., 2005; Hmimina et al., 2013; Li et al., 2019; Wang et al., 2011).  

The influence of drought on the timing of EoS was lower in humid and cold regions 

(such as those pixels located between 55 and 80°N) than drier regions, such as areas 

with a Mediterranean climate (Figure. S3). The availability of water in Mediterranean 

areas was the primary limiting resource for the timing of EoS, but temperature and other 

variables such as photoperiod may have a larger role at higher latitudes. 

The distribution of the regression coefficients between the anomalies in phenology and 

the climatic variables were highly spatially heterogeneous, due to the spatial and 

latitudinal heterogeneity in climate and to the biological characteristics of the species, 
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which could account for the variable responsiveness to climate (Hou et al., 2015; 

Peñuelas et al., 2002). The responses of phenology to climate, especially to climatic 

extremes, also vary with climatic gradients, type of event, and biome, and even among 

individuals of the same species (Ma et al., 2015; Siegmund et al., 2016). 

These phenological changes may affect climate change by the feedbacks between 

vegetation and climate (Beer et al., 2010; Bonan et al., 2015; Ceccherini et al., 2014; 

Lian et al., 2020; Peñuelas et al., 2009). For example, climatic anomalies or extremely 

high temperatures (such as during heatwaves) alter vegetation growth due to both the 

high temperatures and lower amounts of soil moisture (Ciais et al., 2005; Reichstein et 

al., 2007; Seneviratne et al., 2006). Altered vegetation growth greatly affects the uptake 

of CO2, depending on the availability of soil water, regional characteristics, and plant 

species (Peñuelas et al., 2009). Deficits in soil moisture lead to lower water evaporation, 

which lowers the release of latent heat from the land, prevents the development of 

clouds, and may consequently intensify droughts because precipitation is reduced (Berg 

et al., 2016; Buermann et al., 2013, 2018), which could also involve teleconnections 

between areas (Lian et al., 2020). 

4.5. Conclusions 

This study comprehensively analyzed the response of vegetation to climatic anomalies 

in the Northern Hemisphere and assessed the impact of extreme climatic events on 

deciduous phenology. Our results suggest that deciduous phenology in the Northern 

Hemisphere is very sensitive to shifts in temperature, especially for the timing of SoS, 

but also indicate the importance of water availability to the timing of EoS as the increase 

in drought stress contribute to its advance throughout some regions (e.g., southern 

Europe). Results also revealed that climate extremes events exert severe impacts on 

vegetation phenology both for the timing of SoS and EoS. These findings highlight the 

need to develop strategies focused on mitigating future climate changes on vegetation 

and their monitoring. The interactions of temperature, precipitation, drought, and 

phenology with other variables such as solar radiation, soil type, soil moisture, and the 

coupling between variables and feedbacks between vegetation and climate warrant 

future research. 
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5.1. Discussion 

My doctoral thesis is framed within the increasing interest in the retrieval of Land 

Surface Phenology (LSP) from remote sensing and in the study of their changes and 

interactions with climate change (Ceccherini et al., 2014; Peñuelas et al., 2009; 

Richardson et al., 2013). I aimed to (i) improve estimation of Land surface Phenology 

(LSP) from satellite time series, (ii) evaluate the uncertainty associated to its estimation, 

and (iii) assess phenology-climate relationships in a climate change context. 

5.1.1. Ground based phenological estimation techniques and challenges of LSP 

validation 

Validating LSP is challenging due, in part, to the differences in the definition of satellite 

metrics and ground phenophases (White et al., 2009, Schwartz and Hanes, 2009). The 

timing of vegetation seasonality has traditionally been recorded by researchers and 

volunteers from in situ measurements by observing the leaf growth from bud to fall. 

These observations have proven to be useful to validate the satellite estimates. However, 

human-based ground observations of phenological transition dates are not uniform and 

depend on the criterion used for visual inspection which may induce uncertainties, 

despite efforts to establish protocols for monitoring phenophases (Denny et al. 2014, 

Tierney et al. 2013). Some studies have reported differences of ~7 days among different 

observers for the same place and species (Klosterman et al., 2014). 

In recent years near-surface remote sensing techniques have emerged, providing an 

alternative to human observations to monitor vegetation phenology (Hufkens et al., 

2012; Richardson et al., 2009; Sonnentag et al., 2012), including digital cameras and 

continuous flux measurements from eddy covariance towers. Near-surface remote 

sensing provides a new perspective for estimating phenology at the landscape level, 

becoming an advanced technique to validate remote sensing estimates by using 

consistent and continuously measurements at high temporal frequencies (e.g. PhenoCam 

imagery) across broad spatial scales. In particular, in this work I used PhenoCam 

Network and the existing eddy covariance flux data from FLUXNET, and the results 
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were significantly more robust compared to those observed with PEP725 or USA-NPN, 

especially for the timing of EoS, with a RMSE of 10 d and 12 d (FLUXNET and 

PhenoCam) compared with 25 d and 27d (USA-NPN and PEP725) when the threshold 

method was used. 

The validation of land surface phenology with ground observations presented also some 

difficulties associated to the spatial distribution and the spatial representability of the 

data. The ground measurements represent the phenology for a limited number of 

individual plants that are not necessarily the most representative species of the 1-km 

satellite pixels. Conversely, satellite phenology at 1-km resolution represented an 

integrated response across landscapes with diverse species and phenological behaviors. 

The phenology of each species and their characteristics (sizes, ages, homogeneity), 

though, influenced the satellite signal, depending on its abundance within the pixel 

sampling area and on the timing of their phenophases (Delbart et al., 2015). Chapter 2 

showed that statistics of the comparison between LAI V2 derived EoS using the 

percentile method and ground measurements improved significantly when the analysis 

was restricted to homogeneous forest sites. The scale difference between ~1km 

VEGETATION and PROBA-V satellite pixels and the deca-/hectometric footprints of 

PhenoCam cameras and flux towers may also introduce some difficulties for the 

comparison in Chapter 3. This is partially minimized because our validation is limited 

to deciduous forests which tend to form large patches of the same vegetation type, 

reducing the influence of mixed or border pixels (Richardson et al., 2006, 2009; Ryu et 

al., 2014).  

5.1.2. Sensitivity of LSP to the satellite time series 

Unlike ground observations and near-surface measurements, which only cover a small 

area for a reduced number of trees, the development of satellite remote sensing has 

allowed phenological dates to be estimated from local to global scale at different 

temporal periods, using time series of vegetation indices and biophysical variables (e.g. 

Verger et al., 2016; Zhang et al., 2006). Traditionally, the most used index for estimate 

phenology from satellite has been the Normalized Difference Vegetation Index (NDVI) 

(Rouse et al., 1974). However, NDVI is sensor dependent and saturates for high amounts 
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of vegetation. In Chapter 2 I derived land surface phenology from Copernicus Global 

Land time series not only from NDVI time series but also using three biophysical 

variables: LAI, FAPAR and FCOVER (version I and version II products) to determine 

the variable that best allows to estimate LSP. Comparison with ground data showed that 

phenological metrics extracted from the CGLS LAI Version 2 (V2) time series 

performed the best as compared to other biophysical variables and NDVI vegetation 

index or previous version V1 of the CGLS products. For this reason, I used LSP derived 

from LAI V2 CGLS in Chapter 2 and Chapter 3.   

The estimation of LSP from VI or biophysical variables presents several challenges. 

Firstly, the presence of clouds has been a major difficulty for acquiring high temporal 

resolution image time series of vegetation over the same location. Therefore, data 

smoothing approaches are employed as a necessary procedure in image preprocessing 

(Reed et al., 1994; Bradley et al., 2007), and the method selected for this purpose can 

influence the performance of the phenology extraction from the reconstructed time series 

(Atkinson et al., 2012; Kandasamy et al., 2013; Verger et al., 2016).  Several studies 

have used existing software tools to analyze and reconstruct time series data (Heumann 

et al., 2007; Jia et al., 2014; Rodrigues et al., 2013) that include TIMESAT (Jönsson and 

Eklundh, 2004), SPIRITS (Bórnez et al., 2020; Rembold et al., 2015), Phenosat 

(Rodrigues et al., 2012), Hants (Zhou et al., 2015), Crop Phenology (Araya et al., 2018) 

and QPhenoMetrics (Duarte et al., 2018). In chapter 2, I used SPIRITS software proving 

the functionalities for the reconstruction of time series data and extraction of phenology 

for V1 time series (e.g. SoS, EoS) by using the threshold method. However, it is still 

limited for applying other methods. I found the choice of the smoothing method 

(Whittaker, BISE or Swets) in SPIRITS software introduced differences of up to 50% 

in the performance of the phenology metrics. 

5.1.3. Sensitivity of LSP to the phenological extraction method 

The second challenge for satellite estimates relates to the variety of methods available 

to derive LSP estimates, which can lead to very different results (de Beurs and Henebry, 

2010; Zeng et al., 2020). This includes thresholds (Myneni et al., 1997; White et al., 

1997), moving averages (Reed et al., 1994), first derivatives (Tateishi and Ebata, 2004;
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White et al., 2009], and curvature of piecewise logistic functions (Zhang et al., 2003). 

The choice of the most appropriate approach is important to establish a robust, 

quantitative method that best estimates the phenology, especially when the goal is the 

comparison with climate variables (de Beurs and Henebry, 2010). However, it is difficult 

to determine the best method for all datasets, vegetation types or spatial scales as each 

method has its own strengths and limitations (Atkinson et al., 2012; de Beurs and 

Henebry, 2010).  

White et al. (2009) analyzed different methods to derive LSP from satellite time series 

across North America using 8 km 15-day composite AVHRR NDVI data for 1982–2006, 

and found that the differences between the methods were up to ±60 days and none of the 

methods performed uniformly well across the different regions and species. In this sense, 

by focusing on deciduous forest in the Northern Hemisphere, I tested four state of the 

art methods to extract phenological metrics: thresholds, logistic function, derivative and 

moving average, and found (1) that threshold method bears a closer resemblance to 

ground observations than the other methods, and (2) that the differences between 

methods were up to ±40 days when comparing with ground observation and near-surface 

estimates over deciduous broadleaf forests in the Northern Hemisphere for the period 

1999-2017 (Bórnez et al., 2020a, 2020b).  

5.1.4. Monitoring the responses of vegetation phenology to climate change 

The phenology estimated from LAI time series offered an approach to connect 

vegetation growth to its climate drivers, providing a quantitative description of 

vegetation variation as a consequence of climate change. Global change has significantly 

affected vegetation and it is reflected as anomalies in the phenological and climatic time 

series (Ceccherini et al., 2014; Keenan et al., 2014; Mu et al., 2011). Therefore, the study 

of LSP and the analysis of changes in the climatic variability is serving the scientific 

community to analyze vegetation and climate from local to global scale (White et al., 

2009). 

Remote sensing plays an important and increasing role in the assessment of LSP, 

especially important because the changes in phenology can also be used as a sensitive 

indicator of climatic changes (Chmura et al., 2019; Inouye, 2008; Moore et al., 2015). 
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Numerous studies have reported shifts in vegetation phenology as a response to climate 

anomalies, especially related to changes in temperature in various areas of the Northern 

Hemisphere (e.g. Cleland et al., 2007; Fitchett et al., 2015, Piao et al., 2019; Shen et al., 

2014). Thompson and Clark (2008) reported phenological advances of 3–8 days per 1ºC 

increase in temperature analyzing data for the period 1772–2006 in England. In Europe, 

Menzel et al. (2006) reported an advancement of ~2.5 days for the timing of SoS, and a 

delay of ~1 day for the timing of EoS associated with 1ºC increase in temperature. 

Significant phenological changes have also been found in areas of the USA advanced 

~8 days in the period 1885–2002 (Primack et al., 2004). 

Assessing the pattern of distribution, the variability of phenology, and the correlations 

between phenology and climatic variables is crucial for understanding the potential 

effects of future climate change. In this sense, the results (Chapter 4) showed that the 

climatic drivers play a strong role on regulating vegetation phenology. Temperature 

anomalies had the greatest impact on the SoS. This finding agrees with other studies 

which indicate that the SoS was mainly driven by temperature (Miao et al., 2017; Ramos 

et al., 2015; Wang et al., 2015). 

Chapter 4 also focused on understanding the responses of vegetation ecosystem to 

climate extreme events. A better understanding of the sensitivity of vegetation to climate 

change and to the extreme climate events, as well as its feedback at different spatial 

scales is one of the major research challenges over the next few years (Peñuelas et al., 

2009; Richardson et al., 2013). This sensitivity is particularly relevant because the 

frequency and intensity of climate extreme events have increased across a wide range of 

spatial scales in recent decades (Trumbore et al., 2015). Among these extreme events, 

droughts and heat waves stand out for their adverse effects on vegetation over large areas 

of the Northern Hemisphere, and the IPCC reports indicate that future extreme events 

(Brown et al., 2008; Meroni et al., 2013) will become more intense than those 

experienced in the past century (IPCC, 2007, 2012, 2014). In chapter 4, I report that 

these extreme climate events, especially heat waves, cause abrupt changes in vegetation 

phenology (e.g. advanced of ~20 days for the timing of SoS (2012) over large areas of 

North America).  
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5.1.5. Future research directions 

The results of my PhD thesis show a consistent correspondence between the phenology 

estimated from SPOT-VGT and PROBA-V LAI and the continuous monitoring from 

near-surface observations, despite the mismatch between the camera/tower field of view 

and the satellite pixels. However, satellite LSP still has limitations regarding the accurate 

monitoring of phenology shifts, at least in terms of specific plant species, and it is even 

more challenging in heterogeneous forests. To analyze small areas or regions, an 

alternative approach to bridging in situ phenology with LSP could be attempted using 

Landsat TM/TME data at high spatial resolution (30 m), and a repeat coverage of 16 

days (Fisher et al. 2006; Fisher and Mustard 2007). Recent studies (Descals et al., 2020; 

Lange et al., 2017; Jonsson et al., 2018; Vrieling et al., 2018) have also demonstrated 

the potential of Sentinel-2 for vegetation phenology due to the improvement in spatial 

(10-60 m) and temporal resolution (<5d). In addition, the use of new sensors onboard 

unmanned aerial vehicles (UAVs) to monitor LSP is continually increasing. The use of 

these remote sensing tools for vegetation monitoring, in combination with other sensors 

with greater spatial and temporal coverage, would bring new opportunities to assess 

satellite LSP at local scale (Berra et al., 2021; D’Odorico et al., 2020), leading to greater 

utility of phenological estimates. 

Long term data records from the combination of Landsat and Sentinel-2 high spatial 

resolution data are expected to contribute to a better understanding of phenology-climate 

relationship at local and regional scales. A better interpretation of shifts in the sensitivity 

of vegetation to climate change will result from the improvements in Earth observation 

data and land surface models, as well as the analysis of the interactions of temperature, 

precipitation, drought, solar radiation, and phenology with other variables such as soil 

type or soil moisture, and the coupling between variables and feedbacks. 

5.2. Conclusions 

Chapter 2 

• The phenology derived from Copernicus Global Land Service (CGLS) products 

derived from 1km VEGETATION and PROBA-V data improved other existing 
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• products including MODIS-EVI (MCD12Q2) when compared with available 

ground observations from PEP725 and USA National Phenology Network 

(NPN). The phenology derived from the Leaf Area Index (LAI) or the Fraction 

of Vegetation Cover (FCOVER) was more closely related to actual ground 

observation than the Fraction of Absorbed Photosynthetically Active Radiation 

(FAPAR) or the Normalized Difference Vegetation Index (NDVI) derived 

phenology. 

• Noise and missing data in satellite time series can introduce significant 

uncertainties in the estimation of phenological metrics. The choice of the method 

for data filtering, smoothing and gap filling can have a large impact on the 

accuracy of the phenology extracted from the reconstructed time series. 

• The LSP was found to be highly sensitive to the retrieval algorithm and 

processing chain. The retrieved phenology performed the best using LAI Version 

2 (V2) due to the improved continuity (no missing data in V2) and smoothness 

as compared to Version 1 products.  

• The threshold method agreed the best with ground measurements. The validation 

over ground observations indicated that the 30% threshold of the LAI amplitude 

was optimal for detecting Start of Season (SoS) but that a 40% threshold was 

more suitable for detecting End of Season (EoS). The logistic function and, 

specially, the moving-average approaches showed lower accuracy and higher 

bias: systematic advance in the timing of the SoS as compared to ground 

measurements of leaf out. 

• The lower performances for the EoS as compared to the SoS is associated to 

higher uncertainties of both satellite (atmospheric effects, snow and poor 

illumination conditions) and ground (the timing of leaf colouring is more 

subjective and difficult to identify than spring phenophases like leaf unfolding) 

phenology for autumn.  

• Ground observations of vegetation phenology provide a large volume of data 

across diverse ecosystems. However, there still exists an enormous challenge in 
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• quantifying its uncertainties relating the definition of the phenophases and the 

spatial distribution.  

Chapter 3 

• Near-surface digital cameras (PhenoCam) and flux measurements (FluxNet) 

have been shown to be valuable tools to interpret, evaluate and validate the 

phenology results derived from time series of LAI, as a support of traditional 

ground observations. 

• PhenoCam and FluxNet provide continuous time series and agree with the 

estimated LSP when the same method is used to extract the phenology metrics 

both to ground and satellite time series. This avoids some of the issues identified 

in Chapter 2 related to the differences in the definition of satellite phenology 

metrics and ground phenophases. It allows a more straightforward comparison 

with satellite derived phenology. 

• Thresholds and logistic function resulted the most robust methods and the 

phenological metrics extracted from CGLS LAI V2 time series were strongly 

correlated with those derived from PhenoCam and FLUXNET, showing 

generally a higher accuracy for SoS than EoS. 

• LAI V2 using percentiles 30 and 40 accurately reproduced the interannual 

variation of the SoS and EoS, and usually provided an intermediate solution 

between PhenoCam and FLUXNET estimates with differences lower than 10 

days. 

• Results validate the land surface phenology estimated from CGLS LAI V2 time 

series, as well as the robustness of PhenoCam and FLUXNET data to analyze 

vegetation phenology. 

Chapter 4 

• Phenological estimates from the LAI time series have considerable potential for 

characterizing and analyzing the response of vegetation to climate variables at 

large scale. 
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• Deciduous forest phenology in the Northern Hemisphere is very sensitive to 

shifts in temperature and precipitation. Especially important is the role of pre-

season temperature for the timing of SoS. Temperature anomalies are the main 

cause of the observed anomalies in the start of the growing season, affecting 

more than 70% of the study area. 

• The response of vegetation to temperature for the timing of EoS were complex, 

and it was generally delayed in most pixels. However, water stress associated 

with droughts during summer could advance the EoS in some regions such as 

Southern Europe. 

• The influence of drought on the timing of EoS was lower in humid and cold 

regions than drier regions, such as areas with a Mediterranean climate. The 

availability of water in Mediterranean areas was the primary limiting resource 

for the timing of EoS, where vegetation responds to drought at short time-scales. 

• Results also revealed that climate extremes events exert severe impacts on 

vegetation phenology both for the timing of SoS and EoS, and these findings 

highlight the need for developing strategies focused on mitigating future climate 

changes on vegetation and its monitoring 
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Figure A.1: Boxplots of the bias errors of satellite-based minus the near-surface estimates of SoS (a) and 

EoS (b) over the 64 PhenoCam sites (a,b) and the 16 FLUXNET towers (c,d) for the four extraction 

methods: threshold method (the 30th percentile of annual amplitude for the SoS (a, c) and the 40th 

percentile for the EoS (b, d)), the logistic-function, first derivatives and moving-average. An elongated 

boxplot indicates a larger dispersion of the average bias. 
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Figure A.2: Time series of CGLS LAI, PhenoCam GCC and FLUXNET GPP for the Harvard Forest site 

(42.5378N, -72.1715O) over the 2008-2012 period. 
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Figure A.3: Maps of average SoS (a), EoS (b) and LoS (c) derived from CGLS LAI V2 time series (1999-

2017) using the threshold method (30th percentile of annual LAI amplitude for SoS and 40th percentile for 

EoS). The maps show the estimated phenology in deciduous or mixed forest based on the annual C3S 

Global Land Cover for the year 2018 (http://maps.elie.ucl.ac.be/CCI/viewer/download.php). The 

continental areas in white are lakes, deserts, agricultural areas and evergreen forests. The phenology was 

not computed for pixels with very limited seasonality: when the annual amplitude ((max (LAI) – min 

(LAI)) was lower than the 30% of the median value in the time series (0.3 * LAI50
th). For pixels with 

multiple growing seasons, we computed the phenological metrics for the growing season having the 

highest LAI amplitude. 

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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Table A.1: Characteristics of PhenoCam  (Richardson et al., 2018) and FLUXNET (fluxnet.fluxdata.org) sites. The Start date and End date indicates the period of available 

data.  MAT is mean annual temperature and MAP is mean annual precipitation based on climate data are from WorldClim. Primary and secondary vegetation types are as 

follows: AG = agriculture; DB = deciduous broadleaf; DN = deciduous needleleaf; EB = evergreen broadleaf; EN = evergreen needleleaf; GR = grassland; MX = mixed 

vegetation (generally EN/DN, DB/EN, or DB/EB); SH = shrubs; TN = tundra (includes sedges, lichens, mosses, etc.); WL = wetland. 

 

Dataset Site 

name 

Site 

Description 

Latitude 

(°) 

Longitude 

(°) 

Elevation 

(m ASL) 

Start date End date MAT 

(°C) 

MAP 

(mm) 

Prim

ary 

Veg. 

Secon

dary 

Veg. 

IGBP 

Landc

over 

Acknowledgements 

PhenoCam acadia Acadia National 

Park, McFarland 

Hill, near Bar 

Harbor, Maine 

44.3769 -68.2608 158 15/03/2007 31/12/2015 6.5 1303 DBF EN 5 Camera images from 

Acadia National Park are 

provided courtesy of the 

National Park Service 

Air Resources Program. 

alligator

river 

Alligator River 

National 

Wildlife Refuge, 

North Carolina 

35.7879 -75.9038 1 03/05/2012 31/12/2015 16.4 1312 DBF WL 5 Research at the Alligator 

River flux site is 

supported by DOE 

NICCR (award 08-SC-

NICCR-1072), DOE-

TES (awards 11-DE-SC-

0006700 and 7090112), 

USDA Forest Service 

(award 13-JV-

11330110-081) and 

USDA-NIFA (award 

2014-67003-22068). 

arbutusl

ake 

Arbutus Lake, 

Huntington 

Wildlife Forest, 

Newcomb, New 

York 

43.9821 -74.2332 535 12/06/2008 23/08/2014 4.8 1051 DBF EN 4 Research at the 

Huntington Wildlife 

Forest sites is supported 

by the New York State 

Energy Research and 

Development Authority 

and the State University 

of New York, College of 

https://fluxnet.org/
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Environmental Science 

and Forestry. 

asa Asa, Sweden 57.1645 14.7825 180 28/10/2010 31/12/2015 6.3 639 DBF GR 5 Research at the SITES 

Asa Research Station, 

Sweden, is jointly 

supported by the 

Swedish University of 

Agricultural Science and 

the Swedish Research 

Council 

(Vetenskapsradet). 

ashburn

ham 

Ashburnham 

State Forest / 

Overlook 

Middle School, 

Ashburnham, 

Massachusetts 

42.6029 -71.926 292 13/09/2011 31/12/2015 7.1 1147 DBF EN 5   

bartlett Bartlett 

Experimental 

Forest, Bartlett, 

New Hampshire 

44.0646 -71.2881 268 04/10/2005 31/12/2015 5.5 1224 DBF EN 5 Research at the Bartlett 

Experimental Forest 

tower is supported by the 

National Science 

Foundation (grant DEB-

1114804) and the USDA 

Forest Service's 

Northern Research 

Station. 

bartlettir Bartlett 

Experimental 

Forest, Bartlett, 

New Hampshire 

44.0646 -71.2881 268 18/04/2008 31/12/2015 5.5 1224 DBF EN 5 Research at the Bartlett 

Experimental Forest 

tower is supported by the 

National Science 

Foundation (grant DEB-

1114804) and the USDA 

Forest Service's 

Northern Research 

Station. 
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bitteroot

valley 

Bitterroot 

Valley, 

Stephensville, 

Montana 

46.507 -114.091 1017 18/04/2002 31/12/2015 7.2 318 DBF   13 Camera images from the 

Bitterroot Valley are 

provided courtesy of the 

USDA Forest Service 

Air Resources 

Management Program. 

bostonc

ommon 

Boston 

Common, 

Boston, 

Massachusetts 

42.3559 -71.0641 10 06/05/2010 31/12/2015 9.8 1127 DBF   13 Research at the Boston 

Common is supported by 

an Emerson College 

Faculty Advancement 

Funds Grant. 

bostonu Boston 

University, 

Charles River 

Esplanade, 

Boston, 

Massachusetts 

42.3504 -71.1044 10 14/09/2012 31/12/2015 9.7 1121 DBF   13   

boundar

ywaters 

Boundary 

Waters Canoe 

Area 

Wilderness, 

Superior 

National Forest, 

Minnesota 

47.9467 -91.4955 519 16/12/2005 31/12/2015 2.8 719 DBF EN 5 Camera images from 

Superior National Forest 

are provided courtesy of 

the USDA Forest 

Service Air Resources 

Management Program. 

bullshoa

ls 

Bull Shoals 

Field Station, 

Missouri State 

University, 

Drury-Mincy 

Conservation 

Area, M 

36.5628 -93.0666 260 20/11/2013 31/12/2015 13.9 1084 DBF GR 4   

canadaO

A 

BERMS Old 

Aspen Site, 

Prince Albert 

National Park, 

53.6289 -106.1978 601 16/06/2011 31/12/2015 0.1 445 DBF   5 Research at the Old 

Aspen Flux Tower site is 

supported through the 

Changing Cold Regions 

Network, with funding 

from the National 
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Saskatchewan, 

Canada 

Science and Engineering 

Research Council of 

Canada (NSERC), Greg 

Neufeld/Eagle Bay 

Resort 

caryinsti

tute 

Cary Institute of 

Ecosystem 

Studies, 

Millbrook, NY 

41.7839 -73.7341 127 08/01/2001 31/12/2015 8.9 1084 DBF   4   

cedarcre

ek 

Cedar Creek 

Ecosystem 

Science Reserve 

(LTER), East 

Bethel, 

Minnesota 

45.4019 -93.2042 276 01/12/2009 10/08/2010 6.3 750 DBF   14 Research at Cedar Creek 

Ecosystem Science 

Reserve is supported by 

the National Science 

Foundation LTER 

program and the 

Minnesota Agriculture 

Experiment Station. 

columbi

amissou

ri 

University of 

Missouri, 

Ashland 

Wildlife 

Research Area, 

Missouri 

38.7441 -92.1997 232 23/01/2009 12/01/1900 12.4 974 DBF EN 4   

coweeta Coweeta 

Hydrologic 

Laboratory, 

USDA Forest 

Service, 

Southern 

Research 

Station, Otto, N 

35.0596 -83.428 680 08/04/2011 31/12/2015 12.5 1722 DBF   5 Research at the Coweeta 

flux tower is funded 

through the USDA 

Forest Service, Southern 

Research Station; USDA 

Agriculture and Food 

Research Initiative 

Foundational Program, 

award number 2012-

67019-19484; EPA 

agreement number 13-

IA-11330140-044; and 

the National Science 

Foundation, Long-Term 
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Ecological Research 

(LTER) program, award 

#DEB-0823293. 

dollysod

s 

Canaan Valley / 

Dolly Sods 

Wilderness, 

Monongahala 

National Forest, 

West Virginia 

39.0995 -79.427 1133 21/11/2003 31/12/2015 7.6 1328 DBF   4 Camera images from the 

Dolly Sods Wilderness, 

Mononghahela National 

Forest are provided 

courtesy of the USDA 

Forest Service Air 

Resources Management 

Program. 

downer

woods 

UW-Milwaukee 

Field Station, 

Downer Woods 

Natural Area, 

Milwaukee, 

Wisconsin 

43.0794 -87.8808 213 25/03/2013 31/12/2015 8.2 812 DBF   13   

dripping

springs 

Cleveland 

National Forest, 

California 

33.3 -116.8 400 06/04/2001 26/05/2009 13.2 599 DBF SH 8 Camera images from 

Cleveland National 

Forest are provided 

courtesy of the USDA 

Forest Service Air 

Resources Management 

Program. 

dukehw Hardwood 

Stand, Duke 

Forest, North 

Carolina 

35.9736 -79.1004 400 31/05/2013 31/12/2015 14.6 1166 DBF   5   

freeman

wood 

Woodland Site, 

Texas State 

University, 

Freeman Ranch, 

29.94 -97.99 254 27/06/2012 21/03/2014 19.6 862 DBF EN 8   
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San Marcos, 

Texas 

groundh

og 

Groundhog 

River, Ontario, 

Canada 

48.2174 -82.1555 350 21/10/2008 17/05/2014 1.2 761 DBF DB 5 Research at the 

Groundhog River site 

was supported by the 

Natural Sciences and 

Engineering Research 

Council (NSERC), the 

Canadian Foundation for 

Climate and 

Atmospheric Sciences 

(CFCAS), Great Lakes 

Forestry Centre (GLFC) 

of the Canadian Forest 

Service (CFS), 

harvard EMS Tower, 

Harvard Forest, 

Petersham, 

Massachusetts 

42.5378 -72.1715 340 04/04/2008 31/12/2015 6.8 1139 DBF EN 5 Research at Harvard 

Forest is partially 

supported through the 

National Science 

Foundation's LTER 

program (DEB-

1237491), and Dept. of 

Energy Office of 

Science (BER) 

harvard

barn2 

Barn Tower, 

Camera 2, 

Harvard Forest, 

Petersham, 

Massachusetts 

42.5353 -72.1899 350 03/08/2011 31/12/2015 6.7 1151 DBF EN 5 Research at Harvard 

Forest is partially 

supported through the 

National Science 

Foundation's LTER 

program (DEB-

1237491). 

harvard

blo 

Below-canopy 

camera, EMS 

Tower, Harvard 

Forest, 

42.5378 -72.1715 340 01/04/2009 31/12/2015 6.8 1139 DBF EN 5 Research at Harvard 

Forest is partially 

supported through the 

National Science 

Foundation's LTER 
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Petersham, 

Massachusetts 

program (DEB-

1237491). 

harvardl

ph 

LPH Tower, 

Harvard Forest, 

Petersham, 

Massachusetts 

42.542 -72.185 380 15/06/2010 31/12/2015 6.8 1139 DBF EN 5 Research at Harvard 

Forest is partially 

supported through the 

National Science 

Foundation's LTER 

program (DEB-

1237491). 

howland

2 

North Tower 

(Regrowing 

clearcut, ca. 

1990), Howland 

Forest, 

Howland, Maine 

45.2128 -68.7418 79 30/03/2008 31/12/2015 5.3 1058 DBF EN 5 Research at Howland 

Forest is supported by 

the Office of Science 

(BER), US Department 

of Energy, and the 

USDA Forest Service's 

Northern Research 

Station. 

hubbard

brook 

Hubbard Brook 

Experimental 

Forest, USDA 

Forest Service 

Headquarters, 

North 

Woodstock, 

43.9438 -71.701 253 16/04/2008 31/12/2015 5.6 1060 DBF   4 Research at the Hubbard 

Brook Experimental 

Forest is 

partially supported by 

the National Science 

Foundation's LTER 

program (grant DEB-

1114804) and the USDA 

Forest Service's 

Northern Research 

Station 

hubbard

brooknf

ws 

North Facing 

Watersheds, 

Hubbard Brook 

Experimental 

Forest, 

Thornton, New 

Hampshire 

42.958 -71.7762 930 24/09/2012 31/12/2015 7.4 1111 DBF   5 The Hubbard Brook 

Ecosystem Study is a 

collaborative effort at 

the Hubbard Brook 

Experimental Forest, 

which is operated and 

maintained by the 

USDA Forest Service, 
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Northern Research 

Station, Newtown 

Square, PA. 

joycekil

mer 

Joyce Kilmer 

Slickrock 

Wilderness, 

North Carolina 

35.257 -83.795 1373 06/06/2006 31/12/2015 9.2 1905 DBF   4 Camera images from the 

Joyce Kilmer Slickrock 

Wilderness are provided 

courtesy of the USDA 

Forest Service Air 

Resources Management 

Program. 

laurenti

des 

Station de 

biologie des 

Laurentides, 

University of 

Montreal, St-

Hippolyte, Queb

ec 

45.9881 -74.0055 350 16/09/2011 31/12/2015 3.7 1066 DBF   5   

mammo

thcave 

Environmental 

Learning 

Center, 

Mammoth Cave 

National Park, 

Kentucky 

37.1858 -86.1019 226 01/01/2002 31/12/2015 13.5 1312 DBF   4 Camera images from 

Mammoth Cave 

National Park are 

provided courtesy of the 

National Park Service 

Air Resources Program. 

missouri

ozarks 

University of 

Missouri, 

Ashland 

Wildlife 

Research Area, 

Missouri 

38.7441 -92.2 219 05/03/2012 31/12/2015 12.4 974 DBF   4 Research at the 

MOFLUX site is 

supported by the U.S. 

Department of Energy, 

Office of Science, Office 

of Biological and 

Environmental Research 

Program, Climate and 

Environmental Sciences 

Division. ORNL is 

managed by UT-

Battelle, LLC, for the 

U.S. Department of 
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Energy under contract 

DE-AC05-00OR22725. 

U.S. Department of 

Energy support for the 

University of Missouri 

(Grant DE-FG02-

03ER63683) is 

gratefully 

acknowledged. 

monture Lolo National 

Forest, Ovando, 

Montana 

47.0202 -113.1283 1255 08/06/2001 31/12/2015 5 407 DBF DB 12 Camera images from 

Lolo National Forest are 

provided courtesy of the 

USDA Forest Service 

Air Resources 

Management Program. 

morgan

monroe 

Morgan Monroe 

State Forest, 

Indiana 

39.3231 -86.4131 275 27/08/2008 31/12/2015 11.2 1087 DBF   4 Research at the Morgan-

Monroe Ameriflux site 

is supported by the US 

Departement of Energy, 

Office of Science, Office 

of Biological and 

Environmental Research 

throuth the Ameriflux 

Management Project 

administered by 

Lawrence Berkeley 

National Lab 

national

capital 

Park Police 

Headquarters, 

National Capital 

Parks, 

Washington DC 

38.8882 -77.0695 28 25/07/2003 31/12/2015 13.1 1020 DBF   13 Camera images from the 

National Capital are 

provided courtesy of the 

National Park Service 

Air Resources Program. 

northattl

eboroma 

North Attleboro 

High School, 

North Attleboro, 

Massachusetts 

41.9837 -71.3106 60 21/02/2012 31/12/2015 9.4 1202 DBF   14   
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oakridge

1 

Chestnut Ridge, 

Oak Ridge, 

Tennessee 

35.9311 -84.3323 371 12/10/2006 31/12/2015 13.8 1365 DBF   4 Research at Chestnut 

Ridge is funded by US 

Dept of Commerce, 

National Oceanic and 

Atmospheric 

Administration, Office 

of Atmospheric 

Research, Air Resources 

Lab, Atmospheric 

Turbulence and 

Diffusion Division as 

part of the Surface 

Energy Budget Network 

(SEBN) 

oakridge

2 

Chestnut Ridge, 

Oak Ridge, 

Tennessee 

35.9311 -84.3323 371 12/10/2006 31/12/2015 13.8 1365 DBF   4 Research at Chestnut 

Ridge is funded by US 

Dept of Commerce, 

National Oceanic and 

Atmospheric 

Administration, Office 

of Atmospheric 

Research, Air Resources 

Lab, Atmospheric 

Turbulence and 

Diffusion Division as 

part of the Surface 

Energy Budget Network 

(SEBN) 

proctor University of 

Vermont, 

Proctor Maple 

Research 

Center, 

Underhill, 

Vermont 

44.525 -72.866 403 11/09/2008 31/12/2015 5 1081 DBF   4 Supported by the 

Agricultural Experiment 

Station of the University 

of Vermont 

queens Queen's 

University 

Biological 

44.565 -76.324 126 26/05/2008 31/12/2015 6.4 887 DBF   5   
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Station, Lake 

Opinicon, 

Ontario, Canada 

reading

ma 

Austin Prep 

School, 

Reading, 

Massachusetts 

42.5304 -71.1272 100 06/03/2012 31/12/2015 9.3 1107 DBF   13   

russellsa

ge 

Russell Sage 

State Wildlife 

Management 

Area, near 

Monroe, 

Louisiana 

32.457 -91.9743 20 20/11/2013 31/12/2015 18.1 1341 DBF   5   

sanford Sanford Natural 

Area, Michigan 

State University, 

East Lansing, 

Michigan 

42.7268 -84.4645 268 20/12/2013 31/12/2015 8.1 781 DBF   13   

shalehill

sczo 

Susquehanna 

Shale Hills 

Critical Zone 

Observatory 

(CZO), 

Pennsylvania 

40.65 -77.9 310 18/04/2012 31/12/2015 9.8 980 DBF   4 Research at the Penn 

State Sone Valley Forest 

is supported by the 

National Science 

Foundation EAR 07-

25019 (C. Duffy), and 

EAR 12-39285, EAR 

13-31726 (S. Brantley) 

for the Susquehanna 

Shale Hills Critical Zone 

Observatory and the 

College of Agricultural 

Sciences, Department of 

Ecosystem Science and 

Management. 
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shenand

oah 

Pinnacles 

Viewpoint, 

Shenandoah 

National Park, 

Virginia 

38.6167 -78.35 1037 14/09/2009 31/12/2015 8.4 1222 DBF   4 Funding for the 

Shenandoah PhenoCam 

and related research has 

been provided by the 

U.S. Geological Survey 

Land Change Science 

Program (Shenandoah 

National Park 

Phenology Project) with 

logistical support from 

the National Park 

Service in collaboration 

with the University of 

Virginia Department of 

Environmental Sciences. 

shiningr

ock 

Shining Rock 

Wilderness, 

Blue Ridge 

Parkway 

National Park, 

North Carolina 

35.3902 -82.775 1500 09/08/2000 31/12/2015 9.3 1835 DBF   4 Camera images from the 

Shining Rock 

Wilderness are provided 

courtesy of the USDA 

Forest Service Air 

Resources Management 

Program. 

silaslittl

e 

Silas Little 

Experimental 

Forest, New 

Lisbon, New 

Jersey 

39.9137 -74.596 33 15/03/2011 31/12/2015 11.6 1128 DBF   5 Research at the Silas 

Little Experimental 

Forest is supported by 

the USDA Forest 

Service, Northern 

Research Station, NRS-

06, Climate, Fire, and 

Carbon Cycle Sciences. 

smokylo

ok 

Look Rock, 

Great Smoky 

National Park, 

Tennessee 

35.6325 -83.9431 801 11/02/2000 31/12/2015 12.3 1487 DBF   4 Camera images from 

Great Smoky National 

Park are provided 

courtesy of the National 

Park Service Air 

Resources Program. 
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smokyp

urchase 

Purchase Knob, 

Great Smoky 

National Park, 

Tennessee 

35.59 -83.0775 1550 19/08/2003 31/12/2015 8.7 1786 DBF GR 4 Camera images from 

Great Smoky National 

Park are provided 

courtesy of the National 

Park Service Air 

Resources Program. 

snakeriv

ermn 

Hay-Snake State 

Wildlife 

Management 

Area, near 

Woodland, 

Minnesota 

46.1206 -93.2447 1181 18/11/2009 31/12/2015 4.4 742 DBF   5   

springfi

eldma 

Academy Hill 

School, 

Springfield, 

Massachusetts 

42.1352 -72.586 56 21/02/2012 31/12/2015 9.3 1115 DBF   13   

thompso

nfarm2

N 

University of 

New 

Hampshire, 

Thompson Farm 

Observatory, 

Durham, New 

Hampshire 

43.1086 -70.9505 23 11/01/2009 31/12/2015 8.1 1108 DBF EN 5 Research at the 

Thompson Farm 

Observatory is 

supported by NH 

EPSCoR with support 

from the National 

Science Foundation's 

Research Infrastructure 

Improvement Award 

(#EPS 1101245) and by 

the NH Agricultural 

Experiment 

Station/USDA NIFA 

(Hatch project 

#1006997). 

tonzi Tonzi Ranch, 

Amador County, 

California 

38.4309 -120.9659 177 26/10/2011 31/12/2015 15.9 603 DBF GR 9 Funding for AmeriFlux 

core site data was 

provided by the U.S. 

Department of Energy's 

Office of Science. 
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turkeyp

ointdbf 

Mature 

Deciduous Site, 

Turkey Point 

Carbon Cycle 

Research 

Project, Ontario, 

Canada 

42.6353 -80.5576 211 10/02/2012 31/12/2015 8 968 DBF   4   

umichbi

ological 

University of 

Michigan 

Biological 

Station, near 

Pellston, 

Michigan 

45.5598 -84.7138 230 21/08/2008 31/12/2015 5.9 797 DBF EN 4 Primary support for the 

University of Michigan 

AmeriFlux Core Site 

(US-UMB) provided by 

the Department of 

Energy Office of 

Science.  Infrastructure 

support provided by the 

University of Michigan 

Biological Station. 

umichbi

ological

2 

FASET Tower, 

University of 

Michigan 

Biological 

Station, near 

Pellston, 

Michigan 

45.5625 -84.6976 240 24/11/2008 31/12/2015 5.9 797 DBF EN 5 Camera images from 

Ozark National Forest 

are provided courtesy of 

the USDA Forest 

Service Air Resources 

Management Program. 

upperbu

ffalo 

Upper Buffalo 

Wilderness, 

Ozark National 

Forest, Arkansas 

35.8637 -93.4932 777 02/11/2005 31/12/2015 13 1247 DBF   4   

usgsrest

on 

USGS 

Headquarters, 

Reston, Virginia 

38.9471 -77.3676 10 09/03/2012 16/06/2014 12.4 1019 DBF   13   

uwmfiel

dsta 

University of 

Wisconsin-

Milwaukee 

Field Station, 

43.3871 -88.0229 265 14/03/2013 31/12/2015 7.5 806 DBF   14 Research at the Willow 

Creek Ameriflux core 

site is provided by the 

Dept. Of Energy Office 
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Saukville, 

Wisconsin 

of Science to the ChEAS 

Cluster 

willowc

reek 

Willow Creek, 

Chequamegon-

Nicolet National 

Forest, 

Wisconsin 

45.806 -90.0791 521 25/10/2011 31/12/2015 3.9 820 DBF   4 Logistical support is 

provided by the Woods 

Hole Research Center. 

woodsh

ole 

Woods Hole 

Research 

Center, 

Falmouth, 

Massachusetts 

41.5495 -70.6432 10 14/04/2011 31/12/2015 10 1178 DBF   5   

worcest

er 

Worcester State 

University, 

Worcester, 

Massachusetts 

42.2697 -71.8428 185 13/05/2013 31/12/2015 8.3 1174 DBF NV 13   

FLUXNET CA-Oas Broadleaf tree 

communities 

with an annual 

cycle of leaf-on 

and leaf-off 

periods 

53.6289 -106.1978 600 1996 2010 0.34 428 DBF   5   

CA-

TPD 

The forest is 

approximately 

90 years old. 

Naturally 

regenerated on 

sandy terrain 

and abandoned 

agricultural land 

42.6353 -80.5577 260 2012 2017 8 1036 DBF       
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 DE-Hai Deciduous 

Broadleaf 

Forests 

51.0792 10.453 430 2000 2012 8.3 720 DBF       

 DE-Lnf Leinefelde, 

deciduous 

Broadleaf 

Forests 

51.3282 10.3678 451 2002 2012 6.9 895 DBF       

 Dk-Sor  Soroe 55.4858 11.6446 40 1996 2014 8.2 660 DBF 
   

 IT-CA3 Castel d'Asso3 42.38 12.0222 197 2011 2014 14 766 DBF       

 IT-Col Collelongo, 

deciduous 

forests 

41.8494 13.5881 1560 1996 2014 6.3 1180 DBF       

 IT-Isp Ispra ABC-IS, 

deciduoust 

forest 

45.8126 8.6336 210 2013 2014 12.2 1300 DBF       

 IT-PT1 Parco Ticino 

forest 

45.2009 9.061 60 2002 2004 12.7 984 DBF       

 JP-MBF Moshiri Birch 

Forest Site 

44.3869 142.3186   2003 2005     DBF       

 US-Ha1 The Harvard 

Forest tower is 

on land owned 

by Harvard 

University. 

42.5378 -72.1715 240 1991 2012 6.62 1071 DBF     Operation of the US-Ha1 

site is supported by the 

AmeriFlux Management 

Project with funding by 

the U.S 

 US-

MMS 

Owned by the 

Indiana 

Department of 

Natural 

Resources 

(IDNR), the 

39.3232 -86.4131 275 1999 2014 10.85 1032 DBF     AmeriFlux Management 

Project 
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Morgan Monroe 

State Forest. 

 US-Oho The Ohio Oak 

Openings site is 

located within 

the Oak 

Openings 

Preserve 

Metropark of 

northwest Ohio, 

one of the few 

remaining oak 

woodlands/sava

nna/prairie 

complexes in the 

Midwest.  

41.5545 -83.8438 230 2004 2013 10.1 849 DBF     USDA FS Southern 

Global Change Program 

(cooperative agreements 

03-CA-11330147-073 

and 04-CA-11330147-

238) 

 US-

UMB 

The UMBS site 

is located within 

a protected 

forest owned by 

the University of 

Michigan. 

45.5598 -84.7138 234 2000 2014 5.83 803 DBF       

 US-

UMd 

The UMBS 

Disturbance site 

is an artificial 

disturbance site 

that has recently 

been created as 

part of the Forest 

45.5625 -84.6975 239 2007 2014 5.83 803 DBF       

 US-

WCr 

Upland 

decduous 

broadleaf forest. 

Mainly sugar 

45.8059 -90.0799 520 1994 2014 4.02 787 DBF       
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maple, also 

basswood.  
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Figure B.1: Spatial patterns of partial correlation coefficients between pre-season temperature and (a) SoS 

and (b) EoS for 2000-2018 in the Northern Hemisphere. The color scale represents the maximum 

correlation coefficients recorded for each pixel, independently of the SPEI timescale. White indicates 

unvegetated areas and areas with no deciduous forests, and light gray indicates vegetated areas with 

nonsignificant correlations (P>0.05).  
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Figure B.2: Spatial patterns of partial correlations between presenescence accumulated precipitation and 

(a) SoS and (b) EoS for 2000-2018 in the Northern Hemisphere. The color scale represents the maximum 

correlation coefficients recorded for each pixel, independently of the SPEI timescale. White indicates 

vegetated areas and areas with no deciduous forests, and light gray indicates vegetated areas with 

nonsignificant correlations (P>0.05). 
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Figure B.3: Spatial distributions of the coefficients (color scale) for the sensitivity of (a) SOS and (b) EoS 

to pre-season SPEI. White indicates unvegetated areas and areas with no deciduous forests, and light gray 

indicates vegetated areas with nonsignificant correlations (P>0.05). 
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Table B.1: Areas with significant trends (P≤0.05) in the time series (2000-2018) for the timing of SoS 

and EoS. The slope of the regression line is also provided in the table. 

Metric 

Area 

(%) 

Positive trends 

(%) 

Negative trends 

(%) Slope (d/y) 

SoS 20.5 38.54 61.46 -0.08 

EoS 23.8 40.51 59.49 -0.1 

 

Table B.2: Percentages of pixels with positive and negative correlations (P≤0.05) between phenology and 

climatic variables, indicating whether these correlations represent an advance or delay in phenology. The 

highest correlation values (positive or negative) are shown in bold. 

Metric Variable Positive correlation Negative correlation 

    Advance (%) Delay (%) Advance (%) Delay (%) 

SoS Temperature 7.12 7.82 35.8 21.39 

Precipitation 20.87 21.43 12.36 7.71 

SPEI 8.65 8.92 6.21 3.66 

EoS Temperature 9.27 14.3 7.55 13.2 

Precipitation 15.11 19.33 13.12 15.30 

SPEI 13.2 15.58 4.25 4.79 

 

Table B.3: Percentage of pixels with significant partial correlations between anomalies of phenology, 

temperature, precipitation, and SPEI at different time lags. Bold values show the timescale in which a 

higher percentage of significant correlations were found. 

 Variable Timescale (months) SoS (%) EoS (%) 

Temperature 1 47.27 74.08 

  3 52.73 25.92 

  6 7.13 5.80 

Precipitation 1 58.69 31.13 

  3 20.77 31.23 

  6 20.55 37.64 

SPEI 1 33.12 30.22 

  3 23.73 27.05 

  6 20.99 18.20 

  12 22.16 24.53 
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