
Universitat Internacional de Catalunya
School of Architecture

Tesis doctoral

Architecture of Computational Ecosystems

Angad Warang

Aquesta tesi doctoral està subjecta a la licencia Reconeixement-

NoComercial-SenseObraDerivada 4.0 Internacional (CC BY-NC-

ND 4.0)

Esta tesis doctoral está sujeta a la licencia Reconocimiento-NoComercial-SinObraDerivada 4.0

Internacional (CC BY-NC-ND 4.0)

This doctoral thesis is licensed under the Attribution-NonCommercial-NoDerivatives 4.0

International (CC BY-NC-ND 4.0)

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ca
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ca
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ca
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Architecture of Computational Ecosystems

| The nature of the problem I|

Thesis title: Architecture of Computational Ecosystems

Author’s name: Angad Warang

DOCTORAL THESIS
Universitat Internacional de Catalunya, 2021

Supervisors:

Ddr. Alberto T. Estévez
Dr. Pablo Baquero

Doctoral programme in Architecture

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

 |II

In the memory of John Horton Conway (1937 - 2020),

who died from COVID-19 complications.

May his ‘Game of Life’ sustain an infinite runtime

and continue to inspire us…

Architecture of Computational Ecosystems

| The nature of the problem III|

The real problem of humanity is the following:

We have

Paleolithic emotions,

Medieval institutions,

and God-like technology

-Edward O. Wilson (1929)

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

 |IV

This page intentionally left blank

Architecture of Computational Ecosystems

| The nature of the problem V|

Abstract

Industry 4.0 has rapidly and significantly transformed the Architecture, Engineering,

and Construction (AEC) industry globally since the early 2000s. The allographic

architectural profession until the late 1990s has seen a paradigm shift towards a more

autographic practice after the inclusion of the algorithm in the otherwise traditional

construction of the built form through design. The rise of the algorithm in the AEC

industry comes with robust infrastructural support from the unprecedented

emergence of computational design and digital fabrication. Judging by the rate of

technological progress, it is highly likely that computational design would become

more autonomous and digital fabrication would become more data-driven. Due to

the increased probability in the ubiquity of the algorithm, design (as a tool for

rationalizing form, space and enclosure and creating construction documents) stands

on the threshold of becoming redundant. This research and thesis are based on the

assumption that design would be replaced by a communicational logic between the

built form and the algorithm.

The research proposes to architect this relationship between the built form and the

algorithm by theorizing, generating, taxonomizing, and prototyping a dynamic,

reciprocal, symbiotic feedback loop in the form of Computational Ecosystems (CE).

Thus, firstly the research aims to establish strong theory for the CE by installing a

semantic syntax. Secondly, the research aims to generate autonomous, autopoietic,

context-aware feedback loops as CE, based on the computational framework of

Cellular Automata (CA). Eventually, the research intends to demonstrate how digital

fabrication constraints could also be used as fitness conditions to generate,

taxonomize and prototype digitally created built forms in the physical world by

conducting empirical evaluations with the use of additive manufacturing. The

research also postulates that just like its organic counterpart, a CE would be inhabited

by biotic and abiotic agents or elements (denoted as ∈ in this thesis) which are

governed by organizing principles or economies (denoted as Ψ in this thesis).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

 |VI

In order to achieve the objectives, the research has implemented a methodology that

applies the semantic syntax into performing operational objectives for four distinct

types of CE based on the cardinalities of their constituent participants (i.e. ∈ and Ψ

parameters), forming the canonical taxonomies of CE. These four distinct taxa, also

called as procedural sequences would be SESE (with singular ∈ and Ψ parameters),

MESE (with multiple ∈ parameters but a singular Ψ parameter), SEME (with singular

∈ parameter but multiple Ψ parameters), and MEME (with multiple ∈ and Ψ

parameters). To accomplish these operational objectives the research methodology

involves implementing three Primary Objectives – Case Studies, Simulations, and

Prototyping to all the four procedural sequences (i.e., SESE, MESE, SEME, and

MEME).

The results generated from the four procedural sequences have then been analyzed

independently and comparatively, to identify patterns and anomalies. These analyses

have then been further generalized into determining canonical modus operandi that

can be used in generating, taxonomizing, and prototyping a wide range of CE in the

future. Furthermore, the conclusions of the research provide a roadmap for possible

future research trajectories for the development and implementation of the

Architecture of Computational Ecosystems.

Architecture of Computational Ecosystems

| The nature of the problem VII|

Abstract (in Spanish)

Industry 4.0 ha transformado rápida y significativamente la industria de la

Arquitectura, la ingeniería, y la construcción (AEC siglas en ingles) a nivel mundial

desde principios del año 2000. El ejercicio profesional de la arquitectura alográfica

hasta finales de la última década de los años 1990 ha visto un cambio de paradigma

hacia una práctica más autográfica después de la inclusión del algoritmo en el

desarrollo tradicional de la forma construida a través de los medios del diseño. Este

advenimiento del algoritmo en la industria AEC viene con un sólido soporte de

infraestructura del aumento sin precedentes del diseño computacional y la

fabricación digital. Al observar la tasa de progreso tecnológico, es muy probable que

el diseño computacional se vuelva más autónomo y la fabricación digital se vuelva

más impulsada por los datos. Debido a esta mayor probabilidad en la ubicuidad del

algoritmo, el diseño como herramienta para la racionalización de la forma, el espacio

y el cerramiento y el diseño como herramienta para la creación de un documento de

construcción se encuentra en el umbral de volverse redundante. La investigación y

esta tesis se basan en el supuesto de que el diseño sería reemplazado por una lógica

comunicacional entre la forma construida y el algoritmo.

La investigación propone diseñar esta nueva relación (o lógica de comunicación)

entre la forma construida y el algoritmo mediante la teorización, generación,

taxonomización y prototipado de un bucle de retroalimentación simbiótico,

recíproco y dinámico en la forma de Ecosistemas Computacionales (CE siglas en

inglés). Por lo tanto, en primer lugar, la investigación tiene como objetivo establecer

una base teórica sólida para la CE mediante la instalación de una sintaxis semántica.

En segundo lugar, la investigación tiene como objetivo generar ciclos de

retroalimentación autónomos, autopoyéticos y sensibles al contexto como CE,

basados en el marco computacional de Cellular Automata (CA siglas en inglés).

Eventualmente, la investigación tiene la intención de demostrar cómo las

restricciones de fabricación digital también podrían usarse como condiciones de

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

 |VIII

aptitud para generar, taxonomizar y prototipar formas construidas creadas

digitalmente en el mundo físico mediante la realización de evaluaciones empíricas

con el uso de fabricación aditiva. Al establecer la teoría, la investigación también

postula que, al igual que su contraparte orgánica, una CE estaría habitada por agentes

o elementos bióticos y abióticos (denotados como ∈ en esta tesis) que se rigen por

principios organizativos o economías (denotados como Ψ en esta tesis).

Para lograr los objetivos, la investigación ha implementado una metodología que

aplica la sintaxis semántica en la realización de objetivos operativos para cuatro tipos

distintos de CE basados en las cardinalidades de sus participantes constituyentes (es

decir, los parámetros ∈ y Ψ), formando las taxonomías canónicas de CE. Estos cuatro

taxones distintos, también llamados como secuencias procedimentales, serían SESE

(con parámetros ∈ y Ψ singulares), MESE (con parámetros ∈ múltiples pero un

parámetro Ψ singular), SEME (con parámetro ∈ singular pero parámetros Ψ

múltiples) y MEME (con múltiples parámetros ∈ y Ψ). Para lograr estos objetivos

operativos, la metodología de investigación implica la implementación de tres

objetivos principales: estudios de casos, simulaciones y creación de prototipos para

las cuatro secuencias de procedimientos (es decir, SESE, MESE, SEME y MEME).

Los resultados generados a partir de las cuatro secuencias de procedimientos se

analizaron de forma independiente y comparativa para identificar patrones y

anomalías. Luego, estos análisis se han generalizado aún más para determinar el

modus operandi canónico que se puede usar para generar, taxonomizar y crear

prototipos de una amplia gama de CE en el futuro. Además, las conclusiones de la

investigación proporcionan una hoja de ruta para posibles trayectorias futuras de

investigación para el desarrollo e implementación de la Arquitectura de Ecosistemas

Computacionales.

Architecture of Computational Ecosystems

| The nature of the problem IX|

Acknowledgements

To constantly question one’s immediate surroundings is the most infinite source of

motivation one could have in their quest for information, knowledge, and (maybe

even) wisdom. This internal motivation driven by an obsessive curiosity that I have

experienced throughout my life would probably have remained unaccomplished if

not for the inspiration and encouragement of my research supervisor and director,

Ddr. Prof. Alberto T. Estévez. I thank him for providing me with an infinite amount of

liberty over these past five years within research and academia. I also want to thank

him for providing me with this opportunity without looking at my lack of experience

in the subject, and purely based on my skills and expertise. However, with all this

freedom and opportunity, and lack of experience in design research it would have

been immensely overwhelming if not for the constant source of information and

course correction (wherever necessary) from my friend, research supervisor, and co-

director Dr. Prof. Pablo Baquero. I thank him for his unfaltering knowledge (in any

discipline whatsoever) and persistent guidance through the course of this research.

I sincerely thank Dr. Prof. Dennis Dollens and Prof. Karl Chu for their inspiration in the

inception of this research. I also thank all my colleagues of iBAG, especially Prof.

Dragos Brescan, Prof. Mohammad Maksoud, Prof. Ariel Valenzuela, and Dr. Prof.

Effimia Giannopoulou for the necessary ingredient of creative levity that can only

come from collaboration in the otherwise solemn environment of academia.

Throughout this research, I have collaborated across academia and industry. I express

my appreciation to all the faculty and staff of academic institutions - RIT, Kottayam,

India; IES College of Architecture, Mumbai, India; CEPT, Ahmedabad, India for their

courage to include experimental research in their curricula. I also thank the team of

Studio RAP, especially Ar. Lucas Ter Hall, Ar. Wessel van Beerendonk, Ar. Olav van der

Doorn, and Laura van Dixhoorn-Beijsens for their sincere collaboration despite the

COVID-19 restrictions.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

 |X

A special thanks to my friends Ar. Sreekanth Sasidharan, Ar. Shailendra Patil, Dastagir

Shaikh, Ar. Amit Tarte, Ar. Apoorva Kulkarni, Ar. Nivedita Mehrotra, Ar. Tejashree

Lakras, and Ar. Abhishek Sorampuri for their unwavering support while organizing

and conducting academic workshops that could offer a platform for the evaluation of

this research. I also thank the student participants at all the academic institutions -

RIT, Kottayam, India; IES College of Architecture, Mumbai, India; CEPT, Ahmedabad,

and the constant support from the students of the Biodigital Architecture Masters

from every academic year.

Granted the intellectual support from all the aforementioned people and agencies,

the research had a strong infrastructural foundation. However, the research was not

funded by any organization or institution. Thus, I suffered repetitive dependency on

personal financial commitments while trying to manage a research that demanded

unperturbed time and energy. Although it was difficult, my extended family and

friends in India have supported me financially throughout the course of this research.

I cannot be more thankful for their kindness, and this research and its impact are

forever in their debt.

During these past four years, I got married, immigrated to a foreign country and

switched careers (from practicing architect to design academician). Throughout this

time, I have truly realized the importance of family and home. I thus express

sincerest, heartfelt gratitude towards my wife Ar. Vaishali Rajurkar , my mother (aai)

Mrs. Niyanta Warang, and my father (babuji) Mr. Ashok Warang for bearing with all

my shenanigans and wordlessly expressing their unshakable trust in me.

Architecture of Computational Ecosystems

| The nature of the problem XI|

Contents

ABSTRACT .. V

ABSTRACT (IN SPANISH) .. VII

ACKNOWLEDGEMENTS .. IX

INTRODUCTION AND THE STATE OF THE ART.. 1

1|ON THE RELEVANCE OF COMPUTATIONAL ECOSYSTEMS ... 2

1.1 The nature of the problem .. 2

1.1.1 The built form .. 3

1.1.2 The built form and the design ... 4

1.1.3 The built form, the design, and the algorithm .. 8

1.1.4 The built form and the algorithm .. 12

1.2 The Research – What are computational ecosystems .. 15

1.2.1 Objectives for Computational Ecosystems .. 16

1.2.2 Methodological framework for Computational Ecosystems ... 19

1.2.3 Expected projections for Computational Ecosystems ... 25

1.2.4 The relevance of Computational Ecosystems .. 29

1.3 Structure .. 30

1.3.1 Structure of the Research .. 31

1.3.2 Structure of the Thesis ... 33

THEORY .. 35

2|ON THEORETICAL ASSUMPTIONS FOR COMPUTATIONAL ECOSYSTEMS .. 36

2.1 Establishing the semantics .. 36

2.1.1 About Ecosystems ... 39

2.1.2 About Computation .. 42

2.1.3 About Computational Ecosystems .. 46

2.1.4 About the Implementation of Computational Ecosystems .. 59

2.2 Applicability of the semantics .. 65

2.2.1 Applicability in biology, epidemiology and behavioral sciences .. 66

2.2.2 Applicability in visual arts and design ... 69

2.3 Cellular Automata as Computational Ecosystem .. 72

2.3.1 Cellular Automata – John Von Neumann model .. 74

2.3.2 Cellular Automata – John Conway model... 82

2.3.3 Cellular Automata – Stephen Wolfram model ... 88

2.3.4 Cellular Automata – applications in the AEC Industry .. 93

2.4 Theoretical Assumptions for Computational Ecosystems.. 98

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

 |XII

OBJECTIVES ... 103

3| ON THE SEMANTIC SYNTAX FOR THE COMPUTATIONAL ECOSYSTEMS. ..104

3.1 Lexical Semantics from theoretical assumptions ...104

3.1.1 Element ..106

3.1.2 Economy ...109

3.1.3 Ecosystem...112

3.2 Establishing Logical Semantics for operational objectives ..115

3.2.1 General Assumptions for all Procedural Sequences (CESESE, CEMESE, CESEME, and CEMEME)118

3.2.2 Single Element Single Economy Ecosystem (CESESE) ...121

3.2.3 Multi Element Single Economy Ecosystem (CEMESE) ...123

3.2.4 Single Element Multi Economy Ecosystem (CESEME) ...125

3.2.5 Multi Element Multi Economy Ecosystem (CEMEME)...127

3.3 Semantic Syntax for the Procedural Sequences ...129

METHODOLOGY .. 131

4| ON THE PROCEDURAL SEQUENCES FOR THE COMPUTATIONAL ECOSYSTEMS ..132

4.1 Primary objectives through Procedural sequences ..132

4.2 Single Element Single Economy Ecosystem (CESESE) ..135

4.2.1 Case Studies ..136

4.2.2 Simulations ..142

4.2.3 Prototyping..150

4.2.4 CEcube-tower ..158

4.3 Multiple Elements Single Economy Ecosystem (CEMESE) ...160

4.3.1 Case Studies ..161

4.3.2 Simulations ..168

4.3.3 Prototyping..175

4.3.4 CEMESE ...184

4.4 Single Element Multiple Economies Ecosystem (CESEME) ..186

4.4.1 Case Studies ..187

4.4.2 Simulations ..195

4.4.3 Prototyping..204

4.4.4 CESEME ...210

4.5 Multi Elements Multi Economies Ecosystem (CEMEME)..211

4.5.1 Case Studies ..212

4.5.2 Simulations ..219

4.5.3 Prototyping..228

4.5.4 CEMEME..235

4.6 Procedural sequences for Computational Ecosystems ...236

RESULTS .. 238

Architecture of Computational Ecosystems

| The nature of the problem XIII|

5| ON THE CONSEQUENCES OF THE COMPUTATIONAL ECOSYSTEMS .. 239

5.1 Results of CESESE .. 240

5.2 Results of CEMESE ... 243

5.3 Results of CESEME ... 246

5.4 Results of CEMEME .. 249

5.5 Conclusive thoughts on the results of all the taxa ... 252

OBSERVATIONS ... 254

6| ON THE INVESTIGATIVE ANALYSIS OF THE COMPUTATIONAL ECOSYSTEMS .. 255

6.1 Effects of distinct ∈, Ψ, and N .. 256

6.2 Examples of possible distinct ∈, Ψ, and N for CE ... 258

6.3 Effects of distinct Initial States .. 260

6.4 Examples of possible distinct Initial States for CE.. 262

6.5 The inferences of the analysis .. 264

CONCLUSIONS... 266

7| ON THE PROSPECTIVE PROJECTIONS FOR THE COMPUTATIONAL ECOSYSTEMS ... 267

7.1 Probable research trajectories in Algorithm-aided-design .. 268

7.2 Probable research trajectories in Additive Manufacturing ... 272

7.3 Probable research trajectories in Pedagogy .. 278

7.4 Probable research trajectories in Software Development ... 284

7.5 Concluding Statements .. 287

7.5 Concluding Statements (in Spanish) .. 289

8| BIBLIOGRAPHY .. 291

8.1 References.. 291

8.2 Software and Hardware references ... 302

9| APPENDIX .. 304

9.1 Grasshopper definitions – CESESE .. 304

9.2 Grasshopper definitions – CEMESE ... 306

9.3 Grasshopper definitions – CESEME ... 308

9.4 Grasshopper definitions – CEMEME .. 310

Architecture of Computational Ecosystems

| The nature of the problem 1|

Introduction
and

The State of the Art

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |2

1|On the relevance of computational ecosystems

1.1 The nature of the problem

In a nutshell, the doctoral research seeks to theorize, prototype and taxonomize a

novel design automation technique termed as Computational Ecosystems.

The research derives its semantics and functionalities of Computational Ecosystems

from the computational logic of cellular automata. The research also relies on

behavioral simulations generated by employing agent-based systems while operating

within the design and programming environments of Rhinoceros, Grasshopper 3D,

and several of its plugins (both inbuilt and third-party).

Although, the concept of cellular automata forms the theoretical backbone of this

research, there are a very many areas of pure and applied sciences that the

theoretical foundation borrows from. It is therefore critical to understand the

structural framework of the research, pertaining to the hypothesis, objectives,

methodology, and expected outcome before diving into the specifics of the literature.

It is also necessary to understand the relevance of the research in the age of the 4th

Industrial revolution while considering technological advancements in relevant

domains and industries. And finally, it is important to establish the projections of the

research, so as to understand an overall research trajectory that has been undertaken

in the span of the past four years (i.e., the research duration).

Apart from elaborating on the abstract and laying the foundation for the theoretical

background, the concluding part of this chapter also elaborates the structure of this

Research and the structure of the subsequent Thesis.

Architecture of Computational Ecosystems

| The nature of the problem 3|

1.1.1 The built form

The earliest traces of built forms, which could now be termed as architecture, belong

to the Neolithic period. Although all the dwellings of this era are ruins and remains

that have been through thorough archaeological scrutiny, much of the knowledge

that they provide of the era is of a speculative nature. However, one can deduce basic

information of the purpose, materiality and organization of these built forms. The

structures, which were built mostly for a residential purpose, built with materials

from the surroundings (roughly within walking distance) and with the knowledge and

technology that was suitable to the era and early human development, have strong

traces of a civilization that had quite recently adopted a sedentary lifestyle.

The built forms of this era possess subtle evidences of a civilization on the cusp of a

phase transition. Their previous nomadic lifestyle from the Paleolithic and Mesolithic

ages had resulted in sufficient wisdom on pattern recognition, letting the Neolithic

humans gain rudimentary control over survival. The traditional hunter-gatherer

settlements, which were now challenged with growing abundance of food, had an

intuitive urge to build shelters. Shelters not just for themselves, but for their surplus

food, their young offspring, and their newly acquired belongings such as their tools

and containers. Although the essential purpose of the built form was to house the

Neolithic human, the primary reason of building was protection. Protection from the

weather, from beasts, from pests and from other humans.

A recent study in political economy suggests that the Neolithic economic revolution

of agriculture could have been a consequence of private land ownership and not the

other way around as was initially assumed and recorded (Bowles and Choi, 2019)1.

This means, that even in the Neolithic age, built forms were not mere shelters serving

an objective purpose, but were a symbol of power and prosperity.

1 Bowles, S. & Choi, J-K. (2019). The Neolithic Agricultural Revolution and the Origins of Private
Property. Journal of Political Economy, 127(5), pp. 2186-2228.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |4

1.1.2 The built form and the design

Cave paintings stand a strong evidence to the fact that language and documentation

predates architecture and construction. However undeveloped the cognitive skills of

the early human brain were, the perceptive skills were surely quite highly developed

for the time. For example, the paleolithic cave paintings of Lascaux, France (dating

back to 15,000 - 17,000 BCE) contain nearly 6,000 figures of animals, humans, and

abstract signs. One of the figures, famously known as ‘The crossed Bison’, as shown

in figure 1.1, has a peculiar form of perspective illusion which has been considered

quite an advanced technique for the time.

Figure 1.1 – The cross Bison of Lascaux – part of the paleolithic cave paintings (15,000 – 17,000 BCE)

(provenance – Marcel Ravidat, at Lascaux, France in 1940). Photo by Paula Kuitenbrouwer (2019).

Source: https://mindfuldrawing.com/2019/08/07/crossed-bison-of-lascaux-art-study-through-

drawing/

Architecture of Computational Ecosystems

| The nature of the problem 5|

Quite evidently, the Neanderthals were equipped with superior drawing techniques

by the time they started building protective forms. However, the earliest traces of

documented architectural drawings occur in excavated statues made during 2,200

BCE from the regions of ancient Egypt and Mesopotamia, roughly 12 millennia after

the Lascaux cave paintings. As shown in figure 1.2, the statue of emperor Gudea, ruler

of Lagash holds an architectural plan on his lap. The plan depicts construction data

for the temple of Ninĝirsu (ancient Mesopotamian god of hunting, law, scribes, and

war), which was commissioned and built under the rule of emperor Gudea.

 (a) (b)

Figure 1.2 – (a) Diorite statue of Gudea (2120 BCE) (provenance – Ernest de Sarzec, at Tell Telloh,

Iraq in 1924) – part of the statues of Gudea collection at Musée du Louvre. Photo by Daryl Mitchell

(2014).

Source:https://en.wikipedia.org/wiki/Statues_of_Gudea#/media/File:Gudea,_statue_d%C3%A9di%C

3%A9e_au_dieu_Ningirsu_(Louvre,_AO_2).jpg (b) image of the architectural plan of the temple of

Ninĝirsu on the lap of Gudea - Diorite statue of Gudea (2120 BCE) (provenance – Ernest de Sarzec, at

Tell Telloh, Iraq in 1924) – part of the statues of Gudea collection at Musée du Louvre. Photo by

Daryl Mitchell (2014). Source: https://www.reddit.com/r/ArtefactPorn/comments/crhobh

/statue_of_gudea_of_lagash_with_architectural_plan/

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |6

As the field of archeology would evolve in the future and emerging technological

upgradation and equipment might shed more clarity in this field, it later might be

discovered that the act of drawing architecture indeed precedes 2,200 BCE by

centuries. However, it is rather curious to note that while the ancient humans were

proficient in the technology of building and adept at drawing, it took them several

centuries to develop a graphical documentation for their built forms. Needless to say,

it finally did happen and the built form and the design documentation formed an

amalgamated process of architectural design and gradually metamorphosed into the

entire architecture, engineering and construction (AEC) industry.

When Marcus Vitruvius Pollio wrote ‘de architectura’ for his patron, the emperor

Caesar Augustus between 30 and 15 BCE, it was a manuscript written as a guide for

building projects. Being the oldest surviving treatise on the subject of the theory of

architecture, ‘de architectura’ has become the first book on architectural theory that

has been apotheosized by architects from the medieval era to the modern digital age.

Leon Battista Alberti, later developed Vitruvius’s theory into his own ideas on

architectural theory written in the treatise ‘de re aedificatoria’ between 1443 and

1452 CE. According to Mario Carpo (2011)2, “Alberti’s invention of architectural

design was crucial in shaping architectural modernity.” Alberti was also the first in

defining perspective images as vestiges of light rays on a surface thereby laying the

ground work for architectural documentation being a key aspect in constructing the

built form. Fueled by the humanist movement at the peak of the renaissance era,

Alberti claimed that architects should not be makers but designers. As a

consequence, this helped architecture to transition from its “autographic status as a

craft (conceived and made my artisan builders) into its modern allographic definition

as an art (designed by one to be constructed by others).”3

2 Carpo M (2011). The Alphabet and the Algorithm. The MIT Press, pp. 10-19.
3 Ibidem

Architecture of Computational Ecosystems

| The nature of the problem 7|

Initiated by Alberti’s vision, the rudimentary architectural documentation of the time

soon translated into notational systems of scaled architectural drawings and

orthographic projections, and the built form and the design were soon fused into a

unified process with two equally important reciprocals.

At the turn of the 19th century, and with the arrival of the first industrial revolution,

the built form and the design had equally benefitted. The built form saw a

revolutionary transformation in the construction practices and technology brought

in by the new industrially produced material. The iron industry, glass manufacturing,

cement and most notably the groundbreaking innovations in the concrete industry,

pushed the built form to become taller and bigger. The design on the other hand,

benefitted largely from the industrial innovations in the printing industry. While, the

architectural drawings were previously being made manually, the continuous

printing press made sure that drawings could now be printed.

With its technological contributions to several industries, the first industrial

revolution also triggered the practices of mechanization and mass production of

identical objects. The built form and the design both were immensely impacted by

this new phenomenon. With cheaply produced identical construction elements such

as doors, windows, and staircases, the built form became more monotonous and

functional. With the rising issues of housing the ever-increasing workforce,

“functionality took over as the leading standard and the principle ontology” (Jencks,

1984)4. As a corollary, the printing press assisted the design by becoming an enabler

in copies of drawings. It became more convenient for the architect to delegate all the

different stages and aspects of a conventional construction project to several

consultants who would then provide expertise within their scope of work.

Thus, the built form and the design were faster and more efficient in executing a

construction project to house the modern industrious human and the industry.

4 Jencks C (1984). The language of post-modern architecture. Rizzoli International Publications.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |8

1.1.3 The built form, the design, and the algorithm

The second industrial revolution was besmirched by the two world wars, nonetheless

the built form and the design thrived and flourished despite the chaos and

destruction. Increase in productivity, improved living standards, rapid urbanization

within the industrialized countries and improved public health and sanitization

triggered large scale construction projects. With such a high demand, the role of the

architect as a designer became more prominent and mainstream as the technology

enabled the built form and the design to be more independent of its location.

Building materials were no longer location specific, as international logistics were

more efficient and sped up. “The transportation revolution that occurred between

1820 and 1850” (O’Rourke et al, 2002)5 triggered globalization and the global

uniformity and availability of construction materials and techniques. Although

supported by imperialism and colonization, the built form was transcendental. The

design however, had not achieved this feat until the arrival of computers and the

digital revolution or the third industrial revolution. According to Carpo (2011)6,

“architectural design is a purely informational operation, its processes are defined by

a specific range of cultural and media technologies.” The invention of the Internet

and the rise of home computers in 1970s and 80s that triggered the conversion of

the analog to the digital was the cultural and media revolution that architectural

design needed. Design could now be done remotely while the construction was

executed and monitored on-site. Although the architect was physically more

detached from the site, the design could still be as involved as before. At the turn of

the millennium with the internet and the home computer becoming mainstream

throughout the world, an architect could now be globally present for their designs.

The built form and the design were equally transcendental and global.

5 O’ Rourke K.H. and Williamson, J. (2002). When did globalization begin? European Review of
Economic History, 6(1), pp. 23-50.
6 Carpo M (2011). The Alphabet and the Algorithm. The MIT Press, pp. 10-19.

Architecture of Computational Ecosystems

| The nature of the problem 9|

The AEC industry has since caught up with the global socio-economic impact of the

digital revolution in the form of out-sourcing. While the built form is constructed

sustainably by reducing the embodied energy, the design is generated by

collaborations of several consultants around the globe at every stage before, during

and after construction. With the insurgence of building information modelling (BIM),

a construction project becomes more reliant on the project management consultant

(PMC), than the architect. Furthermore, the AEC industry has seen the rise of

paperless construction projects, as shown in figure 1.3, where a contractor

implements state-of-the-art gadgets and software applications (apps) to execute a

project without printing the drawings.

Figure 1.3 – iOS application Autodesk PlanGrid in use. Source: https://www.plangrid.com/nl/

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |10

A contractor would have the design documentation directly delivered on an iPad

application as the stage-wise delivery of drawings in whichever form the construction

project dictates. The PMC can then have a much bigger control on the execution of

the project and update the architect about all the stages of different parts of the

projects simultaneously and dynamically. This new dynamic relationship between the

built form and the design has been absolutely unprecedented throughout the history

of construction. But the relationship is possible and strongly reliant on the existence

of a third element – the algorithm.

Triggered by the ‘entscheidungsproblem’ (Hilbert and Ackermann, 1928)7 the mid-

20th century saw a paradigm shift in mathematics and computation contributed by

Alan Turing and John Von Neumann. The idea of modern computation and the

thinking machine, which would later develop into artificial intelligence also has its

conceptual roots in the works published during this era. Aided by significant

technological revolutions of the time by major tech-organizations, the computer had

become more personal, mobile, robust and affordable in the late 90s. At the turn of

the millennium, the computer was not just mainstream, but was either directly or

indirectly responsible for all major social, economic and political reform. However, it

did not remain as a personal appliance or gadget, that would have a preset,

predetermined mode of operation and use. The computer provided users with the

freedom of creating their own computation, that would consequently create new

tools and develop new advanced technologies. Moreover, the computer gave

humanity a new procedural way of solving problems by means of algorithms.

As history dictates, the AEC industry took some time to incorporate the algorithm in

its workflow. But, unlike their predecessors who took millennia or centuries to

upgrade and update, the modern digital architect took a mere couple of decades.

7 Hilbert, D. & Ackermann, W. (1928). Principles of Mathematical Logic. Providence, Rhode Island,
USA: AMS Chelsea Publishing, pp. 113-134.

Architecture of Computational Ecosystems

| The nature of the problem 11|

When David Rutten created the program ‘Explicit History’ in 2007, it was used as a

digital interface to create generative algorithms within the environment of CAD 3D

modelling software Rhinoceros 3D. Since its arrival and subsequent evolution into

‘Grasshopper’ the program has become endemic to young architects and designers

with limited or no prior knowledge or experience of programming, but willing to

design with the aid of algorithms. Grasshopper, Autodesk Dynamo,

GenerativeComponents and Archimatix serve as visual programming languages that

help architects design their own bespoke, discreet design programs.

Although, the algorithm was in its infancy and couldn’t make a substantial

contribution to the AEC industry in the early 2000s, the 2010s have seen a

considerable rise in architecture realized by the algorithm alone. This sudden surge

in the use of algorithms in the last two decades has also been sufficiently supported

by the fourth industrial revolution or industry 4.0

Industry 4.0 is essentially epitomized by non-standardization and decentralized

production of objects. The idea of identical repetition of products that marked the

last century, has transformed into the idea of mass customization. The production

industry has seen a return of bespoke products in the market. However, these

products are now produced digitally and not manually. Aided by novel digital

fabrication techniques from additive manufacturing to robotic building, the architect

has been quite successful in hacking into industrial equipment by means of the

algorithm. Design algorithms are already being employed by research groups,

universities and architectural practices to analyze, model and build.

It would now be prudent to summarize the journey of the architect - If the advent of

the built form equipped the Neanderthals with protection and power, and the

addition of the design made the architect truly transcendental, the rise of the

algorithm has certainly transformed architecture back from an allographic profession

into an autographic craft. Rather than the chief designer, an architect is more of a

digital craftsman now.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |12

1.1.4 The built form and the algorithm

After industry 4.0, design research as a self-sustaining industry has evolved

considerably by creating strong collaborative workflows between education,

academic research and practice-based research. A very many design researchers

have been exploring and experimenting the dynamic and yet discrete link that the

algorithm forms between the built form and the design. But, because the existing

relationship between the built form and design had emerged as a corollary to the

contemporary art movements which were prevalent during the third industrial

revolution, a lot of above-mentioned design research had a somewhat restricted,

rational, functionalistic approach to them.

While criticizing on architectural design approach at the beginning of the industry 4.0,

Neri Oxman quoted in her seminal doctoral research thesis that “the institutionalized

separation between form, structure, and material, is deeply embedded in the

modernist design theory. Paralleled by a methodological partitioning between

modelling, analysis and fabrication, it has resulted in geometric-driven form

generation in the early 21st century architecture and such prioritization of form over

material has been carried into the development and design logic of CAD” (Oxman,

2010).8 This partitioning is quite evident in BIM. “BIM has led organizations towards

a more integrated process of design, procurement, construction and facilities

management within a single contract delivery document and information hub,

thereby revolutionizing the construction industry” (Allen and Shakantu, 2016)9. But in

the process, the architect has also been categorized into design architect & delivery

architect, where the latter has gained higher prominence and economic relevance.

8 Oxman, N. (2010). Material-based Design Computation. PhD Thesis. Massachuetts institute of
Technology.
9 Allen, C. and Shakantu, W. (2016). The BIM revolution: a literature review on rethinking the
business of construction. In: 11th International Conference on Urban Regeneration and
Sustainability, Bilbao: WITconferences pp. 919-930 Available at:
https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/204/35716
[Accessed 17 May 2019].

Architecture of Computational Ecosystems

| The nature of the problem 13|

However, with the aid of computational design and digital fabrication, to a certain

extent, designers have been successful in creating algorithms which can design built

forms by simultaneously performing modelling, analysis and fabrication. Following

her afore mentioned critique on traditional architectural design, with extensive

research in the field of Material-based Design Computation, Oxman has paved the

way for computationally-enabled form-finding procedures. Many research projects

that emphasize on the synthesis of such algorithms, have gained prominence not just

in the field of education and academic research, but also in practice-based research.

Figure 1.4 illustrates the computational workflow adopted during the modelling,

analysis and fabrication of a research building - Urbach Tower designed and built by

the Institute for Computational Design and Construction (ICD) at the Universitat

Stuttgart, Germany. The figure shows how an algorithm could generate a streamlined

workflow that embeds structural analysis (deformation), Material modelling (CLT

utilization) and Fabrication logic (connection angles).

Figure 1.4 – Optimization workflow – Urbach tower – ICD/ITKE, Stuttgart, Germany. Source:

https://www.icd.uni-stuttgart.de/img/wp-content/gallery/urbach_process_icd-itke/URBACH-

TURM_-process_-03.jpg?__scale=w:1000,h:1000,q:100,t:3

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |14

The Urbach Tower (Wood et al, 2020)10 and many such research projects are

testimony to the fact that an algorithm could be used to generate, maintain,

optimize, and execute a design process while transcending the methodical separation

in the workflow. It is also quite clear from the aforementioned examples, that

algorithm has a unique position in the existing ecosystem of the built form and

design. Thus, it could be astute to make the following assumptions:

• As digital fabrication becomes more data driven, the role of design in the AEC

industry as a mode of generating the construction document becomes more

redundant. For example, a robot doesn’t require the plan, section and

elevation to construct a building, it merely needs the tool-path generated

over the model of the building to conduct the fabrication.

• On the other hand, as computational design becomes more autonomous, the

role of design as the mediator of a construction project becomes more

redundant. For example, the design data for the structure, material, services

and equipment will neither be methodically separated into modelling,

analysis and fabrication nor will be collected from different specific

consultants, but dynamically updated and optimized through cloud data.

As the algorithm finds a more intimate dialogue with the built form, we are now on

an evolutionary threshold of establishing a new symbiotic relationship between the

two. Some might argue that with the role of design becoming redundant, the role of

the designer suffers a similar fate. The argument, however is not rational. With the

algorithm replacing the design, the designer would have a more critical, intellectual

and an overall autographic position in the AEC industry.

10 Wood, D., Grönquist, P., Bechert, S., Aldinger, L., Riggenbach, D., Lehmann, K., Rüggeberg, M.,
Burgert, I., Knippers, J., and Menges, A. (2020). From Machine Control to Material Programming Self-
Shaping Wood Manufacturing of a High Performance Curved CLT Structure – Urbach Tower. In:
Fabricate 2020 Making Resilient Architecture, London: UCL press pp. 50-57 Available at:
https://www.uclpress.co.uk/products/154646 [Accessed 15 Jun. 2020].

Architecture of Computational Ecosystems

| The Research – What are computational ecosystems 15|

1.2 The Research – What are computational ecosystems

What if the built form was constructed, monitored and governed by an

autonomous, unbiased algorithm?

What if this algorithm was dynamically constructed, monitored and governed by

the built form?

The research attempts to establish a dynamic, reciprocal, symbiotic relationship

between the built form and the algorithm by making computational design more

autonomous and digital fabrication more data driven. The research also attempts to

empirically demonstrate a fluid design workflow that performs modelling, analysis

and fabrication to generate form, structure and enclosure for an architectural intent.

To implement autonomy in computational design, the research pursues the empirical

hypothesis: Cellular Automata can be employed as a computational framework to

generate, taxonomize and prototype design automation algorithms. These design

automation algorithms will be created by using predetermined data meant for an

architectural design such as the structure, functional arrangement, topographical

data, climatic data, services and equipment.

To prototype the design automation algorithms using digital fabrication the research

pursues the empirical hypothesis: Fabrication data in the form of G-code can be used

as a fitness condition to generate, taxonomize and prototype digitally generated

built forms. These built forms will be prototyped through additive manufacturing.

The process of fabricating the built forms that could be generated in this way will

dictate the writing and re-writing of the algorithm that will eventually generate the

built form, creating a dynamic, reciprocal, symbiotic loop. The creation, maintenance

and evaluation of this feedback loop is the architecture of computational

ecosystems.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |16

1.2.1 Objectives for Computational Ecosystems

In the context of the research hypotheses established both for the built form and the

algorithm, the study pursues the architecture of computational ecosystems by

allocating methodical and empirical objectives. To find, theorize, establish,

taxonomize, and prototype a dynamic, reciprocal, symbiotic relationship between

the built form and the algorithm, the research follows three primary objectives.

The primary objectives are as followed:

• Primary objective I (case studies) – To understand and evaluate energy flows

and nutrient cycles within existing ecosystems. These could also be existing

or already established computational ecosystems such as bio-based

optimization algorithms. Here, cases of these existing ecosystems will be

studied for the interoperability and symbiosis between their constituent

agents to establish a theoretical framework for the research.

• Primary objective II (simulations)– To simulate these dynamic ecosystems for

predetermined biotic and abiotic elements in computational environments to

form protective, habitational spaces. The simulations will be performed by

implementing the Cellular Automata and Agent Based Modelling. Here, the

simulated ecosystems will be taxonomized to understand and evaluate the

effect of the biotic and abiotic elements on the algorithm and vice versa.

• Primary objective III (prototyping) – To prototype the fabrication strategy for

the optimized ecosystems considering a predetermined additive

manufacturing technique. The prototyping will be carried out by

implementing the fused deposition modelling (FDM) technique. Here, the

generated G-code will be provided as a feedback into the simulation of the

ecosystem.

Architecture of Computational Ecosystems

| The Research – What are computational ecosystems 17|

All the primary objectives will be considered as research template that drives all the

experimentations and findings. However, the research relies strongly on establishing

theoretical background to attain the said empirical objectives. Therefore, the

research needs to set up literary objectives as part of secondary objectives.

The literary objectives are as followed:

• Literary objective I (Lexical semantics) – To apprise terminologies and diction

from the fields of biology, ecology, computation, applied mathematics,

applied mechanics, fabrication, manufacturing and economics relevant to the

research as a literary aid to establish the structure of thought. Here, the lexical

semantics of the research will be formed. These terminologies will be further

implemented in the research.

• Literary objective II (Logical semantics) – To repurpose existing terminologies

and diction in the fields of biology, ecology, computation, applied

mathematics, applied mechanics, fabrication, manufacturing and economics

relevant to the research as a literary aid to establish the structure of process.

Here, the logical semantics of the research will be formed. These semantics

will be used in the research to transcribe concepts into algorithms.

A key motive behind establishing literary objectives is to familiarise and

conceptualize the research in the context of contemporary researches across

domains, disciplines and industries. It is also necessary that the terminologies have

been widely accepted and have been evaluated in their respective domains.

Moreover, their contradictions are also considered before acknowledging them as

the core theoretical structure of this research. Also, because the research is based on

an ambitious concept that is both futuristic and hypothetical – (addressing the

increasing redundancy of design within the built form and the algorithm with

respect to Industry 4.0) the literary objectives help in grounding the research in

concepts and semantics that are well known, proven, and tested.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |18

After setting up the literary objectives and establishing an inventory for the

semantics, the research will implement all the primary objectives, and put the

hypothesis and the resultant theory to test. This will be accomplished by pursuing

three operational objectives as part of the secondary objectives of the research.

The operational objectives are as followed:

• Operational objective I (Taxonomies) – To categorically and sequentially

assess and catalogue the generated computational ecosystems into

taxonomies of possible functioning ecosystems. Here the primary objectives

of the case studies and simulations will be fulfilled to establish functioning

computational ecosystems by establishing different types of biotic and abiotic

elements in the computational environment.

• Operational objective II (Evaluation) – To conduct user tests for the

evaluation, trouble-shooting and versioning of taxonomized computational

ecosystems. Here the primary objectives of simulations will be fulfilled to test

functioning computational ecosystems for bugs and errors by conducting

workshops with students and professionals of the AEC industry.

• Operational objective III (Fabrication) – To prototype the process of

fabricating a built form by using the computational ecosystem as an

autonomous algorithm. Here the primary objectives of simulations and

prototyping will be fulfilled to fabricate the functioning, taxonomized and

bug-tested computational ecosystems into a built form by partnering with the

AEC industry serving a functional purpose for computational ecosystem.

The results generated and demonstrated in this way would be successful in

establishing a more dynamic, reciprocal, symbiotic relationship between the built

form and the algorithm while making computational design more autonomous and

digital fabrication more data driven.

Architecture of Computational Ecosystems

| The Research – What are computational ecosystems 19|

1.2.2 Methodological framework for Computational Ecosystems

The research methodology is strongly dictated by the primary, literary and

operational objectives. Although planned meticulously it has room to accommodate

deviations and anomalies in the experimentations and findings. The methodological

framework as illustrated in this subchapter also serves as a roadmap for a design

workflow that performs modelling, analysis and fabrication to generate form,

structure and enclosure for an architectural intent.

The understanding, segregation and execution of the methodology however relies on

establishing key lexical and logical semantics. Considering the fact that these

concepts will be further elucidated in the forthcoming chapters (namely, 2| On the

theoretical assumptions for the Computational Ecosystems ; 3| On the semantic

syntax for the Computational Ecosystems), it becomes necessary to illustrate them

concisely. The methodological framework builds up on the conceptual constructs of

the trifecta – Elements, Economies, and Ecosystems.

• Element – although the meaning of element is more open ended, in chemistry

an element could be “defined as one of a class of substances that cannot be

separated into simpler substances by chemical means” (Boyle, 1661).11 In data

science, the term data element is an atomic unit of data that has precise

meaning or precise semantics. Thus, in the context of this research, elements

signify forms, agents and systems that come together to simulate biotic and

abiotic behaviors and semantics. These elements could be considered as

agents which can’t be further divided into other agents. Examples of an

element could be Platonic solids, Archimedean solids, point clouds, passive

agents, active agents, cognitive agents, service equipment, structural

members or fabrication material.

11 Boyle, R. (1661). The Sceptical Chymist. London: J. Cadwell

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |20

• Economy – in the field of economics, “economy is defined as a social domain

that emphasizes the practices, discourses, and material expressions

associated with production, use and management of resources by different

agents” (Paul, 2014).12 Although, etymologically economy transcends to

household management, the contemporary concept of economy as a set of

transactions of goods and services expressed in a certain currency is a recent

connotation as early as the 20th century. In the context of this research,

Economy implies to the fundamental objective of the symbiotic elements as

a means of survival, growth and decay. It is thus essential to say that stability

in an economy equates to survival, excess leads to growth and insufficiency

leads to decay. Examples of an economy could be static structural stability,

kinetic structural stability, functional adequacy, functional compatibility,

contextual compatibility, climatic optimization, and fabrication constraints.

The ideas pertaining to the possibilities of economies as a fitness condition

will be further explicated in the forthcoming chapters (namely, 2| and 3|).

• Ecosystem - in ecological sciences, ecosystems are “dynamically interacting

systems of organisms, the communities they make up, and the non-living

components of their environment. They can be defined as a community made

up of living organisms, the biotic elements and non-living components, the

abiotic elements. These biotic and abiotic elements interact through nutrient

cycles and energy flows” (Odum, 1971).13 The study of Ecosystem in ecology

thus involves ‘the flow of energy and materials through organisms and

physical environments.’ In the context of this research, an Ecosystem implies

to a design automation algorithm that will produce a built environment but

also relies upon the morphological, structural and fabrication constraints of

the built form.

12 James, P. (2014). Urban Sustainability in Theory and practice: Circles of Sustainability. London:
Routledge. Pg 53
13 Odum, E. P. (1971). Fundamentals of Ecology. Philadelphia: Saunders.

Architecture of Computational Ecosystems

| The Research – What are computational ecosystems 21|

Fundamentally, the elements would serve as the building blocks of the computational

ecosystem that represent the biotic or abiotic, while fulfilling survival conditions laid

down by the economy inherent to the ecosystem they belong to and coherent with

the ecosystems they inhabit. The intricate relationships between the element,

economy and the ecosystem serve as a functional template for the methodological

framework of the research. These relationships also serve as a theoretical foundation

for the empirical results achieved by incorporating cellular automata in generating,

taxonomizing and prototyping design automation algorithms.

This relationship and the specifics of its operations will be further entangled in the

forthcoming chapters. Additionally, the concluding part of this chapter (1.3 Structure)

further elaborates the structure of this Research and the structure of this Thesis, so

as to provide a definitive roadmap in terms of the methodological framework.

Figure 1.5 below, illustrates the conceptual relationship of the element, economy and

ecosystem in a graphical style. As shown in the figure, in the relevance of the

research, the chess pieces serve as an example of elements, chess moves and rules

serve as an example of the economy while chess tactics, strategies and gambits serve

as an example of the ecosystem.

Figure 1.5 – Infographic explaining the concept of element, economy and ecosystem with the

example of Chess (the board game). Illustration and graphics by Author (June 2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |22

With the key concepts of the element, economy and ecosystem established

succinctly, the methodological framework can be clearly rationalized. Moreover, the

relationship between the built form and the algorithm, which was introduced and

resolved in the hypotheses can be distinctly projected. To achieve the primary and

the operational objectives of the research, the methodology follows four procedural

sequences. These procedural sequences are devised to extrapolate different possible

arrangements within the context of computational ecosystems explained thus far.

They rely on the following conceptual constructs:

• An ecosystem can only exist if the element and the economy are established.

• An ecosystem can exist with a single element and a single economy.

• An ecosystem can exist with multiple elements and a single economy.

• An ecosystem can exist with a single element and multiple economies.

• An ecosystem can exist with multiple elements and multiple economies.

This clear distinction of the possible permutable ecosystems is evidently based on the

classification systems laid out in Flynn’s taxonomy (Flynn, 1972)14.This distinction

helps in sequencing the methodological framework in the form of the procedural

sequences (which will be explained in detail on the next page). Moreover, it sets up

an operational template that will be helpful in installing a taxonomy for the research.

As this distinction between the ecosystems is based on the arrangements of the

cardinality of elements and economies, there are four and only four possible types of

ecosystems that can be generated employing this methodology. The distinction also

disallows any prospects for deviations that could lead to anomalies across taxa.

14 Flynn, M-J. (1972). Some Computer Organizations and their Effectiveness. IEEE Transactions on
Computers, C-21(9), pp. 948-960.

Architecture of Computational Ecosystems

| The Research – What are computational ecosystems 23|

The procedural sequences are as followed:

• Single Element Single Economy Ecosystem (SESE) – An ecosystem that

consists of elements of a singular, independent typology who follow an

economy that represents a rule set with a singular independent goal. As

shown in the figure 1.6 below, the ecosystem could have elements that refer

to the morphological norms of a hexahedron, while following an economy

that pertains to structural stability. In other words, here an SESE would be

represented by cubes, that could form the tallest towers without falling apart.

Figure 1.6 – Infographic illustrating an example of a Single Element Single Economy Ecosystem

(SESE). Illustration and graphics by Author (June 2019).

• Multi Element Single Economy Ecosystem (MESE) – An ecosystem that

consists of elements of multiple, independent typologies who follow an

economy that represents a rule set with a singular independent goal. As

shown in the figure 1.7 below, the ecosystem could have elements that refer

to the morphological norms of a hexahedron and an icosahedron, while

following an economy that pertains to structural stability. In other words,

here an MESE would be represented by cubes and cuboctahedra, that could

form the tallest towers without falling apart.

Figure 1.7 – Infographic illustrating an example of a Multi Element Single Economy Ecosystem (SESE).

Illustration and graphics by Author (June 2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |24

• Single Element Multi Economy Ecosystem (SEME) – An ecosystem that

consists of elements of a singular, independent typology who follow

economies that represent rule sets with multiple interdependent goals. As

shown in the figure 1.8 below, the ecosystem could have elements that refer

to the morphological norms of a hexahedron, while following economies that

pertain to structural stability and buoyancy. In other words, here an SEME

would be represented by cubes, that could form the tallest towers on a liquid

without falling apart and without sinking.

Figure 1.8– Infographic illustrating an example of a Single Element Multi Economy Ecosystem

(SEME). Illustration and graphics by Author (June 2019).

• Multi Element Multi Economy Ecosystem (SEME) – An ecosystem that

consists of elements of multiple, independent typologies who follow

economies that represent rule sets with multiple interdependent goals. As

shown in the figure 1.9 below, the ecosystem could have elements that refer

to the morphological norms of a hexahedron and an icosahedron, while

following economies that pertain to structural stability and buoyancy. In other

words, here an MEME would be represented by cubes and cuboctahedra, that

could form the tallest towers on a medium without falling apart and sinking.

Figure 1.9– Infographic illustrating an example of a Single Element Multi Economy Ecosystem

(SEME). Illustration and graphics by Author (June 2019).

Architecture of Computational Ecosystems

| The Research – What are computational ecosystems 25|

1.2.3 Expected projections for Computational Ecosystems

In this way, each taxon represents a unique yet related combination of the cardinality

of typologies for the elements and economies. In other words, SESE, MESE, SEME and

MEME will be treated as different methodologies to create and to taxonomize the

ecosystems.

As outlined in the methodological framework, the four taxa will be subjected to the

primary objectives discretely. The objectives will be drawn out considering their

relevance for each taxon. For example, an SESE that represents a single element and

a single economy will undergo the following primary objectives:

• Case studies – Understanding and evaluating energy flows and nutrient cycles

within existing ecosystems (both organic and digital) with a single element

and a single economy.

• Simulations – Simulating dynamic ecosystems for predetermined biotic or

abiotic element that follows a singular economy. The simulations will be

performed in computational environments to form protective, habitational

spaces.

• Prototyping – Prototyping a fabrication strategy for the optimized

ecosystems considering a predetermined additive manufacturing technique.

Note that the above examples of operational trajectories for the formation of an

ecosystem are only specific to an SESE. The other taxa would have slightly variant

primary objectives that would be specific to their use cases. An elaboration on the

topics of elements, economies and computational ecosystems will be done in further

chapters (namely, 2| On the theoretical assumptions for the Computational

Ecosystems ; 3| On the semantic syntax for the Computational Ecosystems).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |26

As the basis of the research and this thesis is on the concept of the built form and the

algorithm entering a recursive feedback loop, the outcomes are projected to be

iterative but relevant. For this reason, the operational objectives viz., Taxonomies

and Evaluation become very crucial. Moreover, the empirical nature of the

hypothesis further dictates the operational objectives viz., Evaluation and

Fabrication. It is important to understand this aspect of the research, because the

process of taxonomizing, will generate a plenty of visual information, which will be

the iterative variants specific to each taxon. In other words, each iterative variant in

each taxon for the specific procedural sequence will be represented by means of

images and with information about its attributes such as elements and economies.

As the theoretical foundations of the research are based on the Cellular Automata,

the generation of all the iterations in the respective taxa (SESE, SEME, MESE and

MEME) would be dependent on “recursive algorithms” (Soare, 1996). 15 The iterative

variants for each taxon however, would be dependent on the starting condition for

each iteration – the Initial State. An elaboration on the Initial States and their relation

with the elements, economies and computational ecosystems will be done in further

chapters (namely, 2| On the theoretical assumptions for the Computational

Ecosystems ; 3| On the semantic syntax for the Computational Ecosystems).

Considering the amount of variations generated by the subtle changes in both the

initial states, elements and economies, the projections for the computational

ecosystems require a much larger system of classification than the one stated as part

of the procedural sequences (SESE, MESE, SEME and MEME). Thus, apart from the

implementation of recursive algorithms to undertake autonomy in computational

design the research is compelled to implement genetic algorithms to organize the

generated and taxonomized ecosystems in the order of their fitness.

15 Soare R. I. (1996). Computability and Recursion. The Bulletin of Symbolic Logic, [online] Volume
2(3), pp. 284-321. Available at: https://www.jstor.org/stable/420992 [Accessed 8 Apr. 2020].

Architecture of Computational Ecosystems

| The Research – What are computational ecosystems 27|

A clear application of genetic algorithms in the context of this research has been

thoroughly expand upon in the further chapters (namely On the consequences in the

Architecture of Computational Ecosystems and 6| On the investigative analysis of the

Computational Ecosystems). But it becomes important to understand the scope and

impact of implementing genetic algorithms before summarizing the relevance of this

research. In the context of this research, genetic algorithms have been implemented

purely as evolutionary algorithms within the computational environment of Rhino 7

and Grasshopper. Galapagos, which is a default tool-set in Grasshopper has been

used to generate results using its evolutionary solver.

As explained in the further chapters (namely 6| On the investigative analysis of the

Computational Ecosystems 7| On the prospective projections for the Computational

Ecosystems) attempts have been made in setting up a Fabrication workflow that

could be adopted to train and prototype Computational Ecosystems for certain

procedural sequences (especially MEME) that could conform to multiple economies

while fabricating the results of the said Computational Ecosystem. However, these

applications demand state of the art digital fabrication tools and assembly, which are

not readily available in all academic institutes. Thus, the research has sought

collaborations within the AEC industry (as thoroughly elaborated in 7|). Also, it has

been sufficiently established in the further chapters how this trajectory could be

further pursued to develop Computational Ecosystem as a discipline that expands the

fields of computational design and digital fabrication while performing dynamic,

reciprocal, symbiotic feedback loops between the built form and the algorithm.

The research aspires to compute and not computerise existing ecosystems while

upholding the design process. It appreciates the very simple yet strong idea that Form

follows Force and Force follows Form. “The research attempts to find ways of

ingesting the Architecture of Computation in the Computation of Architecture.”16

16 Warang, A. (2017). Towards the Architecture of Computation. MS Architecture Thesis. Universitat
Internacional de Catalunya (UIC) Barcelona.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |28

Although the afore mentioned explanations, definitions and examples pertaining to

the outline of the research objectives and methodology sufficiently elaborate on the

approach taken by this research, a graphical illustration of the research objectives,

their role in the fulfilment of the hypothesis and their position in the methodology

becomes highly essential. In a way, this graphical illustration also underlines the

nature of this research – to introduce and elaborate novel concepts with theoretical

background (in terms of citing peer-reviewed research), empirical proof (in terms of

providing practical examples), and visual representation (in terms of illustrating with

relevant diagrams and images). Fig. 1.10 thus illustrates the above idea.

Figure 1.10– Infographic illustrating the inter-relations between the research hypothesis, research

objectives, and research methodology with respect to the research timeline. Illustration and graphics

by Author (January 2018).

Architecture of Computational Ecosystems

| The Research – What are computational ecosystems 29|

1.2.4 The relevance of Computational Ecosystems

Considering that this thesis documents an attempt to establish a dynamic, reciprocal,

symbiotic relationship between the built form and the algorithm, the Architecture of

Computational Ecosystems could be considered as a research that furthers into the

fields of Computational Design and Digital Fabrication. However, the domain of this

research is based in several research fields and industries. For example, the research

borrows most of its semantics, and the ideological and theoretical frameworks from

several fields such as computational sciences, evolutionary sciences, behavioral

sciences and ecology. So, in a way, it also contributes back to these fields by

demonstrating their empirical applications for research in the AEC industry.

As one of its hypotheses focuses on practical applications in the field of digital

fabrication, the research has significant impact in the domain of additive

manufacturing industry. This impact is clearly demonstrated in the upcoming

chapters (namely 4| On the procedural sequences for the Architecture of

Computational Ecosystems 5| On the consequences in the Architecture of

Computational Ecosystems). As discussed later, the research has potential to

develop design and fabrication algorithms in the additive manufacturing industry

depending on the specificity of the fabrication equipment.

Moreover, the research serves as a significant reference point in the cultural zeitgeist

of the Industry 4.0. It provides an operational handbook to demonstrate how design

research can restore the autographic status of Architecture with the help of the

current Industrial revolution and many more to come. Owing to the nature of its

dependencies and impact in several fields the research is relevant to contemporary

ideologies of breaking the institutionalised separations of disciplines and curriculum

to employ a dialogue between hitherto unheard compatibilities. The research

attempts to establish a biodigital dialogue in the field of architecture, while providing

a blueprint on how more such dialogues could be established in the future.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |30

1.3 Structure

Now that the research objectives, research methodology and the overarching

relevance of the research in the technological zeitgeist is clearly summarized, it

becomes more imperative to explain how the entire research and this subsequent

thesis is structured. Also, elaborating on the abstract, which helps in laying the

theoretical foundation for the research would mean that this would be the perfect

space to write about the structure of the thesis before beginning the theoretical

intricacies in detail.

The explanation of the structure would thus be bifurcated into the structure of the

Research and the structure of the Thesis. While the former elaborates on the means

of fulfilling the operational objectives (as elaborated in 1.2.1 Objectives for

Computational Ecosystems in this Chapter) with the Procedural Sequences in the

form of the SESE, MESE, SEME and MEME (as elaborated and illustrated in 1.2.2

Methodological framework for Computational Ecosystems in this Chapter); the latter

explains how this doctoral thesis helps in conveying the entire process of finding,

theorizing, establishing, taxonomizing, and prototyping dynamic, reciprocal,

symbiotic relationships between the built form and the algorithm.

In other words, the structure of the research explains how the research objectives

were executed across the span of four years, while the structure of the thesis explains

how this execution of the research objectives has been elucidated in this doctoral

thesis. Moreover, the structure of the research highlights and accentuates upon the

various forms of industry experts, collaborators, and research facilities involved in

this research. Whereas, the structure of the thesis focuses on specifying the sequence

of interactions and involvements with these industry experts, collaborators, and

research facilities. The initial timeline established before commencing the research

will also be briefly illustrated here; and with it, the undeniably inevitable

modifications and the reasons behind them will also be acknowledged.

Architecture of Computational Ecosystems

| Structure 31|

1.3.1 Structure of the Research

As the research was focused on finding, theorizing, establishing, taxonomizing, and

prototyping a dynamic, reciprocal, symbiotic relationship between the built form and

the algorithm, the research had to adopt a multi-disciplinary approach. The two

disciplines or industries it interacted with were computational sciences and the AEC

industry. In the context of the primary objectives (as elaborated in 1.2.1 Objectives

for Computational Ecosystems in this Chapter), consultations and collaborations with

the discipline of computational sciences were responsible for the Case Studies and

Simulations. Whereas, interactions and collaborations within the AEC industry were

responsible for the Case Studies and Prototyping.

Chronologically, the research could be categorized in the following three phases.

Note that these phases echo the primary objectives:

• Case studies – In this phase, both the literary objectives (as elaborated in

1.2.1) Lexical Semantics and Logical Semantics were accomplished. As

establishing the semantics formed the theoretical foundation for the

research, most of the study was undertaken at the Doctoral School in

Architecture of the Universitat Internacional de Catalunya (UIC, Barcelona).

However, some semantics needed corrections and revisions, which were

incorporated after consulting experts from the discipline of computational

sciences for the Simulations and experts from the AEC industry for the

Prototyping. These modifications have been updated in this thesis and will be

explained in further chapters (namely, 2| On the theoretical assumptions for

the Computational Ecosystems ; 3| On the semantic syntax for the

Computational Ecosystems). As some case studies, especially the ones that

required clear understanding of evolutionary sciences and ecology could not

be done solely in UIC, advice and guidance of experts from relevant fields and

disciplines was sought to make the research exhaustive and profound.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |32

• Simulations – In this phase, two of the three operational objectives namely

Taxonomies and Evaluation were executed for all the Procedural Sequences

which are, SESE, MESE, SEME and MEME. Although the meticulous

taxonomical classification gives a methodological advantage to study all

possibilities of Computational Ecosystems, the process followed for the

simulation of each taxon remains the same. As these simulations were done

in different phases, this part of the research is the most distributed in terms

of time and space. For example, majority of the computational logic was set

up at UIC. However, the simulations were validated and verified for bugs by

conducting workshops for students of Architecture and Design by partnering

with various universities in India. These universities were as follows :

Department of Architecture, Rajiv Gandhi Institute of Technology (RIT,

Kottayam) ; Indian Education Society's College of Architecture, Mumbai (IES

COA, Mumbai). The specific results collected during the workshops are

documented thoroughly in the upcoming chapters (namely 4| On the

procedural sequences for the Architecture of Computational Ecosystems 5|

On the consequences in the Architecture of Computational Ecosystems).

• Prototyping – In this phase, two of the three operational objectives namely

Evaluation and Fabrication were executed for all the Procedural Sequences

which are, SESE, MESE, SEME and MEME. In this phase, as the algorithm was

developed, evaluated and tested for bugs, its application in generating a built

form was focused. To prototype the Computational Ecosystems, a research

stay was undertaken at Studio RAP, Rotterdam (https://studiorap.nl/#/)

which is an advanced Architectural practice that specializes in Robotic

construction. Here, the research was prototyped by using a 6-axis robotic arm

– KUKA P6 while performing additive manufacturing with a modified

pneumatic extrusion of pottery clay. Various types of clay with different

composition of grog and different drying processes were also experimented

for optimization. The specific results collected during the research stay are

documented thoroughly in the upcoming chapters.

Architecture of Computational Ecosystems

| Structure 33|

1.3.2 Structure of the Thesis

After the completion of the aforementioned stages of Case Studies, Simulations and

Prototyping, the research was compiled into this thesis. The structure of this thesis

is also quite chronological in the sense that most of its chapters correspond to the

order and sequence in which the research was done.

As the Procedural Sequences in the form of SESE, MESE, SEME and MEME had

chartered the entire research trajectory, there were two approaches in which this

thesis could have been structured. The first approach would be where all the

theories, methodologies, observations, and conclusions would be done individually

for each Taxon. Whereas, the second approach would be where all the Taxa would

be explained categorically for all their theories, methodologies, observations, and

conclusions. As the research also focusses on creating a feedback loop between the

built form and the algorithm, a hybrid approach that involved an optimized

amalgamation of the above two approaches had to be adopted.

Thus, the thesis is structured in such a way that the theory is laid down for all the taxa

collectively in chapter 2| On theoretical assumptions for Computational Ecosystems

and chapter 3| On the semantic syntax for the Computational Ecosystems. Whereas

chapter 4| On the procedural sequences for the Architecture of Computational

Ecosystems and chapter 5| On the consequences in the Architecture of

Computational Ecosystems which illustrate the methodology and the results for the

Procedural Sequences are elaborated for the four Taxa individually. The observations

and conclusions however, which are elucidated in chapter 6| On the investigative

analysis of the Computational Ecosystems and chapter 7| On the prospective

projections for the Computational Ecosystems are illustrated and explained for all the

taxa collectively. These clear distinctions in the documentation of the key aspects of

the research in this thesis provide a more meticulous and direct approach in which

the research methodology can also be used and replicated for further researches.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

1|On the relevance of computational ecosystems |34

As chapters 4| and 5| (which illustrate the methodology and the results in the form

of the Procedural Sequences elaborated for the four Taxa) would be demonstrating

most of these taxa graphically in the form of sequential images at every periodic stage

of their respective ecosystems, these chapters would be filled with a lot of graphical

information without any considerable textual explanations. However, as these

sequential images are a result of visual programming performed in Rhinoceros and

Grasshopper3D and several of its related plugins, the visual programming scripts

have been attached in additional annexures at the end of this thesis.

These annexures will also serve as an empirical database for all the procedural

sequences that form a bulk of this research. As most of these scripts were developed

by the author by conducting student workshops in several universities in India (as

explained in 1.3.1), these scripts have also been made available online on the author’s

website (https://angadwarang.wixsite.com/2021/resources).

Architecture of Computational Ecosystems

| Structure 35|

Theory

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |36

2|On theoretical assumptions for Computational
Ecosystems

2.1 Establishing the semantics

As a corollary to the previous chapter, which established the relevance of this

research, and introduced the hypothesis, objectives, methodology and expected

results, this chapter elucidates the theoretical assumptions for the research.

The built form and the algorithm have been independently theorized to a

considerable degree, often aided and abetted by design (as explained in chapter 1|

On the relevance of Computational Ecosystems) by imminent theorists, historians

and researchers so far. While the theory for the former has a lot of empirical

presence, for example in the AEC industry, the latter has been assiduously theorized

in the field of computer science, more importantly in the theory of computation.

There are lots of researches conducted in the field of architecture under the umbrella

of design research during the advent of the third industrial revolution that have

borrowed theoretical foundations from the field of computation. A unified theory

however, that could correlate the roles of the built form and the algorithm in either

field is rather insufficient.

The research on the other hand, based on the significant relevance of the fourth

industrial revolution, relies strongly on the informed assumption that the built form

and the algorithm would be co-existent and symbiotic without the existence of design

in the near future. The research also claims that this relationship would be dynamic

and reciprocal, further diminishing the role of design in the AEC industry. These

claims put the research in the dangerous area of sensationalism. If not elaborated

upon, it further demeans all the successive operational objectives that are

prototyped and taxonomized in the course of this research.

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 37|

Thus, in order to refrain from the aforementioned sensationalism, the research is

obligated to form its own theoretical foundation. These foundations would be laid by

establishing the semantics related to computational ecosystems and the cellular

automata that already exist in the field of computational theory.

Computational theory, on the other hand has often been establishing its theoretical

foundations on many natural systems and biological processes. Owing to the fact that

computation primarily revolves around problem solving, bio-inspired algorithms

have been frequently employed to solve complex computational problems in a

simple and intuitive manner. In fact, the early 21st century has seen a considerable

rise in the research and implementation of bio-inspired algorithms. These algorithms

essentially begin with the hypothesis that an analytical study of the behaviors of

natural systems and biological processes of some exceptionally intelligent biological

specimen can give us a thorough and accurate understanding of how to translate

their behavioral nuances into algorithmic models. These algorithmic models are then

tested, versioned and rectified to imitate the natural systems or biological processes

in an inert, non-biological, computational environment. After successful or

unsuccessful imitation of the natural systems these algorithms are then extensively

theorized to be applied into the field of computation.

As the computational power keeps increasing exponentially (aided by the

assumptions and conclusions of Moore’s Law), the above-mentioned process has

seen a phenomenal advancement in the past couple of decades. Researchers have

long started analytical studies of the tropic dynamics of ecosystems and translating

the energy transactions between biotic and abiotic elements into algorithmic models.

The concept of computational ecosystems, thus is not completely novel and has the

reputation of being a theoretically established phenomenon in the field of

computation (Parpinelli and Lopes, 2014).17

17 Parpinelli R. S. and Lopes, H. S. (2014). A computational ecosystem for optimization: review and
perspectives for future research. Memetic Computing, 7(1), pp. 29-41.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |38

It would thus be quite judicious to lay the theoretical foundations of this research on

the theoretical review done in the work of Parpinelli and Lopes. It would also be

logical to base the semantics of this research on the aforementioned work, and its

theoretical foundation.

However, before establishing the concepts of computational ecosystems as theorized

by Parpinelli and Lopes, this thesis would lay down the semantics for the research in

terms of developing a reciprocal relationship between the built form and the

algorithm. In other words, it seeks to establish the theoretical basis of Ecosystems,

Computation and Computational Ecosystems while asking the following questions:

• About Ecosystems or Which ecosystems are being referred to? – Here the

thesis would be elaborating upon the specific concepts and terminologies the

research borrows from the field of ecology and the overall constraints in

understanding what an ecosystem is and how to limit it.

• About Computation or Which computational environments does the research

operate in? – Here the thesis would be elucidating algorithms and

computational systems that are inspired from the field of biology while

determining those, that this research relies upon for its theoretical

framework.

• About Computational Ecosystems or What does a computational ecosystem

exactly mean? – Here the thesis would be elaborating the concept of

computational ecosystems as theorized by Parpinelli and Lopes, in the context

of establishing a dynamic, reciprocal, symbiotic relationship between the built

form and the algorithm.

The answers to the above questions would lead in establishing the theoretical

foundations for the research and help in reducing the sensational claims of the

research hypothesis mentioned previously.

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 39|

2.1.1 About Ecosystems

After having rejected the previously established terms ‘complex organism’ and ‘biotic

community’, Prof. A G Tansley settled with the concept of ‘ecosystem’ while drawing

analogies with physics – “including not only the organism complex, but also the whole

complex of physical factors” (Tansley, 1935)18. Tansley, in his field of study – ecology,

goes on to say that, “though the organisms may claim our primary interest, when we

are trying to think fundamentally, we cannot separate them from their spatial

environment, with which they form one physical system.”

He further suggests that these ecosystems could be considered as basic units of

nature, where the organic parts (organisms) and inorganic factors have constant

interchanges of various kinds amongst them. These ecosystems, he says are of

various sizes ranging from the universe down to the atom. This creates a considerable

obstacle in the identification and analysis of specific ecosystems. For this problem,

he suggests a mundane mental isolation of the systems. He says, “these isolates,

become the actual objects of our study, whether the isolate be a solar system, a

planet, a climatic region, a plant or animal community, an individual organism, an

organic molecule or an atom. Actually, the systems we isolate are not only included

in larger ones, but they also overlap, interlock and interact with one another.”

The built form has a similar property of being a conceivably boundless entity. It could

range from a tiny piece of jewellery (in terms of jewellery design) to an entire

metropolitan region (in terms of urban planning) and everything within that

spectrum. Apart from the theoretical background of defining an ecosystem, Tansley’s

methodological framework of isolating an ecosystem conceptually, is quite crucial for

this research in stating that the idea of the built form could be similarly isolated into

different built forms across scales or design across scales.

18 Tansley A.G. (1935). The use and abuse of vegetational concepts and terms. Ecology, 16(3), pp.
284-307.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |40

The idea that “inorganic factors such as drought, fire, salt, cold, or similar, being

considered as important and distinct determinants for the growth, survival and

maintenance of life” was prevalent since as early as the late 19th century (Warming,

1895).19 The systemic differentiation and the semantic designation into biotic and

abiotic elements, however, occurred much later.

The research focuses on understanding the distinct roles played by the biotic

organisms and the abiotic factors in forming a symbiotic relationship that is much

crucial in the existence of the ecosystem. It thus relies heavily on the understanding

and explanations in the seminal book ‘The economy of Nature’ (Ricklefs, 2008).20

Ricklefs points out that we often mention the living and the nonliving as opposites.

But although we can easily discern, “life does not exist in isolation from its abiotic

environment. Life depends on the physical world.” He further claims that, “many

conditions favorable for the development and maintenance of life rely on the activities

of living organisms.” In the context of this research, a similar co-existence for the

built form and the algorithm needs to be formed.

The most important distinction however, that Ricklefs points out between the biotic

and the abiotic is that the former have a more purposeful existence over the latter.

He says that, “their structures, physiological processes, and behaviors, shaped by

evolutionary responses to natural selection, are directed toward procuring energy and

resources that are ultimately used to produce offspring.” (Ricklefs, 2008).21 This subtle

detail clearly dictates the research to realize that both the built form and the

algorithm are lifeless, purposeless abiotic concepts. The research, however, needs to

embed some purpose, some function, some life that would serve as a driving force

for the symbiotic relationship between the built form and the algorithm.

19 Warming, E. (1895). Plantesamfund - Grundtræk af den økologiske Plantegeografi. Copenhagen:
P.G. Philipsens Forlag, 335 pp.
20 Ricklefs, R. E. (2008). The Economy of Nature. 6th ed. New York: W. H. Freeman and Company, 620
pp.
21 Ibidem

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 41|

While laying down the foundations of ecology by defining what an ecosystem would

be, Tansley postulates that “organization is the imminent outcome of the interactions

and consequent mutual adjustment of the components of an ecosystem” (Tansley,

1935)22. In other words, he says that the biotic and abiotic elements of an ecosystem

are inadvertently striving for a certain state of dynamic equilibrium (Phillips, 1931)23.

He further theorizes that if an organization does not occur, an incipient system breaks

out. There is in fact a kind of natural selection of incipient systems, and those which

can attain the most stable equilibrium survive the longest.

As a corollary to Tansley, Ricklefs further theorizes that, ecological systems are

governed by basic physical and biological principles – they obey the laws of physics;

they exist in dynamic states ; and they evolve over time. He says, “because life is so

special, it exists in equilibrium with its environment. But life is not a perpetual motion

machine. What the organism loses to its surroundings, is not returned to it for free.

The organism must procure energy or materials to replace its losses. To do this, it

must expend energy. It must replace the lost energy by metabolizing food or stored

reserves, which it must expend energy to capture and assimilate. Thus, the price of

maintaining a living system in a dynamic state is energy.” (Ricklefs, 2008).24 Hence,

in the context of the research, the dynamic, reciprocal, symbiotic relationship

between the built form and the algorithm would have to be realized by creating a

system that conforms to the following assumptions:

• The system is inhabited by elements that have purposeful existence such as

life.

• The system has a specific currency for the state of equilibrium such as energy.

22 Tansley A.G. (1935). The use and abuse of vegetational concepts and terms. Ecology, 16(3), pp.
284-307.
23 Phillips, J. (1931). The Biotic Community. Journal of Ecology, [online] 19(1). p 1-24. Available at:
www.jstor.org/stable/2255934 [Accessed 12 May 2021].
24 Ricklefs, R. E. (2008). The Economy of Nature. 6th ed. New York: W. H. Freeman and Company, 620
pp.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |42

2.1.2 About Computation

What are the fundamental capabilities and limitations of computers? –

Mathematical logicians, while exploring the meaning of computation have been

asking this question since the 1930s. After almost a century worth of technological

advancements, now this question is being answered not just with theoretical

hypothesis but also with empirical proofs. Computational theory and the field of

computation that emerges out of the above question is further trifurcated into

“Complexity theory – classifying problems as easy and hard to solve ; Computability

theory – classifying problems as solvable and not solvable ; Automata theory –

defining properties and applications of mathematical models of computation

“(Sipser, 2006)25. Although the trifurcation provides a detailed path into the study of

computation, the overarching concept of problem solving remains integral to the

application of computation and answering the above-mentioned question.

Moreover, finding the best solution from all possible solutions becomes a highly

pursued objective amongst all computational models. In other words, optimization is

one of the most commonly sought computational pursuit.

Optimization problems can either be deterministic or stochastic in nature. “While the

deterministic problems require enormous computational efforts and tend to fail as

the problem size increases, bio inspired stochastic optimization algorithms could serve

as computationally efficient alternatives for optimization” (Binitha and Sathya,

2012)26.As the relationship between the built form and the algorithm operates within

the AEC industry in the context of the research, it’s primary goal would be to attain

optimization at various scales of design, thus making the implementation of bio

inspired stochastic optimization algorithms highly essential.

25 Sipser, M. (2006). Introduction to the Theory of Computation. 2nd ed. Boston: Thomson Course
Technology, 431 pp.
26 Binitha, S. and Sathya, S. S. (2012). A Survey of Bio inspired Optimization Algorithms. International
Journal of Soft Computing and Engineering (IJSCE), 2(2), pp. 137-151.

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 43|

Computational problem-solving and optimization models have often been derived or

inspired from natural bio-based systems. “The abundant diversity, dynamism,

robustness, and complexity in these ecosystems always finds the optimal solution to

solve its problem maintaining perfect balance among its components”. This is the

thrust behind bio inspired computing. More importantly, the concept of drawing

inspirations from a bio-based system underlines the fact that a purpose-based system

(considering that all bio-based systems have a predominant goal of survival and

reproduction) has more profound methods of optimization. “Within all the possible

relations that could be established in an ecosystem, cooperation between entities is

a universal mechanism” (Chen and Zhu, 2008).27

This cooperation could be within the species - homogeneous cooperation (also called

social evolution), or between species - heterogeneous cooperation (also called

symbiosis). Chen and Zhu describe in their research how a particular type of Swarm

Intelligence (SI) algorithm (which in itself is based on the homogenous cooperation)

– Particle Swarm Optimization (PSO) has major drawbacks of converging prematurely

and not exhibiting sufficient population diversity. To solve this problem, they theorize

that an ecosystem-based computer simulation model should not only adopt the

social evolution perspective (homogeneous cooperation) but also the symbiosis

theory (heterogeneous cooperation). Thus, their proposed model PS2O (so called as

it contains two hierarchies and is based on the PSO) injects fitness conditions

pertaining to individuals of different species apart from the rules set up for individuals

of the same species as per the canonical PSO algorithm (Chen and Zhu, 2008).28

The relationship between the built form and the algorithm that the research seeks,

similarly needs to be based on the combination of the homogenous and

heterogenous cooperation established in the PS2O.

27 Chen H. and Zhu Y. (2008). Optimization based on symbiotic multi-species coevolution. Applied
Mathematics and Computation, 205(2008), pp. 47-60.
28 Ibidem.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |44

As Parpinelli and Lopes have theorized, “computational problem-solving

methodologies involve two branches: exact methods and (meta-)heuristic methods.

The latter has proven to be efficient in solving hard and complex optimization

problems, particularly where traditional methods fail. Bio-inspired algorithms are

such meta-heuristics that imitate the intricate strategies of nature as many biological

processes can be thought of as optimization processes” (Parpinelli and Lopes, 2014).29

“Ant Colony Optimization (ACO) algorithm” is one such example that studies and

extrapolates the homogenous cooperation amongst ants as a novel approach to solve

stochastic combinatorial optimization problems (combinatorial optimization

problems that are based on randomness or uncertainties such as minimum spanning

tree and traveling salesman problem) (Dorigo, Maniezzo, and Colorni 1996).30 The

algorithm exploits the phenomenon of Stigmergy (Grasse ́, 1959)31. “Stigmergy refers

to the indirect communication amongst self-organizing emergent systems via

individuals modifying their local environment.” (Binitha and Sathya, 2012)32. In the

case of the ACO, stigmergy is displayed by the intelligence of the ants in depositing a

pheromone trail to communicate with other ants which then make a probabilistic

decision to form the shortest walk between the ant’s nest and the food source.

The relationship between the built form and the algorithm that the research seeks,

would require a similar stigmergy between the participating biotic and abiotic

elements. This stigmergy could either be communicated as part of a homogenous

cooperation or a heterogenous cooperation or both. The information communicated

by the stigmergy could vary depending on the optimization strategy adopted by the

ecosystem.

29 Parpinelli, R. S. and Lopes, H. S. (2014). A computational ecosystem for optimization: review and
perspectives for future research. Memetic Computing, 7(1), pp. 29-41.
30 Dorigo, M., Maniezzo, V. and Colorni A. (1996). The Ant System:Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics–Part B, 26(1), pp. 1-13.
31 Grasse ́, P.-P. (1963). Les phe ́nome`nes sociaux chez les Animaux. Cahiers de l’Institut de Science
e ́conomique applique ́e. Suppl. 139, V, pp. 7–23.
32 Binitha, S. and Sathya, S. S. (2012). A Survey of Bio inspired Optimization Algorithms. International
Journal of Soft Computing and Engineering (IJSCE), 2(2), pp. 137-151.

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 45|

Thus, continuing on the theoretical groundwork laid down by Sipser in the field of

Computational theory (i.e. establishing the fundamental theoretical constructs of the

Complexity theory, the Computability theory and the Automata theory), it becomes

essential for the research to focus on understanding the existing assumptions and

biases in the field of computation and establish an operational vocabulary before

identifying intelligent biological organisms and ecosystems and further attempting to

perform analytical study of the behaviors of natural systems and biological processes

in these biological organisms and ecosystems.

In the dynamic, reciprocal, symbiotic relationship that the research seeks to develop

between the built form and the algorithm, optimization would become both the

principal objective and the means of achieving this objective. This dynamic,

reciprocal, symbiotic relationship that has previously been theorized to be the design

of a system (across scales) that conforms to specific rules (as explained in 2.1.1 About

Ecosystems) would essentially have to be a bio inspired stochastic optimization

algorithm. Although the composition and creation of this algorithm would be a

translation of the behaviors of natural systems and/or biological processes within

intelligent biological organisms, it could also be derived from the energy interactions

amongst biological organisms. In other words, the recreation of the natural strategies

that the algorithm attempts would be from both organisms and groups of organisms

(i.e. homogenous and heterogenous cooperation).

Hence, in the context of the research, the dynamic, reciprocal, symbiotic relationship

between the built form and the algorithm would be realized by creating bio inspired

stochastic optimization algorithms that conform to the following criteria:

• The inhabitant/participant elements would exhibit both homogenous and

heterogenous cooperation.

• The specific currency for the state of equilibrium would be communicated

using concepts similar to stigmergy.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |46

2.1.3 About Computational Ecosystems

After answering important questions regarding the scope and relevance of the vast

field of ecosystems and computation in the context of this research, it would now be

reasonable to expand upon the concepts of computational ecosystem by Parpinelli

and Lopes. In other words, it would now be prudent to ask and answer the question,

What does a computational ecosystem mean?

And more importantly,

• How does a computational ecosystem help in establishing a dynamic,

reciprocal, symbiotic relationship between the built form and the algorithm?

• How does its implementation result into computational design becoming

autonomous and digital fabrication becoming data driven?

• How does it represent a fluid design workflow that performs modelling,

analysis and fabrication simultaneously to generate form, structure and

enclosure for architectural intent?

Answering the above questions would help the research in establishing the

theoretical framework and the resultant semantics in alignment with the research

hypothesis, apart from helping reduce the sensationalistic claims (as mentioned in

2.1).

Moreover, establishing the theoretical structure, describing the algorithmic logic, and

providing examples of existing computational ecosystems would not only help in

fulfilling the literary objectives of the research but also assist the research in forming

syllogistic rationale into the operational objectives (as mentioned in 1.2.1) while

providing a crucial insight in fulfilling the logical hypothesis (as explained in 1.2).

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 47|

To unify the concepts of computation and ecosystem into a computational

ecosystem, however, the research strongly bases its argument on the theoretical

unification across the fields of mathematics, computation, ecology and biology.

Although inspiration from nature has played a central role in the field of computation

since the early 21st century (as mentioned in 2.1.2), Natural Computing which

emerged in the same era can be considered as a significant benchmark.

“Natural Computing is the field of research that, based on or inspired by nature,

allows the development of new computational tools which could be software,

hardware or wetware, for problem solving. These computational tools could lead to

the synthesis of natural patterns, behaviors and organisms, and may result in the

design of novel computer systems that use natural media to compute” (de Castro,

2007)33. He further clarifies that Natural Computing testimonies against the

specialization of disciplines thus suggesting a unified theory that attempts to merge

biology and computation. It would have the following areas of investigation –

• Computing inspired by nature – “This area involves development of problem-

solving techniques, especially computational tools in the form of algorithms

by implementing inspirations from nature.”

• Simulation and emulation of nature by means of computing – “This area

involves synthetic processes aimed at creating patterns, forms behaviors and

organisms by mimicking natural phenomena thus increasing our

understanding of nature.”

• Computing with natural materials – “This area corresponds to the use of

natural materials to perform computation, that could substitute or

supplement the current silicon-based computers.” (de Castro, 2007)34

33 De Castro, L.N. (2007) Fundamentals of Natural Computing – basic concepts, algorithms, and
applications, Boca Raton: Taylor & Francis group, 638 pp.
34 Ibidem

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |48

Although bio inspired optimization algorithms are quite effective within the limited

computational time and resources, they become less efficient when the problem is

scaled or made more complex. This problem has been sensationally theorized and

documented as the ‘curse of dimensionality’ (Bellman and Dreyfus, 2003)35, which

means that “the efficacy of bio inspired optimization algorithms recedes exponentially

as the dimensionality of the algorithm increases.” At these higher dimensionalities

(often described with the theoretical explanation of hyperspace), firstly, the solution

space of a problem increases exponentially i.e., the optimization returns a lot of

variance in the solution space and secondly, the characteristics of the problem

change drastically i.e., the starting variables may start becoming incompatible or

might need additional properties to still be considered in the optimization. In the

context of this research, it is beyond the bounds of computational possibility that the

optimization would demand an exponential increase in the dimensionality, however,

nonetheless a more efficient and robust optimization system needs to be employed.

To counter the afore mentioned curse of dimensionality, Parpinelli and Lopes

proposed Hybrid Bio-inspired Systems (HBS) which are categorized into the natural

computing’s first area of investigation (that is computing inspired by nature). Here,

an “HBS employs several biological phenomena that are already usually implemented

in bio-inspired optimization algorithms, but additionally it also adopts several

ecological phenomena into building computational tools to solve complex problems”

(Parpinelli and Lopes, 2012).36

As the HBS serves a distinction from the usual bio-inspired optimization algorithms

while countering the afore mentioned curse of dimensionality, the dynamic,

reciprocal, symbiotic relationship between the built form and the algorithm would

be realized by creating a Hybrid bio inspired stochastic optimization system.

35 Bellman, R.E. and Dreyfus, S.E., (1962) Applied Dynamic Programming, London: Oxford University,
362 pp.
36 Parpinelli, R. S. and Lopes, H. S. (2012). Biological plausibility in optimisation: an ecosystemic view.
International Journal of Bio-Inspired Computation, 4(6), pp. 345-358.

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 49|

Considering computing inspired by nature, a very many optimization algorithms have

been developed, tested and implemented by studying biological phenomena such as

“the evolution of the species, the behavior of social groups, the dynamics of the

immune system, the strategies of search for food and in the ecological relationships

of different populations.” However, “the ecological concepts of habitats, ecological

relationships and ecological succession had not been explored computationally in a

context of optimization” (Parpinelli, 2013)37 until the explorations of Parpinelli and

Lopes to develop an “ecology-inspired algorithm to solve numerical optimization

problems termed as ECO” (Parpinelli and Lopes, 2011).38

With the proposal of ECO, Parpinelli and Lopes laid the theoretical foundations of

Computational Ecosystems while conforming to the theoretical framework of natural

computing. ECO was designed to be a cooperative search algorithm constituting of

populations of individuals, where each population evolves based on its independent

search strategy, while also interacting with other populations implementing the

ecological concepts of habitats, ecological relationships and ecological successions.

Thus, forming a cooperative search algorithm that characterizes homogenous and

heterogenous cooperation similar to a PS2O algorithm (as mentioned in 2.1.2).

Hence, the afore mentioned HBS are developed with and defined by cooperative

search concepts. “These hybrid strategies are expected to provide more efficient and

flexible approaches to solve complex problems that would be very difficult to solve

with simple methods. With such diversity of search strategies and the advantages of

applying them cooperatively, it is possible to establish an analogy with the dynamics

of biological ecosystems.” (Parpinelli and Lopes, 2012).39

37 Parpinelli, R. S. (2013). An Ecosystemic View for Developing Biologically Plausible Optimization
Systems. PhD Thesis. Federal University of Technology Paraná.
38 Parpinelli, R. S. and Lopes, H. S. (2011). An Eco-inspired Evolutionary Algorithm Applied to
Numerical Optimization. In: Third World Congress on, Nature and Biologically Inspired Computing.
[online] Salamanca: IEEE, pp. 466-471. Available at: https://ieeexplore.ieee.org/document/6089631
[Accessed 12 Oct. 2020].
39 Parpinelli, R. S. and Lopes, H. S. (2012). Biological plausibility in optimisation: an ecosystemic view.
International Journal of Bio-Inspired Computation, 4(6), pp. 345-358.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |50

By biological ecosystems, this research implies to the field of ecology and the

definitions that emerge thereof (as mentioned in 2.1.1). In the analogy of an HBS the

ECO was designed to be behaving as a biological ecosystem, thereby exhibiting

natural computing inspired by nature. It essentially symbolizes an algorithm

populated by hypothetical species which behave according to an optimization

algorithm and the ecosystem on the whole consists of populations of species that

respond to each other and the environment corresponding to aforementioned

ecological concepts of habitats, ecological relationships, and ecological successions.

Considering the fact that the inhabitants of the above mentioned algorithm, which

are the species (as independent agents) and their populations (as collective data

sets), in their pursuit of an optimization state driven by the search algorithms strive

to attain a state of equilibrium, and the HBS rely on ecological concepts to attain this

state of equilibrium, and behave as biotic elements (the species and their

populations) in an abiotic environment, it can be theorized that the algorithm seeks

symbiosis amongst its biotic elements. Here, the symbiosis the research refers to is

the “symbiosis that is not just defined by persistent mutualistic interactions” (de Bary,

1879)40, but the “symbiosis that also involves commensal interactions and parasitic

interactions, however, excluding predatorial interactions” (Douglas, 2010)41. Because

“symbiosis is now increasingly being considered as an important selective force

behind evolution” (Wernegreen, 2004)42, as “many biological species have been found

to have had a long history of interdependent co-evolution” (Paracer and Ahmadjian,

2000)43, for an HBS, symbiosis becomes an essential means for the achievement of

an equilibrium state.

40 De Bary, A. (1879) Die Erscheinung der Symbiose: Vortrag, gehalten auf der Versammlung
deutscher Naturforscher und Aerzte zu Cassel (In English - The Phenomenon of Symbiosis),
Strassburg: Karl J. Trübner, 30 pp.
41 Douglas, A. E. (2010) The Symbiotic Habit, Princeton, NJ: Princeton University Press, 232 pp.
42 Wenegreen, J. J. (2004). Endosymbiosis: Lessons in Conflict Resolution. PLoS Biology, 2(3), pp. 345-
358.
43 Paracer, S. and Ahmadjian, V. (2010) Symbiosis: An Introduction to Biological Associations,
Princeton: Oxford University Press, 304 pp.

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 51|

Parpinelli and Lopes further expand on the behavior and ecological significance of

these symbiotic relationships within an ECO to be “both positive and negative

relationships between individuals of the same species (intraspecific relationships or

homotypic) or between individuals of different species (interspecific relations or

heterotypic)” (Parpinelli and Lopes, 2014).44 The four different combinations of these

relationships can be described as following:

• Positive Intraspecific relationships (positive homotypic) – Interactions that

lead to the constitution of societies and colonies.

• Negative Intraspecific relationships (negative homotypic) – Interactions such

as Competition and Cannibalism.

• Positive Interspecific relationships (positive heterotypic) – Interactions such

as Mutualism, Protocooperation, Inquilinism, and Commensalism.

• Negative Interspecific relationships (negative heterotypic) – Interactions such

as Competition, Amensalism, Predatism, Parasitism, and Slavery.

Because Intraspecific relationships are pertaining to the interactions between the

individuals of the same species, they lead to population level behaviors (properties

defining a population), whereas, Interspecific relationships that are between

individuals of different species can lead to an ecological community (group of species

across habitats sharing similar properties). These relationships also have a crucial role

in functioning of the search algorithm, “where Intraspecific relationships are

responsible for intensifying the search and interspecific relationships are responsible

for diversifying the search thereby maintaining a healthy diversity in the optimization

algorithm thus increasing the biodiversity” (Ibidem).45.

44 Parpinelli R. S. and Lopes, H. S. (2014). A computational ecosystem for optimization: review and
perspectives for future research. Memetic Computing, 7(1), pp. 29-41.
45 Ibidem

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |52

To establish a canonical ECO, Parpinelli and Lopes developed the following pseudo

code for the algorithm (Parpinelli and Lopes, 2011).46:

1. Let i = 1, . . . , NQ, j = 1, . . . , NH and t = 0;

2. Initialize each population Qi (t) with ni random candidate solutions;

3. while stop criteria no satisfied do {Ecological succession cycles}

4. Perform evolutive period for each population Qi (t);

5. Identify the region of reference Ci for each population Qi (t);

6. Using the Ci values, define the NH habitats;

7. For each habitat Hj (t) define the communication topology CTj (t)

between populations Qj
i (t);

8. For each topology CTj (t), perform interactions between populations Qj
i

(t);

9. Define communication topology TH (t) between Hj (t) habitats;

10. Perform interactions between Hj (t) habitats according to TH (t);

11. Increase t;

12. end while

46 Parpinelli, R. S. and Lopes, H. S. (2011). An Eco-inspired Evolutionary Algorithm Applied to
Numerical Optimization. In: Third World Congress on, Nature and Biologically Inspired Computing.
[online] Salamanca: IEEE, pp. 466-471. Available at: https://ieeexplore.ieee.org/document/6089631
[Accessed 12 Oct. 2020].

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 53|

This algorithm is an HBS displaying all the afore mentioned ecological relationships.

The pseudo code for the afore mentioned canonical ECO algorithm can be simplified

as followed:

• Apart from the time instant (t), there are three important variables and thus

participants of this algorithm, namely, the individuals (i), the populations (Q)

and the habitats (j).

• The individuals are the basic elements of the algorithm, the populations

denote all the elements sharing same fundamental properties analogical to

the biological equivalent of a species, whereas the habitat is a set of

populations reaching similar optimization states at a specific frame of time.

• This implies, that a population of individuals in a habitat for a given instance

of time cannot be a part of another habitat in the same instance of time.

• After establishing on line 1 that the total number of possible populations

would be NQ and total number of possible habitats would be NH, line 2,

initiates the algorithm at t=0, with a random organization.

• From lines 3 to 12, the biological concept of ecological succession is

represented by a while loop that proceeds until the ecological succession

cycles reach the maximum predefined value.

• Within the loop of ecological succession, line 4 exploits the optimization

within each population pertaining to its intensification and diversification

criteria. After the end of this period the habitats of the system are identified,

as shown on lines 5 and 6. Soon after, intra-habitat communications are

established and performed in the form of an ecological mating relationship as

shown on lines 7 and 8. Then, lines 9 and 10 establish and perform inter-

habitat communication in the form of an ecological migration relationship.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |54

• As the time instant increases in line 11, the lines 3 to 12 are looped to fulfill

the maximum predefined value of the ecological succession.

• Identifying the habitats of the system, Hj (t), represented by lines 5 and 6 are

very crucial steps in this algorithm. Here, the longest concentrations of

individual populations are recognized, their centroids are found and a habitat

is defined using a predetermined minimum distance threshold ρ.

• Intra-habitat communication CTj (t), in every habitat Hj (t), between

populations Qj
i (t), are achieved by establishing and performing the

aforementioned ecological mating relationship. In this relationship an

individual of each population, hereafter termed as the best individual is

chosen using “the tournament strategy” (Blickle, 2000)47 and genetic

exchange between them is performed in order to generate a new individual.

The new generated individual replaces an individual selected at random in

their initial population, obviously excluding the best individual.

• Inter-habitat communication TH (t), in every habitat Hj (t), is achieved by

establishing and performing the aforementioned ecological migration

relationship. In this relationship, for each habitat, a random population within

the habitat is chosen. The best individual of this population is chosen and is

subjected to migration to another habitat. In the destination habitat, it

replaces an individual that is randomly chosen, obviously excluding the best

individual of the destination habitat.

Thus, a canonical ECO is an HBS implementing all the different ecological criteria

while optimizing the algorithm serving as a working prototype of a Computational

Ecosystem.

47 Blickle, T. (2000). Tournament Selection. In: T. Bäck, D. B. Fogel, and Z. Michalewicz, ed.,
Evolutionary Computation 1: Basic Algorithms and Operators, 1st ed. New York: Taylor & Francis
Group, pp. 181-186.

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 55|

Further expanding on the semantics and usage of an HBS, Parpinelli and Lopes have

bifurcated the HBS into the following groups (Parpinelli and Lopes, 2012).48:

• Bio Plausible HBS – Here, designers of the computational ecosystem

generally aim to “achieve biologically plausible functionalities in non-

biological contexts, such as the optimization of engineering problems.”

• Engineered HBS – Here, designers of the computational ecosystem have only

one purpose and that is “to combine more than one bio-inspired algorithm

together to create a new algorithm.”

This thesis, however, would eventually intend to develop, test, taxonomize, and

prototype Hybrid Bio Plausible Bio-inspired Stochastic Optimization Algorithms as

functioning Computational Ecosystems primarily in computational environments.

These computational ecosystems would consist of individual participants exhibiting

structural properties of biotic and abiotic agents programmed with the behavioral

properties of their real-life counterparts.

Depending on the search landscape and driven by the optimization goals

communicated across different species by means of stigmergy, the biotic agents

would form populations and several populations across the iterations over time

would form habitats. While exhibiting properties of homogenous and heterogenous

cooperation, by means of intraspecific and interspecific relationships, the

populations would experience intensification (to find the state of equilibrium and

thus optimization) and diversification (to maintain a significant amount of

biodiversity).

48 Parpinelli, R. S. and Lopes, H. S. (2012). Biological plausibility in optimisation: an ecosystemic view.
International Journal of Bio-Inspired Computation, 4(6), pp. 345-358.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |56

In order to develop the aforementioned Bio Plausible Hybrid Bio-inspired Stochastic

Optimization Algorithms as functioning Computational Ecosystems, the research

needs to identify existing bio-inspired algorithms that are dormant and already

implemented in the field of computation. Figure 2.1 illustrates a representation of

the “taxonomy and nomenclature of various bio inspired optimization algorithms

grouped by the area of inspiration” (Binitha and Sathya, 2012)49.

Figure 2.1 – Graphical representation of the taxonomy and nomenclature of various bio inspired

optimization algorithms grouped by the area of inspiration. Original image by Binitha and Sathya

(May 2012) Illustration and graphics by Author (January 2021).

49 Binitha, S. and Sathya, S. S. (2012). A Survey of Bio inspired Optimization Algorithms. International
Journal of Soft Computing and Engineering (IJSCE), 2(2), pp. 137-151.

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 57|

Abbreviations mentioned in fig. 2.1. –

• GA – Genetic Algorithms - Evolutionary based stochastic optimization

algorithm with a global search potential.

• GP – Genetic Programming - An extension to Genetic algorithms differs from

the latter in terms of representation of the solution.

• ES – Evolutionary Strategy - Global optimization algorithm inspired by the

theory of adaptation and evolution by means of natural selection.

• DE – Differential Evolution - Similar to GA except in a DE mutation is the result

of arithmetic combinations of individuals.

• PFA – Paddy Field Algorithm - Operates on reproductive principle based on

proximity to global solution and population density akin plant populations.

• IWD – Intelligent Water Drops Algorithm - An innovative population-based

method inspired by the processes in natural river systems.

• GSO – Group Search Optimizer - A population-based optimization algorithm,

which adopts the producer–scrounger (PS) model metaphorically to design

optimum searching strategies, inspired by animal foraging behavior.

• PSO – Particle Swarm Optimization - A computational intelligence oriented,

stochastic, population-based global optimization technique inspired by the

social behavior of bird flocking searching for food.

• ACO – Ant Colony Optimization - A meta heuristic inspired by the foraging

behavior of ants in the wild based on stigmergy.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |58

• FSA – Fish Swarm Algorithm - Swarm intelligent evolutionary computation

technique inspired by the natural schooling behavior of fish.

• BFA – Bacterial Foraging Algorithm - Inherits the aspects of bacterial foraging

patterns like chemo taxis, metabolism, reproduction and quorum sensing.

• FA – Firefly Algorithm - An unconventional swarm-based heuristic algorithm

for constrained optimization tasks inspired by the flashing behavior of

fireflies.

• ABC – Artificial Bee Colony Algorithm - A swarm intelligence algorithm based

on swarming behavior of bees; further classified into - foraging and mating.

• SFLA – Shuffled Frog Leaping Algorithm - A population-based cooperative

meta-heuristic algorithm with efficient mathematical function and global

search capability.

• AIS – Artificial Immune System Algorithm - Based on clonal selection principle

it is a population-based algorithm inspired by the human immune system

which is a highly evolved, parallel and distributed adaptive system.

• BBO – Biogeography Based Optimization - A global optimization algorithm

inspired by mathematical models of biogeography. Biogeography is the study

of distribution of species in nature over time and space.

• AWC – Invasive Weed Colony Optimization - A numerical stochastic search

algorithm inspired by the ecology of weed colonization and distribution.

• PS2O - Particle Swarm Optimization with two hierarchies – It extends the

dynamics of the canonical PSO algorithm by adding a significant ingredient

that takes into account the symbiotic co evolution between species.

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 59|

2.1.4 About the Implementation of Computational Ecosystems

Fig. 2.1 helps the research in establishing two crucial observations in the concept of

computational ecosystems:

• The concept of a recognized, well-researched taxonomy and nomenclature of

existing bio-inspired algorithms that could serve as examples of

computational ecosystems already exists.

• More such algorithms that take into account the implementation of either Bio

Plausible or Engineered Hybrid Bio-inspired Stochastic Optimization

Algorithms can be designated as computational ecosystems.

Having answered the question of what a computational ecosystem is and how an

algorithm could be termed as a computational ecosystem by understanding a

canonical ECO algorithm, its properties, and its relevance in the theoretical

framework of this research, the semantics still have a few unanswered questions

pertaining to the implementation of computational ecosystems to the relevance of

this research (explained in 2.1.3), especially issues relating to the following:

• To establish a dynamic, reciprocal, symbiotic relationship between the built

form and the algorithm.

• To represent a fluid design workflow that performs modelling, analysis and

fabrication simultaneously to generate form, structure, and enclosure for

architectural intent.

• To make computational design more autonomous and digital fabrication

more data-driven.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |60

To elaborate on the above-mentioned concerns, the relationship of the built form

and the algorithm excluding the role of design, that the research proposes to

establish, needs to be analyzed and evaluated through the lens of biological and

ecological interactions.

As elaborated in 1.1.4 the built form and the algorithm, and with the example of the

“Urbach Tower project” (Wood et al, 2020)50, the built form and design have seen an

introduction of the algorithm in the AEC industry in the first couple of decades of the

21st century. The Architectural community which has been categorically bifurcated

into the design architect and the delivery architect have also encountered a

significant dominance of the algorithm in the form of adaptive design tools (such as

Finch 3D) for the former and BIM software for the latter. However, with the

advancements in the manufacturing, production and computation industries brought

in by the fourth Industrial Revolution, the role of design can be projected to become

redundant as the years go by. With the aforementioned proclamations (previously

elaborated in 1.1.4) that :

• Algorithm in the form of computational design software can design the built

form by performing modelling, analysis, and prototyping simultaneously with

the use of data sets and rule sets pertaining to the structure, material,

services, and equipment dynamically updated from a cloud source.

• Algorithm in the form of digital fabrication robots can fabricate the built form

without the necessity of design documentation in the form of traditional

plans, sections, elevations, and details, but with just a G-Code that involves a

precise instruction set for tool paths and material usage.

50 Wood, D., Grönquist, P., Bechert, S., Aldinger, L., Riggenbach, D., Lehmann, K., Rüggeberg, M.,
Burgert, I., Knippers, J., and Menges, A. (2020). From Machine Control to Material Programming Self-
Shaping Wood Manufacturing of a High Performance Curved CLT Structure – Urbach Tower. In:
Fabricate 2020 Making Resilient Architecture, London: UCL press pp. 50-57 Available at:
https://www.uclpress.co.uk/products/154646 [Accessed 15 Jun. 2020].

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 61|

With the trivial use cases of design in the AEC industry maintained and supervised by

the algorithm, both the design and the delivery architects can have more intellectual

and intuitive control over the built form by controlling the algorithm in the form of

computational design and digital fabrication respectively.

To perform the aforementioned trivial use cases of design by means of the algorithm

in the form of computational design and digital fabrication, however, the algorithm

would require a certain amount of autonomy in the system. This autonomy could be

defined as the liberty to access important aspects such as access to data sets of

quantitative characteristics, bye-laws and engineering properties of components

related to structure, material, services, and equipment. Moreover, as the algorithm

also would be performing analysis while modelling and prototyping, this autonomy

could also be defined as the liberty to access data sets of a more macro level such as

topographical data, climatological data, demographic data, data of energy sources,

data of service sources, infrastructural data and thermal comfort data.

With the above-mentioned autonomy, the algorithm would be more intuitive,

informed and conversant, perhaps not as much as the architect, although much

better than the current design tools used by the architect. But with the power of

computation, that involves data processing of higher quantities and at higher

velocities, the algorithm could also be equipped to become autonomous with post

construction data and post occupancy data. Here, the built form would be generating

a massive amount of data sets such as structural performance, energy performance,

Mechanical Electrical and Plumbing (MEP) efficiency, Heating Ventilation and Air-

conditioning (HVAC) efficiency, sewage and water supply efficiency, functional

efficiency, accessibility, climate control, comfort levels and the overall qualitative of

space. If the algorithm gets an access to these data sets, there could be a tremendous

enhancement in the way it deals with the subsequent built forms. Moreover, such an

unprecedented access and autonomy over pre and post execution data sets would

also allow the architect to truly and thoroughly master the qualitative and

quantitative optimization of architecture.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |62

However, it is not just the accessibility of data sets pertaining to the AEC industry that

need to be established to form a relationship between the built form and algorithm

that the research seeks (that’s in fact the easy bit and quite elementary to be fair!).

To truly serve as a better alternative to the traditional understanding and industry

application of design (that is as a mere means of documentation and delivery of an

AEC project), the algorithm needs to learn how to use these data sets, and more

importantly how to communicate design decisions to and from the built form. To

establish communication, a system would have to be installed that would create,

maintain and evaluate a feedback loop between the built form and the algorithm.

This means that, the feedback loop would have to be autonomous and autopoietic.

The research prefers to align itself with defining autopoiesis “as a machine organized

(defined as a unity) as a network of processes of production (transformation and

destruction) of components which (Maturana and Varela, 1980)51:

• through their interactions and transformations continuously regenerate and

realize the network of processes (relations) that produced them, and

• constitute it (the machine) as a concrete unity in space in which they (the

components) exist by specifying the topological domain of its realization as

such a network.”

“A unity, which is the core concept of the autopoietic machine, is essentially an entity

distinct from a background and exists in a space defined by its components”

(Maturana and Varela, 1980).52 Although, this means that an autopoietic system is in

isolation, the canonical example of an autopoietic system, a biological cell, doesn’t

operate in isolation. Hence, the aforementioned feedback loop is not obligated to

operate in isolation.

51 Maturana, H. R. and Varela, F. J. (1980). Autopoiesis and Cognition: The Realization of the Living.
Berlin: Springer Science & Business Media, p.146.
52 Ibidem

Architecture of Computational Ecosystems

| 2.1 Establishing the semantics 63|

In the process of generating a theoretical framework, it is keen to note that the

research prefers autopoiesis over the generic allopoiesis as a core conceptual

property of the feedback loop. Apart from the conceptual relevance of autopoiesis in

establishing a recursive feedback loop within the communication logic between the

built form and algorithm, the research also wants to abandon the traditional,

functional rationale that design is an allopoietic, transformative process of creating

something out of something else. By establishing the above theoretical construct of

creating, maintaining and constantly evaluating an autonomous and autopoietic

feedback loop between the built form and the algorithm, the research essentially

seeks a constant recursive loop where the built form and the algorithm both undergo

transformations using the data of the other while creating more data for further use.

To put it rationally, two structurally plastic composite unities (the built form and the

algorithm) “interact with each other and thus operate as selectors of their individual

paths of structural change, thereby forming a reciprocal structural coupling. As a

result, the changes of state of one system trigger the changes of state of the other

recursively, and a domain of coordinated conduct is established between the two

mutually adapted systems” (Maturana, 2002).53 An autonomous and autopoietic

structural coupling as a means of communication between the built form and the

algorithm both in the form of computational design and digital fabrication is exactly

what this research has hypothesized in the last chapter (previously, in 1.2) as,

What if the built form was constructed, monitored and governed by an

autonomous, unbiased algorithm?

What if this algorithm was dynamically constructed, monitored and governed by

the built form?

53 Maturana, H. R. (2002). Autopoiesis, Structural Coupling and Cognition: A history of these and
other notions in the biology of cognition. Cybernetics & Human Knowing, 9(3-4), pp. 5-34.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |64

A computational ecosystem as explained and elaborated (previously, in 2.1.3) clearly

instills the fundamental concepts of a recursive, evolutionary algorithm in its

workflow by defining itself as either a Bio Plausible or an Engineered Hybrid Bio-

inspired Stochastic Optimization Algorithm.

A computational ecosystem by the virtue of the canonical ECO algorithm (previously

elaborated in 2.1.3 About computational ecosystems) quite distinctly exhibits the

following characteristics that are unique within the spectrum of bio-inspired

optimization algorithms as seen in fig. 2.1:

• A computational ecosystem represents an autonomous, autopoietic feedback

loop that is based upon the structural coupling of two entities (in a canonical

ECO algorithm, these two structurally plastic composite unities can be clearly

represented by the populations and habitats) which would be essential in

establishing a dynamic, reciprocal, symbiotic relationship between the built

form and the algorithm.

• Moreover, the homogenous and heterogenous cooperation that is clearly

represented by intraspecific and interspecific relationships, (driven by

intensification and diversification within the evolutive period of a canonical

ECO algorithm) in a computational ecosystem has all the key ingredients of

representing a fluid design workflow that performs modelling, analysis and

fabrication simultaneously to generate form, structure, and enclosure for

architectural intent.

• And finally, the essential components of intra-habitat communication

strategies and inter-habitat communication strategies (executed by applying

the ecological mating and migration relationships respectively in a canonical

ECO algorithm) would be instrumental in making computational design more

autonomous and digital fabrication more data-driven.

Architecture of Computational Ecosystems

| 2.2 Applicability of the semantics 65|

2.2 Applicability of the semantics

As a corollary to the previous section (2.1 Establishing the semantics), which focused

on addressing, understanding, and establishing key terminologies that form the

theoretical framework in the pursuit of this research, this section (2.2 applicability of

the semantics) explores the implementation of the theoretical construct of

computational ecosystems into the existing fields of pure and applied sciences. The

study and exploration of these implementations will be crucial for the research as it

will further assist in instituting the definitions and use cases of most of the semantics

that has been established until this point. As this entire chapter focuses on the first

literary objective, that installs the lexical semantics (in the reference of setting up a

vocabulary base), this section is vital in providing empirical evidence for the structure

of thought that serves as a theoretical foundation for the rest of the research.

What is interesting to observe in the applications of the semantics is that different

fields of science define a computational ecosystem differently, and thus it becomes

easier for the research to form its definition of a computational ecosystem (in the

context of forming a dynamic, reciprocal, symbiotic relationship between the built

form and the algorithm) while being relevant and comparable to the other

applications, apart from the canonical computational ecosystem (explained and

elaborated upon in section 2.1). However not acknowledged scientifically, many of

these applications of computational ecosystems can be observed in the field of

“Artificial Life or A-Life” (Langton, 1995)54 where agent-based simulations and

interactions are conducted in what is termed as “Artificial Ecosystems”.

Continuing on the above concepts of A-life, this thesis would illustrate some

examples of the applicability of computational ecosystems in behavioral sciences and

visual arts.

54 Langton, C. G. (1995). Artificial Life: An Overview. Cambridge: MIT Press, p.341.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |66

2.2.1 Applicability in biology, epidemiology and behavioral sciences

Most of the bio inspired optimization algorithms illustrated in fig. 2.1 in all the three

distinctions (that is, evolution based, swarm based, and ecology based) could be quite

essentially classified as computational ecosystems. Most of them, and especially the

bio inspired optimization systems specifically associated to the swarm-based

algorithms (for example, the PSO, ACO, BFA, FSA, and ABC) implement one or all of

the crucial ingredients of a computational ecosystem such as:

• Structural Coupling – Which is quite efficiently demonstrated by the GSO

algorithm (He, Wu and Saunders, 2006)55, where the producers, scroungers

and rangers enter into a 3-way structural coupling that allows the algorithm

to solve many of its optimization goals.

• Intensification and Diversification – Which is a core concept in the

functioning of a BBO (Simon, 2009)56 algorithm (apart from the PS2O

algorithm as elaborated in 2.1.2), where the species (participating individuals

or agents) undergo homogenous and heterogenous co-operations to achieve

their optimization objectives.

• Intra-habitat and inter-habitat communication strategies – Which is

embedded in the function of chemotaxis or cell movement in a BFA (Passino,

2002)57 where the bacterial movement is simulated by establishing a cell-to-

cell communication mechanism (similar to the use of stigmergy in an ACO

algorithm as explained in 2.1.2) to achieve the optimization goals.

55 He, S., Wu, Q. H. and Saunders, J. R. (2006). A Novel Group Search Optimizer Inspired by Animal
Behavioral Ecology. In: IEEE International Conference on Evolutionary Computation. Vancouver: IEEE,
pp. 1272-1278.
56 Simon, D. (2009). Bio-geography based optimization. IEEE Transactions on Evolutionary
Computation. 12(6), pp. 702-713.
57 Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control Systems Magazine. 22(3), pp. 52-67

Architecture of Computational Ecosystems

| 2.2 Applicability of the semantics 67|

Although the aforementioned algorithms are examples of bio-inspired optimization

algorithms and are theoretically situated in the first area of investigation in the field

of Natural Computing (computing inspired by nature; previously explained and

elaborated upon in 2.1.3), applications in the field of behavioral sciences are mostly

based on the second area of investigation (simulation and emulation of nature by

implementing computing). Quite often these applications in behavioral sciences

which are theoretically termed as artificial ecosystems are performed by

implementing Agent-based Modelling (ABM) or Individual-based Modelling (IBM).

Although agent-based modelling is a mathematical concept that was introduced in

the early 1940s, due to the lack of computational architecture it failed to pick up

across the discipline of mathematics and computer sciences until the 1990s, after

which it became quite ubiquitous as a technique of simulating natural forms and

systems. On the whole, an ABM or IBM is a simulation system that helps in the

emulation of natural forms and systems “based on the actions and interactions of

autonomous agents (both individual or collective entities) to understand the behavior

of a system and what governs its outcomes” (Railsback and Grimm, 2011)58.

As ABMs and IBMs have been highly implemented in the field of Biology, their results

have led studies into understanding and predicting some complex phenomena across

the scientific disciplines, such as the complex phenomena of emergence (in the sense

of macro-state changes emerging from micro-state agent behaviors) by mere

simulation of some existing biological interactions in computational environments.

The study and simulation of “Population Dynamics” (Caplat, Anand, and Bauch,

2007)59 and “Landscape Diversity” (Wirth, Szabó, and Czinkóczky, 2016)60 are some

of the applications of ABMs and IBMs in biology.

58 Railsback, S. F., & Grimm, V. (2011). Agent-based and individual-based modelling: A practical
introduction. Princeton: Princeton University Press., p.329.
59 Caplat, P., Anand, M., Bauch, C. (2007). Symmetric competition causes population oscillations in an
individual-based model of forest dynamics. Ecological Modelling 211. 3(4), pp. 491-500.
60 Wirth, E., Szabó, G., Czinkóczky, A. (2016). Measure of Landscape Heterogeneity by Agent-Based
Methodology. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences. III(8), pp. 145-151.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |68

Computational Ecosystems in the form of ABMs and IBMs are also widely

implemented in the field of Epidemiology almost as often and effectively as the

conventional Compartmental Modelling technique (where agents/participants would

move through computational compartments of S, I, and R; where S - Susceptible, I –

Infectious and R - Recovered). ABMs and IBMs have often been employed in the

analysis, information, and intervention of dangerous diseases such as the “Avian

Influenza which is the result of a mutant influenza virus infecting poultry chickens in

Indonesia” (Situngkir, 2004)61 and the more recent SARS-CoV-2 pandemic, commonly

known as the COVID-19 pandemic where an “ABM termed as CovidSim was

developed by Neil Ferguson and his team of epidemiologists in 2020” (David, 2020)62.

Computational Ecosystems in the form of ABMs have also been implemented in the

field of behavioral sciences for varied purposes such as “to understand the resource

supply and demand relationships with the inclusion of human behavior in the nexus

of the food-water-energy system in agriculture” (Magliocca, 2020)63. Whereas

computational ecosystems in the form of A-Life (as explained in 2.2) have also been

implemented in “assessing population diversity, population density fluctuations, and

socializing behaviors while developing human crowd simulators” (Antunes, 2016)64

All above implementations of Computational Ecosystems show structural couplings

with intensification and diversification strategies performed with intra-habitat and

inter-habitat communication strategies.

61 Situngkir, H. (2004). Epidemiology Through Cellular Automata: Case of Study Avian Influenza in
Indonesia. [online]. Available at: https://arxiv.org/abs/nlin/0403035 [Accessed 24 Apr. 2021].
62 David, A. (2020). Special report: The simulations driving the world’s response to COVID-19. Nature,
[online]. Available at: https://www.nature.com/articles/d41586-020-01003-6 [Accessed 12 Jan.
2021].
63 Magliocca, N. R. (2020). Agent-Based Modelling for Integrating Human Behavior into the Food–
Energy–Water Nexus. Land 2020[online] Volume 9(519), p. 25. Available at:
https://www.mdpi.com/2073-445X/9/12/519/ [Accessed 24 Apr. 2021].
64 Antunes, R. F. (2016). Human Crowd Simulation: What can We Learn from ALife? In: ALIFE 2016,
the Fifteenth International Conference on the Synthesis and Simulation of Living Systems. [online]
Cancun: MIT Press Direct, p. 8. Available at:
https://direct.mit.edu/isal/proceedings/alif2016/38/99500 [Accessed 26 Apr. 2021].

Architecture of Computational Ecosystems

| 2.2 Applicability of the semantics 69|

2.2.2 Applicability in visual arts and design

Computational Ecosystems in the form of Alife, ABM, and IBM have also experienced

a considerable rise in the fields of visual arts, communication design, generative art,

design engineering, and architectural design. While being driven by non-biological

(that is not focused on survival, reproduction, or growth of a system) and/or non-

optimization goals (that is not focused on the search algorithms for finding peak

fitness conditions) these Computational Ecosystems have diverse subjective, and

context-specific goals. Nonetheless, these algorithms can be deemed as

Computational Ecosystems, as they exhibit structural couplings with intensification

and diversification strategies performed with intra-habitat and inter-habitat

communication strategies.

Because the focus of the algorithms in the field of Visual arts and communication

design is on non-biological and non-optimization goals, a slightly non-computational

and analogical definition for Computational Ecosystem has been derived as followed:

• Computational Ecosystems can be defined as “computer programs that

simulate interactions of agents inspired by life in nature. In a typical

computational ecosystem, agents are organized in a hierarchical structure

(food chain) and a community dynamic is promoted through the trade of token

units of energy and biomass between these agents” (Antunes, Leymarie, and

Latham, 2016)65.

• In ecology, “Computational Ecosystems are used when modelling carbon-

based contexts and can be considered part of the sub-domain of ABMs and

IBMs” (Ibidem)66.

65 Antunes, R. F., Leymarie, F. F., Latham, W. (2016). Computational Ecosystems in Evolutionary Art,
and Their Potential for the Future of Virtual Worlds. In: Y. Sivan, ed., Handbook on 3D3C Platforms,
1st ed. Cham, Switzerland: Springer International Publishing, pp. 441-473.
66 Ibidem

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |70

Although based strongly in Alife and ABM, the aforementioned research of Antunes,

Leymarie, and Latham provides a profound insight into establishing the theoretical

framework of Computational Ecosystems, for the application of generative arts while

developing a thorough taxonomy of existing researches and artworks that implement

computational ecosystems within the theoretical construct of the definition stated

previously (not to be mistaken with the canonical computational ecosystem

definition elucidated in 2.1.4). However, their theoretical assumptions possess some

similarities to the canonical computational ecosystems, such as:

• “Eden, a sonic system” (McCormack, 2001)67 which demonstrates that these

computational ecosystems are Autonomous and to a certain extent

Autopoietic as they exhibit certain properties of self-motivated communities

of agents despite their significant biodiversity.

• “A Genotype-Phenotype model is theorized to be existing in these

computational ecosystems” (Antunes, Leymarie, and Latham, 2016)68 that

further demonstrates the existence of inter-habitat and intra-habitat

communication strategies often performed by homogenous, heterogenous,

or chemo static means.

Their theoretical assumptions also add an important dimension of Interactivity

to the realization of computational ecosystems. With this extension, the agents

participating in a Computational Ecosystem could be added, deleted or their

properties could be modified by external user input or abiotic factor, thereby

making a computational ecosystem context-aware (Sommerer and Mignonneau,

1994).69

67 McCormack, J. (2001). Eden: an evolutionary sonic ecosystem. In: Advances in Artificial Life, 6th
European Conference. Berlin: Springer - Verlag, p. 10.
68 Antunes, R. F., Leymarie, F. F., Latham, W. (2016). Computational Ecosystems in Evolutionary Art,
and Their Potential for the Future of Virtual Worlds. In: Y. Sivan, ed., Handbook on 3D3C Platforms,
1st ed. Cham, Switzerland: Springer International Publishing, pp. 441-473.
69 Sommerer, C., Mignonneau, L. (1994). A-Volve: A real-time interactive environment. In: ACM

Architecture of Computational Ecosystems

| 2.2 Applicability of the semantics 71|

Apart from Generative Art, a diverse range of design disciplines have employed

computational ecosystems in various forms. Here, the end goal is not as abstract as

the implementation in visual or sonic arts but is often driven by the optimization of

the more quantitative aspects of design. For instance, the “application of

computational ecosystems in the field of transport design as an ABM in the simulation

and analysis of self-driving cars with respect to computationally generated traffic

conditions, topographical conditions, and resource optimization applied to the

scenario of the city of Lisbon, Portugal” (Martinez and Viegas, 2017).70 The model

optimizes mobility outputs and CO2 emissions for two distinct transport systems.

Computational Ecosystems in the form of ABM have also been implemented in the

architectural and urban environments “to assess greenhouse gas emissions

employing pedestrian simulation in procedurally-generated 3D models” (Aschwanden

et al, 2009)71. Here, the model develops a stochastic search algorithm to simulate

decisions that record the paths taken, while recording stress, effort and deviations.

Thus, Computational Ecosystems can be expressed with the canonical definition

(2.1.4) or the non-canonical definition (2.2.2), however, the theoretical framework

persists that a computational ecosystem represents a feedback loop (structural

coupling) that is autonomous, autopoietic. Moreover, it undergoes homogenous and

heterogenous co-operations performed by intra-habitat and inter-habitat

communication strategies while allowing a degree of interactivity and become

context-aware.

Siggraph Visual Proceedings. pp. 172–173.
70 Martinez, L. M., Viegas, J. M. (2017). Assessing the impacts of deploying a shared self-driving urban
mobility system: An agent-based model applied to the city of Lisbon, Portugal. International Journal
of Transportation Science and Technology. [online] 6(2017), pp. 13-27. Available at:
https://reader.elsevier.com/reader/sd/pii/S2046043016300442?token=0D63F683EEF2FFDA49A010F
D6D7BD77A18B8CAC02BDE12BCA11F14B0F0702DA369F02E3B46DAB8B7E279C516B24D40CC&origi
nRegion=eu-west-1&originCreation=20210703000320 [Accessed 22 May 2020].
71 Aschwanden, G.D.P.A., Wullschleger, T., Müller, H., Schmitt, G. (2009). Agent based evaluation of
dynamic city models: A combination of human decision processes and an emission model for
transportation based on acceleration and instantaneous speed. Automation in Construction. [online]
22, pp. 81-89. Available at: https://www.sciencedirect.com/science/article/pii/S0926580511001415
[Accessed 22 May 2020].

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |72

2.3 Cellular Automata as Computational Ecosystem

As defined, illustrated, and extensively exemplified in the two preceding sections of

this chapter (2.1 and 2.2), Computational Ecosystems in the form of Alife, ABM, and

IBM serve as widely accepted computational models across various fields, disciplines

and industries not just to solve optimization problems, or to mimic natural systems,

but also to generate art and to solve some critical global problems relating to climate

change and pandemics. From a technical perspective, these Computational

Ecosystems are realized by using toolkits that are based on applying programming

languages such as JAVA, .NET, C++, J#, C#, and Logo. Some of these toolkits such as

AnyLogic72, Repast73, and NetLogo74 also use their languages or modified versions of

the aforementioned programming languages. All these toolkits and languages have a

very strong (usually) open-source community that versions these toolkits often and

well. However, they all have a major shortcoming with their very limited and

sometimes even non-existent 3D modelling capabilities.

As the research hypothesizes to theorize, generate, taxonomize, and prototype

computational ecosystems as autonomous, autopoietic, context aware feedback

loops between the built form and algorithm, it becomes very essential for the

research to develop these computational ecosystems in an environment that

anticipates modelling, analysis, and prototyping of 3-dimensional morphologies in 3-

dimensional environments. Furthermore, additional software plugin capabilities

required to create and use existing data sets (as explained in 2.1.4), would require 3-

dimensional capabilities in the software and the technique employed to realize the

Computational Ecosystem. Also, since the research has sensationally postulated to

replace design, a 2-dimensional interface would be rudimentary and useless.

72 AnyLogic. (2000). France: The AnyLogic Company.
73 Repast. (2006). Chicago: Repast HPC.
74 NetLogo. (1999). Illinois: Northwestern University Center for Connected Learning and Computer-
Based Modelling

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 73|

On the whole, owing to the capabilities of the existing programming languages and

available software, the Computational Ecosystem thus developed would have to

conform to the theoretical definitions elaborated thus far and performs in a 3-

dimensional Euclidian environment that exhibits the aforementioned capabilities.

Although never theorized to be an example of a Computational Ecosystem by

ecologists or computational theorists, Cellular Automata are “computational models

that expand on the idea of self-replicating systems”, as was developed conceptually

in the mid 20th century by John Von Neumann (Von Neumann and Burks, 1966)75. A

Cellular Automaton consists of participating agents which are created, replicated and

deleted based on pre-conceived rules in a computational environment. The rules are

often rooted in the study of behaviors and interactions of biological organisms or

systems. The participating agents are denoted by a grid-cell in the Euclidian

environment, hence the name - Cellular Automata. They have been applied in a

diverse range of disciplines across pure and applied sciences since their original

inception by John Von Neumann in the 1950s, however, “the Von Neumann model of

cellular automata did not gain popularity until John Conway, came up with the cellular

automaton - Game of Life” in 1970 (Gardner, 1970)76. In the early 2000s however,

Stephen Wolfram, deeply theorized Cellular Automata into different typologies as an

independent field of computational sciences in his book – A New Kind of Science.

To base the theoretical framework of establishing the lexical semantics, the thesis

would now be elaborating on the different models of Cellular Automata – by Von

Neumann, Conway, and Wolfram to understand their distinct properties and

theoretical implications to the idea of Computational Ecosystems within the

relevance of the research.

75 Von Neumann, J. and Burks, A. W. (1966). Theory of Self-Reproducing Automata. Illinois: University
of Illinois Press, p.387.
76 Gardner, M. (1970). MATHEMATICAL GAMES - The fantastic combinations of John Conway's new
solitaire game "life". Scientific American. [online] 223(4), pp. 120-123. Available at:
https://web.stanford.edu/class/sts145/Library/life.pdf [Accessed 31 May 2020].

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |74

2.3.1 Cellular Automata – John Von Neumann model

John Von Neumann with his colleague Stanislaw Ulam proposed a “simple self-

reproducing kinematic automaton which would serve as a proof-of-concept for his

hypothetical claims of a non-biological self-replicating system during his university

lectures in 1948 and 1949” (Von Neumann and Burks, 1966)77. This time in the history

of mathematics and computation was filled with speculations by mathematicians and

computer scientists around the world of an inevitable logical barrier that could not

accept a self-replicating system in any shape or form. Most of these theories

predated the computational architecture as we know it today (it also belongs to the

time when the conceptualization and construction of a Universal Turing Machine by

Alan Turing was not a reality). For this reason, the Von Neumann model of cellular

automata, which could be considered as the canonical cellular automata was

originally conceptualized and constructed by Von Neumann with the use of pencil

and graph paper.

“Von Neumann evidently was dissatisfied with his original kinematic model because

of its seeming mathematical inelegance. The kinematic model, while qualitatively

sound, appeared not easily susceptible to mathematically rigorous treatment and so

might not serve to convince a determined skeptic” (Freitas Jr. and Merkel, 2004)78.

Ulam, then suggested Neumann that the “notion of a self-replicating machine would

be amenable to rigorous treatment if it could be described in a “cell space” format

that is, in the form of a geometrical grid or tessellation, regular in all dimensions”

(Ibidem)79. This important intervention helped Neumann develop the automaton in

its simplest form.

77 Von Neumann, J. and Burks, A. W. (1966). Theory of Self-Reproducing Automata. Illinois: University
of Illinois Press, p.387.
78 Freitas Jr., R. A., Merkle, R. C. (2004). Kinematic Self-Replicating Machines. [online]
www.molecularassembler.com. Available at: http://www.molecularassembler.com/KSRM/2.1.3.htm
[Accessed 18 Nov. 2017].
79 Ibidem

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 75|

Thus, the basic rules for the configurations, neighbourhoods and states were laid

down for the first operating cellular automaton. In this canonical version, the cellular

automaton is modelled as a finite state automaton (FSA – as a computational model

where the model can exist in only one state at a given time. These states of existence

are predetermined and finite). These FSA, after the intervention of Ulam are termed

as Cells laid out in an infinite square grid. To describe the canonical cellular automata

rule set, however, some semantics would have to be established, as following:

• Cell – The unit square of a square grid. The aforementioned FSA exists in each

cell and all these cells make their transitions synchronously, in

correspondence with a universal "clock" as in a synchronous digital circuit

depending on the configuration of their neighbourhoods (in this case, a Von

Neumann neighbourhood).

• States – Any states of existence as defined in the initial rule-set. The state of

a cell is determined by the states of its neighbourhood. In the canonical

cellular automaton, a total of 29 possible different states are predetermined.

• Von Neumann neighbourhood – The group of 4 neighbouring cells

surrounding a central cell on its cardinal directions (i.e. up, down, left and

right) in a square grid. The neighbourhood consists of the central cell itself,

and it’s four neighbours that are at a unit distance from the central cell.

As previously mentioned, the Von Neumann model of cellular automata was initially

conceived without a computer. However, because of the current state of advanced

computation, many reiterations of the canonical version have been created. With it,

lots of computational tools have been developed for the ease of modelling of these

basic and yet powerful cellular automata. One such platform is the open source

software Golly80.

80 Golly. (2005). England: Andrew Trevorrow and Tom Rokicki.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |76

The basic distinctions of these states can be described as followed:

• The unexcited state – This could be considered as the ‘0’ state or the false

state of the cell.

• The sensitized state – This could be considered as the transition state from

the ‘0’ state to the ‘1’ state.

• The excited state - This could be considered as the ‘1’ state or the true state

of the cell. It carries one bit (as in binary) of data for every sensitized step.

• The quiescent state – This could be considered as the transition state from

the ‘1’ state to the ‘0’ state.

• The transmission state – This could be considered as states that help in

transmitting information in the entire neighbourhood. Each of these could be

in the excited or quiescent states.

• The confluent state – This is activated if a signal is received from the entire

neighbourhood. If activation occurs, after two moments of time they emit

signals outward toward any cell in their neighbourhood which does not have

a transmission directed toward it. The confluent states have the property of

a one-cycle delay; thus, they carry two bits of data at any instance of time.

Thus, considering the above basic distinctions of possible states, a “Von Neumann

model of Cellular Automata can have 29 different predetermined states” (Freitas Jr.

and Merkel, 2004)81 depending on their interspecific combinations which can be

considered as the rule sets to initiate the Automaton.

81 Freitas Jr., R. A., Merkle, R. C. (2004). Kinematic Self-Replicating Machines. [online]
www.molecularassembler.com. Available at: http://www.molecularassembler.com/KSRM/2.1.3.htm
[Accessed 18 Nov. 2017].

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 77|

They can be described in Golly by means of RGB values (red, green, blue) as followed:

1. U (Ground state or Unexcited state) (48,48,48)

2. the transition or sensitized states (in 8 sub states)

a. S (newly sensitized) (255, 0, 0)

b. S0 – (sensitized, no input for 1 cycle) (255, 125, 0)

c. S00 – (sensitized, no input for 2 cycles) (255, 175, 50)

d. S000 – (sensitized, no input for 3 cycles) (251, 255, 0)

e. S01 – (sensitized, no input for 1 cycle, then input for 1 cycle) (255, 200,

75)

f. S1 – (sensitized, input for one cycle) (255, 150, 25)

g. S10 – (sensitized, input for 1 cycle, then no input for 1 cycle) (255, 255,

100)

h. S11 – (sensitized, input for 2 cycles) (255, 250, 125)

3. the confluent states (in 4 states of excitation)

a. C00 – (quiescent and will also be quiescent next cycle) (0, 255, 128)

b. C01 – (now quiescent, but will be excited next cycle) (33, 215, 215)

c. C10 – (excited but will be quiescent next cycle) (255, 255, 128)

d. C11 – (currently excited and will be excited next cycle) (255, 128, 64)

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |78

4. The ordinary transmission states (in 4 directions, excited or quiescent)

a. North-directed (excited and quiescent) (36, 200, 36) (106, 106, 255)

b. South-directed (excited and quiescent) (106, 255, 106) (139, 139, 255)

c. West-directed (excited and quiescent) (73, 255, 73) (122, 122, 255)

d. East-directed (excited and quiescent) (27, 176, 27) (89, 89, 255)

5. the special transmission states (in 4 directions, excited or quiescent)

a. North-directed (excited and quiescent) (191, 73, 255) (255, 56, 56)

b. South-directed (excited and quiescent) (203, 106, 255) (255, 89, 89)

c. West-directed (excited and quiescent) (197, 89, 255) (255, 73, 73)

d. East-directed (excited and quiescent) (185, 56, 255) (235, 36, 36)

The confluent states consider the following (Von Neumann and Burks, 1966)82:

• They do not communicate data, and they take input from one or more ordinary

transmission states, or deliver output to transmission states, that are not

directed towards them.

• They implement AND operator to inputs.

• Data held by them is lost if that state has no adjacent transmission state that

is also not pointed at them. Thus, they can be used as "bridges".

82 Von Neumann, J. and Burks, A. W. (1966). Theory of Self-Reproducing Automata. Illinois: University
of Illinois Press, p.387.

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 79|

Furthermore, the model is based on the following construction rules (Von Neumann

and Burks, 1966)83:

• Initially, the cells are in the ground state U. When given an input excitation

from a neighbouring ordinary or special transmission state, the cell in the U

state becomes sensitized, transitioning through a series of states before

finally resting at a quiescent transmission or confluent state. The choice of

which destination state the cell will reach is determined by the sequence of

input signals. Thus, the transition/sensitized states can be thought of as the

nodes of a bifurcation tree leading from the U state to each of the quiescent

transmission and confluent states. In the following tree, the sequence of

inputs is shown as a binary string after each step:

• a cell in the U, given an input, will transition to the S state in the next cycle (1)

o a cell in the S, given no input, will transition into the S0 state (10)

▪ a cell in the S0, given no input, will transition into the S00 (100)

• a cell in the S00, given no input, will transition into the

S000 (1000)

o a cell in the S000, given no input, will transition

into the east-directed ordinary transmission

state (10000)

o a cell in the S000, given an input, will transition

into the north-directed ordinary transmission

state (10001)

83 Von Neumann, J. and Burks, A. W. (1966). Theory of Self-Reproducing Automata. Illinois: University
of Illinois Press, p.387.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |80

• a cell in the S00, given an input, will transition into the

west-directed ordinary transmission state (1001)

▪ a cell in the S0, given an input, will transition into the S01 (101)

• a cell in the S01, given no input, will transition into the

south-directed ordinary transmission state (1010)

• a cell in the S01, given an input, will transition into the

east-directed special transmission state (1011)

o a cell in the S state, given an input, will transition into the S1 (11)

▪ a cell in the S1, given no input, will transition into the S10 (110)

• a cell in the S10, given no input, will transition into the

north-directed special transmission state (1100)

• a cell in the S10, given an input, will transition into the

west-directed special transmission state (1101)

▪ a cell in the S1, given an input, will transition into the S11 (111)

• a cell in the S11, given no input, will transition into the

south-directed special transmission state (1110)

• a cell in the S11, given an input, will transition into the

quiescent confluent state C00 (1111)

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 81|

And, on the following Destruction rules (Von Neumann and Burks, 1966)84:

• If an input is sent from a special-transmission state cell into a confluent-state

cell, the latter will be reduced back to U.

• Similarly, if an input is sent from a special-transmission state cell into an

ordinary transmission-state cell, the latter will be reduced back to U.

• Conversely, if an input is sent from an ordinary-transmission state cell into a

special transmission-state cell, the latter will be reduced back to U.

Thus, Von Neumann demonstrated that his “cellular model of machine replication

possessed the sufficient logical properties including logical universality, construction

capability, and constructional universality , thus enabling self-replication and the

empirical evidence of a Universal Constructor” (Freitas Jr. and Merkel, 2004)85.

Interestingly, the model was implemented in the calculation of liquid motion, where

“the driving concept of the method was to consider a liquid as a group of discrete

units and calculate the motion of each based on its neighbours' behaviors” (Białynicki-

Birula and Białynicka-Birula, 2004).86

However, the important aspect of the Von Neumann model that could be

implemented in the context of Computational Ecosystems is the intraspecific

relationship in a cell depending on its state, and interspecific relationship with its

neighbourhood in a given instance of time. Moreover, the structural coupling

between the cells, states and the neighbourhood is analogous to that of a GSO

algorithm (2.1.3).

84 Von Neumann, J. and Burks, A. W. (1966). Theory of Self-Reproducing Automata. Illinois: University
of Illinois Press, p.387.
85 Freitas Jr., R. A., Merkle, R. C. (2004). Kinematic Self-Replicating Machines. [online]
www.molecularassembler.com. Available at: http://www.molecularassembler.com/KSRM/2.1.3.htm
[Accessed 18 Nov. 2017].
86 Białynicki-Birula, I., Białynicka-Birula, I. (2004). Modelling Reality - How Computers Mirror Life.
Oxford: Oxford University Press, p.188.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |82

2.3.2 Cellular Automata – John Conway model

Although the Von Neumann model was quite accomplished at performing its function

of a self-replicating machine in the form of a Universal Constructor, it was quite

laborious and complex in the form of its diverse range of states and their

combinations. After Von Neumann, very many mathematicians have established

their versions of Cellular Automata. Most of them attempting to reduce the number

of finite states determined before setting up the Automaton. Notable examples

during this time include the “Codd model with eight states which was created to

emulate the Von Neumann model with a lesser amount of states” (Codd, 1968)87; or

the “Greenberg-Hastings cellular automaton (GH model) with three states which was

designed to model excitable media” (Greenberg and Hastings, 1978)88.

As the computational resources evolved, many such Automata were developed by

mathematicians and computer scientists through the decades of the late 20th century

further demonstrating that simpler machines than von Neumann's can be shown to

be capable of reproducing themselves. The question then arose: “How simple can a

machine become while still retaining the capacity to reproduce itself?” (Langton,

1984)89. In 1970, John Conway’s game of life, which was “a cellular automaton with

just 2 states was designed to serve as a solitary math game expanding on the idea of

mathematical simulation games” (Gardner, 1970)90 answered the above question to

its very extreme. The simplification in Conway’s model was so remarkable, that it

breathed a new life into the study and research of cellular automata in the fields of

mathematics and computer sciences.

87 Codd, E. F. (1968). Cellular Automata. PhD Thesis. Academic Press, New York.
88 Greenberg, J. M., Hastings, S. P. (1978). Spatial Patterns for Discrete Models of Diffusion in
Excitable Media. SIAM Journal on Applied Mathematics, 34(3), pp. 515–523.
89 Langton, C. G. (1984). Self-Reproduction in Cellular Automata. In: Physica 10D. Amsterdam:
Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division), pp. 135-144.
90 Gardner, M. (1970). MATHEMATICAL GAMES - The fantastic combinations of John Conway's new
solitaire game "life". Scientific American. [online] 223(4), pp. 120-123. Available at:
https://web.stanford.edu/class/sts145/Library/life.pdf [Accessed 31 May 2020].

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 83|

The simplicity of the Conway model, can be seen quite clearly in its rule sets.

Moreover, its analogies to biological optimization goals and physiological behaviors

of its cells, demonstrates the anthropomorphic nature of its semantics. The game of

life considers the same base semantics of Cells and States (as defined in 2.2.3) to

establish its basic rule set. However, it doesn’t use the Von Neumann neighbourhood,

and instead employs the Moore neighbourhood, which can be considered as:

• Moore neighbourhood – The group of eight neighbouring cells surrounding

a central cell in all directions of a square grid. The neighbourhood has the

central cell itself, and it’s eight neighbours, like pixels in computer graphics.

The Conway model is defined by the following rule sets (Gardner, 1970)91 :

• The environment of the Game of Life is an infinite, two-dimensional

orthogonal grid of square cells, each of which is in one of two possible states,

live or dead, (or populated and unpopulated, respectively).

• Every cell interacts with its eight neighbours, conforming to the Moore

neighbourhood. At each step, in time, the following transitions occur:

o Any live cell with less than 2 live neighbours dies, by underpopulation.

o Any live cell with 2 or 3 live neighbours lives on to the next generation.

o Any live cell with more than 3 live neighbours dies, by overpopulation.

o Any dead cell with exactly 3 live neighbours becomes a live cell, by

reproduction.

91 Gardner, M. (1970). MATHEMATICAL GAMES - The fantastic combinations of John Conway's new
solitaire game "life". Scientific American. [online] 223(4), pp. 120-123. Available at:
https://web.stanford.edu/class/sts145/Library/life.pdf [Accessed 31 May 2020].

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |84

• These rules, which bear similarities between the automaton and real life, can

be summarised into the following:

o Any live cell with 2 or 3 live neighbours (in its Moore neighbourhood)

survives.

o Any dead cell with 3 live neighbours (in its Moore neighbourhood)

becomes a live cell.

o All other live cells die in the next generation.

o Similarly, all other dead cells stay dead.

• The initial pattern constitutes the seed of the system. The first generation is

created by applying the above rules simultaneously to every cell in the seed;

births and deaths occur simultaneously, and the discrete moment at which this

happens is sometimes called a tick.

• Each generation is a pure function of the preceding one. The rules continue to

be applied repeatedly to create further generations.

The minimal and yet anthropomorphic rule sets and the simplicity of a two-state

automaton coupled with the availability of higher processing powers and the option

of keeping the automaton running (because it’s a zero-player game, and fits the

definition of being an automaton, i.e., a machine that doesn’t require human

intervention except for the first step) the Conway model was used by a lot of people

(not just mathematicians or computer scientists, but also just computer owners) who

ran the automaton enough times to discover very many variations merely generated

by choosing different starting conditions. Game of life has thus been found to be

capable of creating huge biodiversity of different patterns and cellular organisms that

have been extensively studied and classified according to their behavior.

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 85|

The primary categories of these different cellular organisms are:

• Still Lifes – Which remain unchanged across generations or ticks. (These

include the Block, Bee-hive, Loaf, Boat and Tub).

• Oscillators – Which oscillate between two configurations for a set duration of

ticks. (These include the Blinker, Toad, Beacon, Pulsar and Penta decathlon).

• Spaceships – Which seem to move across the grid. (These include the Glider,

Light Weight Spaceship – LWSS, Middle Weight Spaceship – MWSS, and Heavy

Weight Spaceship – HWSS).

It is both fascinating and computationally intelligent how none of these cellular

organisms were intended or designed while establishing the rule sets in the Cellular

Automata, but they were just discovered by different users. It is also quite interesting

that the combinations of these above-mentioned cellular organisms also create

interesting patterns. Thanks to a very strong user base and community, the most

recent being Sir Robin, which was the first truly elementary knight ship (which is a

Spaceship that moves two squares left for every one square it moves down, like a

knight in chess, instead of moving orthogonally or along the diagonal), discovered by

Adam Goucher in 2018.92 However, many patterns in the Game of Life eventually

become a combination of the primary categories mentioned above; other patterns

may be called chaotic but many of these patterns or so-called cellular organisms that

emerge out of the Conway model of Cellular Automata termed as Methuselah, which

are patterns of fewer than ten live cells which take longer than 50 generations to

stabilize (Gardner, 1970).93

92 www.Conwaylife.com, (2018). Forums for Conway's Game of Life. [online] Available at:
https://www.conwaylife.com/forums/viewtopic.php?f=2&t=3303 [Accessed 17 May. 2019].
93 Gardner, M. (1970). MATHEMATICAL GAMES - The fantastic combinations of John Conway's new
solitaire game "life". Scientific American. [online] 223(4), pp. 120-123. Available at:
https://web.stanford.edu/class/sts145/Library/life.pdf [Accessed 31 May 2020].

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |86

Following are some notable Methuselahs:

• R-pentomino – A cellular automata that starts with 5 cells which stabilizes

with 116 cells after 1103 generations.

• The Acorn – A cellular automata that starts with 7 cells which stabilizes with

633 cells after 5206 generations.

Of all the different cellular organisms generated by a Cellular Automata of the

Conway model, the Gliders are the most peculiar, because they can be synthesized

quite easily and minimally, they can be collided with each other to form several other

complicated cellular organisms, and they can be used to communicate information

over long ranges across the grid just like other Spaceships (the glider possesses

specialized ability, as it is the smallest spaceship and thus has very less chance of

unintended collisions with other organisms). Gliders have also been collided with

several other cellular organisms to generate interesting patterns and useful results.

With the help of different combinations of gliders, it is possible to construct logic

gates such as AND, OR, and NOT. It is possible to build a pattern that acts like a finite-

state machine connected to two counters, which has the same computational power

as a Universal Turing machine, so the Game of Life with unlimited memory and no

time constraints is theoretically as powerful as any computer; in other words, “it is

Turing complete” (Berlekamp, Conway and Guy, 2001).94 The Conway model is so

versatile, that it has already been implemented into creating an “open-source 8bit

programmable computer” using Golly95 by Nicolas Loizeau in 2016 (Loizeau, 2016)96

thereby proving that it’s Turing complete.

94 Berlekamp, E. R., Conway, J. H. and Guy, R. K. (2001). Winning Ways for Your Mathematical Plays.
2nd ed. Wellesley, Massachusetts: A K Peters, Ltd., p. 276.
95 Golly. (2005). England: Andrew Trevorrow and Tom Rokicki.
96 Loizeau, Nicolas (2016). Building a computer in Conway's game of life. [online]
www.nicolasloizeau.com. Available at: https://www.nicolasloizeau.com/gol-computer [Accessed 05
May 2020].

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 87|

The Conway model of Cellular Automata thus demonstrates that it (the concept of

cellular automata and the model itself) can be implemented into using not just as a

computational model to serve the first and second fields of investigation in Natural

Computing (as in computing inspired by nature; simulation and emulation of nature

by means of computing) but also in the near future, to serve the third field of

investigation (in Natural Computing) – Computing with natural materials, thereby

making Cellular Automata as a primary tool to perform Natural Computing.

Owing to the phenomenal computational success of the Conway model, lots of

variant algorithms have cropped up thereby proving the versatility of Cellular

Automata in the field of Computational Modelling. Many of these variants have

alterations in the shape and size of the cells, neighbourhoods, and states. Although

the Conway model is essentially based on a 2-dimensional environment, many 3-

dimensional variants have also been conceptualized, developed, and tested.

Although none of these variants have yet been identified as being Turing complete,

many of them have successfully generated healthy biodiversity of cellular organisms

similar to the Conway model.

The important aspect of the Conway model that could have direct applicability in the

context of Computational Ecosystems in the form of a computational modelling tool

to perform natural computing. Moreover, the potential of slight variations in its

lexical semantics and rule sets could help the research in generating a strong 3-

dimensional variant in order to achieve the research goals. The flexibility of the

Conway model, and its sheer ingenuity in reducing the finite states to the basic two,

also demonstrates its potential for developing a computational ecosystem. In fact, it

is quite by itself, already a performing computational system, owing to the fact that

it already works on the principles of a feedback loop (structural coupling between the

cell and its neighbours) that is autonomous, autopoietic, and with sufficient context-

awareness. Moreover, it further augments the similar parameters previously seen in

the Von Neumann model (2.2.3).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |88

2.3.3 Cellular Automata – Stephen Wolfram model

The use, study, and research of Cellular Automata, after the Conway model, has been

absolutely different as compared to its original Von Neumann days. Very many

researchers ventured into applying Cellular Automata in the theoretical lexicon of

mathematics and computational science. Some, however, tried to expand its impact

and impressions onto physics and philosophy.

Stephen Wolfram, initiated a research on Cellular Automata by working extensively

with one-dimensional Cellular Automata (or Elementary Cellular Automata,

explained in detail over the next page) while establishing that these computational

models were not just to be studied as computational systems, but as discrete

systems. He further deduced that “simple, natural, questions concerning the limiting

behavior of cellular automata are often undecidable, and the consequences of their

evolution could not be predicted, but could effectively be found only by direct

simulation or observation” (Wolfram, 1984)97.

In the obsession of his hypothesis, that in the way that complicated patterns could

arise in natural systems, Cellular Automata could explain this complexity in nature by

means of their complexity and undecidability. He also attempted to model neural

networks and self-gravitating gases with Cellular Automata to prove his hypothesis,

“but later found that Cellular Automata was an unsuitable model for the simulation

of these systems” (Wolfram, 2002).98 However, continuing on this hypothesis,

Wolfram went on to sensationalize his claims of a paradigm shift in Science with

Cellular Automata at the heart of his claims. Although, he studied Cellular Automata

empirically and systematically, which this research intends to employ for establishing

its theoretical framework in terms of the lexical semantics.

97 Wolfram, S. (1984). Computation Theory of Cellular Automata. Communications in Mathematical
Physics, 96 (1984), Pp.15-57.
98 Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media.

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 89|

For his empirical research, Wolfram established an Elementary Cellular Automata

with a specific rule set and a numbering system (called as the Wolfram code) to define

various rule sets, which can be defined as followed (Wolfram, 2002):99

• Elementary Cellular Automata - A one-dimensional cellular automaton where

there are two possible states (labeled 0 and 1) and the rule to determine the

state of a cell in the next generation depends only on the current state of the

cell and its two immediate neighbours.

• There are 8 = 23 possible configurations for a cell and its two neighbours.

• The rule defining the cellular automaton must specify the resulting state for

each of these possible configurations, so there are 256 = 28 possible

elementary cellular automata.

• Each of these rules must be given an ID from 0 to 255 as per the Wolfram code.

• Wolfram Code - The code is based on the observation that a table specifying

the new state of each cell in the automaton, as a function of the states in its

neighbourhood, may be interpreted as a k-digit number in the S-ary positional

number system.

o S – The number of states that each cell in the automaton may have.

o k = S2n + 1 – The number of neighbourhood configurations,

o n – The radius of the neighbourhood.

• Thus, the Wolfram code for a particular rule is a number in the range from 0

to Sk − 1, converted from S-ary to decimal notation.

99 Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |90

• It may be calculated as followed:

1. List all the k state configurations of the neighbourhood of a given cell.

2. Interpreting each configuration as a number as described above, sort

them in descending numerical order.

3. For each configuration, list the state which the given cell will have,

according to this rule, on the next iteration.

4. Interpret the resulting list of states again as an S-ary number, and

convert this number to decimal. The resulting decimal number is the

Wolfram code.

• The Wolfram code for the numbering system does not specify the size (nor

shape) of the neighbourhood, nor the number of states — these are assumed

to be known from context.

• Although every Wolfram code in the valid range defines a different rule, some

of these rules are isomorphic and usually considered equivalent. By

convention, each such isomorphism class is represented by the rule with the

lowest code number in it.

Following the above rule sets, the Wolfram Model has helped in generating some

interesting Cellular Automata out of the 256 possible rule sets, such as:

• Rule 30 – Displaying non-periodic, chaotic behavior.

• Rule 110 – Turing complete (like the Conway and Von Neumann models).

• Rule 184 – Simultaneously describes many, seemingly different, particle

systems.

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 91|

What’s unique about the Wolfram model, however, is the meticulous and thorough

study into classifying the rules sets in different categories of complexities, which was

not found in the previous models, that emphasized on classifying the different

patterns or outcomes based on their behaviors for a specific rule set.

Based on all the rule sets of a Wolfram model, it was found that the behavior of the

Elementary Cellular Automata was found to be “similar to the behavior observed in

continuum dynamic systems, with simple rules yielding steady-state behaviors

consisting of fixed points or limit cycles, and complex rules giving rise to behaviors

that are analogous to deterministic chaos.” However, all these Elementary Cellular

Automata following the Wolfram model evolving from disordered initial states were

found to be under one of these classes (Ilachinski, 2001):100

• Class 1 – Nearly all initial patterns evolve quickly into a stable, homogeneous

state. Any randomness in the initial pattern disappears.

• Class 2 – Nearly all initial patterns evolve quickly into stable or oscillating

structures. Some of the randomness in the initial pattern may filter out, but

some remains. Local changes to the initial pattern tend to remain local.

• Class 3 – Nearly all initial patterns evolve in a pseudo-random or chaotic

manner. Any stable structures that appear are quickly destroyed by the

surrounding noise. Local changes to the initial pattern tend to spread

indefinitely.

• Class 4 – Nearly all initial patterns evolve into structures that interact in

complex and interesting ways, with the formation of local structures that are

able to survive for long periods of time.

100 Ilachinski, A. (2001). Cellular Automata A Discrete Universe. Singapore: World Scientific Publishing
Co. Pte. Ltd. Pp. 808.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |92

Wolfram had conjectured that many of class 4 are capable of universal computation,

although it has only been proven for Rule 110. Wolfram in his seminal book, A New

Kind of Science went above and beyond to prove that the study of Cellular Automata

should initiate a new field in science (Physics and Chemistry), and researchers of

Cellular Automata should pursue to understand and characterize the computational

universe. In the book, Wolfram also attempted to demonstrate “simple programs

that exhibit phenomena like phase transitions, continuum behavior, and

thermodynamics that are familiar from traditional science” (Wolfram, 2002).101

However, his theory and claims were highly criticized to be abrasive and arrogant.

The lack of scientific methodology is the main theme for most of these criticisms. The

research agrees that the Wolfram model provides deep insight into the study and

classification of the rule sets, but “just because the patterns of cellular automata can

resemble those of the natural world does not mean that nature must work that way”

(Gad-el-Hak, 2003).102

In the relevance of the research, the four classes identified by the Wolfram Model

could be considered very helpful in categorizing Computational Ecosystems

according to predetermined lexical, logical, and behavioral parameters as part of the

Operational Objectives I (Taxonomies, as previously explained in 1.2.1 Objectives for

Computational Ecosystems). It would be also astute to determine a system that

would perform analogous to the Wolfram Code (that establishes semantics for the

rule-set number assigning system). This system would also be helpful in further

simplifying the nomenclature system for each ruleset, as in the case of the research,

a 3-dimensional grid system would be considered as a base for any neighbourhood,

and that would directly lead to an exorbitant amount of results, no matter the total

number of determined states.

101 Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media.
102 Gad-el-Hak, M. (2003) A New Kind of Science - Review. A New Kind of Science, by S. Wolfram.
Applied Mechanics Reviews, 56 (2), pp. B18-B19.

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 93|

2.3.4 Cellular Automata – applications in the AEC Industry

Yet again, the AEC industry was slow to catch up on the phenomenal revolution

Cellular Automata was creating in a wide range of scientific and artistic disciplines, by

almost five decades. But eventually, it happened in the form of a didactic approach

in architectural design. In 1995, John Frazer (an architectural academic) in a lecture

at the AA (Architectural Association School of Architecture, London) quoted -

I’m dedicating this lecture, to the first building intelligent enough to understand and

appreciate the gesture. I confidently expect that such a building will have designed

and constructed itself in response of the needs of its users and acting in harmony with

its environment. It will be self-sustaining, it will exhibit metabolism, it will derive from

all of its environment and be controlled by a symbiotic relationship between its

inhabitants and all of that environment. And when it has outlived its usefulness, it

will self-destruct and redistribute its resources. This lecture is to that first building,

and I hope that it won’t be too long (AA School of Architecture, 2015, 02:07).103

With this proclamation, Frazer intended to introduce a new branch of science

concerned with creative morphology and intentionality, wherein he proposed the

architectural design industry to “search for a design theory based on form-generation

developed for architectural purposes” (Frazer, 1995).104 Driven by the computational

advances of the Turing Machine, and Von Neumann’s universal constructor, Frazer

developed his own version of a universal constructor (in deference of von Neumann)

was able “to respond on a rule-based system of constructing a 3D self-replicating

automata in response to an obstacle” (Frazer, 2001).105

103 AA School of Architecture (2015) John Frazer - An Evolutionary Architecture. 02 May. Available at:
https://www.youtube.com/watch?v=58ZUhDKaRC8 (Accessed: 18 Dec. 2017).
104 Frazer, J. H. (1995). Themes VII: An Evolutionary Architecture. London: Architectural Association,
p. 127.
105 Frazer, John H. (2001) The Cybernetics of Architecture: A Tribute to the Contribution of Gordon
Pask. Kybernetes. The International Journal of Systems & Cybernetics. 30(5/6). pp. 641-651.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |94

Inspired by the Von Neumann, Conway and Wolfram models, Frazer’s universal

constructor had the following predeterminations (Frazer, 1995)106:

• Cell – A unit cube of unit dimensions, owing to its self-similarity could

represent anything, and could be modelled at any scale.

• States – Each cube could have any of the 256 states which were displayed by

means of LED lights that were embedded in these cubes. The 8-bit code could

be used to map the state of the cell to any form or structure: to environmental

conditions such as wind; to sound, or even to dance. The stack of cells could

communicate information for the LED display, where the displays would have

specific codes depending on their state – like blinking patterns for adding or

deleting cells.

• Neighbourhood – A 12x12x12 cell array would be considered as the entire

system or termed as a landscape, however the cell considered a

neighbourhood similar to a Moore neighbourhood.

The universal constructor was a truly successful proof of concept, that capitalized on

the technology based on the late 20th century electronics. The constructor served as

a physical modelling tool that was embedded with its own ruleset (serving as an

intelligent 3D extension of a 2D cellular automata). Although not autonomous or

autopoietic (as the system merely blinked LEDs), the constructor was surely context

aware. Many other such applications were attempted including an evolutionary

model and later “compiled as part of architectural discourse in order to explore

beyond an algorithmic approach of generative and self-organizing architecture and

to investigate systems which learned on the basis of feedback” (Frazer, 2001).107

106 Frazer, J. H. (1995). Themes VII: An Evolutionary Architecture. London: Architectural Association,
p. 127.
107 Frazer, John H. (2001) The Cybernetics of Architecture: A Tribute to the Contribution of Gordon
Pask. Kybernetes. The International Journal of Systems & Cybernetics. 30(5/6). pp. 641-651.

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 95|

Another notable experimentation implementing cellular automata as a rule-based

system of mathematical constructions and concepts to investigate the process of

generating architectural forms is “Krawczyk’s Architectural Interpretation of Cellular

Automata” (Krawczyk, 2002)108. Krawczyk expanded on the applications of a 3D

cellular automata that was proposed by Schrandt and Ulam based on the Von

Neumann model as “empirical results obtained by experiments on computing

machines” (Schrandt and Ulam, 1967)109. Krawczyk’s results and conclusions are

quite elementary as compared to those done by means of extensive, and thorough

experimentations by Frazer. But while experimenting with the rule sets (based on the

precedents of the cells, states, and neighbourhoods set up for a 3D Cellular Automata

based on the Schrandt-Ulam model), Krawczyk makes the following observation that

could be quite essential for the theoretical foundations of this research –

• The pure mathematical translation of a cellular automata into architectural

form includes a number of issues that do not consider built reality.

• The interpretation or translation to a possible built form can be dealt with

after the form has evolved or it can be considered from the very beginning.

As the early 2000s saw a rise in implementing novel computational techniques in a

diverse range of design disciplines, such as urban design and urban planning. Herr

and Kwan made a similar approach of implementing Cellular Automata as a

“generative architectural design strategy for high-density residential architecture”

(Herr and Kvan, 2005)110.

108 Krawczyk, R. J. (2002). Architectural Interpretation of Cellular Automata. Generative Art 2002. pp.
7.1-7.8.
109 Schrandt, R. G., Ulam, S. M. (1967). On Recursively Defined Geometrical Objects and Patterns of
Growth. [online] Los Alamos, New Mexico: Los Alamos Scientific Laboratory of the University of
California, p. 19. Available at:
https://digital.library.unt.edu/ark:/67531/metadc1027179/m2/1/high_res_d/4573212.pdf
[Accessed 05 May 2018].
110 Herr C.M., Kvan T. (2005) Using Cellular Automata to Generate High-Density Building Form. In-
Martens B., Brown A. (eds) Computer Aided Architectural Design Futures 2005. Dordrecht: Springer,
p. 10.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |96

Apart from implementing Cellular Automata “for a very large scale, large density

architectural purpose” (Moreno and Grinda, 2004)111, Herr and Kvan propose a novel

methodology inspired by classical Cellular Automata with enhanced properties that

is described as followed –

• To accommodate both generative and traditional design procedures, the

implemented cellular automata may be used in phases, with intermittent

stages of manual design interventions.

• Cell behaviors can be assigned dynamically during the design process, such

that elements within the modelling environment can change their behavior

over time.

• In contrast to classical cellular automata, where cells are uniform and cell

states do not affect cell geometry, functions can be assigned to any element

in the modelling environment, with cells able to change their geometry in

response to their states.

“Compared to a conventional generic high-resolution approach, this non-uniform

solution greatly limits the number of cells required in modelling architectural

geometries and avoids the restrictions imposed by the compulsory use of additive

approximation based on homogeneous grids of elements” (Herr and Kvan, 2005)112.

These key improvements in traditional cellular automata ruleset, that involve

dynamically modifying the cell states, depending on any external condition or

requirement would be very essential in making the Cellular Automata and

consequently the Computational Ecosystem truly context-aware.

111 Moreno, D., Grinda, E. G. (2004). Soft Metropolitanism [Apartments in Micro-Skyscrapers]. In: F.
Marquez Cecilia, and R. Levene, ed., EL CROQUIS 118: CERO 9, ABALOS & HERREROS, NO.MAD, 1st
ed. Madrid: El Croquis, pp. 140-147.
112 Herr C.M., Kvan T. (2005) Using Cellular Automata to Generate High-Density Building Form. In-
Martens B., Brown A. (eds) Computer Aided Architectural Design Futures 2005. Dordrecht: Springer,
p. 10.

Architecture of Computational Ecosystems

| 2.3 Cellular Automata as Computational Ecosystem 97|

Cellular Automata, in 2010, has also been implemented “to simulate how simple rules

could emerge a highly complex architectural designs of some Indonesian heritages”

(Situngkir, 2004)113. Here, Situngkir implements Cellular Automata as an “exploratory

tool based upon the 3D cellular automata constructed within the totalistic 2D cellular

automata with 9 neighbours” (Packard & Wolfram, 1985).114 He also observes that

some of the 9th and 15th century Indonesian temples resemble Class I cellular

automata (explained in 2.3.4). Although these observations do not help the research

in establishing any lexical semantics or theoretical framework, it certainly helps the

research in understanding that even the Class I Cellular Automata (the one without

any complexity or the one that is absolutely devoid of Turing completeness) could

serve as an interesting computational blueprint to design a built form that is

structurally stable, functionally efficient and aesthetically inspiring.

Furthermore, in 2018, design researchers at the Bartlett School of Architecture, UCL

London explored the application of machine learning to combinatorial design-

assembly from the scales of building to urban form. “Connecting the historical lines

of discrete automata in computer science and formal studies in architecture their

research contributed to the field of additive material assemblies, aggregative

architecture and a possible upscaling to urban design” (Koehler et al, 2018).115 Their

research implements a term Mereology (set of recursive assembly strategies,

integrated into the design aspects of the building parts), stating that architectural

arrangements can be described as chaining and nesting of multiple discrete systems,

which can be used to nest discrete patterns scaled to an urban form.

113 Situngkir, H. (2010). Exploring Ancient Architectural Designs with Cellular Automata. [online].
Available at:
https://www.researchgate.net/publication/2146550_Epidemiology_Through_Cellular_Automata_Ca
se_of_Study_Avian_Influenza_in_Indonesia [Accessed 31 Aug. 2019].
114 Wolfram, S. and Packard, N. H. (1985). Two-Dimensional Cellular Automata. Journal of Statistical
Physics, 38, pp. 901-946
115 Koehler, D., Saleh, S. A., Li, H., Ye, C., Zhou, Y., Navasaityte, R., (2018). Mereologies -

Combinatorial Design and the Description of Urban Form. In: GENERATIVE DESIGN - Volume 2 -
eCAADe 36. Łódź, Poland: eCAADe, Faculty of Civil Engineering, Architecture and Environmental
Engineering Lodz University of Technology, cop. 2018. pp. 85-94.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |98

2.4 Theoretical Assumptions for Computational Ecosystems

Although thus far Cellular Automata has been established as a potential

computational modelling environment for this research, some key observations are

necessary to be highlighted before proceeding to establish the logical semantics and

the foundation for the theoretical assumptions for the research.

(As seen in 2.2.3,) John Von Neumann was able to exhibit a universal Turing machine

embedded in a cellular array using 29-states per cell and the 5-cell neighbourhood.

Although, Langton makes a remarkable observation in 1984, that “Von Neumann’s

Turing machine is suitably modified so that, as output, it can construct in the array

any configuration which can be described on its input tape. His machine (the universal

constructor) would thus be programmed to construct any machine described on the

input tape, and create a copy of the input tape and attach it to the machine created.

This shows two levels of automaton in the Von Neumann model“(Langton, 1984)116 –

1. The cellular automaton itself which is embedded on the input tape.

2. The input tape with the constructor which in itself is an automaton.

Langton refers to this input tape as a cyclic storage loop that is capable of

representing the universal constructor (while serving the predetermined functions of

the constructor) as well as creating variant (or identically similar) offspring of the

parent constructor. He also identifies these loops to be simple structures, (which are

not necessarily exhibiting universality), employing transcription and translation in

their reproduction capabilities. Langton’s conclusions can be implemented in the

research to identify that the feedback loop generated as part of the Cellular

Automaton could be considered autonomous and autopoietic.

116 Langton, C. G. (1984). Self-Reproduction in Cellular Automata. In: Physica 10D. Amsterdam:
Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division), pp. 135-144.

Architecture of Computational Ecosystems

| 2.4 Theoretical Assumptions for Computational Ecosystems 99|

Thus, Cellular Automata can be implemented in the research to serve as a

computational modelling environment, that has vast computational capabilities,

research precedence, and several examples of applications in the AEC industry. It can

also be established that Cellular Automata can provide a versatile domain to craft

Bio-plausible Hybrid Bio-inspired Stochastic Optimization, which can serve as an

autonomous, autopoietic, context-aware feedback loop that develops a dynamic,

reciprocal, symbiotic relationship between the built form and the algorithm.

However, Cellular Automata have been identified for some computational issues.

Expanding on all the three models explained in this thesis thus far (i.e. Von Neumann

model, Conway model and Wolfram model), it can be observed that all these models

are undecidable, meaning given an initial pattern and an outcome, no algorithm can

determine whether the outcome is possible or probable. “This is a corollary of the

halting problem: the problem of determining whether a given program will finish

running or continue to run forever from an initial input” (Berlekamp, Conway and Guy,

2001).117 This makes the unpredictable nature of the algorithm quite computationally

expensive (requiring higher processor speeds and memory cores), and requires the

halting problem to be tackled with some creative computational ingenuity.

Moreover, Oxman observed in her doctoral thesis that, “when cellular automata and

genetic algorithms are combined with some finite-element method, there is

tremendous disparity between the actual form generated by the script or the

program, and its material properties and behavior relative to the anticipated

functions.” She thus suggests, “as we aim to unite between generation, evaluation

and eventually fabrication, we must look beyond current approaches in design

computation that support and promote seamless integration between the digital and

the physical domains” (Oxman, 2010).118

117 Berlekamp, E. R., Conway, J. H. and Guy, R. K. (2001). Winning Ways for Your Mathematical Plays.
2nd ed. Wellesley, Massachusetts: A K Peters, Ltd., p. 276.
118 Oxman, N. (2010). Material-based Design Computation. PhD Thesis. Massachuetts institute of
Technology.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |100

Several previous applications of Cellular Automata in the AEC industry have also been

observed to have programmed in very limited generative capacity, and especially for

top–down developmental control and for pragmatic rule-breaking (Herr and Ford,

2015).119 The authors argue the following issues –

• While other fields have developed their own Cellular Automata models to fit

their subjects of study more appropriately, Architecture (and the AEC industry

on the whole) has not yet established a common theoretical framework

outlining the potential of Cellular Automata in architectural design processes.

• A generative design tool stems from its capability to perform tasks that rely

on numerically formalized dimensional or relational constraints, design

decisions however require more holistic, experienced, and yet intuitive

context-based understanding and decision making that is difficult to be

translated in a binary logic, and hence has been hitherto unexplored.

• Generally, the cellular automata rule sets are typically used as fully automated

systems that do not allow for much user intervention during run-time, limiting

the designer’s role to select from a range of potential solutions once the

generative process has finished.

• Fully automated generative design processes rely on formalizable evaluation

methods to distinguish appropriate solutions from others automatically in

order to produce meaningful results in their respective design contexts.

Thus, the implementation of Cellular Automata in the context of the research should

be done while considering the above observations.

119 Herr, C. M., Ford, R. C. (2015). Adapting Cellular Automata as Architectural Design Tools. In:
Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th
International Conference of the Association for Computer-Aided Architectural Design Research in Asia
CAADRIA 2015. Hong Kong: The Association for Computer-Aided Architectural Design Research in
Asia (CAADRIA), pp. 169-178.

Architecture of Computational Ecosystems

| 2.4 Theoretical Assumptions for Computational Ecosystems 101|

To conclude on the theoretical assumptions for Computational Ecosystems, it is

essential to summarize the lexical semantics in the context of the hypothesis,

methodologies, and objectives (as per chapter |1). Thus (as per 2.1 and 2.2), a

Computational Ecosystem would be defined as a Hybrid Bio-inspired Stochastic

Optimization that is –

• A context-aware system that represents an autonomous, autopoietic

feedback loop that is based upon the structural coupling of two or more

entities which would be essential in establishing a dynamic, reciprocal,

symbiotic relationship between the built form and the algorithm.

• A discrete system of elements, that experience homogenous and

heterogenous cooperation clearly represented by their intraspecific and

interspecific relationships, thus creating a fluid design workflow that

performs modelling, analysis, and fabrication simultaneously to generate

form, structure, and enclosure for architectural intent.

• A symbiotic system, that is equipped with communication strategies at both

the inter-habitat and intra-habitat levels which would be instrumental in

making computational design more autonomous and digital fabrication more

data driven.

• Realized by employing Cellular Automata,

o Which is not just based on one or on a combination of some or all the

three models explained in this thesis thus far, but is also sufficiently

modified, taxonomized and versioned so as to accommodate the

requirements of the architectural intent it serves.

o Which offers an organizational solution to the halting problem by

ingesting the concept of decay in a manner relevant to the ecosystem.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

2|On theoretical assumptions for Computational Ecosystems |102

o Which simplifies intuitive design decisions in a non-binary logic, by

allowing user intervention during run-time and thus providing

seamless integration between the digital and the physical domains.

o Which offers a step-wise methodology serving as a blue-print for the

Architecture of potential Computational Ecosystems.

Architecture of Computational Ecosystems

| 2.4 Theoretical Assumptions for Computational Ecosystems 103|

Objectives

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |104

3| On the semantic syntax for the Computational
Ecosystems.

3.1 Lexical Semantics from theoretical assumptions

After establishing the Literary Objectives-I, related to the lexical semantics (as in

1.2.1, and explained in thorough detail in 2|) the definitions for Computational

Ecosystem along with their theoretical frameworks and operational precedents have

been outlined. The intent of implementing Cellular Automata as the primary

computational modelling environment to architect Computational Ecosystems has

also been sufficiently theorized. However, to set up the Computational Ecosystems

(and the Cellular Automata), the research needs to establish a strong semantic syntax

that could ease the functionalities of the operational objectives. The Semantic Syntax

(analogous to a language) can be seen as an amalgamation of the lexical semantics

(analogous to the vocabulary of a language) and the logical semantics (analogous to

the grammar of a language). Moreover, as the analogous vocabulary will be used to

establish the analogous grammar in this case, understanding and setting up the

logical semantics for the research would be based on the lexical semantics.

Although a theoretical foundation has been quite effectively and thoroughly laid in

the previous chapter (2|), the precise semantics that would be applied in the research

have not been clearly identified so far. It thus becomes essential to extract the lexical

semantics from the theoretical assumptions. The Computational Ecosystem

(pertaining to this research) for all purposes beyond this point, would be denoted by

its abbreviation CE. Similarly, for all purposes beyond this point the Cellular Automata

(pertaining to this research) will be denoted by its abbreviation CA. Although both

these abbreviations CA and CE are widely accepted, the thesis is introducing them

now, firstly, to avoid losing relevance to tags (as in tags required for search

optimization), and secondly to establish significant distinction to the canonical use of

these abbreviations.

Architecture of Computational Ecosystems

| Lexical Semantics from theoretical assumptions 105|

As elaborated in the previous chapter, classical Computational Ecosystems which

basically represent an optimization algorithm are constituted of –

• Participating individuals called as Species – These could be Bacteria, Ants, or

Fish as in a BFA, ACO or FSA respectively (as illustrated in 2.1.3); These could

also be represented by agents that serve as computational counterparts of

the species.

• A Community dynamic within the species – For example by means of

Chemotaxis in a BFA, or by Stigmergy in an ACO, or by the search-swarm-

follow mechanisms in an FSA. It can also be promoted through the trade of

token units of energy and biomass between these agents (as per 2.2.2).

Also, as explained and illustrated previously, classical Cellular Automata which

basically represent a modelling environment are constituted of –

• Cells – As seen in previous examples, these could be considered as a varied

form of geometrical arrays, from basic orthogonal shapes to discrete or

combinatorial geometries (such as polyhedral, polytopes and packing).

• States – As already defined, these could be considered as a combination of

rule sets which could either be distinguished on the basis of a binary logic, or

on the basis of RGB values (like in the Von Neumann Model as per 2.3.1).

(As introduced in 1.2.2,) the components of a CE realized by a CA would be –

• Elements – The CE equivalent of Species and Cells.

• Economy – The CE equivalent of Community dynamics and States.

The significance of Elements and Economies pertaining to Ecosystems will be

explained in further sections.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |106

3.1.1 Element

To set up a methodological framework, for the construction of CE based on CA, it is

important to establish the lexical semantics in such a way that the terminologies

serve as free variables or placeholders (symbols that will later be replaced by a value)

for a diverse range of applications.

The simplest definition of Elements for the CE would be the equivalent of Species

from a traditional Computational Ecosystem (more specifically, a canonical

computational ecosystem - ECO) or an equivalent of the Cells of a traditional Cellular

Automaton (that could be from any cellular automata model discussed in 2|). To

install this terminology in the research as a placeholder, however, some more

definition, explanation and exemplification is required. Thus, previous use of the

term element in a diverse range of disciplines, would be an ideal direction to start

this exploration. Apart from providing insights into the use of the terminology as a

placeholder, it would also help the research in determining a definition for the

placeholders that is based on first principles (or ab initio), rather than the highly

analogous (or empirical) definitions mentioned in 3.1.

The term element has been repeatedly mentioned in a wide range of ancient cultures

in Greece, Ancient Egypt, Persia, Babylonia, Japan, Tibet, and India to explain the

nature and complexity of all matter in terms of simpler substances (the elements

considered as the building blocks of the universe). Although there are varied

inclusions of different elements, the most commonly found are – earth, water, wind

and fire. These philosophical constructs have also been later expanded upon in all the

above-mentioned cultures to explain the concepts of consciousness through

theology. However, one metaphysical branch of Hinduism – Sankhya, stands out and

postulates only two forms of elements in the universe – Purusha (consciousness) and

Prakriti (matter). This duality can also be translated into the ecosystem components

of the biotic and the abiotic.

Architecture of Computational Ecosystems

| Lexical Semantics from theoretical assumptions 107|

This understanding of the term element as a constituent building block of the

universe was later expanded into Chemistry as terminology for the 118 distinct

building blocks of the observable universe which cannot be broken down into simpler

substances by chemical means (as introduced in 1.2.2). It is also defined as a

substance that is made entirely from one type of atom (as in, the element hydrogen

is made from atoms containing a single proton and a single electron and if you change

the number of protons an atom has, you change the type of element it is). The

concept of an element as a representative of a particular kind of constituent parts (in

this case atoms) is similar to the concept of a Species that is representative of a class

of participants that share the same genetic make-up.

In a more mathematical sense, i.e., in the context of the Set Theory in Mathematics,

an element is like a member of a set and is any one of the distinct objects of that set

(here, distinct objects are those numbers, sets, functions, expressions, geometry,

mathematical transformations, and spaces which are not mathematically equal).

Thus, elements are seen as the constituent building blocks of a set. Moreover, in the

notational system implemented in the set theory, while denoting that a certain

numerical entity is an element of a set, the symbol ∈ is used. Perhaps, the research

can also use the symbol ∈ to represent an element in a CE.

The term element, however, is already used as a placeholder in the field of

Computational sciences. A term similar to the one used in Set Theory is implemented

in the Unified Modelling Language (UML) (which is a generalized, universal notational

system to represent a pseudo-code graphically while it is in its developmental stages),

which represents a similar notion of an abstract class that has no superclass (as in an

unprecedented semantic). In Metadata (a branch of data sciences, where data is

embedded in existing data), also, the term element is used to define an atomic unit

of data that has precise meaning or precise semantics. As metadata is also

implemented in a wide range of industries such as imaging, telecommunications,

videography, geospatial mapping, data warehousing, and cloud applications amongst

many other, it has a significant definition for a data element.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |108

From all the usages of element in the different fields of study such as philosophy,

chemistry, mathematics, and computational sciences stated previously, the research

would focus on the placeholder of an Element summarized as follows –

• The Element is a distinct object, that would represent different components

of a CE (similar to the Species of a canonical ECO algorithm).

• The Element could represent both biotic or abiotic components of the CE, and

this characteristic would serve as distinctions amongst different elements.

• The Element would also be identified by a name, and a clear definition. If

required, further categorization of elements should also be done.

• To avoid confusion between different terminologies within the context of this

research, the Element would be abbreviated as ∈, and various distinctions

could be symbolized by using appropriate subscripts, such as ∈b and ∈a (for

biotic and abiotic elements respectively).

• (As introduced in 1.2.2) Examples of an ∈ could be Platonic solids,

Archimedean solids, point clouds, passive agents, active agents, cognitive

agents, service equipment, structural members or fabrication material.

• As during the course of the operational objectives of this research, a CE could

have multiple ∈, all the particular elements would have to be classified,

named, defined, and symbolized based on a wide range of factors.

• To make the CE context-aware, some elements would also have to be capable

of being introduced by external factors (such as the user, or a conditional, or

depending on context-specific factors), which will have to be classified,

named, defined, and symbolized based on the predetermined external factor.

Architecture of Computational Ecosystems

| Lexical Semantics from theoretical assumptions 109|

3.1.2 Economy

With the placeholder, element (∈) thoroughly defined and established, as part of the

literary objectives of stating the logical semantics, the thesis proceeds to define and

establish the placeholder of economy. Unlike the element placeholder, the economy

placeholder does not have any similar precedents in the fields of computational

science or mathematics. Thus, understanding the implementation of the placeholder

becomes more essential in this case.

(As theorized in 2.1.1,) The biotic and abiotic inhabitants (or elements) of an

ecosystem are inadvertently striving for a certain state of dynamic equilibrium and

while attempting to attain this state of dynamic equilibrium, the ecosystem needs a

specific predetermined currency within the system to evaluate, govern, and maintain

its state of equilibrium. A CE (as theorized in 2.4) performs as a discrete system of

elements, that experience homogenous and heterogenous cooperation that is

represented by intraspecific and interspecific relationships.

However, to establish these relationships, the CE would need a system of rules, that

would help in performing a system of checks and balances on its states of equilibria.

That is, to evaluate if the equilibrium has a deficit or an excess (as in if the state of

equilibrium was not achieved, was it underdone or overdone and by how much),

while exploring what other factors could help in maintaining a steady equilibrium

(like exploring if the rule-set needs to modify to accommodate the state of

equilibrium), and finally to document all possible states, of equilibria or otherwise (as

in maintaining a temporal ledger of all the states across the runtime of the CE). These

rule sets would have to be assigned to all the ∈ (predetermined or user added) of the

CE, moreover the rule sets would serve as a global currency of the CE making sure

that all the ∈ have the same goals of equilibria across the runtime of the CE.

Thus, in the simplest terms, these rule sets or Economy, would serve as a logical

equivalent of Community dynamics and States (as described in 3.1).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |110

Although, as mentioned previously, the economy placeholder is not as widely

formulated as the element placeholder, the precedents of the term Economy are

found in Greek history, to mean household management (as in the management of

household resources). Even though the modern meaning of economy – “as a social

domain that emphasizes the practices, discourses, and material expressions

associated with the production, use, and management of resources” (James, 2015)120

– essentially deals with larger test sets than households, the definition still revolves

around its etymological roots of resource management. This consistency in the

essence of the term economy over the ages, could serve as an astute reference for

the ab initio definition of Economy for the CE, that is, the placeholder would be

considered as a global currency for the resource management within the system to

evaluate, govern, and maintain its state of equilibrium.

In economics (concerning modern economies of nations or cultures), the following

degrees of precedence are considered for the economy to survive and progress –

• Primary stage – Extraction of raw materials from their natural sources.

• Secondary stage – Transforming the raw materials into consumer goods.

• Tertiary stage – Providing services to businesses and consumers.

• Quaternary stage – Research and development required to perform the

above stages.

In the context of the research, the above stages can serve as an example for the

different stages of deployment for different Economies during the runtime of the CE.

120 James, P. (2015). Urban Sustainability in Theory and Practice – Circles of Sustainability. New York:
Routledge, pp. 260.

Architecture of Computational Ecosystems

| Lexical Semantics from theoretical assumptions 111|

From all the precedents of economy in history and economics stated previously, the

research would focus on the placeholder of an Economy summarized as follows –

• The Economy is a distinct rule set, that would represent different states for

the different ∈ of a CE (similar to the States of a cellular automaton).

• The Economy could represent a wide range of rules pertaining to the

evaluation, maintenance, and governance of the state of equilibrium of a CE,

and this Economy or Economies could be assigned to one or many ∈.

• The Economy should also be identified by a name, and clear definition. If

required, further categorization of economies should also be done. Just like

the ∈, some context aware Ψ, which would be introduced externally would

have to be named, defined, and symbolized accordingly.

• To avoid confusion between different terminologies within the context of this

research, the Economy would be abbreviated as Ψ, and various different

distinctions could be symbolized by using appropriate subscripts, such as Ψp

and Ψs (for primary and secondary economies respectively).

• Because the Ψ represent the cell states of the CE, the Ψ could also be further

elaborated to accommodate a specific notation system based on Wolfram

code (as described in 2.3.3).

• The stages of deployment of the Ψ should also be encoded into the notation

system by adding superscripts such as Ψp
1

 and Ψp
2 (mentioning the correct

order of deployment in a numerical order).

• (As introduced in 1.2.2) Examples of an Ψ could be static structural stability,

kinetic structural stability, functional adequacy, functional compatibility,

contextual compatibility, climatic optimization, and fabrication constraints.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |112

3.1.3 Ecosystem

An ecosystem has been amply theorized in this thesis so far. Moreover, by

establishing the syllogism through Computation – Ecosystem – Computational

Ecosystem, the terminology has also had sufficient analogical precedents (in a wide

range of industries and research domains). However, the inclusion of the lexical

semantics pertaining to the Elements (∈) and the Economy (Ψ), make it absolutely

essential to expand the definitions of CE in order to accommodate the same format.

Thus, in spite of establishing a theoretical definition for a CE (as per 2.4), and

identifying the components of a CE (as per 3.1), it is essential for the thesis to

establish an operational ab initio definition. While researching Computational

Ecosystems (as per the canonical ECO algorithm), Parpinelli and Lopes propose that

the following features can still be explored in the ecological framework (Parpinelli

and Lopes, 2014).121 –

1. The environment can be explored with the insertion of abiotic components

biasing the behavior of populations.

2. By using some source of feedback from the optimization process during its

course, the habitats formation can be better distributed, as well as the intra

and inter-habitat communication topologies, can be better defined.

3. Flow of information (stigmergy) & energy (trophic structures) can be explored.

4. Strategies and metrics for maintaining the diversity of solutions both at micro

and macro levels can be applied.

5. The Computational Ecosystem framework can be explored asynchronously.

121 Parpinelli R. S. and Lopes, H. S. (2014). A computational ecosystem for optimization: review and
perspectives for future research. Memetic Computing, 7(1), pp. 29-41.

Architecture of Computational Ecosystems

| Lexical Semantics from theoretical assumptions 113|

Apart from the aforementioned proposals, an illustrative map of the elements of

Computational Ecosystems was also developed by Parpinelli and Lopes, as shown in

figure 3.1.

Figure 3.1 – Graphical representation of extended illustrative map for the elements of a

computational ecosystem. Original image by Parpinelli and Lopes (December 2014) Illustration and

graphics by Author (January 2021).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |114

Considering all the precedents of ecosystem pertaining to all the explorations in the

field of computer sciences illustrated previously, the research would focus on the

placeholder of a CE summarized as follows –

• The CE is the modelling environment where the ∈ interact with each other

depending on the goals set up by their respective Ψ (similar to the functioning

of a CA) while it performs as a Hybrid Bio-inspired Stochastic Optimization

Algorithm (as per 2.4) with its constituent attributes (as per 3.1).

• Owing to the possibility of multiplicity in the ∈ and the Ψ, several numerous

CE can exist at the same time. These CE could also be nested into each other

while performing at different scales or different stages of deployment in the

runtime of their parent CE, or both.

• The CE should also be identified by name, and clear definition. If required,

further categorization of CE should also be done. Just like the ∈ and the Ψ,

some context aware CE, which would be introduced externally (if that

happens) would have to be named, defined, and symbolized accordingly by

adding superscripts such as CE1
 and CE2 (mentioning the correct order of

deployment in a numerical order).

• Following the proposals by Parpinelli and Lopes (mentioned in 3.1.3), apart

from recursive algorithms, genetic algorithms should also be used to explore

points 2 and 5 in the CE.

• Although points 1 and 3 have been sufficiently covered in the definitions of ∈

and Ψ respectively, 4 could be tackled smartly by implementing the

initialization properties of the CE as illustrated in fig. 3.1.

• Throughout the introduction of new CE and the corresponding ∈ and Ψ, fig.

3.1 should be referred to, illustrated, and updated accordingly.

Architecture of Computational Ecosystems

| Establishing Logical Semantics for operational objectives 115|

3.2 Establishing Logical Semantics for operational objectives

As the lexical semantics of the research – Elements (∈), Economies (Ψ) and

Ecosystems (CE) are established on the basis of the theoretical assumptions in the

previous sections, some essential explanations are yet to be made before setting up

the logical semantics. Moreover, as these logical semantics will be implemented

undeviatingly to perform the operational objectives, it becomes essential to identify

and theorize all aspects of anomalies and deviations from the definitions mentioned

thus far. One important aspect that exemplifies the anomalies in the theoretical logic

is the proposed multiplicity of the ∈ and Ψ (as per 3.1.1 and 3.1.2). This potential

multiplicity can pose problems of confusion and redundancy throughout the research

methodology. Moreover, it can’t be merely solved by adding superscripts in the

notation system (although the notation system for the ∈, Ψ, and CE with the use of

subscripts and superscripts to show multiplicity will be sustained and implemented).

This problem needs to implement a solution that already exists in the field of

computer organization and resource hierarchies introduced by Michael J. Flynn (As

introduced in 1.2.2). He developed “a hierarchical model for computer organizations

commonly identified as Flynn’s Taxonomy which is still used as a design tool for

modern processors and their functionalities.” It is as followed (Flynn, 1972)122 –

• SISD – Single Instruction stream, Single Data stream.

• SIMD – Single Instruction stream, Multiple Data streams.

• MISD – Multiple Instruction streams, Single Data stream.

• MIMD – Multiple Instruction streams, Multiple Data streams.

122 Flynn, M-J. (1972). Some Computer Organizations and their Effectiveness. IEEE Transactions on
Computers, C-21(9), pp. 948-960.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |116

Elaborating on Flynn’s Taxonomy, the problem with the multiplicity of the ∈, Ψ, and

thus consequently the multiplicity of CE, could be solved by concluding that the

placeholders of ∈ and Ψ are the parameters which can be considered as variables.

Furthermore, the capacity of ∈ and Ψ can be expanded (as introduced in 1.2.2) by

considering the following assumptions based on the lexical semantics established

thus far –

• A CE can only exist if the ∈ and the Ψ are established.

• A CE can exist with a single ∈ and a single Ψ.

• A CE can exist with multiple ∈ and a single Ψ.

• A CE can exist with a single ∈ and multiple Ψ.

• A CE can exist with multiple ∈ and multiple Ψ.

Thus, it can be stated that there can be only four possibilities of variations or

deviations considering the potential of multiplicity of ∈ and Ψ. Moreover, based on

the theoretical groundwork laid by Flynn’s taxonomy, the research can thus establish

the following possible combinations of the procedural sequences –

• CESESE – Single Element, Single Economy.

• CEMESE – Multiple Elements, Single Economy.

• CESEME – Single Element, Multiple Economies.

• CEMEME – Multiple Elements, Multiple Economies.

This adoption of Flynn’s Taxonomies helps in avoiding the anomalies that could be

related to the multiplicity of CE as a combinatorial product of ∈ and Ψ.

Architecture of Computational Ecosystems

| Establishing Logical Semantics for operational objectives 117|

However, implementing CA as a computational framework to perform CE (as in all

the procedural sequences) still has a major shortcoming that has already been

highlighted in this thesis. Due to the undecidability of most of the Cellular Automata

models described in this thesis so far the reliability of Cellular Automata as a

computational framework to perform CE becomes very dysfunctional. This

constitutional deficiency in any Cellular Automata model has been theoretically

proven as a common phenomenon in the theory of Computation (as part of the

computability theory) termed as the Halting Problem. For the CE to perform

flawlessly, the halting problem needs to be overcome.

Although, it had been proved by Turing in 1937, that “a general algorithm to solve

the halting problem for all possible program-input pairs cannot exist“(Turing,

1937)123, Minsky stated in 1967 that, any finite-state machine, “if left completely to

itself, will fall eventually into a perfectly periodic repetitive pattern and the duration

of this repeating pattern cannot exceed the number of internal states of the machine”

(Minsky, 1967)124 thereby stating that theoretically, “the halting problem is decidable,

because the machine has finite computational power” (with at least 21,000,000 possible

states, which is a cosmic equivalent of eons of galactic evolution).

Although not directly helpful in solving the halting problem, Minsky’s statement can

help the research in theorizing that to make sure that a CE is halted, a concept of

decay can be included in the rule sets of the Ψ. This condition of decay would act as

a counterpart to the condition of growth in the CE meaning that the Ψ would become

truly context aware, and not just be ruthlessly driving towards an equilibrium state.

Moreover, with the introduction of the growth-decay dichotomy, the ∈ and Ψ can

perform structural coupling in a more anthropomorphic way. However, each taxon

will have a specific concept of decay, which will be relevant to its ∈ and Ψ.

123 Turing, A. (1937). On Computable Numbers, with an Application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 2(42), pp. 230-265.
124 Minsky, M. (1967). Computation: Finite and Infinite Machines. New Jersey: Prentice-Hall Inc.p.
334.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |118

3.2.1 General Assumptions for all Procedural Sequences (CESESE,

CEMESE, CESEME, and CEMEME)

The previous explanation on CESESE, CEMESE, CESEME, and CEMEME, and the subsequent

examples (as per 1.2.2) provide a clear illustration of all the individual taxon and their

relationship within the entire taxonomy. However, as the concepts pertaining to the

lexical semantics have already been established in the previous section (as in 3.1),

the research requires a more ab initio approach in establishing the logical semantics

as well. It also becomes essential to establish the logical semantics in this approach,

because all the individual taxa as part of the procedural sequences will be

implemented in fulfilling the operational objectives of this research (As explained in

1.2.2 and illustrated in fig. 1.10).

Before independently defining all the distinct taxa, some general assumptions can be

considered for all the procedural sequences as a collective unit. These assumptions

mainly involve the understanding of the notation systems required to perform the

following operations as per the operational objectives –

• Taxonomy –

o Although the independent taxa could have their distinguishing

superscripts and subscripts notational systems as identified and

defined for the specific taxa, all the procedural sequences must follow

the classification system termed as Folksonomy (Peters, 2009)125

which is a system that classifies content based on user tags, similar to

citation indexing in Mendeley126, and hashtags on Instagram.

125 Peters, I. (2009). Folksonomies. Indexing and Retrieval in Web 2.0. Berlin: De Gruyter Saur, pp.
445.
126 Mendeley. (2008). London: Elsevier.

Architecture of Computational Ecosystems

| Establishing Logical Semantics for operational objectives 119|

o Folksonomies would be better suited for the entire procedural

sequences, because the taxonomies generated in the operational

objectives would be rich in graphical information, and would not

require to be taxonomized based on hierarchies.

o Moreover, the taxonomy can reflect the actual usage of the specific

CE in terms of its implementation in the component of a built form,

and can thus be used to create a robust data set.

o And finally, because the tags for the taxa can be generated by the user,

they can be simplified with user vocabulary or notational systems.

• Evaluation –

o This part of the operational objectives exclusively performs the

simulations section of the primary objectives, and thus involves the

bulk of programming that would be performed in this research.

Moreover, it also involves testing, bug-fixing, troubleshooting, and

versioning of the CE for all the taxa in the aforementioned procedural

sequences. This means, a lot of S.O.D. (Systems Oriented Design),

pseudo-codes and computational strategies will be formulated in this

section. With their many aberrations, the procedural systems could

disarray the notation systems. Thus, to avoid any deviations and

discrepancies in the communication strategies adopted for the

evaluation, all the procedural sequences must follow the visualization

system – UML version 2.5.1 (OMG, 2017)127 which is the latest version

of UML, “the standard way to visualize the design of a computational

system.”

127 OMG – Object Management Group (2017). OMG® Unified Modelling Language® (OMG UML®)
Version 2.5.1. Milford, Massachusetts: OMG Group, pp. 754

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |120

o All the procedural sequences would be using a combination of the

Structural UML Diagrams - Class Diagrams and Package Diagrams

(within the system of UML 2.5.1), to define and identify the different

variations of ∈ and Ψ, their attributes (their physical properties), and

their behaviors (their potential interactions with other ∈ and Ψ).

o Moreover, all the variations of all the procedural systems would be

using a combination of the Behavioral UML Diagrams (within the

system of UML 2.5.1), to illustrate the functioning of a specific CE (be

it CESESE, CEMESE, CESEME, or CEMEME) while introducing the role of actors

(as in the user who would have their role across the runtime of the CE

to provoke the ∈ and Ψ as per the design of the CE) and determining

the role and activation of individual ∈ and Ψ throughout the CE.

o All the different above-mentioned UML diagrams will also be used to

identify and define the different user-tests, bugs, troubleshooting, and

versioning performed throughout the individual CE across the

procedural sequences to perform the operational objectives.

o However, individual taxa of the CE could have modification of their

respective UML diagrams owing to the variations in the cardinality of

their ∈ and Ψ.

• Prototyping –

o Although the prototyping objectives will be specific to the individual

taxa within the procedural sequences (as in maybe one of the Ψ of a

specific CE demands the construction of a bridge, while another CE

demands the construction of a tower), all the initial independent tests

will be performed by means of FDM printing with PLA filament, and

evaluated as per the predetermined requirements of the specific CE.

Architecture of Computational Ecosystems

| Establishing Logical Semantics for operational objectives 121|

3.2.2 Single Element Single Economy Ecosystem (CESESE)

As explained previously with an example of a system of cubes stacked on top of each

other by considering the rules of structural stability (described in 1.2.2 and illustrated

in fig. 1.6) the CE undergoes optimization for one and only one type of species (in the

case of the example, a cube) by considering one and only one type of rule set (in the

case of the example, structural stability). Thus, it is termed as the Single Element,

Single Economy Ecosystem – CESESE.

Considering the above example (originally explained in 1.2.2 and illustrated in fig.

1.6), a standard UML based on the assumptions of 3.2.1 can be established for a CESESE

as illustrated in the fig. 3.2 below.

Figure 3.2 – Example of a standard UML for a CESESE considering an example case for the ∈ and

Ψ. Illustration and graphics by Author (February 2018).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |122

Considering the lexical semantics established in the previous sections (as per 3.1.1,

3.1.2, and 3.1.3) the following logical and empirical definitions could be established

for a CESESE –

• The CESESE could be populated by one and only one species of ∈. These ∈ could

be represented by Platonic solids, Archimedean solids, point clouds, passive

agents, active agents, cognitive agents, service equipment, structural

members or fabrication material.

• The CESESE could be governed by one and only one equilibrium condition of Ψ.

These Ψ could be represented by static structural stability, kinetic structural

stability, functional adequacy, functional compatibility, contextual

compatibility, climatic optimization, and fabrication constraints.

• All the procedural sequences and pseudo codes that would be formulated and

theorized to achieve the operational objectives for the CESESE must follow the

canonical CESESE UML diagram as shown in Fig. 3.2.

• The specific considerations for the ∈ and Ψ (pertaining to the geometrical

properties of the cells, neighbourhoods and the specific considerations for the

cell states), however, can be made while establishing the particular CESESE and

must be named, defined and sufficiently illustrated.

• All the results achieved after performing the CESESE following all the

procedural sequences must be taxonomized by following the canonical CESESE

folksonomy system (as illustrated previously in 3.2.1).

• As the results will be demonstrated in this thesis in a graphical format, the

visual programming script (conceptualized, designed and illustrated in

Grasshopper3D) will be added in the annexure section of the thesis. Thus, it

must clearly reflect the nomenclature as per the CESESE taxonomy system.

Architecture of Computational Ecosystems

| Establishing Logical Semantics for operational objectives 123|

3.2.3 Multi Element Single Economy Ecosystem (CEMESE)

As explained previously with an example of a system of cubes and icosahedra stacked

on top of each other by considering the rules of structural stability (described in 1.2.2

and illustrated in fig. 1.7) the CE undergoes optimization for multiple types of species

(in the case of the example, a cube and an icosahedron) by considering one and only

one type of rule set (in the case of the example, structural stability). Thus, it is termed

as the Multiple Elements, Single Economy Ecosystem – CEMESE.

Considering the above example (originally explained in 1.2.2 and illustrated in fig.

1.7), a standard UML based on the assumptions of 3.2.1 can be established for a

CEMESE as illustrated in the fig. 3.3 below.

Figure 3.3 – Example of a standard UML for a CEMESE considering an example case for the ∈ and

Ψ. Illustration and graphics by Author (February 2018).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |124

Considering the lexical semantics established in the previous sections (as per 3.1.1,

3.1.2, and 3.1.3) the following logical and empirical definitions could be established

for a CEMESE –

• The CEMESE could be populated by multiple species of ∈. These ∈ could be

represented by Platonic solids, Archimedean solids, point clouds, passive

agents, active agents, cognitive agents, service equipment, structural

members or fabrication material.

• The CEMESE could be governed by one and only one equilibrium condition of

Ψ. These Ψ could be represented by static structural stability, kinetic

structural stability, functional adequacy, functional compatibility, contextual

compatibility, climatic optimization, and fabrication constraints.

• All the procedural sequences and pseudo codes that would be formulated and

theorized to achieve the operational objectives for the CEMESE must follow the

canonical CEMESE UML diagram as shown in Fig. 3.3.

• The specific considerations for the ∈ and Ψ (pertaining to the geometrical

properties of the cells, neighbourhoods and the specific considerations for the

cell states), however, can be made while establishing the particular CEMESE and

must be named, defined and sufficiently illustrated.

• All the results achieved after performing the CEMESE following all the

procedural sequences must be taxonomized by following the canonical CEMESE

folksonomy system (as illustrated previously in 3.2.1).

• As the results will be demonstrated in this thesis in a graphical format, the

visual programming script (conceptualized, designed and illustrated in

Grasshopper3D) will be added in the annexure section of the thesis. Thus, it

must clearly reflect the nomenclature as per the CEMESE folksonomy system.

Architecture of Computational Ecosystems

| Establishing Logical Semantics for operational objectives 125|

3.2.4 Single Element Multi Economy Ecosystem (CESEME)

As explained previously with an example of a system of cubes stacked on top of each

other by considering the rules of structural stability and buoyancy (described in 1.2.2

and illustrated in fig. 1.8) the CE undergoes optimization for one and only one type

of species (in the case of the example, a cube) by considering multiple types of rule

sets (in the case of the example, structural stability and buoyancy). Thus, it is termed

as the Single Element, Multiple Economies Ecosystem – CESEME.

Considering the above example (originally explained in 1.2.2 and illustrated in fig.

1.8), a standard UML based on the assumptions of 3.2.1 can be established for a

CESEME as illustrated in the fig. 3.4 below.

Figure 3.4 – Example of a standard UML for a CESEME considering an example case for the ∈ and

Ψ. Illustration and graphics by Author (February 2018).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |126

Considering the lexical semantics established in the previous sections (as per 3.1.1,

3.1.2, and 3.1.3) the following logical and empirical definitions could be established

for a CESEME –

• The CESEME could be populated by one and only one species of ∈. These ∈

could be represented by Platonic solids, Archimedean solids, point clouds,

passive agents, active agents, cognitive agents, service equipment, structural

members or fabrication material.

• The CESEME could be governed by multiple equilibrium conditions of Ψ. These

Ψ could be represented by static structural stability, kinetic structural

stability, functional adequacy, functional compatibility, contextual

compatibility, climatic optimization, and fabrication constraints.

• All the procedural sequences and pseudo codes that would be formulated and

theorized to achieve the operational objectives for the CESEME must follow the

canonical CESEME UML diagram as shown in Fig. 3.4.

• The specific considerations for the ∈ and Ψ (pertaining to the geometrical

properties of the cells, neighbourhoods and the specific considerations for the

cell states), however, can be made while establishing the particular CESEME and

must be named, defined and sufficiently illustrated.

• All the results achieved after performing the CESEME following all the

procedural sequences must be taxonomized by following the canonical CESEME

folksonomy system (as illustrated previously in 3.2.1).

• As the results will be demonstrated in this thesis in a graphical format, the

visual programming script (conceptualized, designed and illustrated in

Grasshopper3D) will be added in the annexure section of the thesis. Thus, it

must clearly reflect the nomenclature as per the CESEME folksonomy system.

Architecture of Computational Ecosystems

| Establishing Logical Semantics for operational objectives 127|

3.2.5 Multi Element Multi Economy Ecosystem (CEMEME)

As explained previously with an example of a system of cubes and cuboctahedra

stacked on top of each other by considering the rules of structural stability and

buoyancy (described in 1.2.2 and illustrated in fig. 1.9) the CE undergoes optimization

for multiple types of species by considering multiple types of rule sets. Thus, it is

termed as the Multiple Elements, Multiple Economies Ecosystem – CEMEME.

Considering the above example, a standard UML based on the assumptions of 3.2.1

can be established for a CEMEME as illustrated in the fig. 3.5 below.

Figure 3.5 – Example of a standard UML for a CEMEME considering an example case for the ∈ and

Ψ. Illustration and graphics by Author (February 2018).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |128

Considering the lexical semantics established in the previous sections (as per 3.1.1,

3.1.2, and 3.1.3) the following logical and empirical definitions could be established

for a CEMEME –

• The CEMEME could be populated by multiple species of ∈. These ∈ could be

represented by Platonic solids, Archimedean solids, point clouds, passive

agents, active agents, cognitive agents, service equipment, structural

members or fabrication material.

• The CEMEME could be governed by multiple equilibrium conditions of Ψ. These

Ψ could be represented by static structural stability, kinetic structural

stability, functional adequacy, functional compatibility, contextual

compatibility, climatic optimization, and fabrication constraints.

• All the procedural sequences and pseudo codes that would be formulated and

theorized to achieve the operational objectives for the CEMEME must follow

the canonical CEMEME UML diagram as shown in Fig. 3.5.

• The specific considerations for the ∈ and Ψ (pertaining to the geometrical

properties of the cells, neighbourhoods and the specific considerations for the

cell states), however, can be made while establishing the particular CEMEME

and must be named, defined and sufficiently illustrated.

• All the results achieved after performing the CEMEME following all the

procedural sequences must be taxonomized by following the canonical

CEMEME folksonomy system (as illustrated previously in 3.2.1).

• As the results will be demonstrated in this thesis in a graphical format, the

visual programming script (conceptualized, designed and illustrated in

Grasshopper3D) will be added in the annexure section of the thesis. Thus, it

must clearly reflect the nomenclature as per the CEMEME folksonomy system.

Architecture of Computational Ecosystems

| Semantic Syntax for the Procedural Sequences 129|

3.3 Semantic Syntax for the Procedural Sequences

The lexical semantics (which were thus obtained from the theoretical assumptions

thoroughly established previously in 2|) and the logical semantics (which were based

on the lexical semantics and comprehensively established throughout the sections

3.1 and 3.1) quite evidently form the theoretical foundations for this research while

serving a database for the semantic syntax. This semantic syntax is required to

undertake the procedural sequences that form the major bulk of the operational

objectives and primary objectives for this research (as illustrated in 1.10) thus helping

the research in empirically accomplishing the objectives laid down by the hypothesis.

As introduced (in 1.2.1), illustrated (in fig. 1.10), explained, and theorized (in 2| and

3|), this chapter thus concludes the literary objectives as explained –

• Literary objective I (Lexical semantics) – The terminologies and diction from

the fields of Biology, Ecology, Genetics, Computing, Applied Mathematics,

Applied Mechanics, Fabrication, Manufacturing and Economics relevant to

the research as a literary aid were theorized to establish the structure of

thought.

• Literary objective I (Logical semantics) – The terminologies and diction in the

fields of Biology, Ecology, Genetics, Computing, Applied Mathematics,

Applied Mechanics, Fabrication, Manufacturing and Economics relevant to

the research as a literary aid were repurposed to establish the structure of a

process.

The semantic syntax established by accomplishing the literary objectives will now aid

in pursuing the operational objectives for all the procedural sequences in the further

chapters (as per the structure explained in 1.3.2).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

3| On the semantic syntax for the Computational Ecosystems. |130

Apart from the semantic syntax that is derived from the theoretical assumptions

made by pursuing the aforementioned Literary Objectives, the research is also based

on the semantic syntax derived from the computational environment (in the form of

software) that is being used to perform all the procedural sequences. Following is a

list of all the digital tools that are employed in this research.

• Rhinoceros 3D128 – Or Rhino 3D, which is a 3D modelling and CAD software,

has been used as the primary computational environment to perform all the

primary objectives for the procedural sequences (refer 1.2.1). Throughout the

empirical advancements of this research, the latest available versions of

Rhino 3D (as product names Rhino 5, Rhino 6, and Rhino 7) have been used

depending on their respective release dates. All the files used to generate

illustrations for this research have been visualized using Rhino 7, which is the

latest version as of the publication of this thesis. Thus, the file formats are not

compatible with the previous versions of the software.

• Grasshopper 3D129 – Or Grasshopper, which is a visual programming language

and environment, and (since Rhino 6) is packaged as a built-in plug-in for

Rhino 3D, has been used as the programming interface to perform all the

primary objectives for the procedural sequences. Grasshopper has not had

any significant change throughout this research, apart from being directly

integrated within the Rhino 3D interface. Thus, as of the publication of this

thesis, all the Grasshopper definitions (which are those scripts that are

written and performed in the Grasshopper environment, and saved as .gh file

format) are and will be compatible across different versions.

Thus, the procedural sequences will be accomplished by implementing Rhino 7 and

Grasshopper.

128 Rhinoceros, version 1 (1998). Seattle: Robert McNeel & Associates.
129 Grasshopper 3D (2007). Seattle: David Rutten, Robert McNeel & Associates.

Architecture of Computational Ecosystems

| Semantic Syntax for the Procedural Sequences 131|

Methodology

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |132

4| On the procedural sequences for the
Computational Ecosystems

4.1 Primary objectives through Procedural sequences

An explicit roadmap regarding the objectives (the primary and secondary, as

explained in 1.2.1) was clearly laid out in Chapter 1 (as illustrated in fig. 1.10 in 1.2.3)

and the previous chapters (2| and 3|) have quite distinctively defined all the required

theoretical foundation for the research which hypothesizes –

What if the built form was constructed, monitored and governed by an

autonomous, unbiased algorithm?

What if this algorithm was dynamically constructed, monitored and governed by

the built form?

And, theorizes to create, taxonomize, and prototype a dynamic, reciprocal, symbiotic

feedback loop in the form of Computational Ecosystems (CE) built on the

computational framework of Cellular Automata (CA). As theorized and defined in the

previous chapters, the procedural sequences which form the basis of the operational

objectives of the research have been performed in the form of the four taxa - CESESE,

CEMESE, CESEME, and CEMEME. All these four taxa have undergone the three stages of

operational objectives – Taxonomies, Evaluation, and Fabrication. As these

operational objectives have had overlapping contributions to the primary objectives,

all the taxa have been individually explained in this thesis by following a structure

derived from the primary objectives – Case studies, Simulations, and Prototyping in

this chapter. Moreover, as this entire chapter mostly focuses on all the processes

undertaken to theorize, program, prototype, and iterate all the 4 independent taxa,

the significance of the results of these taxa are discussed and elaborated upon in

chapter 5.

Architecture of Computational Ecosystems

| 4.1 Primary objectives through Procedural sequences 133|

Because of the impetus put on the actual performance of all the theoretical inputs

and implementation of all the semantics described thus far, this chapter, which

focuses on the methodology, has a lot of graphical information that helps in

illustrating the different morphologies acquired by performing a wide range of

combinations and variations of ∈ and Ψ, and their initial states. All these

morphologies have been programmed, generated and visualized by using Rhino 7 and

Grasshopper (as elaborated in 3.3). However, to perform the distinguished

computational operations that are required by the assumptions made for the specific

∈ and Ψ, have been performed by implementing additional plugins. These plugins

are available on major opensource scripting platforms (like GitHub, grasshopper3D

and food4rhino) and can be downloaded and installed with absolute ease. The

specific plugins have been mentioned while performing a specific attribute attached

to the ∈ and Ψ in question in the specific taxon.

Some illustrations have also been created by implementing VRay130 for Rhino (which

is a biased CGI rendering software built for geometry generated in Rhino). The

rendering software was employed to simulate the visual properties of a wide range

of materials that are used in the AEC industry. Because this research is not directly

related to material engineering and purely focuses on computational design and

digital fabrication, the use of the rendering engine as opposed to photography of

actual material is justified. Thus, a lot of graphic-heavy imagery with near-photo-

realistic quality becomes empirical evidence for most of the methodological

framework in the form of the operational objectives.

However, to showcase the grasshopper definitions in a visual format, while not

overpowering the visual imagery (which provides the empirical evidence with relative

ease), the research prefers to add the definitions to the annexure section of this

thesis.

130 VRay for Rhino (1997). Sofia, Bulgaria: Chaos Group.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |134

(As elaborated in 3.2) The pseudo-codes and computational strategies for all the

procedural sequences have been based upon the canonical UML Class Diagrams for

the respective taxon (as illustrated in fig. 3.2, fig. 3.2, fig. 3.4, and fig. 3.5) which were

set up considering the examples in chapter 1| On the relevance of Computational

Ecosystems (as in fig. 1.6, fig. 1.7, fig. 1.8, and fig. 1.9). However, a computational

strategy needs a Behavioral UML Diagram to understand the role, interaction and

runtime of all its components (in this case the ∈ and Ψ) and cannot be defined by

establishing a Structural UML Diagram that merely identifies and defines the

attributes and operations of a class (again, in this case the ∈ and Ψ).

On the contrary, the use of a Behavioral UML diagram cannot be used as a canonical

version for all the CE that can be part of a specific procedural sequence. For example,

it would be counter-intuitive to create a canonical CESESE UML with the help of a

Behavioral UML diagram that could possibly address all the various properties that

could be attributed to ∈ and Ψ, while defining their roles, interaction and runtime.

Therefore, it is clever to establish and illustrate the individual Behavioral UML

diagrams for the specific taxon at the time of their introduction in this thesis. These

specific and distinctive Behavioral UML Diagrams would be a part of the prototyping

section of the CE taxon in question and will be categorized under the same criteria as

the procedural sequences (as in the form of the four already established taxa).

All the subsequent Behavioral UML Diagrams (just like all the canonical UML Class

Diagrams) have been created using a web-based tool - Lucidchart131 which is widely

used by companies to create and share UML Diagrams in the software industry.

Thus, after establishing the variations, additions, extensions and specific

modifications to the semantics, the individual taxa of the procedural sequences will

be elaborated in the next pages through the primary objectives while fulfilling the

operational objectives (as per 1.2.1).

131 Lucidchart (2008). Utah: Lucid Software Inc.

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 135|

4.2 Single Element Single Economy Ecosystem (CESESE)

The conceptual framework of a CESESE has already been sufficiently illustrated in the

previous chapters (introduced in 1.2.2, illustrated in fig. 1.6, defined in 3.2.2).

Moreover, a Structural UML Diagram establishing the attributes and operations of a

canonical version, the ∈ and Ψ has also been illustrated (in fig. 3.2 as part of sub

section 3.2.2). However, to actually construct, taxonomize and prototype a

procedural sequence, the research would have to consider specific tangible

parameters which could be derived from real-life examples and constraints.

As the first CE to be established under the theoretical framework, it was prudent to

start with an elementary form (not elementary in the sense as Wolfram’s Elementary

Cellular Automata) of CE which could be based on one of the first examples of a CE

and the consequent conceptual frameworks introduced in this thesis. In short, the CE

illustrated in 1.2.2 to introduce the concept of an SESE (hereafter termed as the

example scenario) would be an ideal place to start with the procedural sequences for

a CESESE. This decision of starting with the example case would also make it easier to

refer to the canonical Structural UML Diagram and base the pseudo-code on it, albeit

with some modifications to better suit the exact parameters of the CESESE.

Thus, before specifically defining each parameter, we can roughly state the following

overall components of the CESESE –

• ∈ – As illustrated in the example scenario, the ∈ would be represented by

hexahedrons or cubes, with unit dimensions.

• Ψ – As illustrated in the example scenario, the Ψ would be represented by

structural stability in the form of axial loads.

Regardless of the above generalization, the CESESE would require to fulfill all the

primary objectives while pursuing the operational objectives for this taxon.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |136

4.2.1 Case Studies

As a computational construct, it is quite straightforward and obvious to theorize an

ecosystem that is inhabited by one and only one kind of species and those species

are constructed, monitored, and governed by one and only one rule set. However, it

is very difficult to find a real-life ecosystem that reflects similar constituent parts.

Most ecosystems have complexities and multiplicities in either or both of the types

of species or the types of purposes that bring them together (that is in terms of

positive or negative intraspecific or interspecific cooperation as elaborated in 2.1.3).

On the contrary, owing to the relative ease and simplicity of computation, most of

the bio-based algorithms that have been mentioned in this thesis (such as ACO, BFA,

FSA, ABC as mentioned in 2.1.4 in fig. 2.1) are experimented and theorized with a

single type of species constructed, monitored, and governed by a single type of rule

set. Although the computation is not precise or realistic, the relative simplicity of the

computational methodology is quite instrumental in generating required research

observations and results. This very advantage has been one of the key factors in the

significance of this taxon (CESESE) in providing straightforward results by means of

performing relatively simplified methodologies.

This means, that the assumptions for the ∈ and Ψ for the CESESE must conform to a

system that follows the aforementioned criteria (as per the example scenario) but

can also have a considerable advantage if it was based on a real-life ecosystem that

reflects similar constituent parts. However, the hexahedrons or cubes considered as

∈, are lifeless blocks of an arbitrary dimension and can only be classified as ∈abiotic,

which makes it very laborious to analogically characterize it with a real-life

ecosystem. Thus, the following addition must be made to the assumptions –

• ∈ – Hexahedrons or cubes, with unit dimensions, which can be programmed

as sentient elements, that are aware of their existence, and thus can be

considered as ∈biotic.

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 137|

Eciton hamatum, which is a species of army ants found in parts of Mesoamerica and

South America, are known for their large swarms which raid forests to forage for food

sources. While in their pursuits, the swarms cross very many natural hurdles by

forming collective assemblages out of their own bodies to perform a variety of

functions that benefit the entire colony. Fig. 4.1 illustrates army ants building and

using a living bridge to span gaps in the colony’s foraging trail.

Figure 4.1 – Ant Bridge (Panama). Original Image from the fieldwork on Army ants (Eciton

hamatum) induced to form a very large bridge over a wide gap by Chris R. Reid. Source:

https://chrisrreid.wordpress.com/fieldwork/

In field studies conducted on ant bridges, it has been found that, “the ants

continuously modify their bridges, such that these structures lengthen, widen, and

change position in response to traffic levels and environmental geometry.” It has also

been observed that “the bridge construction is influenced by a cost-benefit trade-off

at the colony level, where the benefit of increased foraging trail efficiency is balanced

by the cost of removing workers from the foraging pool to form the structure” (Reid,

et al).132

132 Reid, C. R., Lutz, M. J., Powell, S., Kao, A. B., Couzin, I. D., and Garnier, S. (2015). Army ants
dynamically adjust living bridges in response to a cost–benefit trade-off. In: Proceedings of the
National Academy of Sciences of the United States of America. [online] Washington DC: PNAS, p 6. .
Available at: https://www.pnas.org/content/pnas/early/2015/11/18/1512241112.full.pdf

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |138

If a rudimentary computational model was to be made for the simulation of the

bridging behavior of the aforementioned army ants it would translate to a CE as has

been already defined as Hybrid Bio Plausible Bio-inspired Stochastic Optimization

Algorithm. Say, this proposed CE, following a basic nomenclature system, could then

be termed as CEeciton-bridge (as the CE reflects bridging properties of the eciton

hamatum species), and would then consist of the following constituent parts:

• ∈ – The army ants. Acting as biotic, ambulatory agents that are self-aware of

their physical properties such as their weight, weight-carrying capacity,

movement speed, and gripping abilities. Thus, ∈eciton.

• Ψ – The bridging ability. Forming collective assemblages by means of

connection techniques, span-depth ratios for optimum bridge structures, and

load calculations (considering the live loads and dead loads). Thus, Ψbridge.

Although, a more realistic CEeciton-bridge would consist of a few more ∈ (such as the

abiotic food sources, abiotic food fragments, and the abiotic gaps in the foraging trail)

and Ψ (such as shortest foraging trails and cost-benefit analysis for the colony

dynamics) to precisely simulate the foraging behavior of the army ants and to

understand the relations between the cost-benefit trade-off, however, to simulate

and analyze the living bridge structures as collective assemblages created by the army

ants, the above components could be considered sufficient. A CEeciton-bridge with the

abovementioned ∈ and Ψ would then be analogous to a CESESE with a single species

of ∈ and a single ruleset of Ψ. The proposed CESESE can reflect a computational

adaptation of the CEeciton-bridge, albeit the significant divergence in the ∈eciton and the

∈biotic for the proposed CESESE (where the former is an ambulatory agent, and the

latter is a static cube conceptualized to be sentient and context-aware). Therefore, a

CEeciton-bridge can be considered as a real-life case study to establish the CESESE.

Thus, the similarities between a CESESE and a CEeciton-bridge as compared to the example

scenario can be illustrated as shown in fig. 4.2. below.

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 139|

Figure 4.2 – Comparing the example scenario, a CESESE and a CEeciton-bridge. Illustration and

graphics by Author (May 2018).

Considering the aforementioned assumption, the proposed CESESE can now be treated

as a Hybrid Bio Plausible Bio-inspired Stochastic Optimization Algorithm, that seeks

to simulate a computational adaptation of the collective assemblages achieved by

eciton hamatum or army ants. This assumption can be employed as a direct analogy

to develop the next stages of this taxon. However, the ∈ and Ψ must be clearly

established as followed –

• ∈ – Or ∈cube (derived from already established ∈biotic as a cube), can be

considered as a computational substitute for the ∈eciton established for the

construction of CEeciton-bridge. However, it needs to be considered with the

following additional properties:

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |140

o The ∈cube should be considered as a static agent that can be spawned

or culled by the CESESE at the expense of the equilibrium state which

will be determined by the Ψ.

o The ∈cube should be made to be self-aware of itself, in the sense that

it should be able to identify and quantify its position, orientation,

weight, and bounds.

o The ∈cube should also be made to be self-aware of its surroundings and

their physical properties, such as cardinality of neighbours, the array

of neighbours, and distance from the initial plane.

• Ψ – can be considered as the computational substitute for the Ψbridge

established for the CEeciton-bridge. However, it needs to be considered with the

following additional properties:

o Instead of a bridging logic which has major dependencies on the span

of the gap (to be bridged), a tower logic which has no such constraints

apart from the height can be considered as the primary attribute of

the Ψ. Thus, Ψtower can be introduced.

o Ψtower should be considered as a simple vertical stacking logic serving

as a computational substitute to the collective assemblages proposed

for the CEeciton-bridge.

o Ψtower should be designed primarily as a two-state rationale that

depends on if the cube is spawned or culled while conforming to the

understanding of vertical stacking.

o Ψtower should seek an equilibrium state that spawns ∈cube when the

tower is under-structured, and culls ∈cube when the tower is over-

structured, thus maintaining a reciprocal coupling.

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 141|

After establishing and defining the ∈ and Ψ as ∈cube and Ψtower, the CESESE could be

specifically defined under the computational modelling guidelines of CA (as

elaborated in 3|) as followed –

• The CESESE which owing to its specific ∈ and Ψ combination can be termed as

CEcube-tower will be defined as a functioning ecosystem constituting of sentient,

context aware ∈ entities that interact with each other considering the rulesets

assigned by Ψtower to spawn or cull ∈cube until the runtime of the CEcube-tower.

• The CEcube-tower will perform solitarily without any additional internal

components or partial runtimes. Moreover, there won’t be context aware CE

that would have to be added externally. Thus, in this taxon, one and only one

CE that is CEcube-tower would be performed for its entire runtime.

• Although derived from the intricate bio-inspired behavior of army ants

creating and maintaining living bridges for foraging trails, the CEcube-tower is

basically an elementary vertical cube stacking algorithm. Therefore, the rule

sets for Ψtower can be adapted from the Conway model of Cellular Automata

(as elaborated in 2.3.2).

• The Ψtower would differentiate from the Conway model of Cellular Automata

in the parameter of time. In the Conway model, with increased intervals of

time (ttick) we find new cells being added to or removed from the 2D grid.

However, in the case of the CEcube-tower, the new cells (in the form of ∈cube) will

be spawned or culled on the upper levels in the 3D grid.

Considering all the above assumptions, definitions, illustrations and examples for the

CEcube-tower, the simulations for this taxon can now be performed. However, some

information still needs to be considered to establish and illustrate the empirical

derivations of all the case studies. For example, the ∈cube and Ψtower still need to be

dimensionally, and geometrically defined to consider them for computational use.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |142

4.2.2 Simulations

Thus, to begin defining the ∈cube and Ψtower to be employable in a computational

context, it is important to reassess and repurpose the canonical CESESE Structural UML

Diagram (as per fig. 3.2) for the CEcube-tower. Fig. 4.3, as shown below, illustrates the

modifications to the canonical version.

Figure 4.3 – Modifications made to the canonical CESESE UML Diagram to accommodate the

parameters required for establishing the CEcube-tower. Illustration and graphics by Author (May

2018).

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 143|

Elaborating on the terminologies introduced in fig. 4.3, the attributes and operations

of the classes can be defined as followed –

• ttick – The periodic increment of time, which ensures that the CEcube-tower runs.

• trest – If the condition CEcube-tower rest is fulfilled, the trest will be activated. This

means that the time increment will stop and the CEcube-tower will

• CEcube-tower rest – Is the situation where an ∈cube array for the last 3 ttick

intervals is equal or repetitive.

• ∈cube array – Is the collective assemblage of ∈cube for a certain ttick interval.

• ∈cube
form – Is the formation of an ∈cube array depending on the binary input

from Nform.

• Nform – Is the binary input for the cells to be either spawned (input = 1) or

culled (input = 0) depending on the Ncheck conditional.

• Ncheck – Is the binary output from the cells of the neighbourhood (N) to check

if the cells in the N of the previous ttick interval are either spawned (input = 1)

or culled (input = 0).

• N – The neighbourhood of the cell in question (as in every ∈cube) depending

on how many neighbouring ∈cube from the previous ttick interval are to be

considered to determine the Ncheck and the Nform routines that determine

Stack operation.

Thus (as seen above in reverse chronology), determining the neighbourhood (N)

becomes the most important step before considering to explain the other concepts

under the inheritance field. Moreover, the determining of the initial states and the

initiate conditions also require an understanding of the neighbourhood (N).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |144

However, before establishing the N, the computational environment and interface

need to be established. All the modelling has been performed in Rhino 7 (as explained

in 3.3), the programming has been performed in Grasshopper for Rhino 7 (as

explained in 3.3) and visualizations have been performed in VRay for Rhino (as

explained in 4.1). Thus, all the assumptions that are mentioned here after, take place

not only in the conceptual hypothetical realm of the structure of thought but also in

terms of the software interfaces mentioned above.

The computational universe of a CEcube-tower in terms of Euclidian geometry is an

infinite, 3D orthogonal grid of cubes, and can be realized by the 1x1x1 dimensions (in

the X, Y, and Z axes). However, the infinity of the grid would be treated rather

differently in this case, because the motive of a CEcube-tower is to construct a tower,

and it requires a fixed, immobile ground plane. Considering this ground plane would

be the coordinate XY-plane located at the origin (0,0,0), the infinity of the x and y

axes can stretch in the +X, -X and +Y, -Y directions respectively, however, the infinity

of the Z-axis can only stretch in the +Z direction. Thus, the Array operation in the ∈cube

class can be defined as an infinite 3D cube array conformed to a (0,0) base plane.

Thus forming a hypothetical revised infinite 3D Square grid.

As the grid on all the axes is strictly prescribed to the dimensions 1x1x1, when cubes

are stacked, it will appear as if the cubes are stacked on top of each other on the Z-

axis. This would be particularly helpful in defining the Stack operation which is

controlled by the Ncheck and the Nform routines, which correspond to ∈cube
form that

reflects if the ∈cube is spawned or culled in the specific ttick interval. The spawning or

culling also corresponds to the terminology which determines if ∈cube exists or does

not exist, respectively. However, before determining the State conditions, which

form the computational core of Ψtower (and thus consequently of the CEcube-tower), the

N for the ∈cube Array defined above needs to be explained and illustrated. The

concept of the N would also be instrumental in illustrating all the Ncheck and the Nform

routines, as it would serve as a continuation to the same graphical vocabulary, with

the same examples.

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 145|

As the concept of neighbourhood (N) depends directly on the morphology of the

∈cube, fig. 4.4 illustrates a solitary ∈cube, say ∈cube-0, surrounded by its N, say N0.

Figure 4.4 – A solitary ∈cube-0 surrounded by its N0. Model and graphics by Author (May 2018).

Following the UML CEcube-tower class diagram in fig. 4.3, the Ncheck for ttick-0 would

determine the Nform for ttick-1 and place a new ∈cube-1 on top of the existing ∈cube-0 as

shown in fig. 4.5 below.

Figure 4.5 – ∈cube and their N across consecutive ttick. Model and graphics by Author (May 2018).

Thus, ∈cube-1 would now have its own N-1, and the process would go on until trest is

achieved at ttick-2, as illustrated in fig. 4.6 below.

Figure 4.6 – ∈cube and their N until trest is achieved. Model and graphics by Author (May 2018).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |146

Thus, the ∈cube-n+1 for every corresponding ttick-n+1 condition, would depend on the

position of the ∈cube-n at the specific ttick-n condition. However, to understand and

determine the Ncheck and the Nform routines to establish which ∈cube is spawned (or

exists) and which is culled (or does not exist), it is essential to draw inspiration from

Cellular Automata models mentioned in this thesis. As mentioned in 4.2.1, the

construction of the CEcube-tower would be following the Conway Model. (As already

established in 2.3.2) The Conway model is a two-state CA, and every cell interacts

with its eight neighbours, conforming to the Moore neighbourhood (NM). At each

step, in time, the following transitions occur (Gardner, 1970)133:

• Any live cell with two or three live neighbours (in its NM) survives.

• Any dead cell with three live neighbours (in its NM) becomes alive.

• All other live cells die in the next generation.

• Similarly, all other dead cells stay dead.

However, (as per 4.2.1) the state conditions of the Conway model cannot be adopted

in the CEcube-tower, as the latter has a major deviation in terms of the computational

environment. As Conway’s game of life is based on an infinite 2d square grid, and the

CEcube-tower conforms to the aforementioned hypothetical revised infinite 3D Square

grid, the transitions mentioned above (in the Conway model) that occur in time, will

have to occur in the +Z axis in the CEcube-tower. Meaning, the above rules that help the

game of life to be visualized as moving, will help the CE to be visualized as growing

(in the +Z axis). But first, the state conditions will have to be modified and adapted

to the N, while every ttick condition would perform the ∈cube array until the trest

condition is achieved.

133 Gardner, M. (1970). MATHEMATICAL GAMES - The fantastic combinations of John Conway's new
solitaire game "life". Scientific American. [online] 223(4), pp. 120-123. Available at:
https://web.stanford.edu/class/sts145/Library/life.pdf [Accessed 31 May 2020].

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 147|

Thus, the modified state conditions for the CEcube-tower drawn from the Conway model

can be stated as followed –

• Every ∈cube-n+1 at the ttick-n+1 interval interacts with its N of the ∈cube-n at the

ttick-n interval, thus performing Ncheck. For the ttick-n+1 interval, it then performs

the Nform routine based on the following conditions –

o Any existing (spawned) ∈cube-n with two or three existing ∈cube-n in its

N continues to exists and is not culled at the ttick-n+1 interval, as if it was

being perfectly supported by its counterparts on the floor below.

o Any existing (spawned) ∈cube-n with other than two or three existing

∈cube-n in its N stops existing and is culled from the ttick-n+1 interval, as

if it was being over-supported by its counterparts on the floor below.

o Any non-existing (culled) ∈cube-n with three existing ∈cube-n in its N

exists and is spawned for the ttick-n+1 interval, as if it was being perfectly

supported by its counterparts on the floor below.

• These rules, which compare the behavior of the automaton to real life, can be

summarised into the following:

o Any existing ∈cube-n at the ttick-n interval with two or three existing ∈cube-

n at the ttick-n interval in its N continues to exist at the ttick-n+1 interval.

o Any non-existing ∈cube-n at the ttick-n interval with three existing ∈cube-n

at the ttick-n interval in its N is spawned at the ttick-n+1 interval.

o All other existing ∈cube-n at the ttick-n interval stop existing at the ttick-n+1

interval. Similarly, all other non-existing ∈cube-n at the ttick-n interval

remain nonexistent at the ttick-n+1 interval.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |148

Thus, considering the aforementioned state conditions, the condition for the existing

state of the ∈cube array, which can be either continued existence (as in not culled) or

newly existing (as in spawned) can be illustrated as shown in fig. 4.7 below.

Figure 4.7 – ∈cube-n array and their corresponding ∈cube-n+1 array considering the state conditions

for the existing states of ∈cube array. Model and graphics by Author (May 2018).

The ∈cube-n+1 at the ttick-n+1 interval is thus denoted by ◼ (R,G,B – 204,204,204) colored

cube, and the corresponding ∈cube-n at the ttick-n interval is denoted by ◼ colored cube

(R,G,B – 129,129,129). Also, the existing cubes are denoted by ◼ (R,G,B – 57,188,40)

colored cube, and the non-existing cubes are denoted by ◼ (R,G,B – 255,21,21)

colored cubes.

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 149|

And, considering the aforementioned state conditions, the condition for the non-

existing state of the ∈cube array, which can be either discontinued existence (as in

culled) or not newly existing (as in not spawned) can be illustrated as in fig. 4.8 below.

Figure 4.8 – ∈cube-n array and their corresponding ∈cube-n+1 array considering the state conditions

for the non-existing states of ∈cube array. Model and graphics by Author (May 2018).

The ∈cube-n+1 at the ttick-n+1 interval is thus denoted by ◼ (R,G,B – 204,204,204) colored

cube, and the corresponding ∈cube-n at the ttick-n interval is denoted by ◼ colored cube

(R,G,B – 129,129,129). Also, the existing cubes are denoted by ◼ (R,G,B – 57,188,40)

colored cube, and the non-existing cubes are denoted by ◼ (R,G,B – 255,21,21)

colored cubes.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |150

4.2.3 Prototyping

The state conditions in terms of the Ncheck and the Nform routines of the Ψtower that

determine the Stack operation for the ∈cube array have been sufficiently

demonstrated and illustrated in terms of the Ψspawn and Ψcull rules (as shown in fig.

4.7 and fig. 4.8). The illustrations show all possible conditions for the Ψspawn and Ψcull

rules, however, the computational logic for stacking is quite simple. If the cardinality

of the N is equal to 2 or 3, the ∈cube survives (i.e. not culled), or if not present already,

it spawns. However, if the cardinality of the N is equal to 0, 1, 4, 5, 6, 7, 8, or 9, an

existing ∈cube is culled, or if not present, it is not spawned.

The above logic had to be tested to verify if the cubes (in the form of ∈cube) really

experience structural stability (as directed by Ψtower) if stacked on top of each other

in this way and eventually make a tower that is sufficiently structured (to develop a

functioning CEcube-tower). Such a test would support establishing an early instance of

empirical evidence that a CE could emulate a bio-inspired optimization algorithm that

helps to develop a built form.

The test would also serve as a prototype to develop a relationship between the built

form and the algorithm without being dependent on design. Here, the role of design

would be portrayed by the highly transparent and uncomplicated set of rules (in the

form of Ψspawn and Ψcull rules) that are actually derived from rules of Cellular

Automata (the Conway model) and modified to reflect basic intuitive structural rules.

Although a visual examination of all the rules, in the form of testing the rules on the

base Rhino 7 environment (i.e. without conducting any computation) gives a clear

idea that the Ψspawn and Ψcull rules are robust, physical tests and trials had to be

conducted additionally by involving testers in the form of participants who would be

willing to evaluate if the rules really work. These evaluators would have to possess a

basic understanding of architecture, and thus students and practitioners in the AEC

industry were considered to be ideal candidates.

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 151|

The Author conducted a student workshop that was titled ‘Designing Ways of

Designing’ in June 2018 at the IES (Indian Education Society’s) College of Architecture

in Mumbai, India. It was attended by 20 candidates – 16 students pursuing the B.Arch.

degree and 4 recent graduates and practicing architects. For the testing, participants

were first introduced to the concept of Computational Ecosystems and its research

and were provided with a lecture on Cellular Automata and its implementation in the

research. The participants were also given all the Ψtower rules in the form of an

instruction manual so they would find it convenient to understand, examine and

exercise the rule sets. After being thoroughly informed, the candidates were divided

into four groups of five participants, and were tasked with testing the CEcube-tower.

Each group was provided with a 50mm x 50mm grid as the base XY plane, made out

of a 5mm Acrylic Sheet, and scored with a laser cutting machine to be able to display

the grid lines. The groups were also provided with 5mm x 5mm x 5mm cubes (made

out of the same Acrylic sheet mentioned above, by cutting with a laser cutter) and

super glue to put the entire system together. The groups were encouraged to

consider a random starting position with the only limit, that it should have no more

than five cubes in the initial state. Thus, the testing groups were each developing

individual CEcube-tower with the Acrylic cubes serving as the ∈cube of the system, and the

instruction manual serving as the Ψtower rules.

Although the participants found the results to look quite stunning, and they found it

absolutely entertaining to refer to a rule set that was generating random but logical

form, owing to the tediousness of constantly consulting a ruleset and gluing tiny

acrylic cubes to each other, the groups were asked to go for no more than ten

iterations. This means, there was no rule for the termination of the CEcube-tower in this

case, apart from the physical constraint of stopping after ten ttick intervals.

Regarding the fact that all five individual CEcube-tower had different starting conditions

in the form of ∈cube
initial, all of them had different combinatory assemblages

(governed by their specific Nsearch and Nform routines) and different morphologies.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |152

The 5 different CEcube-tower and the different assemblages which can be considered as

the empirical evaluation of the Ψtower rules are illustrated as a picture collage in fig.

4.9 below.

Figure 4.9 – Results and conclusions of the Designing ways of Designing workshop, conducted at

IES College of Architecture, Mumbai India held to validate and prototype a CESESE - CEcube-tower.

Photographs by Author (June 2018).

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 153|

The evaluation of the CEcube-tower by means of physical modelling in a workshop for

students and professionals in the AEC industry provided a deeper understanding of

the validation of the concept of a CE as a link between the built form and the

algorithm and the validation of the specific components of the CE. However, the

limitations of physical modelling such as the aforementioned tediousness of

consulting an instruction manual and building with small pieces restricted the

runtime of a CE. Additionally, there was also a threat of the Ψtower rules being misread

or misinterpreted at occasions leading to incorrect assemblages, which had to be

thoroughly cross-checked. This counterintuitive behavior compelled the research to

perform digital prototyping methods.

Thus, after validating the Ψtower rules of the CEcube-tower, the natural progression in the

prototyping stage was to develop a CEcube-tower computationally. However, although

all the components of the CE were sufficiently defined, illustrated, exemplified and

tested, in terms of computational semantics, the CE only existed in the form of the

UML Class diagram (as illustrated in fig. 4.3). Therefore, a UML Sequence Diagram

had to be set up to understand the role, interaction and runtime of all the classes to

establish the CEcube-tower computationally. The UML Sequence Diagram for the

construction of a CEcube-tower would have the following assumptions –

• The Actor would be considered as the designer who initiates the CEcube-tower.

• CEcube-tower is considered as one of the objects, as it has its own runtime.

• The other objects in the diagram would be ∈cube
initial, Ψspawn, ∈cube

form, Ψcull in

the chronological order of their application in the CEcube-tower.

• The Diagram also has an early rest condition, that tests for early anomalies.

• The remaining algorithm however continues on a while loop that considers

the CEcube-tower rest condition (mentioned in 4.2.2) to end the algorithm.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |154

Fig. 4.10 shows the implementation of a UML Sequence Diagram to better

understand and the role, interaction and runtime of the Ψtower, ∈cube
initial, and their

dependencies that determine the outcome of several different CEcube-tower.

Figure 4.10 – The UML Sequence Diagram for a CEcube-tower with the role, interaction and runtime

of the Ψtower, ∈cube
initial, and their dependencies. Illustration and graphics by Author (Jan 2019).

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 155|

Considering the UML Sequence Diagram established in fig. 4.10, an algorithm was

made using Grasshopper (as Grasshopper definitions) and run inside the Rhino 7

interface (The definition labeled as CEcube-tower has been appended to the Annexure –

Definitions). Although most of the functions mentioned in fig. 4.10 are available in

the stock Grasshopper database, some operations had to be imported using third-

party plugins. An overview of the various steps is mentioned below –

• Initiate – The Initiate function, and especially the populate operation of the

∈cube
initial class (as illustrated in fig. 4.3) required the algorithm to randomly

generate a sequence of ∈cube, to kickstart the definition. Although the

operation of populating random points is a default component in

Grasshopper, a series of operations involving conditionals was employed to

ensure that the ∈cube
initial was focused on a certain part of the algorithm.

• Array – Although Grasshopper has built-in capabilities to produce cubes, a

collection of points with the boundary properties of ∈cube was implemented

to maintain computational ease and manage exorbitant increase in file sizes

which could occur as a result of the sudden increase in the number of ∈cube.

• Ncheck – Tasked with the function of checking the cardinality of N for every

∈cube, Ncheck needs to consider Ψspawn for either of two different conditional

outputs that might come out of the check. Thus, the logic gate function OR

was implemented to return true values for both the input conditionals 2, 3.

• Loop – As the computational heart of the algorithm, the loop function

performs the Stack function until the CEcube-tower rest condition is reached. This

intricate detail was achieved by employing a while loop in the algorithm.

Performing loops is not a built-in tool in Grasshopper. Thus, an open-source

plugin called Anemone134 was used to perform the while loop.

134 Anemone 0.4 (2015). Poznań, Poland: Mateusz Zwierzycki.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |156

Employing the Grasshopper definition, several test CEcube-tower were prototyped in the

Rhino 7 environment. As these were initial prototypes, the cardinality of ∈cube
initial

was restricted to 2 and 3 ∈cube. Fig. 4.11 illustrates the outcomes of all possible inputs

for the aforementioned CEcube-tower below. The figure shows the initial state denoted

by ◼ colored cube (R,G,B – 129,129,129), and the rest of the CEcube-tower thus denoted

by ◼ (R,G,B – 204,204,204) colored cube.

Figure 4.11 – Initial Prototypes of several CEcube-tower with 2 and 3 ∈cube
initial. Model, algorithm,

Illustration and graphics by Author (Jan 2019).

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 157|

After the successful trials of Initial Prototypes, Fig. 4.12 illustrates the outcomes of

one of the tallest CEcube-tower with 10 ∈cube
initial below. The figure shows the initial state

denoted by ◼ colored cube (R,G,B – 129,129,129), and the rest of the CEcube-tower thus

denoted by ◼ (R,G,B – 204,204,204) colored cube.

Figure 4.12 –Prototype of a selected CEcube-tower with 10 ∈cube
initial that had a runtime of 30 ttick

before reaching the rest state. Model, algorithm, Illustration and graphics by Author (Jan 2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |158

4.2.4 CEcube-tower

Although fig. 4.11 and fig. 4.12 show ample evidence of the successful executions of

CEcube-tower, more results focusing on the taxonomy creation have been illustrated in

the next chapter (5| On the consequences of Computational Ecosystems) with a

further analysis comparing all the other taxa from the procedural sequences in

chapter 6 (On the investigative analysis of Computational Ecosystems).

However, before continuing with the next taxon, certain observations shall be

mentioned in this chapter to avoid any redundancies that could devalue the quality

of the upcoming taxa. Also, since the next taxa are far more complex as compared to

the CESESE, these observations are essential before starting the Case Studies for the

next taxa. The observations are as followed –

• Out of nine different iterations demonstrated in fig. 4.11 (as a combination of

all of the possible iterations with 2 or 3 ∈cube
initial) five returned to an Early End

condition. Although this function is designed to filter redundancies at early

stages of the algorithm, this number (which is 55.5% of the possible iterations)

is quite large.

• As a solution, an optimization algorithm could be employed at this stage to

minimize (and if possible, thoroughly eradicate) the possibility of equality

between the Initial Stack function and the Initial State function. Several

other methods could also be theorized and tested.

• The above problem is not demonstrated in fig. 4.12 (the case where one of

the tallest iterations with 10 ∈cube
initial was selected). That is because the

iteration selected in the illustration was chosen to be as different, tall, and

complex as possible. All the possible Early End CEcube-tower were visually (and

manually) searched and eradicated.

Architecture of Computational Ecosystems

| 4.2 Single Element Single Economy Ecosystem (CESESE) 159|

• Here, because the tower was only conformed to its structural stability there

were no rule sets considering the optimization of its height. Moreover, the

CEcube-tower rest condition practically restricted the tower from soaring with an

infinitely repeating or oscillating combinatorial assemblages.

• However, a set of rules that would make sure that the tower should be taller,

complex, and visually distinct while serving the structural stability rules could

be considered as an interesting set of Ψ that could possibly serve as a starting

point for a CESEME.

• The physical simulation with acrylic sheets and acrylic blocks was quite an

imaginative approach to involve students and practitioners of the AEC

industry in the evaluation and setup of a proof of concept. Thus, the workshop

model can be possibly upgraded and used for the remaining taxa.

• However, the limitations of the physical simulations were also quite

pronounced. Due to the cumbersome nature of handling tiny blocks, there

was always a possibility of a participant making mistakes and thus making the

evaluation process all the more useless. As one cannot be thoroughly sure of

the errors, unless the whole process is automated, this cannot be countered.

Thus, the implementation of workshops to involve participants into testing

the concept physically is a bit counter-intuitive and can be avoided in the

evaluation of the upcoming taxa.

• Moreover, the workshops could be directed towards developing and

evaluating the algorithm to check for errors and possible improvements.

Although this would involve teaching and tutoring the participants in the use

of software such as Rhino 7 and Grasshopper (with the required plugins).

It would be crucial to include the above-mentioned observations in the upcoming

taxa and perform the primary objectives in a more nuanced manner.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |160

4.3 Multiple Elements Single Economy Ecosystem (CEMESE)

Similar to CESESE, the conceptual framework of a CEMESE has already been sufficiently

illustrated in the previous chapters (introduced in 1.2.2, illustrated in fig. 1.7, defined

in 3.2.2). Moreover, a Structural UML Diagram establishing the attributes and

operations of a canonical version the ∈ and Ψ has also been illustrated (in fig. 3.3 as

per 3.2.3). However, like CESESE, to construct, taxonomize and prototype a procedural

sequence, the research would have to consider specific tangible parameters for the

concept of a CEMESE, which could be derived from a combination of real-life examples

and constraints and the case studies of the already established CESESE.

The CEMESE also serves as an extension and continuation to the CEcube-tower, primarily

owing to the multiplicity of the ∈ parameter. However, to make sure that the

complexity is raised with relative ease and consistency, the Author has decided to

continue with the conceptual example of an MESE illustrated in 1.2.2. Use of the

example scenario would be especially instrumental in methodically increasing the ∈

parameter to 2 (instead of the ambiguous multi) and to using canonical Structural

UML Diagram. Thus, before specifically defining each parameter, the overall

components of the CEMESE can be –

• ∈1 – As illustrated in the example scenario, the ∈ would be represented by

hexahedrons or cubes, with unit dimensions.

• ∈2 – As illustrated in the example scenario, the ∈ would be represented by

cuboctahedrons, with unit dimensions.

• Ψ – As illustrated in the example scenario, the Ψ would be represented by

structural stability in the form of axial loads.

Regardless of the above generalization, the CEMESE would require to undergo all the

primary objectives while pursuing the operational objectives for this taxon.

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 161|

4.3.1 Case Studies

Although serving as a conceptual successor to the CESESE, and by definition being a

continuation to the CESESE, the CEMESE which theoretically and semantically means that

it can be treated as an ecosystem that is inhabited or cohabited by multiple

predetermined species and these species (individually, categorically and collectively),

are constructed, monitored, and governed by one and only one predetermined rule

set, the CEMESE does not serve as a direct sequel to the CESESE in terms of fulfilling the

Procedural Sequences.

However, the CEMESE contains and exhibits certain attributes related to the ∈ and Ψ

that cannot be exhibited by the CESESE due to its semantical constraints. The

multiplicity of the ∈ parameter doesn’t just imply that there would be two distinct ∈

entities, but the iterations of their collective assemblages would also have to be

treated as a distinct ∈ parameter. Thus, the following addition must be made to the

assumptions stated in the last section –

• ∈1 – Hexahedrons or cubes, with unit dimensions, which can be programmed

as sentient elements similar to the ∈cube, that are aware of their existence,

and thus can be considered as ∈biotic
1.

• ∈2 – Cuboctahedrons, with unit dimensions, which can be programmed as

sentient elements similar to the ∈cube, (however with morphological

modifications) that are aware of their existence, and thus can be considered

as ∈biotic
2.

• ∈1-2 – A collective entity of the ∈1 and ∈2, which can be programmed as

sentient elements being treated as a ∈cube array (similar to the Arrays formed

by the Stack operations) that are aware of their existence, and thus can be

considered as ∈biotic
1-2.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |162

The example of the collective assemblages of the Eciton hamatum forming live

bridges out of their own bodies (elaborated in 4.2.1, and illustrated in fig. 4.1) can be

considered again as a theoretical precedent for the CEMESE. The CEeciton-bridge

(theorized, exemplified and illustrated in 4.2.1), consequently can also be considered

as semantic precedence for establishing the theory of the CEMESE. However, the

constituent parts only consider a single ∈ parameter, which does not conform to the

requirements of a CEMESE. Thus, the theoretical precedents laid down by the CEeciton-

bridge would have to be modified to accommodate the required components.

Although in reality the ant bridges are constructed by the Eciton hamatum, which

share the same morphologies, and thus similar physical and physiological constraints,

they serve different purposes in the composition of a bridge. Owing to the different

functions of structural elements of a bridge, and by considering that the CEeciton-bridge

would be a bridge that is made out of a system of connectors, the constituent ∈

entities CEeciton-bridge would have to be of the following types –

• The Anchoring elements – These elements would serve the purpose of

anchoring the bridge to the ground condition (considering that the ground

condition could be the forest ground, tree barks, stone edges or a

combination). These elements can thus be called as ∈anchor, and they would

be the initial ∈ in the formation of the bridge.

• The Spanning elements – These elements would serve the purpose of

spanning the bridge across the gap (irrespective of its length and height from

the actual ground level). These elements can thus be called as ∈span, and they

would be the ∈ that would have to be increased or decreased in case the

bridge needs a change in length or composition.

• The Connection elements – These elements would connect the ∈anchor to the

∈span, and vice-versa. These elements can be called as ∈connector, and their

morphology would be as an assemblage.

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 163|

These different types of elements that form the components of the ∈ parameters of

the CEeciton-bridge have also been illustrated in the fig. 4.13 as shown below. Although

the image is sourced from a result of fieldworks conducted by the research on ant

bridges, illustrations have been overlaid on the image to explain the aforementioned

idea of multiple ∈ entities.

Figure 4.13 – Ant bridge from below. Original Image from the fieldwork on Army ants (Eciton

hamatum) induced to form a very large bridge over a wide gap by Chris R. Reid. Source:

https://www.princeton.edu/news/2015/11/30/ants-build-living-bridges-their-bodies-speak-

volumes-about-group-intelligence. Illustration and graphics by Author (Jan 2019).

As seen in fig. 4.13, the morphology of the as ∈anchor, ∈span, and ∈connector could be

quite similar, however, their individual functionalities in maintaining the structural

integrity of the CEeciton-bridge would be quite distinct. Moreover, their deployment

stages in both the formation, modification and the eventual dismantling of the

CEeciton-bridge would also be thoroughly defined so as to make sure that the bridge uses

an optimum amount of its constituent parts.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |164

The Ψ parameter of the CEeciton-bridge (as introduced in 4.2.1) would also has a few

modifications to accommodate the variations done in the ∈ parameters. The updated

Ψ parameter can be defined as followed –

• Ψbridge – The bridging ability. Forming collective assemblages by means of

connection techniques, span-depth ratios for optimum bridge structures, and

load calculations (considering the live loads and dead loads) for each of the 3

distinct ∈ entities - ∈anchor, ∈span, and ∈connector.

Considering the fact that the Ψ parameter would now also have to be trifurcated into

distinct Ψ entities to accommodate the ∈ parameters, the names of all the

components would have to be amended. Thus, the new components of the updated

CEeciton-bridge
2

 would be –

• ∈eciton
anchor – These would be the Army ants anchoring the bridge.

• ∈eciton
span – These would be the Army ants spanning the bridge.

• ∈eciton
connector – These would be connecting the ∈eciton

anchor and ∈eciton
span.

• Ψbridge
anchor – These would be the rule sets for ∈eciton

anchor.

• Ψbridge
span – These would be the rule sets for ∈eciton

span.

• Ψbridge
connector – These would be the rule sets for ∈eciton

connector.

Thus, in spite of the fact that a CEMESE has one and only one Ψ parameter, it could

have distinct multiple Ψ entities depending on the number of ∈ parameters and their

interactions. Although this further underlines the fact that the CEMESE serves as a

conceptual successor but to the CESESE, and neither of them can be treated as a subset

of the other, it also helps in understanding the dependency of the CEMESE over its

procedural predecessor for its conceptual and theoretical framework.

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 165|

Thus, the similarities between a CEMESE (derived from the example scenario) and a

CEeciton-bridge
2

 can be illustrated as shown in fig. 4.14. below.

Figure 4.14 – Comparing the CEMESE and a CEeciton-bridge
2. Illustration and graphics by Author (Jan

2019).

Thus, based on the analogies illustrated in fig. 4.14 and the conceptual semantics

established for a CEeciton-bridge
2 , the CEMESE could be based on the already established

CEcube-tower (as defined in 4.2.1). However, in case of the CEMESE the constituent ∈

entities and Ψ entities, would have to be defined in relation to the CEeciton-bridge
2

(unlike the CEcube-tower which was established considering the semantics of

constructing the CEeciton-bridge). Therefore, the CEMESE is defined as followed –

• ∈ entities – or ∈MESE entities will be considered as computational substitutes

to all the three ∈ entities established for the CEeciton-bridge
2. Although the

functionalities and structural properties of the ∈eciton
anchor, ∈eciton

span, and

∈eciton
connector do not directly translate to the ∈MESE entities, they contain the

same semantics as established in a CEeciton-bridge
2. Thus, continuing on the

example scenario, the ∈MESE entities can be further trifurcated as ∈cube,

∈cubocta, and ∈cube-cubocta. The specific properties of each entity, which are

relevant for simulation, will be defined in the next section (as per 4.3.2), but

the general properties of all the ∈MESE entities can be as followed –

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |166

o All the ∈MESE entities should be considered as static agents that can be

spawned or culled by the CEMESE at the expense of the equilibrium

state which will be determined by the Ψ entities.

o All the ∈MESE entities should be made to be self-aware of themselves,

in the sense that they should be able to identify and quantify its

position, orientation, weight, and bounds.

o All the ∈MESE entities should also be made to be self-aware of their

surroundings and their physical properties, such as cardinality of

neighbours, array of neighbours, and distance from the initial plane.

• Ψ entities – or ΨMESE entities will be considered as computational substitutes

to the Ψ entities established for the CEeciton-bridge
2. Although the functionalities

and structural properties of the Ψ entities of the CEeciton-bridge
2 do not directly

translate to the ΨMESE entities, they have the same semantics as established

in a CEeciton-bridge
2. Thus, the ΨMESE entities can be trifurcated as Ψcube, Ψcubocta,

and Ψcube-cubocta. The properties of the ΨMESE entities can be defined as –

o The CEMESE would have all the ΨMESE entities performing in unison to

pursue a tower stacking logic. Thus, the ΨMESE entities can be renamed

as Ψtower-cube, Ψtower-cubocta, and Ψtower-cube-cubocta.

o All the ΨMESE entities should be designed with two-state rationale for

all the ∈MESE entities derived from the Ψtower (defined in 4.2.1) while

conforming to the understanding of vertical stacking.

o In short, ΨMESE entities should seek an equilibrium state that spawns

∈MESE entities when the tower is under-structured, and culls ∈MESE

entities when it is over-structured, thus maintaining a reciprocal

coupling.

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 167|

After establishing and defining the ∈MESE entities and ΨMESE entities, the CEMESE could

be specifically defined under the computational modelling guidelines of CA (as

elaborated in 3|) as followed –

• The CEMESE which owing to its specific combination of ∈MESE entities and ΨMESE

entities can be termed as CEcube-cubocta-tower, will be defined as a functioning

ecosystem constituting of sentient, context aware cubes as ∈MESE entities that

interact with each other considering the rule sets assigned by ΨMESE entities

to spawn or cull the ∈MESE entities until the runtime of the CEcube-cubocta-tower.

• The CEcube-cubocta-tower will perform solitarily without any additional internal

components or partial runtimes. Moreover, there won’t be any context aware

CE that would have to be added externally. Thus, also in this taxon, one and

only one CE that is CEcube-cubocta-tower would be performed for its entire runtime.

• Although derived from the intricate bio-inspired behavior of Eciton hamatum

creating and maintaining living bridges for foraging trails, the CEcube-cubocta-tower

is a slightly complex vertical stacking algorithm for a combination of cubes

and cuboctahedra. Thus, the rule sets for ΨMESE entities can be adapted from

the Conway model of Cellular Automata (as per 2.3.2). However, these will be

slightly modified to accommodate all the ∈MESE entities.

• Just like the Ψtower (established in 4.2.1), the ΨMESE entities would differ from

the Conway model of Cellular Automata in the parameter of time. That is, the

new ∈MESE entities will be spawned or culled on the upper levels in the 3D grid.

Considering all the above assumptions, definitions, illustrations and examples for the

CEcube-cubocta-tower, the simulations for this taxon can now be performed. However,

some information still needs to be considered to illustrate the empirical derivations

of all the case studies. For example, the ∈MESE and ΨMESE
 entities still need to be

dimensionally, and geometrically defined to consider them for computational use.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |168

4.3.2 Simulations

However, just like it was done for the CESESE, the canonical CEMESE Structural UML

Diagram (as per fig. 3.3) for the CEcube-cubocta-tower has to be reassessed and

repurposed. Fig. 4.15, as shown below, illustrates the modifications to the canonical

version.

Figure 4.15 – Modifications made to the canonical CEMESE UML Diagram to accommodate the

parameters required for establishing the CEcube-cubocta-tower. Illustration and graphics by Author

(May 2019).

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 169|

Elaborating on the terminologies introduced in fig. 4.15, the attributes and

operations of the classes can be defined as followed –

• ttick – The periodic increment of time, ensuring that the CEcube-cubocta-tower runs.

• trest – If the condition CEcube-cubocta-tower rest is fulfilled, the trest will be activated.

This means that the time increment will stop and the CEcube-cubocta-tower will be

outputted to the user.

• CEcube-cubocta-tower rest – Is the situation where an ∈multi
form array for the last

three ttick intervals is equal or repetitive.

• ∈multi
form array – Is the collective assemblage of ∈multi

 for a certain ttick interval.

• ∈multi
form – Is the operation for the formation of a combination of ∈cube,

∈cubocta, and ∈cube-cubocta depending on the Ncheck and Nform routines for the

Ψtower-cube, Ψtower-cubocta, and Ψtower-cube-cubocta.

• Nform – Is the binary inputs for the cells to be either spawned (input = 1) or

culled (input = 0) depending on the Ncheck conditional.

• Ncheck – Is the binary output from the cells of the distinct neighbourhoods (N)

to check if the cells in the N of the previous ttick interval are either spawned

(input = 1) or culled (input = 0).

• N – The neighbourhood of the ∈multi in question (as in every ∈cube, ∈cubocta,

and ∈cube-cubocta) depending on how many neighbouring ∈multi from the

previous ttick interval are to be considered to determine the Ncheck and Nform

routines that eventually determine the Stack operation.

Thus, determining the N becomes the most important step before considering to

explain the other concepts required to run the CEcube-cubocta-tower.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |170

Similar to the computational environment and the revised infinite 3D Square grid that

was considered for the CEcube-tower (as per 4.2.2), in case of the CEcube-cubocta-tower as

well, the modelling has been performed in Rhino 7 (as explained in 3.3), the

programming has been performed in Grasshopper for Rhino 7 (as explained in 3.3)

and visualizations have been performed in VRay for Rhino (as explained in 4.1).

Although most of the physical operations of the CEcube-cubocta-tower are similar to those

of the previously established CEcube-tower (as explained in 4.2.2), there is a complication

that arises from the multiplicity of the ∈ entities. Owing to the morphology of the 3

∈ entities, ∈cube, ∈cubocta, and ∈cube-cubocta, it is not difficult to employ the infinite 3D

Square grid conformed at the XY plane as the computational environment. However,

to understand the distinct N for the ∈ entities, the morphology of the ∈cubocta, and

∈cube-cubocta have to be thoroughly understood (as the ∈cube has been thoroughly

explained in 4.2.2, it need not be explained again).

A cuboctahedron is a result of maximum truncation performed at all the vertices of

a cube. The cuboctahedron can also be obtained by performing maximum truncation

at all the vertices of a tetrahedron. Moreover, as a cuboctahedron can be considered

as a derivative of a cube or octahedron, a cube with radius Rcube will always perfectly

bound a cuboctahedron with radius Rcubocta. The relation between the morphologies

and radii of Cubes and Cuboctahedron can be seen in fig. 4.16 as illustrated below.

Figure 4.16 – Relation between the morphologies and radii of Cubes and Cuboctahedron. Model,

Illustration and graphics by Author (May 2019).

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 171|

The distinct N for all the ∈ entities can now be established. Fig. 4.17 illustrates the

Ncube, which determines the neighbourhood for every ∈cube. The Ncube has been

conceptually derived from a Moore’s Neighbourhood (as explained in 2.3.2),

however, unlike its predecessor, the Ncube is only considered for existing or spawned

∈cube.

Figure 4.17 – An ∈cube surrounded by the Ncube. Model and graphics by Author (May 2019).

Fig. 4.18, however illustrates the Ncubocta, which determines the neighbourhood for

every ∈cubocta. The Ncubocta has been conceptually derived from a Von Neumann

Neighbourhood (as explained in 2.3.1), however, unlike its predecessor, the Ncubocta

is only considered for existing or spawned ∈cubocta.

Figure 4.18 – An ∈cubocta surrounded by the Ncubocta. Model and graphics by Author (May 2019).

Unlike the Ncube and Ncubocta which are based on spawned ∈ entities, the Ncube-cubocta

is regarded for non-existing or culled ∈cube or ∈cubocta, and it considers the

neighbouring existing ∈cube or ∈cubocta for their respective Ncube and Ncubocta to

determine its own neighbourhood termed as Ncube-cubocta. Fig. 4.19, illustrates a Ncube-

cubocta.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |172

Figure 4.19 – A culled ∈cube or ∈cubocta surrounded by the Ncube-cubocta. Model and graphics by

Author (May 2019).

This specific and discrete distinction of the N, eventually helps in establishing the

specific Ncheck and Nform routines. However, owing to the flexibility of CA and its rules,

an astute modification in the state conditions of a Conway Model (as elucidated in

2.3.2), can be employed to establish bespoke, distinct Ncheck and Nform routines for all

the 3 distinct N considerations for the CEcube-cubocta-tower.

 Thus, considering the CEcube-tower as precedence, and deriving from the Conway

Model of CA, the state conditions for the CEcube-cubocta-tower can be stated as –

• Every existing ∈multi-n+1 at the ttick-n+1 interval interacts with its N consideration

of the either the ∈cube-n (in the form of Ncube-n) or ∈cubocta-n (in the form of

Ncubocta-n) at the ttick-n interval, thus performing Ncheck. For the ttick-n+1 interval,

it then performs the Nform routine based on the following conditions –

o If the N is Ncube-n with an array of 2 or 3 ∈multi at the ttick-n interval, the

Nform spawns a ∈cube-n+1 for the ttick-n+1 interval.

o Also, for the Ncubocta-n with an array of 2 or 3 ∈multi at the ttick-n interval,

the Nform spawns a ∈cubocta-n+1 for the ttick-n+1 interval.

• Every non-existing ∈multi-n+1 at the ttick-n+1 interval interacts with its Ncube-cubocta

at the ttick-n interval, thus performing Ncheck. For the ttick-n+1 interval, it then

performs the Nform routine based on the following conditions –

o With an array of 4 ∈multi in its Ncube-cubocta at the ttick-n interval, the Nform

spawns a ∈cubocta-n+1 for the ttick-n+1 interval.

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 173|

o With an array of 3 ∈cube or 4 ∈cubocta in its Ncube-cubocta at the ttick-n

interval, the Nform spawns a ∈cubocta-n+1 for the ttick-n+1 interval.

• For every other condition of Ncheck at the ttick-n interval, the Nform culls all the

existing or non-existing ∈multi for the ttick-n+1 interval.

Thus, considering the aforementioned state conditions, the condition for the existing

state of the ∈multi array, which can be either continued existence (as in not culled) or

newly existing (as in spawned) can be illustrated as in fig. 4.20 below.

Figure 4.20 – ∈multi-n array and their corresponding ∈multi-n+1 array considering the state

conditions for the existing states of ∈multi array. Model and graphics by Author (May 2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |174

The ∈multi-n+1 at the ttick-n+1 interval is thus denoted by ◼ (R,G,B – 204,204,204) colored

cube, and the corresponding ∈multi-n at the ttick-n interval is denoted by ◼ colored cube

(R,G,B – 129,129,129). Also, the existing cubes are denoted by ◼ (R,G,B – 57,188,40)

colored cube, and the non-existing cubes are denoted by ◼ (R,G,B – 255,21,21)

colored cubes.

And, considering the aforementioned state conditions, the condition for the non-

existing state of the ∈multi array, which can be terminated existence (as in culled) or

not newly existing (as in not spawned) can be illustrated as in fig. 4.21 below.

Figure 4.21 – ∈multi-n array and their corresponding ∈multi-n+1 array considering the state

conditions for the non-existing states of ∈multi array. Model and graphics by Author (May 2019).

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 175|

The ∈multi-n+1 at the ttick-n+1 interval is thus denoted by ◼ (R,G,B – 204,204,204) colored

cube, and the corresponding ∈multi-n at the ttick-n interval is denoted by ◼ colored cube

(R,G,B – 129,129,129). Also, the existing cubes are denoted by ◼ (R,G,B – 57,188,40)

colored cube, and the non-existing cubes are denoted by ◼ (R,G,B – 255,21,21)

colored cubes.

4.3.3 Prototyping

The state conditions in terms of the Ncheck and the Nform routines of all the Ψtower

entities (namely, Ψtower-cube, Ψtower-cubocta, and Ψtower-cube-cubocta) that determine all the

distinct Stack operations for all the ∈multi array (and the individual ∈cube array, ∈cubocta

array, and ∈cube-cubocta array) have been sufficiently demonstrated and illustrated in

terms of the Ψspawn and Ψcull rules (as per fig. 4.18 and fig. 4.19). The illustrations

show all possible conditions for the Ψspawn and Ψcull rules. However, similar to the

computational stacking logic for the CEcube-tower, the computational stacking logic of

the CEcube-cubocta-tower is quite simple, and can be generalized as summarized below –

• If the cardinality of the N consideration for an existing ∈multi is equal to 2 or 3,

the ∈multi survives (i.e. not culled). If the cardinality is otherwise, the ∈multi

does not survive (i.e. culled).

• If the cardinality of the N consideration for a non-existing cell is equal to 4,

the ∈multi is created (i.e. spawned). If the cardinality is otherwise, the ∈multi is

not created (i.e. not spawned).

As the CEcube-cubocta-tower serves as a conceptual continuation of the CEcube-tower, the

above rules which have a considerable precedence on the state conditions of the

CEcube-tower, are supported by the entire series of procedural sequences (with case

studies, simulation and prototyping) performed on the taxon, and can thus be

thoroughly relied upon. However, owing to some significant modifications which

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |176

were made to the state conditions, the research necessitates rigorous evaluation,

testing, prototyping and versioning if required. Also, as the CEcube-cubocta-tower involves

the introduction of a different morphology (as compared to the solitary assemblages

of ∈cube) in the form of ∈cubocta, the prototyping becomes exceedingly indispensable

for the robustness of this taxon. Thus, the following section details the functioning of

the various means of prototyping undertaken to verify the CEcube-cubocta-tower.

The initial prototyping of the CEcube-tower was performed by means of a physical

simulations workshop (conducted in collaboration with students and practitioners of

the AEC industry) that generated several iterations by means of physical prototyping

that involved participants constructing the CEcube-tower manually while consulting an

instruction manual that directed on the state conditions. However, as outlined in

4.2.4, the implementation of the physical simulations was quite counter-intuitive

owing to the fact that the process of prototyping was quite cumbersome and highly

susceptible to human error.

Thus, this method of prototyping (by means of physical prototyping that is built on a

non-computational simulation methodology) was discontinued. However, the

concept of involving collaboration with students and practitioners of the AEC industry

had no major disadvantage (in fact it had a hidden advantage of testing the concept

of CE in pedagogy and industry at the same instance) and was thus continued in a

modified manner.

The workshop to test the CEcube-cubocta-tower would have to follow a slightly different

approach as compared to the one undertaken to test, evaluate, and taxonomize the

CEcube-tower. Since the CEcube-cubocta-tower would have to be computationally simulated,

the research would have to configure the computational semantics and processes

before performing any tests (unlike as for the CEcube-tower the algorithm was first

tested and then configured as a computational process in the form of a UML

Sequence Diagram). Thus, a UML Sequence Diagram was the natural progression in

the prototyping stage for this taxon (as it was accommodating the changes

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 177|

recommended by the previous one). As the CEcube-cubocta-tower serves as a conceptual

progression to the CEcube-tower, it would be quite intuitive to establish the UML

Sequence Diagram based on the one for CEcube-tower (as per fig. 4.10 in 4.2.3).

However, fig. 4.22 and fig. 4.23 differ from their predecessor by determining the role,

interaction and runtime of all the ∈ entities and Ψ entities as identified in the UML

Class Diagram (illustrated in fig. 4.14). They jointly illustrate a UML Sequence diagram

that determines the outcome of several different CEcube-cubocta-tower.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |178

Figure 4.22 – The UML Sequence Diagram for a CEcube-cubocta-tower with the role, interaction

and runtime of all the ∈ entities and Ψ entities, and their dependencies for the Early Rest

condition. Illustration and graphics by Author (May 2019).

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 179|

Figure 4.23 – The UML Sequence Diagram for a CEcube-cubocta-tower with the role, interaction

and runtime of all the ∈ entities and Ψ entities, and their dependencies for the Final Rest

condition. Illustration and graphics by Author (May 2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |180

Similar to the UML Sequence Diagram for the CEcube-tower, the one jointly illustrated

for the CEcube-cubocta-tower in fig. 4.22 and fig. 4.23 has been generated with the

following assumptions –

• The Actor would be the user who initiates the CEcube-cubocta-tower.

• CEcube-cubocta-tower would be considered as one of the objects, as it has its own

lifeline that represents the runtime of the entire algorithm, while the other

objects in the diagram would be ∈multi
initial, Ncube, Ncubocta, Ncube-cubocta, Ψcube,

,Ψcubocta, , Ψcube-cubocta , and Ψcull in the chronological order of their use and

application in the CEcube-cubocta-tower.

• The Diagram also returns the CEcube-cubocta-tower as an early rest condition, if the

Initial State Array and the Initial Stack Array are the same. If not, the

remaining algorithm continues on a while loop until the CEcube-cubocta-tower rest

condition (mentioned in 4.3.2) is met to end the algorithm.

Considering the UML Sequence Diagram, a Grasshopper definition was run inside the

Rhino 7 interface (The definition labelled as CEcube-cubocta-tower has been appended to

the Annexure – Definitions). Similar to the CEcube-tower, the third-party components

used to perform the algorithm functions are as followed –

• Initiate – To populate the random Initial array of ∈multi
initial.

• Array – To generate ∈cube and ∈cubocta using the Lunchbox135 plugin.

• Ncheck – To check the cardinality of Neighbouring cells using the OR logic gate.

• Loop – To generate a while loop using the Anemone136 plugin.

135 Lunchbox for Grasshopper (2012). Omaha, USA: Proving Ground Apps.
136 Anemone 0.4 (2015). Poznań, Poland: Mateusz Zwierzycki.

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 181|

Employing the Grasshopper definition, several test CEcube-cubocta-tower were prototyped

in Rhino 7. As these were initial prototypes, the cardinality of ∈multi
initial was restricted

to 3 and 4 ∈multi. Fig. 4.24 illustrates the outcomes of a few inputs for the

aforementioned CEcube-cubocta-tower below. The figure shows the initial state denoted

by ◼ colored cube (R,G,B – 129,129,129), and the rest of the CEcube-tower thus denoted

by ◼ (R,G,B – 204,204,204) colored cube.

Figure 4.24 – Initial Prototypes of several CEcube-cubocta-tower with 3 and 4 ∈cube
initial. Model,

algorithm, Illustration and graphics by Author (Jan 2020).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |182

After conducting the initial computational prototypes for the CEcube-cubocta-tower, the

procedural sequence was ready to be evaluated by a test group so as to conclude all

the preliminary objectives (as in, case studies, simulation and prototyping) for the

CEMESE. Moreover, having already performed a considerable amount of basic

prototyping, the research was well aware of the results and key ∈multi
initial Array that

could be capitalized to generate interesting results.

Thus, the author conducted a student workshop which aimed at prototyping the

CEMESE (in the form of the CEcube-cubocta-tower) by performing computational simulations

to test, evaluate, taxonomize and if required, amend and update the CEcube-cubocta-

tower. The workshop, titled as ‘Computation as a Design tool’ was conducted in July

2019 at RIT (Rajiv Gandhi Institute of Technology) in Kottayam, India. It was attended

by 20 candidates, who were all students pursuing a BArch degree at RIT, Kottayam

(20 students of the 7th and 9th semesters of the BArch course were selected on the

basis of their personal interests in learning computational design).

For the testing, participants were first introduced to the concept of Computational

Ecosystems and its research, and were provided with a lecture on Cellular Automata

and its implementation in the research. Further, the participants were demonstrated

several results that were obtained in the previous iteration of a similar workshop (i.e.

the Designing ways of designing workshop conducted at IES, Mumbai – as elaborated

in 4.2.3). As the participants were not well versed with using any computational

design software, they were tutored on using different tools and functionalities with

Rhino 7 and Grasshopper 3D that were relevant to the research on Computational

Ecosystems. The participants were also encouraged to test the already established

CEcube-tower before explicitly evaluating the CEcube-cubocta-tower.

After establishing and upgrading their computational skills to a considerable level,

the participants were individually tasked with testing the CEcube-cubocta-tower. Although

they were asked to test the algorithm with ∈multi
initial Array of 10 to 12, the

participants were encouraged to experiment with higher number of ∈multi
initial Array.

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 183|

After the successful trials of the CEcube-cubocta-tower, Fig. 4.25 illustrates the outcomes

of one of the tallest CEcube-cubocta-tower with 12 ∈multi
initial that was generated during the

workshop – ‘Computation as a Design tool’. The figure shows the initial state

denoted by ◼ colored cube (R,G,B – 129,129,129), and the rest of the CEcube-tower thus

denoted by ◼ (R,G,B – 204,204,204) colored cube.

Figure 4.25 – Prototype of a selected CEcube-cubocta-tower with 12 ∈cube
initial with a runtime of 40 ttick

before reaching the rest state. Model, algorithm, Illustration and graphics by Author (July 2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |184

4.3.4 CEMESE

Fig. 4.24 and fig. 4.25 sufficiently demonstrate the executions and prototyping of the

CEcube-cubocta-tower, however, (similar to the CEcube-tower) more outcomes focusing on the

taxonomy creation have been illustrated in the next chapter (5| On the consequences

of Computational Ecosystems) with further analysis comparing all the other taxa from

the procedural sequences in chapter 6.

However, before continuing with the next taxa, certain observations need to be

mentioned in this section to underline the incorporation of observations made in the

previous section (as in 4.2.4). Also, a reflection on the performance of this procedural

sequences and the primary objectives employed to execute it need to be mentioned

to avoid any redundancies that could devalue the quality of the upcoming taxa. Also,

owing to the fact that the next taxon (CESEME) serves as a conceptual equivalent, these

observations are essential before starting the Case Studies for the CESEME.

Following are the changes made after considering the observations for the CESESE –

• The redundancies generated by performing physical prototyping workshops

(that is through workshops where participants manually prototype

computational ecosystems while following instruction manuals) were

counteracted by conducting computational prototyping workshops (that is

through workshops where participants computationally prototype

computational ecosystems through computational design).

• This amendment had to be incorporated into the methodological workflow

which had to be considerably modified to accommodate the unavailability of

resources to conduct the workshop. For example, in the scenario of the CESESE

the algorithm was determined by the results generated during the workshop

– Designing ways of designing (as outlined in 4.2.3).

Architecture of Computational Ecosystems

| 4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 185|

• However, in the scenario of the CEMESE, the algorithm had to be synthesized,

and tested on a preliminary basis before being considered for the

computational prototyping with the participants of the workshop -

Computation as a Design tool (as outlined in 4.3.3).

Following are the observations made for the procedural sequence CEMESE, which

should be considered in the next procedural sequences CESEME and CEMEME –

• Out of the 15 iterations demonstrated in fig. 4.24 (as a combination of some

of the possible iterations with 3 or 4 ∈multi
initial) only 1 returned with an Early

End condition. Although this observation has been made in the synthesis of

the CESESE (as outlined in 4.2.4), the methodology was not changed.

• Although this number (which is 6.67% of the possible iterations) has reduced

considerably as compared to its predecessor, as there was no deliberate

modification made to the algorithm, this can be considered as a virtue of the

combination of morphologies used.

• More strategies could be employed for the Ψ entities to make sure that the

rule sets do not end up replicating the Initial State as the Initial Stack. This,

could also be achieved by making sure that some context sensitive rule sets

could be added to ensure a modified ground condition.

• The ∈ entities, which resemble Platonic and Archimedean shapes at the

moment give the appearance of the direct continuation of a 3D Cellular

Automata (as in a CA of the Conway Model expressed in 3D). Although, there

are no issues with such a comparison at this stage, the results should more

resemble a built-form that can be imagined in the structure of the world.

It would be crucial to include the above-mentioned observations in the upcoming

taxa and perform the primary objectives in a more refined way.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |186

4.4 Single Element Multiple Economies Ecosystem (CESEME)

Similar to CESESE and CEMESE, the conceptual framework of a CESEME has already been

sufficiently illustrated in the previous chapters (introduced in 1.2.2, illustrated in fig.

1.8, defined in 3.2.2). Moreover, a Structural UML Diagram establishing the attributes

and operations of a canonical version the ∈ and Ψ has also been illustrated (in fig.

3.4 as part of sub section 3.2.4). However, like CESESE and CEMESE, to actually construct,

taxonomize and prototype this procedural sequence, the research would have to

consider specific tangible parameters for the concept of a CESEME, which could be

derived from a combination of real-life examples and constraints and the conceptual

framework for the case studies of the already established CESESE and CEMESE.

The CESEME also serves as an extension and continuation to the CEcube-tower, primarily

due to the multiplicity of the Ψ parameter. Moreover, the CESEME performs as a slight

modification on the CEcube-cubocta-tower owing to the way the multiplicity was handled

theoretically, semantically and computationally. Thus, to maintain the complexity in

of the CESESE and CEMESE, the Author has decided to continue with the conceptual

example of an SEME illustrated in 1.2.2. Use of the example scenario would be

especially instrumental in methodically increasing the Ψ parameter to 2 (instead of

the ambiguous multi) and using the canonical Structural UML Diagram. Thus, before

specifically defining each parameter, the overall components of the CESEME can be –

• ∈ – As illustrated in the example scenario, the ∈ would be represented by

hexahedrons or cubes, with unit dimensions.

• Ψ1 – As illustrated in the example scenario, the Ψ1 would be represented by

structural stability in the form of axial loads.

• Ψ2 – As illustrated in the example scenario, the Ψ2 would be represented by

buoyancy (as per the Archimedes principle).

Architecture of Computational Ecosystems

| 4.4 Single Element Multiple Economies Ecosystem (CESEME) 187|

4.4.1 Case Studies

Although serving as a conceptual successor to the CESESE, and by definition being able

to serve as a continuation to the CESESE, the CESEME like CEMESE which theoretically and

semantically means that it can be treated as an ecosystem that is inhabited by one

and only one predetermined species and this species is constructed, monitored, and

governed (individually, categorically and collectively) by a combination of multiple

rule sets, the CESEME does not serve as a direct sequel to the CESESE or as an alternative

to the CEMESE in terms of fulfilling the Procedural Sequences.

However, the CESEME has certain attributes related to the ∈ and Ψ that cannot be

exhibited by either the CESESE or the CEMESE due to their semantical constraints. The

multiplicity of the Ψ parameter doesn’t just imply that there would be two individual

Ψ entities, but the order or preference within these two predetermined Ψ entities

and their deployment in terms of the ∈ would unmistakably require a third Ψ entity

that governs the sequence of the two. Thus, as per the requirements of the CESEME

and the modifications already made to the assumptions of the example scenarios of

CESESE and the CEMESE, the following additions must be made to the example scenario

and the assumptions stated in the last section –

• ∈ – Cubes, with unit dimensions, which can be programmed as sentient

elements similar to the ∈cube, that are aware of their existence.

• Ψ1 – A rule set that determines the stacking of ∈cube in the form of state

conditions considering an overall structural stability in the form of axial loads.

• Ψ2 – A rule set that maintains the buoyancy of ∈cube in the form of state

conditions (as per the Archimedes principle).

• Ψ1-2 – A rule set that determines the order and preference of the Ψ1 and Ψ2

for every ∈cube in the form of state conditions.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |188

Following the case study of the collective assemblages of the Eciton hamatum

forming live bridges out of their own bodies (elaborated in 4.2.1, and illustrated in

fig. 4.1) as a theoretical precedent for the CESESE and CEMESE, the CESEME seeks a slightly

different collective assemblage of fire ants.

It has already been established that this taxon relies on the existence of 3 Ψ

parameters for the formation of a CE (namely, Ψ1, Ψ2, and Ψ1-2) while exploring and

imbibing the concept of buoyancy into the previously setup CEeciton-bridge (which

establishes how a computational model could be made to perform simulations of the

live bridges created by the fire ants). Thus, a study conducted on the collective

assemblages of Solenopsis Invicta (a species of fire ants found extensively in Brazil)

in the form of live rafts that float on water was examined and inferences were

extrapolated as theoretical precedents for the CESEME.

Fig. 4.26 shown below demonstrates an Ant Raft formed by the collective

assemblages of the aforementioned Solenopsis Invicta created by 500 ants.

Figure 4.26 – A raft of 500 fire ants, composed of a partially wetted layer of ants on the bottom

and dry ants on top. Original Image from the research conducted by schools of Mechanical

Engineering, Industrial and Systems Engineering and Biology of the Georgia Institute of

Technology, GA, USA. Source: https://www.pnas.org/content/pnas/108/19/7669.full.pdf

Architecture of Computational Ecosystems

| 4.4 Single Element Multiple Economies Ecosystem (CESEME) 189|

The researchers simulated the creation of the ant rafts by dropping a hive of 3000

ants on different surfaces. “When dropped on solid surfaces, the hive quickly

disintegrated and the ants fled in all directions. However, when placed on the surface

of water (water that is free of surfactants), the ants redistribute and reconnect

themselves into raft” (Mlot et al, 2011)137. The study also found that, the raft reaches

a stable equilibrium within several minutes, and “at equilibrium, the rafts are

pancake shaped, whereby a dry portion of the colony stands atop a monolayer of

stationary ants” (as shown in fig. 4.25). The spreading of the raft also resembles that

of a drop of fluid, which directed the researchers to simulate the ant raft construction

by considering the ants as a “liquid continuum, and running the models of fluid

dispersion and diffusion.” The simulations of the ant raft construction result in the

following understanding about the collective assemblages –

• As the same ants perform all roles required in the construction of the ant raft

(even the role of the passengers), these collective assemblages are reversible.

• Considering that the ants maintain the integrity of the raft by communicating

how many ants are aboard the ant raft (just like in the form of the ant bridges,

the ants are aware of how many ants are crossing the bridge), the collective

assemblages are self-aware, and always interpolating their physical

properties such as shape, size and weight.

Thus, the study on the ant rafts and the observations on the simulations can be

considered as a theoretical precedent for the CESEME. However, the ant raft caters to

only one of the Ψ parameters, (i.e., Ψ2 determining rule sets for Buoyancy of the

∈cube). Thus, the assumptions for the CEeciton-bridge could be appended with the above

observation.

137 Mlot, N. J., Tovey, C. A., Hu, D. L. (2011). Fire ants self-assemble into waterproof rafts to survive
floods. In: Proceedings of the National Academy of Sciences of the United States of America. [online]
Washington DC: PNAS, p 6. . Available at: https://www.pnas.org/content/108/19/7669.full

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |190

 Hence a modified CEant-floating-bridge could have the following modified components –

• ∈ – The ants. Acting as biotic, ambulatory agents that are self-aware of their

physical properties such as their weight, weight-carrying capacity, movement

speed, and gripping abilities. Thus, ∈ants.

• Ψ1 – The bridging ability. Forming collective assemblages by means of

connection techniques, span-depth ratios for optimum bridge structures, and

load calculations (considering the live loads and dead loads). Thus, Ψbridge.

• Ψ2 – The rafting ability. Forming collective assemblages by means of

connection techniques, span-depth ratios for optimum floating structures,

and load calculations (considering the live loads and dead loads). Thus, Ψraft.

However, as floating ant bridges don’t really exist in nature, in the same way that the

above assumption suggests, the 3rd Ψ entity which determines the priority rule sets

for the ∈ants over forming a bridge or raft first, requires some more understanding of

the simulation model. Moreover, as the CESEME serves as conceptual kin to the CEMESE

(owing to the fact that both the taxa involve multiplicity in either of the ∈ or Ψ

parameters), the theoretical assumptions made for the CEMESE can be further

implemented in exemplifying the CESEME.

However, the CEMESE treats the multiplicity of the ∈ parameters slightly differently. It

does so by assuming that the same species of ants take up different roles to form the

bridge, thus behaving as different types of elements serving different purposes in the

construction of the CEeciton-bridge (as elaborated upon in 4.3.1). Thus, although the

Eciton hamatum and the Solenopsis Invicta are different ant species, for the sake of

the simulation they can be treated as ambulatory agents which are capable of being

governed by two different Ψ parameters – the Ψbridge and the Ψraft. While being

simultaneously governed by the rule on which Ψ parameter to perform first.

Architecture of Computational Ecosystems

| 4.4 Single Element Multiple Economies Ecosystem (CESEME) 191|

Thus, 3rd Ψ entity, formerly identified as Ψ1-2, can be further defined as followed –

• Ψ1-2 – The prioritization ability. Assessing the neighbourhood condition and

the physical and structural properties of the Ψbridge and the Ψraft by means of

density calculation of context and load calculations. Thus, Ψbrridg-raft.

Consequently, the ∈ants parameter of the CEant-floating-bridge would also have a few

modifications to accommodate the variations done in the Ψ parameters. The

updated ∈ parameter can be defined as followed –

• ∈ants – The ants. Acting as biotic, ambulatory agents that are self-aware of

their physical properties such as their weight, weight-carrying capacity,

movement speed, and gripping abilities for each of the two distinct Ψ entities

- ∈bridge, and ∈raft.

Considering the fact that the ∈ parameter would now also have to be bifurcated into

distinct ∈ entities to accommodate the Ψ parameters, the names of all the

components would have to be amended. Thus, the new components of the updated

CEant-floating-bridge would be –

• ∈ants
bridge – These would be the Ants performing the Ψbridge.

• ∈ants
raft – These would be the Ants performing the Ψraft.

• Ψbridge – These would be the rule sets for ∈ants
bridge.

• Ψraft – These would be the rule sets for ∈ants
raft.

• Ψbridge-raft – These would be the rulesets prioritizing either of the ∈ entities

over the other.

Thus, like the CEMESE, a CESEME would have multiple ∈ entities despite the singularity.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |192

Thus, the similarities between a CESEME (derived from the example scenario and the

CESESE and CEMESE) and a CEant-floating-bridge can be illustrated as shown in fig. 4.27 below.

Figure 4.27 – Comparing the CESEME and a CEant-floating-bridge. Illustration and graphics by Author

(May 2019).

Thus, based on the analogies illustrated in fig. 4.27 and the conceptual semantics

established for a CEant-floating-bridge, The CESEME could be based on the already

established CEcube-tower (as defined in 4.2.1) and CEcube-tower
2 (as defined in 4.3.1).

However, in case of the CESEME the constituent ∈ entities and Ψ entities, would have

to be defined in relation to the updated CEant-floating-bridge. Therefore, the CESEME is

defined as followed –

• ∈ entities – or ∈SEME entities will be considered as computational substitutes

to the two ∈ entities established for the CEant-floating-bridge. Although the

functionalities and structural properties of the ∈ants
bridge, and ∈ants

floating do not

directly translate to the ∈SEME entities, they contain the same semantics as

established to be the components of the CEant-floating-bridge. Thus, continuing on

the example scenario, the ∈SEME entities can be further bifurcated as ∈cube
tower,

and ∈cube
floating. The specific properties of each entity, which are relevant for

simulation, will be defined in the next section (4.3.2), but the general

properties of all the ∈SEME entities can be as followed –

Architecture of Computational Ecosystems

| 4.4 Single Element Multiple Economies Ecosystem (CESEME) 193|

o All the ∈SEME entities should be considered as static agents that can be

spawned or culled by the CESEME at the expense of the Ψ entities.

o All the ∈SEME entities should be made to be self-aware of themselves,

as in identifying and quantifying their positions, weights, and bounds.

o All the ∈SEME entities should also be made to be self-aware of their

surroundings and their physical properties, like cardinality of

neighbours, array of neighbours, and distance from the initial plane.

• Ψ entities – or ΨSEME entities will be considered as computational substitutes

to the Ψ entities established for the CEant-floating-bridge. Although the

functionalities and structural properties of the Ψbridge, Ψraft, and Ψbridge-raft do

not directly translate to the ΨSEME entities, they have the same semantics.

Thus, the ΨSEME entities can be further trifurcated as Ψtower, Ψfloating, and

Ψfloating-tower. The properties of all the ΨSEME entities can be defined as –

o Contrary to the CEcube-tower, and the CEcube-cubocta-tower the CESEME would

have the distinct ΨSEME entities performing a tower stacking logic and

a floating raft logic in unison.

o They should be however, designed as a two-state rationale for all the

∈SEME entities. While, Ψtower
SEME could be derived from Ψtower

SESE

(4.2.1), the other two ΨSEME entities – Ψfloating, and Ψfloating-tower would

require the understanding of different structural logics derived from

the Archimedes principle of buoyancy.

o However, on the whole, ΨSEME entities should seek an equilibrium

state that spawns and culls ∈SEME entities considering if the tower is

under-structured, overstructured, sinking or over-buoyant, thus

maintaining a reciprocal coupling.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |194

After establishing and defining the ∈SEME entities and ΨSEME entities, the CESEME could

be defined under the computational guidelines of CA (as elaborated in 3|) as –

• The CESEME due to its specific combination of ∈SEME entities and ΨSEME entities

can be termed as CEcube-floating-tower, and will be defined as a functioning

ecosystem constituting of sentient, context aware cubes as ∈SEME entities that

interact with each other considering the rule sets assigned by ΨSEME entities

to spawn or cull the ∈SEME entities until the runtime of the CEcube-floating-tower.

• As the CEcube-floating-tower will perform while considering two distinct ΨSEME

entities, the 3rd ΨSEME entity will operate as a determiner of partial runtimes

for the distinct equilibria of the CEcube-floating-tower. Moreover, the Ψfloating

would perform while considering the ∈SEME entities in a specific context.

However, one and only one CE that is CEcube-floating-tower would be performed

for its entire runtime.

• Although derived from the hypothetical amalgamation of intricate bio-

inspired behavior of army ants constructing living bridges for foraging trails,

and fire ants constructing living rafts to avoid drowning, the CEcube-cubocta-tower

is a quite complex combination of vertical stacking algorithm and a floating

raft algorithm for cubes. Therefore, the rule sets for the ΨSEME entities can be

adapted from the Conway model of CA (as per 2.3.2). However, these will be

considerably modified.

• The ΨSEME entities would differ considerably from the Conway model of CA in

the parameter of time. That is, while the new ∈SEME entities will be spawned

or culled on the upper levels in the 3D grid for the Ψtower entity, the Ψfloating

entity would direct spawning and culling ∈SEME entities on the XY plane.

Considering all the above assumptions, definitions, illustrations and examples for the

CEcube-floating-tower, the simulations for this taxon can now be performed.

Architecture of Computational Ecosystems

| 4.4 Single Element Multiple Economies Ecosystem (CESEME) 195|

4.4.2 Simulations

However, just like the CESESE, and the CEMESE, the canonical CESEME UML Class Diagram

(as per fig. 3.4) for the CEcube-floating-tower has to be reassessed and repurposed. Fig.

4.28, as shown below, illustrates the modifications to the canonical version.

Figure 4.28 – Modifications made to the canonical CESEMEUML Diagram to accommodate the

parameters required for establishing the CEcube-floating-tower. Illustration and graphics by Author

(May 2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |196

Elaborating on the terminologies introduced in fig. 4.28, the attributes and

operations of the classes can be defined as followed –

• ttick – The periodic increment of time, ensuring that the CEcube-floating-tower runs.

• trest – If the condition CEcube-floating-tower rest is fulfilled, the trest will be activated.

This means that the time increment will stop and the CEcube-floating-tower will be

outputted to the user.

• CEcube-floating-tower rest – Is the situation where an ∈multi
form array for the last 3

ttick intervals is equal or repetitive.

• ∈multi
form array – Is the collective assemblage of ∈multi

 for a certain ttick interval.

• ∈multi
form – Is the operation for the formation of a combination of ∈cube

tower

and ∈cube
floating depending on the Ncheck and Nform routines for the Ψtower,

Ψfloating, and Ψtower-floating.

• Nform – Is the binary inputs for the cells to be either spawned (input = 1) or

culled (input = 0) depending on the Ncheck conditional.

• Ncheck – Is the binary output from the cells of the distinct neighbourhoods (N)

to check if the cells in the N of the previous ttick interval are either spawned

(input = 1) or culled (input = 0).

• N – The neighbourhood of the ∈multi in question (as in every ∈cube
tower and

∈cube
floating) depending on how many neighbouring ∈multi from the previous ttick

interval are to be considered to determine the Ncheck and Nform routines that

eventually determine the Stack operation.

Thus, determining the N becomes the most important step before considering to

explain the other concepts required to run the CEcube-floating-tower.

Architecture of Computational Ecosystems

| 4.4 Single Element Multiple Economies Ecosystem (CESEME) 197|

Similar to the computational environment and the revised infinite 3D Square grid that

was considered for the CEcube-tower (refer 4.2.2) and the CEcube-cubocta-tower (refer 4.3.2),

in case of the CEcube-floating-tower as well, the modelling has been performed in Rhino 7

(as per 3.3), the programming has been performed in Grasshopper for Rhino 7 (as per

3.3) and visualizations have been performed in VRay for Rhino (as per 4.1).

Although most of the physical properties required for the CEcube-floating-tower are similar

to those of the previously established, there is a complication that arises from the

multiplicity of the Ψ entities. The Ψ2 and Ψ1-2 entities for the CEcube-floating-tower are

rule sets to consider the state of equilibrium for the ∈multi
 determined by their

buoyancy. This directs the formerly considered computational environment -

hypothetical revised infinite 3D Square grid to be comprised of a certain material.

Thus, to evaluate and govern the buoyancy parameters the computational

environment shall be considered as made of two different materials. However, these

two materials shall have to expand the revised infinite 3D Square grid beyond the

bounds of the +Z Axis. Thus, the computational environment for the CEcube-floating-tower

shall be the entire 3D Cube Grid (that is, extending on all 3 axes without any bounds).

However, the domain of the materials shall be precisely defined, where one does not

interact with the other. Their distinctions are as followed:

• Air – This shall be the atmosphere populating the 3D Cube Grid on the +Z Axis.

It shall not experience any lateral forces caused by wind or any atmospheric

friction. It will be considered as a computational environment for the Ψtower

and thus will affect the Ntower-check and Ntower-form routines.

• Water - This shall be a hypothetical infinite water body populating the 3D

Cube Grid on the -Z Axis. It shall not contain the presence of any surfactants

or other solvents. It shall also not contain any lateral forces caused by a water

current or any kind of turbulence. It will be considered as a computational

environment for the Ψfloating and thus will considerably affect the Nfloating-check

and Nfloating-form routines.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |198

Thus, considering the revised computational environment and its constituent

materials, fig. 4.29 illustrates the bifurcation of the environment and the population

of the two ∈ entities.

Figure 4.29 – Bifurcation of the environment and the population of the two ∈ entities. Model,

Illustration and graphics by Author (May 2019).

The Ntower considered for the spawning or culling of the ∈cube
tower remains unchanged

from the assumptions made in the case of the CEcube-tower and the CEcube-cubocta-tower

previously (in 4.2.2 and 4.3.2 respectively). Thus, fig. 4.30 illustrates the Ntower for a

∈cube
tower.

Figure 4.30 – An ∈cube
tower surrounded by the 8 possible Ntower. Model, Illustration and graphics

by Author (May 2019).

However, the Nfloating considered for the spawning or culling of the ∈cube
floating

operates in water, and thus requires to be illustrated as shown in fig. 4.31.

Figure 4.31 – An ∈cube
floating surrounded by the 4 possible Nfloating. Model, Illustration and

graphics by Author (May 2019).

Architecture of Computational Ecosystems

| 4.4 Single Element Multiple Economies Ecosystem (CESEME) 199|

The concept of structural stability considered and assumed in the construction of the

rule sets of Ψtower has been already sufficiently explained and illustrated (in 4.2.1).

Moreover, the concept has also been evaluated and validated in the ‘Designing ways

of Designing’ workshop (as explained and illustrated in 4.2.3). However, the Ψtower

and the consequent rules assumed for structural stability have been derived for a

condition without any atmosphere, and here, in the case of CEcube-floating-tower a

medium of atmosphere has already been established as the partial computational

environment. Despite these considerations, however, the same previous

assumptions of Ψtower (setup in 4.2.1 and 4.2.3) shall be followed in the case of the

CEcube-floating-tower. The assumptions for the Ψfloating on the other hand, have to be made

in relation to the Ψtower so that the CESEME can perform all the Ψ entities symbiotically.

As already established in the example scenario and the CEcube-floating-tower, the Ψfloating

shall consist of rule sets that eventually control the spawning or culling of the

∈cube
floating to maintain an equilibrium state for the entire CEcube-floating-tower. In other

words, the Ψfloating shall add or remove ∈cube
floating to ensure that the CEcube-floating-tower

does not sink. To do this, the following assumptions can be made –

• All the operations related to the spawning or culling of the ∈cube
floating in the

context of the CEcube-floating-tower shall be made in the Water. That means, only

the Nfloating can be considered for the Nform routine.

• The ∈cube
floating and ∈cube

tower shall be considered as hollow cubes made of unit

mass and unit volume, such that, if one ∈cube
floating is solitarily dropped in

water, it shall float while having exactly 10% of its volume immersed.

• However, if more ∈cube
tower are added (by the virtue of the Ψtower), the

resultant array of ∈multi shall never have more than 20% of the collective

volume of the ∈cube
floating immersed in the water.

• In case the volume of ∈cube
floating immersed in the water is more than 20%,

more ∈cube
floating shall be added to the Nfloating by means of the Nform routine.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |200

Thus, considering the aforementioned assumptions, an array of n∈cube
tower (n

∈cube
tower elements) will always require n∈cube

floating (n ∈ cube
floating elements) to make

sure that the CEcube-floating-tower floats in such a way that no more than 20% of the

collective volume of the ∈cube
floating is immersed in the water. Moreover, since the

∈cube
tower and the ∈cube

floating are morphologically same, the CEcube-floating-tower will

basically be populating hollow cubes both vertically (to make a tower by following

Ψtower) and horizontally (to ensure that the tower floats by following Ψfloating). To

demonstrate this, fig. 4.32 shown below takes the example of a specific ∈multi
initial

array, and documents implementation of the Ψfloating assumptions made above.

Figure 4.32 – Example implementation of Ψfloating-tower for the runtime of a CEcube-floating-tower

with 3 ∈multi
initial elements. Model, Illustration and graphics by Author (May 2019).

As illustrated in fig. 4.32 above, at ttick_0 interval the array of three ∈multi
initial elements

(with 10% of their volume immersed in water) employs a typical Ψtower rule set and

spawns four more ∈cube
tower at the ttick_1 interval thus making a total of seven ∈multi

initial

elements in the CEcube-floating-tower. Without the implementation of the Ψtower rule set

at the ttick_1 interval, the CEcube-floating-tower would still float, albeit with 23.34% of its

∈multi
initial elements immersed in water. This is not allowed as per the assumptions,

and thus, at ttick_2 interval, four new ∈cube
floating are spawned to ensure that only a

maximum of 20% of the ∈multi
initial and the ∈cube

floating elements is immersed in water.

Architecture of Computational Ecosystems

| 4.4 Single Element Multiple Economies Ecosystem (CESEME) 201|

Although the assumptions are to ensure that the CEcube-floating-tower floats, they can’t

be considered as the Ψfloating rulesets. Because, to ensure the spawning and culling of

∈cube
floating specific state conditions would be required, but the assumptions merely

provide the number of elements to be spawned (to ensure that the CEcube-floating-tower

floats at the predetermined level). The above assumptions can however be

considered as the Ψfloating-tower rule sets, because the assumptions examine the results

of the Ψtower rule and then direct the Ψfloating, thus serving as a prioritizing junction

between the two. The Ψfloating-tower rule sets also serve as a time buffer, as it halts to

compute how many ∈cube
floating are required to be spawned. The Ψfloating-tower serving

as a junction and a buffer between the Ψtower and the Ψfloating is quite crucial as the

neighbourhood considerations of the Ψtower and the Ψfloating are quite distinct.

Similar to its previous applications for the CEcube-tower and the CEcube-cubocta-tower, the

state conditions of the CEcube-floating-tower will also be determined by employing the

Conway Model of CA (as explained in 2.3.2). Thus, considering the CEcube-tower and the

CEcube-cubocta-tower as precedence, and deriving from the Conway Model of CA, the state

conditions for the CEcube-floating-tower can be established as followed –

• Ψtower - Every ∈cube-n+1
tower

 at the ttick-n+1 interval interacts with the Ncube
tower of

its corresponding (or in this case preceding) ∈cube-n
tower at the ttick-n interval,

thus performing Ntower-check. For the ttick-n+1 interval, it then performs the Nform

routine based on the following conditions –

o Any existing (spawned) ∈cube-n
tower with 2 or 3 existing ∈cube-n

tower in its

Ncube
tower continues to exists and is not culled at the ttick-n+1 interval, as

if it was being perfectly supported by its counterparts on the floor

below.

o Any non-existing (culled) ∈cube-n
tower with 3 existing ∈cube-n

tower in its

Ncube
tower is spawned for the ttick-n+1 interval, as if it was being perfectly

supported by its counterparts on the floor below.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |202

o All other existing ∈cube-n
tower at the ttick-n interval (those with other than

two or three neighbours in their Ncube
tower) stop existing at their

corresponding ttick-n+1 interval. Similarly, all other non-existing ∈cube-n

at the ttick-n interval (those with other than three neighbours in their

Ncube
tower) remain nonexistent at the ttick-n+1 interval.

• Ψfloating-tower - At every ttick-n+1 interval, the cardinality of ∈cube-n
tower elements

that are newly spawned and those that are not culled is measured, and the

total number of new elements ∈cube-n+1
floating elements is determined by –

o Reducing the cardinality of the ∈cube-n
tower elements in the ttick-n

interval from the cardinality of the ∈cube-n
tower elements in the ttick-n+1

interval.

• Ψfloating - Every ∈cube-n+1
floating

 at the ttick-n+1 interval interacts with the

Ncube
floating of its corresponding (or in this case preceding) ∈cube-n

floating at the

ttick-n interval, thus performing Nfloating-check. For the ttick-n+1 interval, it then

performs the Nform routine based on the following conditions –

o Any non-existing (culled) ∈cube-n
floating with no existing ∈cube-n

floating in its

Ncube
floating is spawned for the ttick-n+1 interval, as if it was being

perfectly supported by its counterparts on the edge of the cube, thus

leaving the faces open for access.

o Any non-existing (culled) or existing (spawned) ∈cube-n
floating with any

number of existing ∈cube-n
floating in its Ncube

floating remains culled or is

culled for the ttick-n+1 interval, as if it was blocking access, and thus

would not sufficiently provide buoyancy.

The CEcube-floating-tower thus continues until the CEcube-floating-tower rest condition is met,

after which the CE is returned to the user as an iteration.

Architecture of Computational Ecosystems

| 4.4 Single Element Multiple Economies Ecosystem (CESEME) 203|

The Spawn and Cull conditions for the Ψtower of the CEcube-floating-tower shall be

considered to be similar to those in the CEcube-tower (as shown in fig. 4.7 and fig. 4.8)

and thus need not be illustrated again. Moreover, the Ψfloating-tower does not have any

Spawn and Cull conditions, as it merely states an integer value that determines the

total number of ∈cube
floating elements to be spawned to ensure that the CEcube-floating-

tower actually floats. Before following the next primary objective, and heading over to

the prototyping stage for this procedural sequence, however, the Ψfloating
spawn and

Ψfloating
cull need to be illustrated and highlighted for the CEcube-floating-tower.

Fig. 4.33 thus demonstrates all the Ψfloating
spawn and Ψfloating

cull conditions for every

possible state of array in the Ncube
floating of the ∈cube

floating in question. Moreover, since

the Ψfloating operates after the Ψtower and the Ψfloating-tower have concluded, the

examples shown below already have the ∈cube
tower in place.

Figure 4.33 – ∈cube-n
floating array and their corresponding ∈cube-n+1

floating array considering the

state conditions for the existing and the non-existing states of ∈cube
floating array. Model and

graphics by Author (May 2019).

The ∈cube-n+1
floating at the ttick-n+1 interval is thus denoted by ◼ (R,G,B – 204,204,204)

colored cube, and the corresponding ∈cube-n
floating at the ttick-n interval is denoted by

◼ colored cube (R,G,B – 129,129,129). Also, the existing cubes are denoted by ◼

(R,G,B – 57,188,40) colored cube, and the non-existing cubes are denoted by ◼

(R,G,B – 255,21,21) colored cubes.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |204

4.4.3 Prototyping

The state conditions in terms of the Ncheck and the Nform routines of all the Ψtower,

Ψfloating, and Ψfloating-tower that determine all the distinct Stack operations for all the

∈multi array have been sufficiently demonstrated and illustrated in terms of the Ψspawn

and Ψcull rules (as shown in fig. 4.7, fig. 4.8 and 4.33). The illustrations show all

possible conditions for the Ψspawn and Ψcull rules. However, the computational

stacking logic for the CEcube-floating-tower is different from the previously established

CEcube-tower, and CEcube-cubocta-tower. However, it can be generalized as below –

• As part of the Ψtower –

o If the cardinality of the Ncube
tower consideration for an existing ∈cube

tower

is equal to 2 or 3, the ∈cube
tower survives (i.e. not culled). If the

cardinality is otherwise, the ∈cube
tower does not survive (i.e. culled).

o If the cardinality of the Ncube
tower consideration for a non-existing

∈cube
tower is equal to 3, the ∈cube

tower is created (i.e. spawned). If the

cardinality is otherwise, the ∈cube
tower is not created (i.e. not spawned).

• As part of the Ψfloating-tower –

o Thereafter, at every tick the cardinality of all the surviving ∈cube
tower is

checked, and based on the assumptions made for the Ψfloating-tower it is

determined and directed to be used for the Ψfloating.

• As part of the Ψfloating –

o If the cardinality of the Ncube
floating consideration for an existing or non-

existing ∈cube
tower is equal to 0, the ∈multi is created. If the cardinality is

otherwise, the ∈cube
floating is not created.

Architecture of Computational Ecosystems

| 4.4 Single Element Multiple Economies Ecosystem (CESEME) 205|

As the CEcube-floating-tower serves as a conceptual continuation of the CEcube-tower, and the

CEcube-cubocta-tower, the aforementioned state conditions which have a considerable

precedence on the state conditions of the CEcube-tower, are supported by the entire

series of procedural sequences (with case studies, simulation and prototyping)

performed on the taxon, and thus need not be tested again. However, regarding the

new state conditions pertaining to the Ψfloating, and Ψfloating-tower, the research

necessitates rigorous evaluation, testing, prototyping and versioning if required.

The prototyping methodology considered for the CEcube-tower was absolutely revised

for the CEcube-cubocta-tower, which produced relatively favorable and precise results for

the same. Following the outcomes of the CEcube-cubocta-tower, the prototyping for the

construction of the CEcube-floating-tower would also be performed by means of a

workshop that conducts computational simulation of the CE to ensure all the 3 Ψ

entities - Ψtower, Ψfloating, and Ψfloating-tower are performing accurately, consistently

and yet symbiotically without any bugs or redundancies.

Thus, a similar approach considered for the prototyping of the CEcube-cubocta-tower (as

explained and illustrated in the 4.3.3) was implemented. However, as established in

the CEcube-cubocta-tower where, the entire computational strategy had to be laid down

before initiating a workshop, the CEcube-floating-tower would also require to be

strategized by drawing and illustrating a UML Sequence Diagram that demonstrates

a user or designer (or actor) going through the runtimes of all the components of the

CEcube-floating-tower to eventually produce an outcome driven by the sequential

operations of the Ψtower, Ψfloating, and Ψfloating-tower in spawning or culling ∈cube
tower

and ∈cube
floating while maintaining the equilibrium state of constructing a floating

tower made of cubes. Following up on the UML Sequence Diagrams established for

the CEcube-tower (as illustrated in fig. 4.10), fig. 4.34 illustrates the role, interaction and

runtime of all the ∈ entities and Ψ entities as identified in the UML Class Diagram

(illustrated in fig. 4.28). It illustrates a UML Sequence diagram that determines the

outcome of all possible different CEcube-floating-tower.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |206

Figure 4.34 – The UML Sequence Diagram for a CEcube-floating-tower with the role, interaction and

runtime of all the ∈ entities and Ψ entities, and their dependencies for the Early Rest condition.

Illustration and graphics by Author (May 2019).

Architecture of Computational Ecosystems

| 4.4 Single Element Multiple Economies Ecosystem (CESEME) 207|

Similar to the previously established UML Sequence Diagram for the CEcube-tower, and

the CEcube-cubocta-tower, the one jointly illustrated for the CEcube-floating-tower in fig. 4.34 has

been generated with the following assumptions –

• The Actor would be the user who initiates the CEcube-floating-tower.

• CEcube-floating-tower would be considered as one of the objects, as it has its own

lifeline that represents the runtime of the entire algorithm, while the other

objects in the diagram would be considered as ∈multi
initial, Ntower, Ψspawn,

∈multi
form, Ψcull, Nfloating-tower, and ∈multi in the chronological order of their use

and application in the CEcube-cubocta-tower.

• The Diagram also involves returning the CEcube-floating-tower as an early rest

condition, if the Initial State Array and the Initial Stack Array are the same. If

not, the remaining algorithm continues on a while loop until the CEcube-floating-

tower rest condition (mentioned in 4.3.2) is met to end the algorithm.

Considering the UML Sequence Diagram, a Grasshopper definition was run inside the

Rhino 7 interface (The definition labelled as CEcube-floating-tower has been appended to

the Annexure – Definitions). Similar to the CEcube-cubocta-tower, third-party components

used to perform the specific algorithm functions of the CEcube-floating-tower are –

• Initiate – To populate the random Initial array of ∈multi
initial.

• Array – To generate ∈cube
tower and ∈cube

floating using the Lunchbox138 plugin.

• Ncheck – To check the cardinality of Neighbouring cells using the OR logic gate.

• Loop – To generate a while loop using the Anemone139 plugin.

138 Lunchbox for Grasshopper (2012). Omaha, USA: Proving Ground Apps.
139 Anemone 0.4 (2015). Poznań, Poland: Mateusz Zwierzycki.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |208

Employing the Grasshopper definition, several test CEcube-floating-tower were prototyped

in the Rhino 7 environment. As these were initial prototypes, the cardinality of

∈multi
initial was restricted to 2 and 3. Fig. 4.35 illustrates the outcomes of a few inputs

for the CEcube-floating-tower below. The figure shows the initial state denoted by ◼

colored cube (R,G,B – 129,129,129), the rest of the ∈cube
tower denoted by ◼ (R,G,B –

204,204,204) colored cube, and the ∈cube
floating denoted by ◼ (R,G,B – 207,235,255).

Figure 4.35 – Initial Prototypes of several CEcube-floating-tower with 2 and 3 ∈cube
initial. Model,

algorithm, Illustration and graphics by Author (May 2019).

Architecture of Computational Ecosystems

| 4.4 Single Element Multiple Economies Ecosystem (CESEME) 209|

Fig. 4.36 illustrates the outcomes of one of the tallest CEcube-floating-tower with 10

∈multi
initial that was generated during the ‘Computation as a Design tool’. The initial

state is denoted by ◼ (R,G,B – 129,129,129), the rest of the ∈cube
tower denoted is by

◼ (R,G,B – 204,204,204), and the ∈cube
floating is denoted by ◼ (R,G,B – 207,235,255).

Figure 4.36 – Prototype of a selected CEcube-floating-tower with 10 ∈cube
initial that had a runtime of 24

ttick before reaching the rest state. Model, algorithm, Illustration and graphics by Author (May

2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |210

4.4.4 CESEME

Similar to the previous taxa (as explained in 4.2.4 and 4.3.4), fig. 4.35 and fig. 4.36

demonstrate the executions and prototyping of the CEcube-floating-tower, however, more

outcomes focusing on the taxonomy creation have been illustrated in the next

chapter (5| On the consequences of Computational Ecosystems) with further analysis

comparing all the other taxa from the procedural sequences in chapter 6 (On the

investigative analysis of Computational Ecosystems). However, (similar to 4.2.4 and

4.3.4) the methodology adopted for the CE needs to be analyzed before continuing.

Also, as the CESEME serves as an extension and continuation to the CESESE and a

conceptual equivalent to the CEMESE, the amendments made in the methodology of

CESEME should be addressed as the following –

• To ensure that the CE do not just serve as a continuation of the 3D Cellular

Automata (as in a CA of the Conway Model expressed in 3D) efforts have been

made to ensure resemblance to actual built-form that can be imagined in the

structure of the world.

• The inclusion of 2 different material environments has provided enough

context for the CEcube-floating-tower demonstrating how the CESEME (or any CE)

could eventually generate built form within real-life context and parameters.

The CESEME handles the complexity of the multiplicity of the distinct Ψ entities. But,

the CEMEME provides the ultimate complexity in the multiplicity of both the ∈ and Ψ

entities. Thus, the following observations made for the CESEME could be crucial.

• The prototyping stage needs to move on from merely the computational

simulation to also provide physical, empirical prototyping.

• A workshop with an amalgam of Computational Design and Digital Fabrication

serving as a link between the algorithm and built form could be conducted.

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 211|

4.5 Multi Elements Multi Economies Ecosystem (CEMEME)

Similar to the CESESE, CEMESE, and CESEME, the conceptual framework of a CEMEME has

already been sufficiently illustrated in the previous chapters (introduced in 1.2.2,

illustrated in fig. 1.9, defined in 3.2.5). Moreover, a Structural UML Diagram

establishing the attributes and operations of a canonical version of the ∈ and Ψ has

also been illustrated (in fig. 3.5 as part of 3.2.5). Like CESESE, CEMESE, and CESEME, to

construct, taxonomize and prototype this procedural sequence, the research would

have to consider tangible parameters in the context of a CEMEME, which could be

derived from a combination of real-life examples and constraints, and the conceptual

framework for the case studies already established in CESESE, CEMESE, and CESEME.

However, unlike already established taxa, the CEMEME would serve as the

amalgamation and continuation of CEMESE, and CESEME, due to the multiplicity of both

the ∈ and Ψ parameters. Thus, following the previous procedural sequences, the

Author has decided to continue with the conceptual example of MEME illustrated in

1.2.2. Using the example scenario would methodically increase the ∈ and Ψ entities

to 2 (instead of the ambiguous multi) and use the canonical UML Class Diagram. Thus,

before defining each parameter, the components of the CEMEME can be –

• ∈1 – As illustrated in the example scenario, the ∈ would be represented by

hexahedrons or cubes, with unit dimensions.

• ∈2 – As illustrated in the example scenario, the ∈ would be represented by

cuboctahedrons, with unit dimensions.

• Ψ1 – As illustrated in the example scenario, the Ψ1 would be represented by

structural stability in the form of axial loads.

• Ψ2 – As illustrated in the example scenario, the Ψ2 would be represented by

buoyancy (as per the Archimedes principle).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |212

4.5.1 Case Studies

Although serving as an amalgamation of CEMESE, the CESEME which theoretically and

semantically means that it can be treated as an ecosystem that is inhabited or

cohabited by multiple predetermined species and these species (individually,

categorically and collectively), are constructed, monitored, and governed by multiple

predetermined rule sets, the CEMEME does not serve as a direct sequel to the either

the CEMESE, or the CESEME in terms of fulfilling the Procedural Sequences.

Moreover, the multiplicity of the ∈ and Ψ parameters doesn’t just imply that there

would be two distinct ∈ and Ψ entities, but the iterations of their collective

assemblages would also have to be treated as a distinct ∈ and Ψ parameters. Thus,

the following addition must be made to the assumptions stated in the last section

(similar to those done in 4.3.1 and 4.4.1) –

• For the ∈ parameters –

o ∈1 – Hexahedrons or cubes, with unit dimensions, which can be

programmed as sentient elements similar to the ∈cube, that are aware

of their existence, and thus can be considered as ∈biotic
1.

o ∈2 – Cuboctahedrons, with unit dimensions, which can be

programmed as sentient elements similar to the ∈cube, (however with

morphological modifications) that are aware of their existence, and

thus can be considered as ∈biotic
2.

o ∈1-2 – A collective entity of the ∈1 and ∈2, which can be programmed

as sentient elements being treated as a ∈cube array (similar to the

Arrays formed by the Stack operations) that are aware of their

existence, and thus can be considered as ∈biotic
1-2.

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 213|

• For the Ψ parameters –

o Ψ1 – A rule set that determines the stacking of ∈cube in the form of

state conditions considering an overall structural stability (as per axial

loads, and thus can be considered as Ψstack.

o Ψ2 – A rule set that maintains the buoyancy of ∈cube in the form of

state conditions (as per the Archimedes principle), and thus can be

considered as Ψbuoyancy.

o Ψ1-2 – A rule set that determines the order and preference of the Ψ1

and Ψ2 for every ∈cube in the form of state conditions), and thus can

be considered as Ψbuoyant-stack.

Following the case study of the collective assemblages of the Eciton hamatum

forming live bridges out of their own bodies (elaborated in 4.2.1, and illustrated in

fig. 4.1) as a theoretical precedent for the CESESE and CEMESE, and the case study of the

collective assemblages of the Solenopsis Invicta forming live rafts out of their own

bodies (elaborated in 4.4.1, and illustrated in fig. 4.26) as a theoretical precedent for

the CESEME, the CEMEME seeks an amalgamated collective assemblage of the Eciton

hamatum and Solenopsis Invicta in a considerably complex manner as compared to

that sought by the CESEME. (Although they don’t exist in nature in the way that the

case study suggests), the floating ant bridges elucidated in 4.4.1 would be considered

as theoretical precedent for establishing the simulations and prototyping of the

CEMEME. However, the CESEME which has multiplicity in only the Ψ parameters

establishes the procedural sequence with relatively less complexity. The CEMEME on

the other hand, is the most complex taxon that has been established thus far. Hence,

Eciton hamatum, Solenopsis Invicta and their inter-related assemblages would be

considered as precedents for the three aforementioned ∈ entities. And, the live

bridges, live rafts and the rules pertaining to connecting the bridges to the rafts would

be considered as precedents for the three aforementioned Ψ entities.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |214

If a rudimentary computational model was made for the simulation of the bridging

and rafting behavior of the ants it would translate to a CE quite literally (as a CE has

been already defined to be a Hybrid Bio Plausible Bio-inspired Stochastic

Optimization Algorithm). Say, this proposed CE, following a basic nomenclature

system, could be termed as CEeciton-solenopsis-bridge-raft (as the CE reflects the bridging

properties of the eciton hamatum interacting with the rafting properties of the

solenopsis invictus), and would then consist of the following components:

• ∈1 – The Eciton Hamatum as biotic, ambulatory agents that are self-aware of

their physical properties such as their weight, weight-carrying capacity,

movement speed, and gripping abilities. Thus, ∈eciton.

• ∈2 – The Solenopsis Invictus as biotic, ambulatory agents that are self-aware

of their physical properties such as their weight, weight-carrying capacity,

movement speed, and gripping abilities. Thus, ∈solenopsis.

• Ψ1 – The bridging ability. Forming collective assemblages by means of

connection techniques, span-depth ratios for optimum bridge structures, and

load calculations (considering the live and dead loads). Thus, Ψbridge.

• Ψ2 – The rafting ability. Forming collective assemblages by means of

connection techniques, span-depth ratios for optimum floating structures,

and load calculations (considering the live and dead loads). Thus, Ψraft.

• ∈1-2 – The Eciton Hamatum and Solenopsis Invictus. Acting as biotic,

ambulatory agents that serve as an amalgam of ∈eciton and, ∈solenopsis. Thus,

∈eciton-solenopsis.

• Ψ1-2 – The prioritization ability. Assessing the neighbourhood condition and

the physical and structural properties of the Ψbridge and the Ψraft by means of

density calculation of context and load calculations. Thus, Ψbrridg-raft.

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 215|

However, owing to the multiplicity in both the ∈ and Ψ parameters, all the ∈ entities

would have to be considered for all the Ψ entities, and all the Ψ entities would have

to be considered for all the ∈ entities. Thus, establishing all the possible combinations

for all possible ∈ and Ψ parameters. These new components of the already

established CEeciton-solenopsis-bridge-raft would be –

• ∈eciton
bridge – The Eciton Hamatum performing the Ψbridge.

• ∈eciton
raft – The Eciton Hamatum performing the Ψraft.

• ∈eciton
bridge-raft – The Eciton Hamatum performing the Ψbrridg-raft.

• ∈solenopsis
bridge – The Solenopsis Invictus performing the Ψbridge.

• ∈solenopsis
raft – The Solenopsis Invictus performing the Ψraft.

• ∈solenopsis
bridge-raft – And the Solenopsis Invictus performing the Ψbrridg-raft.

• Ψbridge
eciton – These would be the bridging rule sets for ∈eciton.

• Ψraft
eciton – These would be the rafting rule sets for ∈eciton.

• Ψbridge-raft
eciton – These would be the prioritizing rule sets for the ∈eciton.

• Ψbridge
solenopsis – These would be the bridging rule sets for ∈solenopsis.

• Ψraft
solenopsis – These would be the rafting rule sets for ∈solenopsis.

• Ψbridge-raft
solenopsis – These would be the prioritizing rule sets for the ∈solenopsis.

Thus, like the CEMESE and CESEME (as per 4.3.1 and 4.4.1), the CEMEME would have more

∈ and Ψ entities than the predetermined number of ∈ and Ψ parameters.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |216

Thus, the similarities between a CEMEME (derived from the example scenario and the

CEMESE and CESEME) and a CEeciton-solenopsis-bridge-raft can be illustrated in fig. 4.37 below.

Figure 4.37 – Comparing the CEMEME and a CEeciton-solenopsis-bridge-raft. Illustration and graphics by

Author (October 2019).

Thus, based on the analogies illustrated in fig. 4.37 and the conceptual semantics

established for a CEeciton-solenopsis-bridge-raft, The CEMEME could be based on the already

established CEcube-tower
2 (refer 4.3.1) and the CEcube-floating-tower (refer 4.4.1). However,

in case of the CEMEME the constituent ∈ and Ψ entities, would have to be defined in

relation to the updated CEeciton-solenopsis-bridge-raft. Therefore, the components of the

CEMEME are defined as followed –

• ∈ entities – or ∈MEME entities will be considered as computational substitutes

to the 6 ∈ entities established for the CEeciton-solenopsis-bridge-raft. Although the

functionalities and structural properties of the aforementioned six ∈ entities

do not directly translate to the ∈MEME entities, they contain the same

semantics as established to be the components of the CEeciton-solenopsis-bridge-raft.

Thus, continuing on the example scenario, the ∈MEME entities can be further

hexfurcated as illustrated in fig. 4.37. The properties of each entity, relevant

for simulation, will be defined further (in 4.5.2), but the general properties

can be as followed –

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 217|

o All the ∈MEME entities should be considered as static agents that can

be spawned or culled by the CEMEME at the expense of the ΨMEME

entities.

o All the ∈MEME entities should be made to be self-aware of themselves,

as in identifying and quantifying their positions, weights, and bounds.

o All the ∈MEME entities should also be made to be self-aware of their

surroundings and their physical properties, like cardinality of

neighbours, array of neighbours, and distance from the initial plane.

• Ψ entities – or ΨMEME entities will be considered as computational substitutes

to the 6 Ψ entities established for the CEeciton-solenopsis-bridge-raft. Although the

functionalities and structural properties of the six Ψ entities do not directly

translate to the ΨMEME entities, they contain the same semantics. Thus, the

ΨMEME entities and can be further hexfurcated as illustrated in fig. 4.37. The

general properties of all the ΨMEME entities can be defined as followed –

o To a certain extent, combining operation of the CEcube-cubocta-tower, and

the CEcube-floating-tower the CEMEME would have the distinct ΨSEME entities

performing a tower stacking logic and a floating raft logic in unison.

o They should be however, designed as a two-state rationale for all the

∈MEME entities. While all the Ψtower
MEME could be derived from

Ψtower
MESE (defined in 4.3.1), all the Ψtower

MEME could be derived from

Ψtower
SEME (defined in 4.4.1)

o However, on the whole, ΨMEME entities should seek an equilibrium

state that spawns and culls ∈MEME entities considering if the tower is

under-structured, overstructured, sinking or over-buoyant, thus

maintaining a reciprocal coupling.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |218

After establishing and defining the ∈SEME entities and ΨSEME entities, the CESEME could

be defined under the computational guidelines of CA (as elaborated in 3|) as –

• The CEMEME which owing to its specific combination of ∈MEME entities and

ΨMEME entities can be termed as CEcube-cubocta-floating-tower, and will be defined as

a functioning ecosystem constituting of sentient, context aware cubes and

cuboctahedra as ∈SEME entities that interact with each other considering the

rule sets assigned by ΨMEME entities to spawn or cull the ∈MEME entities until

the runtime of the CEcube-cubocta-floating-tower.

• As the CEcube-cubocta-floating-tower will perform while considering 6 distinct ΨSEME

entities, the Ψfloating-tower
cube and Ψfloating-tower

cubocta entities will operate as

determiners of partial runtimes for the distinct equilibria for the construction

of CEcube-cubocta-floating-tower. However, one and only one CE that is the

aforementioned CEcube-cubocta-floating-tower would be performed for the entire

runtime.

• Although derived from the hypothetical amalgamation of intricate bio-

inspired behavior of army ants constructing living bridges for foraging trails,

and fire ants constructing living rafts to avoid drowning, the CEcube-cubocta-

floating-tower is a very complex combination of vertical stacking algorithm and a

floating raft algorithm for a combination of cubes and cuboctahedra. Thus,

the rule sets for the ΨSEME entities can be adapted from the Conway model of

CA (as per 2.3.2). Although these will be considerably modified.

• The ΨMEME entities would differ considerably from the Conway model of CA in

the parameter of time. The operation of the ΨMEME entities will however

remain similar to those of the ΨMESE entities (defined in 4.4.1).

Considering all the above assumptions, definitions, illustrations and examples for the

CEcube-cubocta-floating-tower, the simulations for this taxon can now be performed.

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 219|

4.5.2 Simulations

However, just like the previous taxa, fig. 4.38, as shown below, illustrates the

modifications to the canonical version (as per fig. 3.5).

Figure 4.38 – Modifications made to the canonical CEMEME UML Class Diagram to accommodate

the the CEcube-cubocta-floating-tower. Illustration and graphics by Author (October 2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |220

Elaborating on the terminologies introduced in fig. 4.38, the attributes and

operations of the classes can be defined as followed –

• ttick – The periodic increment of time, ensuring the CEcube-cubocta-floating-tower runs.

• trest – If the condition CEcube-cubocta-floating-tower rest is fulfilled, the trest will be

activated. This means that the time increment will stop and the final outcome

of the CEcube-cubocta-floating-tower will be outputted to the user.

• CEcube-cubocta-floating-tower rest – Is the situation where an ∈multi
form array for the

last 3 ttick intervals is equal or repetitive.

• ∈multi
form array – Is the collective assemblage of ∈multi

 for a certain ttick interval.

• ∈multi
form – Is the operation for the formation of a combination of all the six ∈

entities depending on the Ncheck and Nform routines for all the 6 Ψ entities.

• Nform – Are the binary inputs for the cells to be either spawned (input = 1) or

culled (input = 0) depending on the Ncheck conditional.

• Ncheck – Is the binary output from the cells of the distinct neighbourhoods (N)

to check if the cells in the N of the ∈multi
form array for the previous ttick interval

are either spawned (input = 1) or culled (input = 0).

• N – The neighbourhood of the ∈multi in question (as in all the 6 ∈ entities)

depending on how many neighbouring ∈multi from the previous ttick interval

are to be considered to determine the Ncheck and Nform routines that

eventually determine the Stack operation.

Thus, like in the case of the previous taxa, determining the N becomes the most

important step before considering to explain the other concepts required to run the

CEcube-cubocta-floating-tower.

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 221|

Similar to the computational environment and the infinite 3D Square grid that was

considered for the CEcube-floating-tower (refer 4.4.2), in case of the construction of the

CEcube-cubocta-floating-tower as well, the modelling has been performed in Rhino 7 (refer

3.3), the programming has been performed in Grasshopper for Rhino 7 (refer 3.3) and

visualizations have been performed in VRay for Rhino (refer 4.1). Moreover, as the

CEcube-cubocta-floating-tower relies on a CE that floats, its computational environment shall

be constituted of similar elements of Air and Water as theorized in 4.4.2.

Although most of the physical properties required for setting up the computational

environment by the CEcube-cubocta-floating-tower are similar to those of the previously

established CEcube-floating-tower there is a renewed complication that arises from the

multiplicity of the ∈ entities. Amongst the six ∈ entities that are already theorized for

the CEcube-cubocta-floating-tower, only the ∈cube
tower, ∈cube

floating, and ∈cube
floating-tower have

been established in the CEcube-floating-tower. Thus, the ∈cubocta
tower, the ∈cubocta

floating, and

the ∈cubocta
floating-tower have to be instilled in the computational environment that was

already established for the CEcube-floating-tower. Thus, considering computational

environment and its constituent materials, fig. 4.39 illustrates the N of all the 6 ∈

entities.

Figure 4.39 – Neighbourhood (N) of all 6 ∈ entities required for the CEcube-cubocta-floating-tower.

Model, Illustration and graphics by Author (October 2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |222

As illustrated in fig. 4.39, the following assumptions can be made for the N of all the

six ∈ entities –

• Ncube
tower – This is the N for the ∈cube

tower, and it operates in the Air

environment with eight possible ∈multi in the neighbourhood.

• Ncube
floating – This is the N for the ∈cube

floating, and it operates in the Water

environment with eight possible ∈multi in the neighbourhood.

• Ncube-cubocta
tower – This is the N for the ∈cube-cubocta

tower, and it operates in the Air

environment, where it prioritizes eight ∈multi in the neighbourhood.

• Ncubocta
tower – This is the N for the ∈cubocta

tower, and it operates in the Air

environment with four possible ∈multi in the neighbourhood.

• Ncubocta
floating – This is the N for the ∈cubocta

floating, and it operates in the Water

environment with four possible ∈multi in the neighbourhood.

• Ncube-cubocta
floating – The N for the ∈cube-cubocta

floating, and it operates in the Water

environment, where it prioritizes eight ∈multi in the neighbourhood.

The above definitions of all distinct N give a clear understanding of the physical

constraints that each of the six distinct ∈ entities will have while having their

respective Ncheck and Nform routines driven by their respective Stack conditions. The

manner in which Ncube
tower, Ncubocta

tower, and the Ncube-cubocta
tower direct the ∈multi to

construct an optimally structurally supported tower has been already established in

the CEMESE in the form of CEcube-cubocta-tower (as established in 4.3.2 and as illustrated in

fig. 4.17, fig. 4.18, and fig. 4.19), and thus, it shall be implemented for the CEcube-cubocta-

floating-tower. Also, the manner in which the Ncube
floating direct the ∈multi to construct an

optimally structurally supported tower that floats with a maximum of 20% of its

volume immersed in water has been already established in the CESEME in the form of

the CEcube-floating-tower (as established in 4.4.2 and as illustrated in fig. 4.32).

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 223|

However, the Ncubocta
floating , and the Ncube-cubocta

floating, in relation with the other four

N considerations have not been introduced yet, and thus need to be established

before setting up the State Conditions for the CEcube-cubocta-floating-tower. Similar to the

assumptions made for the ∈cube
floating in context of the Ψfloating as established for the

CEcube-floating-tower (4.4.2), following are the assumptions made for the ∈cubocta
floating, and

∈cube-cubocta
floating in context of the Ψfloating

cubocta
 and the Ψfloating

cube-cubocta –

• All the operations related to the spawning or culling of the ∈cubocta
floating, and

∈cube-cubocta
floating in the context of the CEcube-cubocta-floating-tower shall be made in

the Water. That means, only the Ncubocta
floating and the Ncube-cubocta

floating can be

considered for the respective Nform routines.

• The ∈cubocta
floating (and all other cuboctahedra) shall be hollow, made of unit

mass and unit volume, such that, if one ∈cubocta
floating is solitarily dropped in

water, it shall float while having exactly 10% of its volume immersed.

• However, if more ∈cubocta
floating or ∈cube-cubocta

floating are added (by the virtue of

any of the 6 Ψ entities) the resultant array of ∈multi shall never have more than

20% of the collective volume of the ∈cube-cubocta
floating immersed in the water.

• In case the volume of ∈cubocta
floating or ∈cube-cubocta

floating immersed in the water

is more than 20%, more or ∈cube-cubocta
floating shall be added to the Ncube-

cubocta
floating by means of the Nform routine.

Albeit the above assumptions, the hypothesis for the morphology of a cuboctahedron

established for the CEcube-cubocta-tower (in 4.3.2), shall also be assumed in case of the

CEcube-cubocta-floating-tower. Thus, for a cuboctahedron with radius Rcubocta and perfectly

bound inside a cube with radius Rcube, the following are true –

Rcubocta = √2 Rcube ; Vcubocta = 5Vcube ; where, Vcubocta is volume of 1 cuboctahedron

 √3 6 bound inside a cube with volume Vcube.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |224

Thus, considering the aforementioned assumptions, an array of n∈cubocta
tower (n

number of ∈cubocta
tower elements) will always require 5n/6 ∈cube

floating to make sure

that the CEcube-cubocta-floating-tower floats in such a way that no more than 20% of the

collective volume of the ∈cubocta
floating is immersed in the water. Moreover, since the

∈cube
tower and the ∈cubocta

tower are morphologically same, the CEcube-cubocta-floating-tower

will basically be populating hollow cuboctahedra both vertically (to make a tower

while following the Ψtower
cubocta) and horizontally (to ensure the tower floats while

following the Ψfloating
cubocta). Thus fig. 4.40 below exemplifies a ∈multi

initial array, and

documents its implementation of the assumptions made for the Ψfloating
cubocta above.

Figure 4.40 – Example implementation of Ψtower
cubocta followed by Ψfloating

cubocta for the runtime

of a CEcube-cubocta-floating-tower with 4 ∈multi
initial. Model and Illustration by Author (October 2019).

As illustrated above, at ttick_0 interval array of five ∈multi
initial elements employs a Ψtower

and spawns four more ∈cubocta
tower at the ttick_1 interval thus making a total of nine

∈multi
initial elements. Without the implementation of the Ψfloating at the ttick_1 interval,

the CE would still float, albeit with 22.5% immersion of its ∈multi
initial elements. This is

barred as per the assumptions, and thus, at ttick_2 interval, one new ∈cubocta
floating is

spawned which ensures 18% immersion of the ∈multi
initial and the ∈cubocta

floating

elements. At ttick_3 interval, four more ∈cubocta
tower are spawned, thus making a total

of fourteen ∈multi
initial elements. With no new ∈cubocta

floating elements, the CE would

still float, but now with 26% immersion of its ∈multi
initial elements. This is still barred,

and thus, at ttick_4 interval, two new ∈cubocta
floating are spawned which ensure 18.5%

immersion. As the CE reaches its endredundant condition, the CEcube-cubocta-floating-tower is

returned.

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 225|

Similar to the consideration of the Ψfloating-tower rulesets for the CEcube-floating-tower, the

above assumptions will be considered as the Ψfloating-tower
cubocta rule sets, as the

assumptions examine the results of the Ψtower
cubocta rule and then direct the

Ψfloating
cubocta, thus serving as a prioritizing junction. Ψfloating-tower

cubocta rule set also

serves as a time buffer, as it halts to compute how many ∈cubocta
floating are required to

be spawned. Similar to its previous applications for the CEcube-cubocta-tower and the

CEcube-floating-tower, the state conditions of the amalgam - CEcube-cubocta-floating-tower will

also be determined by employing the Conway Model of CA (refer 2.3.2). Thus,

considering the CEMESE and the CESEME as precedence, and deriving from the Conway

Model, the state conditions for the CEcube-cubocta-floating-tower can be established as –

• Every existing ∈multi-n+1 at the ttick-n+1 interval interacts with its N consideration

of either the ∈cube-n (as Ncube-n) or ∈cubocta-n (as Ncubocta-n) at the ttick-n interval,

thus performing Ncheck. For the ttick-n+1 interval, it then performs the Nform

routine as part of the Ψtower
cube, Ψtower

cubocta, and Ψtower
cube-cubocta based on the

following conditions –

o If the N is Ncube-n with an array of two or three ∈multi at the ttick-n

interval, the Nform spawns a ∈cube-n+1 for the ttick-n+1 interval.

o Also, for the Ncubocta-n with an array of two or three ∈multi at the ttick-n

interval, the Nform spawns a ∈cubocta-n+1 for the ttick-n+1 interval.

• Every non-existing ∈multi-n+1 at the ttick-n+1 interval interacts with its Ncube-cubocta

at the ttick-n interval, thus performing Ncheck. For the ttick-n+1 interval, it then

performs the Nform as part of the Ψtower
cube, Ψtower

cubocta, and Ψtower
cube-cubocta

based on the following conditions –

o With an array of four ∈multi in its Ncube-cubocta at the ttick-n interval, the

Nform spawns a ∈cubocta-n+1 for the ttick-n+1 interval.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |226

o With an array of three ∈cube or four ∈cubocta in its Ncube-cubocta at the ttick-

n interval, the Nform spawns a ∈cubocta-n+1 for the ttick-n+1 interval.

• For every other condition of Ncheck at the ttick-n interval, as part of the

Ψtower
cube, Ψtower

cubocta, and Ψtower
cube-cubocta, the Nform culls all the existing or

non-existing ∈multi for the ttick-n+1 interval.

• At every ttick-n+1 interval, as part of the Ψfloating-tower
cube, Ψfloating-tower

cubocta, and

Ψfloating-tower
cube-cubocta, the cardinality of ∈cube-n

tower elements that are newly

spawned and those that are not culled is measured, and the total number of

new elements n∈multi-n+1
floating elements is determined by –

o Reducing the cardinality of the ∈cube-n
tower elements in the ttick-n

interval from the cardinality of the ∈cube-n
tower elements in the ttick-n+1

interval. This determines the n∈cube-n+1
floating elements.

o Reducing the cardinality of the ∈cubocta-n
tower elements in the ttick-n

interval from that of the ∈cubocta-n
tower elements in the ttick-n+1 interval

and determining two-third of the result thus obtained. This

determines the n∈cubocta-n+1
floating elements.

• Every ∈cube-n+1
floating

 at the ttick-n+1 interval interacts with the Ncube
floating of its

preceding ∈cube-n
floating at the ttick-n interval, thus performing Ncube

floating-check.

For the ttick-n+1 interval, it then performs the Nform routine based on the

following conditions as part of the Ψfloating
cube, and Ψfloating

cube-cubocta, until the

required n∈cube-n+1
floating elements is met –

o Any non-existing (culled) ∈cube-n
floating with no existing ∈cube-n

floating in its

Ncube
floating is spawned for the ttick-n+1 interval, as if it was being

perfectly supported by its counterparts on the edge of the cube, thus

leaving the faces open for access.

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 227|

o Any non-existing (culled) or existing (spawned) ∈cube-n
floating with any

number of existing ∈cube-n
floating in its Ncube

floating remains culled or is

culled for the ttick-n+1 interval, as if it was blocking access, and thus

would not sufficiently provide buoyancy.

• Every ∈cubocta-n+1
floating

 at the ttick-n+1 interval interacts with the Ncubocta
floating of

its preceding ∈cube-n
floating at the ttick-n interval, thus performing distinct

Ncubocta
floating-check. For the ttick-n+1 interval, it then performs the Nform routine

based on the following conditions as the Ψfloating
cubocta, and Ψfloating

cube-cubocta,

until the required n∈cubocta-n+1
floating elements is met –

o Any non-existing (culled) ∈cubocta-n
floating with one existing ∈cubocta-

n
floating in its Ncubocta

floating or 1 existing ∈cube-cubocta-n
floating in its Ncube-

cubocta
floating but not both, is spawned for the ttick-n+1 interval, as if it was

being perfectly supported by its counterparts on the edge of the cube,

thus leaving the faces open for access.

o Any non-existing (culled) or existing (spawned) ∈cube-n
floating with any

other number of existing ∈cubocta-n
floating or ∈cube-cubocta-n

floating in its

Ncubocta
floating or Ncube-cubocta

floating remains culled or is culled for the next

ttick-n+1 interval, as if it was blocking access, and thus would not

sufficiently provide buoyancy.

At ttick-n interval the CE perfroms the Ψtower
cube, Ψtower

cubocta, and Ψtower
cube-cubocta state

conditions in unison, and at the ttick-n+1 interval, it performs the Ψfloating-tower
cube,

Ψfloating-tower
cubocta, and Ψfloating-tower

cube-cubocta to determine the n∈cube-n+1
floating and

n∈cubocta-n+1
floating elements, after which it activates the Ψfloating

cube, Ψfloating
cubocta, and

Ψfloating
cube-cubocta, until the required n∈multi-n+1

floating elements is met, after which the

CE is returned to the user as an iteration. Contrary to the previous taxa, the

construction of the CEcube-cubocta-floating-tower is much more complex, and has a wide

range of Ψspawn and Ψspawn conditions, and thus can’t be illustrated categorically.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |228

4.5.3 Prototyping

The state conditions in terms of the Ncheck and the Nform routines of all the Ψ entities

that determine all the distinct Stack operations for all the ∈multi array (and the

individual ∈cube array, ∈cubocta array, and ∈cube-cubocta array) have been sufficiently

documented. Although, owing to the multiplicity of the ∈ and the Ψ parameters, the

illustrations for all the possible Ψspawn and Ψcull situations have not been

demonstrated. However, similar to the computational logic of the CEcube-cubocta-tower

and the CEcube-floating-tower, the CEcube-cubocta-floating-tower serving as an amalgam of the

two, can have generalized stack conditions as summarized below –

• As part of the distinct Ψtower – If the cardinality of the Ncube
tower consideration

for an existing ∈multi
tower is equal to two or three, the ∈cube

tower survives (i.e.

not culled). If the cardinality is otherwise, the ∈cube
tower does not survive (i.e.

culled). And if the cardinality of the Ncube
tower consideration for a non-existing

∈multi
tower is equal to four, the ∈cubocta

tower is created (i.e. spawned). If the

cardinality is otherwise, the ∈multi
tower is not created (i.e. not spawned).

• As part of the distinct Ψfloating-tower – Thereafter, at every tick the cardinality

of the ∈multi
tower is checked, and based on the assumptions for the Ψfloating-tower

the n∈multi
floating is distinctly determined and used for the Ψfloating.

• As part of the Ψfloating – If the cardinality of the Nmulti
floating consideration for a

non-existing ∈multi
floating is equal to 0, the ∈cube

floating is created (i.e. spawned).

If the cardinality of the Nmulti
floating consideration for a non-existing ∈multi

floating

is equal to 1, the ∈cubocta
floating is created (i.e. spawned). if the cardinality is

otherwise, ∈multi
floating is not created (i.e. not spawned).

As a natural progression, UML Sequence Diagram needs to be established to

prototype the CEMEME. Fig. 4.41 and fig. 4.42, thus jointly illustrate UML Sequence

diagram that determines the outcome of several different CEcube-cubocta-floating-tower.

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 229|

Figure 4.41 – The UML Sequence Diagram for a CEcube-cubocta-floating-tower with the role,

interaction and runtime of all the ∈ entities and Ψ entities, and their dependencies for the Early

Rest condition. Illustration and graphics by Author (November 2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |230

Figure 4.42 – The UML Sequence Diagram for a CEcube-cubocta-floating-tower with the role,

interaction and runtime of all the ∈ entities and Ψ entities, and their dependencies for the Final

Rest condition. Illustration and graphics by Author (November 2019).

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 231|

As the CEcube-cubocta-floating-tower serves as a conceptual amalgam of the CEcube-cubocta-tower,

and the CEcube-floating-tower, all the aforementioned state conditions are supported by

the entire series of procedural sequences (with case studies, simulation and

prototyping) performed on the previous taxa, and thus need not be tested again.

However, regarding the new state conditions pertaining to the Ψfloating entities, and

the complexities generated by the multiplicity of both the ∈ and the Ψ parameters is

unprecedented in the previous procedural sequences of this research and thus

necessitates rigorous evaluation, testing, prototyping and versioning if required.

Moreover, it has been observed in the previous taxa (particularly in 4.4.4) that the

symbiotic relation sought between the built form and the algorithm (and thus

generated, maintained and taxonomized by means of all the CE that this thesis has

demonstrated so far), has only been rigorously tested by means Computational

Design, and not yet been empirically tested by means of Digital Fabrication. Thus,

the prototyping of this taxon seeks to fulfill this objective by conducting a workshop

that focuses on digital fabrication by means of additive manufacturing. Due to the

ease of operation, readily available resources and absolute repeatability of iterations,

FDM (Fused Deposition Modelling) printing has been considered as the chosen means

of additive manufacturing.

Moreover, the CEMEME is perfectly suited to be evaluated by means of fabrication

owing to the presence of the multiplicities of both the ∈ and the Ψ parameters.

Although effective 3D printability by means of FDM printing machines can also be

considered as an interdependent Ψ parameter, such an entity (as it relies heavily on

the type of printer and the material used for printing) was ignored at this stage.

However, the concept of a floating tower in the form of the CEcube-cubocta-floating-tower

could be directly considered for prototyping in a manner that the test confirms if the

outcome survives several floors of stacked material while being able to float on

water. Although, the built form cannot be constructed while the algorithm performs

the computation (sadly, the kind of machinery isn’t available as yet!), a 3D printed

prototype could be evaluated for its performance as a floating tower.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |232

To perform the evaluations in a didactic format, the author conducted a workshop

which aimed at prototyping the CEMEME (in the form of the CEcube-cubocta-floating-tower) by

performing computational simulations to test, evaluate, taxonomize and if required,

amend and update the CE. The workshop, titled as ‘Digital Fabrication Workshop’

was conducted in December 2019 at IES (Indian Education Society’s) College of

Architecture in Mumbai, India. It was attended by 10 candidates – 4 candidates

practicing architecture in the AEC Industry in Mumbai, India and 6 candidates

pursuing the B.Arch. degree (students of the 7th and 9th semesters).

For the testing, participants were first introduced to the concept of Computational

Ecosystems and its research, and were provided with a lecture on Cellular Automata

and its implementation in the research. Further, the participants were demonstrated

with several results that were obtained in the previous iterations of similar

workshops (i.e. the Designing ways of designing workshop conducted at IES,

Mumbai – as elaborated in 4.2.3, and the Computation as a Design tool workshop

conducted at RIT, Kottayam – as elaborated in 4.3.3).As the participants were not

well versed with using any computational design software, they were tutored on

using different tools and functionalities with Rhino 7 and Grasshopper 3D that were

relevant to the research on Computational Ecosystems. The participants were also

encouraged to test the already established CEcube-tower, CEcube-cubocta-tower, and CEcube-

floating-tower before explicitly evaluating the CEcube-cubocta-floating-tower. Moreover, the

participants were not particularly well versed in using FDM printers as a digital

fabrication tool. Since the outcomes of the CEcube-cubocta-floating-tower were to be

prototyped on an FDM Printer of the make – Creality Ender 3 Pro140 using PLA (Poly

Lactic Acid – commonly used filament based 3D printing material) plastic, the

participants were tutored on using different tools related to modelling 3D printable

geometry, slicing 3D printing tool paths, handling a 3D printer for accurate and

effective 3d prints and finally cleaning and post processing a 3D print.

140 Ender 3 Pro (2018). Shenzen, PRC: Shenzhen Creality 3D Technology Co, Ltd.

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 233|

After establishing and upgrading their computational skills to a considerable level,

the participants were individually tasked with testing the CEcube-cubocta-floating-tower.

Although they were asked to test the algorithm with ∈multi
initial Array of 10 to 12, the

participants were encouraged to experiment with higher number of ∈multi
initial Array.

After the successful trials of the, fig. 4.43 illustrates the computational outcome of

one of the tallest CEcube-cubocta-floating-tower with 15 ∈multi
initial that was generated during

the ‘Digital Fabrication Workshop’. The figure shows the initial state denoted by ◼

colored cube (R,G,B – 129,129,129), the rest of the ∈multi
tower denoted by ◼ (R,G,B –

204,204,204) colored cube, and the ∈multi
floating denoted by ◼ (R,G,B – 207,235,255).

Figure 4.43 – Computational Design Prototype of a selected CEcube-cubocta-floating-tower with 15

∈cube
initial that had a runtime of 16 ttick before reaching the rest state. Model, algorithm,

Illustration, and graphics, by Author (December, 2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |234

Whereas, fig. 4.44 shown below illustrates the outcome in the form of Digital

Fabrication of the CEcube-cubocta-floating-tower demonstrated in its computational form in

fig. 4.43 with 15 ∈multi
initial generated during the ‘Digital Fabrication Workshop’. The

digitally fabricated version photographed below has been considerably tweaked to

convert edge conditions of ∈cube and ∈cubocta into 3D printable chords. However, care

has been taken to keep the morphology intact.

Figure 4.44 – Digital Fabrication Prototype of the selected CEcube-cubocta-floating-tower with 15

∈cube
initial that had a runtime of 16 ttick before reaching the rest state. Model, algorithm,

Illustration, graphics, and photograph by Author (December, 2019).

Architecture of Computational Ecosystems

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 235|

4.5.4 CEMEME

Similar to the previous taxa (as explained in 4.2.4, 4.3.4 and 4.4.4), fig. 4.43 and fig.

4.44 sufficiently demonstrate the prototyping of the CEcube-cubocta-floating-tower, however,

more outcomes focusing on the taxonomy creation have been illustrated in the next

chapter (5| On the consequences of Computational Ecosystems) with further analysis

comparing all the other taxa from the procedural sequences in chapter 6 (On the

investigative analysis of Computational Ecosystems). However, as the CEMEME serves

as an amalgamation of the CEMESE and the CESEME, the amendments made in its

methodology should be addressed as the following –

• The multiplicity of both the ∈ and the Ψ parameters has dictated the CEMEME

to considerably simulate real-life built form, thus further moving away from

the highly computational resemblance to the outcomes of 3D CA.

• Expanding on the previously assumed parameters for the different

environments to multiple agents, the CEMEME also demonstrates how a CE

with higher complexity can be molded and programmed into performing the

desired architectural intent.

• The introduction of the digital fabrication in prototyping by means of the

successful results of the Digital Fabrication Workshop (more results in 5.4)

provides a direct link in the workflow of Computational Design being used in

unison with Digital Fabrication to form a CE that in turn serves as a link

between the built form and the algorithm (thereby bypassing design).

Thus, the CEMEME quite adequately handles the maximum complexity that could come

out of the multiplicity in the distinct ∈ and Ψ entities (as long as the example scenario

is followed). Although quite distinct and complex compared to the previous taxa,

after methodically following the procedural sequences, similar outcomes could be

generated.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |236

4.6 Procedural sequences for Computational Ecosystems

All the four taxa - CESESE, CEMESE, CESEME, and CEMEME which were explicitly theorized,

taxonomized, evaluated and fabricated as explained thus far, have undergone the

primary objectives – Case studies, Simulations, and Prototyping in this chapter.

Although each taxon has had a slightly modified, bespoke version for the entire

methodology, following are the key methodological milestones in the Architecture of

Computational Ecosystems so far –

• Case Studies – Documenting similar ecosystems (preferably observed in

nature) with participating agents governed by simple rules that could be

simulated computationally.

• Analogical Assessment – Identifying exact and precise analogies in terms of

the ∈ and Ψ parameters between the case study and the desired CE. Also,

identifying the taxon that the CE falls in (CESESE, CEMESE, CESEME, or CEMEME).

• UML Class Diagram – Establishing UML Class diagram for all the identified ∈

and Ψ parameters, and their specific morphological parameters, considering

which will be user determined and which will be context dependent.

• CA Identification – Assessing all the different classes determined in the UML

Class Diagram and identifying the appropriate CA model that could be

relevant to perform the CE.

• ∈ and Ψ entities – Setting up Neighbourhood Conditions for all the specific ∈

entities and State Conditions for all the distinct Ψ entities identified in the

UML Class diagram. A detailed illustration providing the various Ψspawn and

Ψcull conditions for specific Ncheck and Nform routines is particularly helpful.

Architecture of Computational Ecosystems

| 4.6 Procedural sequences for Computational Ecosystems 237|

• UML Sequence Diagram - Establishing UML Sequence diagram for the distinct

∈ and Ψ entities determining their distinct roles, interactions and runtimes as

compared to the sequence of the entire CE. Here, the role, interaction and

runtime of the user and the introduction of possible partial intermediate CE

can also be elaborated.

• Computational Prototyping – Simulating all possible initial conditions with a

lower number of initial ∈ entities but for the entire runtime and rest states of

the CE. Here, several iterations are spontaneously generated and can be used

to offer an initial evaluation of the CE.

• Computational Evaluation – Evaluating the CE with 3rd party testers (in case

of the research, this objective was achieved by conducting several workshops

as mentioned previously) for bugs, redundancies and code compliances. A

versioning of the CE could also be done at this stage of required.

• Production Evaluation – Eventually perform digital fabrication by means of

predetermined production technique thereby testing the CE as a feedback

loop between the Built form and the Algorithm.

Although the above stated methodological milestones are crucial in establishing any

CE, the above list is not exhaustive and several more steps can be appended or

removed as required by the user.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

4| On the procedural sequences for the Computational Ecosystems |238

Results

Architecture of Computational Ecosystems

| 4.6 Procedural sequences for Computational Ecosystems 239|

5| On the consequences of the Computational
Ecosystems

Just like the previous chapter that defines, exemplifies and illustrates the procedural

sequences for all the taxa by focusing on the methodology of this research, this

chapter explicitly illustrates the different outcomes of the all the taxa by focusing on

the results of this research. The structure of the thesis (refer 1.3.2), specifically choses

to combine the methodology, results and discussions for all the taxa into separate

chapters rather than dealing with separated methodologies, results and discussions

per taxon. The decision comes with the following advantages –

• In this way, the methodologies, results and discussions can share the common

semantics across taxa, without having to repeat the concepts several times.

• Apart from reducing redundancies, this also showcases the intuitive thought

processes and computational decisions that were taken before establishing

each taxon, as the complexity progresses.

• Moreover, when all the taxa are combined together, especially in the results

and discussion sections, the outcomes and analysis for each taxon can be

done comparatively while understanding the benefits of one over the other

in a systematic manner.

• Finally, it serves as an analogy to the timeline adopted at the beginning of the

research, where in the operational objectives of the research, all the taxa

were theorized, taxonomized and prototyped simultaneously.

Apart from showcasing the results, which are absolutely graphical in nature, this

chapter also introduces some folksonomies (user tagging system as explained in

3.2.1) that are associated to all the specific iterations for each of the predetermined

4 taxa – CESESE, CEMESE, CESEME, and CEMEME.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

5| On the consequences of the Computational Ecosystems |240

5.1 Results of CESESE

As the prototypical results of a CEcube-tower have already been illustrated in fig. 4.11

and fig. 4.12, the following fig. 5.1 and fig. 5.2 illustrate a few selected iterations of a

CEcube-tower with 12 ∈cube
initial . As described previously, the figure shows the initial

state denoted by ◼ colored cube (R,G,B – 129,129,129), and the rest of the ∈cube in

the CEcube-tower thus denoted by ◼ (R,G,B – 204,204,204) colored cube.

Figure 5.1 – Selected iterations of CEcube-tower with 15 ∈cube
initial with varying runtimes until

individual rest state are reached. Model, algorithm, Illustration and graphics by Author (June

2018).

Architecture of Computational Ecosystems

| 5.1 Results of CESESE 241|

Figure 5.2 – Selected iterations of CEcube-tower with 15 ∈cube
initial with varying runtimes until

individual rest state are reached. Model, algorithm, Illustration and graphics by Author (June

2018).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

5| On the consequences of the Computational Ecosystems |242

The 6 iterations of CEcube-tower illustrated in fig. 5.1 and fig. 5.2 clearly demonstrate

how the different ∈cube
initial conditions affect the morphology of the CEcube-tower. Here,

all the CEcube-tower begin with 15 ∈cube when the designer initiates the algorithm

however, depending on the Ncheck and Nform routines, and influenced by CEcube-tower

rest conditions, they terminate in a wide range of shapes. Following are some

observations for all the individual CEcube-tower illustrated in fig. 5.1 and fig. 5.2 –

• CEcube-tower 15-8 – With 100 ∈cube, this CEcube-tower halts at the 8th level due to the

endredundancy condition. As it has a balanced combination of regular and

irregular assemblages, it can be #hospitality or #commercial architecture.

• CEcube-tower 15-12 – With 165 ∈cube, this CEcube-tower halts at the 12th level due to

the endcull condition. Because of some highly ordered assemblages, it can be

used as a #mixed-use building for #residential and #commercial architecture.

• CEcube-tower 15-7 – With 46 ∈cube, this CEcube-tower halts at the 7th level due to the

endcull condition. Due to the availability of a stark contrast in volumes it is

ideal for #hospitality, #healthcare or #educational architecture.

• CEcube-tower 15-4 – With a mere 29 ∈cube, this CEcube-tower manages only to rise up

to 4 levels before it is halted by the algorithm owing to the endredundancy

condition. It can hardly be of any use in any architectural application.

• CEcube-tower 15-24 – With 259 ∈cube, this CEcube-tower halts at the 24th level as it

reaches the endcull condition. Due to its decent height and a good proportion

of irregular ∈cube stacking, it is ideal for #high-density #residential towers.

• CEcube-tower 15-24 – The tallest in this selection with a whopping 507 ∈cube, it halts

at the 36th level due to the endredundancy condition. Owing to its considerable

height and some highly ordered assemblages, it can also be used as a #mixed-

use building for #residential and #commercial architecture.

Architecture of Computational Ecosystems

| 5.2 Results of CEMESE 243|

5.2 Results of CEMESE

As the prototypical results of a CEcube-cubocta-tower have already been illustrated in fig.

4.24 and fig. 4.25, the following fig. 5.3 and fig. 5.4 illustrate a few selected iterations

of several CEcube-cubocta-tower with 15 ∈multi
initial . As described previously, the figure

shows the initial state denoted by ◼ colored cube (R,G,B – 129,129,129), and the rest

of the tower thus denoted by ◼ (R,G,B – 204,204,204) colored cube.

Figure 5.3 – Selected iterations of CEcube-cubocta-tower with 15 ∈cube
initial with varying runtimes until

individual rest state are reached. Model, algorithm, Illustration and graphics by Author (July

2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

5| On the consequences of the Computational Ecosystems |244

Figure 5.4 – Selected iterations of CEcube-cubocta-tower with 15 ∈cube
initial with varying runtimes until

individual rest state are reached. Model, algorithm, Illustration and graphics by Author (July

2019).

Architecture of Computational Ecosystems

| 5.2 Results of CEMESE 245|

The 5 iterations of CEcube-cubocta-tower illustrated in fig. 5.3 and fig. 5.4 demonstrate how

the different ∈cube
initial conditions affect the morphology of the CEcube-cubocta-tower.

Here, all the CEcube-cubocta-tower begin with 15 ∈cube when the designer initiates the

algorithm however, depending on the Ncheck and Nform routines, and influenced by the

CEcube-cubocta-tower rest conditions, they terminate in varied shapes. Following are some

observations for all the individual CEcube-cubocta-tower illustrated in fig. 5.3 and fig. 5.4 –

• CEcube-cubocta-tower
15-17 – With 143 ∈multi, this CEcube-cubocta-tower halts at the 17th

level due to the endcull condition. Owing to a bulk of aggregation until the 8th

level, and an isolated tower, this CEcube-cubocta-tower could be implemented as a

#mixed-use building for #residential and #commercial architecture.

• CEcube-cubocta-tower
15-21 – With 170 ∈multi, this CEcube-tower halts at the 21st level

due to the endredundant condition. Because of some ordered assemblages, it

can be a #mixed-use building for #residential and #commercial architecture.

• CEcube-cubocta-tower
15-17 – With 133 ∈multi, this CEcube-cubocta-tower halts at the 17th

level due to the endredundant condition. Owing to its slender verticality after the

6th level and the availability of a lot of open space on the 6th level, this CE could

be implemented as an #Urban #Hotel architecture.

• CEcube-cubocta-tower
15-46 – The tallest in this selection with 377 ∈multi, it halts at the

46th level due to the endredundant condition. Owing to its considerable height

and some highly ordered assemblages, it can also be used as a #mixed-use

tower for #residential, #commercial and #hospitality architecture.

• CEcube-cubocta-tower
 15-33 – Another example of vertical growth, this tower with

329 ∈multi, halts at the 33rd level due to the endcull condition. Owing to its

decent height and a healthy blend of the ∈multi and ∈multi entities while

retaining enough built form, this CEcube-cubocta-tower can be very effectively used

as a #mixed-use tower for #residential, #commercial and #hospitality.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

5| On the consequences of the Computational Ecosystems |246

5.3 Results of CESEME

As the prototypical results of a CEcube-floating-tower have already been illustrated in fig.

4.36 and fig. 4.37, the following fig. 5.5 and 5.6 illustrate a few selected iterations of

several CEcube-floating-tower with 15 ∈multi
initial . The figure shows the initial state denoted

by ◼ (R,G,B – 129,129,129), the rest of the ∈cube
tower denoted by ◼ (R,G,B –

204,204,204) colored cube, and the ∈cube
floating denoted by ◼ (R,G,B – 207,235,255).

Figure 5.5 – Selected iterations of CEcube-floating-tower with 15 ∈cube
initial with varying runtimes until

individual rest state are reached. Model, algorithm, Illustration and graphics by Author (July

2019).

Architecture of Computational Ecosystems

| 5.3 Results of CESEME 247|

Figure 5.6 – Selected iterations of CEcube-floating-tower with 15 ∈cube
initial with varying runtimes until

individual rest state are reached. Model, algorithm, Illustration and graphics by Author (July

2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

5| On the consequences of the Computational Ecosystems |248

The 5 iterations of CEcube-floating-tower illustrated in fig. 5.5 and fig. 5.6 demonstrate how

the different ∈multi
initial conditions affect the morphology of the CEcube-floating-tower.

Here, all the CEcube-floating-tower begin with 15 ∈multi
initial when the designer initiates the

algorithm, however, depending on the Ncheck and Nform routines, and influenced by

the CEcube-floating-tower rest conditions, they terminate in a wide range of shapes.

Following are some observations for all the CE illustrated in fig. 5.5 and fig. 5.6 –

• CEcube-floating-tower
15-7 – With 46 ∈cube

tower and 34 ∈cube
floating this CEcube-floating-tower

halts at the 7th level due to the endcull condition. And to counter the weight of

the 46 ∈cube
tower elements it spawns 19 additional ∈cube

floating elements to keep

the tower afloat. Owing to a large open foreground that could serve as a

docking station, this CEcube-cubocta-tower with a very organized and contained

tower could be treated as a #healthcare or #research facility.

• CEcube-floating-tower
15-24 – With an organized distribution of 259 ∈cube

tower

elements forming the tower, and 246 ∈cube
floating elements as part of the

floating raft, this CEcube-floating-tower rises up to 24 levels after halting due to the

endcull condition. The additional ∈cube
floating elements that it spawns are evenly

distributed on all the sides of the tower. Because of several segregated

assemblages, this CEcube-cubocta-tower could serve as several #residential towers.

• CEcube-floating-tower
15-39 – With a whopping 520 ∈cube

tower elements in the tower

and an additionally spawned 389 ∈cube
floating elements, this CEcube-floating-tower

halts at the 39th level due to the endredundant condition. This CEcube-cubocta-tower

has an uncommon combination of assemblages that can trifurcate the entire

tower. The bulky but organized base can be concentrated with #commercial

activity. The central part branches into the tower and open space, where the

tower can be #residential or #offices, and the open space can serve as an

#elevated #park. Also, the raft has a unique assemblage that allows a lot of

interesting niches that could be used to accommodate a plenty of #public and

#infrastructural activities.

Architecture of Computational Ecosystems

| 5.4 Results of CEMEME 249|

5.4 Results of CEMEME

As the prototypical results of a CEcube-cubocta-floating-tower have already been illustrated

in fig. 4.43 and fig. 4.44, the following fig. 5.7 and 5.8 illustrate selected iterations of

the CEcube-cubocta-floating-tower with 15 ∈multi
initial . The figure shows the initial state

denoted by ◼ (R,G,B – 129,129,129), the rest of the ∈multi
tower denoted by ◼ (R,G,B –

204,204,204), and the ∈multi
floating denoted by ◼ (R,G,B – 207,235,255).

Figure 5.7 – Process of selected CEcube-cubocta-floating-tower with 15 ∈multi
initial being transformed for

Digital Fabrication. Model, algorithm, Illustration and Photograph by Author (December 2019).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

5| On the consequences of the Computational Ecosystems |250

Figure 5.8 – Selected 3D printed iteration of CEcube-cubocta-floating-tower with 15 ∈multi
initial until

individual rest state is reached. Model, algorithm, Illustration and graphics by Author

(December 2019).

Architecture of Computational Ecosystems

| 5.4 Results of CEMEME 251|

The iterations of CEcube-cubocta-floating-tower illustrated in fig. 5.7 and 5.8 demonstrate

how the different ∈multi
initial conditions affect the morphology of the CE. Both the CE

begin with 15 ∈multi
initial when the designer initiates the algorithm, but depending on

the Ncheck and Nform routines, and influenced by the CEcube-cubocta-floating-tower rest

conditions, they terminate into different results. Apart from illustrating the

outcomes, however, fig. 5.7 elaborates the process of transforming an existing,

performing and completed CE into a 3D-printable object in order to perform the

evaluations in real-physical environments. The steps taken for the entire process are

elaborated as following –

• Step 1 – Computational Simulations – Here, the finished result at the Final

End Condition (or Early End Condition, although the former is preferred) of

the CE is outputted and assimilated with all its specific components.

• Step 2 – Topology Voxelization – Here, all the ∈multi are considered merely as

points (centered on the individual ∈multi agents). These points are then

processed into forming voxels (3D pixels) by making sure that each voxel

replicates the surface area of the original ∈multi agent.

• Step 3 – Volume Optimization – In this step the voxelization is further reduced

to form optimum structures while making sure that ratio of the volume to

bottom surface of are of the entire CE remains the same.

• Step 4 – Digital fabrication – After converting the volume optimization into a

3D printer tool path (G-code), the finished print is weighed, and evaluated.

Like in the case of a CEcube-cubocta-floating-tower it is tested to ensure vertical

spanning strength (by FDM printing without supports) and buoyancy (by

dropping the print in water and checking its immersion percentage).

These four steps have also been used for the result shown in fig. 5.8, and any other

prototype of CEcube-cubocta-floating-tower that would be done.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

5| On the consequences of the Computational Ecosystems |252

5.5 Conclusive thoughts on the results of all the taxa

Having illustrated some selected results for the prototyped executions of all the four

taxa thus far, the research thus concludes the execution of the procedural sequences

in performing the primary objectives for the CESESE, CEMESE, CESEME, and CEMEME. The

chapter in this thesis also concludes the illustration of outcomes for the selected

initial conditions.

Fig. 5.1 to fig. 5.8 help in illustrating some of the key findings in all the taxa, which

will be elaborated upon by comparing the results across taxa in the next chapter (as

in 6| On the investigative analysis of the Computational Ecosystems). These findings

can be defined as the following:

• Different morphologies of the outcomes are governed by the following

factors –

o The ∈ entities – Naturally, the physical properties and the various

assemblages of the ∈ entities (either biotic, or abiotic, or both).

o The Ψ entities – The distinct rule sets which in turn dictate the state

conditions in the form of the Ψ entities (both distinct and symbiotic).

o The Neighbourhood (N) – One of the very important aspects of the

computational environment which is the N condition for each ∈ and

Ψ.

o The Initial State – By far the most divisive parameter, which is capable

of generating various iterations within a predetermined taxon with all

the above parameters (∈, Ψ, and N) unchanged.

Architecture of Computational Ecosystems

| 5.5 Conclusive thoughts on the results of all the taxa 253|

• Depending on the predetermined ∈ and Ψ entities, a CE can be drastically

varied to accommodate the purpose by varying the multiplicity of one or both

of the ∈ and Ψ entities.

• Moreover, although one of the ∈ and Ψ entities is singular, the multiplicity of

the latter will amount to a certain degree of multiplicity in the former.

• The ∈ entities are semantically capable of being variable parameters for a

wide range of agents such as geometries, topologies, and organisms as

demonstrated in the example scenarios.

• The Ψ entities are semantically capable of being variable parameters for a

wide range of functions such as structural assemblages, geological conditions,

and even fabrication constraints as demonstrated in the example scenarios.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

5| On the consequences of the Computational Ecosystems |254

Observations

Architecture of Computational Ecosystems

| 5.5 Conclusive thoughts on the results of all the taxa 255|

6| On the investigative analysis of the
Computational Ecosystems

Having theorized, simulated, taxonomized, versioned, and prototyped the proof of

concept for all the four taxa – CESESE, CEMESE, CESEME, and CEMEME, the thesis can now

elaborate upon the specific inferences generated by comparing all the outcomes and

results of these four taxa against each other. It can now also be discussed how these

inferences can be implemented in developing several more CE (conforming to either

of the four taxa theoretically and semantically).

Thus, for the ease of comprehension this chapter (which serves as a conclusive end

to all the possibilities within the four taxa, before diving into the conclusions and

projections for CE) elaborates upon the similarities and differences across the four

taxa under two different conditions of variability which can be described as –

• By considering the same initial state for different ∈, Ψ, and N – Comparing

the results for the same initial state while ∈, Ψ, and N vary as per

considerations of distinct taxa.

• By considering different initial states for the same ∈, Ψ, and N – Comparing

the results for different initials state while ∈, Ψ, and N are considered for the

already established CEMEME – CEcube-cubocta-floating-tower.

Moreover, this chapter shows how CE (built on the computational framework of CA)

could perform as a dynamic, reciprocal, symbiotic feedback loop while having

A built form that was constructed, monitored and governed by an autonomous,

unbiased algorithm

and an algorithm that was dynamically constructed, monitored and governed by

the built form.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

6| On the investigative analysis of the Computational Ecosystems |256

6.1 Effects of distinct ∈, Ψ, and N

This thesis has already illustrated several selected CE for the example scenarios

developed as part of the procedural sequences for all the four distinct taxa (chapters

4| and 5|). However, the results of these specific initial states were chosen for their

distinct outcomes which were demonstrating possibilities to be implemented in a

varied range of architectural typologies. Some, of these outcomes were also

specifically chosen to demonstrate specific physical properties such as the tallest

towers, towers with maximum number of ∈multi, or CE with specific assemblages

useful for specific architectural typologies.

A comparative analysis of different CE with distinct ∈, Ψ, and N considerations for

the same initial states, however, has not been performed yet, and this section

elaborates on the same. Fig. 6.1 shown alongside, illustrates the construction of four

CE – CEcube-tower (as the CESESE), CEcube-cubocta-tower (as the CEMESE), CEcube-floating-tower (as the

CESEME) , and CEcube-cubocta-floating-tower (as the CEMEME) initiated with the same initial

state with 15 ∈multi
initial. Although semantically speaking, not all the taxa can share the

same initial state due to the multiplicity of the ∈, Ψ, and N considerations. However,

the CESESE, and CESEME (due to their ∈ entity singularity) could have the same ∈multi
initial

conditions. Similarly, the CEMESE, and CEMEME (due to their ∈ entity multiplicity) could

have the same ∈multi
initial conditions. Although this is not true for all the CESESE – CESEME

and CEMESE – CEMEME combinations always, but for the example scenarios (elaborated

in 4|), as they have cube-cuboctahedra combinations.

Considering the results illustrated in fig. 6.1, it can be inferred that the predefined

distinct ∈, Ψ, and N considerations for different CE can be controlled to generalize a

purpose for the CE, thus forming a crucial link between the built form and the

algorithm. Conversely, the results also infer, that the same initial state can be

subjected to accommodate multiple, predefined, ∈, Ψ, and N considerations and

create multiple CE.

Architecture of Computational Ecosystems

| 6.1 Effects of distinct ∈, Ψ, and N 257|

Figure 6.1 – Four different CE with the same ∈multi
initial conditions, but different ∈, Ψ, and N

considerations. Model, algorithm, Illustration and graphics by Author (Jan 2020).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

6| On the investigative analysis of the Computational Ecosystems |258

6.2 Examples of possible distinct ∈, Ψ, and N for CE

The ability of a CE to be manipulated differently for distinct ∈, Ψ, and N

considerations while conforming to the same (or similar) initial state (∈multi
initial)

illustrated in fig. 6.1 can be used judicially in the physical world (that is in the sense

of actuality in non-computational environment) while generating and maintaining a

feedback loop of structural coupling between the built form and the algorithm.

It is standard practice in the AEC community to conform to building bye-laws that are

specific to every site (in terms of the urban/suburban/rural governing authority).

Often these constraints restrict the site condition to follow a certain shape or form,

which considerably changes the overall design strategy to accommodate the typology

and counter other context specific issues. The intelligence employed by the architect

into solving these issues, comes quite intuitively and cannot be replaced by any CE

that aspires to replace the design between the built form and the algorithm (as

explained in 1.1.4), however, some of these solutions could be programmed by

intuitively varying the ∈, Ψ, and N considerations (as elaborated in 4.6) while

conforming to the same restrictions on the shape and form of sites (as in an

unchanged ∈multi
initial).

Fig. 6.2 illustrates how the results demonstrated in fig. 6.1, can be envisioned as

different architectural solutions conforming to the same site conditions. While the

CEcube-tower (as the CESESE) becomes a #Residential tower, the CEcube-cubocta-tower (as the

CEMESE) is envisioned as a #Floating #Residential tower accommodated within the

same site boundaries surrounded by a hypothetical access street. The multiplicity in

the Ψ entities of the CEcube-floating-tower (as the CESEME), and CEcube-cubocta-floating-tower (as

the CEMEME) shown in fig. 6.1 become #mixed-use #residential #commercial tower

and #floating #mixed-use #residential #commercial tower respectively. CEMESE and

CEMEME as their dual environments conform to the same site boundaries as shown in

the figure. However, the boundaries of their floating pods are quite different.

Architecture of Computational Ecosystems

| 6.2 Examples of possible distinct ∈, Ψ, and N for CE 259|

Figure 6.2 – Four different CE with the same ∈multi
initial conditions, envisioned as distinct

architectural built forms. Model, algorithm, Illustration and graphics by Author (Jan 2020).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

6| On the investigative analysis of the Computational Ecosystems |260

6.3 Effects of distinct Initial States

Contrary to the case explained in 6.1 (effects of distinct ∈, Ψ, and N considerations),

this scenario of having the same ∈, Ψ, and N considerations (as in operating in the

same predetermined considerations for the CE in question) albeit with distinct Initial

States has already been sufficiently illustrated and elaborated upon (extensively

demonstrated in 5|). However, the results have been very superficially observed for

their physical characteristics such as height, total number of ∈ achieved by the CE,

and/or the (%) immersion in the liquid, and a comparative analysis considering the

manner in which the Initial States have an enhanced control over the physical

properties of the outcomes of the CE hasn’t been really elaborated yet.

Fig. 6.3, demonstrates 4 distinct outcomes of a specific CE that has already been

established in this thesis – CEcube-tower (as the CESESE). As sufficiently done by its

predecessors (in 5.1) the figure illustrates how the same ∈, Ψ, and N considerations

ensure that the CE serves the same purpose (as in, in this case the purpose is to

construct a tower out of the stacking assemblages of cubes), however the initial

states help in generating different iterations that could be manipulated into serving

a wide range of functional purposes (as in, the different architectural typologies that

the cube tower can serve based on the specific configuration of its assemblages).

As shown in fig. 6.3, and although emphasized sufficiently thus far, it should be noted

that the algorithm can in no possible manner control the morphological outcome of

the CE purely based on the initial conditions. The initial conditions, which serve as

mere random aggregation of the ∈ entities have no bearing to the final outcome that

is returned to the user as part of the Final Rest condition. This observation could

serve as an extension to the halting problem (Berlekamp, Conway and Guy, 2001).141

141 Berlekamp, E. R., Conway, J. H. and Guy, R. K. (2001). Winning Ways for Your Mathematical Plays.
2nd ed. Wellesley, Massachusetts: A K Peters, Ltd., p. 276.

Architecture of Computational Ecosystems

| 6.3 Effects of distinct Initial States 261|

Figure 6.3 – Four CEcube-tower with the same ∈, Ψ, and N considerations, but different ∈multi
initial

conditions. Model, algorithm, Illustration and graphics by Author (Jan 2020).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

6| On the investigative analysis of the Computational Ecosystems |262

6.4 Examples of possible distinct Initial States for CE

However, this exact property of unpredictability of the actual physical properties of

the eventual outcome of a CE as compared to its Initial State, can be run through an

artificial neural network (ANN), where each permutation and combination within the

domain of the possible initial states could be run through an ANN and the CE could

be equipped to possibly predict which random Initial State could produce the desired

outcome. Although performing ANN over the CE has not been the objective of this

research hypothesis, a possible research trajectory for the further development of CE

has been suggested in the next chapter (7|).

Although absolutely unpredictable, the Initial State is still highly instrumental in

shaping the CE (as has been repeatedly discussed in this thesis). Apart from the

specific building bye-laws for every context, an AEC project must also conform to a

wide range of topographical and geological conditions specific to a given site. Fig. 6.4

illustrates the same four Initial State consideration demonstrated with their

outcomes in fig. 6.3. Albeit, in fig. 6.4, the Initial States are envisioned as four distinct

topographical formations (in terms of the possible availability of bedrock) for the

same given site. Depending on these varied soil conditions, fig. 6.4 illustrates how the

CEcube-tower (in fact, any CE for that matter) can provide a wide range of possible

outcomes. As soil analysis is one of the essential prerequisites in any AEC project, this

data is quite readily available in the industry. Thus, it can be quite effectively

procured and implemented in outputting more rich and perfect results from a CE.

Moreover, (following the observations made previously in 4.2.4) the final results of

the CEcube-tower and the ∈cube
initial conditions were run through the Evolutionary Solver

of the Galapagos component in Grasshopper. This addition to the CEcube-tower

(theorized and taxonomized in 4.2) serves as an essential addition in ensuring that

the final outcomes of the CE could be ranked in terms of either their height or total

number of pods.

Architecture of Computational Ecosystems

| 6.4 Examples of possible distinct Initial States for CE 263|

Figure 6.4 – Four CEcube-tower with different ∈multi
initial, envisioned as distinct architectural built

forms. Model, algorithm, Illustration and graphics by Author (Jan 2020).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

6| On the investigative analysis of the Computational Ecosystems |264

6.5 The inferences of the analysis

This chapter provides the first series of visuals for a comprehensive end-use for the

incorporation and implementation of CE in the AEC industry. Although these images

provide visuals which are quite simulated and computational, these images paint a

picture of how a CE can be used to express architecture that serves wide range of

architectural intent. Moreover, the next chapter (7|) helps elaborate how exactly a

CE can generate more concrete and realistic built forms in a more visual manner.

This chapter also comes the closest thus far to the practical application of a CE. That

is, the analysis doesn’t just use the computational semantics introduced in the

Literary objectives of the CE, but also mentions practical terminology pertaining to

the AEC industry. Thus, it would now be prudent to state the following –

• The lexical semantics considered for the theoretical establishment of the

concept of CE can now be corelated to their counterparts in the AEC industry.

o ∈ considerations – Can be considered as elements similar to several

physical elements used in the AEC industry. These could be building

materials such as bricks, panels, and tiles. Also building components

such as columns, beams, and slabs. Or enclosures as exemplified in 6.2

and 6.4, such as pods of different sizes, or enclosures for various

services and equipment. Or, these could also be a wide range of

combinations of the above-mentioned examples.

o Ψ considerations – Can be considered organizing principles similar to

several physical constraints that dictate built forms in the AEC

industry. These could be constraints that could be structural,

functional, topographical, geological, economic, related to energy

conservation rules, related to services or equipment, or related to

local bye-laws.

Architecture of Computational Ecosystems

| 6.5 The inferences of the analysis 265|

Pertaining to these correlations, the observations made in the previous pages (as in

6.1, 6.2, 6.3, and 6.4) based on the similarities and differences across the four taxa

under the conditions of variability, can be summarized as followed –

• Variability of the ∈, Ψ, and N –

o Different CE can be implemented over the same site conditions to

generate different outcomes depending on the distinct,

predetermined considerations of the CE.

o While keeping the site conditions same, implementing different CE (in

terms of applying distinct, predetermined ∈, Ψ, and N considerations)

can be crucial in evaluating which CE develops the most optimum

result, thereby concluding which variable ∈, Ψ, and N parameters can

be suited best for a site.

o In short, a wide range of ∈ considerations mentioned in the

correlation could be optimized for those mentioned for the Ψ

considerations in the same site conditions.

• Variability of the Initial States –

o The same CE (that is the same ∈, Ψ, and N considerations) could be

interpolated for different initial states thereby generating a series of

outcomes, which could be ranked in terms of various different

parameters such as their height, number of outputted ∈ entities,

volume, or other similar parameters concerning the built form.

o The initial states could be representative of a wide range of site

conditions such as topographical data, infrastructural data, and data

for the location of services and equipment.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

6| On the investigative analysis of the Computational Ecosystems |266

Conclusions

Architecture of Computational Ecosystems

| 6.5 The inferences of the analysis 267|

7| On the prospective projections for the
Computational Ecosystems

After carefully and meticulously analyzing all the predetermined taxa through

observations made while performing the procedural sequences independently, the

thesis shall now focus on how the concept of CE can be implemented in various fields

within the AEC industry. The research trajectories mentioned in this chapter do not

necessarily refer directly to the operations of the AEC industry, but all the mentioned

trajectories affect the AEC industry in one way or another.

The chapter includes empirical results of research methodologies that have already

been established, performed, and documented by the Author while pursuing the

research. Thus, although not performing exactly as proof-of-concept, these examples

serve as a foundation for potential research that can be pursued in these directions.

As some of these directions exploit the ubiquity of Industry 4.0, a lot of technology

that is mentioned in this chapter already exists and does not require any additional

research (in that particular field) to perform the mentioned potential advancement

of CE. However, some of these examples and research trajectories, have not been

entirely prototyped by the Author (as the said trajectories are not completely in the

scope of this research), and thus will be based on speculation. Nonetheless, these

research trajectories serve as potential sanctuaries for CE to flourish to an extent

where it can be incorporated in the AEC industry as a novel design automation

technique that would be a robust link between the built form and the algorithm.

Apart from exemplifying how CE can be implemented in these industries, the

empirical results mentioned in this chapter also serve as an example of how

modelling, analysis and fabrication can be performed simultaneously while

generating form, space and enclosure for a predetermined architectural intent.

Moreover, as these results were performed in unison with the respective industries,

it is quite evident how flexibly and effectively CE can be implemented in these

industries for a wide range of purposes.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

7| On the prospective projections for the Computational Ecosystems |268

7.1 Probable research trajectories in Algorithm-aided-design

A large portion of this research that has already been established in the previous

chapters (especially 3.3) dwells on the software infrastructure that has been used by

the AEC community for the past few decades - CAD. Moreover, the research takes

advantage of the software infrastructure that has gained prominence with the advent

of Industry 4.0. As already elucidated in the previous chapters (as in 1.1.4 and 1.2.4)

a new paradigm of software infrastructure that revolves around the concept of

Algorithm-aided-design (AAD) has been implemented in the incorporation of the

research methodology (as seen in 4|). The research very much stems from the

assumption (refer 1.1.4) for the field of computational design that –

As computational design becomes more autonomous, the role of design as the

mediator of a construction project becomes more redundant.

This assumption has influenced the methodology of this research into implementing

a significant amount of autonomy in computational design by employing CA as a

computational framework to generate, taxonomize and prototype design

automation algorithms in the form of CE. The previous chapters (especially 4|, 5|,

and 6|) have demonstrated how architectural design can be generated

autonomously by inputting predetermined data and constraints pertaining to

structure, functional arrangement, and topographical data. Similarly, additional

contextual parameters such as climatic data, schedule of services and equipment can

also be appended to this design automation algorithm. With the implementation of

AAD as an advanced design tool, “that equips designers to design a process rather

than just a product” (Tedeschi, 2014)142. The example illustrated in the upcoming

pages demonstrates how a typical Architectural project was developed using a CE.

142 Tedeschi, A. (2014). AAD_Algorithms-Aided Design - Parametric Strategies using Grasshopper®.
Brienza, Italy: Le Penseur Publisher, p. 495.

Architecture of Computational Ecosystems

| 7.1 Probable research trajectories in Algorithm-aided-design 269|

The Architectural project was undertaken as a simple design exercise to evaluate and

understand how a CE could be implemented in a traditional design workflow. The

project was conducted within the confines of a conceptual solution provided to the

Institute for Biodigital Architecture and Genetics (iBAG) at UIC, Barcelona on the

massive immigration that happens in Barcelona, Spain. The solution was proposed in

the form of a residential tower, which would be on the sea-front of the city. This

proposed tower had the following predetermined constraints –

• It would be situated on a Site that would be a circular floating platform of

200m in diameter, situated on the coast of Barcelona.

• It would be 150m in height with a 1:8 (diameter: height) proportion.

• It would have a structural core possessing two fireproof staircases, and four

elevators while accommodating the other services.

The above constraints were converted in the following CE parameters –

• CE – Owing to the multiplicity in its constraints and parameters, the project

would undoubtedly be constructed by employing a CEMEME, however the

initial setup could be done for a CESESE. The entire workflow would be

CEbiodigital-tower.

• ∈ – Considering that the tower needs residential pods, the initial ∈ entities

could be cubes, thus ∈cubes.

• Ψ – Although this CE would eventually have a multiplicity in the Ψ entities, in

the initial considerations, this would just be the standard Ψtower.

• N – As the above parameters essentially set up a CEcube-tower (as demonstrated

in 4.2 and 5.1), the CE would be performed in the previously determined

hypothetical revised infinite 3D Square grid.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

7| On the prospective projections for the Computational Ecosystems |270

Fig. 7.1 thus demonstrates the entire workflow of the CEbiodigital-tower as shown below.

Figure 7.1 – Workflow of CEbiodigital-tower. Model, algorithm, and graphics by Author (May 2020).

Architecture of Computational Ecosystems

| 7.1 Probable research trajectories in Algorithm-aided-design 271|

The steps involved in the workflow of the CEbiodigital-tower were –

• Step 1 – Context Mapping – Here, all the entities pertaining to the context

have been mapped. This step serves as a prelude to setting up the N.

• Step 2 – Constraints Mapping – Here, all the constraints related to the design

brief have been mapped. This step further establishes the N and Ψtower.

• Step 3 – CEbiodigital-tower Procedural Sequences – Here, the CE undergoes all the

procedural sequences to generate and rank the outcomes as assemblages

that could potentially serve as CEbiodigital-tower.

• Step 4 – CEbiodigital-tower Architectural Rationalization – Here, the selected

iteration undergoes assimilation of architectural components ensuring that

CEbiodigital-tower can be visualized as a habitable structure.

These steps aid in generating an Architectural Outcome that can be further worked

upon to generate a standard AEC construction document (comprising of plans,

sections, elevations, and details). Moreover, if the construction strategy and building

material are predetermined, they can also be considered as Ψ entities, and repeating

steps 2, 3, and 4 would generate a richer outcome. However, the above four steps

should not be considered canonical to the CE.

The example of the construction of a CEbiodigital-tower shown above serves as a further

proof-of-concept for the implementation of CE in AAD. As the emphasis of AAD is on

the process than the product it serves as an ideal, contemporary design system

(already in use in the AEC industry), which can serve as a testing ground for the

incorporation of CE. Here, the designer still has sufficient control over the built form

and the algorithm. The design (well, actually computational design) merely gets

automated while providing outcomes that would be both tedious and overly complex

if pursued with traditional design systems (those mentioned in 1.1).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

7| On the prospective projections for the Computational Ecosystems |272

7.2 Probable research trajectories in Additive Manufacturing

Similar to the dependency of this research on the operational infrastructure provided

by Computational Design in the form of AAD, the research relies on Digital Fabrication

in the form of Additive Manufacturing (AM) for its production infrastructure.

Moreover, the research anticipates the rise of Industry 4.0 which could transform

architecture back from an allographic profession into an autographic craft, where the

architect would be a digital craftsman (as in 1.1.3). The research also emanates from

the assumption (as stated in 1.1.4) for the field of digital fabrication that –

As digital fabrication becomes more data-driven, the role of design as a medium

of generating the construction document becomes more redundant.

Although digital fabrication has been sufficiently mentioned in the introduction of

the research, it hasn’t been exploited in prototyping all the taxa of CE mentioned in

this thesis, albeit the FDM printed prototyping of the CEcube-cubocta-floating-tower (as

demonstrated in 4.5 and 5.4). The unavailability of advanced additive manufacturing

techniques at the iBAG, UIC, Barcelona has been one of the key reasons that has to a

certain extent restricted this research to perform digital fabrication with FDM

printing alone. However, the research-stay undergone by the author within the AEC

industry for a sufficient duration of three months, has been instrumental in

developing a systematic attempt into incorporating CE within the discipline of AM.

AM has already been implemented by the AEC industry in various forms such as

Robotic Building (Thermoplastics), Robotic Building (Pneumatic Systems), Robotic

Stacking, Wire Arc Additive Manufacturing (or Metal Printing) and FDM (Delta

printers). Many startups have cropped up globally which are reconfiguring

decommissioned Robotic Arms into establishing successful AM Labs as thriving

business ventures. The following example is part of the research stay undergone by

the Author at one such startup – Studio RAP based in Rotterdam, The Netherlands.

Architecture of Computational Ecosystems

| 7.2 Probable research trajectories in Additive Manufacturing 273|

Studio RAP is an architecture firm that makes a wide range of bespoke designs across

different scales by implementing computational design, often many of which are

produced in-house through digital fabrication. One such is the design and production

of robotically fabricated, ceramic, monolithic coffee tables. As part of the research-

stay, the Author collaborated with the design workflow already implemented at

Studio RAP and attempted to incorporate CE in the design and fabrication of the

coffee tables. Following were the constraints as part of the design brief –

• Design constraints – The coffee tables had to be produced and post-

processed as monolithic artefacts. This was partly due to the use of potter’s

Clay which must be built uniformly, consistently, and not in parts.

• Material and finish – The material chosen was a specific potter’s Clay with

20% grog (residual clay that has been fired up and then pulverized to be mixed

back into clay, to increase its strength and setting consistency). Further, this

material was to be post-processed in the traditional Delft Blue style of glazing.

• Production constraints – To be fabricated using a KUKA p6 robotic arm, using

a canister-based pneumatic deposition system developed by Studio RAP.

The above constraints were converted in the following CE parameters –

• CE – The project would need a CESEME, say a CEclay-table.

• ∈ – As the tables are to be built using a robotic arm, ∈ would be the planes

defining the eventual tool path of the robotic arm, thus ∈plane.

• Ψ – The rules for the top would be the Ψtop, and those for the trunk as Ψtrunk.

• N – The table would be printed upside down, and thus the CE can be

performed in the previously determined hypothetical revised infinite 3D

Square grid.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

7| On the prospective projections for the Computational Ecosystems |274

Fig. 7.2 thus demonstrates the entire workflow of the CEclay-table as shown below.

Figure 7.2 – Workflow of CEclay-table. Model, algorithm, and graphics by Author (August 2020).

Architecture of Computational Ecosystems

| 7.2 Probable research trajectories in Additive Manufacturing 275|

The steps involved in the workflow of the CEclay-table can be explained as –

• Step 1 – Constraints Mapping – Here, all the constraints related to the design

brief have been mapped. The table height is optimized to accommodate both

the ergonomics of a coffee table and the volume of clay that can be deposited

by the canister. This step establishes the N, Ψtop and Ψtrunk.

• Step 2 – Production Mapping – Here, all the constraints related to the

production have been mapped. The use of ∈plane as the ∈ entities helps in

effectively transitioning into the robot’s tool path (as a robotic tool path is

determined by planes and not points). This step also helps in mapping how

the beautiful process of the Delft Blue glaze can enhance the design.

• Step 3 – CEclay-table Procedural Sequences – Here, the CE undergoes all the

procedural sequences to generate and rank the outcomes as assemblages

that could potentially serve as CEclay-table.

• Step 4 – CEclay-table Digital Fabrication – Here, the selected iteration undergoes

actual production ensuring that CEclay-table can be ceramic coffee tables.

Although the above steps demonstrate how a CE can be implemented as a process to

simultaneously design and fabricate a built form with the means of an algorithm, the

above steps are not exhaustive, and can vary from CE to CE. However, the example

of the CEclay-table serves as substantial empirical evidence of how CE can be crafted

into simulating constraints of a certain digital fabrication technique, to design a

specific built form and eventually build it using the algorithm. As this project involved

a client and end-user, the CEclay-table was prototyped several times before performing

the post-processing. Fig. 7.3 further demonstrates the stages in the fabrication of the

CEclay-table. The images only demonstrate how the CEclay-table was fabricated following

the toolpath and ergonomic constraints of the KUKA P6. As the post-processing was

not done in-house by Studio RAP, there is no documentation for it.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

7| On the prospective projections for the Computational Ecosystems |276

Figure 7.3 – Fabrication stages for the CEclay-table. Illustration, and photographs by Author (August

2020).

Architecture of Computational Ecosystems

| 7.2 Probable research trajectories in Additive Manufacturing 277|

As demonstrated in fig. 7.3, the images show how the CEclay-table was fabricated using

the freedom offered by the robot, as well as the constraints of the material and the

extrusion method. The canister-based pneumatic deposition system developed by

Studio RAP, involves an aluminum container that can hold 10kg of potter’s clay. This

severely restricts the size of objects that could be built using the system, as compared

to a tube-based continuous material extrusion system that is often used in AM with

clay (and similar water-based materials). The drying process of clay also had to be

systematically done, as the object shrinks to approximately 85% of its original size

(generally the shrinkage is much more, but because the project used clay filled with

20% grog, the shrinkage was minimal). Nonetheless, the object had to be dried for 14

days in an isolated dehumidified container to avoid inconsistent shrinkage and

possible warping, before sending it for post-processing (that is firing and glazing).

However, all of the above-mentioned constraints were incorporated in the CEclay-table,

chiefly by means of the Ψ entities. Thus, this example demonstrates how a CE can

accommodate not just the functional requirements of a built form, but also the

production constraints offered by the material and fabrication process employed to

conceive the built form. In a traditional design-based workflow, here the process

would have had to follow the process of analyzing, modelling, and prototyping

several times to eventually generate the best possible iteration, with CE however, the

analysis, modelling and prototyping happens simultaneously and dynamically.

Moreover, the implementation of CE in the workflow of an already established design

practice performing at the cutting edge of Industry 4.0 (as in Studio RAP), opens up

very ambitious prospects for the involvement of CE in AM. In this potential future,

the design or the designer would no more be archivists of construction documents,

as digital fabrication would itself strive a dialogue between the built form and the

algorithm. Perhaps, in the distant future (with the 5th Industrial revolution) a robotic

arm could be monitored dynamically by a cloud-based CE. Perhaps this CE could

ensure that the robotic arm could build a CEclay-table autonomously for a wide range

of predetermined parameters and not just monolithic, ceramic coffee tables.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

7| On the prospective projections for the Computational Ecosystems |278

7.3 Probable research trajectories in Pedagogy

As CE is a novel approach in design automation, it has to be tested and evaluated in

as many industries related to design as possible. This would not only make it robust,

but its failures in one industry can also boost its success in others. To ensure that CE

can be applied in any built form – algorithm relationship, the theory explained in this

thesis (especially 2| and 3| that emphasize on accomplishing the literary objectives

set up in 1.2.1) is very essential. Moreover, any further study in the field of CE, could

be based on the theoretical foundations laid down in this thesis.

The theory that had actually culminated from the ambitiousness of the futuristic and

possibly sensational hypothesis of addressing the increasing redundancy of design

within the built form and the algorithm, has been quite methodically formulated

while considering already established semantics (both lexical and logical) from a wide

range of domains such as Biology, Ecology, Computational Sciences, Applied

Mathematics, Applied Mechanics, Fabrication, Manufacturing and Economics

relevant to the research. Moreover, before acknowledging them as the core

theoretical structure of this research, these semantics have also been considered for

the contradictions they might offer while being placed aside each other. For example,

the halting problem that is associated with the operations and results of any CA, has

been theoretically and operationally countered by applying the concept of decay to

eventually halt a CE by means of exhaustion of resources (as elaborated in 3.2).

Additionally, while establishing these semantics, the research also derives a

consistent methodology, with step-by-step instructions on installing a system within

the built form – algorithm relationship that can guide future researches into

strengthening the theoretical foundations of CE.

This very aspect of the research (the manner in which it has a considerable theoretical

foundation), opens a new direction in the understanding, implementation and

eventual propagation of CE - Pedagogy.

Architecture of Computational Ecosystems

| 7.3 Probable research trajectories in Pedagogy 279|

In the course of accomplishing the preliminary and operational objectives by means

of the procedural sequences (refer 1.2.1) the research has also undergone plenty of

evaluation and testing within the confines of academic environment in the form of

workshops. Although these workshops were aimed at testing the computational

robustness of a wide range of CE, often the participants had to be trained and

informed about various aspects related to the research. The following were some of

the key pre-evaluation tutelage, that had to be done during the workshop –

• Theoretical Background – To acclimatize all the different participants to the

relevance, purpose, and background of the research, the workshop began

with presentations on the semantics and theoretical foundations of the

research. Often after the presentations, the participants were encouraged to

elaborate on their understanding of the concept of CE, and their perception

of the application of CE in the operations of the AEC industry (before

undertaking the evaluations and thereby the Author’s directions for CE).

• Methodological Background – After developing a sufficient knowledge-

inventory based on the semantics and theory, the participants were

introduced to the methodology adopted by the research in conducting the

procedural sequences for CE. Here, participants were provided with relevant

tool-kits developed for the specific CE, and trained into using the tool kit to

perform any preliminary tests as relevant to the CE in question.

• Technological Background – The research relies on the implementation of

computational design and digital fabrication, and however ubiquitous these

technologies are in the AEC industry, their lack of theoretical background

denies their acceptance in design curricula in many educational institutes.

Thus, the workshop comprised of providing tutoring for Rhinoceros3D and

Grasshopper 3D (with its plugins that were relevant in the functioning of the

CE in question). As required for the evaluation of a specific CE, the workshop

also included training on the use and applications of FDM printing.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

7| On the prospective projections for the Computational Ecosystems |280

Fig. 7.4 shows a collage of photographs taken while several different workshops were

conducted by the Author throughout the course of the research to develop, evaluate

and demonstrate all the four taxa of CE mentioned in the thesis. The image also

shows some outcomes developed by the participants during different workshops.

Figure 7.4 – Collage of different workshops conducted by the Author for developing, evaluating

and demonstrating the four CE taxa. Photographs by Author (from July 2018 to Dec 2020).

Architecture of Computational Ecosystems

| 7.3 Probable research trajectories in Pedagogy 281|

As illustrated in fig. 7.4, following are the details of the different workshops –

• Designing Ways of Designing Workshop – As elaborated previously (in 4.2.3),

the workshop was conducted in June 2018 at the IES College of Architecture

in Mumbai, India. Attended by 20 candidates (16 Students and 4 Architects),

it was a 3-day workshop. As it was setup for the evaluation of a CEcube-tower

(refer 4.2), it involved physical modelling by means of stacking acrylic cubes

and gluing them on an acrylic sheet. The results generated during the course

of this workshop have helped establish a foundation for the methodology

while providing enough evidence that the state conditions derived for the

Ψtower rules (as per 4.2.2) were performing as expected.

• Computation as a Design tool Workshop – As elaborated previously (in 4.3.3),

the workshop was conducted in July 2019 at RIT in Kottayam, India. Attended

by 20 candidates (20 selected Students of the 7th and 9th semesters pursuing

BArch), it was also a 3-day workshop. As it was setup for the evaluation of

computational prototyping of two different CE – CEcube-cubocta-tower (refer 4.3)

and CEcube-floating-tower (refer 4.4), it only involved generating and evaluating

computational results for the two CE. The results of this workshop have

helped in providing empirical results that the multiplicity of the ∈ and Ψ

entities can be managed distinctly with the application of the right CE.

• Digital Fabrication Workshop – As elaborated previously (in 4.5.3), the

workshop was conducted in December 2019 at the IES College of Architecture

in Mumbai, India. Attended by 10 candidates (6 Students, 3 Architects and 1

Design Engineer), it was also a 3-day workshop. As it was setup for the

evaluation of a CEcube-cubocta-floating-tower (refer 4.5), it involved evaluating the

computational results and digitally fabricating selected CE by means of FDM

printing. The results generated during the course of this workshop have

helped in providing empirical results for the amalgamation of computational

design and digital fabrication in the workflow of CE.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

7| On the prospective projections for the Computational Ecosystems |282

• Procedural Systems Workshop – This workshop was conducted from January

2021 to March 2021 for the Biodigital Architecture Master program held at

UIC Barcelona. Attended by 8 candidates (8 Students enrolled in the Biodigital

Architecture Master Program 2021), originally it was a 6-week long workshop,

but the contribution towards this research was not during the entire time and

was scattered throughout the course of these 6 weeks. The workshop was not

conducted to provide any evaluation of specific CE, but was employed to

evaluate some of the independent Ψ entities which have been eventually

implemented in the functioning of the CEbiodigital-tower (refer 7.1).

• Permutable Morphologies Workshop – This workshop was conducted from

January 2020 to February 2020 also for the Biodigital Architecture Master

program held at UIC Barcelona. Attended by 11 candidates (11 Students

enrolled in the Biodigital Architecture Master Program 2020), originally it was

a 3-week long workshop, but the contribution towards this research was not

during the entire time and was scattered throughout the course of these 3

weeks. The workshop was not conducted to provide any evaluation of specific

CE, but was employed to evaluate some of the independent ∈ entities which

have been implemented in the functioning of the CEbiodigital-tower (refer 7.1).

As mentioned in the detailed explanations of all the conducted workshops above, the

fundamental objective of these workshops was to generate and evaluate the said CE.

However, the workshops also provided with an additional purpose of rationalizing

the theoretical constructs CE was established upon. Instructing and developing CE in

an institutional environment has also provided valuable insights into how the

community perceives CE as a robust link between built form and algorithm from

different vantage points. This perception has and could develop many more varied

prospective projections for the application and implementation of CE. Moreover,

expanding the concept of CE to pure and applied sciences could also help make it

more mainstream.

Architecture of Computational Ecosystems

| 7.3 Probable research trajectories in Pedagogy 283|

While it has several benefits for the development of CE, design education can also

benefit from the theory of CE. The semantics and case studies formulated in each of

the four taxa, has a strong bearing in pursuing CE as a subset of Bio-inspired

computational algorithms, and can be researched upon while generating several

different CE within the confines of CESESE, CEMESE, CESEME, and CEMEME. Perhaps, further

research could also develop some more taxa besides the above four. As explained in

the examples of the CEbiodigital-tower (refer 7.1) and CEclay-table (refer 7.2), the concept of

CE could have promising, and yet optimized outcomes as Industry 4.0 computational

design gets more autonomous and digital fabrication becomes more data driven. And

it is about time, the design curricula updated accordingly.

Biodigital Architecture as a domain of architectural design has been “theorizing and

prototyping novel methodologies and technologies at the intersection of the

biological and the digital for the past couple of decades” (Estevez, 2015)143. As the

concept of CE is based on this very idea, Biodigital Architecture is and would be a

perfect niche that the CE could occupy for its application in pedagogy. Meaning, CE

could very well perform as a discipline existing within Biodigital Architecture, and be

further researched within the operational activities of a research group.

However, unlike the Genetic Architectures Research group and iBAG, UIC, Barcelona,

not all design institutions share openness for futuristic and interdisciplinary didactic

domains. Throughout the course of interactions within the educational community

for conducting several more workshops in India and Europe, the Author has faced a

fair share of discouragement to incorporate CE (or even computational design and

digital fabrication) in the design curriculum. Design schools emphasizing on the

traditional approach in architecture, have often unequivocally rejected the inclusion

of any form of computation in the process of architectural design. Thus, any form

design automation (such as CE) would not be effortlessly accepted in this industry.

143 Estévez, A. T. (2015). Arquitectura Biodigital Y Genetica. Barcelona, Spain: ESARQ (Escola Téchnica
Superior d’Arrquitectura, Universitat Internacional de Catalunya)., p. 296.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

7| On the prospective projections for the Computational Ecosystems |284

7.4 Probable research trajectories in Software Development

Apart from pursuing literary objectives which eventually resulted in the theoretical

foundations for CE, the research has also followed a thoroughly methodical approach

in creating and documenting all the algorithms. The following steps, have been

pursued quite consistently for every taxon, as part of the procedural sequences –

• Pseudo code – The State conditions established for every taxon have

consistently been derived from the Cellular Automata models mentioned in

this thesis (as in 2.3). Moreover, all the components of the algorithm (for the

respective taxon) have been consistently defined in reference with the lexical

and logical semantics (as in 3.1, 3.2, and 3.3).

• UML Class Diagram – All the components of each algorithm have then been

methodically illustrated in the form of UML Class Diagrams where all possible

∈ and Ψ entities have been identified while defining their respective

attributes, operations, and inheritances (refer 4.2.2, 4.3.2, 4.4.2, and 4.5.2).

• UML Sequence Diagram – To understand and further execute the

relationships between these classes all the algorithms have then been

methodically illustrated in the form of UML Sequence Diagrams where all

possible ∈, Ψ, and N considerations have been identified while defining their

respective role, interaction and runtimes (refer 4.2.3, 4.3.3, 4.4.3, and 4.5.3).

• User Testing – After writing the algorithms through visual programming (in

Grasshopper3D), the algorithms have been extensively tested by inviting

users (in the form of students and practitioners in the AEC industry) by

conducting workshops. This quite vital step has also assisted in generating

several versions for the specific algorithms in all the taxa, while user issues

and minor bugs have been fixed in the base code.

Architecture of Computational Ecosystems

| 7.4 Probable research trajectories in Software Development 285|

By performing the aforementioned steps, the research has also followed a workflow

that is adopted by the software development industry. To a certain extent, this

validates CE to be identified and implemented as a stand-alone software that could

serve its purpose of creating a dynamic, reciprocal, symbiotic relationship between

the built form and the algorithm. While CE cannot be identified as one single software

but a category of software which can perform a series of certain predetermined tasks.

However, the research objective behind the Architecture of Computational

Ecosystems has never been about developing and releasing a software in the market,

and thus this has not been pursued in the course of this research. But it can serve as

a possible research direction in the development of CE. In fact, it is quite inevitable

through the development of CE that it would eventually evolve into an

implementable software that could possibly be used by the AEC industry.

CE could be used as a computational framework for game development. The example

shown below in fig. 7.5 is a single-player city building game called Block’hood144. It

involves building vertical neighbourhoods with cubes that serve different purposes

such as resources, services, residential, commercial, structure, and many more. While

being an entertaining game it also provides insights into architectural design.

Figure 7.5 – Block’hood on Steam. Source:

https://store.steampowered.com/app/416210/Blockhood/.

144 Block’hood (2017). Los Angeles, USA: Plethora Project.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

7| On the prospective projections for the Computational Ecosystems |286

Although Block’hood has not been developed using CE, it can be used as a template

to determine how CE can be implemented in game development of similar simulation

games. Moreover, interesting outcomes could possibly be achieved in Block’hood

and similar simulation games if some aspects of CE were applied in the game engine.

However, as CE is based on the computational framework of CA, and most CA, such

as Conway’s Game of life (refer 2.3.2) are zero-player games (as in, they don’t really

require sentient participants for it to run or end), it can be stated syllogistically, that

games generated using CE could be zero-player games. However further research in

this industry could possibly be pursued to develop bio-inspired simulation games.

Apart from using CE as computational framework for software and game

development, CE could also be used as a data source for generating Artificial Neural

Networks (ANN). As introduced in 6.4, a CE if appended with an ANN, could benefit

from its predetermined learning paradigm. Although any of the paradigms can be

considered, self-learning based on “Crossbar Adaptive Array” (Bozinovski, 2014)145

which relies on one input situation and one output behavior could be a good place

to start exploration. In the context of CE, the input situation could be the initial state,

while the output behavior could be End Rest Array of the CE. Thus, a correlation could

be deduced between the situation and the behavior, and with further research a

mechanism could possibly be developed to predict the result of an initial state, or

even to dictate a certain preferred result to determine the possible initial state.

Contrary to the above direction, several results of ANN, however, could also be used

as a data source for generating various distinct CE. The data source provided by the

ANN could be any architectural parameter pertaining to its typology or context. Thus,

ANN could be an interesting possible direction to further research on CE and its

applications.

145 Bozinovski, S. (2014) Modelling Mechanisms of Cognition-Emotion Interaction in Artificial Neural
Networks, since 1981. In: BICA 2014. 5th Annual International Conference on Biologically Inspired
Cognitive Architectures. [online]: Procedia Computer Science, pp. 255-263. Available at:
https://www.sciencedirect.com/science/article/pii/S1877050914015567 [Accessed 15 Jun. 2021]

Architecture of Computational Ecosystems

| 7.5 Concluding Statements 287|

7.5 Concluding Statements

“Humans have been historically horrible at predicting the pace of progress”

(Kurzgesagt – In a Nutshell, 2020, 07:55).146

And this research, while being based on the prophetic assumptions for both the

ubiquity of the algorithm and the redundancy of design delicately relies on

speculations from the future of the AEC industry. However, the technology (as in

Industry 4.0) that it relies on, and the scientific theory that it is built upon, ensures

that (granted the openness of the industry) the Architecture of Computational

Ecosystems can certainly help establish a dynamic, reciprocal, symbiotic relationship

between the built form and the algorithm by making computational design more

autonomous and digital fabrication more data driven. While this relationship is based

on the premise of theorizing, generating, taxonomizing, and prototyping Hybrid Bio

Plausible Bio-inspired Stochastic Optimization Algorithms as functioning

Computational Ecosystems which perform as autonomous, autopoietic, context

aware feedback loops between the built form and the algorithm (refer 2.4), it

supports the hypothesis that, Cellular Automata can be employed as a

computational framework to generate, taxonomize and prototype design

automation algorithms with empirical evidence (refer 7.1).

Moreover, the procedural sequences performed to develop the empirical evidence

over the four possible taxa for Computational Ecosystems – CESESE (refer 4.2), CEMESE

(refer 4.3), CESEME (refer 4.4), and CEMEME (refer 4.5) has helped in generating a robust

workflow that can be incorporated in the AEC industry while proving that, fabrication

data in the form of G-code can be used as a fitness condition to generate,

taxonomize and prototype digitally generated built forms (refer 7.2).

146 Kurzgesagt – In a Nutshell (2020) Can You Upload Your Mind & Live Forever?. 10 December.
Available at: https://www.youtube.com/watch?v=4b33NTAuF5E (Accessed: 18 Dec. 2020).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

7| On the prospective projections for the Computational Ecosystems |288

The inception and execution of the research had followed a systemic trajectory that

can be summarized as stated below –

• Establishing semantic syntax – for the lexical and logical semantics (refer |2)

• Performing procedural sequences for each of the four taxa (refer |4)

o Case Studies – bio-based theoretical and operational analogies.

o Simulations – transcription of the analogies into the ∈, Ψ, and N

considerations.

o Prototyping – evaluation and taxonomizing by means of industry

participation (through workshops and research collaborations).

This has not only helped establish a standard, canonical methodology for the

Architecture of Computational Ecosystems (refer 5.5 and 6.5) but also assisted in

abrogating the sensationalism involved with predicting the pace of progress.

Nonetheless, apart from establishing an unprecedented relationship between the

built form and the algorithm, the Architecture of Computational Ecosystems opens

a plethora of research opportunities in the domains of AAD, AM, pedagogy, and

software development (refer |7). Although not an exhaustive list, it certainly ensures

that the pursuit documented in this thesis is a mere beginning.

After all, as Einstein famously quoted (about Thermodynamics) –

 “A theory is the more impressive the greater the simplicity of its premises, the

more varied the kinds of things that it relates and the more extended the area of

its applicability” – Albert Einstein (Schilpp, 1959).147

147 Schilpp, P. A. (1959). Albert Einstein: Philosopher-Scientist. New York: MJF Books, pp. 32
(Autobiographical Notes).

Architecture of Computational Ecosystems

| 7.5 Concluding Statements (in Spanish) 289|

7.5 Concluding Statements (in Spanish)

“Los seres humanos han sido históricamente horribles al predecir el ritmo del

progreso” (Kurzgesagt – In a Nutshell, 2020, 07:55).148

Y esta investigación, si bien se basa en los supuestos proféticos tanto de la ubicuidad

del algoritmo como de la redundancia del diseño, se basa delicadamente en

especulaciones del futuro de la industria AEC. Sin embargo, la tecnología (como en la

Industria 4.0), y la teoría científica en las que se basas, asegura que (dada la apertura

de la industria) la Arquitectura de Ecosistemas Computacionales ciertamente puede

ayudar a establecer una dinámica, recíproca, simbiótica relación entre la forma

construida y el algoritmo al hacer que el diseño computacional sea más autónomo y

la fabricación digital más impulsada por los datos. Si bien esta relación se basa en la

premisa de teorizar, generar, taxonomizar y crear prototipos de algoritmos de

optimización estocásticos bioinspirados bio-plausibles híbridos como ecosistemas

computacionales en funcionamiento que funcionan como bucles de

retroalimentación autónomos, autopoyéticos y sensibles al contexto entre la forma

construida y el algoritmo (2.4), apoya la hipótesis de que Cellular Automata puede

emplearse como un marco computacional para generar, taxonomizar y prototipar

algoritmos de automatización de diseño con evidencia empírica (7.1). Además, las

secuencias de procedimiento realizadas para desarrollar la evidencia empírica sobre

los cuatro posibles taxones de ecosistemas computacionales – CESESE (4.2), CEMESE

(4.3), CESEME (4.4), and CEMEME (4.5) ha ayudado a generar un sólido flujo de trabajo

que se puede incorporar en la industria AEC y que, al mismo tiempo, se demuestra

que los datos de fabricación en forma de G-Code se pueden utilizar como condición

de aptitud para generar, taxonomizar y crear prototipos de formularios construidos

generados digitalmente (7.2).

148 Kurzgesagt – In a Nutshell (2020) Can You Upload Your Mind & Live Forever?. 10 December.
Available at: https://www.youtube.com/watch?v=4b33NTAuF5E (Accessed: 18 Dec. 2020).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

7| On the prospective projections for the Computational Ecosystems |290

El inicio y ejecución de la investigación había seguido una trayectoria sistémica que

se puede resumir como se indica a continuación –

• Establecimiento de sintaxis semántica - para la semántica léxica y lógica (|2)

• Realización de secuencias de procedimientos de los cuatros taxones (|4)

o Estudios de caso: analogías teóricas y operativas de base biológica.

o Simulaciones: transcripción de las analogías en las ∈, Ψ y N.

o Prototipado - evaluación y taxonomización mediante la participación

de la industria (a través de talleres y colaboraciones de investigación).

Esto no solo ha ayudado a establecer una metodología canónica estándar para la

Arquitectura de Ecosistemas Computacionales (5.5 y 6.5), sino que también ayudó a

abrogar el sensacionalismo involucrado en la predicción del ritmo del progreso. No

obstante, además de establecer una relación sin precedentes entre la forma

construida y el algoritmo, la Arquitectura de Ecosistemas Computacionales abre una

plétora de oportunidades de investigación en los dominios de AAD, AM, pedagogía y

desarrollo de software (|7). Aunque no es una lista exhaustiva, ciertamente asegura

que la búsqueda documentada en esta tesis es un mero comienzo.

Después de todo, como citó Einstein (sobre la termodinámica):

“Una teoría es más impresionante cuanto mayor es la simplicidad de sus premisas,

más variadas son las cosas que relaciona y más amplia es el área de su

aplicabilidad.” – Albert Einstein (Schilpp, 1959).149

149 Schilpp, P. A. (1959). Albert Einstein: Philosopher-Scientist. New York: MJF Books, pp. 32
(Autobiographical Notes).

Architecture of Computational Ecosystems

| 8.1 References 291|

8| Bibliography

8.1 References

1. AA School of Architecture (2015) John Frazer - An Evolutionary Architecture.

02 May. Available at: https://www.youtube.com/watch?v=58ZUhDKaRC8

(Accessed: 18 Dec. 2017).

2. Allen, C. and Shakantu, W. (2016). The BIM revolution: a literature review on

rethinking the business of construction. In: 11th International Conference on

Urban Regeneration and Sustainability, Bilbao: WITconferences pp. 919-930

Available at: https://www.witpress.com/elibrary/wit-transactions-on-

ecology-and-the-environment/204/35716 [Accessed 17 May 2019].

3. Antunes, R. F. (2016). Human Crowd Simulation: What can We Learn from

ALife? In: ALIFE 2016, the Fifteenth International Conference on the

Synthesis and Simulation of Living Systems. [online] Cancun: MIT Press

Direct, p. 8. Available at:

https://direct.mit.edu/isal/proceedings/alif2016/38/99500 [Accessed 26

Apr. 2021].

4. Antunes, R. F., Leymarie, F. F., Latham, W. (2016). Computational

Ecosystems in Evolutionary Art, and Their Potential for the Future of Virtual

Worlds. In: Y. Sivan, ed., Handbook on 3D3C Platforms, 1st ed. Cham,

Switzerland: Springer International Publishing, pp. 441-473.

5. Aschwanden, G.D.P.A., Wullschleger, T., Müller, H., Schmitt, G. (2009). Agent

based evaluation of dynamic city models: A combination of human decision

processes and an emission model for transportation based on acceleration

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

8| Bibliography |292

and instantaneous speed. Automation in Construction. [online] 22, pp. 81-

89. Available at:

https://www.sciencedirect.com/science/article/pii/S0926580511001415

[Accessed 22 May 2020].

6. Bellman, R.E. and Dreyfus, S.E., (1962) Applied Dynamic Programming,

London: Oxford University, 362 pp.

7. Berlekamp, E. R., Conway, J. H. and Guy, R. K. (2001). Winning Ways for Your

Mathematical Plays. 2nd ed. Wellesley, Massachusetts: A K Peters, Ltd., p.

276.

8. Białynicki-Birula, I., Białynicka-Birula, I. (2004). Modelling Reality - How

Computers Mirror Life. Oxford: Oxford University Press, p.188.

9. Binitha, S. and Sathya, S. S. (2012). A Survey of Bio inspired Optimization

Algorithms. International Journal of Soft Computing and Engineering (IJSCE),

2(2), pp. 137-151.

10. Blickle, T. (2000). Tournament Selection. In: T. Bäck, D. B. Fogel, and Z.

Michalewicz, ed., Evolutionary Computation 1: Basic Algorithms and

Operators, 1st ed. New York: Taylor & Francis Group, pp. 181-186.

11. Bowles, S. & Choi, J-K. (2019). The Neolithic Agricultural Revolution and the

Origins of Private Property. Journal of Political Economy, 127(5), pp. 2186-

2228.

12. Boyle, R. (1661). The Sceptical Chymist. London: J. Cadwell

13. Bozinovski, S. (2014) Modelling Mechanisms of Cognition-Emotion

Interaction in Artificial Neural Networks, since 1981. In: BICA 2014. 5th

Annual International Conference on Biologically Inspired Cognitive

Architecture of Computational Ecosystems

| 8.1 References 293|

Architectures. [online]: Procedia Computer Science, pp. 255-263. Available

at: https://www.sciencedirect.com/science/article/pii/S1877050914015567

[Accessed 15 Jun. 2021]

14. Caplat, P., Anand, M., Bauch, C. (2007). Symmetric competition causes

population oscillations in an individual-based model of forest dynamics.

Ecological Modelling 211. 3(4), pp. 491-500.

15. Carpo M (2011). The Alphabet and the Algorithm. The MIT Press, pp. 10-19.

16. Chen H. and Zhu Y. (2008). Optimization based on symbiotic multi-species

coevolution. Applied Mathematics and Computation, 205(2008), pp. 47-60.

17. Codd, E. F. (1968). Cellular Automata. PhD Thesis. Academic Press, New

York.

18. David, A. (2020). Special report: The simulations driving the world’s response

to COVID-19. Nature, [online]. Available at:

https://www.nature.com/articles/d41586-020-01003-6 [Accessed 12 Jan.

2021].

19. De Bary, A. (1879) Die Erscheinung der Symbiose: Vortrag, gehalten auf der

Versammlung deutscher Naturforscher und Aerzte zu Cassel (In English - The

Phenomenon of Symbiosis), Strassburg: Karl J. Trübner, 30 pp.

20. De Castro, L.N. (2007) Fundamentals of Natural Computing – basic concepts,

algorithms, and applications, Boca Raton: Taylor & Francis group, 638 pp.

21. Dorigo, M., Maniezzo, V. and Colorni A. (1996). The Ant System:Optimization

by a colony of cooperating agents. IEEE Transactions on Systems, Man, and

Cybernetics–Part B, 26(1), pp. 1-13.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

8| Bibliography |294

22. Douglas, A. E. (2010) The Symbiotic Habit, Princeton, NJ: Princeton

University Press, 232 pp.

23. Estévez, A. T. (2015). Arquitectura Biodigital Y Genetica. Barcelona, Spain:

ESARQ (Escola Téchnica Superior d’Arrquitectura, Universitat Internacional

de Catalunya)., p. 296.

24. Flynn, M-J. (1972). Some Computer Organizations and their Effectiveness.

IEEE Transactions on Computers, C-21(9), pp. 948-960.

25. Frazer, J. H. (1995). Themes VII: An Evolutionary Architecture. London:

Architectural Association, p. 127.

26. Frazer, J. H. (2001) The Cybernetics of Architecture: A Tribute to the

Contribution of Gordon Pask. Kybernetes. The International Journal of

Systems & Cybernetics. 30(5/6). pp. 641-651.

27. Freitas Jr., R. A., Merkle, R. C. (2004). Kinematic Self-Replicating Machines.

[online] www.molecularassembler.com. Available at:

http://www.molecularassembler.com/KSRM/2.1.3.htm [Accessed 18 Nov.

2017].

28. Gad-el-Hak, M. (2003) A New Kind of Science - Review. A New Kind of

Science, by S. Wolfram. Applied Mechanics Reviews, 56 (2), pp. B18-B19.

29. Gardner, M. (1970). MATHEMATICAL GAMES - The fantastic combinations of

John Conway's new solitaire game "life". Scientific American. [online] 223(4),

pp. 120-123. Available at:

https://web.stanford.edu/class/sts145/Library/life.pdf [Accessed 31 May

2020].

Architecture of Computational Ecosystems

| 8.1 References 295|

30. Grasse ́, P.-P. (1963). Les phe ́nome`nes sociaux chez les Animaux. Cahiers de

l’Institut de Science e ́conomique applique ́e. Suppl. 139, V, pp. 7–23.

31. Greenberg, J. M., Hastings, S. P. (1978). Spatial Patterns for Discrete Models

of Diffusion in Excitable Media. SIAM Journal on Applied Mathematics, 34(3),

pp. 515–523.

32. He, S., Wu, Q. H. and Saunders, J. R. (2006). A Novel Group Search Optimizer

Inspired by Animal Behavioral Ecology. In: IEEE International Conference on

Evolutionary Computation. Vancouver: IEEE, pp. 1272-1278.

33. Herr C.M., Kvan T. (2005) Using Cellular Automata to Generate High-Density

Building Form. In- Martens B., Brown A. (eds) Computer Aided Architectural

Design Futures 2005. Dordrecht: Springer, p. 10.

34. Herr, C. M., Ford, R. C. (2015). Adapting Cellular Automata as Architectural

Design Tools. In: Emerging Experience in Past, Present and Future of Digital

Architecture, Proceedings of the 20th International Conference of the

Association for Computer-Aided Architectural Design Research in Asia

CAADRIA 2015. Hong Kong: The Association for Computer-Aided

Architectural Design Research in Asia (CAADRIA), pp. 169-178.

35. Hilbert, D. & Ackermann, W. (1928). Principles of Mathematical Logic.

Providence, Rhode Island, USA: AMS Chelsea Publishing, pp. 113-134.

36. Ilachinski, A. (2001). Cellular Automata A Discrete Universe. Singapore:

World Scientific Publishing Co. Pte. Ltd. Pp. 808.

37. James, P. (2014). Urban Sustainability in Theory and practice: Circles of

Sustainability. London: Routledge. Pg 53

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

8| Bibliography |296

38. James, P. (2015). Urban Sustainability in Theory and Practice – Circles of

Sustainability. New York: Routledge, pp. 260.

39. Jencks C (1984). The language of post-modern architecture. Rizzoli

International Publications.

40. Koehler, D., Saleh, S. A., Li, H., Ye, C., Zhou, Y., Navasaityte, R., (2018).

Mereologies - Combinatorial Design and the Description of Urban Form. In:

GENERATIVE DESIGN - Volume 2 - eCAADe 36. Łódź, Poland: eCAADe,

Faculty of Civil Engineering, Architecture and Environmental Engineering

Lodz University of Technology, cop. 2018. pp. 85-94.

41. Krawczyk, R. J. (2002). Architectural Interpretation of Cellular Automata.

Generative Art 2002. pp. 7.1-7.8.

42. Kurzgesagt – In a Nutshell (2020) Can You Upload Your Mind & Live

Forever?. 10 December. Available at:

https://www.youtube.com/watch?v=4b33NTAuF5E (Accessed: 18 Dec.

2020).

43. Langton, C. G. (1984). Self-Reproduction in Cellular Automata. In: Physica

10D. Amsterdam: Elsevier Science Publishers B.V. (North-Holland Physics

Publishing Division), pp. 135-144.

44. Langton, C. G. (1995). Artificial Life: An Overview. Cambridge: MIT Press,

p.341.

45. Loizeau, Nicolas (2016). Building a computer in Conway's game of life.

[online] www.nicolasloizeau.com. Available at:

https://www.nicolasloizeau.com/gol-computer [Accessed 05 May 2020].

Architecture of Computational Ecosystems

| 8.1 References 297|

46. Magliocca, N. R. (2020). Agent-Based Modelling for Integrating Human

Behavior into the Food–Energy–Water Nexus. Land 2020[online] Volume

9(519), p. 25. Available at: https://www.mdpi.com/2073-445X/9/12/519/

[Accessed 24 Apr. 2021].

47. Martinez, L. M., Viegas, J. M. (2017). Assessing the impacts of deploying a

shared self-driving urban mobility system: An agent-based model applied to

the city of Lisbon, Portugal. International Journal of Transportation Science

and Technology. [online] 6(2017), pp. 13-27. Available at:

https://reader.elsevier.com/reader/sd/pii/S2046043016300442?token=0D6

3F683EEF2FFDA49A010FD6D7BD77A18B8CAC02BDE12BCA11F14B0F0702D

A369F02E3B46DAB8B7E279C516B24D40CC&originRegion=eu-west-

1&originCreation=20210703000320 [Accessed 22 May 2020].

48. Maturana, H. R. (2002). Autopoiesis, Structural Coupling and Cognition: A

history of these and other notions in the biology of cognition. Cybernetics &

Human Knowing, 9(3-4), pp. 5-34.

49. Maturana, H. R. and Varela, F. J. (1980). Autopoiesis and Cognition: The

Realization of the Living. Berlin: Springer Science & Business Media, p.146.

50. McCormack, J. (2001). Eden: an evolutionary sonic ecosystem. In: Advances

in Artificial Life, 6th European Conference. Berlin: Springer - Verlag, p. 10.

51. Minsky, M. (1967). Computation: Finite and Infinite Machines. New Jersey:

Prentice-Hall Inc.p. 334.

52. Mlot, N. J., Tovey, C. A., Hu, D. L. (2011). Fire ants self-assemble into

waterproof rafts to survive floods. In: Proceedings of the National Academy

of Sciences of the United States of America. [online] Washington DC: PNAS,

p 6. . Available at: https://www.pnas.org/content/108/19/7669.full

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

8| Bibliography |298

53. Moreno, D., Grinda, E. G. (2004). Soft Metropolitanism [Apartments in

Micro-Skyscrapers]. In: F. Marquez Cecilia, and R. Levene, ed., EL CROQUIS

118: CERO 9, ABALOS & HERREROS, NO.MAD, 1st ed. Madrid: El Croquis, pp.

140-147.

54. Odum, E. P. (1971). Fundamentals of Ecology. Philadelphia: Saunders.

55. OMG – Object Management Group (2017). OMG® Unified Modelling

Language® (OMG UML®) Version 2.5.1. Milford, Massachusetts: OMG

Group, pp. 754

56. O’ Rourke K.H. and Williamson, J. (2002). When did globalization begin?

European Review of Economic History, 6(1), pp. 23-50.

57. Oxman, N. (2010). Material-based Design Computation. PhD Thesis.

Massachuetts institute of Technology.

58. Paracer, S. and Ahmadjian, V. (2010) Symbiosis: An Introduction to Biological

Associations, Princeton: Oxford University Press, 304 pp.

59. Parpinelli, R. S. (2013). An Ecosystemic View for Developing Biologically

Plausible Optimization Systems. PhD Thesis. Federal University of

Technology Paraná.

60. Parpinelli R. S. and Lopes, H. S. (2014). A computational ecosystem for

optimization: review and perspectives for future research. Memetic

Computing, 7(1), pp. 29-41.

61. Parpinelli, R. S. and Lopes, H. S. (2011). An Eco-inspired Evolutionary

Algorithm Applied to Numerical Optimization. In: Third World Congress on,

Nature and Biologically Inspired Computing. [online] Salamanca: IEEE, pp.

Architecture of Computational Ecosystems

| 8.1 References 299|

466-471. Available at: https://ieeexplore.ieee.org/document/6089631

[Accessed 12 Oct. 2020].

62. Parpinelli, R. S. and Lopes, H. S. (2012). Biological plausibility in optimisation:

an ecosystemic view. International Journal of Bio-Inspired Computation,

4(6), pp. 345-358.

63. Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed

optimization and control. IEEE Control Systems Magazine. 22(3), pp. 52-67

64. Peters, I. (2009). Folksonomies. Indexing and Retrieval in Web 2.0. Berlin: De

Gruyter Saur, pp. 445.

65. Phillips, J. (1931). The Biotic Community. Journal of Ecology, [online] 19(1). p

1-24. Available at: www.jstor.org/stable/2255934 [Accessed 12 May 2021].

66. Railsback, S. F., & Grimm, V. (2011). Agent-based and individual-based

modelling: A practical introduction. Princeton: Princeton University Press.,

p.329.

67. Reid, C. R., Lutz, M. J., Powell, S., Kao, A. B., Couzin, I. D., and Garnier, S.

(2015). Army ants dynamically adjust living bridges in response to a cost–

benefit trade-off. In: Proceedings of the National Academy of Sciences of the

United States of America. [online] Washington DC: PNAS, p 6. . Available at:

https://www.pnas.org/content/pnas/early/2015/11/18/ -

1512241112.full.pdf

68. Ricklefs, R. E. (2008). The Economy of Nature. 6th ed. New York: W. H.

Freeman and Company, 620 pp.

69. Schilpp, P. A. (1959). Albert Einstein: Philosopher-Scientist. New York: MJF

Books, pp. 32 (Autobiographical Notes).

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

8| Bibliography |300

70. Schrandt, R. G., Ulam, S. M. (1967). On Recursively Defined Geometrical

Objects and Patterns of Growth. [online] Los Alamos, New Mexico: Los

Alamos Scientific Laboratory of the University of California, p. 19. Available

at:

https://digital.library.unt.edu/ark:/67531/metadc1027179/m2/1/high_res_

d/4573212.pdf [Accessed 05 May 2018].

71. Simon, D. (2009). Bio-geography based optimization. IEEE Transactions on

Evolutionary Computation. 12(6), pp. 702-713.

72. Sipser, M. (2006). Introduction to the Theory of Computation. 2nd ed.

Boston: Thomson Course Technology, 431 pp.

73. Situngkir, H. (2004). Epidemiology Through Cellular Automata: Case of Study

Avian Influenza in Indonesia. [online]. Available at:

https://arxiv.org/abs/nlin/0403035 [Accessed 24 Apr. 2021].

74. Situngkir, H. (2010). Exploring Ancient Architectural Designs with Cellular

Automata. [online]. Available at:

https://www.researchgate.net/publication/2146550_Epidemiology_Throug

h_Cellular_Automata_Case_of_Study_Avian_Influenza_in_Indonesia

[Accessed 31 Aug. 2019].

75. Soare R. I. (1996). Computability and Recursion. The Bulletin of Symbolic

Logic, [online] Volume 2(3), pp. 284-321. Available at:

https://www.jstor.org/stable/420992 [Accessed 8 Apr. 2020].

76. Sommerer, C., Mignonneau, L. (1994). A-Volve: A real-time interactive

environment. In: ACM Siggraph Visual Proceedings. pp. 172–173.

77. Tansley A.G. (1935). The use and abuse of vegetational concepts and terms.

Ecology, 16(3), pp. 284-307.

Architecture of Computational Ecosystems

| 8.1 References 301|

78. Tedeschi, A. (2014). AAD_Algorithms-Aided Design - Parametric Strategies

using Grasshopper®. Brienza, Italy: Le Penseur Publisher, p. 495.

79. Turing, A. (1937). On Computable Numbers, with an Application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society,

2(42), pp. 230-265.

80. Von Neumann, J. and Burks, A. W. (1966). Theory of Self-Reproducing

Automata. Illinois: University of Illinois Press, p.387.

81. Warang, A. (2017). Towards the Architecture of Computation. MS

Architecture Thesis. Universitat Internacional de Catalunya (UIC) Barcelona.

82. Warming, E. (1895). Plantesamfund - Grundtræk af den økologiske

Plantegeografi. Copenhagen: P.G. Philipsens Forlag, 335 pp.

83. Wenegreen, J. J. (2004). Endosymbiosis: Lessons in Conflict Resolution. PLoS

Biology, 2(3), pp. 345-358.

84. Wirth, E., Szabó, G., Czinkóczky, A. (2016). Measure of Landscape

Heterogeneity by Agent-Based Methodology. ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information Sciences. III(8),

pp. 145-151.

85. Wolfram, S. (1984). Computation Theory of Cellular Automata.

Communications in Mathematical Physics, 96 (1984), Pp.15-57.

86. Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media.

87. Wolfram, S. and Packard, N. H. (1985). Two-Dimensional Cellular Automata.

Journal of Statistical Physics, 38, pp. 901-946

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

8| Bibliography |302

88. Wood, D., Grönquist, P., Bechert, S., Aldinger, L., Riggenbach, D., Lehmann,

K., Rüggeberg, M., Burgert, I., Knippers, J., and Menges, A. (2020). From

Machine Control to Material Programming Self-Shaping Wood

Manufacturing of a High Performance Curved CLT Structure – Urbach Tower.

In: Fabricate 2020 Making Resilient Architecture, London: UCL press pp. 50-

57 Available at: https://www.uclpress.co.uk/products/154646 [Accessed 15

Jun. 2020].

89. www.Conwaylife.com, (2018). Forums for Conway's Game of Life. [online]

Available at:

https://www.conwaylife.com/forums/viewtopic.php?f=2&t=3303 [Accessed

17 May. 2019].

8.2 Software and Hardware references

1. Anemone 0.4 (2015). Poznań, Poland: Mateusz Zwierzycki.

2. AnyLogic. (2000). France: The AnyLogic Company.

3. Block’hood (2017). Los Angeles, USA: Plethora Project.

4. Ender 3 Pro (2018). Shenzen, PRC: Shenzhen Creality 3D Technology Co, Ltd.

5. Golly. (2005). England: Andrew Trevorrow and Tom Rokicki.

6. Grasshopper 3D (2007). Seattle: David Rutten, Robert McNeel & Associates.

7. Lucidchart (2008). Utah: Lucid Software Inc.

8. Lunchbox for Grasshopper (2012). Omaha, USA: Proving Ground Apps.

9. Mendeley. (2008). London: Elsevier.

Architecture of Computational Ecosystems

| 8.2 Software and Hardware references 303|

10. NetLogo. (1999). Illinois: Northwestern University Center for Connected

Learning and Computer-Based Modelling

11. Repast. (2006). Chicago: Repast HPC.

12. Rhinoceros, version 1 (1998). Seattle: Robert McNeel & Associates.

13. VRay for Rhino (1997). Sofia, Bulgaria: Chaos Group.

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

9| Appendix |304

9| Appendix

9.1 Grasshopper definitions – CESESE

Figure 9.1 – Part 1 (of 2) grasshopper definition that was employed to generate,

taxonomize and prototype the CEcube-tower as per 4.2

Architecture of Computational Ecosystems

| 9.1 Grasshopper definitions – CESESE 305|

Figure 9.2 – Part 2 (of 2) grasshopper definition that was employed to generate,

taxonomize and prototype the CEcube-tower as per 4.2

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

9| Appendix |306

9.2 Grasshopper definitions – CEMESE

Figure 9.3 – Part 1 (of 2) grasshopper definition that was employed to generate,

taxonomize and prototype the CEcube-cubocta-tower as per 4.3

Architecture of Computational Ecosystems

| 9.2 Grasshopper definitions – CEMESE 307|

Figure 9.4 – Part 2 (of 2) grasshopper definition that was employed to generate,

taxonomize and prototype the CEcube-cubocta-tower as per 4.3

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

9| Appendix |308

9.3 Grasshopper definitions – CESEME

Figure 9.5 – Part 1 (of 2) grasshopper definition that was employed to generate,

taxonomize and prototype the CEcube-floating-tower as per 4.4

Architecture of Computational Ecosystems

| 9.3 Grasshopper definitions – CESEME 309|

Figure 9.6 – Part 2 (of 2) grasshopper definition that was employed to generate,

taxonomize and prototype the CEcube-floating-tower as per 4.4

Theorizing, Taxonomizing and Prototyping operational Ecosystems in
Computational environments

9| Appendix |310

9.4 Grasshopper definitions – CEMEME

Figure 9.7 – Part 1 (of 2) grasshopper definition that was employed to generate,

taxonomize and prototype the CEcube-cubocta-floating-tower as per 4.5

Architecture of Computational Ecosystems

| 9.4 Grasshopper definitions – CEMEME 311|

Figure 9.8 – Part 2 (of 2) grasshopper definition that was employed to generate,

taxonomize and prototype the CEcube-cubocta-floating-tower as per 4.5

	port1
	WARANG, Angad_Tesis definitiva
	Abstract
	Abstract (in Spanish)
	Acknowledgements
	Introduction and The State of the Art
	1|On the relevance of computational ecosystems
	1.1 The nature of the problem
	1.1.1 The built form
	1.1.2 The built form and the design
	1.1.3 The built form, the design, and the algorithm
	1.1.4 The built form and the algorithm
	1.2 The Research – What are computational ecosystems
	1.2.1 Objectives for Computational Ecosystems
	1.2.2 Methodological framework for Computational Ecosystems
	1.2.3 Expected projections for Computational Ecosystems
	1.2.4 The relevance of Computational Ecosystems
	1.3 Structure
	1.3.1 Structure of the Research
	1.3.2 Structure of the Thesis
	Theory
	2|On theoretical assumptions for Computational Ecosystems
	2.1 Establishing the semantics
	2.1.1 About Ecosystems
	2.1.2 About Computation
	2.1.3 About Computational Ecosystems
	2.1.4 About the Implementation of Computational Ecosystems
	2.2 Applicability of the semantics
	2.2.1 Applicability in biology, epidemiology and behavioral sciences
	2.2.2 Applicability in visual arts and design
	2.3 Cellular Automata as Computational Ecosystem
	2.3.1 Cellular Automata – John Von Neumann model
	2.3.2 Cellular Automata – John Conway model
	2.3.3 Cellular Automata – Stephen Wolfram model
	2.3.4 Cellular Automata – applications in the AEC Industry
	2.4 Theoretical Assumptions for Computational Ecosystems
	Objectives
	3| On the semantic syntax for the Computational Ecosystems.
	3.1 Lexical Semantics from theoretical assumptions
	3.1.1 Element
	3.1.2 Economy
	3.1.3 Ecosystem
	3.2 Establishing Logical Semantics for operational objectives
	3.2.1 General Assumptions for all Procedural Sequences (CESESE, CEMESE, CESEME, and CEMEME)
	3.2.2 Single Element Single Economy Ecosystem (CESESE)
	3.2.3 Multi Element Single Economy Ecosystem (CEMESE)
	3.2.4 Single Element Multi Economy Ecosystem (CESEME)
	3.2.5 Multi Element Multi Economy Ecosystem (CEMEME)
	3.3 Semantic Syntax for the Procedural Sequences
	Methodology
	4| On the procedural sequences for the Computational Ecosystems
	4.1 Primary objectives through Procedural sequences
	4.2 Single Element Single Economy Ecosystem (CESESE)
	4.2.1 Case Studies
	4.2.2 Simulations
	4.2.3 Prototyping
	4.2.4 CEcube-tower
	4.3 Multiple Elements Single Economy Ecosystem (CEMESE)
	4.3.1 Case Studies
	4.3.2 Simulations
	4.3.3 Prototyping
	4.3.4 CEMESE
	4.4 Single Element Multiple Economies Ecosystem (CESEME)
	4.4.1 Case Studies
	4.4.2 Simulations
	4.4.3 Prototyping
	4.4.4 CESEME
	4.5 Multi Elements Multi Economies Ecosystem (CEMEME)
	4.5.1 Case Studies
	4.5.2 Simulations
	4.5.3 Prototyping
	4.5.4 CEMEME
	4.6 Procedural sequences for Computational Ecosystems
	Results
	5| On the consequences of the Computational Ecosystems
	5.1 Results of CESESE
	5.2 Results of CEMESE
	5.3 Results of CESEME
	5.4 Results of CEMEME
	5.5 Conclusive thoughts on the results of all the taxa
	Observations
	6| On the investigative analysis of the Computational Ecosystems
	6.1 Effects of distinct ∈, Ψ, and N
	6.2 Examples of possible distinct ∈, Ψ, and N for CE
	6.3 Effects of distinct Initial States
	6.4 Examples of possible distinct Initial States for CE
	6.5 The inferences of the analysis
	Conclusions
	7| On the prospective projections for the Computational Ecosystems
	7.1 Probable research trajectories in Algorithm-aided-design
	7.2 Probable research trajectories in Additive Manufacturing
	7.3 Probable research trajectories in Pedagogy
	7.4 Probable research trajectories in Software Development
	7.5 Concluding Statements
	7.5 Concluding Statements (in Spanish)
	8| Bibliography
	8.1 References
	8.2 Software and Hardware references
	9| Appendix
	9.1 Grasshopper definitions – CESESE
	9.2 Grasshopper definitions – CEMESE
	9.3 Grasshopper definitions – CESEME
	9.4 Grasshopper definitions – CEMEME

