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In the memory of John Horton Conway (1937 - 2020),  

who died from COVID-19 complications. 

 

May his ‘Game of Life’ sustain an infinite runtime 

and continue to inspire us…  



Architecture of Computational Ecosystems 

| The nature of the problem III| 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

The real problem of humanity is the following: 

We have  

Paleolithic emotions, 

Medieval institutions, 

and God-like technology 

-Edward O. Wilson (1929) 
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Abstract  

Industry 4.0 has rapidly and significantly transformed the Architecture, Engineering, 

and Construction (AEC) industry globally since the early 2000s. The allographic 

architectural profession until the late 1990s has seen a paradigm shift towards a more 

autographic practice after the inclusion of the algorithm in the otherwise traditional 

construction of the built form through design. The rise of the algorithm in the AEC 

industry comes with robust infrastructural support from the unprecedented 

emergence of computational design and digital fabrication. Judging by  the rate of 

technological progress, it is highly likely that computational design would become 

more autonomous and digital fabrication would become more data-driven. Due to 

the increased probability in the ubiquity of the algorithm, design (as a tool for 

rationalizing form, space and enclosure and creating construction documents) stands 

on the threshold of becoming redundant. This research and thesis are based on the 

assumption that design would be replaced by a communicational logic between the 

built form and the algorithm. 

The research proposes to architect this relationship between the built form and the 

algorithm by theorizing, generating, taxonomizing, and prototyping a dynamic, 

reciprocal, symbiotic feedback loop in the form of Computational Ecosystems (CE). 

Thus, firstly the research aims to establish strong theory for the CE by installing a 

semantic syntax. Secondly, the research aims to generate autonomous, autopoietic, 

context-aware feedback loops as CE, based on the computational framework of 

Cellular Automata (CA). Eventually, the research intends to demonstrate how digital 

fabrication constraints could also be used as fitness conditions to generate, 

taxonomize and prototype digitally created built forms in the physical world by 

conducting empirical evaluations with the use of additive manufacturing. The 

research also postulates that just like its organic counterpart, a CE would be inhabited 

by biotic and abiotic agents or elements (denoted as ∈ in this thesis) which are 

governed by organizing principles or economies (denoted as Ψ in this thesis). 
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In order to achieve the objectives, the research has implemented a methodology that 

applies the semantic syntax into performing operational objectives for four distinct 

types of CE based on the cardinalities of their constituent participants (i.e. ∈ and Ψ 

parameters), forming the canonical taxonomies of CE. These four distinct taxa, also 

called as procedural sequences would be SESE (with singular ∈ and Ψ parameters), 

MESE (with multiple ∈ parameters but a singular Ψ parameter), SEME (with singular 

∈ parameter but multiple Ψ parameters), and MEME (with multiple ∈ and Ψ 

parameters). To accomplish these operational objectives the research methodology 

involves implementing three Primary Objectives – Case Studies, Simulations, and 

Prototyping to all the four procedural sequences (i.e., SESE, MESE, SEME, and 

MEME). 

The results generated from the four procedural sequences have then been analyzed 

independently and comparatively, to identify patterns and anomalies. These analyses 

have then been further generalized into determining canonical modus operandi that 

can be used in generating, taxonomizing, and prototyping a wide range of CE in the 

future. Furthermore, the conclusions of the research provide a roadmap for possible 

future research trajectories for the development and implementation of the 

Architecture of Computational Ecosystems.  



Architecture of Computational Ecosystems 

| The nature of the problem VII| 

Abstract (in Spanish) 

Industry 4.0 ha transformado rápida y significativamente la industria de la 

Arquitectura, la ingeniería, y la construcción (AEC siglas en ingles) a nivel mundial 

desde principios del año 2000. El ejercicio profesional de la arquitectura alográfica 

hasta finales de la última década de los años 1990 ha visto un cambio de paradigma 

hacia una práctica más autográfica después de la inclusión del algoritmo en el 

desarrollo tradicional de la forma construida a través de los medios del diseño. Este 

advenimiento del algoritmo en la industria AEC viene con un sólido soporte de 

infraestructura del aumento sin precedentes del diseño computacional y la 

fabricación digital. Al observar la tasa de progreso tecnológico, es muy probable que 

el diseño computacional se vuelva más autónomo y la fabricación digital se vuelva 

más impulsada por los datos. Debido a esta mayor probabilidad en la ubicuidad del 

algoritmo, el diseño como herramienta para la racionalización de la forma, el espacio 

y el cerramiento y el diseño como herramienta para la creación de un documento de 

construcción se encuentra en el umbral de volverse redundante. La investigación y 

esta tesis se basan en el supuesto de que el diseño sería reemplazado por una lógica 

comunicacional entre la forma construida y el algoritmo. 

La investigación propone diseñar esta nueva relación (o lógica de comunicación) 

entre la forma construida y el algoritmo mediante la teorización, generación, 

taxonomización y prototipado de un bucle de retroalimentación simbiótico, 

recíproco y dinámico en la forma de Ecosistemas Computacionales (CE siglas en 

inglés). Por lo tanto, en primer lugar, la investigación tiene como objetivo establecer 

una base teórica sólida para la CE mediante la instalación de una sintaxis semántica. 

En segundo lugar, la investigación tiene como objetivo generar ciclos de 

retroalimentación autónomos, autopoyéticos y sensibles al contexto como CE, 

basados en el marco computacional de Cellular Automata (CA siglas en inglés). 

Eventualmente, la investigación tiene la intención de demostrar cómo las 

restricciones de fabricación digital también podrían usarse como condiciones de 
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aptitud para generar, taxonomizar y prototipar formas construidas creadas 

digitalmente en el mundo físico mediante la realización de evaluaciones empíricas 

con el uso de fabricación aditiva. Al establecer la teoría, la investigación también 

postula que, al igual que su contraparte orgánica, una CE estaría habitada por agentes 

o elementos bióticos y abióticos (denotados como ∈ en esta tesis) que se rigen por 

principios organizativos o economías (denotados como Ψ en esta tesis). 

Para lograr los objetivos, la investigación ha implementado una metodología que 

aplica la sintaxis semántica en la realización de objetivos operativos para cuatro tipos 

distintos de CE basados en las cardinalidades de sus participantes constituyentes (es 

decir, los parámetros ∈ y Ψ), formando las taxonomías canónicas de CE. Estos cuatro 

taxones distintos, también llamados como secuencias procedimentales, serían SESE 

(con parámetros ∈ y Ψ singulares), MESE (con parámetros ∈ múltiples pero un 

parámetro Ψ singular), SEME (con parámetro ∈ singular pero parámetros Ψ 

múltiples) y MEME ( con múltiples parámetros ∈ y Ψ). Para lograr estos objetivos 

operativos, la metodología de investigación implica la implementación de tres 

objetivos principales: estudios de casos, simulaciones y creación de prototipos para 

las cuatro secuencias de procedimientos (es decir, SESE, MESE, SEME y MEME). 

Los resultados generados a partir de las cuatro secuencias de procedimientos se 

analizaron de forma independiente y comparativa para identificar patrones y 

anomalías. Luego, estos análisis se han generalizado aún más para determinar el 

modus operandi canónico que se puede usar para generar, taxonomizar y crear 

prototipos de una amplia gama de CE en el futuro. Además, las conclusiones de la 

investigación proporcionan una hoja de ruta para posibles trayectorias futuras de 

investigación para el desarrollo e implementación de la Arquitectura de Ecosistemas 

Computacionales. 
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1|On the relevance of computational ecosystems 

1.1 The nature of the problem 

In a nutshell, the doctoral research seeks to theorize, prototype and taxonomize a 

novel design automation technique termed as Computational Ecosystems. 

The research derives its semantics and functionalities of Computational Ecosystems 

from the computational logic of cellular automata. The research also relies on 

behavioral simulations generated by employing agent-based systems while operating 

within the design and programming environments of Rhinoceros, Grasshopper 3D, 

and several of its plugins (both inbuilt and third-party). 

Although, the concept of cellular automata forms the theoretical backbone of this 

research, there are a very many areas of pure and applied sciences that the 

theoretical foundation borrows from. It is therefore critical to understand the 

structural framework of the research, pertaining to the hypothesis, objectives, 

methodology, and expected outcome before diving into the specifics of the literature. 

It is also necessary to understand the relevance of the research in the age of the 4th 

Industrial revolution while considering technological advancements in relevant 

domains and industries. And finally, it is important to establish the projections of the 

research, so as to understand an overall research trajectory that has been undertaken 

in the span of the past four years (i.e., the research duration). 

Apart from elaborating on the abstract and laying the foundation for the theoretical 

background, the concluding part of this chapter also elaborates the structure of this 

Research and the structure of the subsequent Thesis. 
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1.1.1 The built form 

The earliest traces of built forms, which could now be termed as architecture, belong 

to the Neolithic period. Although all the dwellings of this era are ruins and remains 

that have been through thorough archaeological scrutiny, much of the knowledge 

that they provide of the era is of a speculative nature. However, one can deduce basic 

information of the purpose, materiality and organization of these built forms. The 

structures, which were built mostly for a residential purpose, built with materials 

from the surroundings (roughly within walking distance) and with the knowledge and 

technology that was suitable to the era and early human development, have strong 

traces of a civilization that had quite recently adopted a sedentary lifestyle.  

The built forms of this era possess subtle evidences of a civilization on the cusp of a 

phase transition. Their previous nomadic lifestyle from the Paleolithic and Mesolithic 

ages had resulted in sufficient wisdom on pattern recognition, letting the Neolithic 

humans gain rudimentary control over survival. The traditional hunter-gatherer 

settlements, which were now challenged with growing abundance of food, had an 

intuitive urge to build shelters. Shelters not just for themselves, but for their surplus 

food, their young offspring, and their newly acquired belongings such as their tools 

and containers. Although the essential purpose of the built form was to house the 

Neolithic human, the primary reason of building was protection. Protection from the 

weather, from beasts, from pests and from other humans.  

A recent study in political economy suggests that the Neolithic economic revolution 

of agriculture could have been a consequence of private land ownership and not the 

other way around as was initially assumed and recorded (Bowles and Choi, 2019)1. 

This means, that even in the Neolithic age, built forms were not mere shelters serving 

an objective purpose, but were a symbol of power and prosperity. 

 
1 Bowles, S. & Choi, J-K. (2019). The Neolithic Agricultural Revolution and the Origins of Private 
Property. Journal of Political Economy, 127(5), pp. 2186-2228. 
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1.1.2 The built form and the design 

Cave paintings stand a strong evidence to the fact that language and documentation 

predates architecture and construction. However undeveloped the cognitive skills of 

the early human brain were, the perceptive skills were surely quite highly developed 

for the time. For example, the paleolithic cave paintings of Lascaux, France (dating 

back to 15,000 - 17,000 BCE) contain nearly 6,000 figures of animals, humans, and 

abstract signs. One of the figures, famously known as ‘The crossed Bison’, as shown 

in figure 1.1, has a peculiar form of perspective illusion which has been considered 

quite an advanced technique for the time. 

 

Figure 1.1 – The cross Bison of Lascaux – part of the paleolithic cave paintings (15,000 – 17,000 BCE) 

(provenance – Marcel Ravidat, at Lascaux, France in 1940). Photo by Paula Kuitenbrouwer (2019). 

Source: https://mindfuldrawing.com/2019/08/07/crossed-bison-of-lascaux-art-study-through-

drawing/ 
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Quite evidently, the Neanderthals were equipped with superior drawing techniques 

by the time they started building protective forms. However, the earliest traces of 

documented architectural drawings occur in excavated statues made during 2,200 

BCE from the regions of ancient Egypt and Mesopotamia, roughly 12 millennia after 

the Lascaux cave paintings. As shown in figure 1.2, the statue of emperor Gudea, ruler 

of Lagash holds an architectural plan on his lap. The plan depicts construction data 

for the temple of Ninĝirsu (ancient Mesopotamian god of hunting, law, scribes, and 

war), which was commissioned and built under the rule of emperor Gudea.  

 

                    (a)                                                                          (b) 

Figure 1.2 – (a) Diorite statue of Gudea (2120 BCE) (provenance – Ernest de Sarzec, at Tell Telloh, 

Iraq in 1924) – part of the statues of Gudea collection at Musée du Louvre. Photo by Daryl Mitchell 

(2014). 

Source:https://en.wikipedia.org/wiki/Statues_of_Gudea#/media/File:Gudea,_statue_d%C3%A9di%C

3%A9e_au_dieu_Ningirsu_(Louvre,_AO_2).jpg (b) image of the architectural plan of the temple of 

Ninĝirsu on the lap of Gudea - Diorite statue of Gudea (2120 BCE) (provenance – Ernest de Sarzec, at 

Tell Telloh, Iraq in 1924) – part of the statues of Gudea collection at Musée du Louvre. Photo by 

Daryl Mitchell (2014). Source: https://www.reddit.com/r/ArtefactPorn/comments/crhobh 

/statue_of_gudea_of_lagash_with_architectural_plan/ 
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As the field of archeology would evolve in the future and emerging technological 

upgradation and equipment might shed more clarity in this field, it later might be 

discovered that the act of drawing architecture indeed precedes 2,200 BCE by 

centuries. However, it is rather curious to note that while the ancient humans were 

proficient in the technology of building and adept at drawing, it took them several 

centuries to develop a graphical documentation for their built forms. Needless to say, 

it finally did happen and the built form and the design documentation formed an 

amalgamated process of architectural design and gradually metamorphosed into the 

entire architecture, engineering and construction (AEC) industry. 

When Marcus Vitruvius Pollio wrote ‘de architectura’ for his patron, the emperor 

Caesar Augustus between 30 and 15 BCE, it was a manuscript written as a guide for 

building projects. Being the oldest surviving treatise on the subject of the theory of 

architecture, ‘de architectura’ has become the first book on architectural theory that 

has been apotheosized by architects from the medieval era to the modern digital age.  

Leon Battista Alberti, later developed Vitruvius’s theory into his own ideas on 

architectural theory written in the treatise ‘de re aedificatoria’ between 1443 and 

1452 CE. According to Mario Carpo (2011)2, “Alberti’s invention of architectural 

design was crucial in shaping architectural modernity.” Alberti was also the first in 

defining perspective images as vestiges of light rays on a surface thereby laying the 

ground work for architectural documentation being a key aspect in constructing the 

built form. Fueled by the humanist movement at the peak of the renaissance era, 

Alberti claimed that architects should not be makers but designers. As a 

consequence, this helped architecture to transition from its “autographic status as a 

craft (conceived and made my artisan builders) into its modern allographic definition 

as an art (designed by one to be constructed by others).”3  

 
2 Carpo M (2011). The Alphabet and the Algorithm. The MIT Press, pp. 10-19.  
3 Ibidem 
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Initiated by Alberti’s vision, the rudimentary architectural documentation of the time 

soon translated into notational systems of scaled architectural drawings and 

orthographic projections, and the built form and the design were soon fused into a 

unified process with two equally important reciprocals. 

At the turn of the 19th century, and with the arrival of the first industrial revolution, 

the built form and the design had equally benefitted. The built form saw a 

revolutionary transformation in the construction practices and technology brought 

in by the new industrially produced material. The iron industry, glass manufacturing, 

cement and most notably the groundbreaking innovations in the concrete industry, 

pushed the built form to become taller and bigger. The design on the other hand, 

benefitted largely from the industrial innovations in the printing industry. While, the 

architectural drawings were previously being made manually, the continuous 

printing press made sure that drawings could now be printed. 

With its technological contributions to several industries, the first industrial 

revolution also triggered the practices of mechanization and mass production of 

identical objects. The built form and the design both were immensely impacted by 

this new phenomenon. With cheaply produced identical construction elements such 

as doors, windows, and staircases, the built form became more monotonous and 

functional. With the rising issues of housing the ever-increasing workforce, 

“functionality took over as the leading standard and the principle ontology” (Jencks, 

1984)4. As a corollary, the printing press assisted the design by becoming an enabler 

in copies of drawings. It became more convenient for the architect to delegate all the 

different stages and aspects of a conventional construction project to several 

consultants who would then provide expertise within their scope of work. 

Thus, the built form and the design were faster and more efficient in executing a 

construction project to house the modern industrious human and the industry.  

 
4 Jencks C (1984). The language of post-modern architecture. Rizzoli International Publications. 
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1.1.3 The built form, the design, and the algorithm 

The second industrial revolution was besmirched by the two world wars, nonetheless 

the built form and the design thrived and flourished despite the chaos and 

destruction. Increase in productivity, improved living standards, rapid urbanization 

within the industrialized countries and improved public health and sanitization 

triggered large scale construction projects. With such a high demand, the role of the 

architect as a designer became more prominent and mainstream as the technology 

enabled the built form and the design to be more independent of its location. 

Building materials were no longer location specific, as international logistics were 

more efficient and sped up. “The transportation revolution that occurred between 

1820 and 1850” (O’Rourke et al, 2002)5 triggered globalization and the global 

uniformity and availability of construction materials and techniques. Although 

supported by imperialism and colonization, the built form was transcendental. The 

design however, had not achieved this feat until the arrival of computers and the 

digital revolution or the third industrial revolution. According to Carpo (2011)6, 

“architectural design is a purely informational operation, its processes are defined by 

a specific range of cultural and media technologies.” The invention of the Internet 

and the rise of home computers in 1970s and 80s that triggered the conversion of 

the analog to the digital was the cultural and media revolution that architectural 

design needed. Design could now be done remotely while the construction was 

executed and monitored on-site. Although the architect was physically more 

detached from the site, the design could still be as involved as before. At the turn of 

the millennium with the internet and the home computer becoming mainstream 

throughout the world, an architect could now be globally present for their designs. 

The built form and the design were equally transcendental and global.  

 
5 O’ Rourke K.H. and Williamson, J. (2002). When did globalization begin? European Review of 
Economic History, 6(1), pp. 23-50. 
6 Carpo M (2011). The Alphabet and the Algorithm. The MIT Press, pp. 10-19. 
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The AEC industry has since caught up with the global socio-economic impact of the 

digital revolution in the form of out-sourcing. While the built form is constructed 

sustainably by reducing the embodied energy, the design is generated by 

collaborations of several consultants around the globe at every stage before, during 

and after construction. With the insurgence of building information modelling (BIM), 

a construction project becomes more reliant on the project management consultant 

(PMC), than the architect. Furthermore, the AEC industry has seen the rise of 

paperless construction projects, as shown in figure 1.3, where a contractor 

implements state-of-the-art gadgets and software applications (apps) to execute a 

project without printing the drawings. 

 

Figure 1.3 – iOS application Autodesk PlanGrid in use. Source: https://www.plangrid.com/nl/ 
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A contractor would have the design documentation directly delivered on an iPad 

application as the stage-wise delivery of drawings in whichever form the construction 

project dictates. The PMC can then have a much bigger control on the execution of 

the project and update the architect about all the stages of different parts of the 

projects simultaneously and dynamically. This new dynamic relationship between the 

built form and the design has been absolutely unprecedented throughout the history 

of construction. But the relationship is possible and strongly reliant on the existence 

of a third element – the algorithm. 

Triggered by the ‘entscheidungsproblem’ (Hilbert and Ackermann, 1928)7 the mid-

20th century saw a paradigm shift in mathematics and computation contributed by 

Alan Turing and John Von Neumann. The idea of modern computation and the 

thinking machine, which would later develop into artificial intelligence also has its 

conceptual roots in the works published during this era. Aided by significant 

technological revolutions of the time by major tech-organizations, the computer had 

become more personal, mobile, robust and affordable in the late 90s. At the turn of 

the millennium, the computer was not just mainstream, but was either directly or 

indirectly responsible for all major social, economic and political reform. However, it 

did not remain as a personal appliance or gadget, that would have a preset, 

predetermined mode of operation and use. The computer provided users with the 

freedom of creating their own computation, that would consequently create new 

tools and develop new advanced technologies. Moreover, the computer gave 

humanity a new procedural way of solving problems by means of algorithms. 

As history dictates, the AEC industry took some time to incorporate the algorithm in 

its workflow. But, unlike their predecessors who took millennia or centuries to 

upgrade and update, the modern digital architect took a mere couple of decades. 

 
7 Hilbert, D. & Ackermann, W. (1928). Principles of Mathematical Logic. Providence, Rhode Island, 
USA: AMS Chelsea Publishing, pp. 113-134. 
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When David Rutten created the program ‘Explicit History’ in 2007, it was used as a 

digital interface to create generative algorithms within the environment of CAD 3D 

modelling software Rhinoceros 3D. Since its arrival and subsequent evolution into 

‘Grasshopper’ the program has become endemic to young architects and designers 

with limited or no prior knowledge or experience of programming, but willing to 

design with the aid of algorithms. Grasshopper, Autodesk Dynamo, 

GenerativeComponents and Archimatix serve as visual programming languages that 

help architects design their own bespoke, discreet design programs. 

Although, the algorithm was in its infancy and couldn’t make a substantial 

contribution to the AEC industry in the early 2000s, the 2010s have seen a 

considerable rise in architecture realized by the algorithm alone. This sudden surge 

in the use of algorithms in the last two decades has also been sufficiently supported 

by the fourth industrial revolution or industry 4.0 

Industry 4.0 is essentially epitomized by non-standardization and decentralized 

production of objects. The idea of identical repetition of products that marked the 

last century, has transformed into the idea of mass customization. The production 

industry has seen a return of bespoke products in the market. However, these 

products are now produced digitally and not manually. Aided by novel digital 

fabrication techniques from additive manufacturing to robotic building, the architect 

has been quite successful in hacking into industrial equipment by means of the 

algorithm. Design algorithms are already being employed by research groups, 

universities and architectural practices to analyze, model and build. 

It would now be prudent to summarize the journey of the architect - If the advent of 

the built form equipped the Neanderthals with protection and power, and the 

addition of the design made the architect truly transcendental, the rise of the 

algorithm has certainly transformed architecture back from an allographic profession 

into an autographic craft. Rather than the chief designer, an architect is more of a 

digital craftsman now. 
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1.1.4 The built form and the algorithm 

After industry 4.0, design research as a self-sustaining industry has evolved 

considerably by creating strong collaborative workflows between education, 

academic research and practice-based research. A very many design researchers 

have been exploring and experimenting the dynamic and yet discrete link that the 

algorithm forms between the built form and the design. But, because the existing 

relationship between the built form and design had emerged as a corollary to the 

contemporary art movements which were prevalent during the third industrial 

revolution, a lot of above-mentioned design research had a somewhat restricted, 

rational, functionalistic approach to them.  

While criticizing on architectural design approach at the beginning of the industry 4.0, 

Neri Oxman quoted in her seminal doctoral research thesis that “the institutionalized 

separation between form, structure, and material, is deeply embedded in the 

modernist design theory. Paralleled by a methodological partitioning between 

modelling, analysis and fabrication, it has resulted in geometric-driven form 

generation in the early 21st century architecture and such prioritization of form over 

material has been carried into the development and design logic of CAD” (Oxman, 

2010).8 This partitioning is quite evident in BIM. “BIM has led organizations towards 

a more integrated process of design, procurement, construction and facilities 

management within a single contract delivery document and information hub, 

thereby revolutionizing the construction industry” (Allen and Shakantu, 2016)9. But in 

the process, the architect has also been categorized into design architect & delivery 

architect, where the latter has gained higher prominence and economic relevance. 

 
8 Oxman, N. (2010). Material-based Design Computation. PhD Thesis. Massachuetts institute of 
Technology. 
9 Allen, C. and Shakantu, W. (2016). The BIM revolution: a literature review on rethinking the 
business of construction. In: 11th International Conference on Urban Regeneration and 
Sustainability, Bilbao: WITconferences pp. 919-930 Available at: 
https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/204/35716 
[Accessed 17 May 2019]. 
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However, with the aid of computational design and digital fabrication, to a certain 

extent, designers have been successful in creating algorithms which can design built 

forms by simultaneously performing modelling, analysis and fabrication. Following 

her afore mentioned critique on traditional architectural design, with extensive 

research in the field of Material-based Design Computation, Oxman has paved the 

way for computationally-enabled form-finding procedures. Many research projects 

that emphasize on the synthesis of such algorithms, have gained prominence not just 

in the field of education and academic research, but also in practice-based research. 

Figure 1.4 illustrates the computational workflow adopted during the modelling, 

analysis and fabrication of a research building - Urbach Tower designed and built by 

the Institute for Computational Design and Construction (ICD) at the Universitat 

Stuttgart, Germany. The figure shows how an algorithm could generate a streamlined 

workflow that embeds structural analysis (deformation), Material modelling (CLT 

utilization) and Fabrication logic (connection angles). 

 

Figure 1.4 – Optimization workflow – Urbach tower – ICD/ITKE, Stuttgart, Germany. Source: 

https://www.icd.uni-stuttgart.de/img/wp-content/gallery/urbach_process_icd-itke/URBACH-

TURM_-process_-03.jpg?__scale=w:1000,h:1000,q:100,t:3 
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The Urbach Tower (Wood et al, 2020)10 and many such research projects are 

testimony to the fact that an algorithm could be used to generate, maintain, 

optimize, and execute a design process while transcending the methodical separation 

in the workflow. It is also quite clear from the aforementioned examples, that 

algorithm has a unique position in the existing ecosystem of the built form and 

design. Thus, it could be astute to make the following assumptions:   

• As digital fabrication becomes more data driven, the role of design in the AEC 

industry as a mode of generating the construction document becomes more 

redundant. For example, a robot doesn’t require the plan, section and 

elevation to construct a building, it merely needs the tool-path generated 

over the model of the building to conduct the fabrication.  

• On the other hand, as computational design becomes more autonomous, the 

role of design as the mediator of a construction project becomes more 

redundant. For example, the design data for the structure, material, services 

and equipment will neither be methodically separated into modelling, 

analysis and fabrication nor will be collected from different specific 

consultants, but dynamically updated and optimized through cloud data.  

As the algorithm finds a more intimate dialogue with the built form, we are now on 

an evolutionary threshold of establishing a new symbiotic relationship between the 

two. Some might argue that with the role of design becoming redundant, the role of 

the designer suffers a similar fate. The argument, however is not rational. With the 

algorithm replacing the design, the designer would have a more critical, intellectual 

and an overall autographic position in the AEC industry. 

 

 
10 Wood, D., Grönquist, P., Bechert, S., Aldinger, L., Riggenbach, D., Lehmann, K., Rüggeberg, M., 
Burgert, I., Knippers, J., and Menges, A. (2020). From Machine Control to Material Programming Self-
Shaping Wood Manufacturing of a High Performance Curved CLT Structure – Urbach Tower. In: 
Fabricate 2020 Making Resilient Architecture, London: UCL press pp. 50-57 Available at: 
https://www.uclpress.co.uk/products/154646 [Accessed 15 Jun. 2020]. 



Architecture of Computational Ecosystems 

| The Research – What are computational ecosystems 15| 

1.2  The Research – What are computational ecosystems 

What if the built form was constructed, monitored and governed by an 

autonomous, unbiased algorithm? 

What if this algorithm was dynamically constructed, monitored and governed by 

the built form? 

The research attempts to establish a dynamic, reciprocal, symbiotic relationship 

between the built form and the algorithm by making computational design more 

autonomous and digital fabrication more data driven. The research also attempts to 

empirically demonstrate a fluid design workflow that performs modelling, analysis 

and fabrication to generate form, structure and enclosure for an architectural intent. 

To implement autonomy in computational design, the research pursues the empirical 

hypothesis: Cellular Automata can be employed as a computational framework to 

generate, taxonomize and prototype design automation algorithms. These design 

automation algorithms will be created by using predetermined data meant for an 

architectural design such as the structure, functional arrangement, topographical 

data, climatic data, services and equipment. 

To prototype the design automation algorithms using digital fabrication the research 

pursues the empirical hypothesis: Fabrication data in the form of G-code can be used 

as a fitness condition to  generate, taxonomize and prototype digitally generated 

built forms. These built forms will be prototyped through additive manufacturing.  

The process of fabricating the built forms that could be generated in this way will 

dictate the writing and re-writing of the algorithm that will eventually generate the 

built form, creating a dynamic, reciprocal, symbiotic loop. The creation, maintenance 

and evaluation of this feedback loop is the architecture of computational 

ecosystems. 
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1.2.1 Objectives for Computational Ecosystems 

In the context of the research hypotheses established both for the built form and the 

algorithm, the study pursues the architecture of computational ecosystems by 

allocating methodical and empirical objectives. To find, theorize, establish, 

taxonomize, and prototype a dynamic, reciprocal, symbiotic relationship between 

the built form and the algorithm, the research follows three primary objectives.  

The primary objectives are as followed:  

• Primary objective I (case studies) – To understand and evaluate energy flows 

and nutrient cycles within existing ecosystems. These could also be existing 

or already established computational ecosystems such as bio-based 

optimization algorithms. Here, cases of these existing ecosystems will be 

studied for the interoperability and symbiosis between their constituent 

agents to establish a theoretical framework for the research. 

• Primary objective II (simulations)– To simulate these dynamic ecosystems for 

predetermined biotic and abiotic elements in computational environments to 

form protective, habitational spaces. The simulations will be performed by 

implementing the Cellular Automata and Agent Based Modelling. Here, the 

simulated ecosystems will be taxonomized to understand and evaluate the 

effect of the biotic and abiotic elements on the algorithm and vice versa. 

• Primary objective III (prototyping) – To prototype the fabrication strategy for 

the optimized ecosystems considering a predetermined additive 

manufacturing technique. The prototyping will be carried out by 

implementing the fused deposition modelling (FDM) technique. Here, the 

generated G-code will be provided as a feedback into the simulation of the 

ecosystem. 
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All the primary objectives will be considered as research template that drives all the 

experimentations and findings. However, the research relies strongly on establishing 

theoretical background to attain the said empirical objectives. Therefore, the 

research needs to set up literary objectives as part of secondary objectives. 

The literary objectives are as followed:  

• Literary objective I (Lexical semantics) – To apprise terminologies and diction 

from the fields of biology, ecology, computation, applied mathematics, 

applied mechanics, fabrication, manufacturing and economics relevant to the 

research as a literary aid to establish the structure of thought. Here, the lexical 

semantics of the research will be formed. These terminologies will be further 

implemented in the research. 

• Literary objective II (Logical semantics) – To repurpose existing terminologies 

and diction in the fields of biology, ecology, computation, applied 

mathematics, applied mechanics, fabrication, manufacturing and economics 

relevant to the research as a literary aid to establish the structure of process. 

Here, the logical semantics of the research will be formed. These semantics 

will be used in the research to transcribe concepts into algorithms. 

A key motive behind establishing literary objectives is to familiarise and 

conceptualize the research in the context of contemporary researches across 

domains, disciplines and industries. It is also necessary that the terminologies have 

been widely accepted and have been evaluated in their respective domains. 

Moreover, their contradictions are also considered before acknowledging them as 

the core theoretical structure of this research. Also, because the research is based on 

an ambitious concept that is both futuristic and hypothetical – (addressing the 

increasing redundancy of design within the built form and the algorithm with 

respect to Industry 4.0) the literary objectives help in grounding the research in 

concepts and semantics that are well known, proven, and tested. 
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After setting up the literary objectives and establishing an inventory for the 

semantics, the research will implement all the primary objectives, and put the 

hypothesis and the resultant theory to test. This will be accomplished by pursuing 

three operational objectives as part of the secondary objectives of the research. 

The operational objectives are as followed:  

• Operational objective I (Taxonomies) – To categorically and sequentially 

assess and catalogue the generated computational ecosystems into 

taxonomies of possible functioning ecosystems. Here the primary objectives 

of the case studies and simulations will be fulfilled to establish functioning 

computational ecosystems by establishing different types of biotic and abiotic 

elements in the computational environment. 

• Operational objective II (Evaluation) – To conduct user tests for the 

evaluation, trouble-shooting and versioning of taxonomized computational 

ecosystems. Here the primary objectives of simulations will be fulfilled to test 

functioning computational ecosystems for bugs and errors by conducting 

workshops with students and professionals of the AEC industry. 

• Operational objective III (Fabrication) – To prototype the process of 

fabricating a built form by using the computational ecosystem as an 

autonomous algorithm. Here the primary objectives of simulations and 

prototyping will be fulfilled to fabricate the functioning, taxonomized and 

bug-tested computational ecosystems into a built form by partnering with the 

AEC industry serving a functional purpose for computational ecosystem. 

The results generated and demonstrated in this way would be successful in 

establishing a more dynamic, reciprocal, symbiotic relationship between the built 

form and the algorithm while making computational design more autonomous and 

digital fabrication more data driven. 
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1.2.2 Methodological framework for Computational Ecosystems 

The research methodology is strongly dictated by the primary, literary and 

operational objectives. Although planned meticulously it has room to accommodate 

deviations and anomalies in the experimentations and findings. The methodological 

framework as illustrated in this subchapter also serves as a roadmap for a design 

workflow that performs modelling, analysis and fabrication to generate form, 

structure and enclosure for an architectural intent. 

The understanding, segregation and execution of the methodology however relies on 

establishing key lexical and logical semantics. Considering the fact that these 

concepts will be further elucidated in the forthcoming chapters (namely, 2| On the 

theoretical assumptions for the Computational Ecosystems ; 3| On the semantic 

syntax for the Computational Ecosystems), it becomes necessary to illustrate them 

concisely. The methodological framework builds up on the conceptual constructs of 

the trifecta – Elements, Economies, and Ecosystems. 

• Element – although the meaning of element is more open ended, in chemistry 

an element could be “defined as one of a class of substances that cannot be 

separated into simpler substances by chemical means” (Boyle, 1661).11 In data 

science, the term data element is an atomic unit of data that has precise 

meaning or precise semantics. Thus, in the context of this research, elements 

signify forms, agents and systems that come together to simulate biotic and 

abiotic behaviors and semantics. These elements could be considered as 

agents which can’t be further divided into other agents. Examples of an 

element could be Platonic solids, Archimedean solids, point clouds, passive 

agents, active agents, cognitive agents, service equipment, structural 

members or fabrication material. 

 
11 Boyle, R. (1661). The Sceptical Chymist. London: J. Cadwell 
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• Economy – in the field of economics, “economy is defined as a social domain 

that emphasizes the practices, discourses, and material expressions 

associated with production, use and management of resources by different 

agents” (Paul, 2014).12  Although, etymologically economy transcends to 

household management, the contemporary concept of economy as a set of 

transactions of goods and services expressed in a certain currency is a recent 

connotation as early as the 20th century. In the context of this research, 

Economy implies to the fundamental objective of the symbiotic elements as 

a means of survival, growth and decay. It is thus essential to say that stability 

in an economy equates to survival, excess leads to growth and insufficiency 

leads to decay. Examples of an economy could be static structural stability, 

kinetic structural stability, functional adequacy, functional compatibility, 

contextual compatibility, climatic optimization, and fabrication constraints. 

The ideas pertaining to the possibilities of economies as a fitness condition 

will be further explicated in the forthcoming chapters (namely, 2| and 3|). 

• Ecosystem - in ecological sciences, ecosystems are “dynamically interacting 

systems of organisms, the communities they make up, and the non-living 

components of their environment. They can be defined as a community made 

up of living organisms, the biotic elements and non-living components, the 

abiotic elements. These biotic and abiotic elements interact through nutrient 

cycles and energy flows” (Odum, 1971).13 The study of Ecosystem in ecology 

thus involves ‘the flow of energy and materials through organisms and 

physical environments.’ In the context of this research, an Ecosystem implies 

to a design automation algorithm that will produce a built environment but 

also relies upon the morphological, structural and fabrication constraints of 

the built form.  

 
12 James, P. (2014). Urban Sustainability in Theory and practice: Circles of Sustainability. London: 
Routledge. Pg 53 
13 Odum, E. P. (1971). Fundamentals of Ecology. Philadelphia: Saunders. 
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Fundamentally, the elements would serve as the building blocks of the computational 

ecosystem that represent the biotic or abiotic, while fulfilling survival conditions laid 

down by the economy inherent to the ecosystem they belong to and coherent with 

the ecosystems they inhabit. The intricate relationships between the element, 

economy and the ecosystem serve as a functional template for the methodological 

framework of the research. These relationships also serve as a theoretical foundation 

for the empirical results achieved by incorporating cellular automata in generating, 

taxonomizing and prototyping design automation algorithms. 

This relationship and the specifics of its operations will be further entangled in the 

forthcoming chapters. Additionally, the concluding part of this chapter (1.3 Structure) 

further elaborates the structure of this Research and the structure of this Thesis, so 

as to provide a definitive roadmap in terms of the methodological framework. 

Figure 1.5 below, illustrates the conceptual relationship of the element, economy and 

ecosystem in a graphical style. As shown in the figure, in the relevance of the 

research, the chess pieces serve as an example of elements, chess moves and rules 

serve as an example of the economy while chess tactics, strategies and gambits serve 

as an example of the ecosystem. 

Figure 1.5 – Infographic explaining the concept of element, economy and ecosystem with the 

example of Chess (the board game). Illustration and graphics by Author (June 2019).  
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With the key concepts of the element, economy and ecosystem established 

succinctly, the methodological framework can be clearly rationalized. Moreover, the 

relationship between the built form and the algorithm, which was introduced and 

resolved in the hypotheses can be distinctly projected. To achieve the primary and 

the operational objectives of the research, the methodology follows four procedural 

sequences. These procedural sequences are devised to extrapolate different possible 

arrangements within the context of computational ecosystems explained thus far. 

They rely on the following conceptual constructs: 

• An ecosystem can only exist if the element and the economy are established. 

• An ecosystem can exist with a single element and a single economy. 

• An ecosystem can exist with multiple elements and a single economy. 

• An ecosystem can exist with a single element and multiple economies. 

• An ecosystem can exist with multiple elements and multiple economies. 

This clear distinction of the possible permutable ecosystems is evidently based on the 

classification systems laid out in Flynn’s taxonomy (Flynn, 1972)14.This distinction 

helps in sequencing the methodological framework in the form of the procedural 

sequences (which will be explained in detail on the next page). Moreover, it sets up 

an operational template that will be helpful in installing a taxonomy for the research. 

As this distinction between the ecosystems is based on the arrangements of the 

cardinality of elements and economies, there are four and only four possible types of 

ecosystems that can be generated employing this methodology. The distinction also 

disallows any prospects for deviations that could lead to anomalies across taxa. 

 
14 Flynn, M-J. (1972). Some Computer Organizations and their Effectiveness. IEEE Transactions on 
Computers, C-21(9), pp. 948-960. 
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The procedural sequences are as followed:  

• Single Element Single Economy Ecosystem (SESE) – An ecosystem that 

consists of elements of a singular, independent typology who follow an 

economy that represents a rule set with a singular independent goal. As 

shown in the figure 1.6 below, the ecosystem could have elements that refer 

to the morphological norms of a hexahedron, while following an economy 

that pertains to structural stability. In other words, here an SESE would be 

represented by cubes, that could form the tallest towers without falling apart. 

 

Figure 1.6 – Infographic illustrating an example of a Single Element Single Economy Ecosystem 

(SESE). Illustration and graphics by Author (June 2019). 

• Multi Element Single Economy Ecosystem (MESE) – An ecosystem that 

consists of elements of multiple, independent typologies who follow an 

economy that represents a rule set with a singular independent goal. As 

shown in the figure 1.7 below, the ecosystem could have elements that refer 

to the morphological norms of a hexahedron and an icosahedron, while 

following an economy that pertains to structural stability. In other words, 

here an MESE would be represented by cubes and cuboctahedra, that could 

form the tallest towers without falling apart. 

 

Figure 1.7 – Infographic illustrating an example of a Multi Element Single Economy Ecosystem (SESE). 

Illustration and graphics by Author (June 2019). 
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• Single Element Multi Economy Ecosystem (SEME) – An ecosystem that 

consists of elements of a singular, independent typology who follow 

economies that represent rule sets with multiple interdependent goals. As 

shown in the figure 1.8 below, the ecosystem could have elements that refer 

to the morphological norms of a hexahedron, while following economies that 

pertain to structural stability and buoyancy. In other words, here an SEME 

would be represented by cubes, that could form the tallest towers on a liquid 

without falling apart and without sinking. 

 

Figure 1.8– Infographic illustrating an example of a Single Element Multi Economy Ecosystem 

(SEME). Illustration and graphics by Author (June 2019). 

• Multi Element Multi Economy Ecosystem (SEME) – An ecosystem that 

consists of elements of multiple, independent typologies who follow 

economies that represent rule sets with multiple interdependent goals. As 

shown in the figure 1.9 below, the ecosystem could have elements that refer 

to the morphological norms of a hexahedron and an icosahedron, while 

following economies that pertain to structural stability and buoyancy. In other 

words, here an MEME would be represented by cubes and cuboctahedra, that 

could form the tallest towers on a medium without falling apart and sinking. 

 

Figure 1.9– Infographic illustrating an example of a Single Element Multi Economy Ecosystem 

(SEME). Illustration and graphics by Author (June 2019). 



Architecture of Computational Ecosystems 

| The Research – What are computational ecosystems 25| 

1.2.3 Expected projections for Computational Ecosystems 

In this way, each taxon represents a unique yet related combination of the cardinality 

of typologies for the elements and economies. In other words, SESE, MESE, SEME and 

MEME will be treated as different methodologies to create and to taxonomize the 

ecosystems.  

As outlined in the methodological framework, the four taxa will be subjected to the 

primary objectives discretely. The objectives will be drawn out considering their 

relevance for each taxon. For example, an SESE that represents a single element and 

a single economy will undergo the following primary objectives: 

• Case studies – Understanding and evaluating energy flows and nutrient cycles 

within existing ecosystems (both organic and digital) with a single element 

and a single economy. 

• Simulations – Simulating dynamic ecosystems for predetermined biotic or 

abiotic element that follows a singular economy. The simulations will be 

performed in computational environments to form protective, habitational 

spaces.  

• Prototyping – Prototyping a fabrication strategy for the optimized 

ecosystems considering a predetermined additive manufacturing technique. 

Note that the above examples of operational trajectories for the formation of an 

ecosystem are only specific to an SESE. The other taxa would have slightly variant 

primary objectives  that would be specific to their use cases. An elaboration on the 

topics of elements, economies and computational ecosystems will be done in further 

chapters (namely, 2| On the theoretical assumptions for the Computational 

Ecosystems ; 3| On the semantic syntax for the Computational Ecosystems). 
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As the basis of the research and this thesis is on the concept of the built form and the 

algorithm entering a recursive feedback loop, the outcomes are projected to be 

iterative but relevant. For this reason, the operational objectives viz., Taxonomies 

and Evaluation become very crucial. Moreover, the empirical nature of the 

hypothesis further dictates the operational objectives viz., Evaluation and 

Fabrication. It is important to understand this aspect of the research, because the 

process of taxonomizing, will generate a plenty of visual information, which will be 

the iterative variants specific to each taxon. In other words, each iterative variant in 

each taxon for the specific procedural sequence will be represented by means of 

images and with information about its attributes such as elements and economies. 

As the theoretical foundations of the research are based on the Cellular Automata, 

the generation of all the iterations in the respective taxa (SESE, SEME, MESE and 

MEME) would be dependent on “recursive algorithms” (Soare, 1996). 15 The iterative 

variants for each taxon however, would be dependent on the starting condition for 

each iteration – the Initial State. An elaboration on the Initial States and their relation 

with the elements, economies and computational ecosystems will be done in further 

chapters (namely, 2| On the theoretical assumptions for the Computational 

Ecosystems ; 3| On the semantic syntax for the Computational Ecosystems). 

Considering the amount of variations generated by the subtle changes in both the 

initial states, elements and economies, the projections for the computational 

ecosystems require a much larger system of classification than the one stated as part 

of the procedural sequences (SESE, MESE, SEME and MEME). Thus, apart from the 

implementation of recursive algorithms to undertake autonomy in computational 

design the research is compelled to implement genetic algorithms to organize the 

generated and taxonomized ecosystems in the order of their fitness. 

 
15 Soare R. I. (1996). Computability and Recursion. The Bulletin of Symbolic Logic, [online] Volume 
2(3), pp. 284-321. Available at: https://www.jstor.org/stable/420992 [Accessed 8 Apr. 2020]. 
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A clear application of genetic algorithms in the context of this research has been 

thoroughly expand upon in the further chapters (namely On the consequences in the 

Architecture of Computational Ecosystems and 6| On the investigative analysis of the 

Computational Ecosystems). But it becomes important to understand the scope and 

impact of implementing genetic algorithms before summarizing the relevance of this 

research. In the context of this research, genetic algorithms have been implemented 

purely as evolutionary algorithms within the computational environment of Rhino 7 

and Grasshopper. Galapagos, which is a default tool-set in Grasshopper has been 

used to generate results using its evolutionary solver.  

As explained in the further chapters (namely 6| On the investigative analysis of the 

Computational Ecosystems 7| On the prospective projections for the Computational 

Ecosystems) attempts have been made in setting up a Fabrication workflow that 

could be adopted to train and prototype Computational Ecosystems for certain 

procedural sequences (especially MEME) that could conform to multiple economies 

while fabricating the results of the said Computational Ecosystem. However, these 

applications demand state of the art digital fabrication tools and assembly, which are 

not readily available in all academic institutes. Thus, the research has sought 

collaborations within the AEC industry (as thoroughly elaborated in 7|). Also, it has 

been sufficiently established in the further chapters how this trajectory could be 

further pursued to develop Computational Ecosystem as a discipline that expands the 

fields of computational design and digital fabrication while performing dynamic, 

reciprocal, symbiotic feedback loops between the built form and the algorithm.  

The research aspires to compute and not computerise existing ecosystems while 

upholding the design process. It appreciates the very simple yet strong idea that Form 

follows Force and Force follows Form. “The research attempts to find ways of 

ingesting the Architecture of Computation in the Computation of Architecture.”16 

 
16 Warang, A. (2017). Towards the Architecture of Computation. MS Architecture Thesis. Universitat 
Internacional de Catalunya (UIC) Barcelona. 
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Although the afore mentioned explanations, definitions and examples pertaining to 

the outline of the research objectives and methodology sufficiently elaborate on the 

approach taken by this research, a graphical illustration of the research objectives, 

their role in the fulfilment of the hypothesis and their position in the methodology 

becomes highly essential. In a way, this graphical illustration also underlines the 

nature of this research – to introduce and elaborate novel concepts with theoretical 

background (in terms of citing peer-reviewed research), empirical proof (in terms of 

providing practical examples), and visual representation (in terms of illustrating with 

relevant diagrams and images). Fig. 1.10 thus illustrates the above idea. 

 

Figure 1.10– Infographic illustrating the inter-relations between the research hypothesis, research 

objectives, and research methodology with respect to the research timeline. Illustration and graphics 

by Author (January 2018). 
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1.2.4 The relevance of Computational Ecosystems 

Considering that this thesis documents an attempt to establish a dynamic, reciprocal, 

symbiotic relationship between the built form and the algorithm, the Architecture of 

Computational Ecosystems could be considered as a research that furthers into the 

fields of Computational Design and Digital Fabrication. However, the domain of this 

research is based in several research fields and industries. For example, the research 

borrows most of its semantics, and the ideological and theoretical frameworks from 

several fields such as computational sciences, evolutionary sciences, behavioral 

sciences and ecology. So, in a way, it also contributes back to these fields by 

demonstrating their empirical applications for research in the AEC industry. 

As one of its hypotheses focuses on practical applications in the field of digital 

fabrication, the research has significant impact in the domain of additive 

manufacturing industry. This impact is clearly demonstrated in the upcoming 

chapters (namely 4| On the procedural sequences for the Architecture of 

Computational Ecosystems 5| On the consequences in the Architecture of 

Computational Ecosystems).  As discussed later, the research has potential to 

develop design and fabrication algorithms in the additive manufacturing industry 

depending on the specificity of the fabrication equipment. 

Moreover, the research serves as a significant reference point in the cultural zeitgeist 

of the Industry 4.0. It provides an operational handbook to demonstrate how design 

research can restore the autographic status of Architecture with the help of the 

current Industrial revolution and many more to come. Owing to the nature of its 

dependencies and impact in several fields the research is relevant to contemporary 

ideologies of breaking the institutionalised separations of disciplines and curriculum 

to employ a dialogue between hitherto unheard compatibilities. The research 

attempts to establish a biodigital dialogue in the field of architecture, while providing 

a blueprint on how more such dialogues could be established in the future. 
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1.3  Structure 

Now that the research objectives, research methodology and the overarching 

relevance of the research in the technological zeitgeist is clearly summarized, it 

becomes more imperative to explain how the entire research and this subsequent 

thesis is structured. Also, elaborating on the abstract, which helps in laying the 

theoretical foundation for the research would mean that this would be the perfect 

space to write about the structure of the thesis before beginning the theoretical 

intricacies in detail. 

The explanation of the structure would thus be bifurcated into the structure of the 

Research and the structure of the Thesis. While the former elaborates on the means 

of fulfilling the operational objectives (as elaborated in 1.2.1 Objectives for 

Computational Ecosystems in this Chapter) with the Procedural Sequences in the 

form of the SESE, MESE, SEME and MEME (as elaborated and illustrated in 1.2.2 

Methodological framework for Computational Ecosystems in this Chapter); the latter 

explains how this doctoral thesis helps in conveying the entire process of finding, 

theorizing, establishing, taxonomizing, and prototyping dynamic, reciprocal, 

symbiotic relationships between the built form and the algorithm. 

In other words, the structure of the research explains how the research objectives 

were executed across the span of four years, while the structure of the thesis explains 

how this execution of the research objectives has been elucidated in this doctoral 

thesis. Moreover, the structure of the research highlights and accentuates upon the 

various forms of industry experts, collaborators, and research facilities involved in 

this research. Whereas, the structure of the thesis focuses on specifying the sequence 

of interactions and involvements with these industry experts, collaborators, and 

research facilities. The initial timeline established before commencing the research 

will also be briefly illustrated here; and with it, the undeniably inevitable 

modifications and the reasons behind them will also be acknowledged. 
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1.3.1 Structure of the Research 

As the research was focused on finding, theorizing, establishing, taxonomizing, and 

prototyping a dynamic, reciprocal, symbiotic relationship between the built form and 

the algorithm, the research had to adopt a multi-disciplinary approach. The two 

disciplines or industries it interacted with were computational sciences and the AEC 

industry. In the context of the primary objectives (as elaborated in 1.2.1 Objectives 

for Computational Ecosystems in this Chapter), consultations and collaborations with 

the discipline of computational sciences were responsible for the Case Studies and 

Simulations. Whereas, interactions and collaborations within the AEC industry were 

responsible for the Case Studies and Prototyping. 

Chronologically, the research could be categorized in the following three phases. 

Note that these phases echo the primary objectives: 

• Case studies – In this phase, both the literary objectives (as elaborated in 

1.2.1) Lexical Semantics and Logical Semantics were accomplished. As 

establishing the semantics formed the theoretical foundation for the 

research, most of the study was undertaken at the Doctoral School in 

Architecture of the Universitat Internacional de Catalunya (UIC, Barcelona). 

However, some semantics needed corrections and revisions, which were 

incorporated after consulting experts from the discipline of computational 

sciences for the Simulations and experts from the AEC industry for the 

Prototyping. These modifications have been updated in this thesis and will be 

explained in further chapters (namely, 2| On the theoretical assumptions for 

the Computational Ecosystems ; 3| On the semantic syntax for the 

Computational Ecosystems). As some case studies, especially the ones that 

required clear understanding of evolutionary sciences and ecology could not 

be done solely in UIC, advice and guidance of experts from relevant fields and 

disciplines was sought to make the research exhaustive and profound. 
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• Simulations – In this phase, two of the three operational objectives namely 

Taxonomies and Evaluation were executed for all the Procedural Sequences 

which are, SESE, MESE, SEME and MEME. Although the meticulous 

taxonomical classification gives a methodological advantage to study all 

possibilities of Computational Ecosystems, the process followed for the 

simulation of each taxon remains the same. As these simulations were done 

in different phases, this part of the research is the most distributed in terms 

of time and space. For example, majority of the computational logic was set 

up at UIC. However, the simulations were validated and verified for bugs by 

conducting workshops for students of Architecture and Design by partnering 

with various universities in India. These universities were as follows : 

Department of Architecture, Rajiv Gandhi Institute of Technology (RIT, 

Kottayam) ; Indian Education Society's College of Architecture, Mumbai (IES 

COA, Mumbai). The specific results collected during the workshops are 

documented thoroughly in the upcoming chapters (namely 4| On the 

procedural sequences for the Architecture of Computational Ecosystems 5| 

On the consequences in the Architecture of Computational Ecosystems). 

• Prototyping – In this phase, two of the three operational objectives namely 

Evaluation and Fabrication were executed for all the Procedural Sequences 

which are, SESE, MESE, SEME and MEME. In this phase, as the algorithm was 

developed, evaluated and tested for bugs, its application in generating a built 

form was focused. To prototype the Computational Ecosystems, a research 

stay was undertaken at Studio RAP, Rotterdam (https://studiorap.nl/#/) 

which is an advanced Architectural practice that specializes in Robotic 

construction. Here, the research was prototyped by using a 6-axis robotic arm 

– KUKA P6 while performing additive manufacturing with a modified 

pneumatic extrusion of pottery clay. Various types of clay with different 

composition of grog and different drying processes were also experimented 

for optimization. The specific results collected during the research stay are 

documented thoroughly in the upcoming chapters. 
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1.3.2 Structure of the Thesis 

After the completion of the aforementioned stages of Case Studies, Simulations and 

Prototyping, the research was compiled into this thesis. The structure of this thesis 

is also quite chronological in the sense that most of its chapters correspond to the 

order and sequence in which the research was done. 

As the Procedural Sequences in the form of SESE, MESE, SEME and MEME had 

chartered the entire research trajectory, there were two approaches in which this 

thesis could have been structured. The first approach would be where all the 

theories, methodologies, observations, and conclusions would be done individually 

for each Taxon. Whereas, the second approach would be where all the Taxa would 

be explained categorically for all their theories, methodologies, observations, and 

conclusions. As the research also focusses on creating a feedback loop between the 

built form and the algorithm, a hybrid approach that involved an optimized 

amalgamation of the above two approaches had to be adopted.  

Thus, the thesis is structured in such a way that the theory is laid down for all the taxa 

collectively in chapter 2| On theoretical assumptions for Computational Ecosystems 

and chapter 3| On the semantic syntax for the Computational Ecosystems. Whereas 

chapter 4| On the procedural sequences for the Architecture of Computational 

Ecosystems and chapter 5| On the consequences in the Architecture of 

Computational Ecosystems which illustrate the methodology and the results for the 

Procedural Sequences are elaborated for the four Taxa individually. The observations 

and conclusions however, which are elucidated in chapter 6| On the investigative 

analysis of the Computational Ecosystems and chapter 7| On the prospective 

projections for the Computational Ecosystems are illustrated and explained for all the 

taxa collectively. These clear distinctions in the documentation of the key aspects of 

the research in this thesis provide a more meticulous and direct approach in which 

the research methodology can also be used and replicated for further researches. 
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As chapters 4| and 5| (which illustrate the methodology and the results in the form 

of the Procedural Sequences elaborated for the four Taxa) would be demonstrating 

most of these taxa graphically in the form of sequential images at every periodic stage 

of their respective ecosystems, these chapters would be filled with a lot of graphical 

information without any considerable textual explanations. However, as these 

sequential images are a result of visual programming performed in Rhinoceros and 

Grasshopper3D and several of its related plugins, the visual programming scripts 

have been attached in additional annexures at the end of this thesis.  

These annexures will also serve as an empirical database for all the procedural 

sequences that form a bulk of this research. As most of these scripts were developed 

by the author by conducting student workshops in several universities in India (as 

explained in 1.3.1), these scripts have also been made available online on the author’s 

website (https://angadwarang.wixsite.com/2021/resources).  
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2|On theoretical assumptions for Computational 
Ecosystems 

2.1 Establishing the semantics 

As a corollary to the previous chapter, which established the relevance of this 

research, and introduced the hypothesis, objectives, methodology and expected 

results, this chapter elucidates the theoretical assumptions for the research.  

The built form and the algorithm have been independently theorized to a 

considerable degree, often aided and abetted by design (as explained in chapter 1| 

On the relevance of Computational Ecosystems) by imminent theorists, historians 

and researchers so far. While the theory for the former has a lot of empirical 

presence, for example in the AEC industry, the latter has been assiduously theorized 

in the field of computer science, more importantly in the theory of computation. 

There are lots of researches conducted in the field of architecture under the umbrella 

of design research during the advent of the third industrial revolution that have 

borrowed theoretical foundations from the field of computation. A unified theory 

however, that could correlate the roles of the built form and the algorithm in either 

field is rather insufficient. 

The research on the other hand, based on the significant relevance of the fourth 

industrial revolution, relies strongly on the informed assumption that the built form 

and the algorithm would be co-existent and symbiotic without the existence of design 

in the near future. The research also claims that this relationship would be dynamic 

and reciprocal, further diminishing the role of design in the AEC industry. These 

claims put the research in the dangerous area of sensationalism. If not elaborated 

upon, it further demeans all the successive operational objectives that are 

prototyped and taxonomized in the course of this research.  
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Thus, in order to refrain from the aforementioned sensationalism, the research is 

obligated to form its own theoretical foundation. These foundations would be laid by 

establishing the semantics related to computational ecosystems and the cellular 

automata that already exist in the field of computational theory. 

Computational theory, on the other hand has often been establishing its theoretical 

foundations on many natural systems and biological processes. Owing to the fact that 

computation primarily revolves around problem solving, bio-inspired algorithms 

have been frequently employed to solve complex computational problems in a 

simple and intuitive manner. In fact, the early 21st century has seen a considerable 

rise in the research and implementation of bio-inspired algorithms.  These algorithms 

essentially begin with the hypothesis that an analytical study of the behaviors of 

natural systems and biological processes of some exceptionally intelligent biological 

specimen can give us a thorough and accurate understanding of how to translate 

their behavioral nuances into algorithmic models. These algorithmic models are then 

tested, versioned and rectified to imitate the natural systems or biological processes 

in an inert, non-biological, computational environment. After successful or 

unsuccessful imitation of the natural systems these algorithms are then extensively 

theorized to be applied into the field of computation. 

As the computational power keeps increasing exponentially (aided by the 

assumptions and conclusions of Moore’s Law), the above-mentioned process has 

seen a phenomenal advancement in the past couple of decades. Researchers have 

long started analytical studies of the tropic dynamics of ecosystems and translating 

the energy transactions between biotic and abiotic elements into algorithmic models. 

The concept of computational ecosystems, thus is not completely novel and has the 

reputation of being a theoretically established phenomenon in the field of 

computation (Parpinelli and Lopes, 2014).17  

 
17 Parpinelli R. S. and Lopes, H. S. (2014). A computational ecosystem for optimization: review and 
perspectives for future research. Memetic Computing, 7(1), pp. 29-41. 
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It would thus be quite judicious to lay the theoretical foundations of this research on 

the theoretical review done in the work of Parpinelli and Lopes. It would also be 

logical to base the semantics of this research on the aforementioned work, and its 

theoretical foundation. 

However, before establishing the concepts of computational ecosystems as theorized 

by Parpinelli and Lopes, this thesis would lay down the semantics for the research in 

terms of developing a reciprocal relationship between the built form and the 

algorithm. In other words, it seeks to establish the theoretical basis of Ecosystems, 

Computation and Computational Ecosystems while asking the following questions: 

• About Ecosystems or Which ecosystems are being referred to? – Here the 

thesis would be elaborating upon the specific concepts and terminologies the 

research borrows from the field of ecology and the overall constraints in 

understanding what an ecosystem is and how to limit it.  

• About Computation or Which computational environments does the research 

operate in? – Here the thesis would be elucidating algorithms and 

computational systems that are inspired from the field of biology while 

determining those, that this research relies upon for its theoretical 

framework. 

• About Computational Ecosystems or What does a computational ecosystem 

exactly mean? – Here the thesis would be elaborating the concept of 

computational ecosystems as theorized by Parpinelli and Lopes, in the context 

of establishing a dynamic, reciprocal, symbiotic relationship between the built 

form and the algorithm. 

The answers to the above questions would lead in establishing the theoretical 

foundations for the research and help in reducing the sensational claims of the 

research hypothesis mentioned previously. 
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2.1.1 About Ecosystems 

After having rejected the previously established terms ‘complex organism’ and ‘biotic 

community’, Prof. A G Tansley settled with the concept of ‘ecosystem’ while drawing 

analogies with physics – “including not only the organism complex, but also the whole 

complex of physical factors” (Tansley, 1935)18. Tansley, in his field of study – ecology,  

goes on to say that, “though the organisms may claim our primary interest, when we 

are trying to think fundamentally, we cannot separate them from their spatial 

environment, with which they form one physical system.” 

He further suggests that these ecosystems could be considered as basic units of 

nature, where the organic parts (organisms) and inorganic factors have constant 

interchanges of various kinds amongst them. These ecosystems, he says are of 

various sizes ranging from the universe down to the atom. This creates a considerable 

obstacle in the identification and analysis of specific ecosystems. For this problem, 

he suggests a mundane mental isolation of the systems. He says, “these isolates, 

become the actual objects of our study, whether the isolate be a solar system, a 

planet, a climatic region, a plant or animal community, an individual organism, an 

organic molecule or an atom. Actually, the systems we isolate are not only included 

in larger ones, but they also overlap, interlock and interact with one another.” 

The built form has a similar property of being a conceivably boundless entity. It could 

range from a tiny piece of jewellery (in terms of jewellery design) to an entire 

metropolitan region (in terms of urban planning) and everything within that 

spectrum. Apart from the theoretical background of defining an ecosystem, Tansley’s 

methodological framework of isolating an ecosystem conceptually, is quite crucial for 

this research in stating that the idea of the built form could be similarly isolated into 

different built forms across scales or design across scales. 

 
18 Tansley A.G. (1935). The use and abuse of vegetational concepts and terms. Ecology, 16(3), pp. 
284-307. 
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The idea that “inorganic factors such as drought, fire, salt, cold, or similar, being 

considered as important and distinct determinants for the growth, survival and 

maintenance of life” was prevalent since as early as the late 19th century (Warming, 

1895).19 The systemic differentiation and the semantic designation into biotic and 

abiotic elements, however, occurred much later.  

The research focuses on understanding the distinct roles played by the biotic 

organisms and the abiotic factors in forming a symbiotic relationship that is much 

crucial in the existence of the ecosystem. It thus relies heavily on the understanding 

and explanations in the seminal book ‘The economy of Nature’ (Ricklefs, 2008).20 

Ricklefs points out that we often mention the living and the nonliving as opposites. 

But although we can easily discern, “life does not exist in isolation from its abiotic 

environment. Life depends on the physical world.” He further claims that, “many 

conditions favorable for the development and maintenance of life rely on the activities 

of living organisms.” In the context of this research, a similar co-existence for the 

built form and the algorithm needs to be formed. 

The most important distinction however, that Ricklefs points out between the biotic 

and the abiotic is that the former have a more purposeful existence over the latter. 

He says that, “their structures, physiological processes, and behaviors, shaped by 

evolutionary responses to natural selection, are directed toward procuring energy and 

resources that are ultimately used to produce offspring.” (Ricklefs, 2008).21 This subtle 

detail clearly dictates the research to realize that both the built form and the 

algorithm are lifeless, purposeless abiotic concepts. The research, however, needs to 

embed some purpose, some function, some life that would serve as a driving force 

for the symbiotic relationship between the built form and the algorithm. 

 
19 Warming, E. (1895). Plantesamfund - Grundtræk af den økologiske Plantegeografi. Copenhagen: 
P.G. Philipsens Forlag, 335 pp. 
20 Ricklefs, R. E. (2008). The Economy of Nature. 6th ed. New York: W. H. Freeman and Company, 620 
pp. 
21 Ibidem 
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While laying down the foundations of ecology by defining what an ecosystem would 

be, Tansley postulates that “organization is the imminent outcome of the interactions 

and consequent mutual adjustment of the components of an ecosystem” (Tansley, 

1935)22. In other words, he says that the biotic and abiotic elements of an ecosystem 

are inadvertently striving for a certain state of dynamic equilibrium (Phillips, 1931)23. 

He further theorizes that if an organization does not occur, an incipient system breaks 

out. There is in fact a kind of natural selection of incipient systems, and those which 

can attain the most stable equilibrium survive the longest.  

As a corollary to Tansley, Ricklefs further theorizes that, ecological systems are 

governed by basic physical and biological principles – they obey the laws of physics; 

they exist in dynamic states ; and they evolve over time. He says, “because life is so 

special, it exists in equilibrium with its environment. But life is not a perpetual motion 

machine. What the organism loses to its surroundings, is not returned to it for free. 

The organism must procure energy or materials to replace its losses. To do this, it 

must expend energy. It must replace the lost energy by metabolizing food or stored 

reserves, which it must expend energy to capture and assimilate. Thus, the price of 

maintaining a living system in a dynamic state is energy.” (Ricklefs, 2008).24 Hence, 

in the context of the research, the dynamic, reciprocal, symbiotic relationship 

between the built form and the algorithm would have to be realized by creating a 

system that conforms to the following assumptions: 

• The system is inhabited by elements that have purposeful existence such as 

life. 

• The system has a specific currency for the state of equilibrium such as energy. 

 
22 Tansley A.G. (1935). The use and abuse of vegetational concepts and terms. Ecology, 16(3), pp. 
284-307. 
23 Phillips, J. (1931). The Biotic Community. Journal of Ecology, [online] 19(1). p 1-24. Available at: 
www.jstor.org/stable/2255934 [Accessed 12 May 2021]. 
24 Ricklefs, R. E. (2008). The Economy of Nature. 6th ed. New York: W. H. Freeman and Company, 620 
pp. 
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2.1.2 About Computation 

What are the fundamental capabilities and limitations of computers? – 

Mathematical logicians, while exploring the meaning of computation have been 

asking this question since the 1930s. After almost a century worth of technological 

advancements, now this question is being answered not just with theoretical 

hypothesis but also with empirical proofs. Computational theory and the field of 

computation that emerges out of the above question is further trifurcated into 

“Complexity theory – classifying problems as easy and hard to solve ; Computability 

theory – classifying problems as solvable and not solvable ; Automata theory – 

defining properties and applications of mathematical models of computation 

“(Sipser, 2006)25. Although the trifurcation provides a detailed path into the study of 

computation, the overarching concept of problem solving remains integral to the 

application of computation and answering the above-mentioned question. 

Moreover, finding the best solution from all possible solutions becomes a highly 

pursued objective amongst all computational models. In other words, optimization is 

one of the most commonly sought computational pursuit.  

Optimization problems can either be deterministic or stochastic in nature. “While the 

deterministic problems require enormous computational efforts and tend to fail as 

the problem size increases, bio inspired stochastic optimization algorithms could serve 

as computationally efficient alternatives for optimization” (Binitha and Sathya, 

2012)26.As the relationship between the built form and the algorithm operates within 

the AEC industry in the context of the research, it’s primary goal would be to attain 

optimization at various scales of design, thus making the implementation of bio 

inspired stochastic optimization algorithms highly essential.  

 
25 Sipser, M. (2006). Introduction to the Theory of Computation. 2nd ed. Boston: Thomson Course 
Technology, 431 pp. 
26 Binitha, S. and Sathya, S. S. (2012). A Survey of Bio inspired Optimization Algorithms. International 
Journal of Soft Computing and Engineering (IJSCE), 2(2), pp. 137-151. 
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Computational problem-solving and optimization models have often been derived or 

inspired from natural bio-based systems. “The abundant diversity, dynamism, 

robustness, and complexity in these ecosystems always finds the optimal solution to 

solve its problem maintaining perfect balance among its components”. This is the 

thrust behind bio inspired computing. More importantly, the concept of drawing 

inspirations from a bio-based system underlines the fact that a purpose-based system 

(considering that all bio-based systems have a predominant goal of survival and 

reproduction) has more profound methods of optimization. “Within all the possible 

relations that could be established in an ecosystem, cooperation between entities is 

a universal mechanism” (Chen and Zhu, 2008).27 

This cooperation could be within the species - homogeneous cooperation (also called 

social evolution), or between species - heterogeneous cooperation (also called 

symbiosis). Chen and Zhu describe in their research how a particular type of Swarm 

Intelligence (SI) algorithm (which in itself is based on the homogenous cooperation) 

– Particle Swarm Optimization (PSO) has major drawbacks of converging prematurely 

and not exhibiting sufficient population diversity. To solve this problem, they theorize 

that an ecosystem-based computer simulation model should not only adopt the 

social evolution perspective (homogeneous cooperation) but also the symbiosis 

theory (heterogeneous cooperation). Thus, their proposed model PS2O (so called as 

it contains two hierarchies and is based on the PSO) injects fitness conditions 

pertaining to individuals of different species apart from the rules set up for individuals 

of the same species as per the canonical PSO algorithm (Chen and Zhu, 2008).28 

The relationship between the built form and the algorithm that the research seeks, 

similarly needs to be based on the combination of the homogenous and 

heterogenous cooperation established in the PS2O. 

 
27 Chen H. and Zhu Y. (2008). Optimization based on symbiotic multi-species coevolution. Applied 
Mathematics and Computation, 205(2008), pp. 47-60. 
28 Ibidem. 
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As Parpinelli and Lopes have theorized, “computational problem-solving 

methodologies involve two branches: exact methods and (meta-)heuristic methods. 

The latter has proven to be efficient in solving hard and complex optimization 

problems, particularly where traditional methods fail. Bio-inspired algorithms are 

such meta-heuristics that imitate the intricate strategies of nature as many biological 

processes can be thought of as optimization processes” (Parpinelli and Lopes, 2014).29 

“Ant Colony Optimization (ACO) algorithm” is one such example that studies and 

extrapolates the homogenous cooperation amongst ants as a novel approach to solve 

stochastic combinatorial optimization problems (combinatorial optimization 

problems that are based on randomness or uncertainties such as minimum spanning 

tree and traveling salesman problem) (Dorigo, Maniezzo, and Colorni 1996).30 The 

algorithm exploits the phenomenon of Stigmergy (Grasse ́, 1959)31. “Stigmergy refers 

to the indirect communication amongst self-organizing emergent systems via 

individuals modifying their local environment.” (Binitha and Sathya, 2012)32. In the 

case of the ACO, stigmergy is displayed by the intelligence of the ants in depositing a 

pheromone trail to communicate with other ants which then make a probabilistic 

decision to form the shortest walk between the ant’s nest and the food source. 

The relationship between the built form and the algorithm that the research seeks, 

would require a similar stigmergy between the participating biotic and abiotic 

elements. This stigmergy could either be communicated as part of a homogenous 

cooperation or a heterogenous cooperation or both. The information communicated 

by the stigmergy could vary depending on the optimization strategy adopted by the 

ecosystem. 

 
29 Parpinelli, R. S. and Lopes, H. S. (2014). A computational ecosystem for optimization: review and 
perspectives for future research. Memetic Computing, 7(1), pp. 29-41. 
30 Dorigo, M., Maniezzo, V. and Colorni A. (1996). The Ant System:Optimization by a colony of 
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics–Part B, 26(1), pp. 1-13. 
31 Grasse ́, P.-P. (1963). Les phe ́nome`nes sociaux chez les Animaux. Cahiers de l’Institut de Science 
e ́conomique applique ́e. Suppl. 139, V, pp. 7–23.  
32 Binitha, S. and Sathya, S. S. (2012). A Survey of Bio inspired Optimization Algorithms. International 
Journal of Soft Computing and Engineering (IJSCE), 2(2), pp. 137-151. 
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Thus, continuing on the theoretical groundwork laid down by Sipser in the field of 

Computational theory (i.e. establishing the fundamental theoretical constructs of the 

Complexity theory, the Computability theory and the Automata theory), it becomes 

essential for the research to focus on understanding the existing assumptions and 

biases in the field of computation and establish an operational vocabulary before 

identifying intelligent biological organisms and ecosystems and further attempting to 

perform analytical study of the behaviors of natural systems and biological processes 

in these biological organisms and ecosystems. 

In the dynamic, reciprocal, symbiotic relationship that the research seeks to develop 

between the built form and the algorithm, optimization would become both the 

principal objective and the means of achieving this objective. This dynamic, 

reciprocal, symbiotic relationship that has previously been theorized to be the design 

of a system (across scales) that conforms to specific rules (as explained in 2.1.1 About 

Ecosystems) would essentially have to be a bio inspired stochastic optimization 

algorithm. Although the composition and creation of this algorithm would be a 

translation of the behaviors of natural systems and/or biological processes within 

intelligent biological organisms, it could also be derived from the energy interactions 

amongst biological organisms. In other words, the recreation of the natural strategies 

that the algorithm attempts would be from both organisms and groups of organisms 

(i.e. homogenous and heterogenous cooperation). 

Hence, in the context of the research, the dynamic, reciprocal, symbiotic relationship 

between the built form and the algorithm would be realized by creating bio inspired 

stochastic optimization algorithms that conform to the following criteria: 

• The inhabitant/participant elements would exhibit both homogenous and 

heterogenous cooperation. 

• The specific currency for the state of equilibrium would be communicated 

using concepts similar to stigmergy. 
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2.1.3 About Computational Ecosystems 

After answering important questions regarding the scope and relevance of the vast 

field of ecosystems and computation in the context of this research, it would now be 

reasonable to expand upon the concepts of computational ecosystem by Parpinelli 

and Lopes. In other words, it would now be prudent to ask and answer the question, 

What does a computational ecosystem mean? 

And more importantly, 

• How does a computational ecosystem help in establishing a dynamic, 

reciprocal, symbiotic relationship between the built form and the algorithm? 

• How does its implementation result into computational design becoming 

autonomous and digital fabrication becoming data driven? 

• How does it represent a fluid design workflow that performs modelling, 

analysis and fabrication simultaneously to generate form, structure and 

enclosure for architectural intent? 

Answering the above questions would help the research in establishing the 

theoretical framework and the resultant semantics in alignment with the research 

hypothesis, apart from helping reduce the sensationalistic claims (as mentioned in 

2.1). 

Moreover, establishing the theoretical structure, describing the algorithmic logic, and 

providing examples of existing computational ecosystems would not only help in 

fulfilling the literary objectives of the research but also assist the research in forming 

syllogistic rationale into the operational objectives (as mentioned in 1.2.1) while 

providing a crucial insight in fulfilling the logical hypothesis (as explained in 1.2). 
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To unify the concepts of computation and ecosystem into a computational 

ecosystem, however, the research strongly bases its argument on the theoretical 

unification across the fields of mathematics, computation, ecology and biology. 

Although inspiration from nature has played a central role in the field of computation 

since the early 21st century (as mentioned in 2.1.2), Natural Computing which 

emerged in the same era can be considered as a significant benchmark.  

“Natural Computing is the field of research that, based on or inspired by nature, 

allows the development of new computational tools which could be software, 

hardware or wetware, for problem solving. These computational tools could lead to 

the synthesis of natural patterns, behaviors and organisms, and may result in the 

design of novel computer systems that use natural media to compute” (de Castro, 

2007)33. He further clarifies that Natural Computing testimonies against the 

specialization of disciplines thus suggesting a unified theory that attempts to merge 

biology and computation. It would have the following areas of investigation – 

• Computing inspired by nature – “This area involves development of problem-

solving techniques, especially computational tools in the form of algorithms 

by implementing inspirations from nature.”  

• Simulation and emulation of nature by means of computing – “This area 

involves synthetic processes aimed at creating patterns, forms behaviors and 

organisms by mimicking natural phenomena thus increasing our 

understanding of nature.” 

• Computing with natural materials – “This area corresponds to the use of 

natural materials to perform computation, that could substitute or 

supplement the current silicon-based computers.” (de Castro, 2007)34 

 
33 De Castro, L.N. (2007) Fundamentals of Natural Computing – basic concepts, algorithms, and 
applications, Boca Raton: Taylor & Francis group, 638 pp. 
34 Ibidem 
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Although bio inspired optimization algorithms are quite effective within the limited 

computational time and resources, they become less efficient when the problem is 

scaled or made more complex. This problem has been sensationally theorized and 

documented as the ‘curse of dimensionality’ (Bellman and Dreyfus, 2003)35, which 

means that “the efficacy of bio inspired optimization algorithms recedes exponentially 

as the dimensionality of the algorithm increases.” At these higher dimensionalities 

(often described with the theoretical explanation of hyperspace),  firstly, the solution 

space of a problem increases exponentially i.e., the optimization returns a lot of 

variance in the solution space and secondly, the characteristics of the problem 

change drastically i.e., the starting variables may start becoming incompatible or 

might need additional properties to still be considered in the optimization. In the 

context of this research, it is beyond the bounds of computational possibility that the 

optimization would demand an exponential increase in the dimensionality, however, 

nonetheless a more efficient and robust optimization system needs to be employed. 

To counter the afore mentioned curse of dimensionality, Parpinelli and Lopes 

proposed Hybrid Bio-inspired Systems (HBS) which are categorized into the natural 

computing’s first area of investigation (that is computing inspired by nature). Here, 

an “HBS employs several biological phenomena that are already usually implemented 

in bio-inspired optimization algorithms, but additionally it also adopts several 

ecological phenomena into building computational tools to solve complex problems” 

(Parpinelli and Lopes, 2012).36 

As the HBS serves a distinction from the usual bio-inspired optimization algorithms 

while countering the afore mentioned curse of dimensionality, the dynamic, 

reciprocal, symbiotic relationship between the built form and the algorithm would 

be realized by creating a Hybrid bio inspired stochastic optimization system. 

 
35 Bellman, R.E. and Dreyfus, S.E., (1962) Applied Dynamic Programming, London: Oxford University, 
362 pp.  
36 Parpinelli, R. S. and Lopes, H. S. (2012). Biological plausibility in optimisation: an ecosystemic view. 
International Journal of Bio-Inspired Computation, 4(6), pp. 345-358.  
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Considering computing inspired by nature, a very many optimization algorithms have 

been developed, tested and implemented by studying biological phenomena such as 

“the evolution of the species, the behavior of social groups, the dynamics of the 

immune system, the strategies of search for food and in the ecological relationships 

of different populations.” However, “the ecological concepts of habitats, ecological 

relationships and ecological succession had not been explored computationally in a 

context of optimization” (Parpinelli, 2013)37 until the explorations of Parpinelli and 

Lopes to develop an “ecology-inspired algorithm to solve numerical optimization 

problems termed as ECO” (Parpinelli and Lopes, 2011).38 

With the proposal of ECO, Parpinelli and Lopes laid the theoretical foundations of 

Computational Ecosystems while conforming to the theoretical framework of natural 

computing. ECO was designed to be a cooperative search algorithm constituting of 

populations of individuals, where each population evolves based on its independent 

search strategy, while also interacting with other populations implementing the 

ecological concepts of habitats, ecological relationships and ecological successions. 

Thus, forming a cooperative search algorithm that characterizes homogenous and 

heterogenous cooperation similar to a PS2O algorithm (as mentioned in 2.1.2). 

Hence, the afore mentioned HBS are developed with and defined by cooperative 

search concepts. “These hybrid strategies are expected to provide more efficient and 

flexible approaches to solve complex problems that would be very difficult to solve 

with simple methods. With such diversity of search strategies and the advantages of 

applying them cooperatively, it is possible to establish an analogy with the dynamics 

of biological ecosystems.” (Parpinelli and Lopes, 2012).39 

 
37 Parpinelli, R. S. (2013). An Ecosystemic View for Developing Biologically Plausible Optimization 
Systems. PhD Thesis. Federal University of Technology Paraná. 
38 Parpinelli, R. S. and Lopes, H. S. (2011). An Eco-inspired Evolutionary Algorithm Applied to 
Numerical Optimization. In: Third World Congress on, Nature and Biologically Inspired Computing. 
[online] Salamanca: IEEE, pp. 466-471. Available at: https://ieeexplore.ieee.org/document/6089631 
[Accessed 12 Oct. 2020]. 
39 Parpinelli, R. S. and Lopes, H. S. (2012). Biological plausibility in optimisation: an ecosystemic view. 
International Journal of Bio-Inspired Computation, 4(6), pp. 345-358.  
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By biological ecosystems, this research implies to the field of ecology and the 

definitions that emerge thereof (as mentioned in 2.1.1). In the analogy of an HBS the 

ECO was designed to be behaving as a biological ecosystem, thereby exhibiting 

natural computing inspired by nature. It essentially symbolizes an algorithm 

populated by hypothetical species which behave according to an optimization 

algorithm and the ecosystem on the whole consists of populations of species that 

respond to each other and the environment corresponding to aforementioned 

ecological concepts of habitats, ecological relationships, and ecological successions. 

Considering the fact that the inhabitants of the above mentioned algorithm, which 

are the species (as independent agents) and their populations (as collective data 

sets), in their pursuit of an optimization state driven by the search algorithms strive 

to attain a state of equilibrium, and the HBS rely on ecological concepts to attain this 

state of equilibrium, and behave as biotic elements (the species and their 

populations) in an abiotic environment, it can be theorized that the algorithm seeks 

symbiosis amongst its biotic elements. Here, the symbiosis the research refers to is 

the “symbiosis that is not just defined by persistent mutualistic interactions” (de Bary, 

1879)40, but the “symbiosis that also involves commensal interactions and parasitic 

interactions, however, excluding predatorial interactions” (Douglas, 2010)41. Because 

“symbiosis is now increasingly being considered as an important selective force 

behind evolution” (Wernegreen, 2004)42, as “many biological species have been found 

to have had a long history of interdependent co-evolution” (Paracer and Ahmadjian, 

2000)43, for an HBS, symbiosis becomes an essential means for the achievement of 

an equilibrium state. 

 
40 De Bary, A. (1879) Die Erscheinung der Symbiose: Vortrag, gehalten auf der Versammlung 
deutscher Naturforscher und Aerzte zu Cassel (In English - The Phenomenon of Symbiosis), 
Strassburg: Karl J. Trübner, 30 pp. 
41 Douglas, A. E. (2010) The Symbiotic Habit, Princeton, NJ: Princeton University Press, 232 pp. 
42 Wenegreen, J. J. (2004). Endosymbiosis: Lessons in Conflict Resolution. PLoS Biology, 2(3), pp. 345-
358. 
43 Paracer, S. and Ahmadjian, V. (2010) Symbiosis: An Introduction to Biological Associations, 
Princeton: Oxford University Press, 304 pp. 
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Parpinelli and Lopes further expand on the behavior and ecological significance of 

these symbiotic relationships within an ECO to be “both positive and negative 

relationships between individuals of the same species (intraspecific relationships or 

homotypic) or between individuals of different species (interspecific relations or 

heterotypic)” (Parpinelli and Lopes, 2014).44 The four different combinations of these 

relationships can be described as following: 

• Positive Intraspecific relationships (positive homotypic) – Interactions that 

lead to the constitution of societies and colonies.  

• Negative Intraspecific relationships (negative homotypic) – Interactions such 

as Competition and Cannibalism. 

• Positive Interspecific relationships (positive heterotypic) – Interactions such 

as Mutualism, Protocooperation, Inquilinism, and Commensalism. 

• Negative Interspecific relationships (negative heterotypic) – Interactions such 

as Competition, Amensalism, Predatism, Parasitism, and Slavery. 

Because Intraspecific relationships are pertaining to the interactions between the 

individuals of the same species, they lead to population level behaviors (properties 

defining a population), whereas, Interspecific relationships that are between 

individuals of different species can lead to an ecological community (group of species 

across habitats sharing similar properties). These relationships also have a crucial role 

in functioning of the search algorithm, “where Intraspecific relationships are 

responsible for intensifying the search and interspecific relationships are responsible 

for diversifying the search thereby maintaining a healthy diversity in the optimization 

algorithm thus increasing the biodiversity” (Ibidem).45. 

 
44 Parpinelli R. S. and Lopes, H. S. (2014). A computational ecosystem for optimization: review and 
perspectives for future research. Memetic Computing, 7(1), pp. 29-41. 
45 Ibidem 
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To establish a canonical ECO, Parpinelli and Lopes developed the following pseudo 

code for the algorithm (Parpinelli and Lopes, 2011).46: 

1. Let i = 1, . . . , NQ, j = 1, . . . , NH and t = 0; 

2. Initialize each population Qi (t) with ni random candidate solutions; 

3. while stop criteria no satisfied do {Ecological succession cycles} 

4. Perform evolutive period for each population Qi (t); 

5. Identify the region of reference Ci for each population Qi (t); 

6. Using the Ci values, define the NH habitats; 

7. For each habitat Hj (t) define the communication topology CTj (t) 

between populations Qj
i (t); 

8. For each topology CTj (t), perform interactions between populations Qj
i 

(t); 

9. Define communication topology TH (t) between Hj (t) habitats; 

10. Perform interactions between Hj (t) habitats according to TH (t); 

11. Increase t; 

12. end while 

 
46 Parpinelli, R. S. and Lopes, H. S. (2011). An Eco-inspired Evolutionary Algorithm Applied to 
Numerical Optimization. In: Third World Congress on, Nature and Biologically Inspired Computing. 
[online] Salamanca: IEEE, pp. 466-471. Available at: https://ieeexplore.ieee.org/document/6089631 
[Accessed 12 Oct. 2020]. 
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This algorithm is an HBS displaying all the afore mentioned ecological relationships. 

The pseudo code for the afore mentioned canonical ECO algorithm can be simplified 

as followed: 

• Apart from the time instant (t), there are three important variables and thus 

participants of this algorithm, namely, the individuals (i), the populations (Q) 

and the habitats (j). 

• The individuals are the basic elements of the algorithm, the populations 

denote all the elements sharing same fundamental properties analogical to 

the biological equivalent of a species, whereas the habitat is a set of 

populations reaching similar optimization states at a specific frame of time.  

• This implies, that a population of individuals in a habitat for a given instance 

of time cannot be a part of another habitat in the same instance of time. 

• After establishing on line 1 that the total number of possible populations 

would be NQ and total number of possible habitats would be NH, line 2, 

initiates the algorithm at t=0, with a random organization. 

• From lines 3 to 12, the biological concept of ecological succession is 

represented by a while loop that proceeds until the ecological succession 

cycles reach the maximum predefined value. 

• Within the loop of ecological succession, line 4 exploits the optimization 

within each population pertaining to its intensification and diversification 

criteria. After the end of this period the habitats of the system are identified, 

as shown on lines 5 and 6. Soon after, intra-habitat communications are 

established and performed in the form of an ecological mating relationship as 

shown on lines 7 and 8. Then, lines 9 and 10 establish and perform inter-

habitat communication in the form of an ecological migration relationship. 



Theorizing, Taxonomizing and Prototyping operational Ecosystems in 
Computational environments 

2|On theoretical assumptions for Computational Ecosystems |54 

• As the time instant increases in line 11, the lines 3 to 12 are looped to fulfill 

the maximum predefined value of the ecological succession. 

• Identifying the habitats of the system, Hj (t), represented by lines 5 and 6 are 

very crucial steps in this algorithm. Here, the longest concentrations of 

individual populations are recognized, their centroids are found and a habitat 

is defined using a predetermined minimum distance threshold ρ. 

• Intra-habitat communication CTj (t), in every habitat Hj (t), between 

populations Qj
i (t), are achieved by establishing and performing the 

aforementioned ecological mating relationship. In this relationship an 

individual of each population, hereafter termed as the best individual is 

chosen using “the tournament strategy” (Blickle, 2000)47 and genetic 

exchange between them is performed in order to generate a new individual. 

The new generated individual replaces an individual selected at random in 

their initial population, obviously excluding the best individual. 

• Inter-habitat communication TH (t), in every habitat Hj (t), is achieved by 

establishing and performing the aforementioned ecological migration 

relationship. In this relationship, for each habitat, a random population within 

the habitat is chosen. The best individual of this population is chosen and is 

subjected to migration to another habitat. In the destination habitat, it 

replaces an individual that is randomly chosen, obviously excluding the best 

individual of the destination habitat. 

Thus, a canonical ECO is an HBS implementing all the different ecological criteria 

while optimizing the algorithm serving as a working prototype of a Computational 

Ecosystem. 

 
47 Blickle, T. (2000). Tournament Selection. In: T. Bäck, D. B. Fogel, and Z. Michalewicz, ed., 
Evolutionary Computation 1: Basic Algorithms and Operators, 1st ed. New York: Taylor & Francis 
Group, pp. 181-186. 
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Further expanding on the semantics and usage of an HBS, Parpinelli and Lopes have 

bifurcated the HBS into the following groups (Parpinelli and Lopes, 2012).48: 

• Bio Plausible HBS – Here, designers of the computational ecosystem 

generally aim to “achieve biologically plausible functionalities in non-

biological contexts, such as the optimization of engineering problems.” 

• Engineered HBS – Here, designers of the computational ecosystem have only 

one purpose and that is “to combine more than one bio-inspired algorithm 

together to create a new algorithm.” 

This thesis, however, would eventually intend to develop, test, taxonomize, and 

prototype Hybrid Bio Plausible Bio-inspired Stochastic Optimization Algorithms as 

functioning Computational Ecosystems primarily in computational environments. 

These computational ecosystems would consist of individual participants exhibiting 

structural properties of biotic and abiotic agents programmed with the behavioral 

properties of their real-life counterparts.  

Depending on the search landscape and driven by the optimization goals 

communicated across different species by means of stigmergy, the biotic agents 

would form populations and several populations across the iterations over time 

would form habitats. While exhibiting properties of homogenous and heterogenous 

cooperation, by means of intraspecific and interspecific relationships, the 

populations would experience intensification (to find the state of equilibrium and 

thus optimization) and diversification (to maintain a significant amount of 

biodiversity).

 
48 Parpinelli, R. S. and Lopes, H. S. (2012). Biological plausibility in optimisation: an ecosystemic view. 
International Journal of Bio-Inspired Computation, 4(6), pp. 345-358.  
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In order to develop the aforementioned Bio Plausible Hybrid Bio-inspired Stochastic 

Optimization Algorithms as functioning Computational Ecosystems, the research 

needs to identify existing bio-inspired algorithms that are dormant and already 

implemented in the field of computation. Figure 2.1 illustrates a representation of 

the “taxonomy and nomenclature of various bio inspired optimization algorithms 

grouped by the area of inspiration” (Binitha and Sathya, 2012)49. 

 

Figure 2.1 – Graphical representation of the taxonomy and nomenclature of various bio inspired 

optimization algorithms grouped by the area of inspiration. Original image by Binitha and Sathya 

(May 2012) Illustration and graphics by Author (January 2021). 

 

 
49 Binitha, S. and Sathya, S. S. (2012). A Survey of Bio inspired Optimization Algorithms. International 
Journal of Soft Computing and Engineering (IJSCE), 2(2), pp. 137-151. 



Architecture of Computational Ecosystems 

| 2.1 Establishing the semantics 57| 

Abbreviations mentioned in fig. 2.1. –  

• GA – Genetic Algorithms - Evolutionary based stochastic optimization 

algorithm with a global search potential. 

• GP – Genetic Programming - An extension to Genetic algorithms differs from 

the latter in terms of representation of the solution. 

• ES – Evolutionary Strategy - Global optimization algorithm inspired by the 

theory of adaptation and evolution by means of natural selection. 

• DE – Differential Evolution - Similar to GA except in a DE mutation is the result 

of arithmetic combinations of individuals. 

• PFA – Paddy Field Algorithm - Operates on reproductive principle based on 

proximity to global solution and population density akin plant populations. 

• IWD – Intelligent Water Drops Algorithm - An innovative population-based 

method inspired by the processes in natural river systems. 

• GSO – Group Search Optimizer - A population-based optimization algorithm, 

which adopts the producer–scrounger (PS) model metaphorically to design 

optimum searching strategies, inspired by animal foraging behavior. 

• PSO – Particle Swarm Optimization - A computational intelligence oriented, 

stochastic, population-based global optimization technique inspired by the 

social behavior of bird flocking searching for food. 

• ACO – Ant Colony Optimization - A meta heuristic inspired by the foraging 

behavior of ants in the wild based on stigmergy.  
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• FSA – Fish Swarm Algorithm - Swarm intelligent evolutionary computation 

technique inspired by the natural schooling behavior of fish. 

• BFA – Bacterial Foraging Algorithm - Inherits the aspects of bacterial foraging 

patterns like chemo taxis, metabolism, reproduction and quorum sensing. 

• FA – Firefly Algorithm - An unconventional swarm-based heuristic algorithm 

for constrained optimization tasks inspired by the flashing behavior of 

fireflies. 

• ABC – Artificial Bee Colony Algorithm - A swarm intelligence algorithm based 

on swarming behavior of bees; further classified into - foraging and mating. 

• SFLA – Shuffled Frog Leaping Algorithm - A population-based cooperative 

meta-heuristic algorithm with efficient mathematical function and global 

search capability. 

• AIS – Artificial Immune System Algorithm - Based on clonal selection principle 

it is a population-based algorithm inspired by the human immune system 

which is a highly evolved, parallel and distributed adaptive system. 

• BBO – Biogeography Based Optimization - A global optimization algorithm 

inspired by mathematical models of biogeography. Biogeography is the study 

of distribution of species in nature over time and space. 

• AWC – Invasive Weed Colony Optimization - A numerical stochastic search 

algorithm inspired by the ecology of weed colonization and distribution. 

• PS2O - Particle Swarm Optimization with two hierarchies – It extends the 

dynamics of the canonical PSO algorithm by adding a significant ingredient 

that takes into account the symbiotic co evolution between species. 
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2.1.4 About the Implementation of Computational Ecosystems 

Fig. 2.1 helps the research in establishing two crucial observations in the concept of 

computational ecosystems: 

• The concept of a recognized, well-researched taxonomy and nomenclature of 

existing bio-inspired algorithms that could serve as examples of 

computational ecosystems already exists. 

• More such algorithms that take into account the implementation of either Bio 

Plausible or Engineered Hybrid Bio-inspired Stochastic Optimization 

Algorithms can be designated as computational ecosystems. 

Having answered the question of what a computational ecosystem is and how an 

algorithm could be termed as a computational ecosystem by understanding a 

canonical ECO algorithm, its properties, and its relevance in the theoretical 

framework of this research, the semantics still have a few unanswered questions 

pertaining to the implementation of computational ecosystems to the relevance of 

this research (explained in 2.1.3), especially issues relating to the following: 

• To establish a dynamic, reciprocal, symbiotic relationship between the built 

form and the algorithm. 

• To represent a fluid design workflow that performs modelling, analysis and 

fabrication simultaneously to generate form, structure, and enclosure for 

architectural intent. 

• To make computational design more autonomous and digital fabrication 

more data-driven. 
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To elaborate on the above-mentioned concerns, the relationship of the built form 

and the algorithm excluding the role of design, that the research proposes to 

establish, needs to be analyzed and evaluated through the lens of biological and 

ecological interactions.  

As elaborated in 1.1.4 the built form and the algorithm, and with the example of the 

“Urbach Tower project” (Wood et al, 2020)50, the built form and design have seen an 

introduction of the algorithm in the AEC industry in the first couple of decades of the 

21st century. The Architectural community which has been categorically bifurcated 

into the design architect and the delivery architect have also encountered a 

significant dominance of the algorithm in the form of adaptive design tools (such as 

Finch 3D) for the former and BIM software for the latter. However, with the 

advancements in the manufacturing, production and computation industries brought 

in by the fourth Industrial Revolution, the role of design can be projected to become 

redundant as the years go by. With the aforementioned proclamations (previously 

elaborated in 1.1.4) that : 

• Algorithm in the form of computational design software can design the built 

form by performing modelling, analysis, and prototyping simultaneously with 

the use of data sets and rule sets pertaining to the structure, material, 

services, and equipment dynamically updated from a cloud source. 

• Algorithm in the form of digital fabrication robots can fabricate the built form 

without the necessity of design documentation in the form of traditional 

plans, sections, elevations, and details, but with just a G-Code that involves a 

precise instruction set for tool paths and material usage. 

 
50 Wood, D., Grönquist, P., Bechert, S., Aldinger, L., Riggenbach, D., Lehmann, K., Rüggeberg, M., 
Burgert, I., Knippers, J., and Menges, A. (2020). From Machine Control to Material Programming Self-
Shaping Wood Manufacturing of a High Performance Curved CLT Structure – Urbach Tower. In: 
Fabricate 2020 Making Resilient Architecture, London: UCL press pp. 50-57 Available at: 
https://www.uclpress.co.uk/products/154646 [Accessed 15 Jun. 2020]. 
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With the trivial use cases of design in the AEC industry maintained and supervised by 

the algorithm, both the design and the delivery architects can have more intellectual 

and intuitive control over the built form by controlling the algorithm in the form of 

computational design and digital fabrication respectively.  

To perform the aforementioned trivial use cases of design by means of the algorithm 

in the form of computational design and digital fabrication, however, the algorithm 

would require a certain amount of autonomy in the system. This autonomy could be 

defined as the liberty to access important aspects such as access to data sets of 

quantitative characteristics, bye-laws and engineering properties of components 

related to structure, material, services, and equipment. Moreover, as the algorithm 

also would be performing analysis while modelling and prototyping, this autonomy 

could also be defined as the liberty to access data sets of a more macro level such as 

topographical data, climatological data, demographic data, data of energy sources, 

data of service sources, infrastructural data and thermal comfort data. 

With the above-mentioned autonomy, the algorithm would be more intuitive, 

informed and conversant, perhaps not as much as the architect, although much 

better than the current design tools used by the architect. But with the power of 

computation, that involves data processing of higher quantities and at higher 

velocities, the algorithm could also be equipped to become autonomous with post 

construction data and post occupancy data. Here, the built form would be generating 

a massive amount of data sets such as structural performance, energy performance, 

Mechanical Electrical and Plumbing (MEP) efficiency, Heating Ventilation and Air-

conditioning (HVAC) efficiency, sewage and water supply efficiency, functional 

efficiency, accessibility, climate control, comfort levels and the overall qualitative of 

space. If the algorithm gets an access to these data sets, there could be a tremendous 

enhancement in the way it deals with the subsequent built forms. Moreover, such an 

unprecedented access and autonomy over pre and post execution data sets would 

also allow the architect to truly and thoroughly master the qualitative and 

quantitative optimization of architecture. 
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However, it is not just the accessibility of data sets pertaining to the AEC industry that 

need to be established to form a relationship between the built form and algorithm 

that the research seeks (that’s in fact the easy bit and quite elementary to be fair!). 

To truly serve as a better alternative to the traditional understanding and industry 

application of design (that is as a mere means of documentation and delivery of an 

AEC project), the algorithm needs to learn how to use these data sets, and more 

importantly how to communicate design decisions to and from the built form. To 

establish communication, a system would have to be installed that would create, 

maintain and evaluate a feedback loop between the built form and the algorithm. 

This means that, the feedback loop would have to be autonomous and autopoietic.  

The research prefers to align itself with defining autopoiesis “as a machine organized 

(defined as a unity) as a network of processes of production (transformation and 

destruction) of components which (Maturana and Varela, 1980)51:  

• through their interactions and transformations continuously regenerate and 

realize the network of processes (relations) that produced them, and  

• constitute it (the machine) as a concrete unity in space in which they (the 

components) exist by specifying the topological domain of its realization as 

such a network.” 

“A unity, which is the core concept of the autopoietic machine, is essentially an entity 

distinct from a background and exists in a space defined by its components” 

(Maturana and Varela, 1980).52 Although, this means that an autopoietic system is in 

isolation, the canonical example of an autopoietic system, a biological cell, doesn’t 

operate in isolation. Hence, the aforementioned feedback loop is not obligated to 

operate in isolation. 

 
51 Maturana, H. R. and Varela, F. J. (1980). Autopoiesis and Cognition: The Realization of the Living. 
Berlin: Springer Science & Business Media, p.146. 
52 Ibidem 
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In the process of generating a theoretical framework, it is keen to note that the 

research prefers autopoiesis over the generic allopoiesis as a core conceptual 

property of the feedback loop. Apart from the conceptual relevance of autopoiesis in 

establishing a recursive feedback loop within the communication logic between the 

built form and algorithm, the research also wants to abandon the traditional, 

functional rationale that design is an allopoietic, transformative process of creating 

something out of something else. By establishing the above theoretical construct of 

creating, maintaining and constantly evaluating an autonomous and autopoietic 

feedback loop between the built form and the algorithm, the research essentially 

seeks a constant recursive loop where the built form and the algorithm both undergo 

transformations using the data of the other while creating more data for further use.  

To put it rationally, two structurally plastic composite unities (the built form and the 

algorithm) “interact with each other and thus operate as selectors of their individual 

paths of structural change, thereby forming a reciprocal structural coupling. As a 

result, the changes of state of one system trigger the changes of state of the other 

recursively, and a domain of coordinated conduct is established between the two 

mutually adapted systems” (Maturana, 2002).53 An autonomous and autopoietic 

structural coupling as a means of communication between the built form and the 

algorithm both in the form of computational design and digital fabrication is exactly 

what this research has hypothesized in the last chapter (previously, in 1.2) as, 

What if the built form was constructed, monitored and governed by an 

autonomous, unbiased algorithm? 

What if this algorithm was dynamically constructed, monitored and governed by 

the built form? 

 
53 Maturana, H. R. (2002). Autopoiesis, Structural Coupling and Cognition: A history of these and 
other notions in the biology of cognition. Cybernetics & Human Knowing, 9(3-4), pp. 5-34. 
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A computational ecosystem as explained and elaborated (previously, in 2.1.3) clearly 

instills the fundamental concepts of a recursive, evolutionary algorithm in its 

workflow by defining itself as either a Bio Plausible or an Engineered Hybrid Bio-

inspired Stochastic Optimization Algorithm.  

A computational ecosystem by the virtue of the canonical ECO algorithm (previously 

elaborated in 2.1.3 About computational ecosystems) quite distinctly exhibits the 

following characteristics that are unique within the spectrum of bio-inspired 

optimization algorithms as seen in fig. 2.1: 

• A computational ecosystem represents an autonomous, autopoietic feedback 

loop that is based upon the structural coupling of two entities (in a canonical 

ECO algorithm, these two structurally plastic composite unities can be clearly 

represented by the populations and habitats) which would be essential in 

establishing a dynamic, reciprocal, symbiotic relationship between the built 

form and the algorithm. 

• Moreover, the homogenous and heterogenous cooperation that is clearly 

represented by intraspecific and interspecific relationships, (driven by 

intensification and diversification within the evolutive period of a canonical 

ECO algorithm) in a computational ecosystem has all the key ingredients of 

representing a fluid design workflow that performs modelling, analysis and 

fabrication simultaneously to generate form, structure, and enclosure for 

architectural intent. 

• And finally, the essential components of intra-habitat communication 

strategies and inter-habitat communication strategies (executed by applying 

the ecological mating and migration relationships respectively in a canonical 

ECO algorithm) would be instrumental in making computational design more 

autonomous and digital fabrication more data-driven. 
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2.2 Applicability of the semantics 

As a corollary to the previous section (2.1 Establishing the semantics), which focused 

on addressing, understanding, and establishing key terminologies that form the 

theoretical framework in the pursuit of this research, this section (2.2 applicability of 

the semantics) explores the implementation of the theoretical construct of 

computational ecosystems into the existing fields of pure and applied sciences. The 

study and exploration of these implementations will be crucial for the research as it 

will further assist in instituting the definitions and use cases of most of the semantics 

that has been established until this point. As this entire chapter focuses on the first 

literary objective, that installs the lexical semantics (in the reference of setting up a 

vocabulary base), this section is vital in providing empirical evidence for the structure 

of thought that serves as a theoretical foundation for the rest of the research. 

What is interesting to observe in the applications of the semantics is that different 

fields of science define a computational ecosystem differently, and thus it becomes 

easier for the research to form its definition of a computational ecosystem (in the 

context of forming a dynamic, reciprocal, symbiotic relationship between the built 

form and the algorithm) while being relevant and comparable to the other 

applications, apart from the canonical computational ecosystem (explained and 

elaborated upon in section 2.1). However not acknowledged scientifically, many of 

these applications of computational ecosystems can be observed in the field of 

“Artificial Life or A-Life” (Langton, 1995)54 where agent-based simulations and 

interactions are conducted in what is termed as “Artificial Ecosystems”. 

Continuing on the above concepts of A-life, this thesis would illustrate some 

examples of the applicability of computational ecosystems in behavioral sciences and 

visual arts. 

 
54 Langton, C. G. (1995). Artificial Life: An Overview. Cambridge: MIT Press, p.341. 
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2.2.1 Applicability in biology, epidemiology and behavioral sciences 

Most of the bio inspired optimization algorithms illustrated in fig. 2.1 in all the three 

distinctions (that is, evolution based, swarm based, and ecology based) could be quite 

essentially classified as computational ecosystems. Most of them, and especially the  

bio inspired optimization systems specifically associated to the swarm-based 

algorithms (for example, the PSO, ACO, BFA, FSA, and ABC) implement one or all of 

the crucial ingredients of a computational ecosystem such as: 

• Structural Coupling – Which is quite efficiently demonstrated by the GSO 

algorithm (He, Wu and Saunders, 2006)55, where the producers, scroungers 

and rangers enter into a 3-way structural coupling that allows the algorithm 

to solve many of its optimization goals. 

• Intensification and Diversification – Which is a core concept in the 

functioning of a BBO (Simon, 2009)56 algorithm (apart from the PS2O 

algorithm as elaborated in 2.1.2), where the species (participating individuals 

or agents) undergo homogenous and heterogenous co-operations to achieve 

their optimization objectives. 

• Intra-habitat and inter-habitat communication strategies – Which is 

embedded in the function of chemotaxis or cell movement in a BFA (Passino, 

2002)57 where the bacterial movement is simulated by establishing a cell-to-

cell communication mechanism (similar to the use of stigmergy in an ACO 

algorithm as explained in 2.1.2) to achieve the optimization goals. 

 
55 He, S., Wu, Q. H. and Saunders, J. R. (2006). A Novel Group Search Optimizer Inspired by Animal 
Behavioral Ecology. In: IEEE International Conference on Evolutionary Computation. Vancouver: IEEE, 
pp. 1272-1278. 
56 Simon, D. (2009). Bio-geography based optimization. IEEE Transactions on Evolutionary 
Computation. 12(6), pp. 702-713. 
57 Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. 
IEEE Control Systems Magazine. 22(3), pp. 52-67 
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Although the aforementioned algorithms are examples of bio-inspired optimization 

algorithms and are theoretically situated in the first area of investigation in the field 

of Natural Computing (computing inspired by nature; previously explained and 

elaborated upon in 2.1.3), applications in the field of behavioral sciences are mostly 

based on the second area of investigation (simulation and emulation of nature by 

implementing computing). Quite often these applications in behavioral sciences 

which are theoretically termed as artificial ecosystems are performed by 

implementing Agent-based Modelling (ABM) or Individual-based Modelling (IBM). 

Although agent-based modelling is a mathematical concept that was introduced in 

the early 1940s, due to the lack of computational architecture it failed to pick up 

across the discipline of mathematics and computer sciences until the 1990s, after 

which it became quite ubiquitous as a technique of simulating natural forms and 

systems. On the whole, an ABM or IBM is a simulation system that helps in the 

emulation of natural forms and systems “based on the actions and interactions of 

autonomous agents (both individual or collective entities) to understand the behavior 

of a system and what governs its outcomes” (Railsback and Grimm, 2011)58. 

As ABMs and IBMs have been highly implemented in the field of Biology, their results 

have led studies into understanding and predicting some complex phenomena across 

the scientific disciplines, such as the complex phenomena of emergence (in the sense 

of macro-state changes emerging from micro-state agent behaviors) by mere 

simulation of some existing biological interactions in computational environments. 

The study and simulation of “Population Dynamics” (Caplat, Anand, and Bauch, 

2007)59 and “Landscape Diversity” (Wirth, Szabó, and Czinkóczky, 2016)60 are some 

of the applications of ABMs and IBMs in biology. 

 
58 Railsback, S. F., & Grimm, V. (2011). Agent-based and individual-based modelling: A practical 
introduction. Princeton: Princeton University Press., p.329. 
59 Caplat, P., Anand, M., Bauch, C. (2007). Symmetric competition causes population oscillations in an 
individual-based model of forest dynamics. Ecological Modelling 211. 3(4), pp. 491-500. 
60 Wirth, E., Szabó, G., Czinkóczky, A. (2016). Measure of Landscape Heterogeneity by Agent-Based 
Methodology. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information 
Sciences. III(8), pp. 145-151. 
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Computational Ecosystems in the form of ABMs and IBMs are also widely 

implemented in the field of Epidemiology almost as often and effectively as the 

conventional Compartmental Modelling technique (where agents/participants would 

move through computational compartments of S, I,  and R; where S - Susceptible, I – 

Infectious and R - Recovered). ABMs and IBMs have often been employed in the 

analysis, information, and intervention of dangerous diseases such as the “Avian 

Influenza which is the result of a mutant influenza virus infecting poultry chickens in 

Indonesia” (Situngkir, 2004)61 and the more recent SARS-CoV-2 pandemic, commonly 

known as the COVID-19 pandemic where an “ABM termed as CovidSim was 

developed by Neil Ferguson and his team of epidemiologists in 2020” (David, 2020)62. 

Computational Ecosystems in the form of ABMs have also been implemented in the 

field of behavioral sciences for varied purposes such as “to understand the resource 

supply and demand relationships with the inclusion of human behavior in the nexus 

of the food-water-energy system in agriculture” (Magliocca, 2020)63. Whereas 

computational ecosystems in the form of A-Life (as explained in 2.2) have also been 

implemented in “assessing population diversity, population density fluctuations, and 

socializing behaviors while developing human crowd simulators” (Antunes, 2016)64 

All above implementations of Computational Ecosystems show structural couplings 

with intensification and diversification strategies performed with intra-habitat and 

inter-habitat communication strategies. 

 
61 Situngkir, H. (2004). Epidemiology Through Cellular Automata: Case of Study Avian Influenza in 
Indonesia. [online]. Available at: https://arxiv.org/abs/nlin/0403035 [Accessed 24 Apr. 2021]. 
62 David, A. (2020). Special report: The simulations driving the world’s response to COVID-19. Nature, 
[online]. Available at: https://www.nature.com/articles/d41586-020-01003-6 [Accessed 12 Jan. 
2021]. 
63 Magliocca, N. R. (2020). Agent-Based Modelling for Integrating Human Behavior into the Food–
Energy–Water Nexus. Land 2020[online] Volume 9(519), p. 25. Available at: 
https://www.mdpi.com/2073-445X/9/12/519/ [Accessed 24 Apr. 2021]. 
64 Antunes, R. F. (2016). Human Crowd Simulation: What can We Learn from ALife? In: ALIFE 2016, 
the Fifteenth International Conference on the Synthesis and Simulation of Living Systems. [online] 
Cancun: MIT Press Direct, p. 8. Available at: 
https://direct.mit.edu/isal/proceedings/alif2016/38/99500 [Accessed 26 Apr. 2021]. 
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2.2.2 Applicability in visual arts and design 

Computational Ecosystems in the form of Alife, ABM, and IBM have also experienced 

a considerable rise in the fields of visual arts, communication design, generative art, 

design engineering, and architectural design. While being driven by non-biological 

(that is not focused on survival, reproduction, or growth of a system) and/or non-

optimization goals (that is not focused on the search algorithms for finding peak 

fitness conditions) these Computational Ecosystems have diverse subjective, and 

context-specific goals. Nonetheless, these algorithms can be deemed as 

Computational Ecosystems, as they exhibit structural couplings with intensification 

and diversification strategies performed with intra-habitat and inter-habitat 

communication strategies. 

Because the focus of the algorithms in the field of Visual arts and communication 

design is on non-biological and non-optimization goals, a slightly non-computational 

and analogical definition for Computational Ecosystem has been derived as followed:  

• Computational Ecosystems can be defined as “computer programs that 

simulate interactions of agents inspired by life in nature. In a typical 

computational ecosystem, agents are organized in a hierarchical structure 

(food chain) and a community dynamic is promoted through the trade of token 

units of energy and biomass between these agents” (Antunes, Leymarie, and 

Latham, 2016)65.  

• In ecology, “Computational Ecosystems are used when modelling carbon-

based contexts and can be considered part of the sub-domain of ABMs and 

IBMs” (Ibidem)66. 

 
65 Antunes, R. F., Leymarie, F. F., Latham, W. (2016). Computational Ecosystems in Evolutionary Art, 
and Their Potential for the Future of Virtual Worlds. In: Y. Sivan, ed., Handbook on 3D3C Platforms, 
1st ed. Cham, Switzerland: Springer International Publishing, pp. 441-473. 
66 Ibidem 
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Although based strongly in Alife and ABM, the aforementioned research of Antunes, 

Leymarie, and Latham provides a profound insight into establishing the theoretical 

framework of Computational Ecosystems, for the application of generative arts while 

developing a thorough taxonomy of existing researches and artworks that implement 

computational ecosystems within the theoretical construct of the definition stated 

previously (not to be mistaken with the canonical computational ecosystem 

definition elucidated in 2.1.4). However, their theoretical assumptions possess some 

similarities to the canonical computational ecosystems, such as: 

• “Eden, a sonic system” (McCormack, 2001)67 which demonstrates that these 

computational ecosystems are Autonomous and to a certain extent 

Autopoietic as they exhibit certain properties of self-motivated communities 

of agents despite their significant biodiversity. 

• “A Genotype-Phenotype model is theorized to be existing in these 

computational ecosystems” (Antunes, Leymarie, and Latham, 2016)68 that 

further demonstrates the existence of inter-habitat and intra-habitat 

communication strategies often performed by homogenous, heterogenous, 

or chemo static means. 

Their theoretical assumptions also add an important dimension of Interactivity 

to the realization of computational ecosystems. With this extension, the agents 

participating in a Computational Ecosystem could be added, deleted or their 

properties could be modified by external user input or abiotic factor, thereby 

making a computational ecosystem context-aware (Sommerer and Mignonneau, 

1994).69 

 
67 McCormack, J. (2001). Eden: an evolutionary sonic ecosystem. In: Advances in Artificial Life, 6th 
European Conference. Berlin: Springer - Verlag, p. 10. 
68 Antunes, R. F., Leymarie, F. F., Latham, W. (2016). Computational Ecosystems in Evolutionary Art, 
and Their Potential for the Future of Virtual Worlds. In: Y. Sivan, ed., Handbook on 3D3C Platforms, 
1st ed. Cham, Switzerland: Springer International Publishing, pp. 441-473. 
69 Sommerer, C., Mignonneau, L. (1994). A-Volve: A real-time interactive environment. In: ACM 
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Apart from Generative Art, a diverse range of design disciplines have employed 

computational ecosystems in various forms. Here, the end goal is not as abstract as 

the implementation in visual or sonic arts but is often driven by the optimization of 

the more quantitative aspects of design. For instance, the “application of 

computational ecosystems in the field of transport design as an ABM in the simulation 

and analysis of self-driving cars with respect to computationally generated traffic 

conditions, topographical conditions, and resource optimization applied to the 

scenario of the city of Lisbon, Portugal” (Martinez and Viegas, 2017).70 The model 

optimizes mobility outputs and CO2 emissions for two distinct transport systems.  

Computational Ecosystems in the form of ABM have also been implemented in the 

architectural and urban environments “to assess greenhouse gas emissions 

employing pedestrian simulation in procedurally-generated 3D models” (Aschwanden 

et al, 2009)71. Here, the model develops a stochastic search algorithm to simulate 

decisions that record the paths taken, while recording stress, effort and deviations. 

Thus, Computational Ecosystems can be expressed with the canonical definition 

(2.1.4) or the non-canonical definition (2.2.2), however, the theoretical framework 

persists that a computational ecosystem represents a feedback loop (structural 

coupling) that is autonomous, autopoietic. Moreover, it undergoes homogenous and 

heterogenous co-operations performed by intra-habitat and inter-habitat 

communication strategies while allowing a degree of interactivity and become 

context-aware. 

 
Siggraph Visual Proceedings. pp. 172–173. 
70 Martinez, L. M., Viegas, J. M. (2017). Assessing the impacts of deploying a shared self-driving urban 
mobility system: An agent-based model applied to the city of Lisbon, Portugal. International Journal 
of Transportation Science and Technology. [online] 6(2017), pp. 13-27. Available at: 
https://reader.elsevier.com/reader/sd/pii/S2046043016300442?token=0D63F683EEF2FFDA49A010F
D6D7BD77A18B8CAC02BDE12BCA11F14B0F0702DA369F02E3B46DAB8B7E279C516B24D40CC&origi
nRegion=eu-west-1&originCreation=20210703000320 [Accessed 22 May 2020]. 
71 Aschwanden, G.D.P.A., Wullschleger, T., Müller, H., Schmitt, G. (2009). Agent based evaluation of 
dynamic city models: A combination of human decision processes and an emission model for 
transportation based on acceleration and instantaneous speed. Automation in Construction. [online] 
22, pp. 81-89. Available at: https://www.sciencedirect.com/science/article/pii/S0926580511001415 
[Accessed 22 May 2020]. 
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2.3 Cellular Automata as Computational Ecosystem 

As defined, illustrated, and extensively exemplified in the two preceding sections of 

this chapter (2.1 and 2.2), Computational Ecosystems in the form of Alife, ABM, and 

IBM serve as widely accepted computational models across various fields, disciplines 

and industries not just to solve optimization problems, or to mimic natural systems, 

but also to generate art and to solve some critical global problems relating to climate 

change and pandemics. From a technical perspective, these Computational 

Ecosystems are realized by using toolkits that are based on applying programming 

languages such as JAVA, .NET, C++, J#, C#, and Logo. Some of these toolkits such as 

AnyLogic72, Repast73, and NetLogo74 also use their languages or modified versions of 

the aforementioned programming languages. All these toolkits and languages have a 

very strong (usually) open-source community that versions these toolkits often and 

well. However, they all have a major shortcoming with their very limited and 

sometimes even non-existent 3D modelling capabilities. 

As the research hypothesizes to theorize, generate, taxonomize, and prototype 

computational ecosystems as autonomous, autopoietic, context aware feedback 

loops between the built form and algorithm, it becomes very essential for the 

research to develop these computational ecosystems in an environment that 

anticipates modelling, analysis, and prototyping of 3-dimensional morphologies in 3-

dimensional environments. Furthermore, additional software plugin capabilities 

required to create and use existing data sets (as explained in 2.1.4), would require 3-

dimensional capabilities in the software and the technique employed to realize the 

Computational Ecosystem. Also, since the research has sensationally postulated to 

replace design, a 2-dimensional interface would be rudimentary and useless. 

 
72 AnyLogic. (2000). France: The AnyLogic Company. 
73 Repast. (2006). Chicago: Repast HPC. 
74 NetLogo. (1999). Illinois: Northwestern University Center for Connected Learning and Computer-
Based Modelling 
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On the whole, owing to the capabilities of the existing programming languages and 

available software, the Computational Ecosystem thus developed would have to 

conform to the theoretical definitions elaborated thus far and performs in a 3-

dimensional Euclidian environment that exhibits the aforementioned capabilities. 

Although never theorized to be an example of a Computational Ecosystem by 

ecologists or computational theorists, Cellular Automata are “computational models 

that expand on the idea of self-replicating systems”, as was developed conceptually 

in the mid 20th century by John Von Neumann (Von Neumann and Burks, 1966)75.  A 

Cellular Automaton consists of participating agents which are created, replicated and 

deleted based on pre-conceived rules in a computational environment. The rules are 

often rooted in the study of behaviors and interactions of biological organisms or 

systems. The participating agents are denoted by a grid-cell in the Euclidian 

environment, hence the name - Cellular Automata. They have been applied in a 

diverse range of disciplines across pure and applied sciences since their original 

inception by John Von Neumann in the 1950s, however, “the Von Neumann model of 

cellular automata did not gain popularity until John Conway, came up with the cellular 

automaton - Game of Life” in 1970 (Gardner, 1970)76. In the early 2000s however, 

Stephen Wolfram, deeply theorized Cellular Automata into different typologies as an 

independent field of computational sciences in his book – A New Kind of Science. 

To base the theoretical framework of establishing the lexical semantics, the thesis 

would now be elaborating on the different models of Cellular Automata – by Von 

Neumann, Conway, and Wolfram to understand their distinct properties and 

theoretical implications to the idea of Computational Ecosystems within the 

relevance of the research. 

 
75 Von Neumann, J. and Burks, A. W. (1966). Theory of Self-Reproducing Automata. Illinois: University 
of Illinois Press, p.387. 
76 Gardner, M. (1970). MATHEMATICAL GAMES - The fantastic combinations of John Conway's new 
solitaire game "life". Scientific American. [online] 223(4), pp. 120-123. Available at: 
https://web.stanford.edu/class/sts145/Library/life.pdf [Accessed 31 May 2020]. 
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2.3.1 Cellular Automata – John Von Neumann model 

John Von Neumann with his colleague Stanislaw Ulam proposed a “simple self-

reproducing kinematic automaton which would serve as a proof-of-concept for his 

hypothetical claims of a non-biological self-replicating system during his university 

lectures in 1948 and 1949” (Von Neumann and Burks, 1966)77. This time in the history 

of mathematics and computation was filled with speculations by mathematicians and 

computer scientists around the world of an inevitable logical barrier that could not 

accept a self-replicating system in any shape or form. Most of these theories 

predated the computational architecture as we know it today (it also belongs to the 

time when the conceptualization and construction of a Universal Turing Machine by 

Alan Turing was not a reality). For this reason, the Von Neumann model of cellular 

automata, which could be considered as the canonical cellular automata was 

originally conceptualized and constructed by Von Neumann with the use of pencil 

and graph paper. 

“Von Neumann evidently was dissatisfied with his original kinematic model because 

of its seeming mathematical inelegance. The kinematic model, while qualitatively 

sound, appeared not easily susceptible to mathematically rigorous treatment and so 

might not serve to convince a determined skeptic” (Freitas Jr. and Merkel, 2004)78. 

Ulam, then suggested Neumann that the “notion of a self-replicating machine would 

be amenable to rigorous treatment if it could be described in a “cell space” format 

that is, in the form of a geometrical grid or tessellation, regular in all dimensions” 

(Ibidem)79. This important intervention helped Neumann develop the automaton in 

its simplest form.  

 
77 Von Neumann, J. and Burks, A. W. (1966). Theory of Self-Reproducing Automata. Illinois: University 
of Illinois Press, p.387. 
78 Freitas Jr., R. A., Merkle, R. C. (2004). Kinematic Self-Replicating Machines. [online] 
www.molecularassembler.com. Available at: http://www.molecularassembler.com/KSRM/2.1.3.htm 
[Accessed 18 Nov. 2017]. 
79 Ibidem 
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Thus, the basic rules for the configurations, neighbourhoods and states were laid 

down for the first operating cellular automaton. In this canonical version, the cellular 

automaton is modelled as a finite state automaton (FSA – as a computational model 

where the model can exist in only one state at a given time. These states of existence 

are predetermined and finite). These FSA, after the intervention of Ulam are termed 

as Cells laid out in an infinite square grid. To describe the canonical cellular automata 

rule set, however, some semantics would have to be established, as following: 

• Cell – The unit square of a square grid. The aforementioned FSA exists in each 

cell and all these cells make their transitions synchronously, in 

correspondence with a universal "clock" as in a synchronous digital circuit 

depending on the configuration of their neighbourhoods (in this case, a Von 

Neumann neighbourhood). 

• States – Any states of existence as defined in the initial rule-set. The state of 

a cell is determined by the states of its neighbourhood. In the canonical 

cellular automaton, a total of 29 possible different states are predetermined. 

• Von Neumann neighbourhood – The group of 4 neighbouring cells 

surrounding a central cell on its cardinal directions (i.e. up, down, left and 

right) in a square grid. The neighbourhood consists of the central cell itself, 

and it’s four neighbours that are at a unit distance from the central cell. 

As previously mentioned, the Von Neumann model of cellular automata was initially 

conceived without a computer. However, because of the current state of advanced 

computation, many reiterations of the canonical version have been created. With it, 

lots of computational tools have been developed for the ease of modelling of these 

basic and yet powerful cellular automata. One such platform is the open source 

software Golly80. 

 
80 Golly. (2005). England: Andrew Trevorrow and Tom Rokicki. 
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The basic distinctions of these states can be described as followed: 

• The unexcited state – This could be considered as the ‘0’ state or the false 

state of the cell. 

• The sensitized state – This could be considered as the transition state from 

the ‘0’ state to the ‘1’ state. 

• The excited state - This could be considered as the ‘1’ state or the true state 

of the cell. It carries one bit (as in binary) of data for every sensitized step.  

• The quiescent state – This could be considered as the transition state from 

the ‘1’ state to the ‘0’ state. 

• The transmission state – This could be considered as states that help in 

transmitting information in the entire neighbourhood. Each of these could be 

in the excited or quiescent states.  

• The confluent state – This is activated if a signal is received from the entire 

neighbourhood. If activation occurs, after two moments of time they emit 

signals outward toward any cell in their neighbourhood which does not have 

a transmission directed toward it. The confluent states have the property of 

a one-cycle delay; thus, they carry two bits of data at any instance of time. 

Thus, considering the above basic distinctions of possible states, a “Von Neumann 

model of Cellular Automata can have 29 different predetermined states” (Freitas Jr. 

and Merkel, 2004)81 depending on their interspecific combinations which can be 

considered as the rule sets to initiate the Automaton. 

 
81 Freitas Jr., R. A., Merkle, R. C. (2004). Kinematic Self-Replicating Machines. [online] 
www.molecularassembler.com. Available at: http://www.molecularassembler.com/KSRM/2.1.3.htm 
[Accessed 18 Nov. 2017]. 
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They can be described in Golly by means of RGB values (red, green, blue) as followed: 

1. U (Ground state or Unexcited state) (48,48,48) 

2. the transition or sensitized states (in 8 sub states) 

a. S (newly sensitized) (255, 0, 0) 

b. S0 – (sensitized, no input for 1 cycle) (255, 125, 0) 

c. S00 – (sensitized, no input for 2 cycles) (255, 175, 50) 

d. S000 – (sensitized, no input for 3 cycles) (251, 255, 0) 

e. S01 – (sensitized, no input for 1 cycle, then input for 1 cycle) (255, 200, 

75) 

f. S1 – (sensitized, input for one cycle) (255, 150, 25) 

g. S10 – (sensitized, input for 1 cycle, then no input for 1 cycle) (255, 255, 

100) 

h. S11 – (sensitized, input for 2 cycles) (255, 250, 125) 

3. the confluent states (in 4 states of excitation) 

a. C00 – (quiescent and will also be quiescent next cycle) (0, 255, 128) 

b. C01 – (now quiescent, but will be excited next cycle) (33, 215, 215) 

c. C10 – (excited  but will be quiescent next cycle) (255, 255, 128) 

d. C11 – (currently excited and will be excited next cycle) (255, 128, 64) 
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4. The ordinary transmission states (in 4 directions, excited or quiescent) 

a. North-directed (excited and quiescent) (36, 200, 36) (106, 106, 255) 

b. South-directed (excited and quiescent) (106, 255, 106) (139, 139, 255) 

c. West-directed (excited and quiescent) (73, 255, 73) (122, 122, 255) 

d. East-directed (excited and quiescent) (27, 176, 27) (89, 89, 255) 

5. the special transmission states (in 4 directions, excited or quiescent) 

a. North-directed (excited and quiescent) (191, 73, 255) (255, 56, 56) 

b. South-directed (excited and quiescent) (203, 106, 255) (255, 89, 89) 

c. West-directed (excited and quiescent) (197, 89, 255) (255, 73, 73) 

d. East-directed (excited and quiescent) (185, 56, 255) (235, 36, 36) 

The confluent states consider the following (Von Neumann and Burks, 1966)82: 

• They do not communicate data, and they take input from one or more ordinary 

transmission states, or deliver output to transmission states, that are not 

directed towards them.  

• They implement AND operator to inputs. 

• Data held by them is lost if that state has no adjacent transmission state that 

is also not pointed at them. Thus, they can be used as "bridges". 

 
82 Von Neumann, J. and Burks, A. W. (1966). Theory of Self-Reproducing Automata. Illinois: University 
of Illinois Press, p.387. 
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Furthermore, the model is based on the following construction rules (Von Neumann 

and Burks, 1966)83: 

• Initially, the cells are in the ground state U. When given an input excitation 

from a neighbouring ordinary or special transmission state, the cell in the U 

state becomes sensitized, transitioning through a series of states before 

finally resting at a quiescent transmission or confluent state. The choice of 

which destination state the cell will reach is determined by the sequence of 

input signals. Thus, the transition/sensitized states can be thought of as the 

nodes of a bifurcation tree leading from the U state to each of the quiescent 

transmission and confluent states. In the following tree, the sequence of 

inputs is shown as a binary string after each step: 

• a cell in the U, given an input, will transition to the S state in the next cycle (1) 

o a cell in the S, given no input, will transition into the S0 state (10) 

▪ a cell in the S0, given no input, will transition into the S00 (100) 

• a cell in the S00, given no input, will transition into the 

S000 (1000) 

o a cell in the S000, given no input, will transition 

into the east-directed ordinary transmission 

state (10000) 

o a cell in the S000, given an input, will transition 

into the north-directed ordinary transmission 

state (10001) 

 
83 Von Neumann, J. and Burks, A. W. (1966). Theory of Self-Reproducing Automata. Illinois: University 
of Illinois Press, p.387. 
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• a cell in the S00, given an input, will transition into the 

west-directed ordinary transmission state (1001) 

▪ a cell in the S0, given an input, will transition into the S01 (101) 

• a cell in the S01, given no input, will transition into the 

south-directed ordinary transmission state (1010) 

• a cell in the S01, given an input, will transition into the 

east-directed special transmission state (1011) 

o a cell in the S state, given an input, will transition into the S1 (11) 

▪ a cell in the S1, given no input, will transition into the S10 (110) 

• a cell in the S10, given no input, will transition into the 

north-directed special transmission state (1100) 

• a cell in the S10, given an input, will transition into the 

west-directed special transmission state (1101) 

▪ a cell in the S1, given an input, will transition into the S11 (111) 

• a cell in the S11, given no input, will transition into the 

south-directed special transmission state (1110) 

• a cell in the S11, given an input, will transition into the 

quiescent confluent state C00 (1111) 
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And, on the following Destruction rules (Von Neumann and Burks, 1966)84: 

• If an input is sent from a special-transmission state cell into a confluent-state 

cell, the latter will be reduced back to U. 

• Similarly, if an input is sent from a special-transmission state cell into an 

ordinary transmission-state cell, the latter will be reduced back to U. 

• Conversely, if an input is sent from an ordinary-transmission state cell into a 

special transmission-state cell, the latter will be reduced back to U. 

Thus, Von Neumann demonstrated that his “cellular model of machine replication 

possessed the sufficient logical properties including logical universality, construction 

capability, and constructional universality , thus enabling self-replication and the 

empirical evidence of a Universal Constructor” (Freitas Jr. and Merkel, 2004)85. 

Interestingly, the model was implemented in the calculation of liquid motion, where 

“the driving concept of the method was to consider a liquid as a group of discrete 

units and calculate the motion of each based on its neighbours' behaviors” (Białynicki-

Birula and Białynicka-Birula, 2004).86  

However, the important aspect of the Von Neumann model that could be 

implemented in the context of Computational Ecosystems is the intraspecific 

relationship in a cell depending on its state, and interspecific relationship with its 

neighbourhood in a given instance of time. Moreover, the structural coupling 

between the cells, states and the neighbourhood is analogous to that of a GSO 

algorithm (2.1.3).  

 
84 Von Neumann, J. and Burks, A. W. (1966). Theory of Self-Reproducing Automata. Illinois: University 
of Illinois Press, p.387. 
85 Freitas Jr., R. A., Merkle, R. C. (2004). Kinematic Self-Replicating Machines. [online] 
www.molecularassembler.com. Available at: http://www.molecularassembler.com/KSRM/2.1.3.htm 
[Accessed 18 Nov. 2017]. 
86 Białynicki-Birula, I., Białynicka-Birula, I. (2004). Modelling Reality - How Computers Mirror Life. 
Oxford: Oxford University Press, p.188. 
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2.3.2 Cellular Automata – John Conway model 

Although the Von Neumann model was quite accomplished at performing its function 

of a self-replicating machine in the form of a Universal Constructor, it was quite 

laborious and complex in the form of its diverse range of states and their 

combinations. After Von Neumann, very many mathematicians have established 

their versions of Cellular Automata. Most of them attempting to reduce the number 

of finite states determined before setting up the Automaton. Notable examples 

during this time include the “Codd model with eight states which was created to 

emulate the Von Neumann model with a lesser amount of states” (Codd, 1968)87; or 

the “Greenberg-Hastings cellular automaton (GH model) with three states which was 

designed to model excitable media” (Greenberg and Hastings, 1978)88. 

As the computational resources evolved, many such Automata were developed by 

mathematicians and computer scientists through the decades of the late 20th century 

further demonstrating that simpler machines than von Neumann's can be shown to 

be capable of reproducing themselves. The question then arose: “How simple can a 

machine become while still retaining the capacity to reproduce itself?” (Langton, 

1984)89. In 1970, John Conway’s game of life, which was “a cellular automaton with 

just 2 states was designed to serve as a solitary math game expanding on the idea of 

mathematical simulation games” (Gardner, 1970)90 answered the above question to 

its very extreme. The simplification in Conway’s model was so remarkable, that it 

breathed a new life into the study and research of cellular automata in the fields of 

mathematics and computer sciences.  

 
87 Codd, E. F. (1968). Cellular Automata. PhD Thesis. Academic Press, New York. 
88 Greenberg, J. M., Hastings, S. P. (1978). Spatial Patterns for Discrete Models of Diffusion in 
Excitable Media. SIAM Journal on Applied Mathematics, 34(3), pp. 515–523. 
89 Langton, C. G. (1984). Self-Reproduction in Cellular Automata. In: Physica 10D. Amsterdam: 
Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division), pp. 135-144. 
90 Gardner, M. (1970). MATHEMATICAL GAMES - The fantastic combinations of John Conway's new 
solitaire game "life". Scientific American. [online] 223(4), pp. 120-123. Available at: 
https://web.stanford.edu/class/sts145/Library/life.pdf [Accessed 31 May 2020]. 
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The simplicity of the Conway model, can be seen quite clearly in its rule sets. 

Moreover, its analogies to biological optimization goals and physiological behaviors 

of its cells, demonstrates the anthropomorphic nature of its semantics. The game of 

life considers the same base semantics of Cells and States (as defined in 2.2.3) to 

establish its basic rule set. However, it doesn’t use the Von Neumann neighbourhood, 

and instead employs the Moore neighbourhood, which can be considered as: 

•  Moore neighbourhood – The group of eight neighbouring cells surrounding 

a central cell in all directions of a square grid. The neighbourhood has the 

central cell itself, and it’s eight neighbours, like pixels in computer graphics. 

The Conway model is defined by the following rule sets (Gardner, 1970)91 : 

• The environment of the Game of Life is an infinite, two-dimensional 

orthogonal grid of square cells, each of which is in one of two possible states, 

live or dead, (or populated and unpopulated, respectively).  

• Every cell interacts with its eight neighbours, conforming to the Moore 

neighbourhood. At each step, in time, the following transitions occur: 

o Any live cell with less than 2 live neighbours dies, by underpopulation. 

o Any live cell with 2 or 3 live neighbours lives on to the next generation. 

o Any live cell with more than 3 live neighbours dies, by overpopulation. 

o  Any dead cell with exactly 3 live neighbours becomes a live cell, by 

reproduction. 

 
91 Gardner, M. (1970). MATHEMATICAL GAMES - The fantastic combinations of John Conway's new 
solitaire game "life". Scientific American. [online] 223(4), pp. 120-123. Available at: 
https://web.stanford.edu/class/sts145/Library/life.pdf [Accessed 31 May 2020]. 
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• These rules, which bear similarities between the automaton and real life, can 

be summarised into the following: 

o Any live cell with 2 or 3 live neighbours (in its Moore neighbourhood) 

survives. 

o Any dead cell with 3 live neighbours (in its Moore neighbourhood) 

becomes a live cell. 

o All other live cells die in the next generation. 

o Similarly, all other dead cells stay dead.  

• The initial pattern constitutes the seed of the system. The first generation is 

created by applying the above rules simultaneously to every cell in the seed; 

births and deaths occur simultaneously, and the discrete moment at which this 

happens is sometimes called a tick.  

• Each generation is a pure function of the preceding one. The rules continue to 

be applied repeatedly to create further generations. 

The minimal and yet anthropomorphic rule sets and the simplicity of a two-state 

automaton coupled with the availability of higher processing powers and the option 

of keeping the automaton running (because it’s a zero-player game, and fits the 

definition of being an automaton, i.e., a machine that doesn’t require human 

intervention except for the first step) the Conway model was used by a lot of people 

(not just mathematicians or computer scientists, but also just computer owners) who 

ran the automaton enough times to discover very many variations merely generated 

by choosing different starting conditions. Game of life has thus been found to be 

capable of creating huge biodiversity of different patterns and cellular organisms that 

have been extensively studied and classified according to their behavior. 
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The primary categories of these different cellular organisms are: 

• Still Lifes – Which remain unchanged across generations or ticks. (These 

include the Block, Bee-hive, Loaf, Boat and Tub). 

• Oscillators – Which oscillate between two configurations for a set duration of 

ticks. (These include the Blinker, Toad, Beacon, Pulsar and Penta decathlon). 

• Spaceships – Which seem to move across the grid. (These include the Glider, 

Light Weight Spaceship – LWSS, Middle Weight Spaceship – MWSS, and Heavy 

Weight Spaceship – HWSS). 

It is both fascinating and computationally intelligent how none of these cellular 

organisms were intended or designed while establishing the rule sets in the Cellular 

Automata, but they were just discovered by different users. It is also quite interesting 

that the combinations of these above-mentioned cellular organisms also create 

interesting patterns. Thanks to a very strong user base and community, the most 

recent being Sir Robin, which was the first truly elementary knight ship (which is a 

Spaceship that moves two squares left for every one square it moves down, like a 

knight in chess, instead of moving orthogonally or along the diagonal), discovered by 

Adam Goucher in 2018.92 However, many patterns in the Game of Life eventually 

become a combination of the primary categories mentioned above; other patterns 

may be called chaotic but many of these patterns or so-called cellular organisms that 

emerge out of the Conway model of Cellular Automata termed as Methuselah, which 

are patterns of fewer than ten live cells which take longer than 50 generations to 

stabilize (Gardner, 1970).93  

 
92 www.Conwaylife.com, (2018). Forums for Conway's Game of Life. [online] Available at: 
https://www.conwaylife.com/forums/viewtopic.php?f=2&t=3303 [Accessed 17 May. 2019]. 
93 Gardner, M. (1970). MATHEMATICAL GAMES - The fantastic combinations of John Conway's new 
solitaire game "life". Scientific American. [online] 223(4), pp. 120-123. Available at: 
https://web.stanford.edu/class/sts145/Library/life.pdf [Accessed 31 May 2020]. 
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Following are some notable Methuselahs: 

• R-pentomino – A cellular automata that starts with 5 cells which stabilizes 

with 116 cells after 1103 generations. 

• The Acorn – A cellular automata that starts with 7 cells which stabilizes with 

633 cells after 5206 generations. 

Of all the different cellular organisms generated by a Cellular Automata of the 

Conway model, the Gliders are the most peculiar, because they can be synthesized 

quite easily and minimally, they can be collided with each other to form several other 

complicated cellular organisms, and they can be used to communicate information 

over long ranges across the grid just like other Spaceships (the glider possesses 

specialized ability, as it is the smallest spaceship and thus has very less chance of 

unintended collisions with other organisms). Gliders have also been collided with 

several other cellular organisms to generate interesting patterns and useful results. 

With the help of different combinations of gliders, it is possible to construct logic 

gates such as AND, OR, and NOT. It is possible to build a pattern that acts like a finite-

state machine connected to two counters, which has the same computational power 

as a Universal Turing machine, so the Game of Life with unlimited memory and no 

time constraints is theoretically as powerful as any computer; in other words, “it is 

Turing complete” (Berlekamp, Conway and Guy, 2001).94 The Conway model is so 

versatile, that it has already been implemented into creating an “open-source 8bit 

programmable computer” using Golly95 by Nicolas Loizeau in 2016 (Loizeau, 2016)96 

thereby proving that it’s Turing complete.  

 
94 Berlekamp, E. R., Conway, J. H. and Guy, R. K. (2001). Winning Ways for Your Mathematical Plays. 
2nd ed. Wellesley, Massachusetts: A K Peters, Ltd., p. 276. 
95 Golly. (2005). England: Andrew Trevorrow and Tom Rokicki. 
96 Loizeau, Nicolas (2016). Building a computer in Conway's game of life. [online] 
www.nicolasloizeau.com. Available at: https://www.nicolasloizeau.com/gol-computer [Accessed 05 
May 2020]. 



Architecture of Computational Ecosystems 

| 2.3 Cellular Automata as Computational Ecosystem 87| 

The Conway model of Cellular Automata thus demonstrates that it (the concept of 

cellular automata and the model itself) can be implemented into using not just as a 

computational model to serve the first and second fields of investigation in Natural 

Computing (as in computing inspired by nature; simulation and emulation of nature 

by means of computing) but also in the near future, to serve the third field of 

investigation (in Natural Computing) – Computing with natural materials, thereby 

making Cellular Automata as a primary tool to perform Natural Computing. 

Owing to the phenomenal computational success of the Conway model, lots of 

variant algorithms have cropped up thereby proving the versatility of Cellular 

Automata in the field of Computational Modelling. Many of these variants have 

alterations in the shape and size of the cells, neighbourhoods, and states. Although 

the Conway model is essentially based on a 2-dimensional environment, many 3-

dimensional variants have also been conceptualized, developed, and tested. 

Although none of these variants have yet been identified as being Turing complete, 

many of them have successfully generated healthy biodiversity of cellular organisms 

similar to the Conway model.  

The important aspect of the Conway model that could have direct applicability in the 

context of Computational Ecosystems in the form of a computational modelling tool 

to perform natural computing. Moreover, the potential of slight variations in its 

lexical semantics and rule sets could help the research in generating a strong 3-

dimensional variant in order to achieve the research goals. The flexibility of the 

Conway model, and its sheer ingenuity in reducing the finite states to the basic two, 

also demonstrates its potential for developing a computational ecosystem. In fact, it 

is quite by itself, already a performing computational system, owing to the fact that 

it already works on the principles of a feedback loop (structural coupling between the 

cell and its neighbours) that is autonomous, autopoietic, and with sufficient context-

awareness. Moreover, it further augments the similar parameters previously seen in 

the Von Neumann model (2.2.3). 



Theorizing, Taxonomizing and Prototyping operational Ecosystems in 
Computational environments 

2|On theoretical assumptions for Computational Ecosystems |88 

2.3.3 Cellular Automata – Stephen Wolfram model 

The use, study, and research of Cellular Automata, after the Conway model, has been 

absolutely different as compared to its original Von Neumann days. Very many 

researchers ventured into applying Cellular Automata in the theoretical lexicon of 

mathematics and computational science. Some, however, tried to expand its impact 

and impressions onto physics and philosophy. 

Stephen Wolfram, initiated a research on Cellular Automata by working extensively 

with one-dimensional Cellular Automata (or Elementary Cellular Automata, 

explained in detail over the next page) while establishing that these computational 

models were not just to be studied as computational systems, but as discrete 

systems. He further deduced that “simple, natural, questions concerning the limiting 

behavior of cellular automata are often undecidable, and the consequences of their 

evolution could not be predicted, but could effectively be found only by direct 

simulation or observation” (Wolfram, 1984)97. 

In the obsession of his hypothesis, that in the way that complicated patterns could 

arise in natural systems, Cellular Automata could explain this complexity in nature by 

means of their complexity and undecidability. He also attempted to model neural 

networks and self-gravitating gases with Cellular Automata to prove his hypothesis, 

“but later found that Cellular Automata was an unsuitable model for the simulation 

of these systems” (Wolfram, 2002).98 However, continuing on this hypothesis, 

Wolfram went on to sensationalize his claims of a paradigm shift in Science with 

Cellular Automata at the heart of his claims. Although, he studied Cellular Automata 

empirically and systematically, which this research intends to employ for establishing 

its theoretical framework in terms of the lexical semantics. 

 
97 Wolfram, S. (1984). Computation Theory of Cellular Automata. Communications in Mathematical 
Physics, 96 (1984), Pp.15-57. 
98 Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media. 
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For his empirical research, Wolfram established an Elementary Cellular Automata 

with a specific rule set and a numbering system (called as the Wolfram code) to define 

various rule sets, which can be defined as followed (Wolfram, 2002):99 

• Elementary Cellular Automata - A one-dimensional cellular automaton where 

there are two possible states (labeled 0 and 1) and the rule to determine the 

state of a cell in the next generation depends only on the current state of the 

cell and its two immediate neighbours. 

• There are 8 = 23 possible configurations for a cell and its two neighbours.  

• The rule defining the cellular automaton must specify the resulting state for 

each of these possible configurations, so there are 256 = 28 possible 

elementary cellular automata. 

• Each of these rules must be given an ID from 0 to 255 as per the Wolfram code. 

• Wolfram Code - The code is based on the observation that a table specifying 

the new state of each cell in the automaton, as a function of the states in its 

neighbourhood, may be interpreted as a k-digit number in the S-ary positional 

number system.  

o S – The number of states that each cell in the automaton may have.  

o k = S2n + 1 – The number of neighbourhood configurations,  

o n – The radius of the neighbourhood.  

• Thus, the Wolfram code for a particular rule is a number in the range from 0 

to Sk − 1, converted from S-ary to decimal notation.  

 
99 Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media. 
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• It may be calculated as followed: 

1. List all the k state configurations of the neighbourhood of a given cell. 

2. Interpreting each configuration as a number as described above, sort 

them in descending numerical order. 

3. For each configuration, list the state which the given cell will have, 

according to this rule, on the next iteration. 

4. Interpret the resulting list of states again as an S-ary number, and 

convert this number to decimal. The resulting decimal number is the 

Wolfram code. 

• The Wolfram code for the numbering system does not specify the size (nor 

shape) of the neighbourhood, nor the number of states — these are assumed 

to be known from context. 

• Although every Wolfram code in the valid range defines a different rule, some 

of these rules are isomorphic and usually considered equivalent. By 

convention, each such isomorphism class is represented by the rule with the 

lowest code number in it. 

Following the above rule sets, the Wolfram Model has helped in generating some 

interesting Cellular Automata out of the 256 possible rule sets, such as: 

• Rule 30 – Displaying non-periodic, chaotic behavior. 

• Rule 110 – Turing complete (like the Conway and Von Neumann models). 

• Rule 184 – Simultaneously describes many, seemingly different, particle 

systems. 
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What’s unique about the Wolfram model, however, is the meticulous and thorough 

study into classifying the rules sets in different categories of complexities, which was 

not found in the previous models, that emphasized on classifying the different 

patterns or outcomes based on their behaviors for a specific rule set.  

Based on all the rule sets of a Wolfram model, it was found that the behavior of the 

Elementary Cellular Automata was found to be “similar to the behavior observed in 

continuum dynamic systems, with simple rules yielding steady-state behaviors 

consisting of fixed points or limit cycles, and complex rules giving rise to behaviors 

that are analogous to deterministic chaos.” However, all these Elementary Cellular 

Automata following the Wolfram model evolving from disordered initial states were 

found to be under one of these classes (Ilachinski, 2001):100 

• Class 1 – Nearly all initial patterns evolve quickly into a stable, homogeneous 

state. Any randomness in the initial pattern disappears. 

• Class 2 – Nearly all initial patterns evolve quickly into stable or oscillating 

structures. Some of the randomness in the initial pattern may filter out, but 

some remains. Local changes to the initial pattern tend to remain local. 

• Class 3 – Nearly all initial patterns evolve in a pseudo-random or chaotic 

manner. Any stable structures that appear are quickly destroyed by the 

surrounding noise. Local changes to the initial pattern tend to spread 

indefinitely. 

• Class 4 – Nearly all initial patterns evolve into structures that interact in 

complex and interesting ways, with the formation of local structures that are 

able to survive for long periods of time. 

 
100 Ilachinski, A. (2001). Cellular Automata A Discrete Universe. Singapore: World Scientific Publishing 
Co. Pte. Ltd. Pp. 808. 
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Wolfram had conjectured that many of class 4 are capable of universal computation, 

although it has only been proven for Rule 110. Wolfram in his seminal book, A New 

Kind of Science went above and beyond to prove that the study of Cellular Automata 

should initiate a new field in science (Physics and Chemistry), and researchers of 

Cellular Automata should pursue to understand and characterize the computational 

universe. In the book, Wolfram also attempted to demonstrate “simple programs 

that exhibit phenomena like phase transitions, continuum behavior, and 

thermodynamics that are familiar from traditional science” (Wolfram, 2002).101 

However, his theory and claims were highly criticized to be abrasive and arrogant. 

The lack of scientific methodology is the main theme for most of these criticisms. The 

research agrees that the Wolfram model provides deep insight into the study and 

classification of the rule sets, but “just because the patterns of cellular automata can 

resemble those of the natural world does not mean that nature must work that way” 

(Gad-el-Hak, 2003).102 

In the relevance of the research, the four classes identified by the Wolfram Model 

could be considered very helpful in categorizing Computational Ecosystems 

according to predetermined lexical, logical, and behavioral parameters as part of the 

Operational Objectives I (Taxonomies, as previously explained in 1.2.1 Objectives for 

Computational Ecosystems). It would be also astute to determine a system that 

would perform analogous to the Wolfram Code (that establishes semantics for the 

rule-set number assigning system). This system would also be helpful in further 

simplifying the nomenclature system for each ruleset, as in the case of the research, 

a 3-dimensional grid system would be considered as a base for any neighbourhood, 

and that would directly lead to an exorbitant amount of results, no matter the total 

number of determined states. 

 
101 Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media. 
102 Gad-el-Hak, M. (2003) A New Kind of Science - Review. A New Kind of Science, by S. Wolfram. 
Applied Mechanics Reviews, 56 (2), pp. B18-B19. 
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2.3.4 Cellular Automata – applications in the AEC Industry 

Yet again, the AEC industry was slow to catch up on the phenomenal revolution 

Cellular Automata was creating in a wide range of scientific and artistic disciplines, by 

almost five decades. But eventually, it happened in the form of a didactic approach 

in architectural design. In 1995, John Frazer (an architectural academic) in a lecture 

at the AA (Architectural Association School of Architecture, London) quoted - 

I’m dedicating this lecture, to the first building intelligent enough to understand and 

appreciate the gesture. I confidently expect that such a building will have designed 

and constructed itself in response of the needs of its users and acting in harmony with 

its environment. It will be self-sustaining, it will exhibit metabolism, it will derive from 

all of its environment and be controlled by a symbiotic relationship between its 

inhabitants and all of that environment. And when it has outlived its usefulness, it 

will self-destruct and redistribute its resources. This lecture is to that first building, 

and I hope that it won’t be too long (AA School of Architecture, 2015, 02:07).103 

With this proclamation, Frazer intended to introduce a new branch of science 

concerned with creative morphology and intentionality, wherein he proposed the 

architectural design industry to “search for a design theory based on form-generation 

developed for architectural purposes” (Frazer, 1995).104 Driven by the computational 

advances of the Turing Machine, and Von Neumann’s universal constructor, Frazer 

developed his own version of a universal constructor (in deference of von Neumann) 

was able “to respond on a rule-based system of constructing a 3D self-replicating 

automata in response to an obstacle” (Frazer, 2001).105 

 
103 AA School of Architecture (2015) John Frazer - An Evolutionary Architecture. 02 May. Available at: 
https://www.youtube.com/watch?v=58ZUhDKaRC8 (Accessed: 18 Dec. 2017). 
104 Frazer, J. H. (1995). Themes VII: An Evolutionary Architecture. London: Architectural Association, 
p. 127. 
105 Frazer, John H. (2001) The Cybernetics of Architecture: A Tribute to the Contribution of Gordon 
Pask. Kybernetes. The International Journal of Systems & Cybernetics. 30(5/6). pp. 641-651. 
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Inspired by the Von Neumann, Conway and Wolfram models, Frazer’s universal 

constructor had the following predeterminations (Frazer, 1995)106: 

•  Cell – A unit cube of unit dimensions, owing to its self-similarity could 

represent anything, and could be modelled at any scale. 

• States – Each cube could have any of the 256 states which were displayed by 

means of LED lights that were embedded in these cubes. The 8-bit code could 

be used to map the state of the cell to any form or structure: to environmental 

conditions such as wind; to sound, or even to dance. The stack of cells could 

communicate information for the LED display, where the displays would have 

specific codes depending on their state – like blinking patterns for adding or 

deleting cells. 

• Neighbourhood – A 12x12x12 cell array would be considered as the entire 

system or termed as a landscape, however the cell considered a 

neighbourhood similar to a Moore neighbourhood. 

The universal constructor was a truly successful proof of concept, that capitalized on 

the technology based on the late 20th century electronics. The constructor served as 

a physical modelling tool that was embedded with its own ruleset (serving as an 

intelligent 3D extension of a 2D cellular automata). Although not autonomous or 

autopoietic (as the system merely blinked LEDs), the constructor was surely context 

aware. Many other such applications were attempted including an evolutionary 

model and later “compiled as part of architectural discourse in order to explore 

beyond an algorithmic approach of generative and self-organizing architecture and 

to investigate systems which learned on the basis of feedback” (Frazer, 2001).107 

 
106 Frazer, J. H. (1995). Themes VII: An Evolutionary Architecture. London: Architectural Association, 
p. 127. 
107 Frazer, John H. (2001) The Cybernetics of Architecture: A Tribute to the Contribution of Gordon 
Pask. Kybernetes. The International Journal of Systems & Cybernetics. 30(5/6). pp. 641-651. 
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Another notable experimentation implementing cellular automata as a rule-based 

system of mathematical constructions and concepts to investigate the process of 

generating architectural forms is “Krawczyk’s Architectural Interpretation of Cellular 

Automata” (Krawczyk, 2002)108. Krawczyk expanded on the applications of a 3D 

cellular automata that was proposed by Schrandt and Ulam based on the Von 

Neumann model as “empirical results obtained by experiments on computing 

machines” (Schrandt and Ulam, 1967)109. Krawczyk’s results and conclusions are 

quite elementary as compared to those done by means of extensive, and thorough 

experimentations by Frazer. But while experimenting with the rule sets (based on the 

precedents of the cells, states, and neighbourhoods set up for a 3D Cellular Automata 

based on the Schrandt-Ulam model), Krawczyk makes the following observation that 

could be quite essential for the theoretical foundations of this research –  

• The pure mathematical translation of a cellular automata into architectural 

form includes a number of issues that do not consider built reality. 

• The interpretation or translation to a possible built form can be dealt with 

after the form has evolved or it can be considered from the very beginning. 

As the early 2000s saw a rise in implementing novel computational techniques in a 

diverse range of design disciplines, such as urban design and urban planning. Herr 

and Kwan made a similar approach of implementing Cellular Automata as a 

“generative architectural design strategy for high-density residential architecture” 

(Herr and Kvan, 2005)110. 

 
108 Krawczyk, R. J. (2002). Architectural Interpretation of Cellular Automata. Generative Art 2002. pp. 
7.1-7.8. 
109 Schrandt, R. G., Ulam, S. M. (1967). On Recursively Defined Geometrical Objects and Patterns of 
Growth. [online] Los Alamos, New Mexico: Los Alamos Scientific Laboratory of the University of 
California, p. 19. Available at: 
https://digital.library.unt.edu/ark:/67531/metadc1027179/m2/1/high_res_d/4573212.pdf 
[Accessed 05 May 2018]. 
110 Herr C.M., Kvan T. (2005) Using Cellular Automata to Generate High-Density Building Form. In- 
Martens B., Brown A. (eds) Computer Aided Architectural Design Futures 2005. Dordrecht: Springer, 
p. 10. 
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Apart from implementing Cellular Automata “for a very large scale, large density 

architectural purpose” (Moreno and Grinda, 2004)111, Herr and Kvan propose a novel 

methodology inspired by classical Cellular Automata with enhanced properties that 

is described as followed –  

• To accommodate both generative and traditional design procedures, the 

implemented cellular automata may be used in phases, with intermittent 

stages of manual design interventions.  

• Cell behaviors can be assigned dynamically during the design process, such 

that elements within the modelling environment can change their behavior 

over time.  

• In contrast to classical cellular automata, where cells are uniform and cell 

states do not affect cell geometry, functions can be assigned to any element 

in the modelling environment, with cells able to change their geometry in 

response to their states.  

“Compared to a conventional generic high-resolution approach, this non-uniform 

solution greatly limits the number of cells required in modelling architectural 

geometries and avoids the restrictions imposed by the compulsory use of additive 

approximation based on homogeneous grids of elements” (Herr and Kvan, 2005)112. 

These key improvements in traditional cellular automata ruleset, that involve 

dynamically modifying the cell states, depending on any external condition or 

requirement would be very essential in making the Cellular Automata and 

consequently the Computational Ecosystem truly context-aware. 

 
111 Moreno, D., Grinda, E. G. (2004). Soft Metropolitanism [Apartments in Micro-Skyscrapers]. In: F. 
Marquez Cecilia, and R. Levene, ed., EL CROQUIS 118: CERO 9, ABALOS & HERREROS, NO.MAD, 1st 
ed. Madrid: El Croquis, pp. 140-147. 
112 Herr C.M., Kvan T. (2005) Using Cellular Automata to Generate High-Density Building Form. In- 
Martens B., Brown A. (eds) Computer Aided Architectural Design Futures 2005. Dordrecht: Springer, 
p. 10. 
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Cellular Automata, in 2010, has also been implemented “to simulate how simple rules 

could emerge a highly complex architectural designs of some Indonesian heritages” 

(Situngkir, 2004)113. Here, Situngkir implements Cellular Automata as an “exploratory 

tool based upon the 3D cellular automata constructed within the totalistic 2D cellular 

automata with 9 neighbours” (Packard & Wolfram, 1985).114 He also observes that 

some of the 9th and 15th century Indonesian temples resemble Class I cellular 

automata (explained in 2.3.4). Although these observations do not help the research 

in establishing any lexical semantics or theoretical framework, it certainly helps the 

research in understanding that even the Class I Cellular Automata (the one without 

any complexity or the one that is absolutely devoid of Turing completeness) could 

serve as an interesting computational blueprint to design a built form that is 

structurally stable, functionally efficient and aesthetically inspiring. 

Furthermore, in 2018, design researchers at the Bartlett School of Architecture, UCL 

London explored the application of machine learning to combinatorial design-

assembly from the scales of building to urban form. “Connecting the historical lines 

of discrete automata in computer science and formal studies in architecture their 

research contributed to the field of additive material assemblies, aggregative 

architecture and a possible upscaling to urban design” (Koehler et al, 2018).115 Their 

research implements a term Mereology (set of recursive assembly strategies, 

integrated into the design aspects of the building parts), stating that architectural 

arrangements can be described as chaining and nesting of multiple discrete systems, 

which can be used to nest discrete patterns scaled to an urban form.  

 
113 Situngkir, H. (2010). Exploring Ancient Architectural Designs with Cellular Automata. [online]. 
Available at: 
https://www.researchgate.net/publication/2146550_Epidemiology_Through_Cellular_Automata_Ca
se_of_Study_Avian_Influenza_in_Indonesia [Accessed 31 Aug. 2019]. 
114 Wolfram, S. and Packard, N. H. (1985). Two-Dimensional Cellular Automata. Journal of Statistical 
Physics, 38, pp. 901-946 
115 Koehler, D., Saleh, S. A., Li, H., Ye, C., Zhou, Y., Navasaityte, R., (2018). Mereologies - 

Combinatorial Design and the Description of Urban Form. In: GENERATIVE DESIGN - Volume 2 - 
eCAADe 36. Łódź, Poland: eCAADe, Faculty of Civil Engineering, Architecture and Environmental 
Engineering Lodz University of Technology, cop. 2018. pp. 85-94. 
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2.4 Theoretical Assumptions for Computational Ecosystems 

Although thus far Cellular Automata has been established as a potential 

computational modelling environment for this research, some key observations are 

necessary to be highlighted before proceeding to establish the logical semantics and 

the foundation for the theoretical assumptions for the research.  

(As seen in 2.2.3,) John Von Neumann was able to exhibit a universal Turing machine 

embedded in a cellular array using 29-states per cell and the 5-cell neighbourhood. 

Although, Langton makes a remarkable observation in 1984, that “Von Neumann’s 

Turing machine is suitably modified so that, as output, it can construct in the array 

any configuration which can be described on its input tape. His machine (the universal 

constructor) would thus be programmed to construct any machine described on the 

input tape, and create a copy of the input tape and attach it to the machine created. 

This shows two levels of automaton in the Von Neumann model“(Langton, 1984)116 –  

1. The cellular automaton itself which is embedded on the input tape. 

2. The input tape with the constructor which in itself is an automaton. 

Langton refers to this input tape as a cyclic storage loop that is capable of 

representing the universal constructor (while serving the predetermined functions of 

the constructor) as well as creating variant (or identically similar) offspring of the 

parent constructor. He also identifies these loops to be simple structures, (which are 

not necessarily exhibiting universality), employing transcription and translation in 

their reproduction capabilities. Langton’s conclusions can be implemented in the 

research to identify that the feedback loop generated as part of the Cellular 

Automaton could be considered autonomous and autopoietic. 

 
116 Langton, C. G. (1984). Self-Reproduction in Cellular Automata. In: Physica 10D. Amsterdam: 
Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division), pp. 135-144. 
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Thus, Cellular Automata can be implemented in the research to serve as a 

computational modelling environment, that has vast computational capabilities, 

research precedence, and several examples of applications in the AEC industry. It can 

also be established that Cellular Automata can provide a versatile domain to craft 

Bio-plausible Hybrid Bio-inspired Stochastic Optimization, which can serve as an 

autonomous, autopoietic, context-aware feedback loop that develops a dynamic, 

reciprocal, symbiotic relationship between the built form and the algorithm. 

However, Cellular Automata have been identified for some computational issues. 

Expanding on all the three models explained in this thesis thus far (i.e. Von Neumann 

model, Conway model and Wolfram model), it can be observed that all these models 

are undecidable, meaning given an initial pattern and an outcome, no algorithm can 

determine whether the outcome is possible or probable. “This is a corollary of the 

halting problem: the problem of determining whether a given program will finish 

running or continue to run forever from an initial input” (Berlekamp, Conway and Guy, 

2001).117 This makes the unpredictable nature of the algorithm quite computationally 

expensive (requiring higher processor speeds and memory cores), and requires the 

halting problem to be tackled with some creative computational ingenuity. 

Moreover, Oxman observed in her doctoral thesis that, “when cellular automata and 

genetic algorithms are combined with some finite-element method, there is 

tremendous disparity between the actual form generated by the script or the 

program, and its material properties and behavior relative to the anticipated 

functions.” She thus suggests, “as we aim to unite between generation, evaluation 

and eventually fabrication, we must look beyond current approaches in design 

computation that support and promote seamless integration between the digital and 

the physical domains” (Oxman, 2010).118  

 
117 Berlekamp, E. R., Conway, J. H. and Guy, R. K. (2001). Winning Ways for Your Mathematical Plays. 
2nd ed. Wellesley, Massachusetts: A K Peters, Ltd., p. 276. 
118 Oxman, N. (2010). Material-based Design Computation. PhD Thesis. Massachuetts institute of 
Technology. 
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Several previous applications of Cellular Automata in the AEC industry have also been 

observed to have programmed in very limited generative capacity, and especially for 

top–down developmental control and for pragmatic rule-breaking (Herr and Ford, 

2015).119 The authors argue the following issues –  

• While other fields have developed their own Cellular Automata models to fit 

their subjects of study more appropriately, Architecture (and the AEC industry 

on the whole) has not yet established a common theoretical framework 

outlining the potential of Cellular Automata in architectural design processes.  

• A generative design tool stems from its capability to perform tasks that rely 

on numerically formalized dimensional or relational constraints, design 

decisions however require more holistic, experienced, and yet intuitive 

context-based understanding and decision making that is difficult to be 

translated in a binary logic, and hence has been hitherto unexplored. 

• Generally, the cellular automata rule sets are typically used as fully automated 

systems that do not allow for much user intervention during run-time, limiting 

the designer’s role to select from a range of potential solutions once the 

generative process has finished. 

• Fully automated generative design processes rely on formalizable evaluation 

methods to distinguish appropriate solutions from others automatically in 

order to produce meaningful results in their respective design contexts. 

Thus, the implementation of Cellular Automata in the context of the research should 

be done while considering the above observations. 

 
119 Herr, C. M., Ford, R. C. (2015). Adapting Cellular Automata as Architectural Design Tools. In: 
Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th 
International Conference of the Association for Computer-Aided Architectural Design Research in Asia 
CAADRIA 2015. Hong Kong: The Association for Computer-Aided Architectural Design Research in 
Asia (CAADRIA), pp. 169-178. 



Architecture of Computational Ecosystems 

| 2.4 Theoretical Assumptions for Computational Ecosystems 101| 

To conclude on the theoretical assumptions for Computational Ecosystems, it is 

essential to summarize the lexical semantics in the context of the hypothesis, 

methodologies, and objectives (as per chapter |1). Thus (as per 2.1 and 2.2), a 

Computational Ecosystem would be defined as a Hybrid Bio-inspired Stochastic 

Optimization that is –  

• A context-aware system that represents an autonomous, autopoietic 

feedback loop that is based upon the structural coupling of two or more 

entities which would be essential in establishing a dynamic, reciprocal, 

symbiotic relationship between the built form and the algorithm. 

• A discrete system of elements, that experience homogenous and 

heterogenous cooperation clearly represented by their intraspecific and 

interspecific relationships, thus creating a fluid design workflow that 

performs modelling, analysis, and fabrication simultaneously to generate 

form, structure, and enclosure for architectural intent. 

• A  symbiotic system, that is equipped with communication strategies at both 

the inter-habitat and intra-habitat levels which would be instrumental in 

making computational design more autonomous and digital fabrication more 

data driven. 

• Realized by employing Cellular Automata,  

o Which is not just based on one or on a combination of some or all the 

three models explained in this thesis thus far, but is also sufficiently 

modified, taxonomized and versioned so as to accommodate the 

requirements of the architectural intent it serves. 

o  Which offers an organizational solution to the halting problem by 

ingesting the concept of decay in a manner relevant to the ecosystem. 
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o Which simplifies intuitive design decisions in a non-binary logic, by 

allowing user intervention during run-time and thus providing 

seamless integration between the digital and the physical domains. 

o Which offers a step-wise methodology serving as a blue-print for the 

Architecture of  potential Computational Ecosystems. 
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3| On the semantic syntax for the Computational 
Ecosystems. 

3.1  Lexical Semantics from theoretical assumptions 

After establishing the Literary Objectives-I, related to the lexical semantics (as in 

1.2.1, and explained in thorough detail in 2|) the definitions for Computational 

Ecosystem along with their theoretical frameworks and operational precedents have 

been outlined. The intent of implementing Cellular Automata as the primary 

computational modelling environment to architect Computational Ecosystems has 

also been sufficiently theorized. However, to set up the Computational Ecosystems 

(and the Cellular Automata), the research needs to establish a strong semantic syntax 

that could ease the functionalities of the operational objectives. The Semantic Syntax 

(analogous to a language) can be seen as an amalgamation of the lexical semantics 

(analogous to the vocabulary of a language) and the logical semantics (analogous to 

the grammar of a language). Moreover, as the analogous vocabulary will be used to 

establish the analogous grammar in this case, understanding and setting up the 

logical semantics for the research would be based on the lexical semantics. 

Although a theoretical foundation has been quite effectively and thoroughly laid in 

the previous chapter (2|), the precise semantics that would be applied in the research 

have not been clearly identified so far. It thus becomes essential to extract the lexical 

semantics from the theoretical assumptions. The Computational Ecosystem 

(pertaining to this research) for all purposes beyond this point, would be denoted by 

its abbreviation CE. Similarly, for all purposes beyond this point the Cellular Automata 

(pertaining to this research) will be denoted by its abbreviation CA. Although both 

these abbreviations CA and CE are widely accepted, the thesis is introducing them 

now, firstly, to avoid losing relevance to tags (as in tags required for search 

optimization), and secondly to establish significant distinction to the canonical use of 

these abbreviations. 
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As elaborated in the previous chapter, classical Computational Ecosystems which 

basically represent an optimization algorithm are constituted of –  

• Participating individuals called as Species – These could be Bacteria, Ants, or 

Fish as in a BFA, ACO or FSA respectively (as illustrated in 2.1.3); These could 

also be represented by agents that serve as computational counterparts of 

the species. 

• A Community dynamic within the species – For example by means of 

Chemotaxis in a BFA, or by Stigmergy in an ACO, or by the search-swarm-

follow mechanisms in an FSA. It can also be promoted through the trade of 

token units of energy and biomass between these agents (as per 2.2.2). 

Also, as explained and illustrated previously, classical Cellular Automata which 

basically represent a modelling environment are constituted of –  

• Cells – As seen in previous examples, these could be considered as a varied 

form of geometrical arrays, from basic orthogonal shapes to discrete or 

combinatorial geometries (such as polyhedral, polytopes and packing). 

• States – As already defined, these could be considered as a combination of 

rule sets which could either be distinguished on the basis of a binary logic, or 

on the basis of RGB values (like in the Von Neumann Model as per 2.3.1). 

(As introduced in 1.2.2, ) the components of a CE realized by a CA would be –  

• Elements – The CE equivalent of Species and Cells. 

• Economy – The CE equivalent of Community dynamics and States. 

The significance of Elements and Economies pertaining to Ecosystems will be 

explained in further sections. 
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3.1.1 Element 

To set up a methodological framework, for the construction of CE based on CA, it is 

important to establish the lexical semantics in such a way that the terminologies 

serve as free variables or placeholders (symbols that will later be replaced by a value) 

for a diverse range of applications.  

The simplest definition of Elements for the CE would be the equivalent of Species 

from a traditional Computational Ecosystem (more specifically, a canonical 

computational ecosystem - ECO) or an equivalent of the Cells of a traditional Cellular 

Automaton (that could be from any cellular automata model discussed in 2|). To 

install this terminology in the research as a placeholder, however, some more 

definition, explanation and exemplification is required. Thus, previous use of the 

term element in a diverse range of disciplines, would be an ideal direction to start 

this exploration. Apart from providing insights into the use of the terminology as a 

placeholder, it would also help the research in determining a definition for the 

placeholders that is based on first principles (or ab initio), rather than the highly 

analogous (or empirical) definitions mentioned in 3.1. 

The term element has been repeatedly mentioned in a wide range of ancient cultures 

in Greece, Ancient Egypt, Persia, Babylonia, Japan, Tibet, and India to explain the 

nature and complexity of all matter in terms of simpler substances (the elements 

considered as the building blocks of the universe). Although there are varied 

inclusions of different elements, the most commonly found are – earth, water, wind 

and fire. These philosophical constructs have also been later expanded upon in all the 

above-mentioned cultures to explain the concepts of consciousness through 

theology. However, one metaphysical branch of Hinduism – Sankhya, stands out and 

postulates only two forms of elements in the universe – Purusha (consciousness) and 

Prakriti (matter). This duality can also be translated into the ecosystem components 

of the biotic and the abiotic. 
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This understanding of the term element as a constituent building block of the 

universe was later expanded into Chemistry as terminology for the 118 distinct 

building blocks of the observable universe which cannot be broken down into simpler 

substances by chemical means (as introduced in 1.2.2). It is also defined as a 

substance that is made entirely from one type of atom (as in, the element hydrogen 

is made from atoms containing a single proton and a single electron and if you change 

the number of protons an atom has, you change the type of element it is). The 

concept of an element as a representative of a particular kind of constituent parts (in 

this case atoms) is similar to the concept of a Species that is representative of a class 

of participants that share the same genetic make-up. 

In a more mathematical sense, i.e., in the context of the Set Theory in Mathematics, 

an element is like a member of a set and is any one of the distinct objects of that set 

(here, distinct objects are those numbers, sets, functions, expressions, geometry, 

mathematical transformations, and spaces which are not mathematically equal). 

Thus, elements are seen as the constituent building blocks of a set. Moreover, in the 

notational system implemented in the set theory, while denoting that a certain 

numerical entity is an element of a set, the symbol ∈ is used. Perhaps, the research 

can also use the symbol ∈ to represent an element in a CE. 

The term element, however, is already used as a placeholder in the field of 

Computational sciences. A term similar to the one used in Set Theory is implemented 

in the Unified Modelling Language (UML) (which is a generalized, universal notational 

system to represent a pseudo-code graphically while it is in its developmental stages), 

which represents a similar notion of an abstract class that has no superclass (as in an 

unprecedented semantic). In Metadata (a branch of data sciences, where data is 

embedded in existing data), also, the term element is used to define an atomic unit 

of data that has precise meaning or precise semantics. As metadata is also 

implemented in a wide range of industries such as imaging, telecommunications, 

videography, geospatial mapping, data warehousing, and cloud applications amongst 

many other, it has a significant definition for a data element.  
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From all the usages of element in the different fields of study such as philosophy, 

chemistry, mathematics, and computational sciences stated previously, the research 

would focus on the placeholder of an Element summarized as follows –  

• The Element is a distinct object, that would represent different components 

of a CE (similar to the Species of a canonical ECO algorithm). 

• The Element could represent both biotic or abiotic components of the CE, and 

this characteristic would serve as distinctions amongst different elements. 

• The Element would also be identified by a name, and a clear definition. If 

required, further categorization of elements should also be done. 

• To avoid confusion between different terminologies within the context of this 

research, the Element would be abbreviated as ∈, and various distinctions 

could be symbolized by using appropriate subscripts, such as ∈b and ∈a (for 

biotic and abiotic elements respectively). 

•  (As introduced in 1.2.2) Examples of an ∈ could be Platonic solids, 

Archimedean solids, point clouds, passive agents, active agents, cognitive 

agents, service equipment, structural members or fabrication material. 

• As during the course of the operational objectives of this research, a CE could 

have multiple ∈, all the particular elements would have to be classified, 

named, defined, and symbolized based on a wide range of factors. 

• To make the CE context-aware, some elements would also have to be capable 

of being introduced by external factors (such as the user, or a conditional, or 

depending on context-specific factors), which will have to be classified, 

named, defined, and symbolized based on the predetermined external factor. 
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3.1.2 Economy 

With the placeholder, element (∈) thoroughly defined and established, as part of the 

literary objectives of stating the logical semantics, the thesis proceeds to define and 

establish the placeholder of economy. Unlike the element placeholder, the economy 

placeholder does not have any similar precedents in the fields of computational 

science or mathematics. Thus, understanding the implementation of the placeholder 

becomes more essential in this case. 

(As theorized in 2.1.1,) The biotic and abiotic inhabitants (or elements) of an 

ecosystem are inadvertently striving for a certain state of dynamic equilibrium and 

while attempting to attain this state of dynamic equilibrium, the ecosystem needs a 

specific predetermined currency within the system to evaluate, govern, and maintain 

its state of equilibrium. A CE (as theorized in 2.4) performs as a discrete system of 

elements, that experience homogenous and heterogenous cooperation that is 

represented by intraspecific and interspecific relationships.  

However, to establish these relationships, the CE would need a system of rules, that 

would help in performing a system of checks and balances on its states of equilibria. 

That is, to evaluate if the equilibrium has a deficit or an excess (as in if the state of 

equilibrium was not achieved, was it underdone or overdone and by how much), 

while exploring what other factors could help in maintaining a steady equilibrium 

(like exploring if the rule-set needs to modify to accommodate the state of 

equilibrium), and finally to document all possible states, of equilibria or otherwise (as 

in maintaining a temporal ledger of all the states across the runtime of the CE). These 

rule sets would have to be assigned to all the ∈ (predetermined or user added) of the 

CE, moreover the rule sets would serve as a global currency of the CE making sure 

that all the ∈ have the same goals of equilibria across the runtime of the CE. 

Thus, in the simplest terms, these rule sets or Economy, would serve as a logical 

equivalent of Community dynamics and States (as described in 3.1). 
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Although, as mentioned previously, the economy placeholder is not as widely 

formulated as the element placeholder, the precedents of the term Economy are 

found in Greek history, to mean household management (as in the management of 

household resources). Even though the modern meaning of economy – “as a social 

domain that emphasizes the practices, discourses, and material expressions 

associated with the production, use, and management of resources” (James, 2015)120 

– essentially deals with larger test sets than households, the definition still revolves 

around its etymological roots of resource management. This consistency in the 

essence of the term economy over the ages, could serve as an astute reference for 

the ab initio definition of Economy for the CE, that is, the placeholder would be 

considered as a global currency for the resource management within the system to 

evaluate, govern, and maintain its state of equilibrium. 

In economics (concerning modern economies of nations or cultures), the following 

degrees of precedence are considered for the economy to survive and progress –  

• Primary stage – Extraction of raw materials from their natural sources. 

• Secondary stage – Transforming the raw materials into consumer goods. 

• Tertiary stage – Providing services to businesses and consumers. 

• Quaternary stage – Research and development required to perform the 

above stages. 

In the context of the research, the above stages can serve as an example for the 

different stages of deployment for different Economies during the runtime of the CE. 

 
120 James, P. (2015). Urban Sustainability in Theory and Practice – Circles of Sustainability. New York: 
Routledge, pp. 260. 
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From all the precedents of economy in history and economics stated previously, the 

research would focus on the placeholder of an Economy summarized as follows –  

• The Economy is a distinct rule set, that would represent different states for 

the different ∈ of a CE (similar to the States of a cellular automaton). 

• The Economy could represent a wide range of rules pertaining to the 

evaluation, maintenance, and governance of the state of equilibrium of a CE, 

and this Economy or Economies could be assigned to one or many ∈.  

• The Economy should also be identified by a name, and clear definition. If 

required, further categorization of economies should also be done. Just like 

the ∈, some context aware Ψ, which would be introduced externally would 

have to be named, defined, and symbolized accordingly. 

• To avoid confusion between different terminologies within the context of this 

research, the Economy would be abbreviated as Ψ, and various different 

distinctions could be symbolized by using appropriate subscripts, such as Ψp 

and Ψs (for primary and secondary economies respectively). 

• Because the Ψ represent the cell states of the CE, the Ψ could also be further 

elaborated to accommodate a specific notation system based on Wolfram 

code (as described in 2.3.3). 

• The stages of deployment of the Ψ should also be encoded into the notation 

system by adding superscripts such as Ψp
1

  and Ψp
2 (mentioning the correct 

order of deployment in a numerical order). 

• (As introduced in 1.2.2) Examples of an Ψ could be static structural stability, 

kinetic structural stability, functional adequacy, functional compatibility, 

contextual compatibility, climatic optimization, and fabrication constraints. 
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3.1.3 Ecosystem 

An ecosystem has been amply theorized in this thesis so far. Moreover, by 

establishing the syllogism through Computation – Ecosystem – Computational 

Ecosystem, the terminology has also had sufficient analogical precedents (in a wide 

range of industries and research domains). However, the inclusion of the lexical 

semantics pertaining to the Elements (∈) and the Economy (Ψ), make it absolutely 

essential to expand the definitions of CE in order to accommodate the same format. 

Thus, in spite of establishing a theoretical definition for a CE (as per 2.4), and 

identifying the components of a CE (as per 3.1), it is essential for the thesis to 

establish an operational ab initio definition. While researching Computational 

Ecosystems (as per the canonical ECO algorithm), Parpinelli and Lopes propose that 

the following features can still be explored in the ecological framework (Parpinelli 

and Lopes, 2014).121  –  

1. The environment can be explored with the insertion of abiotic components 

biasing the behavior of populations. 

2. By using some source of feedback from the optimization process during its 

course, the habitats formation can be better distributed, as well as the intra 

and inter-habitat communication topologies, can be better defined. 

3. Flow of information (stigmergy) & energy (trophic structures) can be explored. 

4. Strategies and metrics for maintaining the diversity of solutions both at micro 

and macro levels can be applied. 

5. The Computational Ecosystem framework can be explored asynchronously. 

 
121 Parpinelli R. S. and Lopes, H. S. (2014). A computational ecosystem for optimization: review and 
perspectives for future research. Memetic Computing, 7(1), pp. 29-41. 
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Apart from the aforementioned proposals, an illustrative map of the elements of 

Computational Ecosystems was also developed by Parpinelli and Lopes, as shown in 

figure 3.1. 

 

Figure 3.1 – Graphical representation of extended illustrative map for the elements of a 

computational ecosystem. Original image by Parpinelli and Lopes (December 2014) Illustration and 

graphics by Author (January 2021). 
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Considering all the precedents of ecosystem pertaining to all the explorations in the 

field of computer sciences illustrated previously, the research would focus on the 

placeholder of a CE summarized as follows –  

• The CE is the modelling environment where the ∈ interact with each other 

depending on the goals set up by their respective Ψ (similar to the functioning 

of a CA) while it performs as a Hybrid Bio-inspired Stochastic Optimization 

Algorithm (as per 2.4) with its constituent attributes (as per 3.1). 

• Owing to the possibility of multiplicity in the ∈ and the Ψ, several numerous 

CE can exist at the same time. These CE could also be nested into each other 

while performing at different scales or different stages of deployment in the 

runtime of their parent CE, or both. 

• The CE should also be identified by name, and clear definition. If required, 

further categorization of CE should also be done. Just like the ∈ and the Ψ, 

some context aware CE, which would be introduced externally (if that 

happens) would have to be named, defined, and symbolized accordingly by 

adding superscripts such as CE1
  and CE2 (mentioning the correct order of 

deployment in a numerical order). 

• Following the proposals by Parpinelli and Lopes (mentioned in 3.1.3), apart 

from recursive algorithms, genetic algorithms should also be used to explore 

points 2 and 5 in the CE. 

• Although points 1 and 3 have been sufficiently covered in the definitions of ∈ 

and Ψ respectively, 4 could be tackled smartly by implementing the 

initialization properties of the CE as illustrated in fig. 3.1. 

• Throughout the introduction of new CE and the corresponding ∈ and Ψ, fig. 

3.1 should be referred to, illustrated, and updated accordingly. 
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3.2  Establishing Logical Semantics for operational objectives 

As the lexical semantics of the research – Elements (∈), Economies (Ψ) and 

Ecosystems (CE) are established on the basis of the theoretical assumptions in the 

previous sections, some essential explanations are yet to be made before setting up 

the logical semantics. Moreover, as these logical semantics will be implemented 

undeviatingly to perform the operational objectives, it becomes essential to identify 

and theorize all aspects of anomalies and deviations from the definitions mentioned 

thus far. One important aspect that exemplifies the anomalies in the theoretical logic 

is the proposed multiplicity of the ∈ and Ψ (as per 3.1.1 and 3.1.2). This potential 

multiplicity can pose problems of confusion and redundancy throughout the research 

methodology. Moreover, it can’t be merely solved by adding superscripts in the 

notation system (although the notation system for the ∈, Ψ, and CE with the use of 

subscripts and superscripts to show multiplicity will be sustained and implemented).  

This problem needs to implement a solution that already exists in the field of 

computer organization and resource hierarchies introduced by Michael J. Flynn (As 

introduced in 1.2.2). He developed “a hierarchical model for computer organizations 

commonly identified as Flynn’s Taxonomy which is still used as a design tool for 

modern processors and their functionalities.” It is as followed (Flynn, 1972)122 –  

• SISD – Single Instruction stream, Single Data stream. 

• SIMD – Single Instruction stream, Multiple Data streams. 

• MISD – Multiple Instruction streams, Single Data stream. 

• MIMD – Multiple Instruction streams, Multiple Data streams. 

 
122 Flynn, M-J. (1972). Some Computer Organizations and their Effectiveness. IEEE Transactions on 
Computers, C-21(9), pp. 948-960. 
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Elaborating on Flynn’s Taxonomy, the problem with the multiplicity of the ∈, Ψ, and 

thus consequently the multiplicity of CE, could be solved by concluding that the 

placeholders of ∈ and Ψ are the parameters which can be considered as variables. 

Furthermore, the capacity of ∈ and Ψ can be expanded (as introduced in 1.2.2) by 

considering the following assumptions based on the lexical semantics established 

thus far – 

• A CE can only exist if the ∈ and the Ψ are established. 

• A CE can exist with a single ∈ and a single Ψ. 

• A CE can exist with multiple ∈ and a single Ψ. 

• A CE can exist with a single ∈ and multiple Ψ. 

• A CE can exist with multiple ∈ and multiple Ψ. 

Thus, it can be stated that there can be only four possibilities of variations or 

deviations considering the potential of multiplicity of ∈ and Ψ. Moreover, based on 

the theoretical groundwork laid by Flynn’s taxonomy, the research can thus establish 

the following possible combinations of the procedural sequences – 

• CESESE – Single Element, Single Economy. 

• CEMESE – Multiple Elements, Single Economy. 

• CESEME – Single Element, Multiple Economies. 

• CEMEME – Multiple Elements, Multiple Economies. 

This adoption of Flynn’s Taxonomies helps in avoiding the anomalies that could be 

related to the multiplicity of CE as a combinatorial product of ∈ and Ψ. 
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However, implementing CA as a computational framework to perform CE (as in all 

the procedural sequences) still has a major shortcoming that has already been 

highlighted in this thesis. Due to the undecidability of most of the Cellular Automata 

models described in this thesis so far the reliability of Cellular Automata as a 

computational framework to perform CE becomes very dysfunctional. This 

constitutional deficiency in any Cellular Automata model has been theoretically 

proven as a common phenomenon in the theory of Computation (as part of the 

computability theory) termed as the Halting Problem. For the CE to perform 

flawlessly, the halting problem needs to be overcome. 

Although, it had been proved by Turing in 1937, that “a general algorithm to solve 

the halting problem for all possible program-input pairs cannot exist“(Turing, 

1937)123, Minsky stated in 1967 that, any finite-state machine, “if left completely to 

itself, will fall eventually into a perfectly periodic repetitive pattern and the duration 

of this repeating pattern cannot exceed the number of internal states of the machine” 

(Minsky, 1967)124 thereby stating that theoretically, “the halting problem is decidable, 

because the machine has finite computational power” (with at least 21,000,000 possible 

states, which is a cosmic equivalent of eons of galactic evolution). 

Although not directly helpful in solving the halting problem, Minsky’s statement can 

help the research in theorizing that to make sure that a CE is halted, a concept of 

decay can be included in the rule sets of the Ψ. This condition of decay would act as 

a counterpart to the condition of growth in the CE meaning that the Ψ would become 

truly context aware, and not just be ruthlessly driving towards an equilibrium state. 

Moreover, with the introduction of the growth-decay dichotomy, the ∈ and Ψ can 

perform structural coupling in a more anthropomorphic way. However, each taxon 

will have a specific concept of decay, which will be relevant to its ∈ and Ψ.  

 
123 Turing, A. (1937). On Computable Numbers, with an Application to the Entscheidungsproblem. 
Proceedings of the London Mathematical Society, 2(42), pp. 230-265.  
124 Minsky, M. (1967). Computation: Finite and Infinite Machines. New Jersey: Prentice-Hall Inc.p. 
334. 
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3.2.1 General Assumptions for all Procedural Sequences (CESESE, 

CEMESE, CESEME, and CEMEME) 

The previous explanation on CESESE, CEMESE, CESEME, and CEMEME, and the subsequent 

examples (as per 1.2.2) provide a clear illustration of all the individual taxon and their 

relationship within the entire taxonomy. However, as the concepts pertaining to the 

lexical semantics have already been established in the previous section (as in 3.1), 

the research requires a more ab initio approach in establishing the logical semantics 

as well. It also becomes essential to establish the logical semantics in this approach, 

because all the individual taxa as part of the procedural sequences will be 

implemented in fulfilling the operational objectives of this research (As explained in 

1.2.2 and illustrated in fig. 1.10). 

Before independently defining all the distinct taxa, some general assumptions can be 

considered for all the procedural sequences as a collective unit. These assumptions 

mainly involve the understanding of the notation systems required to perform the 

following operations as per the operational objectives – 

• Taxonomy –  

o Although the independent taxa could have their distinguishing 

superscripts and subscripts notational systems as identified and 

defined for the specific taxa, all the procedural sequences must follow 

the classification system termed as Folksonomy (Peters, 2009)125 

which is a system that classifies content based on user tags, similar to 

citation indexing in Mendeley126, and hashtags on Instagram. 

 
125 Peters, I. (2009). Folksonomies. Indexing and Retrieval in Web 2.0. Berlin: De Gruyter Saur, pp. 
445. 
126 Mendeley. (2008). London: Elsevier. 
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o Folksonomies would be better suited for the entire procedural 

sequences, because the taxonomies generated in the operational 

objectives would be rich in graphical information, and would not 

require to be taxonomized based on hierarchies. 

o Moreover, the taxonomy can reflect the actual usage of the specific 

CE in terms of its implementation in the component of a built form, 

and can thus be used to create a robust data set. 

o And finally, because the tags for the taxa can be generated by the user, 

they can be simplified with user vocabulary or notational systems. 

• Evaluation – 

o This part of the operational objectives exclusively performs the 

simulations section of the primary objectives, and thus involves the 

bulk of programming that would be performed in this research. 

Moreover, it also involves testing, bug-fixing, troubleshooting, and 

versioning of the CE for all the taxa in the aforementioned procedural 

sequences. This means, a lot of S.O.D. (Systems Oriented Design), 

pseudo-codes and computational strategies will be formulated in this 

section. With their many aberrations, the procedural systems could 

disarray the notation systems. Thus, to avoid any deviations and 

discrepancies in the communication strategies adopted for the 

evaluation, all the procedural sequences must follow the visualization 

system – UML version 2.5.1 (OMG, 2017)127 which is the latest version 

of UML, “the standard way to visualize the design of a computational 

system.”  

 
127 OMG – Object Management Group (2017). OMG® Unified Modelling Language® (OMG UML®) 
Version 2.5.1. Milford, Massachusetts: OMG Group, pp. 754 
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o All the procedural sequences would be using a combination of the 

Structural UML Diagrams - Class Diagrams and Package Diagrams 

(within the system of UML 2.5.1), to define and identify the different 

variations of ∈ and Ψ, their attributes (their physical properties), and 

their behaviors (their potential interactions with other ∈ and Ψ). 

o Moreover, all the variations of all the procedural systems would be 

using a combination of the Behavioral UML Diagrams (within the 

system of UML 2.5.1), to illustrate the functioning of a specific CE (be 

it CESESE, CEMESE, CESEME, or CEMEME) while introducing the role of actors 

(as in the user who would have their role across the runtime of the CE 

to provoke the ∈ and Ψ as per the design of the CE) and determining 

the role and activation of individual ∈ and Ψ throughout the CE. 

o All the different above-mentioned UML diagrams will also be used to 

identify and define the different user-tests, bugs, troubleshooting, and 

versioning performed throughout the individual CE across the 

procedural sequences to perform the operational objectives. 

o However, individual taxa of the CE could have modification of their 

respective UML diagrams owing to the variations in the cardinality of 

their ∈ and Ψ. 

• Prototyping – 

o Although the prototyping objectives will be specific to the individual 

taxa within the procedural sequences (as in maybe one of the Ψ of a 

specific CE demands the construction of a bridge, while another CE 

demands the construction of a tower), all the initial independent tests 

will be performed by means of FDM printing with PLA filament, and 

evaluated as per the predetermined requirements of the specific CE. 
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3.2.2 Single Element Single Economy Ecosystem (CESESE) 

As explained previously with an example of a system of cubes stacked on top of each 

other by considering the rules of structural stability (described in 1.2.2 and illustrated 

in fig. 1.6) the CE undergoes optimization for one and only one type of species (in the 

case of the example, a cube) by considering one and only one type of rule set (in the 

case of the example, structural stability). Thus, it is termed as the Single Element, 

Single Economy Ecosystem – CESESE. 

Considering the above example (originally explained in 1.2.2 and illustrated in fig. 

1.6), a standard UML based on the assumptions of 3.2.1 can be established for a CESESE 

as illustrated in the fig. 3.2 below. 

 

Figure 3.2 – Example of a standard UML for a CESESE considering an example case for the ∈ and 

Ψ. Illustration and graphics by Author (February 2018). 
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Considering the lexical semantics established in the previous sections (as per 3.1.1, 

3.1.2, and 3.1.3) the following logical and empirical definitions could be established 

for a CESESE –  

• The CESESE could be populated by one and only one species of ∈. These ∈ could 

be represented by Platonic solids, Archimedean solids, point clouds, passive 

agents, active agents, cognitive agents, service equipment, structural 

members or fabrication material. 

• The CESESE could be governed by one and only one equilibrium condition of Ψ. 

These Ψ could be represented by static structural stability, kinetic structural 

stability, functional adequacy, functional compatibility, contextual 

compatibility, climatic optimization, and fabrication constraints. 

• All the procedural sequences and pseudo codes that would be formulated and 

theorized to achieve the operational objectives for the CESESE must follow the 

canonical CESESE UML diagram as shown in Fig. 3.2. 

• The specific considerations for the ∈ and Ψ (pertaining to the geometrical 

properties of the cells, neighbourhoods and the specific considerations for the 

cell states), however, can be made while establishing the particular CESESE and 

must be named, defined and sufficiently illustrated. 

• All the results achieved after performing the CESESE following all the 

procedural sequences must be taxonomized by following the canonical CESESE 

folksonomy system (as illustrated previously in 3.2.1). 

• As the results will be demonstrated in this thesis in a graphical format, the 

visual programming script (conceptualized, designed and illustrated in 

Grasshopper3D) will be added in the annexure section of the thesis. Thus, it 

must clearly reflect the nomenclature as per the CESESE taxonomy system.  
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3.2.3 Multi Element Single Economy Ecosystem (CEMESE) 

As explained previously with an example of a system of cubes and icosahedra stacked 

on top of each other by considering the rules of structural stability (described in 1.2.2 

and illustrated in fig. 1.7) the CE undergoes optimization for multiple types of species 

(in the case of the example, a cube and an icosahedron) by considering one and only 

one type of rule set (in the case of the example, structural stability). Thus, it is termed 

as the Multiple Elements, Single Economy Ecosystem – CEMESE. 

Considering the above example (originally explained in 1.2.2 and illustrated in fig. 

1.7), a standard UML based on the assumptions of 3.2.1 can be established for a 

CEMESE as illustrated in the fig. 3.3 below. 

 

Figure 3.3 – Example of a standard UML for a CEMESE considering an example case for the ∈ and 

Ψ. Illustration and graphics by Author (February 2018). 
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Considering the lexical semantics established in the previous sections (as per 3.1.1, 

3.1.2, and 3.1.3) the following logical and empirical definitions could be established 

for a CEMESE –  

• The CEMESE could be populated by multiple species of ∈. These ∈ could be 

represented by Platonic solids, Archimedean solids, point clouds, passive 

agents, active agents, cognitive agents, service equipment, structural 

members or fabrication material. 

• The CEMESE could be governed by one and only one equilibrium condition of 

Ψ. These Ψ could be represented by static structural stability, kinetic 

structural stability, functional adequacy, functional compatibility, contextual 

compatibility, climatic optimization, and fabrication constraints. 

• All the procedural sequences and pseudo codes that would be formulated and 

theorized to achieve the operational objectives for the CEMESE must follow the 

canonical CEMESE UML diagram as shown in Fig. 3.3. 

• The specific considerations for the ∈ and Ψ (pertaining to the geometrical 

properties of the cells, neighbourhoods and the specific considerations for the 

cell states), however, can be made while establishing the particular CEMESE and 

must be named, defined and sufficiently illustrated. 

• All the results achieved after performing the CEMESE following all the 

procedural sequences must be taxonomized by following the canonical CEMESE 

folksonomy system (as illustrated previously in 3.2.1). 

• As the results will be demonstrated in this thesis in a graphical format, the 

visual programming script (conceptualized, designed and illustrated in 

Grasshopper3D) will be added in the annexure section of the thesis. Thus, it 

must clearly reflect the nomenclature as per the CEMESE folksonomy system.  
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3.2.4 Single Element Multi Economy Ecosystem (CESEME) 

As explained previously with an example of a system of cubes stacked on top of each 

other by considering the rules of structural stability and buoyancy (described in 1.2.2 

and illustrated in fig. 1.8) the CE undergoes optimization for one and only one type 

of species (in the case of the example, a cube) by considering multiple types of rule 

sets (in the case of the example, structural stability and buoyancy). Thus, it is termed 

as the Single Element, Multiple Economies Ecosystem – CESEME. 

Considering the above example (originally explained in 1.2.2 and illustrated in fig. 

1.8), a standard UML based on the assumptions of 3.2.1 can be established for a 

CESEME as illustrated in the fig. 3.4 below. 

 

Figure 3.4 – Example of a standard UML for a CESEME considering an example case for the ∈ and 

Ψ. Illustration and graphics by Author (February 2018). 
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Considering the lexical semantics established in the previous sections (as per 3.1.1, 

3.1.2, and 3.1.3) the following logical and empirical definitions could be established 

for a CESEME –  

• The CESEME could be populated by one and only one species of ∈. These ∈ 

could be represented by Platonic solids, Archimedean solids, point clouds, 

passive agents, active agents, cognitive agents, service equipment, structural 

members or fabrication material. 

• The CESEME could be governed by multiple equilibrium conditions of Ψ. These 

Ψ could be represented by static structural stability, kinetic structural 

stability, functional adequacy, functional compatibility, contextual 

compatibility, climatic optimization, and fabrication constraints. 

• All the procedural sequences and pseudo codes that would be formulated and 

theorized to achieve the operational objectives for the CESEME must follow the 

canonical CESEME UML diagram as shown in Fig. 3.4. 

• The specific considerations for the ∈ and Ψ (pertaining to the geometrical 

properties of the cells, neighbourhoods and the specific considerations for the 

cell states), however, can be made while establishing the particular CESEME and 

must be named, defined and sufficiently illustrated. 

• All the results achieved after performing the CESEME following all the 

procedural sequences must be taxonomized by following the canonical CESEME 

folksonomy system (as illustrated previously in 3.2.1). 

• As the results will be demonstrated in this thesis in a graphical format, the 

visual programming script (conceptualized, designed and illustrated in 

Grasshopper3D) will be added in the annexure section of the thesis. Thus, it 

must clearly reflect the nomenclature as per the CESEME folksonomy system. 
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3.2.5 Multi Element Multi Economy Ecosystem (CEMEME) 

As explained previously with an example of a system of cubes and cuboctahedra 

stacked on top of each other by considering the rules of structural stability and 

buoyancy (described in 1.2.2 and illustrated in fig. 1.9) the CE undergoes optimization 

for multiple types of species by considering multiple types of rule sets. Thus, it is 

termed as the Multiple Elements, Multiple Economies Ecosystem – CEMEME. 

Considering the above example, a standard UML based on the assumptions of 3.2.1 

can be established for a CEMEME as illustrated in the fig. 3.5 below. 

 

Figure 3.5 – Example of a standard UML for a CEMEME considering an example case for the ∈ and 

Ψ. Illustration and graphics by Author (February 2018). 
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Considering the lexical semantics established in the previous sections (as per 3.1.1, 

3.1.2, and 3.1.3) the following logical and empirical definitions could be established 

for a CEMEME –  

• The CEMEME could be populated by multiple species of ∈. These ∈ could be 

represented by Platonic solids, Archimedean solids, point clouds, passive 

agents, active agents, cognitive agents, service equipment, structural 

members or fabrication material. 

• The CEMEME could be governed by multiple equilibrium conditions of Ψ. These 

Ψ could be represented by static structural stability, kinetic structural 

stability, functional adequacy, functional compatibility, contextual 

compatibility, climatic optimization, and fabrication constraints. 

• All the procedural sequences and pseudo codes that would be formulated and 

theorized to achieve the operational objectives for the CEMEME must follow 

the canonical CEMEME UML diagram as shown in Fig. 3.5. 

• The specific considerations for the ∈ and Ψ (pertaining to the geometrical 

properties of the cells, neighbourhoods and the specific considerations for the 

cell states), however, can be made while establishing the particular CEMEME 

and must be named, defined and sufficiently illustrated. 

• All the results achieved after performing the CEMEME following all the 

procedural sequences must be taxonomized by following the canonical 

CEMEME folksonomy system (as illustrated previously in 3.2.1). 

• As the results will be demonstrated in this thesis in a graphical format, the 

visual programming script (conceptualized, designed and illustrated in 

Grasshopper3D) will be added in the annexure section of the thesis. Thus, it 

must clearly reflect the nomenclature as per the CEMEME folksonomy system. 
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3.3  Semantic Syntax for the Procedural Sequences 

The lexical semantics (which were thus obtained from the theoretical assumptions 

thoroughly established previously in 2|) and the logical semantics (which were based 

on the lexical semantics and comprehensively established throughout the sections 

3.1 and 3.1) quite evidently form the theoretical foundations for this research while 

serving a database for the semantic syntax. This semantic syntax is required to 

undertake the procedural sequences that form the major bulk of the operational 

objectives and primary objectives for this research (as illustrated in 1.10) thus helping 

the research in empirically accomplishing the objectives laid down by the hypothesis. 

As introduced (in 1.2.1), illustrated (in fig. 1.10), explained, and theorized (in 2| and 

3|), this chapter thus concludes the literary objectives as explained – 

• Literary objective I (Lexical semantics) – The terminologies and diction from 

the fields of Biology, Ecology, Genetics, Computing, Applied Mathematics, 

Applied Mechanics, Fabrication, Manufacturing and Economics relevant to 

the research as a literary aid were theorized to establish the structure of 

thought. 

• Literary objective I (Logical semantics) – The terminologies and diction in the 

fields of Biology, Ecology, Genetics, Computing, Applied Mathematics, 

Applied Mechanics, Fabrication, Manufacturing and Economics relevant to 

the research as a literary aid were repurposed to establish the structure of a 

process. 

The semantic syntax established by accomplishing the literary objectives will now aid 

in pursuing the operational objectives for all the procedural sequences in the further 

chapters (as per the structure explained in 1.3.2). 
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Apart from the semantic syntax that is derived from the theoretical assumptions 

made by pursuing the aforementioned Literary Objectives, the research is also based 

on the semantic syntax derived from the computational environment (in the form of 

software) that is being used to perform all the procedural sequences. Following is a 

list of all the digital tools that are employed in this research. 

• Rhinoceros 3D128 – Or Rhino 3D, which is a 3D modelling and CAD software, 

has been used as the primary computational environment to perform all the 

primary objectives for the procedural sequences (refer 1.2.1). Throughout the 

empirical advancements of this research, the latest available versions of 

Rhino 3D (as product names Rhino 5, Rhino 6, and Rhino 7) have been used 

depending on their respective release dates. All the files used to generate 

illustrations for this research have been visualized using Rhino 7, which is the 

latest version as of the publication of this thesis. Thus, the file formats are not 

compatible with the previous versions of the software. 

• Grasshopper 3D129 – Or Grasshopper, which is a visual programming language 

and environment, and (since Rhino 6) is packaged as a built-in plug-in for 

Rhino 3D, has been used as the programming interface to perform all the 

primary objectives for the procedural sequences. Grasshopper has not had 

any significant change throughout this research, apart from being directly 

integrated within the Rhino 3D interface. Thus, as of the publication of this 

thesis, all the Grasshopper definitions (which are those scripts that are 

written and performed in the Grasshopper environment, and saved as .gh file 

format) are and will be compatible across different versions. 

Thus, the procedural sequences will be accomplished by implementing Rhino 7 and 

Grasshopper. 

 
128 Rhinoceros, version 1 (1998). Seattle: Robert McNeel & Associates.  
129 Grasshopper 3D (2007). Seattle: David Rutten, Robert McNeel & Associates. 
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4| On the procedural sequences for the 
Computational Ecosystems 

4.1 Primary objectives through Procedural sequences 

An explicit roadmap regarding the objectives (the primary and secondary, as 

explained in 1.2.1) was clearly laid out in Chapter 1 (as illustrated in fig. 1.10 in 1.2.3) 

and the previous chapters (2| and 3|) have quite distinctively defined all the required 

theoretical foundation for the research which hypothesizes – 

What if the built form was constructed, monitored and governed by an 

autonomous, unbiased algorithm? 

What if this algorithm was dynamically constructed, monitored and governed by 

the built form? 

And, theorizes to create, taxonomize, and prototype a dynamic, reciprocal, symbiotic 

feedback loop in the form of Computational Ecosystems (CE) built on the 

computational framework of Cellular Automata (CA). As theorized and defined in the 

previous chapters, the procedural sequences which form the basis of the operational 

objectives of the research have been performed in the form of the four taxa - CESESE, 

CEMESE, CESEME, and CEMEME. All these four taxa have undergone the three stages of 

operational objectives – Taxonomies, Evaluation, and Fabrication. As these 

operational objectives have had overlapping contributions to the primary objectives, 

all the taxa have been individually explained in this thesis by following a structure 

derived from the primary objectives – Case studies, Simulations, and Prototyping in 

this chapter. Moreover, as this entire chapter mostly focuses on all the processes 

undertaken to theorize, program, prototype, and iterate all the 4 independent taxa, 

the significance of the results of these taxa are discussed and elaborated upon in 

chapter 5. 
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Because of the impetus put on the actual performance of all the theoretical inputs 

and implementation of all the semantics described thus far, this chapter, which 

focuses on the methodology, has a lot of graphical information that helps in 

illustrating the different morphologies acquired by performing a wide range of 

combinations and variations of ∈ and Ψ, and their initial states. All these 

morphologies have been programmed, generated and visualized by using Rhino 7 and 

Grasshopper (as elaborated in 3.3). However, to perform the distinguished 

computational operations that are required by the assumptions made for the specific 

∈ and Ψ, have been performed by implementing additional plugins. These plugins 

are available on major opensource scripting platforms (like GitHub, grasshopper3D 

and food4rhino) and can be downloaded and installed with absolute ease. The 

specific plugins have been mentioned while performing a specific attribute attached 

to the ∈ and Ψ in question in the specific taxon. 

Some illustrations have also been created by implementing VRay130 for Rhino (which 

is a biased CGI rendering software built for geometry generated in Rhino). The 

rendering software was employed to simulate the visual properties of a wide range 

of materials that are used in the AEC industry. Because this research is not directly 

related to material engineering and purely focuses on computational design and 

digital fabrication, the use of the rendering engine as opposed to photography of 

actual material is justified. Thus, a lot of graphic-heavy imagery with near-photo-

realistic quality becomes empirical evidence for most of the methodological 

framework in the form of the operational objectives. 

However, to showcase the grasshopper definitions in a visual format, while not 

overpowering the visual imagery (which provides the empirical evidence with relative 

ease), the research prefers to add the definitions to the annexure section of this 

thesis. 

 
130 VRay for Rhino (1997). Sofia, Bulgaria: Chaos Group. 
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(As elaborated in 3.2) The pseudo-codes and computational strategies for all the 

procedural sequences have been based upon the canonical UML Class Diagrams for 

the respective taxon (as illustrated in fig. 3.2, fig. 3.2, fig. 3.4, and fig. 3.5) which were 

set up considering the examples in chapter 1| On the relevance of Computational 

Ecosystems (as in fig. 1.6, fig. 1.7, fig. 1.8, and fig. 1.9). However, a computational 

strategy needs a Behavioral UML Diagram to understand the role, interaction and 

runtime of all its components (in this case the ∈ and Ψ) and cannot be defined by 

establishing a Structural UML Diagram that merely identifies and defines the 

attributes and operations of a class (again, in this case the ∈ and Ψ). 

On the contrary, the use of a Behavioral UML diagram cannot be used as a canonical 

version for all the CE that can be part of a specific procedural sequence. For example, 

it would be counter-intuitive to create a canonical CESESE UML with the help of a 

Behavioral UML diagram that could possibly address all the various properties that 

could be attributed to ∈ and Ψ, while defining their roles, interaction and runtime. 

Therefore, it is clever to establish and illustrate the individual Behavioral UML 

diagrams for the specific taxon at the time of their introduction in this thesis. These 

specific and distinctive Behavioral UML Diagrams would be a part of the prototyping 

section of the CE taxon in question and will be categorized under the same criteria as 

the procedural sequences (as in the form of the four already established taxa).  

All the subsequent Behavioral UML Diagrams (just like all the canonical UML Class 

Diagrams) have been created using a web-based tool - Lucidchart131 which is widely 

used by companies to create and share UML Diagrams in the software industry. 

Thus, after establishing the variations, additions, extensions and specific 

modifications to the semantics, the individual taxa of the procedural sequences will 

be elaborated in the next pages through the primary objectives while fulfilling the 

operational objectives (as per 1.2.1).  

 
131 Lucidchart (2008). Utah: Lucid Software Inc. 
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4.2 Single Element Single Economy Ecosystem (CESESE) 

The conceptual framework of a CESESE has already been sufficiently illustrated in the 

previous chapters (introduced in 1.2.2, illustrated in fig. 1.6, defined in 3.2.2). 

Moreover, a Structural UML Diagram establishing the attributes and operations of a 

canonical version, the ∈ and Ψ has also been illustrated (in fig. 3.2 as part of sub 

section 3.2.2). However, to actually construct, taxonomize and prototype a 

procedural sequence, the research would have to consider specific tangible 

parameters which could be derived from real-life examples and constraints. 

As the first CE to be established under the theoretical framework, it was prudent to 

start with an elementary form (not elementary in the sense as Wolfram’s Elementary 

Cellular Automata) of CE which could be based on one of the first examples of a CE 

and the consequent conceptual frameworks introduced in this thesis. In short, the CE 

illustrated in 1.2.2 to introduce the concept of an SESE (hereafter termed as the 

example scenario) would be an ideal place to start with the procedural sequences for 

a CESESE. This decision of starting with the example case would also make it easier to 

refer to the canonical Structural UML Diagram and base the pseudo-code on it, albeit 

with some modifications to better suit the exact parameters of the CESESE. 

Thus, before specifically defining each parameter, we can roughly state the following 

overall components of the CESESE – 

• ∈ – As illustrated in the example scenario, the ∈ would be represented by 

hexahedrons or cubes, with unit dimensions. 

• Ψ – As illustrated in the example scenario, the Ψ would be represented by 

structural stability in the form of axial loads. 

Regardless of the above generalization, the CESESE would require to fulfill all the 

primary objectives while pursuing the operational objectives for this taxon. 
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4.2.1 Case Studies 

As a computational construct, it is quite straightforward and obvious to theorize an 

ecosystem that is inhabited by one and only one kind of species and those species 

are constructed, monitored, and governed by one and only one rule set. However, it 

is very difficult to find a real-life ecosystem that reflects similar constituent parts. 

Most ecosystems have complexities and multiplicities in either or both of the types 

of species or the types of purposes that bring them together (that is in terms of 

positive or negative intraspecific or interspecific cooperation as elaborated in 2.1.3).  

On the contrary, owing to the relative ease and simplicity of computation, most of 

the bio-based algorithms that have been mentioned in this thesis (such as ACO, BFA, 

FSA, ABC as mentioned in 2.1.4 in fig. 2.1) are experimented and theorized with a 

single type of species constructed, monitored, and governed by a single type of rule 

set. Although the computation is not precise or realistic, the relative simplicity of the 

computational methodology is quite instrumental in generating required research 

observations and results. This very advantage has been one of the key factors in the 

significance of this taxon (CESESE) in providing straightforward results by means of 

performing relatively simplified methodologies. 

This means, that the assumptions for the ∈ and Ψ for the CESESE must conform to a 

system that follows the aforementioned criteria (as per the example scenario) but 

can also have a considerable advantage if it was based on a real-life ecosystem that 

reflects similar constituent parts. However, the hexahedrons or cubes considered as 

∈, are lifeless blocks of an arbitrary dimension and can only be classified as ∈abiotic, 

which makes it very laborious to analogically characterize it with a real-life 

ecosystem. Thus, the following addition must be made to the assumptions – 

• ∈ – Hexahedrons or cubes, with unit dimensions, which can be programmed 

as sentient elements, that are aware of their existence, and thus can be 

considered as ∈biotic. 
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Eciton hamatum, which is a species of army ants found in parts of Mesoamerica and 

South America, are known for their large swarms which raid forests to forage for food 

sources. While in their pursuits, the swarms cross very many natural hurdles by 

forming collective assemblages out of their own bodies to perform a variety of 

functions that benefit the entire colony. Fig. 4.1 illustrates army ants building and 

using a living bridge to span gaps in the colony’s foraging trail. 

 

Figure 4.1 – Ant Bridge (Panama). Original Image from the fieldwork on Army ants (Eciton 

hamatum) induced to form a very large bridge over a wide gap by Chris R. Reid. Source: 

https://chrisrreid.wordpress.com/fieldwork/ 

In field studies conducted on ant bridges, it has been found that, “the ants 

continuously modify their bridges, such that these structures lengthen, widen, and 

change position in response to traffic levels and environmental geometry.” It has also 

been observed that “the bridge construction is influenced by a cost-benefit trade-off 

at the colony level, where the benefit of increased foraging trail efficiency is balanced 

by the cost of removing workers from the foraging pool to form the structure” (Reid, 

et al).132 

 
132 Reid, C. R., Lutz, M. J., Powell, S., Kao, A. B., Couzin, I. D., and Garnier, S. (2015). Army ants 
dynamically adjust living bridges in response to a cost–benefit trade-off. In: Proceedings of the 
National Academy of Sciences of the United States of America. [online] Washington DC: PNAS, p 6. . 
Available at: https://www.pnas.org/content/pnas/early/2015/11/18/1512241112.full.pdf 
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If a rudimentary computational model was to be made for the simulation of the 

bridging behavior of the aforementioned army ants it would translate to a CE as has 

been already defined as Hybrid Bio Plausible Bio-inspired Stochastic Optimization 

Algorithm. Say, this proposed CE, following a basic nomenclature system, could then 

be termed as CEeciton-bridge (as the CE reflects bridging properties of the eciton 

hamatum species), and would then consist of the following constituent parts: 

• ∈ – The army ants. Acting as biotic, ambulatory agents that are self-aware of 

their physical properties such as their weight, weight-carrying capacity, 

movement speed, and gripping abilities. Thus, ∈eciton. 

• Ψ – The bridging ability. Forming collective assemblages by means of 

connection techniques, span-depth ratios for optimum bridge structures, and 

load calculations (considering the live loads and dead loads). Thus, Ψbridge. 

Although, a more realistic CEeciton-bridge would consist of a few more ∈ (such as the 

abiotic food sources, abiotic food fragments, and the abiotic gaps in the foraging trail) 

and Ψ (such as shortest foraging trails and cost-benefit analysis for the colony 

dynamics) to precisely simulate the foraging behavior of the army ants and to 

understand the relations between the cost-benefit trade-off, however, to simulate 

and analyze the living bridge structures as collective assemblages created by the army 

ants, the above components could be considered sufficient. A CEeciton-bridge with the 

abovementioned ∈ and Ψ would then be analogous to a CESESE with a single species 

of ∈ and a single ruleset of Ψ. The proposed CESESE can reflect a computational 

adaptation of the CEeciton-bridge, albeit the significant divergence in the ∈eciton and the 

∈biotic for the proposed CESESE (where the former is an ambulatory agent, and the 

latter is a static cube conceptualized to be sentient and context-aware). Therefore, a 

CEeciton-bridge can be considered as a real-life case study to establish the CESESE. 

Thus, the similarities between a CESESE and a CEeciton-bridge as compared to the example 

scenario can be illustrated as shown in fig. 4.2. below. 
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Figure 4.2 – Comparing the example scenario, a CESESE and a CEeciton-bridge. Illustration and 

graphics by Author (May 2018). 

Considering the aforementioned assumption, the proposed CESESE can now be treated 

as a Hybrid Bio Plausible Bio-inspired Stochastic Optimization Algorithm, that seeks 

to simulate a computational adaptation of the collective assemblages achieved by 

eciton hamatum or army ants. This assumption can be employed as a direct analogy 

to develop the next stages of this taxon. However, the ∈ and Ψ must be clearly 

established as followed – 

• ∈ – Or ∈cube (derived from already established ∈biotic as a cube), can be 

considered as a computational substitute for the ∈eciton established for the 

construction of CEeciton-bridge. However, it needs to be considered with the 

following additional properties: 
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o The ∈cube should be considered as a static agent that can be spawned 

or culled by the CESESE at the expense of the equilibrium state which 

will be determined by the Ψ. 

o The ∈cube should be made to be self-aware of itself, in the sense that 

it should be able to identify and quantify its position, orientation, 

weight, and bounds. 

o The ∈cube should also be made to be self-aware of its surroundings and 

their physical properties, such as cardinality of neighbours, the array 

of neighbours, and distance from the initial plane. 

• Ψ – can be considered as the computational substitute for the Ψbridge 

established for the CEeciton-bridge. However, it needs to be considered with the 

following additional properties: 

o Instead of a bridging logic which has major dependencies on the span 

of the gap (to be bridged), a tower logic which has no such constraints 

apart from the height can be considered as the primary attribute of 

the Ψ. Thus, Ψtower can be introduced. 

o Ψtower should be considered as a simple vertical stacking logic serving 

as a computational substitute to the collective assemblages proposed 

for the CEeciton-bridge. 

o Ψtower should be designed primarily as a two-state rationale that 

depends on if the cube is spawned or culled while conforming to the 

understanding of vertical stacking. 

o Ψtower should seek an equilibrium state that spawns ∈cube when the 

tower is under-structured, and culls ∈cube when the tower is over-

structured, thus maintaining a reciprocal coupling. 
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After establishing and defining the ∈ and Ψ as ∈cube and Ψtower, the CESESE could be 

specifically defined under the computational modelling guidelines of CA (as 

elaborated in 3|) as followed – 

• The CESESE which owing to its specific ∈ and Ψ combination can be termed as 

CEcube-tower will be defined as a functioning ecosystem constituting of sentient, 

context aware ∈ entities that interact with each other considering the rulesets 

assigned by Ψtower to spawn or cull ∈cube until the runtime of the CEcube-tower. 

• The CEcube-tower will perform solitarily without any additional internal 

components or partial runtimes. Moreover, there won’t be context aware CE 

that would have to be added externally. Thus, in this taxon, one and only one 

CE that is CEcube-tower would be performed for its entire runtime. 

• Although derived from the intricate bio-inspired behavior of army ants 

creating and maintaining living bridges for foraging trails, the CEcube-tower is 

basically an elementary vertical cube stacking algorithm. Therefore, the rule 

sets for Ψtower can be adapted from the Conway model of Cellular Automata 

(as elaborated in 2.3.2). 

• The Ψtower would differentiate from the Conway model of Cellular Automata 

in the parameter of time. In the Conway model, with increased intervals of 

time (ttick) we find new cells being added to or removed from the 2D grid. 

However, in the case of the CEcube-tower, the new cells (in the form of ∈cube) will 

be spawned or culled on the upper levels in the 3D grid. 

Considering all the above assumptions, definitions, illustrations and examples for the 

CEcube-tower, the simulations for this taxon can now be performed. However, some 

information still needs to be considered to establish and illustrate the empirical 

derivations of all the case studies. For example, the ∈cube and Ψtower still need to be 

dimensionally, and geometrically defined to consider them for computational use. 



Theorizing, Taxonomizing and Prototyping operational Ecosystems in 
Computational environments 

4| On the procedural sequences for the Computational Ecosystems |142 

4.2.2 Simulations 

Thus, to begin defining the ∈cube and Ψtower to be employable in a computational 

context, it is important to reassess and repurpose the canonical CESESE Structural UML 

Diagram (as per fig. 3.2) for the CEcube-tower. Fig. 4.3, as shown below, illustrates the 

modifications to the canonical version. 

 

Figure 4.3 – Modifications made to the canonical CESESE UML Diagram to accommodate the 

parameters required for establishing the CEcube-tower. Illustration and graphics by Author (May 

2018). 
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Elaborating on the terminologies introduced in fig. 4.3, the attributes and operations 

of the classes can be defined as followed – 

• ttick – The periodic increment of time, which ensures that the CEcube-tower runs. 

• trest – If the condition CEcube-tower rest is fulfilled, the trest will be activated. This 

means that the time increment will stop and the CEcube-tower will  

• CEcube-tower rest – Is the situation where an ∈cube array for the last 3 ttick 

intervals is equal or repetitive. 

• ∈cube array – Is the collective assemblage of ∈cube for a certain ttick interval. 

• ∈cube
form – Is the formation of an ∈cube array depending on the binary input 

from Nform. 

• Nform – Is the binary input for the cells to be either spawned (input = 1) or 

culled (input = 0) depending on the Ncheck conditional. 

• Ncheck – Is the binary output from the cells of the neighbourhood (N) to check 

if the cells in the N of the previous ttick interval are either spawned (input = 1) 

or culled (input = 0). 

• N – The neighbourhood of the cell in question (as in every ∈cube) depending 

on how many neighbouring ∈cube from the previous ttick interval are to be 

considered to determine the Ncheck and the Nform routines that determine 

Stack operation. 

Thus (as seen above in reverse chronology), determining the neighbourhood (N) 

becomes the most important step before considering to explain the other concepts 

under the inheritance field. Moreover, the determining of the initial states and the 

initiate conditions also require an understanding of the neighbourhood (N). 
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However, before establishing the N, the computational environment and interface 

need to be established. All the modelling has been performed in Rhino 7 (as explained 

in 3.3), the programming has been performed in Grasshopper for Rhino 7 (as 

explained in 3.3) and visualizations have been performed in VRay for Rhino (as 

explained in 4.1). Thus, all the assumptions that are mentioned here after, take place 

not only in the conceptual hypothetical realm of the structure of thought but also in 

terms of the software interfaces mentioned above. 

The computational universe of a CEcube-tower in terms of Euclidian geometry is an 

infinite, 3D orthogonal grid of cubes, and can be realized by the 1x1x1 dimensions (in 

the X, Y, and Z axes). However, the infinity of the grid would be treated rather 

differently in this case, because the motive of a CEcube-tower is to construct a tower, 

and it requires a fixed, immobile ground plane. Considering this ground plane would 

be the coordinate XY-plane located at the origin (0,0,0), the infinity of the x and y 

axes can stretch in the +X, -X and +Y, -Y directions respectively, however, the infinity 

of the Z-axis can only stretch in the +Z direction. Thus, the Array operation in the ∈cube 

class can be defined as an infinite 3D cube array conformed to a (0,0) base plane. 

Thus forming a hypothetical revised infinite 3D Square grid. 

As the grid on all the axes is strictly prescribed to the dimensions 1x1x1, when cubes 

are stacked, it will appear as if the cubes are stacked on top of each other on the Z-

axis. This would be particularly helpful in defining the Stack operation which is 

controlled by the Ncheck and the Nform routines, which correspond to ∈cube
form that 

reflects if the ∈cube is spawned or culled in the specific ttick interval. The spawning or 

culling also corresponds to the terminology which determines if ∈cube exists or does 

not exist, respectively. However, before determining the State conditions, which 

form the computational core of Ψtower (and thus consequently of the CEcube-tower), the 

N for the ∈cube Array defined above needs to be explained and illustrated. The 

concept of the N would also be instrumental in illustrating all the Ncheck and the Nform 

routines, as it would serve as a continuation to the same graphical vocabulary, with 

the same examples. 
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As the concept of neighbourhood (N) depends directly on the morphology of the 

∈cube, fig. 4.4 illustrates a solitary ∈cube, say ∈cube-0, surrounded by its N, say N0.  

 

Figure 4.4 – A solitary ∈cube-0 surrounded by its N0. Model and graphics by Author (May 2018). 

Following the UML CEcube-tower class diagram in fig. 4.3, the Ncheck for ttick-0 would 

determine the Nform for ttick-1 and place a new ∈cube-1 on top of the existing ∈cube-0 as 

shown in fig. 4.5 below. 

 

Figure 4.5 – ∈cube and their N across consecutive ttick. Model and graphics by Author (May 2018). 

Thus, ∈cube-1 would now have its own N-1, and the process would go on until trest is 

achieved at ttick-2, as illustrated in fig. 4.6 below. 

 

Figure 4.6 – ∈cube and their N until trest is achieved. Model and graphics by Author (May 2018). 
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Thus, the ∈cube-n+1 for every corresponding ttick-n+1 condition, would depend on the 

position of the ∈cube-n at the specific ttick-n condition. However, to understand and 

determine the Ncheck and the Nform routines to establish which ∈cube is spawned (or 

exists) and which is culled (or does not exist), it is essential to draw inspiration from 

Cellular Automata models mentioned in this thesis. As mentioned in 4.2.1, the 

construction of the CEcube-tower would be following the Conway Model. (As already 

established in 2.3.2) The Conway model is a two-state CA, and every cell interacts 

with its eight neighbours, conforming to the Moore neighbourhood (NM). At each 

step, in time, the following transitions occur (Gardner, 1970)133: 

• Any live cell with two or three live neighbours (in its NM) survives. 

• Any dead cell with three live neighbours (in its NM) becomes alive. 

• All other live cells die in the next generation. 

• Similarly, all other dead cells stay dead.  

However, (as per 4.2.1) the state conditions of the Conway model cannot be adopted 

in the CEcube-tower, as the latter has a major deviation in terms of the computational 

environment. As Conway’s game of life is based on an infinite 2d square grid, and the 

CEcube-tower conforms to the aforementioned hypothetical revised infinite 3D Square 

grid, the transitions mentioned above (in the Conway model) that occur in time, will 

have to occur in the +Z axis in the CEcube-tower. Meaning, the above rules that help the 

game of life to be visualized as moving, will help the CE to be visualized as growing 

(in the +Z axis). But first, the state conditions will have to be modified and adapted 

to the N, while every ttick condition would perform the ∈cube array until the trest 

condition is achieved. 

 
133 Gardner, M. (1970). MATHEMATICAL GAMES - The fantastic combinations of John Conway's new 
solitaire game "life". Scientific American. [online] 223(4), pp. 120-123. Available at: 
https://web.stanford.edu/class/sts145/Library/life.pdf [Accessed 31 May 2020]. 
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Thus, the modified state conditions for the CEcube-tower drawn from the Conway model 

can be stated as followed – 

• Every ∈cube-n+1 at the ttick-n+1 interval interacts with its N of the ∈cube-n at the 

ttick-n interval, thus performing Ncheck. For the ttick-n+1 interval, it then performs 

the Nform routine based on the following conditions – 

o Any existing (spawned) ∈cube-n with two or three existing ∈cube-n in its 

N continues to exists and is not culled at the ttick-n+1 interval, as if it was 

being perfectly supported by its counterparts on the floor below. 

o Any existing (spawned) ∈cube-n with other than two or three existing 

∈cube-n in its N stops existing and is culled from the ttick-n+1 interval, as 

if it was being over-supported by its counterparts on the floor below. 

o Any non-existing (culled) ∈cube-n with three existing ∈cube-n in its N 

exists and is spawned for the ttick-n+1 interval, as if it was being perfectly 

supported by its counterparts on the floor below. 

• These rules, which compare the behavior of the automaton to real life, can be 

summarised into the following: 

o Any existing ∈cube-n at the ttick-n interval with two or three existing ∈cube-

n at the ttick-n interval in its N continues to exist at the ttick-n+1 interval. 

o Any non-existing ∈cube-n at the ttick-n interval with three existing ∈cube-n 

at the ttick-n interval in its N is spawned at the ttick-n+1 interval. 

o All other existing ∈cube-n at the ttick-n interval stop existing at the ttick-n+1 

interval. Similarly, all other non-existing ∈cube-n at the ttick-n interval 

remain nonexistent at the ttick-n+1 interval. 
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Thus, considering the aforementioned state conditions, the condition for the existing 

state of the ∈cube array, which can be either continued existence (as in not culled) or 

newly existing (as in spawned) can be illustrated as shown in fig. 4.7 below. 

 

Figure 4.7 – ∈cube-n array and their corresponding ∈cube-n+1 array considering the state conditions 

for the existing states of ∈cube array. Model and graphics by Author (May 2018). 

The ∈cube-n+1 at the ttick-n+1 interval is thus denoted by ◼ (R,G,B – 204,204,204) colored 

cube, and the corresponding ∈cube-n at the ttick-n interval is denoted by ◼ colored cube 

(R,G,B – 129,129,129). Also, the existing cubes are denoted by ◼ (R,G,B – 57,188,40) 

colored cube, and the non-existing cubes are denoted by ◼ (R,G,B – 255,21,21) 

colored cubes. 



Architecture of Computational Ecosystems 

| 4.2 Single Element Single Economy Ecosystem (CESESE) 149| 

And, considering the aforementioned state conditions, the condition for the non-

existing state of the ∈cube array, which can be either discontinued existence (as in 

culled) or not newly existing (as in not spawned) can be illustrated as in fig. 4.8 below. 

 

Figure 4.8 – ∈cube-n array and their corresponding ∈cube-n+1 array considering the state conditions 

for the non-existing states of ∈cube array. Model and graphics by Author (May 2018). 

The ∈cube-n+1 at the ttick-n+1 interval is thus denoted by ◼ (R,G,B – 204,204,204) colored 

cube, and the corresponding ∈cube-n at the ttick-n interval is denoted by ◼ colored cube 

(R,G,B – 129,129,129). Also, the existing cubes are denoted by ◼ (R,G,B – 57,188,40) 

colored cube, and the non-existing cubes are denoted by ◼ (R,G,B – 255,21,21) 

colored cubes. 
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4.2.3 Prototyping 

The state conditions in terms of the Ncheck and the Nform routines of the Ψtower that 

determine the Stack operation for the ∈cube array have been sufficiently 

demonstrated and illustrated in terms of the Ψspawn and Ψcull rules (as shown in fig. 

4.7 and fig. 4.8). The illustrations show all possible conditions for the Ψspawn and Ψcull 

rules, however, the computational logic for stacking is quite simple. If the cardinality 

of the N is equal to 2 or 3, the ∈cube survives (i.e. not culled), or if not present already, 

it spawns. However, if the cardinality of the N is equal to 0, 1, 4, 5, 6, 7, 8, or 9, an 

existing ∈cube is culled, or if not present, it is not spawned. 

The above logic had to be tested to verify if the cubes (in the form of ∈cube) really 

experience structural stability (as directed by Ψtower) if stacked on top of each other 

in this way and eventually make a tower that is sufficiently structured (to develop a 

functioning CEcube-tower). Such a test would support establishing an early instance of 

empirical evidence that a CE could emulate a bio-inspired optimization algorithm that 

helps to develop a built form.  

The test would also serve as a prototype to develop a relationship between the built 

form and the algorithm without being dependent on design. Here, the role of design 

would be portrayed by the highly transparent and uncomplicated set of rules (in the 

form of Ψspawn and Ψcull rules) that are actually derived from rules of Cellular 

Automata (the Conway model) and modified to reflect basic intuitive structural rules.  

Although a visual examination of all the rules, in the form of testing the rules on the 

base Rhino 7 environment (i.e. without conducting any computation) gives a clear 

idea that the Ψspawn and Ψcull rules are robust, physical tests and trials had to be 

conducted additionally by involving testers in the form of participants who would be 

willing to evaluate if the rules really work. These evaluators would have to possess a 

basic understanding of architecture, and thus students and practitioners in the AEC 

industry were considered to be ideal candidates. 
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The Author conducted a student workshop that was titled ‘Designing Ways of 

Designing’ in June 2018 at the IES (Indian Education Society’s) College of Architecture 

in Mumbai, India. It was attended by 20 candidates – 16 students pursuing the B.Arch. 

degree and 4 recent graduates and practicing architects. For the testing, participants 

were first introduced to the concept of Computational Ecosystems and its research 

and were provided with a lecture on Cellular Automata and its implementation in the 

research. The participants were also given all the Ψtower rules in the form of an 

instruction manual so they would find it convenient to understand, examine and 

exercise the rule sets. After being thoroughly informed, the candidates were divided 

into four groups of five participants, and were tasked with testing the CEcube-tower. 

Each group was provided with a 50mm x 50mm grid as the base XY plane, made out 

of a 5mm Acrylic Sheet, and scored with a laser cutting machine to be able to display 

the grid lines. The groups were also provided with 5mm x 5mm x 5mm cubes (made 

out of the same Acrylic sheet mentioned above, by cutting with a laser cutter) and 

super glue to put the entire system together. The groups were encouraged to 

consider a random starting position with the only limit, that it should have no more 

than five cubes in the initial state. Thus, the testing groups were each developing 

individual CEcube-tower with the Acrylic cubes serving as the ∈cube of the system, and the 

instruction manual serving as the Ψtower rules. 

Although the participants found the results to look quite stunning, and they found it 

absolutely entertaining to refer to a rule set that was generating random but logical 

form, owing to the tediousness of constantly consulting a ruleset and gluing tiny 

acrylic cubes to each other, the groups were asked to go for no more than ten 

iterations. This means, there was no rule for the termination of the CEcube-tower in this 

case, apart from the physical constraint of stopping after ten ttick intervals. 

Regarding the fact that all five individual CEcube-tower had different starting conditions 

in the form of ∈cube
initial, all of them had different combinatory assemblages 

(governed by their specific Nsearch and Nform routines) and different morphologies. 



Theorizing, Taxonomizing and Prototyping operational Ecosystems in 
Computational environments 

4| On the procedural sequences for the Computational Ecosystems |152 

The 5 different CEcube-tower and the different assemblages which can be considered as 

the empirical evaluation of the Ψtower rules are illustrated as a picture collage in fig. 

4.9 below. 

Figure 4.9 – Results and conclusions of the Designing ways of Designing workshop, conducted at 

IES College of Architecture, Mumbai India held to validate and prototype a CESESE - CEcube-tower. 

Photographs by Author (June 2018). 



Architecture of Computational Ecosystems 

| 4.2 Single Element Single Economy Ecosystem (CESESE) 153| 

The evaluation of the CEcube-tower by means of physical modelling in a workshop for 

students and professionals in the AEC industry provided a deeper understanding of 

the validation of the concept of a CE as a link between the built form and the 

algorithm and the validation of the specific components of the CE. However, the 

limitations of physical modelling such as the aforementioned tediousness of 

consulting an instruction manual and building with small pieces restricted the 

runtime of a CE. Additionally, there was also a threat of the Ψtower rules being misread 

or misinterpreted at occasions leading to incorrect assemblages, which had to be 

thoroughly cross-checked. This counterintuitive behavior compelled the research to 

perform digital prototyping methods. 

Thus, after validating the Ψtower rules of the CEcube-tower, the natural progression in the 

prototyping stage was to develop a CEcube-tower computationally. However, although 

all the components of the CE were sufficiently defined, illustrated, exemplified and 

tested, in terms of computational semantics, the CE only existed in the form of the 

UML Class diagram (as illustrated in fig. 4.3). Therefore, a UML Sequence Diagram 

had to be set up to understand the role, interaction and runtime of all the classes to 

establish the CEcube-tower computationally. The UML Sequence Diagram for the 

construction of a CEcube-tower would have the following assumptions – 

• The Actor would be considered as the designer who initiates the CEcube-tower. 

• CEcube-tower is considered as one of the objects, as it has its own runtime. 

• The other objects in the diagram would be ∈cube
initial, Ψspawn, ∈cube

form, Ψcull in 

the chronological order of their application in the CEcube-tower. 

• The Diagram also has an early rest condition, that tests for early anomalies. 

• The remaining algorithm however continues on a while loop that considers 

the CEcube-tower rest condition (mentioned in 4.2.2) to end the algorithm. 
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Fig. 4.10 shows the implementation of a UML Sequence Diagram to better 

understand and the role, interaction and runtime of the Ψtower, ∈cube
initial, and their 

dependencies that determine the outcome of several different CEcube-tower. 

Figure 4.10 – The UML Sequence Diagram for a CEcube-tower with the role, interaction and runtime 

of the Ψtower, ∈cube
initial, and their dependencies. Illustration and graphics by Author (Jan 2019). 
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Considering the UML Sequence Diagram established in fig. 4.10, an algorithm was 

made using Grasshopper (as Grasshopper definitions) and run inside the Rhino 7 

interface (The definition labeled as CEcube-tower has been appended to the Annexure – 

Definitions). Although most of the functions mentioned in fig. 4.10 are available in 

the stock Grasshopper database, some operations had to be imported using third-

party plugins. An overview of the various steps is mentioned below – 

• Initiate – The Initiate function, and especially the populate operation of the 

∈cube
initial class (as illustrated in fig. 4.3) required the algorithm to randomly 

generate a sequence of ∈cube, to kickstart the definition. Although the 

operation of populating random points is a default component in 

Grasshopper, a series of operations involving conditionals was employed to 

ensure that the ∈cube
initial was focused on a certain part of the algorithm. 

• Array – Although Grasshopper has built-in capabilities to produce cubes, a 

collection of points with the boundary properties of ∈cube was implemented 

to maintain computational ease and manage exorbitant increase in file sizes 

which could occur as a result of the sudden increase in the number of ∈cube. 

• Ncheck – Tasked with the function of checking the cardinality of N for every 

∈cube, Ncheck needs to consider Ψspawn for either of two different conditional 

outputs that might come out of the check. Thus, the logic gate function OR 

was implemented to return true values for both the input conditionals 2, 3. 

• Loop – As the computational heart of the algorithm, the loop function 

performs the Stack function until the CEcube-tower rest condition is reached. This 

intricate detail was achieved by employing a while loop in the algorithm. 

Performing loops is not a built-in tool in Grasshopper. Thus, an open-source 

plugin called Anemone134 was used to perform the while loop. 

 
134 Anemone 0.4 (2015). Poznań, Poland: Mateusz Zwierzycki. 
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Employing the Grasshopper definition, several test CEcube-tower were prototyped in the 

Rhino 7 environment. As these were initial prototypes, the cardinality of ∈cube
initial 

was restricted to 2 and 3 ∈cube. Fig. 4.11 illustrates the outcomes of all possible inputs 

for the aforementioned CEcube-tower below. The figure shows the initial state denoted 

by ◼ colored cube (R,G,B – 129,129,129), and the rest of the CEcube-tower thus denoted 

by ◼ (R,G,B – 204,204,204) colored cube. 

Figure 4.11 – Initial Prototypes of several CEcube-tower with 2 and 3 ∈cube
initial. Model, algorithm, 

Illustration and graphics by Author (Jan 2019). 
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After the successful trials of Initial Prototypes, Fig. 4.12 illustrates the outcomes of 

one of the tallest CEcube-tower with 10 ∈cube
initial below. The figure shows the initial state 

denoted by ◼ colored cube (R,G,B – 129,129,129), and the rest of the CEcube-tower thus 

denoted by ◼ (R,G,B – 204,204,204) colored cube. 

Figure 4.12 –Prototype of a selected CEcube-tower with 10 ∈cube
initial that had a runtime of 30 ttick 

before reaching the rest state. Model, algorithm, Illustration and graphics by Author (Jan 2019). 
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4.2.4 CEcube-tower 

Although fig. 4.11 and fig. 4.12 show ample evidence of the successful executions of 

CEcube-tower, more results focusing on the taxonomy creation have been illustrated in 

the next chapter (5| On the consequences of Computational Ecosystems) with a 

further analysis comparing all the other taxa from the procedural sequences in 

chapter 6 (On the investigative analysis of Computational Ecosystems). 

However, before continuing with the next taxon, certain observations shall be 

mentioned in this chapter to avoid any redundancies that could devalue the quality 

of the upcoming taxa. Also, since the next taxa are far more complex as compared to 

the CESESE, these observations are essential before starting the Case Studies for the 

next taxa. The observations are as followed – 

• Out of nine different iterations demonstrated in fig. 4.11 (as a combination of 

all of the possible iterations with 2 or 3 ∈cube
initial) five returned to an Early End 

condition. Although this function is designed to filter redundancies at early 

stages of the algorithm, this number (which is 55.5% of the possible iterations) 

is quite large.  

• As a solution, an optimization algorithm could be employed at this stage to 

minimize (and if possible, thoroughly eradicate) the possibility of equality 

between the Initial Stack function and the Initial State function. Several 

other methods could also be theorized and tested. 

• The above problem is not demonstrated in fig. 4.12 (the case where one of 

the tallest iterations with 10 ∈cube
initial  was selected). That is because the 

iteration selected in the illustration was chosen to be as different, tall, and 

complex as possible. All the possible Early End CEcube-tower were visually (and 

manually) searched and eradicated.  
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• Here, because the tower was only conformed to its structural stability there 

were no rule sets considering the optimization of its height. Moreover, the 

CEcube-tower rest condition practically restricted the tower from soaring with an 

infinitely repeating or oscillating combinatorial assemblages.   

• However, a set of rules that would make sure that the tower should be taller, 

complex, and visually distinct while serving the structural stability rules could 

be considered as an interesting set of Ψ that could possibly serve as a starting 

point for a CESEME. 

• The physical simulation with acrylic sheets and acrylic blocks was quite an 

imaginative approach to involve students and practitioners of the AEC 

industry in the evaluation and setup of a proof of concept. Thus, the workshop 

model can be possibly upgraded and used for the remaining taxa. 

• However, the limitations of the physical simulations were also quite 

pronounced. Due to the cumbersome nature of handling tiny blocks, there 

was always a possibility of a participant making mistakes and thus making the 

evaluation process all the more useless. As one cannot be thoroughly sure of 

the errors, unless the whole process is automated, this cannot be countered. 

Thus, the implementation of workshops to involve participants into testing 

the concept physically is a bit counter-intuitive and can be avoided in the 

evaluation of the upcoming taxa. 

• Moreover, the workshops could be directed towards developing and 

evaluating the algorithm to check for errors and possible improvements. 

Although this would involve teaching and tutoring the participants in the use 

of software such as Rhino 7 and Grasshopper (with the required plugins). 

It would be crucial to include the above-mentioned observations in the upcoming 

taxa and perform the primary objectives in a more nuanced manner. 
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4.3 Multiple Elements Single Economy Ecosystem (CEMESE) 

Similar to CESESE, the conceptual framework of a CEMESE has already been sufficiently 

illustrated in the previous chapters (introduced in 1.2.2, illustrated in fig. 1.7, defined 

in 3.2.2). Moreover, a Structural UML Diagram establishing the attributes and 

operations of a canonical version the ∈ and Ψ has also been illustrated (in fig. 3.3 as 

per 3.2.3). However, like CESESE, to construct, taxonomize and prototype a procedural 

sequence, the research would have to consider specific tangible parameters for the 

concept of a CEMESE, which could be derived from a combination of real-life examples 

and constraints and the case studies of the already established CESESE. 

The CEMESE also serves as an extension and continuation to the CEcube-tower, primarily 

owing to the multiplicity of the ∈ parameter. However, to make sure that the 

complexity is raised with relative ease and consistency, the Author has decided to 

continue with the conceptual example of an MESE illustrated in 1.2.2. Use of the 

example scenario would be especially instrumental in methodically increasing the ∈ 

parameter to 2 (instead of the ambiguous multi) and to using canonical Structural 

UML Diagram. Thus, before specifically defining each parameter, the overall 

components of the CEMESE can be – 

• ∈1 – As illustrated in the example scenario, the ∈ would be represented by 

hexahedrons or cubes, with unit dimensions. 

• ∈2 – As illustrated in the example scenario, the ∈ would be represented by 

cuboctahedrons, with unit dimensions. 

• Ψ – As illustrated in the example scenario, the Ψ would be represented by 

structural stability in the form of axial loads.  

Regardless of the above generalization, the CEMESE would require to undergo all the 

primary objectives while pursuing the operational objectives for this taxon. 
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4.3.1 Case Studies 

Although serving as a conceptual successor to the CESESE, and by definition being a 

continuation to the CESESE, the CEMESE which theoretically and semantically means that 

it can be treated as an ecosystem that is inhabited or cohabited by multiple 

predetermined species and these species (individually, categorically and collectively), 

are constructed, monitored, and governed by one and only one predetermined rule 

set, the CEMESE does not serve as a direct sequel to the CESESE in terms of fulfilling the 

Procedural Sequences. 

However, the CEMESE contains and exhibits certain attributes related to the ∈ and Ψ 

that cannot be exhibited by the CESESE due to its semantical constraints. The 

multiplicity of the ∈ parameter doesn’t just imply that there would be two distinct ∈ 

entities, but the iterations of their collective assemblages would also have to be 

treated as a distinct ∈ parameter. Thus, the following addition must be made to the 

assumptions stated in the last section –  

• ∈1 – Hexahedrons or cubes, with unit dimensions, which can be programmed 

as sentient elements similar to the ∈cube, that are aware of their existence, 

and thus can be considered as ∈biotic
1.  

• ∈2 – Cuboctahedrons, with unit dimensions, which can be programmed as 

sentient elements similar to the ∈cube, (however with morphological 

modifications) that are aware of their existence, and thus can be considered 

as ∈biotic
2. 

• ∈1-2 – A collective entity of the ∈1 and ∈2, which can be programmed as 

sentient elements being treated as a ∈cube array (similar to the Arrays formed 

by the Stack operations) that are aware of their existence, and thus can be 

considered as ∈biotic
1-2. 
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The example of the collective assemblages of the Eciton hamatum forming live 

bridges out of their own bodies (elaborated in 4.2.1, and illustrated in fig. 4.1) can be 

considered again as a theoretical precedent for the CEMESE. The CEeciton-bridge 

(theorized, exemplified and illustrated in 4.2.1), consequently can also be considered 

as semantic precedence for establishing the theory of the CEMESE. However, the 

constituent parts only consider a single ∈ parameter, which does not conform to the 

requirements of a CEMESE. Thus, the theoretical precedents laid down by the CEeciton-

bridge would have to be modified to accommodate the required components. 

Although in reality the ant bridges are constructed by the Eciton hamatum, which 

share the same morphologies, and thus similar physical and physiological constraints, 

they serve different purposes in the composition of a bridge. Owing to the different 

functions of structural elements of a bridge, and by considering that the CEeciton-bridge 

would be a bridge that is made out of a system of connectors, the constituent ∈ 

entities CEeciton-bridge would have to be of the following types – 

• The Anchoring elements – These elements would serve the purpose of 

anchoring the bridge to the ground condition (considering that the ground 

condition could be the forest ground, tree barks, stone edges or a 

combination). These elements can thus be called as ∈anchor, and they would 

be the initial ∈ in the formation of the bridge. 

• The Spanning elements – These elements would serve the purpose of 

spanning the bridge across the gap (irrespective of its length and height from 

the actual ground level). These elements can thus be called as ∈span, and they 

would be the ∈ that would have to be increased or decreased in case the 

bridge needs a change in length or composition. 

• The Connection elements – These elements would connect the ∈anchor to the 

∈span, and vice-versa. These elements can be called as ∈connector, and their 

morphology would be as an assemblage. 
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These different types of elements that form the components of the ∈ parameters of 

the CEeciton-bridge have also been illustrated in the fig. 4.13 as shown below. Although 

the image is sourced from a result of fieldworks conducted by the research on ant 

bridges, illustrations have been overlaid on the image to explain the aforementioned 

idea of multiple ∈ entities. 

 

Figure 4.13 – Ant bridge from below. Original Image from the fieldwork on Army ants (Eciton 

hamatum) induced to form a very large bridge over a wide gap by Chris R. Reid. Source: 

https://www.princeton.edu/news/2015/11/30/ants-build-living-bridges-their-bodies-speak-

volumes-about-group-intelligence. Illustration and graphics by Author (Jan 2019). 

As seen in fig. 4.13, the morphology of the as ∈anchor,  ∈span, and ∈connector could be 

quite similar, however, their individual functionalities in maintaining the structural 

integrity of the CEeciton-bridge would be quite distinct. Moreover, their deployment 

stages in both the formation, modification and the eventual dismantling of the 

CEeciton-bridge would also be thoroughly defined so as to make sure that the bridge uses 

an optimum amount of its constituent parts. 
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The Ψ parameter of the CEeciton-bridge (as introduced in 4.2.1) would also has a few 

modifications to accommodate the variations done in the ∈ parameters. The updated 

Ψ parameter can be defined as followed – 

• Ψbridge – The bridging ability. Forming collective assemblages by means of 

connection techniques, span-depth ratios for optimum bridge structures, and 

load calculations (considering the live loads and dead loads) for each of the 3 

distinct ∈ entities - ∈anchor,  ∈span, and ∈connector. 

Considering the fact that the Ψ parameter would now also have to be trifurcated into 

distinct Ψ entities to accommodate the ∈ parameters, the names of all the 

components would have to be amended. Thus, the new components of the updated 

CEeciton-bridge
2

 would be – 

• ∈eciton
anchor – These would be the Army ants anchoring the bridge. 

• ∈eciton
span – These would be the Army ants spanning the bridge. 

• ∈eciton
connector – These would be connecting the ∈eciton

anchor and ∈eciton
span. 

• Ψbridge
anchor – These would be the rule sets for ∈eciton

anchor. 

• Ψbridge
span – These would be the rule sets for ∈eciton

span. 

• Ψbridge
connector – These would be the rule sets for ∈eciton

connector. 

Thus, in spite of the fact that a CEMESE has one and only one Ψ parameter, it could 

have distinct multiple Ψ entities depending on the number of ∈ parameters and their 

interactions. Although this further underlines the fact that the CEMESE serves as a 

conceptual successor but to the CESESE, and neither of them can be treated as a subset 

of the other, it also helps in understanding the dependency of the CEMESE over its 

procedural predecessor for its conceptual and theoretical framework. 
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Thus, the similarities between a CEMESE (derived from the example scenario) and a 

CEeciton-bridge
2

 can be illustrated as shown in fig. 4.14. below. 

 

Figure 4.14 – Comparing the CEMESE and a CEeciton-bridge
2. Illustration and graphics by Author (Jan 

2019). 

Thus, based on the analogies illustrated in fig. 4.14 and the conceptual semantics 

established for a CEeciton-bridge
2 , the CEMESE could be based on the already established 

CEcube-tower (as defined in 4.2.1). However, in case of the CEMESE the constituent ∈ 

entities and Ψ entities, would have to be defined in relation to the CEeciton-bridge
2 

(unlike the CEcube-tower which was established considering the semantics of 

constructing the CEeciton-bridge). Therefore, the CEMESE is defined as followed – 

• ∈ entities – or ∈MESE entities will be considered as computational substitutes 

to all the three ∈ entities established for the CEeciton-bridge
2. Although the 

functionalities and structural properties of the ∈eciton
anchor,  ∈eciton

span, and 

∈eciton
connector do not directly translate to the ∈MESE entities, they contain the 

same semantics as established in a CEeciton-bridge
2. Thus, continuing on the 

example scenario, the ∈MESE entities can be further trifurcated as ∈cube,  

∈cubocta, and ∈cube-cubocta. The specific properties of each entity, which are 

relevant for simulation, will be defined in the next section (as per 4.3.2), but 

the general properties of all the ∈MESE entities can be as followed – 
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o All the ∈MESE entities should be considered as static agents that can be 

spawned or culled by the CEMESE at the expense of the equilibrium 

state which will be determined by the Ψ entities. 

o All the ∈MESE entities should be made to be self-aware of themselves, 

in the sense that they should be able to identify and quantify its 

position, orientation, weight, and bounds. 

o All the ∈MESE entities should also be made to be self-aware of their 

surroundings and their physical properties, such as cardinality of 

neighbours, array of neighbours, and distance from the initial plane. 

• Ψ entities – or ΨMESE entities will be considered as computational substitutes 

to the Ψ entities established for the CEeciton-bridge
2. Although the functionalities 

and structural properties of the Ψ entities of the CEeciton-bridge
2 do not directly 

translate to the ΨMESE entities, they have the same semantics as established 

in a CEeciton-bridge
2. Thus, the ΨMESE entities can be trifurcated as Ψcube,  Ψcubocta, 

and Ψcube-cubocta. The properties of the ΨMESE entities can be defined as – 

o The CEMESE would have all the ΨMESE entities performing in unison to 

pursue a tower stacking logic. Thus, the ΨMESE entities can be renamed 

as Ψtower-cube,  Ψtower-cubocta, and Ψtower-cube-cubocta. 

o All the ΨMESE entities should be designed with two-state rationale for 

all the ∈MESE entities derived from the Ψtower (defined in 4.2.1) while 

conforming to the understanding of vertical stacking. 

o In short, ΨMESE entities should seek an equilibrium state that spawns 

∈MESE entities when the tower is under-structured, and culls ∈MESE 

entities when it is over-structured, thus maintaining a reciprocal 

coupling. 
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After establishing and defining the ∈MESE entities and ΨMESE entities, the CEMESE could 

be specifically defined under the computational modelling guidelines of CA (as 

elaborated in 3|) as followed –  

• The CEMESE which owing to its specific combination of ∈MESE entities and ΨMESE 

entities can be termed as CEcube-cubocta-tower, will be defined as a functioning 

ecosystem constituting of sentient, context aware cubes as ∈MESE entities that 

interact with each other considering the rule sets assigned by ΨMESE entities 

to spawn or cull the ∈MESE entities until the runtime of the CEcube-cubocta-tower.  

• The CEcube-cubocta-tower will perform solitarily without any additional internal 

components or partial runtimes. Moreover, there won’t be any context aware 

CE that would have to be added externally. Thus, also in this taxon, one and 

only one CE that is CEcube-cubocta-tower would be performed for its entire runtime.  

• Although derived from the intricate bio-inspired behavior of Eciton hamatum 

creating and maintaining living bridges for foraging trails, the CEcube-cubocta-tower 

is a slightly complex vertical stacking algorithm for a combination of cubes 

and cuboctahedra. Thus, the rule sets for ΨMESE entities can be adapted from 

the Conway model of Cellular Automata (as per 2.3.2). However, these will be 

slightly modified to accommodate all the ∈MESE entities. 

• Just like the Ψtower (established in 4.2.1), the ΨMESE entities would differ from 

the Conway model of Cellular Automata in the parameter of time. That is, the 

new ∈MESE entities will be spawned or culled on the upper levels in the 3D grid. 

Considering all the above assumptions, definitions, illustrations and examples for the 

CEcube-cubocta-tower, the simulations for this taxon can now be performed. However, 

some information still needs to be considered to illustrate the empirical derivations 

of all the case studies. For example, the ∈MESE and ΨMESE
 entities still need to be 

dimensionally, and geometrically defined to consider them for computational use.  
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4.3.2 Simulations 

However, just like it was done for the CESESE, the canonical CEMESE Structural UML 

Diagram (as per fig. 3.3) for the CEcube-cubocta-tower has to be reassessed and 

repurposed. Fig. 4.15, as shown below, illustrates the modifications to the canonical 

version. 

Figure 4.15 – Modifications made to the canonical CEMESE UML Diagram to accommodate the 

parameters required for establishing the CEcube-cubocta-tower. Illustration and graphics by Author 

(May 2019). 
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Elaborating on the terminologies introduced in fig. 4.15, the attributes and 

operations of the classes can be defined as followed – 

• ttick – The periodic increment of time, ensuring that the CEcube-cubocta-tower runs. 

• trest – If the condition CEcube-cubocta-tower rest is fulfilled, the trest will be activated. 

This means that the time increment will stop and the CEcube-cubocta-tower will be 

outputted to the user. 

• CEcube-cubocta-tower rest – Is the situation where an ∈multi
form array for the last 

three ttick intervals is equal or repetitive. 

• ∈multi
form array – Is the collective assemblage of ∈multi

 for a certain ttick interval. 

• ∈multi
form – Is the operation for the formation of a combination of ∈cube,  

∈cubocta, and ∈cube-cubocta depending on the Ncheck and Nform routines for the 

Ψtower-cube,  Ψtower-cubocta, and Ψtower-cube-cubocta. 

• Nform – Is the binary inputs for the cells to be either spawned (input = 1) or 

culled (input = 0) depending on the Ncheck conditional. 

• Ncheck – Is the binary output from the cells of the distinct neighbourhoods (N) 

to check if the cells in the N of the previous ttick interval are either spawned 

(input = 1) or culled (input = 0). 

• N – The neighbourhood of the ∈multi in question (as in every ∈cube,  ∈cubocta, 

and ∈cube-cubocta) depending on how many neighbouring ∈multi from the 

previous ttick interval are to be considered to determine the Ncheck and Nform 

routines that eventually determine the Stack operation. 

Thus, determining the N becomes the most important step before considering to 

explain the other concepts required to run the CEcube-cubocta-tower. 
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Similar to the computational environment and the revised infinite 3D Square grid that 

was considered for the CEcube-tower (as per 4.2.2), in case of the CEcube-cubocta-tower as 

well, the modelling has been performed in Rhino 7 (as explained in 3.3), the 

programming has been performed in Grasshopper for Rhino 7 (as explained in 3.3) 

and visualizations have been performed in VRay for Rhino (as explained in 4.1). 

Although most of the physical operations of the CEcube-cubocta-tower are similar to those 

of the previously established CEcube-tower (as explained in 4.2.2), there is a complication 

that arises from the multiplicity of the ∈ entities. Owing to the morphology of the 3 

∈ entities, ∈cube,  ∈cubocta, and ∈cube-cubocta, it is not difficult to employ the infinite 3D 

Square grid conformed at the XY plane as the computational environment. However, 

to understand the distinct N for the ∈ entities, the morphology of the ∈cubocta, and 

∈cube-cubocta have to be thoroughly understood (as the ∈cube has been thoroughly 

explained in 4.2.2, it need not be explained again). 

A cuboctahedron is a result of maximum truncation performed at all the vertices of 

a cube. The cuboctahedron can also be obtained by performing maximum truncation 

at all the vertices of a tetrahedron. Moreover, as a cuboctahedron can be considered 

as a derivative of a cube or octahedron, a cube with radius Rcube will always perfectly 

bound a cuboctahedron with radius Rcubocta. The relation between the morphologies 

and radii of Cubes and Cuboctahedron can be seen in fig. 4.16 as illustrated below. 

Figure 4.16 – Relation between the morphologies and radii of Cubes and Cuboctahedron. Model, 

Illustration and graphics by Author (May 2019).  
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The distinct N for all the ∈ entities can now be established. Fig. 4.17 illustrates the 

Ncube, which determines the neighbourhood for every ∈cube. The Ncube has been 

conceptually derived from a Moore’s Neighbourhood (as explained in 2.3.2), 

however, unlike its predecessor,  the Ncube is only considered for existing or spawned 

∈cube. 

Figure 4.17 – An ∈cube surrounded by the Ncube. Model and graphics by Author (May 2019). 

Fig. 4.18, however illustrates the Ncubocta, which determines the neighbourhood for 

every ∈cubocta. The Ncubocta has been conceptually derived from a Von Neumann 

Neighbourhood (as explained in 2.3.1), however, unlike its predecessor, the Ncubocta 

is only considered for existing or spawned ∈cubocta. 

Figure 4.18 – An ∈cubocta surrounded by the Ncubocta. Model and graphics by Author (May 2019). 

Unlike the Ncube and Ncubocta which are based on spawned ∈ entities, the Ncube-cubocta 

is regarded for non-existing or culled ∈cube or ∈cubocta, and it considers the 

neighbouring existing ∈cube or ∈cubocta for their respective Ncube and Ncubocta to 

determine its own neighbourhood termed as Ncube-cubocta. Fig. 4.19, illustrates a Ncube-

cubocta. 
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Figure 4.19 – A culled ∈cube or ∈cubocta surrounded by the Ncube-cubocta. Model and graphics by 

Author (May 2019). 

This specific and discrete distinction of the N, eventually helps in establishing the 

specific Ncheck and Nform routines. However, owing to the flexibility of CA and its rules, 

an astute modification in the state conditions of a Conway Model (as elucidated in 

2.3.2), can be employed to establish bespoke, distinct Ncheck and Nform routines for all 

the 3 distinct N considerations for the CEcube-cubocta-tower. 

 Thus, considering the CEcube-tower as precedence, and deriving from the Conway 

Model of CA, the state conditions for the CEcube-cubocta-tower can be stated as – 

• Every existing ∈multi-n+1 at the ttick-n+1 interval interacts with its N consideration 

of the either the ∈cube-n (in the form of Ncube-n) or ∈cubocta-n (in the form of 

Ncubocta-n) at the ttick-n interval, thus performing Ncheck. For the ttick-n+1 interval, 

it then performs the Nform routine based on the following conditions – 

o If the N is Ncube-n with an array of 2 or 3 ∈multi at the ttick-n interval, the 

Nform spawns a ∈cube-n+1 for the ttick-n+1 interval. 

o Also, for the Ncubocta-n with an array of 2 or 3 ∈multi at the ttick-n interval, 

the Nform spawns a ∈cubocta-n+1 for the ttick-n+1 interval. 

• Every non-existing ∈multi-n+1 at the ttick-n+1 interval interacts with its Ncube-cubocta 

at the ttick-n interval, thus performing Ncheck. For the ttick-n+1 interval, it then 

performs the Nform routine based on the following conditions – 

o With an array of 4 ∈multi in its Ncube-cubocta at the ttick-n interval, the Nform 

spawns a ∈cubocta-n+1 for the ttick-n+1 interval. 
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o With an array of 3 ∈cube or 4 ∈cubocta in its Ncube-cubocta at the ttick-n 

interval, the Nform spawns a ∈cubocta-n+1 for the ttick-n+1 interval. 

• For every other condition of Ncheck at the ttick-n interval, the Nform culls all the 

existing or non-existing ∈multi for the ttick-n+1 interval. 

Thus, considering the aforementioned state conditions, the condition for the existing 

state of the ∈multi array, which can be either continued existence (as in not culled) or 

newly existing (as in spawned) can be illustrated as in fig. 4.20 below. 

 

Figure 4.20 – ∈multi-n array and their corresponding ∈multi-n+1 array considering the state 

conditions for the existing states of ∈multi array. Model and graphics by Author (May 2019). 
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The ∈multi-n+1 at the ttick-n+1 interval is thus denoted by ◼ (R,G,B – 204,204,204) colored 

cube, and the corresponding ∈multi-n at the ttick-n interval is denoted by ◼ colored cube 

(R,G,B – 129,129,129). Also, the existing cubes are denoted by ◼ (R,G,B – 57,188,40) 

colored cube, and the non-existing cubes are denoted by ◼ (R,G,B – 255,21,21) 

colored cubes. 

And, considering the aforementioned state conditions, the condition for the non-

existing state of the ∈multi array, which can be terminated existence (as in culled) or 

not newly existing (as in not spawned) can be illustrated as in fig. 4.21 below. 

 

Figure 4.21 – ∈multi-n array and their corresponding ∈multi-n+1 array considering the state 

conditions for the non-existing states of ∈multi array. Model and graphics by Author (May 2019). 
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The ∈multi-n+1 at the ttick-n+1 interval is thus denoted by ◼ (R,G,B – 204,204,204) colored 

cube, and the corresponding ∈multi-n at the ttick-n interval is denoted by ◼ colored cube 

(R,G,B – 129,129,129). Also, the existing cubes are denoted by ◼ (R,G,B – 57,188,40) 

colored cube, and the non-existing cubes are denoted by ◼ (R,G,B – 255,21,21) 

colored cubes. 

4.3.3 Prototyping 

The state conditions in terms of the Ncheck and the Nform routines of all the Ψtower 

entities (namely, Ψtower-cube,  Ψtower-cubocta, and Ψtower-cube-cubocta) that determine all the 

distinct Stack operations for all the ∈multi array (and the individual ∈cube array,  ∈cubocta 

array, and ∈cube-cubocta array) have been sufficiently demonstrated and illustrated in 

terms of the Ψspawn and Ψcull rules (as per fig. 4.18 and fig. 4.19). The illustrations 

show all possible conditions for the Ψspawn and Ψcull rules. However, similar to the 

computational stacking logic for the CEcube-tower, the computational stacking logic of 

the CEcube-cubocta-tower is quite simple, and can be generalized as summarized below – 

• If the cardinality of the N consideration for an existing ∈multi is equal to 2 or 3, 

the ∈multi survives (i.e. not culled). If the cardinality is otherwise, the ∈multi 

does not survive (i.e. culled). 

• If the cardinality of the N consideration for a non-existing cell is equal to 4, 

the ∈multi is created (i.e. spawned). If the cardinality is otherwise, the ∈multi is 

not created (i.e. not spawned). 

As the CEcube-cubocta-tower serves as a conceptual continuation of the CEcube-tower, the 

above rules which have a considerable precedence on the state conditions of the 

CEcube-tower, are supported by the entire series of procedural sequences (with case 

studies, simulation and prototyping) performed on the taxon, and can thus be 

thoroughly relied upon. However, owing to some significant modifications which 
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were made to the state conditions, the research necessitates rigorous evaluation, 

testing, prototyping and versioning if required. Also, as the CEcube-cubocta-tower involves 

the introduction of a different morphology (as compared to the solitary assemblages 

of ∈cube) in the form of ∈cubocta, the prototyping becomes exceedingly indispensable 

for the robustness of this taxon. Thus, the following section details the functioning of 

the various means of prototyping undertaken to verify the CEcube-cubocta-tower. 

The initial prototyping of the CEcube-tower was performed by means of a physical 

simulations workshop (conducted in collaboration with students and practitioners of 

the AEC industry) that generated several iterations by means of physical prototyping 

that involved participants constructing the CEcube-tower manually while consulting an 

instruction manual that directed on the state conditions. However, as outlined in 

4.2.4, the implementation of the physical simulations was quite counter-intuitive 

owing to the fact that the process of prototyping was quite cumbersome and highly 

susceptible to human error.  

Thus, this method of prototyping (by means of physical prototyping that is built on a 

non-computational simulation methodology) was discontinued. However, the 

concept of involving collaboration with students and practitioners of the AEC industry 

had no major disadvantage (in fact it had a hidden advantage of testing the concept 

of CE in pedagogy and industry at the same instance) and was thus continued in a 

modified manner. 

The workshop to test the CEcube-cubocta-tower would have to follow a slightly different 

approach as compared to the one undertaken to test, evaluate, and taxonomize the 

CEcube-tower. Since the CEcube-cubocta-tower would have to be computationally simulated, 

the research would have to configure the computational semantics and processes 

before performing any tests (unlike as for the CEcube-tower the  algorithm was first 

tested and then configured as a computational process in the form of a UML 

Sequence Diagram). Thus, a UML Sequence Diagram was the natural progression in 

the prototyping stage for this taxon (as it was accommodating the changes 
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recommended by the previous one). As the CEcube-cubocta-tower serves as a conceptual 

progression to the CEcube-tower, it would be quite intuitive to establish the UML 

Sequence Diagram based on the one for CEcube-tower (as per fig. 4.10 in 4.2.3). 

However, fig. 4.22 and fig. 4.23 differ from their predecessor by determining the role, 

interaction and runtime of all the ∈ entities and Ψ entities as identified in the UML 

Class Diagram (illustrated in fig. 4.14). They jointly illustrate a UML Sequence diagram 

that determines the outcome of several different CEcube-cubocta-tower. 
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Figure 4.22 – The UML Sequence Diagram for a CEcube-cubocta-tower with the role, interaction 

and runtime of all the ∈ entities and Ψ entities, and their dependencies for the Early Rest 

condition. Illustration and graphics by Author (May 2019). 
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Figure 4.23 – The UML Sequence Diagram for a CEcube-cubocta-tower with the role, interaction 

and runtime of all the ∈ entities and Ψ entities, and their dependencies for the Final Rest 

condition. Illustration and graphics by Author (May 2019). 
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Similar to the UML Sequence Diagram for the CEcube-tower, the one jointly illustrated 

for the CEcube-cubocta-tower in fig. 4.22 and fig. 4.23 has been generated with the 

following assumptions – 

• The Actor would be the user who initiates the CEcube-cubocta-tower. 

• CEcube-cubocta-tower would be considered as one of the objects, as it has its own 

lifeline that represents the runtime of the entire algorithm, while the other 

objects in the diagram would be ∈multi
initial, Ncube, Ncubocta, Ncube-cubocta, Ψcube, 

,Ψcubocta, , Ψcube-cubocta , and Ψcull in the chronological order of their use and 

application in the CEcube-cubocta-tower. 

• The Diagram also returns the CEcube-cubocta-tower as an early rest condition, if the 

Initial State Array and the Initial Stack Array are the same. If not, the 

remaining algorithm continues on a while loop until the CEcube-cubocta-tower rest 

condition (mentioned in 4.3.2) is met to end the algorithm. 

Considering the UML Sequence Diagram, a Grasshopper definition was run inside the 

Rhino 7 interface (The definition labelled as CEcube-cubocta-tower has been appended to 

the Annexure – Definitions). Similar to the CEcube-tower, the third-party components 

used to perform the algorithm functions are as followed – 

• Initiate – To populate the random Initial array of ∈multi
initial. 

• Array – To generate ∈cube and ∈cubocta using the Lunchbox135 plugin. 

• Ncheck – To check the cardinality of Neighbouring cells using the OR logic gate. 

• Loop – To generate a while loop using the Anemone136 plugin. 

 
135 Lunchbox for Grasshopper (2012). Omaha, USA: Proving Ground Apps. 
136 Anemone 0.4 (2015). Poznań, Poland: Mateusz Zwierzycki. 
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Employing the Grasshopper definition, several test CEcube-cubocta-tower were prototyped 

in Rhino 7. As these were initial prototypes, the cardinality of ∈multi
initial was restricted 

to 3 and 4 ∈multi. Fig. 4.24 illustrates the outcomes of a few inputs for the 

aforementioned CEcube-cubocta-tower below. The figure shows the initial state denoted 

by ◼ colored cube (R,G,B – 129,129,129), and the rest of the CEcube-tower thus denoted 

by ◼ (R,G,B – 204,204,204) colored cube. 

Figure 4.24 – Initial Prototypes of several CEcube-cubocta-tower with 3 and 4 ∈cube
initial. Model, 

algorithm, Illustration and graphics by Author (Jan 2020). 
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After conducting the initial computational prototypes for the CEcube-cubocta-tower, the 

procedural sequence was ready to be evaluated by a test group so as to conclude all 

the preliminary objectives (as in, case studies, simulation and prototyping) for the 

CEMESE. Moreover, having already performed a considerable amount of basic 

prototyping, the research was well aware of the results and key ∈multi
initial Array that 

could be capitalized to generate interesting results. 

Thus, the author conducted a student workshop which aimed at prototyping the 

CEMESE (in the form of the CEcube-cubocta-tower) by performing computational simulations 

to test, evaluate, taxonomize and if required, amend and update the CEcube-cubocta-

tower. The workshop, titled as ‘Computation as a Design tool’ was conducted in July 

2019 at RIT (Rajiv Gandhi Institute of Technology) in Kottayam, India. It was attended 

by 20 candidates, who were all students pursuing a BArch degree at RIT, Kottayam 

(20 students of the 7th and 9th semesters of the BArch course were selected on the 

basis of their personal interests in learning computational design).  

For the testing, participants were first introduced to the concept of Computational 

Ecosystems and its research, and were provided with a lecture on Cellular Automata 

and its implementation in the research. Further, the participants were demonstrated 

several results that were obtained in the previous iteration of a similar workshop (i.e. 

the Designing ways of designing workshop conducted at IES, Mumbai – as elaborated 

in 4.2.3). As the participants were not well versed with using any computational 

design software, they were tutored on using different tools and functionalities with 

Rhino 7 and Grasshopper 3D that were relevant to the research on Computational 

Ecosystems. The participants were also encouraged to test the already established 

CEcube-tower before explicitly evaluating the CEcube-cubocta-tower. 

After establishing and upgrading their computational skills to a considerable level, 

the participants were individually tasked with testing the CEcube-cubocta-tower. Although 

they were asked to test the algorithm with ∈multi
initial Array of 10 to 12, the 

participants were encouraged to experiment with higher number of ∈multi
initial Array. 
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After the successful trials of the CEcube-cubocta-tower, Fig. 4.25 illustrates the outcomes 

of one of the tallest CEcube-cubocta-tower with 12 ∈multi
initial that was generated during the 

workshop – ‘Computation as a Design tool’. The figure shows the initial state 

denoted by ◼ colored cube (R,G,B – 129,129,129), and the rest of the CEcube-tower thus 

denoted by ◼ (R,G,B – 204,204,204) colored cube. 

Figure 4.25 – Prototype of a selected CEcube-cubocta-tower with 12 ∈cube
initial with a runtime of 40 ttick 

before reaching the rest state. Model, algorithm, Illustration and graphics by Author (July 2019). 
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4.3.4 CEMESE 

Fig. 4.24 and fig. 4.25 sufficiently demonstrate the executions and prototyping of the 

CEcube-cubocta-tower, however, (similar to the CEcube-tower) more outcomes focusing on the 

taxonomy creation have been illustrated in the next chapter (5| On the consequences 

of Computational Ecosystems) with further analysis comparing all the other taxa from 

the procedural sequences in chapter 6. 

However, before continuing with the next taxa, certain observations need to be 

mentioned in this section to underline the incorporation of observations made in the 

previous section (as in 4.2.4). Also, a reflection on the performance of this procedural 

sequences and the primary objectives employed to execute it need to be mentioned 

to avoid any redundancies that could devalue the quality of the upcoming taxa. Also, 

owing to the fact that the next taxon (CESEME) serves as a conceptual equivalent, these 

observations are essential before starting the Case Studies for the CESEME.  

Following are the changes made after considering the observations for the CESESE – 

• The redundancies generated by performing physical prototyping workshops 

(that is through workshops where participants manually prototype 

computational ecosystems while following instruction manuals) were 

counteracted by conducting computational prototyping workshops (that is 

through workshops where participants computationally prototype 

computational ecosystems through computational design). 

• This amendment had to be incorporated into the methodological workflow 

which had to be considerably modified to accommodate the unavailability of 

resources to conduct the workshop. For example, in the scenario of the CESESE 

the algorithm was determined by the results generated during the workshop 

– Designing ways of designing (as outlined in 4.2.3). 
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• However, in the scenario of the CEMESE, the algorithm had to be synthesized, 

and tested on a preliminary basis before being considered for the 

computational prototyping with the participants of the workshop - 

Computation as a Design tool (as outlined in 4.3.3). 

Following are the observations made for the procedural sequence CEMESE, which 

should be considered in the next procedural sequences CESEME and CEMEME – 

• Out of the 15 iterations demonstrated in fig. 4.24 (as a combination of some 

of the possible iterations with 3 or 4 ∈multi
initial) only 1 returned with an Early 

End condition. Although this observation has been made in the synthesis of 

the CESESE (as outlined in 4.2.4), the methodology was not changed. 

• Although this number (which is 6.67% of the possible iterations) has reduced 

considerably as compared to its predecessor, as there was no deliberate 

modification made to the algorithm, this can be considered as a virtue of the 

combination of morphologies used. 

• More strategies could be employed for the Ψ entities to make sure that the 

rule sets do not end up replicating the Initial State as the Initial Stack. This, 

could also be achieved by making sure that some context sensitive rule sets 

could be added to ensure a modified ground condition. 

• The ∈ entities, which resemble Platonic and Archimedean shapes at the 

moment give the appearance of the direct continuation of a 3D Cellular 

Automata (as in a CA of the Conway Model expressed in 3D). Although, there 

are no issues with such a comparison at this stage, the results should more 

resemble a built-form that can be imagined in the structure of the world. 

It would be crucial to include the above-mentioned observations in the upcoming 

taxa and perform the primary objectives in a more refined way. 



Theorizing, Taxonomizing and Prototyping operational Ecosystems in 
Computational environments 

4| On the procedural sequences for the Computational Ecosystems |186 

4.4 Single Element Multiple Economies Ecosystem (CESEME) 

Similar to CESESE and CEMESE, the conceptual framework of a CESEME has already been 

sufficiently illustrated in the previous chapters (introduced in 1.2.2, illustrated in fig. 

1.8, defined in 3.2.2). Moreover, a Structural UML Diagram establishing the attributes 

and operations of a canonical version the ∈ and Ψ has also been illustrated (in fig. 

3.4 as part of sub section 3.2.4). However, like CESESE and CEMESE, to actually construct, 

taxonomize and prototype this procedural sequence, the research would have to 

consider specific tangible parameters for the concept of a CESEME, which could be 

derived from a combination of real-life examples and constraints and the conceptual 

framework for the case studies of the already established CESESE and CEMESE. 

The CESEME also serves as an extension and continuation to the CEcube-tower, primarily 

due to the multiplicity of the Ψ parameter. Moreover, the CESEME performs as a slight 

modification on the CEcube-cubocta-tower owing to the way the multiplicity was handled 

theoretically, semantically and computationally. Thus, to maintain the complexity in 

of the CESESE and CEMESE, the Author has decided to continue with the conceptual 

example of an SEME illustrated in 1.2.2. Use of the example scenario would be 

especially instrumental in methodically increasing the Ψ parameter to 2 (instead of 

the ambiguous multi) and using the canonical Structural UML Diagram. Thus, before 

specifically defining each parameter, the overall components of the CESEME can be – 

• ∈ – As illustrated in the example scenario, the ∈ would be represented by 

hexahedrons or cubes, with unit dimensions. 

• Ψ1 – As illustrated in the example scenario, the Ψ1 would be represented by 

structural stability in the form of axial loads. 

• Ψ2 – As illustrated in the example scenario, the Ψ2 would be represented by 

buoyancy (as per the Archimedes principle). 
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4.4.1 Case Studies 

Although serving as a conceptual successor to the CESESE, and by definition being able 

to serve as a continuation to the CESESE, the CESEME  like CEMESE which theoretically and 

semantically means that it can be treated as an ecosystem that is inhabited by one 

and only one predetermined species and this species is constructed, monitored, and 

governed (individually, categorically and collectively) by a combination of multiple 

rule sets, the CESEME  does not serve as a direct sequel to the CESESE or as an alternative 

to the CEMESE in terms of fulfilling the Procedural Sequences. 

However, the CESEME  has certain attributes related to the ∈ and Ψ that cannot be 

exhibited by either the CESESE or the CEMESE due to their semantical constraints. The 

multiplicity of the Ψ parameter doesn’t just imply that there would be two individual 

Ψ entities, but the order or preference within these two predetermined Ψ entities 

and their deployment in terms of the ∈ would unmistakably require a third Ψ entity 

that governs the sequence of the two. Thus, as per the requirements of the CESEME  

and the modifications already made to the assumptions of the example scenarios of  

CESESE and the CEMESE, the following additions must be made to the example scenario 

and the assumptions stated in the last section – 

• ∈ – Cubes, with unit dimensions, which can be programmed as sentient 

elements similar to the ∈cube, that are aware of their existence. 

• Ψ1 – A rule set that determines the stacking of ∈cube in the form of state 

conditions considering an overall structural stability in the form of axial loads. 

• Ψ2 – A rule set that maintains the buoyancy of ∈cube in the form of state 

conditions (as per the Archimedes principle). 

• Ψ1-2 – A rule set that determines the order and preference of the Ψ1 and Ψ2 

for every ∈cube in the form of state conditions. 
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Following the case study of the collective assemblages of the Eciton hamatum 

forming live bridges out of their own bodies (elaborated in 4.2.1, and illustrated in 

fig. 4.1) as a theoretical precedent for the CESESE and CEMESE, the CESEME seeks a slightly 

different collective assemblage of fire ants.  

It has already been established that this taxon relies on the existence of 3 Ψ 

parameters for the formation of a CE (namely, Ψ1, Ψ2, and Ψ1-2) while exploring and 

imbibing the concept of buoyancy into the previously setup CEeciton-bridge (which 

establishes how a computational model could be made to perform simulations of the 

live bridges created by the fire ants). Thus, a study conducted on the collective 

assemblages of Solenopsis Invicta (a species of fire ants found extensively in Brazil) 

in the form of live rafts that float on water was examined and inferences were 

extrapolated as theoretical precedents for the CESEME. 

Fig. 4.26 shown below demonstrates an Ant Raft formed by the collective 

assemblages of the aforementioned Solenopsis Invicta created by 500 ants. 

 

Figure 4.26 – A raft of 500 fire ants, composed of a partially wetted layer of ants on the bottom 

and dry ants on top. Original Image from the research conducted by schools of Mechanical 

Engineering, Industrial and Systems Engineering and Biology of the Georgia Institute of 

Technology, GA, USA. Source: https://www.pnas.org/content/pnas/108/19/7669.full.pdf 
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The researchers simulated the creation of the ant rafts by dropping a hive of 3000 

ants on different surfaces. “When dropped on solid surfaces, the hive quickly 

disintegrated and the ants fled in all directions. However, when placed on the surface 

of water (water that is free of surfactants), the ants redistribute and reconnect 

themselves into raft” (Mlot et al, 2011)137. The study also found that, the raft reaches 

a stable equilibrium within several minutes, and “at equilibrium, the rafts are 

pancake shaped, whereby a dry portion of the colony stands atop a monolayer of 

stationary ants” (as shown in fig. 4.25). The spreading of the raft also resembles that 

of a drop of fluid, which directed the researchers to simulate the ant raft construction 

by considering the ants as a “liquid continuum, and running the models of fluid 

dispersion and diffusion.” The simulations of the ant raft construction result in the 

following understanding about the collective assemblages – 

• As the same ants perform all roles required in the construction of the ant raft 

(even the role of the passengers), these collective assemblages are reversible. 

• Considering that the ants maintain the integrity of the raft by communicating 

how many ants are aboard the ant raft (just like in the form of the ant bridges, 

the ants are aware of how many ants are crossing the bridge), the collective 

assemblages are self-aware, and always interpolating their physical 

properties such as shape, size and weight. 

Thus, the study on the ant rafts and the observations on the simulations can be 

considered as a theoretical precedent for the CESEME. However, the ant raft caters to 

only one of the Ψ parameters, (i.e., Ψ2 determining rule sets for Buoyancy of the 

∈cube). Thus, the assumptions for the CEeciton-bridge could be appended with the above 

observation. 

 
137 Mlot, N. J., Tovey, C. A., Hu, D. L. (2011). Fire ants self-assemble into waterproof rafts to survive 
floods. In: Proceedings of the National Academy of Sciences of the United States of America. [online] 
Washington DC: PNAS, p 6. . Available at: https://www.pnas.org/content/108/19/7669.full 
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 Hence a modified CEant-floating-bridge could have the following modified components – 

• ∈ – The ants. Acting as biotic, ambulatory agents that are self-aware of their 

physical properties such as their weight, weight-carrying capacity, movement 

speed, and gripping abilities. Thus, ∈ants. 

• Ψ1 – The bridging ability. Forming collective assemblages by means of 

connection techniques, span-depth ratios for optimum bridge structures, and 

load calculations (considering the live loads and dead loads). Thus, Ψbridge. 

• Ψ2 – The rafting ability. Forming collective assemblages by means of 

connection techniques, span-depth ratios for optimum floating structures, 

and load calculations (considering the live loads and dead loads). Thus, Ψraft. 

However, as floating ant bridges don’t really exist in nature, in the same way that the 

above assumption suggests, the 3rd Ψ entity which determines the priority rule sets 

for the ∈ants over forming a bridge or raft first, requires some more understanding of 

the simulation model. Moreover, as the CESEME serves as conceptual kin to the CEMESE 

(owing to the fact that both the taxa involve multiplicity in either of the ∈ or Ψ 

parameters), the theoretical assumptions made for the CEMESE can be further 

implemented in exemplifying the CESEME.  

However, the CEMESE treats the multiplicity of the ∈ parameters slightly differently. It 

does so by assuming that the same species of ants take up different roles to form the 

bridge, thus behaving as different types of elements serving different purposes in the 

construction of the CEeciton-bridge (as elaborated upon in 4.3.1). Thus, although the 

Eciton hamatum and the Solenopsis Invicta are different ant species, for the sake of 

the simulation they can be treated as ambulatory agents which are capable of being 

governed by two different Ψ parameters – the Ψbridge and the Ψraft. While being 

simultaneously governed by the rule on which Ψ parameter to perform first. 
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Thus, 3rd Ψ entity, formerly identified as Ψ1-2, can be further defined as followed – 

• Ψ1-2 – The prioritization ability. Assessing the neighbourhood condition and 

the physical and structural properties of the Ψbridge and the Ψraft by means of 

density calculation of context  and load calculations. Thus, Ψbrridg-raft. 

Consequently, the ∈ants parameter of the CEant-floating-bridge would also have a few 

modifications to accommodate the variations done in the Ψ parameters. The 

updated ∈ parameter can be defined as followed – 

• ∈ants – The ants. Acting as biotic, ambulatory agents that are self-aware of 

their physical properties such as their weight, weight-carrying capacity, 

movement speed, and gripping abilities for each of the two distinct Ψ entities 

- ∈bridge,  and ∈raft. 

Considering the fact that the ∈ parameter would now also have to be bifurcated into 

distinct ∈ entities to accommodate the Ψ parameters, the names of all the 

components would have to be amended. Thus, the new components of the updated 

CEant-floating-bridge would be – 

• ∈ants
bridge – These would be the Ants performing the Ψbridge. 

• ∈ants
raft – These would be the Ants performing the Ψraft. 

• Ψbridge – These would be the rule sets for ∈ants
bridge. 

• Ψraft – These would be the rule sets for ∈ants
raft. 

• Ψbridge-raft – These would be the rulesets prioritizing either of the  ∈ entities 

over the other. 

Thus, like the CEMESE, a CESEME would have multiple ∈ entities despite the singularity. 
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Thus, the similarities between a CESEME (derived from the example scenario and the 

CESESE and CEMESE) and a CEant-floating-bridge can be illustrated as shown in fig. 4.27 below. 

 

Figure 4.27 – Comparing the CESEME and a CEant-floating-bridge. Illustration and graphics by Author 

(May 2019). 

Thus, based on the analogies illustrated in fig. 4.27 and the conceptual semantics 

established for a CEant-floating-bridge, The CESEME could be based on the already 

established CEcube-tower (as defined in 4.2.1) and CEcube-tower
2 (as defined in 4.3.1). 

However, in case of the CESEME the constituent ∈ entities and Ψ entities, would have 

to be defined in relation to the updated CEant-floating-bridge. Therefore, the CESEME is 

defined as followed – 

• ∈ entities – or ∈SEME entities will be considered as computational substitutes 

to the two ∈ entities established for the CEant-floating-bridge. Although the 

functionalities and structural properties of the ∈ants
bridge, and ∈ants

floating do not 

directly translate to the ∈SEME entities, they contain the same semantics as 

established to be the components of the CEant-floating-bridge. Thus, continuing on 

the example scenario, the ∈SEME entities can be further bifurcated as ∈cube
tower, 

and ∈cube
floating. The specific properties of each entity, which are relevant for 

simulation, will be defined in the next section (4.3.2), but the general 

properties of all the ∈SEME entities can be as followed – 
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o All the ∈SEME entities should be considered as static agents that can be 

spawned or culled by the CESEME at the expense of the Ψ entities. 

o All the ∈SEME entities should be made to be self-aware of themselves, 

as in identifying and quantifying their positions, weights, and bounds. 

o All the ∈SEME entities should also be made to be self-aware of their 

surroundings and their physical properties, like cardinality of 

neighbours, array of neighbours, and distance from the initial plane. 

• Ψ entities – or ΨSEME entities will be considered as computational substitutes 

to the Ψ entities established for the CEant-floating-bridge. Although the 

functionalities and structural properties of the Ψbridge,  Ψraft, and Ψbridge-raft do 

not directly translate to the ΨSEME entities, they have the same semantics. 

Thus, the ΨSEME entities can be further trifurcated as Ψtower,  Ψfloating, and 

Ψfloating-tower. The properties of all the ΨSEME entities can be defined as – 

o Contrary to the CEcube-tower, and the CEcube-cubocta-tower the CESEME would 

have the distinct ΨSEME entities performing a tower stacking logic and 

a floating raft logic in unison.  

o They should be however, designed as a two-state rationale for all the 

∈SEME entities. While, Ψtower
SEME  could be derived from Ψtower

SESE 

(4.2.1), the other two ΨSEME entities – Ψfloating, and Ψfloating-tower would 

require the understanding of different structural logics derived from 

the Archimedes principle of buoyancy. 

o However, on the whole, ΨSEME entities should seek an equilibrium 

state that spawns and culls ∈SEME entities considering if the tower is 

under-structured, overstructured, sinking or over-buoyant, thus 

maintaining a reciprocal coupling. 



Theorizing, Taxonomizing and Prototyping operational Ecosystems in 
Computational environments 

4| On the procedural sequences for the Computational Ecosystems |194 

After establishing and defining the ∈SEME entities and ΨSEME entities, the CESEME could 

be defined under the computational guidelines of CA (as elaborated in 3|) as –  

• The CESEME due to its specific combination of ∈SEME entities and ΨSEME entities 

can be termed as CEcube-floating-tower, and will be defined as a functioning 

ecosystem constituting of sentient, context aware cubes as ∈SEME entities that 

interact with each other considering the rule sets assigned by ΨSEME entities 

to spawn or cull the ∈SEME entities until the runtime of the CEcube-floating-tower.  

• As the CEcube-floating-tower will perform while considering two distinct ΨSEME 

entities, the 3rd ΨSEME entity will operate as a determiner of partial runtimes 

for the distinct equilibria of the CEcube-floating-tower. Moreover, the  Ψfloating 

would perform while considering the ∈SEME entities in a specific context. 

However, one and only one CE that is CEcube-floating-tower would be performed 

for its entire runtime.  

• Although derived from the hypothetical amalgamation of intricate bio-

inspired behavior of army ants constructing living bridges for foraging trails, 

and fire ants constructing living rafts to avoid drowning, the CEcube-cubocta-tower 

is a quite complex combination of vertical stacking algorithm and a floating 

raft algorithm for cubes. Therefore, the rule sets for the ΨSEME entities can be 

adapted from the Conway model of CA (as per 2.3.2). However, these will be 

considerably modified. 

• The ΨSEME entities would differ considerably from the Conway model of CA in 

the parameter of time. That is, while the new ∈SEME entities will be spawned 

or culled on the upper levels in the 3D grid for the Ψtower entity, the Ψfloating 

entity would direct spawning and culling ∈SEME entities on the XY plane. 

Considering all the above assumptions, definitions, illustrations and examples for the 

CEcube-floating-tower, the simulations for this taxon can now be performed. 
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4.4.2 Simulations 

However, just like the CESESE, and the CEMESE, the canonical CESEME UML Class Diagram 

(as per fig. 3.4) for the CEcube-floating-tower has to be reassessed and repurposed. Fig. 

4.28, as shown below, illustrates the modifications to the canonical version. 

Figure 4.28 – Modifications made to the canonical CESEMEUML Diagram to accommodate the 

parameters required for establishing the CEcube-floating-tower. Illustration and graphics by Author 

(May 2019). 
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Elaborating on the terminologies introduced in fig. 4.28, the attributes and 

operations of the classes can be defined as followed – 

• ttick – The periodic increment of time, ensuring that the CEcube-floating-tower runs. 

• trest – If the condition CEcube-floating-tower rest is fulfilled, the trest will be activated. 

This means that the time increment will stop and the CEcube-floating-tower will be 

outputted to the user. 

• CEcube-floating-tower rest – Is the situation where an ∈multi
form array for the last 3 

ttick intervals is equal or repetitive. 

• ∈multi
form array – Is the collective assemblage of ∈multi

 for a certain ttick interval. 

• ∈multi
form – Is the operation for the formation of a combination of ∈cube

tower 

and ∈cube
floating  depending on the Ncheck and Nform routines for the Ψtower,  

Ψfloating, and Ψtower-floating. 

• Nform – Is the binary inputs for the cells to be either spawned (input = 1) or 

culled (input = 0) depending on the Ncheck conditional. 

• Ncheck – Is the binary output from the cells of the distinct neighbourhoods (N) 

to check if the cells in the N of the previous ttick interval are either spawned 

(input = 1) or culled (input = 0). 

• N – The neighbourhood of the ∈multi in question (as in every ∈cube
tower and 

∈cube
floating) depending on how many neighbouring ∈multi from the previous ttick 

interval are to be considered to determine the Ncheck and Nform routines that 

eventually determine the Stack operation. 

Thus, determining the N becomes the most important step before considering to 

explain the other concepts required to run the CEcube-floating-tower. 
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Similar to the computational environment and the revised infinite 3D Square grid that 

was considered for the CEcube-tower (refer 4.2.2) and the CEcube-cubocta-tower (refer 4.3.2), 

in case of the CEcube-floating-tower as well, the modelling has been performed in Rhino 7 

(as per 3.3), the programming has been performed in Grasshopper for Rhino 7 (as per 

3.3) and visualizations have been performed in VRay for Rhino (as per 4.1). 

Although most of the physical properties required for the CEcube-floating-tower are similar 

to those of the previously established, there is a complication that arises from the 

multiplicity of the Ψ entities. The Ψ2 and Ψ1-2 entities for the CEcube-floating-tower are 

rule sets to consider the state of equilibrium for the  ∈multi
 determined by their 

buoyancy. This directs the formerly considered computational environment - 

hypothetical revised infinite 3D Square grid to be comprised of a certain material. 

Thus, to evaluate and govern the buoyancy parameters the computational 

environment shall be considered as made of two different materials. However, these 

two materials shall have to expand the revised infinite 3D Square grid beyond the 

bounds of the +Z Axis. Thus, the computational environment for the CEcube-floating-tower 

shall be the entire 3D Cube Grid (that is, extending on all 3 axes without any bounds). 

However, the domain of the materials shall be precisely defined, where one does not 

interact with the other. Their distinctions are as followed: 

• Air – This shall be the atmosphere populating the 3D Cube Grid on the +Z Axis. 

It shall not experience any lateral forces caused by wind or any atmospheric 

friction. It will be considered as a computational environment for the Ψtower 

and thus will affect the Ntower-check and Ntower-form routines. 

• Water - This shall be a hypothetical infinite water body populating the 3D 

Cube Grid on the -Z Axis. It shall not contain the presence of any surfactants 

or other solvents. It shall also not contain any lateral forces caused by a water 

current or any kind of turbulence. It will be considered as a computational 

environment for the Ψfloating and thus will considerably affect the Nfloating-check 

and Nfloating-form routines. 
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Thus, considering the revised computational environment and its constituent 

materials, fig. 4.29 illustrates the bifurcation of the environment and the population 

of the two ∈ entities. 

Figure 4.29 – Bifurcation of the environment and the population of the two ∈ entities. Model, 

Illustration and graphics by Author (May 2019). 

The Ntower considered for the spawning or culling of the ∈cube
tower remains unchanged 

from the assumptions made in the case of the CEcube-tower and the CEcube-cubocta-tower 

previously (in 4.2.2 and 4.3.2 respectively). Thus, fig. 4.30 illustrates the Ntower for a 

∈cube
tower. 

Figure 4.30 – An ∈cube
tower surrounded by the 8 possible Ntower. Model, Illustration and graphics 

by Author (May 2019). 

However, the Nfloating considered for the spawning or culling of the ∈cube
floating 

operates in water, and thus requires to be illustrated as shown in fig. 4.31. 

Figure 4.31 – An ∈cube
floating surrounded by the 4 possible Nfloating. Model, Illustration and 

graphics by Author (May 2019). 
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The concept of structural stability considered and assumed in the construction of the 

rule sets of Ψtower has been already sufficiently explained and illustrated (in 4.2.1). 

Moreover, the concept has also been evaluated and validated in the ‘Designing ways 

of Designing’ workshop (as explained and illustrated in 4.2.3). However, the Ψtower 

and the consequent rules assumed for structural stability have been derived for a 

condition without any atmosphere, and here, in the case of CEcube-floating-tower a 

medium of atmosphere has already been established as the partial computational 

environment. Despite these considerations, however, the same previous 

assumptions of Ψtower (setup in 4.2.1 and 4.2.3) shall be followed in the case of the 

CEcube-floating-tower. The assumptions for the Ψfloating on the other hand, have to be made 

in relation to the Ψtower so that the CESEME can perform all the Ψ entities symbiotically. 

As already established in the example scenario and the CEcube-floating-tower, the Ψfloating 

shall consist of rule sets that eventually control the spawning or culling of the 

∈cube
floating to maintain an equilibrium state for the entire CEcube-floating-tower. In other 

words, the Ψfloating shall add or remove ∈cube
floating to ensure that the CEcube-floating-tower 

does not sink. To do this, the following assumptions can be made – 

• All the operations related to the spawning or culling of the ∈cube
floating in the 

context of the CEcube-floating-tower shall be made in the Water. That means, only 

the Nfloating can be considered for the Nform routine. 

• The ∈cube
floating and ∈cube

tower shall be considered as hollow cubes made of unit 

mass and unit volume, such that, if one ∈cube
floating is solitarily dropped in 

water, it shall float while having exactly 10% of its volume immersed. 

• However, if more ∈cube
tower are added (by the virtue of the Ψtower), the 

resultant array of ∈multi shall never have more than 20% of the collective 

volume of the ∈cube
floating immersed in the water. 

• In case the volume of ∈cube
floating immersed in the water is more than 20%, 

more ∈cube
floating shall be added to the Nfloating by means of the Nform routine. 
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Thus, considering the aforementioned assumptions, an array of n∈cube
tower (n 

∈cube
tower elements) will always require n∈cube

floating (n ∈ cube
floating elements) to make 

sure that the CEcube-floating-tower floats in such a way that no more than 20% of the 

collective volume of the ∈cube
floating is immersed in the water. Moreover, since the 

∈cube
tower and the ∈cube

floating are morphologically same, the CEcube-floating-tower will 

basically be populating hollow cubes both vertically (to make a tower by following 

Ψtower) and horizontally (to ensure that the tower floats by following Ψfloating). To 

demonstrate this, fig. 4.32 shown below takes the example of a specific ∈multi
initial 

array, and documents implementation of the Ψfloating assumptions made above. 

Figure 4.32 – Example implementation of Ψfloating-tower for the runtime of a CEcube-floating-tower 

with 3 ∈multi
initial elements. Model, Illustration and graphics by Author (May 2019). 

As illustrated in fig. 4.32 above, at ttick_0 interval the array of three ∈multi
initial elements 

(with 10% of their volume immersed in water) employs a typical Ψtower rule set and 

spawns four more ∈cube
tower at the ttick_1 interval thus making a total of seven ∈multi

initial 

elements in the CEcube-floating-tower. Without the implementation of the Ψtower rule set 

at the ttick_1 interval, the CEcube-floating-tower would still float, albeit with 23.34% of its 

∈multi
initial elements immersed in water. This is not allowed as per the assumptions, 

and thus, at ttick_2 interval, four new ∈cube
floating are spawned to ensure that only a 

maximum of 20% of the ∈multi
initial and the ∈cube

floating elements is immersed in water. 
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Although the assumptions are to ensure that the CEcube-floating-tower floats, they can’t 

be considered as the Ψfloating rulesets. Because, to ensure the spawning and culling of 

∈cube
floating specific state conditions would be required, but the assumptions merely 

provide the number of elements to be spawned (to ensure that the CEcube-floating-tower 

floats at the predetermined level). The above assumptions can however be 

considered as the Ψfloating-tower rule sets, because the assumptions examine the results 

of the Ψtower rule and then direct the Ψfloating, thus serving as a prioritizing junction 

between the two. The Ψfloating-tower rule sets also serve as a time buffer, as it halts to 

compute how many ∈cube
floating are required to be spawned. The Ψfloating-tower serving 

as a junction and a buffer between the Ψtower and the Ψfloating is quite crucial as the 

neighbourhood considerations of the Ψtower and the Ψfloating are quite distinct. 

Similar to its previous applications for the CEcube-tower and the CEcube-cubocta-tower, the 

state conditions of the CEcube-floating-tower will also be determined by employing the 

Conway Model of CA (as explained in 2.3.2). Thus, considering the CEcube-tower and the 

CEcube-cubocta-tower as precedence, and deriving from the Conway Model of CA, the state 

conditions for the CEcube-floating-tower can be established as followed – 

• Ψtower - Every ∈cube-n+1
tower

 at the ttick-n+1 interval interacts with the Ncube
tower of 

its corresponding (or in this case preceding) ∈cube-n
tower at the ttick-n interval, 

thus performing Ntower-check. For the ttick-n+1 interval, it then performs the Nform 

routine based on the following conditions – 

o Any existing (spawned) ∈cube-n
tower with 2 or 3 existing ∈cube-n

tower in its 

Ncube
tower continues to exists and is not culled at the ttick-n+1 interval, as 

if it was being perfectly supported by its counterparts on the floor 

below. 

o Any non-existing (culled) ∈cube-n
tower with 3 existing ∈cube-n

tower in its 

Ncube
tower is spawned for the ttick-n+1 interval, as if it was being perfectly 

supported by its counterparts on the floor below. 
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o All other existing ∈cube-n
tower at the ttick-n interval (those with other than 

two or three neighbours in their Ncube
tower) stop existing at their 

corresponding ttick-n+1 interval. Similarly, all other non-existing ∈cube-n 

at the ttick-n interval (those with other than three neighbours in their 

Ncube
tower) remain nonexistent at the ttick-n+1 interval. 

• Ψfloating-tower - At every ttick-n+1 interval, the cardinality of ∈cube-n
tower elements 

that are newly spawned and those that are not culled is measured, and the 

total number of new elements ∈cube-n+1
floating elements is determined by – 

o Reducing the cardinality of the ∈cube-n
tower elements in the ttick-n 

interval from the cardinality of the ∈cube-n
tower elements in the ttick-n+1 

interval. 

• Ψfloating - Every ∈cube-n+1
floating

 at the ttick-n+1 interval interacts with the 

Ncube
floating of its corresponding (or in this case preceding) ∈cube-n

floating at the 

ttick-n interval, thus performing Nfloating-check. For the ttick-n+1 interval, it then 

performs the Nform routine based on the following conditions – 

o Any non-existing (culled) ∈cube-n
floating with no existing ∈cube-n

floating in its 

Ncube
floating is spawned for the ttick-n+1 interval, as if it was being 

perfectly supported by its counterparts on the edge of the cube, thus 

leaving the faces open for access. 

o Any non-existing (culled) or existing (spawned) ∈cube-n
floating with any 

number of existing ∈cube-n
floating in its Ncube

floating remains culled or is 

culled for the ttick-n+1 interval, as if it was blocking access, and thus 

would not sufficiently provide buoyancy. 

The CEcube-floating-tower thus continues until the CEcube-floating-tower rest condition is met, 

after which the CE is returned to the user as an iteration.  
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The Spawn and Cull conditions for the Ψtower of the CEcube-floating-tower shall be 

considered to be similar to those in the CEcube-tower (as shown in fig. 4.7 and fig. 4.8) 

and thus need not be illustrated again. Moreover, the Ψfloating-tower does not have any 

Spawn and Cull conditions, as it merely states an integer value that determines the 

total number of ∈cube
floating elements to be spawned to ensure that the CEcube-floating-

tower actually floats. Before following the next primary objective, and heading over to 

the prototyping stage for this procedural sequence, however, the Ψfloating
spawn and 

Ψfloating
cull need to be illustrated and highlighted for the CEcube-floating-tower. 

Fig. 4.33 thus demonstrates all the Ψfloating
spawn and Ψfloating

cull conditions for every 

possible state of array in the Ncube
floating of the ∈cube

floating in question. Moreover, since 

the Ψfloating operates after the Ψtower and the Ψfloating-tower have concluded, the 

examples shown below already have the ∈cube
tower in place. 

Figure 4.33 – ∈cube-n
floating array and their corresponding ∈cube-n+1

floating array considering the 

state conditions for the existing and the non-existing states of ∈cube
floating array. Model and 

graphics by Author (May 2019). 

The ∈cube-n+1
floating at the ttick-n+1 interval is thus denoted by ◼ (R,G,B – 204,204,204) 

colored cube, and the corresponding ∈cube-n
floating at the ttick-n interval is denoted by 

◼ colored cube (R,G,B – 129,129,129). Also, the existing cubes are denoted by ◼ 

(R,G,B – 57,188,40) colored cube, and the non-existing cubes are denoted by ◼ 

(R,G,B – 255,21,21) colored cubes. 
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4.4.3 Prototyping 

The state conditions in terms of the Ncheck and the Nform routines of all the Ψtower,  

Ψfloating, and Ψfloating-tower that determine all the distinct Stack operations for all the 

∈multi array have been sufficiently demonstrated and illustrated in terms of the Ψspawn 

and Ψcull rules (as shown in fig. 4.7, fig. 4.8 and 4.33). The illustrations show all 

possible conditions for the Ψspawn and Ψcull rules. However, the computational 

stacking logic for the CEcube-floating-tower is different from the previously established 

CEcube-tower, and CEcube-cubocta-tower. However, it can be generalized as below – 

• As part of the Ψtower – 

o If the cardinality of the Ncube
tower consideration for an existing ∈cube

tower 

is equal to 2 or 3, the ∈cube
tower survives (i.e. not culled). If the 

cardinality is otherwise, the ∈cube
tower does not survive (i.e. culled). 

o If the cardinality of the Ncube
tower consideration for a non-existing 

∈cube
tower is equal to 3, the ∈cube

tower is created (i.e. spawned). If the 

cardinality is otherwise, the ∈cube
tower is not created (i.e. not spawned). 

• As part of the Ψfloating-tower – 

o Thereafter, at every tick the cardinality of all the surviving ∈cube
tower is 

checked, and based on the assumptions made for the Ψfloating-tower it is 

determined and directed to be used for the Ψfloating. 

• As part of the Ψfloating – 

o If the cardinality of the Ncube
floating consideration for an existing or non-

existing ∈cube
tower is equal to 0, the ∈multi is created. If the cardinality is 

otherwise, the ∈cube
floating is not created. 
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As the CEcube-floating-tower serves as a conceptual continuation of the CEcube-tower, and the 

CEcube-cubocta-tower, the aforementioned state conditions which have a considerable 

precedence on the state conditions of the CEcube-tower, are supported by the entire 

series of procedural sequences (with case studies, simulation and prototyping) 

performed on the taxon, and thus need not be tested again. However, regarding the 

new state conditions pertaining to the Ψfloating, and Ψfloating-tower, the research 

necessitates rigorous evaluation, testing, prototyping and versioning if required.  

The prototyping methodology considered for the CEcube-tower was absolutely revised 

for the CEcube-cubocta-tower, which produced relatively favorable and precise results for 

the same. Following the outcomes of the CEcube-cubocta-tower, the prototyping for the 

construction of the CEcube-floating-tower would also be performed by means of a 

workshop that conducts computational simulation of the CE to ensure all the 3 Ψ 

entities -  Ψtower,  Ψfloating, and Ψfloating-tower are performing accurately, consistently 

and yet symbiotically without any bugs or redundancies. 

Thus, a similar approach considered for the prototyping of the CEcube-cubocta-tower (as 

explained and illustrated in the 4.3.3) was implemented. However, as established in 

the CEcube-cubocta-tower where, the entire computational strategy had to be laid down 

before initiating a workshop, the CEcube-floating-tower would also require to be 

strategized by drawing and illustrating a UML Sequence Diagram that demonstrates 

a user or designer (or actor) going through the runtimes of all the components of the 

CEcube-floating-tower to eventually produce an outcome driven by the sequential 

operations of the Ψtower,  Ψfloating, and Ψfloating-tower in spawning or culling ∈cube
tower 

and ∈cube
floating while maintaining the equilibrium state of constructing a floating 

tower made of cubes. Following up on the UML Sequence Diagrams established for 

the CEcube-tower (as illustrated in fig. 4.10), fig. 4.34 illustrates the role, interaction and 

runtime of all the ∈ entities and Ψ entities as identified in the UML Class Diagram 

(illustrated in fig. 4.28). It illustrates a UML Sequence diagram that determines the 

outcome of all possible different CEcube-floating-tower. 
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Figure 4.34 – The UML Sequence Diagram for a CEcube-floating-tower with the role, interaction and 

runtime of all the ∈ entities and Ψ entities, and their dependencies for the Early Rest condition. 

Illustration and graphics by Author (May 2019). 
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Similar to the previously established UML Sequence Diagram for the CEcube-tower, and 

the CEcube-cubocta-tower, the one jointly illustrated for the CEcube-floating-tower in fig. 4.34 has 

been generated with the following assumptions – 

• The Actor would be the user who initiates the CEcube-floating-tower. 

• CEcube-floating-tower would be considered as one of the objects, as it has its own 

lifeline that represents the runtime of the entire algorithm, while the other 

objects in the diagram would be considered as ∈multi
initial, Ntower, Ψspawn, 

∈multi
form, Ψcull, Nfloating-tower, and ∈multi in the chronological order of their use 

and application in the CEcube-cubocta-tower. 

• The Diagram also involves returning the CEcube-floating-tower as an early rest 

condition, if the Initial State Array and the Initial Stack Array are the same. If 

not, the remaining algorithm continues on a while loop until the CEcube-floating-

tower rest condition (mentioned in 4.3.2) is met to end the algorithm. 

Considering the UML Sequence Diagram, a Grasshopper definition was run inside the 

Rhino 7 interface (The definition labelled as CEcube-floating-tower has been appended to 

the Annexure – Definitions). Similar to the CEcube-cubocta-tower, third-party components 

used to perform the specific algorithm functions of the CEcube-floating-tower are – 

• Initiate – To populate the random Initial array of ∈multi
initial. 

• Array – To generate ∈cube
tower and ∈cube

floating using the Lunchbox138 plugin. 

• Ncheck – To check the cardinality of Neighbouring cells using the OR logic gate. 

• Loop – To generate a while loop using the Anemone139 plugin. 

 
138 Lunchbox for Grasshopper (2012). Omaha, USA: Proving Ground Apps. 
139 Anemone 0.4 (2015). Poznań, Poland: Mateusz Zwierzycki. 
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Employing the Grasshopper definition, several test CEcube-floating-tower were prototyped 

in the Rhino 7 environment. As these were initial prototypes, the cardinality of 

∈multi
initial was restricted to 2 and 3. Fig. 4.35 illustrates the outcomes of a few inputs 

for the CEcube-floating-tower below. The figure shows the initial state denoted by ◼ 

colored cube (R,G,B – 129,129,129), the rest of the ∈cube
tower denoted by ◼ (R,G,B – 

204,204,204) colored cube, and the ∈cube
floating denoted by ◼ (R,G,B – 207,235,255). 

Figure 4.35 – Initial Prototypes of several CEcube-floating-tower with 2 and 3 ∈cube
initial. Model, 

algorithm, Illustration and graphics by Author (May 2019). 
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Fig. 4.36 illustrates the outcomes of one of the tallest CEcube-floating-tower with 10 

∈multi
initial that was generated during the ‘Computation as a Design tool’. The initial 

state is denoted by ◼ (R,G,B – 129,129,129), the rest of the ∈cube
tower denoted is by 

◼ (R,G,B – 204,204,204), and the ∈cube
floating is denoted by ◼ (R,G,B – 207,235,255). 

Figure 4.36 – Prototype of a selected CEcube-floating-tower with 10 ∈cube
initial that had a runtime of 24 

ttick before reaching the rest state. Model, algorithm, Illustration and graphics by Author (May 

2019). 
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4.4.4 CESEME 

Similar to the previous taxa (as explained in 4.2.4 and 4.3.4), fig. 4.35 and fig. 4.36 

demonstrate the executions and prototyping of the CEcube-floating-tower, however, more 

outcomes focusing on the taxonomy creation have been illustrated in the next 

chapter (5| On the consequences of Computational Ecosystems) with further analysis 

comparing all the other taxa from the procedural sequences in chapter 6 (On the 

investigative analysis of Computational Ecosystems). However, (similar to 4.2.4 and 

4.3.4) the methodology adopted for the CE needs to be analyzed before continuing. 

Also, as the CESEME serves as an extension and continuation to the CESESE and a 

conceptual equivalent to the CEMESE, the amendments made in the methodology of 

CESEME should be addressed as the following – 

• To ensure that the CE do not just serve as a continuation of the 3D Cellular 

Automata (as in a CA of the Conway Model expressed in 3D) efforts have been 

made to ensure resemblance to actual built-form that can be imagined in the 

structure of the world. 

• The inclusion of 2 different material environments has provided enough 

context for the CEcube-floating-tower demonstrating how the CESEME (or any CE) 

could eventually generate built form within real-life context and parameters. 

The CESEME handles the complexity of the multiplicity of the distinct Ψ entities. But, 

the CEMEME provides the ultimate complexity in the multiplicity of both the ∈ and Ψ 

entities. Thus, the following observations made for the CESEME could be crucial. 

• The prototyping stage needs to move on from merely the computational 

simulation to also provide physical, empirical prototyping. 

• A workshop with an amalgam of Computational Design and Digital Fabrication 

serving as a link between the algorithm and built form could be conducted. 
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4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 

Similar to the CESESE, CEMESE, and CESEME, the conceptual framework of a CEMEME has 

already been sufficiently illustrated in the previous chapters (introduced in 1.2.2, 

illustrated in fig. 1.9, defined in 3.2.5). Moreover, a Structural UML Diagram 

establishing the attributes and operations of a canonical version of the ∈ and Ψ has 

also been illustrated (in fig. 3.5 as part of 3.2.5). Like CESESE, CEMESE, and CESEME, to 

construct, taxonomize and prototype this procedural sequence, the research would 

have to consider tangible parameters in the context of a CEMEME, which could be 

derived from a combination of real-life examples and constraints, and the conceptual 

framework for the case studies already established in CESESE, CEMESE, and CESEME. 

However, unlike already established taxa, the CEMEME would serve as the 

amalgamation and continuation of CEMESE, and CESEME, due to the multiplicity of both 

the ∈ and Ψ parameters. Thus, following the previous procedural sequences, the 

Author has decided to continue with the conceptual example of MEME illustrated in 

1.2.2. Using the example scenario would methodically increase the ∈ and Ψ entities 

to 2 (instead of the ambiguous multi) and use the canonical UML Class Diagram. Thus, 

before defining each parameter, the components of the CEMEME can be – 

• ∈1 – As illustrated in the example scenario, the ∈ would be represented by 

hexahedrons or cubes, with unit dimensions. 

• ∈2 – As illustrated in the example scenario, the ∈ would be represented by 

cuboctahedrons, with unit dimensions. 

• Ψ1 – As illustrated in the example scenario, the Ψ1 would be represented by 

structural stability in the form of axial loads. 

• Ψ2 – As illustrated in the example scenario, the Ψ2 would be represented by 

buoyancy (as per the Archimedes principle). 
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4.5.1 Case Studies 

Although serving as an amalgamation of CEMESE, the CESEME which theoretically and 

semantically means that it can be treated as an ecosystem that is inhabited or 

cohabited by multiple predetermined species and these species (individually, 

categorically and collectively), are constructed, monitored, and governed by multiple 

predetermined rule sets, the CEMEME does not serve as a direct sequel to the either 

the CEMESE, or the CESEME in terms of fulfilling the Procedural Sequences.  

Moreover, the multiplicity of the ∈ and Ψ parameters doesn’t just imply that there 

would be two distinct ∈ and Ψ entities, but the iterations of their collective 

assemblages would also have to be treated as a distinct ∈ and Ψ parameters. Thus, 

the following addition must be made to the assumptions stated in the last section 

(similar to those done in 4.3.1 and 4.4.1) –  

• For the ∈ parameters – 

o ∈1 – Hexahedrons or cubes, with unit dimensions, which can be 

programmed as sentient elements similar to the ∈cube, that are aware 

of their existence, and thus can be considered as ∈biotic
1.  

o ∈2 – Cuboctahedrons, with unit dimensions, which can be 

programmed as sentient elements similar to the ∈cube, (however with 

morphological modifications) that are aware of their existence, and 

thus can be considered as ∈biotic
2. 

o ∈1-2 – A collective entity of the ∈1 and ∈2, which can be programmed 

as sentient elements being treated as a ∈cube array (similar to the 

Arrays formed by the Stack operations) that are aware of their 

existence, and thus can be considered as ∈biotic
1-2. 
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• For the Ψ parameters – 

o Ψ1 – A rule set that determines the stacking of ∈cube in the form of 

state conditions considering an overall structural stability (as per axial 

loads, and thus can be considered as Ψstack. 

o Ψ2 – A rule set that maintains the buoyancy of ∈cube in the form of 

state conditions (as per the Archimedes principle), and thus can be 

considered as Ψbuoyancy. 

o Ψ1-2 – A rule set that determines the order and preference of the Ψ1 

and Ψ2 for every ∈cube in the form of state conditions), and thus can 

be considered as Ψbuoyant-stack. 

Following the case study of the collective assemblages of the Eciton hamatum 

forming live bridges out of their own bodies (elaborated in 4.2.1, and illustrated in 

fig. 4.1) as a theoretical precedent for the CESESE and CEMESE, and the case study of the 

collective assemblages of the Solenopsis Invicta forming live rafts out of their own 

bodies (elaborated in 4.4.1, and illustrated in fig. 4.26) as a theoretical precedent for 

the CESEME, the CEMEME seeks an amalgamated collective assemblage of the Eciton 

hamatum and Solenopsis Invicta in a considerably complex manner as compared to 

that sought by the CESEME. (Although they don’t exist in nature in the way that the 

case study suggests), the floating ant bridges elucidated in 4.4.1 would be considered 

as theoretical precedent for establishing the simulations and prototyping of the 

CEMEME. However, the CESEME which has multiplicity in only the Ψ parameters 

establishes the procedural sequence with relatively less complexity. The CEMEME on 

the other hand, is the most complex taxon that has been established thus far. Hence, 

Eciton hamatum, Solenopsis Invicta and their inter-related assemblages would be 

considered as precedents for the three aforementioned ∈ entities. And, the live 

bridges, live rafts and the rules pertaining to connecting the bridges to the rafts would 

be considered as precedents for the three aforementioned Ψ entities. 
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If a rudimentary computational model was made for the simulation of the bridging 

and rafting behavior of the ants it would translate to a CE quite literally (as a CE has 

been already defined to be a Hybrid Bio Plausible Bio-inspired Stochastic 

Optimization Algorithm). Say, this proposed CE, following a basic nomenclature 

system, could be termed as CEeciton-solenopsis-bridge-raft (as the CE reflects the bridging 

properties of the eciton hamatum interacting with the rafting properties of the 

solenopsis invictus), and would then consist of the following components: 

• ∈1 – The Eciton Hamatum as biotic, ambulatory agents that are self-aware of 

their physical properties such as their weight, weight-carrying capacity, 

movement speed, and gripping abilities. Thus, ∈eciton. 

• ∈2 – The Solenopsis Invictus as biotic, ambulatory agents that are self-aware 

of their physical properties such as their weight, weight-carrying capacity, 

movement speed, and gripping abilities. Thus, ∈solenopsis. 

• Ψ1 – The bridging ability. Forming collective assemblages by means of 

connection techniques, span-depth ratios for optimum bridge structures, and 

load calculations (considering the live and dead loads). Thus, Ψbridge. 

• Ψ2 – The rafting ability. Forming collective assemblages by means of 

connection techniques, span-depth ratios for optimum floating structures, 

and load calculations (considering the live and dead loads). Thus, Ψraft. 

• ∈1-2 – The Eciton Hamatum and Solenopsis Invictus. Acting as biotic, 

ambulatory agents that serve as an amalgam of ∈eciton and, ∈solenopsis. Thus, 

∈eciton-solenopsis. 

• Ψ1-2 – The prioritization ability. Assessing the neighbourhood condition and 

the physical and structural properties of the Ψbridge and the Ψraft by means of 

density calculation of context  and load calculations. Thus, Ψbrridg-raft. 
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However, owing to the multiplicity in both the ∈ and Ψ parameters, all the ∈ entities 

would have to be considered for all the Ψ entities, and all the Ψ entities would have 

to be considered for all the ∈ entities. Thus, establishing all the possible combinations 

for all possible ∈ and Ψ parameters. These new components of the already 

established CEeciton-solenopsis-bridge-raft would be – 

• ∈eciton
bridge – The Eciton Hamatum performing the Ψbridge. 

• ∈eciton
raft – The Eciton Hamatum performing the Ψraft. 

• ∈eciton
bridge-raft – The Eciton Hamatum performing the Ψbrridg-raft. 

• ∈solenopsis
bridge – The Solenopsis Invictus performing the Ψbridge. 

• ∈solenopsis
raft – The Solenopsis Invictus performing the Ψraft. 

• ∈solenopsis
bridge-raft – And the Solenopsis Invictus performing the Ψbrridg-raft. 

• Ψbridge
eciton – These would be the bridging rule sets for ∈eciton. 

• Ψraft
eciton – These would be the rafting rule sets for ∈eciton. 

• Ψbridge-raft
eciton – These would be the prioritizing rule sets for the ∈eciton. 

• Ψbridge
solenopsis – These would be the bridging rule sets for ∈solenopsis. 

• Ψraft
solenopsis – These would be the rafting rule sets for ∈solenopsis. 

• Ψbridge-raft
solenopsis – These would be the prioritizing rule sets for the ∈solenopsis. 

Thus, like the CEMESE and CESEME (as per 4.3.1 and 4.4.1), the CEMEME would have more 

∈ and Ψ entities than the predetermined number of ∈ and Ψ parameters. 



Theorizing, Taxonomizing and Prototyping operational Ecosystems in 
Computational environments 

4| On the procedural sequences for the Computational Ecosystems |216 

Thus, the similarities between a CEMEME (derived from the example scenario and the 

CEMESE and CESEME) and a CEeciton-solenopsis-bridge-raft can be illustrated in fig. 4.37 below. 

Figure 4.37 – Comparing the CEMEME and a CEeciton-solenopsis-bridge-raft. Illustration and graphics by 

Author (October 2019). 

Thus, based on the analogies illustrated in fig. 4.37 and the conceptual semantics 

established for a CEeciton-solenopsis-bridge-raft, The CEMEME could be based on the already 

established CEcube-tower
2 (refer 4.3.1) and the CEcube-floating-tower (refer 4.4.1). However, 

in case of the CEMEME the constituent ∈ and Ψ entities, would have to be defined in 

relation to the updated CEeciton-solenopsis-bridge-raft. Therefore, the components of the 

CEMEME are defined as followed – 

• ∈ entities – or ∈MEME entities will be considered as computational substitutes 

to the 6 ∈ entities established for the CEeciton-solenopsis-bridge-raft. Although the 

functionalities and structural properties of the aforementioned six ∈ entities 

do not directly translate to the ∈MEME entities, they contain the same 

semantics as established to be the components of the CEeciton-solenopsis-bridge-raft. 

Thus, continuing on the example scenario, the ∈MEME entities can be further 

hexfurcated as illustrated in fig. 4.37. The properties of each entity, relevant 

for simulation, will be defined further (in 4.5.2), but the general properties 

can be as followed – 
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o All the ∈MEME entities should be considered as static agents that can 

be spawned or culled by the CEMEME at the expense of the ΨMEME 

entities. 

o All the ∈MEME entities should be made to be self-aware of themselves, 

as in identifying and quantifying their positions, weights, and bounds. 

o All the ∈MEME entities should also be made to be self-aware of their 

surroundings and their physical properties, like cardinality of 

neighbours, array of neighbours, and distance from the initial plane. 

• Ψ entities – or ΨMEME entities will be considered as computational substitutes 

to the 6 Ψ entities established for the CEeciton-solenopsis-bridge-raft. Although the 

functionalities and structural properties of the six Ψ entities do not directly 

translate to the ΨMEME entities, they contain the same semantics. Thus, the 

ΨMEME entities and can be further hexfurcated as illustrated in fig. 4.37. The 

general properties of all the ΨMEME entities can be defined as followed – 

o To a certain extent, combining  operation of the CEcube-cubocta-tower, and 

the CEcube-floating-tower the CEMEME would have the distinct ΨSEME entities 

performing a tower stacking logic and a floating raft logic in unison.  

o They should be however, designed as a two-state rationale for all the 

∈MEME entities. While all the Ψtower
MEME  could be derived from 

Ψtower
MESE (defined in 4.3.1), all the Ψtower

MEME could be derived from 

Ψtower
SEME (defined in 4.4.1) 

o However, on the whole, ΨMEME entities should seek an equilibrium 

state that spawns and culls ∈MEME entities considering if the tower is 

under-structured, overstructured, sinking or over-buoyant, thus 

maintaining a reciprocal coupling. 
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After establishing and defining the ∈SEME entities and ΨSEME entities, the CESEME could 

be defined under the computational guidelines of CA (as elaborated in 3|) as –  

• The CEMEME which owing to its specific combination of ∈MEME entities and 

ΨMEME entities can be termed as CEcube-cubocta-floating-tower, and will be defined as 

a functioning ecosystem constituting of sentient, context aware cubes and 

cuboctahedra as ∈SEME entities that interact with each other considering the 

rule sets assigned by ΨMEME entities to spawn or cull the ∈MEME entities until 

the runtime of the CEcube-cubocta-floating-tower.  

• As the CEcube-cubocta-floating-tower will perform while considering 6 distinct ΨSEME 

entities, the Ψfloating-tower
cube and Ψfloating-tower

cubocta entities will operate as 

determiners of partial runtimes for the distinct equilibria for the construction 

of  CEcube-cubocta-floating-tower. However, one and only one CE that is the 

aforementioned CEcube-cubocta-floating-tower would be performed for the entire 

runtime.  

• Although derived from the hypothetical amalgamation of intricate bio-

inspired behavior of army ants constructing living bridges for foraging trails, 

and fire ants constructing living rafts to avoid drowning, the CEcube-cubocta-

floating-tower is a very complex combination of vertical stacking algorithm and a 

floating raft algorithm for a combination of cubes and cuboctahedra. Thus, 

the rule sets for the ΨSEME entities can be adapted from the Conway model of 

CA (as per 2.3.2). Although these will be considerably modified. 

• The ΨMEME entities would differ considerably from the Conway model of CA in 

the parameter of time. The operation of the ΨMEME entities will however 

remain similar to those of the ΨMESE entities (defined in 4.4.1). 

Considering all the above assumptions, definitions, illustrations and examples for the 

CEcube-cubocta-floating-tower, the simulations for this taxon can now be performed. 



Architecture of Computational Ecosystems 

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 219| 

4.5.2 Simulations 

However, just like the previous taxa, fig. 4.38, as shown below, illustrates the 

modifications to the canonical version (as per fig. 3.5). 

Figure 4.38 – Modifications made to the canonical CEMEME UML Class Diagram to accommodate 

the the CEcube-cubocta-floating-tower. Illustration and graphics by Author (October 2019). 
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Elaborating on the terminologies introduced in fig. 4.38, the attributes and 

operations of the classes can be defined as followed – 

• ttick – The periodic increment of time, ensuring the CEcube-cubocta-floating-tower runs. 

• trest – If the condition CEcube-cubocta-floating-tower rest is fulfilled, the trest will be 

activated. This means that the time increment will stop and the final outcome 

of the  CEcube-cubocta-floating-tower will be outputted to the user. 

• CEcube-cubocta-floating-tower rest – Is the situation where an ∈multi
form array for the 

last 3 ttick intervals is equal or repetitive. 

• ∈multi
form array – Is the collective assemblage of ∈multi

 for a certain ttick interval. 

• ∈multi
form – Is the operation for the formation of a combination of all the six ∈ 

entities depending on the Ncheck and Nform routines for all the 6 Ψ entities. 

• Nform – Are the binary inputs for the cells to be either spawned (input = 1) or 

culled (input = 0) depending on the Ncheck conditional. 

• Ncheck – Is the binary output from the cells of the distinct neighbourhoods (N) 

to check if the cells in the N of the ∈multi
form array for the previous ttick interval 

are either spawned (input = 1) or culled (input = 0). 

• N – The neighbourhood of the ∈multi in question (as in all the 6 ∈ entities) 

depending on how many neighbouring ∈multi from the previous ttick interval 

are to be considered to determine the Ncheck and Nform routines that 

eventually determine the Stack operation. 

Thus, like in the case of the previous taxa, determining the N becomes the most 

important step before considering to explain the other concepts required to run the 

CEcube-cubocta-floating-tower. 
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Similar to the computational environment and the infinite 3D Square grid that was 

considered for the CEcube-floating-tower (refer 4.4.2), in case of the construction of the 

CEcube-cubocta-floating-tower as well, the modelling has been performed in Rhino 7 (refer 

3.3), the programming has been performed in Grasshopper for Rhino 7 (refer 3.3) and 

visualizations have been performed in VRay for Rhino (refer 4.1). Moreover, as the 

CEcube-cubocta-floating-tower relies on a CE that floats, its computational environment shall 

be constituted of similar elements of Air and Water as theorized in 4.4.2. 

Although most of the physical properties required for setting up the computational 

environment by the CEcube-cubocta-floating-tower are similar to those of the previously 

established CEcube-floating-tower there is a renewed complication that arises from the 

multiplicity of the ∈ entities. Amongst the six ∈ entities that are already theorized for 

the CEcube-cubocta-floating-tower, only the ∈cube
tower, ∈cube

floating, and  ∈cube
floating-tower have 

been established in the CEcube-floating-tower. Thus, the ∈cubocta
tower, the ∈cubocta

floating, and  

the ∈cubocta
floating-tower have to be instilled in the computational environment that was 

already established for the CEcube-floating-tower. Thus, considering computational 

environment and its constituent materials, fig. 4.39 illustrates the N of all the 6 ∈ 

entities. 

Figure 4.39 – Neighbourhood (N) of all 6 ∈ entities required for the  CEcube-cubocta-floating-tower. 

Model, Illustration and graphics by Author (October 2019). 
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As illustrated in fig. 4.39, the following assumptions can be made for the N of all the 

six ∈ entities – 

• Ncube
tower – This is the N for the ∈cube

tower, and it operates in the Air 

environment with eight possible ∈multi in the neighbourhood. 

• Ncube
floating – This is the N for the ∈cube

floating, and it operates in the Water 

environment with eight possible ∈multi in the neighbourhood. 

• Ncube-cubocta
tower – This is the N for the ∈cube-cubocta

tower, and it operates in the Air 

environment, where it prioritizes eight ∈multi in the neighbourhood. 

• Ncubocta
tower – This is the N for the ∈cubocta

tower, and it operates in the Air 

environment with four possible ∈multi in the neighbourhood. 

• Ncubocta
floating – This is the N for the ∈cubocta

floating, and it operates in the Water 

environment with four possible ∈multi in the neighbourhood. 

• Ncube-cubocta
floating – The N for the ∈cube-cubocta

floating, and it operates in the Water 

environment, where it prioritizes eight ∈multi in the neighbourhood. 

The above definitions of all distinct N give a clear understanding of the physical 

constraints that each of the six distinct ∈ entities will have while having their 

respective Ncheck and Nform routines driven by their respective Stack conditions. The 

manner in which Ncube
tower, Ncubocta

tower, and the Ncube-cubocta
tower direct the ∈multi to 

construct an optimally structurally supported tower has been already established in 

the CEMESE in the form of CEcube-cubocta-tower (as established in 4.3.2 and as illustrated in 

fig. 4.17, fig. 4.18, and fig. 4.19), and thus, it shall be implemented for the CEcube-cubocta-

floating-tower. Also, the manner in which the Ncube
floating direct the ∈multi to construct an 

optimally structurally supported tower that floats with a maximum of 20% of its 

volume immersed in water has been already established in the CESEME in the form of 

the CEcube-floating-tower (as established in 4.4.2 and as illustrated in fig. 4.32). 
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However, the Ncubocta
floating , and the Ncube-cubocta

floating, in relation with the other four 

N considerations have not been introduced yet, and thus need to be established 

before setting up the State Conditions for the CEcube-cubocta-floating-tower. Similar to the 

assumptions made for the ∈cube
floating in context of the Ψfloating as established for the 

CEcube-floating-tower (4.4.2), following are the assumptions made for the ∈cubocta
floating, and 

∈cube-cubocta
floating in context of the Ψfloating

cubocta
 and the Ψfloating

cube-cubocta – 

• All the operations related to the spawning or culling of the ∈cubocta
floating, and 

∈cube-cubocta
floating in the context of the CEcube-cubocta-floating-tower shall be made in 

the Water. That means, only the Ncubocta
floating and the Ncube-cubocta

floating can be 

considered for the respective Nform routines. 

• The ∈cubocta
floating (and all other cuboctahedra) shall be hollow, made of unit 

mass and unit volume, such that, if one ∈cubocta
floating is solitarily dropped in 

water, it shall float while having exactly 10% of its volume immersed. 

• However, if more ∈cubocta
floating or ∈cube-cubocta

floating are added (by the virtue of 

any of the 6 Ψ entities) the resultant array of ∈multi shall never have more than 

20% of the collective volume of the ∈cube-cubocta
floating immersed in the water. 

• In case the volume of ∈cubocta
floating or ∈cube-cubocta

floating immersed in the water 

is more than 20%, more or ∈cube-cubocta
floating shall be added to the Ncube-

cubocta
floating by means of the Nform routine. 

Albeit the above assumptions, the hypothesis for the morphology of a cuboctahedron 

established for the CEcube-cubocta-tower (in 4.3.2), shall also be assumed in case of the 

CEcube-cubocta-floating-tower. Thus, for a cuboctahedron with radius Rcubocta and perfectly 

bound inside a cube with radius Rcube, the following are true – 

Rcubocta = √2 Rcube    ;    Vcubocta = 5Vcube ; where, Vcubocta is volume of 1 cuboctahedron 

    √3   6   bound inside a cube with volume Vcube. 
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Thus, considering the aforementioned assumptions, an array of n∈cubocta
tower (n 

number of ∈cubocta
tower elements) will always require 5n/6 ∈cube

floating to make sure 

that the CEcube-cubocta-floating-tower floats in such a way that no more than 20% of the 

collective volume of the ∈cubocta
floating is immersed in the water. Moreover, since the 

∈cube
tower and the ∈cubocta

tower are morphologically same, the CEcube-cubocta-floating-tower 

will basically be populating hollow cuboctahedra both vertically (to make a tower 

while following the Ψtower
cubocta) and horizontally (to ensure the tower floats while 

following the Ψfloating
cubocta). Thus fig. 4.40 below exemplifies a ∈multi

initial array, and 

documents its implementation of the assumptions made for the Ψfloating
cubocta above. 

Figure 4.40 – Example implementation of Ψtower
cubocta followed by Ψfloating

cubocta for the runtime 

of a CEcube-cubocta-floating-tower with 4 ∈multi
initial. Model and Illustration by Author (October 2019). 

As illustrated above, at ttick_0 interval array of five ∈multi
initial elements employs a Ψtower 

and spawns four more ∈cubocta
tower at the ttick_1 interval thus making a total of nine 

∈multi
initial elements. Without the implementation of the Ψfloating at the ttick_1 interval, 

the CE would still float, albeit with 22.5% immersion of its ∈multi
initial elements. This is 

barred as per the assumptions, and thus, at ttick_2 interval, one new ∈cubocta
floating is 

spawned which ensures 18% immersion of the ∈multi
initial and the ∈cubocta

floating 

elements. At ttick_3 interval, four more ∈cubocta
tower are spawned, thus making a total 

of fourteen ∈multi
initial elements. With no new ∈cubocta

floating elements, the CE would 

still float, but now with 26% immersion of its ∈multi
initial elements. This is still barred, 

and thus, at ttick_4 interval, two new ∈cubocta
floating are spawned which ensure 18.5% 

immersion. As the CE reaches its endredundant condition, the CEcube-cubocta-floating-tower  is 

returned. 



Architecture of Computational Ecosystems 

| 4.5 Multi Elements Multi Economies Ecosystem (CEMEME) 225| 

Similar to the consideration of the Ψfloating-tower rulesets for the CEcube-floating-tower, the 

above assumptions will be considered as the Ψfloating-tower
cubocta rule sets, as the 

assumptions examine the results of the Ψtower
cubocta rule and then direct the 

Ψfloating
cubocta, thus serving as a prioritizing junction. Ψfloating-tower

cubocta rule set also 

serves as a time buffer, as it halts to compute how many ∈cubocta
floating are required to 

be spawned. Similar to its previous applications for the CEcube-cubocta-tower and the 

CEcube-floating-tower, the state conditions of the amalgam - CEcube-cubocta-floating-tower will 

also be determined by employing the Conway Model of CA (refer 2.3.2). Thus, 

considering the CEMESE and the CESEME as precedence, and deriving from the Conway 

Model, the state conditions for the CEcube-cubocta-floating-tower can be established as  – 

• Every existing ∈multi-n+1 at the ttick-n+1 interval interacts with its N consideration 

of either the ∈cube-n (as Ncube-n) or ∈cubocta-n (as Ncubocta-n) at the ttick-n interval, 

thus performing Ncheck. For the ttick-n+1 interval, it then performs the Nform 

routine as part of the Ψtower
cube, Ψtower

cubocta, and Ψtower
cube-cubocta based on the 

following conditions – 

o If the N is Ncube-n with an array of two or three ∈multi at the ttick-n 

interval, the Nform spawns a ∈cube-n+1 for the ttick-n+1 interval. 

o Also, for the Ncubocta-n with an array of two or three ∈multi at the ttick-n 

interval, the Nform spawns a ∈cubocta-n+1 for the ttick-n+1 interval. 

• Every non-existing ∈multi-n+1 at the ttick-n+1 interval interacts with its Ncube-cubocta 

at the ttick-n interval, thus performing Ncheck. For the ttick-n+1 interval, it then 

performs the Nform as part of the Ψtower
cube, Ψtower

cubocta, and Ψtower
cube-cubocta 

based on the following conditions – 

o With an array of four ∈multi in its Ncube-cubocta at the ttick-n interval, the 

Nform spawns a ∈cubocta-n+1 for the ttick-n+1 interval. 
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o With an array of three ∈cube or four ∈cubocta in its Ncube-cubocta at the ttick-

n interval, the Nform spawns a ∈cubocta-n+1 for the ttick-n+1 interval. 

• For every other condition of Ncheck at the ttick-n interval, as part of the 

Ψtower
cube, Ψtower

cubocta, and Ψtower
cube-cubocta, the Nform culls all the existing or 

non-existing ∈multi for the ttick-n+1 interval. 

• At every ttick-n+1 interval, as part of the Ψfloating-tower
cube, Ψfloating-tower

cubocta, and 

Ψfloating-tower
cube-cubocta, the cardinality of ∈cube-n

tower elements that are newly 

spawned and those that are not culled is measured, and the total number of 

new elements n∈multi-n+1
floating elements is determined by – 

o Reducing the cardinality of the ∈cube-n
tower elements in the ttick-n 

interval from the cardinality of the ∈cube-n
tower elements in the ttick-n+1 

interval. This determines the n∈cube-n+1
floating elements. 

o Reducing the cardinality of the ∈cubocta-n
tower elements in the ttick-n 

interval from that of the ∈cubocta-n
tower elements in the ttick-n+1 interval 

and determining two-third of the result thus obtained. This 

determines the n∈cubocta-n+1
floating elements. 

• Every ∈cube-n+1
floating

 at the ttick-n+1 interval interacts with the Ncube
floating of its 

preceding ∈cube-n
floating at the ttick-n interval, thus performing Ncube

floating-check. 

For the ttick-n+1 interval, it then performs the Nform routine based on the 

following conditions as part of the Ψfloating
cube, and Ψfloating

cube-cubocta, until the 

required n∈cube-n+1
floating elements is met – 

o Any non-existing (culled) ∈cube-n
floating with no existing ∈cube-n

floating in its 

Ncube
floating is spawned for the ttick-n+1 interval, as if it was being 

perfectly supported by its counterparts on the edge of the cube, thus 

leaving the faces open for access. 
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o Any non-existing (culled) or existing (spawned) ∈cube-n
floating with any 

number of existing ∈cube-n
floating in its Ncube

floating remains culled or is 

culled for the ttick-n+1 interval, as if it was blocking access, and thus 

would not sufficiently provide buoyancy. 

• Every ∈cubocta-n+1
floating

 at the ttick-n+1 interval interacts with the Ncubocta
floating of 

its preceding ∈cube-n
floating at the ttick-n interval, thus performing distinct 

Ncubocta
floating-check. For the ttick-n+1 interval, it then performs the Nform routine 

based on the following conditions as the Ψfloating
cubocta, and Ψfloating

cube-cubocta, 

until the required n∈cubocta-n+1
floating elements is met – 

o Any non-existing (culled) ∈cubocta-n
floating with one existing ∈cubocta-

n
floating in its Ncubocta

floating or 1 existing ∈cube-cubocta-n
floating in its Ncube-

cubocta
floating but not both, is spawned for the ttick-n+1 interval, as if it was 

being perfectly supported by its counterparts on the edge of the cube, 

thus leaving the faces open for access. 

o Any non-existing (culled) or existing (spawned) ∈cube-n
floating with any 

other number of existing ∈cubocta-n
floating or ∈cube-cubocta-n

floating in its 

Ncubocta
floating or Ncube-cubocta

floating remains culled or is culled for the next 

ttick-n+1 interval, as if it was blocking access, and thus would not 

sufficiently provide buoyancy. 

At ttick-n interval the CE perfroms the Ψtower
cube, Ψtower

cubocta, and Ψtower
cube-cubocta state 

conditions in unison, and at the ttick-n+1 interval, it performs the Ψfloating-tower
cube, 

Ψfloating-tower
cubocta, and Ψfloating-tower

cube-cubocta to determine the n∈cube-n+1
floating and 

n∈cubocta-n+1
floating elements, after which it activates the Ψfloating

cube, Ψfloating
cubocta, and 

Ψfloating
cube-cubocta, until the required n∈multi-n+1

floating elements is met, after which the 

CE is returned to the user as an iteration. Contrary to the previous taxa, the 

construction of the CEcube-cubocta-floating-tower is much more complex, and has a wide 

range of Ψspawn and Ψspawn conditions, and thus can’t be illustrated categorically.  
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4.5.3 Prototyping 

The state conditions in terms of the Ncheck and the Nform routines of all the Ψ entities 

that determine all the distinct Stack operations for all the ∈multi array (and the 

individual ∈cube array,  ∈cubocta array, and ∈cube-cubocta array) have been sufficiently 

documented. Although, owing to the multiplicity of the ∈ and the Ψ parameters, the 

illustrations for all the possible Ψspawn and Ψcull situations have not been 

demonstrated. However, similar to the computational logic of the CEcube-cubocta-tower 

and the CEcube-floating-tower, the CEcube-cubocta-floating-tower serving as an amalgam of the 

two, can have generalized stack conditions as summarized below – 

• As part of the distinct Ψtower – If the cardinality of the Ncube
tower consideration 

for an existing ∈multi
tower is equal to two or three, the ∈cube

tower survives (i.e. 

not culled). If the cardinality is otherwise, the ∈cube
tower does not survive (i.e. 

culled). And if the cardinality of the Ncube
tower consideration for a non-existing 

∈multi
tower is equal to four, the ∈cubocta

tower is created (i.e. spawned). If the 

cardinality is otherwise, the ∈multi
tower is not created (i.e. not spawned). 

• As part of the distinct Ψfloating-tower – Thereafter, at every tick the cardinality 

of the ∈multi
tower is checked, and based on the assumptions for the Ψfloating-tower 

the n∈multi
floating is distinctly determined and used for the Ψfloating. 

• As part of the Ψfloating – If the cardinality of the Nmulti
floating consideration for a 

non-existing ∈multi
floating is equal to 0, the ∈cube

floating is created (i.e. spawned). 

If the cardinality of the Nmulti
floating consideration for a non-existing ∈multi

floating 

is equal to 1, the ∈cubocta
floating is created (i.e. spawned). if the cardinality is 

otherwise, ∈multi
floating is not created (i.e. not spawned). 

As a natural progression, UML Sequence Diagram needs to be established to 

prototype the CEMEME. Fig. 4.41 and fig. 4.42, thus jointly illustrate UML Sequence 

diagram that determines the outcome of several different CEcube-cubocta-floating-tower. 
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Figure 4.41 – The UML Sequence Diagram for a CEcube-cubocta-floating-tower with the role, 

interaction and runtime of all the ∈ entities and Ψ entities, and their dependencies for the Early 

Rest condition. Illustration and graphics by Author (November 2019). 
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Figure 4.42 – The UML Sequence Diagram for a CEcube-cubocta-floating-tower with the role, 

interaction and runtime of all the ∈ entities and Ψ entities, and their dependencies for the Final 

Rest condition. Illustration and graphics by Author (November 2019). 
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As the CEcube-cubocta-floating-tower serves as a conceptual amalgam of the CEcube-cubocta-tower, 

and the CEcube-floating-tower, all the aforementioned state conditions are supported by 

the entire series of procedural sequences (with case studies, simulation and 

prototyping) performed on the previous taxa, and thus need not be tested again. 

However, regarding the new state conditions pertaining to the Ψfloating entities, and 

the complexities generated by the multiplicity of both the ∈ and the  Ψ parameters is 

unprecedented in the previous procedural sequences of this research and thus 

necessitates rigorous evaluation, testing, prototyping and versioning if required. 

Moreover, it has been observed in the previous taxa (particularly in 4.4.4) that the 

symbiotic relation sought between the built form and the algorithm (and thus 

generated, maintained and taxonomized by means of all the CE that this thesis has 

demonstrated so far), has only been rigorously tested by means Computational 

Design, and not yet been empirically tested by means of Digital Fabrication. Thus, 

the prototyping of this taxon seeks to fulfill this objective by conducting a workshop 

that focuses on digital fabrication by means of additive manufacturing. Due to the 

ease of operation, readily available resources and absolute repeatability of iterations, 

FDM (Fused Deposition Modelling) printing has been considered as the chosen means 

of additive manufacturing.  

Moreover, the CEMEME is perfectly suited to be evaluated by means of fabrication 

owing to the presence of the multiplicities of both the ∈ and the  Ψ parameters. 

Although effective 3D printability by means of FDM printing machines can also be 

considered as an interdependent Ψ parameter, such an entity (as it relies heavily on 

the type of printer and the material used for printing) was ignored at this stage. 

However, the concept of a floating tower in the form of the CEcube-cubocta-floating-tower 

could be directly considered for prototyping in a manner that the test confirms if the 

outcome survives several floors of stacked material while being able to float on 

water. Although, the built form cannot be constructed while the algorithm performs 

the computation (sadly, the kind of machinery isn’t available as yet!), a 3D printed 

prototype could be evaluated for its performance as a floating tower.  
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To perform the evaluations in a didactic format, the author conducted a workshop 

which aimed at prototyping the CEMEME (in the form of the CEcube-cubocta-floating-tower) by 

performing computational simulations to test, evaluate, taxonomize and if required, 

amend and update the CE. The workshop, titled as ‘Digital Fabrication Workshop’ 

was conducted in December 2019 at IES (Indian Education Society’s) College of 

Architecture in Mumbai, India. It was attended by 10 candidates – 4 candidates 

practicing architecture in the AEC Industry in Mumbai, India and 6 candidates 

pursuing the B.Arch. degree (students of the 7th and 9th semesters). 

For the testing, participants were first introduced to the concept of Computational 

Ecosystems and its research, and were provided with a lecture on Cellular Automata 

and its implementation in the research. Further, the participants were demonstrated 

with several results that were obtained in the previous iterations of similar 

workshops (i.e. the Designing ways of designing workshop conducted at IES, 

Mumbai – as elaborated in 4.2.3, and the Computation as a Design tool workshop 

conducted at RIT, Kottayam – as elaborated in 4.3.3).As the participants were not 

well versed with using any computational design software, they were tutored on 

using different tools and functionalities with Rhino 7 and Grasshopper 3D that were 

relevant to the research on Computational Ecosystems. The participants were also 

encouraged to test the already established CEcube-tower, CEcube-cubocta-tower, and CEcube-

floating-tower before explicitly evaluating the CEcube-cubocta-floating-tower. Moreover, the 

participants were not particularly well versed in using FDM printers as a digital 

fabrication tool. Since the outcomes of the CEcube-cubocta-floating-tower were to be 

prototyped on an FDM Printer of the make – Creality Ender 3 Pro140 using PLA (Poly 

Lactic Acid – commonly used filament based 3D printing material) plastic, the 

participants were tutored on using different tools related to modelling 3D printable 

geometry, slicing 3D printing tool paths, handling a 3D printer for accurate and 

effective 3d prints and finally cleaning and post processing a 3D print.  

 
140 Ender 3 Pro (2018). Shenzen, PRC: Shenzhen Creality 3D Technology Co, Ltd. 
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After establishing and upgrading their computational skills to a considerable level, 

the participants were individually tasked with testing the CEcube-cubocta-floating-tower. 

Although they were asked to test the algorithm with ∈multi
initial Array of 10 to 12, the 

participants were encouraged to experiment with higher number of ∈multi
initial Array.  

After the successful trials of the, fig. 4.43 illustrates the computational outcome of 

one of the tallest CEcube-cubocta-floating-tower with 15 ∈multi
initial that was generated during 

the ‘Digital Fabrication Workshop’. The figure shows the initial state denoted by ◼ 

colored cube (R,G,B – 129,129,129), the rest of the ∈multi
tower denoted by ◼ (R,G,B – 

204,204,204) colored cube, and the ∈multi
floating denoted by ◼ (R,G,B – 207,235,255). 

Figure 4.43 – Computational Design Prototype of a selected CEcube-cubocta-floating-tower with 15 

∈cube
initial that had a runtime of 16 ttick before reaching the rest state. Model, algorithm, 

Illustration, and graphics, by Author (December, 2019). 
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Whereas, fig. 4.44 shown below illustrates the outcome in the form of Digital 

Fabrication of the CEcube-cubocta-floating-tower demonstrated in its computational form in 

fig. 4.43 with 15 ∈multi
initial generated during the ‘Digital Fabrication Workshop’. The 

digitally fabricated version photographed below has been considerably tweaked to 

convert edge conditions of ∈cube and ∈cubocta into 3D printable chords. However, care 

has been taken to keep the morphology intact. 

Figure 4.44 – Digital Fabrication Prototype of the selected CEcube-cubocta-floating-tower with 15 

∈cube
initial that had a runtime of 16 ttick before reaching the rest state. Model, algorithm, 

Illustration, graphics, and photograph by Author (December, 2019). 
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4.5.4 CEMEME 

Similar to the previous taxa (as explained in 4.2.4, 4.3.4 and 4.4.4), fig. 4.43 and fig. 

4.44 sufficiently demonstrate the prototyping of the CEcube-cubocta-floating-tower, however, 

more outcomes focusing on the taxonomy creation have been illustrated in the next 

chapter (5| On the consequences of Computational Ecosystems) with further analysis 

comparing all the other taxa from the procedural sequences in chapter 6 (On the 

investigative analysis of Computational Ecosystems). However, as the CEMEME serves 

as an amalgamation of the CEMESE and the CESEME, the amendments made in its 

methodology should be addressed as the following – 

• The multiplicity of both the ∈ and the  Ψ parameters has dictated the CEMEME 

to considerably simulate real-life built form, thus further moving away from 

the highly computational resemblance to the outcomes of 3D CA. 

• Expanding on the previously assumed parameters for the different 

environments to multiple agents, the CEMEME also demonstrates how a CE 

with higher complexity can be molded and programmed into performing the 

desired architectural intent. 

• The introduction of the digital fabrication in prototyping by means of the 

successful results of the Digital Fabrication Workshop (more results in 5.4) 

provides a direct link in the workflow of Computational Design being used in 

unison with Digital Fabrication to form a CE that in turn serves as a link 

between the built form and the algorithm (thereby bypassing design). 

Thus, the CEMEME quite adequately handles the maximum complexity that could come 

out of the multiplicity in the distinct ∈ and Ψ entities (as long as the example scenario 

is followed). Although quite distinct and complex compared to the previous taxa, 

after methodically following the procedural sequences, similar outcomes could be 

generated. 
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4.6 Procedural sequences for Computational Ecosystems 

All the four taxa - CESESE, CEMESE, CESEME, and CEMEME which were explicitly theorized, 

taxonomized, evaluated and fabricated as explained thus far, have undergone the 

primary objectives – Case studies, Simulations, and Prototyping in this chapter. 

Although each taxon has had a slightly modified, bespoke version for the entire 

methodology, following are the key methodological milestones in the Architecture of 

Computational Ecosystems so far – 

• Case Studies – Documenting similar ecosystems (preferably observed in 

nature) with participating agents governed by simple rules that could be 

simulated computationally. 

• Analogical Assessment – Identifying exact and precise analogies in terms of 

the ∈ and Ψ parameters between the case study and the desired CE. Also, 

identifying the taxon that the CE falls in (CESESE, CEMESE, CESEME, or CEMEME). 

• UML Class Diagram – Establishing UML Class diagram for all the identified ∈ 

and Ψ parameters, and their specific morphological parameters, considering 

which will be user determined and which will be context dependent. 

• CA Identification – Assessing all the different classes determined in the UML 

Class Diagram and identifying the appropriate CA model that could be 

relevant to perform the CE. 

• ∈ and Ψ entities – Setting up Neighbourhood Conditions for all the specific ∈ 

entities and State Conditions for all the distinct Ψ entities identified in the 

UML Class diagram. A detailed illustration providing the various Ψspawn and 

Ψcull conditions for specific Ncheck and Nform routines is particularly helpful.  



Architecture of Computational Ecosystems 

| 4.6 Procedural sequences for Computational Ecosystems 237| 

• UML Sequence Diagram - Establishing UML Sequence diagram for the distinct 

∈ and Ψ entities determining their distinct roles, interactions and runtimes as 

compared to the sequence of the entire CE. Here, the role, interaction and 

runtime of the user and the introduction of possible partial intermediate CE 

can also be elaborated. 

• Computational Prototyping – Simulating all possible initial conditions with a 

lower number of initial ∈ entities but for the entire runtime and rest states of 

the CE. Here, several iterations are spontaneously generated and can be used 

to offer an initial evaluation of the CE. 

• Computational Evaluation – Evaluating the CE with 3rd party testers (in case 

of the research, this objective was achieved by conducting several workshops 

as mentioned previously) for bugs, redundancies and code compliances. A 

versioning of the CE could also be done at this stage of required. 

• Production Evaluation – Eventually perform digital fabrication by means of 

predetermined production technique thereby testing the CE as a feedback 

loop between the Built form and the Algorithm.  

Although the above stated methodological milestones are crucial in establishing any 

CE, the above list is not exhaustive and several more steps can be appended or 

removed as required by the user. 
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5| On the consequences of the Computational 
Ecosystems 

Just like the previous chapter that defines, exemplifies and illustrates the procedural 

sequences for all the taxa by focusing on the methodology of this research, this 

chapter explicitly illustrates the different outcomes of the all the taxa by focusing on 

the results of this research. The structure of the thesis (refer 1.3.2), specifically choses 

to combine the methodology, results and discussions for all the taxa into separate 

chapters rather than dealing with separated methodologies, results and discussions 

per taxon. The decision comes with the following advantages – 

• In this way, the methodologies, results and discussions can share the common 

semantics across taxa, without having to repeat the concepts several times.  

• Apart from reducing redundancies, this also showcases the intuitive thought 

processes and computational decisions that were taken before establishing 

each taxon, as the complexity progresses. 

• Moreover, when all the taxa are combined together, especially in the results 

and discussion sections, the outcomes and analysis for each taxon can be 

done comparatively while understanding the benefits of one over the other 

in a systematic manner.  

• Finally, it serves as an analogy to the timeline adopted at the beginning of the 

research, where in the operational objectives of the research, all the taxa 

were theorized, taxonomized and prototyped simultaneously. 

Apart from showcasing the results, which are absolutely graphical in nature, this 

chapter also introduces some folksonomies (user tagging system as explained in 

3.2.1) that are associated to all the specific iterations for each of the predetermined 

4 taxa – CESESE, CEMESE, CESEME, and CEMEME. 
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5.1 Results of CESESE 

As the prototypical results of a CEcube-tower have already been illustrated in fig. 4.11 

and fig. 4.12, the following fig. 5.1 and fig. 5.2 illustrate a few selected iterations of a 

CEcube-tower with 12 ∈cube
initial . As described previously, the figure shows the initial 

state denoted by ◼ colored cube (R,G,B – 129,129,129), and the rest of the ∈cube in 

the CEcube-tower thus denoted by ◼ (R,G,B – 204,204,204) colored cube. 

 

Figure 5.1 – Selected iterations of CEcube-tower with 15 ∈cube
initial with varying runtimes until 

individual rest state are reached. Model, algorithm, Illustration and graphics by Author (June 

2018). 
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Figure 5.2 – Selected iterations of CEcube-tower with 15 ∈cube
initial with varying runtimes until 

individual rest state are reached. Model, algorithm, Illustration and graphics by Author (June 

2018). 
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The 6 iterations of CEcube-tower illustrated in fig. 5.1 and fig. 5.2 clearly demonstrate 

how the different ∈cube
initial conditions affect the morphology of the CEcube-tower. Here, 

all the CEcube-tower begin with 15 ∈cube when the designer initiates the algorithm 

however, depending on the Ncheck and Nform routines, and influenced by CEcube-tower 

rest conditions, they terminate in a wide range of shapes. Following are some 

observations for all the individual CEcube-tower illustrated in fig. 5.1 and fig. 5.2 – 

• CEcube-tower 15-8 – With 100 ∈cube, this CEcube-tower halts at the 8th level due to the 

endredundancy condition. As it has a balanced combination of regular and 

irregular assemblages, it can be #hospitality or #commercial architecture. 

• CEcube-tower 15-12 – With 165 ∈cube, this CEcube-tower halts at the 12th level due to 

the endcull condition. Because of some highly ordered assemblages, it can be 

used as a #mixed-use building for #residential and #commercial architecture. 

• CEcube-tower 15-7 – With 46 ∈cube, this CEcube-tower halts at the 7th level due to the 

endcull condition. Due to the availability of a stark contrast in volumes it is 

ideal for #hospitality, #healthcare or #educational architecture.  

• CEcube-tower 15-4 – With a mere 29 ∈cube, this CEcube-tower manages only to rise up 

to 4 levels before it is halted by the algorithm owing to the endredundancy 

condition. It can hardly be of any use in any architectural application. 

• CEcube-tower 15-24 – With 259 ∈cube, this CEcube-tower halts at the 24th level as it 

reaches the endcull condition. Due to its decent height and a good proportion 

of irregular ∈cube stacking, it is ideal for #high-density #residential towers. 

• CEcube-tower 15-24 – The tallest in this selection with a whopping 507 ∈cube, it halts 

at the 36th level due to the endredundancy condition. Owing to its considerable 

height and some highly ordered assemblages, it can also be used as a #mixed-

use building for #residential and #commercial architecture. 
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5.2 Results of CEMESE 

As the prototypical results of a CEcube-cubocta-tower have already been illustrated in fig. 

4.24 and fig. 4.25, the following fig. 5.3 and fig. 5.4 illustrate a few selected iterations 

of several CEcube-cubocta-tower with 15 ∈multi
initial . As described previously, the figure 

shows the initial state denoted by ◼ colored cube (R,G,B – 129,129,129), and the rest 

of the tower thus denoted by ◼ (R,G,B – 204,204,204) colored cube. 

 

Figure 5.3 – Selected iterations of CEcube-cubocta-tower with 15 ∈cube
initial with varying runtimes until 

individual rest state are reached. Model, algorithm, Illustration and graphics by Author (July 

2019). 
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Figure 5.4 – Selected iterations of CEcube-cubocta-tower with 15 ∈cube
initial with varying runtimes until 

individual rest state are reached. Model, algorithm, Illustration and graphics by Author (July 

2019). 
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The 5 iterations of CEcube-cubocta-tower illustrated in fig. 5.3 and fig. 5.4 demonstrate how 

the different ∈cube
initial conditions affect the morphology of the CEcube-cubocta-tower. 

Here, all the CEcube-cubocta-tower begin with 15 ∈cube when the designer initiates the 

algorithm however, depending on the Ncheck and Nform routines, and influenced by the 

CEcube-cubocta-tower rest conditions, they terminate in varied shapes. Following are some 

observations for all the individual CEcube-cubocta-tower illustrated in fig. 5.3 and fig. 5.4 – 

• CEcube-cubocta-tower
15-17 – With 143 ∈multi, this CEcube-cubocta-tower halts at the 17th 

level due to the endcull condition. Owing to a bulk of aggregation until the 8th 

level, and an isolated tower, this CEcube-cubocta-tower could be implemented as a 

#mixed-use building for #residential and #commercial architecture. 

• CEcube-cubocta-tower
15-21 – With 170 ∈multi, this CEcube-tower halts at the 21st level 

due to the endredundant condition. Because of some ordered assemblages, it 

can be a #mixed-use building for #residential and #commercial architecture. 

• CEcube-cubocta-tower
15-17 – With 133 ∈multi, this CEcube-cubocta-tower halts at the 17th 

level due to the endredundant condition. Owing to its slender verticality after the 

6th level and the availability of a lot of open space on the 6th level, this CE could 

be implemented as an #Urban #Hotel architecture. 

• CEcube-cubocta-tower
15-46 – The tallest in this selection with 377 ∈multi, it halts at the 

46th level due to the endredundant condition. Owing to its considerable height 

and some highly ordered assemblages, it can also be used as a #mixed-use 

tower for #residential, #commercial and #hospitality architecture. 

• CEcube-cubocta-tower
 15-33 – Another example of vertical growth, this tower with 

329 ∈multi, halts at the 33rd level due to the endcull condition. Owing to its 

decent height and a healthy blend of the ∈multi and ∈multi entities while 

retaining enough built form, this CEcube-cubocta-tower can be very effectively used 

as a #mixed-use tower for #residential, #commercial and #hospitality. 
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5.3 Results of CESEME 

As the prototypical results of a CEcube-floating-tower have already been illustrated in fig. 

4.36 and fig. 4.37, the following fig. 5.5 and 5.6 illustrate a few selected iterations of 

several CEcube-floating-tower with 15 ∈multi
initial . The figure shows the initial state denoted 

by ◼ (R,G,B – 129,129,129), the rest of the ∈cube
tower denoted by ◼ (R,G,B – 

204,204,204) colored cube, and the ∈cube
floating denoted by ◼ (R,G,B – 207,235,255). 

 

Figure 5.5 – Selected iterations of CEcube-floating-tower with 15 ∈cube
initial with varying runtimes until 

individual rest state are reached. Model, algorithm, Illustration and graphics by Author (July 

2019). 
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Figure 5.6 – Selected iterations of CEcube-floating-tower with 15 ∈cube
initial with varying runtimes until 

individual rest state are reached. Model, algorithm, Illustration and graphics by Author (July 

2019). 
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The 5 iterations of CEcube-floating-tower illustrated in fig. 5.5 and fig. 5.6 demonstrate how 

the different ∈multi
initial conditions affect the morphology of the CEcube-floating-tower. 

Here, all the CEcube-floating-tower begin with 15 ∈multi
initial when the designer initiates the 

algorithm, however, depending on the Ncheck and Nform routines, and influenced by 

the CEcube-floating-tower rest conditions, they terminate in a wide range of shapes. 

Following are some observations for all the CE illustrated in fig. 5.5 and fig. 5.6 – 

• CEcube-floating-tower
15-7 – With 46 ∈cube

tower and 34 ∈cube
floating this CEcube-floating-tower 

halts at the 7th level due to the endcull condition. And to counter the weight of 

the 46 ∈cube
tower elements it spawns 19 additional ∈cube

floating elements to keep 

the tower afloat. Owing to a large open foreground that could serve as a 

docking station, this CEcube-cubocta-tower with a very organized and contained 

tower could be treated as a #healthcare or #research facility. 

• CEcube-floating-tower
15-24 – With an organized distribution of 259 ∈cube

tower 

elements forming the tower, and 246 ∈cube
floating elements as part of the 

floating raft, this CEcube-floating-tower rises up to 24 levels after halting due to the 

endcull condition. The additional ∈cube
floating elements that it spawns are evenly 

distributed on all the sides of the tower. Because of several segregated 

assemblages, this CEcube-cubocta-tower could serve as several #residential towers. 

• CEcube-floating-tower
15-39 – With a whopping 520 ∈cube

tower elements in the tower 

and an additionally spawned 389 ∈cube
floating elements, this CEcube-floating-tower 

halts at the 39th level due to the endredundant condition. This CEcube-cubocta-tower 

has an uncommon combination of assemblages that can trifurcate the entire 

tower. The bulky but organized base can be concentrated with #commercial 

activity. The central part branches into the tower and open space, where the 

tower can be #residential or #offices, and the open space can serve as an 

#elevated #park. Also, the raft has a unique assemblage that allows a lot of 

interesting niches that could be used to accommodate a plenty of #public and 

#infrastructural activities. 
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5.4 Results of CEMEME 

As the prototypical results of a CEcube-cubocta-floating-tower have already been illustrated 

in fig. 4.43 and fig. 4.44, the following fig. 5.7 and 5.8 illustrate selected iterations of 

the CEcube-cubocta-floating-tower with 15 ∈multi
initial . The figure shows the initial state 

denoted by ◼ (R,G,B – 129,129,129), the rest of the ∈multi
tower denoted by ◼ (R,G,B – 

204,204,204), and the ∈multi
floating denoted by ◼ (R,G,B – 207,235,255). 

 

Figure 5.7 – Process of selected CEcube-cubocta-floating-tower with 15 ∈multi
initial being transformed for 

Digital Fabrication. Model, algorithm, Illustration and Photograph by Author (December 2019). 
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Figure 5.8 – Selected 3D printed iteration of CEcube-cubocta-floating-tower with 15 ∈multi
initial until 

individual rest state is reached. Model, algorithm, Illustration and graphics by Author 

(December 2019). 
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The iterations of CEcube-cubocta-floating-tower illustrated in fig. 5.7 and 5.8 demonstrate 

how the different ∈multi
initial conditions affect the morphology of the CE. Both the CE 

begin with 15 ∈multi
initial when the designer initiates the algorithm, but depending on 

the Ncheck and Nform routines, and influenced by the CEcube-cubocta-floating-tower rest 

conditions, they terminate into different results. Apart from illustrating the 

outcomes, however, fig. 5.7 elaborates the process of transforming an existing, 

performing and completed CE into a 3D-printable object in order to perform the 

evaluations in real-physical environments. The steps taken for the entire process are 

elaborated as following – 

• Step 1 – Computational Simulations – Here, the finished result at the Final 

End Condition (or Early End Condition, although the former is preferred) of 

the CE is outputted and assimilated with all its specific components. 

• Step 2 – Topology Voxelization – Here, all the ∈multi are considered merely as 

points (centered on the individual ∈multi agents). These points are then 

processed into forming voxels (3D pixels) by making sure that each voxel 

replicates the surface area of the original ∈multi agent. 

• Step 3 – Volume Optimization – In this step the voxelization is further reduced 

to form optimum structures while making sure that ratio of the volume to 

bottom surface of are of the entire CE remains the same. 

• Step 4 – Digital fabrication – After converting the volume optimization into a 

3D printer tool path (G-code), the finished print is weighed, and evaluated. 

Like in the case of a CEcube-cubocta-floating-tower it is tested to ensure vertical 

spanning strength (by FDM printing without supports) and buoyancy (by 

dropping the print in water and checking its immersion percentage). 

These four steps have also been used for the result shown in fig. 5.8, and any other 

prototype of CEcube-cubocta-floating-tower that would be done. 
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5.5 Conclusive thoughts on the results of all the taxa 

Having illustrated some selected results for the prototyped executions of all the four 

taxa thus far, the research thus concludes the execution of the procedural sequences 

in performing the primary objectives for the CESESE, CEMESE, CESEME, and CEMEME. The 

chapter in this thesis also concludes the illustration of outcomes for the selected 

initial conditions. 

Fig. 5.1 to fig. 5.8 help in illustrating some of the key findings in all the taxa, which 

will be elaborated upon by comparing the results across taxa in the next chapter (as 

in 6| On the investigative analysis of the Computational Ecosystems). These findings 

can be defined as the following: 

• Different morphologies of the outcomes are governed by the following 

factors – 

o The ∈ entities – Naturally, the physical properties and the various 

assemblages of the ∈ entities (either biotic, or abiotic, or both). 

o The Ψ entities – The distinct rule sets which in turn dictate the state 

conditions in the form of the Ψ entities (both distinct and symbiotic). 

o The Neighbourhood (N) – One of the very important aspects of the 

computational environment which is the N condition for each ∈ and 

Ψ. 

o The Initial State – By far the most divisive parameter, which is capable 

of generating various iterations within a predetermined taxon with all 

the above parameters (∈, Ψ, and N) unchanged. 
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• Depending on the predetermined ∈ and Ψ entities, a CE can be drastically 

varied to accommodate the purpose by varying the multiplicity of one or both 

of the ∈ and Ψ entities. 

• Moreover, although one of the ∈ and Ψ entities is singular, the multiplicity of 

the latter will amount to a certain degree of multiplicity in the former. 

• The ∈ entities are semantically capable of being variable parameters for a 

wide range of agents such as geometries, topologies, and organisms as 

demonstrated in the example scenarios. 

• The Ψ entities are semantically capable of being variable parameters for a 

wide range of functions such as structural assemblages, geological conditions, 

and even fabrication constraints as demonstrated in the example scenarios. 
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6| On the investigative analysis of the 
Computational Ecosystems 

Having theorized, simulated, taxonomized, versioned, and prototyped the proof of 

concept for all the four taxa – CESESE, CEMESE, CESEME, and CEMEME, the thesis can now 

elaborate upon the specific inferences generated by comparing all the outcomes and 

results of these four taxa against each other. It can now also be discussed how these 

inferences can be implemented in developing several more CE (conforming to either 

of the four taxa  theoretically and semantically).  

Thus, for the ease of comprehension this chapter (which serves as a conclusive end 

to all the possibilities within the four taxa, before diving into the conclusions and 

projections for CE) elaborates upon the similarities and differences across the four 

taxa under two different conditions of variability which can be described as – 

• By considering the same initial state for different ∈, Ψ, and N – Comparing 

the results for the same initial state while ∈, Ψ, and N vary as per 

considerations of distinct taxa. 

• By considering different initial states for the same ∈, Ψ, and N – Comparing 

the results for different initials state while ∈, Ψ, and N are considered for the 

already established CEMEME – CEcube-cubocta-floating-tower. 

Moreover, this chapter shows how CE (built on the computational framework of CA) 

could perform as a dynamic, reciprocal, symbiotic feedback loop while having  

A built form that was constructed, monitored and governed by an autonomous, 

unbiased algorithm 

and an algorithm that was dynamically constructed, monitored and governed by 

the built form. 
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6.1 Effects of distinct ∈, Ψ, and N 

This thesis has already illustrated several selected CE for the example scenarios 

developed as part of the procedural sequences for all the four distinct taxa (chapters 

4| and 5|). However, the results of these specific initial states were chosen for their 

distinct outcomes which were demonstrating possibilities to be implemented in a 

varied range of architectural typologies. Some, of these outcomes were also 

specifically chosen to demonstrate specific physical properties such as the tallest 

towers, towers with maximum number of ∈multi, or CE with specific assemblages 

useful for specific architectural typologies. 

A comparative analysis of different CE with distinct ∈, Ψ, and N considerations for 

the same initial states, however, has not been performed yet, and this section 

elaborates on the same. Fig. 6.1 shown alongside, illustrates the construction of four 

CE – CEcube-tower (as the CESESE), CEcube-cubocta-tower (as the CEMESE), CEcube-floating-tower (as the 

CESEME) , and CEcube-cubocta-floating-tower (as the CEMEME) initiated with the same initial 

state with 15 ∈multi
initial. Although semantically speaking, not all the taxa can share the 

same initial state due to the multiplicity of the ∈, Ψ, and N considerations. However, 

the CESESE, and CESEME (due to their ∈ entity singularity) could have the same ∈multi
initial 

conditions. Similarly, the CEMESE, and CEMEME (due to their ∈ entity multiplicity) could 

have the same ∈multi
initial conditions. Although this is not true for all the CESESE – CESEME 

and CEMESE – CEMEME combinations always, but for the example scenarios (elaborated 

in 4|), as they have cube-cuboctahedra combinations. 

Considering the results illustrated in fig. 6.1, it can be inferred that the predefined 

distinct ∈, Ψ, and N considerations for different CE can be controlled to generalize a 

purpose for the CE, thus forming a crucial link between the built form and the 

algorithm. Conversely, the results also infer, that the same initial state can be 

subjected to accommodate multiple, predefined, ∈, Ψ, and N considerations and 

create multiple CE. 
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Figure 6.1 – Four different CE with the same ∈multi
initial conditions, but different ∈, Ψ, and N 

considerations. Model, algorithm, Illustration and graphics by Author (Jan 2020). 
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6.2 Examples of possible distinct ∈, Ψ, and N for CE 

The ability of a CE to be manipulated differently for distinct ∈, Ψ, and N 

considerations while conforming to the same (or similar) initial state (∈multi
initial) 

illustrated in fig. 6.1 can be used judicially in the physical world (that is in the sense 

of actuality in non-computational environment) while generating and maintaining a 

feedback loop of structural coupling between the built form and the algorithm. 

It is standard practice in the AEC community to conform to building bye-laws that are 

specific to every site (in terms of the urban/suburban/rural governing authority). 

Often these constraints restrict the site condition to follow a certain shape or form, 

which considerably changes the overall design strategy to accommodate the typology 

and  counter other context specific issues. The intelligence employed by the architect 

into solving these issues, comes quite intuitively and cannot be replaced by any CE 

that aspires to replace the design between the built form and the algorithm (as 

explained in 1.1.4), however, some of these solutions could be programmed by 

intuitively varying the ∈, Ψ, and N considerations (as elaborated in 4.6) while 

conforming to the same restrictions on the shape and form of sites (as in an 

unchanged ∈multi
initial). 

Fig. 6.2 illustrates how the results demonstrated in fig. 6.1, can be envisioned as 

different architectural solutions conforming to the same site conditions. While the 

CEcube-tower (as the CESESE) becomes a #Residential tower, the CEcube-cubocta-tower (as the 

CEMESE) is envisioned as a #Floating #Residential tower accommodated within the 

same site boundaries surrounded by a hypothetical access street. The multiplicity in 

the Ψ entities of the CEcube-floating-tower (as the CESEME), and CEcube-cubocta-floating-tower (as 

the CEMEME) shown in fig. 6.1 become #mixed-use #residential #commercial tower 

and #floating #mixed-use #residential #commercial tower respectively. CEMESE and 

CEMEME as their dual environments conform to the same site boundaries as shown in 

the figure. However, the boundaries of their floating pods are quite different. 
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Figure 6.2 – Four different CE with the same ∈multi
initial conditions, envisioned as distinct 

architectural built forms. Model, algorithm, Illustration and graphics by Author (Jan 2020). 
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6.3 Effects of distinct Initial States 

Contrary to the case explained in 6.1 (effects of distinct ∈, Ψ, and N considerations), 

this scenario of having the same ∈, Ψ, and N considerations (as in operating in the 

same predetermined considerations for the CE in question) albeit with distinct Initial 

States has already been sufficiently illustrated and elaborated upon (extensively 

demonstrated in 5|). However, the results have been very superficially observed for 

their physical characteristics such as height, total number of ∈ achieved by the CE, 

and/or the (%) immersion in the liquid, and a comparative analysis considering the 

manner in which the Initial States have an enhanced control over the physical 

properties of the outcomes of the CE hasn’t been really elaborated yet. 

Fig. 6.3, demonstrates 4 distinct outcomes of a specific CE that has already been 

established in this thesis – CEcube-tower (as the CESESE). As sufficiently done by its 

predecessors (in 5.1) the figure illustrates how the same ∈, Ψ, and N considerations 

ensure that the CE serves the same purpose (as in, in this case the purpose is to 

construct a tower out of the stacking assemblages of cubes), however the initial 

states help in generating different iterations that could be manipulated into serving 

a wide range of functional purposes (as in, the different architectural typologies that 

the cube tower can serve based on the specific configuration of its assemblages). 

As shown in fig. 6.3, and although emphasized sufficiently thus far, it should be noted 

that the algorithm can in no possible manner control the morphological outcome of 

the CE purely based on the initial conditions. The initial conditions, which serve as 

mere random aggregation of the ∈ entities have no bearing to the final outcome that 

is returned to the user as part of the Final Rest condition. This observation could 

serve as an extension to the halting problem (Berlekamp, Conway and Guy, 2001).141 

 
141 Berlekamp, E. R., Conway, J. H. and Guy, R. K. (2001). Winning Ways for Your Mathematical Plays. 
2nd ed. Wellesley, Massachusetts: A K Peters, Ltd., p. 276. 
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Figure 6.3 – Four CEcube-tower with the same ∈, Ψ, and N considerations, but different ∈multi
initial 

conditions. Model, algorithm, Illustration and graphics by Author (Jan 2020). 
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6.4 Examples of possible distinct Initial States for CE 

However, this exact property of unpredictability of the actual physical properties of 

the eventual outcome of a CE as compared to its Initial State, can be run through an 

artificial neural network (ANN), where each permutation and combination within the 

domain of the possible initial states could be run through an ANN and the CE could 

be equipped to possibly predict which random Initial State could produce the desired 

outcome. Although performing ANN over the CE has not been the objective of this 

research hypothesis, a possible research trajectory for the further development of CE 

has been suggested in the next chapter (7|). 

Although absolutely unpredictable, the Initial State is still highly instrumental in 

shaping the CE (as has been repeatedly discussed in this thesis). Apart from the 

specific building bye-laws for every context, an AEC project must also conform to a 

wide range of topographical and geological conditions specific to a given site. Fig. 6.4 

illustrates the same four Initial State consideration demonstrated with their 

outcomes in fig. 6.3. Albeit, in fig. 6.4, the Initial States are envisioned as four distinct 

topographical formations (in terms of the possible availability of bedrock) for the 

same given site. Depending on these varied soil conditions, fig. 6.4 illustrates how the 

CEcube-tower (in fact, any CE for that matter) can provide a wide range of possible 

outcomes. As soil analysis is one of the essential prerequisites in any AEC project, this 

data is quite readily available in the industry. Thus, it can be quite effectively 

procured and implemented in outputting more rich and perfect results from a CE.  

Moreover, (following the observations made previously in 4.2.4) the final results of 

the CEcube-tower and the ∈cube
initial conditions were run through the Evolutionary Solver 

of the Galapagos component in Grasshopper. This addition to the CEcube-tower 

(theorized and taxonomized in 4.2) serves as an essential addition in ensuring that 

the final outcomes of the CE could be ranked in terms of either their height or total 

number of pods.  
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Figure 6.4 – Four CEcube-tower with different ∈multi
initial, envisioned as distinct architectural built 

forms. Model, algorithm, Illustration and graphics by Author (Jan 2020). 
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6.5 The inferences of the analysis 

This chapter provides the first series of visuals for a comprehensive end-use for the 

incorporation and implementation of CE in the AEC industry. Although these images 

provide visuals which are quite simulated and computational, these images paint a 

picture of how a CE can be used to express architecture that serves wide range of 

architectural intent. Moreover, the next chapter (7|) helps elaborate how exactly a 

CE can generate more concrete and realistic built forms in a more visual manner. 

This chapter also comes the closest thus far to the practical application of a CE. That 

is, the analysis doesn’t just use the computational semantics introduced in the 

Literary objectives of the CE, but also mentions practical terminology pertaining to 

the AEC industry. Thus, it would now be prudent to state the following – 

• The lexical semantics considered for the theoretical establishment of the 

concept of CE can now be corelated to their counterparts in the AEC industry. 

o ∈ considerations – Can be considered as elements similar to several 

physical elements used in the AEC industry. These could be building 

materials such as bricks, panels, and tiles. Also building components 

such as columns, beams, and slabs. Or enclosures as exemplified in 6.2 

and 6.4, such as pods of different sizes, or enclosures for various 

services and equipment. Or, these could also be a wide range of 

combinations of the above-mentioned examples. 

o Ψ considerations – Can be considered organizing principles similar to 

several physical constraints that dictate built forms in the AEC 

industry. These could be constraints that could be structural, 

functional, topographical, geological, economic, related to energy 

conservation rules, related to services or equipment, or related to 

local bye-laws. 
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Pertaining to these correlations, the observations made in the previous pages (as in 

6.1, 6.2, 6.3, and 6.4) based on the similarities and differences across the four taxa 

under the conditions of variability, can be summarized as followed –  

• Variability of the ∈, Ψ, and N –  

o Different CE can be implemented over the same site conditions to 

generate different outcomes depending on the distinct, 

predetermined considerations of the CE. 

o While keeping the site conditions same, implementing different CE (in 

terms of applying distinct, predetermined ∈, Ψ, and N considerations) 

can be crucial in evaluating which CE develops the most optimum 

result, thereby concluding which variable ∈, Ψ, and N parameters can 

be suited best for a site. 

o In short, a wide range of ∈ considerations mentioned in the 

correlation could be optimized for those mentioned for the Ψ 

considerations in the same site conditions. 

• Variability of the Initial States –  

o The same CE (that is the same ∈, Ψ, and N considerations) could be 

interpolated for different initial states thereby generating a series of 

outcomes, which could be ranked in terms of various different 

parameters such as their height, number of outputted ∈ entities, 

volume, or other similar parameters concerning the built form. 

o The initial states could be representative of a wide range of site 

conditions such as topographical data, infrastructural data, and data 

for the location of services and equipment. 
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7| On the prospective projections for the 
Computational Ecosystems 

After carefully and meticulously analyzing all the predetermined taxa through 

observations made while performing the procedural sequences independently, the 

thesis shall now focus on how the concept of CE can be implemented in various fields 

within the AEC industry. The research trajectories mentioned in this chapter do not 

necessarily refer directly to the operations of the AEC industry, but all the mentioned 

trajectories affect the AEC industry in one way or another. 

The chapter includes empirical results of research methodologies that have already 

been established, performed, and documented by the Author while pursuing the 

research. Thus, although not performing exactly as proof-of-concept, these examples 

serve as a foundation for potential research that can be pursued in these directions. 

As some of these directions exploit the ubiquity of Industry 4.0, a lot of technology 

that is mentioned in this chapter already exists and does not require any additional 

research (in that particular field) to perform the mentioned potential advancement 

of CE. However, some of these examples and research trajectories, have not been 

entirely prototyped by the Author (as the said trajectories are not completely in the 

scope of this research), and thus will be based on speculation. Nonetheless, these 

research trajectories serve as potential sanctuaries for CE to flourish to an extent 

where it can be incorporated in the AEC industry as a novel design automation 

technique that would be a robust link between the built form and the algorithm. 

Apart from exemplifying how CE can be implemented in these industries, the 

empirical results mentioned in this chapter also serve as an example of how 

modelling, analysis and fabrication can be performed simultaneously while 

generating form, space and enclosure for a predetermined architectural intent. 

Moreover, as these results were performed in unison with the respective industries, 

it is quite evident how flexibly and effectively CE can be implemented in these 

industries for a wide range of purposes. 
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7.1 Probable research trajectories in Algorithm-aided-design 

A large portion of this research that has already been established in the previous 

chapters (especially 3.3) dwells on the software infrastructure that has been used by 

the AEC community for the past few decades - CAD. Moreover, the research takes 

advantage of the software infrastructure that has gained prominence with the advent 

of Industry 4.0. As already elucidated in the previous chapters (as in 1.1.4 and 1.2.4) 

a new paradigm of software infrastructure that revolves around the concept of 

Algorithm-aided-design (AAD) has been implemented in the incorporation of the 

research methodology (as seen in 4|). The research very much stems from the 

assumption (refer 1.1.4) for the field of computational design that – 

As computational design becomes more autonomous, the role of design as the 

mediator of a construction project becomes more redundant. 

This assumption has influenced the methodology of this research into implementing 

a significant amount of autonomy in computational design by employing CA as a 

computational framework to generate, taxonomize and prototype design 

automation algorithms in the form of CE. The previous chapters (especially 4|, 5|, 

and 6|) have demonstrated how architectural design can be generated 

autonomously by inputting predetermined data and constraints pertaining to 

structure, functional arrangement, and topographical data. Similarly, additional 

contextual parameters such as climatic data, schedule of services and equipment can 

also be appended to this design automation algorithm. With the implementation of 

AAD as an advanced design tool, “that equips designers to design a process rather 

than just a product” (Tedeschi, 2014)142. The example illustrated in the upcoming 

pages demonstrates how a typical Architectural project was developed using a CE. 

 
142 Tedeschi, A. (2014). AAD_Algorithms-Aided Design - Parametric Strategies using Grasshopper®.  
Brienza, Italy: Le Penseur Publisher, p. 495. 
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The Architectural project was undertaken as a simple design exercise to evaluate and 

understand how a CE could be implemented in a traditional design workflow. The 

project was conducted within the confines of a conceptual solution provided to the 

Institute for Biodigital Architecture and Genetics (iBAG) at UIC, Barcelona on the 

massive immigration that happens in Barcelona, Spain. The solution was proposed in 

the form of a residential tower, which would be on the sea-front of the city. This 

proposed tower had the following predetermined constraints – 

• It would be situated on a Site that would be a circular floating platform of 

200m in diameter, situated on the coast of Barcelona. 

• It would be 150m in height with a 1:8 (diameter: height) proportion. 

• It would have a structural core possessing two fireproof staircases, and four 

elevators while accommodating the other services. 

The above constraints were converted in the following CE parameters – 

• CE – Owing to the multiplicity in its constraints and parameters, the project 

would undoubtedly be constructed by employing a CEMEME, however the 

initial setup could be done for a CESESE. The entire workflow would be 

CEbiodigital-tower. 

• ∈ – Considering that the tower needs residential pods, the initial ∈ entities 

could be cubes, thus ∈cubes. 

• Ψ – Although this CE would eventually have a multiplicity in the Ψ entities, in 

the initial considerations, this would just be the standard Ψtower. 

• N – As the above parameters essentially set up a CEcube-tower (as demonstrated 

in 4.2 and 5.1), the CE would be performed in the previously determined 

hypothetical revised infinite 3D Square grid. 
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Fig. 7.1 thus demonstrates the entire workflow of the CEbiodigital-tower as shown below. 

Figure 7.1 – Workflow of CEbiodigital-tower. Model, algorithm, and graphics by Author (May 2020). 
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The steps involved in the workflow of the CEbiodigital-tower were – 

• Step 1 – Context Mapping – Here, all the entities pertaining to the context 

have been mapped. This step serves as a prelude to setting up the N. 

• Step 2 – Constraints Mapping – Here, all the constraints related to the design 

brief have been mapped. This step further establishes the N and  Ψtower. 

• Step 3 – CEbiodigital-tower Procedural Sequences – Here, the CE undergoes all the 

procedural sequences to generate and rank the outcomes as assemblages 

that could potentially serve as CEbiodigital-tower. 

• Step 4 – CEbiodigital-tower Architectural Rationalization – Here, the selected 

iteration undergoes assimilation of architectural components ensuring that 

CEbiodigital-tower can be visualized as a habitable structure. 

These steps aid in generating an Architectural Outcome that can be further worked 

upon to generate a standard AEC construction document (comprising of plans, 

sections, elevations, and details). Moreover, if the construction strategy and building 

material are predetermined, they can also be considered as Ψ entities, and repeating 

steps 2, 3, and 4 would generate a richer outcome. However, the above four steps 

should not be considered canonical to the CE.  

The example of the construction of a CEbiodigital-tower shown above serves as a further 

proof-of-concept for the implementation of CE in AAD. As the emphasis of AAD is on 

the process than the product it serves as an ideal, contemporary design system 

(already in use in the AEC industry), which can serve as a testing ground for the 

incorporation of CE. Here, the designer still has sufficient control over the built form 

and the algorithm. The design (well, actually computational design) merely gets 

automated while providing outcomes that would be both tedious and overly complex 

if pursued with traditional design systems (those mentioned in 1.1). 
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7.2 Probable research trajectories in Additive Manufacturing 

Similar to the dependency of this research on the operational infrastructure provided 

by Computational Design in the form of AAD, the research relies on Digital Fabrication 

in the form of Additive Manufacturing (AM) for its production infrastructure. 

Moreover, the research anticipates the rise of Industry 4.0 which could transform 

architecture back from an allographic profession into an autographic craft, where the 

architect would be a digital craftsman (as in 1.1.3). The research also emanates from 

the assumption (as stated in 1.1.4) for the field of digital fabrication that – 

As digital fabrication becomes more data-driven, the role of design as a medium 

of generating the construction document becomes more redundant. 

Although digital fabrication has been sufficiently mentioned in the introduction of 

the research, it hasn’t been exploited in prototyping all the taxa of CE mentioned in 

this thesis, albeit the FDM printed prototyping of the CEcube-cubocta-floating-tower (as 

demonstrated in 4.5 and 5.4). The unavailability of advanced additive manufacturing 

techniques at the iBAG, UIC, Barcelona has been one of the key reasons that has to a 

certain extent restricted this research to perform digital fabrication with FDM 

printing alone. However, the research-stay undergone by the author within the AEC 

industry for a sufficient duration of three months, has been instrumental in 

developing a systematic attempt into incorporating CE within the discipline of AM. 

AM has already been implemented by the AEC industry in various forms such as 

Robotic Building (Thermoplastics), Robotic Building (Pneumatic Systems), Robotic 

Stacking, Wire Arc Additive Manufacturing (or Metal Printing) and FDM (Delta 

printers). Many startups have cropped up globally which are reconfiguring 

decommissioned Robotic Arms into establishing successful AM Labs as thriving 

business ventures. The following example is part of the research stay undergone by 

the Author at one such startup – Studio RAP based in Rotterdam, The Netherlands. 
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Studio RAP is an architecture firm that makes a wide range of bespoke designs across 

different scales by implementing computational design, often many of which are 

produced in-house through digital fabrication. One such is the design and production 

of robotically fabricated, ceramic, monolithic coffee tables. As part of the research-

stay, the Author collaborated with the design workflow already implemented at 

Studio RAP and attempted to incorporate CE in the design and fabrication of the 

coffee tables. Following were the constraints as part of the design brief – 

• Design constraints – The coffee tables had to be produced and post-

processed as monolithic artefacts. This was partly due to the use of potter’s 

Clay which must be built uniformly, consistently, and not in parts. 

• Material and finish – The material chosen was a specific potter’s Clay with 

20% grog (residual clay that has been fired up and then pulverized to be mixed 

back into clay, to increase its strength and setting consistency). Further, this 

material was to be post-processed in the traditional Delft Blue style of glazing. 

• Production constraints – To be fabricated using a KUKA p6 robotic arm, using 

a canister-based pneumatic deposition system developed by Studio RAP. 

The above constraints were converted in the following CE parameters – 

• CE – The project would need a CESEME, say a CEclay-table. 

• ∈ – As the tables are to be built using a robotic arm, ∈ would be the planes 

defining the eventual tool path of the robotic arm, thus ∈plane. 

• Ψ – The rules for the top would be the Ψtop, and those for the trunk as Ψtrunk. 

• N – The table would be printed upside down, and thus the CE can be 

performed in the previously determined hypothetical revised infinite 3D 

Square grid. 
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Fig. 7.2 thus demonstrates the entire workflow of the CEclay-table as shown below. 

Figure 7.2 – Workflow of CEclay-table. Model, algorithm, and graphics by Author (August 2020). 
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The steps involved in the workflow of the CEclay-table can be explained as – 

• Step 1 – Constraints Mapping – Here, all the constraints related to the design 

brief have been mapped. The table height is optimized to accommodate both 

the ergonomics of a coffee table and the volume of clay that can be deposited 

by the canister. This step establishes the N,  Ψtop and Ψtrunk. 

• Step 2 – Production Mapping – Here, all the constraints related to the 

production have been mapped. The use of ∈plane as the ∈ entities helps in 

effectively transitioning into the robot’s tool path (as a robotic tool path is 

determined by planes and not points). This step also helps in mapping how 

the beautiful process of the Delft Blue glaze can enhance the design. 

• Step 3 – CEclay-table Procedural Sequences – Here, the CE undergoes all the 

procedural sequences to generate and rank the outcomes as assemblages 

that could potentially serve as CEclay-table. 

• Step 4 – CEclay-table Digital Fabrication – Here, the selected iteration undergoes 

actual production ensuring that CEclay-table can be ceramic coffee tables. 

Although the above steps demonstrate how a CE can be implemented as a process to 

simultaneously design and fabricate a built form with the means of an algorithm, the 

above steps are not exhaustive, and can vary from CE to CE. However, the example 

of the CEclay-table serves as substantial empirical evidence of how CE can be crafted 

into simulating constraints of a certain digital fabrication technique, to design a 

specific built form and eventually build it using the algorithm. As this project involved 

a client and end-user, the CEclay-table was prototyped several times before performing 

the post-processing. Fig. 7.3 further demonstrates the stages in the fabrication of the 

CEclay-table. The images only demonstrate how the CEclay-table was fabricated following 

the toolpath and ergonomic constraints of the KUKA P6. As the post-processing was 

not done in-house by Studio RAP, there is no documentation for it. 
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Figure 7.3 – Fabrication stages for the CEclay-table. Illustration, and photographs by Author (August 

2020). 
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As demonstrated in fig. 7.3, the images show how the CEclay-table was fabricated using 

the freedom offered by the robot, as well as the constraints of the material and the 

extrusion method. The canister-based pneumatic deposition system developed by 

Studio RAP, involves an aluminum container that can hold 10kg of potter’s clay. This 

severely restricts the size of objects that could be built using the system, as compared 

to a tube-based continuous material extrusion system that is often used in AM with 

clay (and similar water-based materials). The drying process of clay also had to be 

systematically done, as the object shrinks to approximately 85% of its original size 

(generally the shrinkage is much more, but because the project used clay filled with 

20% grog, the shrinkage was minimal). Nonetheless, the object had to be dried for 14 

days in an isolated dehumidified container to avoid inconsistent shrinkage and 

possible warping, before sending it for post-processing (that is firing and glazing). 

However, all of the above-mentioned constraints were incorporated in the CEclay-table, 

chiefly by means of the Ψ entities. Thus, this example demonstrates how a CE can 

accommodate not just the functional requirements of a built form, but also the 

production constraints offered by the material and fabrication process employed to 

conceive the built form. In a traditional design-based workflow, here the process 

would have had to follow the process of analyzing, modelling, and prototyping 

several times to eventually generate the best possible iteration, with CE however, the 

analysis, modelling and prototyping happens simultaneously and dynamically.  

Moreover, the implementation of CE in the workflow of an already established design 

practice performing at the cutting edge of Industry 4.0 (as in Studio RAP), opens up 

very ambitious prospects for the involvement of CE in AM. In this potential future, 

the design or the designer would no more be archivists of construction documents, 

as digital fabrication would itself strive a dialogue between the built form and the 

algorithm. Perhaps, in the distant future (with the 5th Industrial revolution) a robotic 

arm could be monitored dynamically by a cloud-based CE. Perhaps this CE could 

ensure that the robotic arm could build a CEclay-table autonomously for a wide range 

of predetermined parameters and not just monolithic, ceramic coffee tables.  
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7.3 Probable research trajectories in Pedagogy 

As CE is a novel approach in design automation, it has to be tested and evaluated in 

as many industries related to design as possible. This would not only make it robust, 

but its failures in one industry can also boost its success in others. To ensure that CE 

can be applied in any built form – algorithm relationship, the theory explained in this 

thesis (especially 2| and 3| that emphasize on accomplishing the literary objectives 

set up in 1.2.1) is very essential. Moreover, any further study in the field of CE, could 

be based on the theoretical foundations laid down in this thesis. 

The theory that had actually culminated from the ambitiousness of the futuristic and 

possibly sensational hypothesis of addressing the increasing redundancy of design 

within the built form and the algorithm, has been quite methodically formulated 

while considering already established semantics (both lexical and logical) from a wide 

range of domains such as Biology, Ecology, Computational Sciences, Applied 

Mathematics, Applied Mechanics, Fabrication, Manufacturing and Economics 

relevant to the research. Moreover, before acknowledging them as the core 

theoretical structure of this research, these semantics have also been considered for 

the contradictions they might offer while being placed aside each other. For example, 

the halting problem that is associated with the operations and results of any CA, has 

been theoretically and operationally countered by applying the concept of decay to 

eventually halt a CE by means of exhaustion of resources (as elaborated in 3.2). 

Additionally, while establishing these semantics, the research also derives a 

consistent methodology, with step-by-step instructions on installing a system within 

the built form – algorithm relationship that can guide future researches into 

strengthening the theoretical foundations of CE. 

This very aspect of the research (the manner in which it has a considerable theoretical 

foundation), opens a new direction in the understanding, implementation and 

eventual propagation of CE - Pedagogy.  
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In the course of accomplishing the preliminary and operational objectives by means 

of the procedural sequences (refer 1.2.1) the research has also undergone plenty of 

evaluation and testing within the confines of academic environment in the form of 

workshops. Although these workshops were aimed at testing the computational 

robustness of a wide range of CE, often the participants had to be trained and 

informed about various aspects related to the research. The following were some of 

the key pre-evaluation tutelage, that had to be done during the workshop – 

• Theoretical Background – To acclimatize all the different participants to the 

relevance, purpose, and background of the research, the workshop began 

with presentations on the semantics and theoretical foundations of the 

research. Often after the presentations, the participants were encouraged to 

elaborate on their understanding of the concept of CE, and their perception 

of the application of CE in the operations of the AEC industry (before 

undertaking the evaluations and thereby the Author’s directions for CE). 

• Methodological Background – After developing a sufficient knowledge-

inventory based on the semantics and theory, the participants were 

introduced to the methodology adopted by the research in conducting the 

procedural sequences for CE. Here, participants were provided with relevant 

tool-kits developed for the specific CE, and trained into using the tool kit to 

perform any preliminary tests as relevant to the CE in question.  

• Technological Background – The research relies on the implementation of 

computational design and digital fabrication, and however ubiquitous these 

technologies are in the AEC industry, their lack of theoretical background 

denies their acceptance in design curricula in many educational institutes. 

Thus, the workshop comprised of providing tutoring for Rhinoceros3D and 

Grasshopper 3D (with its plugins that were relevant in the functioning of the 

CE in question). As required for the evaluation of a specific CE, the workshop 

also included training on the use and applications of FDM printing. 
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Fig. 7.4 shows a collage of photographs taken while several different workshops were 

conducted by the Author throughout the course of the research to develop, evaluate 

and demonstrate all the four taxa of CE mentioned in the thesis. The image also 

shows some outcomes developed by the participants during different workshops. 

Figure 7.4 – Collage of different workshops conducted by the Author for developing, evaluating 

and demonstrating the four CE taxa. Photographs by Author (from July 2018 to Dec 2020). 
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As illustrated in fig. 7.4, following are the details of the different workshops – 

• Designing Ways of Designing Workshop – As elaborated previously (in 4.2.3), 

the workshop was conducted in June 2018 at the IES College of Architecture 

in Mumbai, India. Attended by 20 candidates (16 Students and 4 Architects), 

it was a 3-day workshop. As it was setup for the evaluation of a CEcube-tower 

(refer 4.2), it involved physical modelling by means of stacking acrylic cubes 

and gluing them on an acrylic sheet. The results generated during the course 

of this workshop have helped establish a foundation for the methodology 

while providing enough evidence that the state conditions derived for the 

Ψtower rules (as per 4.2.2) were performing as expected. 

• Computation as a Design tool Workshop – As elaborated previously (in 4.3.3), 

the workshop was conducted in July 2019 at RIT in Kottayam, India. Attended 

by 20 candidates (20 selected Students of the 7th and 9th semesters pursuing 

BArch), it was also a 3-day workshop. As it was setup for the evaluation of 

computational prototyping of two different CE – CEcube-cubocta-tower (refer 4.3) 

and CEcube-floating-tower (refer 4.4), it only involved generating and evaluating 

computational results for the two CE. The results of this workshop have 

helped in providing empirical results that the multiplicity of the ∈ and Ψ 

entities can be managed distinctly with the application of the right CE. 

• Digital Fabrication Workshop – As elaborated previously (in 4.5.3), the 

workshop was conducted in December 2019 at the IES College of Architecture 

in Mumbai, India. Attended by 10 candidates (6 Students, 3 Architects and 1 

Design Engineer), it was also a 3-day workshop. As it was setup for the 

evaluation of a CEcube-cubocta-floating-tower (refer 4.5), it involved evaluating the 

computational results and digitally fabricating selected CE by means of FDM 

printing. The results generated during the course of this workshop have 

helped in providing empirical results for the amalgamation of computational 

design and digital fabrication in the workflow of CE. 



Theorizing, Taxonomizing and Prototyping operational Ecosystems in 
Computational environments 

7| On the prospective projections for the Computational Ecosystems |282 

• Procedural Systems Workshop – This workshop was conducted from January 

2021 to March 2021 for the Biodigital Architecture Master program held at 

UIC Barcelona. Attended by 8 candidates (8 Students enrolled in the Biodigital 

Architecture Master Program 2021), originally it was a 6-week long workshop, 

but the contribution towards this research was not during the entire time and 

was scattered throughout the course of these 6 weeks. The workshop was not 

conducted to provide any evaluation of specific CE, but was employed to 

evaluate some of the independent Ψ entities which have been eventually 

implemented in the functioning of the CEbiodigital-tower (refer 7.1). 

• Permutable Morphologies Workshop – This workshop was conducted from 

January 2020 to February 2020 also for the Biodigital Architecture Master 

program held at UIC Barcelona. Attended by 11 candidates (11 Students 

enrolled in the Biodigital Architecture Master Program 2020), originally it was 

a 3-week long workshop, but the contribution towards this research was not 

during the entire time and was scattered throughout the course of these 3 

weeks. The workshop was not conducted to provide any evaluation of specific 

CE, but was employed to evaluate some of the independent ∈ entities which 

have been implemented in the functioning of the CEbiodigital-tower (refer 7.1). 

As mentioned in the detailed explanations of all the conducted workshops above, the 

fundamental objective of these workshops was to generate and evaluate the said CE. 

However, the workshops also provided with an additional purpose of rationalizing 

the theoretical constructs CE was established upon. Instructing and developing CE in 

an institutional environment has also provided valuable insights into how the 

community perceives CE as a robust link between built form and algorithm from 

different vantage points. This perception has and could develop many more varied 

prospective projections for the application and implementation of CE. Moreover, 

expanding the concept of CE to pure and applied sciences could also help make it 

more mainstream. 
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While it has several benefits for the development of CE, design education can also 

benefit from the theory of CE. The semantics and case studies formulated in each of 

the four taxa, has a strong bearing in pursuing CE as a subset of Bio-inspired 

computational algorithms, and can be researched upon while generating several 

different CE within the confines of CESESE, CEMESE, CESEME, and CEMEME. Perhaps, further 

research could also develop some more taxa besides the above four. As explained in 

the examples of the CEbiodigital-tower (refer 7.1) and CEclay-table (refer 7.2), the concept of 

CE could have promising, and yet optimized outcomes as Industry 4.0 computational 

design gets more autonomous and digital fabrication becomes more data driven. And 

it is about time, the design curricula updated accordingly. 

Biodigital Architecture as a domain of architectural design has been “theorizing and 

prototyping novel methodologies and technologies at the intersection of the 

biological and the digital for the past couple of decades” (Estevez, 2015)143. As the 

concept of CE is based on this very idea, Biodigital Architecture is and would be a 

perfect niche that the CE could occupy for its application in pedagogy. Meaning, CE 

could very well perform as a discipline existing within Biodigital Architecture, and be 

further researched within the operational activities of a research group. 

However, unlike the Genetic Architectures Research group and iBAG, UIC, Barcelona, 

not all design institutions share openness for futuristic and interdisciplinary didactic 

domains. Throughout the course of interactions within the educational community 

for conducting several more workshops in India and Europe, the Author has faced a 

fair share of discouragement to incorporate CE (or even computational design and 

digital fabrication) in the design curriculum. Design schools emphasizing on the 

traditional approach in architecture, have often unequivocally rejected the inclusion 

of any form of computation in the process of architectural design. Thus, any form 

design automation (such as CE) would not be effortlessly accepted in this industry. 

 
143 Estévez, A. T. (2015). Arquitectura Biodigital Y Genetica. Barcelona, Spain: ESARQ (Escola Téchnica 
Superior d’Arrquitectura, Universitat Internacional de Catalunya)., p. 296. 
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7.4 Probable research trajectories in Software Development 

Apart from pursuing literary objectives which eventually resulted in the theoretical 

foundations for CE, the research has also followed a thoroughly methodical approach 

in creating and documenting all the algorithms. The following steps, have been 

pursued quite consistently for every taxon, as part of the procedural sequences – 

• Pseudo code – The State conditions established for every taxon have 

consistently been derived from the Cellular Automata models mentioned in 

this thesis (as in 2.3). Moreover, all the components of the algorithm (for the 

respective taxon) have been consistently defined in reference with the lexical 

and logical semantics (as in 3.1, 3.2, and 3.3). 

• UML Class Diagram – All the components of each algorithm have then been 

methodically illustrated in the form of UML Class Diagrams where all possible 

∈ and Ψ entities have been identified while defining their respective 

attributes, operations, and inheritances (refer 4.2.2, 4.3.2, 4.4.2, and 4.5.2). 

• UML Sequence Diagram – To understand and further execute the 

relationships between these classes all the algorithms have then been 

methodically illustrated in the form of UML Sequence Diagrams where all 

possible ∈, Ψ, and N considerations have been identified while defining their 

respective role, interaction and runtimes (refer 4.2.3, 4.3.3, 4.4.3, and 4.5.3). 

• User Testing – After writing the algorithms through visual programming (in 

Grasshopper3D), the algorithms have been extensively tested by inviting 

users (in the form of students and practitioners in the AEC industry) by 

conducting workshops. This quite vital step has also assisted in generating 

several versions for the specific algorithms in all the taxa, while user issues 

and minor bugs have been fixed in the base code. 
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By performing the aforementioned steps, the research has also followed a workflow 

that is adopted by the software development industry. To a certain extent, this 

validates CE to be identified and implemented as a stand-alone software that could 

serve its purpose of creating a dynamic, reciprocal, symbiotic relationship between 

the built form and the algorithm. While CE cannot be identified as one single software 

but a category of software which can perform a series of certain predetermined tasks. 

However, the research objective behind the Architecture of Computational 

Ecosystems has never been about developing and releasing a software in the market, 

and thus this has not been pursued in the course of this research. But it can serve as 

a possible research direction in the development of CE. In fact, it is quite inevitable 

through the development of CE that it would eventually evolve into an 

implementable software that could possibly be used by the AEC industry. 

CE could be used as a computational framework for game development. The example 

shown below in fig. 7.5 is a single-player city building game called Block’hood144. It 

involves building vertical neighbourhoods with cubes that serve different purposes 

such as resources, services, residential, commercial, structure, and many more. While 

being an entertaining game it also provides insights into architectural design. 

Figure 7.5 – Block’hood on Steam. Source: 

https://store.steampowered.com/app/416210/Blockhood/. 

 
144 Block’hood (2017). Los Angeles, USA: Plethora Project. 
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Although Block’hood has not been developed using CE, it can be used as a template 

to determine how CE can be implemented in game development of similar simulation 

games. Moreover, interesting outcomes could possibly be achieved in Block’hood 

and similar simulation games if some aspects of CE were applied in the game engine. 

However, as CE is based on the computational framework of CA, and most CA, such 

as Conway’s Game of life (refer 2.3.2) are zero-player games (as in, they don’t really 

require sentient participants for it to run or end), it can be stated syllogistically, that 

games generated using CE could be zero-player games. However further research in 

this industry could possibly be pursued to develop bio-inspired simulation games. 

Apart from using CE as computational framework for software and game 

development, CE could also be used as a data source for generating Artificial Neural 

Networks (ANN). As introduced in 6.4, a CE if appended with an ANN, could benefit 

from its predetermined learning paradigm. Although any of the paradigms can be 

considered, self-learning based on “Crossbar Adaptive Array” (Bozinovski, 2014)145 

which relies on one input situation and one output behavior could be a good place 

to start exploration. In the context of CE, the input situation could be the initial state, 

while the output behavior could be End Rest Array of the CE. Thus, a correlation could 

be deduced between the situation and the behavior, and with further research a 

mechanism could possibly be developed to predict the result of an initial state, or 

even to dictate a certain preferred result to determine the possible initial state. 

Contrary to the above direction, several results of ANN, however, could also be used 

as a data source for generating various distinct CE. The data source provided by the 

ANN could be any architectural parameter pertaining to its typology or context. Thus, 

ANN could be an interesting possible direction to further research on CE and its 

applications. 

 
145 Bozinovski, S. (2014) Modelling Mechanisms of Cognition-Emotion Interaction in Artificial Neural 
Networks, since 1981. In: BICA 2014. 5th Annual International Conference on Biologically Inspired 
Cognitive Architectures. [online]: Procedia Computer Science, pp. 255-263. Available at: 
https://www.sciencedirect.com/science/article/pii/S1877050914015567 [Accessed 15 Jun. 2021] 
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7.5 Concluding Statements 

“Humans have been historically horrible at predicting the pace of progress” 

(Kurzgesagt – In a Nutshell, 2020, 07:55).146 

And this research, while being based on the prophetic assumptions for both the 

ubiquity of the algorithm and the redundancy of design delicately relies on 

speculations from the future of the AEC industry. However, the technology (as in 

Industry 4.0) that it relies on, and the scientific theory that it is built upon, ensures 

that (granted the openness of the industry) the Architecture of Computational 

Ecosystems can certainly help establish a dynamic, reciprocal, symbiotic relationship 

between the built form and the algorithm by making computational design more 

autonomous and digital fabrication more data driven. While this relationship is based 

on the premise of theorizing, generating, taxonomizing, and prototyping Hybrid Bio 

Plausible Bio-inspired Stochastic Optimization Algorithms as functioning 

Computational Ecosystems which perform as autonomous, autopoietic, context 

aware feedback loops between the built form and the algorithm (refer 2.4), it 

supports the hypothesis that, Cellular Automata can be employed as a 

computational framework to generate, taxonomize and prototype design 

automation algorithms with empirical evidence (refer 7.1). 

Moreover, the procedural sequences performed to develop the empirical evidence 

over the four possible taxa for Computational Ecosystems – CESESE (refer 4.2), CEMESE 

(refer 4.3), CESEME (refer 4.4), and CEMEME (refer 4.5) has helped in generating a robust 

workflow that can be incorporated in the AEC industry while proving that, fabrication 

data in the form of G-code can be used as a fitness condition to generate, 

taxonomize and prototype digitally generated built forms (refer 7.2). 

 
146 Kurzgesagt – In a Nutshell (2020) Can You Upload Your Mind & Live Forever?. 10 December. 
Available at: https://www.youtube.com/watch?v=4b33NTAuF5E (Accessed: 18 Dec. 2020). 
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The inception and execution of the research had followed a systemic trajectory that 

can be summarized as stated below – 

• Establishing semantic syntax – for the lexical and logical semantics (refer |2) 

• Performing procedural sequences for each of the four taxa (refer |4) 

o Case Studies – bio-based theoretical and operational analogies. 

o Simulations – transcription of the analogies into the ∈, Ψ, and N 

considerations. 

o Prototyping – evaluation and taxonomizing by means of industry 

participation (through workshops and research collaborations). 

This has not only helped establish a standard, canonical methodology for the 

Architecture of Computational Ecosystems (refer 5.5 and 6.5) but also assisted in 

abrogating the sensationalism involved with predicting the pace of progress. 

Nonetheless, apart from establishing an unprecedented relationship between the 

built form and the algorithm, the Architecture of Computational Ecosystems opens 

a plethora of research opportunities in the domains of AAD, AM, pedagogy, and 

software development (refer |7). Although not an exhaustive list, it certainly ensures 

that the pursuit documented in this thesis is a mere beginning. 

After all, as Einstein famously quoted (about Thermodynamics) – 

 “A theory is the more impressive the greater the simplicity of its premises, the 

more varied the kinds of things that it relates and the more extended the area of 

its applicability” – Albert Einstein (Schilpp, 1959).147 

 
147 Schilpp, P. A. (1959). Albert Einstein: Philosopher-Scientist. New York: MJF Books, pp. 32 
(Autobiographical Notes). 
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7.5 Concluding Statements (in Spanish) 

“Los seres humanos han sido históricamente horribles al predecir el ritmo del 

progreso” (Kurzgesagt – In a Nutshell, 2020, 07:55).148 

Y esta investigación, si bien se basa en los supuestos proféticos tanto de la ubicuidad 

del algoritmo como de la redundancia del diseño, se basa delicadamente en 

especulaciones del futuro de la industria AEC. Sin embargo, la tecnología (como en la 

Industria 4.0), y la teoría científica en las que se basas, asegura que (dada la apertura 

de la industria) la Arquitectura de Ecosistemas Computacionales ciertamente puede 

ayudar a establecer una dinámica, recíproca, simbiótica relación entre la forma 

construida y el algoritmo al hacer que el diseño computacional sea más autónomo y 

la fabricación digital más impulsada por los datos. Si bien esta relación se basa en la 

premisa de teorizar, generar, taxonomizar y crear prototipos de algoritmos de 

optimización estocásticos bioinspirados bio-plausibles híbridos como ecosistemas 

computacionales en funcionamiento que funcionan como bucles de 

retroalimentación autónomos, autopoyéticos y sensibles al contexto entre la forma 

construida y el algoritmo (2.4), apoya la hipótesis de que Cellular Automata puede 

emplearse como un marco computacional para generar, taxonomizar y prototipar 

algoritmos de automatización de diseño con evidencia empírica (7.1). Además, las 

secuencias de procedimiento realizadas para desarrollar la evidencia empírica sobre 

los cuatro posibles taxones de ecosistemas computacionales – CESESE (4.2), CEMESE 

(4.3), CESEME (4.4), and CEMEME (4.5) ha ayudado a generar un sólido flujo de trabajo 

que se puede incorporar en la industria AEC y que, al mismo tiempo, se demuestra 

que los datos de fabricación en forma de G-Code se pueden utilizar como condición 

de aptitud para generar, taxonomizar y crear prototipos de formularios construidos 

generados digitalmente (7.2). 

 
148 Kurzgesagt – In a Nutshell (2020) Can You Upload Your Mind & Live Forever?. 10 December. 
Available at: https://www.youtube.com/watch?v=4b33NTAuF5E (Accessed: 18 Dec. 2020). 
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El inicio y ejecución de la investigación había seguido una trayectoria sistémica que 

se puede resumir como se indica a continuación – 

• Establecimiento de sintaxis semántica - para la semántica léxica y lógica (|2) 

• Realización de secuencias de procedimientos de los cuatros taxones (|4) 

o Estudios de caso: analogías teóricas y operativas de base biológica. 

o Simulaciones: transcripción de las analogías en las ∈, Ψ y N. 

o Prototipado - evaluación y taxonomización mediante la participación 

de la industria (a través de talleres y colaboraciones de investigación). 

Esto no solo ha ayudado a establecer una metodología canónica estándar para la 

Arquitectura de Ecosistemas Computacionales (5.5 y 6.5), sino que también ayudó a 

abrogar el sensacionalismo involucrado en la predicción del ritmo del progreso. No 

obstante, además de establecer una relación sin precedentes entre la forma 

construida y el algoritmo, la Arquitectura de Ecosistemas Computacionales abre una 

plétora de oportunidades de investigación en los dominios de AAD, AM, pedagogía y 

desarrollo de software (|7). Aunque no es una lista exhaustiva, ciertamente asegura 

que la búsqueda documentada en esta tesis es un mero comienzo. 

Después de todo, como citó Einstein (sobre la termodinámica): 

“Una teoría es más impresionante cuanto mayor es la simplicidad de sus premisas, 

más variadas son las cosas que relaciona y más amplia es el área de su 

aplicabilidad.” – Albert Einstein (Schilpp, 1959).149 

 

 
149 Schilpp, P. A. (1959). Albert Einstein: Philosopher-Scientist. New York: MJF Books, pp. 32 
(Autobiographical Notes). 
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9| Appendix 

9.1 Grasshopper definitions – CESESE 

Figure 9.1 – Part 1 (of 2) grasshopper definition that was employed to generate, 

taxonomize and prototype the CEcube-tower as per 4.2 
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Figure 9.2 – Part 2 (of 2) grasshopper definition that was employed to generate, 

taxonomize and prototype the CEcube-tower as per 4.2 
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9.2 Grasshopper definitions – CEMESE 

 

Figure 9.3 – Part 1 (of 2) grasshopper definition that was employed to generate, 

taxonomize and prototype the CEcube-cubocta-tower as per 4.3 
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Figure 9.4 – Part 2 (of 2) grasshopper definition that was employed to generate, 

taxonomize and prototype the CEcube-cubocta-tower as per 4.3 
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9.3 Grasshopper definitions – CESEME 

 

Figure 9.5 – Part 1 (of 2) grasshopper definition that was employed to generate, 

taxonomize and prototype the CEcube-floating-tower as per 4.4 
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Figure 9.6 – Part 2 (of 2) grasshopper definition that was employed to generate, 

taxonomize and prototype the CEcube-floating-tower as per 4.4 
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9.4 Grasshopper definitions – CEMEME 

 

Figure 9.7 – Part 1 (of 2) grasshopper definition that was employed to generate, 

taxonomize and prototype the CEcube-cubocta-floating-tower as per 4.5 
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Figure 9.8 – Part 2 (of 2) grasshopper definition that was employed to generate, 

taxonomize and prototype the CEcube-cubocta-floating-tower as per 4.5 
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