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Abstract

Transportation industry has entered the era of big data. Part of the data
disseminated by connected vehicles and infrastructure is being exploited by
Intelligent Transport Systems (ITS), advanced applications in which information
and communication technologies are applied in the field of road transport traffic
management. In the upcoming future, all road vehicles are likely to communicate
with one another and the surrounding infrastructure, for example, to warn
others about traffic incidents or poor road conditions. But, the connectivity and
data analytics requirements for the envisaged use cases are far from covered.

Dedicated Short Range Communication (DSRC) is a higher layer standard
based on the evolution of IEEE 802.11p Wi-Fi, one of the main technologies
that support the first generation of vehicle-to-everything (V2X) communication.
The first part of this dissertation addresses the improvement of IEEE 802.11p
direct vehicular-to-infrastructure communication in the ITS data acquisition
layer, which suffers from a well-known scalability problem. The analysis carried
out concludes that the data dissemination of standardized protocols is not
reliable enough to support safety applications that depend on ITS roadside
units located in intersection areas. To solve this, novel infrastructure-oriented
criteria is proposed to adapt the communication parameters and an intersection
assistance protocol is designed in compliance with the standards to increase the
reliability of the data acquisition layer up to the point where safety applications
can be implemented.

As ITS data acquisition layer produces massive amounts of data, it requires
data aggregation and processing in the data analytics and application layer
to enable more advanced use cases, mission-critical applications that have
the potential impact to reduce problems such as road safety, pollution, traffic
congestion and transportation costs. The second part of the dissertation
proposes a generative deep learning model that can be used in an unsupervised
manner to solve multiple ITS challenges. Big data collected by ITS is exploited
and transformed to an asset for safety applications and decision-making, without
the need for additional knowledge nor labeled data. The model allows to
efficiently compress traffic data and forecast, impute missing values, select the
best data and models for a specific problem and detect anomalous traffic data
at the same time.

The last part of the dissertation is motivated by the growing concern
generated by the efficiency of ITS solutions and the large amount of data
expected to be processed. The presented algorithm allows to automatically and
efficiently derive the minimum expression architecture of the model that provides



Abstract

maximal compressed representations that inform about the original traffic data.
In this way, the performance of the subsequent ITS traffic forecasting system
is not adversely affected, but benefits from data being represented with fewer
dimensions, which is vitally important in the age of big data. The basis of the
algorithm is taken from theoretical concepts of Information Theory applied to
neural networks, going a step beyond the current available methods that are
based on trial and error.
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CHAPTER 1

Introduction

A technology-driven ecosystem is emerging in the automotive industry.
Autonomous vehicles, connected cars, electrification and shared mobility trends
are driving a shift in the way the auto industry evolves. The underlying
technological challenges facing the automotive industry describe the roles
that different actors can take on in shaping the ecosystem to solve these
challenges. Tech companies, from startups to global tech giants, transportation
agencies, telecom operators and automakers will eventually merge as new use
cases and customers will require tailored systems and solutions spanning the
entire technology stack, including network access, connectivity devices, data
management and applications. Enabling the use cases that the automotive
industry promises will require significant investments in new capabilities, such
as network infrastructure, data management platforms and edge computing
power, plus considerable advances in research.

As we move toward an increasingly autonomous future, many of the use
cases will rely on connectivity and thus increase the need for wireless capacity
and reliability. All road vehicles are likely to communicate with one another
and the surrounding infrastructure, for example, to warn others about traffic
incidents or poor road conditions. Advanced driver assistance, platooning
of vehicles and fully automated driving are key application areas that 6G
aims to support with the first components to be implemented in the Third
Generation Partnership Project (3GPP) Release 16 . This is nothing
new, as The 5G Automotive Association (53GAA) published an extended list
of use cases in 2019 [5GA19|. Nonetheless, direct communication systems and
networks lack the capacity to handle either the data traffic of autonomous
vehicle fleets that communicate with each other in real time, nor the remote
control of vehicles that requires high-bandwidth and low-latency networks,
let alone critical safety applications in dense environments. Overall, today’s
communications infrastructure is not reliable enough for many of the use cases
envisaged.

The transportation industry has entered the era of big data. Part of the data
disseminated by vehicles and infrastructure is being exploited by Intelligent
Transport Systems (ITS), advanced applications in which information and
communication technologies are applied in the field of road transport traffic
management. The idea of ITS was born in the 1980s by a small group
of transportation professionals to recognize the impact of computing and
communications techniques in the transportation field . For the past
decade, ITS has played a significant role in the global world and its applications
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Figure 1.1: Future interconnectivity of transportation sustaining intelligent
transportation systems. Vehicle-to-everything communication.

go beyond highway traffic. ITS evolved in tandem with the automotive industry
roadmap and its current data analysis workflow consists of four sequential
stages: (i) data acquisition, which generally considers different sources; (ii)
data preprocessing, the objective of which is to build consistent, complete and
statistically robust data sets; (iii) data modeling, where you learn a model for
different purposes; and (iv) model exploitation, which includes the definition of
actions to be taken with respect to the knowledge provided by the models in
real-life application scenarios .

Inside the data acquisition layer, the connectivity requirements for the car
of the future largely involve two types of vehicular communication. Network-
based communication allows cars to use the cellular network to communicate
with nearby vehicles, pedestrians and the infrastructure. Known as vehicle-
to-network (V2N) communication, it has a much wider communication range
compared to direct methods and uses commercially licensed spectrum from
mobile network operators (MNOs). Direct communication allows vehicles to
communicate directly with their surroundings without significantly relying on
cellular networks. This type of communication includes vehicle-to-everything
(V2X) communication, which will expand the range of knowledge of connected
and automated vehicles with information received from neighboring vehicles,
infrastructure or vulnerable road users. It includes Vehicle-to-vehicle (V2V)
communication, where vehicles communicate with each other to issue warnings,
avoid collisions or share immediate road and traffic conditions. Vehicle-to-
infrastructure (V2I) communication, where vehicles communicate with nearby
infrastructure such as traffic lights, road signs and other transportation
infrastructure to further strengthen security measures. Figure depicts
the whole connect ecosystem. There are two main technologies that support
the first generation of V2X communication. First, the Dedicated Short Range
Communication (DSRC), which is a higher layer standard based on the evolution
of IEEE 802.11p Wi-Fi. It is also the basis for the European standard for

4
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vehicular communication known as ETSI ITS-G5. Second, the Cellular vehicle-
to-everything communication (C-V2X), which is a communication standard
defined by 3GPP to use LTE and 5G NR for V2X communication. C-V2X was
first specified as part of 3GPP version 14 in 2017 using 4G/LTE and will be
further improved as part of 5G NR-based version 16. It is based on the side
link PC5 or LTE radio interface, allowing direct V2V or V2I communications
without transferring data over the cellular network. IEEE 802.11p and LTE-
V2X are not interoperable, which has sparked an intense debate about the
technology to implement, not exclusively based on technical but also regulatory
and commercial aspects . Oblivious to this debate, the first part of this
doctoral thesis addresses the improvement of the reliability of IEEE 802.11p
direct vehicle-to-infrastructure communication seen from the point of view of
the infrastructure.

Regardless of the type of communication, ubiquitous connectivity is the
key to facilitate automation and autonomy among the cars on the road. The
automotive tech-stack challenges extend far beyond connectivity, Figure
The proliferation of sensors generating new data streams and improvements
in connectivity are enabling sets of new applications and services located at
the cloud that can create new value pools, including more efficient car sharing,
location-based marketing and intelligent driving. They are enabling ITS mission-
critical applications that have the potential impact to reduce problems such
as road safety, pollution, traffic congestion and transportation costs, not only
because of the monetary cost but also because of the human cost that they
produce. These applications will require new platforms capable of real-time
analytics and strong integration with the hardware generating the data. If the
aforementioned is achieved in a sustainable manner, it is safe to say that ITS will
be a major component of tomorrow’s smart cities . This has raised the
concern of governments and companies about the design, analysis and control of
information technologies applied to transport systems. Massive amounts of data
require aggregation and processing in the data analytics and application layer
of ITS to enable more advanced use cases. Deep learning (DL) solutions, as the
new cutting-edge machine learning approach, have gained popularity in ITS
because of its capability to flexibly address large amounts of data and model
complex behavior. Among the series of data-driven solutions, deep learning
models are considered one of the most promising models to tackle various

5



1. Introduction

features of ITS . Interestingly, many aspects of transportation systems
are still uncertain, dynamic and highly non-linear: they are invariably complex
due to the interaction between humans, vehicles, information technology and
physical infrastructure. In this context, this doctoral thesis not only contributes
to the improvement of ITS by making data acquisition more reliable: The
second part of the thesis explores how to convert large amount of data traffic
into a valuable asset. Assuming the infrastructure is able to reliably receive
data, this thesis proposes an unsupervised DL solution for several ITS verticals
such as missing data imputation, dimension reduction, model selection and
anomaly detection. Furthermore, given the deep concern generated by the
efficiency of solutions and the large amount of data expected, the last part of
the thesis presents a methodology for the automatic definition of an efficient
DL architecture.

1.1 Motivation

In the envisaged paradigm of vehicular communication, vehicular safety
applications of ITS have strict requirements in terms of reliability and latency
due to the critical nature of their mission. Information disseminated by vehicles
within Vehicular Ad-hoc NETworks (VANETSs) must be accurate, continuous
and up-to-date to sustain those applications. To begin with, direct information
exchange through latencies of the order of 100 ms is needed to facilitate
the so-called cooperative awareness among vehicles to be able to meet safety
requirements . Consequently, Cooperative Awareness Messages (CAM)
are broadcasted on the standardized ETSI ITS-G5 Control Channel (CCH)
in Europe, while Basic Safety Messages (BSM) are used in the same way by
US standardization bodies [ETS14; [SAE16a]. These messages (also called
beacons) include basic information such as the position, speed or direction of
the transmitting vehicle. Infrastructure-dependent safety applications rely on
the periodic exchange of safety information between vehicles and road side
units (RSU). In VANET literature, scalability and reliability of the network
at intersections is recognized as a major problem because of its unique and
severe characteristics that critically affect packet reception. The Intersection
Collision Risk Warning (ICRW) application is considered as primary road safety
application to detect potential vehicle collisions at road intersections relying
on beacon processing in the RSU . Despite that, it had not yet been
determined whether the information disseminated by the state-of-the-art IEEE
802.11p beaconing protocols was suitable enough for the implementation of
specific RSU-based applications or to what extent they could sustain Intersection
Assistance Systems (IAS) . This motivated the following questions and
the first part of the thesis.

Research questions in ITS IEEE 802.11p data acquisition:

o Is current adaptation criteria based on V2V metrics of beaconing
protocols diminishing or enhancing performance of ITS RSU
applications?

o What is the optimal design criteria that maximizes performance for
RSU-based applications?
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e When and how should the adaptation criteria of beacon protocols
be adapted to support different applications or scenarios?

If data is reliable enough at the data acquisition layer, the amount of data traffic
generated can be aggregated an processed at the data analytics and application
layer, providing a broader perspective of the whole road traffic network. I'TS are
constantly generating, acquiring, and processing data in the form of speed, flow,
density, etc. measures collected from different sources apart V2X communication
(e.g., CAMs or BSMs received at RSU), such as loop detectors, cameras,
etc. . Such amount of data must be processed somehow to create real
value that causes social, environmental and economic profit. Traffic modelers
with accumulated experience excel at uncovering patterns, extracting insight
and performing complex reasoning based on the data they observe. How can
we build artificial learning systems to do the same from big data? Data-driven
approaches like DL have raised as a prominent solution as they are capable of
mining information from messy and multi-dimensional traffic data sets with few
modeling constraints. The intrinsic characteristics of road traffic still makes
the forecast a challenging problem because of complex spatial dependency on
road networks, non-linear temporal dynamics with changing road conditions
and inherent difficulties of long-term forecasting. In addition to the forecasting
problem, more challenges of equal magnitude arise from this context. To name
a few, data quality, arterial and network level predictions, spatiotemporal
predictions and model selection techniques are identified as some of the main
current challenges in predicting future road traffic . All models
proposed in literature aim to solve only one of these challenges at the time, so
the following questions were raised to motivate the second part of the thesis.

Research questions in ITS data analytics and application layer:

e Does exist a unique solution to solve the major challenges of traffic
forecasting in an unsupervised manner?

o Is it possible to learn the underlying structure that generates traffic
data?

o If yes, can the learned model be used to generate new data, impute
missing values, extract useful features, explore the data for a specific
task and detect anomalous traffic?

Without a doubt, all players in the automotive industry can use this data to
improve, but storing it comes at a high cost. Realizing the true potential of ITS
requires ultra-low latency and reliable data analytics solutions that can combine
a heterogeneous mix of data stemming from the I'TS network and its environment
in real-time. Such data analytics capabilities should be provided by efficient data
processing techniques capable of avoiding the curse of dimensionality and whose
communication and computing latency are low. Despite that, most DL traffic
forecasting I'TS solutions overlook the importance of scalability and efficiency
under the big data paradigm in which they are intended to work, also leaving
aside or completely disregarding the operational aspects for the applicability of
such models in ITS environment. The trend found in the literature is based on
trial and error methods, that is, defining the architecture as a hyper-parameter
that needs to be optimized using exhaustive search approaches. This is in
contrast to the recent suggestion of the information bottleneck (IB) method as

7
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the theoretical basis for DL, a technique in information theory designed to find
the best balance between precision and complexity . The advances
of IB theory coupled with the need to find a method based on theoretical
concepts so that a practitioner can efficiently find the right architecture is what
motivated the third part of the thesis and raised the following questions.

Research questions in deep learning model tuning:

e Can DL solutions be theoretically tuned according to ITS needs
instead of using brute force approaches?

e Is there an efficient way to automatically select the minimum
architecture that offers the best performance?

o Is the evolution of information-theoretic quantities during training
an indicator of the performance of the forecasting network?

1.2 Objectives

The three high-level objectives of the thesis are presented below.

Objective |

Given the first set of research questions, the thesis aims to develop a V2I
protocol to support critical RSU-based applications in difficult environments
like road intersections. Towards that goal, the first step is to clarify which type
of applications can sustain the information that the RSU receives from direct
communication of standardized beaconing protocols. Then, derive a protocol
taking advantage of the analysis and insights retrieved.

Develop an IEEE 802.11p V2I beaconing protocol to support RSU
mission-critical applications that require low position error with high
reliability in road intersections.

Objective Il

Given the second set of research questions and that DL excels at discovering non-
linear patterns from big data in a flexible way: The framework developed shall
merge the recent advances in DL with ITS traffic forecasting systems’ needs. As
a contribution, the framework shall be a unique solution to several future major
challenges of traffic forecast identified by Lafa et al. , formulating the
traffic forecasting problem as a latent variable model and resolving it using DL.
It should learn the latent variable model of the traffic data, that is, learn useful
forecasting features and also meaningful characteristics. The model learned
should enhance ITS preprocessing stages and serve as a tool for traffic modelers
to improve model development and decision-making.

Develop a unique model for ITS to extract knowledge from traffic
data to enhance traffic forecast, missing value imputation, model
and data selection and anomaly detection.
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Objective lll

Given the third set of research questions, I'TS solution of Objective II shall be
aligned to the efficiency needs of ITS. Therefore, the aim should be to to avoid
using exhaustive search to define the architecture, thus develop a methodology
based on information-theoretical concepts. The resulting architecture should
be the minimum one that can provide maximum data compression to avoid
forecasting with excessive number of features, which is computational inefficient
and undertakes the risk of overfitting.

Develop an efficient methodology that automatically defines the
minimum-expression architecture of I'TS solution of Objective II that
can provide maximum data compression without diminishing the
accuracy of the subsequent forecasting system.

1.3 Structure and Rationale

This is a thesis written by compendium of works. As such the annexed
papers represent the core of the thesis which include the thorough descriptions,
discussions, mathematical developments and results. This thesis is structured
in two Parts. contains a dissertation summary based on the co-authored
journal papers and conference papers contributions. is divided in
[Appendix Aland |[Appendix B} containing the two published journals
and |Boq+20|, respectively.

The dissertation summary is meant to give an overall logical envelope by
discussing the relevant related work in the literature and the main findings
pointing the reader to the relevant papers where complete results can be found.
Its logical structure is summarized in Figure [[.3] where four sequential stages
of the ITS design workflow are depicted: data acquisition, data preprocessing,
data modeling and model exploitation. These stages are related to the data
acquisition, data analytics and application layers of ITS, which are the scope
of [Chapter 2| [Chapter 3] and [Chapter 4] respectively. More specifically,
contains:

has introduced the doctoral thesis. The main motivation, framework
and objectives pursued have been presented. It also introduces the overall
structure of the thesis and provides a brief analysis on the relevance of
the publications annexed and co-authored.

is aligned with Objective I. [Section 2.1 starts with novelty and
related work discussion. [Section 2.2) provides the reader with an overview of

IEEE 802.11p technology and its scalability problem. contains
the main results: an analysis of the standardized beaconing protocols, new
infrastructure-oriented adaptation criteria for communication parameters
and a new communication protocol to support critical applications at
intersections. The work summarized in this chapter is the result of the
paper contributions (in collaboration with German Aerospace

Center, DLR), [Bog+18a] and journal article [Boq+18b| (Appendix Al).

is aligned with Objective II. Likewise, [Section 3.1|starts with novelty
and related work discussion. presents the traffic problem from

9
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addressed in the thesis are highlighted in color. This figure is an adaptation of

the workflow shown in |Lan+21].
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1.4. Relevance of Publications

Table 1.1: Analysis of relevance of journal publications [|B0q+18b|] and [lBqurQOII.
The abbreviation Ref. indicates the corresponding appendix and Cit. stands
for Citations.

Title Ref.  Journal Q IF Cit.  Year

Adaptive Beaconing for RSU- ]

. . hicul -
based Intersection Assistance Vehicular Com:

Systems: Protocols Analysis A munications, QL 471 8 2018
ELSEVIER

and Enhancement

A Variational Autoencoder So- Transportation

lution for Road Traffic Fore-
casting Systems: Missing
Data Imputation, Dimension
Reduction, Model Selection
and Anomaly Detection

Research Part

B C: Emerging Q1 6.08 17 2020
Technologies,

ELSEVIER

a probabilistic point of view. provides the reader with the
necessary background and context. The solution is presented in[Section 3.4}
deriving the model and analyzing the main motivations for the choices
made. presents the main results obtained in missing data
imputation, dimension reduction and model selection, also exploring
anomalous traffic detection. The work summarized in this chapter is the
result of the conference paper |[Boq+19| and journal article
(Append B).

is aligned with Objective I11. starts with novelty and
related work discussion. briefly reviews information-theoretic
concepts applied to an autoencoder, a specific DL architecture.
contains the main results, the proposed algorithm and the basis on which
the proposal is based. Part of the work presented in this chapter is the
result of the paper contribution [Bog+21h].

discusses the main results of the doctoral thesis and proposes future
lines of research.

1.4 Relevance of Publications

The analysis in Table [I.I] shows that the publications annexed to this thesis
have been published in journals of the first quartile (Q1) for the engineering
category, and have been referenced by other articles in the literature. The
analysis of the relevance of the publications is based on the data reported by
each journal, the JCR analysis application of FECYT and Google Scholar. The
quartile and impact factor (IF) values refer to the year of publication. Table
analyzes the authored conference publications directly related to the thesis.
Additionally, the analysis in Table shows publications done in collaboration
that are related to the thesis, where the author is not necessarily listed as the
first author.

11



1. Introduction

Table 1.2: Analysis of relevance of conference publications [I]?)oq—l—l?l]7 [IBoq—l— 18al,

[Bog+19] and |Boq+21b|, respectively.

Title Conference Cit.  Year
Trajectory Prediction to Avoid Personal, Indoor, and Mo-

Channel Congestion in V2I Com- bile Radio Communications 8 2017
munications (PIMRC)

Analysis of Adaptive Beaconing Wireless On-demand Net-

Protocols for Intersection Assis- work Systems and Services 1 2018
tance Systems (WONS)

Missing Data in Traffic Estimation: International Conference on

A Variational Autoencoder Impu- Acoustics, Speech and Signal 14 2019
tation Method Processing (ICASSP)

Theoretical Tuning of the Autoen-

coder Bottleneck Layer Dimension: ~European Signal Processing 0 2021

A Mutual Information-based Algo-
rithm

Conference (EUSIPCO)

Table 1.3: Analysis of relevance of publications derived from collaborations

[Cor+17|, [Pis+18|, [Mac+19] and [Bog+21a, respectively.

Title Journal/Conf. Q IF  Cit. Year
Autonomous Car Parking Sys-
tem through a Cooperative Ve-  Sensors, MDPI Q1 328 25 2017
hicular Positioning Network
VAIMA: a V2V based Intersec- Wireless On-demand
tion Traffic Management Algo- Network Systems and — — - 6 2018
rithm Services (WONS)
Novel Imputing Method and
Deep Learning Techniques for ~ Computing in Cardi- B 1 2019
Early Prediction of Sepsis in  ology (CinC)
Intensive Care Units
Offline Training for Memristor- European Signal Pro-

cessing Conference  — - 0 2021

based Neural Networks

(EUSIPCO)
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CHAPTER 2

Enhancement of
Vehicle-to-Infrastructure
Communication in the ITS Data
Acquisition Layer

This chapter covers Objective I of the thesis by proposing an IEEE 802.11p
communication protocol that adapts the communication parameters of vehicles
to guarantee reliable and updated data for infrastructure safety applications.
Specifically, starts with novelty and related work discussion.
[Section 2.2 provides the reader with a brief overview of IEEE 802.11p technology
and its scalability problem. critically analyzes the behavior of the
vehicular network in a dense intersection scenario. evaluates the
state-of-the-art beaconing protocols considered for standardization from the
point of view of roadside infrastructure. derives infrastructure-

oriented adaptation criteria for communication parameters.
proposes a communication protocol for Intersection Assistance Systems (IAS).

“Develop an IEEE 802.11p V2I beaconing protocol to support RSU
mission-critical applications that require low position error with high
reliability in road intersections.”

2.1 Related Work

Adaptive beaconing protocols are proposed by standardization bodies and
researchers to improve the overall VANET performance, mainly adapting
frequency and power transmission to different criteria such as channel load,
traffic density, dynamics of vehicles or application requirements, to name a
few. Several authors put an effort into summarize adaptive beaconing into
three surveys: [Sep+11], [Gha+13] and [Sha+16|, while the current European
Decentralized Congestion Control (DCC) is standardized in and the U.S.
standard in [SAE16D] (hereafter referred as USA DCC). Adaptive beaconing
protocols can be divided depending on their approach into message frequency
control, transmit power control or hybrid based approaches. Also, depending on
their aim, they can be divided into congestion control protocols, those aiming

13



2. Contributions in ITS Data Acquisition

to control channel congestion, and awareness control protocols, those that aim
to fulfill application requirements.

The most relevant trend being followed is to adapt beacon frequency as a
function of channel load so as not to exceed a threshold considered optimal with
respect to the throughput of the channel, which in turn leaves capacity to receive
messages that promptly inform of specific events. In addition, the vast majority
of them are designed based on the fairness postulation, that is, all vehicles must
achieve the same performance and the same opportunities within the network.

One of these examples is LIMERIC [KBR11| that jointly with PULSAR [Tie+11]
is considered by ETSI to be included in the ITS-G5 vehicular standard together

with their DCC mechanism and CAM triggering conditions .
However, some challenges still remain unresolved, for instances, moderately
adaptive approaches like the ETSI’s DCC do not perform well considering
network dynamics caused by shadowing. So, Sommer et al. proposed
DynB, which aims to be stable under heavy network congestion and to be able
to quickly react to density changes. Traditionally awareness control protocols
have been designed and evaluated separately from congestion control protocols.
Therefore, Sepulcre et al. proposed INTERN, which integrates a
congestion control process as a function of the channel load and an awareness
control process aiming to adapt the power to the minimum necessary so that
the messages are received with certain reliability at an individual warning
distance. Kloiber et al. proposed an awareness control protocol that
provides different levels of awareness-quality at different ranges, while accounting
for correlated packet collisions. Despite showing great performance in their
function as demonstrated by their authors, none of these relevant protocols
take into account the position accuracy at the application level, which is a
relevant metric for most safety applications. In that sense, some protocols have
been proposed which take into account tracking accuracies using a trajectory
prediction approach, e.g., [Ban+13; Hua+10; NJ15} [Sun+17]. Being
the one adopted as the official USA DCC, which correlates communication
behavior with tracking error stochastically sending packets when the suspected
error of neighbors grows above a defined threshold [SAE16D|. Sun et al.
used a trajectory prediction approach and a RSU to allocate channel resources
according to tracking requirements from vehicles. Guan et al. provided
a congestion control method for road intersections using feedback from a RSU
about optimal beacon rate and backoff slots previously computed offline. On
another hand, Joerer et al. proposed a situation-based rate adaptation
scheme that allows temporary exceptions for endangered vehicles to use more
than the equal fair share of the channel. Also, Joerer et al. proposed
another beacon rate adaptation algorithm relying on their intersection collision
probability metric, stating that current state-of-the-art congestion control
mechanisms are not able to support intersection assistance systems adequately.
Nevertheless, neither of the aforementioned approaches take into account V2I
application metrics and some are not optimal at application level since each
vehicle has different needs to meet application’s requirements at each instant of

time [Sch+10].
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2.2. |IEEE 802.11p Overview

2.2 |EEE 802.11p Overview

IEEE 802.11p is an evolution of IEEE 802.11a for vehicular communications.
IEEE 802.11p uses an OFDM (Orthogonal Frequency Division Multiplexing)-
based physical (PHY) layer with a channel bandwidth of 10 MHz. IEEE
802.11p uses the same modulation and coding schemes as IEEE 802.11a. It
supports data rates ranging from 3 to 27 Mbps using coding rates 1/2, 2/3
or 3/4 (convolutional coding) and BPSK (binary phase shift keying), QPSK
(quadrature phase shift keying), 16-QAM (16-quadrature amplitude modulation)
or 64-QAM modulations. IEEE 802.11p uses the Outside the Context of a
BSS (OCB) operation mode to avoid the latency associated with establishing
association and authentication procedures in a BSS. The connection setup of
IEEE 802.11 Basic Service Set (BSS) operations, like multiple handshakes before
exchanging data, is reduced because of the demanding vehicular requirements of
spontaneous and highly mobile ad-hoc communications. Likewise, the Request-
To-Send/Clear-To-Send (RTS/CTS) handshake mechanism is not implemented
as it increases latency in high mobile networks. The ITEEE 802.11p basic access
method is the Distributed Coordination Function (DCF) of IEEE 802.11, known
as Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). In
CSMA/CA, a node has to sense the radio channel before transmitting a packet,
thus preventing it to transmit if another node is using the channel. If the
channel is sensed as idle, the node can start its transmission. If the channel
is sensed as busy, the node defers its transmission until the end of the current
transmission. The radio channel is sensed as busy when the vehicle detects a
signal with a received power strength higher than the Clear Channel Assessment
(CCA) threshold, higher than the receiver’s sensitivity level. At the end of the
channel busy period, the node waits for a backoff time to minimize collisions
during contention between multiple nodes that also deferred their transmission.
This time is calculated for each packet by multiplying a specific slot time of
the OFDM PHY layer and an integer number that is randomly selected in the
interval from 0 to the size of the CW, where CW refers to Contention Window.
The standard sets a CW of 15 time slots of 13 us each for transmitting broadcast
packets in 10 MHz channels. The node decreases the backoff time when it senses
idle the channel to finally start its transmission when its backoff time reaches
Zero.

2.2.1 Scalability Problem

One of the most critical weaknesses of IEEE 802.11p communication is data
congestion suffered in high density scenarios. Periodic broadcasting of messages
to build an accurate real-time image of the surrounding state of vehicles leads
to serious redundancy, contention and collision probability as the number of
vehicles on the network grows. Broadcast transmissions in the IEEE 802.11p
CCH using CSMA/CA are not acknowledged, no ACKs are used, and therefore
collisions cannot be detected. In high density scenarios the probability of two
nodes choosing the same back-off time increases significantly. Recall that a
node has to wait a random back-off time between the interval [0, CW] at the
time of transmission if it finds the channel busy. In fact, under a high loaded
channel the behavior of CSMA converges to an ALOHA process, where a node
chooses a random transmission time without sensing the medium
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Figure 2.1: Required Figure 2.2: Urban traffic scenario in an intersection
position accuracies of area obstructed by buildings. Vehicles continuously
representative I'TS ap- disseminate their position using direct V2I communica-
plications grouped into tion. Data is received at the RSU running a collision
low (10 to 30 meters), risk warning application. The vehicular network simu-
medium (1 to 5 meters) lation was implemented using the framework Veins on
and high (0.5 to 1 me- top of OMNeT++ event-based network simulator and
ters) scales. coupled with SUMO road traffic simulator.

. In addition, there is no RTS/CTS handshake mechanism, thus
no way to detect a hidden terminal that its signal strength is received above
the RSU’s sensitivity level but below the receiver’s sensitivity level. Random
channel access schemes like IEEE 802.11 were designed for bursty data traffic
patterns instead of periodic ones. Although the CAM transmit policy has been
enhanced by additional triggers based on mobility changes, in numerous contexts
vehicular mobility is little varying and highly correlated (e.g., platooning on a
highway). As a consequence, the resulting broadcasts are likely to be correlated
as well, which may cause correlated packet collisions. Whereas the loss of
individual CAMs only has a minor impact on the current up-to-dateness of the
cooperative awareness, several consecutive losses may quickly lead to outdated
information, which is not viable for safety related applications anymore. IEEE
802.11p major challenges in heavy traffic scenarios are the broadcast storm
problem, hidden terminal problem and the packet collision. Those are well-
known and well-studied problems in static or quasi-static scenarios, however,
VANETS consist of highly mobile nodes that require ubiquitous and reliable
communications to sustain safety applications.

2.3 Vehicle-to-Infrastructure Communication in
Intersection Areas

Intersection areas are characterized for unique and severe conditions where
TAS are meant to detect hazardous situations and manage traffic to reduce
vehicle related problems. Roadside ITS stations (IT-S) standardized by ISO
and ETSI are designed to help in those situations. ETSI RSU-based intersection
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services are many such as: collision warning, wrong way driving, traffic condition
warning, signal violation warning, traffic light management and optimal speed
advisory, traffic information and recommended itinerary. Among them, ICRW
is its most relevant application . In such a heterogeneous framework,
applications’ needs derive in very different required position accuracies that can
be grouped into three scales: low (10-20 or even 30 m), medium (1 to 5 m), and
high (a meter or sub-meter), Figure . Because safety applications
have strict requirements in terms of awareness and latency, the main metric
analyzed in this chapter is the position accuracy. It is defined as the error
between the current vehicle’s physical position and the last reported position
to the RSU, which implicitly entails the requirement of latency. Error results
shown in this chapter are compared to those scales.

Intersection Scenario

An intersection simulation environment scenario was designed and built in order
to test the performance of beaconing protocols and proposed methods. The
scenario is an intersection area with a deployed RSU ITS-S running the ICRW
application, see Figure It requires real-time monitoring of all vehicles
with a short end-to-end latency time in order to provide timely warning to
drivers [ETS18]. The simulated scenario is described in detail in [Boq+18D]
(Appendix A]). Realistic vehicle mobility was simulated. IEEE 802.11p and ITS-
G5 standard direct communication was assumed, where CAMs are periodically
broadcasted by vehicles using default IEEE 802.11p PHY and MAC parameters.
Radio signal attenuation was modeled as a function of path, shadowing and
fading effects. Two scenarios were considered: (O) an intersection area fully
obstructed by buildings (Figure 2.2) and (@) the same unobstructed area where
LOS conditions exist between vehicles of different roads.

2.3.1 Network Behavior

An approximation of the behavior of the position error at the RSU is presented
to understand why some protocols perform better than others and how to adjust
the parameters or derive new protocols towards enhancing TAS. Hereafter, it is
assumed that the positioning of the vehicle itself is error free, as we are only
interested in the error contribution from the performance of the protocols.

Position Error Model

Assuming ideal channel conditions, a constant vehicle speed v and uniformly
distributed events of looking up the position at the RSU during a fix beaconing
interval tp, the average position error at the receiver can be expressed as half
the minimum plus the maximum position errors as:

vty — 1

é:vtm+¥, (2.1)
where t;, is the transmission time of the beacon and ¢, is the time between
the position error computation at the RSU and the next beacon reception.
The reception of the next beacon depends on several factors as a packet may

not be received due to low SINR (i.e., collision) or low SNR (i.e., reception
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power below receiver’s sensitivity). Contrary to , the average position error
at the RSU increases as the average speed of vehicles drops while congestion
occurs . Hence, considering this and neglecting the error contribution
of t, (cm-order), the maximum position error of a vehicle at time instant k
can be estimated as:

ék = UV E [tg] ; (22)

where t,’ is a random variable representing the actual time between two
consecutive beacons. Its expectation can be expressed as the number of
consecutive tries I needed to receive a beacon multiplied by the beacon interval,
E[t;] = E[I|t,. Assuming that packet loss is independent across time, the
expected number of consecutive tries can be expressed as:

oo
i 1
E[1] = ;iP&; (1= Peo) ~ 55 (2.3)
Packet loss due to low SNR represent in average less than 0.6% of the total
packet loss in the simulated scenario, thus the probability of a collision can
be approximated as P, ~ 1 — PDR . Unfortunately, is not
valid in complex vehicular situations. The probability of reception is based
on a plurality of factors, to mention a few, IEEE 802.11p MAC contentions,
the capture effect, the hidden terminal problem, fast varying density of traffic,
correlated packet collisions due to quasi-periodic transmissions of beaconing
protocols and relative mobility of vehicles towards the RSU. Due to these
issues, the purely mathematical analysis of the position error becomes highly
complex. Nevertheless, simulation results showed that approximates the
behavior of error, showing that error is a function of vehicle dynamics, which
roughly depends on traffic conditions and scenario topology, and of probability
of packet reception, which roughly depends on the number of vehicles and

channel conditions [Boq+18a].

Influence of Vehicle Dynamics

Using the default beaconing setting, the simulated vehicle traffic and the
position error at the RSU are depicted in Figure [2.3]and Figure 2.4] respectively.
Figure illustrates that error follows two different patterns as a function
of time as in . On the one hand, there are periodic fluctuations in the
error similar to the evolution in time of the average speed. These are due to
the behavior of vehicle traffic at the intersection. For example, at point A in
Figure [2:4] one of the time instants in which the error is minimal, corresponds
to when immediately traffic lights turn green: Vehicles in queue are stopped
and those at the beginning start to accelerate, therefore the average speed of
vehicles is much lower and the resulting error as well. Once the traffic light has
turned green, the vehicles accelerate until reaching the maximum speed to leave
the intersection, point B in Figure 2:4] In addition, vehicles that previously
stood in the queue move towards the traffic light. All of these increases the
average speed and consequently decreases the position accuracy. Finally, the
same phenomenon can be perceived at point C for vehicles that were on turn
lane. Although the phenomenon is on a smaller scale as there are fewer vehicles
and the traffic light time is also shorter. The worst case scenario can be found
at larger distances from the RSU where higher speeds are found. Also, the
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Figure 2.3: Average number of vehicles
within the coverage area of the RSU

with two the times standard deviation.

The evolution of the vehicle number
across time simulates a rush hour with
high density traffic. Please note that
vehicles stop appearing at ¢ = 160 s.
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Figure 2.4: Average position error at
the RSU compared to the average speed
of vehicles across time in scenario .
Comparison of both allows to under-
stand dependencies of the error on the
scenario topology and traffic density.
A fix-period beaconing of 100 ms was
simulated, suggested by ETSI and SAE
for cooperative awareness.

temporal analysis of lost packets showed that when vehicles stop appearing
(t =160 s) packet loss due to SNR follow the same pattern as the speed. This
is not due to the speed but to the distance in which vehicles are located because
it coincides that they have the highest speed at further distances from the RSU.

&

Lessons learned |Boq+18b]:

The error depends on the scenario topology and traffic
characteristics, intersections are characterized by high mobile
traffic.

The fairness postulation of beaconing protocols is not optimal,
each vehicle contributes differently to the error.

Stopped vehicles near the RSU with low mobility capabilities
saturate the channel with redundant information that does not
improve accuracy, raise the probability of a collision and are
the least likely to contribute to an accident.

Beacon frequency should be adapted to the dynamics of the
vehicles.

Influence of Packet Loss

The error grows similar to the evolution of the number of vehicles but attenuated
by the decrease in the average speed when traffic congestion occurs, Figure
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Figure 2.6: Impact of shadowing on
the average CBR computed at the
RSU. This figure illustrates the heavy
influence of shadowing conditions on
the behavior of CSMA /CA protocol.

ing conditions.

This shows an inverse relationship between the influence of vehicle dynamics
and channel congestion (proportional to traffic congestion) on the error. That is,
when traffic congestion occurs the channel becomes more saturated increasing
the error, however, the average speed of vehicles decreases at the same time,
thus reducing the error. There are collisions in almost all instants of time due
to the periodic transmission of beacons. The problem worsens as the number
of vehicles increases, coinciding in ¢ = 160 s the greatest number of collisions
with the maximum number of vehicles. Packets can not be received because
they are considered as noise due to low SNR, discarded as collision due to low
SINR during preamble reception (i.e., simultaneous transmission) or discarded
due to bit errors caused by low SINR at some point during reception (i.e.,
concurrent transmission). Figure illustrates the importance of shadowing
on packet reception in an intersection area. Figure shows the number of
packets dropped at the PHY and MAC layer of the RSU for different kind of
simulated shadowing conditions accounting for no shadowing at all, shadowing
dynamics of vehicles (V) (i.e., Scenario ) and the later one plus shadowing of
buildings (V+B) (i.e., Scenario O). The worst case translates to minimum PDR
values of 10%, corresponding to a 90% chance of collision. As the number of
vehicles increases the effect of radio signal shadowing increases the probability
that packets are not received due to a low SNR but, more importantly, hidden
nodes are increased during which collision avoidance mechanism of CSMA is
not involved. Thanks to shadowing of vehicles and buildings the range of
distance at which vehicles sense each other is diminished increasing concurrent
transmissions at the RSU. It is worth mentioning that Sommer et al.
found out that shadowing diminishes collision probability from vehicles’ POV,
contrary, in this scenario collisions are increased from the static RSU’s POV
which is located at intersection’s center.

High density traffic infer a high collision probability, arising the well-
known scalability problem of the IEEE 802.11p MAC protocol, which precisely
congestion control protocols try to avoid by monitoring the Channel Busy
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Ratio (CBR). Hidden node and collision problems can also be observed on
the evolution of the CBR over time in Figure The CBR is computed at
the RSU as the amount of time that the channel is sensed as busy during a
second. The theoretical CBR limit in CSMA/CA without packet collisions can
be computed as the total number of beacons that can be fitted in a second
(deduced as the inverse of the packet duration plus the predetermined listening
period, AIFS) multiplied by the duration of a beacon transmission. In this
scenario the CBR theoretical limit equals 0.8 . However, as shown in
Figure CBR maximum value is close to 0.9 when shadowing conditions are
considered, exceeding the limit value because of the hidden terminal problem.
This result indicates that the behavior of CSMA/CA medium access protocol
converges to an ALOHA process, where a node chooses a random transmission
time without sensing the medium.

& Lessons learned |Boq+18b]:

e Dense traffic with periodic or quasi-periodic beaconing in-
creases correlated packet collisions, resulting in catastrophic
position accuracies for infrastructure applications in intersec-

tions (Figure Section 2.3.2)).

o Congestion control protocols should manage collisions.

e From this point of view, the fairness postulation is neither
optimal, since stopped vehicles with low contributions to the
error interfere with further vehicles with higher speeds and
prone to larger errors.

¢ Adaptation to vehicles dynamics of all communications param-
eters, not only beacon frequency, is mandatory to allow vehicles
contributing more to the error to overcome the capturing effect
of possible collisions.

2.3.2 Protocol Evaluation

Discussion on the performance of the different protocols under this section aims
to extract value information of how different adaptation approaches perform in
the scenario, if current protocols are able to sustain TAS and to conclude how
protocols’ design criteria influence information reception for TAS.

Evaluation Metrics

The following metrics were used to study the performance of each beaconing
protocol. PDR was discarded since does not reflect consecutive packet collisions
and can be misleading. Not receiving several consecutive beacons increases
tracking error more than receiving packets alternatively, despite the ratio
between the number of packets received and sent (i.e., the PDR) could be the
same.

o Position error (PE): Defined as the Euclidean error between the current
vehicle’s position and the last reported position to the RSU. It is computed
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at the RSU for each vehicle every 10 ms. This metric is used to evaluate
the applicability of the protocols, as security applications are sustained
on accurate and updated position information.

Channel footprint (CF): Defined as the total channel resources consumed
at the RSU in time and space. This metric provides information on
the amount of channel bandwidth used and can be compared against
tracking error reliability. In addition, a high channel footprint indicates
worse conditions for dissemination of other types of messages on the same
channel.

The complementary cumulative distribution function (CCDF) of the PE:
Defined as CCDF = 1 — CDF, provides the probability P,(Error > n) of
the position error to be greater than n at the RSU. It was used to evaluate
PE reliability for safety applications, as against other approaches, e.g.,
average values and confident intervals, the distribution keeps all measured
information.

Summary of Protocols

We considered the three relevant beaconing protocols considered by standard-
ization bodies that are described below. Default IEEE 802.11p values were
used for the adaptation of specific parameters not considered by the protocols.
The rest of parameters were adapted following the guidelines provided by their
authors, the reader is referred to [Boq+20] (Appendix B)) for specific details.
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Baseline. Beacon frequency fixed to a 100 ms period.

LIMERIC combined with PULSAR . LIMERIC adapts
the beacon frequency as a function of the CBR, such that all vehicles
converge to the same beacon rate and to a desired channel load level that
maximizes the throughput. PULSAR computes a global CBR for the
vehicle as the maximum CBR between the one locally sensed and the one
reported by neighbors during two hops. In this way CBR used by vehicles
does not differ much from that measured at the RSU.

ETSI DCC . Beacon frequency is defined by a periodic beacon
interval given by a state machine that changes states according to the
sensed CBR. Transmission power, data rate and the CCA threshold
are also defined by the same state machine. Additionally, beacons are
triggered when the difference between absolute values of current heading,
position and speed compared to information disseminated in previous
CAM exceeds 4 degree, 4 m or 0,5 m/s, respectively.

USA DCC . Beacon frequency is stochastically determined by
each vehicle calculating the transmission probability based on suspected
tracking error on neighboring vehicles towards its own position. The
transmission probability is calculated as a function of user-defined
sensitivity and error thresholds, inconsistency in sequence numbers of
received packets and CBR measurements. It is assumed that each vehicle
estimates the position of others using a predictor and the information
disseminated in the shared channel. Accordingly, the RSU runs the same
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Table 2.1: Summary of statistical performance of the studied protocols w.r.t.
position error and channel footprint for unobstructed () and obstructed (O)
scenarios. Results shown are the average of 10 simulation runs. mean values
are computed averaging all values measured in the same time step for each
vehicle and then averaging over all simulation time steps. 95% percentiles shown
are the average of all percentiles computed in each time step. max(d) are the
maximum PE values calculated within d m from the RSU. max(CBR) are the
maximum CBR values measured at the RSU. The best values are highlighted
in bold.

Baseline LIM+PULS ETSI DCC USA DCC

0] 0 0 O (0] O (0] 0]
mean 7.01 1593 288  7.48 1.02 142 0.44 0.65
95% 36.55 104.93 10.43 43.46  3.96 587 1.09 1.17

PE [m] max(50) 436.9 561.8 266.2 4109 26.44 32.33 295.2 4034
max(100) 427.1  565.1 295.3 430.6 40.9 154  206.1 524.5
max(400) 466.5 565.1 446.4 4329 167.3 218.8 5426 T42.6

mean 0.53 0.5 0.49 049 0.25 0.26  0.02 0.02
CF 95% 0.55 0.52 0.51  0.52 0.27 0.28 0.02 0.02
max(CBR) 0.9 0.87 0.82 0.84 0.51 0.58 0.06 0.06

prediction model for each vehicle in the scenario, a constant velocity
model.

Main Results

Table[2.J]summarizes the improvement of beaconing protocols w.r.t. the baseline
for scenarios @ and O. Figurereveals the impact of shadowing on the CCDF
of the position error computed at the RSU. Figure[2.§illustrates the performance
of each protocol in Scenario O. ETSI and USA DCCs are the ones performing
better. It is clear that USA DCC achieves the best performance in overall
despite still providing not negligible maximum values (Table . Contrary,
ETSI DCC improves maximum PE values. There is a notable difference between
the two scenarios @ and O in PE. All the protocols decrease the CF, where
USA DCC stands out for the almost null use of the channel. High values of
CBR above CBR,.x are still measured by the RSU, meaning that there is a
discrepancy between vehicle and RSU measures.

The distribution and maximum values of the error should be taken into
account at the time of implementing an application based on a RSU that needs
position information of vehicles approaching the intersection. In that sense,
considering an average vehicle width of about 2 m, an overall accuracy of 1 m
is needed in order to locate a vehicle in a particular driving lane. Therefore,
considering values from Figure 2.8 and Table it can be concluded that
maximum errors and standard deviations are too large to consider implementing
a critical safety application relying on each of the three protocols. This points out
that further improvement is needed. However, regarding non-safety applications,
95% of error values would be under medium accuracy scale from up to 100 m
using ETSI DCC. A similar performance would be obtained using USA DCC
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No Shadowing
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—*—LIM+PULS|
\ —=—ETSI

i 5 10 %0
Error n [m]

Figure 2.7: Impact of shadowing on
the CCDF of the position error com-
puted at the RSU. The hidden terminal
problem increases the number of colli-
sions, which translates into not negligi-
ble position errors and uncertainty for
infrastructure applications.

i 5 10 2
Error n [m]
Figure 2.8: CCDEF of the position
error at the RSU in the obstructed
scenario, Scenario O, for each protocol.
Different adaptation criteria improve
the accuracy of fix-period beaconing.
Baseline results are the same results
than Shadowing (V+B) in Figure 2.7]

from distances up to 175 m enabling, e.g., an efficient traffic light management
from the RSU.

Performance Discussion of Protocols
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LIM+PULS. The study of the temporal position error behavior showed
an improvement when congestion occurred. PE improves w.r.t. the
baseline when channel becomes saturated, although no application
requirements are considered. LIMERIC aims only to achieve a target CBR,
hence, its performance is explained by the correct adaptation to CBR
disseminated by PULSAR. PULSAR dissemination of 2-hop maximum
CBR of neighbors allows vehicles to react to similar CBR values measured
at the RSU, mitigating shadowing effects. CBR information disseminated
by the RSU would be more accurate, thus improve the accuracy. However,
the major drawback limiting improvement is the fairness postulation: All
vehicles transmit with the same beacon rate, but do not contribute equally
to the error calculation. Error grows when dynamics are more relevant, as
no adaptation to these is used and correlated collisions still occur because
of periodic transmissions. Additionally, vehicles transmitting with same
constant power limit the performance because packets sent by low speed
vehicles are received with greater signal strength than vehicles with higher
speeds, which are located far from the RSU.

ETSI DCC. ETSI’s protocol reacts to CBR to avoid channel congestion
decreasing power transmission and beacon frequency and increasing data
rate and sensitivity. Adaptation is based on CBR measures of vehicles,
which differ significantly from the ones measured at the RSU. Using
PULSAR approach or CBR disseminated by the RSU would improve
performance. ETSI DCC does not only rely on the channel load to adapt
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beacon frequency. In fact, the periodic component of the beacon frequency
is adapted to the CBR but the other frequency component is derived from
vehicles dynamics (CAM triggering conditions). Thus, as the channel
becomes more saturated, the protocol decreases the beacon frequency
and the later component acquire more relevance improving the position
accuracy. On the other hand, a high data rate lowers the probability of
collision, which enhances performance when congestion occurs. Decrease
in power and increase in sensitivity objective are to avoid interfering with
further vehicles and improve near communications, respectively. When
congestion occurs, the carrier sense (CS) range is lowered thus further
vehicles’ signals are treated as noise enabling closer communications. This
approach is not optimal in the specific scenario, because low speed vehicles
are being prioritized as interferer vehicles get closer to the RSU.

e USA DCC. Vehicle dynamics and probability of collision are key
components for tracking accuracy. USA DCC achieves high performance
because of low collision probability conditions and fully adaptation to
vehicles dynamics. Forcing all nodes to track vehicles has a computational
cost disadvantage, however, it allows vehicles to estimate the error that
others are having and to be able to react to it. Using an error threshold,
it directly grants more priority to vehicles suspected of having more error.
Besides, it reduces redundant information from the channel lowering
collisions, which in turn leads to better opportunities to succeed for
other kinds of messages. If a packet is lost, next one will be sent
stochastically only when the predictor error exceeds the threshold, as
there is no mechanism to avoid packet loss. This derives in large values
of maximum error and uncertainty that do not cope with high accuracy
position requirements. A major drawback is the significant reduction of
awareness as new vehicles appearing inside the RSU range do not receive
updated information about vehicles that already sent their beacon and
that their model is predicting correctly. Adding periodicity to the beacon
transmission will increase the error significantly, not scaling linearly with

the traffic density (Figure 4 of [Boq+17)).

2.3.3 PHY & MAC Adaptation Criteria

Results simulated and discussed in showed that protocols designed
using V2V metrics can barely support safety applications of TAS, despite being
able to meet their own requirements as demonstrated by their authors. This
shows a trade-off in the adaptation criteria between enhancing vehicle or RSU-
based applications. Consequently, there is a need for new beaconing protocol
criteria that yields to better performance on which RSU-based IAS can be
sustained. Also, this shows the need to adapt adaptation, that is, to decide when
and how to switch adaptations to comply with different kind of applications
or scenarios . Since the latter is out of the scope of this chapter, novel
criteria for parameter adaptation to enhance beaconing performance towards
TAS is proposed below. Lessons learned in [Section 2.3.1| and [Section 2.3.2[ lead
to the following infrastructure-oriented adaptation criteria with the aim of
maximizing position accuracy for applications based on data collected from
infrastructure in intersection areas.
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o Lessons learned about parameter adaptation |[Boq+18b|:

C1. Vehicles prone to larger errors must have higher priority.
Fairness postulations are not derived from tracking accuracy
and reliability needs.

C2. All communication parameters must be adapted to the
dynamics of the vehicles, not only to the state of the channel.

C3. Effect of packet collisions has to be mitigated. In other words,
protocols must aim for low probability of collision conditions
while in the event of a collision the most relevant packet must
be decodable to avoid correlated collisions.

Parameter Adaptation Discussion

Parameter adaptation, limitations and their effects in an intersection area are
discussed below. Please note that the discussion is from the POV of a RSU
as a static node located in the middle of the intersection. Parameters selected
are the most relevant in adaptive beaconing literature, aligned with ETSI’s
adaptation and limited by the current standardized MAC protocol.
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o Power (P;). The maximum transmission power allowed in ITS-G5 CCH is

33 dBm. P; determines communication range (CR) and carrier sense (CS)
range. To obtain a lower collision probability (Criterion 3), it is interesting
that the range in which vehicles are sensed is as large as possible to avoid
the existence of hidden terminals. As power increases, so does CR and CS
range. In that sense, the higher the power in which vehicles transmit the
better. Additionally, high power implies greater robustness against signal
attenuation. However, transmitting all with the same power does not
solve the capturing effect , nor does it to adapt the power
to the distance towards the RSU because all packets will be received with
similar power. Following Criterion 1 and Criterion 2, vehicles with higher
speeds should transmit with higher power than vehicles with slower speeds,
so that in case of interference the former vehicles achieve better SINR
values. The difference between transmission powers is then subjected to
the modulation being used which imposes the minimum SINR to correctly
receive a packet.

Data Rate (R). Available data rates in IEEE 802.11p with their correspond-
ing modulation, coding rate, minimum sensitivity and SINR threshold
needed to correctly decode are listed in Table Sepulcre et al.
discussed about optimum data rate for V2V beaconing. The use of higher
transmission speeds implies a decrease in packet duration and thus a
decrease in channel congestion but, on the other hand, implies a less
robust modulation and a lower CR. Higher SNR and SINR values are
required at the receiver in order to be correctly decoded. Vehicles using a
more robust modulation and coding scheme will contribute more to the
channel load because of a longer packet duration which, in turn, increases
the probability of collision. In this context and following Criterion 1 and
Criterion 2:
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— For vehicles with higher speeds, prone to more error and usually
found at larger distances from the RSU, lower data rates are preferred
to achieve a higher priority and better PDR values accounting for
interference from low speed vehicles (SINR threshold reduction) or
severe signal attenuation at further distances (sensitivity reduction).

— Low speed vehicles require less priority, thus higher data rates should
be used to contribute less to CBR and achieve lower P, values
(Criterion 3). Note that this also acts as a congestion control because
vehicle speed is inversely proportional to the traffic density: The
more traffic the lower the speed, thus the proportion of vehicles
with low speed and high data rate will be higher. Unfortunately,
packets colliding will not likely be decoded due to an increased SINR,
threshold required, but lost packets will have less impact on the
overall error.

o Sensitivity (CCAgp). It defines the threshold from which the IEEE 802.11p
preamble and header can be detected and decoded or contrary considered
as noise, so that the medium is sensed as occupied or idle respectively.
Obviously, CCAy, is limited by receiver’s sensitivity but ETSI DCC
considers as minimum and maximum values, —95 dBm and —65 dBm
respectively. Lowering the CCAyy, (increasing CS range) of vehicles allows
for the detection of transmissions from vehicles situated far away, reducing
the number of hidden terminals. However, more contending neighbors
result in nodes sensing the channel as busy for a longer period, thus it is
more likely to occur that two or more nodes choose the same backoff time.
On the other hand, reducing the CS range allows for more transmission
opportunities because of lower local CBR values and reduces the number
of simultaneous transmissions at the cost of getting interferer closer (high
SIR values), increasing concurrent transmission. showed
that in this scenario concurrent transmissions are more influential than
simultaneous transmissions. Therefore, we advocate for the use of the
minimum receiver sensitivity as CCA¢y, to minimize P, at the RSU, that
is, =95 dBm. Note that all the criteria can not be met at the same time:
High speed vehicles can not be prioritized while Py is minimized.

e Priority (AC). IEEE 802.11p EDCA mechanism allows prioritizing between
data traffic using four different queues with different AIF'S listening periods
and CW settings. CW ., is omitted as it is never used on broadcast
mode. AC_BE (CW,;, = 15, AIFS = 11 us) category is intended to be
used for CAMs which turns out to make use of the largest CW available.
A large CW is preferred for both, high and low speed vehicles, to lower
the probability of a simultaneous transmission (Criterion 3). Regarding
Criterion 1 and Criterion 1, AC_BE is preferred for high speed vehicles
and AC_BK (CWy, = 15, AIFS = 149 us) for low speed vehicles.
Vehicles with higher speeds will listen to the medium for shorter periods
of time before transmitting, thus obtaining a higher priority. In this
way, packets that have the most influence on the error are going to be
transmitted first.

o Rate (1/tp). Beacon frequency is the most influential and versatile
parameter and the one where more effort has been put into by researchers.
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Table 2.2: TEEE 802.11p 10 MHz channel data rates [SGC17].

Data Rate Modulation Coding Minimum SINR
[Mbps] Rate  Sensitivity [dBm] Threshold [dB]

3 BPSK 1/2 -85 5
4.5 BPSK 3/4 -84 6

6 QPSK 1/2 -82 8

9 QPSK 3/4 -80 11

12 16-QAM 1/2 =77 15

18 16-QAM 3/4 -73 20

24 64-QAM 2/3 -69 25

27 64-QAM 3/4 -68 30

Adapting beacon rate following current fairness postulations does not cope
with required position accuracies for IAS, neither it does aiming to achieve
maximum throughput relying on CBR measurements of vehicles as shown
in results of With high accuracies in mind, beacon frequency
must be adapted to vehicle dynamics while randomization is needed to
avoid correlated packet collisions. The best approach that fits the criteria
is the use of a prediction approach based on the position error. This
approach decreases the uncertainty between beacon intervals allowing the
opportunity to relax some adaptation criteria and improve the performance
of the vehicle network. In this way, lower rates complying with maximum
beacon intervals of standards can be achieved, generating low collision
probability conditions (Criterion 3), while providing reliable awareness.
Besides, a position error threshold condition implicitly considers vehicle
dynamics (Criterion 1 and Criterion 2). Therefore, using a predictor
at the RSU can benefit all existing protocols with only a minimum
computational cost disadvantage, compared to force all vehicles to run a
predictor. In fact, most intersection safety applications envisaged require
monitoring position of vehicles. In that sense, previous evaluation of USA
DCC revealed the potential of using a position predictor, despite showing
high error values. Rate adaptation should use randomized redundant
transmissions and feedback provided by the RSU about channel metrics
and position tracking information.

Criteria Implementation

The discussion provided is synthesized in the intersection assistance state
machine (IASM) of Figure based on vehicle dynamics. Beacon frequency
adaptation is intentionally left out, so TASM can be implemented over existing
protocols validating the proposed criteria. Two different states (LOOSE and
RAISE) specify the corresponding parameters to be used and are selected
according to the speed of the vehicle. LOOSE and RAISE states correspond
to vehicles with low speed, which are intentionally prioritized less, and high
speed, respectively. As discussed, CCAyy, and CWy,;, values always remain the
same for each vehicle. The minimum data rate (3 Mbps) and the maximum
transmission power (33 dBm) have been selected for vehicles in RAISE state.
For vehicles in LOOSE, a data rate of 18 Mbps has been chosen based on the

28



2.3. Vehicle-to-Infrastructure Communication in Intersection Areas

v>5m/s

RAISE
P, =33 dBm
R =3 Mbps
AIFS =110 ps

LOOSE
P, =23 dBm
R =18 Mbps

AIFS =149 ps

v<5m/s

Figure 2.9: TASM state machine for an application that requires a maximum
error of 0.5 meters and a minimum delay information interval of 0.1 seconds.
Transmission power, data rate and listening period are adapted conditioned to
the speed of the vehicle and the application requirements. Other parameters
like the clear channel assessment threshold and the contention window are fixed.

work of Sepulcre et al. . A P; of 23 dBm has been chosen to meet
the SINR threshold (5 dB) required to decode a packet sent in RAISE state
in case of a collision, plus a margin to account for signal attenuation due to
large distances and shadowing dynamics because most of the vehicles with
higher speeds are located further. This translates in a 10 dB ratio between
both transmission powers at the senders which is two times the SINR threshold.
Finally, conditions to distinguish between both states are:

LOOSE wv tb,min < €h

RAISE otherwise (24)

State := {

The rationale behind is that high speeds are those whose contribution to
the error is above the error requirement imposed by the application e, during
the period of time defined by the latency required. For example, in case of a
required error threshold of 0.5 meters and a minimum delay information interval
of 0.1 seconds, the LOOSE state is determined by the condition v < 5 m/s,

Figure [2.9]

Validation of Criteria

ITASM was implemented over the evaluated protocols using the same simulation
conditions and parameters of Beacon frequency was adapted
using the corresponding protocol’s technique, while all other communication
parameters were adapted using TASM. Figure clearly illustrates the
improvement on the CCDF of PE for the baseline protocol in both scenarios.
Improvement on the CCDF is explained by TASM influence on the decrease in
Peo1, increased SINR values and MAC priority for high speed vehicles’ packets.
However, using baseline protocol the improvement is limited because of the over
saturated channel. The protocol uses no adaptation of the beacon rate and the
MAC protocol of the standard can not handle the large volume of beacons by
itself. The improvement on maximum PE values is also limited because of the
number of packets sent. TASM improves the mean and 95% percentile of PE by
over 30%.

Figure 2.12) summarizes the improvement of IASM over all protocols sorted
in ascending order of number of packets sent. One can clearly observe that
error (PE mean and 95% percentile) improvement becomes larger when the
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Figure 2.10: Comparison of the spatial distribution of PE using IASM on (a)
ETSI DCC and (b) USA DCC in Scenario O. Mean values are represented by
dots while 95% percentiles define the lengths of each bar. Only results obtained
of two best performing protocols in worst case scenario conditions are shown.
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Figure 2.11: TASM improvement on Figure 2.12: IASM improvement on

the CCDF of PE using the baseline PE over default studied protocols in

protocol for both scenarios. Scenario O.

number of packets is increased. This becomes clear for USA DCC in Figure 2.10]
and 2:12] where the limited improvement on the average PE is due to the low
number of collisions. USA DCC approach limits IASM improvement as packets
send at low speeds can become relevant in some circumstances. For instance, it
only takes a few packets to predict a vehicle’s trajectory traveling at constant
low speed. Therefore, in this case, improving the reception of packets sent
at high speeds over the aforementioned ones could not be optimal. However,
TASM reduces uncertainty of USA DCC with a 10% improvement on the 95%
percentile. On the other hand, changing the adaptation criteria of ETSI DCC
to TASM, improves PE mean and 95% percentile over 10% while maximum
values are improved over 23%. Besides, adding IASM criteria to LIMERIC
improves the mean and 95% percentile by 14% and 20%, respectively.

Figure shows the improvement on the spatial distribution of PE
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Intersection Assistance Protocol
Feedback Adaptation CAM Trigger CAM;,
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Figure 2.13: Design framework of the proposed IAP to enhance VANET
performance towards RSU-based IAS requirements.

compared to results obtained using the default protocols. Now, medium
accuracies are found up to almost 150 m using ETSI+IASM, which is a 50%
range improvement w.r.t. default ETSI DCC. In Figure maximum PE
values can be found above the low precision scale for each distance interval.
Therefore, IASM can not provide high precision on its own despite decreasing
the uncertainty and the average PE. This indicates that the adaptation of the
beacon rate is the one that most influences PE. In this sense, the protocols
studied need to address directly the problem of correlated collisions to be able
to achieve acceptable levels of accuracy.

2.3.4 Intersection Assistance Protocol
Results of validated that using TASM for adapting other

communication parameters rather than beacon rate improved the performance
of studied protocols. discussed optimal beacon rate. This section
proposes the Intersection Assistance Protocol (IAP), with a full adaptation of all
parameters based on learning from [Section 2.3.1] [Section 2.3.2| and [Section 2.3.3|

Design Framework

IAP is designed with the aim to enable RSU-based safety intersection assistance
systems and it is aligned with standardization bodies guidelines. IAP design
approach can be divided into three main blocks, illustrated in Figure 2.13}

¢ Adaptation to dynamics. This block uses TAS requirements of position
accuracy and latency plus vehicle dynamics as input to: (i) set transmission
power, data rate, sensitivity and beacon priority using TASM and (ii)
send specific timed CAMs when needed, using ETSI’s CAM triggering
conditions, a trajectory prediction approach like USA DCC, feedback
provided by the RSU or an imminent vehicle collision.
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e Congestion and awareness control. This block controls congestion caused

in the same intersection or by nearby interfering areas and provides up-
to-date awareness required by applications and standards, using CBR
information disseminated by the RSU in combination with maximum
latency requirements. This solves some of the situations where trajectory
prediction approaches does not comply with ETSI’s standard minimum
CAM frequency requirements, providing not enough awareness.

RSU feedback. This block is intended to be integrated with the specific
TAS operating in the intersection area. It uses received beacons to track
each vehicle under its coverage area and compute the CBR. It periodically
disseminates CBR, information (CBRggy) within ITS RSU standardized
messages, e.g., intersection traffic light status (SPATEM), road topology
(MAPEM) or infrastructure to vehicle Information (IVIM) |[ETS16
. In addition, provides feedback about vehicles position, allowing
vehicles to react to correlated or relevant packet loss. The standard
contemplates that the ITS RSU may influence beacon rate of vehicles to
increase safety [ETS18|. For example, the following information included
in periodic messages can be exploited by the vehicles to avoid correlated
collisions and maximum error values: a vector containing vehicle Ids from
which a message has been received between consecutive messages or the
Id of the vehicle which information has not been updated for the longest
period of time.

Implementation

A proof-of-concept implementation of TAP is implemented as follows. Algo-
rithm |1} and [2] shown in pseudo-code, summarize the main procedures of the
RSU and vehicles, respectively. It is assumed that the only feedback dissem-
inated by the RSU is CBRgrsy and Listgsy, a list of 250 vehicle Ids whose
packet has been received during last second. This information is encapsulated
in a 1300 B packet broadcasted in CCH every second using default values of
IEEE 802.11p.
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1. Because of USA DCC approach proved a great potential: CAM triggering

conditions are implemented using a deterministic trajectory prediction
approach. In that sense, a beacon is sent only when the difference between
the predicted position p, computed using a constant velocity model and the
last velocity information sent in a CAM v, and the actual position known
by the vehicle p exceeds ez, = 0.5 m. On the other side, the RSU runs
the same model to track each vehicle implementing the aforementioned
RSU Feedback: Vehicle Tracker block. The use of a trajectory approach
allows relaxing periodic beacon rate and aim for a controlled awareness
under low probability of collision conditions.

. Because LIMERIC proved a great adaptation to CBR and to overcome

USA DCC approach limitations: a periodic beacon rate 1/t is derived
from LIMERIC implementation using CBRgsy and a relaxed CBRax =
0.25 to meet Criterion 3, which is approximate derived from a P., <
0.05 [Som+15|. CBRrguy is used to overcome the discrepancy found in
between vehicle and RSU measures of CBR due to shadowing
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effects. Also, the beacon period is limited to ¢ min = 0.1 s and ¢y max = 18

as defined in the standard |[ETS14].

3. Because protocols suffered from correlated packet loss causing not
negligible maximum error values: if the vehicle Id is not present within two
consecutive RSU packets, the next time scheduled beacon is randomized
multiplying it by a uniform random variable in the range (0.001,1).
Therefore, every vehicle increments an integer variable notInListCounter
every time a RSU messages is received and does not contain the vehicle’s
1d.

4. Finally, TASM was used to adapt other communication parameters rather
than beacon rate.

Algorithm 1: RSU procedure

tracker <— vehicleTracker()
while time step do
%% Feedback and CBR monitor block
CBRRgsy computeCBR()
Listrgy ¢ createListOfVehicles(CAMs)
if 1 second elapsed then

‘ disseminateCBR(CBRgsy, CCH)
end
%% Vehicle tracker block
tracker(CAMs)

end

Performance Evaluation

To validate the proposed implementation, we used the same simulation
conditions and parameters of despite the inclusion of the
aforementioned RSU messages. Simulation results are illustrated in Figure [2.14]
and which clearly show a significant improvement on the CCDF and the
spatial distribution of PE compared to Figure 2.8 and against all studied
protocols. TAP grants a probability of 99.56 % of the PE to be within medium
accuracy scale for all its coverage area, which enables safety IAS contrary to
the other protocols. Using IAP, 95 % percentile PE values under one meter
accuracy are found from distances within 250 meters from the RSU. This is
a great improvement on the PE uncertainty against the other protocols that
were not able to provide sub-meter 95 % percentile values at any distance. If
the aim is to implement critical safety applications requiring high accuracies,
high maximum values are still found despite obtaining the lowest values of all
simulated protocols. A maximum PE value of 7.12 m is found for distances
within 25 m. To solve this, a more aggressive feedback from the RSU or a more
elaborated protocol is required. In that sense, no feedback of vehicles position
was used on the proposed protocols as this would require a detailed study and
modifications. However, regarding non-safety applications, Figure [2.15] and
Table[2.3]show that IAP provides in average PE values within high accuracy scale

33



2. Contributions in ITS Data Acquisition

Algorithm 2: Vehicle procedure

%% Adaptation to dynamics block
while time step do
%% CAM trigger block
}A)k — }A)k,1 + ’UjAt
if ||py — pill > et then
sendCAM|()
Vj < Vg
Di < Pk
end
%% TASM block
if v tp,min < €tp then
R + 18 Mbps
ATFS <+ 149 ps
else
P, + 33 dBm
R + 3 Mbps
ATFS < 110 ps
end
%% Congestion and awareness control block
if t’; then
sendCAM()
th < LIMERIC(tF ™", ty min, tb max; CBRRrsuU, CBRumax)
if notInListCounter > 1 then
| wvalue +getUniformVariable(0.001, 1)
else
‘ value < 1
end
scheduleNextCAM (value X t)
end

end

and great uncertainty values for all its coverage area. Therefore, information
disseminated by IAP is reliable enough to enable non-safety applications.

Regarding CF, CBR values were found to oscillate near 0.25 with a maximum
value found of 0.38 when congestion occurs and an overall average value of 0.2.
This points out that TAP is able to keep the channel non-saturated increasing
the probability of success of other messages with higher priority. Here, there is
also room for improvement as LIMERIC linear parameters were set to constant
values without any adaptation. Finally, Table 2.3 summarizes IAP performance
and improvement over best results obtained in previous sections with significant
72.3 % to 87.7 % improvement values over the evaluated metrics of PE. In
conclusion and loosely speaking, improvement comes from implementing a
trajectory prediction approach with added redundant transmissions, randomized
to avoid correlated packet collisions, derived from reliable V2I metrics under
acceptable channel usage and awareness values.
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Table 2.3: Summary of statistical performance of the proposed intersection
assistance protocol. Improvement is calculated against best values of Table 2.1]
among all protocols in the worst case scenario, the obstructed scenario O.

IAP [m] Improvement [%]
mean 0.08 87.7
95% 0.28 76.1
PE max.(50)  8.97 72.3

max.(100)  20.35 86.8

max.(400) 26 88.1
0.2 T . W
el —_USA DCC(0) ® IAP(O)
A \

—=—TAP(0) 1

Error n [m]

Figure 2.14: CCDF of PE of the
proposed IAP in Scenario O compared
to the best performing protocol of
USA DCC. Please note
that axis scales changed to get more
resolution when P, — 0.

Position Error [m]

Figure 2.15: Spatial distribution of PE
using TAP in Scenario O. Please note
that y-axis scale changed compared to

results of Figure 2.10]
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CHAPTER 3

Deep Learning Solution for
Exploiting Traffic Data in the ITS
Data Analytics Layer

This chapter covers Objective II of the thesis by introducing a versatile
framework to solve some of the major challenges of ITS and future traffic
forecast. The model in [Boq+20] (Appendix B) is described in this chapter from
the beginning, providing the necessary background to justify the adaptation to
the field of ITS and the achievement of the objective. goes over the
key concepts that underpin the basis of the model: density estimation, latent
variable models and variational inference. These are needed to understand the
motivation, assumptions and derivations of the proposed solution, which uses
deep neural networks for learning latent representations via stochastic parameter
optimization. In case the reader is familiarized with the aforementioned, the
solution is presented in The model was evaluated in several ITS
use cases with real world traffic data from California and UK.
[Section 3.5.2|and [Section 3.5.3| present the main results obtained in missing data
imputation, dimension reduction and model selection, respectively.
explores the potential use in anomalous traffic detection.

“Develop a unique model for ITS to extract knowledge from traffic
data to enhance traffic forecast, missing value imputation, model
and data selection and anomaly detection.”

3.1 Related Work

Lana et al. reviewed in 2018 the future major challenges of traffic
forecasting. All models previously proposed in literature aim to solve only
one of those challenges at the time. Trying to overcome that, we proposed a
generative model based on the variational autoencoder (VAE) to solve missing
data imputation, dimension reduction, model selection and anomaly detection.
This is clearly a differential feature and novelty compared to state-of-the-art
proposals (generative or non). [Boq+20] (Appendix BJ) is the first work that
implements a VAE-based model for solving ITS related tasks. Compared to
other generative models applied to the transportation field, Xen et. al
proposed a Bayesian imputation model to characterize the data generation
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process and learn underlying statistical patterns in traffic data. The model can
only be used to impute lost values, therefore, if the ITS requires addressing
other traffic problems, such as how to forecast traffic or compress data, it
is forced to implement other models, resources, practitioners, etc., contrary
to the solution presented in [Section 3.4] or [Boq+20] (Appendix B]). More
generally speaking, if we compare the proposal to generative models such
as Restricted Boltzmann machine (RBM), Deep Belief Network (DBN) or
the trendy Generative Adversarial Network (GAN)-based approaches, the
VAE-based approach possesses certain desirable properties for ITS that are
advantageous: stable training, interpretable encoder-decoder with a continuous
latent space and outlier-robustness [Bro+16} [Dai+18; | Tol+17|. Additionally,
GAN are known to be difficult to tune and train and RBM/DBN require
careful model design to maintain tractability . In conclusion, using the
contributions in this chapter, the ITS traffic modeler can implement a unique
model to compress the traffic data and efficiently forecast, impute missing values,
select the best data and model for an specific problem and detect anomalous
traffic data at the same time with no additional knowledge required and no
labeled data. Related work in each ITS field is separately discussed below.

Missing Data Imputation

ITS are deployed in scenarios where sensor and system failure are common.
Missing values are known to negatively affect the precision of the forecast,
although they are often underestimate in current forecast models
[VKG14]. The current strategy is to preprocess the data by inferring the
missing values from the known part of the data. Three well-known imputation
methods in traffic forecasting are ARIMA, KNN and PCA-based methods.
Among them, the probabilistic PCA is the most effective in terms of performance
and implementation but, recently, more complex models have been
proposed. A spatial context sensing model is proposed by Lana et. al ,
which is based on an automated clustering analysis tool and the information
provided by surrounding sensors. Li et. al proposed a model that
combines long-short term memory (LSTM), SVR and collaborative filtering.
With a similar approach to the one presented in this chapter, Chen et. al
proposed a Bayesian imputation model to characterize the data generation
process and learn underlying statistical patterns in traffic data.

On the other hand, state-of-the-art imputation methods from other research
fields that could potentially be ported to the transportation field can be classified
as either discriminative, such as multiple imputation by chained equations
(MICE) and matrix completion [YRD16], or generative methods based on
DNN. For example, Gondara et al. proposed an overcomplete denoising
autoencoder (DAE) to be able to reconstruct data by stochastically corrupting it.

Closer to our work, Bowman et al. [Bow+15] and Jang et al. [JSK19] proposed

a RNN-based VAE which succeed at imputing missing words from sentences.
Fortuin et al. [FRM19| applied a deep sequential VAE with a Gaussian process
prior in the latent space to capture temporal dynamics to impute real-world

medical data. Similarly, Yoon et al. [YJS1§| and Shang et al. [Sha+17] proposed

also a generative model imputation method but using generative adversarial
networks (GAN).
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Dimension Reduction

The number of features available from data sources jointly with the number of
available data points in road networks are excessive. Forecasting with all those
features can be computational inefficient and undertakes the risk of over-fitting.
Therefore, it is essential to reduce the dimension of the feature space before
applying a prediction model [YQ19]. Reduction of the data is done by learning
the principal components or independent factors of a given data manifold,
i.e., feature extraction. Recently, a systematic literature review of feature
selection and extraction in spatiotemporal traffic forecasting was presented by
Pavlyuk et al. . Note that feature extraction does not necessarily mean
reducing the dimension of the data space, that is, dimension reduction is a
subclass of feature extraction methods. The low-dimensional representation
is traditionally obtained by PCA approaches that had been widely used to
extract the linear correlations between the variables . In DNN
data-driven approaches, RNN and CNN are used to extract temporal and spatial
characteristic within the regression model. Liu et. al used a LSTM
and CNN mixed with an attention layer, but can not be used as an independent
layer to the regression task. Similarly to our work, features learned from a stack
of autoencoders (SAE) have been previously used in literature to improve traffic
forecasting . Contrary to the autoencoder, the VAE encourages
the model to generalize features and reconstruct samples as an aggregation of
those, forces the latent space to be continuous and is a generative model. Thus,
other VAE approaches have been used successfully for dimensionality reduction
within other research fields, such as fault diagnosis and towards sequencing the

RNA of individual cells [San+18; [WG18|.

Model & Data Selection

There is no best method that suits all situations in traffic forecast, which
implies an applicability at a higher level of the method to choose the most
suitable model given the characteristics of the forecasting problem [Lan+18b}
VV12|. Traffic modelers frequently face several optimization challenges related
to model selection, while there are no clear baselines to find the best method
and its configuration . According to the best of author’s knowledge,
few works are related to the traffic forecast context. Vlahogianni et al.
proposed a metamodeling technique to optimize both algorithm selection and
hyperparameter setting. Angarita et al. explored the use of Auto-
WEKA, an automatic algorithm selection method. On the contrary, the proposal
of this chapter approaches the problem from a data perspective. The solution
provides a tool based on the clustering of data in the learned latent space to
select the data from which the best forecasting model will be built to solve a
specific problem. Similar to this approach, Van et al. proposed a
hybrid method of short-term traffic forecasting using a self-organized Kohonen
map as an initial classifier, where each class had an individually associated
tuned ARIMA model. The explanatory and representative power of models is
also valuable for traffic modelers to obtain information on how transportation
networks behave and evolve. Some efforts have been devoted to explain the
behavior of the models in ITS literature as a second derivative of traffic
forecast. For example, Polson et al. discussed how the input variables

39



3. Contributions in ITS Data Analytics

relate to the predicted output using the coefficients of the fitted linear model.
Wu et al. analyzed the spatial features captured by CNN through
characterizing the information that retained layer by layer. The proposal of this
chapter is able to classify traffic in a continuous latent space with interpretable
dimensions that can be used as a tool to perform model and data selection.

Anomaly Detection

One of the main applications of urban traffic analysis lies in detecting anomalies
from traffic data . Djenouri et al. reviewed on existing
outlier detection techniques in traffic data in three main categories: statistical,
similarity-based and based on pattern analysis. Among them, some find
outliers in subspaces, which is exactly what the VAE solution can provide.
In , dimensionality reduction is performed by PCA and a kNN-based
outlier detection is applied in the derived subspace. On the contrary, this
chapter proposal is based on DNN that has greater modeling capabilities. It is
able to learn a latent space, where traffic samples are clustered and projections
close to each are forced to have similar reconstructions helping in the detection of
outliers. Moreover, when it is trained with much more normal samples than the
anomalous ones, the reconstruction errors of normal data are relatively higher
than those of anomalous data. Therefore, the model loss function provides
an anomaly score function, which can be exploited as an anomaly detection
technique. In that regard, VAE-based outlier detection methods had been
used successfully in other research fields: Kawachi et al. added a
supervised method to the VAE approach to enhance detection of seen anomalies
without degrading the performance for unseen anomalies on real industrial data,
Solch et al. proposed a a RNN-based VAE to detect anomalies on robot
time series data and An et al. proposed an anomaly detection method
based on a reconstruction probability derived from the VAE loss function.

3.2 Road Traffic Forecast

Consider an ITS that collected an historical road traffic dataset composed of
N > 1 datapoints or traffic samples from a concrete road traffic network:

D={xW,x® . xM}= {X(i)}il = x(1N)

Let each element of a traffic sample represent a value of a traffic variable
associated to an specific time and space: x() € R**4 where n > 1 is the
number of past traffic variables and d > 1 the number of traffic sensors deployed
into the road network. Notice that we defined x as a real-valued vector, which
is intended to represent traffic variables such as speed, flow, density, etc. We
assume a big data paradigm, that is, the data set D is too large to fit in memory,
so we can only work with small sub-sampled batches of D. Henceforth, the
superscript () denoting the i-th sample will be omitted to avoid clutter, except
in cases where some ambiguity may exist.

Real-world data: For model evaluation purposes, three different kind of traffic
data sets were gathered and cleaned. They are briefly described in

but more details can be found in [Boq+20] (Appendix B).
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3.2.1 Forecasting Problem

Let y € R™ denote the future state of the subset of m < d sensors in the time
horizon of h > 1 samples. The traffic forecast problem is usually modeled as
y = f*(x), where forecast systems aim to make an accurate estimate of y from
x. The major challenge of the problem remains on deriving a function that
closely resembles f*. However, the widely-used regression-based road traffic
forecasts tend to be noisy, uncertain and challenging in estimating confidence.

Intuition: Suppose we want to infer the traffic behavior during the next two
hours or that we have a partially occluded traffic sample due to a sensor
or system failure. Missing data could be anything if there is no underlying
structure from which the data are generated. In that sense, we know
that strong spatiotemporal relationships exist between road network’s
points . For instances, due to seasonality, it is possible to
discern between a work day or not just by observing how morning traffic
develops through time and space, Figure

3.2.2 Probabilistic Approach

In order to easy things to the subsequent supervised learning algorithm, another
approach to enhance the forecast is to extract knowledge from the data set
D to preprocess the data or adjust the subsequent model accordingly. If we
view the problem under the lens of probability, we can think of the observed
data D as a finite set of samples drawn from an unknown true probability
distribution. Using lower case for notation simplicity, we will consider x as
a vector of observed continuous random variables whose true distribution we
. . . DN ..
would like to approximate. Furthermore, we will assume that {x(V},_, are i.i.d.,
i.e., that the data generating process is stationary. To account for this, we will
mention later a mechanism to detect model drift as road networks and mobility
patterns may change over time.

Although we do not have access to the true distribution, we denote uniform
sampling from the finite data set as the empirical distribution pgats. Learning
Pdata(D) means to learn the underlying structure directly from data. Therefore,
the natural question that follows is how we can learn a model to approximate
Pdata given access to the data set D. In other words, the probability density
must be approximated using the process known as probability density estimation
(or learning a generative model).

3.3 Background on Probability

3.3.1 Learning from Data

Let pmoder be a distribution from a family of candidate distributions P, that
define a density over x. The task of learning the generative model consists of
picking the distribution pmedel € Py such that x ~ prodel (X) &2 pdata(x), that is,
that the model distribution pyodel approximates the empirical data distribution
Pdata- Mathematically, this can be written as the optimization problem

min d(pdata7pmodol) ) (31)
Pmodel €Pa
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Figure 3.1: The average and standard deviation of speed measures for different
days of the week in a two-year period of a road traffic network in California. The
intensity of the color is proportional to the variable represented, for example, a
darker color means lower speed in the figures on the left. The y-axis of each
image represents 31 consecutive and equally spaced traffic sensors. Peak hours
are clearly distributed differently for work days and weekends. The probabilistic
approach is motivated by the fact that different traffic patterns exists, which
suggests that traffic data are not randomly generated.

d(pdata: pmodel)
pdata.‘—’ pmodel

Pz : model family of
candidate distributions

Figure 3.2: Density estimation or the process of learning a generative model
finds the distribution pyoder that best approximates pgata under some measure
of similarity or closeness.
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where d(+) is a notion of distance between probability distributions that we
would like to minimize, see Figure At the time of solving we would like
to learn a generative model that can perform the following three inference tasks
for ITS: density estimation, sampling and unsupervised representation
learning, so that we can detect anomalous traffic samples, impute missing
values and extract the best possible features to enhance the traffic forecast and
compress the data. That is, given a data point x:

e The model must compute its probability, i.e., Pmodel (X)-

e The model must generate novel data from the model distribution, i.e., be
capable of producing M new traffic samples {x(j)}jl\i17 X0~ Prodel (%) ~
pdata(x)~

e The model must learn meaningful feature representations with lower
dimensions than the given data point x.

To find the adequate pyoder for the aforementioned inference tasks, next, we
will define the objective function d(-), the representation for the family of
distributions P, and the optimization procedure for minimizing it.

3.3.2 A Maximum Likelihood Problem

Let’s start by first defining the objective function, so that we know the
implications of choosing pyodel to the computation and optimization complexity.
A common approach is to use maximum likelihood estimation (MLE), because
its estimator attains the Cramer-Rao lower bound on the variance when N — oco.

In MLE, the Kullback-Leibler (KL) divergence is used to measure the
distance between probability distributions. From information theory, the KL
divergence between pgata and pmodel is defined as the expectation over pgata of
the logarithmic difference, i.e.,

Pdata (%) }

dgr, (pdata Hpmodel) = Eprdata(x) l:lOg Pmodel (X)

- (3.2)

7é dKL(pmodel deata) .

Note that is non-negative and asymmetric, because the expectation is
taken only from one distribution. As a note, when minimizing , it heavily
penalizes model distribution puyedqer which place little mass on any data point
that has a non-zero probability under pgat.. For instance, if the density pmoder (X)
evaluates to zero for a data point sampled from pgata, the objective evaluates
to +00. Using as a measure of distance or similarity, the optimization
problem can be rewritten as

IS, B [08 a3
(3.3)

In practice, N — oo is not reasonable, but we can approximate the expectation
over the unknown pgat. of the right side of (3.3)) with an unbiased Monte Carlo

Pdata (%) } —

min EXNPdam (X) |:10g Pmodel (X)

Pmodel €Pa
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estimate. Recall that we assumed a number of finite N data points in the data
set D sampled i.7.d. from pya¢a, therefore,

N
1 )
Ex~ 1 ~ 72 :1 @y (34
pmgjépm * pdata(x) [ngmOdEI(X)] pmilglleal')épz N i=1 ngmOdEI(X ) ( )

Interestingly, to see the relation of dk;, with MLE, we can derive the MLE
criterion starting from (3.3) as

< min_ —Eyx p....x) 108 Pmodel (X)]

Pmodel € Pa

Pdata (X)
Pmodel €Pa

min = Eyxop....x) |10g
Pdata (X) { pmodel(x)

= WX Bpina(x) 108 Pmodel (%))

N
Noe e 2% 0 e
pmodcl)e(Px N ; S Pmodel )

N
1 .
— (1)
<~
5%, L pmoaa (<)

<= D
, max Pmodel (D)

to proof that minimizing the KL divergence is equivalent to maximizing the
likelihood. Furthermore, to see why is a measure of distance or similarity,
we assume that both distributions are continuous and expand the corresponding
definition of KL divergence as

ata(X
dKL (pdata ||pmodel) = /pdata(x) log (pdt())> dx

pmodel(x
= /pdata (X) 10g pdata(x) dx — /pdata(x) 10g pmodel(x) dx

= - entrOPY(pdata) + crossentropy(pdata, pmodel) )

Information in D Information in model

where we see that the KL divergence is measuring the difference between the
negative entropy (a quantity of information) of the data and the cross-entropy
between the data and the model. Since the entropy of the data remains constant,
this also proofs that maximizing the likelihood is equivalent to minimizing the
cross-entropy, a matching information problem.

Notice that in the true distribution might not actually be inside of the
family of likelihoods we perform MLE over. Despite that, MLE will pick the
distribution ppodel € P, that maximizes the average of the log-probability of
the observed data points in D. Thus, there is an inherent bias-variance trade
off when selecting the hypothesis family of distributions: We want a model that
is sufficiently rich to be useful, yet not so complex as to overfit the training set.
This restricts us to only a set of relative simple distributions (e.g., the known
exponential family) because

* Pmodel € P. needs to have a computationally tractable density, since the
objective (3.4) requires to compute pmoder, and

e P, needs to be flexible but not so expressive to include pgata (to avoid
memorization).
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Generative
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p(x,2) Traffic data space

Figure 3.3: Graphical representation of the latent variable model. If z captures
meaningful information about x, the generative process can be viewed as
generating the high-level information about the traffic data, z ~ p(z), before
fully generating the traffic data, x ~ p(x|z). Black dots represent each observed
traffic samples x(1.

3.3.3 Latent Space of Traffic Data

Consequently, we now introduce a direct latent variable model (LVM) to infer
the hidden structure in the underlying data, which also narrows the value space

of candidate distributions. Let Z = {z(i)}i1 be a set of vectors composed of
random variables defining a representation of the significant factors of variation
in D. Then, a complex joint distribution can be defined as a product of two
relative simple distributions:

p(x,z) = p(x|z) p(z) (3-5)

where x and z denote the observed and latent variables, respectively. This
generative model with latent space, Figure [3-3] will allow us to transform the
traffic data into a simpler space, explore it in that space and understand it
better, i.e., learn meaningful feature representations of traffic data. Moreover,
we would be able to perform dimension reduction if we constrain the latent
space to have fewer dimensions than the data: z € RX, K < n x d.

Hence, let P, be a family of relative simple distributions where p(z) € P,
defines a density over z. Let P,|, be a family of relative simple conditional
distributions where p(x|z) € P,|. describes a conditional distribution over x
given z. Then, we construct the family of candidate distributions as

Pr,z = {p(x,2) |p(z) € P., p(x|z) € P:v\z} =P, X Pa:|za

where each (p(x|z),p(z)) € P,,. defines the joint distribution over the
observed variable x and the latent variable z. Notice that we have deliberately
chosen P, . such that has a computationally tractable density.

Our goal is still to fit the marginal distribution over the visible variables
to that observed in our data set. Hence our previous discussion about KL
divergences applies here as well and by the same argument, we should be
maximizing the marginal log-likelihood of the data. However, the computation of
Pmodel (X) In order to maximize the log-likelihood requires marginalization
of the latent variable z, which given takes the form of

10g Prodel (X) = 10g/p(x|z) p(z) dz = E, .y [p(x|2)] . (3.6)
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This integral is unavailable in closed form for many models and becomes
intractable for high-dimensional z as it involves the integration over all of its
dimensions, which requires exponential time to compute. One solution is to
approximate the integral using Monte-Carlo sampling methods such as

K

1 . )

1ngmodel(x) ~ IOg ? E p<X|Z(z))7 Z(z) ~ p(Z) )
=1

which are unbiased as N — oo but suffer from high variance, i.e., poor
generalization. In practice, traffic data is limited and we want our model
to generalize to unseen traffic samples. Another solution is to apply variational
inference, which derives a low variance but biased solution as we will explain
next. For notation simplicity and to avoid clutter, we will omit the subscript
model 1N the remaining text.

3.3.4 The Variational Inference Way

We know by definition from Bayes’ theorem that

_ p(x|z)p(z) _ p(x,2)
e =00 T e 7

where p(z|x) is the posterior over the latent variables z. Instead of evaluating
the marginal likelihood p(x), variational inference tries to approximate the
intractable posterior p(z|x) with a tractable distribution ¢ converting a difficult
computation problem to an optimization problem, see Figure [3.4 Thus, we
introduce a family of conditional distributions Q, where ¢(z|x) € Q defines a
distribution over z conditioned on x. Variational inference consists of minimizing
the KL divergence between ¢(z|x) and p(z|x) (in that order) to construct a lower
bound on the likelihood (the bias). The divergence between both distributions
is computed as

q(ZX)]

dir(q(z[x) [| p(2[%)) = Ezrng(aix) {mg p(z]x)

q(z[x)
= EZN[I(Z|x) log p(x)z)

p(x)
p(x,2)
q(z[x)

(3.8)
= Eznq(zlx) [10g(X)] — Ezng(zix) {10% ]

p(x,2)

=logp(x) —E,. lo .

gp( ) z~q(z|x) |: g q(z|x)]

Despite choosing a proper family of variational distributions, the log p(x) itself

cannot easily be computed, i.e., we cannot actually minimize the KL divergence

directly. Instead, what variational inference does is to maximize a lower bound
on that quantity.
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Figure 3.4: A graph of the latent variable model p(x,z) = p(x|z)p(z) and the
variational inference approach, which gives us ways to perform both inference
(evaluate p(z|x)) and maximum likelihood parameter learning (learn p(x)), by
approximating the intractable posterior p(z|x) with a simpler distribution ¢(z|x)
called the approximate posterior or inference model.

3.3.5 Evidence Lower Bound Objective

To derive the lower bound, we rearrange the terms in (3.8) for clarity as

(%) = i (0(21%) [ p5) + B [l 22| (39

L

where the first term of the right-hand side of the equation is the quantity we
aim to minimize and that we denoted the second term as £. Minimizing the
divergence between both distributions is the same as maximizing £, because
the left hand side of ([3.9)) is fixed for a given x as does not depend on ¢ (recall
that KL divergence is non-negative) Hence, £ is less than or equal to the
log marginal probability of the observations (or evidence), which is known as
the evidence (or variational) lower bound (ELBO). This is the same bound used
in deriving the expectation-maximization (EM) algorithm. All together, the
ELBO for our probability latent variable model p(x,z) (i.e., Pmoder) and the
approximation ¢(z|x) to the intractable posterior is

Lop(x,2).q(z1x) (X) = Ezngalx) 108 (X, 2)] — Ezeqz)x) [log ¢(2]x)]
= log p(x) — dxw(q(z[x) || p(z|x)) (3.10)
< logp(x).
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As a side note, L is often derived in literature using the Jensen’s inequality on
the log probability of the observation as

logp(x) = log/p(x, z)dz

= log/p(x,z)q(zlx) dz
q(z|x

= log (Ezw(zx) [I;(()z(ixz))})

p(x,2)
> Ezwq(z\x) |:10g q(Z|X)] )

like in the original literature on variational inference .

Notice that imposes to choose a family of variational distributions
such that the two expectations can be computed and, interestingly, that the
second expectation is the entropy. Now, instead of computing logp(x) by
marginalization, we optimize the ELBO by maximizing over q € Q:

1o 2523 ] —togp(x) — mig i, a(a1) [ ()

max E,
prere a(z[x)

which is equivalent to finding ¢(z|x) that best approximates the intractable
posterior p(z|x). Moreover, we see that the KL divergence between both
distributions is the gap (or bias) between the original objective (the marginal
log-likelihood) and the ELBO. The gap equals to zero when the variational
distribution ¢(z|x) matches the posterior p(z|x), thus the tightness of the lower
bound depends on the choice of ¢ € Q and the optimization procedure.
Finally, we can learn a latent variable model by maximizing £ for any given
data point x with respect to the model and the variational distributions by

p(x, Z)} 7

q(2[x)

e B pgnia (0 Earg(alx) [108:

which learns to approximate pgata While simultaneously approximating the
posterior of our latent variable model. Furthermore, as we assumed a data set
D with i.i.d. data, the optimization problem can be written as maximization of
the sum of individual data point ELBO’s:

max Z Eymq(z)x) [log p(x,z)] ) (3.11)

PEPz,z,QEQxep q(z|x)

In summary, we just defined the objective to optimize and the
requirements for p(x|z)p(z) and ¢(z|x), but the open issues that have yet
to be resolved are the exact choice of distributions and how to optimize the
target within the transportation field.

3.4 ITS Big Data Analytics Solution

There already exists standard approaches that try solve the main inference tasks
of the model. The EM algorithm can be used to learn latent variable models,
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however, performing the expectation step requires computing the approximate
posterior, which we have assumed to be intractable. To perform approximate
inference, we may use mean field, but one step of mean field requires us to
compute an expectation whose time complexity scales exponentially. Another
approach would be to use sampling-based methods that do not scale well to
large data sets . Instead, parametric generative models scale more
efficiently with large data sets like D.

3.4.1 Neural Network Parametrization

We will assume that x comes from a population that can be adequately
modeled by a probability distribution that has a fixed set of parameters: Large
data sets with varying dimensions are commonly found in the transportation
field. Henceforth, we will assume a parametric setting where the distribution
p(x,2z) € Py . is specified via the set of parameters 6, thus we will denote it
as pg(x,z). Likewise, we assume the variational distribution ¢4(z|x) € Q is
specified via the set of parameters ¢. The ELBO and the objective to
optimize are rewritten as

ﬁg,qb(x) = Ezqu,(z\x) [1ogp.9(x, Z)] — Ez~q¢(z|x) [log Q¢.(Z|X)] (3.12)
e (x[2)p(z)
po(x|z)p(z

max E,o.(z1x) |l0g } 3.13

00 = 94 (2]x) [ q¢,(z|x) ( )

respectively. This allow us to parametrize the model using deep neural networks,
taking advantage of their flexible modeling capabilities and efficient optimization.
That is, {0, ¢} are the weights and biases of two deep neural networks, which will
be learned relying on stochastic gradient descent (SGD) or similar optimization
methods.

3.4.2 Variational Autoencoder

A solution to this framework was proposed by Kingma et al. and
Rezende et al. and it is known as VAE, an efficient deep learning
technique for learning latent representations in case of intractable true posterior
and large data sets. In VAE, the whole data model may be viewed as consisting
of two parts that form an autoencoder architecture. An autoencoder is a pair
of neural networks encoder and decoder trained to minimize the reconstruction
error ||x — %3, such that = decoder(encoder(x)). In practice, encoder(x)
learns an embedding representation of x in a latent space that often has an
intuitive interpretation. For example, it is known that linear autoencoders learn
to span the same subspace than PCA. Analogously, we have

o the encoder network g4 as the approximate posterior (also known as
inference model) ¢g(z|x), that given a data point x it produces a
distribution over the possible values of z from which the data point
x could have been generated, and

o the decoder network as the generative model pg(x,z) = p(z) pe(x|z),
which given z it produces a distribution over the possible corresponding
values of x.
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Figure 3.5: The VAE framework adds an inference model ¢4 (z|x) parameterized
with a neural network to approximate the intractable true posterior distribution
pe(z|x). This may be viewed as a stochastic autoencoder as the input and
output of the model should be the same. The model does not learn the exact
data distribution pgata but an approximation , which can be optimized
via stochastic gradient descent.

The autoencoder interpretation comes from an straightforward reparametriza-
tion of the ELBO (3.12) as

L0.¢(X) = Ezregy(alx) [l0g po(x]2)] — dkr(q¢(2[x) [ p(2)) , (3.14)

using both Bayes and KL divergence definitions. Notice that the right-hand
side consists of two terms that involve taking a sample z ~ gg(2z|x), which can
be interpreted as a code describing the observed data point x. The first term
log pe(x|z) is the log-likelihood of the observed x given the sampled code z.
This term is maximized when pg(x|z) assigns high probability to the original x,
thus it is trying to reconstruct x given the code z. For that reason pg(x|z) is
called the decoder network and the term is called the negative reconstruction
error. The second term (or regularization term) is the divergence between
g¢(z|x) and the prior p(z). It encourages the codes z to look like the defined
p(z), thus it prevents ¢ (z|x) from simply encoding an identity mapping (i.e.,
copy the input). Instead, forces it to learn some more interesting representation,
hopefully traffic features. In summary, our optimization objective is trying to
fit a g¢(z|x) that will map x into a useful latent space z from which the model
is able to reconstruct x via pg(x|z) to X, see Figure

Stochastic Gradient Descent on the ELBO

The ELBO allows joint optimization with respect to 8 and ¢ using mini-batch
SGD. This technique allows us to sub-sample the data set during optimization
but requires the objective to be differentiable with respect to 8 and ¢ at
the same time. On one hand, we can easily compute unbiased gradients of the
ELBO with respect to the generative model parameters 8 via a Monte
Carlo estimator as the expectation does not depend on 6:

VoLo,g(x) = VoE,q,(zx) [10g po(X,2)]
= Ey gy (zlx) [Vo logpe(x,z)]

K
=1
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On the other hand, when trying to do the same with respect to ¢, we cannot
push the gradient trough the expectation since the expectation depends on ¢:

v¢£9,¢(x) - vt;l5IEz~q¢,(z|x) [long(Xv Z) - lOg Q¢(Z|x)]
7& IEzwqd,(z|x) [vdJ (lngg(X, Z) - lOg Q¢(Z|X))] .

To resolve this issue, we would like to sample from g4 (2z|x) at the same time that
the expectation does not depend on it. We can obtain a naive unbiased estimator
using the log-derivative trick to estimate the gradient of an expectation before
approximating via Monte-Carlo sampling as

pe(x,2) }
Vol VoEz o, (zx) |10
o 9745( ) o q4(z|x) |: q¢(z‘x)

/ Vae(zlx) (1og 9((;3 >dz
- [ e ot (s 25 )

_ /q¢(z\x)v¢, log ¢4 (2/x) <log zi((’;;))) dz

~ Ernyio Vo logolal) (10 2020
K

%Z [V¢log 10 (2" [x) <1Og olx, 2 ))))] 2~ p(2),

— »(z0]x

1

which is often noted to suffer from high variance [DW19].

Reparametrization Trick

Instead, a change of variables called the reparametrization trick was noted
empirically to have lower variance [KW13; RMW14]. The trick consists of
expressing z as some deterministic, differentiable and invertible transformation
T of another random variable €, such that the procedure

€~ ple)
z =Ty (€, x)

is equivalent to sampling from ¢g(z|x) and holds

po(x, Ty (€,%))

pg(X,Z)
Vo Eomq, (z1x {bg
dPzngy (zlx) e (T (€,%)|x)

= VyEco lo
q¢<z|x>] PRt [ ’
Thus, ¢¢(z|x) needs to be chosen judiciously so that the trick is possible.
Under the reparametrization, the expectation and gradient operators become
commutative by the law of the unconscious statistician, so we can form a
one-sample Monte Carlo unbiased estimator for the gradients of the ELBO with
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respect to ¢ as

Voknols) = Voo [l T2 e S
(2. Ty(e.)

_ op P (X Top(e, %))

~ Eeen |Volon 0 2] 1
polx, Tolex))

4 (Ty(€,x)|x)

Notice that the complexity of the computation of log ¢ (z|x) required by the
ELBO estimator in depends on the right choice of p(e) and Tg(€,x).
The resulting gradient estimator is used to update {0, ¢} at each mini-batch
sample while SGD has not converged and can be directly implemented in
machine learning software platforms like the well-known Tensorflow. During
the procedure, the ELBO is optimized stochastically since noise originates from
both the mini-batch random sampling and € ~ p(e).

~ Vglog

3.4.3 Exact Model Definition

Now, we have a differentiable ELBO that can be optimized via SGD. Next, we
need to specify the exact model distributions to be able to implement it. First,
we let the encoder network model a multivariate Gaussian with a diagonal
co-variance structure with means p,(x) and standard deviations o 4(x),

4o (2x) = N (2|pg, diag(ay))

where the dependency on x of the moments was omitted to avoid clutter. The
encoder is implemented using a 1 hidden layer multi-layer perceptron (MLP)
with weights and biases ¢ = {W1, Wy, W3, by, by, bs}. Thus, the outputs of
the encoder network are the moments of the approximate posterior g4(z|x),

which are computed given a traffic sample x and the encoder hidden layer
hencoder as

heneeder — TReLU(W 1 x + b))
By = Wy h®d 4 b, (3.17)
op= Wg hencoder + bg ,
where REctified Linear activation Unit (ReLU) and Leaky ReLU (LReLU) are
nonlinear activation functions taht proved to work. The factorized Gaussian
model allows a simple choice of p(€) and Ty(€,x) and the computation of an
unbiased estimator for the gradients of our objective. After reparametrization

and equivalently to sample z ~ g4(2z|x), we can obtain during training a latent
representation (or code) following the procedure

e ~N(0,1)
Z= g +€EOOTY,

where ® is the element-wise product. Secondly, to specify the generative model
pe(x,2) = pg(x|z) p(z), we let the prior over the latent variables be the centered
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Figure 3.6: Deep neural network graph of the model implemented in

isotropic multivariate Gaussian,
p(z) = N (2/0,1).

Note that the zero mean and unit variance introduced jointly with the KL term
in allows for a continuous latent (or code) space. Without the KL term,
the encoder could learn to give each traffic sample a representation in a different
region of the latent space. Rather, we are interested in having the samples
closest to each other have similar meanings. Furthermore, we let the decoder
network model a multivariate Gaussian with means py(z) and unit variances
Oy = I,
po(x|z) = N(x|py(2),1).

The decoder is implemented using a 1 hidden layer MLP with weights and
biases 8 = {Wy4, W5, by, bs}. As we deliberately chose not to learn the
variance parameter of our observation, the output is computed given a latent
representation z and the decoder hidden layer hdecoder ag

hdecoder — T ReLU(W, z + by)
% = o (Z) — W5 hdecoder + b5 ;

where the reconstruction X is directly py(z). See Figure for the full model
implementation graph and to know about the motivation of these
choices.

(3.18)

Computation of the Loss Function

To compute the first term of the ELBO given the defined model and a traffic
sample, we can estimate the expectation of the reconstruction error in (3.14))
using L samples of z ~ q4(z|x) per data point x(*) as

L
1
Epngy(zlx) [log pe(x|z)] ~ I Zlogpg(x\z(l)) .

i=l

53



3. Contributions in ITS Data Analytics

When optimizing via SGD or similar, in practice it is enough to set L = 1
as long as the mini-batch size is large enough. Since the variance for the
inference model og was fixed to 1, we can minimize the [ norm between x
and X = py(z) analogously to maximize logpg(x|z), as we know that for a
multivariate Gaussian:

1 1
log pe (x|z) = 279”" — ()3 — 5 log(2m 7j) (3.19)

To compute the second term in (3.14)), we do not need to estimate by sampling.
As both the prior and the approximated posterior are Gaussian, the KL
divergence in (3.14)) can be analytically derived as

dic.(06(21) | @) = [ a(alx) o (q?a((Zz;( )> dz

:/q¢(z|x) log ¢ (z|x) dz—/q¢(z|x) logp(z) dz

=/N(z\u¢,a¢)logJ\/'(z|u¢70'¢)dz—/N(z|u¢7a¢)log/\/(z|071) dz

K K
= —g log (27) — %Z(l +logop?) — <—12< log (27) — %Z(Mkz + ak2)>

k=1 k=1

K
> (1 +logor® — i — 0k?),
=1

N | =

where K is the dimension of z and k indicates each component of the encoder
moments p, and o, evaluated at i-th traffic sample.

All together, the weights and biases {0, ¢} of the neural networks can be
estimated using the estimator of the marginal likelihood lower bound of the
full data set based on mini-batches of data. Assume that during training we
are given mini-batches of M randomly drawn samples of D. In SGD, {0, ¢}
are initialized to random values and updated until convergence based on the
gradient estimators computed from the ELBO for each mini-batch. Because the
loss function is simply the negation of the objective function ELBO we want to
maximize, we end with the following function to minimize

M K
N D el 12 iR2 k2 (k)2
1=1

k=1
(3.20)
where XV = py (27) with 29 = pug(xV) + € © 04(xV) and €V ~ N(0,T).
Notice that the first term is the reconstruction error and the second term is the
regularizer (or penalty term) in an autoencoder sense. Finally, a forward pass
of the network is summarized in Figure

3.4.4 Model Implementation

There is the trade-off between model capacity and computational cost that
we have to decide. Even that the architecture constructed in [Section 3.4.3
is not that complex, we showed in the experimentation section of |Boq+20)|

(Appendix B|) that is enough to solve general road ITS use cases with the
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Figure 3.7: Feed forward pass of the network using the reparametrization trick
for training via SGD. Red and purple colors show the loss and non linear
activation layers, respectively. 8 and ¢ are updated on the backward pass with
the back-propagation of the error.

real-world traffic data. This is aligned with recent findings suggesting that
Gaussian assumptions do not reduce the effectiveness of VAEs .

The model should match the complexity of the problem and data
because this substantially increases the complexity of model implementation,
optimization, training and tuning. Increasing the complexity of the VAE
model leads to several issues identified in literature . For example,
Sonderby et al. proposed the Ladder Variational Autoencoder (LVAE)
to train deeper architectures for more representational power, but tend to
ignore latent space and use only the decoding distribution to represent the
entire data set because of the powerful decoding capabilities . A
common practice in DL is to start easy and move to a more complex model if
the learned model does not perform well. Next, we explain the decisions and

motivation of proposal, plus we provide some guidance to increase
the complexity of the model.

Parametrization Complexity

We constructed the encoder and decoder networks using a MLP, considering that
during this work we will be experimenting with speed and flow data separately.
However, thanks to the versatility and continuous development of neural
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networks, almost any architecture could be used as part of the encoder-decoder to
parametrize g4 (z|x) and pg(x|z). Even stack several traffic variables as input to
the network. For example, Ma et al. treated x as an image using CNN
to exploit the spatial and temporal correlation information between road network
points to enhance the forecast. To increase the complexity, autoregressive models
(e.g., PixelRNN or Pixel CNN ) may be integrated with VAE
and used as encoder-decoder like in the Variational Lossy Autoencoder ,
or use the Channel-Recurrent Variational Autoencoder that uses
recurrent connections across CNN channels to circumvent the simplification of
VAE’s latent space. These models may be a powerful tool for traffic forecasting

as they are good at capturing local statistics [ODMI8; [Pav17].

Lower Bound of the Inference Model Variance

In practice, we computed the variance o, filtering the layer activation by a
ReLU (or softplus) function, since the co-variance is positive definite. We also
added a fudge factor 1e=> to help for numerical stability during training. The
factor imposes a lower bound on the variance achievable by ¢4 (z|x), otherwise
the density could tend towards infinity if we allow ¢4 (z|x) to have arbitrarily
small variance. Therefore, we implemented the last row of as:

0. = ReLU(W3 h®r 1 b3) 175,

A similar approach motivated by the same fact would be to construct the
encoder to output the logarithm of the variance logo .

Lower Bound of the Generative Model Variance

In we omitted the actual sampling of pg(x|z) during training and fixed the
variance o9 to 1. We considered it as a global hyper-parameter. In addition to
reducing the parameters that can be learned, there is a mathematical explanation
for why to return only the mean pg(z) as the sampled reconstruction. Notice in
that if the variance was learnable, og(z) directly governs the weighting
of the ls reconstruction loss. Intuitively, in that case, the objective will shrink
the variance towards zero if there exists {0, ¢} such that pg(z) provides a
sufficiently good reconstruction of x: —log o3(z) will encourage the variance to
go close to zero first before 1/0¢(z) catches up.

Plain ELBO Optimization

In practice, when training VAE, it’s possible that that the system converges
to a local minimum in which the latent variable is completely ignored and the
encoder always predicts the prior. This phenomenon is known as posterior
collapse . We found that in most cases a straightforward optimization
of the ELBO ignored the latent space, that is, ¢4 (z|x) was learned by setting
¢¢(2z|x) ~ p(z) thus bringing the KL term close to zero. Notice that a model
that encodes useful information in the latent variable z will have a non-zero
KL divergence term. To prevent that, we modified the training objective (3.14))
by weighting the KL term with § € [0, 1], starting at zero and increasing its
value on each training step during training. This annealing strategy yielded
to better results, despite not optimizing the proper lower bound during the
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early stages of training. Other alternative approaches apply modifications to

the ELBO [Che+16].

Mean Field Variational Inference

The motivation of using a mean field, i.e., the assumption that the variational
distribution over the latent variables factorizes as

to(z) = [ ao (=),

is that there are fewer variational parameters to learn. Instead of a full co-
variance matrix, the model only learns the diagonal values of the co-variance
matrix because it is a diagonal square matrix. The parameter learning process
is easier with fewer model parameters, which means better optimization.
Furthermore, the KL divergence with respect to the prior can be computed
in closed-form. The downside of this approach is that it can only model a
much smaller subset of distributions, which limit the latent variables z to be
independent of each other. In reality, random variables in a true posterior may
correlate with each other.

Gaussian Prior

Regarding the definition of p(z), we let p(z) = N (2|0, I) for our purpose, which
has the following computational and implementation benefits: The samples of
z can be drawn from a simple distribution. It forces a continuous latent space.
The KL divergence is given in closed form. However, by doing so, we assumed
that latent representations of samples are i.i.d., which for many data sets, such
as time-series of images, can be a strong assumption [Cas+18].

Model Drift

When time dimension joins the game, adaptation must be considered as an
iterative stage of the data pipeline, aimed at maintaining learned models updated
and adapted to eventual changes in the data distribution. This adaptation
is crucial for real-life ITS scenarios, where changes can happen in all stages,
from variations of the input data sources, to interpretation adjustments and
other sources of non-stationarity. The whole chapter assumed a stationary
data generating process. Since road traffic networks evolve with time, the
reconstruction error of new traffic samples can be used as an indicator of when
to adjust the model to new data. A high reconstruction error would mean that
samples reconstructed conform to a different data distribution than the already
learned by the model. This is a mechanism to detect model drift when road
networks and mobility patterns change over time.

3.5 Applicability in ITS Use Cases

Three different real-world data sets were gathered and cleaned to validate the
proposed model, Figure 3-8 It should be noted that there is a lack of benchmark
data sets in traffic forecasting literature that has been identified as a problem to
compare different proposals . The three data sets are briefly described
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Figure 3.8: Approximate location of the traffic sensors in (a) England and (b)
California.

below. The three come from highways, despite that the method can be applied
to any road traffic network or urban areas.

PeMS (http:/pems.dot.ca.gov): The data set consists of data from 31 loop
detectors installed on a south-bound section of Interstate 5 (I-5), available
from the freeway Performance Measurement System (PeMS) of the
California Department of Transportation (Caltrans). Data collected covers
the two-year period from 2015 until 2017. Detectors used span spaced
equally apart 82 km of the highway in San Diego County, concretely from
post mile (PM) 1.1 to 52.3. Each detector reports the speed, occupancy
and flow, which are aggregated into 5-minute intervals including a reliable
measure of data quality showing the percent of observed samples. Incorrect
values are filtered out, while missing samples are imputed using linear

regression |[CKV02].

UKM1 (https://data.gov.uk): Traffic speed and flow data from 19 junctions (J27
to J1) of the English M1 section from Nottingham to London, covering a
four-year period from 2011 until 2015. The M1 is a major motorway of
the Strategic Road Network (SRN), which runs between London to Leeds
in the United Kingdom. The data are averaged between junctions and
aggregated into 15-minute intervals. Junctions span 210 km and consist
of different road lengths. Speeds are estimated using a combination of
sources, including automatic number plate recognition (ANPR) cameras,
in-vehicle global positioning systems and inductive loops built into the
road surface.

UKM4 (https://data.gov.uk): Traffic speed and flow data from 19 junctions (J22
to J2) of the English M4 section from Bristol to London, from 2011 until
2015. The SRN’s M4 motorway connects London to South Wales. Similar
to UKMI.
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Figure 3.9: The imputation procedure to reconstruct a corrupted sample with
missing values. y-axis shows 3 hours divided into 5-minute samples and z-axis
represents the data from 31 sensors. The colored variable is the traffic speed in
km/h from the PeMS data set (darker means congestion).

3.5.1 Missing Data Imputation

The first implication of the model defined in [Section 3.4]is that new unobserved
traffic samples with missing values can be reconstructed from the learned pg(x|z).
A corrupted data sample X can be reconstructed once the whole network is
trained on historical data minimizing . The imputation procedure depicted
in Figure [3.9| consists of:

1. Random initialize the missing values.

2. Sample from the inference model, i.e., encode X sampling from z ~
N(py, 04) where p, and o4 are given by the encoder (3.17)

3. Sample from the generative model, i.e., map back the resulting z to the
data space using decoder (3.18)) to obtain a reconstructed data sample X.

This procedure can be iterated until convergence, simulating a Markov chain
that can be shown that converges to the true marginal distribution of missing
values given observed values . In practice, a more straightforward
method is to sample only using the mean, i.e., z = p,, which leads to similar
results. Recall that the KL term of the objective forces the model to be able
to decode plausible traffic samples from every point in the latent space that
has a reasonable probability under the prior. On the contrary, an autoencoder
without the latent variable model would have learned a latent space which may
not be continuous or allow interpolation.

Evaluation Details

The model was validated as an imputation method using a defined set of
synthetically generated missing data, while determining to what extent an
improvement on the imputed values yields an enhanced accuracy of the
subsequent traffic forecast model. The final performance of the whole ITS
traffic forecasting system was evaluated instead of measuring the distance
between the real data and its reconstruction, as imputation requirements may
vary depending on the final application . There are cases in which
improving the data imputation does not necessarily mean that forecast will
improve, e.g., when there is sufficient information in the observed data for the
traffic forecasting system to estimate; the reader may think on the increase
in root mean squared error (RMSE) when the reconstruction is the same as
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Figure 3.10: The production ITS traffic forecasting system considered for
evaluation. First, the imputation layer imputes the missing values of the 1116
dimension input, 36 time samples per 31 sensors. The VAE approach follows
the imputation procedure using z = p,. Then, an independent regression layer
estimates the future traffic speed of one sensor using the reconstructed sample.
Three different imputation layers based on VAE, AE and PCA were evaluated
computing the RMSE and MAPE of the regression layer prediction task.

the original but shifted by one value. Two types of missing value patterns
were generated, which are consistent with real-world the types analyzed in

literature [GW17; [LR14].

Not Missing at Random (NMAR): The data set was obtained from PeMS
test data, considering all 5-minute samples that did not meet a 75%
quality measure as missing values. The PeMS quality measure shows the
percentage of valid samples within the aggregated 5-minute samples. This
data set shows a pattern where consecutive missing values are found in
not so random time instants and sensors, with a 11.28% of missing values.

Missing Completely at Random (MCAR): To investigate the robustness of
the system against higher shares of missing values, additional observations
from the data were removed. A 10%, 20% and 40% missing data proportion
on the PeMS test data were generated for evaluation.

Figure shows the scenario considered divided into two parts: An
imputation layer (referred as the IL layer) that preprocesses corrupt speed
traffic samples that are then fed separately to a regression layer (referred as the
RL layer) to estimate future traffic speed. The RL was set to estimate 1 hour
ahead traffic speed of sensor number 15, the one presenting less corrupted data
(0.07%). The last 3 hours of speed samples were used as input. Evaluation
was done on all possible 3-hour speed traffic samples of PeMS-NMAR, and
PeMS-MCAR from 2016 (105360 samples each), while the rest were used for
training (105072 samples each).

Main Results & Discussion

The proposal (VAE) was compared against a non-linear autoencoder (AE)
and PCA. Implementation and training details are found in |Boq+20)|
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Table 3.1: RMSE [km/h] average results on the estimation of one hour ahead
traffic speed of sensor number 15 of PeMS test data. The first row shows the
performance of the RL alone and should be compared to the results when an IL
is added, denoted as IL + RL. The compression factor, computed as the ratio
between the dimensions of the data space and the latent space, value is shown
between parenthesis near each imputation method. MCAR~(%) indicates the
proportion of generated missing data. In bold are the results closer to the
performance of the RL on the Original data containing no missing values (the
closer the better). MAPE [%)] results showed the same behavior, thus they are
omitted here. The gray shaded rows highlight the performance of the proposal.

Original NMAR MCAR-10 MCAR-20 MCAR-40

RL 5.53 19.37 27.24 30.07 33.28
PCA (11.16) + RL  N/A 1242 10.68 14.35 18.46
AE (11.16) + RL N/A 9.74 10.69 14.02 18.16
VAE (11.16) + RL  N/A 5.89 8.98 11.79 15.01
VAE (22.32) + RL  N/A 8.70 8.58 10.61 11.98
VAE (111.6) + RL  N/A 7.71 7.86 8.57 9.18

(Appendix B)). Performance metrics are reported in Table The proposed
VAE implementation showed an RMSE improvement of 69.6%, 52.6% and 39.5%
over RL, PCA and AE on NMAR test data, respectively. Likewise, VAE showed
superior performance for each different missing value proportion on MCAR. For
example, on MCAR-40, VAE showed an RMSE improvement of 54.9%, 18.7%
and 17.3% over RL, PCA and AE, respectively. The main difference between
VAE and AE is that a regularizing term on the objective function is imposed
on the former to force the model to learn a continuous latent space. Results
indicate that learning the data distribution helps to infer missing data as the
model is able to decode plausible unseen data samples from every point in the
latent space that has a reasonable probability under the prior, which validates
our initial assumption. We also found that non-linearity helps to impute missing
values when larger gaps of missing data are found (NMAR pattern). Looking
at the VAE and AE performance against PCA in Table on NMAR data,
the linear model performs poorly. However, no relevant differences were found
between PCA and AE on MCAR. In this case, the PCA performs similarly
to AE because of the MCAR pattern, which implies less consecutive missing
values and thus the linear model is able perform better. Another interesting
finding is that VAE performed better in NMAR than MCAR-10 even when the
missing data proportion of the former is greater, which makes the proposed
method more suitable for real-world data set where mostly NMAR, patterns
are found. The latent space dimension was varied and Table [3.1] provides some
of the results, where the compression factors applied on the data are shown
between parenthesis near each IL method. A compression factor of 11.16 means
to extract 100 features from the 1116 dimension data. Results showed that
accuracy increased jointly with the compression factor but to a certain extent.
Constraining the latent space dimensions forces the network to learn better
features until the space becomes small enough. Same thing happened while
increasing the dimensions, suggesting the existence of a lower and higher bound
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where only an insignificant improvement can be observed. Thus, the optimal
latent space dimension should be empirically defined as a hyper-parameter or

by means of new theoretical approaches like in

3.5.2 Dimension Reduction

The second implication is that the learned latent space can be exploited in
several different ways that are of interest to traffic forecasting systems. The
latent space defined by z is forced to capture useful information about the
data because z is limited to having fewer dimensions than x. Therefore, VAE
is learning the principal components or independent factors of the highly
non-linear latent manifold of the given traffic data set. Recall that a linear
autoencoder minimizing the mean squared error learns to span the same subspace
as PCA. This can be exploited as an unsupervised dimension reduction or feature
extraction independent layer for traffic forecasting systems. On the one hand,
the data can be compressed using the encoder to store and reconstruct them
when necessary using the decoder. To aim for the lowest possible dimension
of z (i.e., maximum compression) that does not degrade the performance, one
may find it empirically using trial-and-error methods or rely on the algorithm
presented in Chapter 4, which inspects the mutual information evolution between
layers. On the other hand, features learned may be used by a regression layer
to improve traffic estimation as the compressed information filters out useless
information and allows data-driven models to easily learn. In this case, the
performance is less conditioned to the dimensions of z since in practice we have
obtained similar results for different latent space dimensions, except with very
small or very large dimensions. The whole procedure consists of the following
steps:

e Pre-train the model to reconstruct its input in an unsupervised manner.

o Use the pre-trained encoder as input to a regression model for supervised
traffic estimation.

e Fine-tune the entire network if the regression model is a DNN, if not,
supervise train with the latent representations.

Fine-tuning yields slightly better results than fixing the weights and biases of
the encoder, but modifying the encoder derives in a useless decoder.

Evaluation Details

The model was validated as a data compression tool to explore if the learned
subspace results in representative and powerful features of the traffic data
that enhance traffic forecast. A more complex problem was set which aimed to
estimate 1 hour ahead speed of all the network sensors, using the last 12 hours of
data of PeMS and the last 18 hours of UKM1 and UKM4. A feature extraction
layer and a regression layer were considered but, in this case, models were
evaluated on PeMS, UKM1 and UKM4 test data. The latent space dimension
was set to 100, thus models were forced to extract 100 features from a 4464 and
1368 input data space depending on the data set. Implementation and training
details are found in [Bog+20| (Appendix Bj).
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Figure 3.11: The production forecasting system under evaluation for dimension
reduction. The encoder of an independently pre-trained VAE is used as a
feature extraction layer prior to long-term wide-network traffic forecast. For
comparison, the plain AE and PCA approaches were also evaluated as feature
extraction layers. Note that the 4464 or 1368 input dimension is reduced down
to 100 features to perform the forecast. DO stands for a Dropout layer with a
drop probability of 0.5. BN stands for a Batch Normalization layer.

Main Results

The proposal (VAE) was compared against a non-linear autoencoder (AE) and
PCA. Main results are reported in Table [3:2] The first two rows show that the
tuned RL improved accuracy for all data sets compared to a naive approach,
where the last input sample is used as the estimation. The RL performed the
forecast from 4464 samples input for PeMS and 1368 for the other data sets,
which equals to 12 and 18 hours of data respectively. The rest of the rows
show the accuracy of the models under evaluation. These models first project
the data to a 100-dimensional subspace, which is then used as input to train
another RL, always maintaining the same architecture. The data compression
factor was 44,64 on PeMS and 13,68 on UKM1 and UKM4. In Table 3.2} VAE
outperforms all the compared models. It even exceeds the performance of the
original RL for all the data sets despite having significantly reduced the space
dimension of the input. Although the improvement is slight, below 5% on the
RMSE. The introduction of non-linearities and the latent variable model of
VAE is well suited to extract useful features to perform traffic forecasting while
at the same time for cloud computing and storage as significant compression
factors are achieved.

Discussion

The proposal is intended to be a tool independent from the model used in the
prediction part. However, care must be taken in choosing the forecasting model
because compressed data can degrade the performance of models that exploit
the spatial or temporal structure of the data. As p(z) = N (2|0, I), the latent
components were set to be orthogonal. Using a CNN or LSTM approach to
forecast using the compressed data will not lead to improvement over MLP,
since the latent representations of the data do not keep the temporal or spatial
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Table 3.2: RMSE [km/h] average results of the forecast task, showing the
dimension reduction and feature extraction impact on the accuracy of the
test data of PeMS (4464 space dimension), UKM1 and UKM4 (1368 space
dimension) traffic data. The gray shaded row highlights the performance of the
proposal.

Model RL input type PeMS UKM1 UKM4
Naive [R4464; 1368 10.83  13.06  15.24
RL R4464; 1368 7.51 11.11 10.73
PCA + RL R100 7.61 11.38 10.56
AE + RL R0 7.63 11.28  10.37
VAE + RL R0 7.49 10.89 10.23

structure. Some testing was done using LSTM and CNN prediction models
that confirmed a degradation on the accuracy performance.

During training, increasing the number of hidden layers derived in VAE
ignoring most of the latent space. Instead, using one layer with a higher number
of neurons led to learning better features for the traffic forecast task. In that
sense, the KL cost annealing and the dropout layer also proved to be useful. The
former helped to avoid the posterior collapse problem and the later to prevent
overfitting of the model. In this section, the same time was spend tuning each
FL independently of the RL. Results were considered enough to validate the
model as a prominent solution for dimension reduction of traffic data. However,
there exists room for improvement on optimizing the architecture of the model

for this specific data set, which is the scope of

3.5.3 Model & Data Selection

The latent space can be exploited as a tool for the selection of models and data,
since similar data is encoded closer in the latent space. Traffic samples are
clustered in an unsupervised manner in the latent space learned by VAE. This
can be used to distinguish between work days, weekends, holidays, anomalous
days, etc. or to compare the traffic from different road traffic networks and time
periods. This explanatory power makes the model adaptable and responsive to
dynamic traffic and road environment changes over time. Traffic modelers may
use the tool as an indicator of model performance against new data, thus, the
need to train a new model, or to gain deeper knowledge of the traffic behavior
by exploring the latent space. In that way, accuracy of traffic forecasting
systems can be enhanced by splitting the data into the classes learned by the
model and fitting a separate model to each class . This can be done
by projecting the new data into the learned subspace and comparing it with
new data using clustering algorithms . Further, modelers can visually
search for correlations and seasonality by using visualization techniques of
high-dimension data sets such as PCA or t-SNE .

Data Visualization

To experiment with the representational power of the VAE model and its learned
latent space, the same model of [Section 3.5.2| was trained, but only using unique
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day samples of traffic flow and speed for all of the three data sets. Then data
was projected to the learned subspace and analyzed it from the point of view of
traffic modelers with the goal to improve the prediction accuracy of a traffic
forecasting system. Note that the model can be used as an unsupervised tool to
learn insights about traffic data without previous knowledge of the road traffic
network.

Figure shows the two principal components (PC) of the latent space.
The pattern of flow and speed differs between weekends and weekdays, even a
separate cluster for Fridays can be clearly distinguished from the flow. The flow
is classified similarly for the three data sets, instead, the model classifies speed
differently for PeMS rather than for the rest of data sets. Only in UKM1, the
model can cluster between speed samples from Saturday and Sunday as speed
has more complex behavior than flow. In PeMS, the weekend cluster is more
separated from the weekdays cluster suggesting a greater difference between
both and the possibility that two specific models for each cluster perform better
than a global one. In UKM4, the model also clearly identified two clusters
which are distinguished by different instants of time, Figure [3.13] A similar
trend can be slightly appreciated for UKM1. The data from 2012 and 2013 are
classified in the upper cluster, while the data for the years 2011 and 2014 are
classified in the lower one. Those differences at the time of fitting the forecast
model can influence its performance since the 2012 data may not be beneficial
for predicting 2014 traffic, as pointed out by the model.

Evaluation of Model Selection

Two new data sets types were created from the main PeMS, UKM1 and UKM4
data sets. The first type consists of just weekdays, referred as WD. The second
type consists of just weekends, referred as WE. The main data set containing
the whole week is referred in this section as WW. A MLP speed forecasting
model was fitted to each one of the data sets. The forecast model goal was
to predict 1 hour ahead of all network sensors using the last 3 hours of data.
This resulted in three different models: MLP-WW, MLP-WD and MLP-WE,
respectively. The goal was to see if the overall performance increased using the
two separated models and data compared to using a single model trained on all
data.

Results

The RMSE performance of the MLP-WW model is used as a benchmark. The
RMSE improvement in % with respect to the benchmark of the rest of the
models MLP-WD and MLP-WE is shown in Table From these results,
it can be concluded that predicting the speed by using two separate models
for weekdays and weekends in UKM1 and UKM4 shows little improvement
over the results of the models for the whole week. On the other hand, in the
case of PeMS, training a separated model only on weekend data improves the
RMSE by 17.7% on weekend test data. However, no improvement on WD
data was obtained by the MLP-WD, meaning that the performance resembles
to the MLP-WW model. The latter model, which was trained on WW data,
mainly learns how traffic behaves on weekdays because weekend samples are
imbalanced w.r.t weekday samples. Those results are related to the cluster
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Figure 3.12: Traffic flow and speed samples projected to a latent space and
colored by day of the week (0-6: Monday to Sunday). Day samples were
projected to a 100-dimension latent space learned by the VAE model in an
unsupervised manner. The two principal components (PC) of the projected data
were plotted with the help of PCA. The cumulative explained variance of PC1
and PC2 is shown below each figure, which means that the other dimensions
that are not seen still capture more traffic characteristics. In PeMS, holidays
samples are plotted with a star marker.
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Speed - UKM4

Figure 3.13: 2D PCA visualization of one-day UKM4 speed samples projected
to the learned latent space (R1%?) and colored by year (0-3: 2011 to 2014). The
clustering shows that traffic behavior changed between years, cluster {0,3} and
cluster {1,2}.

Table 3.3: RMSE improvement [%] of MLP-WD and MLP-WE models w.r.t.
MLP-WW for the three different split types of the test data. The text in bold
indicate the type of test data split on which the model was intended to improve
the performance.

Data set  Split type MLP-WD MLP-WE

Ww -7.0 -45.0
PeMS WD 0.1 -52.0
WE -26.0 17.7
Ww -1.6 -17.6
UKM1 WD 1.0 -21.3
WE -7.1 2.2
Ww 0.5 -20.9
UKM4 WD 3.8 -26.0
WE -6.9 3.0

separation that exhibit the two classes in the latent space, which can be seen in
the two-dimensional visualization of Figure [3:12] More precisely, the euclidean
distances in the latent space (R'%?) between weekday and weekend cluster
centroids of PeMS, UKM1 and UKM4 are 87.3, 65.6 and 62.7, respectively.
PeMS’ clusters are the ones that the VAE model projected more separated
apart, that is, that were considered more dissimilar. This validates the latent
space as an indicator of the performance of separated models for different classes
of data. Therefore, the VAE model can be used by traffic modelers as a tool to
decide when it is best to make use of different models instead of one unique
model to predict traffic.
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3.5.4 Anomaly Detection

The anomaly detection with VAE can be done online and offline. A simple
but powerful approach is to visually compare projected samples in latent space,
which may be useful for traffic modelers. For example, by projecting the samples
in the latent space and displaying them colored by type of day, the modeler can
see if a Tuesday sample deviates significantly from his cluster, which may mean
that an anomaly is occurring or that it is a holiday if it’s closer to Sunday’s
cluster. Figure [3:12]is a clear example of that.

On the other hand, a more interesting scenario for ITS is to detect anomalies
automatically. For statistical methods, key statistics are used when anomalies
are detected if the statistic exceeds a certain threshold value. If anomalies are
labeled, one may project a sample to the latent space, compute the Euclidean
distance of the sample to its class centroid and then establish the threshold by
means of the AUROC, for example. If anomalies are not labeled, one may assume
that clusters are normal distributed and set the threshold proportional to the s.d.,
or even use kernel density estimation setting a minimum probability threshold.
Nevertheless, VAE inherently provides the two typically steps of statistical
anomaly detection techniques: dimension reduction and a statistical anomaly
criterion. Similarly, Dang et al. performed dimensionality reduction by
PCA and then they applied kNN outlier detection. VAE provides a probability
measure with the KL divergence term in rather than a reconstruction
error as an anomaly score function. Probabilities are more objective than
reconstruction errors and do not require model specific thresholds for judging
anomalies . When the VAE is trained with far more normal samples
than anomalous ones, the VAE learns to model the distribution of normal
traffic data, thus a traffic sample can be detected as anomalous if it statistically
deviates from what the model has learned . This particularly suits
the traffic domain because traffic data sets are usually imbalanced, samples are
only labeled by days and most of the anomalies are still unseen.

Model Exploratory Power & Discussion

Training a VAE model with unique day samples leads to Figure [3.12}like images
that can be used to detect anomalies. Samples corresponding to holidays with a
star marker on PeMS are shown in Figure [3.12}a and [3.12}b. Although holidays
can be considered non-anomalies, it is more likely that during these the behavior
of the traffic will deviate from the usual. First thing that Figure [3.12}a shows
is that the majority of the holiday days behave like Sundays, which confirms a
common and known fact of most road networks. Figure shows the same
samples of Figure [3:12}e, but colored proportionally to the Euclidean distance
to their respective class centroids. A quick visual comparison shows that all
holidays and anomalies are distinguished in darker color without previous
knowledge or labeled data, validating the viability of the approach.

In Figure 3.12}a, a few of the samples are projected in the middle between
the workday and weekend clusters, thus those samples were inspected more
closely as anomalous traffic was not labeled for the data sets under consideration.
We visually compared the Monday and Sunday samples closer to their centroid
against the holiday sample (Monday) placed between both clusters in Figure
a. This simplifies the analysis because the three data points compared vary
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Figure 3.14: 2D PCA visualization of one-day UKM4 flow samples projected
to the latent space (R'%Y). Samples are colored proportionally to the distance
(normalized to the maximum distance found) to their corresponding cluster
centroid, which highlights the anomalous traffic samples (darker). See

Figure 3:12}e for comparison.

greatly along PC1 (the x-axis), while the variability in PC2 (y-axis) is much
smaller. In this case, PC1 and PC2 represented the 55.8% of the variance of the
100 features learned by VAE. The anomaly is that the targeted sample does not
behave like a Monday or Sunday, which should be expected because the sample is
labeled as a holiday Monday. To understand what caused the anomaly, the latent
space was investigated by not varying PC2 and comparing the three mentioned
traffic samples which produced a variation only on PC1. Upon investigation, an
increase of traffic flow around sensor 9 for all three samples was found, which
means that PC2 is modeling where the traffic intensity is located in the road
traffic network. Contrary, the main difference was the intensity of traffic flow
and the peak hours. The intensity decreased proportionally from the Monday
sample to Sunday while a light peak hour moved from morning to the afternoon,
meaning that PC1 component is modeling those traffic features. Therefore,
the conclusion is that the anomaly was the intensity of the flow and when
happened, not where it was located. There is no way to justify this behavior
as the data is not labeled. However, this anomaly may be explained by the
effect of non-traffic features (e.g., weather conditions, unusual events, etc.).
That said, traffic modelers may consider the holiday sample as an anomaly and
plan accordingly to absorb the specific traffic intensity at noon on that holiday.
Additionally, since it is a generative model with a continuous latent space plus
learned meaningful dimensions, a traffic modeler exploring the rest of the latent
space could answer questions like: What the holiday would have been like on a
Wednesday?
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CHAPTER 4

Theoretical-Tuning Deep Learning
Architectures of ITS Solutions

This chapter covers Objective III of the thesis. Some concepts of information
bottleneck theory in deep learning are applied to derive an algorithm that
efficiently finds the sufficient architecture of the autoencoder for accurate traffic
forecast with maximal compressed traffic data. reviews information-
theoretic concepts to describe the information plane of an autoencoder.

presents the main results: analyzes why the entropy

of the compressed representations can be used as a key performance indicator
(KPI), [Section 4.3.3| presents the proposed algorithm, [Section 4.3.4] selects a
mutual information estimator and experimentally validates the

claims.

“Develop an efficient methodology that automatically defines the
minimum-expression architecture of ITS solution of Objective 2 that
can provide maximum data compression without diminishing the
accuracy of the subsequent forecasting system. ”

4.1 Related Work

The number of features available from ITS data sources along with the number of
available data points in road traffic networks are growing excessively, leading to
several critical problems. For example, forecasting with all those features can be
computational inefficient and undertakes the risk of over-fitting. Therefore, we
can safely assume that in the era of big data it will be essential for ITS to reduce
the dimension of the feature space before applying a prediction model [YQ19].

Reduction of the dimensions is done by learning the principal components
or independent factors of a given data manifold, commonly known as feature
extraction [Pav19]. Dimension reduction is a subclass of feature extraction
methods, as the latter does not necessarily imply reducing the dimension of
the data space. Low-dimensional representations of the data are traditionally
obtained in the transportation field via PCA approaches or the least absolute
shrinkage and selection operator (LASSO), a well-known technique used for
feature selection in short-term traffic flow prediction . Recently, data-
based approaches such as DNN have become increasingly relevant as current
technologies facilitate access to dynamic and big data with great computational
power. Within this field, features learned by an autoencoder (AE) have been
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Figure 4.1: AE-based traffic forecast consists of two steps. First, the AE seeks
to map the traffic data X into a lower-dimensional space (step #1), prior to
running the supervised learning algorithm. Second, the compressed data are
used to train a regression model to forecast the future state of the road traffic
network (step #2).

proved in the literature to improve the traffic forecast Under AE-based traffic
forecast, the encoder’s output is used as input for a regression network, which
is then trained in a supervised manner, Figure [{.I] Sometimes, the weights
and biases of the encoder are not updated during the supervised training, while
other times the entire network is fine-tuned. The latter may be useful for
slightly increasing the accuracy of the forecast, but will no longer serve as
a data compression tool as the updated encoder will not match the decoder.
Anyway, the dimension of the bottleneck layer that we will denote as K is
crucial in both cases and affects the performance of the forecasting system:

e A large size may lead to redundant dimensions and high computational
cost.

e A small size might lead to high information loss.

Despite that, all of the authors reviewed in the traffic forecasting domain
estimate said number of dimensions arbitrarily or by trial-and-error methods,
leaving aside the importance of the data compression feature of the AE for ITS.

Lv et al. used the AE to process big data and forecast traffic,
its architecture was determined via exhaustive search. Yang et al.
porposed the SAE-ML, where the optimized architecture was found using a
Taguchi method with K as a design factor. Zhoua et al. presented the
AdaBoost SAE for short-term traffic flow forecasting, showing RMSE results
for K varying from 10 to 100. Yu et al. merged in parallel the SAE
with a LSTM to forecast extreme conditions events, presenting results with the
best architecture found by trial and error. Wei et al. sequentially
combined the AE with a LSTM for traffic flow prediction, but they arbitrarily
set K without further discussion. Zhang et al. used the AE for
short-term traffic congestion prediction, presenting the results for different
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values of K. Although AE is currently very relevant in many fields for being
a powerful unsupervised method with many applications, the adequacy of
the bottleneck layer dimension has only been addressed in the literature by
Gupta et al. , hence there is no standard way for automatic selection
of the dimension. They verified experimentally that the reconstruction error
is not a reliable indicator of the performance of the end application, so they
proposed an automatic method to find the critical bottleneck dimension for text
language representation. Their proposal was based on the percentage difference
between the slopes connecting consecutive bottleneck sizes performances. The
metric monitored was the structure preservation index (SPI), a language-related
metric that captures the structural distortion incurred by the encoding and
posterior decoding process of the data. This method is not directly portable to
the transportation field and it is not efficient as does not save a practitioner
from having to train all the AE completely to derive the critical dimension,
contrary to the algorithm proposed in this chapter.

4.2 Information Perspective of the Autoencoder

The information bottleneck (IB) theory of deep learning, initially proposed
by Tishby et al. , suggests that a learned latent representation in a
neural network (NN) should contain all information from the input required
for estimating the target, but not more than this required information. The
interaction of IB and DNN in the literature can be divided in two main categories:
The first is to use the IB theories in order to analyze DNNs. The other is to
use the ideas from IB to improve the DNN-based learning algorithms .
The approach to understand deep neural networks using information-theoretic
concepts was further developed by Shwartz-Ziv et al. and it has been a

topic of ongoing rescarch [Gei20)].

4.2.1 Autoencoder Role in ITS

Consider an ITS that collected an historical road traffic data set composed of
N > 1 data points from a concrete road traffic network,

X ={xM x® . xM = {xO)N

Let each element in x() represent a value of a traffic variable such as speed, flow,
density, etc. associated to an specific time and space, gathered from a sensor
deployed into the road network. The purpose of the AE is to enforce the output
X equal to X with high fidelity by minimizing the squared reconstruction error
|X — X|2. Usually, the AE is trained to reconstruct its input through a layer
with fewer dimensions than the data space, called the bottleneck layer since
it restricts the amount of information that can pass through it. That is, the
AE first encodes the input into a hidden representation (or codes) with fewer
dimensions, Z = encoder(X), and then decodes it back into a reconstruction,
X = decoder(Z). Along the way, the data is processed by intermediate layers.
So, let

Yk,

73



4. Theoretical-Tuning Deep Learning Architectures

denote the output data or activation of the [-th layer of L hidden layers of the
encoder or decoder, according to the superscript e or d. Hence, Y{ = Z and
Y¢ = X.

4.2.2 Mutual Information

The key quantity in the IB framework is mutual information (MI), derived from
the concept of entropy. Consider X and Y as two continuous random variables
with a joint probability density function (PDF) p(x,y) and marginals p(x) and
p(y). The Rényi’s entropy of order o of X is defined as

Hoe(X) = 1 !

—

log/p"‘(x) dx , (4.1)

where a > 0 and a # 1. When a — 1, is defined in the limit and yields
Shannon’s differential entropy h := H,—1 and the Kullback-Leibler divergence, a
special case where the chain rule of conditional probability holds exactly. Then,
the mutual information I(X;Y) is defined as the relative entropy between the
joint distribution and the product distribution p(x) p(y), which can be expressed
as

IX;Y)=hX)+hr(Y)-hXY), (4.2)

where h(X) and h(Y) are the marginal differential entropies of X and Y
and h(X,Y) is their joint differential entropy. The MI in measures the
dependency between X and Y, and attains its minimum, equal to zero, if
they are independent. Specifically, if X is continuous and Y is discrete, then
I(X;Y)=H(Y) - H(Y|X) = h(X) — h(X]Y), where H denotes entropy and
all terms can be assumed to be finite. In contrast, H(X) = oo whenever X is
not discrete and h(Y) = —oco whenever Y is not continuous .

4.2.3 Data Processing Inequalities

Another crucial concept of the IB framework is the data processing inequality
(DPI). Let A, B and C form a Markov chain such that A — B — C, meaning
that C' is conditionally independent of A given B. Then, they satisfy

I(A; B) > I(A;0). (4.3)

Essentially, the DPI in means that the information that B contains about
A cannot be increased through any transformation of B.

Analogously, the same concept can be applied to deep neural networks,
which are usually trained via back-propagation and stochastic gradient descent.
Both feedforward and backward passes are unidirectional and only depend
upon the previous variables, forming a Markov chain. In the special case of the
autoencoder, the decoder undoes what the encoder does, so it makes sense to
divide the chain into two dual Markov processes:

X=>Y{—>---—=Yi_,—~7Z,

Z-Y¢ 5. oYl X,

The rationale behind that duality is that the encoder maps the data to a
lower-dimension space and the decoder always maps it back to the data space,
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that is, the decoder undoes what the encoder does. Under this assumption,
Schwartz-Ziv et al. [YP19| stated that the following DPIs are satisfied:

[X:YS) > > I(X:YE ) > [(X:Z)
I(Y{_;X) > > I(Y];X) > 1(Z;X), (4.4)

IXX) > I(YSYE ) > > 1Y YD) > 1(2;2),

which are known as forward, backward and symmetric DPI, respectively.
Interestingly, note that if the forward DPI is extended until the output layer as

I(X5Y5) > > I(XY ) > [(X;2) > (X5 Y]) > .
> I1(X; Y] ) > 1(X;X)

implies that the information is decreased or at most preserved from input to
output of the autoencoder.

4.3 Information-Theoretic Tuning of the Architecture

Hereafter, it is assumed the existence of a sufficient architecture with bottleneck
layer size D such that when K < D the compressed data will not provide
the subsequent regression network of enough information to achieve a reliable
forecast (see Figure . In other words, D is the dimensionality of the latent
space that does not degrade the subsequent system performance while achieving
maximum data compression.

4.3.1 Information Plane

The information plane (IP), initially proposed by Tishby et al. , depicts
how information quantities flow during the training of a DNN with the aim to
unveil interesting dynamics. Later, its definition was adapted and extended by
Yu et al. to the special case of the AE that hold . Tl;le IP of the
AE is the space composed of coordinate axes I(X;Y) and I(Y;X) at which
the hidden data Y in a given training iteration is mapped onto a single point,
describing a trajectory during training. For readability, I(X;Y) and I(Y; X)
are called input MI and output MI, respectively. In this section, we assume that
the MI is not infinite and can be computed or estimated, which is not always
true . If the IB theory is not wrong, the information flow during
training of each layer of the autoencoder must obey the DPIs in , SO we
should expect the same behavior of the information quantities to be reflected
in the IP. The specific trajectory followed from initialization to convergence
for each layer depends on the optimization process used for training [Gei20].
But, its behavior can be sketched from , resulting into the three stages
described below and Figure [1.2]

Early stage of training: A significant information loss through the layers is
expected when initializing the AE with random weight values. During
the first epochs of training, it can be anticipated a strict inequality in
. Extending the forward DPT until the last layer , one can clearly
see that the input MI will be greater than the output MI and I(X;X) is
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going to have a small value, possibly equal to zero for the last layers since
the input is recursively multiplied by noise at each layer. For the same
reason, the initial input MI of the encoder layers I(X;Yy) will be greater
than the initial input MI of the decoder layers I(X;Y¢), Figure

Evolution during training: A direct consequence of the forward DPT in (4.4)

is the feasible region of the IP. The trajectories that the input MI
and output MI follow are restricted to the region below the bisector
I(X;Y) = I(Y;X), where the optimal solution X = X resides when
[X — X|2 is minimized. The feasible region is depicted as the shaded
area jointly with arbitrary trajectories for each layer in Figure

If the layer Y is a deterministic function of X then all information conveyed
by Y is shared with X, thus

I(Y;X) = h(X) — h(X]Y) = h(X). (4.6)

That is, knowing Y determines the value of X and vice versa by symmetry.
The following lemma that describes the behavior of the output MI, at any
given training iteration, derives from :

& Output MI lemma |[TE20

I(Y;X) = I(X;X). (4.7)

Therefore, the output MI is the same for any hidden layer Y at any given
training iteration. Unfortunately, the specific trajectory of the input MI
followed from initialization to convergence depends on the optimization
process used for training. But, for example, a common behavior for
the first layer of the encoder is that the input MI I(X;Y§) begins to
grow much faster than the output MI 7(Y¥; X) This makes sense, since
the information in the first layer is maximized at first when the input
reconstruction is still poor. At some point the behavior is reversed, the
information in Y¢ saturates and the information in X is maximized by
improving the subsequent layers.

Convergence: The ideal AE achieves perfect reconstruction at the end of
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training, thus requiring that all input information is contained at the
output layer. The upper bound of I(X; X) is achieved in the particular
case where X = X. The feasible region is constrained to the maximum
value of I(X;X) = H(X), following (4.5). This theoretical limit provides
an ideal convergence for each IP, the total information available at the
input denoted as M in Figure 1.2}

A well-trained AE of enough capacity approximates the ideal AE at the
end of training as much as allowed by its bottleneck layer size K. Let
Ax = MK) be an increasing function of the bottleneck layer size K that
represents the maximum amount of information that can be transferred
from the encoder to the decoder, that is, through the bottleneck layer.
An ideal autoencoder satisfies:
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Figure 4.2: Theoretical IP of the autoencoder, when the bottleneck layer size is
(a) small and (b) large [TE20]. The information flow during training of each
layer is depicted in a different color. The feasible region corresponds to the
shaded area, limited to M = I(X;X). Note that the output MIs are always
equal. The evolution of the input MlIs depend on the optimization algorithm,
so they were arbitrarily drawn as straight lines.

& Input MI lemma |TE20

I(X;X) = I(X;Z) = min (A\g, [(X; X)) . (4.8)

The forward DPI implies
I(X;X) > I(X;Z) > I(X;X). (4.9)

The ideal autoencoder maximizes I(X;X) to minimize the reconstruction
error. Since the transfer of information is restricted only on the bottleneck
layer, the decoder contributes to the maximization of I(X; X) by achieving
I(X;Z) = I(X;X) in . Additionally, the encoder contributes to the
maximization of I(X;X) by maximizing I(X;Z), which is bounded by
I(X;X) in . Due to the bottleneck restriction, I(X; Z) is also bounded
by Ak, implying that the achievable maximum is min (Ag, I(X; X)),

Figure [4.2]

4.3.2 Entropy of the Subspace as KPI

Interestingly the information plane of the autoencoder shows different behavior

when K is smaller or larger, which was first seen on MNIST data [YP19]. This
behavior is of particular interest to I'TS, as K governs how much traffic data

is compressed and its quality for the subsequent forecasting system. From the
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lemma (4.7)) and , we can derive what exactly smaller and larger means.
Assuming an ideal AE restricted by the bottleneck layer, two different cases
can be given:

ClL. If A\g > I(X;X), then the output MI and the input MI are equal to
I(X;X) for every hidden layer Y (Figure b). All layers converge
together on the bisector because they contain all the input information. No
input information is compressed, which relates to perfect reconstruction.

C2. If \g < I(X;X), then the output MI is equal to Ax for every hidden
layer Y (Figure a). The encoder has input MIs satisfying

IX;X) > I(X;Y]) > - > [(XZ) = Mg
and the decoder has input MIs satisfying
I(X;Z)=I(X; YY) = = I(X;X) = Ak .

Some information is compressed through the encoder to achieve the allowed
information at the bottleneck. Then, it is transferred through the decoder
preserving as much as possible, without further compression, to minimize
the reconstruction error.

The role of the AE is to maximize the entropy in the hidden layers in order
to pass the input information towards the output layer to achieve perfect
reconstruction. When the AE is well-trained in terms of generalization to
reconstruct its input through the low-dimension subspace, Z must describe
useful traffic characteristics that sufficiently describe X. Otherwise, the AE
would not be able to faithfully reconstruct the input data traffic X. Thus,
the MSE minimization guarantees useful traffic characteristics in Z for traffic
forecasting while, at the same time, the maximization of I(Z;Z) guarantees
that Z has the same capacity in terms of information than X. In other words,
given that the regression network in the second stage of AE-based forecasting
(see Figure [4.1) is usually trained minimizing the MSE using X, I(X;X) > 0.
The same network will be able to learn and have similar performance if we
provide it with Z, K < dim(X) and Ax > I(X;X) to learn from. This leads us
to the definition of the sufficient dimensionality D, which is the bottleneck layer
size K that verifies A\x = I(X;X). As said, if Ag > I(X;X), then the output
MI and the input MI are equal to I(X;X) for every hidden layer Y. Therefore,
if a deterministic linear activation function is used at the bottleneck layer,
from lemma we have that I(X;X) = I(X;X) = I(Z;Z) = H(Z), and the
entropy of the subspace representations H(Z) acts as a key performance indicator
of the subsequent traffic forecasting system. These claims are experimentally
validated in but the theoretical proof is left as future work.

4.3.3 The Sufficient Autoencoder Algorithm

One thing to take into account when designing an autoencoder is that giving
too much capacity to its layers can be counterproductive to the learning task.
This means that when given too much capacity to work with, they will tend to
learn to avoid extracting information and rather to just copy the information,
which is an undesirable outcome. On the other hand, trying to set an encoder to
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code the input signal into a single dimension could result in the loss of valuable
information. Even with a very powerful decoder a very optimized autoencoder
will struggle to perform this task, specially when introducing very big sets of
data as the input. Taking into account this issue, the general rule in literature
to design them is just by using trial and error.

Currently, there is only one algorithm to find the intrinsic dimensionality
of the data proposed by Yu et al. , but requires human observation
which is not applicable in practice. To solve that, we propose an efficient and
automatic algorithm based only on the evolution of the estimation of I (Z;Z
or H(Z) from mini-batches of data (proposed in . Algorithm
proposes to look for D from an array containing an effective searching range
of dimensions K, where the lower bound is limited to 1 and the upper bound
is limited by the dimensionality of the layer before the bottleneck layer. The
whole algorithm proposed consists of searching the sorted array by repeatedly
dividing the search interval in half (Algorithm [3) and check if I (Z;Z) > I (X;X)
holds at each array division when training the AE with the corresponding K
(Algorithm @) The output of Algorithm is the sufficient dimensionality D of
the bottleneck layer that verifies A\ = I(X; X). Thus, an autoencoder trained
with a bottleneck layer size of D would encode X to the representation Z that:

1. Inform about X. This means that the representation contains as much
information about the data X, i.e., Z should be a sufficient statistic for
X.

2. Be maximally compressed. The representation Z does not tell more
about X than is necessary to correctly perform traffic forecast, i.e., it
should attain invariance to nuisance factors which are not relevant to the
forecasting system.

Practical Implementation

The algorithm starts to mini-batch train a new AE with bottleneck layer size
given by the dimension K of the middle position of the searching array. At
each training update, the updated AE is used to project the data trough each
layer and estimate the MI of the input mini-batch and I (X;X) and its low-
dimension representation / (Z;Z). For a practical implementation, I (X;X) can
be trimmed to two decimals and, thus, check for the condition 1(Z; Z) ~ I(X;X)
at the end of the epoch. Then, the interval is narrowed to the lower half if
the condition held. Otherwise, it is narrowed to the upper half. Finally, the
algorithm repeatedly checks the condition until the interval is empty to find D.
Since noise is present and metrics are computed at mini-batch level, to smooth
information quantities and speed up computation it is enough estimated the
MI and entropy only every 10 mini-batches and average it accordingly at the
end of each epoch. Note that both procedures are omitted in Algorithm [4] to
avoid clutter.

Algorithm runs in logarithmic time in the worst case making
O(log(len(sr))) runs of Algorithm [4] where sr is a vector containing the
effective searching range of K. This is much more efficient than trial and error
methods as there is no need to fully train the AE and information quantities
converge in few epochs at the early stages of training. In practice, PCA can be
applied to the training data to trim the searching range. The upper bound of
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the searching range can be set to the number of dimensions that explain the
90% of the variance, as it is known that non linear AE have higher modeling
capabilities than PCA. Furthermore, evenly spaced values within an interval of
2 can be used, as we found no critical differences on the prediction accuracy
using consecutive dimensions. To compensate for that, Algorithm [3|must return
D+ 1.

Algorithm 3: Estimation of the sufficient bottleneck layer dimension.

input :Traffic data set X, dimension searching range sr, batch size N
output : Sufficient dimension D
L<+0
R « getLength(sr)
while L < R do
D <« ceil((L+ R)/2))
C + Algorithnf4 X, sr[D], N)
if C then

R+<D-1

L<+~D+1
end

end

Algorithm 4: Monitoring H(Z) during training of the AE.
input :Data X, bottleneck dimension K, batch size N
output : Condition C
Xtrain» Xyatid +— X
nbatches < getLength(Xyain) /N
autoencoder <— createAutoEncoder(K)
while epoch do

Xirain < randomShuffle(Xi,ain)

for batch < 0 to nbatches do

Xy + getBatch(Xirain)

Xm Z;, < autoencoder.train(X;)

f(Xb; Xb), f(Zb; Zb) < getMetrics(Xb, Zb, Xb)
batch < batch + 1

end

Ix, Tz « getAverage(I(Xy; Xy), I(Zy; Zy), nbatches)

if TZ 2 TX then
‘ return C « 1

end

if earlyStopping(Ix, 1z, Xirain, Xvatia) then
‘ return C < 0

end

epoch < epoch + 1

end
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4.3.4 Mutual Information Estimation

The estimation of mutual information or entropy in neural networks is not trivial.
Since the algorithm is based on I(X;Y) and I(Y;X) variations during training,
these quantities need to be estimated from the activations of DNN layers. This is
at least theoretically possible if the quantities are finite, thus, one can reasonably
assume that 1(X;Y) ~ I(X;Y) if the estimator is adequately parameterized.
To yield a finite mutual information, some noise in the mapping is required. A
common choice is to analyze a new variable with additive noise, which allows
the overall information to remain finite. This noise assumption is not present
in the actual neural networks either during training or testing, and is made
solely for the purpose of calculating the mutual information. Another strategy
is to partition the continuous variable into a discrete variable, for instance
by binning the values. This allows use of the discrete entropy, which remains
finite. There exist several mutual information estimators in literature such as
binning estimators [ST17], kernel density estimation (KDE) with the addition of
Gaussian noise , variational and neural network-based estimators
with and without noise addition, kernel-based estimators and the well-
known estimator based on k-nearest neighbor distances . Additionally,
note that the analytical evaluation of in DNN traffic forecasting is not
possible, because requires precise PDF estimation of X and Y in high-
dimensional space. Therefore, one is forced to efficiently estimate its value from
a limited number of samples, that is, the mini-batches of data used at each
training iteration. For that purpose, we use the matrix-based Rényi’s mutual
information estimator derived by Giraldo et al. .

Given the batch X = {x;}};, an i.i.d. sample of N realizations of X. The
Gram matrix K is obtained from evaluating a real valued positive definite kernel
£ :R xR~ R on all pairs of data points such that (K);; = x(x;,%;). Then, a
matrix-based analogue to Rényi’s a-entropy can be defined for a matrix
A € RN*N that holds tr(A) =1 as

1 N
a log [Zl )\i(A)a] , (4.10)

where \;(A) denotes the i*" eigenvalue of A with
1 Kij
N VKiKj;

Sa (A) =

Aij =

the normalized version of K. Furthermore, a matrix-based estimation of the
joint entropy can be defined as

ﬁa(X):Sa(A,B):Sa< AOB )

tr (A © B) (4.11)

where ® denotes the Hadamard product and the matrix B is obtained
analogously to A, but given Y = {y;}¥ | samples of the targeted layer from the
same realizations of X. Notice that matrices A and B simplifies the estimation
of the joint distribution to pairwise element multiplication, making it suitable
for the efficiency of the proposed algorithm. Finally, the matrix-based Rényi’s
mutual information is defined as

~

[2(A;B) = Sa(A) + S4(B) — So(A,B), (4.12)
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Figure 4.3: AE-based traffic forecast model. Given the traffic sample x;, the
AE with a funnel architecture (left) seeks to map it into a lower-dimensional
space prior to running the supervised learning algorithm. Once the AE is
trained, all traffic samples are compressed by the encoder and used to train a
regression network (right) to forecast the future state of the road traffic network.
Weights and biases are represented by arrows. Sigmoid activation functions
o(a) = H% are represented with gray filled rectangles between layers. Data
space dimensions are shown below each layer.

in analogy with Shannon’s definition (4.2)).

Finally, since the information estimates depend on the choice of the estimator,
the performance of the algorithm would be subject to them and the IPs will
only be interpreted when the details of the estimate are taken into account (the
IPs obtained by different estimators are not directly comparable).

4.4 Experimentation

In this section, real-world traffic data is used to validate the theoretical
information plane behavior, the mutual estimation approach and the algorithm
proposed. The exact same PeMS and UKM4 data sets described in
of were used, jointly to the well-known MNIST data set.

4.41 Evaluation Model

Figure[:3]shows the traffic forecast model under consideration, which is based on
the autoencoder. Several AE with different K values were trained to reconstruct
its normalized input by minimizing the MSE. Once trained, the compressed
data Zg given by the encoder part was used as the training data set for the
subsequent forecasting network. The forecasting network was set to estimate 1
hour ahead of traffic speed of the whole network (s = 31 for PeMS and s = 19
for UKM4) using the last three hours of data (¢ = 36 for PeMS and ¢ = 18 for
UKM4), Figure Note that for the supervised training part: z; = x; € Rt**
when raw data is used and z; € RX when the compressed data from the AE is
used. Two dropout layers were added after the first two hidden layers with a
drop rate of 0.5 to avoid over-fitting, not shown in Figure [£.3] The reader is

referred to [Boq+21b| for more precise details of the training.
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Figure 4.4: Estimated information planes of the encoder. Input and output
MI were normalized to I(X;X). The plots show different behavior when the
bottleneck layer size is (a) small and (b) large.

4.4.2 Information Plane Validation

In this section, the theoretical DPI and information plane are discussed and
compared to the experimental results. Figure [I.4] shows the evolution of the
normalized information quantities in the encoder computed at each network
training update (the decoder showed similar behavior, not shown to avoid
clutter). The AE was trained to reconstruct the traffic samples of PeMS data
set. All metrics were computed at each training iteration and were averaged
with a moving average of window size 20 to smooth the results and compensate
for noise in the measurements. The information quantities converged before
epoch 20, while the MSE converged at around epoch 300. This difference is
interesting because conclusions can be drawn without having to finish the AE
training, making the proposed algorithm more efficient. The training procedure
in Figure [£4] begins by first maximizing the amounts of information in the
encoder layers rather than in the decoder. All quantities are maximized as
the AE trains on more epochs. The IP shows that all metrics converge to
the line = y, where the optimal solution resides when MSE is minimized
because X = X. As expected, the IP shows a different behavior for a small
and large value of K. For a small value of K = 3, Figure [£.4] shows that the
bottleneck layer restricts the amount of information that flows through the
network. The input and output MI are limited to approximate A3 = 0.7 I(X; X)
at epoch 20 until the end of training, which was stopped by an earlystopping
policy monitoring only the MSE metric. Similarly, the MI of symmetric layers
increase to converge to I(X; X) for a large value of K = 253, Figure On
the contrary, the entropy of the bottleneck layer data is limited to A3 for a
small value of K, validating that the AE tries to maximize H(Z) to achieve a
good reconstruction.

Interestingly, some DPIs are violated. The reader may visually compare
Figure [£4] to the theoretical IP sketch of Figure [£.2] to note that the output MI
when K = 3 of the hidden layer 1 and 2 of the encoder are greater than the
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Figure 4.5: Estimated symmetric MI normalized to I(X;X). The plots show
different behavior when the bottleneck layer size is (a) small and (b) large.

output MI of the bottleneck layer. Specifically, Figure [I.4}a shows that:
I(Y§:X) > I(Y5;X) > I(Z; X) = As,

against the theoretical analysis that predicted that all layers have the same
output MI at every iteration. There are two main reasons this can happen.
Either the theory behind the data processing inequalities is wrong, which is not
the case, or the information estimate is wrong;:

Number of mini-batch samples: Like with all estimators, more samples can
improve the results, but the memory constraints did not allow to use more
than 256 samples at a time. No significant differences were found between
using a batch size N of 100 or 256.

Rényi’s order: The choice of the order o in is associated with the task
goal. If the application requires emphasis on tails of the distribution
(rare events) or multiple modalities, « should be less than 2 and
possibly approach to 1 from above. If the goal is to characterize modal
behavior, o should be greater than 2. Finally, & = 2 provides neutral
weighting . a = 1.01 would approximate Shannon’s entropy,
satisfying the data processing inequality. This is not clear for Renyi’s
entropies of order different from 1, as the concept of mutual information
is not unique anymore. The Renyi’s divergence of arbitrary order satisfies
a data processing inequality, but it is not clear how that carries over to
the definition of mutual information [VH14]. Despite that, no differences
were found in the results for o = 2.

Kernel choice: We used the already normalized radial basis function (RBF)
kernel
202

also known as Gaussian kernel. The bandwidth o of the kernel is a free
parameter that needs to be defined because it strongly influences the

2
ka(Xi,Xj;0) = exp <—”XZXJ”2) , (4.13)
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estimate obtained. The following properties hold for the Gaussian kernel:
lim S, (A) =log(N),
o—0
lim 7.,(A;B) = log(N)
lim S,(A) =0,

o—00

lim fa(A;B) =0.

T — 00
They imply that the value of o controls the operating point of the estimator
relative to the bounds because a value too large or too small saturates
the estimated information quantities. This is not a critical problem for
the proposed algorithm unless [(Z;Z k) saturates to log(N) for K < D,
thus this saturation has to be avoided to have discriminative estimates.

Kernel width: We followed Silverman’s rule of thumb for Gaussian density
estimation as & = h N~V/(#+d) where N is the sample size, d is the
number of dimensions of the data sample and we defined h as the mean of
the empirical standard deviations of each dimension of the data. Contrary
to a constant h, calculating h as said adapts the width of the kernel to
the different layers in different iterations, since in neural networks the
layers change during training. However, recently was noted that higher
dimensions decrease the effective kernel width on average, increasing the
estimated MI value . This explains why DPIs are violated
only for the layers with higher number of dimensions in Figure [{.4}
a. To see this, assume for a moment that X has zero mean and unit
variance dimension-wise and x; and x5 are two i.i.d. samples. Then,
E [||x1 — x2||] = 2d and, therefore, is proportional to the number
of dimensions, implying that neural layers with more units will tend to
show an overestimated MI.

4.4.3 Algorithm Validation

In this section, the entropy of the compressed representations is validated as a
KPI of the forecasting network and results are discussed.

Evaluation Metrics

The RMSE of the forecasting network trained with raw data, RMSEy,, is used
as the benchmark. The RMSE;,¢crease is defined as the increment with respect to
RMSE,,,, that the RMSE of the estimation suffers when the network is trained
using compressed data, that is,
RMSE — RMSE,
RMSELm
The data compression ratio (DC) is defined as the ratio of reduction that the
uncompressed data suffers while using a concrete bottleneck dimension K,
(txs)—K
txs

RMSEincrease =

DC =

Both metrics allow to compare more efficiently the obtained results against
different data sets with different number of road sensors available.
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Figure 4.6: RMSE increase of traffic forecast vs. the data compression ratio,
i.e, the amount of compressed data obtained using the encoder with different
values of the bottleneck layer size K. The sufficient dimension D coinciding in
the elbow region is efficiently obtained applying the algorithm proposed.

Results

Several autoencoders were trained varying down the size of the bottleneck
layer from K = dim(X)/4 to K = 3 with step-sizes of 10. Note that the AE
architecture considered in Figure has a funnel architecture. The whole
process took 2 days to compute for each of the data sets. The code was written
in Python using the Tensorflow library, which was executed in a Ubuntu server
mounting an Intel Xeon W-2123 and three NVIDIA GeForce RTX 2080 Ti. Input
dimensions were 1116 and 684 for PeMS and UKM4 data sets, respectively.
Figure shows the accuracy of the forecast for the aforementioned sizes
of bottleneck layer. One can clearly see that when the data compression
is increased, that is, K is decreased, the forecast performance decreases. In
Figure [£:6] the naive forecast consisted on setting the last speed values measured
as the estimation. The results of RMSE,, for PeMS and UKM4 data were
7.81 km/h and 11.02 kmm/h, respectively. The adequate dimensions given by
our algorithm were D = 29 and D = 15, estimated in 64 and 11 minutes for
PeMS and UKM4, respectively. The little time needed to find D is clearly an
advantage over current trial-and-error methods. Because the first phase of the
training is dedicated to bring I(X;X) closer as possible to H(X), one can check
the condition in the first stages of the training without waiting for the AE to be
fully trained, that is, the MSE to converge, making this criterion more efficient
in practice. Overall, results showed that the entropy of Z always increased if
the bottleneck layer dimension was increased, with the upper bound being the
entropy of the input or the MI between the input and output when the AE is
well-trained. Furthermore, the performance of the subsequent traffic forecast
suffered when the entropy of codes was lower than I(X;X) or H(X) because of
the reduction of information. For MNIST, D = 19 was estimated in 6 minutes
and similar results were found on the classification accuracy metric. This results
validate our assumptions, showing that the entropy of codes is a KPI of the
forecasting system. As it becomes evident from Figure [£.6] the RMSE exhibited
a clear elbow region pattern. The adequate dimensions coincided in the elbow
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region below the point where the RMSE of the forecast changes its behavior.
For K > D, that is, higher data compression ratios, the forecast error showed a
quasi-linear behavior with almost constant slope. This explains why AE road
traffic forecasting literature choose K arbitrarily, as long as K is not very small,
achieving good forecasting performance.

For both traffic data sets, D show a similar RMSEj,crease around 5% despite
compressing the input data more than 95%. The data compression ratios
achieved depend on the complexity of the road traffic network and data. The
5% degradation on performance can be explained because either the information
estimates were trimmed to two decimals or because information estimates are
overestimate proportionally to the layer size K, as discussed in
To compensate for that, Tapia et. al recently proposed to normalize X
dimension-wise using the standard dimension of each dimension and compute
the Gaussian kernel width as 6 = v v/d N~/ where 4 > 0 is an empirically
determined constant.
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CHAPTER 5

Main Results of the Dissertation

5.1 Conclusions

of this thesis has introduced three high-level objectives to systemati-
cally identify needs, develop and analyze solutions to improve the performance
of ITS. The material exposed throughout chapters [2] to [] covers the objectives
stated in and allows to safely state that the objectives of the thesis
have been achieved. The work presented is supported by two journal publica-
tions annexed to the thesis and 4 conference papers, whose relevance is analyzed
in [Chapter 1] More specifically, the contributions of this thesis against each of
the objectives can be summarized as follows.

Contributions of Objective I:

“Develop an IEEE 802.11p V2I beaconing protocol to support RSU
mission-critical applications that require low position error with high
reliability in road intersections.”

has introduced an adaptive beaconing IEEE 802.11p communication
protocol for intersection assistance systems. The work in this chapter is covered
by papers [Boq+17] and [Boq+18b] (Appendix A)). With respect to the state-of-
the-art, the analysis performed in the intersection area found that standardized
beacon protocols were not capable of sustaining envisaged safety applications
running on IEEE 802.11p roadside units. PHY and MAC parameter adaptation
criteria were optimized for ITS applications running in intersection areas to
provide low position error with higher reliability than the protocols analyzed.
The intersection assistance protocol designed in compliance with the standards
improved the data acquisition layer of ITS: The introduced novelties finally
allow to achieve vehicle tracking accuracies that safety applications can rely on.

Contributions of Objective II:

“Develop a unique model for ITS to extract knowledge from traffic
data to enhance traffic forecast, missing value imputation, model
and data selection and anomaly detection.”
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has introduced a unified model for big data analytics in ITS. The
work in this chapter is covered by papers [Boq+19| and [Boq+20] (Appendix B).
The models previously proposed in the literature aimed to solve only one of
the future challenges of ITS traffic forecasting. As a novelty, we proposed
a generative deep learning model based on the variational autoencoder that
can be used in an unsupervised manner to solve multiple challenges. An I'TS
traffic modeler can implement the model to efficiently compress traffic data and
forecast, impute missing values, select the best data and models for a specific
problem and detect anomalous traffic data at the same time, without the need
for additional knowledge nor labeled data. This provides a way to exploit the
data constantly collected by ITS, making it valuable for safety applications and
decision making.

Contributions of Objective Ill:

“Develop an efficient methodology that automatically defines the
minimum-expression architecture of ITS solution of Objective 2 that
can provide maximum data compression without diminishing the
accuracy of the subsequent forecasting system. ”

[Chapter 4] has introduced an efficient algorithm to derive a sufficient architecture
for autoencoder solutions of ITS. The work in this chapter is covered by paper
. The introduced novelties allow practitioners to automatically
select the minimum expression architecture that provides maximal compressed
representations that inform about the original traffic data. In this way, the
performance of the subsequent traffic forecasting system is not adversely affected,
but benefits from data being represented with fewer dimensions, which is vitally
important in the age of big data. Regarding the state-of-the-art, the basis of the
algorithm are taken from theoretical concepts of Information Theory applied
to neural networks, allowing to highly improve the current methods that are
based on trial and error.

5.2 Future Lines of Research

This thesis has covered soundly the objectives listed in[Chapter 1} Observing the
current trends in ITS, the work presented in each chapter could be immediately
expanded as listed below (ordered by complexity).

o Validate the protocol in different scenarios where I'TS are deployed.

o Explore the concept of adapt adaptation, that is, decide when and how
to switch adaptations to comply with different kind of applications
or scenarios.

o Further improve the protocol to achieve the requirements of critical
safety applications.
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o Validate results in more complex traffic road networks like urban
scenarios.

¢ Extend the solution with an online and robust outlier detection
mechanism.

e Explore transfer knowledge from an already trained model towards
a new one operating at a different traffic road network.

Chapter 4

¢ Validate results with other non-funnel autoencoder architectures.
e Explore the algorithm sensitivity to the MI estimator.

e Provide a bandwidth estimator for the RBF kernel that does not over
estimate the MI proportionally to the dimensionality of the layer.

o Theoretically proof that H(Z) is a KPT of the subsequent forecasting
network. Proof that the same network will have similar performance
if it is trained with X or with Zp, D < dim(X) and I(Zp;Zp) >
I(X; X).
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APPENDIX A

Adaptive Beaconing for
RSU-based Intersection
Assistance Systems: Protocols
Analysis and Enhancement

Due to a signed copyright transfer agreement with the journal, only the
bibliographic reference is attached below.

Reference: Guillem Boquet, Ivan Pisa, Jose Lopez Vicario, Antoni Morell,
Javier Serrano, Adaptive beaconing for RSU-based intersection assistance
systems: Protocols analysis and enhancement, Vehicular Communications,
Volume 14, 2018, Pages 1-14, ISSN 2214-2096, |https://doi.org/10.1016/j|
vehcom.2018.08.003.

Abstract: Current envisaged cooperative vehicular applications require mod-
erate to severe requirements of reliability and latency according to their
purpose. Dedicated Short Range Communications (DSRC)-based appli-
cations mainly rely on the periodic exchange of information that under
certain circumstances may cause congestion problems on the communica-
tion channel obtaining unreliable and outdated information at application
level. Adaptive beaconing protocols adapt transmission parameters to
different criteria such as the channel load and application requirements
to improve the overall performance of the vehicle network. Nevertheless,
it has not been determined yet if the information disseminated by these
protocols is suitable enough for the implementation of specific applications,
e.g., Road Side Unit (RSU)-based Intersection Assistance Systems (TAS)
like Intersection Collision Risk Warning (ICRW). In this context, we first
analyze the network behavior in a realistic simulated intersection area
where probability of packet reception becomes difficult to predict and mod-
els become highly complex. In that scenario, we present a critical analysis
on the performance of current EU and US decentralized congestion control
protocols while their performance is evaluated with respect to tracking ac-
curacies required by Intelligent Transportation System (ITS) applications.
Results obtained lead us to conclude that adaptation criteria of beaconing
protocols is not able to support different safety applications at the same
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time, that is, there is a tradeoff in the selection of such criteria between
enhancing applications supporting vehicles or infrastructure. In that sense,
we discuss and provide novel adaptation criteria (Intersection Assistance
State Machine, IASM) to improve the performance of beaconing protocols
towards assisting safety RSU-based TAS. Finally, we propose and validate
through simulations a novel beaconing protocol (Intersection Assistance
Protocol, IAP) that improves performance over studied protocols.



APPENDIX B

A Variational Autoencoder
Solution for Road Traffic
Forecasting Systems: Missing
Data Imputation, Dimension
Reduction, Model Selection and
Anomaly Detection

Due to a signed copyright transfer agreement with the journal, only the
bibliographic reference is attached below.

Reference: Guillem Boquet, Antoni Morell, Javier Serrano, Jose Lopez
Vicario, A variational autoencoder solution for road traffic forecasting
systems: Missing data imputation, dimension reduction, model selection
and anomaly detection, Transportation Research Part C: Emerging
Technologies, Volume 115, 2020, 102622, ISSN 0968-090X, https://doi|
org/10.1016/).trc.2020.102622.

Abstract: Efforts devoted to mitigate the effects of road traffic congestion have
been conducted since 1970s. Nowadays, there is a need for prominent
solutions capable of mining information from messy and multidimensional
road traffic data sets with few modeling constraints. In that sense, we
propose a unique and versatile model to address different major challenges
of traffic forecasting in an unsupervised manner. We formulate the road
traffic forecasting problem as a latent variable model, assuming that
traffic data is not generated randomly but from a latent space with fewer
dimensions containing the underlying characteristics of traffic. We solve
the problem by proposing a variational autoencoder (VAE) model to
learn how traffic data are generated and inferred, while validating it
against three different real-world traffic data sets. Under this framework,
we propose an online unsupervised imputation method for unobserved
traffic data with missing values. Additionally, taking advantage of the
low dimension latent space learned, we compress the traffic data before
applying a prediction model obtaining improvements in the forecasting
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accuracy. Finally, given that the model not only learns useful forecasting
features but also meaningful characteristics, we explore the latent space
as a tool for model and data selection and traffic anomaly detection from
the point of view of traffic modelers.
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