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Chapter 0

General Introduction

It has long been recognized that human actions are influenced by fairness consider-

ations with regard to the sharing of resulting cost and benefit. For example, more

than 2000 years ago, Confucius stressed that a governor should concern more about

the allocation of wealth than economic growth. Almost everyone agrees that fair-

ness is essential, but there are one thousand theories of fairness in one thousand

eyes. Furthermore, how to apply these theories to different economic environments

and how to address the associated incentive problems are also subject to discussion.

This thesis is an exploration of the above important yet challenging problems.

Chapter 1 is based on a joint work with David Pérez-Castrillo. We introduce the

value-free (v-f ) reductions, which are operators that map a coalitional game played

by a set of players to another “similar” game played by a subset of those players.

We propose properties of v-f reductions, some of which have an appeal of fairness,

such as permanent null player, null player out, and 1-addition invariance. Moreover,

we characterize several v-f reductions (among which the value-free version of the

reduced games proposed by Hart and Mas-Colell, 1989, and Oishi et al., 2016).

Unlike reduced games, introduced to characterize values in terms of consistency, v-f

reductions are not defined in reference to values. However, a v-f reduction induces

a value. To put it into perspective, we may see v-f reductions as schemes leading to

fair allocations. In particular, we characterize v-f reductions that induce the Shapley

value, the stand-alone value, and the Banzhaf value.

Our new approach is not only interesting for its own, but also has the potential

for making contributions to other existing fields. First, our approach may contribute

to enrich to literature of characterizing values in terms of consistency. We find new

reduced games that are useful to characterize the Banzhaf and the stand-alone values

in terms of consistency. Second, our approach may be connected to implementation

theory. We consider the v-f reduction of the Pérez-Castrillo and Wettstein’s (2001)
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bidding mechanism. Dualizing this v-f reduction prefigures a new mechanism that

implements the Shapley value, which serves as a starting point of Chapter 2.

In contrast to Chapter 1, which relies on the axiomatic approach, Chapter 2

pursues the strategic approach to implement solution concepts for transferable util-

ity games (TU games). We introduce two mechanisms that implement the Shapley

value and the equal surplus value, respectively. The main feature of both mecha-

nisms is that multiple proposers put forth allocation plans simultaneously, which is

reminiscent of the Nash demand game (Nash, 1953). The implementation of a plan

requires both consensus among proposers and acceptance of respondents. In case of

a disagreement among proposers, we resort to the Pérez-Castrillo and Wettstein’s

bidding procedure, which facilitates a buyout of one proposer in each round. The

difference between the two values now comes down to the difference in the protocols

of two mechanisms. In our case, we find that the difference between the two values

defined on 0-monotonic games lies in how proposers negotiate with respondents.

This finding provides another example demonstrating that the strategic approach is

complementary to the axiomatic approach in studying allocation rules.

Chapters 1 and 2 focus on TU games, which are highly idealized, and rely on

the often unrealistic assumption that every participant’s utility function is linear

with respect to a numeraire. Chapter 3, which is based on a joint work with David

Pérez-Castrillo, turns to pure exchange economies. We define the proportional or-

dinal Shapley (the POSh) solution, an ordinal allocation rule for pure exchange

economies in the spirit of the Shapley value. Our construction is inspired by Hart

and Mas-Colell’s (1989) classic characterization of the Shapley value with the aid

of a potential function. We establish the existence and uniqueness of the POSh

and show that it is essentially single-valued for a fairly general class of economies.

It satisfies individual rationality, anonymity, and counterpart properties of the null-

player and null-player out properties in TU games. It is worth mentioning that all

these properties, except for individual rationality, are satisfied by the Shapley value

defined on the unrestricted domain. Individual rationality is satisfied by the Shapley

value for 0-monotonic games. Moreover, the POSh is immune to agents’ manipu-

lation of their initial endowments: It is not manipulable via disposal of one’s own

endowment and does not suffer from the transfer paradox. Finally, we construct a

bidding mechanism à la Pérez-Castrillo and Wettstein (2006) that implements the

POSh in every subgame perfect Nash equilibrium for economies where agents have

homothetic preferences and positive endowments.

2



Chapter 1

Value-Free Reductions

1.1 Introduction

We consider environments where a set of participants can collaborate to obtain

and share surplus, that is, we study coalitional games with transferable utility (TU

games). In such environments, we look at the consequences of removing some players

from the game. In the new game faced by the remaining participants, the worth of

each coalition of players is a function of the strategic possibilities of all the players

in the initial game.

This problem is relevant in many economic contexts. For instance, when a group

of shareholders leave a company, the remaining shareholders reorganize the owner-

ship among themselves. The process through which the outstanding shareholders

acquire the shares of the leaving shareholders will determine the strategic environ-

ment where they will interact from then on, that is, the worth of each possible

coalition in the new environment.

Thus, in this paper, we look at TU games from a new perspective. We study

“operators” that map a TU game played by a set N of players to another, similar

but “reduced” game, played by a subset of N . We propose properties that such

functions may satisfy, and we use these properties to characterize several operators.

Our research question is different but related to the search for consistency properties

of values for TU games.1 Before continuing with the contribution of our paper, it is

worthwhile to discuss the relationship between this line of research and our approach.

To that aim, we first briefly describe the consistency requirement. Consider a value

for TU games, that is, a function that associates a payoff to every player in every

game. Starting from a TU game with a set of players N , we can define a reduced

game among the players of any N ′ ( N . The worth of a coalition in the reduced

1 In this respect, the closest papers to ours are Hart and Mas-Colell (1989) and Oishi et al.
(2016).
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game takes into account the payoffs that the players in the coalition give, according

to the value, to the players who are removed, that is, to the players in N \N ′. Hence,

the characteristic function of the reduced game depends on the original characteristic

function and the solution in question. The value is consistent if a player in N ′ obtains

the same payoff in the initial game and in the reduced game.

There are several possibilities to define a reduced game depending on how the

removed players are compensated. In particular, Hart and Mas-Colell (1989) (HM )

and Oishi et al. (2016) (ONHF ) define two different reduced games. They use

them to characterize the Shapley value as the only value that is standard for two-

person games (that is, it divides the surplus equally between the two players) and

consistent.

In contrast to the previous literature on consistency, we study operators that

reduce games without reference to any value. We refer to them as value-free reduc-

tions (v-f reductions, for short). For any TU game with a set of players N and any

N ′ ⊆ N , a v-f reduction generates a game played by N ′. A simple example is the

subgame v-f reduction, which assigns each coalition in the reduced game the same

worth as in the initial game.

Our interest lies in the analysis of the reduction processes, that is, in the v-

f reductions. We propose properties that one may ask any such v-f reduction to

satisfy. In this paper, we study v-f reductions that satisfy four properties. First,

we request that a v-f reduction is “well defined,” in the sense that how players in

N \N ′ are removed to arrive at a game with a set of players N ′ should not matter.

The game played by the set N ′ should be the same if the players in N \ N ′ have

been removed one by one, all simultaneously, or in any other sequence. We call

this property path independence. The second property is the additivity of the v-f

reduction. Reducing two games through an additive v-f reduction and then summing

the corresponding reduced games and directly reducing the sum of the games gives

the same result.

The other two properties are related to the presence of null players in the initial

game. The contribution of a null player to any coalition is zero. Hence, it seems

reasonable that they play no role in a v-f reduction. We require that if a player is a

null player in the initial game, he should still be a null player after a v-f reduction.

We call this property the permanent null player. Moreover, if a null player is removed

from the game, then the worth of the coalitions should not change, a property that

we call the null player out property.

Path independence, additivity, permanent null player, and null player out do not

suffice to identify a unique v-f reduction. But, by including alternative “invariance”
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properties, we characterize several v-f reductions. Each invariance property states

how changes in the worth of coalitions of the same size affect the reduction of the

game. First, we characterize the subgame v-f reduction using an axiom that requires

that an increase in the worth of the grand coalition should not affect the reduction

of a game, a property that we call grand-coalition invariance.

Second, we consider the four previous properties plus the invariance axiom that

states that the reduced game is immune to changes in the players’ strategic prospects

derived from an identical increase or decrease in all the stand-alone coalitions. The

axiom requires that if the worth of each stand-alone coalition, say, increases by

the same amount, then this change should not affect how the game is reduced.

Interestingly, these five axioms characterize a unique v-f reduction that corresponds

to the HM v-f reduction, that is, the value-free version of the reduction method

proposed by HM.

To continue our analysis of the properties of v-f reductions, we propose a duality

theory for them. We define the dual of a v-f reduction as the v-f reduction of the

dual of the game. We show that the ONHF v-f reduction (that is, the value-free

version of the ONHF reduction method) is dual to that of the HM v-f reduction.

We also show that our basic properties of path independence, additivity, permanent

null player, and null player out are all self-dual properties, in the sense that they

are satisfied by a v-f reduction if and only if they are satisfied by the dual of the

v-f reduction. We use the duality theory to characterize the ONHF v-f reduction

by using the invariance axiom that is dual of the one in the characterization of the

HM v-f reduction. According to this new axiom, the reduction of a game should be

immune to an identical increase or decrease in the worth of all the coalitions that

include all the players except one.

We note that, given a v-f reduction, then any (initial) game can unambiguously

be reduced to a game played by just one player, say player i ∈ N . We can interpret

the worth of coalition {i} (the only non-empty coalition) in this reduced game as

the benefit or cost to be distributed to this player in the initial game. Repeating

this process for every player in N allows us to define a value for the initial game.

Thus, a v-f reduction “induces” a value. We show that the subgame v-f reduction

induces the stand-alone value and, as one may expect, the HM and the ONHF v-f

reductions induce the Shapley value. Moreover, we can connect our approach to the

previous literature on consistency because any value induced by a path-independent

v-f reduction (such as the subgame, the HM, and the ONHF v-f reductions) is

consistent relative to that reduction.

We also link our approach to the theory of implementation. Indeed, we use the
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players’ payoffs obtained at the Pérez-Castrillo–Wettstein bidding mechanism (a

mechanism that implements the Shapley value, see Pérez-Castrillo and Wettstein,

2001) to propose another v-f reduction. We characterize the new v-f reduction by

an alternative invariance axiom and show that it also induces the Shapley value.

Moreover, we apply our duality theory again and characterize the dual of that v-f

reduction. The existence of this dual PW v-f reduction prefigures the existence

of a new PW -style bidding mechanism (see Chapter 2, for the analysis of such a

mechanism). Thus, the connection of our approach to the theory of implementation

–by constructing the v-f reduction of an extensive-form game and then finding its

dual– could help enrich the literature of the Nash program. It can suggest new

mechanisms that are “dual” of existing mechanisms.

Our four basic axioms can lead to characterizations of v-f reductions that induce

additive values other than the stand-alone and the Shapley values. We use them

as part of the characterization of a v-f reduction that induces the Banzhaf value

(Banzhaf, 1964).

Although we do not use them in our characterizations, we discuss the properties

of anonymity and linearity. Anonymity of a v-f reduction requires that a player’s

name does not matter in the reduction of the game. It has two implications: (a) the

worth of the coalitions in the reduced game does not depend on the names of the

players in the initial game but only on their contributions to coalitions, and (b) the

v-f reduction itself depends not on the names of the removed players but only on

their contributions. The notion of anonymity is unrelated to the other axioms. In

fact, our basic properties do not imply anonymity. However, all the v-f reductions

that we study satisfy anonymity of the process. They also satisfy linearity, which is

additivity plus homogeneity.

We have based some of our examples of v-f reductions on existing reduced games,

which were introduced to study the internal consistency of values. We also propose

the reverse process. That is, given a v-f reduction, we can find a reduced game

whose v-f version coincides with the v-f reduction. Through this process, we provide

a new characterization of the Banzhaf value as the only value consistent relative

to a new reduced game and standard for two-player games. We provide a similar

characterization for the stand-alone value.

In addition to Hart and Mas-Colell (1989) and Oishi et al. (2016), several authors

have used the consistency principle to characterize values for TU games.2 Among

others, Sobolev (1975) defines a distinct reduced game and axiomatize, together

with other axioms, the Shapley value. Noticeabley, Davis and Maschler (1965) de-

2 For introductions to the consistency principle in general, see Driessen (1991) and Thomson
(2011).
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fine a reduced game which turns out crucial in Peleg’s (1985, 1986) axiomatizations

of the core and the prekernel, and Sobolev’s (1975) axiomatization of the prenucle-

olus. Moulin (1985) defines a reduced game and axiomatizes three families of choice

methods in the framework of the “quasi-linear social choice problem.”3 Tadenuma

(1992) also employs this reduced game to provide another axiomatization of the

core.

The analysis of our paper may shed light on the discussion on the use of consis-

tency relative to a reduced game when comparing different solutions for cooperative

games. On that matter, Maschler (1990) advocates that the choice between two

solution concepts that can be characterized by the same set of basic properties plus

consistency relative to a reduced game (reduced games that are different for the

two concepts) boils down to the examination of the reduced games. There are two

strands of research related to this view. The first strand is pursued by Chang and Hu

(2007), who propose a criterion to “distinguish” two different solutions through two

different reduced games. The second strand includes Driessen and Radzik (2003),

Yanovskaya and Driessen (2002), and Yanovskaya (2004), which characterize re-

duced games directly. Our approach is closer to the second strand since we adopt a

pure axiomatic approach.

The remainder of the paper is organized as follows. In Section 1.2, we recall basic

concepts, including the definition of reduced games. In Section 1.3, we introduce our

central concept of a value-free reduction, together with a list of properties that a v-f

reduction may satisfy. In Section 1.4, we develop a duality theory for v-f reductions.

In Section 1.5, we provide an axiomatic characterization of several v-f reductions,

we discuss the properties of anonymity and linearity, and we make a comment on

non-additive v-f reductions. In Section 1.6, we use our approach to characterize

the Banzhaf and the stand-alone values through consistency. Logical independence

of each property in the characterization of the HM v-f reduction is established in

Section 1.7. In Section 1.8, we conclude the paper. All proofs are collected in the

Appendix.

1.2 TU games, values, and reduced games

Let an infinite set U represent the universe of the players. We restrict attention to

games where the set of players constitutes a finite subset of U . We denote Pfin(U)

the set of all finite subsets of U .

3 See also Chang and Hu (2007). Thomson (2011) refers to this type as “complement-reduced
games” since the complement of the players that stay in the reduced game is also involved in the
reduced game.
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A coalitional game with transferable utility (abbreviated as a TU game)

is a vector (N, v) where N ∈ Pfin(U) is the set of players and v : 2N → R satisfies

v(∅) = 0. For S ⊆ N , v(S) represents the worth of the coalition S in the game v.

The class of all TU games with N as the set of players is denoted by GN . Thus, the

set of all finite TU games is
⋃
N∈Pfin(U) GN .

A subgame of (N, v) ∈ GN is a game (N ′, v |N ′) ∈ GN
′

for some N ′ ⊆ N , where

v|N ′ (S) = v(S) for all S ⊆ N ′.

For a fixed set of players N , the set of all TU games GN may be viewed as a

vector space. The zero vector of GN corresponds to the zero game (N,0) ∈ GN .

The worth of the coalition S ⊆ N in (N,0) is 0(S) ≡ 0. One particular subset of

games that we will use as a basis for GN is the set of unanimity games, which are

denoted by (N, uT ) ∈ GN , for T ∈ 2N \ {∅}. The worth of the coalition S ⊆ N in

(N, uT ) is:

uT (S) ≡

 1 if S ⊇ T ;

0 otherwise.

Among the unanimity games, (N, uN) ∈ GN depicts a particularly simple sit-

uation: one unit of transferable utility is generated only when the grand coalition

forms.

Cooperative game theory accords particular attention to the search of appealing

solution concepts and their characterizations through desirable properties from the

mathematics and/or economics points of view. Single-valued solutions for TU games

are called values. A value allocates a payoff to each player in a game, for every

possible game. Thus, a value ϕ prescribes, for each N ∈ Pfin(U), each TU game

(N, v) ∈ GN , and each i ∈ N , a payoff ϕi(N, v) ∈ R.

The most prominent value is the Shapley value (Shapley, 1953), which is de-

noted by Sh henceforth:4

Shi(N, v) =
∑

T⊆N\{i}

t!(n− t− 1)!

n!
Div(T ),

for any (N, v) ∈ GN and for any i ∈ N , where Div(T ) ≡ v(T ∪ {i})− v(T ) denotes

the marginal contribution of player i to the coalition T ⊆ N \ {i}.
Another solution concept which we will discuss later is the Banzhaf value (see

4 We follow the convention by using uppercase letters to denote sets of players and letting the
corresponding lowercase letters represent their cardinalities. For instance, the cardinality of N ,
N ′, and T are n, n′, and t.
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Banzhaf, 1964, and Owen, 1975) which we henceforth denote by Ban:

Bani(N, v) =
∑

T⊆N\{i}

1

2n−1
Div(T ).

We notice that, in contrast to the Shapley value, the Banzhaf value is not efficient

in the sense that the sum of the outcomes obtained by the players need not be v(N).

Two-player TU games constitute the most simple subclass of TU games. Unsur-

prisingly, several solution concepts for TU games prescribe the same payoff when

restricted to this simple subclass. According to this prescription, in the game

({i, j}, v) ∈ G{i,j} each player k ∈ {i, j} is assigned, on top of his stand-alone

value, half of the surplus generated from the collaboration:

ϕk({i, j}, v) = v({k}) +
1

2
[v({i, j})− v({i})− v({j})]. (1.2.1)

This is, in particular, the prescription of the Shapley value and the Banzhaf value

for two-player games. Hence, it is commonly said that a value ϕ is standard for

two-player games if for each game ({i, j}, v) ∈ G{i,j}, ϕ satisfies equation (1.2.1).

For TU games with more than two players, solution concepts may be pinned

down by imposing consistency relative to some reduced games. In the literature,

reduced games are always associated with a solution concept as follows. Given a

value ϕ, a reduction Ψϕ is a function that associates each TU game (N, v) ∈ GN

with a reduced game (N ′,Ψϕ
NN ′(v)) ∈ GN ′ for any two finite sets of players N,N ′

such that N ′ ( N .5 That is, a reduction applied on a game with a set of players N

specifies how to “reduce” the game if it were to be played only by a subset N ′ of

N . Notice that the value ϕ appears in this function Ψϕ
NN ′ as a parameter, so that

different values lead to different ways of “reducing” a game in GN to a game in GN ′ .
Now we can formulate the definition of consistency of a value relative to some

reduction:

Definition 1. The value ϕ is consistent relative to the reduction Ψϕ if for all

N,N ′ ∈ Pfin(U) such that N ′ ( N , all (N, v) ∈ GN , and all i ∈ N ′,

ϕi
(
N ′,Ψϕ

NN ′(v)
)

= ϕi(N, v).

Consistency of ϕ means that the prescribed payoff for any player i ∈ N ′ in the

initial game (N, v) according to the value ϕ is the same as that in the reduced game

5 We call the operator Ψϕ a reduction, even though the previous literature does not address
such an operator abstractly. They propose the consistency property using reduced games, which
are the images of a concrete reduction.
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(N ′,Ψϕ
NN ′(v)) according to this value.

We close this section with two examples of reductions: the HM reduction (see

Hart and Mas-Colell, 1989) and the ONHF reduction (see Oishi et al., 2016).

Definition 2. Given a value ϕ, the HM reduction ΨHMϕ
is defined by:

ΨHM
NN ′

ϕ
(v)(S) ≡ v(S ∪ (N \N ′))−

∑
i∈N\N ′

ϕi(S ∪ (N \N ′), v |S∪(N\N ′)),

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ( N and all (N, v) ∈ GN .

The interpretation of the HM reduction is as follows. Given a value ϕ, consider

a game (N, v) ∈ GN that is reduced to be played by players in N ′ ( N . If a

coalition S ⊆ N ′ is formed, then the players in S collaborate with all removed

players in N \ N ′, which yields a worth v(S ∪ (N \ N ′)). However, each removed

player i ∈ N \N ′ is entitled to ϕi(S ∪ (N \N ′), v |S∪(N\N ′)), his “fair” share of the

worth of the coalition S∪(N \N ′). Then, the coalition S has a claim to the residual,

which defines the worth of coalition S in the HM reduced game.

Hart and Mas-Colell (1989) characterize the Shapley value as the unique value

that is consistent relative to the HM reduction ΨHMϕ
and that is standard for

two-player games.

Oishi et al. (2016) obtain a different characterization of the Shapley value

through a reduction à la Hart and Mas-Colell by exploiting the self-duality of the

Shapley value. To define the ONHF reduction, we first introduce the following no-

tation: given a TU game (N, v) ∈ GN and S ( N , we denote by (N \ S, vS) ∈ GN\S

the game defined by:

vS(T ) ≡ v(T ∪ S)− v(S), (1.2.2)

for all T ⊆ N \ S.

Definition 3. Given a value ϕ, the ONHF reduction ΨONHFϕ is defined by:

ΨONHF
NN ′

ϕ
(v)(S) ≡ v(S)−

∑
i∈N\N ′

ϕi(N, v) +
∑

i∈N\N ′
ϕi(N \ S, vS),

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ( N and all (N, v) ∈ GN .

In contrast to the HM reduction, the intuition of the ONHF reduced game (as

acknowledged by Oishi et al., 2016) is more involved. To determine the worth of

a coalition S ⊆ N ′ in an ONHF reduced game, we consider all the players in S

together. Forming the coalition S entitles the players in the coalition to offer their

joint collaboration to the rest of the players to play a new TU game (N \ S, vS) ∈

10



GN\S. As defined above, in this new game any coalition T ⊆ N \ S is formed with

the collaboration of S and T , which yields a worth v(T ∪ S). The coalition S is

entitled to two payments. First, it receives v(S) in forming this game. Second, it

makes a swap agreement with the removed players: the coalition S pays ϕi(N, v)

to each player i ∈ N \ N ′, which equals the amount i deserves in the initial game,

and it collects the sum of what these players receive in (N \ S, vS), which adds up

to
∑

i∈N\N ′ ϕi(N \ S, vS). The net payoff for S after the two payments corresponds

to its worth in the ONHF reduced game.

Oishi et al. (2016) show that the Shapley value is the only value that is consistent

relative to the ONHF reduction ΨONHFϕ and that is standard for two-player games.

1.3 Value-free reductions: Definition and axioms

The existing literature takes the values as the main object of study and considers the

reduced games associated with values to characterize particular values. By contrast,

our approach takes the reductions as the primitive concept, analyzes properties of

the reductions, characterizes some of them through the properties, and eventually

uses the reductions to derive values.

To develop our approach, we first formally introduce the concept of a value-free

reduction, that is, a reduction that does not make any reference to a value.

Definition 4. A value-free reduction (v-f reduction for short) Ψ is a function

that associates to each finite set of players N , each TU game (N, v) ∈ GN , and each

subset N ′ ⊆ N , a TU game (N ′,ΨNN ′(v)) ∈ GN ′.6

Because of the defining feature of v-f reductions, we must forsake the superscript

ϕ from a generic v-f reduction.

To illustrate the concept, we provide a first example of a v-f reduction. Example

1 defines Ψsub, which we call the subgame v-f reduction.7 According to this operator,

the value of any subset in the reduced game is the same as its value in the initial

game.8

Example 1. We define the subgame v-f reduction Ψsub by:

Ψsub
NN ′(v)(S) ≡ v |N ′ (S) = v(S),

6 We allow for the possibility that N ′ = N for convenience.
7 We refer to all the examples of value-free reductions as “v-f reductions” even though the use

of “v-f” is not always necessary.
8 Myerson (1980) uses the subgame operator to define his famous balanced contributions prop-

erty of the Shapley value.
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for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ( N and all (N, v) ∈ GN .

Any v-f reduction induces one-player v-f reduced games. That is, a game (N, v) ∈
GN can be reduced to n games ({i},ΨN{i}(v)), for i ∈ N . This procedure provides

the possibility of identifying the value of a player i in the game (N, v) as the worth of

the coalition {i} in the v-f reduced game consisting of this player only. We propose

the following definition of the value induced by a v-f reduction:

Definition 5. The value ϕΨ induced by a v-f reduction Ψ is, for all (N, v) ∈ GN

and all i ∈ N ,

ϕΨ
i (N, v) ≡ ΨN{i}(v)({i}).

For instance, the value induced by the subgame v-f reduction is the stand-alone

value:

ϕΨsub

i (N, v) = Ψsub
N{i}(v)({i}) = v({i}),

because the prescribed payoff of the value induced by the subgame v-f reduction for

all i ∈ N is v |{i} ({i}) = v({i}).
We now propose and explain some properties that v-f reductions may satisfy.

We see v-f reductions as a way to remove players from a game while keeping the

remaining players’ strategic prospect intact. Thus, we suggest properties that may

be coherent with this view.

We first introduce a minimum requirement of a well-behaved v-f reduction, the

path-independence property:

Axiom 1. A v-f reduction Ψ is path independent if for all N1, N2, N3 ∈ Pfin(U)

such that N3 ⊆ N2 ⊆ N1, then

ΨN2N3 ◦ΨN1N2 = ΨN1N3 .
9

Path independence means that, for any game (N, v) ∈ GN , the way players in

N \N ′ are removed to reach the v-f reduced game of (N, v) with N ′ as the remaining

players should be irrelevant. In particular, it should not matter whether a player’s

removal precedes another player’s or if they are removed simultaneously. The only

relevant information is the set of players who remain at the end.

Reduced games were introduced in the literature to study the consistency of

values. Then, it is natural to ask about the consistency of the value induced by a v-f

reduction with respect to that reduction. Although Definition 1 refers to consistency

relative to a reduced game (and not to v-f reduced games), the definition can be

9 The symbol “◦” denotes the composition of two functions: for f : X → Y and g : Y → Z,
g ◦ f(x) = g

(
f(x)

)
∈ Z for all x ∈ X.
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easily accommodated. Proposition 1 shows that the value induced by a v-f reduction

is indeed consistent if the v-f reduction is path independent.

Proposition 1. The value ϕΨ induced by a path-independent v-f reduction Ψ is

consistent relative to Ψ.

Our second axiom on v-f reductions is additivity:

Axiom 2. A v-f reduction Ψ is additive if for all N,N ′ ∈ Pfin(U) such that

N ′ ⊆ N and all (N, v1), (N, v2) ∈ GN , then

ΨNN ′(v1 + v2) = ΨNN ′(v1) + ΨNN ′(v2).

To put it in words, additivity means that if game (N, v) is the sum of two games

(N, v1) and (N, v2), then directly reducing (N, v), and reducing (N, v1) and (N, v2)

and then summing the corresponding reduced games, give the same result.

We will use additivity in our characterizations. Since we use the concept of a

linear v-f reduction later and in some of the proofs in the Appendix, we introduce

linearity here. A v-f reduction is linear if it satisfies the axioms of additivity and

homogeneity.

Axiom 3. A v-f reduction Ψ is homogeneous if for all N,N ′ ∈ Pfin(U) such that

N ′ ⊆ N , all (N, v) ∈ GN , and all α ∈ R, then

ΨNN ′(αv) = αΨNN ′(v).

Homogeneity of a v-f reduction Ψ means that the scale in which we measure the

worth of the coalitions in a TU game does not influence how the game is reduced.

Our next two axioms concern the consequences of the presence of “null players”

in the game, that is, players who do not contribute to any coalition, on the reduced

game. Before introducing the axioms, we formally define null players.

Definition 6. A player i ∈ N is a null player in a TU game (N, v) ∈ GN if

Div(S) = 0 for all S ⊆ N \ {i}.

Given that null players have no impact on the worth of any coalition, it may

seem reasonable that they also have no impact on the reduction of games. Thus, we

propose the following property:

Axiom 4. A v-f reduction Ψ satisfies the null player out property if for all N ∈
Pfin(U), all i ∈ N , and all (N, v) ∈ GN such that player i is a null player in (N, v),

then

ΨN(N\{i})(v) = v |N\{i} .
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The null player out property means that if a null player is removed from the

game, then his removal has no effect on the worth of coalitions in the game without

him. The axiom reflects the idea that given that a null player has no influence on the

game, the worth of any coalition should not change if the game is reduced because

he is removed.

Moreover, a null player should gain no influence after a reduction:

Axiom 5. A v-f reduction Ψ satisfies the permanent null player property if for

all N,N ′ ∈ Pfin(U) such that N ′ ⊆ N , all i ∈ N ′, and all (N, v) ∈ GN such that

player i is a null player in (N, v), then player i is also a null player in (N ′,ΨNN ′(v)).

The interpretation of the permanent null player property is that if a player is a

null player in the initial game, then he is still a null player after the removal of some

other arbitrary players.

In general, null player out and permanent null player properties reflect the ra-

tionale perceiving null players as irrelevant or redundant. Still, they are distinct

axioms, as we will show in Section 1.7, where we analyze the logical independence

of the axioms.

Our last set of axioms provides alternative views of how the reduction of a game

is affected by changes in the worth of coalitions of the same size. Indeed, it is

conventional to postulate the monotonocity principle that a player’s strategic per-

spective should be monotonic with respect to the worth of the coalitions containing

him (see, e.g., Young, 1985). In line with this principle, if we consider, for example,

a symmetric game and we increase the worth of all coalitions of the same size by

the same amount, then the enhancing strategic effects for the players may be en-

tirely canceled out. This reasoning is akin to the disagreement convexity in Peters

and van Damme (1991) in the context of the bargaining problem: if each player’s

disagreement point is increased properly, then the solution should not be changed.

Our version of addition invariance properties borrows from ideas developed by

Béal et al. (2015). In our formulation, we follow the terminology used in that paper,

which we introduce here:

Definition 7. Given the set of players N , for all k ∈ Z+ such that k ≤ n, and

α ∈ R, the game (N,w(k,α)) ∈ GN is defined as follows: for all S ⊆ N ,

w(k,α)(S) ≡

α if |S| = k;

0 otherwise.

The game (N,w(k,α)) is a useful tool to express an identical increase or decrease in
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the worth of all coalitions of size k in a TU game (N, v) as the addition of (N,w(k,α))

to (N, v).

We point out that the reduction of a game necessarily leads to losing some infor-

mation contained in the characteristic function v since the domain of the reduced

game is a proper subset of that of the initial game. Our first invariance axiom sug-

gests discarding the information contained in the level of the worth of the coalitions

of size one. The reduction may depend on the relative worth of the singletons, that

is, whether the stand-alone coalition of one player has a higher or lower worth than

the stand-alone coalition of other players. However, the axiom postulates that the

reduction cannot depend on whether the worth of all the one-player coalitions is

high or low. We can translate this idea to the property that if the worth of every

coalition of size one in the unanimity game (N, uN) ∈ GN is increased or decreased

by the same amount, then the reduction of the game uN should not change.

Axiom 6. A v-f reduction Ψ satisfies 1-addition invariance if for all α ∈ R and

all N,N ′ ∈ Pfin(U) such that N ′ ( N , then

ΨNN ′(uN + w(1,α)) = ΨNN ′(uN).

Our second invariance axiom proposes an alternative property, in the same spirit

as the previous one. It prescribes what happens after an increase or decrease in the

worth of every coalition except the grand coalition, where the change in the worth

is proportional to the number of players in the coalition. The axiom requires that

the change does not affect the reduction of the unanimity game.

Axiom 7. A v-f reduction Ψ satisfies proportional addition invariance if for

all α ∈ R and all N,N ′ ∈ Pfin(U) such that N ′ ( N , then

ΨNN ′(uN +
n−1∑
k=1

w(k,kα)) = ΨNN ′(uN).

The previous two axioms share the view that the reduction of the game leads to

the loss of information from the worth of coalitions smaller than the grand coalition.

Our third invariance axiom takes the opposite view. It postulates that the worth of

the grand coalition should not affect the reduction of the unanimity game.

Axiom 8. A v-f reduction Ψ satisfies grand-coalition invariance if for all α ∈ R
and all N,N ′ ∈ Pfin(U) such that N ′ ( N , then

ΨNN ′(uN + w(n,α)) = ΨNN ′(uN).

15



Before we turn to the characterization of several v-f reductions in Section 1.5,

we first propose a duality theory for v-f reductions in Section 1.4. We adapt the

approach of Oishi et al. (2016). The main difference of our approach is that we

take the v-f reductions as primitive, while Oishi et al. (2016) stick to the conven-

tional view that takes the solution concepts as primitive and uses reduced games

to characterize solutions in terms of consistency. We use our duality theory in two

characterizations of Section 1.5.

1.4 Duality theory for value-free reductions

We first recall the definition of the dual of a game and the dual of a value. For a

TU game (N, v) ∈ GN , the dual of (N, v) is the game (N, v∗) ∈ GN , defined by:

v∗(S) ≡ v(N)− v(N \ S), (1.4.1)

for all S ⊆ N . For a value ϕ, the dual ϕ∗ of ϕ is defined by the value:

ϕ∗(N, v) ≡ ϕ(N, v∗), (1.4.2)

for all (N, v) ∈ GN and all N ∈ Pfin(U).

A value is self-dual if ϕ = ϕ∗. Examples of self-dual values include the Shapley

value and the Banzhaf value.

We now define the dual of a v-f reduction:

Definition 8. The dual Ψ∗ of a v-f reduction Ψ is defined, for all N,N ′ ∈
Pfin(U) such that N ′ ⊆ N , and all (N, v) ∈ GN , as

Ψ∗NN ′(v) ≡
(
ΨNN ′(v

∗)
)∗
.

That is, consider a v-f reduction Ψ and a game (N, v). The dual v-f reduction of

(N, v) consists in first, applying Ψ to the dual of (N, v), and then taking the dual

of the reduced game.

We already know that the dual operator for TU games is reflexive because (v∗)∗ =

v. The dual operator for v-f reductions is also reflexive, that is, (Ψ∗)∗ = Ψ.10

If the v-f reduction is path independent, then we can relate the concepts of

duality for values and for v-f reductions. Indeed, by recognizing that a one-player

10 This property holds because for all (N, v) ∈ GN and allN ′ ⊆ N : (Ψ∗)∗NN ′(v) = (Ψ∗NN ′(v
∗))∗ =

((ΨNN ′((v
∗)∗))∗)∗ = ΨNN ′(v), where the last equality uses twice that the dual operator for TU

games is reflexive.
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TU game coincides with its dual, we obtain the result that the concept of the dual

of a value is compatible with the concept of the dual of a v-f reduction:

Proposition 2. The value induced by a path-independent v-f reduction is dual to

the value induced by the dual v-f reduction:

(ϕΨ)
∗

= ϕ(Ψ∗). (1.4.3)

An immediate corollary of Proposition 2 is the following:

Corollary 1. The value induced by a path-independent v-f reduction is self-dual if

and only if it is also induced by the dual of the v-f reduction.

We also define dual properties, or axioms, of v-f reductions.

Definition 9. Consider two properties P and P∗ regarding v-f reductions. We say

that property P is dual to property P∗ if for all v-f reductions Ψ,

Ψ satisfies P ⇐⇒ Ψ∗ satisfies P∗.

We say that a property is self-dual if it is satisfied by a v-f reduction if and only

if it is satisfied by the dual of the v-f reduction:

Definition 10. P is self-dual if P is dual to itself, that is, for all v-f reductions

Ψ, Ψ satisfies P if and only if Ψ∗ satisfies P.

An important result, very helpful in the characterization of v-f reductions, is

that the basic axioms that we use are all self-dual, as Proposition 3 states.

Proposition 3. The axioms of additivity, null player out, permanent null player,

and path independence of v-f reductions are all self-dual properties.

1.5 Characterization of several value-free reduc-

tions

In this section, we use the axioms of additivity, null player out, permanent null

player, and path independence to characterize several v-f reductions. Each charac-

terization of a v-f reduction uses an additional invariance axiom.

Before presenting our characterizations, we state an intuitive property that is

common to the v-f reductions that are path independent and satisfy the axiom of

null player out: a game will be unchanged after a reduction where no player is

removed. We state this property in Remark 1, which we will use in the proofs of

the characterizations.
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Remark 1. If a v-f reduction Ψ satisfies null player out and path independence,

then for all N ∈ Pfin(U) and all (N, v) ∈ GN ,

ΨNN(v) = v.

1.5.1 Characterization of the subgame value-free reduction

The subgame v-f reduction Ψsub, defined in Example 1, satisfies our four basic ax-

ioms. Moreover, it is characterized with the help of the axiom of grand-coalition

invariance (Axiom 8), which postulates that changes in the worth of the grand

coalition should not influence the way in which the unanimity game is reduced.

Theorem 1. A v-f reduction Ψ satisfies additivity, null player out, permanent null

player, path independence, and grand-coalition invariance if and only if:

Ψ = Ψsub.

Given that the axiom of grand-coalition invariance emphasizes how difficult co-

ordination is for players striving to achieve the worth of the grand coalition, since

the worth of the grand coalition is irrelevant for the reduction, it is reasonable that

it leads to the characterization of a v-f reduction where those outside the reduced

set of players have no role: the worth of any subgame coincides with that in the

initial game.

1.5.2 Characterization of the HM value-free reduction

Next, we study the consequences of including the axiom of 1-addition invariance.

It requires that an identical increase or decrease in the worth of all the one-player

coalitions in a game should not affect the reduction of the game. Interestingly, 1-

addition invariance together with our four basic axioms characterize the value-free

version of the most popular reduced game, the HM reduction (see Definition 2). We

call this v-f reduction the HM v-f reduction and we denote it by ΨHM . We construct

the HM v-f reduction by substituting ϕ = Sh in ΨHMϕ
.

Example 2. We define the HM v-f reduction ΨHM by:11

ΨHM
NN ′(v)(S) ≡v(S ∪ (N \N ′))−

∑
i∈N\N ′

Shi(S ∪ (N \N ′), v |S∪(N\N ′))

=
∑
i∈S

Shi(S ∪ (N \N ′), v |S∪(N\N ′)),

11 The second equality is implied by the efficiency of the Shapley value.
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for all S,N,N ′ ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and all (N, v) ∈ GN .

Theorem 2 states the characterization. It also stresses that, as one could expect,

the HM v-f reduction induces the Shapley value.

Theorem 2. A v-f reduction Ψ satisfies additivity, null player out, permanent null

player, path independence, and 1-addition invariance if and only if:

Ψ = ΨHM .

Moreover, ΨHM induces the Shapley value.

Theorem 2 provides a characterization of ΨHM that is particularly interesting

because it is based on a property (the 1-addition invariance) which seems unrelated

to the definition of the reduction. On the one hand, the idea behind the reduction

of a game (N, v) ∈ GN to (N ′,ΨHM
NN ′(v)) is that the worth of a coalition S ⊆ N ′ in

(N ′,ΨHM
NN ′(v)) is computed taking into account that the players in S profit from the

collaboration with every removed player i ∈ N\N ′, who is entitled to a compensation

of Shi(S ∪ (N \ N ′), v |S∪(N\N ′)). On the other hand, the notion of 1-addition

invariance concerns the effect of identical changes in the worth of the one-player

coalitions.12 Therefore, Theorem 2 highlights that a characteristic property of the

HM v-f reduction is that it is immune to changes in the strategic prospects of the

players derived from the changes in their stand-alone worth, as long as the changes

are identical for every player.

1.5.3 Characterization of the ONHF value-free reduction

In the previous subsection, we define the value-free version of the HM reduction. We

can use the same method to define the value-free version of the ONHF reduction,

ΨONHF , which we will refer to as the ONHF v-f reduction:

Example 3. We define the ONHF v-f reduction ΨONHF by:13

ΨONHF
NN ′ (v)(S) ≡v(S)−

∑
i∈N\N ′

Shi(N, v) +
∑

i∈N\N ′
Shi(N \ S, vS)

=
∑
i∈N ′

Shi(N, v)−
∑

i∈N ′\S

Shi(N \ S, vS), (1.5.1)

12 1-addition invariance together with additivity imply that ΨNN ′(v + w(1,α)) = ΨNN ′(v) for
any (N, v) ∈ GN .

13 The two expressions for ΨONHF are equivalent because
∑
i∈N\N ′ Shi(N, v) = v(N) −∑

i∈N ′ Shi(N, v),
∑
i∈N\N ′ Shi(N \S, vS) = vS(N \S)−

∑
i∈N ′\S Shi(N \S, vS), and vS(N \S) =

v(N)− v(S).
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for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and all (N, v) ∈ GN .

Oishi et al. (2016) construct the ONHF reduced game as the dual of the HM

reduced game. Hence, it is no surprise that ΨONHF is the dual v-f reduction of

ΨHM . We state this result as a corollary of the analysis developed by Oishi et al.

(2016):

Corollary 2. The v-f reduction ΨONHF is the dual of the v-f reduction ΨHM .

As we proved in Section 1.4, additivity, null player out, permanent null player,

and path independence are all self-dual properties. Given that they are satisfied

by ΨHM , ΨONHF also satisfies these axioms. On the other hand, the property of

1-addition invariance, which is the additional axiom that characterizes ΨHM , is not

self-dual.

Proposition 4 states that the dual property of the 1-addition invariance is the

(n− 1)-addition invariance axiom, defined as follows:

Axiom 9. A v-f reduction Ψ satisfies (n-1)-addition invariance if for all α ∈ R
and all N,N ′ ∈ Pfin(U) such that N ′ ( N ,

ΨNN ′(uN + w(n−1,α)) = ΨNN ′(uN).

Proposition 4. The dual of the 1-addition invariance axiom is the (n−1)-addition

invariance axiom.

In conjunction with the interpretation of the 1-addition invariance property pro-

vided in the previous section, there is a dual interpretation of the (n − 1)-addition

invariance property. This axiom requires discarding the information contained in

the level of the worth of the coalitions of size (n − 1) (instead of the information

contained in the level of the worth of the coalitions of size 1).

Theorem 3 provides our characterization of ΨONHF . It can be thought of as a

dual theorem to Theorem 2 as it gives a characterization of the dual of ΨHM through

the dual properties of the axioms used in Theorem 2. The theorem also states that

the ΨONHF v-f reduction induces the Shapley value.

Theorem 3. A v-f reduction Ψ satisfies additivity, null player out, permanent null

player, path independence, and (n− 1)-addition invariance if and only if

Ψ = ΨONHF .

Moreover, ΨONHF induces the Shapley value.
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Theorems 2 and 3 together reveal a distinctive difference between ΨHM and

its dual, ΨONHF . Whereas the HM v-f reduction postulates that the strategic

prospects of the agents should not change after an identical modification in the worth

of every stand-alone coalition (the 1-addition invariance property), the ONHF v-f

reduction considers that the players’ strategic prospects should not change after an

identical modification in each player’s maximum compensation (the (n−1)-addition

invariance property).

1.5.4 Value-free reductions inspired by the bidding mecha-

nism

We have characterized v-f reductions that bear some relationship to existing re-

duced games. In the current subsection, we propose and characterize two new v-f

reductions. They link our approach to the theory of implementation. Indeed, the

first v-f reduction is based on the out-of-equilibrium payoffs obtained at the Pérez-

Castrillo–Wettstein (PW ) bidding mechanism (see, Pérez-Castrillo and Wettstein,

2001), which implements the Shapley value. The second v-f reduction is the dual of

the first. Thus, we start by explaining the bidding mechanism, and its equilibrium.

In the PW bidding mechanism, each player j ∈ N in a game (N, v) ∈ GN makes

a bid bji ∈ R to each player i 6= j. The player with the highest total net bid (the

difference between a player’s total bid to the others minus the sum of the bids the

others make to him) is chosen as the proposer (let’s denote him by α). The proposer

α pays the bids to the rest of the players and makes them an offer to join him. If the

proposal is accepted, then α pays the offers that he has made to the other players

(in addition to the bids that he has already paid), forms the grand coalition, and

receives the worth v(N). If the proposal is rejected, then α is removed from the

game and obtains the worth of his stand-alone coalition v({α}). The rest of the

players, that is, the set N \{α}, keep the bids and play the same game again among

them.

At the subgame perfect equilibrium of the bidding mechanism, any player j ∈ N
bids bji = Shi(N, v) − Shi(N \ {j}, v |N\{j}) to each player i 6= j and the proposer

α makes an offer that is accepted (see, Pérez-Castrillo and Wettstein, 2001). The

offer submitted to the players in N \ {α} makes them indifferent between accepting

the offer and playing the new game among them (because this is the continuation

outcome of the mechanism in case of rejection). That is, the offer to each player

is the payoff that this player would obtain in the “reduced game” where the set of

players is N \{α}. In this reduced game, the assets of any coalition S ⊆ N \{α} are

composed by two elements: the worth of the coalition and the sum of the bids that
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the players in S collect from α, that is, v(S) +
∑

i∈S b
α
i = v(S) +

∑
i∈S(Shi(N, v)−

Shi(N \ {α}, v |N\{α})).
If we continue deleting players, we obtain the extension of the previous formulae

for the reduced game played by any N ′ ( N (which corresponds to a situation where

the players in N \N ′ were proposers in the bidding mechanism with their proposals

being rejected and with their bids being collected). This way, we define the following

v-f reduction:

Example 4. We define the PW v-f reduction ΨPW by:

ΨPW
NN ′(v)(S) ≡ v(S)−

∑
i∈S

Shi(N
′, v |N ′) +

∑
i∈S

Shi(N, v), (1.5.2)

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and all (N, v) ∈ GN .

Theorem 4 shows that ΨPW is characterized in a similar way to Theorems 1, 2,

and 3. It uses the alternative property of proportional addition invariance, which

we have described in Section 1.3 (see Axiom 7).

Theorem 4. A v-f reduction Ψ satisfies additivity, null player out, permanent null

player, path independence, and proportional addition invariance if and only if

Ψ = ΨPW .

Moreover, ΨPW induces the Shapley value.

Theorem 4 also identifies the value ϕΨPW induced by the path-independent v-f

reduction ΨPW . Given that the PW bidding mechanism implements the Shapley

value, it is unsurprising that the value induced by the reduction is also the Shapley

value. On the other hand, nothing in the bidding mechanism suggests that the equi-

librium bids are related to the size of the coalitions. Therefore, the characterization

of the PW v-f reduction owing to the axiom of proportional addition invariance

provides a new perspective on the out-of-equilibrium payoffs of the players in the

bidding mechanism.

We now use the duality theory developed in the previous section to provide and

characterize another v-f reduction, the dual of ΨPW , which we denote by ΨPW ∗ . To

that end, we first identify the dual of the proportional addition invariance (since

the other axioms used in the characterization of Theorem 4 are self-dual). The

proportional addition invariance prescribes that a change in the worth of every

coalition (except for the grand coalition) that is proportional to the size of the

coalition, should not affect the strategic possibilities of the players, hence it should
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not affect the reduction of the unanimity game either. The reverse-proportional

additional invariance axiom proposes that the reduction should not be affected if

the worth of every coalition is changed in reverse proportion to their size.

Axiom 10. A v-f reduction Ψ satisfies reverse-proportional addition invari-

ance if for all α ∈ R and all N,N ′ ∈ Pfin(U) such that N ′ ( N , then

ΨNN ′(uN +
n−1∑
k=1

w(k,(n−k)α)) = ΨNN ′(uN).

Proposition 5. The dual of the proportional addition invariance axiom is the

reverse-proportional addition invariance axiom.

Theorem 5 provides the characterization of ΨPW ∗ , which we formally define in

Example 5:14

Example 5. We define the PW∗ v-f reduction ΨPW ∗ by:

ΨPW ∗

NN ′ (v)(S) ≡ v(S ∪ (N \N ′))− v(N \N ′)−
∑
i∈S

Shi(N
′, vN\N

′
) +

∑
i∈S

Shi(N, v),

(1.5.3)

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and all (N, v) ∈ GN .

Theorem 5. A v-f reduction Ψ satisfies additivity, null player out, permanent null

player, path independence, and reverse-proportional addition invariance if and only

if

Ψ = ΨPW ∗ .

Moreover, ΨPW ∗ induces the Shapley value.

We note that Example 5 and Theorem 5 suggest the possible existence of a PW -

style bidding mechanism such that its subgames on the off-equilibrium path would

correspond to the dual PW v-f reduction. In Chapter 2, we will construct such a

mechanism and show that it implements the Shapley value.

Taken together, Theorems 2 to 5 provide additional evidence that the Shapley

value is a solution concept with strong properties. Indeed, it is induced by v-f re-

ductions that are characterized by very diverse invariance properties. We can use an

operator that reduces a game so as to keep the same players’ strategic possibilities

after an identical change in the worth of all the one-player coalitions or of all maxi-

mum possible compensations; or after a change that is proportional to the number

of players in any subcoalition, or that is reverse to the number of players in any

subcoalition. The Shapley value is attained after any of those different reductions.

14 See the Appendix for the derivation of the expression for ΨPW∗ .
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1.5.5 A value-free reduction inducing the Banzhaf value

The objective of this subsection is to illustrate how to use our approach to charac-

terize v-f reductions that induce solution concepts different from the Shapley value,

or the stand-alone value. In particular, we propose a v-f reduction that induces the

Banzhaf value, which we introduced in Section 1.2.

Dragan (1996) proposes a reduced game which is implicitly defined by a func-

tional equation to axiomatize the Banzhaf value.15 In contrast, we propose a v-f

reduction that is based on the same basic axioms used in our previous character-

izations, to which we add a new axiom that we call the “maximum ignorance”

property:

Axiom 11. A v-f reduction Ψ satisfies maximum ignorance if for all N ∈ Pfin(U)

such that |N | ≥ 2, all i ∈ N , all α ∈ R, and all S ⊆ N \ {i},

ΨN(N\{i})(αuN)(S) =
α

2
uN(S ∪ {i}).

The maximum ignorance property takes the view that when player i is removed

from the scene, he is still able to exert influence on the rest of the players, but his

influence is uncertain. The resulting reduced game is a game of the remaining players

contingent on the removed player’s behavior. However, unlike for instance the HM

v-f reduction, the model analyst is totally ignorant of the removed players’ behavior.

So the predicted distribution should be the one with the maximum entropy, which

is, player i independently chooses to join or leave with equal probability (for an

introduction to the principle of maximum entropy, see e.g., chapter 11 of Jaynes,

2003). Then (N ′,ΨNN ′(uN)) can be interpreted as the resulting expected game.

The reduction that we propose is given in the next example. We call it the

Banzhaf v-f reduction.

Example 6. We define the Banzhaf v-f reduction ΨBan by:

ΨBan
NN ′(v)(S) ≡

∑
T⊆N\N ′

1

2n−n′
[v(S ∪ T )− v(T )], (1.5.5)

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and all (N, v) ∈ GN .

15 The reduced game Ψϕ proposed by Dragan (1996) is implicitly defined as follows: for all
S,N,N ′ ∈ Pfin(U) such that S ⊆ N ′ ( N and all (N, v) ∈ GN ,∑
i∈S

Bani(S,Ψ
ϕ
NN ′(v)|S) ≡

∑
i∈S∪(N\N ′)

Bani(S∪(N\N ′), v|S∪(N\N ′))−
∑

i∈N\N ′
ϕi(S∪(N\N ′), v|S∪(N\N ′)).

(1.5.4)
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We can interpret the Banzhaf v-f reduction as follows. Consider a game (N, v) ∈
GN that is reduced to be played by players in N ′ ⊆ N . The players in the coalition

S ⊆ N ′ can collaborate with any subset T of the set of removed players N \ N ′.
Then, they obtain a worth of v(S∪T ) but they have to compensate the players in T

with the worth of their coalition v(T ). Each of the possible coalitions T ⊆ N \N ′ has

the same probability of being available. Therefore, the worth of a coalition S ⊆ N ′

in (N ′,ΨBan
NN ′(v)) is the simple average of the marginal worth that S can add to the

worth of the coalitions T ⊆ N \N ′.
Theorem 6 provides an axiomatic characterization of ΨBan. It also postulates

that ϕΨBan = Ban.

Theorem 6. A v-f reduction Ψ satisfies additivity, null player out, permanent null

player, path independence, and the maximum ignorance property if and only if

Ψ = ΨBan.

Moreover, ΨBan induces the Banzhaf value.

1.5.6 The axioms of anonymity and linearity

In this subsection, we discuss two additional properties that v-f reductions can

satisfy: anonymity and linearity.

One sensible property that many values satisfy is anonymity, which requires

that the players’ names are irrelevant for the value they obtain in the game. We

can propose an axiom for v-f reductions in the same spirit. The axiom of anonymity

for v-f reductions requires that the name of the players does not matter in the

reduction of the game. To formally define the axiom, let σ : N → U be an injection.

For (N, v) ∈ GN , we define σv ∈ Gσ[N ] by σv(T ) ≡ v(σ−1(T )) for all T ⊆ σ[N ].

Axiom 12. A v-f reduction Ψ satisfies anonymity if for all S,N ′, N ∈ Pfin(U)

such that S ⊆ N ′ ⊆ N , all (N, v) ∈ GN , and all injections σ : N → U , then

Ψσ[N ]σ[N ′](σv)(σ[S]) = ΨNN ′(v)(S). (1.5.6)

Anonymity of a v-f reduction implies that the contribution of a player in the

reduced game depends not on his name but on his contribution in the initial game.

It also implies that if two players in the initial game are identical in terms of their

contribution, then the reduced game if one of them is removed should be the same

if the other is removed.
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We notice that although anonymity refers to the way games are reduced ac-

cording to v-f reductions, it has implications for the prescribed payoff that equal

players obtain in the induced value. In fact, if we substitute both N ′ and S

with {i} in Axiom 12, we have ΨN{i}(v)({i}) = Ψσ[N ]{σ(i)}(σv)({σ(i)}), which is,

ϕΨ
i (N, v) = ϕΨ

σ(i)(σ[N ], σv). Therefore, anonymity of a v-f reduction Ψ implies

anonymity of its induced value ϕΨ. We state this result in Proposition 6.

Proposition 6. If a v-f reduction Ψ satisfies anonymity, then the induced value ϕΨ

satisfies anonymity as well.

None of the axioms used in the characterizations provided in Theorems 1 to 6 is

related to the idea of anonymity. However, Proposition 7, whose proof is immediate,

shows that all of the v-f reductions characterized in our paper satisfy the axiom of

anonymity.

Proposition 7. The v-f reductions ΨSub, ΨHM , ΨONHF , ΨPW , ΨPW ∗, and ΨBan

satisfy anonymity.

Given that all the characterizations use the axioms of additivity, null player out,

permanent null player, and path independence, one may think that these axioms

imply anonymity. Moreover, like the aforementioned axioms, we can easily check

that anonymity is a self-dual property. However, Example 7 satisfies our four basic

properties although it does not satisfy anonymity.

Example 7. Given X ⊆ U , the v-f reduction ΨX is defined by

ΨX
NN ′(v)(S) ≡

∑
i∈S

Shi(S ∪ ((N \N ′) ∩X), v |S∪((N\N ′)∩X))

−
∑
i∈S

Shi(N
′ ∪ ((N \N ′) ∩X), v |N ′∪((N\N ′)∩X)) +

∑
i∈S

Shi(N, v),

(1.5.7)

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and all (N, v) ∈ GN .

Proposition 8. The v-f reduction ΨX satisfies additivity, null player out, permanent

null player, and path independence for any X ⊆ U . However, it does not satisfy

anonymity.

Finally, let us mention that all the v-f reductions that we have characterized also

satisfy linearity, that is, they are homogeneous (see Axiom 3). As anonymity,

homogeneity is not implied by our four basic axioms. The construction of an example

requires the use of a Hamel basis and we provide it in the Appendix.
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1.5.7 A comment on non-additive v-f reductions

Like the classical axiomatization of the Shapley value, our axiomatizations of v-f

reductions rely on additivity. It is immediate that the value induced by an additive

v-f reduction is necessarily additive as well. Hence, all the values characterized by v-f

reductions that satisfy our basic axioms are additive, as is the case for the Shapley,

the stand-alone, and the Banzhaf values.

However, we can also consider non-additive v-f reductions. Such reductions can

induce non-additive values, such as the prenucleolus PN (Schmeidler, 1969).16 We

illustrate here this possibility by adapting the Davis-Mascher (DM ) reduced game,

which allows characterizing the prenucleolus in terms of consistency (Sobolev, 1975).

We start by formally defining the prenucleolus.

Denote by X(N, v) the set of preimputations of the game (N, v), that is, x ∈
X(N, v) if x ∈ RN and

∑
i∈N xi = v(N). For each preimputation x ∈ X(N, v) and

each coalition S ⊆ N , we denote eS(x) ≡ (S) − v(S) the “excess” of coalition S

at x. Also, we denote e(x) ≡ (eS(x))S∈2N\{N,∅} the vector of excesses, where the

entries are arranged in increasing order. Finally, for x, y ∈ X(N, v), we denote by

e(x) �lx e(y) if the vector e(x) is lexicographically superior to e(y).17 We can now

define the prenucleolus:

PN (N, v) ≡ {x ∈ X(N, v) : @y ∈ X(N, v) s.t. e(y) �lx e(x)}.

We construct the v-f version of the DM reduced game as we did for the HM and

ONHF v-f reductions: We take the original reduced game, and we substitute the

generic value used in that game by the particular value that it helps to characterize.

For the DM, we use the prenucleolus:

Example 8. We define the DM v-f reduction ΨDM by:

ΨDM
NN ′(v)(S) ≡



v(N)−
∑

i∈N\N ′ PN i(N, v) if S = N ′ ( N,

maxT⊆N\N ′ v(S ∪ T )−
∑

i∈T PN i(N, v) if ∅ 6= S ( N ′ ( N,

v(S) if N ′ = N,

0 if S = ∅,

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and all (N, v) ∈ GN .

16 Schmeidler (1969) defines the nucleolus for 0-monotonic TU games. Throughout our paper, we
focus on v-f reductions defined on an unrestricted domain, so we consider the prenucleolus rather
than the nucleolus. The latter is empty for those TU games with an empty set of imputations.

17 That is, there exists t′ ∈ {1, 2, ..., 2n − 2} such that et(x) ≥ et(y), for t = 1, . . . , t′ and
et′(x) > et′(y).
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The v-f reduction ΨDM is not additive and, as one can expect, it induces the

prenucleolus.18 Moreover, it satisfies null player out and permanent null player,

as well as anonymity. However, we do not have a characterization of the DM v-f

reduction.

1.6 New characterizations of the Banzhaf and the

stand-alone values

We have based some of our examples of v-f reductions on existing reduced games,

which were introduced to study the internal consistency of values. In this section,

we consider the reverse process. We take a v-f reduction Ψ that is defined without

reference to an existing reduced game. We look for value-reductions Ψϕ such that

Ψ = ΨϕΨ
, where ΨϕΨ

results from substituting the value ϕΨ induced by the v-f

reduction Ψ in Ψϕ. This process may identify reduction games ϕΨ that would allow

the characterization of solution concepts using consistency properties (as in Hart

and Mas-Colell, 1989, and Oishi et al., 2016).

We conduct such a reverse process by introducing a new reduced game that,

following the terminology used in Lehrer (1988), we call the “amalgamating reduced

game.” We denote it by ΨAϕ. It is inspired by the definition of the Banzhaf v-

f reduced game ΨBan. It satisfies that if we substitute ϕ for the Banzhaf value

Ban (which is the value induced by ΨBan) in ΨAϕ, then ΨABan = ΨBan (see the

Appendix).

The definition of ΨAϕ requires some premiliminaries. For (N, v) ∈ GN and

S ∈ 2N \ {∅}, we may “amalgamate” the coalition S into one player and denoted

him by S̄. Formally, we define the S-amalgamated game ((N \S)∪{S̄}, vS) (Lehrer,

1988) by:

vS(T ) ≡

 v((T \ {S̄}) ∪ S) if S̄ ∈ T,

v(T ) otherwise.

Then we define the amalgamating reduced game (A reduction, for short) ΨAϕ as

follows:

Definition 11. Given a value ϕ, the A reduction ΨAϕ is defined by:

ΨAϕ

NN ′(v)(S) ≡

ϕS̄((N \N ′) ∪ {S̄}, (v |S∪(N\N ′))S) if S ∈ 2N
′ \ {∅},

0 if S = ∅,

18 Indeed, ϕΨDM

N{i} (N, v) = ΨDM
N{i}(v)({i}) = v(N) −

∑
j∈N\{i} PN j(N, v) = PN i(N, v), where

the last equality follows from efficiency of the prenucleolus.
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for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ( N and all (N, v) ∈ GN .

To interpret the A reduction, consider a value ϕ, a TU game (N, v), and a

coalition N ′ ⊆ N . Similar to the HM reduced game, every non-empty coalition

S ⊆ N ′ collaborates with all removed players in N \N ′, and players in N ′ \ S exert

no influence. However, in the A reduction, the coalition S is treated as an individual

player. Moreover, while in the HM reduced game, the worth of S is the residue after

paying up those players in N \N ′, the worth of S in the amalgamating reduced game

is what is due for S as a single player according to ϕ.

The reduced game ΨAϕ allows the characterization of the Banzhaf value in a

parallel manner as Hart and Mas-Colell (1989) and Oishi et al. (2016) characterize

the Shapley value: The Banzhaf value is the only value that is consistent relative to

the A reduction and that is standard for two-player games. We establish this result

in Theorem 7.

Theorem 7. Let ϕ be a solution. Then:

(i) ϕ is consistent relative to ΨAϕ; and

(ii) ϕ is standard for two-player games;

if and only if ϕ is the Banzhaf value.

The Banzhaf value is not the only value that is consistent relative to the A

reduction. The stand-alone value is also consistent relative to the amalgamating

reduced game. Interestingly, it can also be characterized by consistency plus the

behavior of the value in the two-player games.

Theorem 8. Let ϕ be a solution. Then:

(i) ϕ is consistent relative to ΨAϕ; and

(ii) ϕ coincides with the stand-alone value for two-player games;

if and only if ϕ is the stand-alone value.

Theorems 7 and 8 provide new characterizations of the Banzhaf and the stand-

alone values. They also highlight that, once the “right” consistency requirement is

applied, they only differ in their prescriptions for two-player games.
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1.7 Logical independence

In this section, we show that our characterization of the HM v-f reduction is minimal

in the sense that none of the characterizing properties can be deduced from the rest.

Each time we leave out one axiom, we can find examples of v-f reductions satisfying

the remaining four properties.

First, as we have already shown in Theorems 1, 3 and 4, the subgame v-f reduc-

tion, the ONHF v-f reduction and the PW v-f reduction satisfy all the axioms but

1-addition property. Examples 9, 10, 11, and 12 show that the axioms of null player

out, permanent null player, additivity, and path independence are not redundant

either.

Example 9 (No null player out). Let Ψ¬NPO be the v-f reduction defined by:

Ψ¬NPONN ′ (v)(S) ≡ 0,

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and all (N, v) ∈ GN . The v-f

reduction Ψ¬NPO satisfies additivity, permanent null player, path independence, and

1-addition invariance, but it does not satisfy null player out.

Example 10 (No permanent null player). Let Ψ¬PNP be the v-f reduction defined

by:

Ψ¬PNPNN ′ (v)(S) ≡

 0 S = ∅

v(S ∪ (N \N ′)) otherwise,

for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and all (N, v) ∈ GN . The

v-f reduction Ψ¬PNP satisfies additivity, null player out, path independence, and

1-addition invariance, but it does not satisfy permanent null player.

Example 11 (No additivity). Let Ψ¬A be the v-f reduction defined by:

Ψ¬ANN ′(v) ≡

ΨHM
NN ′(v) if Shi(N, v) = 0 for all i ∈ N \N ′

Ψ¬NPONN ′ (v) otherwise,

for all N,N ′ ∈ Pfin(U) such that N ′ ⊆ N and all (N, v) ∈ GN . The v-f reduction

Ψ¬A satisfies null player out, permanent null player, path independence, and 1-

addition invariance, but it does not satisfy additivity.

Example 12 (No path independence). Let Ψ¬PI be the v-f reduction defined by:

Ψ¬PINN ′(v)(S) ≡

 2v(S) if n = n′ = 1

ΨHM
NN ′(v)(S) otherwise,
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for all S,N ′, N ∈ Pfin(U) such that S ⊆ N ′ ⊆ N and all (N, v) ∈ GN . The v-

f reduction Ψ¬PI satisfies additivity, null player out, permanent null player, and

1-addition invariance, but it does not satisfy path independence.

1.8 Conclusion

In this paper, we introduce the notion of the value-free reduction of a coalitional

game with transferable utility. A v-f reduction of a game describes the change in the

worth of the coalitions in a TU game when some players leave the game.19 Thus,

this new concept allows us to study TU games from a new perspective, focusing on

the properties that a v-f reduction may or may not satisfy. A v-f reduction induces

a value. One may say that the value somehow reflects the properties of the v-f

reductions that induce it.

We consider additive v-f reductions that are path independent and satisfy prop-

erties that indicate that null players must still be treated as null players when any

such reduction is applied. These properties by themselves do not pin down a unique

v-f reduction. Moreover, they do not identify a unique value induced by the reduc-

tions either. We define v-f reductions that satisfy all the previous properties and

induce either the Shapley value, or the Banzhaf value, or the stand-alone value.

To characterize each of the examples of v-f reductions that we have defined,

we use an additional axiom that ensures that the players remaining in the reduced

game keep the same strategic perspective as in the initial game after a change in the

worth of some particular coalitions. These are invariance properties. The exercises

suggest that the Shapley value is a resilient value as it is induced by several v-f

reductions, each characterized by a different invariance axiom. A duality theory for

v-f reductions, which is also developed in this paper, helps in the proof of some of

the characterizations. Moreover, we show that that the duality theory can be helpful

in the identification of new mechanisms that implement specific values.

We also show that our new approach is a useful tool to provide new characteri-

zations of values in terms of consistency. In this paper, we provide new characteri-

zations of the Banzhaf and the stand-alone values.

19 Concerning this depiction, v-f reductions may be viewed as generalizations of the subgame
operator by allowing the players who leave the game to influence the remaining players. For
concepts where subgame plays a role, such as population monotonicity (Sprumont, 1990) and
projection consistency (Funaki and Yamato, 2001), one can define and study versions where the
subgame is replaced with a distinct v-f reduction.
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1.9 Appendix

Proof of Proposition 1. We prove that the value ϕΨ induced by a path-independent

v-f reduction Ψ is consistent relative to Ψ. For a given N we have ΨN ′{i} ◦ΨNN ′ =

ΨN{i} for all N ′ ⊆ N and all i ∈ N ′, by path independence. Therefore, for

any (N, v) ∈ GN , given that (N ′,ΨNN ′(v)) ∈ GN ′ , we have ϕΨ
i

(
N ′,ΨNN ′(v)

)
=

ΨN ′{i}
(
ΨNN ′(v)

)
({i}) = ΨN ′{i} ◦ΨNN ′(v)({i}) = ΨN{i}(v)({i}) = ϕΨ

i (N, v). Hence,

ϕΨ is consistent relative to Ψ.

To prove Proposition 3, as well as Propositions 4 and 5 later, several properties

of the mapping v 7→ v∗ are useful, which we state in Lemma 1:

Lemma 1. The mapping v 7→ v∗ is additive. Moreover, if i ∈ N is a null player in

(N, v) ∈ GN , then player i is also a null player in (N, v∗).

Proof of Lemma 1. We check that v 7→ v∗ is additive: for all (N, v), (N,w) ∈ GN

and all S ⊆ N , then (v+w)∗(S) = (v+w)(N)− (v+w)(N \S) = (v(N) +w(N))−
(v(N \ S) +w(N \ S)) = (v(N)− v(N \ S)) + (w(N)−w(N \ S)) = v∗(S) +w∗(S).

To see that if i is a null player in (N, v), then i is also a null player in (N, v∗) we

have that for all S ⊆ N \ {i}, v∗(S ∪ {i}) − v∗(S) = (v(N) − v(N \ (S ∪ {i}))) −
(v(N)− v(N \ S)) = v(N \ S)− v(N \ (S ∪ {i})) = 0.

Proof of Proposition 3. To verify that additivity is self-dual, we show that the map-

ping v 7→ Ψ∗NN ′(v)(S) is additive if the mapping v 7→ ΨNN ′(v)(S) is additive. Indeed,

Ψ∗NN ′(v + w)(S) =
(
ΨNN ′((v + w)∗)

)∗
(S) =

(
ΨNN ′(v

∗ + w∗)
)∗

(S) =
(
ΨNN ′(v

∗) +

ΨNN ′(w
∗)
)∗

(S) =
(
ΨNN ′(v

∗)
)∗

(S) +
(
ΨNN ′(w

∗)
)∗

(S) = Ψ∗NN ′(v)(S) + Ψ∗NN ′(w)(S),

where the first equality follows from Definition 8, the second and fourth from the

additivity of v 7→ v∗ (Lemma 1 in the Appendix), and the third from the additivity

of Ψ. Therefore, additivity is self-dual.

We now check that null player out is self-dual. We show that if Ψ satisfies the

null player out axiom, then Ψ∗N(N\{i})(v)(S) = v(S) for all S ⊆ N \ {i} if i ∈ N is

a null player in (N, v). Indeed, Ψ∗N(N\{i})(v)(S) =
(
ΨN(N\{i})(v

∗)
)∗

(S) = (v∗ |N\{i}
)∗(S) = v∗ |N\{i} (N \{i})−v∗ |N\{i} ((N \{i})\S) = v∗(N \{i})−v∗(N \(S∪{i})) =

v∗(N) − v∗(N \ S) = v(S), where the first equality follows from Definition 8, the

second one holds because i is a null player in (N, v∗) according to Lemma 1, the

third from the definition of the dual of a game, and the penultimate equality follows

again from the fact that i is a null player in (N, v∗). Therefore, null player out is

self-dual.

We verify that the permanent null player property is self-dual by proving that if

Ψ satisfies this property and i ∈ N ′ is a null player in (N, v), then i is a null player
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in (N ′,Ψ∗NN ′(v)) as well. Let i ∈ N ′ be a null player in (N, v). Then, from Lemma

1, i ∈ N ′ is a null player in (N, v∗) and, by the permanent null player property of Ψ,

he is also a null player in (N ′,ΨNN ′(v
∗)). Using Lemma 1 again, i is a null player in

(N ′,
(
ΨNN ′(v

∗)
)∗

), that is, in (N ′,Ψ∗NN ′(v)). Therefore, the permanent null player

property is self-dual.

Finally, we prove that path independence is self-dual by proving Ψ∗N2N3
(Ψ∗N1N2

(v)) =

Ψ∗N1N3
(v) if Ψ is path independent: Ψ∗N2N3

(Ψ∗N1N2
(v)) =

(
ΨN2N3(

((
ΨN1N2(v∗)

)∗)∗
)
)∗

=(
ΨN2N3(ΨN1N2(v∗))

)∗
=
(
ΨN1N3(v∗)

)∗
= Ψ∗N1N3

(v), where the first and last equalities

follow from Definition 8, the second from v∗∗ = v, and the third from the assumption

of the path-independence of Ψ. Therefore, path independence is self-dual.

Proof of Remark 1. Given N ∈ Pfin(U) and (N, v) ∈ GN , take any i ∈ U \ N .

Define (N ∪ {i}, w) ∈ GN∪{i} by w(S) ≡ v(S \ {i}) for all S ⊆ N ∪ {i}. Notice

that player i is a null player in (N ∪ {i}, w) and that the subgame of (N ∪ {i}, w)

restricted to N is (N, v). Then for any v-f reduction Ψ satisfying null player out

and path independence, ΨNN(v) = ΨNN(Ψ(N∪{i})N(w)) = Ψ(N∪{i})N(w) = v, where

the first and the third equality follow from null player out and the second from path

independence. Therefore, ΨNN must be an identity function if Ψ satisfies null player

out and path independence.

Since every v-f reduction we will present satisfies null player out and path inde-

pendence, we will not repeat the property established in Remark 1 in the proof of

their corresponding theorems below.

Proof of Theorem 1. It is immediate that the subgame v-f reduction satisfies all the

stated properties.

We now prove that if the v-f reduction Ψ satisfies the five properties, then Ψ =

ΨSub. Notice first that, under path independence, it suffices to show the equality

restricted to one-player operators
(
ΨN(N\{i})

)
, for all N ∈ Pfin(U) and all i ∈ N .

Second, by additivity, it suffices to establish the equality for each operator

ΨN(N\{i}) restricted to the set of all scalar multiples of elements in a basis of GN .

We choose the set of all scalar multiples of all unanimity games
(
αuT

)
T∈2N\{∅},α∈R.

We show that ΨN(N\{i})(αuT ) = ΨSub
N(N\{i})(αuT ) for all T ∈ 2N \ {∅}, all α ∈ R,

and all i ∈ N by induction on n. We notice that since αuN = w(n,α), additiv-

ity and grand-coalition invariance imply that ΨN(N\{i})(αuN) = 0 = αuN |N\{i})=
ΨSub
N(N\{i})(αuN). Thus, we only need to check the equality of the remaining scalar

multiples of elements in the basis, i.e.,
(
αuT

)
T∈2N\{∅,N},α∈R.

ConsiderN = {i, j}, that is, n = 2. (a) When T = {j}, then Ψ{i,j}{j}(αu{j})({j}) =

αu{j} |{j} ({j}) by null player out, since i is a null player in ({i, j}, αu{j}). (b) When
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T = {i}, then Ψ{i,j}{j}(αu{i})({j}) = 0 = αu{i} |{j} ({j}) by permanent null player,

since j is a null player in ({i, j}, αu{i}). Hence, ΨN(N\{i})(αuT )(S) = αuT |N\{i}
(S) = ΨSub

N(N\{i})(αuT )(S) for all S ⊆ N \ {i}, all T such that |T | = 1, all α ∈ R, and

all N such that |N | = 2.

Now we proceed to consider any N , and suppose that the induction property

holds for any set with fewer than n players. (a) When i /∈ T then i is a null player

in (N,αuT ), hence ΨN(N\{i})(αuT ) = αuT |N\{i} by null player out. (b) We show that

ΨN(N\{i})(αuT )(S) = αuT |N\{i} (S) for all S ⊆ N \ {i} when i ∈ T and T ( N .

Take any player j ∈ N \ T . Then, j is a null player in (N,αuT ). Moreover, by the

permanent null player property, j is also a null player in (N \ {i},ΨN(N\{i})(αuT )).

We consider two possibilities. (b1) First, if S ⊆ N \ {i, j}, then

ΨN(N\{i})(αuT )(S) = ΨN(N\{i})(αuT ) |N\{i,j} (S) = Ψ(N\{i})(N\{i,j})
(
ΨN(N\{i})(αuT )

)
(S)

= Ψ(N\{j})(N\{i,j})
(
ΨN(N\{j})(αuT )

)
(S) = Ψ(N\{j})(N\{i,j})(αuT |N\{j})(S),

(1.9.1)

where the first equality holds because S ⊆ N \ {i, j}; the second by null player out,

given that j is a null player in the game (N \{i},ΨN(N\{i})(αuT )); the third by path

independence; and the fourth by null player out, given that j is a null player in

(N,αuT ). We apply the induction argument to state that the last expression (which

involves a reduction from a set of n−1 players) is equal to ΨSub
(N\{j})(N\{i,j})(αuT |N\{j}

)(S) = αuT |N\{i,j} (S) = αuT (S), where the last equality holds because S ⊆
N \ {i, j}. (b2) Second, if j ∈ S, then ΨN(N\{i})(αuT )(S) = ΨN(N\{i})(αuT )(S \ {j})
because j is a null player in (N \{i},ΨN(N\{i})(αuT )). Now we apply equation (1.9.1)

to S \{j} and, by the same argument as in (b1), ΨN(N\{i})(αuT )(S) = αuT (S \{j}),
which is equal to αuT (S) since j is a null player in (N,αuT ).

Thus, if a v-f reduction satisfies the five properties, then it is equal to ΨSub.

Proof of Theorem 2. We verify the stated properties of ΨHM . First, ΨHM is the

composition of three functions: the restriction operator, the Shapley value, and

the summation operator. It is easy to check that the three functions are additive.

Therefore, ΨHM is additive.

Second, to verify that ΨHM satisfies null player out, let i ∈ N be a null player in

(N, v) ∈ GN . Then, ΨHM
N(N\{i})(v)(S) =

∑
j∈S Shj(S ∪ (N \ (N \ {i})), v |S∪(N\(N\{i}))

) =
∑

j∈S Shj(S∪{i}, v |S∪{i}) = v(S∪{i})−Shi(S∪{i}, v |S∪{i}) = v(S∪{i}) = v(S),

where the third equality follows from the efficiency of the Shapley value, the fourth

from the null player property of the Shapley value, and the fifth holds because i is

a null player in (N, v).
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Third, we check that ΨHM satisfies permanent null player. Let i ∈ N ′ be

a null player in (N, v) ∈ GN . Then, for all S ⊆ N ′ \ {i}, Di(ΨHM
NN ′(v))(S) =

ΨHM
NN ′(v)(S∪{i})−ΨHM

NN ′(v)(S) = [
∑

j∈S∪{i} Shi((S∪{i})∪ (N \N ′), v |(S∪{i})∪(N\N ′)

)]−[
∑

j∈S Shi(S∪(N\N ′), v |S∪(N\N ′))] = [
∑

j∈S Shi((S∪{i})∪(N\N ′), v |(S∪{i})∪(N\N ′)

)] − [
∑

j∈S Shi(S ∪ (N \ N ′), v |S∪(N\N ′))] = [
∑

j∈S Shi(S ∪ (N \ N ′), v |S∪(N\N ′)

)]− [
∑

j∈S Shi(S ∪ (N \N ′), v |S∪(N\N ′))] = 0, where the third equality follows from

the null player property of the Shapley value, and the fourth from null player out

of the Shapley value (see Derks and Haller, 1999).

Fourth, we prove the path independence axiom. For any T ⊆ S, we can write

ΨHM
(S∪(N\N ′))S(v |S∪(N\N ′))(T ) =

∑
i∈T Shi(T ∪ (N \N ′), v |T∪(N\N ′)) = ΨHM

NN ′(v)(T ) =

ΨHM
NN ′(v) |S (T ), where the first equality holds because v |S∪(N\N ′)|T∪(S∪(N\N ′))\S)=

v |T∪((S∪(N\N ′))\S)= v |T∪(N\N ′). Therefore:

ΨHM
NN ′(v) |S= ΨHM

(S∪(N\N ′))S(v |S∪(N\N ′)) (1.9.2)

ΨHM
NN ′(v)(S) = ΨHM

(S∪(N\N ′))S(v |S∪(N\N ′))(S). (1.9.3)

We now claim that, given equations (1.9.2) and (1.9.3), the verification of path

independence, that is, ΨHM
N2N3

(
ΨHM
N1N2

(v)
)
(S) = ΨHM

N1N3
(v)(S) for all N1, N2, N3, S ∈

Pfin(U) such that S ⊆ N3 ⊆ N2 ⊆ N1, is equivalent to verifying the condition only

for S = N3, i.e.,

ΨHM
N2N3

(
ΨHM
N1N2

(v)
)
(N3) = ΨHM

N1N3
(v)(N3). (1.9.4)

To prove the equivalence, we use (1.9.3), where we substitute N,N ′ and v by

N2, N3 and ΨHM
N1N2

(v), to obtain

ΨHM
N2N3

(
ΨHM
N1N2

(v)
)
(S) = ΨHM

(S∪(N2\N3))S

(
ΨHM
N1N2

(v) |S∪(N2\N3)

)
(S). (1.9.5)

Similarly, we substitute N,N ′ and S by N1, N2 and S ∪ (N2 \N3) in (1.9.2), to

obtain

ΨHM
N1N2

(v) |S∪(N2\N3)= ΨHM
(S∪(N2\N3)∪(N1\N2))(S∪(N2\N3))(v |S∪(N2\N3)∪(N1\N2)), i.e.,

ΨHM
N1N2

(v) |S∪(N2\N3)= ΨHM
(S∪(N1\N3))(S∪(N2\N3))(v |S∪(N1\N3)). (1.9.6)

Using (1.9.6) in equation (1.9.5), we have

ΨHM
N2N3

(
ΨHM
N1N2

(v)
)
(S) = ΨHM

(S∪(N2\N3))S

(
ΨHM

(S∪(N1\N3))(S∪(N2\N3))(v |S∪(N1\N3))
)
(S).

Then, the worth of coalition S ⊆ N3 in the game resulting from two sequential
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reductions of (N1, v) (from N1 to N2, then from N2 to N3) is equal to the worth

of the grand coalition S in the game resulting from two reductions of (S ∪ (N1 \
N3), v |S∪(N1\N3)) (from S ∪ (N1 \ N3) to S ∪ (N2 \ N3), then from S ∪ (N2 \ N3)

to S). This property means that it suffices to verify that the worth of the grand

coalition satisfies path independence, that is, that equation (1.9.4) holds for all

possible games. To prove (1.9.4), we use the definition of ΨHM :

ΨHM
N2N3

(
ΨHM
N1N2

(v)
)
(N3) =

∑
i∈N3

Shi(N2,Ψ
HM
N1N2

(v)) =
∑
i∈N3

Shi(N1, v) = ΨHM
N1N3

(v)(N3).

Therefore, ΨHM is path independent.

Finally, we verify the 1-invariance property of ΨHM . The axiom of additivity

implies that ΨHM
NN ′(uN+w(1,α)) = ΨHM

NN ′(uN) if and only if ΨHM
NN ′(w(1,α)) = 0. We show

that ΨHM
NN ′(w(1,α))(S) = 0 for all S ⊆ N ′. By definition of ΨHM , ΨHM

NN ′(w(1,α))(S) =∑
i∈S Shi(S ∪ (N \ N ′), w(1,α) |S∪(N\N ′)). Notice that (S ∪ (N \ N ′), w(1,α) |S∪(N\N ′)

) ∈ GS∪(N\N ′) is a game where each player is symmetric with each other. Then,

the Shapley value prescribes an equal share of the worth of the grand coalition

S∪(N\N ′). Thus,
∑

i∈S Shi(S∪(N\N ′), w(1,α)|S∪(N\N ′)) =
∑

i∈S
1

|S∪(N\N ′)|w(1,α)(S∪
(N \ N ′)) = 0. Therefore, the HM v-f reduction satisfies the 1-addition invariance

property.

To show the reverse implication of the theorem, we first prove the following

lemma:

Lemma 2. For all N ∈ Pfin(U) such that |N | > 2, the set {uT | T ( N, T 6=
∅} ∪ {w(1,1)} forms a basis of GN .

Proof of Lemma 2. Take any N ∈ Pfin(U). To prove Lemma 2, we start by showing

the following equality between games in GN :

(−1)nnuN = −w(1,1) +
∑

S∈2N\{∅,N}

(−1)s−1suS. (1.9.7)

We show that the two functions in equation (1.9.7) are equal when evaluated

at any T ⊆ N , by considering three different cases: (a) If T ( N and |T | =

1, then −w(1,1)(T ) +
∑

S∈2N\{∅,N}(−1)s−1suS(T ) = −1 + uT (T ) = 0 = uN(T ) =

(−1)nnuN(T ). For the other two cases, we use the following formula:

∑
S∈2T \{∅}

s(−1)s−1 = 0, (1.9.8)
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for any T such that |T | > 1.20 Then, (b) for T ( N such that |T | > 1, we can write:

−w(1,1)(T ) +
∑

S∈2N\{∅,N}(−1)s−1suS(T ) =
∑

S∈2T \{∅} s(−1)s−1 = 0 = uN(T ) =

(−1)nnuN(T ). Finally, (c) for T = N , −w(1,1)(T ) +
∑

S∈2N\{∅,N}(−1)s−1suS(T ) =∑
S∈2N\{∅,N}(−1)s−1s = (−1)nn+

∑
S∈2N\{∅}(−1)s−1s = (−1)nn = (−1)nnuN(T ).

Given that equation (1.9.7) holds and the set {uT | T ⊆ N, T 6= ∅} forms a basis

of GN , then the set resulting from replacing uN with w(1,1) in this basis spans GN ,

which proves Lemma 2.

We now continue with the reverse implication of Theorem 2. We prove that Ψ =

ΨHM if the v-f reduction Ψ satisfies the five properties, using the same procedure as

in the proof of Theorem 1. Because of path independence and additivity, it suffices

to show that ΨN(N\{i})(v) = ΨHM
N(N\{i})(v) for all i ∈ N and all v ∈ {αuT | T (

N, T 6= ∅, α ∈ R} ∪ {w(1,α) | α ∈ R} (see Lemma 2).

First, if v = w(1,α), then additivity and 1-addition invariance imply ΨN(N\{i})(w(1,α)) =

0 = ΨHM
N(N\{i})(w(1,α)) for all N ∈ Pfin(U) for all α ∈ R and all i ∈ N .

Second, we show that ΨN(N\{i})(αuT ) = ΨHM
N(N\{i})(αuT ) for all T ∈ 2N \ {∅, N},

all α ∈ R, and all i ∈ N by induction on n.

For N such that n = 2, the proof is identical to that of Theorem 1 since ΨHM

and ΨSub coincide for the proper subsets T of N and we did not use grand-coalition

invariance in that part of the proof.

Consider now any N and suppose that the induction property holds for any set

with fewer than n players. (a) When i /∈ T then i is a null player in (N,αuT ),

hence ΨN(N\{i})(αuT ) = αuT |N\{i}= ΨHM
N(N\{i})(αuT ) because both Ψ and ΨHM sat-

isfy null player out. (b) When i ∈ T and T ( N , take any j ∈ N \ T . Player j

is a null player in (N,αuT ) and, under the permanent null player property, also

in (N \ {i},ΨN(N\{i})(αuT )). Therefore, (b1) if S ⊆ N \ {i, j}, then equation

(1.9.1) holds by the same arguments as in the proof of Theorem 1. Using the

induction argument, we have ΨN(N\{i})(αuT )(S) = Ψ(N\{j})(N\{i,j})(αuT |N\{j})(S) =

ΨHM
(N\{j})(N\{i,j})(αuT |N\{j})(S). Since j is a null player in (N,αuT ) and ΨHM sat-

isfies null player out and path independence, we have ΨHM
(N\{j})(N\{i,j})(αuT |N\{j}

)(S) = ΨHM
(N\{j})(N\{i,j})

(
ΨHM
N(N\{j})(αuT )

)
(S) = ΨHM

N(N\{i})(αuT )(S). (b2) If j ∈ S,

then ΨN(N\{i})(αuT )(S) = ΨN(N\{i})(αuT )(S \ {j}) because j is a null player in

(N \ {i},ΨN(N\{i})(αuT )). Now we can apply equation (1.9.1) to S \ {j} and, by

the same argument as in (b1), ΨN(N\{i})(αuT )(S) = ΨHM
N(N\{i})(αuT )(S \ {j}) =

ΨHM
N(N\{i})(αuT )(S), where the last equality holds because j is a null player in (N,αuT ).

20We check that (1.9.8) holds:
∑
S∈2T \{∅} s(−1)s−1 =

[∑
S∈2T \{∅} sx

s−1
]
x=−1

=[∑
S∈2T \{∅}

dxs

dx

]
x=−1

=
[d(

∑
S∈2T \{∅} x

s)

dx

]
x=−1

=
[d(

∑t
s=1 (t

s)x
s)

dx

]
x=−1

=
[d((1+x)t−1)

dx

]
x=−1

=[
t(1 + x)t−1

]
x=−1

= 0.
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Therefore, if a v-f reduction satisfies the five properties, then it is equal to ΨHM .

Finally, we notice that ΨHM
N{i}(v)({i}) = Shi({i}∪(N \{i}), v|{i}∪(N\{i})) = Shi(v)

for all (N, v) ∈ GN and all i ∈ N . Therefore, ΨHM induces the Shapley value.

Proof of Corollary 2. We prove that ΨONHF is the dual of ΨHM . Indeed,

(
ΨONHF
NN ′ (v∗)

)∗
(S) =ΨONHF

NN ′ (v∗)(N ′)−ΨONHF
NN ′ (v∗)(N ′ \ S)

=
∑
i∈N ′

Shi(N, v
∗)−

∑
i∈N ′\N ′

Shi(N \N ′, (v∗)N
′
)−

∑
i∈N ′

Shi(N, v
∗)

+
∑

i∈N ′\(N ′\S)

Shi(N \ (N ′ \ S), (v∗)N
′\S)

=
∑
i∈S

Shi(N \ (N ′ \ S), (v∗)N
′\S) =

∑
i∈S

Shi(S ∪ (N \N ′), (v |S∪(N\N ′))
∗)

=
∑
i∈S

Shi(S ∪ (N \N ′), v |S∪(N\N ′)),

where the first equality follows the definition of a dual game, the second one from

the defining equation (1.5.1) of ΨONHF , and the last equality from the self-duality of

the Shapley value. To check the fourth equality, notice that, for all T ⊆ S∪(N \N ′),
on the one hand, v∗N

′\S(T ) = v∗(T ∪ (N ′ \ S))− v∗(N ′ \ S) = [v(N)− v(N \ (T ∪
(N ′ \ S)))]− [v(N)− v(N \ (N ′ \ S))] = v(N \ (N ′ \ S))− v(N \ (T ∪ (N ′ \ S))) =

v(S∪(N\N ′))−v((S∪(N\N ′))\T ); on the other hand, (v |S∪(N\N ′))
∗(T ) = v |S∪(N\N ′)

(S∪(N \N ′))−v |S∪(N\N ′) ((S∪(N \N ′))\T ) = v(S∪(N \N ′))−v((S∪(N \N ′))\T ).

Thus v∗N
′\S = (v |S∪(N\N ′))

∗.

Proof of Proposition 4. Let Ψ be a v-f reduction that satisfies 1-addition invariance.

Our aim is to verify that Ψ∗ satisfies (n− 1)-addition invariance.

We first show that the dual of the game (N,w(n−1,α)) is (N,w(1,−α)). Indeed,

w∗(n−1,α)(S) = w(n−1,α)(N)−w(n−1,α)(N \ S) = −w(n−1,α)(N \ S) = w(1,−α)(S) for all

S ⊆ N .

Then, for any α ∈ R, we have Ψ∗NN ′(v + w(n−1,α)) =
(
ΨNN ′((v + w(n−1,α))

∗)
)∗

=(
ΨNN ′(v

∗ + w∗(n−1,α))
)∗

=
(
ΨNN ′(v

∗ + w(1,−α))
)∗

=
(
ΨNN ′(v

∗)
)∗

= Ψ∗NN ′(v), where

the first and last equalities follow from Definition 8, the second from the additivity

of v 7→ v∗ (see Lemma 1), the third equality follows from the fact that the dual

of w(n−1,α) is w(1,−α), and the fourth from 1-addition invariance of Ψ. Therefore,

(n− 1)-addition invariance is dual to 1-addition invariance.

Proof of Theorem 3. The ONHF v-f reduction is dual to the HM v-f reduction.

Then, by Proposition 3, ΨONHF satisfies additivity, null player out, permanent null

player, and path independence, because they are self-dual properties and ΨHM sat-

38



isfies them. Similarly, ΨONHF satisfies (n−1)-invariance, which is dual to 1-addition

invariance (see Proposition 4), because ΨHM satisfies 1-addition invariance.

For the other direction, consider a v-f reduction Ψ satisfying all the stated axioms.

Then, the dual Ψ∗ of Ψ satisfies all the axioms stated in Theorem 2, which implies

Ψ∗ = ΨHM . Hence, the dual v-f reductions of Ψ∗ and ΨHM , i.e., Ψ and ΨONHF ,

must coincide, as we wanted to prove.

Finally, Corollary 1 implies that ΨONHF induces the Shapley value since it is a

self-dual value.

Proof of Theorem 4. First, we verify that ΨPW satisfies all the stated properties. It

is linear and hence additive, because it is the composition of linear functions.

To show path independence, linearity ensures that it suffices to verify that

the unanimity games satisfy the property. Consider any T ∈ 2N \ {∅}, then

ΨPW
NN ′(uT )(S) = uT (S) −

∑
i∈S Shi(N

′, uT |N ′) +
∑

i∈S Shi(N, uT ) = uT |N ′ (S) −∑
i∈S Shi(N

′, uT |N ′)+ |T∩S|t
. Notice that uT |N ′= 0 if T * N ′ and

∑
i∈S Shi(N

′, uT |N ′
) = |T∩S|

t
if T ⊆ N ′. Thus we have, for all S ⊆ N ′,

ΨPW
NN ′(uT )(S) =

uT |N ′ (S) if T ⊆ N ′;

|T∩S|
t

if T * N ′.

The previous expression implies that ΨPW
NN ′(uT ) is equal to ΨSub

NN ′(uT ) if T ⊆ N ′.

Otherwise, each player in N ′\T is a null player in (N ′,ΨPW
NN ′(uT )) and the rest of the

players have a constant marginal contribution 1
t

to any coalition in (N ′,ΨPW
NN ′(uT )).

Now we verify that ΨPW satisfies path independence. Take N3 ⊆ N2 ⊆ N1.

First, if T ⊆ N3, then ΨPW
N2N3

(ΨPW
N1N2

(uT )) = ΨPW
N1N3

(uT ) = uT |N3 by path inde-

pendence of ΨSub. Second, if T * N3, then ΨPW
N1N3

(uT ) = |T∩S|
t

. There are two

possibilities: (a) if T ⊆ N2, it is immediate that ΨPW
N2N3

(ΨPW
N1N2

(uT )) = |T∩S|
t

; (b) if

T * N2, then for S ⊆ N3, it happens that ΨPW
N2N3

(ΨPW
N1N2

(uT ))(S) = ΨPW
N1N2

(uT )(S)−∑
i∈S Shi(N3,Ψ

PW
N1N2

(uT )|N3) +
∑

i∈S Shi(N2,Ψ
PW
N1N2

(uT )) = |T∩S|
t
− |T∩S|

t
+ |T∩S|

t
=

|T∩S|
t
, where the first equality follows from equation (1.5.2), and the terms in the

second equality follow from (i) the expression of the game ΨPW
N1N2

(uT )(S) = |T∩S|
t

and

its subgames, (ii) each player i ∈ T ∩N2 has a constant marginal contribution 1
t

in

(N2,Ψ
PW
N1N2

(uT )), and (iii) the rest of the players are null players in (N2,Ψ
PW
N1N2

(uT )).

Therefore, the PW v-f reduction is path independent.

We verify the null player out property, i.e., ΨPW
N(N\{i})(v) = v |N\{i} for all (N, v) ∈

GN such that i ∈ N is a null player in (N, v). We notice that for all S ⊆ N \ {i},
ΨPW
N(N\{i})(v)(S) = v(S)−

∑
j∈S Shj(N \{i}, v |N\{i})+

∑
j∈S Shj(N, v) = v(S), where

the first equality follows from (1.5.2) and the second from Shj(N \ {i}, v |N\{i}) =
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Shj(N, v) if i is a null player in (N, v), i.e., null player out of the Shapley value.

Therefore ΨPW satisfies null player out.

As for permanent null player, let i ∈ N ′ be a null player in (N, v). Then, it

is the case that for all S ⊆ N ′ \ {i}, ΨPW
NN ′(v)(S ∪ {i}) − ΨPW

NN ′(v)(S) = v(S ∪
{i}) −

∑
j∈S∪{i} Shj(N

′, v |N ′) +
∑

j∈S∪{i} Shj(N, v) −
(
v(S) −

∑
j∈S Shj(N

′, v |N ′
) +

∑
j∈S Shj(N, v)

)
= (v(S ∪ {i})− v(S))− Shi(N ′, v |N ′) + Shi(N, v) = 0, where

the third equality follows from the premise that i is a null player in (N, v) and its

subgames and from the null player property of the Shapley value. Therefore ΨPW

satisfies permanent null player.

We check the proportional addition invariance property. By additivity, it suffices

to show that ΨPW
NN ′(

∑n−1
k=1 w(k,kα))(S) = 0. Indeed, ΨPW

NN ′(
∑n−1

k=1 w(k,kα))(S) = sα −∑
i∈S Shi(N

′,
∑n′

k=1w(k,kα) |N ′)+
∑

i∈S Shi(N,
∑n−1

k=1 w(k,kα)) = sα−
∑

i∈S
∑n′

k=1 Shi(N
′, w(k,kα) |N ′

)+
∑

i∈S
∑n−1

k=1 Shi(N,w(k,kα)) = sα−
∑

i∈S Shi(N
′, w(n′,n′α) |N ′) = sα−

∑
i∈S

n′α
n′

= 0,

where the first equality follows from (1.5.2), the second from additivity, and the third

and fourth equalities hold because the Shapley value of each player in a symmetric

game is equal to an equal share of the worth of the grand coalition.

To prove the reverse implication we need a previous lemma:

Lemma 3. For all N ∈ Pfin(U) such that |N | > 2, the set {uT | T ( N, T 6=
∅} ∪ {

∑n−1
k=1 w(k,k)} forms a basis of GN .

Proof of Lemma 3. Take any N ∈ Pfin(U). To prove Lemma 3, we first note that:

nuN =
(∑
i∈N

u{i}
)
−
( n−1∑
k=1

w(k,k)

)
, (1.9.9)

which is easily seen by recognizing that
∑

i∈N u{i}(S) = s for all S ∈ 2N \ {∅}.
Given that equation (1.9.9) holds and {uT | T ⊆ N, T 6= ∅} forms a basis of GN ,

then the set resulting from replacing uN with
∑n−1

k=1 w(k,k) on this basis spans GN ,

which proves Lemma 3.

The proof that Ψ = ΨPW if the v-f reduction Ψ satisfies the five properties is

very similar to the proof of Theorem 2. The only difference is in the proof that

ΨN(N\{i})(v) = ΨPW
N(N\{i})(v) for all i ∈ N , when v =

∑n−1
k=1 w(k,kα). In this case, ad-

ditivity and proportional addition invariance imply that ΨN(N\{i})(
∑n−1

k=1 w(k,kα)) =

0 = ΨPW
N(N\{i})(

∑n−1
k=1 w(k,kα)) for all N ∈ Pfin(U), all α ∈ R, and all i ∈ N .

Therefore, if a v-f reduction satisfies the five properties, then it is equal to ΨPW .

Finally, regarding the value induced by ΨPW , we notice that, for all (N, v) ∈ GN

and all i ∈ N , ΨPW
N{i}(v)({i}) = v({i}) − Shi({i}, v |{i}) + Shi(N, v) = Shi(N, v).

Therefore, ΨPW induces the Shapley value.
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Proof of Proposition 5. We prove that if Ψ satisfies proportional addition invariance

then Ψ∗ satisfies reverse-proportional addition invariance.

We first show that the dual of the game (N,w(n−k,kα)) is (N,w(k,−kα)), for

k = 1, 2, . . . , n − 1. Indeed, w∗(n−k,kα)(S) = w(n−k,kα)(N) − w(n−k,kα)(N \ S) =

−w(n−k,kα)(N \ S) = w(k,−kα)(S) for all S ⊆ N .

Then, for all α ∈ R, Ψ∗NN ′(v+
∑n−1

k=1 w(k,(n−k)α)) =
(
ΨNN ′((v+

∑n−1
k=1 w(k,(n−k)α))

∗)
)∗

=(
ΨNN ′(v

∗ +
∑n−1

k=1 w
∗
(k,(n−k)α))

)∗
=
(
ΨNN ′(v

∗ +
∑n−1

k=1 w(k,−kα))
)∗

=
(
ΨNN ′(v

∗)
)∗

=

Ψ∗NN ′(v), where the first and last equalities follow from Definition 8, the second

from the additivity of v 7→ v∗ in Lemma 1, the third from the property that the

dual of (N,w(n−k,kα)) is (N,w(k,−kα)), and the fourth from the proportional addi-

tion invariance of Ψ. Therefore, reverse-proportional addition invariance is dual to

proportional addition invariance.

Proof of the expression in Example 5. We prove that the expression for ΨPW ∗ cor-

responds to that provided in Example 5:

ΨPW ∗

NN ′ (v)(S) =
(
ΨPW
NN ′(v

∗)
)∗

(S) = ΨPW
NN ′(v

∗)(N ′)−ΨPW
NN ′(v

∗)(N ′ \ S)

=[v∗(N ′)−
∑
i∈N ′

Shi(N
′, v∗ |N ′) +

∑
i∈N ′

Shi(N, v
∗)]

− [v∗(N ′ \ S)−
∑

i∈N ′\S

Shi(N
′, v∗ |N ′) +

∑
i∈N ′\S

Shi(N, v
∗)]

=v∗(N ′)− v∗(N ′ \ S)−
∑
i∈S

Shi(N
′, v∗ |N ′) +

∑
i∈S

Shi(N, v
∗)

=[v(N)− v(N \N ′)]− [v(N)− v(N \ (N ′ \ S))]−
∑
i∈S

Shi(N
′, v∗ |N ′) +

∑
i∈S

Shi(N, v
∗)

=v(S ∪ (N \N ′))− v(N \N ′)−
∑
i∈S

Shi
(
N ′, (v∗ |N ′)∗

)
+
∑
i∈S

Shi(N, v),

where the first equality follows from Definition 8, the second from the defining

equation (2.2.2) of a dual game, the third from (1.5.2), the fifth from (2.2.2) and

the self-duality of the Shapley value, which also leads to the sixth equality.

Finally, we show that (v∗ |N ′)∗ = vN\N
′
. Consider T ⊆ N ′. By repeated applica-

tion of the definition of dual game, for all T ⊆ N ′, (v∗ |N ′)∗(T ) = v∗ |N ′ (N ′)− v∗ |N ′
(N ′ \ T ) = v∗(N ′)− v∗(N ′ \ T ) = [v(N)− v(N \N ′)]− [v(N)− v(N \ (N ′ \ T ))] =

v(T ∪ (N \N ′))− v(N \N ′) = vN\N
′
(T ).

Proof of Theorem 5. The proof of this theorem is identical to that of Theorem 3.

Proof of Theorem 6. First, we verify that ΨBan satisfies the properties. It satisfies

linearity and hence additivity because it is the composition of linear functions.
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To verify the null player out property, let i ∈ N be a null player in (N, v). Then,

for all S ⊆ N \ {i}, ΨBan
N(N\{i})(v)(S) =

∑
T⊆{i}

1
2
[v(S ∪T )− v(T )] = 1

2
v(S) + 1

2
[v(S ∪

{i}) − v({i})] = v(S), where the first equality follows from the defining equation

(1.5.5) and the second holds because i is a null player. Therefore ΨBan satisfies null

player out.

To verify that ΨBan satisfies permanent null player, suppose that i ∈ N ′ is a null

player in v ∈ GN . Then, for all S ⊆ N ′\{i}, ΨBan
NN ′(v)(S∪{i}) =

∑
T⊆N\N ′

1
2n−n′

[v((S∪
{i}) ∪ T )− v(T )] =

∑
T⊆N\N ′

1
2n−n′

[v(S ∪ T )− v(T )] = ΨBan
NN ′(v)(S), where the first

and last equalities follow from (1.5.5) and the second from the premise that i is a

null player in (N, v). Therefore ΨBan satisfies permanent null player.

To verify maximum ignorance, we substitute N ′ = N \ {i} and W = N in

equation (1.5.5), then ΨBan
N(N\{i})(αuN)(S) =

∑
T⊆{i}

1
2
[αuN(S ∪ T ) − αuN(T )] =

1
2
[αuN(S)−αuN(∅)]+ 1

2
[αuN(S∪{i})−αuN({i})] = α

2
uN(S∪{i}). Therefore ΨBan

satisfies maximum ignorance.

To verify path independence, we use the following claim:

Claim 1. For all N,N ′,W, S ∈ Pfin(U) such that N ′,W ∈ 2N \ {∅} and S ⊆ N ′,

ΨBan
NN ′(uW )(S) =

 2−|W\N
′|uW (S ∪ (W \N ′)) if S ∩W 6= ∅,

0 otherwise.
(1.9.10)

To verify the claim, we have,

ΨBan
NN ′(v)(uW )(S) =

∑
T⊆N\N ′

1

2n−n′
[uW (S ∪ T )− uW (T )]

=
∑

T⊆N\N ′:T⊇W\N ′

1

2n−n′
[uW (S ∪ T )− uW (T )]

=
∑

T ′⊆(N\N ′)\W

1

2n−n′
[uW (S ∪ (W \N ′) ∪ T ′)− uW (W \N ′)]

=
∑

T ′⊆(N\N ′)\(W\N ′)

1

2n−n′
[uW (S ∪ (W \N ′))− uW (W \N ′)]

=
∑

T ′⊆(N\N ′)\(W\N ′)

2n−n
′−|W\N ′|

2n−n′
[uW (S ∪ (W \N ′))− uW (W \N ′)]

=2−|W\N
′|[uW (S ∪ (W \N ′))− uW (W \N ′)]

=

 2−|W\N
′|[uW (W \N ′)− uW (W \N ′)] = 0 if S ∩W = ∅

2−|W\N
′|uW (S ∪ (W \N ′)) if S ∩W 6= ∅

where the first equality follows from (1.5.5), the fourth from uW (S∪(W \N ′)∪T ′) =
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uW (S ∪ (W \ N ′)) if T ′ ∩W = ∅ and the first case of the seventh from the same

reasoning, the second case of the seventh from uW (W \N ′) = 0 if S∩W 6= ∅, which

implies N ′ ∩W 6= ∅.

Then, to check path independence, first notice that equation (1.9.10) is equivalent

to

ΨBan
NN ′(uW ) =

 2−|W\N
′|uW∩N ′|N ′ if W ∩N ′ 6= ∅

0 otherwise.
(1.9.11)

Let N1, N2, N3, T ∈ Pfin(N) such that N3 ⊆ N2 ⊆ N1 and T ⊆ N1. To compute

ΨBan
N2N3

(ΨBan
N1N2

(uT )), there are three different possibilities to consider: (i) If T ⊆
N3, then ΨBan

N2N3
(ΨBan

N1N2
(uT )) = ΨBan

N2N3
(2−|T\N2|uT∩N2 |N2) = 2−|T\N2|ΨBan

N2N3
(uT∩N2 |N2

) = 2−|T\N2| · 2−|(T∩N2)\N3|u(T∩N2)∩N3 |N2|N3= 2−|T\N3|uT∩N3 |N3= ΨBan
N1N3

(uT ), where

the first, the third and the last equalities follow from equation (1.9.11) and the

second from linearity. (ii) If T * N3 and T ⊆ N2, then T ∩ N2 * N3. We

have ΨBan
N2N3

(ΨBan
N1N2

(uT )) = ΨBan
N2N3

(2−|T\N2|uT∩N2 |N2) = 2−|T\N2|ΨBan
N2N3

(uT∩N2 |N2) =

2−|T\N2| ·0 = 0 = ΨBan
N1N3

(uT ). (iii) If T * N2, then ΨBan
N2N3

(ΨBan
N1N2

(uT )) = ΨBan
N2N3

(0) =

0 = ΨBan
N1N3

(uT ). Therefore, ΨBan satisfies path independence.

We now prove the reverse implication of the theorem by showing that if the v-f

reduction Ψ satisfies the five properties, then Ψ = ΨBan. By path independence

and additivity, it suffices to show the equality restricted to one-player operators(
ΨN(N\{i})

)
, for any N ∈ Pfin(U) and i ∈ N , restricted to a set of all scalar multiples

of elements in a basis of GN . We choose the set
(
αuT

)
T∈2N\{∅},α∈R.

We show that ΨN(N\{i})(αuT ) = ΨBan
N(N\{i})(αuT ) for all T ∈ 2N \ {∅}, all α ∈ R,

and all i ∈ N by induction on the number of players n. We notice that maximum

ignorance implies that ΨN(N\{i})(αuN) = α
2
uN\{i}. Thus, we only need to check the

remaining elements in the set, that is, the games
(
αuT

)
T∈2N\{∅,N},α∈R. The proof of

this part is identical to the corresponding part of the proof of Theorem 1.

Therefore, a v-f reduction that satisfies the five properties coincides with ΨBan.

Finally, we show that ΨBan induces the Banzhaf value: ϕΨBan

i (v) = ΨN{i}(v)({i}) =∑
T⊆N\{i}

1
2n−1 [v(T ∪ {i}) − v(T )] = Bani(N, v), where the second and the third

equality follows from the defining equation (1.5.5). Therefore, Ψ induces Ban.

Proof of Proposition 8. It is easy to see that ΨX is additive as a result of the linearity

of the Shapley value. Moreover, ΨX = ΨPW if X = ∅ and ΨX = ΨHM if X = U .

Equivalently, ΨX
NN ′ = ΨPW

NN ′ if (N \N ′) ∩X = ∅; ΨX
NN ′ = ΨHM

NN ′ if (N \N ′) ∩X =

N \N ′. Therefore, the reduction of a game from N to N \{j} is different depending

on whether the removed player j belongs to X or not. Hence, ΨX does not satisfy

anonymity if X 6= ∅ and X 6= U . Finally, ΨX satisfies null player out and permanent

null player if ΨX satisfies path independence, which we show next.
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For ease of notation, for each T ⊆ 2N \ {∅}, let us define (N, eT ) ∈ GN by

eT (S) ≡ |T∩S|
t

for all S ⊆ N . It is easy to see that

ΨX
NN ′(eT ) = eT |N ′ . (1.9.12)

By linearity of ΨX , it suffices to verify the path independence of ΨX operating

on a basis
(
uT
)
T∈2N\{∅}. We need to consider three different cases of T : (i) If T ⊆

S∪((N \N ′)∩X), then ΨX
NN ′(uT )(S) =

∑
i∈S Shi(S∪((N \N ′)∩X), uT |S∪((N\N ′)∩X)

)−
∑

i∈S Shi(N
′∪((N\N ′)∩X), uT |N ′∪((N\N ′)∩X))+

∑
i∈S Shi(N, uT ) =

∑
i∈S Shi(S∪

((N \ N ′) ∩ X), uT |S∪((N\N ′)∩X)) −
∑

i∈S Shi(S ∪ ((N \ N ′) ∩ X), uT |S∪((N\N ′)∩X)

) +
∑

i∈S Shi(N, uT ) = |T∩S|
t

, where the second equality follows from Shi(S ∪ ((N \
N ′) ∩ X), uT |S∪((N\N ′)∩X)) = Shi(N

′ ∪ ((N \ N ′) ∩ X), uT |N ′∪((N\N ′)∩X)), i.e., the

null player out of the Shapley value, and the last from equal treatment of the Shap-

ley value. (ii) If T * S ∪ ((N \ N ′) ∩ X) and T ⊆ N ′ ∪ ((N \ N ′) ∩ X), then

ΨX
NN ′(uT )(S) =

∑
i∈S Shi(S ∪ ((N \ N ′) ∩ X), uT |S∪((N\N ′)∩X)) −

∑
i∈S Shi(N

′ ∪
((N \N ′)∩X), uT |N ′∪((N\N ′)∩X)) +

∑
i∈S Shi(N, uT ) = −

∑
i∈S Shi(N

′ ∪ ((N \N ′)∩
X), uT |N ′∪((N\N ′)∩X)) +

∑
i∈S Shi(N, uT ) = −

∑
i∈S Shi(N, uT ) +

∑
i∈S Shi(N, uT ) =

0, where the second equality follows from the premise T * S∪ ((N \N ′)∩X), which

implies that uT |S∪((N\N ′)∩X)= 0, and the third from null player out of the Shapley

value and the premise that T ⊆ N ′∪((N \N ′)∩X) which imply that Shi(N
′∪((N \

N ′)∩X), uT |N ′∪((N\N ′)∩X)) = Shi(N, uT ). Finally, (iii) if T * N ′∪((N\N ′)∩X), then

ΨX
NN ′(uT )(S) =

∑
i∈S Shi(S∪((N \N ′)∩X), uT |S∪((N\N ′)∩X))−

∑
i∈S Shi(N

′∪((N \
N ′) ∩ X), uT |N ′∪((N\N ′)∩X)) +

∑
i∈S Shi(N, uT ) =

∑
i∈S Shi(N, uT ) = |T∩S|

t
, where

the second equality follows from the premise, which implies that uT |S∪((N\N ′)∩X)= 0

and uT |N ′∪((N\N ′)∩X)= 0.

To sum up, if T ⊆ N ′ ∪ ((N \N ′) ∩X), for all S ⊆ N ′,

ΨX
NN ′(uT )(S) =

 0 if T * S ∪ ((N \N ′) ∩X);

|T∩S|
t

if T ⊆ S ∪ ((N \N ′) ∩X).

The previous expression means that, if T ⊆ N ′ ∪ ((N \N ′) ∩X),

ΨX
NN ′(uT ) =

|T ∩N ′|
t

uT∩N ′ |N ′ , (1.9.13)

whereas if T * N ′ ∪ ((N \N ′) ∩X),

ΨX
NN ′(uT ) = eT |N ′ . (1.9.14)

Now we can verify that ΨN2N3(ΨN1N2(uT )) = ΨN1N3(uT ) for all N1, N2, N3, S ∈
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Pfin(U) such that S ⊆ N3 ⊆ N2 ⊆ N1 and all T ⊆ N1. We have three possibilities:

(c1) T ⊆ N2 ∪ ((N1 \ N2) ∩ X) and T ∩ N2 ⊆ N3 ∪ ((N2 \ N3) ∩ X); (c2) T ⊆
N2∪((N1\N2)∩X) and T ∩N2 * N3∪((N2\N3)∩X); (c3) T * N2∪((N1\N2)∩X)

and T ⊆ N3 ∪ ((N2 \N3) ∩X).

For (c1), ΨX
N2N3

(ΨX
N1N2

(uT )) = ΨX
N2N3

( |T∩N2|
t

uT∩N2 |N2) = |T∩N2|
t

ΨX
N2N3

(uT∩N2 |N2

) = |T∩N2|
t

|T∩N2∩N3|
|T∩N2| uT∩N2∩N3 |N2|N3= |T∩N3|

t
uT∩N3 |N3= ΨX

N1N3
(uT ), where the first

and the third equalities follow from equation (1.9.13), the second from linearity of

ΨX , and the last from the fact that the premise of (c1) implies that T ⊆ N3∪ ((N1 \
N3) ∩X).

For (c2), ΨX
N2N3

(ΨX
N1N2

(uT )) = ΨX
N2N3

( |T∩N2|
t

uT∩N2 |N2) = |T∩N2|
t

ΨX
N2N3

(uT∩N2 |N2

) = |T∩N2|
t

eT∩N2 |N3= eT |N3= ΨX
N1N3

(uT ), where the first equality follows from equa-

tion (1.9.13), the second from linearity of ΨX , the third from equation (1.9.14), the

fifth from the fact that the premise of (c2) implies that T * N3 ∪ ((N1 \N3) ∩X).

For (c3), ΨX
N2N3

(ΨX
N1N2

(uT )) = ΨX
N2N3

(eT |N2) = eT |N2|N3= eT |N3= ΨX
N1N3

(uT ),

where the first and second equalities follow from equation (1.9.14), the fourth from

the fact that the premise of (c3) implies that T * N3 ∪ ((N1 \N3) ∩X).

Therefore, ΨX is path independent.

Example of a v-f reduction that does not satisfy linearity. We construct a v-f reduc-

tion that satisfies additivity, null player out, permanent null player, path indepen-

dence, but not homogeneity.

We can invoke path independence to define ΨNN ′ for any N ′ ⊆ N , once we will

determine the functions taking the form ΨN(N\{k}) such that k ∈ N . Moreover,

it suffices to construct a non-homogeneous function Ψ{i,j}{i} : G{i,j} → G{i} that

satisfies null player out, permanent null player and additivity. For concreteness, we

let the rest of functions, i.e., ΨN(N\{k}) such that k ∈ N and |N | > 2 coincide with

the subgame operator.

Denote by Q the set of all rational numbers. To define a non-homogeneous

additive function, we use the concept of R as a vector space over Q. A linear basis

of this vector space is called a Hamel basis. Let H be a Hamel basis. Then for

each γ ∈ R, we can find a unique finite set of elements {x1, . . . , xk} ⊆ H such that

γ =
∑k

j=1 cjxj where c1, . . . , ck ∈ Q\{0}. Choose an arbitrary element y ∈ H. Then

for each γ ∈ R, we can determine its corresponding coefficient (which is possibly

zero) in the expression of γ, coefficient that we denote c(γ). Thus we have a function

c : R → Q defined by the projection γ 7→ c(γ). This function is additive but not

homogeneous. Indeed, choose an arbitrary element y′ ∈ H\{y}, then αc(y) 6= c(αy)

when α = y′

y
. Moreover, this function satisfies that c(0) = 0.21

21The construction of a Hamel basis, and hence a non-linear additive function involves the axiom
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Before defining Ψ{i,j}{i}, recall that for each ({i, j}, v) ∈ G{i,j}, v can be expressed

by αu{i}+βu{j}+ γu{i,j} for some α, β, γ ∈ R. Now we define Ψ{i,j}{i}(v) as follows:

Ψ{i,j}{i}(v)({i}) ≡ α + c(γ), (1.9.15)

where α, γ ∈ R are such that v = αu{i} + βu{j} + γu{i,j} for some β ∈ R.

Notice that if i is a null player in ({i, j}, v) then v must take the form of βu{j} and

that if j is a null player in ({i, j}, v) then v must take the form of αu{i}. Therefore,

Ψ{i,j}{i} satisfies null player out and permanent null player. Moreover, it is additive

but not linear because the function c is additive but not homogeneous.

Proof of Theorem 7. We check that ΨABan = ΨBan. Indeed, for S ∈ 2N \ {∅},
ΨABan

NN ′ (v)(S) = BanS̄((N\N ′)∪{S̄}, (v |S∪(N\N ′))S) =
∑

T⊆((N\N ′)∪{S̄})\{S̄}
1

2n−n′
DS̄(v |S∪(N\N ′)

)S)(T ) =
∑

T⊆N\N ′
1

2n−n′
[(v |S∪(N\N ′))S)(T∪{S̄})−(v |S∪(N\N ′))S)(T )] =

∑
T⊆N\N ′

1
2n−n′

[(v(T∪
S)− (v(T )] = ΨBan

NN ′(v)(S), where the equalities just follow the definitions of ΨABan,

Ban, vS, and ΨBan.

Moreover, ΨBan is path independent. Therefore, the Banzhaf value is consistent

relative to ΨAϕ. Also, it is immediate that it is standard for two-player games.

For the other direction, we prove that if ϕ is consistent relative to ΨAϕ and

standard for two-player games, then ϕ = Ban. We do the proof by induction on the

number of players |N |. It holds for |N | = 2 by standardness.

Consider now (N, v) ∈ GN such that |N | > 2 and assume that ϕ = Ban for any

game with less than |N | players. Take any i ∈ N . We first note that

ΨAϕ

N(N\{i})(v)(S) = ϕS̄({i, S̄}, (v |S∪{i})S) =
v(S)

2
+
v(S ∪ {i})− v({i})

2
, (1.9.16)

where the second equality follows from standardness.

To prove that ϕj(N, v) = Banj(N, v) for any j ∈ N , take any i ∈ N such

that i 6= j. Then, ϕj(N, v) = ϕj(N \{i},ΨAϕ

N(N\{i})(v)) = Banj(N \{i},ΨAϕ

N(N\{i})) =∑
S⊆N\{i,j}

1
2n−2 [ΨAϕ

N(N\{i})(v)(S∪{j})−ΨAϕ

N(N\{i})(v)(S)] =
∑

S⊆N\{i,j}
1

2n−2 [v(S∪{j})
2

+
v(S∪{i,j})−v({i})

2
−v(S)

2
−v(S∪{i})−v({i})

2
] =

∑
S⊆N\{i,j}

1
2n−2 [v(S∪{j})−v(S)

2
+v(S∪{i,j})−v(S∪{i})

2
] =∑

T⊆N\{j}
1

2n−1 [v(T ∪{j})−v(T )] = Banj(N, v), where the first equality follows from

the consistency of ϕ, the second from the hypothesis that ϕ = Ban for games with

n − 1 players, the third and the last from the definition of the Banzhaf value, and

the fourth from the equation (1.9.16).

Proof of Theorem 8. It is easy to see by substituting the stand-alone value in ΨAϕ

that it coincides with the subgame v-f reduction Ψsub. Moreover, Ψsub is path

of choice. See Herrlich (2006).

46



independent. Thus, the stand-alone value is consistent relative to ΨAϕ.

For the other direction, we prove that ϕj(N, v) = v({j}) for j ∈ N by induction

on the number of players |N |. It holds for |N | = 2 by condition (ii) of the theorem.

Assume that the induction hypothesis holds for any game with less than n player,

with n > 2, and consider (N, v) ∈ GN with |N | = n. For any i ∈ N , we have

ΨAϕ

N(N\{i})(v)(S) = ϕS̄({i, S̄}, (v |S∪{i})S) = v(S), where the second equality follows

from (ii) of the theorem. Thus:

(N \ {i},ΨAϕ

N(N\{i})(v)) = (N \ {i}, v). (1.9.17)

Consider now any j ∈ N , and take any i ∈ N such that i 6= j. Then, ϕj(N, v) =

ϕj(N \ {i},ΨAϕ

N(N\{i})(v)) = ϕj(N \ {i}, v) = v({j}), where the first equality follows

from consistency, the second from the equation (1.9.17), and the third from the

induction hypothesis.
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Chapter 2

Bidding against a Buyout

2.1 Introduction

Game theory is traditionally divided into two branches, cooperative game theory

and non-cooperative game theory. Cooperative game theory focuses on the possible

payoffs that players may obtain in a game, taking into account the worth of the

coalitions of players and abstracting from the actions or decisions that may lead to

these payoffs. It often adopts an axiomatic or normative approach to characterize

solution concepts: it sets up a number of normative goals and derives their logical

implications. By contrast, non-cooperative game theory studies the outcome of

the interaction by individual players. A non-cooperative game models the specific

details of the interaction among the players and analyzes the final outcome of this

interaction. It adopts the strategic approach.

The previous description manifests a gap between the two branches of game the-

ory. To bridge this gap, Nash (1953) initiated the so-called Nash program: assigning

each cooperative game with an extensive-form game such that a given cooperative

solution of the former coincides with some non-cooperative solution of the later.

Since then, the Nash program has been, and still is, pursued by many authors, and

has grown into a large body of literature. One of the most important themes in this

literature is finding non-cooperative games that lead to the Shapley value of coali-

tional games as their subgame perfect Nash equilibrium outcome. Notable examples

of this theme include Gul (1989), Hart and Mas-Colell (1996), and Pérez-Castrillo

and Wettstein (2001). Moreover, some mechanisms proposed in these papers are

compatible with the theory of implementation because their rules do not depend on

the characteristic function, which only the players are supposed to know.

In this study, we design “natural” non-cooperative games, where players have

equal possibilities to propose and to reject offers. At the beginning of the mecha-
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nisms, all players are “insiders” (we call them “proposers”), but as the games pro-

ceed, some of them may be bought out. The remaining proposers will try to reach a

consensus, and if a consensus is not reached, then one of them will be bought out so

that the others can try to reach a consensus in the next stage. The inspiration for

our mechanisms comes from the phenomenon in corporation management practice

of some shareholders buying out those with misaligned interests in order to achieve

a consensus among shareholders. To facilitate a buyout, we use the Pérez-Castrillo

and Wettstein’s (2001) (PW) multibidding procedure (the PW procedure for short)

in which each player submits a bid against every other player and the player with

the highest total net bid is selected. However, in contrast to the PW setting, we

endow every player with the right to propose allocation plans simultaneously at the

beginning, which is reminiscent of the Nash (1953) demand game.1

Thus, at each stage of our mechanisms, players have the possibility of reaching

an agreement, which requires that all the proposals are identical. In case of a dis-

agreement among proposers one proposer, who is bought out by the PW procedure,

will receive the submitted bids from the other players, and his role will be degraded

to that of a respondent. This buyout process will continue until the proposers reach

a consensus. The players who are bought out may join the coalition of proposers by

accepting the consensual allocation plan.

We note that the previous description leaves the procedure of how respondents

address a consensual allocation plan unspecified. We consider two different specifi-

cations. In the first specification, a representative will be selected to accept or reject

the plan on behalf of all respondents. In this case, the respondents’ bargaining power

is vested in one of them. In the second specification, each respondent will decide

to accept or reject the plan for himself. In this case, the respondents’ bargaining

power is dispersed among them. Our main results are that the mechanism with the

first specification implements the Shapley value, whereas the mechanism with the

second specification implements the equal surplus value.

The Shapley value and the equal surplus value have been compared using the

aforementioned axiomatic and strategic approaches. Using the axiomatic approach,

Casajus and Huettner (2014) pinned down the difference between the Shapley value

and the equal surplus value by one out of four axioms. Roughly speaking, the

Shapley value of a player who never collaborates with others is equal to his individual

rational payoff, while the equal surplus value of a player who prevents collaboration

1Though it enjoys less popularity than the idea of selecting a single proposer, the possibility of
submitting simultaneous proposals is equally appealing since it treats every player symmetrically,
without referring to a specific probability distribution. See Binmore (1987) and Chatterjee and
Samuelson (1990) with regard to the Rubinstein-Stahl bargaining model.

50



within his coalition is equal to his individual rational payoff. Using the strategic

approach, Ju and Wettstein (2009) pinned down the difference between them by

constructing two mechanisms differing in the choice of who makes an offer between

the rejected proposer and the proposer. Our paper provides a new comparison of

the two values based on the strategic approach.

A remarkable by-product of Pérez-Castrillo and Wettstein’s (2001) result is re-

vealing a close connection among the Maschler and Owen’s (1989) recursive formula

of the Shapley value, the Myerson’s (1980) balanced contributions property and the

PW bidding mechanism. Similarly, we show that our two mechanisms are associated

with two new recursive formulae and two new versions of the balanced contributions

property respectively. It should be noted that the underlying recursive formula of

the first mechanism can be derived from the Maschler and Owen’s recursive formula

by the self-duality of the Shapley value in response to Ju’s (2012) suggestion that

the self-duality of the Shapley value be explored in the future research of the Nash

program.

Broadly speaking, our mechanisms belong to a class of mechanisms using the

PW procedure. In their original PW mechanism, one proposer is selected using

the PW procedure. This proposer has the right to make a proposal which will be

implemented only if the rest of players accept. Otherwise, the proposer drops out

of the game and remains alone. Several papers have considered variants of the PW

mechanism where rejected proposers are granted a second chance to return to the

coalition of active players. Ju and Wettstein (2009) considered granting only the

latest rejected proposer this option. Depending on who makes the offer in the rene-

gotiation, they constructed three mechanisms that implement the Shapley value,

the equal surplus value and the consensus value respectively. Ju (2012) allowed

all the rejected proposers’ return and constructed three mechanisms that all imple-

ment the Shapley value. Another line of research generalizes the PW mechanism to

different environments. Pérez-Castrillo and Wettstein (2005) constructed a mecha-

nism for pure exchange economies to implement the Pérez-Castrillo and Wettstein’s

(2006) ordinal Shapley value for three or less players. Macho-Stadler et al. (2006)

proposed two mechanisms for TU games with positive externalities and negative

externalities which implement two distinct generalizations of the Shapley value re-

spectively. Slikker (2007) presented three mechanims for the Jackson and Wolinsky’s

(1996) network allocation problem which implement the Myerson value, the posi-

tion value and the componentwise egalitarian rule respectively. Different from our

mechanisms, all the mechanisms mentioned above use the PW procedure to select

a single proposer each time.
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The rest of this paper is organized as follows. Section 2 provides definitions

and proves new results for the Shapley value and the equal surplus value. Section

3 constructs a mechanism and shows that it implements the Shapley value in ev-

ery subgame perfect Nash equilibrium (SPNE). Section 4 constructs a comparable

mechanism and shows that it implements the equal surplus value in SPNE. Section

5 concludes the paper with a discussion on possible variations and extensions.

2.2 Preliminaries

Let N ≡ {1, . . . , n} be the set of players. In our context, we refer to each subset

S ⊆ N as a coalition. In particular, N is called the grand coalition and any coalition

S such that |S| = 1 is called a standalone coalition.2

A coalitional game with transferrable utility (TU game) with N as the set

of players is a function v : 2N → R such that v(∅) = 0. For each coalition S ⊆ N ,

v(S) denotes the worth of coalition S in v. The worth of standalone coalition {i} is

also called player i’s individual rational payoff. The class of all TU games with

N as the set of players is denoted by GN .

A TU game v ∈ GN is 0-monotonic if for each i ∈ N and each S ⊆ N \ {i},
v(S ∪ {i}) − v(S) ≥ v({i}). A 0-monotonic TU game v ∈ GN is strictly 0-

monotonic if the inequalities are strict. A TU game v ∈ GN is supper-additive if

for each S, T ⊆ N such that S ∩ T = ∅, v(S ∪ T ) ≥ v(S)∪ v(T ). A supper-additive

TU game v ∈ GN is strictly supper-additive if the inequalities are strict. The

classes of all 0-monotonic TU games and all strictly 0-monotonic TU games are

denoted by GN0 and GN0∗ , respectively. The classes of all supper-additive TU games

and all strictly supper-additive TU games are denoted by GNs and GNs∗ , respectively.

A TU game v ∈ GN is additive if v(S) =
∑

i∈S v({i}) for all S ⊆ N . We

say that a TU game v ∈ GN is non-additive if v is not additive. It is immediate

that an additive TU game is 0-monotonic. Furthermore, it is easy to show that a

0-monotonic TU game v ∈ GN0 is additive if and only if v(N) =
∑

i∈N v({i}). We

denote by GNa the class of all additive TU games.

In this paper, we consider several ways to generate new games from a given game

v ∈ GN that will be useful for our exposition. A subgame of v ∈ GN is a game

v |2N′∈ GN
′

for some N ′ ⊆ N , where

v|2N′ (S) ≡ v(S) (2.2.1)

for all S ⊆ N ′. The worth of any coalition of N ′ in the subgame coincides with its

2Throughout this paper, |S| represents the number of players in S.
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worth in the initial game.

The dual of TU game v ∈ GN is the game v∗ ∈ GN , defined by

v∗(S) ≡ v(N)− v(N \ S), (2.2.2)

for all S ⊆ N . The dual game assigns to coalition S the worth that it is lost if S

leaves the grand coalition.

Given T ( N , the aiding game of Type I vT ∈ GN\T is defined by

vT (S) ≡ v(S ∪ T )− v(T ) (2.2.3)

for all S ⊆ N \ T . The worth of coalition S in the aiding game vT corresponds to

the surplus that S can generate together with T , once the players in T receive the

payment of v(T ). The formulation of an aiding game of Type I is due to Oishi et

al. (2016).

Given T ( N , the aiding game of Type II vT ∈ GN\T is defined by

vT (S) ≡

 v(S ∪ T )−
∑

i∈T v({i}) for S = N \ T

v(S) otherwise.
(2.2.4)

The worth of a coalition in the game vT is the same as in the original game v, except

if the coalition is the whole set N \T . In the latest case, the coalition N \T joins T

to generate the surplus v(N) and retains the surplus once the players in T receive

their individual rational payoff. The formulation of aiding game of Type II is due

to Ju and Wettstein (2009).

A value ϕ : GN → RN is a function that assigns each game v ∈ GN and each

player i ∈ N a payoff ϕi(v). The dual of value ϕ is the value ϕ∗ : GN → RN

defined by ϕ∗(v) ≡ ϕ(v∗). A value ϕ is self-dual if ϕ = ϕ∗.

The Shapley value Sh is the most popular value for TU games. It is defined

by

Shi(v) ≡
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!

[
v(S ∪ {i})− v(S)

]
(2.2.5)

for each v ∈ GN and each i ∈ N . Shapley (1953) proved that a value satisfies

additivity, null player property, equal treatment, and efficiency if and only if it is

representable as equation (2.2.5). It is well-known that the Shapley value is self-dual.

An alternative expression of the Shapley value via a recursive formula was pro-
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posed by Maschler and Owen (1989) as follows:

Shi(v) ≡

 v(N) if |N | = 1

1
n

[
v(N)− v(N \ {i})

]
+ 1

n

[∑
j∈N\{i} Shi(v |2N\{j})

]
if |N | > 1

(2.2.6)

for all i ∈ N and all v ∈ GN .

The Shapley value can be expressed in other ways. The following lemma provides

an alternative expression that will be useful for our proofs.

Lemma 4. A value φ is equal to Sh if and only if

φi(v) =

 v(N) if |N | = 1

1
n
v({i}) + 1

n

∑
j∈N\{i} φi(v

{j}) if |N | > 1
(2.2.7)

for all i ∈ N and all v ∈ GN .

Similarly to the expression (2.2.6), the formula (2.2.7) also expresses the Shapley

value of an n-player TU game v as an average: the Shapley value of player i in a

game with n players is the average of his individual rational payoff and his Shapley

values in (n− 1) aiding games of type I.

The equal surplus value ES : GN → RN is the value defined by

ESi(v) ≡ v({i}) +
1

n
[v(N)−

∑
j∈N

v({i})] (2.2.8)

for each v ∈ GN and each i ∈ N . The equal surplus value coincides with many bar-

gaining solutions if we transform a TU game into a bargaining problem by neglect-

ing the worth of every coalition that is neither the grand coalition nor a standalone

coalition.

Lemma 5 characterizes the equal surplus value in a similar way as Lemma 4

characterizes the Shapley value. It uses the aiding game of type II instead of the

aiding game of type I.3

Lemma 5 (Ju and Wettstein, 2009). A value φ is equal to ES if and only if

φi(v) =

 v(N) if |N | = 1

1
n
v({i}) + 1

n

∑
j∈N\{i} φi(v

{j}) if |N | > 1
(2.2.9)

for all i ∈ N and all v ∈ GN .4

3A proof of Lemma 5 can be found in the proof of Theorem 3.2 in Ju and Wettstein (2009).
4In fact, the recursive formula of the equal surplus value in Ju and Wettstein (2009) is slightly
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The values can also be characterized through “balanced contributions properties”

and, in this paper, we are going to propose and use new balanced contributions

properties of the Shapley and the equal sharing values. Myerson (1980) introduced

the original balanced contributions property of a value. A value φ : GN → RN

satisfies the balanced contributions property if and only if

φi(v)− φi(v|2N\{j}) = φj(v)− φj(v|2N\{i}) (2.2.10)

for all v ∈ GN and all i, j ∈ N . This property is a fairness requirement. For each

pair of players, their contributions on top of their respective reference points should

be equal. The reference point is taken as the value of playing the subgame without

the opponent player in the pair. Myerson (1980) showed that the Shapley value is

characterized by the balanced contributions property and efficiency.

Theorem 1 (Myerson, 1980). There exists a unique value φ : GN → RN satisfy-

ing the balanced contributions property and efficiency. Moreover, φ is equal to the

Shapley value.

While Myerson (1980) defined the balanced contributions property with respect

to the subgames, we formulate two analogues of balanced contribution properties of

a value using the two types of aiding games defined above.

A value φ : GN → RN satisfies the balanced contributions property of Type

I if and only if

φi(v)− φi(v{j}) = φj(v)− φj(v{i}), (2.2.11)

for all v ∈ GN and all i, j ∈ N . This property can be interpreted in the same manner

as the original balanced contributions property. The difference is in the choice of the

reference points. The reference point φi(v
{j}) can be seen as player i’s utopia point:

what can be achieved by player i with player j’s full collaboration at the cost of player

j’s individual rational payoff. Then φi(v
{j}) − φi(v) measures the dissatisfaction

of player i with φi(v) compared to his utopia point. The balanced contributions

property of Type I requires that for each pair of players, their dissatisfaction of the

value relative to their respective utopia points should be equalized.

A value φ : GN → RN satisfies the balanced contributions property of Type

II if and only if

φi(v)− φi(v{j}) = φj(v)− φj(v{j}), (2.2.12)

different:

ESi(v) =

{
v(N) if |N | = 1
1
n [v(N)− v{i}(N \ {i})] + 1

n

∑
j∈N\{i}ESi(v

{j}) if |N | > 1.

Their formula is closer to the formula (2.2.6) in spirit.
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for all v ∈ GN and for all i, j ∈ N . This property uses yet another reference point,

which is a mixture of the features of the aforementioned two choices. For the grand

coalition, its worth is the same as that of the aiding game of Type I. For the rest of

coalitions, their worth are the same as that of the subgame.

Following Myerson’s (1980), we propose two lemmas stating that the Shapley

value and the equal surplus value satisfy the balanced contributions properties of

Type I and of Type II, respectively.

Lemma 6. The Shapley value satisfies the modified balanced contributions property

of Type I.

Lemma 7. The equal surplus value satisfies the balanced contributions property of

Type II.

With the same reasoning as in the proof of Theorem 1, we characterize the Shap-

ley value (resp. the equal surplus value) by efficiency and the balanced contributions

property of Type I (resp. Type II).

Proposition 9. There exists a unique value φ : GN → RN satisfying the balanced

contributions property of Type I (resp. Type II) and efficiency. Moreover, φ is equal

to the Shapley value (resp. the equal surplus value).

In the next sections, we present two mechanisms that implement the Shap-

ley value and the equal surplus value, respectively. They use Pérez-Castrillo and

Wettstein’s (2001) technology of ordering players through bidding, which we call the

PW procedure. For completeness, we describe the PW procedure here as follows:

Each player i ∈ N chooses a vector of bids bNi ≡ (bNij )j∈N\{i} ∈ RN\{i},

which represents that player i submits a bid bNij against each player j ∈
N \ {i}. We denote player i’s total net bid by BN

i ≡
∑

j∈N\{i}(b
N
ij −

bNji).
5 Then we arrange the players in N in descending order with respect

to their corresponding total net bid and ties are broken through a fair

lottery.

In the mechanism proposed by Pérez-Castrillo and Wettstein (2001) (the PW

mechanism), the player with the highest total net bid is selected as the proposer by

the PW procedure. We denote this proposer by α. The proposer α pays the submit-

ted bid bNαj to each j ∈ N \ {α}. Then α proposes an allocation plan yN ∈ RN\{α},

while the rest of players may respond by accepting or declining it sequentially. The

5Note that by construction, the sum of all net bids is zero because
∑
i∈N B

N
i =∑

i∈N
∑
j∈N\{i}(b

N
ij − bNji) =

∑
i∈N

∑
j∈N\{i} b

N
ij −

∑
i∈N

∑
j∈N\{i} b

N
ji =

∑
(i,j)∈N×N :i 6=j b

N
ij −∑

(j,i)∈N×N :j 6=i b
N
ji = 0.
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grand coalition will form and the allocation plan yN will be implemented only if it is

accepted unanimously. It means that each player j ∈ N \ {α} receives yNj according

to the allocation plan, while the proposer α receives the residue v(N)−
∑

j∈N\{α} y
N
j .

Compared to the role of the respondents, the role of the proposer is more advanta-

geous since he can propose an allocation plan in his own favor. But this comes at a

cost: the proposer’s submitted bids have to be paid. Pérez-Castrillo and Wettstein

(2001) showed that in any SPNE, each player must be indifferent between the role

of proposer and the role of respondent. As a result, each player’s SPNE payoff is

equal to the mean of the continuation SPNE payoff corresponding to each possibility.

They observed that this equation is formula (2.2.6) in disguise.

In the next sections, we construct two mechanisms differing in the technology

of negotiation between the coalition of proposers and the coalition of respondents.

These mechanisms capture the idea that it is easier for fewer people to reach a

consensus than for more people.

2.3 A mechanism that implements the Shapley

value

In this section, we present a mechanism that implements the Shapley value. At each

stage of this mechanism, active players are divided into proposers and respondents.

If the set of respondents is non-empty, then one of the respondents represents all the

respondents to negotiate with the proposers. We describe the mechanism informally

as follows:

Mechanism A. Initially, all players are proposers and each of them puts forth an

allocation plan that specifies a payoff for each proposer. In case of consensus, the

plan will be implemented and the mechanism ends. In case of disagreement, the

PW procedure ensues among proposers. The proposer with the lowest total net bid

is selected and receives the submitted bids from the rest of proposers. The selected

player’s role is changed from proposer to respondent. As the only respondent, he

automatically becomes the representative of respondents. The mechanism goes to

the next stage.

In any non-initial stage, there are a set of proposers, a set of respondents (with a

representative of this set), and possibly a set of dropouts. Each proposer again puts

forth an allocation plan for the set of proposers.

In case of consensus among proposers, the plan is submitted to the representative

of the respondents. If the representative accepts the plan, the coalition of proposers

and the coalition of respondents merge into one coalition. Proposers receive their
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payoffs as specified in the plan and the representative receives the residue. If the

representative rejects, the coalition of proposers breaks down while the coalition of

respondents forms. Each proposer receives his individual rational payoff and the

representative receives the worth of the coalition of respondents. The mechanism

ends.

In case of disagreement among proposer, the PW procedure ensues among pro-

posers. The proposer with the lowest total net bid is selected and receives the sub-

mitted bids from the rest of proposers. The selected player will offer an amount of

money to the incumbent representative in exchange for his role as the representa-

tive. If the incumbent representative accepts, the selected player becomes the new

representative; otherwise, he quits the mechanism and receives his individual ratio-

nal payoff. The mechanism is played again with a smaller set of proposers, the same

set of respondents and the same representative.

Formally, we define Mechanism A recursively with respect to the number of

players as follows:

For n = 1, the only player receives his individual rational payoff.

For n ≥ 2, for ease of exposition, at any stage of the mechanism, the set of

players N is partitioned into a set of proposers, a set of respondents, and a set

of dropouts. A proposer is a player who has the right to put forth an allocation

plan, whereas a respondent is a former proposer who has been bought out. In

the set of respondents, there is a player who is the representative of the set and

he is entitled to accept or decline a consensual plan. A dropout is a player who

quits the game permanently by forming his own standalone coalition. At the initial

state, all the players are proposers. The initial state is denoted by (N,∅,∅). A

non-initial state is characterized by a vector (P,R,D, βR), where P,R,D ⊆ N and

βR ∈ R denote the sets of proposers, respondents, dropouts, and a representative

of the respondents, respectively. To sum up, the set of all non-initial states is

{(P,R,D, βR) ∈ 2N × 2N × 2N × N | P,R,D are mutually disjoint;|P | ≥ 1; |R| ≥
1;P ∪ R ∪ D = N ; βR ∈ R}. In particular, a terminal state is a non-initial state

(P,R,D, βR) such that |P | = 1. Mechanism A proceeds as follows:

We distinguish between the initial state and non-initial states.

At the initial state (N,∅,∅), an order on N is fixed beforehand. Player

m ∈ N is the last player in this order. Each player i ∈ N proposes an

allocation plan yNi ≡ (yNik)k∈N ∈ RN . Proposals are simultaneous. There

are two cases:

Case 1. If the proposers reach a consensus, which means that there exists
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yN = yNi for all i ∈ N , then the consensual allocation plan yN

is implemented according to the order: Each player j ∈ N \ {m}
receives yNj , while the last player m receives the residual v(N) −∑

j∈N\{m} y
N
j . The mechanism ends.

Case 2. If they do not reach a consensus, then the proposers play the PW

procedure. The procedure selects αn ∈ argmini∈N B
N
i . Then, every

player i ∈ N \ {αn} pays the submitted bid bNiαn to the player

αn. Now player αn is bought out and becomes a respondent. He

automatically is the representative of the set of respondents (which

only has one member). We rename the new representative αn by

β{α
p}. The state changes to (N \ {αn}, {αn},∅, β{αn}).

At each non-initial state (P,R,D, βR), each proposer i ∈ P puts forth an

allocation plan for the set of proposers: yPi ≡ (yPik)k∈P ∈ RP . Proposals

are simultaneous. Again, there are two cases:

Case 1′. If the players in P reach a consensus, which means that there exists

yP = yPi for all i ∈ P , then the consensual allocation plan yP

is left up to representative βR to decide. If βR accepts, then the

coalitions P and R merge and yP is implemented as follows: each

player i ∈ P receives yPi and representative βR receives the residual

v(P ∪ R) −
∑

j∈P y
P
j . If βR declines, the coalition P breaks down

and the coalition R forms. Each player i ∈ P receives yPi and

representative βR receives v(R). The mechanism ends.

Case 2′. If they do not reach a consensus, a proposer will be bought out by

the same PW procedure (Stage I). Then this player negotiates with

the incumbent representative to decide who is the new representa-

tive (Stage II).

Stage I. By the PW procedure, a player αp ∈ argmini∈P B
P
i is selected.

Once selected, every player i ∈ P \ {αp} pays the submitted

bid bPiαp to player αp. Player αp is bought out.

Stage II. Player αp makes an offer zp ∈ R to the incumbent represen-

tative βR. If βR accepts αp’s offer, then αp becomes the new

representative of the set of respondents. The new represen-

tative αp is renamed βR∪{α
p}, and the state changes to (P \

{αp}, R ∪ {αp}, D, βR∪{αp}); otherwise, αp becomes a dropout,

and the state changes to (P \ {αp}, R,D ∪ {αp}, βR).
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We notice that the mechanism ends in a maximum of n rounds. Indeed, in each

round either there is a consensus among players in P , in which case the mechanism

goes to Case 1 or Case 1′ and it ends; or there is a disagreement, in which case the

mechanism goes to Case 2 or Case 2′, and the set of proposers in the next round

has one player less. If the game reaches a terminal state, where |P | = 1 then the

mechanism necessarily goes to Case 1′ or Case 2′ and it ends in both cases.

We show in Theorem 2 that the payoff vector of every SPNE of Mechanism A is

equal to the Shapley value of v in the set of strictly 0-monotonic TU games.

Theorem 2. Mechanism A implements the Shapley value for all strictly 0-monotonic

TU games v ∈ GN0∗ in SPNE.

We notice that while Theorem 2 states that the payoff vector of every SPNE

is the Shapley value, it does not ensure the uniqueness of the SPNE that leads

to that payoff vector. In fact, in contrast to the PW mechanism, the SPNE of

Mechanism A applied to strictly 0-monotonic TU games is not unique. In the proof

of the theorem, we propose a strategy profile (which we denote by σ) which is an

SPNE of Mechanism A. We now propose an example of an alternative SPNE: at

each state where the set of players is P and the set of respondents is R, each player

i ∈ P proposes an identical allocation plan yP = Sh
(
(v|P∪R)R

)
. If there exists a

representative βR ∈ R, βR accepts any allocation plan yP such that
∑

i∈P y
P
i ≤ v(R)

and declines otherwise. The rest of strategies such as players’ bids are the same as σ.

In this SPNE, the mechanism ends at the very beginning: each player proposes an

identical allocation plan equal to the prescription of the Shapley value and receives

what they propose afterwards.

We also notice that Theorem 2 cannot be extended to all 0-monotonic TU games:

Remark 2. Theorem 2 cannot be extended to all 0-monotonic TU games for |N | ≥
3.

2.4 A mechanism that implements the equal sur-

plus value

In this section, we present a comparable mechanism that implements the equal

surplus value. We first describe it informally as follows:

Mechanism B. The mechanism is identical to Mechanism A except for the following

two aspects:

60



1. The role of the representative of the set of respondents is absent and there are

no dropouts.

2. The proposers’ allocation plan specifies a payoff for every player, not just for

the proposers. A proposers’ consensual allocation plan is left to each respondent

to decide sequentially.

Formally, let each state be denoted by P ∈ 2N \ {∅}.

For n = 1, the only player receives his individual rational payoff.

For n ≥ 2, at each state P , an order on N is fixed beforehand. Player

m ∈ P is the last player in this order. Each proposer i ∈ P puts forth

an allocation plan yPi ≡ (yPik)k∈N ∈ RN . There are two cases:

Case 1. If the proposers in P reach a consensus, which means there exists

yP = yPi for all i ∈ P , the consensual allocation plan yP is left to

every respondent j ∈ N \P to decide sequentially. Each respondent

may accept or decline the plan. Let the set of respondents who

accept the plan be denoted byQ. Coalitions P andQmerge into one

coalition. Then the allocation plan yP is implemented according to

the order as follows: each player j ∈ (P ∪ Q) \ {m} receives yPj ,

while the last player m receives the residual v(P∪Q)−
∑

j∈N\{m} y
P
j .

Each player k ∈ N \ (P ∪ Q) forms his own standalone coalition

and receives his individual rational payoff v({k}). The mechanism

ends.

Case 2. If they do not reach a consensus, then by the PW procedure, select

αp ∈ argmini∈P B
P
i , where in the case of a nonunique minimizer, αp

is randomly chosen among the minimizing indices. Once selected,

every player i ∈ P \ {αp} pays his submitted bid bPiαp to player αp.

Player αp is bought out. The state changes to P \ {αp}.

We show in Theorem 3 that given any 0-monotonic TU game v ∈ GN0 , the payoff

vector of every SPNE of Mechanism B is equal to the equal surplus value of v.

Theorem 3. Mechanism B implements the equal surplus value for every 0-monotonic

TU game v ∈ GN0 in SPNE.

Like Mechanism A, the constructed SPNE σ′ of Mechanism B is not unique

either. An alternative SPNE that the mechanism ends in the beginning can be

constructed similarly.
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2.5 Conclusion

This paper introduces two new mechanisms that implement the Shapley and the

equal surplus values. In these mechanisms, each player is allowed to propose an

allocation plan for every player in the beginning. The plan will be implemented only

when the proposers’ plans are consensual. In case of a disagreement, one player will

be bought out by the PW procedure: this player receives the submitted bids from

the rest of players and reduces his right to propose a plan to the right to accept or

decline a consensual plan. Then the proposing stage repeats. The game will continue

until a consensual plan emerges. If the players who are bought are represented by

one of them in the negotiation with the proposers, then the mechanism implements

the Shapley value. On the other hand, if each player who is bought out negotiates

with the proposers for himself, then the mechanism implements the equal surplus

value.

Just as the mechanism proposed in Pérez-Castrillo and Wettstein (2001), our two

mechanisms are applicable to TU games with externalities. De Clippel and Serrano

(2008) pointed out that the PW mechanism implements the Pham Do and Norde’s

(2007) externality-free value for all 0-monotonic TU games with externalities. Sim-

ilarly, it is immediate that Mechanism A implements the externality-free Shapley

value for all convex TU games with externalities as well.6 It is worth mentioning

that the externality-free value can be expressed as the Shapley value of a derived TU

game without externalities. The worth of each coalition of the derived TU game is

equal to the worth of the same coalition embedded in the finest coalition structure.

Moreover, we believe that the idea of using the PW procedure to put a player

in jeopardy is not only useful for implementing the Shapley value and the equal

surplus value. For example, we may consider combining our mechanisms and the

PW mechanism. To be precise, we can use the PW procedure to designate the

player with the highest total net bid as the proposer. This selected player pays

his submitted bid to each of the rest of players and proposes an allocation plan

for everyone, which is the same as in the original PW mechanism. The difference

appears when the allocation plan of the proposer is rejected by some player. Then

the PW procedure follows. But this time, the player with the lowest total net bid

is selected. This player receives the submitted bid from the rest of players and

drops out of the game with his individual rational payoff. The game restarts with

the remaining players. Notice that this mechanism can be viewed as a counterpart

of Calvo’s (2008) multilateral bargaining model with random removal breakdown.

We conclude this paper with the conjecture that this described mechanism also

6See Hafalir (2007) for a definition of convexity of TU games with externalities.
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implements the Nowak and Radzik’s (1994) solidarity value.

2.6 Appendix

Proof of Lemma 4. For |N | > 1, the formula (2.2.7) can be derived as follows:

1

n
v({i}) +

1

n

∑
j∈N\{i}

Shi(v
{j})

=
1

n
[v∗(N)− v∗(N \ {i})] +

1

n
[
∑

j∈N\{i}

Shi(v
∗ |2N\{j}

∗)]

=
1

n
[v∗(N)− v∗(N \ {i})] +

1

n
[
∑

j∈N\{i}

Shi(v
∗ |2N\{j})]

=Shi(v
∗) = Shi(v),

where the first equality follows from the definition of the dual game and that for

all S ⊆ N \ {j}, v∗ |2N\{j}
∗(S) = v∗ |2N\{j}(N \ {j}) − v∗ |2N\{j}((N \ {j}) \ S) =

v∗ |2N\{j}(N \ {j}) − v∗ |2N\{j}(N \ (S ∪ {j})) = v∗(N \ {j}) − v∗(N \ (S ∪ {j})) =

[v(N)− v({j})]− [v(N)− v(S ∪ {j})] = v(S ∪ {j})− v({j}) = v{j}(S); the second

and fourth from the self-duality of the Shapley value; and the third is an application

of the formula (2.2.6).

Proof of Lemma 6. We derive this property from the balanced contributions prop-

erty of the Shapley value: Shi(v) − Shi(v|2N\{j}) = Shj(v) − Shj(v|2N\{i}) =⇒
Shi(v

∗)− Shi(v∗|2N\{j}) = Shj(v
∗)− Shj(v∗|2N\{i}) =⇒ Shi(v)− Shi(v∗|2N\{j}

∗) =

Shj(v) − Shj(v∗|2N\{i}
∗) =⇒ Shi(v) − Shi(v{j}) = Shj(v) − Shj(v{i}), where the

first implication follows from substituting v with v∗, the second from the self-duality

of the Shapley value, and the third from a property that is included in the proof of

Lemma 4: v∗|2N\{j}
∗ = v{j}.

Proof of Lemma 7. ESi(v)−ESi(v{j}) = v({i})+ 1
n
[v(N)−

∑
k∈N v({k})]−{v({i})+

1
n−1

[v{j}(N \ {j}) −
∑

k∈N\{j} v
{j}({k})]} = v({i}) + 1

n
[v(N) −

∑
k∈N v({k})] −

{v({i})+ 1
n−1

[v(N)−v({j})−
∑

k∈N\{j} v({k})]} = v({i})+ 1
n
[v(N)−

∑
k∈N v({k})]−

{v({i})+ 1
n−1

[v(N)−
∑

k∈N v({k})]} = − 1
n(n−1)

[v(N)−
∑

k∈N v({k})], where the first

equality follows from the defining formula (2.2.8) of the equal surplus value and the

second from the defining formula (2.2.4) of the aiding game of Type II. The expres-

sion implies that ESi(v)−ESi(v{j}) is independent of i and j. Therefore the equal

surplus value satisfies the balanced contributions property of Type II.

Proof of Proposition 9. We use the same argument as in the proof of the theorem in

Myerson (1977). We prove the equivalence using the balanced contributions property
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of type I; the proof of the result for the balanced contributions property of Type

II is similar. By Lemma 6, the Shapley value satisfies efficiency and the modified

balanced contributions property of Type I. For the opposite direction, we verify the

uniqueness by an induction on the number of players |N |. For |N | = 1, the value is

uniquely pinned down by efficiency. For |N | > 1 and two distinct players i, j ∈ N ,

φj(v) = φi(v) + [φj(v
{i})− φi(v{j})] = φi(v) + [Shj(v

{i})−Shi(v{j})], where the first

equality follows from the balanced contributions property of Type I and the second

from the induction hypothesis. By efficiency, we have
∑

k∈N φk(v) = v(N). Then

nφi(v) +
∑

j∈N\{i}[Shj(v
{i})− Shi(v{j})] = v(N). Therefore, φi(v) is unique.

Proof of Theorem 2. We first construct a strategy profile for Mechanism A, which

we denote by σ, and we will verify that it constitutes an SPNE when applied to

strictly 0-monotonic TU games. Second, we calculate the payoff vector of σ in the

subgame starting at each state. In particular, we show that the payoff vector of σ

coincides with the Shapley value. Finally, we show that the payoff vector of every

SPNE is equal to that of σ in the subgame starting at each state.

The strategy profile σ is constructed as follows:

1. At the initial state (N,∅,∅), each player i ∈ N proposes an allocation plan yNi

such that yNij = −C for all j ∈ N \ {i} and yNii = C, where C is a large enough

positive number. Then each player i ∈ N submits a bid bNij = Shi(v)−Shi(v{j})
against each j ∈ N \ {i}.

2. At a terminal state ({p}, R,D, βR), player p proposes an allocation plan y{p}

(which is automatically consensual) such that y
{p}
p = v(R ∪ {p}) − v({p}).

Representative βR accepts if p’s proposal satisfies y
{p}
p ≤ v(R ∪ {p}) − v(R)

and declines otherwise.

3. At any state (P,R,D, βR) such that 1 < |P | < n, each i ∈ P proposes an

allocation plan yPi such that yPij = −C for all j ∈ P \ {i} and yPii = C. Then

each player i ∈ P submits a bid bPij = Shi
(
(v|2P∪R)R∪{j}

)
− Shi

(
(v|2P∪R)R

)
against each j ∈ P \ {i}. Player αp ∈ P who is selected by the PW procedure

offers zp = v(R) to representative βR. βR accepts αp’s offer if it satisfies

zp ≥ v(R) and declines otherwise.

We verify that the strategy profile σ constitutes an SPNE by an induction on the

number of proposers.

Regarding the terminal states, which are states with a single proposer, we prove

the following result, which implies in particular that σ constitutes an SPNE if |P | =
1.
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Claim 2. In any SPNE, at a terminal state ({p}, R,D, βR), the player p proposes

an allocation plan y{p} such that y
{p}
p = v(R∪ {p})− v({p}). The representative βR

accepts the plan if p’s plan satisfies y
{p}
p ≤ v(R∪{p})−v(R) and declines otherwise.

To prove Claim 2, notice that given a strictly 0-monotonic TU game v ∈ GN0∗ ,
at any terminal state ({p}, R,D, βR), in any SPNE, representative βR declines any

allocation plan y
{p}
p > v(R ∪ {p}) − v(R) and accepts any allocation plan y

{p}
p <

v(R ∪ {p}) − v(R) from p. This holds because the payoff of representative βR is

v(R∪ {p})− y{p}p in case of acceptance (where coalitions R and {p} merge, player p

receives y
{p}
p , and player βR receives the residue of v(R ∪ {p})), whereas his payoff

is v(R) (the worth of the coalition he represents) in case of rejection.

Moreover, a proposal such that y
{p}
p < v(R ∪ {p}) − v(R) cannot be part of an

equilibrium. Such an offer would be accepted but p would have an incentive to

increase y
{p}
p by a sufficiently small amount and propose another acceptable offer

with a higher payoff for himself. Also, a proposal that is rejected cannot be part of

an SPNE due to the strict 0-monotonicity of the game: p would have an incentive to

propose an acceptable offer close to v(R∪{p})−v(R). Hence, y{p} > v(R∪{p})−v(R)

cannot be part of an SPNE. Therefore, at a terminal state ({p}, R,D, βR), in any

SPNE, it has to be the case that p’s allocation plan is y
{p}
p = v(R ∪ {p})− v(R).

Finally, at equilibrium, representative βR should accept the allocation plan if

y
{p}
p = v(R ∪ {p}) − v(R). Otherwise, the proposer would have an incentive to

slightly increase the offer. Hence, at equilibrium, the representative accepts any

allocation plan that satisfies y
{p}
p ≤ v(R∪{p})−v(R) and declines otherwise, which

ends the proof of Claim 2.

Once we have stated the unique SPNE strategies that can be played at a terminal

state, we proceed to consider a non-terminal state with a set of proposers P such

that |P | > 1.

First, using a similar reasoning as in the proof of Claim 2, we can state the

following claim (whose proof is omitted):

Claim 3. In any SPNE, at any non-initial state (P,R,D, βR) such that |P | > 1,

if the proposers in P reach a consensual allocation plan yP , then βR accepts the

plan if it satisfies that
∑

i∈P y
P
i ≤ v(P ∪ R) − v(R) and declines otherwise. If they

don’t reach a consensus, then the player αp ∈ P selected by the PW procedure offers

zp = v(R) to representative βR. Moreover, βR accepts any offer zp ≥ v(R) and

declines otherwise.

We now verify that the constructed strategy profile σ constitutes an SPNE in

the subgame starting at a non-terminal state with a set of proposers P and a set of
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respondents R.

First, no player i ∈ P has an incentive to change his proposed allocation plan.

This is true because a consensus cannot be reached by a unilateral deviation for

|P | ≥ 3 and, if |P | = 2, then a proposer has no incentive to change his proposed

allocation plan to match his opponent’s proposed allocation.7

Second, no player has an incentive to change his submitted bid vector either. No-

tice that by Lemma 6, bPij−bPji = (Shi
(
(v|2P∪R)R∪{j}

)
−Shi

(
(v|2P∪R)R

)
)−(Shj

(
(v|2P∪R)R∪{i}

)
−

Shj
(
(v|2P∪R)R

)
) = 0 for all i, j ∈ P , thus BP

i =
∑

j∈N\{i}(b
P
ij − bPji) = 0 for all i ∈ P .

Thus, the bids proposed in σ lead to a tie.

To see that a proposer has no incentive to change his submitted bids, we denote

the bid vector and the total net bid for each proposer k ∈ P by bPk and BP
k ,

respectively. As we have shown, BP
k = 0 for all k ∈ P . Suppose that proposer i ∈ P

changes his bid bPi to b̄Pi . We denote the proposer k’s total net bid resulting from

proposer i’s change by B̄P
k for each k ∈ P . We differentiate two cases depending on

whether or not player i himself is selected by the PW procedure after the change in

bids. If player i himself is selected, player i receives
∑

j∈P\{i} b
P
ji, which is unchanged.

If some proposer j ∈ P \ {i} is selected, it must be the case that B̄P
j ≤ 0 (because

if B̄P
j > 0, then there exists k ∈ P such that B̄P

j < 0 by
∑

l∈P B̄
P
l = 0 as shown in

footnote 5, which implies proposer j cannot be selected). Thus B̄P
j −BP

j ≤ 0 which

implies b̄Pij − bPij ≥ 0. The payment of proposer i cannot increase in this case. In

neither case, does a proposer have an incentive to change his bid vector. Therefore,

the constructed strategy profile σ constitutes an SPNE.

Now we calculate the payoff vectors of σ in the subgame starting at each state.

The result is summarized in the following claim:

Claim 4. Given a state where the set of proposers is P and the set of respondents

is R, the payoff of each proposer i ∈ P in σ in the subgame starting at this state is

Shi
(
(v|2P∪R)R

)
. If there exists a representative βR ∈ R, the payoff of βR is v(R).

We prove this claim by an induction on the number of proposers |P |. For |P | = 1,

it follows from Claim 2 that the payoff of proposer p is v(R∪ {p})− v(R). We have

v(R ∪ {p}) − v(R) = (v|2R∪{p})R({p}) = Shp
(
(v|2R∪{p})R

)
. By Claim 2, it is also

immediate that the payoff of βR is v(R).

7 If |P | = 2, a player’s payoff if he matches his opponent’s proposed allocation plan is at most
his individual rational payoff. To see this, we distinguish two cases. First, if it is an initial state,
it depends on whether or not the proposer is the last player in the fixed order. If the proposer is
the last player, his payoff is the residue v(N) − C; otherwise, his payoff is −C according to the
plan. Second, if it is at a non-initial state, it depends on whether or not the resulting consensual
allocation plan is accepted. If the resulting consensual allocation plan is accepted, his payoff is
−C according to the plan; otherwise, his payoff is his individual rational payoff.

66



Then we consider a state where the set of proposers is P such that |P | > 1, the

set of respondent is R, and the set of dropouts is D. The induction hypothesis states

that the payoff of player i ∈ P in σ is equal to Shi
(
(v|2P∪R)R∪{j}

)
in the subgame

starting at the state (P \{j}, R∪{j}, D, βR∪{j}), where βR∪{j} = j for each j ∈ P \{i}
according to σ; and the payoff of player i ∈ P is equal to v(R ∪ {i})− v(R) in σ in

the subgame starting at the state (P \ {i}, R ∪ {i}, D, βR∪{i}), where βR∪{i} = i.

When the players in P play according to σ, there is no consensual plan. There-

fore, the payoff of proposer i ∈ P comes from the subgame played in the PW

procedure. The payoff of proposer i in σ in the subgame starting at the state un-

der consideration is Shi
(
(v|2(P\{j})∪(R∪{j}))R∪{j}

)
− bPij = Shi

(
(v|2P∪R)R∪{j}

)
− bPij =

Shi
(
(v|2P∪R)R∪{j}

)
− [Shi

(
(v|2P∪R)R∪{j}

)
− Shi

(
(v|2P∪R)R

)
] = Shi

(
(v|2P∪R)R

)
) if j

is selected by the PW procedure, for each j ∈ P \ {i}. Similarly, i’s payoff is

v(R∪{i})−v(R)+
∑

j∈P\{i} b
P
ji = v(R∪{i})−v(R)+

∑
j∈P\{i}[Shj

(
(v|2P∪R)R∪{i}

)
−

Shj
(
(v|2P∪R)R

)
] = v(R∪{i})−v(R)+

∑
j∈P\{i} Shj

(
(v|2P∪R)R∪{i}

)
−
∑

j∈P\{i} Shj
(
(v|2P∪R)R

)
=

v(R∪{i})− v(R) + [v(P ∪R)− v(R∪{i})]− [v(P ∪R)− v(R)−Shi
(
(v|2P∪R)R

)
] =

Shi
(
(v|2P∪R)R

)
if i is selected by the PW procedure. In both cases, proposer i ∈ P

receives Shi
(
(v|2P∪R)R

)
in σ in the subgame starting at this state. Moreover, it is

immediate that the payoff of βR is v(R) by Claim 3.

By letting P = N and R = ∅, Claim 4 implies that Mechanism A leads to the

Shapley value if players play the SPNE σ.

Before extending Claim 4 from the particular SPNE σ to every SPNE of Mech-

anism A, we need the following two properties that are satisfied by every SPNE.

Claim 5. In any SPNE of Mechanism A, at any state where the set of proposers is

P such that |P | ≥ 2, the total net bid BP
i is equal to 0 for each i ∈ P .

To prove Claim 5, we first recall that we have shown that the sum of each

proposer’s total net bid
∑

k∈P B
P
k is equal to 0 in footnote 5. If there exists i ∈ P

such that BP
i 6= 0, then there exist two distinct players j, k ∈ P such that BP

j > 0

and BP
k < 0. In this case, player j would be strictly better off by lowering each

of his bids with an equal small enough amount, which would not change the set of

potential winners but would decrease his payment to the winner. Therefore, in any

SPNE of the mechanism A, BP
i = 0 for all v ∈ GN0∗ .

In brief, Claim 5 states that the bids proposed in σ must result in a tie in every

SPNE. It implies that in any SPNE, each proposer is indifferent between who is

selected by the PW procedure if no consensus is reached. Formally, this property is

stated as follows:

Claim 6. In any SPNE of Mechanism A, at any state where the set of proposers is
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P such that |P | ≥ 2, if no consensus is reached, proposer i’s payoff resulting from

proposer j being selected and his payoff resulting from proposer k being selected by

the PW procedure are equal for all i, j, k ∈ P .

We prove the claim by contradiction. Suppose that there exist i, j, k ∈ P such

that proposer i’s payoff resulting from proposer j being selected is strictly higher

than his payoff resulting when proposer k is selected by the PW procedure. Without

loss of generality, we assume further that proposer i’s payoff when proposer j is

selected is not lower than his payoff when any other player in P is selected and

that proposer i’s payoff when proposer k is selected is not higher than his payoff

when any other player in P is selected. We need to consider two cases depending

on whether i = j. First, if i = j, proposer i has an incentive to decrease bPih for all

h ∈ P \{i} to ensure that he is selected. Second, if i 6= j, proposer i has an incentive

to increase bPij to ensure proposer j is selected and his subsequent payment to j is

small enough. In either case, proposer i has a profitable deviation. Therefore, a

proposer is indifferent between which proposer is selected in every SPNE.

Now we are ready to extend Claim 4 to every SPNE:

Claim 7. Given a state where the set of proposers is P and the set of respondents

is R, the payoff of each proposer i ∈ P in every SPNE in the the subgame starting

at this state is Shi
(
(v|2P∪R)R

)
. If there exists βR ∈ R, the payoff of βR is v(R).

We prove this result by an induction on the number of proposers |P |. By Claim

2, it is immediate that the result is true for all terminate states, i.e. the states such

that |P | = 1.

Consider a state where the set of proposers is P , the set of respondent is R and

the set of dropouts is D such that |P | > 1. If no consensus is reached, the state

changes to (P \{j}, R∪{j}, D, βR∪{j}), where βR∪{j} = j by Claim 3, for some j ∈ P .

The induction hypothesis states that at the state (P \ {j}, R ∪ {j}, D, βR∪{j}), the

payoff for each i ∈ P \ {j} is Shi
(
(v|2P∪R)R∪{j}

)
in every SPNE in the subgame

starting at (P \ {j}, R ∪ {j}, D, βR∪{j}) and the payoff for the representative j is

v(R∪{j}) in every SPNE in the subgame starting from (P \{j}, R∪{j}, D, βR∪{j}).
Any SPNE must fit in one of three cases: (I) each player i ∈ P proposes an

identical allocation plan yP such that
∑

i∈P y
P
i ≤ v(P ∪R)− v(R); (II) each player

i ∈ P proposes an identical allocation plan yP such that
∑

i∈P y
P
i > v(P ∪R)−v(R);

(III) there exist two distinct players i, j ∈ P such that yPi 6= yPj .

Consider Case III. By Claim 16, in any SPNE, it has to be the case that each

player i ∈ P is indifferent between being selected or not by the PW procedure.

This means that v(R ∪ {i})− v(R) +
∑

j∈P\{i} b
P
ji = Shi

(
(v|2P∪R)R∪{k}

)
− bPik for all
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i ∈ P and k ∈ P \ {i}. Thus player i is certain to obtain the average of the total

payoff 1
p
[v(R ∪ {i}) − v(R) +

∑
j∈P\{i} b

P
ji] + 1

p

∑
k∈P\{i}[Shi

(
(v|2P∪R)R∪{k}

)
− bPik] =

1
p
[v(R∪{i})−v(R)]+ 1

p

∑
k∈P\{i} Shi

(
(v|2P∪R)R∪{k}

)
− 1

p
BP
i = 1

p
[v(R∪{i})−v(R)]+

1
p

∑
k∈P\{i} Shi

(
(v|2P∪R)R∪{k}

)
= Shi

(
(v|2P∪R)R

)
, where the penultimate equality fol-

lows from Claim 5 and the last equality from Lemma 4 by letting v = (v|P∪R)R.

Therefore, the payoff vector of any SPNE that fits in the Case III is equal to the

payoff vector of σ.

Concerning Case II, by Claim 3, βP will reject the consensual allocation plan

yP . Then the coalition P breaks down. The sum of payoffs of players in P is∑
i∈P v({i}). On the other hand, if no consensus were reached, the sum of payoffs of

proposers in P would be
∑

i∈P Shi
(
(v|2P∪R)R

)
= v(P ∪R)− v(R), which is strictly

higher than
∑

i∈P v({i}) by strict 0-monotonicity. Hence, some player in P has an

incentive to obstruct this allocation plan by proposing a different allocation plan.

Thus, there exists no SPNE that fits in the Case II.

Similarly, for Case I, if the consensual allocation plan is such that yP 6= Sh
(
(v|P∪R)R

)
and

∑
i∈P y

P
i ≤ v(P ∪R)−v(R), then some player in P has an incentive to obstruct

the allocation plan. Therefore, the payoff vector of any SPNE that fits the Case I

must be equal to that of σ.

Hence, we have proven that the payoff of each proposer i ∈ P in every SPNE in

the subgame starting at this state is Shi
(
(v|2P∪R)R

)
. By letting P = N and R = ∅,

the payoff vector of every SPNE is equal to the Shapley value of v.

Therefore, given any strictly 0-monotonic TU game v, there exists an SPNE of

Mechanism A and the payoff vector of every SPNE is equal to the Shapley value of

v.

Proof of Remark 2. Consider a three-player unanimity game u{1,2,3} ∈ G{1,2,3}, which

is defined by

u{1,2,3}(S) =

 1 if S = {1, 2, 3};

0 otherwise.

It is worth mentioning that u{1,2,3} is both 0-monotonic and supper-additive. Let C

be a large enough positive number. We construct an SPNE as follows:

1. For the initial state ({1, 2, 3},∅,∅), player 1 proposes (C,−C,−C); player

2 proposes (−C,C,−C); player 3 proposes (−C,−C,C). Then, each player

i ∈ {1, 2, 3} submits a bid b
{1,2,3}
ij = 0 against each j ∈ {1, 2, 3} \ {i}.

2. For a terminal state ({p}, R,D, βR), the player p proposes an allocation plan

y{p} = u{1,2,3}(R ∪ {p}). Representative βR accepts if p’s proposal y{p} ≤
u{1,2,3}(R ∪ {p}) and declines otherwise.
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3. For ({i, j}, {k},∅, k) where i, j, k ∈ {i, j, k} are distinct, player i proposes

y
{i,j}
ii = C and y

{i,j}
ij = −C; player j proposes y

{i,j}
ji = −C and y

{i,j}
jj = C.

Player i submits a bid b
{i,j}
ij = 0 against player j; player j submits a bid

b
{i,j}
ji = 0 against player i. Let α2 ∈ {i, j} denote the player who is selected

by the PW procedure. α2 offers z2 = 0 to representative k. Representative k

accepts α2’s offer if z2 > 0 and declines otherwise.

It is easy to check that the proposed strategy profile constitutes an SPNE of

Mechanism A. Moreover, the payoff vector of the above SPNE is (0, 0, 0), which is

not equal to Sh(u{1,2,3}) = (1
3
, 1

3
, 1

3
). Therefore, it is not the case that Mechanism A

implements the Shapley value in every SPNE when |N | ≥ 3.

Proof of Theorem 3. As with Mechanism A, we first construct a strategy profile

for Mechanism B, denoted by σ′, and we verify that it constitutes an SPNE of

Mechanism B when applied to 0-monotonic TU games. Second, we calculate the

payoff vector of σ′ in the subgame starting at each state. In particular, we prove

that the payoff vector of σ′ coincides with the equal surplus value. Finally, we show

that the payoff vector of every SPNE is equal to that of σ′ in the subgame starting

at each state.

The strategy profile σ′ is constructed as follows:

1. At each non-terminal state P ∈ 2N \ {∅}, each player i ∈ P proposes an

allocation plan yPi such that yNij = −C for all j ∈ N \ {i} and yPii = C, where

C is a large enough positive number. Then each player i ∈ P submits a bid

bPij = ESi(v
N\(P\{j}))− ESi(vN\P ) against each j ∈ P \ {i}.

2. At each terminal state {p}, player p proposes an allocation plan y{p} (which is

automatically consensual) such that y
{p}
p = ESp(v

N\{p}) = v(N)−
∑

j∈N\{p} v({j})
and y

{p}
k = v({k}) for each k ∈ N \ {p}. Each player k ∈ N \ {p} accepts y{p}

if y
{p}
k ≥ v({k}) and declines otherwise.

We verify that the strategy profile σ′ constitutes an SPNE by an induction on

the number of proposers.

Regarding the terminal states which are states with a single proposer, we prove

the following result that is valid for every SPNE:

Claim 8. Given a non-additive 0-monotonic TU game v ∈ GN0 , in any SPNE, at a

terminal state {p}, the proposer p puts forth an allocation plan y{p} such that y
{p}
p =

ESp(v
N\{p}) = v(N) −

∑
j∈N\{p} v({j}) and y

{p}
k = v({k}) for each k ∈ N \ {p}.

Each respondent k ∈ N\{p} accepts the plan if it satisfies y
{p}
k ≥ v({k}) and declines

otherwise.
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The proof of Claim 8 is identical to the proof of Claim 2, and so we omit it. The

strategies specified by Claim 8 also constitute part of an SPNE of Mechanism B

applied to additive TU games, though the uniqueness is lost. Every SPNE strategies

yields the same payoff in any subgame starting at a terminal state.

Claim 8′. Given an additive TU game v ∈ GNa , in any SPNE, in any subgame

starting at a terminal state {p}, each player i ∈ N receives his individual rational

payoff v({i}).

The sum of every player’s payoff in any subgame starting at {p} is v(N) =∑
i∈N v({i}) by additivity of v. Each respondent j ∈ N \ {p} can secure a payoff of

v({j}) by rejecting any proposal. Proposer p can secure a payoff of v({p}) by putting

forth an allocation plan specifying C for p himself and −C for each respondent,

where C is a large enough positive number. Thus, given an additive TU game, in

any SPNE, in any subgame starting at a terminal state, each player receives his

individual rational payoff.

Regarding any non-initial state, we prove the following claim.

Claim 9. Given a non-additive 0-monotonic TU game v ∈ GN0 , in any SPNE, at any

non-initial state P such that |P | > 1, if proposers in P reach a consensual allocation

plan yP , each respondent i ∈ N \ P accepts the plan if it satisfies yPi ≥ v({i}) and

declines otherwise.

The proof of Claim 9 also follows the same logic as that of Claim 2. Again,

special attentions should be paid to additive TU games.

Claim 9′. Given an additive TU game v ∈ GNa , in any SPNE, at any subgame

starting at any non-initial state P such that |P | > 1, if proposers in P reach a

consensual allocation plan yP , each respondent i ∈ N \ P receives his individual

rational payoff v({i}).

The proof of Claim 9′ resembles that of Claim 8′. We consider a non-terminal

state P such that |P | > 1 and we verify that the constructed strategy profile σ′

constitutes an SPNE in the subgame starting at P . First, by the same reasoning

in footnote 7, no player i ∈ P has an incentive to change his proposed allocation

plan. Second, we prove that no player has an incentive to change his submitted bid

vector either. Notice that by Lemma 7, bPij − bPji = (ESi(v
N\(P\{j}))−ESi(vN\P ))−

(ESj(v
N\(P\{i}))−ESj(vN\P )) = 0 for all i, j ∈ P , thus BP

i =
∑

j∈N\{i}(b
P
ij−bPji) = 0

for all i ∈ P . It means that the bids proposed in σ′ result in a tie. No proposer has

an incentive to change his bid vector for the same reason as in the proof of Claim

3. Therefore, σ′ constitutes an SPNE.
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Now we calculate the payoff vectors of σ′ in the subgame starting at each state.

The result is summarized in the following claim:

Claim 10. For each state P , the payoff of each proposer i ∈ P in σ′ in the the

subgame starting at this state is ESi(v
N\P ).

We prove this claim by an induction on the number of proposers |P |. For |P | = 1,

we have proven in both Claim 8 and Claim 8′ that the payoff of proposer p is equal

to v(N)−
∑

j∈N\{p} v({j}) = ESp(v
N\{p}).

Consider a state P such that |P | > 1. The induction hypothesis states that the

payoff of player i ∈ P is equal to ESi(v
N\(P\{j})) in σ′ in the subgame starting at

state P \ {j} for each j ∈ P \ {i}, and the payoff of player i ∈ P is equal to v({i})
in σ′ in the subgame starting at the state P \ {i}.

When the players in P play according to σ′, no consensual plan is reached.

In this case, the payoff of proposer i ∈ P comes from the subgame played in

the procedure. The payoff of proposer i ∈ P in σ′ in the subgame starting at

P is ESi(v
N\(P\{j})) − bPij = ESi(v

N\(P\{j})) − [ESi(v
N\(P\{j})) − ESi(v

N\P )] =

ESi(v
N\P ) if j is selected by the PW procedure for each j ∈ P \ {i}. Similarly,

proposer i’s payoff is v({i}) +
∑

j∈P\{i} b
P
ji = v({i}) +

∑
j∈P\{i}[ESj(v

N\(P\{i})) −
ESj(v

N\P )] = v({i}) +
∑

j∈P\{i}ESj(v
N\(P\{i})) −

∑
j∈P\{i}ESj(v

N\P ) = v({i}) +

[v(N)−
∑

k∈N\(P\{i}) v({k})]− [v(N)−
∑

k∈N\P v({k})− ESi(vN\P )] = ESi(v
N\P )

if i is selected by the PW procedure. In both cases, a proposer i ∈ P receives

ESi(v
N\P ) in σ′ in the subgame starting at P .

By letting P = N , Claim 10 implies that Mechanism B leads to the equal surplus

value if players play the SPNE σ′.

Before extending Claim 10 from one particular SPNE σ′ to every SPNE, we prove

the following two properties.

Claim 11. In any SPNE of Mechanism B, at any state P such that |P | ≥ 2, the

total net bid BP
i is equal to 0 for each i ∈ P .

The proof of Claim 11 is identical to that of Claim 5. Like Claim 5, Claim 11

states that the submitted bids in σ′ must result in a tie in every SPNE. It implies

Claim 12, whose proof is omitted becasue it is the same as that for Claim 16.

Claim 12. In any SPNE of Mechanism B, at any state P such that |P | ≥ 2, if no

consensus is reached, proposer i’s payoff resulting from proposer j being selected and

his payoff resulting from proposer k being selected by the PW procedure are equal for

all i, j, k ∈ P .

Now, we are ready to extend Claim 10 to every SPNE:
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Claim 13. For each state P , the payoff of each proposer i ∈ P in every SPNE in

the the subgame starting at this state is ESi(v
N\P ).

We prove this claim by an induction on the number of proposers |P |. By Claim

8 and Claim 8′, it is immediate that the claim is true for all terminate states.

We consider now a state P such that |P | > 1. If no consensus is reached, the

state must change to P \ {j} for some j ∈ P . The induction hypothesis states that

at the state P \{j}, the payoff for each i ∈ P \{j} is ESi(v
N\(P\{j})) in every SPNE

in the subgame starting at P \ {j}, and the payoff for the selected player j is v({j})
in every SPNE in the subgame starting at P \ {j}.

Any SPNE must fit in one of three cases: (I) each player i ∈ P proposes an

identical allocation plan yP such that for all j ∈ N \P , yPj ≥ v({j}); (II) each player

i ∈ P proposes an identical allocation plan yP such that there exists j ∈ N \P with

yPj < v({j}); (III) there exist two distinct players i, j ∈ P such that yPi 6= yPj .

The payoff vector of any SPNE that fits in the Case III must be the same as

that of the constructed SPNE. Indeed, by Claim 11, in any SPNE, it has to be

the case that each player i ∈ P is indifferent between being selected or not by

the PW procedure. This means that v({i}) +
∑

j∈P\{i} b
P
ji = ESi(v

N\(P\{k})) − bPik
for all i ∈ P and k ∈ P \ {i}. Thus player i is certain to obtain the average

of the total payoff 1
p
[v({i}) +

∑
j∈P\{i} b

P
ji] + 1

p

∑
k∈P\{i}[ESi(v

N\(P\{k})) − bPik] =
1
p
v({i})+ 1

p

∑
k∈P\{i}ESi(v

N\(P\{k}))− 1
p
BP
i = 1

p
v({i})+ 1

p

∑
k∈P\{i}ESi(v

N\(P\{k})) =

ESi(v
N\P ) for all i ∈ P , where the penultimate equality follows from Claim 11 and

the last equality from Lemma 5 by letting v = vN\P . Therefore, the payoff vector

of any SPNE that fits in the Case III is equal to the payoff vector of σ′.

As for Case II, by Claim 9 and Claim 9′, given the consensual allocation plan yP ,

the respondent j ∈ N \ P such that yPj < v({j}) will reject the plan yP . The set of

all respondents whose specified payoff is not lower than his individual rational payoff

is denoted by T , which is a subset of N \P . Then the sum of the proposers’ payoffs

in P is v(P ∪ T )−
∑

j∈T v({j}). If no consensus is reached, the sum of the payoffs

of the proposers in P is
∑

i∈P ESi(v
N\P ) = v(N) −

∑
k∈N\P v({k}), which is not

lower than v(P ∪T )−
∑

j∈T v({j}) by 0-monotonicity. Then either yPi = ESi(v
N\P )

for all i ∈ P or there exists i ∈ P such that yPi < ESi(v
N\P ). For the second case,

some player in P has an incentive to obstruct this allocation plan, i.e. proposing a

different plan. Thus, the payoff vector of any SPNE that fits in the Case II is equal

to the payoff vector of σ′.

Similarly, for Case I, the consensual allocation plan yP satisfies
∑

i∈P y
P
i ≤

v(N)−
∑

j∈N\P v({j}) =
∑

i∈P ESi(v
N\P ). Thus for any consensual allocation plan

yP 6= ES(vN\P ), some player in P has an incentive to obstruct this allocation plan.
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Therefore, the payoff vector of every SPNE that fits the Case I is equal to that of

σ′.

Hence, the payoff of each proposer i ∈ P in every SPNE in the the subgame

starting at P is ESi(v
N\P ). By letting P = N , the payoff vector of every SPNE is

equal to the equal surplus value of v.

Therefore, given any 0-monotonic TU game v, there exists an SPNE of Mecha-

nism B and the payoff vector of every SPNE is equal to the equal surplus value of

v.
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Chapter 3

The Proportional Ordinal Shapley

Solution for Pure Exchange

Economies

3.1 Introduction

Economists have long been proposing allocation rules for economic environments

and evaluating them by different desiderata. Though no rule is advantageous under

every criterion, some allocation rules arise as dominant solution concepts for spe-

cific economic environments, such as the Walrasian allocation rule for pure exchange

economies and the Shapley value (Shapley, 1953) for coalitional games with trans-

ferable utility (TU). A natural question is whether we can extend solution concepts

that were initially designed for a specific economic environment to another.

In this paper, we propose a solution concept for pure exchange economies in

the spirit of the Shapley value, which satisfies many appealing properties and is

characterized by several methods in the class of TU games. Our construction is

inspired by Hart and Mas-Colell’s (1989) characterization of the Shapley value with

the aid of a potential function. This function assigns a number to every TU game

with the only condition that the marginal contributions to the potential of all players

add up to the worth of the grand coalition. Hart and Mas-Colell (1989) prove the

surprising fact that there is only one such potential function and the vector of

marginal contributions coincides with the Shapley value. Thus, the Shapley value

rewards each player according to his marginal contribution to the potential of the

grand coalition.

We follow a similar approach and associate a number to each pure exchange econ-

omy, the potential of this economy. Due to the absence of a numeraire commodity
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in these environments, we choose each agent’s initial endowment as a yardstick to

measure the variation of his welfare in a solution. Moreover, to ensure the feasibility

of the proposal, we measure the agent’s marginal gain or loss in terms of the ratio of

the potential of the economy over the potential of the sub-economy where he does

not participate, instead of the difference between the two potentials. Then, the only

condition that we impose to the potential function is the existence of an efficient

allocation profile in the economy that satisfies that any agent is indifferent between

that allocation and his “proportional” marginal contribution to the potential (that

is, in terms of the ratio) times his initial endowment. That is, we require that it

be possible for each agent to obtain his proportional marginal contribution to the

potential through an efficient allocation.

The construction of the potential of a pure exchange economy entails the simul-

taneous definition of the efficient allocation profiles that are equivalent for all the

agents to their proportional marginal contributions. These allocations are our solu-

tion for the economy. We name the set of these allocations the proportional ordinal

Shapley (the POSh) solution. We include the word “ordinal” in the name of the

solution because its first important characteristic is that, by construction, the POSh

is an ordinal solution, that is, it is invariant to order-preserving transformations of

the agents’ utilities.

We show that the POSh solution is unique and essentially single-valued1 in

the set of exchange economies where the agents’ preferences are reflexive, complete,

transitive, strongly monotone, and continuous. It is also individually rational. More-

over, the POSh inherits several of the appealing properties of the Shapley value. In

particular, it is anonymous, not only concerning the name of the agents but also the

name of the commodities. Additionally, the POSh prescribes a zero bundle to any

agent with zero endowments (these are “empty-bundle agents,” we call them “empty

agents” for short); that is, it satisfies the empty-agent property. Further, it satisfies

the empty-agent out property, which requires that the presence of an empty agent

does not influence the prescribed bundles for the rest of the agents. These properties

are reminiscent of the null player property and the null player out property of the

Shapley value (Derks and Haller, 1999).

Similar to the characterization of the Shapley value in terms of the Harsanyi’s

(1959) coalitional dividends, the POSh can be constructed and characterized using

coalitional dividend yield ratios.

Additionally, we prove that the POSh is immune to certain peculiarities suffered

by several allocation rules for pure exchange economies, such as the Walrasian equi-

1 That is, if the POSh solution prescribes several allocations to an economy, every agent is
indifferent among all these allocations.
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librium. First, the POSh is not D-manipulable (Postlewaite, 1979); that is, an agent

cannot be better off by getting rid of part of his endowment. Second, it does not

suffer from the transfer paradox (Postlewaite and Webb, 1984); that is, the transfer

of a portion of his endowment to another individual cannot make an agent better

off and the recipient worse off.

Finally, we provide an additional link between the POSh for pure exchange

economies and the Shapley value for TU games in terms of their non-cooperative

foundations. Pérez-Castrillo and Wettstein (2001) propose a bidding mechanism

that implements the Shapley value. We adapt their mechanism2 to our environ-

ment and show that it implements the POSh in subgame perfect Nash equilibrium

(SPNE) for economies with an arbitrary number of agents in environments where

the agents’ preferences are homothetic.

The closest contribution to ours is the paper by Pérez-Castrillo and Wettstein

(2006). They also provide an ordinal solution in the spirit of the Shapley value for

pure exchange economies by extending the idea of McLean and Postlewaite (1978).

They introduce the notion of Pareto-efficient egalitarian equivalent (PEEE) alloca-

tions. A PEEE allocation is Pareto efficient and “fair” because, for each agent, it is

equivalent preference-wise to the same fixed bundle. Pérez-Castrillo and Wettstein’s

(2006) ordinal Shapley value (OSV ) considers possibly different individual endow-

ments and is constructed so that it satisfies “consistency,” in the sense that an agent’s

payoff is based on what he would obtain according to this value when applied to

sub-economies.

An essential difference between the POSh and the OSV is in the domain of the

solutions. We consider economies where the consumption bundles are non-negative,

whereas the OSV is defined in environments where the consumption of a commodity

can be positive or negative. Our set-up is more common in the general equilibrium

literature and prevents the consumption of a negative amount of goods, such as

apples. Let us note that most of the properties of the POSh, such as unicity,

essential single-valueness, empty-agent, and empty-agent out, are not satisfied by

the OSV . In addition, the OSV may suffer from the transfer paradox. This is

why the version of the bidding mechanism studied in Pérez-Castrillo and Wettstein

(2005) can implement the OSV in SPNE only for economies with at most three

agents.

In addition to Pérez-Castrillo and Wettstein (2006), the early works by Harsanyi

(1959), Shapley (1969), and Maschler and Owen (1992) propose extensions of the

Shapley value to non-transferable utility environments such as the pure exchange

2 See also Pérez-Castrillo and Wettstein (2002).
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economy that we study. The three proposals are defined in the utility space. They

abstract from the physical environment that generates the utilities. However, as

Roemer (1986, 1988) discusses, much information is lost when one moves from the

economic environment to the utility space. Thus, on the one hand, these proposals

are not ordinal since the solutions are not invariant to alternative representations of

the agents’ utilities. Moreover, Greenberg et al. (2002) make the observation that

the von Neumann and Morgenstein stable sets, defined for the economic environment

and the utility space, respectively, may not coincide, even though both are ordinal.

On the other hand, as Alon and Lehrer (2019) point out, two very different economic

environments, whose solution should be different, may lead to the same allocation

of utilities and, hence, the same solution.

McLean and Postlewaite (1989) also extend a notion from the class of TU games

to the set of pure exchange economies. They provide an ordinal nucleolus, a solution

concept proposed by Schmeidler (1969) for TU games. Nicolò and Perea (2005) and

Alon and Lehrer (2019) offer ordinal solutions for bargaining problems.

The remainder of the paper is organized as follows. Section 2 describes the

economic environment. It also introduces our new solution concept–the proportional

ordinal Shapley solution. Section 3 proves the existence and uniqueness of the

POSh. Several properties of the POSh are also stated and proved. Section 4

presents the bidding mechanism that implements the POSh. Section 4 concludes

the paper and provides several open questions for future research. All the proofs are

in the Appendix.

3.2 The environment and the solution concept

We consider a pure exchange economy. The set of agents is N ≡ {1, . . . , n}, with

generic agent i. The set of goods is L ≡ {1, . . . , l}, which is fixed throughout this

paper.

Agent i is described by (wi,�i), where wi ≡ (wi1, . . . , wil) ∈ RL
+ is his com-

modity bundle, and �i is his preference relation defined over RL
+. We assume �i

is reflexive, complete, and transitive for each i ∈ N .3 We also assume that it is

strongly monotone and continuous. Preference �i is strongly monotone if x �i y

for all x,y ∈ RL
+ such that x ≥ y and x 6= y. Preference �i is continuous if

{y ∈ RL
+ | y �i x} and {y ∈ RL

+ | y �i x} are closed subsets of RL
+, for all x ∈ RL

+.

A pure exchange economy is a triplet (N,w,�), where the vector w is understood

as an endowment profile (w1, . . . ,wn) and � is understood as a preference profile

3 Agent i’s preference �i is reflexive if x �i x for all x ∈ RL+; �i is complete if either x �i y or
y �i x for all x,y ∈ RL+; �i is transitive if x �i y and y �i z imply x �i z for all x,y, z ∈ RL+.
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(�1, . . . ,�n). For a fixed set of agents N , the set of all exchange economies where

the agents’ preferences are reflexive, complete, transitive, strongly monotone, and

continuous is denoted by EN . The set of all such exchange economies with a finite

set of agents is denoted by E .

Definition 12. A feasible allocation for an exchange economy (N,w,�) is a profile

z ≡ (z1, . . . , zn) ∈ RN×L
+ such that

∑
i∈N zi ≤

∑
i∈N wi.

We denote by Z(N,w,�) the set of all feasible allocations for the exchange

economy (N,w,�).

Two feasible allocations are comparable when all agents prefer one to the other

in unison. Formally, for z, z′ ∈ Z(N,w,�), we denote z � z′ if zi �i z′i for all i ∈ N .

Similarly, z ∼ z′ if zi ∼i z′i for all i ∈ N . Then, we can define an efficient allocation.

Definition 13. A feasible allocation z ∈ Z(N,w,�) is efficient if there is no

feasible allocation z′ ∈ Z(N,w,�) such that z′ � z and z′j �j zj for some j ∈ N .

We denote by E(N,w,�) the set of all efficient allocations for the exchange

economy (N,w,�).

We now define a solution concept for pure exchange economies.

Definition 14. A solution is a correspondence F : E  
⋃
N RN×L

+ such that

F (N,w,�) ⊆ Z(N,w,�) for all (N,w,�) ∈ E.

Thus, a solution F assigns a set of feasible allocations to each pure exchange

economy. Given two solutions F and F ′, for simplicity we write F ⊆ F ′ if F (N,w,�
) ⊆ F ′(N,w,�) for all (N,w,�) ∈ E .

A solution F is single-valued if F is a function, that is, it prescribes a unique

feasible allocation for every economy. A solution F is essentially single-valued if {y ∈
Z(N,w,�) | y ∼ x} = F (N,w,�) for all (N,w,�) ∈ E and all x ∈ F (N,w,�).

Thus, an essentially single-valued solution prescribes a ∼-equivalence class within

the set of all efficient allocations. For an essentially single-valued solution F , we write

Fi(N,w,�) �i Fi(N,w′,�) for i ∈ N if player i prefers the profiles in Fi(N,w,�)

to the profiles in Fi(N,w
′,�). We write F (N,w,�) � F (N,w′,�) similarly.

Given that agents have initial private endowments, a reasonable solution should

ensure that an agent has an incentive to participate instead of walking away with

his endowment. The individual rationality of a solution captures this notion:

Definition 15. A solution F satisfies individual rationality if x � w for all

x ∈ F (N,w,�) and all (N,w,�) ∈ E.
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Next, we formulate two properties that adapt the ideas of the null player prop-

erty and the null player out property (Derks and Haller, 1999) to pure exchange

economies. We identify a type of agent in pure exchange economies who play a

similar role as the null players in coalitional games. They are empty-basket agents;

we call them empty agents. An agent i ∈ N is an empty agent in the economy

(N,w,�) if wi = 0. An economy consisting of empty agents only is called an empty

economy.

The definition of the second property requires the following notation. Let x ∈
RN×L

+ be an allocation profile. Then, for N ′ ⊆ N , we denote by x |N ′∈ RN ′×L
+ the

profile x restricted to N ′, that is, (x |N ′)i = xi for all i ∈ N ′. The restrictions of the

preference profile are denoted analogously.

Definition 16. A solution F satisfies the empty-agent property if xi = 0 for each

empty agent i ∈ N in (N,w,�), all x ∈ F (N,w,�), and all (N,w,�) ∈ E.

Definition 17. A solution F satisfies the empty-agent out property if x |N\{i}∈
F (N \ {i},w |N\{i},�|N\{i}) for each empty agent i ∈ N in (N,w,�), for all x ∈
F (N,w,�) and all (N,w,�) ∈ E.

The empty-agent and the empty-agent out properties are normative properties.

The first one requires that an empty agent be entitled to a zero bundle in any

allocation of the solution. In contrast, the empty-agent out property requires that

the presence of an empty agent should not influence the allocation of the solution

to the rest of the agents. In general, the two properties are logically independent of

each other. But, in the presence of efficiency, the empty-agent out property implies

the empty-agent property. To see this implication, consider an efficient solution

that satisfies the empty-agent out property but does not satisfy the empty-agent

property. Then there exists x ∈ F (N,w,�) such that xi 6= 0 for some empty agent

i in (N,w,�). By empty-agent out property, x |N\{i}∈ F (N \ {i},w |N\{i},�|N\{i}).
Then we could construct a feasible profile y ∈ Z(N \ {i},w |N\{i},�|N\{i}) where

yj ≡ xj + xi
n−1

, which would be strictly preferred by every j ∈ N \ {i} by strong

monotonicity.

It is worth mentioning that Shafer’s (1980) example demonstrates that neither

the empty-agent property nor the empty-agent out property is satisfied by Shapley’s

(1969) NTU value.

We now turn to the property of anonymity. In an exchange economy, anonymity

may refer to the agents or the commodities. We will consider both ideas in our

definition of this property. We first introduce the notation for bijections of agents

and commodities.

80



For a feasible allocation z ∈ Z(N,w,�) and a bijection π : N → N ′, we define

the allocation πz ∈ Z(N ′,w,�) by πzπ(i) ≡ zi for all i ∈ N . Similarly, for a

commodity bundle x ∈ RL
+ and a bijection ρ : L → L′, we define the commodity

bundle ρx ∈ RL′
+ by ρxρ(h) ≡ xh for all h ∈ L. We can apply the above two bijections

simultaneously. For a pair of bijections (π, ρ), let Θ = (π, ρ). For each economy

(N,w,�) and each Θ, we denote the bijection of the economy by Θ(N,w,�) ≡
(π[N ],Θw,�Θ), where Θwπ(i) = ρ(wi) for all i ∈ N , and the preference relation �Θ

is defined over Rρ[L]
+ by ρx �Θ

π(i) ρy if x �i y, for each i ∈ N and x,y ∈ RL
+. That is,

the structure of economy Θ(N,w,�) is identical to (N,w,�), but the names of the

agents are changed according to π and the names of the commodities are changed

according to ρ.

Definition 18. A solution F is anonymous if for each pair of bijections Θ = (ρ, π)

and each x ∈ F (N,w,�), then Θx ∈ FΘ(N,w,�).

The last two properties that we propose concern the possibility for an agent to

“manipulate” the solution outcome via his endowment. Aumann and Peleg (1974)

demonstrate that before the Walrasian mechanism is applied to a finite economy,

an agent may be better off by getting rid of part of his endowment. In light of

this peculiarity, Postlewaite (1979) introduces the following property, which is not

implied by efficiency and individual rationality:

Definition 19. An essentially single-valued solution F is D-manipulable if there

exist w,w′ ∈ RN×L
+ such that wi ≥ w′i for some i ∈ N , wj = w′j for each j ∈ N\{i},

and Fi(N,w,�) ≺i Fi(N,w′,�).

An anomaly closely related to D-manipulability is the transfer paradox: a trans-

fer of a portion of his endowment makes the donor better off and the recipient

worse off (see, e.g., Postlewaite and Webb, 1984). Definition 20 formally states this

paradox.

Definition 20. An essentially single-valued solution F exhibits the transfer para-

dox if there exist w,w′ ∈ RN×L
+ and two distinct agents i, j ∈ N such that wi ≥ w′i,

wi+wj = w′i+w′j and wk = w′k for each k ∈ N \{i, j}, Fi(N,w,�) ≺i Fi(N,w′,�),

and Fj(N,w,�) �i Fj(N,w′,�).

Now we are ready to present our solution concept: the proportional ordinal

Shapley solution (POSh). Similar to the OSV (see Pérez-Castrillo and Wettstein,

2006), we define the POSh in terms of agents’ preferences directly. Thus, it is an

ordinal solution.
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To define the POSh, we use the idea of the potential (Hart and Mas-Colell, 1989),

which provides a simple characterization of the Shapley value. Following Hart and

Mas-Colell (1989), we define a potential function as follows:

Definition 21. A potential function P : E → R++ is defined inductively on the

number of players |N |:

1. P (∅) ≡ 1;

2. for (N,w,�) ∈ E, P (N,w,�) satisfies that there exists x ∈ E(N,w,�) such

that P (N,w,�)
P (N\{i},w|N\{i},�|N\{i})

wi ∼i xi for all i ∈ N .4

A potential function associates each economy with a single number. Moreover,

given an economy, the maximum changes from the potentials of each of its one-agent-

less sub-economies to the potential of this economy are constrained by its Pareto

frontier. The way of representing these changes underlies the critical difference

between Definition 21 and the Hart and Mas-Colell’s potential: we take the ratio

of potentials of economies, while Hart and Mas-Colell (1989) take the difference of

potentials of games.

The prescription of the POSh is intertwined with our definition of a potential.

An allocation is in the POSh if it is efficient and each agent i is indifferent between

his prescribed bundle and a multiple of his endowment, where the multiple is equal

to the change of potential resulting from his entrance. Thus, we have the following

definition of a proportional ordinal Shapley solution POSh : E  
⋃
N RN×L

+ in terms

of the potential P .

Definition 22. Given a potential function P , a proportional ordinal Shapley solu-

tion POSh : E  
⋃
N RN×L

+ is defined by x ∈ POSh(N,w,�) if x ∈ E(N,w,�)

and P (N,w,�)
P (N\{i},w|N\{i},�|N\{i})

wi ∼i xi for all i ∈ N .

As we will see in the next section, the POSh is an appealing solution that

enjoys many properties that echo the properties of the Shapley value, such as the

empty-agent property and the empty-agent out property. It is also immune to well-

known anomalies of the Walrasian equilibrium, such as the D-manipulability and

the transfer paradox.

At last, the POSh is often easy to compute owing to its neat definition in terms of

the potential. For illustration, we compute the POSh for a simple 3-agent economy

in Example 13.

4If N = {i}, we let P (N \ {i},w |N\{i},�|N\{i}) ≡ P (∅).
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Example 13. Fix L = {1, 2}. Consider an exchange economy such that N =

{1, 2, 3}, w1 = w2 = w3 = (1, 1), u1(x1, y1) = x1, u2(x2, y2) = y2 and u3(x3, y3) =

x3y3.

To compute POSh(N,w, u), we need to find the potential of each subeconomy.

First, it is easy to see that P ({i},wi, ui) = 1 for i = 1, 2, 3, and P ({1, 2}, (w1,w2), (u1, u2)) =

2. Let P ({1, 3}, (w1,w3), (u1, u3)) = P ({2, 3}, (w2,w3), (u2, u3)) = λ. Then, it

is the case that λ =
√

2(2− λ), i.e., λ =
√

5 − 1. Finally, let P (N,w, u) = µ

and a generic efficient allocation be ((z, 0), (0, z), (3 − z, 3 − z)). Then, 3 − z =
µ
2

and z =
√

5+1
4
µ. Therefore, P (N,w, u) = 9 − 3

√
5 and POSh(N,w, u) =

((3
√

5−3
2

, 0), (0, 3
√

5−3
2

), (9−3
√

5
2

, 9−3
√

5
2

)) ≈ ((1.85, 0), (0, 1.85), (1.15, 1.15)).

Remark 3. It is easy to see that the Walrasian equilibrium allocation and the core

for Example 13 coincide, which is ((2, 0), (0, 2), (1, 1)). Therefore, the POSh may

not be in the core.

3.3 Existence and properties of the proportional

ordinal Shapley solution

In this section, we establish the existence, uniqueness, and other properties of the

proportional ordinal Shapley solution.

Before we state our results regarding the POSh, we first prove the existence and

uniqueness of the potential function restricted to economies in which each agent

is not empty.5 We use the auxiliary notion of “coalitional dividend yield ratio”

(“dividend ratio,” for short), which is a multiplicative version of Harsanyi’s (1959)

coalitional dividend. Parallel to Hart and Mas-Colell (1989), our proof is also based

on a simple representation of the potential through the dividend yield ratios.

Denote by E ′ the set of all economies with only non-empty agents. We establish

in Proposition 10 the existence and uniqueness of the potential function restricted

to E ′.

Proposition 10. There exists a unique potential function restricted to E ′.

Proposition 10 states the existence and uniqueness of the potential function

if we restrict attention to economies without empty players. Before we use this

result to construct a POSh for economies without empty agents, and we extend the

5 We may assign an arbitrary number to an economy consisting of empty agents only, which
leads to a multiplicity of potential functions. But the assumption that each agent is not empty
is for expository purposes. As we will show, the uniqueness of the proportional ordinal Shapley
solution still holds despite the multiplicity of potential functions.
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analysis to economies including empty agents, we state two remarks concerning the

hypotheses that we use in the proposition.

Remark 4. Proposition 10 is stated for economies where the agents’ preferences

satisfy strong monotonicity. We cannot replace this hypothesis by the weaker axiom

of strict monotonicity. Recall that player i’s preference over commodities �i is

strictly monotone if x �i y for all x,y ∈ RL
+ such that xh > yh for all h ∈

L. To see that this weaker property is not enough, consider a two-agent economy

({1, 2},w,�), where w1 = (0, 1), w2 = (1, 0), �1 is represented by u1(x1, y1) = x1,

and �2 is represented by u2(x2, y2) = y2. Both agents’ preferences satisfy strict

monotonicity instead of strong monotonicity. By Definition 21, P ({1},w1,�1) =

P ({2},w2,�2) = 0. Then the denominators of both P ({1,2},w,�)
P ({2},w2,�2)

and P ({1,2},w,�)
P ({1},w1,�1)

vanish. Therefore, we are unable to assign a number to P ({1, 2},w,�). Hence, a

potential function does not exist for this economy.

Remark 5. The full strength of the property of the continuity of preferences is not

necessary for Proposition 10 to hold. The proof only requires lower semi-continuity

of the preferences, i.e., {y ∈ RL
+ | y �i x} is closed for all x ∈ RL

+ and all i ∈ N .

In the proof of Proposition 10, we construct a system of dividend ratios that

allows describing the potential of any economy. Then, Definition 22 together with

the proof of Proposition 10 lead to the following representation of the POSh solution

restricted to E ′ in terms of dividend ratios:

Claim 8′. There exists a unique essentially single-valued proportional ordinal Shap-

ley solution restricted to E ′.
Furthermore, for all (N,w,�) ∈ E ′, there exists a vector of dividend yield ratios

(dS)S∈2N\{∅} such that for all N ′ ∈ 2N \{∅}, x ∈ POSh(N ′,w |N ′ ,�|N ′) if and only

if x ∈ E(N ′,w |N ′ ,�|N ′) and xi ∼i (
∏

T3i
T⊆N ′

(1 + dT ))wi for all i ∈ N ′.

Remark 6. Pérez-Castrillo and Wettstein (2006) also provide a characterization of

the OSV in terms of dividends. However, there is an important difference between

their characterization and that of the POSh given in Corollary . For the OSV ,

the dividends dS and d′S of the same coalition S ⊆ N ′ for an economy (N,w,�)

and its subeconomy (N ′,w |N ′ ,�|N ′), respectively, are different. By contrast, for the

POSh, the dividend ratios of the same coalition of an economy and its sub-economy,

respectively, are the same.

We now proceed to consider the economies including empty agents. We note that

the uniqueness of the potential function cannot be extended to the set of economies

including empty agents. Indeed, for an empty economy (N,w,�), the potential
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of each subeconomy (S,w |S,�|S) for S ∈ 2N \ {∅} can be assigned an arbitrary

positive number P (S,w |S,�|S).

Given that the potential function and the POSh exist for economies without

empty agents, it is useful to consider, for each economy, the sub-economy that con-

tains only the set of non-empty agents of the original economy. Formally, we define

the support of the economy (N,w,�) as the sub-economy where an agent i ∈ N par-

ticipates in the support if and only if wi 6= 0. The support of the economy (N,w,�)

is denoted by supp(N,w,�). Similarlty, we denote by 0(N,w,�) the subeconomy of

(N,w,�) where only the empty agents participate. Thus, each economy (N,w,�)

can be decomposed into two disjoint subeconomies: supp(N,w,�) and 0(N,w,�).

Using the notion of the support of an economy, we can propose an extension of

the potential function to the unrestricted domain as follows: (a) the potential of an

economy consisting of empty agents only is equal to 1, and (b) the potential of an

economy with both empty agents and non-empty agents is equal to the potential of

its support. Moreover, we will show that this potential is associated with the unique

essentially single-valued POSh of any economy with empty and non-empty agents.

We will state these results in Theorem 9.

To establish the uniqueness of the POSh, we will use the relationship between

the POSh of any pure exchange economy and the POSh of the support of that

economy. We will also use the properties on empty agents that every POSh satisfies

and that are stated and proven in Proposition 11.

Proposition 11. Any proportional ordinal Shapley solution in E satisfies the empty-

agent property and the empty-agent out property.

Given that every proportional ordinal Shapley solution satisfies the empty-agent

property and the empty-agent out property, its prescription for agents in a general

economy can distinguish between empty agents and non-empty agents. On the one

hand, an empty agent is prescribed a zero bundle by the empty-agent property. On

the other hand, a non-empty agent is prescribed a bundle equal to some bundle

prescribed by the POSh for the support of this economy by the empty-agent out

property.

Thus, Proposition 11 indicates that an empty agent can be viewed as a place-

holder under any POSh. This feature enables us to deduce the uniqueness of

the POSh for the unrestricted domain from the uniqueness of the POSh for the

economies without any empty agents.

Theorem 9. There exists a unique essentially single-valued proportional ordinal

Shapley solution in E.
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Furthermore, for all (N,w,�) ∈ E, there exists a vector of dividend yield ratios

(dS)S∈2N\{∅} such that for all N ′ ∈ 2N \{∅}, x ∈ POSh(N ′,w |N ′ ,�|N ′) if and only

if x ∈ E(N ′,w |N ′ ,�|N ′) and xi ∼i (
∏

T3i
T⊆N ′

(1 + dT ))wi for all i ∈ N ′.

From here onward, a proportional ordinal Shapley solution is referred to as the

proportional ordinal Shapley solution since it is unique.

We recall that Theorem 9 establishes the existence and uniqueness of the propor-

tional ordinal Shapley solution for pure exchange economies where preferences are

(in addition to reflexivity, completeness, and transitivity) continuous and strongly

monotone. The requirements for the existence of the POSh are incomparable with

those for Walrasian equilibrium. Indeed, the existence of Walrasian equilibrium re-

quires each agent’s preference to be continuous, convex, and non-satiated, and each

agent’s endowment strictly positive (see Border, 2017). On the one hand, strong

monotonicity is a stronger assumption than non-satiation, while neither convex pref-

erences nor strictly positive endowment is needed for the existence of POSh.

We have seen that the proportional ordinal Shapley solution exists, and it is

unique and essentially single-valued. Moreover, it satisfies the empty-agent and the

empty-agent out properties. The last part of the section provides four additional

properties of the POSh.

First, we show that the POSh is individually rational.

Proposition 12. The proportional ordinal Shapley solution satisfies individual ra-

tionality in E.

Second, we show that the POSh satisfies the property of anonymity. That is, it

is immune to changes in the names of the agents and commodities.

Proposition 13. The proportional ordinal Shapley solution satisfies anonymity in

E.

The last two properties of the proportional ordinal Shapley solution that we

present state that the POSh is robust against agents’ manipulation of their initial

endowment. Proposition 14 shows that an agent never has an incentive to throw

away any part of his initial endowment, that is, the POSh is not D-manipulable.

Finally, Proposition 15 states that an agent is never better-off by transferring part

of his initial endowment to another agent. Thus, the POSh does not exhibit the

transfer paradox.

Proposition 14. The proportional ordinal Shapley solution is not D-manipulable

in E.

Proposition 15. The proportional ordinal Shapley solution does not exhibit the

transfer paradox in E.
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3.4 A mechanism implementing the proportional

ordinal Shapley solution

In this section, we propose a new version of the Pérez-Castrillo and Wettstein (2001)

and (2002) bidding mechanism to implement the proportional ordinal Shapley solu-

tion.

Pérez-Castrillo and Wettstein (2005) also used a variant of the bidding mecha-

nism to implement the ordinal Shapley value. Before we introduce our mechanism,

it is worthwhile to recall the one used in that paper informally. First, the agents bid

simultaneously to choose the proposer. Each agent’s bid consists of an n-tuple of

real numbers whose sum must be zero. The number submitted by agent i for agent

j is a commitment to forego a commodity bundle (the number times a reference

bundle) in case j is chosen as the proposer. The agent for whom the aggregate bid

(sum of bids submitted for him by all agents, including himself) is the highest is

chosen as the proposer. All the agents pay their “bid” (i.e., the promised commod-

ity bundles) for the proposer. In the second stage, the proposer offers an allocation

of the total initial resources. If all the other agents agree, each agent receives the

bundle suggested for him in this allocation. Otherwise, all the agents other than the

proposer play the same game again where the new initial endowments incorporate

the allocations (that is, the “bids”) paid and received.

Pérez-Castrillo and Wettstein’s (2005) mechanism implements theOSV for economies

with at most three agents. The major difficulty for extending their implementation

result to any number of agents is, as they pointed out, that the OSV is subject to

the transfer paradox. In particular, it can be the case that an agent is better off in

a subgame where he has less and the other agents have more initial endowments,

which gives him the wrong incentives to bid.

Our proposed mechanism to implement the POSh shares the basic features of

previous bidding mechanisms. The implementation is made easier by Proposition 15,

which ensures that the POSh solution does not suffer from the transfer paradox.

Moreover, given the defining characteristics of the POSh, our mechanism differs

from previous proposals in two aspects: (i) a bid is interpreted as a promise to

transfer a fixed proportion of resources rather than an absolute level of resources

since the payment is equal to the bid times the recipient’s current bundle; and (ii)

in case of a rejection of his allocation plan, the proposer’s payments due to his bid

are delivered at the very end of the mechanism, rather than just after the rejection.

Finally, let us mention that while our mechanism implements the POSh for any

number of agents, we impose three additional constraints or modifications to the set
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of economies that we consider. (a) The agents’ preferences are homothetic.6 (b) No

empty agent is present in the economy. (c) We extend the common domain of each

agent i’s preference from RL
+ to RL by letting x ≺i y if x ∈ RL \ RL

+ and y ∈ RL
+

and x ∼i y if x,y ∈ RL \ RL
+ for all i ∈ N . We extend the domain because, out

of equilibrium, there may exist a solvency issue if the rejected proposer does not

have enough endowment to pay the bids at the end of the mechanism. We denote

by EH the subset of economies where preferences are reflexive, complete, transitive,

strongly monotone, and continuous, and that satisfy conditions (a)-(c) above.

We now propose the following proportional bidding mechanism for EH :

For |N | = 1, for the economy ({i},wi,�i), the only agent i receives his own

initial endowment wi.

For |N | ≥ 2, we hypothesize that the mechanism has been defined for each

economy (N ′,w′,�′) with |N ′| < |N |. Then the mechanism applied for an economy

(N,w,�) proceeds as follows:

t = 1: Each agent i ∈ N submits a bid bNij ∈ R++ for each agent j ∈ N , with∏
j∈N b

N
ij = 1.

t = 2: Let the cumulative bid for agent i ∈ N be denoted by BN
i ≡

∏
j∈N b

N
ji . An

agent α ∈ argmaxi∈N B
N
i is selected as the proposer by a non-degenerate

lottery.7 Then the proposer α puts forth an allocation plan xN ∈ R(N\{α})×L

specifying a bundle xNi ∈ RL
+ for each agent i ∈ N \ {α}.

t = 3: Each agent i ∈ N \{α} accepts or rejects α’s plan sequentially. We distinguish

between two cases:

Case I Every agent accepts α’s plan. Then the grand coalition N forms, and

the plan is implemented. Therefore, the final outcome is that each agent

i ∈ N\{α} receives xNi and the proposer α receives the residue
∑

j∈N wj−∑
i∈N\{α} x

N
i .

Case II Some agent rejects α’s plan. Then the proposer forms his own standalone

coalition {α}. Moreover, the mechanism is applied to the subeconomy

(N \ {α},w |N\{α},�|N\{α}). The final outcome is the following. Let

yi ∈ RL be the bundle received by agent i ∈ N \{α} from the mechanism

played by (N \ {α},w|N\{α},�|N\{α}). On top of that, the proposer α

transfers a commodity bundle

(
n
√
BNα
bNiα
− 1

)
yi to each agent i ∈ N \ {α}.

6 Agent i’s preference �i is homothetic if for all x,y ∈ RL+ and all α ∈ R+, x �i y if and only
if αx �i αy.

7 A non-degenerate lottery selects each agent from argmaxi∈N B
N
i with a strictly positive prob-

ability.
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Therefore, the final commodity bundle is

(
n
√
BNα
bNiα

)
yi for each i ∈ N \{α},

and is wα −
∑

i∈N\{α}

(
n
√
BNα
bNiα
− 1

)
yi for the proposer α.

Before presenting the main result of this section, we provide a characterization

of the proportional ordinal Shapley solution in terms of “proportional concessions,”

which has some resemblance with the original Pérez-Castrillo and Wettstein’s (2006)

definition of the ordinal Shapley value (OSV). The characterization is interesting by

itself. It will also allow us to simplify the proof of the implementation theorem.

Definition 23 proposes a solution for E , and Proposition 16 states that it coincides

with the POSh.

Definition 23. The solution ζ : E  
⋃
N RN×L

+ is defined recursively on the number

of agents |N | as follows:

1. For |N | = 1, i.e., N = {i}, ζ({i},wi,�i) ≡ {wi}.

2. For |N | ≥ 2, we hypothesize that ζ has been defined and is essentially single-

valued for each economy (N ′,w′,�′) with |N ′| < |N |. Then, x ∈ ζ(N,w,�)

if x ∈ E(N,w,�) and there exists a concession vector cNi ∈ RN\{i} for each

i ∈ N that satisfies:

(a)
∏

j∈N\{i} c
N
ij =

∏
j∈N\{i} c

N
ji for each i ∈ N .

(b) For each j ∈ N \ {i}, there exists aNij ∈ R such that aNijwj ∼j ζj(N \
{i},w |N\{i},�|N\{i}) and xj ∼j cNijaNijwj.

We can read part (2b) of Definition 23 as follows. Agent j is indifferent between

the bundles that the solution offers to him (xj) and a bundle (aNijwj) that is equiv-

alent to what he can obtain without agent i according to the solution, boosted by

the concession cNij of agent i to agent j. Condition (2a) states the “fairness” require-

ment that the concessions that an agent receives in total (which in our framework

corresponds to their product) be the same as the concessions that he makes to the

other agents.

Now, we state and prove the characterization of the POSh in terms of conces-

sions.

Proposition 16. The proportional ordinal Shapley solution coincides with the so-

lution ζ.

An implication of Proposition 16 is that the vector of concessions for an economy

(N,w,�) is unique, given that the POSh is essentially single-valued.
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Theorem 10 uses Proposition 16 to show that the proportional ordinal bidding

mechanism implements POSh in subgame perfect Nash equilibrium in pure strate-

gies (SPNE) when the agents’ preferences are homothetic. The new characterization

of the POSh is helpful for the proof of the implementation result because we can

relate the equilibrium bids in the mechanism and the concessions in Definition 23.

Theorem 10. The proportional bidding mechanism implements the proportional or-

dinal Shapley solution in SPNE in the set of economies with homothetic preferences.

3.5 Conclusion

We propose a new ordinal solution concept for pure exchange economies, the POSh

solution. Its construction is inspired by the potential function, which allows a nice

characterization of the Shapley value in TU games. The POSh solution satisfies

properties similar to the Shapley value, such as efficiency, anonymity, and properties

related to null players. It is also individually rational and does not suffer from agents’

manipulation of their initial endowment.

We further highlight the link between the POSh for pure exchange economies

and the Shapley value for TU games through their implementation. We show that

a variant of a mechanism that implements the Shapley value implements the POSh

for the particular environments where agents’ preferences are homothetic.

One natural avenue for future research is extending our solution concept and its

properties to pure exchange economies with a continuum of agents of finite types. It

is easy to extend the notions of the potential and the proportional ordinal Shapley

solution to these economies. However, the analysis of the properties of the POSh

in these environments is outside the scope of this paper.

3.6 Appendix

Proof of Proposition 10. First, we show that there exists at most one potential

function. Suppose otherwise, that is, suppose that there exist two distinct po-

tential functions P and P ′. Then, without loss of generality, assume that (N,w,�)

satisfies P (N,w,�) > P ′(N,w,�) and P (S,w |S,�|S) = P ′(S,w |S,�|S) for all

S ∈ 2N \ {N}. This implies that there exist two allocations x,y ∈ E(N,w,�)

such that xk ∼k P (N,w,�)
P (N\{k},w|N\{k},�|N\{k})

wk �k P ′(N,w,�)
P ′(N\{i},w|N\{k},�|N\{k})

wk ∼k yk for

all k ∈ N , where P (N,w,�)
P (N\{k},w|N\{k},�|N\{k})

wk �k P ′(N,w,�)
P ′(N\{i},w|N\{k},�|N\{k})

wk follows from

strong monotonicity and the premise on P and P ′. However, this contradicts the

premise that y ∈ E(N,w,�). Therefore, there exists at most one potential function.
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Second, to prove the existence of a potential function, we construct inductively

a system of dividend ratios (dS)S∈2N\{∅} for each economy (N,w,�) ∈ EN :

1. For |S| = 1, dS ≡ 0;

2. for |S| ≥ 2, we hypothesize that dT has been defined for each T ∈ 2S \ {∅}.
Then, we define dS ≡ sup{d ∈ [−1,+∞) | ∃x ∈ Z(S,w |S,�|S) such that (1 +

d)(
∏

T3i
T(S

(1 + dT ))wi ∼i xi ∀i ∈ S}.

Notice that dS is well-defined for |S| ≥ 2. Indeed, we check that the supremum

operates on a non-empty set: d = −1 is in the set since (1− 1)(
∏

T3i
T(S

(1 + dT ))wi ∼i
0 ∀i ∈ S and 0 ∈ Z(S,w |S,�|S).

Next, we claim that dS satisfies that (
∏

T3i
T⊆S

(1 + dT ))wi ∼i xi for all i ∈ S and

some x ∈ E(S,w |S,�|S). Notice that dS satisfies that there exists x ∈ E(S,w|S,�|S
) such that (

∏
T3i
T⊆S

(1 + dT ))wi �i xi for all i ∈ S because each agent’s preference is

continuous and Z(S,w |S,�|S) is closed. Then, we prove our claim by contradiction:

if there exists k ∈ S such that (
∏

T3k
T⊆S

(1 + dT ))wk ≺k xk, then we can construct

an alternative feasible allocation profile y ∈ Z(S,w |S,�|S) such that (
∏

T3i
T⊆S

(1 +

dT ))wi ≺i yi for all i ∈ S. The existence of the profile y would imply that the

supremum was not attained at dS since dS could be increased by a sufficiently

small amount without violating feasibility. To construct y from x, first note that

0 �k (
∏

T3k
T⊆S

(1 + dT ))wk ≺k xk, hence there exists h ∈ L such that xkh > 0. Define

y by

yig ≡


xig if i ∈ S and g ∈ L \ {h},

xig − ε if i = k and g = h,

xig + ε
|S|−1

if i ∈ S \ {k} and g = h,

where ε ∈ R++ is sufficiently small so that (
∏

T3k
T⊆S

(1 + dT ))wk ≺k yk and ykh ≥ 0.

By strong monotonicity, we have (
∏

T3i
T⊆S

(1 + dT ))wi ≺i yi for all i ∈ S.

Therefore, we have proven the existence of dividend ratios (dS)S∈2N\{∅} that

satisfy that, for each S ∈ 2N \ {∅}, there exists x ∈ E(S,w |S,�|S) such that

(
∏

T3i
T⊆S

(1 + dT ))wi ∼i xi for all i ∈ S.

We can now construct the potential function: P (N,w,�) ≡
∏

S∈2N\{∅}(1 + dS)

for N 6= ∅ and P (∅) = 1. The potential function P (N,w,�) satisfies the conditions

in Definition 21 given the construction of the dividend ratios. This establishes the

existence of a potential function restricted to E ′. Therefore, there exists a unique

potential function restricted to E ′.

Proof of Corollary . The existence, uniqueness, and essential single-valuedness of

POSh restricted to E ′ follows from Proposition 10 and Definition 22. The representa-
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tion in terms of dividend ratios follows from
P (N ′,w|N′ ,�|N′ )

P (N ′\{i},w|N′\{i},�|N′\{i})
=

∏
T⊆N′ (1+dT )∏

T⊆N′\{i}(1+dT )
=∏

T3i
T⊆N ′

(1 + dT ).

Proof of Proposition 11. The empty-agent property follows from the efficiency im-

plied by Definition 22, once we will prove the empty-agent out property, which we

now do.

First, we claim that any potential function satisfies

P (N,w,�) = P (supp(N,w,�))P (0(N,w,�)). (3.6.1)

We prove equation (3.6.1) by induction on p by which we denote the number non-

empty agents of an economy (N,w,�) with q empty agents (q is an arbitrary

fixed positive number). The equation holds trivially for an economy with only

q empty agents, i.e, when p = 0. Now we consider an economy (N,w,�) with

p ≥ 1 non-empty agents and q empty agents. Denote by x ∈ E(supp(N,w,�))

an allocation profile satisfying that xi ∼i P (supp(N,w,�))
P (supp(N\{i},w|N\{i},�|N\{i}))

wi for all non-

empty agent i. The allocation x satisfies that for each non-empty agent i, xi ∼i
P (supp(N,w,�))P (0(N,w,�))

P (supp(N\{i},w|N\{i},�|N\{i}))P (0(N,w,�))
wi = P (supp(N,w,�))P (0(N,w,�))

P (supp(N\{i},w|N\{i},�|N\{i}))P (0(N\{i},w|N\{i},�|N\{i}))
wi =

P (supp(N,w,�))P (0(N,w,�))
P (N\{i},w|N\{i},�|N\{i})

wi, where the first equality follows from the premise that i

is not an empty agent and the second from the induction hypothesis (there exist

p − 1 non-empty agents in (N \ {i},w |N\{i},�|N\{i})). Then consider a new al-

location profile y ∈ E(N,w,�), where yj = xj for each non-empty agent j and

yk = 0 for each empty agent k. Notice that the constructed profile y satisfies that

yi ∼i P (N,w,�)
P (N\{i},w|N\{i},�|N\{i})

wi for all i ∈ N where P (N,w,�) = P (supp(N,w,�
))P (0(N,w,�)). Moreover, by strong monotonicity, p ≥ 1, and an argument sim-

ilar to that establishing the uniqueness of potential function restricted to E ′ in

Proposition 10, we have that the numerical value of P (N,w,�) is unique. Finally,

since q is arbitrary, we have proven the equation (3.6.1), which immediately implies

the empty-agent out property of any POSh.

Proof of Theorem 9. First, by Proposition 11, any POSh for E satisfies the empty-

agent property and the empty-agent out property. Let us denote POSh′ the pro-

portional ordinal Shapley solution restricted to E ′. Therefore, for any POSh and

any (N,w,�),

POShi(N,w,�) ≡

0 if wi = 0,

POSh′i(supp(N,w,�)) if wi 6= 0.
(3.6.2)

Second, the function POSh restricted to E ′ is unique and essentially single-
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valued by Corollary . Hence, if POSh exists for E , it is also unique and essentially

single-valued.

Third, let us denote P ′ the potential associated with POSh′ in E ′. We now

propose the following potential function P : E → R:

P (N,w,�) ≡

 1 if wi = 0 for all i ∈ N

P ′(supp(N,w,�)) otherwise.
(3.6.3)

We show that the function P can be associated with the POSh that we constructed

above for E . If wi = 0, then the result is immediate because POShi(N,w,�) = 0.

Otherwise, consider an economy (N,w,�) where i is a non-empty agent, and x ∈
POSh(N,w,�). Then, equation (3.6.2) implies that x ∈ POSh′i(supp(N,w,�)).

Therefore, xi ∼i P ′(supp(N,w,�))
P ′(supp(N\{i},w|N\{i},�|N\{i})))

wi = P (N,w,�)
P (N\{i},w|N\{i},�|N\{i}))

wi.

Moreover, let N ′ ⊆ N be the set of non-empty agents in (N,w,�). Then

x ∈ E(N,w,�) and xi ≡ 0 for all i ∈ N \N ′ if and only if x |N ′∈ E(supp(N,w,�)).

Thus, the constructed P : E → R is a potential function associated with the POSh

for E , which means that there exists a POSh for E .

Finally, we show the existence of the vector of dividend ratios. For the coalitions

without empty agents, that is, in the supp(N,w,�)), we take the vector found in

Corollary . Additionally, we define dS ≡ 0 for each S ∈ 2N \ {∅} if there exists an

empty agent in S.

To verify that the previous vector of dividend ratios satisfies the condition stated

in the theorem, it suffices to show that P (N,w,�) =
∏

T∈2N\{∅}(1+dT ) for a general

economy (N,w,�). We prove this by induction on the number of non-empty agents.

It is easy to see that P (N,w,�) =
∏

T∈2N\{∅}(1 + dT ) = 1 holds when (N,w,�)

consists of empty agents only. Now consider an economy (N,w,�) in which i is a

non-empty agent. Let N ′ ⊆ N be the set of all non-empty agents. Then, for any x ∈
POSh(N,w,�), xi ∼i P (N,w,�)

P (N\{i},w|N\{i},�|N\{i}))
wi = P ′(supp(N,w,�))

P ′(supp(N\{i},w|N\{i},�|N\{i})))
wi =∏

T∈2N
′ \{∅}(1+dT )∏

T∈2N
′\{i}\{∅}

(1+dT )
wi =

∏
T∈2N\{∅}(1+dT )∏

T∈2N\{i}\{∅}(1+dT )
wi =

∏
T∈2N\{∅}(1+dT )

P (N\{i},w|N\{i},�|N\{i}))
wi, where the

last equality follows from the induction hypothesis. Thus, it is the case that P (N,w,�
) =

∏
T∈2N\{∅}(1 + dT ).

Proof of Proposition 12. By Theorem 9, we can verify that xi ∼i (
∏

T3i
T⊆N

(1+dT ))wi �i
wi for all i ∈ N , all x ∈ POSh(N,w,�), and all (N,w,�) ∈ E , where (dS)S∈2N\{∅}

is the vector of dividend ratios corresponding to POSh(N,w,�). We do it by induc-

tion on |N |. Since POShi({i},wi,�i) = {wi} for N = {i}, our assertion trivially

holds for |N | = 1.

For |N | > 1, assume that the property holds for any economy with less than |N |
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agents. Suppose now that it does not hold for (N,w,�), that is, there exists i ∈ N
such that xi ∼i (

∑
T3i
T⊆N

(1 + dT ))wi ≺i wi. Then there must exist j ∈ N \ {i} such

that xj �j (
∏

T3j
T⊆N\{i}

(1 + dT ))wj. The existence of such an agent j follows from

x ∈ E(N,w,�), xi ≺i wi, and the feasibility of the allocation that assigns agent i

with wi and the rest of agents with a bundle prescribed by POSh(N \ {i},w |N\{i}
,�|N\{i}), which is individually rational by the induction hypothesis. Therefore,

there exists j ∈ N \{i} such that (
∏

T3j
T⊆N

(1+dT ))wj ∼j xj �j (
∏

T3j
T⊆N\{i}

(1+dT ))wj.

Agent j’s strict preference (
∏

T3j
T⊆N

(1+dT ))wj �j (
∏

T3j
T⊆N\{i}

(1+dT ))wj implies that∏
T3i,j
T⊆N

(1 + dT ) > 1 by strong monotonicity.

By the induction hypothesis, we have (
∏

T3i
T⊆N\{j}

(1 + dT ))wi �i wi. Together

with
∏

T3i,j
T⊆N

(1 + dT ) > 1, it implies that xi ∼i (
∏

T3i
T⊆N

(1 + dT ))wi = (
∏

Q3i,j
Q⊆N

(1 +

dQ))(
∏

T3i
T⊆N\{j}

(1 + dT ))wi �i (
∏

T3i
T⊆N\{j}

(1 + dT ))wi �i wi, which contradicts our

assumption. Therefore, the POSh satisfies individual rationality.

Proof of Proposition 13. It is easy to see that the efficient allocation correspondence

is anonymous, that is, x ∈ E(N,w,�) if and only if Θx ∈ EΘ(N,w,�), for all

Θ = (π, ρ) and all (N,w,�) ∈ E .

Consider the economies (N,w,�) and Θ(N,w,�). Take x ∈ POSh(N,w,�)

and let (dT )T∈2N\{∅} be its vector of dividend ratios. We show that Θx ∈ POShΘ(N,w,�
) by proving that (d′π[T ])T∈2N\{∅}, with d′π[T ] = dT for all T ∈ 2N \ {∅}, constitutes

a vector of dividend ratios for Θx.

To see this, for each N ′ ∈ 2N \ {∅}, let Θ |N ′≡ (π |N ′ , ρ |N ′). Then for each

y ∈ POSh(N ′,w |N ′ ,�|N ′), yi ∼i (
∏

T∈2N′\{∅}(1 + dT ))wi for all i ∈ N ′, which

is equivalent to Θ |N ′ yπ(i) ∼
Θ|N′
π(i) (

∏
T∈2π[N′]\{∅}(1 + dT ))wπ(i) for all i ∈ N ′, i.e.,

Θ |N ′ yj ∼
Θ|N′
j (

∏
T∈2π[N′]\{∅}(1 + dT ))wj for all j ∈ π[N ′]. Hence, (d′π[T ])T∈2N\{∅}

is a vector of dividend ratios for Θ(N,w,�), according to Theorem 9. Finally, by

letting N ′ = N , we have that Θx ∈ POShΘ(N,w,�)

Proof of Proposition 14. Consider two economies (N,w,�), (N,w′,�) ∈ E such

that wi > w′i for i ∈ N and wj = w′j for each j ∈ N \ {i}. By Theorem 9,

we denote by (dS)S∈2N\{∅} and (d′S)S∈2N\{∅} their associated vectors of dividend ra-

tios, respectively. We claim that
∏

T3i
T⊆S

(1 + dT ) ≥
∏

T3i
T⊆S

(1 + d′T ) for all S ⊆ N such

that S 3 i. We prove the claim by induction on |S|. It trivially holds for |S| = 1.

For S ⊆ N such that |S| > 1, suppose otherwise, i.e.,
∏

T3i
T⊆S

(1+dT ) <
∏

T3i
T⊆S

(1+

d′T ) and
∏

T3i
T⊆R

(1 + dT ) ≥
∏

T3i
T⊆R

(1 + d′T ) for all R ( S. In particular,
∏

T3i
T⊆S\{j}

(1 +

dT ) ≥
∏

T3i
T⊆S\{j}

(1 + d′T ) for all j ∈ S \ {i}. Then, for each j ∈ S \ {i},
∏

T3i,j
T⊆S

(1 +

dT ) <
∏

T3i,j
T⊆S

(1 + d′T ) because
∏

T3i
T⊆S

(1 + dT ) =
∏

T3i,j
T⊆S

(1 + dT )
∏

T3i
T⊆S\{j}

(1 + dT ).
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Then, it is also true that
∏

T3j
T⊆S

(1 + d′T ) = (
∏

T3j
T⊆S\{i}

(1 + d′T ))(
∏

T3i,j
T⊆S

(1 + d′T )) =

(
∏

T3j
T⊆S\{i}

(1 + dT ))(
∏

T3i,j
T⊆S

(1 + d′T )) >
∏

T3j
T⊆S

(1 + dT ) for all j ∈ S \ {i}. Thus,

POShj(S,w|S,�|S) ≺j POShj(S,w′ |S,�|S) for all j ∈ S (including i himself by

premise), which is impossible. Therefore, the POSh is not D-manipulable.

Proof of Proposition 15. Consider two economies (N,w,�), (N,w′,�) ∈ E such

that wi > w′i, wi + wj = w′i + w′j for donor i and recipient j; wk = w′k for

each k ∈ N \ {i, j}. By Theorem 9, let (dT )T∈2N\{∅} and (d′T )T∈2N\{∅} are vectors of

dividend ratios for economies (N,w,�) and (N,w′,�), respectively. By considering

the subeconomies without player j and without player i, Proposition 14 implies that∏
T3i

T⊆N\{j}
(1 + dT ) ≥

∏
T3i

T⊆N\{j}
(1 + d′T ) and

∏
T3j

T⊆N\{i}
(1 + dT ) ≤

∏
T3j

T⊆N\{i}
(1 + d′T ).

Suppose that the donor i is better off in POSh(N,w′,�) than in POSh(N,w,�
), which means that

∏
T3i
T⊆N

(1 + dT ) <
∏

T3i
T⊆N

(1 + d′T ). It implies that
∏

T3i,j
T⊆N

(1 +

dT ) <
∏

T3i,j
T⊆N

(1 + d′T ). Then
∏

T3j
T⊆N\{i}

(1 + dT )(
∏

T3i,j
T⊆N

(1 + dT )) < (
∏

T3j
T⊆N\{i}

(1 +

d′T ))(
∏

T3i,j
T⊆N

(1 + d′T )), i.e.,
∏

T3j
T⊆N

(1 + dT ) <
∏

T3j
T⊆N

(1 + d′T ). Thus, recipient j must

also be better off in (N,w′,�). Therefore, the transfer paradox is not possible for

POSh

Proof of Proposition 16. To prove ζ = POSh, we first show that POSh ⊆ ζ, and

then that ζ is essentially single-valued.

We prove that POSh ⊆ ζ. Recall that there exists a vector of dividend ratios

(dS)S∈2N\{∅} such that x ∈ POShi(N,w,�) if and only if x ∼i (
∏

T3i
T⊆N

(1 + dT ))wi

for all i ∈ N and POShj(N \ {k},w |N\{k},�|N\{k}) ∼j (
∏

T3j
T⊆N\{k}

(1 + dT ))wj for

all k ∈ N and all j ∈ N \{k}. Take aij ≡
∏

T3j
T⊆N\{i}

(1+dT ) and cij ≡
∏

T3i,j
T⊆N

(1+dT )

for all j ∈ N \ {i} and all i ∈ N . Then, x together with the vectors ci and ai for all

i ∈ N , satisfy part (2b) of Definition 23. Moreover, cij = cji for all j ∈ N \ {i} and

all i ∈ N . Hence, part (2a) of Definition 23 also holds. Therefore, POSh ⊆ ζ.

We prove ζ is essentially single-valued by induction on the number of agents |N |.
It trivially holds for |N | = 1 by definition. For |N | > 1, we hypothesize that ζ is

essentially single-valued for any economy with n − 1 agents. It implies that aNij in

Definition 23 is unique (that is, it is the same for all x ∈ ζ(N,w,�)) for all i, j ∈ N
such that i 6= j.

Consider any x ∈ ζ(N,w,�). According to (2b) in Definition 23, it is the case

that xj ∼j cNijaNijwj and xj ∼j cNkjaNkjwj, for all j ∈ N and all i, k ∈ N \{j} such that

i 6= k. Then, strong monotonicity implies that cNija
N
ij = cNkja

N
kj for all i, k ∈ N \ {j}

such that i 6= k.

Therefore, we have |N |(|N |− 1) equations: cNi1n =
aNn1

aNi1
cNn1 for all i ∈ N \ {1}, and
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cNij =
aN

(j−1)j

aNij
cN(j−1)j for all i ∈ N \ {j} and all j ∈ N \ {1}. By substituting them in

condition (2a),
∏

j∈N\{i} c
N
ij =

∏
j∈N\{i} c

N
ji , we have

aNn1

aNi1
cNn1[
∏

j∈N\{1,i}
aN

(j−1)j

aNij
cN(j−1)j] =∏

j∈N\{i}
aN

(i−1)i

aNji
cN(i−1)i for i ∈ N \ {1}. From this equality we obtain that cN(i−1)i =

1
aN

(i−1)i

n−1

√
aNn1

aNi1
cNn1[
∏

j∈N\{1,i}
aN

(j−1)j

aNij
cN(j−1)j][

∏
j∈N\{i} a

N
ji ] for each i ∈ N \ {1}. It means

that cN(i−1)i can be expressed as an increasing function of (cN(k−1)k)k∈N\{1,i} and cNn1

as its arguments, for each i ∈ N \ {1}. Moreover, by repeated substitution, we can

represent each cN(i−1)i as an increasing function of cNn1 solely, for all i = N\{1}. Hence,

cN(i−1)i takes the form cN(i−1)i(c
N
n1) for i = 2, . . . , n. Thus, for all x ∈ ζ(N,w,�), x1 ∼1

cNn1a
N
n1w1, and xi ∼i cN(i−1)i(c

N
n1)aN(i−1)iwi for all i = 2, . . . , n. By Pareto efficiency

of x, cn1 is unique. Therefore, ζ is essentially single-valued, which completes the

proof.

Proof of Theorem 10. To formalize our argument, we introduce the following no-

tation. Applying the mechanism to an economy (N,w,�) results in an extensive

form game, which is denoted by Γ(N,w,�). Denote the SPNE outcome corre-

spondence by SN , which enables us to express the set of all SPNE outcomes of

an extensive form game as the value of SN at this game. For example, the set of

all SPNE outcomes of Γ(N,w,�) is SNΓ(N,w,�). Furthermore, if x ∼ y for all

x,y ∈ SNΓ(N,w,�), we may write SN iΓ(N,w,�) and compare it with a bundle

in terms of �i for all i ∈ N without incurring confusion. We may also consider the

subgames of Γ(N,w,�). We denote by Γ−i
bN

(N,w,�) the subgame starting from

the information set after proposer i’s allocation plan is rejected and the bids made

were bN . In particular, the bids made for i were bNji for all j ∈ N .

The proof comprises three parts: (i) for all (N,w,�) ∈ EH , all x ∈ SNΓ(N,w,�
), and all y ∈ E(N,w,�), if y ∼ x then y ∈ SNΓ(N,w,�); (ii) SNΓ(N,w,�
) ⊆ POSh(N,w,�) for every (N,w,�) ∈ EH ; (iii) SNΓ(N,w,�) 6= ∅ for every

(N,w,�) ∈ EH . Note that parts (i)-(iii) imply that SNΓ(N,w,�) = POSh(N,w,�
).

We prove the three parts simultaneously by induction on |N |. The case where

|N | = 1 is trivial, so we restrict attention to the cases where |N | ≥ 2. We assume the

induction hypothesis that (i)-(iii), and consequently the implementation of POSh

by the bidding mechanism, hold for all economies with less than n agents.

To prove part (i), we first state and prove two claims. We notice that the set

of agents in Γ−i
bN

(N,w,�) is N . On the other hand, the set of agents in Γ(N \
{i},w |N\{i},�|N\{i}) is N \ {i}. However, the sets of SPNE of the extensive-form

games Γ−i
bN

(N,w,�) and Γ(N \ {i},w |N\{i},�|N\{i}) are “similar” in the following

sense:
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Claim 14. Given bN and y′ ∈ Z(N \ {i},w |N\{i},�|N\{i}), define y ∈ Z(N,w,�)

by

yj =


(

n
√
BNi
bNji

)
y′j if j ∈ N \ {i};

wi −
∑

k∈N\{i}

(
n
√
BNi
bNki
− 1

)
y′k if j = i.

Then y ∈ SNΓ−i
bN

(N,w,�) if y′ ∈ SNΓ(N \ {i},w |N\{i},�|N\{i}).

We prove Claim 14. Let (sk)k∈N\{i} be an SPNE strategy profile for Γ(N \
{i},w |N\{i},�|N\{i}) whose outcome is y′. We notice that the final outcome in

Γ−i
bN

(N,w,�) if the agents play (sk)k∈N\{i} is y (note that although the game

Γ−i
bN

(N,w,�) involves all the agents in N , only the agents in N \ {i} choose a

strategy) . We prove that (sk)k∈N\{i} is an SPNE for Γ−i
bN

(N,w,�). Suppose oth-

erwise. Let s′j be a profitable deviation for j ∈ N \ {i} in Γ−i
bN

(N,w,�). After

the deviation, j obtains a bundle zj which is multiplied by

(
n
√
BNi
bNji

)
and such that(

n
√
BNi
bNji

)
zj �j yj =

(
n
√
BNi
bNji

)
y′j. Since the preferences are homothetic, we have

that zj �j y′j. However, if j deviates in Γ(N \{i},w |N\{i},�|N\{i}) from (sk)k∈N\{i}

by choosing s′j, then he obtains the allocation zj, which he prefers to y′j. This is

not possible because y′ ∈ SNΓ(N \ {i},w |N\{i},�|N\{i}). Hence, (sk)k∈N\{i} is an

SPNE for Γ−i
bN

(N,w,�) and y ∈ SNΓ−i
bN

(N,w,�), which concludes the proof of

Claim 14.

We note that following the same arguments as in the proof of Claim 14, the

reverse result also holds. That is, given bN and y ∈ SNΓ−i
bN

(N,w,�), define

y′ by y′j =

(
bNji

n
√
BNi

)
yj for all j ∈ N \ {i}. We note that y′ ∈ Z(N \ {i},w |N\{i}

,�|N\{i}) because y′j is the allocation that player j obtains in the game Γ−i
bN

(N,w,�)

before the rejected proposer i transfers the bundles according to bN (see Case II at

t = 3 as described in the proportional bidding mechanism); hence,
∑

k∈N\{i} y
′
k =∑

k∈N\{i}wk. Then y′ ∈ SNΓ(N \ {i},w |N\{i},�|N\{i}) if y ∈ SNΓ−i
bN

(N,w,�).

The induction hypothesis states that SNΓ(N\{i},w |N\{i},�|N\{i}) = POSh(N\
{i},w |N\{i},�|N\{i}). Then, Claim 14 and its reverse imply that SN jΓ

−i
bN

(N,w,�

) =
n
√
BNi
bNji

POShj(N \ {i},w |N\{i}) for all j ∈ N \ {i}. With the aid of this equality,

we assert formally that every SPNE outcome can be supported by an SPNE that

leads to an immediate agreement in Claim 15.

Claim 15. For every SPNE outcome x ∈ SNΓ(N,w,�), take an SPNE whose

outcome is x. Let bN be the profile of the agents’ bid vectors in that SPNE and

consider the subgame where agent i ∈ argmaxk∈N B
N
k becomes the proposer. Then,

a) xj ∼j
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}) for all j ∈ N \ {i}.
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b) There exists an SPNE where:

b1) each agent j ∈ N \ {i} accepts any i’s allocation plan z ∈ R(N\{i})×L
+ if

zj �j
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}) and rejects it otherwise;

b2) the proposer i puts forth an allocation plan z such that zj ∼j
n
√
BNi
bNji

POShj(N\
{i},w |N\{i},�|N\{i}) for each agent j ∈ N \ {i}, so that the resulting alloca-

tion y ∈ RN×L
+ , which is defined by yj = zj for all j ∈ N \ {i} and yi =∑

k∈N wk −
∑

k∈N\{i} zk, is efficient.

We prove part a) of Claim 15. Notice that, for any economy (N,w,�) ∈ EH ,

given a profile of bid vectors bN and a proposer i ∈ N , then agent j ∈ N \{i} accepts

at equilibrium any i’s allocation plan z ∈ R(N\{i})×L
+ if zj �j

n
√
BNi
bNji

POShj(N \

{i},w |N\{i},�|N\{i}) and rejects it if zj ≺j
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}).

This holds because agent j obtains a bundle
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i})
in case of rejection (by the induction hypothesis and Claim 14). Moreover, a proposal

z such that zj �j
n
√
BNi
bNji

POShj(N \{i},w |N\{i},�|N\{i}) cannot be part of an SPNE.

Such a proposal would be accepted, but i would have an incentive to lower zj by a

sufficiently small amount and propose another acceptable offer resulting in a higher

residual bundle for himself.

Combining the above observations, agent j cannot obtain at equilibrium a bundle

strictly better or strictly worse than
n
√
BNi
bNji

POShj(N \{i},w |N\{i},�|N\{i}) in terms

of his preference �i. Therefore, j obtains a bundle that makes him indifferent to

the bundle
n
√
BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}). Hence, the equation in part a)

holds.

The previous arguments also prove part b1) of the claim. To prove part b2),

consider an efficient allocation plan z such that zj ∼j
n
√
BNi
bNji

POShj(N \ {i},w |N\{i}
,�|N\{i}) ∼j xj for each agent j ∈ N \ {i}. Part b1) ensures that the agents in

N \ {i} will accept this proposal. Moreover, given that it is efficient, there is no

better allocation for i that would be accepted. Proposing a rejected plan cannot be a

profitable deviation for agent i because rejection leads to a feasible allocation where

every j ∈ N\{i} obtains a bundle equivalent for him to
n
√
BNi
bNji

POShj(N\{i},w |N\{i}
,�|N\{i}), which cannot be strictly better for i than z. Hence, Claim 15 is proven.

We now prove part (i) or our induction. Take an allocation y ∈ E(N,w,�) such

that y ∼ x. Then consider the strategy profile that is identical to that in Claim

15 (including the bids) except that agent i proposes y |N\{i} in b2). Given that the

SPNE is an ordinal solution, the strategy profile described in Claim 15 is an SPNE

if and only if the new strategy profile is an SPNE. Therefore, for all SPNE outcome

x ∈ SNΓ(N,w,�) and all y ∈ E(N,w,�) such that y ∼ x, y ∈ SNΓ(N,w,�),
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which completes part (i).

We proceed to prove part (ii). We first establish the following property of the

equilibrium bids.

Claim 16. In any SPNE, BN
i = 1 for all i ∈ N . Moreover, each agent i ∈ N is

indifferent about the identity of the proposer.

We first show that each i ∈ N is indifferent about the identity of the proposer

among the agents in argmaxj∈N B
N
j . Let | argmaxj∈N B

N
j | = p. If p = 1, then this

assertion automatically holds. If p ≥ 2, then assume that agent i strictly prefers k to

z as the proposer, for a pair of agents k, z ∈ argmaxj∈N B
N
j (where i could possibly

be either k or z). In this case, agent i has an incentive to deviate by increasing bNik

to (1 + ε)bNik and decreasing bNiz to
bNiz
1+ε

, where ε ∈ R++ is sufficiently small. To see

this, note that this deviation would ensure that agent k would become the proposer.

There are two cases. On the one hand, if i 6= k then agent i avoids the positive

probability of receiving a bundle strictly worse than
n
√
BNk
bNik

POShi(N \ {k},w |N\{k}

,�|N\{k}) and ensures receiving a bundle equivalent for him to
n
√
BNk

(1+ε)bNik
POShi(N \

{k},w |N\{k},�|N\{k}), by Claim 15. This is a profitable deviation if ε is small

enough. On the other hand, if i = k then agent i becomes the proposer. He can

put forth an allocation plan such that each agent j ∈ N \ {i} is assigned a bundle

∼j-equivalent to
n
√

(1+ε)BNi
bNji

POShj(N \ {i},w |N\{i},�|N\{i}), and the plan will be

accepted, by Claim 15. As before, by continuity of �i, agent i is strictly better off by

switching to the new bid vector for a sufficiently small ε. To sum up, in either case,

it is profitable for agent i to switch to the new bid vector. Therefore, the converse

is true: every agent must be indifferent concerning the identity of the proposer.

Second, suppose that BN
i = 1 does not hold for all i ∈ N , which implies that

there is m ∈ N\argmaxi∈N B
N
i . Then, any agent j ∈ argmaxi∈N B

N
i has an incentive

to switch to a new bid vector b̃Nj , which is defined by

b̃Njk ≡



(1− ε)bNjk if k = j,

(1− ε)2bNjk if k ∈ argmaxi∈N B
N
i \ {j},

(1− ε)1−2pbNjk if k = m,

bNjk otherwise,

where ε ∈ R++ is sufficiently small. After this switch, agent j would be the proposer

for sure. Notice that
n
√
B̃Nj

bNij
<

n
√
BNj
bNij

for each i ∈ N \ {j} because B̃N
j < BN

j given

that b̃Njj < bNjj. Then, by Claim 15, agent j can propose an allocation plan that

assigns a bundle slightly better for i than
n
√
B̃Nj

bNij
POShi(N \ {j},w |N\{j},�|N\{j})
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instead of
n
√
BNj
bNij

POShi(N \ {j},w |N\{j},�|N\{j}), for each agent i ∈ N \ {j}, and

the plan will be accepted. Thus, agent j is strictly better off by switching from

bNj to b̃Nj . Thus, argmaxi∈N B
N
i = N , i.e., BN

i = BN
j for all i, j ∈ N . Since∏

i∈N B
N
i =

∏
i∈N
∏

j∈N b
N
ji =

∏
j∈N

∏
i∈N b

N
ji = 1n = 1, then BN

i = 1 for all i ∈ N .

This concludes the proof of Claim 16.

To continue with the proof of part (ii), let

cNij ≡
n
√
BN
i

bNji
, (3.6.4)

for all i, j ∈ N such that i 6= j. We can verify that
n
√
BNi
bii

∏
j∈N\{i} c

N
ij =

BNi∏
j∈N bNji

= 1

and
n
√
BNi
bii

∏
j∈N\{i} c

N
ji =

∏
k∈N

n
√
BNk
bik

=
n
√∏

k∈N BNk∏
k∈N bik

= n

√∏
k∈N B

N
k = n

√∏
k∈N

∏
j∈N b

N
jk =

n

√∏
j∈N

∏
k∈N b

N
jk = 1. Thus,

∏
j∈N\{i} c

N
ij =

∏
j∈N\{i} c

N
ji = bii

n
√
BNi

, which satisfies

the condition (2a) of Definition 23 of the POSh. To check that the concessions that

we just defined also satisfy the condition (2b) of Definition 23, we notice that, when

agents’ preferences are homothetic, this condition is equivalent to:

For each j ∈ N \ {i}, xj ∼j cNij ζj(N \ {i},w|N\{i},�|N\{i}).

We can interpret ζj(N \{i},w |N\{i},�|N\{i}) as POShj(N \{i},w |N\{i},�|N\{i})
since, as we have shown, SN jΓ(N \{i},w |N\{i},�|N\{i}) = POShj(N \{i},w |N\{i}
,�|N\{i}). Then, condition (2b) is also satisfied, which completes the proof of part

(ii).

We now prove part (iii) of our induction. Let us denote cN
′

i , for all i ∈ N ′, the

unique vector of concessions for the subeconomy (N ′,w |N ′ ,�|N ′) for all N ′ ⊆ N

such that n′ ≥ 2. We construct the agents’ strategy profile as follows. At any

subgame where the remaining set of active agents (i.e., agents choose a strategy)

is N ′ ⊆ N and they have to bid, agent i ∈ N ′ selects the bid bN
′

ij = 1

cN
′

ji

for player

j ∈ N ′ \ {i} and bN
′

ii =
∏

k∈N ′\{i} c
N ′

ki (hence, the bids are well-defined because

BN ′
i =

∏
j∈N ′ b

N ′
ji =

∏
j∈N ′\{i}

1

cN
′

ij

∏
k∈N ′\{i} c

N ′

ki =
∏

j∈N ′\{i}
1

cN
′

ji

∏
k∈N ′\{i} c

N ′

ki = 1

due to the condition 2a) of Definition 23). Proposers’ equilibrium allocation plans

and the rest of agents’ responses to the proposers’ plans at any subgame follow the

description in Claim 15 b).

We have shown that no agent has an incentive to deviate once the bids bN have

been made. It remains to verify that no agent has an incentive to change this bid

vector. Suppose that agent i ∈ N changes his bid from bNi to b̃Ni . Then it will

not be the case that BN
j = 1 for all j ∈ N . Denote by α the resulting proposer.

Given that B̃N
α ≡ b̃Niα

∏
j∈N\{i} b

N
jα >

∏
j∈N b

N
jα = BN

α , it is necessarily the case
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that b̃Niα > bNiα. If α = i, then each agent j ∈ N \ {i} will be allocated a bundle

xj ∼j
n
√
B̃Ni
bNji

POShj(N \ {i},w |N\{i},�|N\{i}) �j
n
√
BNi
bNji

POShj(N \ {i},w |N\{i}
,�|N\{i}) (see Claim 15 a)), and he will be better off. By Pareto efficiency of the

final allocation, agent i, as the residual claimant, cannot be strictly better off. If,

on the other hand, α 6= i, agent i will be allocated a bundle xi ∼i
n
√
B̃Nα
b̃Niα

POShi(N \

{α},w |N\{α},�|N\{α}) �i
n
√
BNα
bNiα

POShi(N \ {α},w |N\{α},�|N\{α}) because b̃Niα >

bNiα implies that
n
√
B̃Nα
b̃Niα

<
n
√
BNα
bNiα

. Therefore, agent i cannot be strictly better off

either. This proves the existence of an SPNE, which concludes the proof of the

theorem.
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[34] Moulin, Hervé. “The separability axiom and equal-sharing methods.” Journal

of Economic Theory 36.1 (1985): 120-148.

[35] Myerson, Roger B.“Conference structures and fair allocation rules.” Interna-

tional Journal of Game Theory 9.3 (1980): 169-182.

[36] Nash, John. “Two-person cooperative games.” Econometrica 21 (1953): 128-

140.

[37] Nicolo, Antonio, and Andrés Perea. “Monotonicity and equal-opportunity

equivalence in bargaining.” Mathematical Social Sciences 49.2 (2005): 221-243.

105



[38] Nowak, Andrzej S., and Tadeusz Radzik. “A solidarity value for n-person trans-

ferable utility games.” International journal of game theory 23.1 (1994): 43-48.

[39] Oishi, Takayuki, Mikio Nakayama, Toru Hokari, and Yukihiko Funaki. “Duality

and anti-duality in TU games applied to solutions, axioms, and axiomatiza-

tions.” Journal of Mathematical Economics 63 (2016): 44-53.

[40] Owen, Guillermo. “Multilinear extensions and the Banzhaf value.” Naval Re-

search Logistics (NRL) 22.4 (1975): 741-750.

[41] Pazner, Elisha A., and David Schmeidler. “Egalitarian equivalent allocations:

A new concept of economic equity.” The Quarterly Journal of Economics 92.4

(1978): 671-687.

[42] Peleg, Bezalel. “An axiomatization of the core of cooperative games without

side payments.” Journal of Mathematical Economics 14.2 (1985): 203-214.

[43] Peleg, Bezalel. “On the reduced game property and its converse.” International

Journal of Game Theory 15.3 (1986): 187-200.

[44] Peleg, Bezalel, and Peter Sudhölter. Introduction to the theory of cooperative

games. Vol. 34. Springer Science & Business Media (2007).
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