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Preface

This doctoral dissertation is a collection of three essays on the economics of emerging digi-
tal technologies; in particular, crowdfunding and blockchain. These practical technologies
are increasingly used and have entered the public debate because of new regulatory ques-
tions. Although my research is purely theoretical, it already provides preliminary answers
to vital questions about sustainability and welfare, so it has clear practical implications.

Chapter 1, entitled “The Cryptocurrency Mining Dilemma”, studies how transac-
tion fees and seigniorage, equivalent to inflation in the cryptocurrency setting, affect
cryptocurrency miner incentives and trade congestion. It is centred on the analysis of
cryptocurrency miners who are the record-keepers of the blockchain: a digital ledger of all
transactions made with a particular cryptocurrency. By exerting effort to record pending
transactions on the blockchain, miners determine the speed at which buyers and sellers
of consumption goods can settle their trade with cryptocurrency. Given that a major
reason to settle payments in cryptocurrency rather than traditional methods is its speed
of payment (or settlement time), it is essential that miners record transactions at a good
pace to sustain a cryptocurrency economy.

Each cryptocurrency miner chooses how many new transactions to group into the next
block of transactions to record on the blockchain and competes with the other miners
in recording it first. The successful miner earns (i) transaction fees from traders seeking
to record their transfers and (ii) the new cryptocurrency units or seigniorage created by
block validation. Pro-rata transaction fees encourage miners to include more transactions
per proposed block but larger blocks transmit more slowly, raising the risk of invalidation.
Therefore, raising the seigniorage to fee ratio reduces the number of transactions recorded
per block. This aspect has important policy implications because, when miners choose
small blocks, congestion levels rise and eventually (consumption goods) trade breaks
down, making the cryptocurrency unviable. So a cryptocurrency designer has to impose
a minimum threshold on the ratio of seigniorage to fees. The chapter finally presents the
optimal cryptocurrency design problem as the maximization of trade efficiency subject
to miner participation constraints and these miner incentives.

Chapters 2 and 3 are part of a joint line of work with my academic advisor Matthew
Ellman on dynamic aspects of all-or-nothing (AoN) crowdfunding. Chapter 2, “A Theory
of Crowdfunding Dynamics”, develops a dynamic game featuring crowdfunding bidders
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endogenously inspecting campaigns to understand the time profiles of their bids and to
characterize how design parameters affect success rates, welfare and profits. Inspection
costs convert a homogenous Poisson process of bidder arrivals into a non-homogenous
Poisson bidding process. A decreasing pivotality effect generates a downward sloping
average funding profile for any fixed inspection cost; the general logic is that strategic
complementarity falls as a deadline nears. A weakly concave distribution of inspection
costs reinforces this negative slope via a negative Jensen effect of success prospect news.
Conversely, convexity can generate an increasing profile via a positive Jensen effect. Since
decreasing pivotality is often strongest in the early stages of a campaign while positive
Jensen effects from activating reluctant bidders are strongest in the final stages, this
predicts a U-shaped profile in line with crowdfunding data. Besides providing a positive
analysis, the framework we develop characterizes success rates given any price, allowing
us to solve optimal pricing and address other design questions.

From crowdfunding data, we observe that bid profiles exhibit sharp U-shapes with
initial and final spikes. These arise when some bidders arrive before campaigns open, or
bidders delay their decisions to just before the campaign expires, creating a final bidding
spike if the campaign turns out to succeed. Chapter 3, “Crowdfunding with Endogenously
Timed Moves”, is a spin-off of Chapter 2 that adds bidders the possibility to postpone
their action from the moment they arrive and revisit the campaign just before its deadline
by using a “Remind-me” option provided by the crowdfunding platform. Delay options
let bidders adapt to news about bidding by others who act on arrival, but free-riding
generates excessive delay. Relative to simultaneity (Sim) and exogenous sequentiality
(Exo), endogenous sequentiality (Endo) from delay options can lower success rates and
welfare because of free-riding. However, with cost heterogeneity, Endo can instead raise
welfare because low-cost types endogenously move earlier, allowing higher cost types to
economize on their inspections. In addition, Endo can raise success rates by activating
higher-cost types. This last dissertation chapter fully characterizes equilibria when the
threshold is two. In this special case, cost homogeneity generates a continuum of pure
and mixed strategy equilibria, but the expected mass of potential delays is the same in
all equilibria. Only the unique equilibrium in stationary strategies is robust to cost per-
turbations. Endo, Exo and Sim yield identical bidder surplus but Sim generates higher
success rates, so Sim is welfare optimal under homogeneity. With a generic threshold, in-
troducing cost heterogeneity favours Endo and Exo relative to Sim in terms of consumer
surplus. Sim continues to maximize the campaign success rate unless the cost distribution
has a thick upper tail. In terms of bidding profiles, allowing for pre-campaign arrivals
and endogenous timing, the model predicts initial and final bidding spikes, creating a
pronounced U-shape.
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Chapter 1

The Cryptocurrency Mining
Dilemma

1.1 Introduction

A cryptocurrency is a digital currency governed by a computer program and managed by
a decentralized, free-entry network of record-keepers in charge of updating the blockchain:
a ledger (registry) of the collective memory of the cryptocurrency, i.e. “who-owns-what”.
In most cryptocurrencies, e.g. Bitcoin and its successors, record-keepers are cryptocur-
rency miners; individuals that own a dedicated computer. Miners record a block (or set)
of pending transactions from consumption good traders (buyers and sellers) by first per-
forming a costly encryption that makes the blockchain secure and then transmitting the
block to the miner network for its approval. In case two or more blocks record conflicting
information, miners coordinate on the first transmitted block and discard the others. As a
compensation for the cost of recording blocks, the protocol rewards miners with revenues
from two policy instruments: per-transaction fees and seigniorage from the creation of
new coins. Seigniorage is the only source of revenues from empty blocks that record no
transactions and only create money. By increasing block size recording more transactions,
fee revenues rise while seigniorage is fixed, but block transmission time reduces; hence,
also the risk of block invalidation causing the loss of its associated revenues increases.
This paper studies the effects of seigniorage and transaction fees on miner incentives and
trade congestion. My model shows that the size of miner blocks depends positively on
the ratio of fees to seigniorage. Hence, transaction fees cannot be fully substituted by
seigniorage as they are essential to induce miners in creating large blocks so to maintain
a high transaction speed. Also, sufficient seigniorage is needed for positive miner activity
when no trader transaction is pending. So an optimal cryptocurrency design uses both
policy instruments.

Large blocks imply a short payment settlement period encouraging consumption good
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buyers to pay sellers using the cryptocurrency. Conversely, small blocks cause the queue
of pending cryptocurrency payments to become congested and sellers to charge higher
prices for the wait. In my model, excessive seigniorage causes miners to form only empty
blocks, without fulfilling their primary record-keeping task. As a result, transactions
have an infinite validation time, and cryptocurrency trade unravels. Congestion risks in
cryptocurrency trade are evident from Bitcoin data. Figure 1.1 shows that most Bitcoin
traders suffered long payment settlement delays in periods of high congestion, as the
median confirmation time is often below the spikes occurring in the average confirmation
time. In particular, during the first quarter of 2018, transactions took on average more
than two days before being included in a block. Taking into account that Bitcoin traders
wait for other five blocks to arrive before considering a payment safely received, payments
took on average more than a week during that period of time, and caused traders to switch
to alternative payment methods such as Paypal transfers.1

Figure 1.1: Average and median Bitcoin confirmation time

Day-level data origin: https://www.blockchain.com/
Data smoothing preformed via moving average with 10 lags.

The basic mining incentive problem can be tackled by an optimal cryptocurrency de-
sign that provides miners with the efficient combination of transaction fees and seigniorage
conditional on inducing sufficient miner entry for traders to consider the cryptocurrency
secure. In this case, the social planner (a team of expert software developers) elicits
“mining taxes” from consumption good traders in the form of inflation and transaction
fees to incentivize miners in providing public goods; in particular, security from their
participation, a pure public good, and block size, a common-pool good subject to con-

1On October 21 2020 Paypal announced to plan extending its service to allow trans-
fers of bitcoins and other cryptocurrencies across its accounts. For further information,
check https://newsroom.paypal-corp.com/2020-10-21-PayPal-Launches-New-Service-Enabling-Users-to-
Buy-Hold-and-Sell-Cryptocurrency

https://www.blockchain.com/
https://newsroom.paypal-corp.com/2020-10-21-PayPal-Launches-New-Service-Enabling-Users-to-Buy-Hold-and-Sell-Cryptocurrency
https://newsroom.paypal-corp.com/2020-10-21-PayPal-Launches-New-Service-Enabling-Users-to-Buy-Hold-and-Sell-Cryptocurrency
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gestion. Chiu and Koeppl (2019) (CK hereafter) argue that a pure seigniorage design
is optimal based on the observation that seigniorage is levied on aggregate value of the
cryptocurrency while transaction fees apply only to the portion of value used for trade.
The larger “tax base” on which seigniorage is charged can let the protocol provide a given
level of mining revenues imposing lower mining costs on traders than the ones implied by
including a fee component in the block reward design. However, CK’s rationale neglects
the detrimental effect of excessive inflation on block size that my paper explores. My
analysis shows that an equilibrium in which cryptocurrency trade takes place is viable
only if the protocol ensures that transaction fees are large enough relative to seigniorage
so that miners are incentivized to fulfill their role of record-keepers.

My model is the first to jointly analyze congestion and miner incentives within a gen-
eral equilibrium model of trade. Hence, my contribution to the Economics literature on
blockchain and cryptocurrencies is threefold. First, I encompass a game-theoretic model
of block mining within a state-of-the-art, continuous-time Lagos-Wright (LW) model, in
this way endogenizing token demand and inflation. Then, I use the model to derive
testable implications of the sensitivity of mining strategies and trade to shifts in policy
variables; in particular, the mining fees-to-seigniorage ratio. Finally, I study optimal
cryptocurrency design and contribute to the debate on the composition of the block re-
ward in terms of seigniorage and transaction fees. The analysis is roughly consistent with
the stylized facts on the co-movement between blocks’ size and the fees-to-seigniorage
ratio that emerges from the data (e.g. Fig. 1.2) and opens the way for further empirical
investigation. Moreover, the main lessens form the model apply to the myriad of “alt-
coins” (alternative cryptocurrencies) that proliferated extending the open-source Bitcoin
code.2

The rest of this paper is organized as follows: Section 1.2 provides a literature review.
Section 1.3 models the cryptocurrency-trade economy and the blockchain, describing
in detail the determinants of the block invalidation risk. Section 1.4 presents a game-
theoretical model of mining and a partial equilibrium model of cryptocurrency trade.
Cryptocurrency token prices are determined by the (general) monetary equilibrium of
the economy presented in Section 1.5. Section 1.6 formulates the optimal cryptocurrency
design problem and provides an intuitive suggestion on the composition of the block
reward with a simple example. Concluding remarks and directions for further research are
presented in Section 1.7. Omitted derivations and proofs are presented in Appendices 1.A

2An altcoin can be created by downloading and modifying the source code of the up-to-date version
of Bitcoin Core from this link: https://bitcoin.org/en/bitcoin-core/.
Currently, the market capitalization of the more than 2800 different cryptocurrencies is around 200
million USD. Bitcoin is the market leader, accounting for 67% of the overall value with a capitalization
of 133.43B. Ethereum and XRP (also known as Ripple) share the podium with market caps of 18.7B (9%)
and 8.7B (4%) followed by the other top ten currencies (Tether, Bitcoin Cash, Bitcoin SV, Litecoin, EOs,
Binance Coin, Tezos). A myriad of minor currencies constitute the remaining 7% of the total market
value-the majority of each has a value share lower than 1%.

https://bitcoin.org/en/bitcoin-core/
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Figure 1.2: Fees-to-seigniorage ratio (in USD) and block transaction count for Bitcoin

Day-level data origin: https://www.blockchain.com/
Value “0” of the de-trended series corresponds to approximately 800 transactions.
Data smoothing performed via moving average using 3 lags for “Fees-to-seigniorage” and 10 lags for “Transactions per
block (avg)”

and 1.B. Appendices 1.C and 1.D provide a summary of the main notation and technical
terms.

1.2 Literature review

My paper contributes to the vibrant Economics literature on blockchain and cryptocur-
rencies. I develop a novel approach that encompasses endogenous block size, trade conges-
tion, money demand and monetary policy within a general-equilibrium pure cryptocur-
rency economy based on the cutting-edge continuous-time adaption of the Lagos-Wright
(LW) model proposed by Choi and Rocheteau (2020c) - CR hereafter. Lagos et al. (2014)
provides a thorough review of the new monetarist economics literature of which CR is
part.

Endogenous block size, congestion and inflation have already been studied separately
and to some degree by other authors; yet, to my knowledge, the analysis of their interplay
is new. In the closest paper to mine, Chiu and Koeppl (2019) develop a dynamic general
equilibrium model of Bitcoin adoption where buyers (who are also miners) can engage
in frauds by committing double-spending (DS) attacks. CK assume a fixed block size
and show that the plausibility of DS attacks imposes a minimum requirement on miner
participation and pins-down a compensation level that an optimal design has to guarantee.

CK advocate for a blockchain design based on a pure seigniorage block reward since
it is more efficient in collecting revenues from traders than fees, but neglect congestion
(see Section 1.1). CK also point out that fees can be reclaimed after a successful double-
spending so that they provide a less effective DS deterrent than seigniorage. Nevertheless,
in practice fees are small relative to the transaction value that justifies a DS attack and
have only a minor effect on DS incentives. My story based on congestion and endogenous
block size provides a rationale for adding a fee component to the block reward.

Houy (2016) along with the Computer Science paper Rizun (2015) is one of the earliest

https://www.blockchain.com/
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contributions on endogenous block size with a model of the invalidation risk. He assumes
continuous block size and also finds that block size is increasing in the fee-to-seigniorage
ratio, in line with my findings. My paper augments the existing block size game by also
studying miner activity and entry and also by endogenizing cryptocurrency trade. Earlier
contributions miss modeling mempool dynamics resulting from the general equilibrium
of the economy, which are an important link between mining and trade.

Huberman et al. (2019) and Easley et al. (2019) - HLM and EOB - offer an in-depth
analysis of Bitcoin transaction fees. I focus instead on analyzing the optimal trade-off
between fees and seigniorage, abstracting from the fee auction modeled by these authors
and assuming homogeneous users and a fixed posted price as fee set by the protocol.3

Even though the models developed by EOB and HLM are suited to address the de-
termination of fees, they treat trade as exogenous and assume linear impatience. This
feature precludes a direct dynamic extension as standard models assume negative expo-
nential discounting. On the other hand, CK endogenize trade and embed a game-theoretic
model of mining within a LW monetary model in discrete time. This approach is suited
for optimal cryptocurrency design but is not compatible with the continuous-time mining
games studied by EOB and HLM; hence cannot be used to study congestion. My paper
combines mining and monetary aspects within a continuous-time framework. As in EOB,
I restrict the maximum block size to unity when investigating miners’ optimal block size
strategy. The novel mining aspect I consider is the trade-off between block reward and
invalidation risk. HLM propose a modified Bitcoin protocol that adjusts block size and
creation rate based on transaction demand. Block size is fixed by the protocol and miners
do not take into account the risk of block invalidation.

Fernández-Villaverde and Sanches (2019) study a general equilibrium monetary model
to examine market outcomes and welfare under (Hayekian) competition among private
monies produced by profit-maximizing entrepreneurs. Similarly, Choi and Rocheteau
(2020c,a) develop a monetary equilibrium model in which monies are created via costly
(mining) technology. These authors find that stationary equilibria with steady-state infla-
tion, in line with the approach I employ, exist. These equilibria are part of a multiplicity
set featuring, for example, boom and burst dynamics and persistently declining purchase
power. Schilling and Uhlig (2019) study a two-currency economy in which the US dollar
and Bitcoin coexist. They determine a condition that rules out Bitcoin speculation and
ensures that BTC price (in USD) follows a martingale. Specifically, Bitcoin speculation
does not occur if agents are sufficiently impatient. Athey et al. (2016) develop a general
equilibrium model of remittances to endogenize the Bitcoin price.

Biais et al. (2019), preceded by the Computer Science paper Kroll et al. (2013), use
a stochastic game to investigate miners’ fork resolution strategies. They demonstrate
that LCR is an equilibrium mining strategy but coordination effects lead to multiplic-

3“Users” in HML and EOB are replaced by “traders” in my model.
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ity of equilibria, some of them portraying permanent forking. Their paper includes an
extension of the baseline model with delays in information transmissions, akin to the
block transmission delays considered here, showing, in agreement with my analysis, that
information delays can lead to temporary forks. The main modeling difference is that, in
Biais et al. (2019), blocks are transmitted instantaneously to all miners except in one -
and only one - transmission that can fail to reach a miner. In that case, the uninformed
miner creates a fork as a result of the information asymmetry. In my model, blocks have
different transmission times depending on their size, but completed block transmissions
reach all miners at once. With my modeling approach, forking is caused by differences
in transmission times. I first provide a detailed description of how LCR leads miners to
discard (fork-out) blocks that have been transmitted slowly and then compute, in some
cases explicitly, the probability of blocks becoming stale.

Prat and Walter (2018) estimate industry dynamics of Bitcoin mining contributing
to the literature on irreversible investment and explaining price dynamics. They assume
exogenous token demand and abstract from block reward design. Cong et al. (2019)
provides an analysis of the industrial organization of mining pools.

Other papers, e.g. Abadi and Brunnermeier (2018); Leshno and Strack (2019); Saleh
(2020); Rosu and Saleh (2019) are broadly related to mine and discuss general aspects of
blockchain ecosystems and the Proof-of-Stake (PoS) protocol, the leading alternative to
Proof-of-Work (PoW). In particular, Budish (2018) criticizes the blockchain technology
highlighting potential vulnerabilities of the infrastructure to DS and other types of attack.

My paper also relates to the Computer Science literature on blockchains. Decker
and Wattenhofer (2013) describe in detail the block propagation method used by Bitcoin
miners and measure blocks propagation time on the Bitcoin blockchain. I refer to invalid
blocks as “stale” according to the definition provided by Saad et al. (2019). Neudecker and
Hartenstein (2019) study empirically temporary forks originated by block propagation
delays. Carlsten et al. (2016) argue that a pure fee reward creates security breaches.
In particular, random shifts in transaction fees caused by stochastic demand can cause
mining revenues to fall below mining costs, thereby discouraging miner participation.
This happens for example when no transaction is pending for validation so that miners
make no revenues from mining. Rosenfeld (2014); Pinzón and Rocha (2016); Grunspan
and Pérez-Marco (2018) compute the success probability of a double-spending attack
refining the calculations reported in Nakamoto (2008).

1.3 Model

My model augments the novel continuous-time LW framework proposed by Choi and
Rocheteau (2020c) with an explicit model of blockchain mining, featuring endogenous
block space.
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The economy is populated by B buyers, S sellers and M miners, indexed by b, s,m
respectively. Traders’ (buyers and sellers) participation is exogenous, while miner partic-
ipation will be determined endogenously by free entry. I denote the time index t ∈ R+.

Two types of perishable and divisible goods are available in the economy. The first
is a generic (numéraire) good denoted by x ∈ R, with x > 0 if consumed and x < 0 if
produced, that can be interpreted as a basic consumption good if positive or as labour
if negative. The second is a special good whose consumption and production is denoted
by y ∈ R—it can be interpreted as a consumption good that is augmented with special
features if purchased from an E-commerce website via cryptocurrencies. All agents enjoy
consuming the generic good (and dislike producing it) according to the same one-to-one
utility function, so the payoff they obtain by consuming or producing x is simply given by
x. Preferences for the special good are instead asymmetric. Buyers cannot produce the
special good but do enjoy consuming it according to the generalized logarithmic utility

u(y) = ln (1 + η y) , η ∈ R+ (1.1)

This functional form was first introduced in its more general form of generalized CRRA
utility in Lagos and Wright (2005) and then employed by Chiu and Koeppl (2019) to
normalize utility such that u(0) = 0 and to avoid a corner solution with no trade when
even optimal consumption would yield a negative utility.4 The taste parameter η is
needed and has to be sufficiently large to solve this issue.

Sellers instead can produce the special good but do not enjoy consuming it, while
miners are neither able to produce nor interested in consuming the special good.

All agents can also obtain storable and perfectly divisible tokens of a PoW cryp-
tocurrency with no intrinsic consumption value, i.e. a fiat cryptocurrency. In Bitcoin,
tokens are called “bitcoins” and “satoshis,” (a bitcoin is worth 108 satoshis).5 I let ai,t,
i ∈ {b, s,m} denote the tokens held by agent i and zi,t ≡ ai,tφt their real value given price
φt.

1.3.1 Centralized markets (CM’s)

Only miners can produce cryptocurrency tokens. Nevertheless, all agents can obtain and
dispose of tokens through centralized cryptocurrency markets (CM’s). Specifically, two
trading platforms, CM1 and CM2 (e.g. Coinbase and Binance), are continuously and
simultaneously acting as market makers, allowing agents to exchange tokens for units of
the generic good and vice-versa.

4The generalized CRRA used in Lagos and Wright (2005) is equivalent to u(y) = (1 − ε)−1[(y +
1/η)(1−ε) − (1/η)(1−ε)], which converges to the utility function (1.1) for ε→ 1.

5Fiat currency sometimes is interpreted as money backed by the government and issued by a central
bank. I refer to these as traditional fiat currencies. Here, by “fiat currency” I refer to an asset that yields
no dividends as opposed to a Lucas tree.
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Besides being exchanges, the CM’s allow traders to subscribe and opt for a token
custody service. In this way, while retaining the tokens’ ownership, traders let a CM
store their tokens in compliance with the Know Your Costumer (KYC) and Anti Money
Laundering (AML) regulations. Trading platforms perform the custodial service by pro-
viding traders with a custodial wallet that they can use to manage their funds. In this
model, all traders opt for the custody service and operate only trough their custodial
wallets. Miners instead keep their tokens “in their own hands” on a non-custodial wallet.
To keep things simple, I assume all traders single-home and each CM interacts with half
of the traders’ population. Formally, denoting a CM’s user base with sub-index, I am
making the following assumption:

Assumption 1.1. (B1, S1) = (B2, S2) = (B/2, S/2)

Miners instead operates with both CM’s.
Each CM performs two types of operations: internal transactions, among and with her

subscribed traders, and external transactions, encompassing those among subscribed and
unsubscribed traders and miner-platform transactions. Transactions of this last category
take place after miners recorded them on the blockchain in a valid block, i.e. they are
on-chain transactions. In this case, their settlement is not immediate, and record-keeping
is in general not final because, once a block becomes stale, the transactions it records turn
to be pending again. Conversely, internal transactions are performed using a double-layer
solution that does not rely on the blockchain; i.e. they are off-chain transactions. To
perform transactions of this category, first, a CM forms a centralized fund buying tokens
via external transactions—at first buying from miners and later also from unsubscribed
traders. Afterwards, she lets subscribed traders access a limited part of her fund (ab,t and
as,t to a generic buyer and seller) through their custodial wallets. In this way, internal
transactions only update traders’ wallet balance, but de facto do not move tokens across
addresses. Thanks to this procedure, internal transactions achieve immediate and final
settlement.6

All external transactions experience settlement delays, but I assume that miner-to-
platform operations are immediate, as considering the effect of their settlement delays
would only complicate the model without making it further insightful.

1.3.2 Decentralized market (DM)

Besides trading in the CM’s, traders also meet sporadically among each other in a de-
centralized market (DM). Given the preference and technology asymmetry among buyers
and sellers, DM meetings are the only occasion for buyers to purchase the special good

6Indeed, the Bitcoin blockchain explorer https://www.blockchain.com/explorer does not record
transactions made through Coinbase wallets, as explained in Coinbase FAQ (frequently-asked-questions).

https://www.blockchain.com/explorer
https://help.coinbase.com/en/coinbase/trading-and-funding/buying-selling-or-converting-crypto/why-cant-i-see-my-transaction-on-the-blockchain
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from sellers. I let αi,j, i, j ∈ {1, 2} denote the (Poisson) meeting rate among CM i buyers
and CM j sellers.

Since the custodial wallets are incompatible across CM’s, DM transactions among
traders of different platforms occur on-chain; precisely, when a transaction takes place,
the buyer requests his trade platform to send a number of tokens to the seller’s address,
which points to his trading platforms. In this model, a precise analysis of blockchain
record-keeping is pointless unless traders with incompatible wallets meet with positive
probability. So, to keep things tidy, I assume that DM meetings occur only among buyers
and sellers with incompatible wallets, as stated by the following assumption.

Assumption 1.2. α1,2 = α2,1 ≡ α, α1,1 = α2,2 = 0

During DMmeetings, I assume that credit is ruled out by market practices or anonymity
- e.g. if special good is illegal, traders identify themselves using an encrypted alias.7 As-
suming that buyers cannot produce the generic good while trading with sellers, the only
way they can obtain the special good is by exchanging it for their cryptocurrency tokens.
This feature makes the cryptocurrency essential, in the sense that it widens the frontier
of welfare-improving trade arrangements.

To reward miners for recording DM transactions on the blockchain, traders’ wallets
are programmed to charge a transaction fee for each transaction made. I assume that
wallets charge a proportional transaction fee rate τ on each transaction. To be clear, if
buyer b sends tokens of value zb,t to seller s, this latter receives only zs,t = zb,t(1−τ). The
miner m that records the transaction between b and s in a valid block receives zm,t = zb,tτ

real balances in reward for doing so.
In reality, buyers set the amount of fees attached to their transactions. Here, by con-

sidering τ as fixed, I give up some realism for the sake of simplicity. The model provides
the simplest yet parsimonious setting to study the general equilibrium implications of a
change in transaction fees.

Transaction fees are not the only source of rewards for miners and currently constitute
only a minor component of it. The most important part of their reward comes from
seigniorage in the form of new tokens that are generated by the protocol each time a
miner forms a valid block. I postpone this aspect to Section 1.3.4 that describes the
details of tokens’ creation and the composition of the block reward.

Market clearing and symmetry

Each CM sets her token price φi,t to ensure market clearing at each date and for each
realization of (tokens) demand and supply shocks. Formally, letting (ADi,t, ASi,t) denote

7Even in these cases traders’ identity can be retrieved indirectly by analyzing the blockchain tree.
For example, The FBI was able to trace the identity of most people involved in illicit trade through the
website Silk Road.
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Figure 1.3: On-chain and off-chain transactions

CM i’s token demand and supply, market clearing implies

φi,t : ADi,t = ASi,t ≡ Ai,t ∀ i, t (1.2)

The resulting aggregate real value of tokens is

Zt , φ1,tA1,t + φ2,tA2,t

In the monetary (general) equilibrium characterized in Section 1.5, the token demand
in each CM is constant - except at zero-measure time points - but the token supply is
subject to shocks. Specifically, positive supply shocks occur each time a CM receives
tokens from a miner-platform or DM transaction, while negative supply shocks occur
every time a CM gives away her tokens in a DM transaction. Nonetheless, in expectation,
the symmetry Assumptions 1.1 and 1.2 imply that DM shocks compensate each other
across CM’s. Therefore, CM’s expected prices are equal and are determined by the
(constant) tokens’ demand and miners’ token supply. Since traders’ portfolio choice
and mining strategies are based on the same expected price, we can without loss of
generality drop the CM index when analyzing the partial equilibrium models of mining
and cryptocurrency trade developed in Section 1.4, basing the analysis on a single price
φ.8

The aggregate number of tokens in circulation varies over time, but the general equi-
librium I will characterize in Section 1.5 has the property that aggregate real balances
are constant in each CM.

Definition 1.1 (Stationarity property). Aggregate real balances are stationary at CM
level if

Zi,t = Zi for i = 1, 2 (1.3)

8As in reality, realized prices can temporarily differ despite the symmetry assumptions, providing
agents with arbitrage opportunities. However, arbitrage is not worthwhile if its expected gains are offset
by the hassle cost of monitoring both CM’s at the same time. I will take his aspect for granted hereafter.
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and for all t ∈ R+ except for a set of dates with zero Lebesgue measure.

The equilibrium describes a situation in which tokens’ (expected) price is on a steady
inflation path and is not subject to speculative bubbles. In reality, BTC price volatility
caused by speculation raises major concerns regarding the use of BTC as a means of
payment (MoP). The two-platform structure of the model is suited for analyzing cryp-
tocurrency speculation, but in this draft, I concentrate on the hypothetical scenario in
which problems arising from speculation are resolved.

Summary

To conclude this section, I recap how cryptocurrency tokens and consumption goods
circulate in the economy as illustrated by Fig. 1.4. In type-(i) exchanges, miners sell
their block rewards to the CM’s in exchange for generic goods. In the ones of type-(ii),
buyers acquire tokens from CM’s by selling units of the generic good and use their tokens
to trade with sellers in the DM where type-(iii) exchanges take place: a share of the
value transferred in DM meetings goes a sellers (iii.a); the remaining part goes back to a
miner in the form of transaction fees (iii.b).9 Type-(iv) exchanges occur as soon as DM
transactions are recorded on a valid block, so that sellers cash-out their tokens by selling
them in the CM in exchange for units of the generic good.

m

CM s

b

(i)
(ii)

(iii.b)

(iii.a)

(iv)

Figure 1.4: Circulation of a token

Understating the internal mechanisms ruling the blockchain is essential for studying
the general equilibrium of the cryptocurrency economy. For this reason, the next section
presents a detailed model of blockchain mining that complements the trade framework
presented up to now.

1.3.3 The blockchain

The blockchain is a digital ledger that records all movements of cryptocurrency tokens
directed towards each user address as well as modifications of the token creation policy
and in the ledger’s internal governance. The kind of blockchains studied in this paper
are based on the PoW protocol that puts miners in charge of three fundamental tasks:
record-keeping, consensus formation and security.

9Technically, transaction fees resulting from the difference between the number of tokens sent from
an address and that directed to the other address or addresses.
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Each miner stores a copy of the ledger on his mining node and records incoming
transactions sent by traders. Transactions are recorded on a miner’s blockchain copy
in time-stamped batches called blocks. To form blocks, a miner is required to solve a
computationally-intensive cryptographic puzzle through random guessing of its solution,
an operation called mining that nowadays requires a dedicated ASICS hardware to be
performed.10 In reward for mining, miners receive seigniorage from the creation of new
tokens and fees associated with each transaction they record.11

The costly PoW requirement exists for two main reasons. The first is to give value
to the cryptocurrency by making its supply costly, as the consequences of removing the
PoW mechanism on the value of the cryptocurrency are analogous to those of letting
people print M0 and M1 money (basically coins and banknotes) with their home printer
on the value of a traditional fiat currency. The second role is related to security, but I
delay this aspect after having described the structure of a blockchain in the paragraphs
below.

Due to the distributed nature of blockchain record-keeping, miners are naturally prone
to record different transactions histories to their ledger copies. For example, if miners form
blocks by recording pending transactions at random, their ledger copies can differ in the
chronological order in which transactions are recorded. Nevertheless, the governance rules
followed by miners have to ensure that miners reach an agreement on a common version
of the ledger by communicating to each other the blocks they recorded and pending
transactions they store, allowing only for temporary inconsistencies among their ledger
copies.

In the next subsection, I will provide a brief description of the structure of a blockchain
and the miner governance rule adopted by Bitcoin and most PoW cryptocurrencies. The
following short description suffices to follow the mining model developed in Section 1.4.1.
Other minor mining technicalities are presented in Appendix 1.D.

The structure of a blockchain (in brief)

A blockchain is formed by connected blocks of recorded transactions and auxiliary infor-
mation. Each blockchain is initiated by a genesis block that is progressively extended by
its successors establishing a chronological order. Asynchronous and decentralized com-
munication among miners can lead them to extend a single block by two or more direct
(chronological) successors. In this case, the blockchain forks (bifurcates) in two or more
chains (branches), each providing a different version of the ledger up to a common point

10ASICS is an acronym for Application-Specific Integrated Circuit System. ASICS mining nodes were
anticipated first by computational processing units (CPU’s), and then by graphical processing units
(GPU’s).

11An alternative blockchain protocol is Proof-of-Stake (PoS) which replaces miners with “validators,”
who are required to form a token escrow fund and obtain the right to record blocks if extracted by a
lottery that selects them based on their relative contribution to total token escrow.
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of agreement. Due to possible forking, the correct model to keep track of the blockchain’s
ramification is that of a directed tree graph, usually referred to as the block tree, described
rigorously by Biais et al. (2019). Identifying a block’s precise location within the block
tree requires modeling techniques that are not necessary to develop the analysis that fol-
lows. Hence, I identify each block only by the identity of the miner m who forged it and
a block height h ∈ {0, 1, . . . , Ht} that counts its block distance from the genesis block
(h = 0). The variable Ht indicates the blockchain height (i.e. the height of the block
head of the longest chain). I omit the time index from Ht when clear form the context
or referring to a generic value H of the blockchain height. I also refer to a chain’s height
as the height of its block head.

Each chain (branch) of the block tree is initiated either by the genesis block or by
a fork and portrays a different history of the ledger. For this reason, the presence of
multiple active chains create ambiguity on the state of the ledger, e.g. on the balance
associated with each cryptocurrency address, and hinders users’ trust in the blockchain
if persistent. To avoid a state of permanent ambiguity, the governance rules followed by
miners have to guarantee that they “form a consensus” over a unique chain to extend,
allowing for simultaneous active chains only temporarily.

Bitcoin and most (if not all) PoW blockchains follow the chain selection criterion
prescribed by Nakamoto (2008); namely, the Longest-Chain-Rule (LCR). Essentially,
LCR prescribes miners to consider as valid the perceived longest chain by electing its
block head (terminal block) as reference (predecessor) block for the new block they will
form. If a single block has height H, miners following LCR form their new block on top
of it. On the other hand, if the blockchain terminates with a fork (multiple blocks have
height H), miners work on the terminal block they became first aware of; that is, on
the block with the shortest publication time (the stopping time at which it is recorded
on the ledger and transmitted to the miners’ network). Put differently, miners following
LCR behave as if they were to choose their favourite chain according to a lexicographic
preference, with chain height as primary criterion and publication time of a chain’s block
head as subordinate criterion.

Under LCR, a miner m∗ extends the blockchain at height H establishing the new
consensus chain (at height H + 1) by publishing a block with the shortest publication
time TH+1,m∗ among the ones of all the minersm ∈M that are simultaneously competing
to extend the longest chain. Formally, LCR determines the reference block as follows:

Criterion 1.1 (LCR). Under the Longest-Chain-Rule (LCR), a miner m∗ establishes the
consensus chain at height H if

TH+1,m∗ = T ∗H+1 , min
{
TH+1,m

}
m∈M

(1.4)

From the perspective of a miner following LCR, all blocks outside the consensus chain
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Figure 1.5: Longest Chain Rule (LCR)

A branched block tree. Blocks are identified with height (left-index) and the rank of their
publication time (right-index). Among the three chains that form the block tree, LCR selects
the longest chain terminating with block (3, 5). Notice that the chain ending with block (3, 6) is
one of the longest but was published later than the consensus chain, whereas the chain ending
with block (2, 4) was published previously than the consensus chain but is shorter.

are stale and do not contribute to the ledger’s recorded history of transactions.
LCR is a natural prescription under transaction homogeneity. If we depart from this

benchmark case, there are reasons to believe that rational miners can follow a different
behaviour. For example, with heterogeneous transaction fees, Carlsten et al. (2016) shows
mining equilibria such that miners extend the branch whose terminal block provides them
with the largest amount of transaction fees. Also, Biais et al. (2019) shows that LCR is a
plausible mining prediction, but also that other equilibria can arise due to coordination
motives, e.g. prescribing miners to extend the last longest branch they become aware of
(with the longest update time) rather than the first. The same coordination motives that
sustain LCR can also lead to an equilibrium with permanent forking.

Miners also deviate from LCR by intentionally forking the blockchain when commit-
ting a fraud, e.g. altering the history of recorded transactions - as in the case of history
reversals, including DS attacks, described later in Section 1.3.4 - or when using in selfish
mining strategies analyzed by Eyal and Sirer (2014).

1.3.4 Mining

To form a new block, a miner has to (i) select a subset of pending transactions from his
mem-pool (ii) choose a reference predecessor and find a PoW for his block (iii) commu-
nicate his block successfully to the other miners.

PoW and block rate

Each miner m can generate PoW solutions at a Poisson rate µm determined by the hash-
power (production of PoW solutions) produced by his mining rig and the PoW difficulty
set by the protocol. Conversely, the (average) block creation rate

µ ,
∑

m
µm
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is fixed by the protocol, which scales-up the PoW difficulty based on the aggregate hash
power. In Bitcoin, a difficulty adjustment is applied every two weeks to restore an average
block creation time of 10 minutes based on an estimate of miners’ aggregate computing
power (see Fig. 1.6).

Figure 1.6: Block mining time (average)

Month-level data from https://data.bitcoinity.org/bitcoin/block_time/all?f=m10&t=l

Biais et al. (2019) provides a detailed description of how the difficulty adjustment is
implemented. Under hash rate homogeneity, a generic miner’s PoW rate as a function of
the number of other active miners M is described by the formula12

µm = µ

M
∀m (1.5)

From the 1/M term in the above expression we can see that each miner creates a
negative difficulty externality on the other miners.

For a steady-state distribution of miners’ mem-pools to exist, the rate at which trans-
actions are processed has to be higher than transaction request rate λ ≡ αB. The
following condition ensures that miners’ mem-pools do not explode when the processing
capacity they offer is maximal.

Assumption 1.3. µ > αB

Transmission delays

After finding a valid PoW, a miner can collect a block reward for his block only if it does
not become stale in an abandoned branch of the blockchain.13 In my model, delays in
miners’ communication are the only source of stale blocks.

To keep thing simple, I assume that users communicate their transaction requests
instantly to all miners and each miner observes the completion time of his block trans-
missions, which reach all other miners simultaneously. The only communication friction is

12In what follows mining activity is constant over time so that also PoW rates are constant. With
time-varying aggregate mining power also hash rates would fluctuate.

13Some authors refer to blocks outside the consensus chain as “orphan blocks”. I follow Saad et al.
(2019) and consider as orphan the blocks that extend an invalid predecessor.

https://data.bitcoinity.org/bitcoin/block_time/all?f=m10&t=l
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provoked by transmission delays that depend on the size of blocks. In this model, blocks
are either empty or filled with one transaction only. For now, to facilitate exposition, I
denote the size of a miner’s block by km ∈ {0, 1} ∪ {OFF}, where I use the convention
that km = OFF if the miner does not produce any block (his mining rid is shut down).
When presenting the game-theoretic model of mining in Section 1.4.1 I will let miners
strategize on the size of their blocks based on number Qt of pending transactions in their
mempools, so that they will set km(Qt) for Qt ∈ N0.

Empty blocks are transmitted immediately, while filled blocks are transmitted after
an exponentially distributed transmission lag with average 1/θ. I further assume for
tractability that miners update their ledger copies only after the blocks they create are
published (mined and transmitted). Under these assumptions and LCR (described in
Section 1.3.3), all miners work on extending the unique consensus chain.

Apart from the case in which km = OFF, the time it takes a miner m to forge and
transmit a new block that extends the consensus chain at height H is the sum of the
PoW solution time γH+1,m and transmission lag εH+1,m of his new block. Thus, its the
publication time results from

TH+1,m = T ∗H + γH+1,m + εH+1,m

where T ∗H is the publication time of the reference block for height H. The solution
time γH+1,m is exponentially distributed with rate µm in accordance with Eq. (1.5). The
transmission lag εH+1,m of miner m’s new block depends on its size. If km = 0, its
transmission is instantaneous (εH+1,m = 0); if km = 1 its transmission lag is exponentially
distributed with rate θ. The density of the total solution and transmission time when
a miner fills his new block with probability σm is the given by the following mixture
distribution:

fγH+1,m+εH+1,m(t) = σm

[
θµm
θ − µm

(
e−tµm − e−tθ

)]
+ (1− σm)µme−tµm (1.6)

Notice that, for σm = 0, density (1.6) becomes a simple exponential density, while in the
opposite case of σm = 1, it becomes the density of the sum of two exponential random
variables with different rates (a two-parameter hypo-exponential distribution).

Under LCR, all miners will use as next reference block the one extending the longest
chain with the shortest publication time according to relationship (1.4). Hence, the
probability that a miner m∗ forms next reference block satisfies

P
(
T ∗H+1 = TH+1,m∗

)
= P

(
γH+1,m∗ + εH+1,m∗ < min

m′

{
γH+1,m′ + εH+1,m′

})
(1.7)

If successful, miner m∗ establishes the new longest chain and causes all other blocks in
transmission to become stale, each forming a separate abandoned chain. Formula (1.7) is
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(2, 2) (3, 2)
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Figure 1.7: Three miners updating a blockchain

Blocks are indexed (h − h0,m) for m ∈ {1, 2, 3} and h − h0 ∈ {0, 1, 2, 3, 4, 5, 6}, with h0 > 0.
Forks occur at h−h0 ∈ {3, 5} and are resolved according to LCR that selects as reference block
among the head blocks of competing (longest) chains the one with the shortest update time (in
grey).

employed in Section 1.4.1 to determine a miner’s estimate of the probability of successful
mining of a block given a belief on the size of the other blocks in contemporaneous
transmission. Fig. 1.7 shows an illustrative blockchain ramification caused by three miners
competing to establish the consensus chain given the characteristics of block transmission
stylized in this section.

In current cryptocurrency blockchains, information transmission is quick and encoun-
ters little geographical impediments.14 The resulting transmission delays are of a lower
order of magnitude than block creation times. To be precise, according to the estimates
for Bitcoin reported in Decker and Wattenhofer (2013), µ ≈ 1/600 (one block creation
every 10 minutes) and θ ≈ 1/10 (one completed transmission every 10 seconds). These
numbers are in line with Fig. 1.6 on block creation and Fig. 1.8 on block propagation.
Therefore, the effect of transmission lags on the block creation process can be safely ig-
nored, as well as the probability that a miner finds a PoW before completing a block
transmission.15 Based on the previous observation, I approximate the distribution of
inter-update time of reference blocks using an exponential distribution with parameter
µ:

fT ∗H+1−T
∗
H

(t) ≈ f̃T ∗H+1−T
∗
H

(t) = µe−µt, t ≥ 0 (1.8)

This approximation can lead to slightly different probabilities than the ones produced
by the actual distribution of the inter-update time between reference predecessor blocks
but does not affect any qualitative result of this paper. Moreover, it allows to solve
explicitly and neatly all agents’ value functions, which otherwise would be too complicated

14The Canadian blockchain technology company Blockstream started recently to broadcast the Bit-
coin blockchain via satellite to facilitate the transmission and reception of Bitcoin data from areas
with scarce or inaccessible internet services. More information is available at the following link:
https://blockstream.com/satellite/

15A block transmission is considered completed when it reaches a certain majority of miners. Fig. 1.8
shows that a block reaches 90% of Bitcoin miners’ population in about 10 minutes.

https://blockstream.com/satellite/


20 CHAPTER 1. THE CRYPTOCURRENCY MINING DILEMMA

and convoluted to be handled.16

Figure 1.8: Block propagation time (% of total miners reached)∗

∗Average time until a block is announced by a given percentage of total Bitcoin miners.

Day-level data origin: https://dsn.tm.kit.edu/bitcoin/#propagation
Data smoothing preformed via moving average with 15 lags.
All observations are averages of block propagation times recorded within a time span of approximaly one hour recorded
between 12AM and 2PM.

In reward for successful mining, miners earn a block reward R(km) depending on the
size of their blocks, with R(1) ≥ R(0) ≥ R(OFF) = 0. By choosing to record a filled
rather than empty block, a miner faces a higher risk that his block becomes stale; but, if
the block transmits successfully, he earns a higher reward from transaction fees.

Block reward

Each time a miner successfully records a valid block, he earns a block reward composed
of seigniorage from newly created tokens and transaction fees. To award a miner with
the latter, the protocol transfers new tokens to his address with a coinbase transaction.
Metaphorically speaking, miners seek the “digital gold” contained in each valid block.
Hereafter, each (valid) block contains an amount ∆At of new tokens, set in fixed propor-
tion to the total token supply.

Since cryptocurrency trade occurs at sufficiently high frequency, a law of large number
(LLN) ensures that trade supply shocks are neutralized at CM aggregate level. In this
way, price shocks are only caused by miners selling their coinbase rewards. Throughout
this paper, I let the protocol set a steady inflation rate in both CM’s. Specifically, if a
miner sells a coinbase transaction to the CM’s at time t+, the resulting price shock in a
generic CM has a magnitude of φt+/φt = 1 − π, where π ∈ [0, 1] denotes a seigniorage
rate. The protocol implements the desired seigniorage rate π by setting

∆At = At
π

1− π
Under steady inflation, the value of miners’ seigniorage reward is the product of the

seigniorage rate π and the stock of aggregate real balances Zt.
16The exact distribution of µ is the one of the minimum of M random variables with density (1.6).

https://dsn.tm.kit.edu/bitcoin/#propagation
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∆Atφt = Ztπ (1.9)

The block reward R(km) combines seigniorage with transaction fees of rate τ earned
on the k transactions included in a block. Given that, in equilibrium, all B buyers carry
the same amount of real balances zt = z, so that Z = zB, the total block reward amounts
to

R(km) = z (πB + τkm) , km ∈ {0, 1}, R(OFF) = 0 (1.10)

The token creation rule presented before establishes a constant inflation rate. Bitcoin
implements a staggered decreasing inflation rule such the tokens produced in each valid
block are halved each time the total token production hits one of a set of predetermined
target values. These events are called “Bitcoin halvings” and are programmed to impose
a total supply cap of 21 million bitcoins, to be reached approximately in the year 2140.17

After then, Bitcoin will feature block rewards made only by transaction fees and a negative
inflation rate driven by tokens going out of circulation by getting lost or ending up in
abandoned accounts.

The model applies to Bitcoin in a scenario where the next halving is far from agents’
temporal planning horizon. It is also valid for the many cryptocurrencies based on a
steady token creation rule, such as the current PoW implementation of Ethereum. It
does not apply to cryptocurrencies that implement a negative inflation rate by “burning
tokens,” sending a part of them to an irretrievable address each time a valid block is
recorded.

Security

Suppose that the most extended blockchain branch has height Ht and a malicious miner
deviates from LCR and attempts to re-write the information stored in a block at height,
h < Ht. Since block identifiers are chained recursively, to succeed in doing so by time
t′ the hacker has to create a secret chain that re-writes all blocks at height h′ ∈ {h, h +
1, . . . , Ht, . . . , Ht′}, where Ht′ ≥ Ht is the blockchain height reached during the attack,
solving the PoW cumulatively, and release his branch once it surpasses the honest one.
In this way, the attacker engages in a mining race with the honest miners, as he needs to
keep up with the additional blocks that extend the blockchain. The likelihood that the
attacker succeeds is decreasing with the participation of honest miners because it makes
honest (longest) chain to grow faster. Hereafter, as in Easley et al. (2019), I assume that
cryptographic attacks are ruled out if at least M (honest) miners are active. This level
of mining activity is also required for traders to trust in using the cryptocurrency.

Now that all the fundamental ingredients of the cryptocurrency-based economy have
been introduced, I am ready to move to the next section, in which I analyze the partial

17The last Bitcoin halving took place on May 11th, 2020.
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equilibrium models of mining and trade.

1.4 Mining and trade equilibria

In this section, I present the partial equilibrium models of mining and trade. Mining
involves strategic interactions that require game-theory modeling. Essential elements for
the design results discussed in Section 1.6 are the probability at which a given miner
works on recording a block (1.16) and miner participation under free-entry (1.25). I also
determine the necessary conditions for any mining activity to occur (1.19) and a sufficient
condition for each miner to be constantly mining (1.20).

Cryptocurrency trade can be tackled using dynamic programming (DP) and axiomatic
bargaining. I use these techniques to derive the optimal amount of special good produced
by sellers (1.35) and buyers’ token demand (1.36).

1.4.1 The mining game

Section 1.3.3 described the technicalities and purposes of mining and the PoW protocol.
Here I develop a stochastic game to analyze miners’ block size choice, use of computational
power and participation to the mining network. I present its elements hereafter:
Players: M miners compete for updating the consensus chain of a blockchain recording
cryptocurrency transactions.
States: Miners engage in mining rounds (or tournaments) with features varying accord-
ing to a (continuous-time) Markov chain. Precisely, each round is described by a two-
dimensional state, given by a number of pending transactions and a blockchain height,
(Q,H) ∈ N0 × {H0, H0 + 1, . . . }, H0 > 0.
Information: A generic miner m observes his copy of the ledger continuously as well
as the PoW solution time γh,m and the transmission lag εh,m of all the blocks he mined
and transmitted. By combining this information, the miner learns the update time of his
blocks Th,m, ∀h ≤ H + 1.

The miner also observes the update times and the information contained in the blocks
transmitted by other miners Th,m′ ∀h ≤ H + 1,m′ 6= m, except for the other miners’
identities. Thus, since he observes all update times, he also knows the publication time
of all reference blocks T ∗h , again for h ≤ H + 1.

Finally, the miner observes his mem-pool size Qm,t at each point in time. Since
users-to-miners communication is simultaneous and immediate and miners update their
mem-pools only when either receiving transactions or recording them in finalized valid
blocks, miners’ mem-pools are always synchronized, recording the same number of pend-
ing transactions Qm,t = Qt ∀m that I denote simply as Q when the temporal dimension
is implicit.
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Actions: Each miner m chooses the size of the block km(Qt) ∈ {0, 1} ∪ {OFF} to mine
on top of the longest chain and transmit to the miners’ network afterward. I adopt the
convention that km(Qt) = OFF if miner m is idle (his mining rig is switched off) when
the mem-pool has size Qt. I let QT ∗m+γm denotes the state of the mem-pool by the time
the miner finds a PoW for a block extending the longest chain.
Payoffs: The lifetime utility of a miner is the present value of the sum of the block
rewards he earns in each mining round net of the upfront investment cost for his mining
node F and a flow mining cost ψ accounting for energy and obsolescence. In formula,18

Um = E

 ∞∑
H=H0

e−rT
∗
H+1R

(
km(QT ∗H+γH+1,m)

)
1{TH+1,m=T ∗H+1} − ψ

ˆ ∞
0

e−rt1{km(Qt)6=OFF} dt
−F

(1.11)
Strategies: I focus on Markov (behavioural) strategies. Specifically, each miner m
chooses the probabilities σm,k(Q) for k ≤ Q of forming a blocks of size k when the mem-
pool has size is Q.19 Since km(0) ∈ {0} ∪ {OFF} and km(Q) ∈ {0, 1} ∪ {OFF}, a
strategy profile prescribing miners to stay always active (σm,OFF(Q) = 0,∀Q) boils down
to specifying the probabilities

σm = P
(
km(Q) = 1 | Q ≥ 1

)
Equilibrium: The equilibrium concept I employ is symmetric Markov Perfect Equilib-
rium (MPE). In equilibrium, σm,k(Q) = σk(Q), ∀m. Of fundamental importance for the
rest of the paper is the concept of permanent mining MPE, according to which miners
are always active and fill their blocks up to their size limit, constrained by the mem-pool
size if lower. Letting a Markov perfect equilibrium can be described as follows:

Definition 1.2 (Permanent mining equilibrium). A (symmetric) permanent mining equi-
librium is a MPE of the mining game is such that miners are always active and fill blocks
up to their limit, whenever possible. The strategy profile of a permanent mining equilib-
rium is such that, for all m ∈M, σm,0(0) = 1 and σm,1(Q) ≡ σ = 1 for all Q ≥ 1.

Mining tournaments

The set of strategy profiles that are part of a symmetric MPE can be determined by
discarding dominated strategies and applying the one-shot deviation principle to detect
profitable deviations.

Consider the actions of an active minerm after a new reference predecessor is found. If
by that time the miner has not found a PoW for his block, he simply updates his ledger and

18It is possible to make the two cost components explicit by re-parametrizing the model. Assume
mining generates electricity flow cost ψ′ and drastic innovations occur at rate ι making the node obsolete.
Then the flow cost of mining ψ = ψ′ + ιF .

19I do not consider strategies such as grim-trigger strategies or those prescribing cyclical behaviour.
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continues working on extending the new longest chain. If instead the miner finds a PoW
before that time, the miner transmits his block in the hope of establishing the new target
block. The miner can claim a block reward only if successful in doing so. The miner’s
estimate of the probability of successful mining, P (σm,σ−m), depends on his block size
strategy σm and his belief on other miners’ block strategies, σ−m = {σ−m}−m∈M/{m} and
can be evaluated using formula (1.7). Sometimes, this procedure does not result in closed-
form expressions - e.g. when evaluating off-path beliefs resulting from a particular type of
equilibrium deviation. Nevertheless, it does for the parameter configurations considered
hereafter. For example, evaluated along the path of a symmetric MPE, Eq. (1.B.2) (in
appendix) provides a neat result.

Lemma 1.1 (Symmetric equilibrium path). Along any symmetric equilibrium path min-
ers have equal chances of forming the next reference predecessor block.

P (σm = σ,σ−m = σ) = 1/M ∀σ ∈ [0, 1] (1.12)

Also, for M = 2, Eq. (1.B.2) determines the estimates of the successful mining prob-
abilities for each possible equilibrium deviation in closed form.

Lemma 1.2 (Successful mining). For M = 2, the probability that a miner m forms the
next valid block given his belief σ−m on the strategy of the other miner is

P (σm, σ−m) = 2θ + (1− σm + σ−m)µ
4θ + 2µ (1.13)

In particular,

P (1;σ) = 2θ + σµ

4θ + 2µ P (σ;σ) = 1/2 P (0;σ) = 2θ + (σ + 1)µ
4θ + 2µ (1.14)

P (1; 0) = θ

2θ + µ
P (1, 1) = P (0, 0) = 1/2 P (0; 1) = 1− θ

2θ + µ
(1.15)

Equilibrium block size

Here, I study under which condition a profile of equilibrium block size strategies σ = (σ, σ)
is robust to one-shot deviations assuming miners are always active. Clearly, it makes sense
to check deviations from equilibrium block sizes only for Q ≥ 1. In this case, the expected
block reward for a miner that fills a block with probability σm satisfies

Eσm,σ−m
[
R
(
km(Q)

)]
= (1− σm)R(0)P (0;σ−m) + σmR(1)P (1;σ−m)

= 1
4θ + 2µ

[
(1− σm)R(0)

(
2θ + µ(σ−m + 1)

)
+ σmR(1)(2θ + σ−mµ)

]

Stating explicitly that R(1) = z(Bπ + τ) and R(0) = zBπ, a miner’s best-response
correspondence takes the following form
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σ∗m =


0 for σ−m < πB

τ
− 2 θ

µ

[0, 1] for σ−m = πB
τ
− 2 θ

µ

1 for σ−m > πB
τ
− 2 θ

µ

(1.16)

As we can see, the best response displays strategic complementarity because is increas-
ing in the miner’s belief on his competitor’s action. The unique value σ = σm = σ−m such
that a fully mixed strategy MPE exists lies at the intersection of miners’ best-responses.
In other words, it is the value that makes miners indifferent between choosing any of
their actions, i.e. Eσ−m

[
R(1)

]
= Eσ−m

[
R(0)

]
. However, such mixed-strategy equilibrium

is unstable, as a small change in a miner’s beliefs makes him shift away from the mixed
strategy. Given the instability of the unique equilibrium with fully mixed strategies, I
focus on pure strategy equilibria only.

To determine the pure strategy symmetric MPE’s, notice that miners have a profitable
deviation from an equilibrium prescribing σ = 1 if σ∗m = 0 given that σ−m = 1. This
requires

τ

π
< B

(
µ

2θ + µ

)
(1.17)

Conversely, empty blocks equilibria are ruled out if σ∗m = 1 given σ−m = 0; that is, for

τ

π
> B

µ

2θ (1.18)

Conditions (1.17) and (1.18) provide a characterization of the pure strategy equilibria
based on the fees-to-seigniorage ratio. If the ratio takes substantially low or high values,
equilibria prescribing miners to produce empty blocks, in one case, or filled blocks, in
the other, are ruled-out. For moderate values of the ratio, the game has multiple pure-
strategy MPE’s. Notice that higher users-to-block-size ratio (B/1) and block creation
rate µ make condition (1.17) less stringent and have the opposite effect on Eq. (1.18); the
first raises miners’ seigniorage; the latter makes mining tournaments more competitive.
On the contrary, a fast transmission rate θ tightens (1.17) ad softens (1.18).

Proposition 1.1 (MPE’s). The equilibrium size of miners’ blocks is determined by the
fees-to-seigniorage ratio. Assuming M = 2,

(i) For τ/π > Bµ/2θ, the game has a unique pure strategy MPE with σ = 1;
(ii) For τ/π < Bµ/(2θ + µ), the game has a unique pure strategy MPE with σ = 0;
(iii) For Bµ/(2θ + µ) ≤ τ/π ≤ Bµ/2θ, the game has two pure strategy MPE’s with

σ = 1 and σ = 0 and an unstable mixed strategy MPE σ = B π
τ
− 2θ

µ

Notice that miners have incentive to fill blocks (σ > 0) only if τ > 0. In this model,
positive transaction fees are necessary for a monetary equilibrium to exist. If all blocks
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are empty, validation times are infinite, so that no trader can benefit from using tokens
and the cryptocurrency economy unravels. The situation is ruled-out when the fee-to-
seigniorage ratio is high enough. Indeed, condition (1.18) makes mining full-blocks a
dominant strategy, i.e. each miner prefers to mine full blocks regardless the other miners’
strategies. In Section 1.6, I will show how the protocol can set the block reward in such
a way that condition (1.18) holds.

In the analysis developed up to here considers an equilibrium with permanent min-
ing; that is, km(Qt) 6= OFF ∀m, t. It is important to recognize that miners have the
incentive to stay active under certain conditions. In particular, a necessary condition
for an equilibrium with permanent mining activity to exist is that miners make positive
expected profits from each mining tournament. Since, along a symmetric MPE path,
a miner can achieve the highest level of expected profits by recording a filled block, a
necessary condition for mining to be viable is that the upper bound on the flow revenue
exceeds the flow cost.

µ

M
z(πB + τ) ≥ ψ (1.19)

On the other hand, a sufficient condition for permanent mining holds if miners prefer
not to wait until recording a full block if Q = 0. Otherwise, in the words of Carlsten
et al. (2016), an empty mem-pool causes a mining gap, i.e. a period of mining inactivity.
Mining gaps are precluded for

π >
ψ

zB

M

µ
(1.20)

Clearly the previous condition is violated for π = 0. In which case, miners only waste
energy by mining empty blocks. Combining this observation with the τ > 0 requirement
for block filling, we can conclude that an MPE with permanent mining exists only for an
interior block reward design; that is, for π and τ strictly positive.

Corollary 1.1. A permanent mining equilibrium exists only for π > 0 and τ > 0.

Finally, an additional factor that plays a role in the activation decision is hardware
deterioration, which here is neutralized by assuming no depreciation of the mining node.
If mining nodes were subject to a time-increasing hazard rate of breakdown, miners would
be discouraged to stay idle also by the increasing obsolescence rate.

Mem-pool and validation time distributions

Mining strategies shape the mem-pool size distribution. In particular, since valid block
are transmitted approximately at rate µ, they exit the mem-pool at rate σµ and enter the
mem-pool at rate λ = αB. The resulting stationary distribution of the mem-pool is geo-
metric, with a probability mass function (p.m.f.) g fully determined by the (endogenous)
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load factor ρ.
g(Q) = (1− ρ) ρQ with ρ , αB

σµ
∈ [0, 1) (1.21)

The probabilities g(Q), Q ∈ N0 can be interpreted as the fraction of time in which the
mem-pool has size Q. Thus, the quantity 1− ρ is the faction of time in which the mem-
pool is empty. For the steady state distribution to exist, the out-flow of transaction
cannot exceed the in-flow, as imposed by Assumption 1.3.

In Section 1.4.2, the terms of trade set in DM meetings are based on the distribution
of transactions’ settlement time, determined by miners’ criterion for picking transactions
out of the mem-pool. Authors - e.g. Easley et al. (2019) - mention that miners follow
the ROS (random order of service) criterion when selecting homogeneous transactions;
prescribing miners to form blocks by extracting transactions uniformly at random from
the mem-pool.20 Under ROS, the number of valid blocks created (and transmitted)
until a pending transaction is recorded on the blockchain is memoryless; in other words,
it follows a geometric distribution. The probability that a transaction has to wait for
n ∈ N0 (valid) blocks until being recorded is equal to

d(n) = ν (1− ν)n−1 , ν , σ
1− ρ
ρ

ln(1− ρ)−1 (1.22)

The success parameter ν is the probability that a transaction is recorded in the next
valid block. The derivation of the distributions (1.21) and (1.22) is presented in Ap-
pendix 1.A.1.

Miner entry

After having solved the MPE’s of the mining game and computed the mem-pool and
validation time distributions, I determine miners’ value function to analyze their entry
decision. The mining-game is connected to the cryptocurrency economy described in
Section 1.3, in that each time miners earn a block reward they immediately sell it to the
CM’s in exchange for units of the generic good.21

Using DP terminology, a miner’s state variables are his real balances zm,t and the
number of pending transactions Qt in the mem-pool. His choice variables are the size of
his blocks km(Qt) and the activation indicator for his mining node χm(Qt), set based on
the equilibrium Markov strategies of the mining game. The mem-pool size Q follows the
stationary distribution (1.21) at all dates, so for σ = 1, the mem-pool is filled with at least
one transaction for a fraction of time ρ = αB/µ, and is empty for the complementary

20Quoting EOB: “when a miner builds a block he selects from the mem-pool at random instead of
taking the transaction in the pool that has been waiting the longest as in a standard first-in, first-out
queue.”

21 In practice, Bitcoin miners are advised to wait for the consensus chain to extend by at least 100
additional blocks (16 hours approximately) before selling a coinbase reward, so to be confident that their
blocks do not become stale.
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time fraction 1 − ρ = 1 − αB/µ. Given the stationariness of Qt, the expectation of a
future block reward when miners strategize according to permanent mining equilibrium
is given by

EQ
[
R(km(Q))

]
= (1− ρ)R(0) + ρR(1)

M
=
zB

(
π + α

µ
τ
)

M

Taking into account that valid blocks are mined at (approximately) rate µ, we can
readily formulate a miner’s HJB (Hamilton-Jacobi-Bellman) equation.

Lemma 1.3. Given a total participation of M miners, the value function of a generic
miner m under permanent mining satisfies the following equations

Wm
M (zt0,m) = zt0,m +Wm

0,M (1.23)

Wm
0,M = 1

r

 µ
M
× z

πB + τ

(
αB

µ

)− ψ
− F (1.24)

The interpretation of Eq. (1.24) is straightforward. A miner makes an up-front in-
vestment F to purchase his mining node. Afterwards, he incurs a flow cost mining ψ and
receives a flow revenue from block rewards µEQ

[
R(km(Q))

]
= Bz(µπ+ατ)

M
.

Lemma 1.3 can be used to study miner participation under free-entry. In this case,
miners join the blockchain until all mining rents are exhausted. Given that miners enter
the economy with just as needed to purchase the mining node, their lifetime utility is
simply given by Wm

0 . so, under free entry,

M∗ = sup
{
M ∈ N : Wm

0,M ≥ 0,Wm
0,M+1 < 0, ∀m

}

Corollary 1.2 (miner participation). Under free-entry, a permanent mining equilibrium
features a miner participation determined by the ratio of mining revenues to costs,

M = dM̃e M̃ ,
Bz (µπ + ατ)

ψ + rF
(1.25)

Traders’ trust in the blockchain depends on its security level, which increases with
miner participation. To ensure a secure participation level, traders require M ≥M . The
problem of setting the optimal block reward to induce a given level of miner participation
is studied in Section 1.6, where I will present a simple design for M = 2.
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1.4.2 Trade

In this section, I analyse the partial equilibrium model of trade that determines buyers’
optimal (cryptocurrency) portfolio choice and traders’ DM bargaining conditions. Sellers
are passive except when setting the terms of trade. The HJB equations that solve traders’
DP problems are again presented in Appendix 1.B.

Buyers

Each buyer can continuously trade in her CM if not busy in a DM meeting. A buyer b
participating to her CM with a stock of real balances zb,t chooses to supply x = −(z∗−zb,t)
units of the generic good to adjust her real balances to a desired level z∗. Also, at a Poisson
rate α, she engages in a DM meeting with a (randomly drawn) seller s. If the seller is
available, CM trade is interrupted by a DM meeting in which b trades her tokens for
units of the special good produced by s. The number of sellers is large enough to ensure
that buyers almost always meet an available seller, so the total rate of DM meetings is
λ = αB.

In what follows, buyers can perfectly observe the blockchain and adopt the portfolio
strategy of maintaining their real balances at the desired level z∗ until they enter a DM
meeting. To do so, buyers make a tiny adjustment in their token portfolio each time
a block is produced to compensate for the inflation shock caused by a miner selling the
associated coinbase. To be precise, if a buyer has z real balances before a coinbase reward
is sold to the CM’s, their value drops to z(1−π) afterwards. Thus, to maintain a desired
amount z∗, she has to acquire a value of z∗π from her CM.22

According to a DP formulation, the state variable of a buyer is given by her real
balances zb,t and her control variable by the desired amount of balances z∗ held until the
next DM meeting occurs, or analogously by her generic good supply x = −(z∗−zb,t). The
CM and DM value functions for a buyer, W b(zb,t) and V b(zb,t), given her real balances
zb,t obey the HJB equations formulated in the next lemma.

Lemma 1.4. A representative buyer’s value function is given by

W b(zb,t) = zb,t +W b
0

rW b
0 = −z∗ (r + µπ) + α

[
V b(z∗)−W b(z∗)

]
(1.26)

Intuitively, buyers bear the cost of adjusting real balances to the optimal quantity z∗

together with the cost of holding tokens without spending them originating from inflation
and discounting. At rate α, buyers use their optimal amount of tokens to obtain a capital

22It would be more natural to assume buyers cannot observe the blockchain and let them set a
continuous adjustment rule based on expected inflation.
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gain from DM trade. The DM value function V b(z∗) depends on the agreed bargaining
terms between buyer and seller.

Sellers

Sellers enter the CM with real balances zs,t and a set of pending transactions waiting for
validation on the blockchain and engage in DM according to a meeting rate α. To keep
the model tractable, I assume that sellers are too busy to keep track of the number of the
number of pending transactions they are waiting to receive and discount each of them
independently. Hence they neglect the congestion effect caused by multiple pending
transactions. As long meetings with buyers are rare enough at individual seller level,
this assumption has negligible implications for the trade equilibrium. Sellers are passive
except for selling their tokens, when available, and defining the terms of DM trade with
buyers.

The value of a pending DM transaction is eroded by the depreciation caused by
discounting and inflation until it is settled. For this reason, a transaction involving
zs,t real tokens waiting for validation is discounted using a specific validation discount
factor Ω ∈ [0, 1] that accounts for the effects of inflation and time discounting during the
transaction settlement period. The resulting present value of a pending DM transaction
is thus zs,tΩ.

The validation discount factor can be determined through the following observations.
First, the discount factor that applies to a pending transaction waiting to be recorded in
the next valid block is the product of a term resulting from temporal discounting, µ

r+µ ,
(see Eq. (1.A.5)) and an inflation adjustment term, 1− π, resulting in the expression

µ

r + µ
(1− π) (1.27)

Since a pending transaction is discounted by (1.27) each time the transaction waits for
an additional valid block to be recorded, and given that the number of valid blocks
posted until a transaction is recorded on the blockchain is distributed according to the
geometric p.m.f. d(n) from Eq. (1.22), the validation discount factor Ω follows from the
next expectation:

Ω , En

( µ

r + µ
(1− π)

)n+1

= (1− π)µν
r + µ

(
ν + π(1− ν)

) with Ωπ < 0, Ωππ > 0, Ωπ,ν < 0

(1.28)
where the block inclusion probability ν is defined in Eq. (1.22). Now I am ready to
present the representative seller’s value function.

Lemma 1.5. The value function of a seller at the time he records a pending transaction
is given by
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W s(Ωzs,t) = Ωzs,t +W s
0 with rW s

0 = α (V s −W s
0 ) (1.29)

Where Ω is the validation discount factor determined in (1.28)

Intuitively, the seller’s expected enjoyment from generic good consumption once his
pending tokens are settled and immediately cashed-out to a CM amounts to E(x) = zs,tΩ.
In the meantime, the seller continues to trade at rate α with buyers.

In practice and in Chiu and Koeppl (2019), before delivering the special good to a
buyer, sellers wait for the consensus chain to grow until the block recording her payment
is deep enough inside it, so that the blocks built on top of it count as “confirmations” of
the block’s validity. Realistic terms of trade should also cover the depth of the valid block
including the payment, where “depth” is intended as the distance between a block and
the terminal block of the consensus chain. In BTC, the praxis is to wait for the consensus
chain to grow by 6 blocks before accepting a payment, so that it takes one hour for a
transaction to be considered safe. In Ethereum (ETH), sellers are advised to wait for
30 confirmations but block creation is considerably faster, so that it takes on average 6
minutes for a transaction to be safely considered as valid. Sellers accepting Bitcoin Cash
(BCH) payments are suggested to wait for 15 confirmations so that transactions become
valid, in expectation, after 2 hours and a half.

DM bargaining

When entering the DM, a buyer-seller pair b-s meets to agree on the terms of DM trade
(y, p(y)) specified by an amount of special good units produced by s and a price paid
by b. Upon meeting, traders observe the current token prices and b reveals to s his real
balances z. Since carrying liquidity is costly, b leaves the DM without tokens, so that
p(y) = z∗ holds, i.e. the cash-in-advance constraint is binding. To facilitate exposition,
in this section I let z∗ ≡ z and denote as y(z) the amount of special good produced by
the seller given his knowledge of the buyer’s real balances.

Since digital wallets are programmed to charge a transaction fee τ , the seller receives
only a part z(1− τ) of the value transferred by the buyer. The remaining zτ goes to the
miner that records the transaction on the blockchain.

Right after setting the trade terms but before re-joining their respective CM’s, the
buyer enjoys utility u(y(z)) from consuming the special good and sends her tokens to the
seller, while the seller spends a cost y to produce the special good and records a pending
transaction of value z(1− τ). It follows that

V b(z) = u
(
y(z)

)
+W b

0 (1.30)

V s = −y(z) +W s (Ωz(1− τ)
)

(1.31)

I determine the terms of trade using Kalai bargaining, according to which traders split
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the trade surplus in proportion to their bargaining power. To do so, notice that traders’
outside options are W b(z) and W s

0 , hence their trading surpluses follow the equations

V b(z)−W b(z) = u
(
y(z)

)
+W b

0 −W b(z)︸ ︷︷ ︸
=u(y(z))−z

and V s−W s
0 = −y(z) +W s (Ωz(1− τ)

)
−W s

0︸ ︷︷ ︸
=−y(z)+Ωz(1−τ)

(1.32)
Thus, letting β denote buyers’ bargaining weight, Kalai bargaining implies

u(y)− p(y) = β

1− β
(
−y + p(y)(1− τ)Ω

)
equivalent to p(y) = (1− β)u(y) + βy

(1− β) + β(1− τ)Ω
(1.33)

Plugging the resulting special good price back into the trade surplus expressions (1.32),
we can see that traders share the (adjusted) total surplus in proportion to their bargaining
power, so that the DM capital gain buyer and seller

V b(z)−W b(z) = β
u(y(z))(1− τ)Ω + y(z)

(1− β) + β(1− τ)Ω V s −W s
0 = (1− β) u(y(z))(1− τ)Ω + y(z)

(1− β) + β(1− τ)Ω

Applying the formulae for the trade surpluses and special good price to these DM value
functions, traders’ DP equations now take explicitly into account the role of trade fric-
tions, so that I can solve for buyers’ optimal real balance portfolio z∗.

Lemma 1.6 (special good production and optimal token portfolio). The optimal amount
of special good produced by sellers and the optimal token portfolio held by buyers (in real
terms) are determined as follows:

y∗ : 1
α

(r + µπ) ≤︸︷︷︸
= if y∗>0

u′(y∗)
p′(y∗) − 1, z∗ = p(y∗) (1.34)

The optimal token portfolio is determined by equating costs and benefits of carrying
tokens. The cost of increasing marginally real balances is the sum of the marginal dis-
counting r and inflation cost µπ paid to maintain the optimal amount of real balances
while keeping-up with inflation. Both costs are incurred for a period of time of expected
length 1/α. The benefit of holding marginally more liquidity (tokens in this case) is
expressed by the right-side of inequality (1.34) and measures the sensitivity of the DM
capital gain with respect to real balances. The LW literature defines this marginal effect
as the “liquidity premium” (see Choi and Rocheteau (2020b) or Lagos et al. (2014) for
some examples of usage).

As previously anticipated, for a positive inflation rate buyers do not carry more tokens
than those needed in the DM. The opposite happens for a (sufficiently) deflationary
cryptocurrency whose tokens gain value over time. This feature makes a deflationary
cryptocurrency more suited to be used as a safe-heaven asset rather than as a means of
payment.
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An explicit formula for y∗ is easily obtained from Eqs. (1.33) and (1.34) under the
assumption that buyers have full bargaining power (β = 1). Making explicit the utility
function (1.1), we have

y∗ = y(z∗) = α(1− τ)Ω
r + α + µπ

− 1
η

(1.35)

z∗ = α

r + α + µπ
− 1
η(1− τ)Ω (1.36)

Buyers’ desired level of special good consumption y∗ is decreasing in the transaction
fee rate and congestion (lower Ω) owing to worse contractual terms. Notice that a large
enough value of η ensures that y∗ > 0.

1.5 Monetary equilibrium

In this section, I combine the partial equilibrium models of Section 1.4 and determine
the monetary (general) equilibrium of the economy.

Equation (1.33) can be used as an asset-pricing identity by decomposing real balances
into a number of tokens held and tokens’ price: p(y∗) = z∗ = φi,tab,t, where i is the index
of the CM in which b operates. CM prices follow from aggregating the condition (1.33)
over the CM’s buyer population.

φi,t = p(y∗)
Ai,t

Bi = for i = 1, 2

The Market clearing condition (1.2) together with the stationary property (1.3) and the
inflation schedule (1.9) pin-down the dynamic evolution of a DM price for a given initial
amount of tokens in circulation Ai,t0 ∀i as follows. Letting bt indicate the number of valid
blocks produced by time t,

E
(
φi,t
)

= B

2
p(y∗)
Ai,t0

E
(
φi,t | φi,t0

)
φi,t0

with
E
(
φi,t | φi,t0

)
φi,t0

= E
[
(1− π)bt−bt0

]
= e−πµ(t−t0)

= B

2
p(y∗)
Ai,t0

e−πµ(t−t0) (1.37)

A complete derivation of the previous formula is contained in Appendix 1.B. Expected
prices fall exponentially at the rate of seigniorage and depend positively on tokens’ uti-
lization through the special good price.

The general monetary equilibrium of the economy puts together all elements deter-
mined so far and closes the model.

Definition 1.3 (Cryptocurrency Equilibrium). Given the design parameters (µ, π, τ) and
initial tokens in circulation Ai,t0 for i = 1, 2, a cryptocurrency (monetary) equilibrium
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with permanent mining is a collection of value functions (Wm
0 ,W

b
0 ,W

s
0 ), (1.23,1.26,1.29)

optimal controls (σ∗, z∗, y∗) (1.16, 1.34, 1.35), prices
(
p(y),

(
φi,t
)
i=1,2

)
(1.33,1.37) and

distributions
(
g(·), d(·)

)
(1.21,1.22) such that (i) all agents make optimal decisions (ii)

market clearing (1.2) holds in each CM (iii) the validation discount factor applied to
DM transactions is determined by equation (1.28). (iv) miners play a permanent mining
equilibrium and entry the economy according to expression (1.25).

This equilibrium is a standard forward-looking monetary equilibrium with policy pa-
rameters linked to the blockchain’s internal functioning. Monetary policy is determined
by the amount of tokens created by coinbase transactions and the block creation rate.
Record-keeping is performed by miners, provided that they have the incentive to do so.

The existence of a cryptocurrency equilibrium requires a contained level of congestion.
If congestion gets out of control, settlement times become huge, so that sellers charge a
prohibitive price for the special good and no buyer can benefit from trading in the DM
market, the only reason for them to hold tokens in this model. In the extreme case in
which miners refuse to fill blocks, congestion becomes infinite. It is therefore essential
that the protocol is designed in such a way to incentivize mining.

1.6 Optimal cryptocurrency design

In this section, I take a normative standpoint and study the optimal design of a cryp-
tocurrency. Specifically, I study the problem of a blockchain protocol designer who sets
inflation, block rate, and transaction fees to elicit a secure level of miner participation
and incentivize miners to fill blocks. The designer, or social planner (SP), can be thought
of as a software developer designing a modification of the Bitcoin source code.

In a standard optimal taxation problem, the government can dictate the supply of
public goods. In blockchain design instead, miners’ behavior is guided by their incentives,
so the protocol sets the policy instruments (µ, π, τ) to induce miners in providing a level
of public goods (M,k(Q)). Miner participation M raises blockchain security, a pure
public good, but also creates a welfare loss caused by the PoW energy costs.23 On the
other hand, processing capacity (or mining throughput) resulting from miners’ block size
strategies k(Q) is a common-pool good subject to congestion.

The planner’s problem can be formalized as the maximization of agents’ aggregate
utility subject to mining and trade incentive compatibility constraints. Maintaining the
assumption that buyers have full bargaining power simplifies the welfare expression since
W s,0

0 = 0. Furthermore, the free-entry condition is such that miner participation is

23Current estimates from https://digiconomist.net/bitcoin-energy-consumption indicate that Bitcoin
annual energy consumption accounts for approximately 0.21% of the world’s total, producing a carbon
footprint comparable to that of a small country - around 33 CO2 megatons. Several protocol proposals
aim to address the sustainability issue associated with Bitcoin PoW.

https://digiconomist.net/bitcoin-energy-consumption
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the highest admissible value that provides miners a non-negative surplus. If M where
continuous, free-entry would set mining rents to zero. However, under the assumption
that M is discrete, miners can still earn a positive rent due to a mere integer rounding.
So, for simplicity, I will ignore the rounding issue and treat miners as if they earn no
surplus, i.e. setting Wm,0

0 = 0. As a result of these simplifications, the planner simply
maximizes per-buyer surplus.

W SP = max
µ,π,τ

W b
0 , W b

0 = α

r

(
u
[
y(z∗)

])
− z∗

(
1 + µπ

r

)
(1.38)

subject to M = M and optimal (σ∗, y∗, z∗)

Notice that eliciting miner participation beyond M creates only a dead-weight loss, so
letting miners only up to the secure level of participation is optimal in any design. Also,
since the mixed-strategy mining MPE is not a reasonable prediction of mining behaviour,
the planner has to preclude miner inactivity at any point in time to make sure that min-
ers perform their record-keeping task when there are pending transactions and continue
building the blockchain keep it secure when the mem-pool is empty. In other words, the
planner implements a permanent mining equilibrium.

1.6.1 Contribution to the fees-versus-seigniorage debate

In Chiu and Koeppl (2019), an optimally designed cryptocurrency rewards miners only
with seigniorage. CK’s result follows from the observation that inflation is paid on a
larger “tax base” than transaction fees, so the designer can guarantee miners a given
amount revenues by charging commodity traders at a lower rate than one implied by
a design that also uses fees. However this argument ignores the effects of inflation on
the rate of per-block transactions that miners record and hence on the speed at which
payments are processed.

In particular, with endogenous block size, raising inflation reduces the size of blocks
formed by miners, which in turn produces the welfare-reducing effect of making settlement
times of pending transactions longer. In the extreme case in which miners produce only
empty blocks, settlement times are infinite, so the cryptocurrency infrastructure cannot
sustain a monetary equilibrium.

In this model, a pure seigniorage reward causes this scenario to occur. Nevertheless,
the protocol can avoid such situation by setting a lower bound on fees so to ensure
that miners take charge of their role of record-keepers. The safest scenario that the
protocol can enforce is the one in which miners have a dominant strategy to play a
permanent (maximal) mining equilibrium. In other words, each miner finds optimal to
fill blocks regardless what other miners do. If this is the case, a monetary equilibrium is
implementable in dominant mining strategies.
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Definition 1.4. A policy (µ, π, τ) implements a mining equilibrium σ(µ, π, τ) in domi-
nant strategies if and only if

Eσ(µ,π,τ),σ−m

[
R
(
km(Q)

)
| Q

]
≥ Eσ′m,σ′−m

[
R
(
km(Q)

)
| Q

]
, ∀σ′m,σ−m, Q

Dominant strategy implementation of maximal mining requires the fee-to-seigniorage
ratio to satisfy Proposition 1.1-(i). This combined with the activity condition (1.20) and
security condition M ≡ dM∗e = M , with equilibrium miner entry given by (1.25). These
constitute the constraints that the planner has to satisfy when choosing policy parameters
optimally. To summarize, the planner maximizes (1.38) subject to

τ

π
≥ µB

2θ Record-keeping constraint (KEP)

2 ≥ Bz∗(π, τ)(µπ + ατ)
ψ + rF

> 1 Security constraint (SEC)

π ≥ 2ψ
µB

Activity constraint (ACT)

The general design problem is complicated and beyond the scope of the current version
of this paper that only analyzes record-keeping incentives with a two-miner population.
Yet, we can already provide a simple optimal design with the analysis developed so
far. In particular, notice that if a secure participation M = 2 can be achieved with
the lowest admissible value (π∗, µ∗) implied by the above constraints, that is an optimal
design. Even though this is a simplistic approach to the general problem, it is already
instructive as it shows an example where the optimal level of fees is positive. The following
proposition presents a simple closed-form expression for such minimal feasible rates of
fees and seigniorage as well the condition under which miner secure entry is achieved and
hence the design is optimal.

Proposition 1.2. For M = 2, the lowest rates (π, τ) that can implement a monetary
equilibrium in dominant mining strategy (σ = 1) are

π = 2ψ
µB

τ = ψ

θ
(1.39)

For fixed µ, these rates constitute an optimal design if the security constraint is (SEC) is
satisfied at those values.

Notice that both seigniorage and transaction fee rates are increasing in the energy cost
of mining, but the fee rate decreases in the block propagation rate, which raises miner
chances to record blocks and cash-in the fees associated to them, while the inflation rate
decreases in the size of the buyer population at which cryptocurrency deposits will be
charged.
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1.6.2 Discussion

Proposition 1.2 assumes that the security requirement M is independent of the policy
instruments mix. In CK instead, higher fees increase the secure (honest) miners’ partici-
pation requirement because, by reversing transactions with DS attacks, fraudulent miners
- that in CK are also buyers - reverse to themselves the value of transaction fees as well.
However, in practice, transaction fees are small relative to the capital gain that makes
a fraud worthwhile and have mild effects on miners’ incentives to misbehave. For this
reason, it is realistic to consider as negligible the impact of τ on M .

Finally, an alternative but less robust argument for justifying reducing seigniorage in
favour of transaction fees is based on the “hot potato effect” of inflation. According to
this argument, higher seigniorage (and inflation), raises the velocity of money, i.e. induces
traders to spend their tokens at a faster rate, creating a negative congestion externality.
Analyzing this argument requires modelling buyers’ endogenous intensity of search for
sellers, possibly adapting Ennis (2009) model to continuous time cryptocurrency economy
studied so far.

1.7 Conclusion

I presented a model that describes the plurality of interactions involved in a cryptocur-
rency economy. Miners play the essential role of record-keepers by recording blocks of
transactions on their copies of the cryptocurrency blockchain. They also contribute to
the blockchain security and resolve inconsistencies among their ledger copies by following
the Longest-Chain-Rule, indicating them a unique branch of the ledger to follow.

Sellers receive transactions from buyers only after they are recorded by miners on the
blockchain. As a result, transaction settlement is stochastic and depends on miners’ block
size strategy. Since larger blocks imply a short transaction settlement period, traders are
always better-off if miners choose to create large blocks; however, miners do not always
benefit from doing so. Indeed, miners increase the size of their blocks only if the higher
transaction fees compensate for the higher risk that their blocks become stale due to their
slow transmission time caused by having a large dimension.

Small blocks lead to a higher load of pending transactions on the blockchain and
worsen the terms of cryptocurrency trade. In the extreme case in which miners only
create empty blocks, transactions never get processed, and a monetary equilibrium in
which cryptocurrency trade takes place is not plausible. A clever blockchain design can
avoid this scenario by setting high enough transaction fees relative to seigniorage, thereby
providing miners with the incentive to fill blocks.

The analysis developed in this paper studied in detail the basic mining trade-off involv-
ing block reward and the risk of blocks becoming stale caused by slow block transmission.
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Further research could extend the model developed in this paper by introducing verifi-
cation times and SPV mining. In practice, each time a miner receives a block he has to
spend a verification time to check the block’s validity. Afterwards, if the verification has
a positive outcome, he updates his ledger and mem-pool with the information contained
in the verified block, whereas in the contrary case - e.g. if the block contains double-
spent transactions or an invalid PoW - he forks-it out in a stale branch. A miner cannot
safely mine new non-empty blocks while preforming a verification, as they can cause a
double-spending with the transactions included in the block under verification, but faces
no risk in mining empty blocks while verification is still incomplete. The practice of
creating empty blocks skipping full verification is known as Simplified Payment Verifica-
tion (SPV) mining. The practice has the positive effect of precluding mining-gaps and
thus rises mining revenues and in turn the level of blockchain security against malicious
attacks. These mining incentives are particularly important when miners’ mem-pools are
empty (Q = 0). Nevertheless, SPV mining is a form of free-riding when miners’ mem-
pools are non-empty (Q > 0) and allows record-keeping errors to remain unnoticed for
long, amplifying their detrimental effects when finally revealed.

Finally, by letting cryptocurrency prices vary across CM’s, the model can be used to
address traders’ incentives to engage in speculation.

Appendices of Chapter 1

1.A Additional derivations

1.A.1 Distributions of mem-pools’ size and validation times

Mem-pools

The steady state distribution of the mem-pool balances expected in-flows and out-flows
of transactions. For Qt > 0, miners receive transactions at rate λ ≡ αB and process
transactions at rate σµ. If Qt = 0 instead, miners have no transaction to process. Let
Q̇t , ∂Qt/∂t. We have

ġ(0) =µσg(1)− λg(0) (1.A.1)

ġ(Q) =λg(Q− 1) + µσg(Q+ 1)− (λ+ µσ) g(Q) for Q > 0 (1.A.2)

with
∑∞

Q=0 g(Q) = 1 (1.A.3)
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Setting ġ(Q) = 0 ∀Q yields g(Q) = ρg(Q− 1), where ρ = λ/σµ denotes the load factor,
implying g(Q) = ρQg(0) for all Q ≥ 0. Applying the normalization (1.A.3) we obtain the
stationary probability of the mem-pool being empty,

∑∞
Q=0 ρ

Qg(0) = g(0)
1− ρ, so, g(0) = 1− ρ

Now we can see that the mem-pool distribution is geometric with p.m.f. g(Q) = (1−ρ)ρQ

�

Remark: In a permanent mining equilibrium (σ = 1) the mining game defined in
Section 1.4.1 switches across mem-pool states according to the following transition rate
matrix


(Q,H) (Q+ 1, H) (Q,H + 1) (Q− 1, H + 1)

(Q,H), Q = 0 1− λ− µ λ µ 0

(Q,H), Q > 0 1− λ− µ λ 0 µ



Validation time

Suppose miners form blocks picking transactions uniformly at random from their mem-
pools and each seller has at most one pending transaction. The probability that a pending
transaction directed to seller s is recorded in a block is 1/(1 + Q−s), where Q−s is the
number of pending transactions not yet recorded and directed towards other sellers. Since
seller s takes into account that Q−s is geometrically distributed with p.m.f. g(Q) (from
Eq. (1.21)), she computes the probability that her transaction will be included in the
next block using the following formula:

∑∞
Q−s=0 g(Q−s)

1
1 +Q−s

= (1−ρ)
∑∞

Q−s=0
ρQ−s

1 +Q−s
= 1− ρ

ρ

(∑∞
Q=1

ρQ

Q

)
= 1− ρ

ρ
ln(1−ρ)−1

(1.A.4)
where the last equality follows from the Maclaurin expansion of ln(1−ρ)−1. Since miners
fill blocks with probability σ, it follows that a transaction’s validation time in block units
is geometrically distributed with p.m.f. d(n) = (1− ν)n−1ν, in which the block inclusion
parameter ν satisfies ν = σ 1−ρ

ρ
ln(1− ρ)−1 �

1.A.2 Properties of agents’ value functions

To follow the main proofs in Appendix 1.B and part of the analysis contained in the main
body of the paper, it is worth to keep in mind some properties of value functions driven
by an underlying Poisson process and Poisson processes themselves.
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Exponential random variables:

Let {Tj}j∈{1,2,...,J} denote a collection of exponential random variables with with rates
{αj}j∈{1,2,...,J}. Their minimum T = min{Tj}j∈{1,2,...,J} is again exponentially distributed
with rate α = ∑

j∈{1,2,...,J} αj. Moreover, since the Laplace-Stieltjes transform of the
exponential random variable Tj is given by E

(
e−rTj

)
= αj

r+αj , so we also have that

E
(
e−rT

)
= α/(r + α) (1.A.5)

Stochastic upper integration limit:

Let Tj denote an exponential RV with rate αj. The following identity holds:

ETj

ˆ Tj

0
e−rtf(t) dt

 =
ˆ ∞

0
e−(r+αj)tf(t) dt (1.A.6)

To see this, integrate the left-hand side of Eq. (1.A.6) by parts, setting v(Tj) = −e−αjTj

and u′(Tj) = e−rTjhTj to obtain

ETj

ˆ Tj

0
e−rtf(t) dt

 =
ˆ ∞

0
αje

−αjTj

ˆ Tj

0
e−rtf(t) dt

 dTj

=
ˆ ∞

0
v′(Tj)u(Tj) dTj =

[
v(Tj)u(Tj)

]∞
0︸ ︷︷ ︸

=0

−
ˆ ∞

0
v(Tj)u′(Tj) dTj

=
ˆ ∞

0
e−(r+αj)Tjf(Tj) dTj ≡

ˆ ∞
0

e−(r+αj)tf(t) dt �

Switching Poisson states:

Suppose a value function W 0 can switch from state 0 to states j ∈ {1, 2, . . . , J} at a
Poisson rates α0j ≡ αj. Then, as we saw earlier in this section, the switching-time T
from state 0 to a next generic state is exponentially distributed with cumulative transition
rate α and the probability that the value function will enter a given state j next is αj/α.
Therefore,

W 0 = ET,j
(
e−rTW j

)
= α

r + α

 ∑
j∈{1,2,...,J}

W jαj
α

 = 1
r + α

∑
j∈{1,2,...,J}

αjW
j

It follows that
rW 0 =

∑
j∈{1,2,...,J}

αj
(
W j −W 0

)
� (1.A.7)
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1.B Omitted proofs

Proof of Lemma 1.1. If γH+1,m + εH+1,m < minm′
{
γH+1,m′ + εH+1,m′

}
, miner m’s

transmission time is fast enough to let him establish the next reference predecessor block
and collects the block reward. If not, m’s block gets forked-out by all other miners.
For now, let γH+1,m ≡ γm and εH+1,m ≡ εm for a given m ∈ M. The probability
P̃M−1(T ;σ−m = σ) that a block with update time TH+1,m ≡ T is faster than the con-
temporaneous M − 1 blocks, evaluated using the belief σ−m = σ on other miners’ block
strategies, satisfies the following relationships

P̃M−1(T ;σ−m = σ) = P

(
min
m′
{γm′ + εm′} > T

)
=
(
1− Fγm′+εm′ (T )

)M−1

=
[
e−T(µ/M) + σ

µ/M

θ −
(
µ/M

) (e−T(µ/M) − e−Tθ
)]M−1

(1.B.1)

The unconditional belief of successful mining P (σm,σ−m) is obtained from expression
(1.B.1) by integrating-out the marginal density of T , so that

P (σm;σ−m) =
ˆ ∞

0
P̃ (t,σ−m)fγm+εm(t) dt (1.B.2)

Now, integrating Eq. (1.B.2) by parts,
ˆ ∞

0
P1(t)M−1f(t) dt =

[
P1(t)M−1 (1− P1(t)

)]t→∞
t=0

+ (M − 1)
ˆ ∞

0
P1(t)M−2 (1− P1(t)

)
f(t) dt

=
[
P1(t)M−1 − P1(t)M

]t→∞
t=0︸ ︷︷ ︸

=0

+(M − 1)
ˆ ∞

0
P1(t)M−2f(t)− P1(t)M−1f(t) dt

ˆ ∞
0

P1(t)M−1f(t) dt = (M − 1)
[ˆ ∞

0
P1(t)M−2f(t) dt

]
− (M − 1)

[ˆ ∞
0

P1(t)M−1f(t) dt
]

Collecting the identical integrals,
ˆ ∞

0
P1(t)M−1f(t) dt = M − 1

M

[ˆ ∞
0

P1(t)M−2f(t) dt
]

(1.B.3)

Expression (1.12) follows immediately from Eq. (1.B.3) proceeding by induction on M

with base step M = 2
Proof of Lemma 1.2. From Eq. (1.B.2) the probability we are looking for is the result
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of the following integral

P (σm, σ−m) =
ˆ ∞

0

[
e−T

µ
2 + σ−m

µ

2θ − µ
(
e−T

µ
2 − e−Tθ

)]

×
[
σm

θµ

2θ − µ
(
e−T

µ
2 − e−Tθ

)
+ µ

2 (1− σm)e−T
µ
2

]
dT (1.B.4)

Expand the product in the previous expression and integrate each part separately.
We have that (

σm
θµ

2θ − µ

)ˆ ∞
0

e−T
µ
2
(
e−T

µ
2 − e−Tθ

)
dT

=
(
σm

θµ

2θ − µ

)
2θ − µ

µ(2θ + µ)

= σmθ

2θ + µ

µ

2 (1− σm)
ˆ ∞

0
e−Tµ dT = 1− σm

2

(
σ−m(1− σm) µ2

2(2θ − µ)

)ˆ ∞
0

e−T
µ
2
(
e−T

µ
2 − e−Tθ

)
=
(
σ−m(1− σm) µ2

2(2θ − µ)

)
2θ − µ

µ(2θ + µ)

= (1− σm)σ−mµ
2(2θ + µ)

(
σ−mσm

µ2θ

(2θ − µ)2

)ˆ ∞
0

(
e−T

µ
2 − e−Tθ

)2
dT

=
(
σ−mσm

µ2θ

(2θ − µ)2

)
(θ − µ/2)2

θµ(θ + µ/2)

= σ−mσmµ

2(2θ + µ)

Summing up the four factors we obtain

P (σm, σ−m) = 2σmθ + 2θ(1− σm) + µ(1− σm + σ−m(1− σm + σm))
4θ + 2µ = 2θ + (1− σm + σ−m)µ

4θ + 2µ

This probability is identical to the one displayed in Eq. (1.13).
Proof of Lemma 1.3. Since miners instantly sell their block rewards of value zm and
obtain linear utility from consuming the corresponding amount of numeraire good, we
have that Wm

M (zm) = zm +Wm
0,M .
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The component Wm
0,M of the value function can be obtained by summing-up the ex-

pected payoffs obtained at each mining round, discounted at present value. Since miners
consider the length of a mining round T ∗H+1 − T ∗H as exponentially distributed with rate
µ, property (1.A.6) yields

E

ψ ˆ T ∗H+1−T
∗
H

0
e−rt dt

∣∣∣∣∣∣T ∗H
 = ψ

ˆ ∞
0

e−(r+µ)t dt = ψ

r + µ
(1.B.5)

On the other hand, the present value of the block reward, discounted for the expected
length of a mining round is obtained by computing

E
(
e−r(T

∗
H+1−T

∗
H)R(QH+1)

)
=︸︷︷︸

gt(Qt)=g(Qt)∀t

E
(
e−r(T

∗
H+1−T

∗
H)R(Q)

)
=︸︷︷︸

from (1.A.5)

µ

r + µ
E
[
R(Q)

]
(1.B.6)

with

E
[
R(Q)

]
= g(0)

[
R(0)PM−1(0, 0)

]
+ (1− g(0))

[
σR(1)P (1, σ) + (1− σ)R(0)PM−1(0, σ)

]
= R(0)

(
(1− ρ)PM ′(0, 0) + ρ(1− σ)PM ′(0, σ)

)
+R(1)σPM ′(1, σ)

(1.B.7)

The expression resulting by the combination of Eqs. (1.B.5) to (1.B.7) is

Wm
0 =

µ
(
E
[
R(Q)

]
+Wm

0

)
− ψ

r + µ

so that Wm
0 = µE

[
R(Q)

]
− ψ

r
(1.B.8)

To obtain miners’ value function (1.23), subtract from Eq. (1.B.8) the value of the
initial investment in the mining node F and add real balances
Proof of Lemma 1.4. Using property (1.A.7), we have

W b(z) = −(z∗ − z) + µW b(z∗(1− π)) + αV b(z∗)
r + µ+ α

(r + µ+ α)W b(z) = −(z∗ − z)(r + µ+ α) + µW b(z∗(1− π)) + αV b(z∗)

rW b(z) = −(z∗ − z)(r + µ+ α) + µ
[
W b (z∗(1− π)

)
−W b(z)

]
+ α

[
V b(z∗)−W b(z)

]
rW b(z) = −(z∗ − z)r + µ

[
W b (z∗(1− π)

)
−W b(z∗)

]
+ α

[
V b(z∗)−W b(z∗)

]
rW b(z) = −(z∗ − z)r − µπz∗ + α

[
V b(z∗)−W b(z∗)

]
Expression (1.26) follows by setting z = 0
Proof of Lemma 1.5. Immediate from property (1.A.7) and the derivations in Ap-
pendix 1.A.1
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1.C Notation

t time index α DM meeting rate
b, B; s, S; m, M agents’ index and population x generic good consumption
y special good consumption u(·) special good utility
ai,t nominal balances, i ∈ {b, s,m} zi,t real balances, i ∈ {b, s,m}
Bi, Si subscribed buyers and sellers ADi,t, ASi,t, Ai,t, At token demand and supply
Zi,t, Zt real balances in CMi φi,t, φt tokens’ price in CMi

R(k) block reward for block size k π seigniorage rate
τ proportional fee rate h,H block and blockchain height
Th,m publication time of block (h,m) T ∗H publication time of ref. block
µ, µm block creation and mining PoW rate km(Q) block size Markov strategy
λ transaction request rate r discount rate
M safe miners’ participation f , f̃ actual and approx. density
θ block transmission rate F, ψ up-front and flow mining cost
M set of miners’ labels Ui life-time utility of agent
γh,m PoW solution time εh,m transmission lag
σm prob. of filling a block p(y) price of the special good
Q miners’ mem-pools size n block number
g(·) p.m.f. of mempool size d(·) p.m.f. of validation time
ρ load factor ν probability of validation
β buyers bargaining weight Ω validation discount rate
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1.D Glossary

Altcoins Cryptocurrencies originated from forks of BTC
Bitcoin (BTC) The original implementation of the Bitcoin blockchain
bitcoin A Bitcoin token
blockchain A copy of a distributed ledger
coinbase transaction The transaction awarding a miner with new tokens
fork A bifurcation of the blockchain
genesis block The first block of a blockchain
hash A code resulting from an encryption
hashpower Time rate of hash codes produced by the mining node
height (block) Distance between a generic block and the genesis block
longest chain rule (LCR) The consensus formation rule employed by most PoW blockchains
mining node A computer endowed with dedicated mining technology
mining pool A consortium of miners
mining The activity of recording blocks of transactions on the blockchain
mem-pool Set of pending transactions received by a miner
proof-of-work (PoW) A blockchain protocol based on computationally intensive record keeping
proof-of-stake (PoS) A blockchain protocol based on a funds staking mechanism
satoshi A Bitcoin token containing 10−8 bitcoins
stale block A block lying in an abandoned chain
SHA-256 A common encryption algorithm
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Chapter 2

A Theory of Crowdfunding
Dynamics

(Joint with Matthew Ellman)

2.1 Introduction

Empirical analyses of crowdfunding highlight a U-shape in the plot of average funding
pledges against time (see Fig. 2.D.1). Understanding the dynamic interactions between
funders that underlie these patterns will enable entrepreneurs to better exploit crowd-
funding as a tool to fund their innovations. Yet first generation theories only model
simultaneous funding choices. We build a parsimonious dynamic theory that can explain
the U-shape. Our new ingredient is that funders must sink an inspection cost if they
want to learn their value of the entrepreneur’s innovation before it gets produced. This
generates rich dynamics since bidders only pay to inspect when they perceive sufficient
success prospects. In turn, inspection choices drive bidding which drives success. So we
solve for the co-evolving rates of success and bidding. Our equilibrium characterization
predicts how outcomes, including initial success rates and the slope of average bidding
profiles, depend on project characteristics and design choices. Our framework identifies
two novel dynamic effects.

The first effect is driven by a tendency for pivotality to decrease. Later bidders arrive
nearer to the campaign deadline and therefore have fewer followers to influence. As a
result, their average pivotality is lower than that of earlier bidders. This decreasing
pivotality has a negative effect on the slope of average bidding because pivotality raises
the benefit from inspecting which is a necessary precursor to bidding. The second effect
is driven by the fact that later bidders learn more about other bidders’ choices: they
observe the sum of prior bids. High prior bidding represents good news for success so it
increases later bidding while low bidding represents bad news and decreases later bidding.
Whether the good news’ positive effect dominates, or is dominated by, bad news’ negative
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effect depends, via Jensen’s inequality, on the shape of the inspection cost distribution.
We call this the Jensen effect of learning.

Under plausible conditions, the decreasing pivotality effect is strongest in early stages,
whereas a dominant, positive Jensen effect is most common in late stages of a campaign.
So these two insights alone can explain a U-shaped bidding profile. The argument hinges
on the fact that campaign success prospects usually become increasingly clear over time.
Success clarity implies that success rates approach zero or unity. In either case, pivotality
stabilizes near its lower bound of zero with little scope for further decrease. Decreasing
pivotality therefore generates an initial downward slope which later levels out creating the
flat bottom of the U-shape. By contrast, the success clarity of the late stages generates
a strong positive Jensen effect as maximal success rates activate reluctant bidders. This
explains the final upward slope of the U-shape.

In a companion paper, we allow for endogenous timing of bidder moves and bidders
who arrive before the campaign starts. This extension is interesting because it can explain
sharp spikes at campaign start and expiration dates. In the discussion, we consider a
number of other factors that further affect bidding patterns. None offer such a direct and
parsimonious explanation of bidding slopes and the U-shape. We find it impressive that
the parsimonious, exogenous move order model of the current paper can already generate
a U-shape. The model also generates new testable predictions and allows us to tackle the
challenge of optimal campaign design.

We focus on the classic case of all-or-nothing reward-based crowdfunding. An en-
trepreneur makes an open call to fund her plan to make a new product. She commits
to reward all funders with her product if and only if aggregate funds reach a threshold
by a deadline. That is the “success” event. Otherwise, the project fails and funds are
returned; nothing is produced and nothing is paid. We treat the simplest case where
there is one product and one price, so the entrepreneur proposes a single reward offer.
Funders are essentially advance buyers whose bids or pledges are commitments to pay the
product price if funds reach the threshold in time. Unlike competing bids in an auction,
bids are strategic complements because a bid yields nothing without enough other bids
to reach the threshold. Ellman and Hurkens (2019b) use mechanism design to prove that
simultaneous bidding and the all-or-nothing paradigm are optimal when funders can be
fully reimbursed on project failure. However, with sunk costs of inspection, sequentiality
is needed for coordination to reduce wasteful inspections. Major crowdfunding platforms
facilitate this by accepting bids over time and publicizing the cumulative aggregate.

To flesh out our two dynamic effects, we focus on an exogenous ordering of bidder
moves. Bidders either cannot or do not want to delay decision-making. They “arrive”
when they become aware of the entrepreneur’s campaign. We assume a homogenous
Poisson arrival process, so that the (average) bidding profile would be flat if there were
no strategic interactions. Each bidder observes his arrival time and the bids accrued so
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far. So he knows how much time is left till the deadline and the funding “gap” still needed
to reach the threshold. The time and gap form the state of a Markovian sequential move
game, because each bidder only cares about others’ choices in so far as they affect the
success probability when he bids. We call this bid-conditional probability, the bidder’s
success rate. It is the probability of success perceived by a bidder who arrives and bids
in the current state. This rate plays a central role in the analysis. Sinking inspection
costs is worthwhile precisely when this rate is high enough.1 Notice that it equals the
unconditional success rate plus the bidder’s pivotality, the success impact of his bid.

By the law of iterated expectations, the unconditional success rate is always a mar-
tingale. So decreasing pivotality directly implies that the bidder’s success rate is also
decreasing. That in turn pushes towards a negative bidding slope. This is the decreas-
ing pivotality effect (DPE). Formally, we establish decreasing pivotality by proving that
pivotality is a supermartingale. The economic intuition, that later movers have fewer fol-
lowers to positively influence before the campaign deadline hits, applies to any sequential
move game with strategic complementarity and a fixed deadline. As noted above, the
magnitude of this decreasing pivotality effect (DPE) usually falls over time as pivotality
usually approaches its lower bound of zero in the last stages of a campaign. The cost
distribution also matters by shifting followers’ sensitivity to influence.

The overall expected effect of time combines this with the Jensen effect of learning
about shocks to the gap. Uncertainties in arrivals, costs and tastes generate bidding
shocks that lead to shocks in the gap and hence in pivotality and the bidder’s success
rate. Strategic complementarity magnifies the variance over time so that the bidder’s
success rate becomes increasingly dispersed. The net expected impact of these shocks
is positive if the density of bidders is increasing in inspection costs and negative if the
density is decreasing. This is intuitive: an increasing density, equivalent to convexity of
the cumulative distribution function (CDF), implies increasing returns to good news. The
Jensen effect then pushes the bidding slope upwards. Sufficient convexity can dominate
the decreasing pivotality effect and yield a positive sloped bidding profile. Conversely,
CDF concavity reduces expected inspection and hence bidding. Decreasing returns to
good news push in the same direction as decreasing pivotality, so a linear or concave
CDF guarantees a negative slope.

We derive a range of possible profile shapes. To explain the U-shape, we emphasize
a context in which a majority of bidders have a continuous distribution of inspection
costs with a density that is either decreasing in cost or takes any shape except one that
is steeply increasing on a significant range of costs. The uniform distribution obviously
satisfies the latter and a single-peaked density with a negative mode satisfies the former
as well. For the remaining fraction of bidders, the effective inspection cost is an atom at
the upper bound on the cost support that bidders are ever willing to pay. The actual cost

1We assume a price high enough that bidders never bid without first inspecting – no “blind bidding”.
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could follow any distribution because the motivation is that this group of bidders follow
a rule of thumb. They only inspect sure prospects and neglect the prospect to bid on a
project for which feasibility depends on what other bidders do later. This setting naturally
generates a U-shape. First, the standard distribution creates an initial downward slope
that becomes flatter over time as pivotality tends to become less significant. Second, the
effective limit cost types cause a Jensen effect that is positive and strong during the late
phase of the campaign. This Jensen effect is negligible early on because it is rare for a
campaign to reach a low enough gap early on in order to activate the rule of thumb types
who effectively have the limit cost. This explains the final upward part of the U-shape.

To discuss further slope possibilities, note that costs below zero are equivalent to a
zero cost since all such bidders inspect on arrival. Costs strictly above the expected
inspection benefit given guaranteed success are equivalent to the bidder not arriving. So
the relevant cost range is from zero to this upper cutoff. The Jensen effect is readily signed
if the cost density is monotonic on this range. In the case of a single-peaked density, a
negative mode implies that the peak cost is below zero and the density is decreasing on
the relevant range, implying a concave CDF and a negative Jensen effect. Similarly, a
mode above the cutoff guarantees a convex CDF and positive Jensen effect. Empirically,
this suggests that the bid profile slopes downwards when inspection is an attractive
distraction for most relevant bidders. Negative net inspection costs predominate when
bidders’ curiosity, active enjoyment in reading or desire for distraction tend to outweigh
their costs of effort and opportunity cost of time. Also close contacts and family of the
entrepreneur are likely to be anyway informed or to feel obliged to pay attention. Bidder
connectedness with the entrepreneur, as estimated via Facebook links or geography (see
Agrawal et al., 2011), can serve as a proxy for negative inspection costs.

The uniform distribution clearly implies a downward slope because the Jensen effect
is always neutral and the decreasing pivotality effect (DPE) applies throughout. The
intensity of DPE is non-monotonic in the initial gap. At low gaps, the project success
rate rises and reaches unity so that pivotality falls to zero even for the earliest bidder.
At very high gaps, the project success rate is very low so even the earliest, most pivotal
bidders have minimal pivotality. Average pivotality still falls but it cannot fall very far
since pivotality cannot fall below zero. Nonetheless, average pivotality and bidding plots
are increasingly convex as the threshold rises.

Higher power distributions are sufficiently convex to produce a positive slope. The
magnitude of the Jensen effect is largest at the start and rapidly declines because the
greater pivotality of early bids implies a greater variance early on.

Discrete inspection cost distributions are instructive and easily simulated, but discon-
tinuities in the CDF generate bidding discontinuities. The homogenous cost case is the
simplest because all bidders make the same inspection choice at any given state. The
project is either active with maximal bidding or frozen because no bidders inspect. Once
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frozen, bidding falls to zero so the project cannot heat up again. The frozen state is
absorbing so the probability that the project is frozen can only increase over time. This
implies that bidding decreases over time since the average bidding rate at any date is
proportional to the probability of survival until that date. The bidding decreases take
the form of discrete drops at a finite set of critical dates at which the project would
freeze for one of the gaps between the initial gap and two. Pivotality at the critical state
given by a gap and its critical date is continuous in time but on average falls in the next
instant so that average bidding suffers a discrete drop. The Jensen effect is positive but
continuous and therefore dominated by DPE at critical dates. The Jensen effect is trivial
in active non-critical states since all bidders continue to inspect at the next instant no
matter what happens. The Jensen effect is also trivial in frozen states because freezing
implies no further bid variation.

The homogenous case is very special for that reason: all bidding freezes up at the
same instant. A binary distribution with one atom at zero cost is a natural extension
away from homogeneity, given that entrepreneurs have friends, family, fans and contacts.
In this case, we say that the project is in a hot state if both zero cost and positive cost
types are inspecting, while it is cold if only the zero cost bidders inspect. Critically now,
bid variation is non-zero in the cold state, so the Jensen effect after each critical date
is non-trivial and it is positive because bid variation provides the chance that high cost
bidders will start to inspect again . So average bidding rises back up gradually, only to
drop down discretely at the next critical date. This generates a saw tooth pattern.

We can also apply our framework to answer key questions of optimal design. Our
characterization of success rates reveals that the overall success rate at the start of a
campaign is falling in the threshold and rising in its duration for a fixed arrival rate
(though raising duration may, in principle, lower the arrival rate). The success rate is
also decreasing in the crowdfunding price. Since we prove that a bidder’s pivotality tends
to be greater if he arrives earlier, it seems natural that an initially higher price discount
should help the entrepreneur to promote project success. This is true for an entrepreneur
without commitment, but when able to commit to future discounts, that is usually bet-
ter still because future discounts motivate prior bidders as well as subsequent bidders.
Unrestricted optimal pricing rules are more generally too complicated for practical use
since the price would depend quite intricately on the bidding path but limited rewards
are commonly used and we shed light on their optimal design.

We discuss related works in Section 2.1.1. Section 2.2 presents the baseline model
with exogenous move orders. Section 2.3 characterizes success rates and pivotality and
presents our main result on the slope of the average bidding profile. In Section 2.4, we
apply the methodology to specific distributions of inspection costs: linear or uniform,
quadratic and higher powers, homogenous costs and binary distributions. Section 2.5
presents our analysis of design, endogenizing parameters chosen by the entrepreneur.
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Section 2.6 discusses realism and subtler issues regarding the modeling choices. We wrap
up and discuss alternative and complementary theories in Section 2.7. Omitted proofs
can be found in Appendix 2.A.

2.1.1 Related literature

Empirics. Empirical studies on bid dynamics in crowdfunding are relatively recent
as data was previously unavailable. Kuppuswamy and Bayus (2017) is the first paper
to our knowledge to report that the U-shape (or bathtub) pattern of pledge revenue
and count is pervasive across project categories and outcomes (i.e. success and fail) on
Kickstarter (KS for brevity). Later Liu (2020) and Deb et al. (2021) corroborate that
prior evidence. Crosetto and Regner (2018) instead find the U-shape on the German
platform Startnext resulting from the aggregation of notable heterogeneity at campaign
level. Deb et al. (2021) find that the spikes of the U-shape are amplified by an increased
bidder arrival rate. In the starting phase, the increase is due to higher advertising and
social activity, e.g. KS attributing the “Projects we Love” badge to campaigns it favours.
In the conclusive phase, also bidders’ strategic waiting plays an important role. Indeed,
the final peak displayed in figure 1(c) of Deb et al. (2021) starts two days prior to
campaigns’ conclusion because that is the time at which the “Remind Me” option that
Kickstarter offers to bidders reminds them to check back a chosen campaign that is
running out of time. Deb et al. (2021) and Crosetto and Regner (2018) also break-down
the pledge U-shape into purchase and donation income and find that purchases prevail
early for early-finisher campaigns while donations dominate late for later-finishers. Deb
et al. (2021) highlight the empirical puzzle of a pledge revenue drop occurring right after
campaigns reach their goal and attribute its possible causes to a successive price increase
or reduction in advertising and social activity.

Success rate prediction based on project static and dynamic features is a salient em-
pirical challenge. The overall picture is that the success rate of KS campaigns is around
40%. in predicting success Rao et al. (2014) and Etter et al. (2013) predict success using
KS data. The first group of authors uses bidding rates and their slope as predictors.
They construct strong success predictors using the bid rate computed over the first 10%
and between 40 and 60% of the campaign’s duration and the bid slope over the final 5%.
Etter et al. (2013) predicts success with 76% accuracy after the first four hours combining
bid and social activity data. Social factors account for a 4% increase in prediction perfor-
mance. Both authors predict success with 84 and 85% accuracy using bid revenue over
the first %15 of the campaign’s duration. Crosetto and Regner (2018) find that initially
failing campaigns are often saved at a late stage by intensified communication and sup-
port from the entrepreneur’s extended personal network. Similarly, Colombo et al. (2015)
associates intense initial bidding with social capital developed within the crowdfunding
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community.
A good number of studies analyze static (project level) features of crowdfunding cam-

paigns. Agrawal et al. (2014) and Kuppuswamy and Bayus (2018) provide a survey.
Agrawal et al. (2011) show that funders who are geographically close to the entrepreneur
tend to bid early on Kickstarter. Mollick (2014) and Cordova et al. (2015) highlight the
features of successful crowdfunding practices. Mollick (2014) uses KS data. Cordova
et al. (2015) form a data-set by combining data on technology projects active in 2012
from Kickstarter, Indiegogo, Eppela and Ulule. Both teams find that higher goals are
associated with lower success rates, but are discordant on the success impact of campaign
duration, which is positive according to Cordova et al. (2015) but negative for Mollick
(2014). Both teams observe bimodality in the distribution of total pledge income and
completion time.

Theory. Early crowdfunding models (Belleflamme et al., 2014; Chang, 2016; Chemla
and Tinn, 2018; Ellman and Hurkens, 2019a,b; Hu et al., 2015; Sahm, 2016; Strausz, 2017)
are static apart from a post-crowdfunding sales period. Ellman and Hurkens (2019b)
demonstrate crowdfunding’s role in credibly learning market demand and use mechanism
design to prove optimality in the case with two possible valuations, high and low. Strausz
(2017) restricts to settings where the low valuation equals zero to study optimal design
when the entrepreneur can abscond with the funds instead of producing; see also Chang
(2016); Chemla and Tinn (2018); Ellman and Hurkens (2019a). We abstract from moral
hazard and similarly restrict to the case where the low valuation is zero to focus on the
dynamic challenge.

A more recent literature explicitly models pledging as a dynamic subscription game. In
this context inspection costs are natural because funders bid before the innovative good
has been produced. This provides a plausible justification for some contemporaneous
models of crowdfunding dynamics Alaei et al. (2016); Deb et al. (2021). Those other
papers assume an exogenous and deterministic bidding cost, motivated as an opportunity
cost of funds, which is often small.

Alaei et al. (2016) study optimal crowdfunding design and the dynamics of bids assum-
ing bidders arrive exogenously with binary valuations, facing a homogeneous opportunity
cost to bid. We treat the analogous continuous-time problem, adding cost heterogeneity.
They do not derive the average bid profile, but our analysis proves that it is necessarily
decreasing in their homogenous cost setting.

Deb et al. (2021) seek to explain a U-shaped bidding profile by adding a distinct type
of bidder: buyers arrive and bid exactly as in Alaei et al. (2016) and our model, but there
is also a (single) donor who is always present and can donate any amount at any time (the
donor bids in every subperiod after a buyer arrives or fails to arrive). As in Alaei et al.
(2016), buyers are homogeneous and face an opportunity cost of pledging. Bid variation
is driven by buyer uncertainty about the donor’s wealth as well as the randomness in
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buyer arrivals. The donor is vital for explaining the U-shaped dynamics in their paper.
Our analysis proves that the profile is otherwise decreasing for their setup, as just noted
in the comments on Alaei et al. (2016). By studying cost heterogeneity, we derive rich
dynamics without need for any donor types. We abstract from the complex signalling
game associated with donor wealth uncertainty and the power to bid continuously over
time. We are thereby able to analyze the shape of average bidding profiles. Deb et al.
(2021) instead focus on when bidding can feature spikes, defined as multiple bids made
in one instant. By assumption, bidders cannot be responsible for such an occurrence
because bidders only ever make one bid and the probability that two bidders arrive at
an identical date in the continuous time limit is zero. The donor can make multiple bids
and the analysis proves that the donor makes just one bid at a time except at the very
start and very end of a campaign.

Common values offer another promising avenue for understanding dynamics. Given
the prominent role of thresholds and limited campaign duration in actual crowdfunding,
it will be important to combine common values with the model that we develop below.
Nonetheless, there are already some suggestive early contributions. Liu (2020) endoge-
nizes move order, but only in a two-period game. Assuming common value, she shows
that equilibria in cutoff strategies with respect to private signals (coordinated equilibria),
predict that successful ventures are generally more back-loaded than failed campaigns.
She notices that the game does not have a unique equilibrium prediction but the equilibria
she analyses address the research question of what drives selection into leaders and fol-
lowers in a collective action. Babich et al. (2017); Vismara (2016); Zhang and Liu (2012)
provide valuable related contributions in the context of equity-based crowdfunding.

Other papers model funding dynamics but concentrate on crowdfunding design. Zhang
et al. (2017) and Chakraborty and Swinney (2019) consider a bidder crowd divided into
ordinary and herder bidders. These last wait and make a last-minute action. In Zhang
et al. (2017) types are exogenous while in Chakraborty and Swinney (2019) bidders choose
strategically to wait but are partially rational. Their model predicts a final bidding spike
but cannot explain a decreasing profile.

All these closest contemporaneous studies except Zhang et al. (2017) assume an ex-
ogenous sunk cost of making a bid. The main interpretation is that bids are held in
escrow so bidders must forego other opportunities for using the money. This argument
has some disadvantages. For the cost to matter it must be sunk even in the failure event
where bids are reimbursed. So the opportunity cost is driven by fleeting substitute op-
portunities that arise during the campaign and disappear before it ends. The risk of such
costs on a typical campaign lasting 40 days are generally small, especially when buyers
are not credit constrained. Foregone interest earning opportunities also imply only a
small cost. Such costs would be increasing in the relevant time till the deadline, τ − t,
contrary to the simple case of a fixed cost on which all the other studies have focused.
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Our inspection cost perspective avoids these problems and provides an added reason to
expect substantial variation in costs across bidders. We also complement those studies
because inspection costs deliver qualitatively similar results. Inspections costs provide a
more plausible motivation than the direct bidding costs assumed in all the related papers.
Moreover, inspection costs justify assuming a time-independent distribution. In this way,
our study complements those mentioned above.

Finally, there are several papers on donation-based crowdfunding. Solomon et al.
(2015) study the timing of pledges experimentally. Donors tend to bunch their pledges
at the beginning and at the end of a campaign. In line with our findings on endogenous
timing, early pledging is a better strategy for donors who value success. Cason and
Zubrickas (2018) model how refund bonuses affect public good provision and test their
theory in a laboratory experiment. Bidders can pledge more than once in their continuous-
time dynamic contribution game. They find that refund bonuses reduce momentum but
do not predict the benchmark bid profile.

2.2 Model

We study the simplest reward-based crowdfunding campaign in order to study bid dy-
namics in continuous time. The entrepreneur specifies a product as the reward for crowd-
funders, a price p of that single reward, a funding threshold or goal and a deadline of her
campaign. Funders can pledge p if they hear about the campaign before its deadline. The
campaign is said to succeed if and only if the sum of these pledged funds (restricted to p
or 0) reach or exceed the threshold. In the success event denoted S, each funder pays his
pledge p to the entrepreneur who must invest in production and deliver the unit reward to
each funder. In the complementary event of a failure, denoted F , there is no production
and no payments. We assume perfect enforcement of these crowdfunding rules, both on
the entrepreneur and on the funders. Thus a pledge is a binding commitment to pay p
in return for the product contingent on funding success S. Admati and Perry (1991) call
the pledges, subscriptions but we use the briefer word bids.2

Setting time t to zero at campaign initiation, the campaign’s deadline equals its
duration, denoted τ . Since funders bid p or nothing, a goal of pg0, or any goal pg̃0

with g̃0 ∈ (g0 − 1, g0], is equivalent to a threshold g0 on the number of bids. This g0

is also the initial gap between the threshold and cumulative bids since bids collected
equals zero at the start. The campaign follows the predominant All-or-Nothing paradigm:
in event S, the campaign succeeds in collecting g0 bids by τ , in which case all bids
are paid, production occurs and all bidders receive one unit of the product as reward;
otherwise, the campaign fails, event F , so there is no production, no rewards and no

2In crowdfunding with unlimited units, bids are complements; they do not compete as in an auction.
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payments (any bids held in escrow are reimbursed). The entrepreneur’s production costs
and possible credit needs affect how she chooses price p, duration τ and threshold g0, but
until design Section 2.5, we analyze dynamics within the bidding phase for exogenous
project variables.

We say that a bidder arrives at the project at date t if he hears about the project
at some t ≤ τ . Bidders arrive at a constant Poisson intensity λ > 0 throughout the
campaign, giving an expected total of λτ bidders. Neglecting zero probability events
where multiple bidders arrive at an identical instant t ∈ [0, τ ], we uniquely associate each
bidder with his arrival date t. On arrival, each bidder perceives project characteristics
τ, g0, p, his arrival time t and the Poisson arrival intensity λ, but is uncertain about his
private valuation vt of the product. He can learn vt immediately if he pays his inspection
cost ct, which he perceives on arrival. ct represents t’s cost of reading about the proposed
product and introspecting.

Bidders immediately perceive on arrival the following common and fully independent
distributions of these costs and values. For each t, vt ∈ {0, v} with probability q ∈ (0, 1)
on v and ct has cumulative distribution function CDF, F (·).3 Until we endogenize pricing,
we normalize the price discount d , v − p to unity; that is, we set p = v − 1 so that
d = 1. Given this net benefit from buying the valued good of d = 1, a bidder’s expected
net benefit from buying contingent on learning vt = v is q. This justifies restricting
the support of ct to [0, q]: (a) negative costs, as from curiosity, enjoyment or caring for
the entrepreneur, are equivalent to a zero cost, since we assume bidders inspect when
indifferent; (b) a bidder with cost strictly above q is equivalent to a non-arrival, so any
support above q is equivalent to reducing arrival rate λ.

Bidders are risk neutral. Each t gets 0 by not bidding, vt − p by bidding p if the
project succeeds (event S) and 0 by bidding on a project that fails. So bidding without
inspecting gives him an expected payoff conditional on S of qv− p and 0 if F ; there is no
resale. We assume p > qv to focus on the plausible case where bidders never blindly bid
without inspecting to check that they value the good. As p = v − 1, this is equivalent to

Assumption 2.1 (No blind bidding, NBB). q < 1− 1/v

Bidders observe a single summary of prior bidder behaviour: on arrival, he observes
how many bids Bt have been collected before t. So he knows the funding gap gt , g0−Bt.
The entrepreneur sets g0 but gt evolves over time as a function of bidder arrivals and
choices. We work with this gap, instead of the equivalent bid count Bt, so the project’s
publicly observable state at t is (t, gt).

Move orders are exogenously determined by arrival dates t. Each bidder takes all
his decisions in a single episode of negligible duration so bidders move sequentially. On
arrival, a bidder either: (A) Avoids the project and Avoids bidding, (B) Blind bids in

3A non-zero low valuation, if still below p, leads to identical outcomes.
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that he bids without inspecting to see vt, (C) Checks out the project by paying ct and
bids if he learns that vt = v. Inspecting but bidding irrespective of vt or bidding only
when vt = 0 are strictly dominated so we need only consider A,B,C which reduce to
A,C under Assumption 2.1.

Remark. This assumes that bidders either cannot revisit the project later, prefer
to decide in one go or react impulsively without thinking whether to delay their choice.
When a project captures the bidder’s attention at t, he registers its salient characteristics
and it is often more efficient for him to decide how to react while his mind is already
focused within a single thinking episode. Otherwise, he must decide to check back, later
remember to do so and re-focus to finally decide. Curiosity and impulsiveness also push
towards deciding in one go. In addition to being realistic for many bidders, exogeneity
with type independence ensures that a project’s success prospects at date t only depend on
its current state (t, gt), not the full history of prior arrivals and their types and inspection
and bidding choices. In particular, equilibria would not change if bidders observed the
full history of gaps up to t instead of only the current gap gt. On the other hand, some
platforms offer a “Remind Me” option for people who feel attracted to a project but are
too busy or doubtful and prefer to wait to see how others bid before possibly inspecting
further. Bidders using this option still need to engage in at least two thinking episodes but
the informational benefit may compensate them. Analysis of settings with endogenous
delays is much more complicated so we treat that case in a model variant called Endo
in Ellman and Fabi (2021a).

In sum, bidders arrive sequentially at Poisson arrival times t; each bidder t observes
τ, λ, q, F (·) and ct and state (t, gt) on arrival and chooses between substrategies A and
C. The currently superfluous notation Bt and v, p, d reappear in the design analysis.

Equilibrium concept. We solve for undominated Perfect Bayesian Equilibria, ab-
breviated to PBE. Undominated refers to the fact that we restrict to weakly undominated
strategies. For concreteness, we tie-break in favour of C among equilibria that gener-
ate identical payoff distributions. Thanks to the sequentiality of moves, this leads to
a unique PBE. So there is no strategic uncertainty, but the three exogenous sources,
Poisson arrivals, private inspection costs and valuations create the aggregate demand un-
certainty underlying the shocks to success prospect S that are central to our analysis. Of
these three sources, valuation uncertainty is fundamental. Without it, inspection would
be pointless and without inspection costs, the project state (t, gt) would not affect the
choice between A, B and C.4 Uncertain inspection costs create richer dynamic possibili-
ties and are crucial for a positive slope. Arrival uncertainty serves to keep arrivals finite
in a continuous time setting.

4Exogenous bidding costs ct of B is equivalent to C with q = 1, neglecting Assumption 2.1.
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2.3 Analysis

To solve for bidding equilibria given any campaign g0, τ and p = v − 1 with parameters
λ, q, F (·), we study the incentives of a bidder t after he observes his inspection cost ct and
campaign state (t, g), indicating that gt = g. State (t, g) matters to bidders purely via
its impact on the project’s success prospects and bidders only affect each other via this
success rate.5 Using t+ to indicate infinitesimally after t, that subgame starts at (t+, g) if
he does not bid and at (t+, g− 1) if he does bid. We define the evolving, state-contingent
probability of success

S(t,g) , P(S|(t, g)) ≡ E(t,g)
(
1gτ+≤0

)
(2.1)

where E(t,g)(·) , E(·|(t, g)). This conditions on knowing gt = g but not whether a bidder
arrives at t. If there is a bidder at t, the success probability rises to S(t,g−1) if he bids
and stays at S(t,g) if not.6 In choosing what to do, he only cares about success prospects
if he bids. We denote this bid-contingent success probability by

Sbid
(t,g) , S(t,g−1) (2.2)

The pivotality of a bidder arriving at t is ∆S(t,gt) where difference operator ∆ denotes the
impact of a unit reduction in g; ∆Y(t,g) , Y(t,g−1) − Y(t,g) for a generic function Y . So

Sbid
(t,g) ≡ S(t,g) + ∆S(t,g) (2.3)

This decomposition is helpful because S(t,gt) is a martingale: by the Law of Iterated
Expectations, E(t,g)

(
E(x,gx)

(
1gτ+≤0

))
= E(t,g)

(
1gτ+≤0

)
for any x ∈ [t, τ ], so, by Eq. (2.1),

E(t,g)(S(x,gx)) = S(t,g) (2.4)

Section 2.3.3 will prove that pivotality ∆S(t,gt) is a supermartingale which drives towards
decreasing bidding profiles. First, we show how Sbid

(t,gt) determines bidder t’s choice.
Bidder t’s simplest option is to choose to Avoid the project entirely by doing nothing,

A. Not inspecting and not bidding always gives the same payoff, uA
t = 0. So for any

(t, g), t’s expected utility from A is UA
(t,g) = 0.

The Blind bid choice B, of bidding without inspecting, carries the risk of paying p =
v− 1 despite not valuing the reward. So uB

t = 1gτ+≤0
(
vt − (v − 1)

)
. Taking expectations

5By type independence, bidders infer nothing about their own or future bidder valuations and costs.
Bidder t takes the strategies of later bidders as given by the PBE; they cannot detect deviations.

6We can write t instead of t+ because S(t,g) is continuous in t for any gap g.
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and applying Assumption 2.1 proves that A dominates B as claimed above since

UB
(t,g) , E(t,g)

(
uB
t

)
= Sbid

(t,g)
(
qv − (v − 1)

)
< 0

Bidding is the only weakly undominated action of a bidder t who learns that vt = v.
Conversely, not bidding is his only undominated action if he knows vt = 0. So the only
relevant substrategy involving inspection is C: Check by paying ct and bid if and only if
the inspection reveals that vt = v. This yields ex post payoff and expected utility,

uC = 1gτ+≤0
(
vt − (v − 1)

)+ − ct
UC

(t,g) = qSbid
(t,g) − ct (2.5)

In sum, a generic bidder’s strategy is a mapping from each possible observed history or
time, gap and cost trio to this trio of choices, a : (t, g, c) 7→ {A,B,C}. For a PBE, the
choice a must be a best response at every possible information set (t, g, c) and bidder
beliefs must be consistent with Bayes rationality at every information set.7 Bayes ra-
tionality simply requires that each bidder’s belief about the success probability given he
bids is the correct state-contingent probability assessment Sbid derived below.

As A dominates B, we need only compare A and C. Eq. (2.5) shows that C is chosen
whenever ct ≤ qSbid

(t,g). This has probability F (qSbid
(t,g)). Since bidders arrive with Poisson

intensity λ and C results in a bid with probability q, this generates non-homogenous
Poisson bidding intensity,

β(t,g) , λqF (qSbid
(t,g)) (2.6)

Arrival rate λ and taste parameter q are fixed, so the systematic variations in Sbid
(t,gt) and

resulting inspection rate F (qSbid
(t,gt)) fully determine the temporal pattern of bidding. We

now analyze these co-moving variables.

2.3.1 The co-evolution of success probabilities and bids

To characterize how the bid-conditional success probability Sbid
(t,g) ≡ S(t,g−1) and bid in-

tensity β(t,g) depend on parameters and the state, we study their interaction and solve
for S(t,g) for any g ∈ Z and t ∈ [0, τ ].

By the definition of a success, S(τ,g) = 1 for g ≤ 0. Given that g can only decrease
over time, S(t,g) = 1 for g ≤ 0 and any t ≤ τ . From this initial condition, we solve for
higher gaps via a recursive step grounded in two facts. First, the bidding rate β(t,g) at
gap g depends on Sbid

(t,g) and hence on the success rate at gap g − 1. This is clear from
Eqs. (2.2) and (2.6). Second, all paths leading to a success from any (t, g) with g ≥ 1
must pass through the state (T, g − 1) where T ∈ (t, τ ] is the stopping time at which

7All the sets are reached with positive probability except in trivial cases where success is impossible.
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the next bid arrives.8 The ensuing success probability from that state is S(T,g−1). This
reduced gap g − 1 also applies to the stopping time density as we now prove.

The stopping time of the next bid to arrive after reaching state (t, g) is T if there is no
bid on [t, T ) and a bid at T . The gap stays at g over this time period, dropping to g−1 at
the last instant T . By our convention, gT = g and gT+ = g− 1. So T ’s density equals the
bidding intensity β(T,g) at (T, g) times the probability n(t,g)

T of no bid on interval (t, T ),

n
(t,g)
T , exp

(
−
ˆ T

t

β(x,g) dx
)

(2.7)

The success rate from (T, g − 1) is S(T,g−1). So, taking expectations over T given (t, g),

S(t,g) =
ˆ τ

t

n
(t,g)
T β(T,g)S(T,g−1) dT (2.8)

This yields a unique solution for S(t,g) given a unique solution for S(t,g−1). This recursive
derivation provides a unique solution for any g because the success rate is identically
equal to unity and therefore unique for any g ≤ 0. Together with Eq. (2.6), this proves

Proposition 2.1. The crowdfunding game has a unique PBE characterized by a(t,g,c) = C
if and only if c ≤ qSbid

(t,g) , qS(t,g−1), generating bid intensity β(t,g), where

β(t,g) = λqF
(
qSbid

(t,g)

)
≡ λqF

(
qS(t,g−1)

)
(2.9)

S(t,g) = 1 for g ≤ 0 (2.10)

S(t,g) =
ˆ τ

t

exp
(
−
ˆ T

t

β(x,g) dx
)
β(T,g)S(T,g−1) dT for g ≥ 1 (REC-S)

Notice that the recursion, like the bidders, only depends on the current states and
beliefs about future bidding up till τ , so S(t,g)(τ) is invariant to g0 and changes in t and
τ that fix τ − t; S(t,g)(τ) ≡ S(0,g)(τ − t). We work with time instead of time remaining
since time moving forward is more intuitive. This proposition shows how the success rate
affects bidding and how bid rates in turn affect success but the recursive formulation is
relatively opaque. To better understand bidding dynamics, the next subsection uses the
martingale property to relate success rate dynamics to bidding and pivotality.

2.3.2 Basic dynamic properties of the success rate

The fact that success rate S(t,gt) is a martingale by Eq. (2.4) allows us to derive a dif-
ferential equation linking success rate dynamics to bid rates and pivotality. We can also
infer that pivotality is weakly positive while the partial time derivatives of unconditional
and bidder’s success rates are both negative.

8Later, we explicitly distinguish stopping times by bid number; here T = T1+g0−g.
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At any instant, there are essentially two possibilities: either a new bid is collected,
reflected in a unit drop in the gap from gt = g to gt+ = g − 1, or the gap stays fixed.
A unit drop requires a bidder to arrive, inspect and learn that he values the product.
Formally, over an infinitesimal interval [t, t + dt), neglecting order (dt)2 terms, one bid
arrives with probability β(t,gt) dt or no bid is collected. Since S(t,gt) is a martingale,
S(t,g) = (1 − β(t,g) dt)S(t+dt,g) + β(t,g) dt S(t+dt,g−1). With Ṡ(t,g) denoting the partial time
derivative, this yields the ordinary differential equation (ODE) for S,

Ṡ(t,g) ,
∂S(t,g)

∂t
= −β(t,g)

(
S(t,g−1) − S(t,g)

)
(ODE-S)

That is, Ṡ(t,g) ≡ −β(t,g)∆S(t,g).9 The jump term for S(t,gt) is precisely the pivotality ∆S(t,gt)

of a bid at t. So Eq. (ODE-S) captures the fact that the news effect or pivotality of a bid,
weighted by bid intensity, exactly counterbalances the effect of time passing on success.
We can sign both these effects.

Lemma 2.1 (Success rate properties). (i) ∆S(t,g),∆Sbid
(t,g) ≥ 0, (ii) Ṡ(t,g), Ṡ

bid
(t,g) ≤ 0.

The proof in Appendix 2.A uses induction on g. Intuitively, pivotality is never negative:
each additional bid is good news for success, weakly raising S by reducing the remaining
funding gap. Conversely, no news is bad news: time passing with no new bids lowers
S since it leaves less time to cover the current gap by the deadline τ . Together with
Eq. (2.6), Lemma 2.1 proves that higher gaps lower success and bidding rates:

Corollary 2.1 (The Gap). For any t, S(t,g), Sbid
(t,g) and β(t,g) are all weakly decreasing in

g.

Three steps remain for drawing conclusions about time profiles. We need to take
account of how gt changes with time. Lemma 2.1 shows that Sbid

(t,g) falls with t for a fixed
gap g but since gt falls over time, the overall average impact is not obvious. Nonetheless,
in Section 2.3.3, we derive an unambiguous effect. Then in Section 2.3.5, we derive
implications for β(t,gt) via Eq. (2.6) and Jensen’s inequality. Finally, in Section 2.3.6, we
compute gt distributions to convert results on instantaneous slopes from a generic state
(t, g) into slopes of the average bidding profile.

2.3.3 Decreasing pivotality

Given that S(t,gt) is a martingale, any systematic effect of time on Sbid
(t,gt) must come from

the pivotality term ∆S(t,gt). We now prove that expected pivotality decreases over time.
The logic behind decreasing pivotality derives from strategic complementarity and the
fact that later arrivals have fewer bidders to influence. First, a bid at t strategically

9This also follows by differentiating Eq. (REC-S). Conversely, Appendix 2.C derives Eq. (REC-S)
from Eq. (ODE-S) using nT of Eq. (2.7) as integrating factor.



62 CHAPTER 2. A THEORY OF CROWDFUNDING DYNAMICS

complements inspection and bidding by subsequent bidders. Second, an early bidder, low
t, has more such followers to influence. This generates a larger average impact on success.
This Decreasing Pivotality has a negative Effect (the DPE) on the slope of the bid rate
as we will show in Section 2.3.5.

Formally, the change in pivotality at future date x expected from initial state (t, g),

D(t,g)
x , E(t,g)(∆S(x,gx))−∆S(t,g) (2.11)

is always negative or zero. We prove this by showing that ∆S(t,gt) is a supermartingale via
the infinitesimal generator for studying expected rates of change of a generic stochastic
process Y(t,gt): LY(t,g) , limdt↓0

(
1
dt

(
E(t,g)

(
Y(t+dt,gt+dt)

)
− Y(t,g)

))
. In the case of pivotality,

D(t,g) , lim
dt↓0

( 1
dt
(
D(t,g)
t+dt

))
≡ L∆S

(t,g) (2.12)

The key result on generators from Itô’s formula (mathematical details in Appendix 2.C),

LY(t,g) = Ẏ(t,g) + β(t,g)∆Y(t,g) (GEN)

is very intuitive: Ẏ(t,g) captures time’s direct effect while ∆Y(t,g) weighted by the bidding
intensity β(t,g) captures time’s expected impact via negative unit jumps in the gap gt.

Appendix 2.C also shows (via Dynkin’s theorem) that Y(t,gt) is a martingale if and
only if its generator is identically zero, i.e., LY(t,g) ≡ 0,∀t, g. Similarly, supermartingales
and submartingales respectively correspond to everywhere weak negativity and positivity
of LY(t,g). Note that LS(t,gt) = 0 as S(t,gt) is a martingale, so (GEN) immediately reconfirms
Eq. (ODE-S). We now apply (GEN) to pivotality ∆S(t,gt) to prove that D(t,g) ≤ 0.

Proposition 2.2 (Decreasing pivotality). ∆S(t,gt) and Sbid
(t,gt) are supermartingales.

Proof. As S(t,gt) is a martingale, Eq. (2.3) implies L∆S
(t,g) = LSbid

(t,g). By (ODE-S)|g−1,
Ṡ(t,g−1) = −β(t,g−1)∆Sbid

(t,g). So applying (GEN) to Sbid
(t,gt),

D(t,g) = L∆S
(t,g) = LSbid

(t,g) = Ṡ(t,g−1) + β(t,g)∆Sbid
(t,g) = −∆β(t,g)∆Sbid

(t,g) ≤ 0 � (2.13)

The formula D(t,g) = −∆Sbid
(t,g)∆β(t,g) neatly captures the insight that a later bidder has

fewer successor bidders to encourage with his bid. For further intuition, we compare
a bidder who bids at (t, g) and a bidder who bids at (t + dt, g). The earlier bidder
lowers the gap to g − 1 at t instead of at t + dt and therefore differentially encourages
any successor who arrives during that marginal interval. The probability of this interim
successor arriving is λ dt. This successor is encouraged to bid with increased probability
q∆F (qSbid

(t,g)) = ∆β(t,g)/λ. The success impact of that extra bid is ∆S(t,g−1) = ∆Sbid
(t,g) since

the gap fell to g− 1 at t. So the marginally earlier bidder’s greater expected pivotality is
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∆β(t,g)∆Sbid
(t,g) dt and the rate of expected change D(t,g) = −∆Sbid

(t,g)∆β(t,g).
This formula is useful in Section 2.4. The systematic decreasing pivotality pushes via

Eq. (2.6) towards a negative sloped bidding profile in Section 2.3.4. Since uncertainty will
play a key role in Section 2.3.5, we end with an illustration (which the reader can safely
skip) of the substantial stochastic variation behind this pivotality trend. In particular,
pivotality can attain its maximal and minimal values in the last moments of a campaign.

Illustration. It is perhaps surprising that average pivotality decreases
from any state (t, g). If gt does not change, Sbid

(t,gt) falls with t by Lemma 2.1
but Sbid

(t,gt) rises whenever gt falls by Corollary 2.1. What Proposition 2.2
shows is that the average direct effect of time always dominates the positive
average indirect effect of downward jumps in the gap and does so for any cost
distribution. Fig. 2.1 probes this averaging effect for a project with initial gap
g0 = 10, duration τ = 20, bidder arrival intensity 0.95, valuation probability
q = 0.8 and uniform cost distribution on [0, q]. Sbid

(t,g) ≡ S(t,g−1) and pivotality
∆S(t,g) ≡ S(t,g−1) − S(t,g), so we only plot S(t,g) against time.

(a) Three gap paths; colour indicates S(t,gt)
∗ (b) S(t,g) with fixed gap indicated by (g)

Figure 2.1: Time profiles of g and S; F (c) = c
q
, c ∈ [0, q], g0=10, (τ ,λ,q) = (20,0.95,0.8).∗

∗By Markov property, path likelihoods after crossing points are independent of prior paths. S0=0.65.

Panel (a) depicts three simulated paths of S(t,gt). The highest path shows
a failing project and the darkening blue colour reflects the increasingly low
success prospects with S(t,gt) nearing zero by t = 10: almost all positive cost
types choose A since gap g10 = 8 with τ − 10 = 10 units of time left is
near hopeless. At the other extreme, the path that ends up lowest becomes
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increasingly yellow, reflecting nearly and then fully, guaranteed success as g
nears 0 with plenty of time left and then falls below 0.

Panel (b) presents curves of S(t,g) as t varies for each fixed gap g. The
empty and solid diamonds in (a) at g = 7 correspond to those in (b) where
S(t,gt) slides down S(t,7), marked by (7). By contrast, the later move from
empty to solid circle at t = 13.5 in (a) depicts a drop in g from 4 to 3, causing
S to jump up by pivotality ∆S(13.5,4) equal to the dashed vertical distance
from curve (4) to (3) in panel (b). Initial pivotality is about 0.85− 0.65 = 0.2
from curves (10) and (9) at t = 0 in (b) since g0 = 10. At any fixed gap
g ≥ 2, ∆S(t,g) first increases and then decreases over time. It usually falls to 0
as most campaigns are either clearly failing or clearly succeeding towards the
end but ∆S(t,gt) can stay high if gt falls at a specific intermediate rate. Indeed,
pivotality takes its largest possible value ∆S(τ,gτ ) = 1 if gτ = 1 as shown by
the vertical difference between curves (0) and (1) at t = τ = 20. This does
not contradict decreasing average pivotality because the probability of this
cliff-hanger case is very low and at other gaps pivotality falls to zero.

2.3.4 The decreasing pivotality effect on expected bidding

From Eq. (2.6) and the fact that F is an increasing function, decreasing pivotality implies
a tendency for bidding to fall. S(t,gt) is a martingale so Sbid

(t,gt) falls at the same rate
as pivotality ∆S(t,gt) in expectation. We call the effect of the expected fall in Sbid

(t,gt),
equivalent to that in ∆S(t,gt), from t to x on the inspection rate of an imminent arrival,
the (expected) decreasing pivotality effect (DPE), defined by

E (t,g)
x , F

(
E(t,g)

(
qSbid

(x,gx)

))
− F

(
qSbid

(t,g)

)
(2.14)

The effect on the bidding rate is E (t,g)
x times λq. For any gap g, E (t,g)

x ≤ 0 if t ≤ x because
E(t,g)

(
qSbid

(x,gx)

)
≡ q

(
Sbid

(t,g) + D(t,g)
x

)
, D(t,g)

x ≤ 0 from Eq. (2.13) and F is increasing. If F

is differentiable, since D(t,g)
t+dt = D(t,g) dt+O(dt2), the rate of change DPE is

E (t,g) , lim
dt↓0

( 1
dt
(
E (t,g)
t+dt

))
= qFc(qSbid

(t,g))D(t,g) (2.15)

On top of this gradual reduction, any discontinuities in F cause bidding β(t,gt) to drop
by discrete amounts at a set of critical dates. The fall at a critical date is λq times the
probability mass of the types just willing to inspect at that date as we detail below.

Discontinuities. Let CDF F have a mass zk atom at c = ck for each
k ∈ {0, 1, 2, ..., K}, indexed so that 0 = c0 < c1 < c2 < ... < cK ; z0 can be
0 and K could be infinite. Then for any g and ck < q, by Lemma 2.1 and
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the intuitive fact that Sbid
(t,g)(τ) → 1 as τ → ∞, a unique duration τ̂ kg satisfies

Sbid
(0,g)(τ) = ck/q. For cK = q, g ≥ 2, we write τ̂Kg =∞. τ̂ kg = 0 if g ≤ 1 but a

strictly positive duration is needed for higher gaps if k > 0. At t = t̂kg , τ− τ̂ kg ,
E (t,g)
t+ , limdt↓0

(
E (t,g)
t+dt

)
= −zk. Sections 2.4.5 and 2.4.6 illustrate.

2.3.5 Expected bid dynamics and the Jensen effect

We apply (GEN) to the stochastic process β(t,gt) to reveal expected changes in the bid
rate from a generic state (t, g). Where F is continuous, β(t,gt), like Sbid

(t,gt), falls gradually
as time passes without bids (the direct negative effect of time, β̇(t,g) < 0) and features
positive jumps ∆β(t,g) ≡ β(t,g−1)−β(t,g) whenever bids occur (the indirect positive effect).
Since β(t,g) is proportional to F

(
qSbid

(t,g)

)
with positive multiplier (λq), the dynamics are

qualitatively similar but there are two differences. First, discontinuities in the cost dis-
tribution F introduce discrete bid rate drops at the dates t̂kg noted above; smoothly
decreasing pivotality (DP) has discrete effects (DPE). Second, in contrast to the unam-
biguous decreasing average profile for ∆S(t,gt) and Sbid

(t,g) (DP), the direct negative effect
of time does not always dominate its indirect positive effect via bids. The average effect
of time now depends on the degree of uncertainty and the shape of the cost distribution.

Over an infinitesimal time interval, either one bid arrives or none do (Fig. 2.2 adds
details below). A bid arrival is good news, raising Sbid, while no bid is bad news, lowering
Sbid. We say that the good news outweighs the bad news if the probability that an arrival
inspects at (t + ε, gt+ε) exceeds the probability at (t, g). This occurs if the density of
inspection costs just above qSbid

(t,g) is greater than the density just below it. Increasing
density is equivalent to convexity of the CDF. In economic terms, there are increasing
returns to good news: bidders with higher inspection costs who become willing to inspect
after good news outweigh those with lower inspection costs who cease to inspect after
bad news. In the opposite case where F is concave, the returns are decreasing. Formally,
we define the Jensen effect (JE) as the impact of uncertainty, about bidding on (t, x), on
the inspection probability of a bidder at x > t as anticipated from state (t, g),

J (t,g)
x , E(t,g)

(
F
(
qSbid

(x,gx)

))
− F

(
E(t,g)

(
qSbid

(x,gx)

))
(2.16)

By Jensen’s inequality, this is positive if F is convex, negative if concave and zero if affine.
We also define a rate of change JE as the expected rate of change in inspections,

J(t,g) , lim
dt↓0

( 1
dt
(
J (t,g)
t+dt

))
= β(t,g)

(
∆F (qSbid

(t,g))− Fc(qSbid
(t,g))(q∆Sbid

(t,g))
)

(2.17)

The second equality, derived in Appendix 2.A proof of Proposition 2.4, assumes F is
differentiable. It is useful to predict magnitudes. It reconfirms that JE is positive if F is
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convex since a convex graph lies above its tangent while JE is negative if F is concave.
Time’s overall average impact sums these effects: from Eq. (2.6), rescaling by λq gives

the change in bidding expected by date x ≥ t from state (t, g),

E(t,g)
(
β(x,gx)

)
− β(t,g) ≡ λq

(
J (t,g)
x + E (t,g)

x

)
(2.18)

If F is continuous, dividing by ε and letting ε→ 0 gives the decomposition,

Lβ(t,g) ≡ λq
(
J(t,g) + E(t,g)

)
(2.19)

Since DPE E (t,g)
x is always weakly negative, bidding is expected to fall if JE J (t,g)

x is
either small or neutral, as when F is affine, or negative as when F is concave. In the last
case, the Jensen and decreasing pivotality effects push downwards together: J (t,g)

x ≤ 0
and E (t,g)

x ≤ 0, so by Eq. (2.18),

Proposition 2.3. A flat or decreasing inspection cost density on [0, q] (weakly concave F )
generates expected bid rates that fall from any state (t, g): ∀x > t,E(t,g)

(
β(x,gx)

)
≤ β(t,g).

The uniform distribution is a special case (see Section 2.4.1). When Fc ≡ 1/q on cost
range [0, q], F is linear, β and Sbid are exactly proportional and E(t,g)

(
β(x,gx)

)
− β(t,g) =

λq E (t,g)
x ≤ 0. JE is null and Lβ(t,g) = λqE(t,g) = λqD(t,g) ≤ 0.
When instead F is convex, the increasing returns to good news, positive JE, counter-

acts the decreasing pivotality effect (DPE) and potentially causes the expected bid rate
to rise. Before seeking a precise condition for this, Fig. 2.2 illustrates how it can happen.

Over infinitesimal time period ε, a bid arrives with probability εβ(t,g), making g̃t+ε =
g− 1 so Sbid

(t,gt) jumps up to Sbid
(t+ε,g−1) and otherwise no bid arrives (probability 1− εβ(t,g))

and the bid-contingent success rate Sbid
(t,g) moves to Sbid

(t+ε,g). The DP arrow indicates the
expected fall in this success prospect: E(t,g)S

bid
(t+ε,g̃t+ε) ≤ Sbid

(t,g) as D(t,g)
t+ε ≤ 0. The DPE

arrow shows how this reduces the expected incentive to inspect at t + ε by −qD(t,g)
t+ε ,

reducing expected inspections by −E (t,g)
t+ε ≈ −qFc

(
Sbid

(t,g)

)
D(t,g)
t+ε . Finally, the JE arrow

indicates the impact of the variance in Sbid
(x,gx) at x = t+ ε, J (t,g)

t+ε = E(t,g)F (qSbid
(t+ε,g̃t+ε))−

F
(
E(t,g)

(
qSbid

(t+ε,gt+ε)

))
. In the figure, F is sufficiently convex to create a positive JE that

exceeds the DPE. The generator Lβ(t,g) of β(t,gt) provides a precise sufficient condition.
For affine and quadratic F , the proof of Proposition 2.4 reveals that

Lβ(t,g) = λq

[
qFc

(
qSbid

(t,g)

)
LSbid

(t,g) + q2

2 Fcc
(
qSbid

(t,g)

)
νS

bid

(t,g)

]
(2.20)

where νSbid

(t,g) , limdt↓0
(

1
dt

(
V(t,g)

(
dSbid

(t,gt)

)))
= β(t,g)

(
∆Sbid

(t,g)

)2
is Sbid

(t,gt)’s jump variance
given gt = g. As LSbid

(t,g) = L∆S
(t,g), the first term in Eq. (2.20) represents the expected

impact of decreasing pivotality. The second term is the Jensen effect, driven by variance
and convexity: J(t,g) = 1

2 β(t,g)
(
q∆Sbid

(t,g)

)2
Fcc.
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F
(
qSbid

)

0 1

1

EF
(
qSbid(t+ε,g̃t+ε)

)

F
(
qSbid(t,g)

)

F
(
qESbid(t+ε,g̃t+ε)

)

Sbid(t,g)Sbid(t+ε,g) Sbid(t+ε,g�1)ESbid(t+ε,g̃t+ε)

εβ(t,g)1 − εβ(t,g)

DP DPE JE

Figure 2.2: Decreasing pivotality DP, effect DPE and Jensen effect JE for convex CDF.∗

∗Curved arrows indicate state-transition probabilities.
All expectations condition on (t, g): E is shorthand for E(t,g).

Beyond the quadratic case, we prove that L̃β(t,g) , RHS(2.20) is a lower bound on the
bid rate generator for any power CDF with exponent two or higher to conclude:

Proposition 2.4. Sufficient uncertainty and convexity guarantee a rising expected bid
rate: for a polynomial F with non-negative coefficients on powers two and above, Lβ(t,g) > 0
if

q

2Fcc
(
qSbid

(t,g)

)
νS

bid

(t,g) > Fc
(
qSbid

(t,g)

)∣∣∣LSbid

(t,g)

∣∣∣ (2.21)

Proof in Appendix 2.A. Again, uncertainty and convexity are both needed for an in-
creasing slope. We conclude the analytic illustration by substituting for νSbid(t,g) when F is
a power ρ function. Then cFcc

Fc
= ρ− 1 and inequality (2.21) is also necessary so that the

necessary and sufficienty condition for a positive slope at (t, g) is

1
2

∆Sbid
(t,g)

Sbid
(t,g)

(ρ− 1) > ∆β(t,g)

β(t,g)
(2.22)

2.3.6 Average bidding and the state transition process

To study average bidding at time t after initial state (0, g0), we characterize the probability
weights over possible gt at t. The average bid rate,
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At =
g0∑

g=−∞
Q(t,g)β(t,g) (2.23)

where Q(t,g) , Q
(0,g0)
(t,g) and Q(t′,g′)

(t,g) denotes the transition probability from (t′, g′) to (t, g).
The bidding profile is the plot of At against time. We aim to characterize its slope.
Ȧt ,

∂
∂t

(At) ≡ d
dt(At) since A only depends on t. To derive Q(t,g), we solve recursively for

the full set of transition matrices Q(t′,g′)
(t,g) .

Lemma 2.2. For any t ≥ t′, the transition process is characterized by

Q
(t′,g′)
(t,g) = 0 for all g > g′; Q

(t′,g)
(t,g) = exp

(
−
ˆ t

t′
β(x,g) dx

)
(2.24)

Q
(t′,g′)
(t,g) =

ˆ t

t′
exp

(
−
ˆ T

t′
β(x,g′) dx

)
β(T,g′)Q

(T,g′−1)
(t,g) dT, for g ≤ g′ − 1 (REC-Q)

Proof. Since the gap cannot increase, for any t ≥ t′, Q(t′,g′)
(t,g) = 0 for all g > g′. For

g = g′, the transition probability equals the probability of no bid on (t′, t): Q(t′,g)
(t,g) ≡ n

(t′,g)
t

of Eq. (2.7) gives the second equality in Eq. (2.24). The recursive step parallels Eq. (REC-
S): for any g ≤ g′−1, conditioning on (t′, g′) and on the first stopping time T after (t′, g′)
with density n(t′,g′)

T β(T,g′), the Law of Iterated Expectations yields Eq. (REC-Q).
Appendix 2.C.3 adds an alternative derivation of (REC-Q) via the ODE for Q(t′,g′)

(t,g) that
varies t′. For use in the final subsection, it also derives the adjoint ODE by varying t:

Q̇(t,g) = Q(t,g+1)β(t,g+1) −Q(t,g)β(t,g), (ODE-Q)

Intuitively, the rate of change in the probability of gap gt = g equals the probability of
reaching this gap via a bid from state (t−, g+ 1) minus the probability that the gap falls
below g via a bid in state (t−, g).

Conditioning

For profiles conditioned on campaign success or failure, we restrict the space of paths to
those ending with gτ+ ≤ 0 or gτ+ > 0, respectively. A path passing through state (t, g)
with a bid at that moment ends in success with probability S(t,g−1). So conditioning bid
intensity at t on success, rescales the averaging probabilities by S(t,g−1)/S0. Similarly,
conditioning on failure rescales by (1− S(t,g−1))/(1− S0).

AS
t = 1

S0

g0∑
g=−∞

Q(t,g)β(t,g)S(t,g−1) (25-S)

AF
t = 1

1− S0

g0∑
g=−∞

Q(t,g)β(t,g)
(
1− S(t,g−1)

)
(25-F)
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Conditioning on success shifts the distribution of gaps g at t towards lower gaps. This
implies a weighting bias towards higher bid rates β(t,g). There is no scope for such gap
selection at t = 0 where Q(t,g) = 0 for all g 6= g0, so this selective weighting effect initially
increases with time. Success conditioning also positively selects for bidding at t. This
bid-selection effect may also increase over time as on campaigns that are otherwise close
to failing. At t = 0 where only the bid-selection bias is operative, success-conditioning
multiplies the bid rate by one plus relative pivotality:

AS
0 /A0 =

β(0,g0)S
bid
(0,g0)

S0
/β(0,g0) = 1 + ∆S(0,g0)

S(0,g0)

On average, absolute pivotality falls over time but relative pivotality is high in low success
rate states creating an opposite trend. The general expressions are complicated but for
intuition notice how time increasingly polarizes the bid-contingent success rate into values
close to zero for relatively high gaps and close to one for relatively low gaps. That rate
is the weighting factor when conditioning on success. Its negative monotonicity in g

combined with the same monotonicity of the bid rate can generate increasing differences
between the success and failure conditioned bid profiles.

Since conditioning on failure features the opposite selection biases, these effects can
explain why the conditional average bid profiles fan out relative to the unconditional
profile in almost all our figures for the examples of the next section. However, the general
comparisons are more complicated and Fig. 2.D.2a provides an exception to the pattern.

2.3.7 The slope of the average bid profile

The slope of the bid profile can be expressed as a weighted average of Lβ(t,g).

Lemma 2.3. The time gradients of (i) unconditional, (ii) S-, F-conditional average bid
rates are

Ȧt =
g0∑

g=−∞
Q(t,g)Lβ(t,g)

ȦS
t = 1

S0

g0∑
g=−∞

Q(t,g)Lβ(t,g)S(t,g−1), ȦF
t = 1

1− S0

g0∑
g=−∞

Q(t,g)Lβ(t,g)
(
1− S(t,g−1)

) (2.26)

Proof of Lemma 2.3. (i) Differentiating At and using (ODE-Q) of the Markov process,

Ȧt =
g0∑

g=−∞

(
Q̇(t,g)β(t,g) +Q(t,g)β̇(t,g)

)

=
g0∑

g=−∞

((
Q(t,g+1)β(t,g+1) −Q(t,g)β(t,g)

)
β(t,g) +Q(t,g)β̇(t,g)

)

=
g0∑

g=−∞
Q(t,g)

(
β(t,g)

(
β(t,g−1) − β(t,g)

)
+ β̇(t,g)

)
=

g0∑
g=−∞

Q(t,g)Lβ(t,g) (2.27)
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since
g0∑

g=−∞
Q(t,g+1)β(t,g+1)β(t,g) =

g0∑
g=−∞

Q(t,g)β(t,g)β(t,g−1) given that Q(t,g0+1) = 0.

(ii) We derive the conditional results similarly in Appendix 2.A.

By this lemma, an everywhere positive Lβ(t,g) is sufficient for a monotone increasing
bid profile, and everywhere negative generators guarantee monotone decreasing profiles.

Corollary 2.2. If Lβ(t,g) ≥ 0 for all (t, g), the aggregate and conditional bid profiles are
increasing over time. In the opposite case of Lβ(t,g) ≤ 0,∀(t, g), they are decreasing.

Remark 2.1. LLβ
(t,g) ≥ 0,∀(t, g) implies a convex bid profile; concave if LLβ

(t,g) ≤ 0,∀(t, g).

Applying Corollary 2.2 to Propositions 2.3 and 2.4, delivers two results:

Proposition 2.5. A weakly concave CDF F (c) generates a weakly decreasing average bid
profile: Ȧt ≤ 0,∀t. Strict concavity implies a strictly negative slope if g0 ≥ 2.

The strict claim uses two facts: Q(t,g0) > 0 for any t and if the cost distribution has
full support, Lemma 2.1 holds with strict inequalities for any g0 ≥ 2.

Proposition 2.6. Imposing Proposition 2.4’s convexity and uncertainty conditions (2.21)
at all g ≥ 2 guarantees a strictly increasing average bid profile, Ȧt > 0,∀t, if g0 ≥ 2.

A weaker condition for a strict positive slope is possible: relax the conditions of
Proposition 2.4 to allow equality except for holding strictly at all (t, g(t)) where g(t) is
any function of t with Q(t,g(t)) > 0 for all t. See also Lemma 2.6.

2.4 Canonical distribution classes

In this section, we apply our results to specific functional forms of the CDF F (c) of
inspection costs. We begin with linear, quadratic and higher power distributions. Linear
and more generally, affine CDFs, correspond to uniform distributions and preclude any
Jensen effect (JE). As a result, the decreasing pivotality effect (DPE) perfectly explains
the shape of the negative sloped bidding profile. Quadratic and generic power CDFs show
how positive and negative Jensen effects influence bidding profiles. Generic single-peaked
distributions guarantee a unique signed Jensen effect if the mode lies outside the relevant
cost range, as we illustrate. Distributions with atoms are neither concave nor convex.
Atoms cause bid rate discontinuities but only at a set of critical dates with zero measure.
The central message is that our generator-based analysis continues to apply at all other
dates. The specific result is that an atom at the limit cost q combined with any moderate
continuous distribution readily generates a U-shape.

While somewhat special, the homogenous case is a good starting point because we can
develop a simplified characterization. Average pivotality falls smoothly but its effect on



2.4. CANONICAL DISTRIBUTION CLASSES 71

bidding occurs exclusively at critical dates and in the form of discrete drops. Specific to
pure homogeneity, the JE is zero except at critical dates and the DPE dominates there.
More generally, the JE is positive for gaps just above a critical gap thanks to bidders with
inspection costs below the atom. This is because the good news of a bid from a lower
cost bidder heats up the campaign by causing the atom of bidders to start inspecting.
Generic binary cost distributions generate saw-tooth bid profiles: discrete drops from the
DPE intersperse smooth upward slopes from the positive JE. If the high cost type is near
to the limit cost q, this positive JE is negligible until late in the campaign. In contrast,
decreasing pivotality is stronger early in the campaign. These factors rise to a U-shape.
The final subsection builds on this insight by demonstrating a fully smooth U-shape from
a uniform distribution with an atom at q. Any decreasing, flat or moderate increasing
density would serve equally well for the U-shape. The atom at or near q is important
and we motivate a limit cost atom below.

The central logic behind the U-shape derives from information revelation. As time
passes, it usually becomes clear which projects will succeed and which will fail. Pivotality
is then usually small at both extremes of this bifurcation. On campaigns that are pretty
clearly succeeding, success prospects are already close to unity and cannot go higher. On
campaigns that seem headed for failure, one bid near the deadline has little chance of
making the difference. So pivotalities tend to bunch up near zero in the late phase of a
campaign. This confines any substantial negative slopes from the DPE to earlier on. The
fact that success prospects tend to bifurcate into rates close to one and rates close to zero
as the deadline approaches has a second consequence: when rates are close to one, this
activates bidder types with costs near the upper limit q. A high density of such types
then generates an upward bid slope in the late phase.

As justified in Section 2.2, we again take F (c) restricted to support [0, q]. Ap-
pendix 2.B.1 formally shows how truncating a generic CDF by removing values above q
and reducing the arrival rate to λ′ = λF (q), then substituting values below 0 with an
atom of size F (0) at 0 generates identical outcomes to the original CDF with arrival rate
λ. This motivates an atom of bidders at zero. We provide comparative static effects
on slope magnitudes of shifting this zero atom, denoting its mass by z0. The zero atom
represents the potentially identifiable set of bidders who already know their taste for the
entrepreneur’s product or have negative inspection costs, perhaps because they are fans,
contacts or friends.

The truncation argument does not justify an atom at q since bidders strictly above
q simply reduce the effective arrival rate. Nonetheless, an atom at q is equivalent to a
plausible bidder type that we describe now. In addition to the bidders described in the
model, we consider a set of bidders who follow a rule-of-thumb. They save on thinking
costs by only thinking about available prospects, rather than also assessing hypothetical
ones. For gaps above 2, the option to buy is contingent on an uncertain funding outcome
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because even if the bidder who arrives chooses to bid, he relies on enough others later
choosing to bid as well. The rule of thumb bidders turn away from such uncertain
prospects and dedicate their attention to other options such as direct offers of goods.
Since bidders with c = q are only willing to inspect, choose substrategy C, when the gap
gt ≤ 1, it is immediate that rule-of-thumb bidders follow the exact same strategy so this
justifies assuming an atom of bidders at q with size equal to the fraction of bidders who
follow the rule.

Notice that this rule of thumb does not discriminate between degrees of uncertainty.
That makes sense because it may require thought to compute that degree. Indeed, the
analysis for computing the conditional success rates in this paper is computationally quite
complicated. While bidders can be assumed to form approximate expectations based on
experience, even that can be quite difficult. In addition, some simple approximations,
such as viewing the bidding option as an approximately sure trade option when the gap
is below say 5% of the initial threshold, generate very similar profiles to the proposed
heuristic. One other approximation bears mention. A reasonable variant of the heuristic
bidder only contemplates products that have already succeeded. This approximation only
distinguishes projects that will definitely result in production, independent of whether the
individual bidder who is evaluating, ends up choosing to bid, from projects where there is
uncertainty. Such bidders would require g ≤ 0 but the profile implications are extremely
similar, just with the upward slope pushed further towards the end of the campaign
duration.

Another motivation for this atom at q comes from a distinct form of procedural
rationality. Suppose bidders are impulsive once they begin to evaluate a prospect. They
know that if they consider an innovative product and discover that they like it, then they
will really want to have it. This impulse to buy implies a risk of feeling dissatisfied. So,
considering the product before its success is guaranteed, risks creating a strong desire that
provokes a pain of disappointment or dissatisfaction in the event that the project fails to
reach its threshold. In the model, we assumed that the bidder loses his inspection cost c
and faces no such pain in the event that a project fails to get funded. If instead failure
imposes pain on those who inspect and like the good, inspecting can be very attractive
for a sure offer, as when g ≤ 1 and ct is small or negative, even though inspecting is
a bad idea if the project may fail. We denote this pain term by cR since the bidder
regrets having inspected if the campaign fails. It differs from the baseline inspection cost
c because it is not forfeited in the event of a project success. If cR is large enough, it is
easily seen that group 2 bidders only inspect when g ≤ 1 so they are again equivalent to
baseline bidders with c = q.

The analysis of comparative statics in the canonical cases that follow use a couple
of intuitive results about the effects of parameters and first-order-stochastic-domination
which we denote by FOSD: F (·) �

FOSD
F ′(·) if F ′(c) ≥ F (c) for all c ∈ [0, q].
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Lemma 2.4. If F (·) �
FOSD

F ′(·) then S(t,g) (F ′) ≥ S(t,g) (F ) for all t, g.

Intuitively, high costs dissuade inspection so they lower success rates. The inductive
proof (in Appendix 2.A) shows that FOSD raises S by raising the probability of a bid
given Sbid and Sbid is taken to satisfy the hypothesis. We later use the corollary that a
proportionate shift in probability from c > 0 values onto the zero-type uniformly raises
the success rate. Finally, Eq. (2.9) within the inductive proof of Lemma 2.4 proves

Lemma 2.5. λ and q both increase S(t,g) for all t,g.

2.4.1 Affine CDF

If inspection costs follow a uniform distribution with atom z at c = 0, the CDF is affine
(linear if z = 0):

F (c) = z + (1− z)
(
c

q

)
(2.28)

Fcc ≡ 0, so the Jensen effect is null. With decreasing pivotality as the only force, the bid
profile has a negative slope. The bid rate generator for the quadratic CDF applies to the
affine CDF, so setting Fc = 1−z

q
in (2.20) and recalling LSbid

(t,g) = L∆S
(t,g),

Lβ(t,g) = λq(1− z)L∆S
(t,g) ≤ 0 (2.29)

Fig. 2.3 exhibits the downward bid slopes for averages across all projects in black,
conditioned on success (in green) and failure (in red). Notice how the unconditional
bid profiles (in black) in panels (a) and (b) are identical, subject to rescaling, to the
corresponding average pivotality profiles of (c) and (d). So the decreasing bid profiles
reflect the Decreasing Pivotality Effect (DPE) operating in isolation.

Panels (e) and (f) add pivotality profiles for g0 = 16 and 22 so that g0 rises from
16 to 18, 20, 22 moving clockwise from panel (e) to (c), (d), (f). This illustrates how
average pivotality and the equivalent bidding profiles become increasingly convex as g0

rises. For g0 = 16 and 18, the pivotality profile is initially concave and becomes convex
as the deadline approaches. For low initial gaps, the fixed-g success curves of Fig. 2.1b
are bunched up near the unit upper bound and concave so that pivotality, equal to
the vertical difference, is moderate and initially falls slowly but accelerates with time,
generating initial concave regions for average pivotality. In our example, g0 = 16 of (e) is
a low initial gap; S0 = S(0,16) is high at 0.94 whereas S(0,18) = 0.76. The curves in Fig. 2.1b
inflect from concave to convex. Similarly, average pivotality shrinks and becomes convex
as pivotality becomes increasingly constrained by the zero lower bound; pivotality ends
up at zero in the last moments except in knife-edge cases with a gap of exactly 1. When
the initial gap is high, as with g0 = 22 of panel (f), the pivotality curve starts in its convex
phase because time is already too scarce; S(0,22) ≈ 0. Though pivotalities are scaled down
towards zero, (f) has the highest curvature of the four.
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(a) Bid profile for g0 = 18 (b) Bid profile for g0 = 20

(c) pivotality for g0 = 18
(S0=0.70)

(d) Pivotality for g0 = 20
(S0=0.17)

(e) Pivotality for g0 = 16
(S0=0.94)

(f) Pivotality for g0 = 22
(S0=0.0051)

Figure 2.3: Profiles of bids and pivotality against time t for a
linear CDF with z = 0.2 given g0 ∈ {16, 18, 20, 22} and (τ, λ, q) = (50, 0.7, 0.75)
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(a) (z, q)=(0, 0.75) (b) (z, q)=(0.2, 0.692) (c) (z, q)=(0.5, 0.604)

Figure 2.4: Comparative statics on z for linear CDF with q compensating to give S0 ≈
0.46; g0 = 20 and (τ, λ) = (40, 0.7, 0.75).

Conjecture 2.1. The pivotality profile is less concave or more convex for higher g0/λτ .

Intuitively, early bids are critical on projects that set very high thresholds relative to time
available and bidder arrival intensity. This clarifies the varying strength of decreasing
pivotality.

As shown by Lemmas 2.4 and 2.5, both z and q raise S. Increasing z and q have the
opposite qualitative effect to increasing g0/λτ . The impact of z is not monotonic as shown
by Fig. 2.D.2a: the downward average slope is most pronounced for the intermediate z
values, specifically, 0.5, 0.6. In the first four panels, z ≤ 0.4 and the scarcity of the
zero-cost, always-inspect bidders makes it hard for the campaign to get off the ground.
Success is unlikely, reflected in the average profile At, in black, nearly coinciding with
the failure-conditional curve AF

t , in red, with both quite flat and near zero. By contrast,
the success-conditional bid profile AS

t slopes downwards quite sharply because successes
pretty much have to start well in these adverse cost settings. Returning to the average
profile, as the zero cost atom rises from 0.6 to 1, the downward slope becomes increasingly
flat as the strategically insensitive zero-cost types (who do not react to changes in Sbid)
become increasingly prevalent. Dynamic effects vanish in the last panel with z = 1. In
this linear setting, the effects are muted, but we find stronger parallel effects from higher
power CDFs.

Appendix 2.B.3 provides explicit comparative statics of z on bid profiles in the case of
g0 = 2. The magnitude of the expression for the slope in Appendix 2.B.3 is increasing in t,
so the profile is concave when g0 = 2. Appendix 2.B.3 also proves that z has a consistent
negative impact on slope magnitude but in general, z has two effects: raising success and
reducing average bidder sensitivity to success. To isolate the strategic sensitivity effect,
Fig. 2.4 illustrates the impact of changing z with opposite, compensatory changes in q to
fix S0. Raising z from panel (a) to (c) now always reduces the bidding slope’s magnitude.



76 CHAPTER 2. A THEORY OF CROWDFUNDING DYNAMICS

2.4.2 Quadratic CDF

A linear density with atom z at c = 0 produces the quadratic CDF,

F (c) = z + (1− z)
(
c

q

)2

(2.30)

This implies Fc(qSbid
(t,g)) = 2(1−z)Sbid

(t,g)
q

and Fcc(qSbid
(t,g)) = 2(1−z)

q2 . For z < 1 and g > 1, which
ensure that νSbid

(t,g) > 0 and Fcc(qSbid
(t,g)) > 0, the rising bid rate condition (2.21) simplifies

to
z ≥ ζ(t,g)(z) , 1− 1

1 + Sbid
(t,g)(z)

(
2Sbid

(t,g−1)(z) + Sbid
(t,g)(z)

) (2.31)

Sufficient mass z on zero-cost types generates enough bidding on those moribund cam-
paigns in states with S close to 0 to create sufficient variance, via good news shocks, for
a large Jensen effect (JE). Since Sbid ≤ 1 always, RHS(2.31) is bounded above by 3/4
giving,

Lemma 2.6. Quadratic CDF (2.30) generates a strictly increasing bid profile if z ∈
(3/4, 1).

(The Proof in Appendix 2.A derives condition (2.31) in detail.) This lower bound on z
is sufficient but not necessary: e.g., the analytic solution for the slope in Appendix 2.B.4
shows that z ≥ 0.2 is sufficient when g0 = 2 with λqτ = 0.126. Similarly, numerical
solutions in Fig. 2.D.2b demonstrate an increasing profile on a broader z range: in the
subpanels for z rising from 0.1 to 0.4, positive shocks to Sbid are too rare for the JE to
prevail over the DPE. Once z ≥ 0.5, bids create sufficient variance in Sbid for a positive
slope. Increasing z further initially raises the slope but the slope falls back towards zero
as z approaches 1 because zero-types are insensitive to Sbid changes and the Fcc and Fc
terms contain 1− z.

The increasing profiles for z ≥ 0.5 are mildly concave as the JE is stronger early on.
More convex CDFs in the next subsection yield a stronger JE near the deadline.

2.4.3 Generic power distributions

The power-ρ CDF

F (c) = z + (1− z)
(
c

q

)ρ
ρ ≥ 0 (2.32)

generates bid profiles in Fig. 2.5 with slope moving from negative to positive as ρ varies
from 1/2 to 3. The CDF is concave for ρ ∈ (0, 1], explaining the decreasing bid profile
at ρ = 1/2. We already discussed ρ = 1 and 2 so we now focus on ρ > 2. The bid
dynamics are close to the quadratic case but the slope is more pronounced. Notice that
S0 is lower in this final panel because raising ρ places greater probability weight on high
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(a) ρ = 1/2
(S0 = 0.85)

(b) ρ = 1
(S0 = 0.72)

(c) ρ = 2
(S0 = 0.18)

(d) ρ = 3
(S0 = 0.17)

Figure 2.5: Average bids against time t, for a power-ρ CDF
with z = 0.5 and a campaign with g0=20, (τ, λ, q)=(50, 0.7, 0.75)

inspection costs and Lemma 2.4 applies. This also affects the slope but the slope remains
steeper when z is used to give similar success rate S0: the profile for z = 0.8, ρ = 3 in the
comparative statics Fig. 2.D.2c is steeper than that for z = 0.7, ρ = 2, with a similar S0

in Fig. 2.D.2b.

2.4.4 Single-peaked distributions

In this subsection we consider single-peaked densities for the empirical distribution of the
underlying net cost variable prior to its truncation. In such settings, the Jensen effect
(JE) has a constant sign if the modal inspection cost is either low or high enough. In
the low case, a negative mode implies that the truncated cost distribution has an atom
at zero and decreasing cost density over the (0, q] interval. That implies a concave CDF
and a negative JE. In the high case, if the mode is bigger than q, the truncated cost
distribution has a density that is increasing over [0, q]. That implies a convex CDF and
generates a positive JE.

Fig. 2.6a illustrates a single-peaked probability density function (PDF) with mode
µL ≤ 0 in brown, giving a concave CDF over [0, q], while the high mode case µH ≥
q in blue generates a convex CDF. Fig. 2.6b presents the concave and convex CDFs
and Fig. 2.6c shows the corresponding bid profiles: decreasing for the distribution with
µ = µL = 0 (intensity then falls from 0.35 to 0.25); increasing for the distribution with
µH = 0.75 (bid intensity increases from 0.3 to 0.36). In this illustration, q = 0.75 so it
sets µL and µH at exactly 0 and q. In addition, the inspection costs follow a truncated
normal distribution but we mix with an atom on zero-types so that the final atom of
zero types is the same for both CDF’s and to maintain comparable success rates, we
compensate high µH with λH > λL (S0 = 0.285 for H and 0.250 for L). Variation in the
zero atom can be interpreted as variation in the number of friends and contacts of the
entrepreneur.
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(a) PDF ϕ(c;µ) implying concave (µL) & convex (µH) CDF.�

(b) Distribution functions (c) Bid profiles

Figure 2.6: Truncated normal distributions Φ′(c;µ, σ) on support [0, q]. (a) Origi-
nal PDFs and truncated region; (b) truncated CDFs; (c) bid profiles for (τ, q, z, σ) =
(50, 0.75, 0.75, 0.5) and (λL, µL) = (0.5, 0) (concave F = Φ′(c; 0, σ), (λH , µH) =
(0.75, 0.75) (convex F = Φ′(c; q, σ) �

2.4.5 The homogenous case

Turning to homogenous costs, we link bidding to survival probabilities. This allows us to
succinctly characterize bid and success rates. We also demonstrate the discrete bid rate
drops at the critical dates defined in Section 2.3.4 and show why the decreasing pivotality
effect (DPE) dominates the Jensen effect (JE) at such dates and why both equal zero at
all other dates.

When all bidders face the same inspection cost ct = c, the CDF is a unit step function
with jump discontinuity at c: F (ct) = 1 if ct ≥ c and 0 otherwise. If c ≤ 0 or c ≥ q, the
average bid profile is flat because bids follow a homogenous Poisson process with intensity
λq or 0, respectively. We therefore focus on the interesting case where c ∈ (0, q).

Since bidders are now identical, every state (t, g) can be categorized as active if bidders
choose C at (t, g) or frozen if they choose A. The frozen state is absorbing because the
gap cannot fall over an interval in which all bidders play A. Moreover, time passing
at any fixed gap g can only lower Sbid

(x,g). So Sbid
(x,g) stays at Sbid

(t,g) = 0 as x rises above
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t. The frontier between the frozen and active states exactly corresponds to the critical
dates introduced in Section 2.3.4. When g ≤ 1, the project is active no matter how
little time is left but for any gap g ≥ 2, the campaign freezes when time remaining falls
below the minimal duration at which cost c bidders are willing to bid which is given by
τ̂g : Sbid

(0,g)(τ̂g) = c/q.10 This is well-defined because Sbid
(t,g)(τ) ≡ Sbid

(0,g)(τ − t) is continuous
and decreasing in t and ranges over [0, 1): with enough time remaining, the success rate
becomes arbitrarily close to one for any λq > 0; conversely, for any g ≥ 2, success after
one bid is impossible when time runs out at t = τ . To ease exposition, we mostly use
associated critical dates t̂g , τ − τ̂g. In sum, for any g ≥ 2

Sbid
(t̂g ,g) ≡ Sbid

(τ−τ̂g ,g)(τ) ≡ Sbid
(0,g)(τ̂g) ≡

c

q
(2.33)

The bid rate is λq while active, since any arriving bidder inspects and therefore bids
with probability q. The atom size z = 1 and so the fall to zero on freezing corresponds
to the DPE, E (t,g)

t+ = −z = −1 at t = t̂g , τ − τ̂g. The DPE is zero at all other dates
since homogenous cost implies that DP affects all bidding decisions when it affects any.

The frontier between active and frozen states can also be described by the critical gap
at which the campaign is just active for any given date t. We define the maximal gaps
for activity as ĝ =

(
ĝt
)
t∈[0,τ ]

where

ĝt , sup
{
g ∈ Z : Sbid

(t,g) ≥
c

q

}
(2.34)

These critical dates and gaps trace out the frontier. We call it a wall of ice, since a
campaign instantly freezes when its path crosses into the region with gt > ĝt. A campaign
is active at t if its trajectory g =

(
gt
)
t∈[0,τ ]

has not crossed ĝ before t. We illustrate this
wall of ice in violet in Fig. 2.7(a); it separates active (below) from frozen regions (above).

Setting ĝτ+ , 0, success is equivalent to staying weakly below the wall until τ+. If
g0 > ĝ0, equivalent to τ < τ̂g0 or t̂g0 < 0, the campaign is born frozen so we focus on
g0 ≤ ĝ0. Fig. 2.7(a) also exhibits four specific gap paths. Paths (1) and (2) are in red
since they end up failing: they cross the violet wall of ice at t = 23.5 and 49.5 where
ĝ23.5 = 14 and ĝ49.5 = 2, respectively. From then on, they are necessarily flat. (3) and (4),
in green, successfully stay below the wall of ice; gt ≤ ĝt for all t ≤ τ and gτ+ ≤ ĝτ+ ≡ 0.

Decreasing bid profile. Since the frozen state is absorbing, its probability can
only increase over time. Bidding intensity is λq when active and zero when frozen. This
proves that the average bid profile is decreasing. Fig. 2.7(b) illustrates alongside the
parallel profile for pivotality of Fig. 2.7(c).

Average bidding falls via discrete drops at precisely the same critical dates as the
vertical drops in the violet wall of ice in Fig. 2.7(a). Notice that the magnitudes of

10For g ≤ 1, τ̂g = 0 since Sbid
(t,g) = 1,∀t ≤ τ . With only one atom, K = 1, z0 = 0 and we drop index k.
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(a) Wall of ice (b) Bid profiles (c) Pivotality profile

Figure 2.7: Wall of ice, four simulated gap paths and profiles of bids and pivotality for
homogeneous inspection cost c=0.2, g0=25, (τ ,λ,q)=(50,0.75,0.75), giving S0 = 0.58

Legend: (a) (b) (c)

the drops are decreasing. Each drop equals λq times the unit atom from homogeneity
times the probability of hitting the vertical wall. This probability of freezing equals the
probability that the gap is critical at the critical date, gt̂g = g. It falls over time because
paths that cross the wall by t never hit it again, while paths that diverge below the wall
rarely come back to cross it. Since the wall-of-ice is approximately linear, these falling
jump sizes make the bid profile approximately convex from the first critical date onwards.

The initial, perfectly flat bidding plateau owes to the fact that g0 must start below
the critical gap in a campaign that is not born frozen. Given g0 < ĝ0(τ), the campaign
faces no risk of freezing until t = t̂g0 . Larger durations τ extend this initial plateau and
diminish the size of the downward steps along with the probability that the campaign
ever freezes, the probability of a failure.

Decomposing into DP and JE adds little insight in this special case but will prove
useful when we move to multiple atoms and when we combine continuous and discrete
distributions. As noted above, the DPE is zero except at critical dates because marginal
changes in Sbid

(t,g) only affect bidding β(t,g) = λqF
(
qSbid

(t,g)

)
at dates when qSbid

(t,g) = c;
this is immediate from Eq. (2.15) which applies at all non-critical dates since F (·) is
only discontinuous at c. The JE at non-critical dates is given by Eq. (2.17) as J(t,g) =
β(t,g)∆F (qSbid

(t,g)) since Fc = 0 at non-critical dates.
This product always equals zero in the homogenous case because the difference term

is zero for gaps below the wall of ice and the bid rate is zero for gaps strictly above the
wall of ice. The logic resides in the JE’s two necessary components. First, local convexity
or concavity here requires a non-zero difference ∆F but ∆F is zero below the wall of ice
because gap reduction cannot raise the inspection probability when already maximized
at unity. Strictly prior to a critical date, the unique cost type always inspects even if a
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small amount of time passes with no bid. That is, the project is maximally and hence
equally active after both good and bad news. Second, uncertainty requires the possibility
of a bid but strictly above the frontier the campaign is frozen and generates no news at
all so the JE is zero there too. For a quick mathematical proof: note that ∆F (qSbid

(t,g)) = 0
except when the gap gt is one unit above the critical gap for that high cost; at such gaps,
∆F (qSbid

(t,g)) = 1 but then β(t,g) = 0 at all such gaps and J (t,g) = 0 even there.
Note that average pivotality decreases smoothly but the profile in Fig. 2.7(c) is flat

until the first critical date. The reason why DP is trivial here is that on interval [0, t̂g0 ] any
arriving bidder inspects. The earlier of two bidders who may arrive on [0, t̂g0 ] has more
successors but cannot influence them since they are already maximally active. So the
earlier bidder has no encouragement effect on the extra successors. There is no scope for
additional strategic complementarity, fixing average pivotality until t̂g0 . The reason why
average pivotality profile of (c) is continuous is that success rates depend on bidding over
time and are given by integration of a finite function over time, shown in Eq. (REC-S).
It is the step discontinuity in F (·) that generates the temporal discontinuities in bidding
β(t,gt) which depends on F (S(t,gt) + ∆S(t,gt)) by Eq. (2.6).

Turning to critical dates, Fig. 2.8a illustrates how the DPE’s discrete negative ef-
fect always dominates the JE at such moments and creates a discrete downward jump.
Fig. 2.8a, like Fig. 2.2, considers a small time interval ε now starting from t = t̂g, the
critical date corresponding to a generic gap g. The DP arrow shown in magenta is neg-
ative. It is only of order ε, but has a discrete effect shown by the DPE in green because
F (·) is discontinuous at t: E (t,g)

t+ε equals −1 for any ε > 0. Uncertainty in Sbid
(t+ε,g̃t+ε) around

ESbid
(t+ε,g̃t+ε) creates the positive JE J (t,g)

t+ε shown in orange but its magnitude is of order
ε. So it shrinks to zero and is dominated by the negative DPE as ε → 0+. In brief, the
JE is positive because ESbid

(t+ε,g̃t+ε) lies just below c/q but JE is continuous so the jump is
infinitesimal; to understand why the JE is positive in terms of the frontier, notice that
t = t̂cg in the figure, ĝct = g and ĝct = g− 1 so at t+ ε, the gap g is exactly one unit above
the frontier. The key, infinitesimal result follows from the fact that the chance of a bid
arriving in any instant is zero. By contrast, the DPE is discrete. The project instantly
freezes if no bid arrives at the critical date. Formally, as ε goes to zero, Sbid

(t+ε,g) → Sbid
(t,g)

so that DP D → 0 (and JE J → 0) but DPE E stays fixed at −1.
Finally, we discuss the fanning out, anticipated in Section 2.3.6, of the conditional

curves in Fig. 2.7(b). This figure presents the profiles for bid averages conditioned on
success (in green) and failure (in red). Qualitatively similar to the unconditional average
profile, the downward steps in the red profile are larger because conditioning on failure
raises the probability of freezing during the campaign (to one minus the probability of
failing with g = 1). It might come as a surprise that the success-conditional profile
has any downward steps because success conditioning precludes crossing the wall of ice.
However, the wall still matters: successful paths must have enough early bids to stay
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(b) Binary inspection cost (c, cL) with c > cL = 0 and atom z0 on cL �

Figure 2.8: DP, DPE and JE for discrete distributions
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below the wall. As explained in Section 2.3.6, success conditioning implies a selective
bias towards bidding rates above λq. This bid-selection bias is highest early on because
survival requires n bids by the critical date t̂g0−n for each n ≥ 1. That is why the green
curve has downward steps at critical dates.

Failure-conditioned paths have a negative bid-selection bias so the profile is always
lower. A failure can have no bids but given any positive aggregate number of bids below
g0, the bid arrivals must again be sufficiently early for the project to survive until the last
of those bids is placed. This again creates downward steps. The downsteps are larger
than in the green success-conditional profile because bidding paths that end up failing are
usually closer to the wall of ice, giving it a greater influence. In the terms of Section 2.3.6,
selective weighting on lower gaps when conditioning on failure again has no impact at
the very start of a campaign but kicks in after the first critical date and contributes to
the larger size of the downward steps in the red profile compared to the green profile.

Succinct characterization of bidding and success rates.
The active-frozen dichotomy in the homogenous case permits an explicit characteriza-

tion of bid rates via survival probabilities. We replace Proposition 2.1’s generic integral-
based recursion for success rates with a finite recursive sum. Section 2.3.6’s transition
probabilities give the probability that a campaign survives from state (t, g) till t′ > t:

α
(t,g)
t′ ,

∑
g′≤ĝt′

Q
(t,g)
(t′,g′) (2.35)

The probability of surviving till t given starting gap g0 is α(0,g0)
t . The average bid rate is

At = λqα
(0,g0)
t and the success rate is S(t,g) = α(t,g)

τ+ . Defining Poisson probability function,

P(b; Λ) ,

(
Λ
)b
e−Λ

b! (2.36)

for b ≥ 0 bidding events and Poisson parameter Λ ≥ 0, we prove

Proposition 2.7. Success and average bid rates under homogeneity are characterized by

S(t,g) = α(t,g)
τ+ At = λqα

(0,g0)
t (2.37)

where ∀ g, t ≤ t′, (i) α(t,g)
t′ = 1 if t′ ≤ t̂g, (ii) α(t,g)

t′ = 0 if t̂g < t, (iii) on t ≤ t̂g < t′≤ τ+,

1− α(t,g)
t′ = P

(
0;λq(t̂g − t)

)
+

g−ĝt′−1∑
b=1

P
(
b;λq(t̂g − t)

)(
1− α(t̂g ,g−b)

t′

)
(REC-α)

1− c/q = P
(

0;λq(t̂g−1 − t̂g)
)

+
g−2∑
b=1

P
(
b;λq(t̂g−1 − t̂g)

)(
1− α(t̂g−1,g−1−b)

τ+

)
(REC-t̂g)

Remark. Before proving, we state the immediate corollary recursion (REC-S-hom) to
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find S(t,g) given S(t̂g ,g−1), ..., S(t̂g ,1) and t̂g; hom indicates homogeneity. Since (REC-t̂g)
can be solved for t̂g given t̂g−1 and S(t̂g ,g−1), ..., S(t̂g ,1), we can combine these recursions to
solve for both S(t,g) and t̂g given their solutions at gaps g − 1 and below; recall t̂1 = τ .

Corollary. S(t,g) ≡ 1 for all g ≤ 0 initiates a recursive solution for generic S(t,g) via

1− S(t,g) = P
(

0;λq(t̂g − t)
)

+
g−1∑
b=1

P
(
b;λq(t̂g − t)

)(
1− S(t̂g ,g−b)

)
(REC-S-hom)

Proof. (i) If t′ ≤ t̂g, α(t,g)
t′ = 1 since the project is safely below the wall of ice and cannot

freeze between t and t′. (ii) If t > t̂g, the campaign is already frozen at t so it can neither
survive nor succeed: α(t,g)

t′ = α(t,g)
τ+ = 0. (iii) If t ≤ t̂g < t′, both freezing and survival are

possible. On [t, t̂g], bids arrive with homogenous intensity λq so b has Poisson parameter
Λ = λq

(
t̂g − t

)
on that interval. The probability of failing to survive till t′ is the sum

of the probability that b = 0 or, some b ∈ {1, ..., g − ĝt′ − 1} bids arrive by t̂g and then
the campaign fails to survive from state

(
t̂g, g − b

)
till t′, proving Eq. (REC-α). Notice

that any g ≤ 0 guarantees success and implies t̂g = τ+ and α(t,g)
τ+ = 1 for any t ≤ τ+; this

provides the initial step in Eq. (REC-α).
Recursion (REC-t̂g) for t̂g at g ≥ 1 combines S(t̂g ,g−1) = Sbid

(t̂g ,g) = c/q from Eq. (2.33)
with recursion Eq. (REC-α) at t′ = τ+ and starting state (t̂g, g − 1); recall that ĝτ+ = 0.
The initial step for t̂g at g = 1 follows from the general result that t̂1 = τ since at g = 1
bidders play C at any date during the campaign; conversely, ĝτ = 1.

Proposition 2.7’s explicit linear recursion speeds up computations more than ten-fold
which is useful for optimizing design since numerical calculations become more intensive
there. The fact that the violet curve in Fig. 2.7(a) is approximately linear when g and τ
get large is also useful for design because it suggests that the maximal effective thresholds
increase approximately linearly with the expected number of bidders in the homogenous
setting.

Illustration with initial gap g0 = 2. S0 = S(0,2) = 1−
[
e−λqt̂2 +

(
λqt̂2e

−λqt̂2
)
e−λq(τ−t̂2)

]
;

this is the probability of collecting at least two bids, with at least one by t̂2. The
first term in the bracket is the probability of no bids on [0, t̂2]; the second term is
the probability of one on [0, t̂2] but no bid on [t̂2, τ ] which lasts τ − t̂2. Simplifying,
S0 = 1−

[
e−λqt̂2 + λqt̂2e

−λqτ
]
.

While g = 2, bidders only inspect if t ≤ t̂2, whereas once g ≤ 1, bidders always inspect.
So the average bid rate is constant at At = λq up till t̂2 and drops at that date by λq
times the probability 1 − α(0,2)

t̂2
= Q

(0,2)
(t̂2,2) = e−λqt̂2 of hitting the vertical wall of ice at t̂2.

It then remains constant at At = λq
(
1− e−λqt̂2

)
. S(t̂2,1) = 1− e−λq(τ−t̂2) = S(t̂2,1) = c/q,

so t̂2 = τ − 1
λq

ln
(
1− c

q

)−1
or more simply, e−λqτ̂2 = 1 − c/q. Intuitively, t̂2 is lower in
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adverse settings because bidders at g = 2 then give up earlier: t̂2 is decreasing in c and
increasing in λ and q.

2.4.6 Richer discrete distributions

In this section, we first show how multiple atoms lead to positive Jensen effects (JE)
associated with each atom except for the lowest atom.11 In the binary case, decreasing
pivotality effects (DPE) are again null except at the critical dates corresponding to each
of the two types. Combined with the continuous positive JE associated with the higher
type, this creates a tooth-shaped profile. We explain the exact origin of the positive JEs
and how they combine additively, weighted by the distribution of the gap at any given
date.

We illustrate with three binary examples. In the first Fig. 2.9a, there is a zero atom
(cL = 0) and so the only DPE is that associated with cH > 0. In addition, the high cost
cH is moderate which results in moderately strong JEs as soon as the first critical date
has passed. In that case the JE’s are decreasing over time because the rate of increase in
entropy in Sbid decreases over time, on average.

In the second Fig. 2.9b, there is again a zero atom (cL = 0) but now the high cost is
extremely high, cH = q, the upper limit value. As a result, the project starts in the cold
state where only zero types inspect and the DPE is trivial. DPE is trivial because the
critical date for zero types is after the deadline and the frontier for the high cost cH = q

is perfectly flat at ĝHt ≡ 1, so it is never crossed from below. Once H-types are willing to
inspect, they are always willing to inspect. That is, the hot state is an absorbing state
in this special case. As a result, the profile is upward sloping. We highlight also that the
upward slope is most prominent in the later phases of the campaign when the atom is at
a high cost equal to or close to the upper limit value q.

In the third Fig. 2.9c, there is no atom at 0. As a result, while the project starts in
the warm state where the L-types inspect, giving bid rate λqzL = 0.6, the DPE generates
a flight of downward steps that is most pronounced early on. This early downward slope
is very similar to that from the homogenous case. The reason for this is that the H-
type again has the limit cost cH = q so the possibility of the project getting hot in that
even H-types inspect is very remote in the early phase and has negligible impact on the
profile. In the second half of the campaign, by contrast, the possibility of heating up
and activating even the limit type is increasingly relevant. The JE associated with the
H-type generates the positive slope towards the end of the campaign. This generates
a clear U-shape. It is especially pronounced when conditioning on success because the
probability that the limit or H-type is activated on a failing project is very remote.

11The next subsection shows that, when combined with a continuous distribution, the lowest atom
also generates a positive JE if that atom has cost c > 0.
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(a) (λ, cL, cH) =(1.45, 0, 0.3) (b) (λ, cL, cH) =(2, 0, 0.5) (c) (λ, cL, cH) =(2, 0.1, 0.5)

Figure 2.9: Bid profiles for binary inspection costs, ct ∈ {cL, cH} with probability z = 0.6
on cL, 1− z = 0.4 on cH , for g0 = 30, (τ, q) = (50, 0.5)

Turning to richer discrete distributions, the lowest cost atom, if non-zero, defines a
wall-of-ice exactly as in the homogenous case but in contrast to that case, if a cost cj

atom is not the lowest atom, then F (cj)− zj > 0 which implies that the campaign slows
down but does not immediately freeze in states lying above the critical date-gap frontier
corresponding to atom j. From states just above this frontier, good news activates this
atom zj of bidders and this creates a positive JE. Since the DPE is zero except at critical
dates, the net effect of time is positive, creating non-monotonic saw-tooth profiles.

The discontinuity exhibited by the bid profile under homogeneity of inspection costs
appear also with distributions of inspection costs over a discrete set of values ck, with
c1 < c2 < . . . , < cK such as the two-point distribution on c1 ≡ cL, c2 ≡ cH > cL. Each
ck determines a contour set ĝkt for k-type bidders. This translates into at most K + 1
bidding states: states 1, . . . , K such that all bidders with k′ ≤ k inspect and, if present,
an additional frozen state 0 where no bidder inspects. The typical profile generated by
these distributions is tooth-shaped with discontinuity points at each t̂kg ∈ [0, τ ].

Fig. 2.9 illustrates for the two-type distribution with cL = 0 and z = 0.6. As in earlier
sections, z ∈ (0, 1) denotes the probability on the zero-type cL. Since zero-types always
inspect, there is no frozen state and the set of critical dates are just those corresponding
to the cH type. These critical dates and the corresponding critical gaps now map out a
hot-cold boundary. As with the wall of ice, it again consists of horizontal and vertical
segments, but now the probability than an arrival inspects drops from 1 to z when the
project moves from the hot into the cold state (by crossing a vertical segment at a critical
date) so the project may move back into the hot state later on. Entering or re-entering
the hot state happens when a bid causes the gap to fall down to ĝHt . At such moments,
(t, g) hits a horizontal segment of the hot-cold boundary and the bidding rate accelerates
from λzq > 0 to λq. Acceleration events can occur at any dates at which the gap may
strictly exceed ĝHt . That is, at any date after t̂Hg0 . These acceleration possibilities explain
why the bidding profile has an upward slope between critical dates. There is a positive
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Jensen effect.
This can be understood from Fig. 2.8b. Now Sbid

(t,g) = Sbid
(t,ĝt+1) is slightly to the left of

the critical value c/q so that F (Sbid
(t,g)) = z0; as before, F (Sbid

(t+ε,ĝt)) = 1 after the good news
of a bid indicated by the upper triangle. The DPE arrow is invisible since it is null. The
upward orange arrow indicates that the positive JE is the only effect and this generates
the positive slope.

We also provide a non-graphical explanation. Notice that for any t, there is a positive
probability that gt = ĝt + 1. Then Eq. (2.20) adjusts to Lβ(t,g) = λqβ(t,g)∆F with ∆F =
1− z0 > 0 and β(t,g) = λqz0. So Lβ(t,g)(λq)2z0(1− z0) is also positive. This JE has a fixed
magnitude and is positive only in states (t, ĝt+1). The probability of reaching such states
sometimes falls and sometimes rises as critical dates get near, creating slight concavities
and convexities in the upward slopes of the teeth depicted in Fig. 2.9a.

In general, when F consists of atoms, away from critical dates, the DPE is zero and
the JE is always positive. This is because one moment after a generic date, in the bad
news event of no bid, the marginal falls in Sbid which is time continuous have no effect
on F (qSbid), whereas the good news event of a bid has a discrete positive effect which
shifts the bid rate upwards whenever the gap is one above the frontier for any cost atom.

Time’s overall average rate of impact is given by Eq. (2.19) as λq
(
J(t,g) + E(t,g)

)
. For

any (t, g), there is at most one bidder type k for which t = t̂kg and generically there are
none. At those critical dates, E (t,g) = −∞ i.e. discrete drop −zk where zk = P

(
c = ck

)
.

At all other dates E(t,g) = 0.
Jensen effects occur over a wider range of possible dates and multiple types may start

to inspect after a unit fall in the gap. Nonetheless, for any type j and date t, there is at
most one such gap g = ĝjt + 1 at which the type j JE is positive.

J(t,g) = β(t,g)
∑

k:g=ĝkt +1
zk

To predict the profile, we use the fact that at non-critical dates, Ȧt = ∑g0
g=−∞Q(t,g)Lβ(t,g)

(from Eq. (2.26)) and Lβ(t,g) = λqJ(t,g) given that the DPE is null. Meanwhile, at critical
dates, the discrete drops in At are given by weighted sums of zkP

(
gt = ĝkt

)
.

2.4.7 The U-shape

This section explains how simple combinations of the above dynamics readily generate
a U-shaped profile. We already achieved a rudimentary U-shape in the binary case but
we now derive a smooth U-shape by combining discrete and continuous distributions in
a less rigid setup.

First, note that the classic uniform cost distribution already provides a good fit for
the initial downward slope of the U-shape. As shown in Section 2.4.1 and illustrated well
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by Fig. 2.4, the decreasing pivotality effect (DPE) is strongest at the beginning because
pivotality usually gets close to zero as a campaign matures. Second, the strong positive
Jensen effect (JE) associated with a substantial subgroup of bidders with high inspection
costs is largely confined to near the end of the campaign, as shown in panels (b) and (c)
of Fig. 2.9. The reason is that the JE is trivial until the gap is very low, concretely at
g = 2 in the example corresponding to Fig. 2.9. Such low gaps are usually only reached
towards the end of a campaign. For that reason, the JE generates a final upward slope
and creates a U-shape. Both the logic behind a strong DPE early in a campaign and the
logic behind a strong positive JE late in a campaign are robust to combining these two
distributions as the next example demonstrates.

A smoother variant that also generates a U-shaped profile is that from a cost distri-
bution that combines the flat density function of the uniform distribution or a decreasing
density, with an increasing density such as for the quadratic CDF of Section 2.4.2 or
higher power CDFs. If we take a linear decreasing and then linear increasing density, we
essentially derive a U-shaped bid profile from a V-shaped density. The question is why
any such distribution might be plausible.

Consider the case of a relatively flat distribution such as the uniform distribution
combined with an atom on c = q as in Figs. 2.9b and 2.9c. As explained in the intro-
duction to this section, our argument is that bidders can be split into two basic groups:
those in group 1 take account of their inspection costs as in the model; those in group 2
only bother to consider sure options, which correspond here sales offers that the bidder
is guaranteed to be able to buy if he wants it. These are the rule-of-thumb bidders we
described above. Recall that these group 2 bidders are equivalent to bidders with cost
c = q because a type with the limit-cost, a cost on the verge of being prohibitive, will
only inspect when g ≤ 1 which is precisely where the sales offer to a given bidder becomes
a sure offer, not contingent on what any later bidders will do.

We now formally model the group 2 actors. We assume an atom of size zq at c = q

because they inspect when Sbid is near 1 that if g0 is large enough, only occurs towards
the end of the campaign. So we assume that the CDF is

F (c) = (1− zq)c
q
for c < q and F (c) = 1 for c = q

Clearly the q-type bidders start inspecting at the first t such that gt = 1 and continue
afterwards, i.e. ĝqt = 1 for all t. This distinguishes two bidding phases, based on whether
q-types are active (willing to inspect) or inactive and we say that the campaign is q-active
if they are active. Extending the notation from Section 2.4.5, we denote the probability
that the campaign is q-active at t given its current state (t′, g′) by αq(t′,g′)

t = ∑
g≤1Q

(t′,g′)
(t,g) .

Since the probability to switch into the q-active phase is time increasing, it generates
a positive JE near the end of the campaign. On the other hand, the initial DPE or the
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Figure 2.10: Bid profiles for uniform distribution with atom zR = 0.3 on cR = q with
g0 = 20,(τ, λ, q) = (30, 1.5, 0.95)

regular bidders is stronger early on, so the combined effect originates a U-shape. Both
effects are present for successful campaigns, but the JE is excluded for failing campaigns
since they must have a zero bid rate once q-active in order to fail. So their profile is
decreasing.

Proposition 2.8. A uniform inspection cost on support [0, q] plus an atom zR on the limit
cost type cR = q generate single-troughed or U-shaped average and success-conditional
bidding profiles. The failure-conditional bid profile is strictly decreasing.

The bid profiles presented in Fig. 2.10 present the features described by the previous
proposition. The average and success conditional profiles show a lull in bidding starting
roughly at t = 5 and terminating at t = 20 when the bidding intensity becomes high
again thanks to the q-type JE. The average profile shows an initial concave region that
disappears in the success-conditional profile due to the success effect raising bidding early.
The magnitude JE depends directly on the probability of a switch from cold to hot phase,
so it increases rapidly when the switch becomes first possible and then reduces when it
becomes very likely that the campaign is hot. The fail-conditional profile is decreasing
since bids never occur when the campaign is hot.

2.5 Design

Our baseline model treats all campaign parameters as given. In reality, entrepreneurs and
crowdfunding platforms directly choose some parameters and have some influence over
others. This section uses our framework to investigate how entrepreneurs and platforms
can optimize their design choices. We focus on the case of an entrepreneur who maximizes
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her project’s success rate subject to a funding constraint. She needs G units of money to
fund the fixed costs of investing in production that she cannot cover with her own money
and external credit. We show that, to maximize success, she always sets her funding
threshold at G because a funding threshold below G precludes production, while a higher
threshold lowers success rates for any price rule (see Corollary 2.1). We call this funding
threshold her “goal”, consistent with platforms like Kickstarter. So her optimal funding
threshold or goal is G throughout this section but the bidder threshold g0 depends on
pricing. That bidder threshold g0 and pricing p are now endogenous. We continue to
leave bidder arrival intensity λ, product quality variables v, q and campaign duration τ
as exogenous parameters but we do discuss those extensions in Section 2.6.

We first consider the single-reward setting of the baseline model. With only one price
p, the entrepreneur’s decision problem reduces to that of optimizing p given its impact
on g0 and bidder incentives to inspect. We illustrate an interior pricing solution when
costs are uniformly distributed.

Then we expand to show how multiple prices can add value even though bidders are
ex-ante identical. We do not let prices depend on time, consistent with most platforms,
but we do analyze reward menus with limited quantities. The limited quantities result
in a form of gap-dependent pricing; recall that there is only one possible product. The
most general such pricing scheme specifies a different price for the product at each gap
value. This has theoretical interest to understand pricing factors but realism suggests
fewer prices. So to be more in line with practice, we focus on the restriction to a two tier
pricing scheme.

2.5.1 Endogenous threshold and pricing with a single reward

This section covers the single price setting. The fixed price p is no longer equal to v − 1
so the associated discount d appears as v − p instead of being invisible as a factor 1 in
the inspection incentive or expected return to inspecting dqSbid

(t,g) which was written as
qSbid

(t,g) in the baseline setting where d ≡ 1. The bidding intensity expression Eq. (2.6)
now becomes

β(t,g)(p) = λqF
(
(v − p)qS(t,g−1)(p)

)
Lemma 2.5 readily generalizes: for any state (t, g), any change that increases β(t,g)

while fixing the value of S(t,g−1), also increases S(t,g) by the same induction logic used to
prove Lemma 2.5. In particular, increasing d by reducing the bid price p raises S(t,g) for
all g.

Formally, the entrepreneur’s problem is to set g0 and price p to maximize her success
rate subject to the constraint of satisfying her funding needs or goal G:

max
g0,p

S0(p) subject to G = pg0 (2.38)
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S0(p) ≡ S(0,g0)(p) is given by the natural generalization of the recursive solution in Propo-
sition 2.1 provided that we can continue to neglect blind bidding B which we assume is
valid and justify later. That is, we assume it is optimal to continue to satisfy the No
Blind Bidding constraint which adjusts from Assumption 2.1 to

Constraint 1 (Single price NBB). p > qv

In solving for S(t,g)(p) given this constraint, the only direct effect from generalizing
d from 1 to v − p lies in the change to Eq. (2.6). We omit the formal restatement of
the recursive solution here because it is straightforward and because it can be seen by
restricting all prices to the same value in the solution for the general multiple pricing
case which the next subsection presents in full.

The entrepreneur faces the following tradeoff in her choice of price p: lowering p makes
inspecting and bidding more attractive given a fixed initial gap g0 (because of strategic
complementarity, S(t,g)(p) rises for all (t, g)), but getting less revenue per bidder obliges
her to raise g0 (she needs more bidders to bid in order to reach her financial goal of G)
and this has a negative effect on S(0,g0). So a success-maximizer only raises the price in
order to lower g0 = dG/pe. It follows that G/p is an integer and g0 = G/p.

Lemma 2.7. Success-maximization requires p = G/g0.

So the optimal threshold can be found by optimizing over integers g0, setting p =
p(g0) , G/g0 and imposing g0 < G/q since p ≤ v else nobody ever bids.12 p ≤ v requires
g0 ≥ dGv e. We normalize v to 1 and therefore only need consider gaps g0 ≥ dGe. Notice
that the price function p(g0) = G/g0 has negative and increasing first forward differences
equal to −G/

(
g0(g0 + 1)

)
.

We solve numerically under the NBB Constraint 1 in the case of a uniform distri-
bution with support [0, qv] = [0, q]. That is, we set F (c) = c/(qv) = c/q.

Fig. 2.11a displays S0(g0, p(g0)) for g0 = 1, 2, . . . , 50 and G = 13.5, 15; τ=60, λ=7.5
and q = 0.2 < 0.27 = 13.5/50 so Constraint 1 holds for all the g0. The bar plot in dark
blue in panel (a) corresponds to the higher value G = 15. Only values g0 ≥ 15 are then
feasible. In any case, the success rate is essentially zero outside the range of g0 values
between 22 and 40. Reducing the price and raising the bidder threshold has an initially
positive effect and this is decreasing so that S0(g0, p(g0)) is in general concave with a
unique maximizer g∗0 > g0 , dGe. For instance, increasing g0 from 25 to 26 reduces
the implied price from 0.6 to 0.577, and that more than compensates the lower success
probability caused by a unit increase in the bidder threshold, whereas raising g0=30 to
31 reduces the price only by 0.016 and the success rate drops. If G were sufficiently low
(not plotted), p would react too little to g0 and g∗0 = dGe would be optimal.

12Note that negative cost bidders would still inspect if p > v since they can inspect and then not
bid; with p > v, C would cease to be optimal but the entrepreneur only values bids and would therefore
never set such a price.
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(a) S0(g0, p(g0)) against g0 (b) g∗0 against G (c) g∗0 against λ

Figure 2.11: Optimal bidder threshold for a campaign with v = 1 and inspection costs
uniformly distributed on [0, q]. Panels (a) and (b) shift G holding the other parameters
fixed at (τ, λ, q) = (60, 7.75, 0.2). Panel (c) moves λ and sets G = 13.5 and the other
parameters as before.

Notice that g∗0 increases from 28 in the case with budget need G=13.5 to g∗0 = 30
when budget need rises to G=15. Fig. 2.11b illustrates the more general property that
g∗0 is increasing in G.

Observation 2.1. The optimal threshold is weakly increasing in financial need G.

Intuitively, greater financial need and hence a greater funding goal amplifies the price
reductions from raising g0, so raising g0 is more attractive. Clearly, g∗0 = 0 when G ≤ 0.

To justify the assumption that Constraint 1 should be satisfied, one possibility is to
compare the solution of the restricted problem that satisfies it against an upper bound
to the success rate from the solution in the case where it is not satisfied. Instead of
completing this verification, we note a simpler solution to implement in the final iteration
of this article: if the entrepreneur has a marginal cost per unit produced equal to κ instead
of 0 as in the baseline, this immediately obliges her to raise p strictly above κ since her
budget constraint becomes g0(p− κ) ≥ G. Setting κ ≥ q ensures that Constraint 1 has
to hold. We expect to observe similar results in this case.

2.5.2 Gap-dependent pricing

In this subsection, we fix g0 so that the only choice variables are the prices charged on each
reward tier. The bidding intensity on unit g0−g reacts directly to its specific price pg and
indirectly to the price charged on the remaining unit to completion pg−1. For this reason,
reducing the price faced by a bidder’s successors creates an (indirect) encouragement
effect that makes the bidder more prone to inspect and bid. In consequence, optimal
prices decrease as the gap reduces.

Formally, generalizing problem Eq. (2.39), the objective of the entrepreneur is now to
set g0 and a menu of prices pg0 = (pg0 , pg0−1, . . . , p1) to maximize her success rate subject
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to the constraint of reaching her funding goal:

max
g0,pg0

S0(pg0) subject to G =
∑g0

g=1 pg = vg0 −
∑g0

g=1 dg (2.39)

The success rate S0(pg0) ≡ S(0,g0)(pg0) is defined as the solution of a recursive equation
that generalizes Proposition 2.1. Only current and future prices matter so we also define
pg , (pg, pg−1, . . . , p1). Again, we focus on the case where NBB holds:

Constraint 2 (Multiprice NBB). pg > qv for all g.

As before, this is guaranteed to hold if the unit cost of production κ ≥ q. Given
Constraint 2, C and A are the only relevant substrategies and we again only need to
characterize when bidders choose C:

Proposition 2.9. With gap-dependent pricing, the crowdfunding game has a unique PBE
a(t,g,c) = C if and only if c ≤ q(v−pg)S(t,g−1)(pg−1), giving bid intensity β(t,g)(pg), where

β(t,g)(pg) = λqF
(
q(v − pg)S(t,g−1)(pg−1)

)
for any pg, S(t,g)(pg) = 1 if g ≤ 0

(2.40)

S(t,g)(pg) =
ˆ τ

t

exp
(
−
ˆ Tg0−g+1

t

β(x,g)(pg) dx
)
β(T,g)(pg)S(T,g−1)(pg−1) dTg0−g+1 for g ≥ 1

(REC-S-p)

Here the stopping time Tn for n ≡ g0 − g + 1 is the date at which the n’th bid is
pledged. In the above expressions, the bidding intensity β(t,g)(pg) depends directly on
the specific price pg that applies to unit g0− g and indirectly on the price vector applied
to the successive unit sold pg−1 faced by successor bidders. Later we will show that this
dependency produces important effects that determine optimal pricing.

Since we fix g0, the optimization problem is slightly simpler:

max
pg0

S0(pg0) subject to: G =
∑g0

g=1 pg, g0 given (2.41)

We focus on two special cases. A single price design pg0 is a constant vector of g0 elements
so, in its context, we define S0(p, g0) ≡ S0(pg0) for brevity. The two-price-tiers scheme
discussed previously is instead constituted by g0a units sold initially at price pa and g0b

units sold at prices pb afterwards, so that total sells to reach the funding threshold are
g0 ≡ g0a+g0b. It will be employed for all the numerical exercises that follow. Using linear
CDF, This price scheme is fully specified by g0, g0a and pa, with pb following uniquely
from the goal constraint G = pag0a + pb(g0 − pa). The recursion that determines the
success rate, in this case denoted S(t,g)(ga, gb; pa, pb), follows readily from Eq. (REC-S-p)
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(a) Uniform c
(S0(15.5/30) = 0.15)

(b) Homogeneous c
(S0(9.5/20) = 0.55)

Figure 2.12: S0(g0a, da) isoquants. Panel (a) uses parameters the same parameters as in
Fig. 2.11 except for G = 15.5. Panel (b) uses parameters G = 9.5, g0 = 19, c = 0.08,
(τ, λ, q)=(60, 3, 0.2).∗

∗Isolines only connect points.

after adjusting the bid intensity as

β(t,g) =


λqF

(
q(v − pa)S(t,g−1)

(
g0a − (g0 − g + 1), g0b; pa, pb

))
for g > g0 − g0a

λqF
(
q(v − pa)S(t,g0−g0a−1) (0, g; pa, pb)

)
for g = g0 − g0a

λqF
(
q(v − pb)S(t,g−1) (0, g − 1; pa, pb)

)
for g < g0 − g0a

We determine numerically the optimal two-tier pricing using the same uniform CDF
as in the single price design and find that p∗a > p∗b . Basically, lower prices in phase b are
optimal because they encourage bidders arriving in phase a.

Observation 2.2. Assuming uniform CDF, price frontloading is optimal: the QLR price
scheme involves p∗a > p∗b

Fig. 2.12a presents our numeric result showing the success isoquants and the optimal
menu in the (da, g0a) coordinates system with G=15.5 and g0=30. Forcing initial higher
prices raises the success rate of S0(g0, p)=0.15 achieved with a single price p = 0, 52
to S0(g0a, g0b; pa, pb)=0.19 by selling g0a = 2 units at pa = 0, 66 and g0b = 28 units at
pb = 0, 49. Conversely, price schemes with initial discounts reduce the probability of
success, so if initial higher prices are forbidden, the entrepreneur sets a single price.

The optimality of higher initial prices under uniformly distributed inspection costs
can be easily proved in a simplified setting where n = g0 bidders arrive according to a
deterministic sequence. The same logic applies to continuous time.
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Lemma 2.8. Suppose n = g0, bidders arrive sequentially and inspection costs are uni-
formly distributed over [0, q]. Then optimal prices are frontloaded (increasing in the gap
g):

p∗g = v − 2 (vg0 −G) (g0 − g + 1)
g0(g0 + 1) , g0 ≥ g ≥ 1 (2.42)

The Proof in Appendix 2.A determines the optimal prices solving the Lagrangian
associated to the success rate maximization problem (2.41).

Optimal prices reduce linearly in the number of prior bidders due to the encourage-
ment effect. Taking into account that units are charged with pg = v after completion, a
gap decreasing price scheme for the first g0 units sold implies an overall non-monotonic
price scheme. This non-monotonicity produces a drop in sales after the goal is reached
caused by higher prices as observed in crowdfunding data.

The encouragement effect however not always dominates the substitution effect of
having to raise initial prices. Whether it dominates depends on the price elasticity of
inspection incentives. When inspection costs are homogeneous complementary originates
from shifts in the critical dates t̂g(pg−1), hence the encouragement effect is weaker than
with a uniform CDF, so the substitution effect prevails more easily. In some cases the
encouragement is shut-down completely, e.g. when n = g0 bidders arrive sequentially
and all of them are needed to reach success. Setting λ=v=1, we have S0 = qn and Sbid

(t,g)

along feasible paths is either 0 or qg−1, so the optimal price is p∗g = 1− c/(qg) such that
Sbid

(t,g)dgq = c. Higher prices and inspection of predecessor bidders are clear substitutes.
When substitution effects prevail, optimal prices decrease with the gap, so we obtain the
diametrically opposite result than with the uniform CDF.

Observation 2.3. Initial discounts are sometimes optimal under homogeneity.

Fig. 2.12b shows success isoquants assuming homogeneous inspection cost and for
G=9.5 and g0=19. The success rate increases from S0(g0, p) = 0.55 with a fixed price
p = 0, 47 to S0(g0a, g0b; pa, pb) = 0.58 by selling the first g0a=16 units at price pa=0, 46
and the remaining g0b=3 units at price 0, 51. Moreover, all price menus obtained by
setting (g0a, da) combinations within the highest yellow isoquant improve the fixed price
design.

2.6 Discussion

This section adds further discussion on modeling choices, testable implications of our
theory and crowdfunding design results.
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2.6.1 Model remarks

Alternative assumptions: We discuss assumptions on the campaign duration τ and
bidder inspection cost CDF F . The duration τ is in principle a choice variable although
the vast majority of Kickstarter campaigns set it at 30 days (the second most popular
option is to set τ = 60 days). If chosen independently within our model with a fixed
arrival rate and bidder type distribution, the optimal campaign duration is infinite due
to its obvious effect on success rates, profits and consumer rents. It is easy to intro-
duce a trade-off with bidder incentives (and the entrepreneur’s profits) by adding generic
time discounting. The are also plenty of other factors that justify a trade-off between
duration τ and arrival rate λ; e.g. product-specific discounting from boredom, risks of
changing tastes and opportunity costs, the fall in arrival rates from increased inter-project
competition and increased costs of any ongoing advertising.

Despite restricting bids to 0 or p, the analysis applies for campaigns that accept
donations, as standard on Kickstarter, if the restriction does not bind. It also applies if we
relax the assumption of unit demand funders if they are purely motivated by consumption
and price discounts do not exceed 50%; i.e. if v < 2p. It might seem that this is true even
without bid restrictions, because donating a fraction of p does not reduce the number of
bids that other bidders need to provide given the funding goal is set at an integer multiple
of p. However, there could exist equilibria in which multiple bidders donate say 1.5p in
the hope that there will be multiple such donations, which combine to reduce the gap.

Finally, when we assume F is polynomial we do not allow for other lower order terms
than the degree of F apart from the 0-type atom z0 ≡ z, e.g. a linear interaction when
discussing ρ = 2. Full parsimony would require them though their interpretation is less
clear.

Alternative normalizations: Given that τ and λ have equivalent effects on bid
profiles and success rates, a natural normalization is to interchange t with relative time
t/τ ∈ [0, 1] and scale λ to λτ . Even setting τ = 1 is plausible. We did not opt for
applying this normalization since remaining time expressed as 1 − t instead of τ − t

makes expressions more obscure. These normalizations are clearly not valid if we assume
endogenous attention. In the first circulated version of this paper, we recorded time in
terms of r = τ − t but time moving forward is more familiar for describing graphs and
linking slopes to derivatives.

Deb et al. (2021); Alaei et al. (2016) assume only a single source of stochasticity in
bidding behaviour; either arrivals or valuations while keeping inspection costs homoge-
neous. Two ways to reduce stochasticity in our setting are to set q = 1 as explained
above or use the neutral arrival rate λ = 1. These two normalizations are not analogous:
q enters in the inspection incentive directly and indirectly through S while λ enters only
indirectly.
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2.6.2 Testable implications

Our theory is broadly consistent with stylized facts on the dynamics of crowdfunding
purchases even though we abstract from donations. The theory is tractable and we
discuss how extensions can readily generate testable predictions. In particular, we predict
a positive correlation between duration and funding goals, as observed in the data.

Our main predictions are a decreasing bid profile from decreasing pivotality and a
potential increasing tendency when the upside of bidding in success uncertainty dominates
the downside of negative news. Our findings provide a novel set of testable implications.
The analysis of DPE and JE reveals that the bid profile is differentiated across project
categories with different features. The analysis of DPE shows that the initial decreasing
slope is steeper for large g0/τ . This can be tested with a breakdown by campaign category
of pledge data. Our theory predicts that campaign with big funding goals, e.g.technology,
design, games and film&video, have a steeper initial negative slope due to the stronger
DPE than projects with smaller goals, such as for the music, comics, dance and crafts
categories. We also predict profile features based on completion time and success rate
by category. The bid profile predicted by our model for early completers is near to flat.
These campaigns encompass those having strong impact on future success prospects of the
entrepreneur so that she sets a low funding goal to ensure a higher success rate. On the
other hand, we predict a more pronounced U-shape for successful late finisher campaigns,
and a strong decreasing pattern with a slight final increase for unsuccessful campaigns.
We expect bid profiles to slope downwards when inspecting is an attractive distraction
for most relevant bidders. Conversely, positive slopes are likely when inspection costs are
too costly for most bidders to want to inspect. We also predict that projects that spark
bidders’ curiosity, active enjoyment in reading or desire for distraction tend to outweigh
their costs of effort and opportunity cost of time. In this case, negative net inspection
costs predominate. Also close contacts and family of the entrepreneur are likely to be
anyway informed or to feel obliged to pay attention. Bidder connectedness with the
entrepreneur, as estimated via Facebook links or geography (see Agrawal et al., 2011),
can serve as a proxy for negative inspection costs.

From the quantitative point of view, one weakness of our theory is that interim slopes
are not sharp enough to explain the “peaks” in revenues at the campaign extremes. The
final peak in purchases observed in the data is likely caused by bidders who strategically
time their inspection decision so as to face less success rate uncertainty. By waiting,
they reduce their uncertainty though they oblige others to face more uncertainty or a
lower success rate. In a companion paper, we develop a thorough model of the dynamic
free-riding that results. Wndogenous timing readily generates a spike of bidding at the
last moment, just before the campaign deadline. Strategic waiting by bidders is not
the only explanation for the final bunching: also donors make last minute contribution
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to ensure the campaign succeeds if still far from reaching the goal as shown by Deb
et al. (2021) and Crosetto and Regner (2018). Behavioural theories attribute bunching
at the end of campaigns to procrastination and deadline effects. Basically, irrationality
is caused by laziness or anxiety under the pressure of time running out. Another possible
cause is endogenous advertising intensity from both the crowdfunding platform and the
entrepreneur.

An empirical puzzle illustrated by Deb et al. (2021) that merits our demonstrating
is that bidding drops at success time (Tg0) and tails off after (even for purchases). In
section Section 2.5, this occurs because prices increase. Without endogenous pricing,
relative bidding prior and post success depends on when success occurs. If we only look
at successes, then we have g0 bids by Tg0 , so average bidding rate pre-success equals
g0/Tg0 . Average bidding rate after success is instead λq (given we only look at successes
here). So if τ is small: g0/τ > λq, so average bidding definitely falls after success. If τ
is large, then pre- and post- success bidding comparison is just dependent on Tg0 in the
obvious way. The expectation over the g0 distribution can result in either possibility. If
we also sample unsuccessful campaigns, so that the average bidding before Tg0 coincides
with average bidding of failed campaigns, then average bidding is likely to be higher after
success. The reason is that pre-success average puts more weight on failed campaign
(with lower bidding), while post- only includes successes.13

2.6.3 Crowdfunding design

Typical crowdfunding campaigns feature a diversity of rewards that offer variants on the
entrepreneur’s product at differing prices. In addition, the quantity of some of these
rewards may be limited. We refer to a crowdfunding reward design with these features
as using a quantity limited reward (QLR) scheme. Sometimes quantity limits are driven
by non-linear production costs, as when, for example, a music band that has only time to
provide a limited number of private concerts in return for high price bidders. Quantity
limits may also aim to create exclusivity. This practice is pervasive so it is its optimal
design deserves theoretical understanding. However, Kickstarter prohibits modifications
of the reward tiers during the campaign (after the first unit of a tier is sold) making QLR
static price menus. Hence, adapting our dynamic framework to encompass QLR requires
adding an additional layer of complexity. We now discuss how our results on dynamic
pricing via gap-dependency extend to having bidders choosing prices from a simultaneous
menu.

QLR with initial discounts is a common practice in reality and constitutes effectively
a form of gap-dependent pricing. This scheme involves a form of early-bird discounts in

13For the homogeneous cost case, average bidding falls after success even conditional on success, but
for this reason the slope in Fig. 2.9a for the binary cost case goes down more when controlling for success.
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that gaps are higher for earlier arrivals in a relative sense. The entrepreneur can therefore
implement a gap decreasing price due to the first-come-first-served logic without directly
obliging the desired gap-dependent pricing.

Also the converse case where bidders buy a product at the highest available price is
possible. Ellman and Hurkens (2019b) note that there are essentially two ways to design
a crowdfunding campaign that offers the same product at different prices. The first is to
charge higher prices and include an added good that is sometimes only symbolic, such as
a signature. The second, is to associate to the basic reward a donation that constitutes
an overprice, optimally with a minimum amount specified. A static price menu with
these features corresponds to gap dependent pricing if bidders willingly pay the initial
higher prices. This requires low initial success prospects relative to their valuation of the
crowdfunding product.

In both discussed cases, we have to take into account that the gap threshold g0 might
not apply. Also, if prices fall as the gap falls, the commitment to reduce prices later is
not easy even if the entrepreneur is able to add apparently new rewards. E.g. suppose
G = 5 and the price menu has two price tiers, a and b with pb = 2 and pa = 1. If bidders
the first two bidders buy units from tier a, then the lowest bidder threshold that achieves
the goal is 4 whereas it is 3 if they first buy from tier b. Due to this complication, a
comprehensive treatment of menu price schemes requires a fundamental change in the
model mechanics that is outside the scope of this article.

After-market: In our baseline model of Section 2.2, we assumed bidding was now
or never. There is no alternative to buy the product in an after-market following a
successful conclusion to a crowdfunding campaign. With a single positive valuation, the
option to wait until then is neutral to crowdfunding dynamics. Assuming inspection costs
drop to zero when the campaign is over, the entrepreneur would then extract the bidder
rent fully setting p = v given our assumptions. So bidders would be indifferent between
waiting and playing A. Of course, that is a very special case but the more general point
is that crowdfunding creates a price discontinuity. With multiple positive valuations, the
option of after-market purchases stops being neutral because bidders can now hope to
gain a rent from buying in the after-market. The rent was always zero in the unique
positive valuation case because then the entrepreneur would always set price equal to
that valuation.

Advertising: Throughout, we fixed parameters that depend on advertising, promo-
tion and selection strategies of platforms and entrepreneurs. Endogenizing those param-
eters (bidder arrival intensity λ, product quality variables v, q and campaign duration τ)
lies beyond the scope of this paper since it requires a model of the advertising technology
and attention competition between projects. The types of tradeoff derived in Section 2.5
will continue to apply.
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2.7 Conclusion

The main contribution of this paper is identification of the decreasing pivotality and
Jensen effects which will apply in a much broader range of dynamic participation games
than just crowdfunding. At the same time, we have presented a parsimonious model of
crowdfunding that is able to account for a variety of observed momentum effects in the
dynamics of funding, including the much-commented U-shape profile.

Our baseline model focuses on pure private values and bidders exogenously constrained
to either forget the project or inspect and possibly bid on it in the same decision episode
in which they become aware of the project. Reality is much more complex, but the
insights from our basic set-up readily extend to cover richer scenarios and to generate
additional effects such as free-riding in the endogenous moves setting.

The simplicity of the basic model served to pinpoint two clear driving forces, despite
the relatively complex dynamic challenge faced by bidders. They must anticipate how
project success chances depend on the inspection calculus of all bidders who have not yet
moved. Leaving aside friends, fans and random procrastinators who enjoy looking at the
entrepreneur’s project, each bidder is only willing to dedicate time or effort to inspecting
a project if learning his type is likely to be instrumentally valuable. That, in turn,
requires the project to have a reasonable chance of success. As a result, the distribution
of inspection costs and bidder knowledge about those costs take centre-stage.

Despite its parsimony, the model is broadly consistent with the U-shaped dynamics
that initially motivated our study and with the stylized facts presented in previous litera-
ture. The model can account for the most salient facts, generating a U-shaped profile, as
well as increasing and decreasing patterns, depending on the project’s starting condition
and the distribution of inspection costs. Nonetheless, alternative and complementary
theories certainly could provide plausible explanations for some aspects of the U-shape
via assumptions about the advertising technology and word-of-mouth communication.
Advertising and platform promotion strategies represent an important part of the puzzle,
but to derive the optimal promotion strategies, we first want to know how the dynam-
ics of campaigns respond to an exogenous bidder arrival rate. We have shown how the
threshold alone can interact with costly inspection to generate a range of dynamic effects
that will continue to be relevant in richer models. Other forces, such as word-of-mouth
learning and common value effects, can influence the observed funding patterns and are
likely to be empirically important as well.

Advertising and project promotion effects are highly compatible with our model. An
alternative story for the profile is that initial advertising leads to an increasing profile
when amplified via word-of-mouth (before saturation sets in). Towards the end of the
campaign, the opposite may occur as advertising influence decays over time. Depend-
ing on the specific technology assumption, it is likely that a lot could be gained from
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strategically-timed promotions that raise bidder arrival rates precisely when projects are
at risk of going cold and dying out. Such an analysis would have to pay attention to
bidders’ awareness of the promotion strategies in use. Competing campaigns also merit
investigation.

The role of common values also merits further investigation. Common values readily
generate positive and negative cascades but combining a non-extreme common values
model with the threshold effect in our dynamic framework is far from trivial.

Our design results make the analysis relevant for entrepreneurs who need to evaluate
how their strategic choices affect project success prospects. They know that raising
price lowers the chance of a success. Our analysis shows that the resulting trade-off is
significantly more complicated than simply assessing the initial gap as sufficed in the
static context with a single price. Dividing the gap by time available is a natural first
look in a setting where bidders arrive over the duration of the project, but inspection
costs can make many potential bidders useless: they just pass over the project if the gap
is too high relative to time left on the campaign clock.

Appendices of Chapter 2

2.A Proofs

Proof of Lemma 2.1. Bid intensity β(t,g) cannot be negative so (i) and Eqs. (2.2)
and (ODE-S) immediately imply (ii). So we need only prove ∆S(t,g) ≥ 0,∀g; this implies
the second inequality in (i) since Sbid

(t,g) ≡ S(t,g−1). We prove ∆S(t,g) ≥ 0 by induction.
First, if g ≤ 0, S(t,g) ≡ 1 so ∆S(t,g) = 0. Second, ∆S(t,1) = 1 − S(t,1) = e−λq(τ−t) ∈ (0, 1].
For g ≥ 2, we integrate Eq. (2.8) by parts, using dnT = −nTβ(T,g) dT from Eq. (2.7), to
give

S(t,g) = −
ˆ τ

t

S(T,g−1) dnT =
ˆ τ

t

nT Ṡ(T,g−1) dT −
[
nτS(τ,g−1) − ntS(t,g−1)

]
(2.A.1)

S(τ,g−1) = 0 ∀g ≥ 2 and nt = e0 = 1 imply
[
nTS(T,g−1)

]τ
t

= S(t,g−1). So using Eq. (ODE-S),

∆S(t,g) = −
ˆ τ

t

nT Ṡ(T,g−1) dT =
ˆ τ

t

nTβ(T,g−1)∆S(T,g−1) dT

Now β(t,g) ≥ 0 and nx > 0 ∀x ≤ τ , so (i) holds at g − 1 =⇒ (i) holds at g.
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Proof of Lemma 2.3 (ii).

ȦS
t = 1

S0

K∑
g=−∞

(
Q̇(t,g)β(t,g)S(t,g−1) +Q(t,g)β̇(t,g)S(t,g−1) +Q(t,g)β(t,g)Ṡ(t,g−1)

)

= 1
S0

K∑
g=−∞

((
Q(t,g+1)β(t,g+1) −Q(t,g)β(t,g)

)
β(t,g)S(t,g−1) +Q(t,g)β̇(t,g)S(t,g−1) +Q(t,g)β(t,g)Ṡ(t,g−1)

)

= 1
S0

K∑
g=−∞

Q(t,g)

(
β(t,g)

(
β(t,g−1)S(t,g−2) − β(t,g)S(t,g−1)

)
+ β̇(t,g)S(t,g−1) + β(t,g)Ṡ(t,g−1)

)

by change of variable from g + 1 to g in the first summation term. Next from (ODE-S),

ȦS
t = 1

S0

K∑
g=−∞

Q(t,g)

(
β(t,g)

(
β(t,g−1) − β(t,g)

)
+ β̇(t,g)

)
S(t,g−1)

= 1
S0

K∑
g=−∞

Q(t,g)Lβ(t,g)S(t,g−1)

For ȦF
t , note that AF

t = 1
1−S0

(
At − S0A

S
t

)
, so

ȦF
t = 1

1− S0

(
Ȧt − S0Ȧ

S
t

)
= 1

1− S0

K∑
g=−∞

Q(t,g)Lβ(t,g)
(
1− S(t,g−1)

)

Proof of Lemma 2.4. We have F ′ with lower costs than F in that F �FOSD F ′.
Let H ′, H denote the CDF of Tg under F ′, F , respectively and E(S(T,g−1)|H) indicates
expectation over Tg ≡ T distributed according to H. Similarly, we use S ′, β′ and S, β to
distinguish results for F ′ and F . By the inductive hypothesis at g − 1, S ′(t,g−1) ≥ S(t,g−1)

so β′(t,g) ≥ β(t,g) by Eq. (2.9) and so n′T = exp
(
−
´ T
t
β′(x,g)(z) dx

)
≤ nT for all T . For any

t, g (suppressed), HT ≡ 1− nT so H ′ ≥ H for all T ; i.e., H �FOSD H
′.

Now, S, S ′ are decreasing in T by Lemma 2.1 so by FOSD, E(S(T,g−1)|H ′) ≥ E(S(T,g−1)|H);
to prove this FOSD result, we integrate by parts as in Eq. (2.A.1) (Ṡ ≤ 0 by Lemma 2.1):
ˆ τ

t

S(T,g−1) dH ′T −
ˆ τ

t

S(T,g−1) dHT = S(τ,g−1)
(
H ′τ −Hτ

)
−
ˆ τ

t

Ṡ(T,g−1)(H ′T −HT ) dT

since H(t,g)
t = 0 =⇒Ht = H ′t = 0 and S(τ,g−1) = S ′(τ,g−1) (= 0 if g ≥ 2, = 1 if g = 1).

Finally, applying Eq. (REC-S) and then the inductive hypothesis,

S ′(t,g) − S(t,g) = E(S ′(T,g−1)|H ′)− E(S(T,g−1)|H) ≥ E(S(T,g−1)|H ′)− E(S(T,g−1)|H) ≥ 0
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Proof of Proposition 2.4. The chain rule for generators (see Appendix 2.C.1) states
that

Lh(Y )
(t,g) = hYLY(t,g) + β(t,g)

(
∆h(Y(t,g))− hY ∆Y(t,g)

)
(2.A.2)

Setting Y(t,g) ≡ qSbid
(t,g) and h(·) ≡ λqF (·) so that β(t,gt) ≡ h(Y(t,gt)) and hY (·) ≡ λqFc(·),

provides an expression for Lβ(t,g) which we equate with its DPE-JE decomposition (2.19):

λq
(
qFc LS

bid

(t,g) + β(t,g)
(
∆F (qSbid

(t,g))− Fc q∆Sbid
(t,g)

))
= λq

(
E (t,g) + J (t,g)

)
(2.A.3)

where Fc ≡ Fc(qSbid
(t,g)). Cancelling E (t,g) = qFc LSbid

(t,g) by Eqs. (2.13) and (2.15) proves
Eq. (2.17):

J (t,g) = β(t,g)
(
∆F (qSbid

(t,g))− Fc q∆Sbid
(t,g)

)
If F is polynomial with maximal exponent ρ ∈ N+,

∆F (qSbid
(t,g)) = Fc(qSbid

(t,g))q∆Sbid
(t,g)+

Fcc(qSbid
(t,g))

2
[
q∆Sbid

(t,g)

]2
+

ρ∑
k=3

Dk
c (F )

(
qSbid

(t,g)

) [
q∆Sbid

(t,g)

]k
k!

The instantaneous variance of Sbid
(t,g) equals the intensity of the underlying Poisson process

gt times the jump size squared, so νqS
bid

(t,g) = β(t,g)(q∆Sbid
(t,g))2 = q2νS

bid

(t,g) (details in 2.C.4).
If ρ = 2, this implies J (t,g) = q2

2 ν
Sbid

(t,g)Fcc(qSbid
(t,g)). So Eq. (2.19) implies that Lβ(t,g) satisfies

(2.20) and condition (2.21) guarantees J (t,g) ≥ E (t,g), hence Lβ(t,g) ≥ 0. If ρ ≥ 3,

J (t,g) = q2

2 ν
Sbid

(t,g)Fcc(qSbid
(t,g)) + β(t,g)

ρ∑
k=3

Dk
c

(
F (c)

) [
q∆Sbid

(t,g)

]k
k! (2.A.4)

k’th derivatives for k > ρ are zero. If F (c) ≡ ∑
k′∈{0,1,...,ρ} ck′c

k′ for 3 ≤ k ≤ k′ ≤ ρ,
the k’th summation term from positive polynomial coefficient ck′ is a positive multiple
of ck′−k. So condition (2.21) is sufficient for the JE to prevail over the DPE and produce
an increasing expected bid rate from state (t, g); if ρ = 2, (2.21) is also necessary.

Proof of Lemma 2.6. Substituting for νSbid

(t,g) , LS
bid

(t,g) = L∆S
(t,g) from equation Eq. (2.13)

and the expressions for Fc, Fcc from just below Eq. (2.30), Eq. (2.20) reduces to

Lβ(t,g) = λq(1− z)∆Sbid
(t,g)

(
−2Sbid

(t,g)∆β(t,g) + β(t,g)∆Sbid
(t,g)

)

Simplifying further using Eq. (2.6) and (Sbid
(t,g−1))2 − (Sbid

(t,g))
2 = ∆Sbid

(t,g)(Sbid
(t,g−1) + Sbid

(t,g)),

Lβ(t,g) = (λq)2(1− z)
(
∆Sbid

(t,g)(z)
)2
[
z − (1− z)Sbid

(t,g)(z)
(
2Sbid

(t,g−1)(z) + Sbid
(t,g)(z)

)]

The term in square brackets determines the generator’s sign. It is positive under condition
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(2.31), strictly so for all g ≥ 2. Maximizing Sbid
(t,g), S

bid
(t,g−1) at 1 gives the highest lower

bound on z at z = 3/4.

Proof of Lemma 2.8. The Lagrangian of the maximization problem (2.41) is given
by:

L =
 g0∏
g=1

dg0−g+1
g

− l
 g0∑
g=1

dg − (vg0 −G)
 (2.A.5)

where l is the multiplier associated with the goal constraint. The first-order condition
with respect to generic dg is

g0∏
g=1

dg0−g+1
g

(
g0 − g + 1

dg

)
= l So, dg

d1
= g0 − g + 1

g0
(2.A.6)

Now using Eq. (2.A.6) together with the goal constraint goal we find the exact value of
d1:

vg0 −G = d1

g0

 g0∑
g=1

g0 − g + 1
 = d1

g0

[
g0(g0 + 1)− g0(g0 + 1)

2

]
= d1(g0 + 1)

2

which implies

d1 = 2 (vg0 −G)
g0 + 1 and dg = 2 (vg0 −G) (g0 − g + 1)

g0(g0 + 1)

The optimal prices in Eq. (2.42) follow by subtracting this dg from v.

2.B Derivations for canonical distributions

2.B.1 CDF equivalence

Any CDF F (c) and arrival rate λ is outcome-equivalent to the CDF F ′(c) on support
[0, q] with rescaled arrival rate λ′ = λF (q) where F ′(c) is derived from F (c) by truncating
values c > q and substituting values c < 0 by 0: F ′(c) has atom z = F (0)/F (q) at zero
and

F ′(c) , z + (1− z)F (c)− F (0)
F (q)− F (0) for c ∈ [0, q]

(λ, F (c)) and (λ′, F ′(c)) generate identical bid profiles.
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2.B.2 Average bidding for g0 = 2 under linear CDF

With g0 = 2, β(t,1) is constant at λq and β(t,2) equals λqF (qS(t,1)). Averaging this,

At = λq
[
1 +Q(t,2)

(
F
(
qS(t,1)

)
− 1

)]
(2.B.1)

= λq
[
1 +Q(t,2)

(
z + (1− z)S(t,1) − 1

)]
(by 2.28)

= λq

[
1 + exp

(
−λq
ˆ t

0
z + (1− z)S(x,1) dx

)(
z + (1− z)S(t,1) − 1

)]
(by 2.24)

= λq

[
1− exp

(
−λq

(
zt+ (1− z)

ˆ t

0
S(x,1) dx

))
(1− z)

(
1− S(t,1)

)]
(2.B.2)

Again from (2.24),

S(t,1) = 1− e−λq(τ−t) =⇒
ˆ t

0
S(x,1) dx = t− 1

λq

(
e−λq(τ−t) − e−λqτ

)
(2.B.3)

and finally combining Eqs. (2.B.2) and (2.B.3),

At = λq

{
1− (1− z) exp

[
−λqτ + λq(1− z)

(
e−λq(τ−t) − e−λqτ

)]}
(2.B.4)

Intuitively, parameters (λq, z, τ) raise bidding, as clear from expression (2.B.4):

2.B.3 Comparative statics on z for g0 = 2 under linear CDF

For any gt ≤ 1, bid intensity is constant at λq. Whereas while gt = 2, the rate of change
in the bid intensity follows from applying the formula of the rate of decrease in pivotality,
from Eq. (2.12), to the generator in Eq. (2.29):

Lβ(t,2) = −λq(1− z) ∆S(t,1) ∆β(t,2)

= −(λq)2(1− z)
[
1−

(
z + (1− z)S(t,1)

)] (
1− S(t,1)

)
= −

(
λq(1− z)

)2 (
1− S(t,1)

)2

= −
(
λq(1− z)

)2
e−2λq(τ−t)
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Since g0 = 2, we need the probability Q(t,2) that gt = 2 from Eq. (2.24),

Q(t,2) = exp
[
−
ˆ t

0
λq
(
z + (1− z)S(x,1)

)
dx
]

= exp
[
−λq
ˆ t

0
z + (1− z)

(
1− e−λq(τ−x)

)
dx
]

= exp
[
−λq

t− (1− z)
ˆ t

0
e−λq(τ−x) dx

]

= exp
−λq

t− (1− z)e
−λq(τ−t) − e−λqτ

λq

 = exp
−λqt+ (1− z)

(
e−λq(τ−t) − e−λqτ

)
It follows that, starting from g0 = 2,

Ȧt = Q(t,2) Lβ(t,2) = −
(
λq(1− z)

)2
exp

[
−λq(2τ − t) + (1− z)

(
e−λq(τ−t) − e−λqτ

)]

So the slope’s magnitude is falling in z as shown by the partial derivative,

Dz

∣∣∣Ȧt∣∣∣ = −(λq)2(1− z) exp
[
−λq(2τ − t) + (1− z)

(
e−λq(τ−t) − e−λqτ

)]
(2.B.5)

×
(

2 + (1− z)
(
e−λq(τ−t) − e−λqτ

))
≤ 0

2.B.4 Condition for upward slope for quadratic CDF and g0 = 2

For g0 = 2, similar to the affine case, the slope is determined by the product of

Lβ(t,2) = (λq)2(1− z)e−2λq(τ−t)
[
z − (1− z)

(
1− e−λq(τ−t)

)(
3 + e−λq(τ−t)

)]
(2.B.6)

and Q(t,2) = exp
(
−
ˆ t

0
β(x,2) dx

)
= exp

[
−λq
ˆ t

0
z + (1− z)

(
1− e−λq(τ−x)

)2
dx
]

= exp
{
−λqt+ (1− z)

[
2
(
e−λq(τ−t) − e−λqτ

)
− 1

2

(
e−2λq(τ−t) − e−λqτ

)]}

So Ȧt = (λq)2(1− z)
[
z − (1− z)

(
1− e−λq(τ−t)

)(
3 + e−λq(τ−t)

)]
× exp

{
λq(t− 2τ) + (1− z)

[
2
(
e−λq(τ−t) − e−λqτ

)
− 1

2

(
e−2λq(τ−t) − e−λqτ

)]}
(2.B.7)

The first term in square brackets determines the sign of the profile slopes. It is positive
if condition (2.31) holds, i.e., for

z ≥ ζ(t,2) = 1−
(
1 + Sbid

(t,2)

)−2
= 1−

(
4− 4e−λq(τ−t) + e−2λq(τ−t)

)−1
∀t ∈ [0, τ ] (2.B.8)

A strict inequality implies a strictly positive slope for any ζ(t,2) < z < 1. For t = 0 and
λqτ = 0.126, the z lower bound is ζ(0,2)=0.2.
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2.C Supplementary theory

This appendix adds formal details behind the infinitesimal generator and related results
used in the paper to characterize dynamics. 2.C.1 provides a full definition. 2.C.2 uses
it for a formal proof of Eq. (ODE-S) and offers an alternative derivation of Eq. (REC-
S). 2.C.3 presents full details on the differential equations that determine the transition
probabilities. 2.C.4 and 2.C.5 derive jump variance and martingale equivalences.

2.C.1 Infinitesimal generator

The Poisson count process Bt equals the number of bids by date t. Recall our state
variable is gt , g0−Bt. Denoting the change in gt over an infinitesimal interval of length
dt by dgt , gt+dt−gt, the stochastic differential equation (SDE) for gt is dgt = (−1)×dBt

(SDE-g). Given that the instantaneous probability of a bid is β(t,g) dt and that of two
or more bids occurring simultaneously is negligible, P

(
(−dgt) = 0|(t, g)

)
= 1− β(t,g) dt+

O(dt)2,P
(
(−dgt) = 1|(t, g)

)
= β(t,g) dt + O(dt)2 and other values can be ignored.14 So

for any process Y(t,gt) adapted to gt, Itô’s formula applied to the Poisson jump process
(SDE-g) yields the jump-diffusion

dY(t,gt) = Ẏ(t,gt) dt+
(
Y(t,gt−1) − Y(t,gt)

)
(− dgt) (SDE-Y )

The infinitesimal-generator of Y(t,gt) is its limit expected rate of change and satisfies

LY(t,g) , lim
dt↓0

E(t,g)
(
Y(t+dt,gt+dt)

)
− Y(t,g)

dt = Ẏ(t,g) + β(t,g)∆Y(t,g) (GEN)

Recall that ∆Y(t,g) , Y(t,g−1) − Y(t,g), distinct from dY(t,gt).
Unlike total derivatives in standard calculus, the generator L satisfies the follow-

ing adapted chain rule: for any twice differentiable function h(·) of Y(t,gt) with hY ,

∂h(Y )/∂Y ,

Lh(Y )
(t,g) = hYLY(t,g) + β(t,g)

(
∆h(Y(t,g))− hY ∆Y(t,g)

)
(GEN-h(Y ))

To see this, substitute h(Y(t,g)) for Y(t,g) in Eq. (GEN), noting that ∂
∂t
h
(
Y(t,g)

)
= hY Ẏ(t,g)

and substitute for Ẏ(t,g) from Eq. (GEN).

14We use big-O notation, writing y(t) = O(h(t)) as t→ 0 if ∃M, ε :
∣∣y(t)

∣∣ ≤Mh(t) for all |t| ≤ ε.
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2.C.2 Alternative derivation of the success probability recur-
sion

As S(t,gt) is a martingale, LS(t,g) ≡ 0 (see 2.C.5), so Ṡ(t,g) = −β(t,g)
(
S(t,g−1) − S(t,g)

)
.

Since β(t,g) is determined by S(t,g−1), we solve this first-order, linear, non-homogeneous
differential equation (Eq. (ODE-S)) for S(t,g) given S(t,g−1): the integrating factor is
n

(t,g)
T = exp

(
−
´ T
t
β(x,g) dx

)
(Eq. (2.7)’s probability of no bid on (t, T ) given gap gt = g),

DT

(
n

(t,g)
T S(T,g)

)
= −n(t,g)

T β(T,g)S(T,g) + n
(t,g)
T Ṡ(T,g) = −n(t,g)

T β(T,g)S(T,g−1)

Integrating, using n(t,g)
t = 1 and S(τ,g) = 0 for g ≥ 1, (ODE-S)’s unique solution is

S(t,g) =
ˆ τ

t

n
(t,g)
T β(T,g)S(T,g−1) dT

S(t,g) ≡ 1 ∀g ≤ 0 completes this recursive solution as alternative derivation of (REC-S).

2.C.3 State transition probabilities

As with the alternative derivation of Eq. (ODE-S) provided in Section 2.3.2, we begin
by proving Eq. (REC-Q) via the adjoint to Eq. (ODE-Q). This adjoint is called the
Kolmogorov backward equation because it fixes the target state (t, g) and solves for Q
by integrating backwards to the earlier state (t′, g′). To derive the adjoint, we sum the
probabilities of reaching (t, g) from (t′, g′) via (t′ + dt′, g′) with no bid on infinitesimal
interval (t′, t′+dt′) and the alternative path via (t′+dt′, g′−1) with one bid on (t′, t′+dt′):

Q
(t′,g′)
(t,g) =

(
1− β(t′,g′) dt′

)
Q

(t′+dt′,g′)
(t,g) +

(
β(t′,g′) dt′

)
Q

(t′+dt′,g′−1)
(t,g) +O

(
dt′
)2

So lim
dt′→0

Q
(t′+dt′,g′)
(t,g) −Q(t′,g′)

(t,g)

dt′ = −β(t′,g′)

(
Q

(t′,g′−1)
(t,g) −Q(t′,g′)

(t,g)

)
So Dt′

(
Q

(t′,g′)
(t,g)

)
= −β(t′,g′)

(
Q

(t′,g′−1)
(t,g) −Q(t′,g′)

(t,g)

)
(ODE-Q-backward)

The integrating factor to solve (ODE-Q-backward) is n(t′,g′)
T . For g ≤ g′−1, this generates

the recursive solution,15

Q
(t′,g′)
(t,g) = β(T,g′)

ˆ
t

t′

n
(t′,g′)
T Q

(T,g′−1)
(t,g) dT ≡ E(t′,g′)

[
Q

(Tg0−g′+1,g
′−1)

(t,g)

]

which is precisely Eq. (REC-Q). For g = g′, given that Q(t,g)
(t,g) = 1 and Q(t,g′′)

(t,g) = 0 for all
g′′ < g, the solution is Eq. (2.24), confirming the overall solution derived in the text.

15Since Tn is the n’th stopping time, the next bid after (t′, g′) occurs at Tg0−g′+1.
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To derive the Kolmogorov forward equation that we use in Lemma 2.3, we instead fix
the initial state (t′, g′) = (0, g0), restricting away from the general case, and look forward
to assess the probability of marginal shifts in the later state (t, g). A campaign reaches
(t+ dt, g) via either a bid from just prior state (t, g + 1) or via (t, g) with no intervening
bid on the interval [t, t+ dt). So

Q(t+dt,g) = Q(t,g)(1− β(t,g) dt) +Q((t,g+1))β(t,g+1) dt

Using Q(t+dt,g) − Q(t,g) = Q̇(t,g) dt and dividing by dt and taking limits as dt → 0, this
gives the differential equation Eq. (ODE-Q). We suppress the “-forward” qualification
since the main paper only needs this single variant.

2.C.4 Jump variance

Using Eq. (SDE-Y ) and neglecting terms of order O(dt2),

νY(t,g) , lim
dt↓0

V(t,g)
(
Y(t+dt,gt+dt) − Y(t,g)

)
dt = lim

dt↓0

V(t,g)
(
dY(t,g)

)
dt

= lim
dt↓0

E(t,g)

[(
Y(t+dt,g−1) − Y(t,g)

) (
− dgt

)]2

dt =β(t,g)

(
∆Y(t,g)

)2

since the instantaneous variance of the underlying Poisson process gt equals its intensity
β(t,g); each bid causes Y(t,g) to jump by ∆Y(t,g); squaring that scale factor gives the result.

2.C.5 Martingale equivalences

Using the transition probabilities determined in Lemma 2.2, the expected generator at
time x given an initial state (t′, g′) can be expressed as

E(t′,g′)
(
LY(x,gx)

)
=
∑
g≤g′

Q
(t′,g′)
(x,g) L

Y
(x,g)

To see that the generator of a martingale process Yt,gt must be identically zero and always
positive for a submartingale, always negative for a supermartingale, notice that

d
dt

ˆ t

t′

∑
g≤g′

Q
(t′,g′)
(x,g) L

Y
(x,g) dx

 ∣∣∣∣∣∣
t′=t

=
∑

g≤g′
Q

(t′,g′)
(t′,g) L

Y
(t′,g) = LY(t′,g′)

So the martingale property is violated if there exists a (t, g) such that LY(t,g) 6= 0. The
proof for supermartingales and submartingales is also immediate from this identity. To
prove the converse implication and complete the proof of the equivalences, it suffices to
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apply Dynkin’s Theorem (see e.g., Theorem 1.24 in Øksendal and Sulem (2007)) which
states that for any t′ ≤ t: E(t′,g′)(Y(t,gt))− Y(t′,g′) =

´ t
t′
E(t′,g′)

(
LYx,gx

)
dx.

2.D Supplementary Figures

(a) Kuppuswamy and Bayus (2015) (b) Deb et al. (2021)

(c) Crosetto and Regner (2018)

Figure 2.D.1: All panels plot number of bids per time interval. Data sources are Kick-
starter (c,b) and Startnext (c). (b) restricts to 30 day duration campaigns while (c,c)
measure time as a percentage of duration. (c) distinguishes campaigns based on funding
progress relative to the average path of the funding ratio (cumulative bids divided by
goal). “ontrack” projects deviate by 5% at most form the average.
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(a) Linear CDF (ρ = 1)

(b) Quadratic CDF (ρ = 2)

(c) Cubic CDF (ρ = 3)

Figure 2.D.2: Effect of z on bid profiles with a power-ρ distribution
function F (c) = z + (1− z)(c/q)ρ given g0 = 20 and (τ, λ, q) = (40, 0.7, 0.75)�
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Chapter 3

Crowdfunding with Endogenously
Timed Moves

(Joint with Matthew Ellman)

3.1 Introduction

Chapter 2 studies bidding dynamics and crowdfunding outcomes assuming an exogenous
temporal order of bidder moves. In reality, bidders rarely control exactly when they hear
about a specific campaign, but once they become aware, they may be able to choose
to decide later. By delaying a bidder can learn about the bidding choices of others who
choose to move in the interim. Continuous time delay, in the sense of following a campaign
over time, requires prolonged attention that is too costly for most bidders. However,
many platforms, including Kickstarter, offer a “Remind me” button that makes it easy
for bidders to revisit once, shortly before the deadline. An effective revisit still involves
duplication of some thinking costs – the cost of registering basic project characteristics
into the bidder’s short-term memory ready for deciding what to do – but in principle
that cost can be very small. So this paper extends the exogenous sequentiality model
of Chapter 2, now denoted Exo, by allowing this type of endogeneity in the timing of
moves: bidders can delay their decisions till just before the campaign deadline at no cost.
We investigate what these delay options imply for bidder surplus, success rates and total
welfare, compared to Exo and a simultaneous move benchmark denoted Sim. We also
analyze the implications for bidding dynamics.

The following core features of the Exo model continue to apply. Costs of inspecting
the entrepreneur’s campaign continue to play a central role in the analysis. Each bidder
learns the campaign’s current state for free on arrival. The observable state is summarized
by the date t and funding gap gt, as well as the product price p and deadline τ . Campaigns
publicize the amount of funds cumulated so far and the funding threshold from which
bidders can immediately learn the funding gap by subtraction. The only substantative
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learning cost for a bidder is the cost of inspecting to discover his individual valuation
which is a private value. The new question is whether and when bidders want to delay
this costly inspection and bidding decision. In Exo, they had no such option. In Endo,
they can. The number who delay and revisit the campaign at its end changes the strategic
problem of every bidder. In Exo, average pivotality is decreasing in time because later
bidders have fewer successor bidders to influence but in Endo, each bidder can influence
his predecessors if they chose to delay. A key difficulty is that bidders cannot observe
how many predecessors arrived nor how many of them chose to delay. Instead bidders use
the campaign’s state variables to estimate how many bidders will revisit the campaign at
its deadline.

Bidders who delay can respond to news about bidding by those who act on arrival but
delay options open the door to free-riding in the form of excessive delay. This can lower
success rates and welfare relative to a simultaneous benchmark (Sim) and exogenous
sequentiality (Exo). On the other hand, endogeneity (Endo) potentially raises welfare
because low cost types endogenously move earlier. Endogenous timing can even raise
campaign success rates when there are enough high cost types who do not inspect in
Sim, who rarely inspect in Exo but who are always willing to delay in Endo.

We fully characterize all equilibria in the special case of a threshold of two. Bidders
tradeoff a higher chance of getting the good by inspecting on arrival agains cost-saving
via free-riding by delaying. With a two bid threshold, their rankings of these two options,
to inspect or delay, turn out to be time-independent.

If inspection costs are homogenous or binary, there is a continuum of pure and mixed
strategy equilibria. These equilibria all share the same expected number of potential
delayers; that is, bidders who delay if the gap is still equal to the original threshold of two.
Only the equilibrium in stationary strategies is robust to inspection cost perturbations.
When the distribution of inspection costs is continuous, the model delivers a unique
prediction in stationary strategies.

When inspection costs are homogeneous, it is easy to compare the three crowdfunding
models. Given a threshold two campaign, bidders’ delay strategies generate the same
bidder surplus in each of the three models. The success rate, by contrast, is higher
in Sim than in the other two models. The reason is that simultaneity prevents bidder
free-riding and prevents bidders getting discouraged from learning bad news about their
predecessors. As a result, Sim is the best design option for the entrepreneur when bidders
are homogeneous. This advantage of Sim is greater at higher thresholds because higher
thresholds make free-riding more harmful.

Welfare comparisons between Sim, Exo and Endo are less clear-cut when inspection
costs are heterogenous. If a bidder type abstains (avoids inspecting and bidding) in Sim
and usually abstains in Exo, then Endo provides the highest surplus for that bidder
type. This is because such bidders are at least willing to delay and may strictly benefit
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from the option to inspect at the last moment. In addition, moderate cost types who
would inspect on arrival at certain dates in Exo can gain information rents by delaying
in Endo and this may raise overall bidder surplus.

In the two-bid threshold setting, the expected surplus of low cost types who continue
to inspect is unaffected and bidder surplus rises if the overall level of free-riding is not
too high. As always, Sim maximizes the success rate if all bidders are willing to inspect
in Sim but when the probability measure of high cost types is high, having all bidders
always inspect is not sustainable even under simultaneous moves. Action sequencing and
endogeneity then has the advantage that high-cost types can move after low-cost types.
This is an advantage because they then observe when success becomes more likely and
at least sometimes inspect. So long as there is not too much free-riding among low cost
types, Endo then raises success rates relative to Exo. Exo can also improve on Sim
because high cost types sometimes exogenously arrive after low cost types, albeit less
often than in Endo.

In general, endogenous timing has greater benefits in adverse crowdfunding environ-
ments, defined by low bidder priors about product value and high inspection costs. In
those settings, endogeneity is important because delay by high cost types raises the chance
of taking full advantage of the relatively few zero and very low cost types who do arrive.
Conversely, simultaneity helps the most when project fundamentals are strong and in-
spection costs are concentrated on low but positive values. In that case, abstention is not
a concern but free-riding from bidder delay may still occur and reduce success rates.

Returning to welfare considerations, we also solve for the constrained first-best in
which a planner decides whether bidders inspect or delay or abstain. We find that the
optimal amount of delay is positive but below that in Endo, so Sim has too little delay
but Endo has too much. The distortion in Endo is caused by the negative externality
imposed by free-riders on each other.

Finally, we study the bid profiles generated by the equilibria of Endo as compared
to those in Exo. In practice, most crowdfunding campaigns are advertised in advance
of official initiation, we extend Endo by adding an initial population of pre-arriving
bidders who act as soon as the campaign starts. We denote the resulting extended model
by Endo-Pre. The obvious addition to Exo is that the These two features clearly
permit the bid profile to have initial and final spikes. We prove that those spikes do
indeed materialize in equilibrium and thereby generate a more pronounced U-shape or
bimodal profile than in Exo.

The focal stationary equilibria of Endo induce increasing dynamics in the intermedi-
ate stages of a campaign. This results in a bimodal profile when pre-arrivals are present.
A final spike in the bidding profile always arises except as one possible equilibrium in
the knife-edge case where costs are perfectly homogenous; that is the equilibrium that is
profile-equivalent to Exo; i.e., such that all bidders delay in Endo at the same dates at
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which they would abstain from inspecting and bidding in Exo.

Related literature

The most closely related papers are Liu (2020) and Deb et al. (2021). Relative to these
contemporaneous papers, our paper is unique in that we have multiple actors moving
endogenously in a setting with conflicting interests among bidders.

Liu (2020) has multiple endogenously moving players in a common value crowdfund-
ing, but she assumes that bidders have no cost in placing their bids and identical ex-post
payoffs. Her appendix shows that bidders sort with optimists first in a perfect descending
signal timing that fully reveals their signals. This relies on the fact that bidder incen-
tives are perfectly aligned. In our setting instead, bidders have a common interest in the
success of the campaign but a bidder who likes the good wants others to inspect and bid
even if their inspection costs are too high and they do not like the good. Differences in
costs and tastes create an incentive to free-ride. In terms of bid profiles, her model differs
from our in that all bidders arrive at the start. So she predicts a time-schedule of bidder
action that is arbitrary except for ranking bidders according to their signal precision.

In Deb et al. (2021), the timing of action is endogenous in that a donor continuously
follows the crowdfunding campaign and decides how much to pledge at any point in time.
This donor can pledge multiple times. Besides the donor, also bidders, called “buyers”,
join the campaign at a homogeneous Poisson rate and decide whether to bid or not, on
arrival, as in Exo. They have no inspection cost for buyers but assume a cost of placing
a bid. This has similar effects. As they acknowledge, the buyers could donate like the
donor but they assume a single donor actor because the analysis is otherwise intractable.
Our contribution is to allow for multiple actors who can delay in a specific way. The
delay is specific but plausible as motivated by the prevalent Remind-me button.

These authors also study optimal design from the point of view of bidders, the plat-
form, and the strategic donor by characterizing welfare properties of equilibria and pre-
senting alternative campaign design possibilities to their full information baseline. Their
“No information” environment coincides with our Sim model when the donor has no
wealth. We also ask whether design options are platform or bidder optimal by analysing
whether they imply maximal success rates and bidder surplus. We study optimal design
in terms of total welfare and provide a fuller characterization. With homogenous costs,
we find that Sim is both bidder and platform optimal; hence it is also optimal in terms of
aggregate welfare. Deb and coauthors find an analogous result when the donor’s success
motivation is low. In contrast, with heterogenous costs, we find that Endo is always
bidder-optimal and sometimes also platform-optimal, in the sense of maximizing the suc-
cess rate. For instance, Endo maximizes success when the cost distribution has a thick
upper tail.
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To rule-out unstable equilibrium predictions, we define the equilibrium refinement
“strict-dominance-elimination-then-weak-dominance-elimination”, abbreviated as 1S1W.
This eliminates weakly dominated strategies after first eliminating the strictly dominated
ones. Our refinement is intuitively implied by Stelten’s perfect equilibrium and Myerson’s
proper equilibrium (see Selten (1975), Myerson (1978), and Van Damme (1991)), but
differs from these standard refinements that do not apply to our context due to the Poisson
arrival of bidders that implies a potentially infinite number of players and periods; Sim
is a standard Poisson game as defined in Myerson (1998). An advantage of 1S1W is that
it is easy to verify.

Our study is more distantly related to a range of models in continuous time with
endogenous move order among which two on bargaining and irreversible investment are
the closest. Zhang (1997) studies investment cascades over a finite horizon in continuous
time. In his equilibrium, as in Liu (2020), bidders with positive signals plan to act in
descending order of signal precision if no bid has yet been pledged, but given that waiting
is costly, once the first bid is pledged by the bidder with the most precise signal, all other
bidders pledge immediately since waiting is costly and they cannot acquire more precise
information. The timing of actions after the first pledge would be arbitrary in the absence
of the waiting cost.

3.2 Model

This section introduces an action delay option into the crowdfunding model presented in
Chapter 2, which we call Exo since the timing of action is purely exogenous. We offer
a recap Exo and then present the Endo model, so named because action delays make
sequencing endogenous. We also introduce Sim, a variant of the crowdfunding game
where all bidders act at the same time. Sim provides the natural static benchmark.

All model variants describe an All-or-Nothing (AoN) crowdfunding campaign. The
entrepreneur makes an open call to raise enough bids at a price p to cover a bidder
threshold of g0 bids during a time period of duration τ . If she succeeds (event S), bidders
pay their bids and the entrepreneur launches production paying a sunk investment cost
and delivering the crowdfunding product to those who bid. In the opposite case where
the campaign fails (event F), production does not occur and bids are not paid. For each
t ∈ [0, τ+], the funding gap gt counts the additional bids required to reach the funding
threshold. It starts at g0 and makes a unit drop when a bid occurs. At time τ+, bids
are added up to decide the outcome of the campaign: success S , {gτ+ ≤ 0} or fail
F , {gτ+ > 0}.
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3.2.1 Recap of exogenous sequentiality (Exo)

Bidders arrive or discover the campaign according to a homogenous Poisson process with
rate λ over t ∈ [0, τ) and choose what to do on arrival.1 We refer to a specific bidder by
his arrival date t.

Since bidders are risk-neutral, their payoffs are linear in probabilities. A bidder val-
uation for the crowdfunding product can be either vt = 0 or vt = v > 0 with prior
probability q on v. Bidders do not know vt upon arrival but can pay an inspection cost ct
to learn it and bid conditional on learning vt = v. After normalizing the price to p = v−1
so that bidders who value the good enjoy one unit of utility from purchasing the good net
of this price, a bidder obtains a payoff of uA = 0 by Avoid bidding and avoid inspecting
(A), while making a Blind bid without prior inspection (B), he obtains

uB = 1gτ+≤0
(
vt − (v − 1)

)
(3.1)

In words, if the campaign is successful, the bidder gets the value for the crowdfunding
product and pays its price.

The payoff (3.1) is clearly negative if vt = 0; that is, bidders who know they have the
zero valuation never want to buy. So bidders face a risk of a mistaken purchase. They
can avoid that risk by first paying the inspection cost ct to Check that vt = v and bid
only in that case (C). The payoff associated with this strategy is

uC = 1gτ+≤0
(
vt − (v − 1)

)+ − ct (3.2)

so a bidder playing C only bids for the good when he likes it and then always gains from
a crowdfunding success but his inspection cost is sunk independent of the crowdfunding
outcome. We assume that inspection costs are i.i.d. draws from the cumulative distri-
bution function (CDF) F (·) with support taken to be a subset of the [0, q] interval so
that inspection gives a positive expected payoff to all cost types if success is certain. As
we show in Chapter 2, this restriction is without loss of generality since all bidders with
ct ≤ 0 behave as if they had ct = 0 while those with ct > q never inspect. Hence assuming
a positive density over that region is equivalent to reducing the arrival rate of bidders
that do inspect.2

We make the No-Blind-Bidding assumption that q and v are low enough to discourage
bidders from playing B. Specifically, we assume q < 1 − 1/v (NBB) so that strategy B
strictly dominated by A. This way a bid always follows an inspection decision, so that

1Writing the interval as [0, τ ] is essentially identical since the probability of arrival at any instant,
including that final instant, is zero. Ruling out arrivals at τ simplifies the exposition since the bidder
arriving exactly at the return date t = τ would not have the option to delay that all other bidders have
and his bid could not influence the returning delayers.

2If F is discrete, our formulation is equivalent to assuming that each cost type arrives according to
an independent Poisson process.



3.2. MODEL 119

“inspect” always refers to inspect and bid if vt is found to equal v.

3.2.2 Endogenous sequentiality (Endo)

The key addition to Chapter 2 is the introduction of the strategy “Delay” (D) that
allows bidders to postpone their action at time τ , when the campaign is about to end.
Specifying a full strategy requires bidders to decide what sub-strategy to take when they
come back at τ for any given gap gτ that they will observe. Given that the only possible
undominated actions when returning are either to abstain or to check the campaign, the
strategy Dg such that bidders delay and inspect only if gτ ≤ g specifies a full contingent
plan. A bidder’s payoff from choosing this strategy is

uDg = 1gτ≤g

(
1gτ+≤0

(
vt − (v − 1)

)+ − ct) (3.3)

The difficulty of dealing with the large strategy space obtained by combining all the
contingent responses to gτ becomes an obstacle for large g0 campaigns. It is therefore
valuable to restrict attention to the single delay strategy D1. We denote this D ≡ D1
from now on. A bidder who chooses D inspects only when success is certain and bids
only after learning he likes the good. We verify that relaxing this restriction does not
change the equilibrium in our solutions: When g0 = 2, waiting and bidding with gτ = 2
is ruled-out by 1S1W.

3.2.3 Simultaneous moves benchmark (Sim)

To assess whether removing all forms of sequentiality might be optimal, we also solve a
game where all bidders move simultaneously and the number of bidder arrivals is Poisson
distributed with parameter λτ . This “equivalent simultaneous game” Sim is a standard
Poisson game (see Myerson (1998)).

The simultaneous setting is strategically equivalent to a crowdfunding campaign with
no updating of information over time, such as a campaign where all bidders join at
t = τ or with gt not observable throughout the whole campaign duration. In these
circumstances, the Endo and Exo distinction of model variants (later, bidder types) is
irrelevant. Since there is no substrategy D in Sim, the only possible substrategies after
applying assumption (NBB) are A and C as in Exo.

3.2.4 Equilibrium concept

The equilibrium concept we employ is Perfect Bayesian Equilibrium refined by two addi-
tional criteria: Pareto Optimality and the novel refinement “strict-dominance-elimination-
then-weak-dominance-elimination”, denoted 1S1W for brevity, such that only strategies
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that are weakly undominated among those that survive one round of elimination of strictly
dominated strategies can constitute an equilibrium. The equilibrium concept can be ab-
breviated as 1S1W-P-PBE.

We also impose Pareto Optimality to rule the possible coordination failure where each
bidder plays A believing that all others do the same. This can arise with simultaneous
play, as when all delayers return in Endo and in the single bidding round in Sim. Our
1S1W makes equilibria robust to small errors (trembles) in bidders’ implementation of
their planned strategies or in their assessment of others’ equilibrium play. Applied to
Endo, this rules out substrategy A; rather than abstaining, bidders wait until the end
in the hope that other bidders pledge. A is eliminated by 1S1W precisely because, after
C eliminates by strictly dominating A for gt ≤ 1, D eliminates A by weak domination
for gt > 1.

One might think that tie-breaking rules such as bidders having a lexicographic prefer-
ence for pro-social behavior (or equivalently, for promoting production or social welfare)
could refine nicely the equilibrium set. With this lexicographic preference C wins in a
tie with A or D, but we avoid assuming so since discontinuous utility functions create
problems for equilibrium refinement in Poisson settings. We make an exception to this
rule tho for strategy choices that are irrelevant, in the sense that either the probability
of a bidder arrival is zero, or the bidder strategy has no impact on other players’ payoffs.
In these circumstances we do tie-break in favour of C.

As a result of our refinements and the (NBB) assumption, given common knowledge of
prior distributions through (λ,q,F (.)) and observable campaign features (g0, τ, gt in Exo
and Endo; only g0 and τ in Sim), equilibrium strategies are mappings a : (t, gt, ct) →
{C,D} in Endo; a : (t, gt, ct)→ {A,C} in Exo; a : ct → {A,C} in Sim. We define the
pair (t, g) as the campaign’s funding state so gt = g and we denote the strategy played
by a generic bidder at a particular funding state by a(t,g).

In Exo, our assumption that bidders observe the gap at the date they arrive implied
that bidders knew all the history of play that can affect them; they do not care whether a
no bid episode results from a non-arrival, an arrival who chose A or an arrival who chose
C but did not value the reward. As a result, the game is Markovian and has a unique
equilibrium prediction.

In Endo, we retain the assumption that the gt is observed, but it no longer implies
that the game has effectively perfect information about the past. The Poisson arrival
process for bidders results in three potentially relevant state variables: the number of
bidders who arrived and chose to bid, the number who arrived and decided definitively
against bidding and the number who arrived and chose to delay. Of these, the first and
last are relevant but only the first is observable. Even if all bidders observed the full
history of bids up until the date at which they arrive or return, they would not discern
the exact number of times actions C and D (and A) have been played since they all of
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the above strategies can feature no bid. Notice that strategy D implies no bid but if
known would be more encouraging for other bidders in terms of optimism about success.
Communication among bidders would allow them to disclose their actions but we preclude
such possibility.3

Arriving bidders at funding states (t, g) care about knowing the number of delayers
that will return and inspect at the last moment of the campaign, but, due to this ac-
tion unobservability, they only know that this number is Poisson distributed parameter
λqµ(D), where µ(D) , Eµ(T D) is the expected measure of dates T D at which, if a bidder
arrives, that bidder plays D, given an equilibrium prescription. To define T D precisely,
we denote the stopping time of the b’th bid by Tg0−b, b ∈ N and the set of dates at which
D is played when the gap is fixed at a value of g as T D|g ,

{
x ∈ [0, τ) : a(x,g) = D

}
.

When all stopping times of bids and inspection costs are realized, the set T D results
from the union of the subsets of each of the T D|g′ sets, for g0 ≥ g′ ≥ 1 that are crossed
by the path of the gap. In formula, letting for convenience T0 ≡ 0,

T D =
g0−1⋃
b=1

{
[Tb−1, Tb] ∩ T D|g0−b+1

}
(3.4)

Bidders will have to estimate µ(D) based on the observed funding state and equilibrium
prescriptions. Notice that the stopping times Tb are uncertain and bidder t only knows
that Tg0−g ≤ t ≤ Tg0−g+1, with the second weak inequality holding as equality if bidder t
chooses to bid. Therefore, since beliefs are not fully captured by observed funding states,
the game lost its Markovian property and can now admit multiple equilibria. Note that
even though arrivals are independent

Some further remarks are in order before proceeding: First, ct does not matter for
bidder t’s beliefs about other bidders since inspection costs and arrival times are inde-
pendent draws. However, the distribution of stopping times Tb are correlated, making
the computation of µ(D) based on Eq. (3.4) too complicated in the general case for ex-
plicit solution. However, it is feasible to solve explicitly in simple cases as we show in
the following sections. Second, if we were to allow generic Dg strategies, we would also
have to take into account beliefs about the composition of the crowd of delayers. When
restricting to D, those beliefs do not matter because success is certain when a delayer
bids upon returning.

3Even the platform may not know if a bidder who arrived on a project webpage and did not bid
was: (a) thinking seriously about bidding before learning that he did not like the reward enough, as
represented by C plus the negative information signal represented by the low valuation vt = 0, (b)
thinking whether to bother inspecting and then deciding on A or D, or (c) simply visiting the project
webpage and gazing absent-mindedly or thinking about something entirely different, which are equivalent
to not arriving. Of course, the platform may have some additional information and bidders might signal
their presence by sending messages but signals can be faked so, in the interests of realism, we allow for
imperfect observability even though it complicates the analysis.
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3.2.5 Welfare

An addition relative to Chapter 2 is that we provide welfare analysis. We define (ex-
pected) welfare W as the sum of two components. The first, bidder surplus, is given by
λqV and results from multiplying the expected number of bidders λτ by the expected
utility of an arriving bidder V , E

(
uatn

)
. This last expectation is conditional on the bid-

der arriving by τ and is computed with respect to the bidder arrival time tn. The index
n summarizes external analysts’ knowledge about the bidder though the bidder only ob-
serves tn and gtn . By default, we just denote a bidder arrival time by t which is what the
bidder knows. Information sets (t, gt, ct) determine bidder strategies a ∈ {A,B,C,D}
that in turn determine the payoff uatn of the n’th arriving bidder according to the above
formulae (3.1), (3.2), and (3.3). Except in Sim where decisions depend only on g0, an
action’s expected payoff will depend on gtn , which will itself depend on earlier arrival
times and actions.

The second is the entrepreneur’s value for a success R, which the entrepreneur earns
with success probability S0 , P(gτ+ ≤ 0). The latter accounts for the surplus generated
by crowdfunding completion, extracted by the entrepreneur in the form of reputational
rents from after-market sales or from higher prominence on the crowdfunding platform.
We do not take into account the implications of how revenues are split between crowd-
funding and after-market though that would be interesting as future work.

W = λτV +RS0 V = E
(
uatn

)
, S0 , P(gτ+ ≤ 0) (3.5)

Notice that welfare maximization is achieved by maximizing the probability of crowd-
funding success if R is sufficiently high. For this reason, the success rate is an important
welfare metric. To facilitate the comparison of welfare values reached under the different
assumptions we make on the timing of bidders’ moves, we denote welfare byW Sim, WExo,
WEndo for the respective specific models. We adopt the same naming convention for V
and S0.

3.3 Results for benchmark structures

In this section, we present two generic benchmarks: Sim and Exo, that we analyze under
the assumption that inspection costs homogenous (F is a unit-step function with step at
c). Sim is elementary, so we solve its equilibrium and the implied welfare for a generic
g0. We already solve Exo in Chapter 2, so here we just carry the solution from there. In
both cases, we solve welfare (bidder surplus and success rate) explicitly for g0 = 2 since
it will allow us to compare it with our results for Endo. We deal with heterogenous
inspection costs in benchmarks in Section 3.5 on optimal design.
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3.3.1 Simultaneous game

Since Sim is an important benchmark and its equilibria are easier to solve than in the
other model variants, we start from there. The aspect that makes it elementary compared
to Exo and Endo is that bidders do not take into account any dynamically evolving
information; they decide to play C or A based solely on g0 and their inspection cost ct.
Specifically, the expected utility that a bidder obtains by playing C is given by

UC = E(0,g0)
(
uC
)

= qSbid − ct (3.6)

where Sbid is the bid-conditional estimate of the success probability.
Equilibria are readily characterized based on Eq. (3.6), which shows that they have

a cutoff structure: since Sbid is independent of ct by the assumption of i.i.d. inspection
costs, the expected utility in Eq. (3.6) is linear in ct. It follows that equilibria are threshold
values ĉ such that bidders play C for c ≤ ĉ and A otherwise, so that the probability of
a bidder inspecting, qF (ĉ), combined with the fact that the bidder population is Poisson
distributed with parameter λτ gives a bid-conditional success rate of

Sbid = σg0−1
(
τF (ĉ)

)
, 1−

∑g0−2
b=0

(λqτF (ĉ))b
b! e−λqτF (ĉ) (3.7)

where σg0−1(x) indicates the Poisson probability of at least g0 − 1 bids from bidders
arriving over a set of dates with measure (or expected measure) x ≥ 0.

There can potentially more than a single threshold consistent with equilibrium, yet
equilibrium selection based on Pareto optimality achieves uniqueness, with the unique
Pareto optimal equilibrium given by the highest among those. Notice that ĉ = 0 is
always a valid PBE but, according to the Pareto criterion, we discard it whenever there
is another valid (and undominated) PBE with ĉ′ > 0.

In the baseline of homogenous inspection costs ct = c we a unique (PO) equilibrium in
which either all bidders choose C as long as each of them obtains a positive payoff from
doing so; or all play A. When equilibrium prescribes bidding we have c ≤ ĉ, implying
F (ĉ) = 1. So bidders do not deviate to A as long as UC ≥ 0; that is, σg0−1 (τ) ≥ c/q. If
this condition holds, bidder surplus and success rate are given by

UC = V = qσg0−1(τ)− c S0 = σg0(τ)

From here, determining welfare is straightforward as it results from combining (and scal-
ing) the previous V and S0 values. Of course, for c > qσg−1(τ) equilibrium prescribes A
so all welfare quantities are zero. This concludes the analysis for the homogenous case in
Sim.

In the preceding analysis, we characterized equilibrium using a cutoff ĉ on c although
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we could as well define a cutoff τ̂(λ, c) on the minimal duration τ required for bidder
to be confident enough that a success will occur after they bid. This second approach
is more useful when comparing Sim with the other timing variants. So, as most of the
following analysis will focus on g0 = 2, we solve it explicitly for this case. For ease of
exposition, we let

σ1(x) ≡ σ (x) = 1− e−λqx (3.8)

denote the probability that at least one bid is pledged, which satisfies σx(x) = λq(1 −
σ (x)) > 0, σxx(x) = −(λq)2(1−σ (x)) < 0 and the exponential property of closure under
product (1 − σ (x))a(1 − σ (y))b = 1 − σ (ax+ by) for all a, b, x, y ∈ R. The threshold
duration for C is the value τ̂(λ, c) such that σ

(
τ̂(λ, c)

)
= c/q; that is,

τ̂(λ, c) , 1
λq

ln
(1− c

q

)−1
 τ̂q(·, ·) < τλ(·, ·) < 0, τ̂c(·, ·) > 0 (3.9)

Note that we suppress the dependence on q. For τ ≥ τ̂(λ, c), equilibrium values are as in
the expressions for generic g0 after substituting g0 = 2. In this case, the expression of S0

also simplifies as shown below:
V = qσ (τ)− c (3.10)

SSim
0 = σ (τ)− λqτ(1− σ (τ)) (3.11)

Exogenous sequentiality

Proceeding in increasing order of difficulty, we now summarize equilibrium and success
rate in the Exo model that we studied in Chapter 2. We will also compute welfare for
g0 = 2.

The starting point to compute expected payoffs and welfare expressions is solving the
state-contingent success probability evaluated at a funding state (t, gt) ≡ (t, g),

S(t,g) , E(t,g)(1{gτ+} ≤ g0) (3.12)

where E(t,g)(·) ≡ E(· | (t, g)) so that S0 ≡ S(g0,0). In Chapter 2 we show that S(t,g)

is continuous in time and we derive a recursion that solves equation (3.12) for each
(t, g), g ≤ g0 given the condition S(τ,g) = 1 for g ≤ 0.4 In Exo, the bid conditional
success rate satisfies Sbid

(t,g) = S(t,g−1) since, as we saw in Section 3.2 when discussing
our equilibrium concept, Exo is a Markovian game in which all relevant information
for bidders’ play is summarized by the funding state. The source of increased difficulty
relative to Sim is that now the dynamically evolving funding state matters for an arriving
bidder’s strategy, in contrast to Sim where bidders strategize based on static campaign

4Due to continuity this condition would be analogous if stated in terms of τ+.
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attributes.
The bidder expected payoff from playing C is now the utility value UC

(t,g) in (3.6)
with the twist that Sbid is replaced by its state-dependent estimate Sbid

(t,g). Again, due
to i.i.d. inspection costs and linearity, the equilibrium consists of threshold strategies
on cost, but since bidder choice is contingent on the funding state, we will have cutoffs
ĉ(t,g) for t ∈ [0, τ ] and g ∈ Z. Moreover, exogenous sequentiality eliminates the possible
coordination failure that instead arises in Sim due to simultaneous actions.

In the homogenous setting, we can classify funding states as active if c ≤ ĉ(t,g) or frozen
if c < ĉ(t,g). We call the second type “frozen” because, if reached, the campaign enters
an absorbing state of inactivity. The reason why the campaign becomes permanently
inactive is that a frozen campaign enters a vicious circle in which arriving bidders have
too little success prospects to find inspecting worthwhile so they never bid and their
successors have even worse prospects given that they have less time available for filling
the funding gap. Since Sbid

(t,g) is decreasing in t, at a given gap g the campaign passes from
active to frozen if no bid occurs until remaining duration τ − t is smaller than a threshold
value τ̂g , inf τ̂ ∈ R+ : Sbid

(τ−τ̂,g) ≥ c/q. Clearly τ̂g = 0 for g ≤ 1, so the equilibrium
is fully characterized by solving the non-trivial thresholds τ̂g : Sbid

(τ−τ̂g ,g) = c/q (that is,
UC

(τ−τ̂g ,g) = 0) for all g > 1.

Explicit equilibrium and welfare for campaigns with a threshold of two bids

We recap the equilibrium analysis for g0 = 2 and add the welfare calculation. To do
so, we only need to analyze bidders’ decisions for gt = 2 since bidders are sure that the
campaign will succeed for gt ≤ 1 so they play C. A bidder arriving at gt = 2 instead
cannot be sure that a success will occur but does knows that, by bidding, he will convince
all his successors, arriving over a period of length τ − t, to also bid. Since success occurs
with at last an additional bid from his successors, Sbid

(t,2) = σ (τ − t). Using this value, we
have that the utility of a bidder playing C at (t, 2) is UC

(t,2) = qσ (τ − t)− c.
The threshold τ̂2 solves σ (τ̂2) = c/q and hence coincides with the minimum required

duration τ̂(λ, c), in Eq. (3.9), for an equilibrium with bidding in Sim. In Chapter 2 we
denote this threshold by simply τ̂2. Here instead we let τ̂2 ≡ τ̂(λ, c) using a heavier
though useful notation since variations in the threshold value (3.9) appear many times in
the analysis of Endo. It follows that, for τ < τ̂(λ, c), the campaign is stillborn: it starts
in a frozen state. For τ ≥ τ̂(λ, c), if gt = 2, bidders play C as long as t ≤ τ − τ̂(λ, c)
and A afterwards; if gt ≤ 1 bidders play C. The resulting bid rate will decreasing with a
discontinuity at t = τ − τ̂(λ, c) at which the campaign gets frozen if gt = 2.

To compute welfare under the above equilibrium, we already have the success rate
expression from Chapter 2 but bidder surplus is missing. We compute it now. In general,
bidder surplus in Exo is lower than in Sim, but for the special case of g0 = 2 they are
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exactly equal. Now, it is very clear that bidders arriving during t ∈ [0, τ− τ̂(λ, c)] achieve
the same utility as bidders in Sim since they always inspect and get the good if at least
another bidder bids over the whole campaign duration. However, for bidders arriving in
the complementary time span [τ − τ̂(λ, c), τ ] proving the equivalence is not as immediate.
Yet, with few algebraic steps, we show that the equivalence still holds.

Lemma 3.1. The unique Sim and Exo benchmark equilibria generate the same bidder
surplus in threshold two (g0 = 2) campaigns:

V Exo = V Sim = qσ (τ)− c (3.13)

Proof in Appendix 3.A.
To pin-down the success rate, as we already do in Chapter 2, observe that a suc-

cessful campaign requires at least one bid for t ∈ [0, τ − τ̂(λ, c)] and an additional bid
in [τ − τ̂(λ, c), τ ]. Given that the Poisson probabilities of no bid by t = τ − τ̂(λ, c) is
σ
(
τ − τ̂(λ, c)

)
, and that of one bid by then and no bid after is

λq(τ − τ̂(λ, c))
[
1− σ

(
τ − τ̂(λ, c)

)] [
1− σ

(
τ̂(λ, c)

)]
= λq(τ − τ̂(λ, c))

[
1− σ (τ)

]
We can see that the success rate expression is given by

SExo
0 = σ

(
τ − τ̂(λ, c)

)
− λq(τ − τ̂(λ, c))(1− σ (τ)) (3.14)

Equipped with the results developed for benchmark cases, we are ready to solve the
simplest campaign under endogenous sequentiality.

3.4 Analysis of crowdfunding with a delay option

We will now introduce the elements required to determine the bidding equilibria and
soon move to the analysis of the simplest case in which bidders are homogenous and
have inspection cost c. This simple setting already introduces the fundamental elements
present in more general variants.

In Endo bidders are divided into checkers and delayers based on whether they play
C or D. The expected utility a bidder gets by playing C is still shown in equation (3.6)
but the way Sbid

(t,g) is determined is different. The twist is caused by a strictly positive
probability of having delayers returning at τ and bidding at the deadline. This changes
the end-point condition for S(t,g) in Exo:

S(τ,1) = σ
(
µ(D)

)
and, as usual, S(τ,g) = 0 for g > 2 S(τ,g) = 1 for g ≤ 0 (3.15)

As anticipated in Section 3.2, µ(D) will depend on all the stopping times of bids Tb,
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b ∈ {0, . . . , g0 − 2} on the path that the gap takes from state (0, g0) to (τ, 1). For this
reason now Sbid

(t,g) 6= S(t,g−1); that is, the bid-conditional estimate of the success probability
made by a bidder in state (t, g) differs from the estimate of the success rate made by an
external analyst that observes that the campaign is in state (t, g− 1). The reason is that
only the bidder knows that the stopping time of his bid is Tg0−g+1 = t. We will solve
Sbid

(t,g) explicitly for g0 = 2 in the next subsection.
On the other hand, the expected utility of playing D depends on the free-riding

probability φ(t,g) and is defined as follows:

UD
(t,g) , E(t,g)

(
uD
)

= φ(t,g)(q − ct) φ(t,g) , Pr
(
gτ ≤ 1 | (t, g)

)
(3.16)

The trade-off between acting upon arrival or postponing depends on Sbid
(t,g), which

counts as an assurance probability of success, and φ(t,g) which is instead a free-riding
probability.

3.4.1 Analysis of Endo for a threshold two campaign

In what follows, we will only fully characterize the equilibria of Endo for g0 = 2, but
we will draw general conclusion whenever possible. So, to begin the analysis, we assume
ct = c ∈ [0, q] and g0 = 2.

The first equilibria that we are going to solve are pure strategy equilibria (p.s.e.) in
which bidders play C if gt ≤ 1 and, as long as gt = 2, play D in a generic set of dates
t ∈ T D|2 ⊆ [0, τ) with measure δ , µ(T D|2) ∈ [0, τ ], and play C in the complementary
set T C|2 = [0, τ)\T D|2. Under this class of equilibria, T D = [0, T1]∩T D|2 from Eq. (3.4).
We call bidders that arrive in t ∈ T C|2 decisives. This name reflects the fact that they
do not need path information in order to decide what to do, so they never delay. Bidders
that arrive at t ∈ T D|2 are instead potential delayers as they play D if gt = 2 and C if
gt ≤ 1.

To verify that a putative equilibrium of the kind just described exists, we do not have
to worry about bidders deviating from C at gt ≤ 1 as they get UC

(t,1) = UD
(t,1) = q− c ≥ 0,

so they do not deviate.5 The only deviations we need to check carefully are from C to D
for t ∈ T C|2 and vice-versa for t ∈ T D|2 in states (t, g) with g = 2.

In order to find the that constraints valid equilibria have to satisfy, we determine
Sbid

(t,2) and φ(t,2). A bidder playing C at (t, 2) knows that T1 = t, so only his predecessors
will delayed. If follows that the total measure dates at which bidders coincides with the
measure of dates over which the bidder’s predecessors delayed. In formula, µ(D) = δpret ,

µ
(
[0, t) ∩ T D|2

)
. This value enters Sbid

(t,g) and hence UC
(t,g) in the following way:

Sbid
(t,2) = σ

(
κt + δpret

)
UC

(t,2) = qσ
(
κt + δpret

)
− c (3.17)

5We could equally tie-break in favour of D. So doing would not change our results substantively.
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with κt = τ − t being the remaining duration over which all arriving bidders are checkers.
On the other hand, bidder t manages to free-ride by playing D if at least one bid is

pledged at g = 2 by his successors. This bid can come from all of them except delayers
arriving during a measure of dates δpostt , µ

(
[t, τ) ∩ T D|2

)
.

φ(t,2) = σ
(
κt − δpostt

)
UD

(t,2) = σ
(
κt − δpostt

)
(q − c) (3.18)

Observing expressions (3.17) and (3.18), we can see that UC
(t,2) exhibits strategic com-

plementarity in D, while UD
(t,2) exhibits strategic substitutability. Most importantly, we

can construct the incentive-compatibility constraint that precludes a deviation from C
to D for t ∈ T C|2, denoted ICC,D

c , by imposing that the difference between the expected
utilities in (3.17) and (3.18) is positive.

Interestingly, ICC,D
c is stationary. We state this result formally in the next lemma

and explain the intuition afterwards.

Lemma 3.2. The ICC,D
c condition for willingness to play C at (t, 2) is independent of t:

σ (δ) ≥ c/q, δ = δpret + δpostt (ICC,D
c )

Proof in Appendix 3.A.
Moves C and D yield bidder t the same payoff q − c if at least one bid pledged

prior to τ by other arrivals ( so that gτ≤1) because, either way, he ends up inspecting
(at time t if he plays C; at time τ if he plays D). Conversely, no bid from others by τ
means that all arriving checkers other than t inspected without bidding but delayers do
have the potential to bid still. For this reason C and D will result in different realized
payoffs: If bidder t plays D, the campaign reaches gτ = 2 and he earns zero payoff; if
he plays C instead, the campaign reaches gτ = 1 and the bidder earns q if there is at
least another bid from all delayers that arrived during a measure of dates δ. Given that
arrivals are independent, by knowing his arrival date bidder t cannot infer any additional
information about δ, so also in this case the trade-off between his two possible strategies
is independent of his arrival time.

To sum up, the benefit of playing C relative to D can be understood in terms of the
assurance of success generated by bidding Sbid

(τ,2) = σ (δ) in a scenario in which all bidding
potential of other checkers has been exhausted. What matters ultimately for bidders’
decision among C and D is the total mass of delaying bidders δ whose contribution
potential is at risk of waste. Since S(τ,2) = 0, bidders choose to become decisive only if
their pivotality in state (τ, 2), defined as

∆S(τ,2) , Sbid
(τ,2) − S(τ,2) = Sbid

(τ,2)

is sufficiently high relative to the cost-to-quality ratio c/q.
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A further important property will help for generalizing the incentive-compatibility
condition to heterogenous costs. Specifically, since δ is independent of the inspection cost
of any given bidder, we can immediately adapt constraint (ICC,D

c ) so that it applies to a
bidder with a generic inspection cost by simply substituting c with ct. This is valuable
and we use it repeatedly in subsections 3.4.2 and 3.4.3.

We have the following putative equilibria: (i) a(t,2) = D for all t, in which case the
campaign necessarily fails. That would imply δ = τ and so require σ (τ) < c/q for ICC,D

c

to never hold. This is possible when τ < τ̂(λ, c) from Eq. (3.9). Furthermore, also Sim
and Exo prescribe inactivity under this condition. (ii) a(t,2) = C for all t, but that
cannot be an equilibrium because an arrival at (τ, 2) certainly gets a negative payoff from
C, which is lower than the zero payoff obtained with D. (iii) on some strict subset of
campaign arrival dates, T D|2 ⊂ [0, τ) bidders play D, on the complement play C, and
arrivals are indifferent i.e. both ICC,D

c and ICD,C
c hold, or simply UC

(t,2) = UC
(t,2) for all t.

Since (iii) is the only possibility and expected utilities equate at δ = τ̂(λ, c), we have
characterized all pure strategy equilibria.6

For mixed strategy equilibria (m.s.e.), note that if players mix ρt ∈ (0, 1) at t on C
and 1 − ρt on D, then the only equilibrium restriction is

´ τ
0 (1 − ρt) dt = τ̂(λ, c), giving

a rich continuum of possibilities. The unique stationary equilibrium is the m.s.e. where
ρt = ρ ∀t,

ρ = (τ − τ̂(λ, c))/τ (3.19)

These statements reflect the required incentive-compatibility condition under mixing and
complete the proof of the next proposition on equilibrium analysis.

Proposition 3.1. If τ < τ̂(λ, c), Endo (like Exo and Sim) has only trivial equilibria in
which there is never any bidding. If instead τ ≥ τ̂(λ, c), arrivals always play C if gt ≤ 1,
and we characterize the equilibria by describing the possible strategies at states (t, 2):

(a) Every p.s.e. is described by a subset T D|2 ⊂ [0, τ), on which a(t,2) = D for all
t ∈ T D|2 and a(t,2) = C otherwise. The subset T D|2 must have measure τ̂(λ, c).

(b) In any m.s.e., the set of dates at which D would be played if the gap stayed at
g = 2 throughout has expected measure τ̂(λ, c).

(c) There is a unique equilibrium in stationary strategies. In this equilibrium, any
arrival facing gt = 2 mixes with probability weight ρ = τ−τ̂(λ,c)

τ
on C and 1− ρ on D.

We draw attention to the specific p.s.e. that prescribes T D|2 = [τ − τ̂(λ, c), τ ]. This
equilibrium is equivalent to the unique equilibrium in Exo because while that equilibrium
has bidders playing A instead of D for states (t, 2) with t on that same interval, D is

6We can safely ignore strategy D2 as it does not survive the 1S-1W refinement. First any strategy
where A is played for gt ≤ 1 is strictly dominated by others that prescribe choosing C. So we are left
with only C played for gt ≤ 1. Now, if D is not played in equilibrium, strategies C and D2 yields
the same payoff. Otherwise, C payoff is strictly higher due to the encouragement effect of bidding on
delayers. So D2 is eliminated in the second step of the refinement criterion.
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equivalent to A given that there is no chance of a bid bringing the gap to 1 or lower and
activating the delayers.

Corollary 3.1. The p.s.e. with T D|2 = [τ − τ̂(λ, c), τ) is profile-equivalent to the unique
equilibrium of Exo.

The previous proposition and its corollary characterized the equilibrium set of the
homogenous case for g0 = 2. It is important to understand however that this equilibrium
structure is very specific to the case of campaigns with a goal of two bids. E.g. for
g0 = 3 a bid at gt = g0 does not motivate all bidder successors and current delayers to
inspect, so the intuition on pivotality on the terminal campaign does not hold any more.
Moreover, the number of potential delayers that can wait at g = 2 changes according to
the stopping time of the first bid.

Welfare calculations

We now compute success rate and welfare achieved in the equilibria of Proposition 3.1
and compare them with their values attained in Sim and Exo. We find that sequentiality
of actions reduces the success rate as it allows bidders to free-ride, but, for g0 = 2, it is
irrelevant for bidder surplus. We start by proving the latter result.

The bidder surplus can be determined based on the observation that any bidder
with t ∈ T D|2 ends up inspecting at t or τ if at least one bid is pledged by checkers.
Hence the stopping time of the first bid has no effect on his utility. Since equilibrium
requires indifference between C and D strategies (which holds while gt = 2 and while
gt = 1), per-bidder surplus is just this expected payoff of action D computed from date
0. Given that all D bidders inspect if C bidders pledge at least one bid during the whole
duration, with probability σ (ρτ) = σ

(
τ − τ̂(λ, c)

)
, all equilibria with activity presented

in Proposition 3.1 produce the same bidder surplus of

V Endo = λτ(q − c)σ
(
τ − τ̂(λ, c)

)
, τ − τ̂(λ, c) = ρτ (3.20)

Here we can quickly grasp that, in the homogeneous case, assumptions on bidders’
timing of actions are totally neutral on their expected surplus for g0 = 2 campaigns: The
per-bidder surplus of delayers is in fact equivalent to the one of bidders in Exo that arrive
after the critical date τ − τ̂(λ, c): both types inspect only if at least one bid is pledged
during a measure τ − τ̂(λ, c) of dates, and in that case they are sure that the campaign
will succeed after they bid. We can conclude that Sim, Exo and Endo produce the same
bidder surplus.

The same indifference result is not valid when discussing the success rate. For
τ ≥ τ̂(λ, c), Sim has Sbid exceeding c/q and therefore all bidders are willing to play
C. In Endo instead, D bidders may never inspect. This reduces the success rate. The
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precise value of SEndo is the same for all p.s.e. and m.s.e. with activity described by
Proposition 3.1, which follows by subtracting one from the probability of no bid pledged
by C bidders, plus the probability of exactly one bid from C bidders but no bid from D
returners.

SEndo
0 = σ (τ − δ) + λq(τ − δ)(1− σ (τ)) (3.21)

Given that the measure of dates in which delays occur coincides with the one of
Exo bidders arriving beyond the critical duration threshold, i.e. δ = τ̂(λ, c), we have
demonstrated that SEndo

0 = SExo
0 from Eq. (3.14). We can draw the following conclusion:

Combining Eq. (3.20) and Eq. (3.21), we can see that sequentiality weakly reduces
welfare in the homogenous case.

Proposition 3.2. In the homogenous case, for g0 = 2 campaigns, we have V = S0 =
W = 0 in all settings for τ < τ̂(λ, c). In the opposite case instead,

(i) V Endo = V Exo = V Sim;
(ii) SEndo = SExo < SSim;
(iii) WEndo = WExo ≤ W Sim, with the last inequality strict for R > 0.

This result already anticipates part of the optimal design analysis in Section 3.5
since clearly the simultaneous (no-information) design is optimal under homogeneous
inspection costs. As we will see next however, the trade-off between sequential and
simultaneous play becomes more subtle when we introduce cost heterogeneity. Indeed,
when the crowdfunding campaign is hard, we find that endogeneity raises welfare.

3.4.2 Binary inspection costs

Now we analyze how heterogeneity affects the results of the previous section. To start
with, the binary inspection cost setting provides the most elementary form of heterogene-
ity. Then we show that some features of the binary setting still hold with a continuum
of inspection costs.

We assume that the inspection cost CDF has support {cL, cH} : q ≥ cH > cL ≥ 0 and
assigns a probability z on cL. We already solved cL = cH in Section 3.4.1, so we can ignore
this case. The binary setting requires two distinct incentive-compatibility conditions;
one for each cost-type bidder. These follow from Eq. (ICC,D

c ) after substituting c with
cj, j ∈ {L,H}. The pivotality of a bidder on the campaign in state (τ, 2) is still computed
based on the total expected mass of delayers, which now can be decomposed into measures
of arrival dates of each cost group: δ = zδL + (1 − z)δH . So, for each j ∈ {L,H}, the
new incentive-compatibility constraints is

σ
(
zδL + (1− z)δH

)
≥ cj/q, (ICC,D

cj
)

We will refer to the constraint of a specific cost type as ICC,D
cL

and ICC,D
cH

.
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As before, p.s.e. specify two sets of dates T D|2
L , T D|2

H , with δL = |T D|2
L | and δH =

|T D|2
H |, at which L and H types delay if gt = 2. These dates must be incentive-compatible

for both cost-types simultaneously. M.s.e. specify mixing weights and in those cases we
define δL and δH as the corresponding expected measures of g=2-contingent delay times.

The equilibrium set again features a large multiplicity as we will see soon, but to
be concise, we present only equilibria in stationary strategies. These involve probability
weights on C given by {ρL, ρH} with ρj ∈ [0, 1] for each j ∈ {L,H}. For equilibria in
stationary strategies, a type j only plays a pure strategy if ρj = 0 or 1. We only briefly
point out the possibilities for equilibrium multiplicity alongside this since the extended
set is analogous to that under homogeneity.

Before moving forward, we point out that condition (ICC,D
cj

) shows a clear mono-
tonicity of incentives with respect to inspection costs: since the same δ appears in both
constraints but cL < cH , we have that if some H-type is decisive, then all L-types are
decisive, while if not all L-types are decisive, then none of the H-type is decisive. This
is easily proved by the fact that, if ICC,D

cH
is binding (ρH > 0), ICC,D

cL
is slack (ρL = 1);

conversely, if ICC,D
cL

is binding (ρL > 0), ICC,D
cH

breaks (ρH = 0). This observation proves
the next lemma which will guide our analysis of equilibria in the binary case.

Lemma 3.3. ρH > 0 implies ρL = 1; ρL < 1 implies ρH = 0

To find the inactivity equilibrium in the binary setting, it is sufficient to check that
ρL = 0 since that implies ρH = 0. This happens by breaking ICC,D

cL
which occurs for any

τ < τ̂(λ, cL). So the last condition ensures inactivity. Equilibria with inactivity do not
exist for cL = 0 (τ̂(λ, 0) = 0 ≥ τ).

The second type of equilibrium in stationary strategies has ρL ∈ (0, 1) and still ρH = 0
(L-types mix and H-types always delay). ICC,D

cL
is binding (as well as ICD,C

cL
) but ICC,D

cH

fails. It follows that δ = zδL + (1 − z)τ = τ̂(λ, cL). We solve for the value δL that is
consistent with this equilibrium and find

δL = τ̂(λz, cL)− τ 1− z
z

, ρL = τ − τ̂(λz, cL)
τ

+ 1− z
z
∈ (0, 1) (3.22)

Formula (3.22) shows that ρL is decreasing in both cL and λL , λz and increasing in
the (H-to-L-types) participation ratio (1− z)/z. Intuitively, higher cL makes free-riding
more attractive on the savings side since L-types lose more when sinking their cost in
vain on a campaign that fails, while λL raises assurance by raising the expected number
of delayers for a given ρL. In the other direction, a large (1 − z)/z deters free-riding
because it makes bidders more pivotal as their bid convinces not only all L-types who
delay but also all H-type types to eventually inspect.

As incentive constraints are independent of time, this equilibrium in stationary strate-
gies lies within a broad continuum of other valid m.s.e. and p.s.e. with E(T D|2

L ) = δL.
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The slight difference with respect with the p.s.e. in Proposition 3.1 is that δL varies
(decreases) continuously with τ .

For τ ≥ τL, where
τL , τ̂(λ(1− z), cL) (3.23)

the encouragement effect of a bid on the H-types is so strong that ICC,D
cL

holds even at
δL = 0. Therefore, in the range τ ≥ τL we have ρL = 1 and ρH ≥ 0 (H-types mix and all
L-type play C); which means δ = (1− z)δH .

Having all the L-types decisive is still not enough to make H-types confident to
inspect. It follows that we have to further distinguish two sub-cases for this parameter
region. We can have the following cases. First, ρH = 0 and δ = (1 − z)τ . This requires
τ < τ̂(λ(1− z), cH), so we have a unique stationary equilibrium {ρL, ρH} = {1, 0} for
τ ∈ [τ̂(λ, cL), τ̂(λ(1− z), cH)). Second, ρH > 0 and δ = (1 − z)δH , with δH < τ . We
have this equilibrium for τ ≥ τ̂(λ(1− z), cH) so that δH is determined according to the
binding constraint ICC,D

cH
:

δH = τ̂(λ(1− z), cH), ρH = τ − τ̂(λ(1− z), cH)
τ

∈ (0, 1) (3.24)

Of course this equilibrium is again part of a continuum of valid predictions that satisfy
E
(
T D|2
H

)
= δH .

Some remarks are in order at this point. First, H-types free-riding incentives depend
only on the arrival rate of their own type λH = λ(1− z) because all L-type choose to be
decisive in this parameter range. Also, it is curious to see that (1 − z) appears in both
cutoffs (3.24) and (3.23), yet it does so for two clear and different reasons. In (3.24),
it comes from an H-type intra-group encouragement effect on other H-types. In (3.23)
instead, that term appears as a result of infra-group encouragement that a bid from an
L-type provokes on H-types who arrive with probability 1 − F (cL) = 1 − z. This final
clarification together with the earlier explanation concludes the analysis of equilibria in
stationary strategies in the binary setting and proves the following summary result.

Proposition 3.3. The mixing weights (ρL, ρH) for a stationary equilibrium take the fol-
lowing values.
{ρL, ρH} = {0, 0} for τ < τ̂(λ, cL);
ρL ∈ (0, 1), ρH = 0, with ρL in Eq. (3.22), for τ ∈ [τ̂(λ, cL), τ̂(λ(1− z), cL));
{ρL, ρH} = {1, 0} for τ ∈ [τ̂(λ(1− z), cL), τ̂(λ(1− z), cH)];
ρL = 1, ρH ∈ (0, 1), with ρH in Eq. (3.24), for τ ∈

(
τ̂(λ(1− z), cH),+∞

)
.

The computation of welfare under the equilibria in Proposition 3.3 is straightforward.
Per-bidder surplus can we expressed as the average surplus across cost types

V = zVL + (1− z)VH (3.25)
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Now, obviously the inactivity equilibrium produces zero surplus (and welfare), so we
focus on more interesting cases. In all other equilibria, L-type are either indifferent or
better-off by playing C. So their surplus is simply

VL = qσ (τ)− cL (3.26)

By contrast, H-type are either indifferent or strictly prefer D, so

VH = (q − cH)σ (τ − δ) , δ =


τ̂(λ, cL) forτ ∈ [τ̂(λ, cL), τ̂(λ(1− z), cL))

τ(1− z) forτ ∈ τ ∈ [τ̂(λ(1− z), cL), τ̂(λ(1− z), cH)]

τ̂(λ, cH) forτ ∈
(
τ̂(λ(1− z), cH),+∞

)
(3.27)

The success rate can still be generically stated as

S0 = σ (τ − δ) + λq(τ − δ)(1− σ (τ)) (3.28)

where δ is again determined by the cases displayed in Eq. (3.27).

3.4.3 Continuum of inspection costs

A broader form of heterogeneity than binary is to have inspection costs drawn from a
continuous distribution function F over c ∈ [0, q]. Given that incentives are monotone
with respect to inspection costs, equilibria are again in threshold strategies. There is
a threshold ĉ, such that bidders play C for c ≤ ĉ and D if not. It follows that, in
expectation, δ = τ [1−F (ĉ)], so that the incentive-compatibility condition for C of a type
ct is σ

(
τ(1− F (ĉ))

)
≥ ct/q, while that for D has the inequality reversed.

The threshold type is indifferent between C and D, so both constraints bind for this
types. The cutoff costs ĉ that can form an equilibrium are defined implicitly as the
solution to the following equation.

σ
(
τ(1− F (ĉ))

)
= ĉ/q (ICĉ)

Finding equilibria boils to determine ĉ values for which equation (ICĉ) holds. With
the proof of the next lemma, we show that the technical conditions for a unique solution
and interior solution ĉ ∈ (0, q) to Eq. (ICĉ) hold. So we have a unique interior and
stationary equilibrium.

Proposition 3.4. With a continuous CDF F (·) over ct ∈ [0, q], for g0 = 2 campaigns,
there exists a unique, interior and stationary p.s.e. in threshold strategies a(t,g) = C if
ct ≤ ĉ and a(t,g) = D otherwise. The cutoff ĉ ∈ (0, q) is the unique solution to Eq. (ICĉ).
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Proof in Appendix 3.A.
The expressions of payoffs, welfare and success rate in Section 3.4.1 under the sta-

tionary m.s.e. hold also here after applying the substitution ρ = F (ĉ) so that Sbid
(t,2) =

σ
(
τ − tF (ĉ)

)
and φ(t,2) = σ

(
(τ − t)F (ĉ)

)
. It follows that the success rate is given by

S0 = σ
(
F (ĉ)τ

)
− λqF (ĉ)τ(1− σ (τ)) (3.29)

3.5 Optimal design

In this section, we compare the baseline Endo model against the two benchmarks. Recall
that a platform design that provides no information is equivalent to Sim, so it is mean-
ingful to compare Endo against Sim with bidders arriving over time according to exactly
the same Poisson process. The relevance of Endo versus Exo as models of crowdfunding
is partly determined by bidder time constraints, preferences and decision-making capa-
bilities. Nonetheless, “Remind-me” buttons facilitate the delay strategy, giving platform
design a clear role. It is therefore meaningful to treat the comparison as a design question,
with the proviso that both Endo and Exo are extremes and the comparison exagger-
ates the platform’s degree of control. Later, we explain how to generalize the models by
allowing some bidders to choose to delay while others act on arrival or never.

We begin with a hypothetical optimal design in which we assume bidders are willing
to play C if that benefits the social interest. We call this the “constrained first-best”
setting since we impose the constraint that bidders are only able to communicate via the
aggregate bid level that is made transparent on the crowdfunding platform.

3.5.1 Constrained first-best

Let ∗ denote the constrained optimum with no free-riding. We solve W ∗ where a social
planner can oblige bidders to play any strategies the planner wishes, but has to respect
their costs of information and the communication constraints defined by the crowdfunding
scenario. The information constraints are exactly as in the baseline model: a bidder t only
knows his valuation if he inspects by paying his cost ct. The communication constraint
restricts what information the planner can use in order to decide what strategies to have
bidders follow. A planner would ideally select the socially optimal bidder actions based
on how many bidders arrive and the value of their inspection costs, but that would
give the planner an exaggerate degree of control over bidder actions since those bidder
characteristics are private and hardly disclosed. More useful is the benchmark in which
the planner dictates to bidders what strategy to follow without affecting any interactive
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communication beyond the interaction implemented by the crowdfunding platform.
In particular, we look for the (socially) optimal number of delaying bidders when

the planner can impose to a first group of bidders arriving during t ∈ (0, t̂∗), for some
t∗ ∈ (0, τ ], to become decisive and play C and to a second group arriving during the
remaining time t ∈ [t̂∗, τ ] to play D. In this way all bidders within each action group
moves simultaneously (even though privately they may not be willing to do it). We
assume τ ≥ τ̂(λ, c) to study the non-trivial case. We let

V1 = qσ (τ)− c V2 = (q − c)σ (τ1) V = τ1

τ1 + τ2
V1 + τ2

τ1 + τ2
V2 (3.30)

denote the per-bidder surplus of bidders that belong to the group of decisives and delayers
and the average per-bidder surplus, with τ1 = µ((0, t∗)) and τ2 = µ([t∗, τ ]). The optimal
constrained design are values τ1, τ2 that maximize V in (3.30) subject to τ1 + τ2 = τ .
Since arrivals of both bidder groups cover the whole, we have one degree of freedom
only to maximize the average surplus in Eq. (3.30). The constrained first-best solves the
following problem.

V ∗ = max
τ1

τ1
(
qσ (τ)− c

)
+ (τ − τ1)(q − c)σ (τ1) (3.31)

It is straightforward to verify that the maximization problem equation (3.31) is reg-
ular and admits a unique solution using the first- and second-order conditions. Most
importantly, we prove that neither Sim nor Endo are optimal designs:Sim has no de-
laying bidders, which are too few for satisfying optimality; Endo on the other hand is
distorted towards the opposite extreme of inducing too many bidders to delay. The source
of the Endo distortion is clear: the planner takes into account the positive externality
of decisives on delayers and therefore raises the expected number of decisives. In the
Endo equilibrium, all bidders are indifferent between delay and decisively inspecting.
Marginally raising the measure of bidders who are decisive has a first-order benefit on
those who delay and at most a second-order cost on those who become decisive; in fact,
the cost on decisives relative to the equilibrium is zero. It follows that the optimal degree
of delay is less than the equilibrium value in Endo.

The Sim distortion result is also straightforward. From a setting in which no bidder
delays, increasing the measure of delay imposes no cost on any existing bidder since those
who inspect are unaffected: they know that delayers will inspect at the deadline if they
bid and they only value other bidders’ inspecting in the scenario where they want to
bid and therefore care about success. In conclusion, the constrained optimum has less
decisiveness than does Sim. That is, some delay is optimal, but less than in Endo where
free-riding lowers the success rate, wasting some of the potential for social gains.

Proposition 3.5. Sim and Endo respectively imply insufficient and excessive delay rel-
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ative to the optimal communication-constrained design.

Proof in Appendix 3.A.

3.5.2 Comparing Endo vs. Sim and Exo given heterogeneity

We saw that in the baseline case of homogenous inspection costs sequentiality is harmful to
welfare. Nevertheless, in this section, we will prove that heterogeneity gives an advantage
to endogenous sequentiality relative to exogenous sequentiality or to simultaneous play,
which as a result can provide higher welfare. We will provide some examples where we
compare Endo to Exo and Sim. Before doing so, we present the simple equilibria of
Sim with binary costs for g0 = 2. Exo is already solved in Chapter 2 and we do not need
explicit results on that for the comparisons that will follows. In order to compare design
options, we let explicitly ĉSim and ĉEndo denote the threshold costs when needed.

Sim with heterogenous costs

Equilibria of Sim for a g0 = 2 campaign are very easy to find. If all bidders participate,
each gets UC = qσ (τ) − ct. We analyze the binary case first: ct ∈ {cL, cH}. For
τ ≥ τ̂(λ, cH) all types are happy to play C. So for this range of values, S0 is once again
given by Eq. (3.11). Surplus follows by substituting E[ct] to c in expression Eq. (3.10).
So,

V Sim = qσ (τ)− (zcL + (1− z)cH) (3.32)

For τ ∈ [τ̂(λz, cL), τ̂(λ, cH)), the H-types cannot obtain a positive payoff when all
bidders inspect together. Still, L-types achieve a positive utility if all of them inspect
simultaneously. So H-types play A and L-types play C for this parameter range. Since
only L-type bid, their average rate of bidding is only λz, so per-bidder surplus and success
rate are

V Sim = z(qσ (zτ)− cL) SSim
0 = σ (zτ) + λqzτ(1− σ (zτ)) (3.33)

Finally For τ < τ̂(λz, cL), not even the L-type gain positive expected utility by
participating, so the crowdfunding campaign remains inactive. In this case, of course,
both bidder surplus and success rate are zero.

Sim with a continuum of costs ct ∈ [0, q] distributed according to a generic F (·) has
equilibria in threshold strategies of the kind mentioned in Section 3.3 in which bidders
choose C for c ≤ ĉ and A for c > ĉ. The threshold ĉ makes bidders indifferent between
the two strategies. That is,

σ
(
F (ĉ)τ

)
= ĉ/q (ICSim)
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In principle, (ICSim) can have multiple solution among which ĉ = 0. In some cases, ĉ = 0
is the unique solution and in that case the campaign is inactive. When instead there are
also others, Pareto optimality selects the highest. Despite all these details and the fact
that moreover we cannot solve explicitly for ĉ, all we need to compare Sim with Exo is
just (ICSim), so we do not dig further into understanding these details.

Given a value ĉ, the success rate is the probability of at least two simultaneous bids
from λF (ĉ)τ bidders on average, each bidding with probability q.

SSim
0 = σ

(
F (ĉ)τ

)
− λqF (ĉ)τ

[
1− σ

(
F (ĉ)τ

)]
(3.34)

Welfare comparisons with heterogenous inspection costs

We start with the binary setting. We can quickly prove that V Endo ≥ V Sim. First, Endo
has inactivity in a smaller parameter range τ < τ̂(λ, cL) since τ̂(λ, cL) > τ̂(λz, cL). For
τ < τ̂(λ, cL), both models give zero welfare. However τ ∈ [τ̂(λ, cL), τ̂(λz, cL)) Endo has
bidder participation so produces positive welfare; Sim instead prescribes inactivity.

Next, for τ ∈ [τ̂(λz, cL), τ̂(λ, cH)), Sim has H-types not participating whereas Endo
has both L- and H- types participating. Moreover, L-types utility in Endo is strictly
higher than in Sim since when bidding they encourage also the H-type types whereas
this does not happen in Sim.

Finally, for τ ≥ τ̂(λ, cH) both types inspect in Sim. In this case bidder surplus in
Endo is again weakly above its value in Sim because H-types can obtain an information
rent by delaying, which rises their surplus relative to Sim. In all the cases that we
analyzed, we have V Endo ≥ V Sim.

Now we compare the success probabilities implied by the alternative design options.
As we already know, simultaneity raises the success rate with respect to sequentiality if all
bidders bid at the same time. However, when bidders that do not inspect simultaneously
in Sim instead do inspect after delaying in Endo, endogenous sequentiality can even
raise the success rate.

To be specific, for τ ≥ τ̂(λ, cH), Sim has all bidders inspecting, hence achieves the
maximal success rate SSim

0 in expression Eq. (3.11). For τ ∈ [τ̂(λz, cL), τ̂(λ, cH)), the
H-types play A in Sim but play either D or C in Endo, so as long as all the L-type
play C (as in Sim), Endo gives a strictly higher success probability. This requires
τ̂(λ(1− z), cL) ≥ τ̂(λz, cL) and hence z < 1/2. In other words, this condition ensures
that the probability of H-type arrivals 1 − z is high enough to give L-types sufficient
pivotality. The case of τ < τ̂(λz, cL) is nice and extreme since Endo can give a chance
of success to the campaign while Sim cannot. We have proved.

Proposition 3.6. For binary inspection costs, V = S0 = W = 0 in all three models if
τ < τ̂(λ, cL). In the opposite case,
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(i) V Endo ≥ V Sim;
(ii) For τ ≥ τ̂(λ, cH), SEndo

0 < SSim
0 ; for τ < τ̂(λ, cH) and z < 1/2, SEndo

0 > SSim
0 ;

(iii) For τ ≥ τ̂(λ, cH) and R sufficiently small, WEndo ≥ W Sim; for τ < τ̂(λ, cH), and
z < 1/2, WEndo ≥ W Sim, with strict inequality for any positive R.

Proof in Appendix 3.A.
Notice that Exo also beats Sim in case τ < τ̂(λ, cH) and z < 1/2 since it gives

a chance to have H-types inspecting. However, it is also important to see that Endo
strictly beats Exo in that case because it does not waste the H-types who arrive prior
to T in Exo (in which T is exponentially distributed with parameter λz). In cases other
than that just presented, the comparison of Exo to the other design options is more
involved since it can go in either direction, depending on parameters.

The main design insights for binary types hold as well with a continuum of inspection
costs. Going into the details, since C yields the same surplus in both Sim and Endo, we
have that types ct ≤ ĉEndo get always a surplus of qσ (τ)− ct in Endo while in Sim those
with ct ∈ (ĉSim, ĉEndo] get zero. Therefore, if ĉEndo > ĉSim, Endo raises surplus of those
types. On the other hand, all types ct ≥ ĉEndo instead would obtain the same surplus
they obtain in Sim if they were playing C in Endo, but they actually play D which gives
them a higher surplus (type ct = ĉEndo is indifferent among the two design options; types
ct > ĉEndo strictly prefer Endo). Hence, in Endo all bidders are at least as well-off as
in Sim.

We also find that small enough τ is sufficient for SEndo
0 > SSim

0 . With a continuous F (·),
the last term of expressions Eq. (3.34) and Eq. (3.29) show that SEndo

0 ≥ SSim
0 if ĉEndo ≥

ĉSim. This means that the number of bidders who avoid bidding under Sim is higher than
the number of delayers in Endo. Bearing in mind that the equilibrium thresholds are
functions of the fundamentals, for the next few steps only, we let ĉEndo ≡ ĉEndo(λqτ);
ĉSim ≡ ĉSim(λqτ). Equilibrium conditions (ICSim) and (ICĉ) show that ĉEndo(λqτ) ≥
ĉSim(λqτ) if and only if 1− F (ĉEndo(λqτ)) ≥ F (ĉSim(λqτ)) or

F (ĉEndo(λqτ)) + F (ĉSim(λqτ)) ≤ 1 (3.35)

As the two cutoffs are both increasing τ and (λ, q), both equal to 0 when λqτ = 0
and strictly positive otherwise and F is continuous, inequality (3.35) holds when λqτ are
sufficiently small, hence satisfied for τ small. Fig. 3.1 illustrates the effect of parameter
shifts on the equilibrium cutoffs.

The comparison is not immediate in case ĉSim < ĉSim. Nevertheless, we already made
the point that Endo helps raising success rate and welfare if λqτ is sufficiently low,
whereas Sim does better in the opposite case.

The analysis of this section demonstrated a valid principle for threshold two cam-
paigns: with either type of heterogeneity, a delay option design always outperformed the



140 CHAPTER 3. CROWDFUNDING WITH ENDOGENOUSLY TIMED MOVES

0 ĉEndo

ĉEndo

c

(a) q = 0.7, λτ = 1
0 ĉEndo

ĉEndo

ĉSim

ĉSim

c

(b) q = 0.8, λτ = 1.3
0 ĉEndo

ĉEndo

ĉSim

ĉSim

c

(c) q = 0.9, λτ = 2.5

Figure 3.1: Effect of parameters on equilibrium cutoffs.

The plots represent the following curves: dashed, Eq. (ICSim); dotted: Eq. (ICĉ); solid,
45-degree line.

simultaneous benchmark for difficult crowdfunding campaigns, characterized by a low
average bidding λqτ and a thick upper tail of F (·). In particular, for the binary case, low
λqτ implies τ ≤ τ̂(λ, cH). Moreover, a thick upper tail of F is equivalent to a large value
of 1 − z, hence the thick tail requirement translates to z > 1/2. In the case of a con-
tinuum of costs, λqτ sufficiently low implies ĉEndo ≥ ĉSim. Also, increasing the thickness
of upper tail in a given F (ct) replacing it with a first-order-statistically-dominant F ′(ct)
with F ′(ct) ≤ F (ct) for all ct makes the sufficient condition (3.35) easier. We have just
proved the conclusive proposition of the design section.

Proposition 3.7. With heterogeneous inspection costs and g0 = 2, WEndo ≥ W Sim for
sufficiently low λqτ and a sufficiently thick upper tail of F (·).

3.6 Bid profiles and U-shape

As in Chapter 2, we are also interested in characterizing the temporal profile of bids in
Endo and comparing it with Exo.

Since in practice most crowdfunding campaigns are advertised before being officially
initiated on the crowdfunding portal, when studying bid profile we augment the bidder
population in Endo with a group of pre-arrivals that joins the campaign before it starts
and moves at t = 0 as soon as the campaign opens. We denote this extension by Endo-
Pre. For concreteness, we suppose that the entrepreneur promotes the campaign before
its launch on the crowdfunding platform during a period of time τ0 with constant adver-
tising intensity and attracts bidders’ curiosity at the same intensity λ at which bidders
discover the campaign once it starts. In that case, the number of pre-arrivals is Poisson
distributed with parameter Λ0 ≡ λτ0. For simplicity, we assume that pre-arrivals do
not use the delay option as they find it too costly to evaluate the campaign project at
more than one decision episode, but they do delay implementation of any decision until
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the campaign’s opening since that is the first viable moment to do so. In this way, these
bidders choose simultaneously C or A at time t = 0 so that their addition only makes the
initial gap stochastic but does not add a positive initial number of delayers.7 The main
analysis extends easily by replacing the initial fixed gap g0 with its stochastic counterpart
g̃0, which is observed at t = 0+.

The bid profile At traces the temporal evolution of the average bids the whole cam-
paign duration. The overall profile can be decomposed into an interim part, for t ∈ (0, τ),
plus initial and conclusive spikes A0 , A0+ − A0; Aτ , Aτ+ − Aτ caused by batched ar-
rivals and returns of pre-aware bidders and delayers.

In the interim of the campaign, our equilibria induce a bid rate β(t,g) at each funding
state (t, g). So At is simply the average of those bid rates over possible funding states.
In formula,

At =
g0∑

g=−∞
Q(t,g)β(t,g) (3.36)

where Q(t,g) is the state-transition probability that the campaign reaches state (t, g) from
the initial state (0, g0), which obeys the differential equation

Q̇(t,g) = Q(t,g+1)β(t,g+1) −Q(t,g)β(t,g), t ≤ τ (ODE-Q)

together with the terminal condition Q(0,g0) = 1. The behavior of the bid profile in the
interim part can be studied by analyzing the slope Ȧt , dA/ dt. It is immediate to see
that the size of the initial peak is A0 = λqτ0. Nevertheless, the stochastic produced
on g0+ by the exact number of bids pledged pre-arrivals, (not just their average), has
non-trivial effects on bid dynamics. The final peak instead has size Aτ = λqE(0,g0)

(
µ(D)

)
where the expectation is over possible paths of the gap and is taken at the starting point
of the campaign.

In Chapter 2 we show that the bid profile in Exo for the homogenous case is decreasing
because the campaign either (i) starts frozen, (ii) starts and remains active with a constant
bid rate, (iii) starts active but eventually becomes frozen and the bid rate drops to zero.
Interestingly, the stationary equilibrium in Endo leads to the opposite result and can
turn the profile from decreasing to increasing. We now show this formally for a g0 = 2
campaign.8

In the stationary equilibrium of Endo-Pre with g0 = 2, the bid rate is β(t,2) = λqρ,
with ρ in Eq. (3.19) and β(t,g) = λq for g ≤ 1. The campaign is in a state (t, 2) if either
there is no bid from pre-arrivals, with probability 1 − σ (τ0) and the stopping time of

7As for Sim, Pareto optimality rules-out a coordination failure from their simultaneous move. There
is in any case no such coordination failure risk if their bid-conditional success probability estimated based
only on successors is sufficiently high.

8If we tie-break with D rather than C when gt ≤ 1 we get a decreasing profile with a final spike.
However, it is more reasonable to tie-break with C since bidders have nothing to learn by waiting and
are neutral to other bidders’ payoffs.
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the first bid pledged after the campaign is started T1 ≡ T satisfies T > t. Since T is
exponentially distributed with parameter β(t,2) and using the product property of σ (·)we
have

Q(t,2) = P(g0+ = 2)P(T > t) = 1− σ (ρt+ τ0)

This suffices to determine the average bid rate within the interim of the campaign. Pre-
cisely,

At = λq
[
ρ+ σ (ρt+ τ0) (1− ρ)

]
(3.37)

Since ρ(·) is increasing, the profile is positively sloped.9

The final spike Aτ is the expected bidding of delayers that arrive prior to the realiza-
tion of T . If there is at least one bid from pre-arrivals, with probability σ (τ0), the final
spike is null. It is also null if given no bid from pre arrivals, T > τ so that no delayer
bids at τ and the campaign fails. If instead T ≤ τ , the final spike is positive and given
by λq(1 − ρ)T , so that Aτ = (1 − σ (τ0))λq(1 − ρ)E

(
T 1{T≤τ}

)
. Computing the last

expectation we obtain the expression for Aτ .

Lemma 3.4. The expected size of the final bid spike Aτ is given by

Aτ = (1− σ (τ0))S 1− ρ
ρ

(3.38)

Proof in Appendix 3.A.
Expression (3.38) shows τ0 reduces the final spike, but other parameters have a non-

monotone effect. For example, increasing τ reduces the delay probability but also makes
it more likely that one bid from C bidders motivates D bidders to pledge. The effect is
positive when τ is raised from a low value but gets negative when it is already large. The
same reasoning is valid for q and λ, while increasing c produces a first negative and then
positive effect.

With the addition of pre-arrivals, Endo generates a bimodal profile as a result of the
aggregation of two very different patterns. One is decreasing and occurs when there is at
least one bid from pre-arrivals, with probability σ (τ0) that convinces all their successors
never to delay. Conditional on this event, we have an initial spike of expected size

A0 = λqτ0 (3.39)

a constant bid rate of λq during the campaign, and no final spike.
If instead there is no bid from pre-arrivals, with probability 1 − σ (τ0), the bid pro-

file shows a smooth increase in the bid rate in the interim phase of the campaign and
culminates in a final peak.

9The average profile is concave, but this is a unique feature of g0 = 2
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Proposition 3.8. In Endo-Pre, under homogeneous inspection costs with g0 = 2, the
bid profile exhibits an initial and final spike A0 and Aτ , given by expressions (3.39) and
(3.38), together with an increasing bid rate At, in equation (3.37), during the campaign’s
interior phase.

We just proved that the bid profile is binomial in the stationary equilibrium. Nev-
ertheless, due to the equilibrium multiplicity, dynamics are to some degree arbitrary
in other non-stationary equilibria. Among these, the final spike is maximal in the
p.s.e. with T D = [0, τ̂(λ, c)] so that all delays occur initially. In this case, Aτ =
(1 − σ (τ0))σ

(
τ − τ̂(λ, c)

)
λqτ̂(λ, c). Here the spike increases in τ since the probability

that C bidders convince delayers to bid rises. Conversely, its minimum value of Aτ = 0
is achieved with all D occurring at [τ − τ̂(λ, c), τ ]. The value achieved in other equilibria
will be in between those two. The exercise we performed to characterise the bid dynamics
under the stationary m.s.e. is important since its properties hold in any stationary equi-
libria with g0 = 2. Moreover, as we saw in Section 3.4.2, under a continuum of inspection
costs, such equilibrium is the unique prediction of the crowdfunding game.

Next, it is worth asking under what conditions the profile is bimodal. To do so, we will
first show that in g0 = 2 setting, bimodality is preserved in any non-trivial equilibrium.

That g0 = 2 and heterogeneity always generate a bimodal profile in Endo-Pre is
very intuitive. Pre-arrivals clearly generate the initial peak. Since F (ĉ) ∈ (0, 1), we also
have Aτ > 0. This is clear from the following facts. First, a spike requires some delay and
hence no immediate bid when the campaign starts. Ignoring pre-arrivals, this requires no
immediate bid during the first infinitesimal interval (0, ε) in which the campaign is open,
which has a probability 1 − O(ε) by the properties of the Poisson process10 . It follows
that the expected spike is bounded below by the product of (1 − O(ε))εF (ĉ), which is
the expected number of bids pledged at τ by delayers arriving in the first infinitesimal
interval of crowdfunding, times the probability of spike activation that is bounded below
by S(ε,g0) = S0 − O(ε), again by Poisson features. This implies a lower bound Aτ ≥
εF (ĉ)S0 +O(ε2), and hence the final spike is positive for small ε as S0 is strictly positive
given a non-trivial campaign. Multiplying this lower bound by 1 − σ(Λ0) adapts to the
fact that pre-arrivals may bid and preclude delays. This lower bound is far from tight
but it is sufficient to prove the presence of a final spike.

For g0 > 2, we conjecture that heterogenous inspection costs always generate Aτ > 0
in Endo and Endo-Pre. The final spike is only null if bidders never play D except once
the project freezes, namely at t : S(t,g) = 0. However, this scenario with no delays until
frozen can only happen for the Exo-equivalent equilibrium with homogenous inspection
costs because any cost heterogeneity implies that some types play C at the same dates
at which others would play D.

10O(ε) uses the big-O notation (see Appendix 2.C.1)
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3.7 Conclusion

The study of endogenous timing of action in crowdfunding is intriguing but challenging.
We provide a preliminary analysis by fully characterizing a threshold two campaign. The
stationarity of incentives allows to essentially describe all equilibria by fixing a total
number of potential delayers, but this feature is unique to the threshold two setting,
making it a very special case. Despite being partial, its analysis already reveals important
design features that campaigns with a larger bidder threshold will satisfy. In general, we
expect that simultaneity is most useful when costs are homogeneous while endogenous
sequencing helps the most when costs are heterogeneous and the upper tail of the cost
distribution is thick.

The next logical step towards understanding further endogenous action sequencing
in crowdfunding is solving a threshold three campaign. In this setting incentives will
not always be stationary any longer. We will also face the additional complication that
bidders observing a gap of two would not know precisely the stopping time of the first
bid and hence will have to infer it. If costs are homogeneous, bidders will consider that
stopping time is uniformly distributed, but this will not be true anymore for bigger initial
gaps or heterogenous costs. As a result, the analysis may become analytically intractable,
making numerical solutions the only viable way forward. It is also interesting to verify
whether certain equilibria such as that with all L-types being decisive and all H-types
as delayers will continue to exist in the binary case. In short, the structure of equilibria
will undoubtedly change but we expect our main insights to remain relevant.

To respond to the exaggerated control that we give to the platforms in studying
design, we also plan to consider a model in which bidders are exogenously divided into
exo- and endo-types. Exo bidders are those who only contemplate making all their
decisions within the same thinking episode in which they recognize the campaign (e.g.
by watching a promotional video or reading the crowdfunding product’s description).
Endo-bidders have the same action set as in Endo.

Finally, if we relax the assumption that bidders find it too costly to follow the project’s
evolution over time or keep returning to it at regular intervals, we obtain a model where
bidders can continuously follow the campaign. In this case, bidders delay by keeping
track of the temporal evolution of the campaign until they either inspect or quit. The
final spike produced by this model would be smoothed over the whole campaign duration
depending on the expected timing at which delaying bidders choose to inspect so that it
would predict a different bid profile than Endo. This setting is more difficult to solve.
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Future work on that challenge promises to bear new insights.

Appendices of Chapter 3

3.A Proofs

Proof of Lemma 3.1. The bidder surplus V can be tackled by calculating separately
and then combining the surplus of bidders arriving during the time intervals [0, τ−τ̂(c, λ)]
and [τ− τ̂(c, λ), τ ]. In order to proceed, we use the property of Poisson arrivals such that,
conditional on a bidder arriving during the campaign, his exact arrival time is uniformly
distributed over [0, τ ]. So we apply the decomposition

V Exo = τ − τ̂(λ, c)
τ

Vt∈[0,τ−τ̂(λ,c)] + τ̂(λ, c)
τ

Vt∈[τ−τ̂(c,λ),τ ]

In the first interval, all bidders always play C. They obtain a payoff (q − c) if gt ≤ 1
and qσ (τ − t) − c for gt = 2. Since the probability of no bid by t is the 1 − σ (t) and
(1− σ (t))(1− σ (τ − t)) = 1− σ (τ), the average bidder surplus in the first time interval
is

Vt∈[0,τ−τ̂(λ,c)] = qσ (τ)− c

For the remaining duration t ∈ [τ − τ̂(c, λ), τ ], bidders inspect only for gt ≤ 1, with
probability σ

(
τ − τ̂(λ, c)

)
, and get UC

(t,1) = q − c. So, using the definition of σ (·) in
Eq. (3.8) we can again see that

Vt∈[τ−τ̂(c,λ),τ ] = (q − c)σ
(
τ − τ̂(λ, c)

)
= (q − c)

(
1− e−λqτ q

q − c

)
= (q − c)− qe−λqτ = qσ (τ)− c

The overall expected surplus in (3.13) coincides with the identical value achieved in each
time region.

Proof of Lemma 3.2. We proceed by showing that the payoff difference UC
(t,2) − UD

(t,2)

is proportional to 1 − φ(t,2). In other words, the incentive constraint is evaluated in a
scenario in which gτ = 2 so a free-riding intent by t would fail since only in that case the
payoffs of a decisive bidder and a delayer eventually differ. After factoring-out 1− φ(t,2),
the incentive constraint becomes stationary and depends only on a bidder’s pivotality
on the campaign in state (τ, 2), hence only on the total mass of potential delayers δ.
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Concretely, subtracting the expected utility values in Eqs. (3.17) and (3.18) we obtain

UC
(t,2) − UD

(t,2) = q
[
σ
(
κt + δpret

)
− σ

(
κt − δpostt

)]
− c

(
1− σ

(
κt − δpostt

))
= q

[(
1− σ

(
κt − δpostt

))
−
(

1− σ
(
κt + δpret

))]
− c

(
1− σ

(
κt − δpostt

))

=
(

1− σ
(
κt − δpostt

))q
[
1−

(
1− σ

(
κt + δpret

))(
1− σ

(
κt − δpostt

))−1
]
− c


(3.A.1)

Using the properties of exponentials and given that 1− σ (x) = e−x, we have that

(
1− σ

(
κt + δpret

))(
1− σ

(
κt − δpostt

))−1
= 1− σ (δ) , with δ = δpret + δpostt

So, after substituting
(

1− σ
(
κt − δpostt

))
with 1− φ(t,2), equation (3.A.1) simplifies to

φ(t,2)
[
qσ (δ)− c

]
The inequality UC

(t,2)−UD
(t,2) ≥ 0 is determined by the above expression in squared brackets

which coincides with the incentive-compatibility constraint displayed in (ICC,D
c ).

Proof of Proposition 3.4. Stationary of equilibrium strategies follows from the fact
that (ICĉ) has to hold at every instant.

To prove that ĉ is interior and unique, first, we have that ĉ = 0 violates (ICĉ) since
σ
(
τ(1− F (0))

)
= σ (τ) > 0, so inactivity with ĉ = 0 is not an equilibrium. We also

cannot an equilibrium with ĉ = q as it again violates (ICĉ) as σ
(
τ(1− F (q))

)
= 0 and so

σ
(
τ(1− F (q))

)
− 1 < 0. We can conclude that ĉ ∈ (0, q).

Furthermore, the left-hand side of Eq. (ICĉ) is continuous and monotone decreasing
in ĉ, as we can confirm by taking its partial derivative with respect to ĉ and see that it
is always negative:

−
[
λqτf(ĉ)(1− σ

(
τ(1− F (ĉ))

)
) + 1/q

]
< 0 for all ĉ

If follows that there is exactly one value ĉ ∈ (0, q) that satisfies Eq. (ICĉ).

Proof of Proposition 3.5. The first- and second- order conditions to problem (3.31)
are as follows

σ (τ1) (q − c)(1 + λq(τ − τ1)) = qσ (τ)− c+ (q − c)λq(τ − τ1) (FOC)

−(q − c)(1− σ (τ1))
(
2 + λq(τ − τ1)

)
≤ 0 (SOC)
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At this point, we can see that, (FOC) is violated at τ1 = τ , because σ (τ) (q − c) −
(qσ (τ) − c) > 0. This proves V Sim < V ∗ which is achieved at a value τ̂ ∗ > 0. For
τ1 = τ − τ̂(λ, c) condition (FOC) is again violated because using the surplus-equivalence
result in Proposition 3.2 combined with V in Eq. (3.10),

σ (τ1) (q − c)(1 + λq(τ − τ1)) = qσ (τ)− c+ σ (τ1) (q − c)λq(τ − τ1)

< qσ (τ)− c+ (q − c)λq(τ − τ1)

So of course V Endo = V Sim < V ∗ and τ̂ ∗ < τ̂(λ, c). This proves that any value τ̂ ∈
(0, τ̂(λ, c)) raises bidder surplus relative to Sim and Endo.

Proof of Proposition 3.6. Endo prescribes inactivity τ < τ̂(λ, cL). Since τ̂(λ, cL) <
τ̂(λz, cL), where the latter is the condition for inactivity in Sim, we have V Endo ≥ V Sim =
0 for this range of values.

For τ ∈ [τ̂(λz, cL), τ̂(λ, cH)), Endo makes both H-type- and L-types better-off since
VH > 0 and zVL > V Sim for VL in Eq. (3.26) and V Sim Eq. (3.33) as the former has σ (τ)
while the latter only σ (zτ). Therefore V Endo ≥ V Sim.

For τ ≥ τ̂(λ, cH), L-types are indifferent between Endo and Sim but H-types are
either indifferent or better-off because their surplus in Endo is VH = (q− cH)σ (τ − δ) ≥
qσ (τ)− cH as δ ≤ τ̂(λ, cH).

The proof of the comparison of S0 values is provided in the paragraph preceding the
proposition statement and the overall comparison of total welfare is immediate combining
its surplus and success rate components

Proof of Lemma 3.4.

E
(
T 1{T≤τ}

)
=
ˆ τ

0
e−λqρTλqρT dT =

e−λqρT (λqρT + 1
λqρ

)T=0

T=τ

= 1
λqρ
− e−λqρτ

(
τ + 1

λqρ

)
= 1− e−λqρτ − λqρτe−λqρτ

λqρ

so that (1− σ (τ0))λq(1− ρ)E
(
T 1{T≤τ}

)
= Aτ = (1− σ (τ0))S 1− ρ

ρ
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