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Chapter 1

Introduction

This PhD dissertation aims to assess the efficiency performance of the public healthcare
system of a developing country, under a context of policy reforms that moved towards
higher equity and universal coverage. In so doing, we focus our attention on the public
healthcare system of Ecuador.

The rapid increase in healthcare investment, as well as healthcare costs as a proportion
of GDP in many countries all around the globe have placed a big emphasis on policies to
improve hospital efficiency as a way to pursue health objectives, and at the same time, con-
tain cost pressures (Bloom et al., 2015; Papanicolas and Smith, 2013). Attention to this
matter has raised the interest in the academic literature, specially for developed coun-
tries. However, there is a scarce (although growing) literature applied to developing –and
particularly Latin American– countries. As in many Latin American countries, Ecuador
has faced a series of political reforms that have contributed to enlarge the existing re-
gional income inequalities and led to profound territorial imbalances in the distribution
of their healthcare resources. In 2008, the implementation of the new constitution led to
new healthcare reforms to provide higher access to healthcare, specially for the marginal
population. These reforms were accompanied by a significant public investment in health
directed at increasing the supply of medical services, as well as improving the quality and
performance of the public healthcare system. However, national reforms implemented in
a country that suffers from deep territorial heterogeneities may have asymmetrical ef-
fects on the hospitals’ performance, closely correlated with their geographical distribu-
tion. While, public investment aimed at increasing the healthcare system’s performance
may fail to attain the desired outcomes if these discrepancies are not properly taken into
account. This is because hospitals located in developed regions deal with different condi-
tions to treat patients (compared with hospitals in less-developed regions) that may affect
their efficiency performance: they are likely to have more technology, capacity, resources,
and higher competition from nearby hospitals, etc.

Throughout this thesis, we will explore relevant questions on the efficiency of public
hospitals of Ecuador, and the effect that healthcare policies (particularly, after 2008) may
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have had on their performance. In our analysis, we address the territorial heterogeneities
prevalent in the healthcare system in a framework were the geographical structure plays
a major role. We start by defining efficiency as the optimal use of hospital inputs to attain
a given set of healthcare outputs,1 and use innovative optimization models to provide a
single efficiency value (for every hospital) to measure it. Then, we use information on the
geographic distribution of public hospitals to disentangle spillover effects among them
and determine whether the spatial structure of the country’s healthcare system plays a
relevant role.

Therefore, with this dissertation we aim to contribute to the academic discussion and
bring new evidence on the efficiency analysis of a developing country, that, as many
others, has been suffering from continuous political changes and inequalities that have
shaped the geographical distribution of its resources and modeled the behavior of its eco-
nomic agents. The thesis consists on three essays developed in Chapter two, three, and
four, respectively. Whereas, in Chapter one, we develop the motivation behind our study
and a brief overview of the three essays. The main findings and policy implications are
discussed in Chapter 5.

1.1 Motivation

As a determinant of the population’s wellbeing, healthcare has commonly been the scope
of economic debates and the public policy agenda for many countries around the globe. In
developing countries, and particularly, Latin American ones, policy decisions have been
aimed at reducing inequalities in healthcare access and attaining outcomes focused on
the expansion of universal coverage due to their profound income inequalities and poor
healthcare conditions. (Atun et al., 2015; Levy and Schady, 2013).

In Ecuador, many of these reforms have taken part in recent years, encouraged by
the new constitution implemented in 2008. Some of them included free medical care to
the uninsured population in hospitals belonging to the Public Ministry of Health and the
mandatory enrollment of employees to the social security. These reforms were supported
by a huge deployment of public investment by the central government, mostly targeted
to the endowment of medical infrastructure and training (Granda and Jimenez, 2019).

However, lowering the barriers of access to medical treatment may have an effect on
the way that public hospitals provide medical attention (i.e., on the efficiency of public
medical provision), which is linked to the mobility of the demand. If policies that move
towards higher equity promote an increase of demand for medical treatment in the short-
run, then public hospitals face two potential scenarios. On the one hand, they can adapt
to this higher demand by accommodating their spare resources and capacity, and hence,

1Conversely, efficiency can also be understood as the use of a given set of hospital inputs to attain
an optimal level of healthcare outputs. These concepts will be explained in more detail throughout this
dissertation.
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improving their efficiency. On the other hand, this high inflow of patients may lead them
to suffer from congestion effects, jeopardizing this efficiency.

Such a scenario raises many questions: when central policies are aimed at higher eq-
uity and universal coverage, what is happening to hospital efficiency? Does the increasing
demand for medical treatment is affecting the efficiency performance of public hospitals?
Are the best-performing hospitals those that are attracting more patients? May we observe
a significant change in this performance after the new constitution was approved?

We tackle these questions throughout the following Chapters of this thesis. We intend
efficiency in terms of the production process, which converts healthcare inputs (such as
physicians or hospital beds) into health outputs (such as patients discharged or emergen-
cies attended), being the efficient units those that either minimize inputs or maximize
outputs. The importance to care about efficiency analysis has been widely addressed in
the literature to monitor a country’s healthcare system (see for example Hollingsworth,
2008; Cantor and Poh, 2018), identifying those under-performing hospitals in order to
deliver tailored policies or to determine whether their efficiency has tended to increase
in response to specific policy interventions. Thus, it can be used as a proper tool for
governments and decision-makers to enhance the system’s performance and promote the
welfare state (Wagstaff, 1989). Its importance is emphasized in developing countries such
as Ecuador, where the pressing need for proper resource allocation is imperative, given
the restricted level of medical resources and healthcare budget (Hafidz et al., 2018; Kumb-
hakar, 2010).

In addition, we need to consider that Ecuador (as well as many other Latin American
countries) suffers from deep territorial disparities, with a profound income concentration
in certain regions (Mendieta Muñoz and Pontarollo, 2016). From the healthcare perspec-
tive, this heterogeneity derives in high concentration of hospitals and medical resources
in developed areas, generating technological heterogeneities among public hospitals. This
concentration suggests the existence of a spatial pattern where competition and learning
effects among spatial clustered regions may lead to spatial clustering of healthcare behav-
ior. That is, endogenous and exogenous spatial spillovers may be involved and the provi-
sion of medical services may entail an influence beyond the regional borderline (Bech and
Lauridsen, 2008). If not taken into consideration in the economic models, this structure of
spatial autocorrelation may produce statistically biased results, and hence, to misleading
conclusions.

In this thesis, we take into consideration the regional heterogeneity and address it in
a framework of analysis where the geographical structure plays a key role to determine
the origin of the spatial heterogeneity, its determinants, and offers us a proper setting to
disentangle potential endogenous and exogenous spillover effects. In this spirit, this dis-
sertation addresses three different aspects. First, in Chapter 2, we evaluate the efficiency
performance of the Ecuadorian public hospitals, determining whether we can observe
significant differences on its evolution before and after the new constitution was imple-
mented. Second, in Chapter 3, we tackle the questions of whether this efficiency is as-

9



sociated with significant strategic interactions among hospitals located within a bounded
area, due to the existence of spillover effects, and whether this efficiency is affected by the
increasing demand for medical attention. In particular, we explore whether this effect has
varied after the new constitution. Finally, in Chapter 4, we focus on the patient mobil-
ity among the regions of the country and the hospitals located within those regions, and
determine wether the performance of a hospital is driving patients from other regions to
that hospital and to neighboring hospitals as well.

In what follows, we outline more precisely the content of the three core Chapters of the
thesis. The first focus of our attention is on the development of an empirical methodology
that allow us to measure a robust and single value of hospital efficiency that exploits a
panel data setting.

1.2 Analyzing the effect of health reforms on the efficiency
of Ecuadorian public hospitals2

In this Chapter, we investigate whether the Ecuadorian healthcare reforms carried out
since 2008 have affected the efficiency performance of public hospitals. To tackle this
question, we construct a database with hospital information coming from the Institute on
National Statistics and Census (INEC) that covers the period from 2006 to 2014. To con-
sider the technological heterogeneities in the hospitals’ endowment, we use a two-stage
approach. In the first stage we use factor and cluster analysis to obtain three clusters of
hospitals: high-tech, intermediate-tech, and low-tech. In the second stage, we exploit a
novel panel Data Envelopment Analysis proposed by Pérez-López et al. (2018) to estimate
robust efficiency measures over time. With this approximation, we are able to consider
the heterogeneity of healthcare institutions in the analysis of their efficiency performance.
The results show a significant decrease in the average efficiency of low and intermediate
technology hospitals after the new constitution was adopted in 2008. The decline in ef-
ficiency coincides with the two reforms of 2010 and 2011 that brought on higher social
security coverage.

The decline in efficiency after the new constitution was adopted lead us to think that
it might be related with the increase in the demand that public hospitals faced due to
the new reforms. However, if hospitals were no making use of the spare resources and
capacity in an efficient manner, we could be facing the opposite situation. That is, the
increase in demand could be encouraging a better use of resources that fuels efficiency,
whilst the decline in hospitals performance could be due to other external reasons. In fact,
as mentioned, the spatial structure could be playing a key role in the hospitals’ behavior.
If spatial autocorrelation is significant, increases in demand could be affecting not just
an observed hospital, but also those that surround it, through spillover effects. In this

2This Chapter has been published in the Working Paper series of the Graduate Program in Applied
Economic Research (GEAR), 2020-01.
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line, with significant spatial autocorrelation, we could also face a situation where changes
in the efficiency performance of one hospital may be leading to changes in efficiency of
neighboring hospitals as a response, suggesting strategic interactions among them, and,
hence, the existence of spatial dependence. These questions are addressed in the next
study.

1.3 Spatial dependence in hospitals efficiency: A spatial
econometric approach for Ecuadorian public hospitals3

In this Chapter, we analyze whether the efficiency of Ecuadorian public hospitals expe-
riences spatial dependence. We additionally investigate whether demand variations are
affecting the public hospitals’ efficiency through direct and spillover effects, in particular,
whether this effect significantly changes after the adoption of the new constitutions in
2008. We take upon the efficiency results estimated in Chapter 2 as a first stage of our
strategy. In the second stage, we use a spatial econometric framework to disentangle di-
rect and spillover effects. The results confirm the existence of positive spatial interactions
among public hospitals’ efficiency. Following Longo et al. (2017) these results suggest the
existence of complementary strategic interactions among public hospitals in terms of ef-
ficiency. Positive direct and spillover effects are found from demand increases, reinforced
after 2008.

The positive direct and spillover effects of demand increases in hospital efficiency em-
phasize the importance of understanding the dynamics of patient mobility and the de-
terminants behind the decision of selecting a given hospital. In a country characterized
by deep spatial concentration, such as Ecuador, developed regions will concentrate big
and best-performing hospitals. Hence, is basic to assume that patients will select those
hospitals located in developed regions. If those best-performing hospitals are located in
the developed areas, then patients from less-developed regions will seek the best possi-
ble medical attention, hence, traveling beyond regional borders to receive treatment in
those high-performing hospitals. However, these movements may also present a spatial
dependence in the form of patients inflows to neighboring hospitals. Conversely, spatial
dependence in the form of outflows of patients from neighboring less-developed regions
may also be observed. In the last study, we focus our attention on the analysis of patient
migration flows and determine whether hospital efficiency performance could be used
as a determinant to attract patient demand and whether spatial dependence is found in
those patient migration flows.

3This Chapter has been published in the Working Paper series of the Graduate Program in Applied
Economic Research (GEAR), 2020-05.
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1.4 On the dynamics of patient migration flows: is effi-
ciency performance explaining inflows for neighbor-
ing hospitals? An application to the Ecuadorian health-
care system4

In this Chapter, we analyze whether higher efficiency performance of public hospitals at-
tracts more interregional patients and whether these inflows present spatial dependence
in the form of larger inflows of patients from neighboring hospitals in the region. We
apply a two-stage approach. In the first stage we use a conditional order-m model to es-
timate robust efficiency values for a sample of hospitals in 2014. We intend efficiency as
the maximization of hospital outputs with a given set of inputs. The use of conditional
order-m also allow us to take into consideration variables that proxy the level of develop-
ment of a hospital’s region that have an exogenous effect on the hospital’s performance.
In the second stage, we use a spatial interaction model to estimate the effect of hospital
efficiency upon patient mobilization and the spillover effects on the migration dyad. The
results show a positive and significant pulling effect of specialized hospital efficiency on
patient flows. Furthermore, we find significant spillover effects on neighboring hospitals
in the same region and from hospitals in the region neighboring the origin.

All in all, in this thesis we conclude that the increase in the demand for medical treat-
ment had an overall positive effect on hospital performance, both through direct and
spillover effects. Potential drivers of this effect refer to the inefficient use of the spare re-
sources and capacity of public hospitals. The time that hospitals had to adapt to the forth-
coming inflow of patients before the reforms and the public investment deployed may also
have a significant participation in the effect. The results also provide evidence that the
efficiency performance of specialized hospitals has a strong pulling effect of patients from
less-developed regions. This inflow of patients is being captured by neighboring hospi-
tals who are increasing their efficiency to attract this demand. This interactions among
public hospitals are showing competition effects that enhance the regional performance
and may translate into welfare improvements. However, these welfare gains may come in
an asymmetrical manner (Brekke et al., 2014, 2016), as people living in less developed re-
gions are not able to get medical attention in these best-performing hospitals. The results
of this dissertation provide useful recommendations for policy decision-making. Policy
implications drive the attention to the design of well planned healthcare strategies con-
sidering territorial externalities, technological endowment and specialization level as key
features. Higher public investment can be targeted to increase the supply of specialized
treatment in less-developed regions. In developed ones, decision-makers can take ad-
vantage of spillover effects to promote efficiency strengthening hospital reforms and well
allocated public investment to enhance the regional healthcare system’s performance.

4This Chapter has been published in the Working Paper series of the Graduate Program in Applied
Economic Research (GEAR), 2021-01.
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Chapter 2

Analyzing the effect of health reforms on
the efficiency of Ecuadorian public
hospitals∗

Abstract
This study aims to assess whether Ecuadorian health reforms carried out since
2008 have affected the efficiency performance of public hospitals in the coun-
try. We contribute to the literature by shedding new light on the effects on
public healthcare efficiency for developing countries when policies move to-
ward health equity and universal coverage. We follow of a two-stage approach,
wherein the first stage we make use of factor and cluster analysis to obtain
three clusters of public hospitals based on their technological endowment; we
exploit Data Envelopment Analysis for panel data in the second stage to esti-
mate robust efficiency measures over time. Our innovative empirical strategy
considers the heterogeneity of healthcare institutions in the analysis of their
efficiency performance. The results show a significant decrease in the average
efficiency of low and intermediate technology hospitals after the new consti-
tution was adopted in 2008. The decline in efficiency coincides with the two
reforms of 2010 and 2011 that brought on higher social security coverage.

Keywords: healthcare efficiency, health reforms, metafrontier, panel data DEA
JEL: I18, C14, H51

∗We would like to thank the scientific committee and the participants of the Applied Lunch Seminar
at UAB; the participants of the ISEG International Conference (Brasov, 2019) and the Meeting on Public
Economics (Barcelona, 2020); and Núria Mas for their valuable comments. Any remaining errors are our
own responsibility.
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2.1 Introduction

As a determinant of population wellbeing and economic growth, improving health has
become a major topic in economic debates and features high on the public policy agenda
in many countries around the world. Healthcare is one of the main public policies im-
plemented by most governments and improving the efficiency of its delivery is a crucial
goal of health service providers globally (Au et al., 2014). Nevertheless, health systems in
Latin America face specific challenges, including insufficient human resources and train-
ing, lack of evaluations of strategy outcomes, operating levels, and weaknesses in the
public health system’s response capacity, among others (Ruiz-Rodriguez et al., 2016).

In this context, the Ecuadorian health sector has undergone a continuous process of
deterioration as a consequence of neoliberal reforms carried out in the 1990s (Homedes
and Ugalde, 2005) and the crisis of 2000, which mainly affected the most deprived pop-
ulation. This deterioration meant a progressive reduction of the health budget, lack of
infrastructure investment and shrinking human resources, and low quality and coverage
of public services (López-Cevallos and Chi, 2010; Malo-Serrano and Malo-Corral, 2014).

In 2008, the government of former President Rafael Correa brought in a new consti-
tution that guarantees health as a citizens’ right and introduced a series of health reforms
that moved toward universal coverage and free primary medical services. This change was
accompanied by substantial public investment in the health sector in order to improve the
quality and quantity of medical services (De Paepe et al., 2012; Hartmann, 2016).

There are two potential effects of these reforms on the efficient delivery of medical
services to the population. On the one hand, the increased demand for health services by
the newly insured population might encourage hospitals that were not using their spare
capacity and/or medical resources correctly to take full advantage of them by optimizing
their resources and delivering a more efficient service. On the other hand, in the desire
to promote equal access to health, these policies might lead to over-demand for health
services that hospitals are unable to cope with in the short term (Smith and Yip, 2016).
The lowering of access barriers to medical services may cause the volume of patients to
increase, thus raising input consumption and hence, healthcare costs. Even if there is an
increase in capacity and personnel, the possibility remains that this will drive a reduc-
tion of efficiency if the system is not able to manage its resources properly (Cozad and
Wichmann, 2013).

It is clear that improving the efficiency of resource use is a key issue in most health
systems, and is particularly acute in developing countries where there is a pressing need
for proper resource allocation given the limited level of overall infrastructure, resources
and health budget (Kumbhakar, 2010; Hafidz et al., 2018).

In light of the above, a relevant question arises: when the objective of equity provides
the rationale for governments’ central involvement in healthcare, is healthcare efficiency
negatively affected? This question has been addressed in the literature over the years (e.g.
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Nord et al., 1995; Culyer, 2006), but the very nature of the healthcare market makes it
difficult to define the concept of optimal allocation (Culyer, 1971). The degree and com-
bination of certain healthcare industry characteristics distinguish it from any other sector
(Arrow, 1963; Culyer, 1971); furthermore, no single health system model fits all countries
(Smith and Yip, 2016), and the resulting scenario presents many challenges for health
economists to define the right theoretical model that fits both equity and efficiency into
the economic equilibrium (Leach, 2010). This context has led many authors to highlight
the importance of carrying out empirical studies that have the potential to clarify, mea-
sure performance, and evaluate, particularly around specific policy decisions (Carr-Hill,
1994; Xingzhu, 2003; Hollingsworth, 2012; Smith and Yip, 2016). In this sense, healthcare
efficiency studies can help to further understanding on the nature of institutional ineffi-
ciency in a particular economic scenario, allowing the public authority to improve health
or to enhance the performance of their healthcare systems, not just by merely increasing
the available resource, but by making a better use of them (Carrillo and Jorge, 2017).

We contribute to this topic by focusing on the Ecuadorian context, which offers a
framework of analysis characterized by health reforms designed to bring in universal
coverage and seeking the “well-living” of the population (López-Cevallos et al., 2014;
Espinosa et al., 2017). We present an analysis with current information on the efficiency
changes in a reality that is still adapting to these reforms, and must face potential prob-
lems arising in the short term. Thus, this study considers the public health reforms intro-
duced since 2008 in order to assess whether they have negatively affected the efficiency
performance of public hospitals in Ecuador.

To properly account for the situation in Ecuador, we need to consider the territorial
heterogeneity of the Latin American context. In Latin American countries, the question
of territorial disparities must be addressed in any economic analysis and the profound
imbalances between regions characteristic of many Latin American countries are well
documented in the literature (Cuadrado-Roura and Aroca, 2013). As a result of the un-
equal distribution of income in these countries, such disparities are higher than in other
continents, reaching extremes where the wealthiest region has an income per capita al-
most ten times the poorest in some cases (Cuadrado-Roura and Aroca, 2013). In addition,
Latin American countries have been subject to neoliberal reforms supported by the World
Bank and the IMF that have aggravated the equity and efficiency of their health systems
and widened existing urban-rural and inter-regional inequalities (Homedes and Ugalde,
2005). Given that urban dwellers exercise more political pressure than rural populations,
and that large cities have more political clout than smaller ones, a disproportional amount
of health resources is concentrated in large urban areas.

In Ecuador, these neoliberal reforms deeply exacerbated its existing regional dispar-
ities and led to a structural segmentation and fragmentation of its health system (Hart-
mann, 2016). One outcome of this process is the marked technological heterogeneity
among its health institutions, with a greater concentration of hospitals with higher levels
of technology in the most developed regions. In light of this evidence, the need to develop
economic analysis tools that take into account these regional disparities has been widely
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called for in recent literature focusing on Latin America and particularly on the Ecuado-
rian economy (Mendieta Muñoz et al., 2015; Mendieta Muñoz and Pontarollo, 2016; Szeles
and Mendieta Muñoz, 2016).

In order to consider the aforementioned technological differences in the Ecuadorian
public health system, we introduce a methodological innovation in a two-stage analysis.
In the first stage, we use multivariate factor analysis and clustering techniques to find
homogeneous groups with uncorrelated characteristics of technological endowment. We
compare them with a common frontier, similarly to the metafrontier approach (Battese
and Rao, 2002; Battese et al., 2004; O’Donnell et al., 2008). Here, we face an issue that is
commonly present in low and middle income countries, which relates to the lack of suffi-
cient data to perform a meaningful efficiency analysis (Au et al., 2014) (this phenomenon
is also described as the ‘curse of dimensionality’ in the literature on efficiency estima-
tions. See Daraio and Simar (2007b)). The results show that when the data is scarce,
and the system is heterogeneous, the metafrontier might not be representing the unre-
stricted production frontier identified by Battese and Rao (2002), and the cluster compar-
ison might produce the wrong conclusions. In order to obtain a metafrontier that allows
us to perform a good comparison between clusters, we propose an alternative approach
to obtain a common frontier for developing countries, based on the seminal studies of
Banker and Morey (1986, 1996) and Podinovski (2005).

Having identified these new clusters, in the second stage we combine the metafrontier
and panel data envelopment analysis (panel data DEA) (Surroca et al., 2016; Pérez-López
et al., 2018) to account for robust efficiency values over time. Considering an empirical
methodology that allows for this heterogeneity enables us to obtain consistent efficiency
values, which might otherwise be biased if we applied classical efficiency measurement
techniques to the whole sample (Mitropoulos et al., 2015).

Our analysis covers the period from 2006 (starting before the new government came to
power) until 2014. We use data from the Annual Survey of Hospital Beds and Discharges
and the Survey of Health Activities and Resources provided by the Ecuadorian Institute
of Statistics and Censuses (INEC). As far as we are aware, no published empirical litera-
ture has applied this methodology to assess efficiency performance in a Latin American
country such as Ecuador. In this regard, this work can be of great utility for academics
and policymakers and may be used to justify the implementation of public health policy
and managerial health improvement reforms.

The paper begins with a brief contextualization of the Ecuadorian healthcare system,
in Section 2.2. Section 2.3 then explains and reviews the methodological framework and
the most recent cited empirical literature; the methodology is presented in Section 2.4. In
Sections 2.5 and 2.6 we discuss the data and results obtained. Finally, in Section 2.7 we
present the main conclusions.
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2.2 Institutional context

Ecuador’s healthcare system combines the public and private sectors. The public sector
comprises the Public Ministry of Health (MSP), the Ministry of Social and Economic In-
clusion (MIES), the municipal health services and the social security institutions.1 The
MSP provides health services to the whole population, the MIES and municipality health
programs supply medical care to those without insurance, while the social security insti-
tutions cover the affiliated working population (Lucio et al., 2011). Since Rafael Correa’s
government came to power in 2007 and implemented the new constitution in 2008, an
unprecedented level of public investment has taken place in Ecuador, focusing on pri-
mary services such as education and health. This new government, called the ”Citizen
Revolution”, marked the beginning of a stage of democratic stability that gave the State
the central role that guarantees and promotes the enjoyment of rights for the entire pop-
ulation.

Additionally, the 2008 constitution also brought in significant changes, especially in
access to health services and social security coverage. Articles 3 and 34 of the National
Constitution state that health is a right guaranteed by the State and it shall ensure the
full exercise of the right to social security. On this basis, several reforms have been im-
plemented such as coverage of children under the age of 18 in 2010 (Article 102, Social
Security Law) or deprivation of liberty for employers who do not affiliate workers within
a maximum period of 30 days in 2011 (Art. 244, Organic Comprehensive Criminal Code),
resulting in a significant increase in the number of active beneficiaries until 2014 (Orel-
lana et al., 2017).

Some results can be drawn from the Annual Survey of Hospital Beds and Discharges
and the Survey of Health Activities and Resources. Figure 2.1 shows that between 2006
and 2014 the total number of patients discharged from public hospitals rose from 608
thousand to over 853 thousand, representing a 40 percent increase in patients attended.
The biggest jump in medical attention was seen in 2012, which coincides with the period
following the above-mentioned reform of 2011.

1Ecuadorian Social Security Institute (IESS), Social Security Institute of the Armed Forces (ISSFA) and
Social Security Institute of the National Police (ISSPOL).
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Figure 2.1: Number of discharged patients in public hospitals in the period 2006–2014
(in thousands)

The final goal of these reforms was to improve the wellbeing of the most deprived
citizens, in pursuit of a more equal access to medical services. However, despite the
new investment in infrastructure and human capital, little attention was paid to how
these new health improvements would affect the performance of the hospitals. De Paepe
et al. (2012), discusses how the introduction of these new free services and the increase in
the insured population brought about a “demand crisis”, especially in larger cities. This
higher demand meant that public hospitals could not cope with the influx of patients and
drove the need to contract private services to stem public discontent. Some evidence of
this measure can be found in Figure 2.2, where 2011 and 2013 present the biggest jump in
patients attended in private clinics for three of Ecuador’s largest and most densely pop-
ulated cities (Quito, Guayaquil and Cuenca). Unfortunately we do not have information
on the patient referrals to private healthcare institutions, but the decrease in discharged
patients from public hospitals in 2013 (Figure 2.1) might be signaling a small alleviation
in the demand for public healthcare services that seems to have been referred to private
clinics (Figure 2.2).

The public-private interface in healthcare can also represent a source of inefficiency
for the public healthcare system; this phenomenon is known in the literature as cream
skimming (Ellis, 1998). The concept relates to the selection of patients with lower ex-
pected cost of treatment by hospitals and healthcare providers, which can decrease their
costs by selecting patients with less severe medical conditions (Cheng et al., 2015). In
the Ecuadorian context, the increase in the volume of patients in the public sector derives
in the referrals to private healthcare institutions, but the private sector will only be pre-
pared––or willing––to treat the simplest less serious and complex cases, from which they
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Figure 2.2: Number of discharged patients from private clinics in Quito, Guayaquil and
Cuenca, 2006–2014 (in thousands)

derive their profitability. In these circumstances, the public sector deals with the most
complex cases, which consume more inputs and are less profitable, and refers the sim-
plest cases to the private hospitals, which consume fewer inputs and are more profitable.

The dynamic deriving from the above-mentioned changes introduced in the healthcare
system is illustrated in Figure 2.3.

19



Figure 2.3: Dynamic in the Ecuadorian healthcare system

These facts reveal the need for an empirical strategy with which to measure the ef-
ficiency changes and the potential effects of the public health reforms. The following
section reviews the methodological framework most commonly used in the literature to
address this relationship.
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2.3 Literature review

This paper takes its methodological framework from Production Theory (Debreu, 1951;
Koopmans, 1951; Farrell, 1957) and the metafrontier production function (Battese et al.,
2004; O’Donnell et al., 2008). The main idea of productive efficiency is linked to the
concept of Pareto Efficiency Allocation, according to which a resource endowment is effi-
cient when there is no other possible allocation that makes a Decision Making Unit (DMU)
better off. 2 The efficiency analysis can be applied to any DMU, and we can distinguish be-
tween technical efficiency and allocative efficiency. The latter assumes that relative prices
are known and are reasonably stable. Following Farrell (1957), an efficient unit would
obtain a value of one, and it could take an input or an output orientation. The former
focuses on minimizing the input use and the latter on maximizing the output obtained in
the production process.

In turn, the metafrontier production function assumes that DMUs from different envi-
ronmental conditions, regions, and/or countries face different production opportunities
and have to make different choices taking into account variations in the feasibility of
input-output combinations. These technology sets will therefore be different and difficult
to compare. Battese et al. (2004) and O’Donnell et al. (2008) develop a way to make effi-
ciency comparisons across groups of DMUs. They do this by measuring efficiency relative
to a common metafrontier which is defined as a boundary of an unrestricted technology
set, and they also define group frontiers to be boundaries of limited technology sets that
are embedded in the common frontier.

The metafrontier envelops the group frontiers. Efficiencies that are measured with
respect to the metafrontier can be decomposed into two components: one component
measures the distance from an input-output vector to the group frontier, which is the
common measure of technical efficiency; and a second component measures the distance
between the group frontier and the metafrontier, which is defined as a technological gap
ratio (TGR), and represents the restrictive nature of the production frontier.

In the empirical literature, healthcare efficiency measurement has attracted growing
interest over the years. Most studies focus on measuring the efficiency and productivity
of healthcare using parametric and non-parametric applications. Several authors offer
extensive reviews of the published literature (Hollingsworth, 2003, 2008; Worthington,
2004; O’Neill et al., 2008; Cantor and Poh, 2018). However, more than half of these were
applied in the US and Europe, while just a few have examined developing countries, al-
though this number has been rapidly increasing over the last years (Hollingsworth, 2008).

Here, data envelopment analysis (DEA) has excelled over other techniques, as a non-
parametric linear programming method for measuring relative efficiency of homogeneous
DMUs. This approach is more consistent with economic theory as it locates technical

2Any unit of analysis can be labeled as a DMU, for example individuals, departments, firms, municipal-
ities, or, in the case of this study, hospitals.
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or Pareto inefficiencies instead of measuring efficiency based on averages (O’Neill et al.,
2008; Cantor and Poh, 2018). It also allows a data driven assessment of the production
process without strong assumptions about the functional form, which is a major advan-
tage in the face of uncertainty (Staat, 2011).

In this regard, the published literature applied to Latin American countries has been
somewhat scarce. De Castro Lobo et al. (2010a) use network DEA to assess the perfor-
mance and integration of healthcare and teaching dimensions in Brazilian university hos-
pitals. Keith and Prior (2014) measure technical efficiency using the DEA approach and
evaluate the potential presence of scale and scope economies in Mexican private medical
units. Ruiz-Rodriguez et al. (2016) also apply DEA analysis in a four-stage approach along
with a series of Tobit regressions in order to estimate the technical efficiency of the three
women’s health promotion and disease prevention programs in Bucaramanga, Colombia.
However, these studies aim to measure efficiency in a specific year analysis, and none of
them attempted to identify the effects of health reforms.

Following this line, several authors have addressed research questions regarding the
relationship between health reforms and performance (e.g. Linna, 1998; Maniadakis et al.,
1999; Van Ineveld et al., 2016), but very few have focused on Latin American countries
(Arocena and Garcı́a-Prado, 2007; De Castro Lobo et al., 2010b). Most of them make use of
non-parametric methods, like DEA models, to calculate efficiency scores and Malmquist
productivity indices, subsequently decomposable on efficiency and technological change,
which have been widely employed in the literature in part because they require nei-
ther relative price information nor restrictive behavioral assumptions for their estimation
(Chowdhury et al., 2014).

Table 2.1 presents a summary of the most recent cited literature on health reforms
and hospital performance. To answer questions regarding health reforms, the literature
has mainly followed two approaches that rely largely on the availability of the data, and
the results may depend on the context in which it took place and the type of reform
implemented.

Table 2.1: Summary of the literature

Authors Country Year
of the
Reform

Study Pe-
riod

Methodology Conclusions

Linna (1998) Finland 1993 1988–1994 Time-
varying
SFA, DEA,
Malmquist
Index

3-5% annual average increase
in productivity due to cost
efficiency and technological
change. The state subsidy re-
form of 1993 did not seem to
have any observable effects on
hospital efficiency
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Table 2.1 (continued)

Authors Country Year
of the
Reform

Study Pe-
riod

Methodology Conclusions

Maniadakis
et al. (1999)

Scotland 1990 1991–1996 Malmquist
Index

Overall net gain in productiv-
ity, although a slowdown was
observed in the first year after
the reform. The change was
due to technological change
as hospitals were relatively ef-
ficient at the time of the re-
form

Sommersguter-
Reichmann
(2000)

Austria 1997 1994–1989 DEA,
Malmquist
Index

Positive shift in technology
between 1996 and 1998 as a
result of the financing reform

Arocena and
Garcı́a-Prado
(2007)

Costa Rica 2000 1997–2001 Generalized
distance
functions,
Malmquist
Index

Improvement in hospital per-
formance mainly driven by
quality changes and particu-
larly significant for small hos-
pitals. Productivity growth is
mainly due to technical and
scale efficiency rather than
technological change

De Castro
Lobo et al.
(2010b)

Brazil 2004 2003–2006 DEA,
Malmquist
Index

Financial reform was a good
stimulus for efficiency gains,
but technology change was
not able to take place

Van Ineveld
et al. (2016)

The
Nether-
lands

2005 2005–2010 DEA,
Malmquist
Index

Larger differences in effi-
ciency among hospitals. In
2009–2010 the number of
larger and more efficient
hospitals decreased

Valdmanis
et al. (2017)

Scotland Series of
reforms
through
the pe-
riod of
analysis

2003–2007 Malmquist
index, time-
series trend
analysis

No steady movement with
the use of the Malmquist in-
dex, but the time-series trend
analysis revealed a trend of
improvement in technological
but not technical change

Xenos et al.
(2017)

Greece 2008 2009–2012 DEA,
Malmquist
Index

Negative impact of the cri-
sis in 2009 with 91% of the
hospitals achieving a score
lower than one. Improve-
ment between 2010 and 2011
followed by stabilization in
2011–2012
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Table 2.1 (continued)

Authors Country Year
of the
Reform

Study Pe-
riod

Methodology Conclusions

Giménez
et al. (2019)

Colombia 1993 2009–2013 Mamlquist-
Luenberger
index

Total productivity worsened
by 1% during the period of
analysis, mainly due to tech-
nological backlash

Source: The authors

On the one hand, the hospitals’ performance can be evaluated by considering their
performance after a certain reform has taken place. For example, Maniadakis et al. (1999)
use Malmquist indices of productivity and quality to evaluate the reforms of the UK Na-
tional Health Service in the early 1990s in acute Scottish hospitals over the first five years
of the reforms. Overall, they find that the hospitals showed a gain in productivity, al-
though an initial regress was observed in the first year after the reform. The changes in
productivity were led by technological rather than efficiency changes, given that hospitals
were operating close to the industry boundary at the time of the reform and their position
changed little over time. Van Ineveld et al. (2016) assess the productivity performance of
Dutch hospitals since the health system reform of 2005. They use DEA based measures in
a cross-sectional and longitudinal analysis as well as the Malmquist index; they find that
the efficiency gap among hospitals has widened, benefiting some of the smaller hospitals
but not some larger ones, which might be a consequence of the 2005 reform. Xenos et al.
(2017) study the dynamics of efficiency and productivity in Greek public hospitals after
the 2008 financial crisis, where in the period of study (2009–2012) hospital budgets were
reduced by 40%. Using DEA and bootstrapping Malmquist analysis they find a negative
impact in productivity due to the crisis in 2009 with a recovery in 2010 and a posterior
stabilization. The latest study conducted in Latin America is that of Giménez et al. (2019).
They analyzed the performance of level 1 Colombian hospitals for the period 2009–2013
to evaluate how the health system was performing after the 1993 reform. They also ex-
tended the analysis to find out whether the efficiency of high-level hospitals was affected
by patient referrals from primary care centers. Using the Malmquist-Luenberger index,
they found that productivity decreased by 1% during the period of analysis, providing
evidence of a deficient performance in public hospital efficiency after the 1993 reform.

On the other hand, the approach can use a before-after design, which can further ben-
efit the analysis, given that we can actually check the hospitals’ behavior after the reform
and gain an initial insight into its influence on their performance. Linna (1998) study the
development of cost efficiency and productivity of Finnish hospitals before and after the
1993 state subsidy reform. This author uses panel data Stochastic Cost Frontier models as
well as DEA and the Malmquist productivity index and finds that productivity progress
was due to both technological change and cost efficiency change; however the state sub-
sidy reform did not seem to have any observable effects on hospital efficiency since it ap-
pears to have been improving well before the reform. Sommersguter-Reichmann (2000)
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studies the 1997 hospital financing reform in Austria and evaluates the changes in pro-
ductivity between 1994 and 1998. Using DEA and the Malmquist index, she finds a tech-
nological improvement was an immediate consequence of the financing reform. Aro-
cena and Garcı́a-Prado (2007) analyze how Costa Rican hospital efficiency and quality
responded to the reforms carried out over the period 1997–2001. They use a general-
ized output distance function to obtain a Malmquist index that accounts for productivity
changes while controlling for quality of care, and find an overall improvement in hospital
performance following the reforms due to an increase in quality rather than a better use
of resources, and more notably for small hospitals. De Castro Lobo et al. (2010b) evalu-
ate the performance and productivity changes for Brazilian Federal University hospitals
before and after the financing reform of 2004. Using DEA and the Malmquist index, they
find that the financial reform gave the hospitals an opportunity to gain efficiency, but not
for technological change. Valdmanis et al. (2017) applied the Malmquist index and time-
series trend analysis to assess the shift in efficiency and technology in Scottish hospitals
over the period 2003–2007 where health reforms required them to improve their services
with fixed budget constraints. They did not find a consistent direction of either improve-
ment or devolution; however, through the use of time-series analysis, they found a trend
of growth in technological change.

To the best of our knowledge, most of the literature has relied on a Malmquist index
analysis along with other parametrical and non-parametrical approaches. However, none
of them has tried to account for technological heterogeneity that may arise when studying
hospital performance; just a few studies have considered, at most, hospital size. In this
sense, while the technical efficiencies of DMUs measured with respect to a given frontier
are comparable, some problems might arise among hospitals that operate under different
technologies (Mitropoulos et al., 2015). The efficiency of hospitals that work under a
specific production technology cannot be comparable with those of different technology.
This problem might be minimized in a context where the country is relatively centralized,
and there are no significant regional differences; this might reinforce the homogeneity of
the sample (Arocena and Garcı́a-Prado, 2007). However, in a country like Ecuador, where
regional heterogeneities have proved to be strong drivers of the socio-economic reality,
the need to account for the potential heterogeneities is crucial.

Recent papers like Mitropoulos et al. (2015) and Chen et al. (2016) have tried to ac-
count for some technological differences in the health sector, but their grouping criterion
is somewhat subjective and––in the first case––focused on a cross-sectional study. Au-
thors like Carrillo and Jorge (2017) propose DEA-based procedures to classify the perfor-
mance of intra-regional health systems. However, the application is ––again–– focused
on a cross-sectional study and is aimed at providing an homogeneous ranking based on
performance, which scapes the scope of this paper. The need to find a clear criterion to
group the hospitals in our sample has an important relevance. There is no clearly estab-
lished way to separate them into homogeneous groups. A priori, the units can be grouped
on the basis of geographical, economic or political boundaries.

Here, our aim is to take into account technological heterogeneities among the hospi-
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tals by considering their resources and capacity. To this end we consider cluster analy-
sis. O’Donnell et al. (2008) encouraged the use of multivariate techniques when natural
boundaries are unavailable. This method has been previously adopted by Balaguer-Coll
et al. (2013) to assess the provision of public services and facilities in Spanish municipali-
ties, which they clustered according to output mix, environmental conditions and level of
powers, although they followed a cross-sectional approach. Choi and Park (2019) also ap-
ply this method to classify Low and Middle income countries and assess the efficiency of
governmental capacity to enhance social progress. Other authors like Villalobos-Cid et al.
(2016) also use cluster analysis to obtain efficiency values based on the heterogeneous per-
formances of Chilean hospitals when the diagnosis-related groups (DRG) weights are not
available. Their approach is also based on cross-sectional data however, and they do not
account for a common frontier to assess the technological gaps in the healthcare system.

2.4 Methodology

In this paper, we propose a new empirical approach based on the analysis of clusters of
units relative to a common frontier, similar to metafrontier analysis (Battese et al., 2004;
O’Donnell et al., 2008) and we combine it with panel data DEA (Surroca et al., 2016;
Pérez-López et al., 2018). The problem that arises when we try to apply the metafrontier
analysis is that it is a cross-sectional approach, so for all time periods there will be a time-
specific frontier and time-specific efficiency coefficients; therefore, each time period is
analyzed without any connection with the levels of activity of adjacent time periods.

To overcome this problem, we use panel data DEA proposed by Surroca et al. (2016)
and Pérez-López et al. (2018). The advantage of this method over other methods proposed
in the literature (like the Malmquist index) is that it enables us to estimate a single time-
invariant coefficient of efficiency for the period of analysis, considering the inherent panel
data structure. Also, the methodology proposed by Pérez-López et al. (2018) allows us to
break down these time-invariant efficiencies into time-variant efficiency scores, obtained
on a year-by-year basis. In consequence, we will not just be able to find a long-term
average efficiency for the time period studied, but we can also calculate efficiency values
for each year under evaluation. We extend the approach by accounting for technological
asymmetries of the DMUs. As far as we are aware, this methodology has not previously
been applied and represents a significant innovation in the current literature.

In this study we define a non-parametric technology set. We start by obtaining homo-
geneous clusters of hospitals using multivariate clustering techniques. Once the groups
are estimated, the common frontiers and the group frontiers can be calculated using DEA
(Charnes et al., 1978; Banker et al., 1984).

As a non-parametric frontier estimation method, DEA has significant limitations that
have been highlighted in the literature; the curse of dimensionality, their lack of statistical
properties, and the potential impact of outliers are among the most relevant (Simar and
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Wilson, 2008; Cooper et al., 2006). In this respect, Pérez-López et al. (2018) state that one
of the outstanding advantages of the panel data DEA is the robustness of the results to the
presence of outliers and temporal random shocks; this provides a specific efficiency score,
representative of the complete time period under analysis. Hence, the interpretation of
the results is not far from what can be obtained from a fixed-effects parametric regression.

2.4.1 Estimation of (time-invariant) panel data efficiency values for
public hospitals

As hospital managers and policymakers usually have more control over their inputs (O’Neill
et al., 2008; Cozad and Wichmann, 2013), and our approach consists of assessing whether
the hospitals have been able to make efficient use of their resources, we apply an input-
oriented efficiency measurement. Also, we assume a variable return to scale (VRS) model
as we are dealing with heterogeneous observations.3 The efficiency frontier is developed
by optimizing the weighted input/output ratio of each DMU, subject to the condition that
this ratio can be equal to, but never exceed one for any other DMU in the data set (Charnes
et al., 1978).

Let us introduce some notation. Assume that we have I DMUs (hospitals) (i = 1, 2, . . . , I)
classifiable in S clusters (s = 1, 2, . . . , S); here are M outputs [yi1, . . . , y

i
m, . . . , y

i
M ∈R

+
M] pro-

duced by N inputs [xi1, . . . ,x
i
n, . . . ,x

i
N ∈R

+
N ] in the common frontier; and [yi,s1 , . . . , y

i,s
m , . . . , y

i,s
M ∈

R+
M] and [xi,s1 , . . . ,x

i,s
n , . . . ,x

i,s
N ∈R

+
N ] outputs and inputs for the s local frontier respectively.

We denote
[yo1, . . . , y

o
m, . . . , y

o
M ∈ R

+
M] and [xo1, . . . ,x

o
n, . . . ,x

o
N ∈ R

+
N ] as the observed units under analy-

sis, and likewise for the observed units in the local frontiers. We define a time variable
t (t = 1,2, . . . , T ), so in the common frontier we have [yi1,t, . . . , y

i
m,t, . . . , y

i
M,T ∈ R

+
M] out-

puts and [xi1,t, . . . ,x
i
n,t, . . . ,x

i
N ,T ∈R

+
N ] inputs; and likewise in the local frontiers. We define

the following mathematical program using contemporaneous technology (Tulkens, 1986;
Pérez-López et al., 2018), which estimates the VRS DEA (common frontier) efficiency val-
ues:

max
uc0,,t ,u

c
m,t
,vcn,t

αct = uco,t +
M∑
m=1

ucm,ty
o
m,t

s.t.
N∑
n=1

vcn,tx
o
n,t = 1

uco,t +
M∑
m=1

ucm,ty
i
m,t −

N∑
n=1

vcn,tx
i
n,t ≤ 0; i = 1,2, . . . , I

3This is also tested in the empirical application with the Simar and Wilson (2011) returns-to-scale test.
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ucm,t ≥ 0; vcn,t ≥ 0; m = 1,2, . . . ,M; n = 1,2, . . . ,N (2.1)

Where, ucm,t and vcn,t are weights for the outputs and inputs, for the period t, corre-
sponding to the unit under evaluation; and uco,t is a scalar that can take positive or neg-
ative values, depending on the prevailing returns to scale.4 The problem arises when
for every observed unit we obtain a time-specific frontier and a time-specific efficiency
coefficient, so for every ith DMU we are obtaining T contemporaneous efficiency scores(
αc1, . . . ,α

c
t , . . . ,α

c
T

)
: T ×M output weights and T ×N input weights. This implies that each

time period is analyzed without any connection with the levels of activity of adjacent time
periods. Also, we are conducting just an efficiency measurement for the common frontier,
meaning that we are considering all hospitals in the analysis without allowing for their
heterogeneity.

To overcome these issues, Surroca et al. (2016) and Pérez-López et al. (2018) propose a
time-invariant panel data DEA evaluation. This technique incorporates an intertemporal
frontier, which assumes a single production function for all time periods, comprising
all the observations during the period of analysis. Also, it establishes a common set of
weights for the complete time period. We extend this application with the incorporation
of the S clusters generated to account for technological asymmetries. The input-oriented
VRS (time-invariant) program for panel data DEA can be extended in the following way:

max
uti,s0 ,uti,sm ,v

ti,s
n

∝̃ti,s = uti,so +
M∑
m=1

uti,sm ỹo,sm

s.t.
N∑
n=1

vti,sn x̃o,sn = 1

uti,so +
M∑
m=1

uti,sm yi,sm,t −
N∑
n=1

vti,sn xi,sn,t ≤ 0; i = 1,2, . . . , I ; s = 1,2, . . . ,S

uti,sm ≥ 0; vti,sn ≥ 0; m = 1,2, . . . ,M; n = 1,2, . . . ,N (2.2)

Note that ∝̃ti,s is an average value that represents the one time-invariant efficiency
coefficient for hospital under observation ‘o’ while comparing it with its respective cluster
s; ỹo,sm =

∑T
t=1 y

o,s
m,t/T is the average value, corresponding to output m in hospital ‘o’ forming

part of cluster s, for the complete time period T; and x̃o,sn =
∑T
t=1x

o,s
n,t/T is the average value,

corresponding to input n in hospital ‘o’ forming part of cluster s, for the complete time
period T. By applying the programs for the S clusters, we obtainM×I output weights and
N ×I input weights corresponding to the I hospitals classified in the S clusters. According
to Pérez-López et al. (2018), besides obtaining a time-invariant common set of weights for

4The output and input weights u and v can be obtained by solving the “primal” (or multiplier) form of
the DEA program. They provide extra information in that they can be interpreted as normalized shadow
prices (Coelli et al., 2005).
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each hospital, program (2.2) has three additional properties: (1) it is less dependent on
the specific values of the variables in one particular year; (2) it ensures that no changes in
the valuation system (input and output weights) take place across time periods; and (3)
the consideration of average values does not imply any loss of information.

To compare the time-invariant cluster efficiencies, relative to the time-invariant com-
mon frontier efficiencies, we need to define the technology reference for the entire sample
of units. This way, we obtain the following program:

max
uti0 ,u

ti
m,v

ti
n

∝̃ti = utio +
M∑
m=1

utimỹ
o
m

s.t.
N∑
n=1

vtin x̃
o
n = 1

utio +
M∑
m=1

utimy
i
m,t −

N∑
n=1

vtin x
i
n,t ≤ 0; i = 1,2, . . . , I

utim ≥ 0; vtin ≥ 0; m = 1,2, . . . ,M; n = 1,2, . . . ,N (2.3)

Now we have ∝̃ti , which is an average value that represents the time-invariant effi-
ciency coefficient for the hospital under observation;
ỹom =

∑T
t=1 y

o
m,t/T is the average value, referring to unit ‘o’ under observation, correspond-

ing to output m, for the complete time period T; and x̃on =
∑T
t=1x

o
n,t/T is the average value,

corresponding to input n for unit ‘o’, for the complete time period.

For these efficiencies we are assessing the average level of efficiency of the complete
time period with no isolated consideration of any specific time period in relation to the
local and common frontier. The evaluation proposed here is depicted in Figure 2.4, where
each average efficiency is evaluated relative to both the local frontier and the metafrontier.
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Figure 2.4: Panel data time-invariant efficiencies, local frontier and metafrontier

Finally, the time-invariant TGR comes straightforwardly as:

TGR =
∝̃ti

∝̃ti,s
(2.4)

The minimized value of ∝̃ti,s that solves the cluster s linear program is no greater
than the minimized value of ∝̃ti that solves the metafrontier linear program, hence, the
metafrontier will never lie below any of the group frontiers. This way, the TGR measures
how close a group frontier is to the metafrontier, representing the restrictive nature of the
production technology. The closer it gets to 1, the higher the efficiency in operations that
can be achieved (Mitropoulos et al., 2015).

2.4.2 Estimation of (time-variant) panel data efficiency values for pub-
lic hospitals

In their paper, Pérez-López et al. (2018) demonstrate that it is possible to derive time-
variant efficiency scores from the previous time-invariant ones in order to obtain the vari-
ations in efficiency coefficients during the different time periods, maintaining the robust-
ness of the values over time. If we consider one input example, under an input-oriented
approach they demonstrate that:
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∝̃ti = α̃tv1
xon,1∑T
t=1x

o
n,t

+ · · ·+ α̃tvt
xon,t∑T
t=1x

o
n,t

+ · · ·+ α̃tvT
xon,T∑T
t=1x

o
n,t

∝̃ti=
T∑
t=1

α̃tvt wt (2.5)

So that time-invariant panel data efficiencies are equal to the weighted average of the
time-variant panel data efficiency coefficients. We can extend this same application to
obtain time-variant panel data efficiency coefficients for every s cluster acquired. The
mathematical representation is straightforward:

∝̃ti,s = α̃tv,s1

xo,sn,1∑T
t=1x

o,s
n,t

+ · · ·+ α̃tv,st

xo,sn,t∑T
t=1x

o,s
n,t

+ · · ·+ α̃tv,sT

xo,sn,T∑T
t=1x

o,s
n,t

∝̃ti,s=
T∑
t=1

α̃tv,st wst (2.6)

Figure 2.5 summarizes the evaluation of the time-variant and time-invariant efficien-
cies with respect to the common and local frontiers.

Figure 2.5: Panel data time-variant efficiencies, local frontier and metafrontier
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2.4.3 Hypotheses

To answer the research question posed in this chapter, we need to look for a way to de-
termine whether the healthcare efficiency performance of the public hospitals in Ecuador
has undergone a significant change, which might be partly driven by the health reforms
introduced under the new Correa government. In order to do so, we apply a before-after
approach and divide the time period under study into two sub-periods. We estimate the
time-variant and time-invariant efficiencies by applying the linear programs (2.2) and
(2.3) to each sub-period. We consider 2008 as a potential turning point, when the new
constitution was introduced and marked the beginning of several health reforms.

Thus, we define αtvp1 as the time-variant efficiencies for the period 2006–2008, and αtvp2

as the time-variant efficiencies for the period 2009–2014.5 If the reforms that came after
the new constitution affected the amount of inputs consumed in the health production
process, for example, and if the new amount of patients attended caused an over-demand
for healthcare services increasing the resources needed to treat them, then this would
probably be reflected in a change in the average public hospital efficiency. Thus, if the
health reforms negatively affected the efficient performance of public hospitals, then we
should see a significant decrease in their average efficiency (α̃), so α̃tvp1 > α̃tvp2. We will
test this hypothesis by means of two statistical tests. The first one is the Wilcoxon signed
rank test for dependent samples, which is a non-parametric test that does not need the
assumption of normal distributions and has often been used in the literature to test sig-
nificant differences in ordinal variables (O’Neill et al., 2008; Prior and Surroca, 2010). For
the second test, we consider a method that provides us with more accurate information,
namely the Li (1996) test for unknown distributions.

The Li (1996) method relies on kernel smoothing to non-parametrically estimate the
density functions corresponding to αtvp1 and αtvp2 indices. However, Simar and Zelenyuk
(2006) argue that in order to test the efficiency values estimated, the Li (1996) method
has to be modified in several ways (see Simar and Zelenyuk, 2006). They provide consis-
tent bootstrap estimates of the ρ values of the Li (1996) test and encourage its empirical
application in efficiency measurement research.

Finally, the estimation of the time-variant efficiency values will help us to back up
these hypotheses and find the trends in healthcare efficiency over the years.

2.5 Data

For the purpose of the study, we use the Annual Survey of Hospital Beds and Discharges
and the Survey of Health Activities and Resources provided by INEC for the years 2006–2014.
We consider the information on public hospitals excluding from the sample psychiatric,

5We apply the same procedure to the time-invariant efficiencies of each cluster obtained.
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dermatology and geriatric hospitals.6

In a first stage, we use factor analysis with various correlated input variables available
for all time periods in our dataset that can best approximate the health resources which
contribute to the production of health. Based on the interdependencies of these variables
we obtain a reduced set of uncorrelated variables called factors. With these new factors we
run a hierarchical cluster analysis, which is a multivariate technique that seeks to cluster
a set of I units into S groups depending on the similarities between them, so that (1) each
unit is in one and only one of the groups; (2) every unit is classified, and (3) each group
is internally homogeneous. The advantage of running a factor analysis previous to the
clustering technique is that we can eliminate the dimensions which we are (practically)
sure are only noise. Therefore, we retain the components responsible for a very high
percentage of the inertia; thus, the hierarchy obtained is considered to be more stable and
clearer (Husson et al., 2010).

In order to define the number of clusters to be constructed, we need to consider both
the measure of similarity and the clustering method. We use the Euclidean distance as it is
the most commonly used method in the literature to measure similarity, and the Ward hi-
erarchical clustering method, which has the advantage of maximizing intra-group homo-
geneity and inter-group heterogeneity. Additionally, it is robust to outliers and groups are
not too dissimilar in size (Balaguer-Coll et al., 2013). Finally, the Caliñski and Harabasz
(1974) stopping rule was used in order to determine the number of clusters.

With this approach, we improve the standard applications used so far in the healthcare
efficiency literature.7 Thus, we use multivariate statistical analysis to generate specific
clusters, differentiated by their technological endowment rather than size, and by apply-
ing factor analysis in the first stage, we make the variables independent of each other,
avoiding potential correlation problems in the following analyses. The variables used to
obtain the technology clusters are described and summarized in Tables 2.6 and 2.7 of the
Appendix 2.8.

Given that factor and clustering analyses are cross-sectional techniques, we face the
problem of an inconsistent grouping of DMUs for each year, which makes the efficiency
values challenging to obtain for each group over the years. To overcome this problem, we
take the average values of each variable over time and perform the multivariate analyses.
This yields S̃1, S̃2, . . . , S̃c groups shaped by the average technological endowment of each
hospital. Despite some limitations that it could bring to the analysis, our goal is to obtain
average efficiency estimations with the programs (2.2) and (2.3), making this approach
the best fit to our empirical application.

The second stage of the analysis measures the average efficiency of hospitals over the
years using programs (2.2) and (2.3) in both the group frontier and metafrontier, but

6Given some irregularities in the information for some hospitals and missing data for some years, we
retrieve a non-balanced panel data.

7The literature has mostly used hospital size as a simple grouping criteria, proxied by variables like
total beds or patients attended (see for example, Arocena and Garcı́a-Prado, 2007; Mitropoulos et al., 2015)
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before turning to the results, we must define the inputs and outputs to be used.

2.5.1 Inputs

There is common agreement on the use of inputs in the literature (O’Neill et al., 2008). To
avoid potential problems of dimensionality, we aggregated the different health resources
(described in Appendix 2.8.1) into four input variables: the total number of beds (totcam),
hospital equipment and infrastructure (variables eq2 to eq8), the number of physicians
(variables m1 to m7) and the number of professional healthcare personnel other than
physicians that work in the hospital (proftit to p2).

The number of hospital beds has been widely used in the literature as a proxy for
hospital size and capital investment (O’Neill et al., 2008); we also include variables that
describe equipment and infrastructure of hospitals to account for this. The majority of
studies include the number of clinical staff as a proxy for labor costs (O’Neill et al., 2008;
Cantor and Poh, 2018).

2.5.2 Outputs

Most published research uses some variant of intermediate outputs in terms of patients
treated or number of inpatient days hospitalized (Hollingsworth, 2008). To measure the
final production of the health of public hospitals we use the number of discharges as an
output variable. However, we need a method to adjust outputs for patient heterogeneity
(i.e. case mix) as not all conditions can be treated with the same amount of resources
and not all hospitals have the means nor the capacity to treat serious illnesses; there-
fore, if not taken into account, hospitals with a more complex case mix are likely to re-
ceive lower efficiency scores. By including a case-mix weight, we are explicitly designing
groups that provide comparable resource intensity care, and we can also distinguish the
hospitals treating more severely ill patients, requiring more inputs from hospitals treating
less resource-intensive patients (Valdmanis et al., 2017). Perhaps the most successful ap-
proach is the use of DRG classification which categorizes patients according to diagnosis,
treatment and length of stay. However, in developing countries this tool is not fully (or
even partially) implemented, which limits the efficiency of the evaluation (Villalobos-Cid
et al., 2016). This constraint holds true for the Ecuadorian case, which leads us to ap-
ply alternative approaches based on the available data, and which have been previously
applied in the literature.

Therefore, to treat the severity of cases in this study, we use the three-digit Interna-
tional Statistical Classification of Diseases and Related Health Problems (ICD-10) to construct
the case-mix weight, following the approach developed by Herr (2008).8 This approach

8Refer to Appendix 2.8.2 for a description on Herr’s (2008) case-mix index.
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Table 2.2: Inputs and Outputs, descriptive statistics

2006 2014
Cluster
1
(High)

Cluster
2 (In-
termed.)

Cluster
3
(Low)

Cluster
1
(High)

Cluster
2 (In-
termed.)

Cluster
3
(Low)

N=8 N=14 N=143 N=6 N=15 N=148
Median SD Median SD Median SD Median SD Median SD Median SD

Output

Weighted
Discharges

4505 (2623.6) 782 (3053.9) 814 (2076.5) 6344 (5372.8) 977 (3943) 984 (2547.1)

Inputs

Physicians 134 (76.2) 17 (82.7) 16 (34) 275 (198.5) 27 (196.4) 29 (80.3)
Beds 263 (118.8) 33 (165.8) 21 (101.6) 277 (232.9) 32 (213.5) 29 (100.4)
hospital
personnel

319 (210) 22 (188.9) 23 (108.7) 661 (344.4) 51 (365.5) 51 (169.5)

Equipment
and Infras-
tructure

152 (56.5) 40 (65.6) 32 (57.8) 358 (188.2) 52 (69.9) 48 (104.4)

Note: MANOVA tests indicated that the differences between groups are statistically significant. The
observations for the clusters over the years differ slightly due to some missing information in the dataset.
However, the methodology applied is robust to these discrepancies.
Source: The authors

relies on the assumption of a correlation between the length of stay and the severity of
illness, so the idea is that the more days of patient stay, the more severe the disease and
the more resources are used.9 Other authors such as Herr et al. (2011), Herwartz and
Strumann (2012, 2014) and, Varabyova and Schreyögg (2013) suggest using this approach
in the absence of the DRG classification.

The descriptive statistics for the years 2006 and 2014 for each cluster are presented in
Table 2.2. We ran two outlier detection methods on the data. The first was proposed by
Prior and Surroca (2010), and the second one is based on Andrews and Pregibon (1978)
and Wilson (1993).10

Comparing the levels of input mix across the clusters presented in Table 2.2, we can
observe that the first cluster accounts for high levels of technological endowment. As
expected, the hospitals belonging to this cluster attend to a much broader share of patients
in the country, even though their number is remarkably lower than the other clusters. The
second cluster is shaped by hospitals with an intermediate level of technology, and on
average, is not very far from the final cluster. Finally, the last cluster comprises hospitals
with a low level of technological endowment. It is important to note the marked difference

9The potential problem that could arise with the inclusion of this variable is that if hospitals are reim-
bursed according to the number of patient stays, we could expect hospital managers to behave opportunis-
tically in order to increase their hospitals’ revenues.

10Although the methodology used in this study to obtain the efficiency values has proved to be robust
to outliers, we still run some outlier detection procedures to avoid potential bias in the estimations. We
identified nine hospitals that were behaving as outliers, on average.
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in the number of hospitals in this cluster, relative to those in the high and intermediate
technology clusters; this difference highlights the profound technological heterogeneity,
not just in terms of the large asymmetries present in the public healthcare system, but
also in its notable share of technologically lagging hospitals.

2.6 Results and discussion

Table 2.3 shows the time-invariant efficiencies resulting from programs (2.2) and (2.3),
both for the metafrontier and for the respective local frontiers. Looking at the metafron-
tier average efficiency, we can see that overall the hospitals present very low efficiency
scores. The value of 0.3894 would mean that to be fully efficient Ecuadorian hospitals
have to reduce their input consumption by 61.06%, representing more than half of re-
source consumption. Additionally, some hospitals present a minimum level of ineffi-
ciency as low as 0.1088, which represents a severe problem of inefficiency in the system.
However, we cannot draw hasty conclusions in this manner, as other hospitals present
high levels of efficiency, showing profound asymmetries inherent in the system.

Table 2.3: Time-invariant efficiencies, summary statistics

Mean Median SD Min Max TGR

Metafrontier 0.3894 0.3838 0.1483 0.1088 0.9318
Cluster 1 (High) 0.6479 0.6371 0.1926 0.4135 0.9095 0.5433
Cluster 2 (Intermediate) 0.5623 0.5781 0.2434 0.2269 0.9339 0.7183
Cluster 3 (Low) 0.4269 0.4282 0.1502 0.113 1 0.9176

Source: The authors

When we look at the efficiencies obtained for each cluster, the results are quite differ-
ent. Overall, the average (group) efficiencies in cluster 1 and cluster 2 are much closer
to the frontier than those of cluster 3. Hence, when considering the technological dif-
ferences between hospitals, on average, high-technology ones are making better use of
inputs than low-technology ones. The differences compared with a single frontier esti-
mation are remarkable, highlighting the importance of accounting for the heterogeneity
of the system. Assessing public healthcare systems within a homogeneous framework
of comparable hospitals is therefore questioned, especially Ecuadorian public hospitals
whose differences have been worsened by its historical economic and political situation.

Regarding the TGR, results seem to be counterintuitive. Cluster 1 and cluster 2 present
the widest gap between group efficiencies and the metafrontier, suggesting that they are
more constrained by the nature of their production environment, and efficiencies in these
clusters are further away from the metafrontier than those of cluster 3, whose efficiencies
are very similar to the metafrontier. It would appear that the output complexity is not
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properly captured by our data, which is leading the metafrontier to fail in the measure-
ment of the unconstrained production defined by Battese et al. (2004).

To investigate this question, we plotted the hospitals’ peer participation for each clus-
ter with respect to the metafrontier in Figure 2.6.11 The figure shows that the hospitals
belonging to each group take as reference hospitals for production (in the metafrontier)
those that belong to the low and intermediate technology hospitals. For example, 97%
of the reference units for the inefficient high-tech hospitals belong to the low-tech clus-
ter, while the remaining 3% belong to the intermediate technology cluster. These results
show that, even though we tried to capture the complexity of the cases through length of
stay, we are still not able to find a proper case mix that accounts for the full complexity of
the patients treated. In addition to this, the profound heterogeneity in the system is also
playing a significant role in these results. This is because the few high-tech hospitals treat
more than five times as many patients as the low-tech hospitals, leading to saturation of
their resources, and as a result, jeopardizing their performance.

Figure 2.6: Percentage of peer participation relative to the metafrontier

Thus, in a situation of limited data availability, and where the marked heterogene-
ity in the system is preventing a proper metafrontier evaluation, we need a method that
considers the technological differences of the system to avoid misleading conclusions. In
this context, it is reasonable to assume that the hospitals that have the higher technology
can only be compared with each other, meaning that the only reference units they will be

11The peer observations are those efficient DMUs with which the inefficient units are directly compared,
in order to be fully efficient; that is, they are those reference units that define the efficient production for
every inefficient hospital (Coelli et al., 2005; El-Mahgary and Lahdelma, 1995)
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compared with are those that have the same level of technology. It would be unreasonable
to think that low-tech hospitals that do not have the same resources can be a reference for
those in the high-tech group. Similarly, the intermediate technology hospitals would be
compared with each other and with the high-tech hospitals but cannot be compared with
the low-tech hospitals. This idea leads us to construct a new metafrontier, taking into
account what Banker and Morey (1996) call a shift in the production frontier. Banker and
Morey (1996) state that different hospitals have different characteristics that need to be
considered in the efficiency analysis; unfortunately, these characteristics cannot always
be observed in practice. This is especially important when the impact of a factor (like
technology endowment in our case) varies substantially across demographic, competitive
or other contingent environments.

Based on the idea of Banker and Morey (1986, 1996), in this research we propose a
method to construct a new metafrontier. We will assume that the hospitals studied here
cannot be compared with hospitals endowed with less technology. The shift of the produc-
tion frontier leads us to define a new metafrontier. The intuition underlying our approach
is displayed in Figure 2.7, where the metafrontier PP’ depicts the prior metafrontier where
all hospitals are benchmarked against each other, meaning that we take all clusters into
consideration (s = 1,2, . . . ,S) The shift is produced when we constrain the metafrontier to
be benchmarked only against those hospitals with similar or higher technology. Here, we
imply that the high-tech hospitals, represented in the frontier SS’, will only be compared
with each other, so they do not present a TGR. The new metafrontier is depicted by PS’.

Figure 2.7: Newly constrained metafrontier
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This idea also follows the line of selective convexity developed by Podinovski (2005).
This concept states that the DMUs can be used to form convex combinations provided
that they are different only in the inputs and outputs for which the convexity assump-
tion is accepted. Additionally, this author demonstrates that under the free disposability
assumption, selective convexity generalizes the inequalities stated by Banker and Morey
(1986).

Using this approach, we solve the new metafrontier applying the linear program (2.3)
under three scenarios where the three hospital groups analyzed are benchmarked accord-
ing to their level of technology: s = 1;s = 1, 2; and s = 1,2,3. The sum of these three
estimations together result in the new metafrontier depicted by PS’.

The results obtained with the new metafrontier are presented in Table 2.4. This new
estimation of a metafrontier allows us to determine the technological gap of the three
clusters of hospitals, considering the asymmetries in the system not just in the local fron-
tiers, but also in the common frontier. As we can see, now cluster 3 accounts for the
highest technological gap relative to cluster 2, which shows a shorter distance from the
metafrontier. The difference in TGR for the low-tech hospitals shows that, given their
limited levels of technology, they can achieve a maximum efficiency of 90% of what is fea-
sible with the highest level of technology available. We have to be aware that overall, the
level of efficiency in the system is rather low, which can be explaining the short distances
in the TGR.

Table 2.4: Time-invariant efficiencies, summary statistics (new constrained metafrontier)

Mean Median SD Min Max TGR

Metafrontier 0.4215 0.3962 0.1731 0.113 0.9339
Cluster 1 (High) 0.6479 0.6371 0.1926 0.4135 0.9095 1
Cluster 2 (Intermediate) 0.5623 0.5781 0.2434 0.2269 0.9339 0.9994
Cluster 3 (Low) 0.4269 0.4282 0.1502 0.113 1 0.9176

Source: The authors

The advantage of applying the panel data DEA technique in our analysis is that it
provides an additional tool with the time-variant efficiencies, allowing us to obtain the
trends in efficiency of the hospitals analyzed without losing the robustness of the previous
results. This enables us to shed some light on the exact year when the efficiencies started
to decrease and have a clearer idea of whether this could have been a direct result of the
healthcare policies implemented.

Following this idea, Figure 2.8 shows the time-variant efficiencies obtained for the
group frontiers in the period under analysis. Some interesting facts can be garnered from
this figure. First, the efficiencies of the high-technology hospitals show peaks of perfor-
mance in the first period of analysis, but their behavior does not seem to change imme-
diately after 2008. This could be because historically there has always been a limited
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Figure 2.8: Evolution of time-variant panel data efficiencies

number of high-technology public hospitals in Ecuador and they attend to most of the
patients in the Ecuadorian health network, which has not changed over the years.

In contrast, low and intermediate technology hospitals show an increase in 2008 and
2009. This improvement might be reflecting the positive effect on efficiency due to the
optimization of spare resources and capacity, likely misused prior to the reforms. The
investment deployed in the health sector could also be a potential driver of this rise in
efficiency. In the short run, the increase in the health budget could have triggered higher
productivity in the system; for example, physicians, managers or general health personnel
may have been motivated by potential salary raises.

There seem to be two particular years when the behavior of the three clusters changes.
The first one goes from 2010 to 2011, when all groups shifted from an increasing to a
constant efficiency. The second one relates to the year 2011, a year in which efficiency de-
clined severely. Two facts are worth noting in these two periods. In 2010 there was a social
security reform that allowed the insured population to extend insurance to their children
under the age of 18, which might have halted the increase in performance of all clusters
of hospitals due to the sudden rise in patients. Moreover, in 2011 Ecuador held a referen-
dum, which (among other matters) included the approval of a law for the deprivation of
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Table 2.5: Time-invariant efficiencies for each sub-period, summary statistics

Mean Median SD Min Max

2006-2008 Cluster 1 (High) 0.7694 0.8942 0.2190 0.4415 1
Cluster 2 (Intermed.) 0.6991 0.7900 0.2701 0.2353 1
Cluster 3 (Low) 0.5226 0.5069 0.1878 0.1519 1

2009-2014 Cluster 1 (High) 0.6985 0.7190 0.2178 0.3921 0.9656
Cluster 2 (Intermed.) 0.5816 0.6003 0.2522 0.2340 0.9664
Cluster 3 (Low) 0.5144 0.5299 0.1650 0.1178 1

Source: The authors

liberty for employers who do not affiliate workers within a maximum period of 30 days
(Orellana et al., 2017). This new law, added to the new free services, caused an increase
in demand that De Paepe et al. (2012) refer to as a “demand crisis” due to the sudden rise
of the insured population, especially in larger cities. This increased demand might be a
substantial cause of the pronounced decline seen in all three groups of hospitals.

It should be noted that we are not claiming that this decline in efficiency was actually
caused by the increase in demand, but in this study we offer strong empirical evidence to
suggest that this could be a strong driver.

2.6.1 Hypotheses tests

In order to corroborate the hypothesis of a significative change in the average efficiency
performance after 2008, Table 2.5 shows the descriptive statistics of the time-invariant
efficiency values for the sub-periods p1 (2006 − 2008) and p2 (2009 − 2014). The average
values for both the group frontiers and the metafrontiers seem to have decreased. This
decline could be signaling that the government’s policies indeed had a negative effect on
the efficiencies of all groups of hospitals in the public health system.

We provide evidence of this possibility in Figure 2.9, where we plot the smoothed
densities of the group efficiencies. The Li (1996) and Simar and Zelenyuk (2006) test,
and the Wilcoxon signed rank test p-values for the efficiency scores of the group frontiers
in both sub-periods are depicted along with the graph. Based on the information pro-
vided by the extended Li (1996) and Simar and Zelenyuk (2006) test––which has proved
to provide more accurate and reliable results in several fields applied to efficiency mea-
surement (Pastor and Tortosa-Ausina, 2008; Li et al., 2009; Balaguer-Coll et al., 2013)
––the null hypothesis of equal distributions is rejected for all groups except the high-tech
hospitals. The evidence presented here falls in line with the above-mentioned results.
Apparently, the high-tech hospitals have not experienced a significant decrease in effi-
ciency since 2008, but rather the low and intermediate technology hospitals are the most
affected. Although we cannot say that this decrease in efficiency happened solely due
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Figure 2.9: Density plots 2006–2008 vs 2009–2014

Note: The Li and Wilcoxon scores correspond to Simar and Zelenyuk’s extension of the Li test and the
Wilcoxon signed rank test p-values, respectively.

to the health reforms implemented since the new constitution, we now have substantial
evidence that they could have played a significant role in this decline.

The evidence provides an initial picture of the performance of the public healthcare
system in Ecuador. Despite the (overall) low levels of efficiency, there seem to be some po-
tential factors that are causing the decline in performance, and it appears to be affecting
mainly the less technological hospitals. The literature on healthcare efficiency measure-
ment offers some explanations in this matter. For example, the non-significant change
in efficiency of high-tech hospitals might reflect their capacity to treat complex cases in
a more efficient manner; the concentration of specialized physicians and equipment in
these hospitals might be allowing them to cope better with the increasing volume of pa-
tients than low and intermediate technology hospitals would be able to, suggesting the
existence of a process of learning-by-doing in high-tech hospitals (Gobillon and Milcent,
2013).

Cream skimming could also be playing an important role in this difference. The refer-
rals to private institutions might not be alleviating the consumption of inputs in public
hospitals, given that complex cases remain in the public sector and tend to stay for a
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longer time (Cheng et al., 2015) and demand more health services than necessary if they
are covered by public insurance (Orellana et al., 2017). Given that high-tech hospitals
could be showing a process of learning-by-doing, the low-tech hospitals could be more
affected.

These results suggest some recommendations for public authorities and policymak-
ers. The drop in efficiency coincides with two of the most far-reaching reforms in social
security and promotion of universal coverage. The authorities should keep in mind that
public hospitals need to have the necessary means in the short term with which to adapt
to a sudden increase in the insured population, and that the effect on their efficiency can
depend on the type of hospital where the resources are allocated. Our findings provide an
initial motivation to look deeper into this matter and formulate focused policies that en-
courage better allocation of resources to hospitals that might be suffering most from these
negative effects. The study also reveals a positive effect on efficiency in 2008 and 2009.
Academics and authorities should further explore this effect and identify the sources of
this improvement, which can also bring strong policy recommendations to enhance the
healthcare system. Although the potential causes of efficiency variation do not fall within
the scope of this study, we offer readers a wide range of unexplored research ideas in this
field, and strongly encourage further investigation.

2.7 Conclusions

The present study aimed to analyze whether the public health reforms introduced in
Ecuador since 2008 have had a significant effect on the efficiency of its hospitals. To take
into account the technological differences of Ecuadorian hospitals, we use a two-stage
analysis, wherein the first stage we apply a multivariate factor analysis and clustering
techniques to obtain homogeneous groups characterized by their technological endow-
ment. In the second stage, we propose a combined metafrontier panel data DEA method
that yields robust efficiency scores, representative of the complete time period.

The results show considerable inefficiency in the whole period when we contemplate
all hospitals in a common frontier. However, when they are disentangled into technolog-
ically different groups, the difference is remarkable. Compared to their respective local
frontiers, high and intermediate technology hospitals seem to be performing rather better
than low-tech hospitals, which present an average efficiency very similar to the metafron-
tier. These results highlight the importance of considering the heterogeneities inherent in
the system; if not taken into account, these heterogeneities can bias the results and lead
to misleading conclusions.

The TGR for the respective groups seems to be counterintuitive as low-technology hos-
pitals show a shorter distance from the metafrontier. However, conventional methods in
the literature applied to developed economies cannot be simply translated to developing
countries, which have different economic and social structures. The lack of good quality
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data in developing countries such as Ecuador, and the deep heterogeneity of their systems,
complicates the application of conventional models such as the metafrontier production
function. In this study, we propose an approach to re-define the metafrontier function
by means of concepts such as frontier shift and selective convexity, introduced by Banker
and Morey (1986, 1996) and Podinovski (2005).

Our approach assumes that in such a technologically heterogeneous context, we cannot
compare groups of hospitals, as those with lower technology will not be able to perform
at the same level as those with much higher technology. Hence, high-tech hospitals can
simply be benchmarked against each other. This way, we find that given these constraints,
the lowest technology hospitals can perform with a maximum efficiency of 90% of what
they would be able if they had the maximum technology available.

The empirical results of the efficiencies run before and after the new constitution in
2008 show an evident decline in the average efficiency of the public hospitals. Moreover,
we find that 2008 had no significant effect on the trend of high-technology hospitals,
whereas a statistically significant decrease in efficiency is found in low and intermedi-
ate technology hospitals. A short-run effect, shown as an increase in efficiency, is also
observed among low and intermediate technology hospitals. This improvement may be
due to the public investment made in Ecuador since the beginning of Rafael Correa’s
mandate, which might have had an immediate effect in the system. With the immediate
increase in their budget, hospital managers or medical personnel could have been moti-
vated to increase their productivity. Additionally, the slight increase in demand prior to
the most far-reaching health reforms in social insurance could have allowed some hospi-
tals to make better use of spare capacity and medical resources, which may have been in-
efficiently utilized. Nonetheless, this effect was interrupted in 2010 and further reversed
in 2012, coinciding with the Ecuadorian health reform that guaranteed social insurance
for all workers in a dependency relationship with their employer. The evidence suggests
that the sudden influx of patients generated by this reform could have had a direct effect
on the observed drop in efficiency. These hypotheses are not firm conclusions, but they
open up new research questions and encourage future inquiry in this field.

This study can be considered as a first step to further research to more deeply explore
the potential determinants of the efficiency behavior in Ecuador’s healthcare system. This
strand of research can be of significant relevance to implement focused healthcare policy
better able to allocate resources in the system and alleviate the saturation that might be
occurring in a limited number of hospitals that receive more than half the demand for
medical services in the country.

The methodology implemented can also serve as a reference to apply to other hetero-
geneous realities such as that of Ecuador, where good quality data may not be available to
implement classical efficiency measurement approaches. In this regard, further work can
be conducted in Latin American countries. The literature has found that high territorial
heterogeneity in developing countries, particularly in Latin America, shapes economic
and social inequalities that have characterized the region over the years (Cuadrado-Roura
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and Aroca, 2013) and many of them lack good healthcare data (Villalobos-Cid et al., 2016).

Further methodological innovations can also be implemented. For example, we can
consider a similar approximation by adapting a stochastic frontier analysis (SFA) to our
dataset. However, the main setback of SFA approaches is that they rely on a production
function that has to be defined a priori (O’Neill et al., 2008) and that cannot be simply
proposed in the context of a developing country. Technical efficiency measures are very
sensitive to the choice of functional specification (Giannakas et al., 2003), which can be
misleading if not correctly specified. Future work should focus on defining the theoreti-
cal framework of a proper production function to provide the background for empirical
applications.

Finally, some limitations of this work should be noted. First, the limited quality and
availability of data has constrained the sample to the years addressed here and necessi-
tated alternative data treatment approaches. The need to take into account a wider time
period is highlighted, which would provide useful information on how the country has
been adapting to these relatively new reforms over the years. Second, the main findings of
this research apply to this context of analysis. The findings in terms of efficiency cannot
be extrapolated to other health reforms in other countries where such heterogeneity does
not exist.
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2.8 Appendix

2.8.1 Variables description

Table 2.6: Variable description

Variable Description

Totcam Total number of hospital beds
m1 Total number of general physicians
m2 Total number of surgeons
m3 Total number of plastic surgeons
m4 Total number of specialized physicians
m5 Total number of resident physicians
m6 Total number of rural physicians
m7 Total number of other physicians
proftit Health personnel
p1 graduates and technologists
p2 Nursery auxiliary
p3 Administrative personnel
eq1 Stomatology equipment
p4 Stomatology personnel
eq2 Imaging equipment
eq3 Diagnostic equipment
eq4 Treatment equipment
eq5 Physical infrastructure for surgery, obstetrics and intensive care
eq6 Equipment for surgery, obstetrics and intensive care
eq7 Sterilization equipment
eq8 Other equipment

Source: The authors
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Table 2.7: Technological endowment variables, means and SD

2006 2007 2008 2009 2010 2011 2012 2013 2014

totcam 74.93 74.03 80.88 75.97 82.12 83.10 86.44 87.65 85.04
(112.93) (110.68) (121.41) (112.10) (126.47) (120.47) (116.18) (119.57) (126.61)

m1 3.20 3.18 4.03 4.79 5.40 5.35 7.70 8.39 10.97
(4.26) (2.94) (6.79) (8.02) (8.70) (7.47) (16.68) (16.38) (24.02)

m2 2.43 2.69 2.70 2.76 2.94 3.08 3.21 3.16 3.07
(2.72) (3.14) (2.97) (2.94) (3.45) (3.88) (4.26) (4.26) (4.86)

m3 0.40 0.36 0.39 0.37 0.50 0.40 0.51 0.46 0.39
(1.00) (0.93) (0.97) (1.00) (1.32) (1.18) (1.43) (1.13) (0.97)

m4 18.39 19.13 24.11 24.92 28.08 27.02 29.50 30.96 32.74
(27.60) (27.90) (39.49) (41.39) (46.53) (44.75) (47.90) (52.57) (59.12)

m5 10.14 9.91 9.10 9.73 11.65 14.15 17.24 16.88 19.47
(19.72) (18.23) (15.75) (14.48) (17.26) (22.75) (28.38) (25.54) (32.67)

m6 1.96 1.80 2.05 2.68 2.65 3.01 2.68 3.82 1.05
(2.53) (2.39) (2.39) (3.81) (3.42) (5.19) (4.83) (17.10) (5.33)

m7 1.16 1.41 1.36 1.20 1.64 1.59 1.29 1.62 2.81
(4.35) (4.09) (7.38) (3.75) (7.56) (6.95) (6.36) (5.51) (10.94)

proftit 31.32 32.94 36.42 39.16 48.15 51.12 60.26 63.63 65.53
(54.41) (55.59) (53.99) (53.66) (76.70) (83.66) (92.52) (92.00) (100.16)

p1 3.49 3.43 11.42 12.09 14.95 14.91 18.65 19.63 18.34
(8.72) (8.41) (19.48) (19.94) (24.65) (25.94) (30.65) (30.39) (31.69)

p2 46.14 43.85 47.74 45.78 53.07 50.98 55.20 58.63 56.29
(81.60) (69.78) (81.85) (81.02) (91.79) (89.42) (97.93) (101.01) (98.75)

p3 20.51 20.71 22.88 22.53 25.70 28.85 37.02 35.22 35.29
(27.22) (28.38) (28.87) (27.08) (29.98) (38.43) (48.45) (44.86) (51.46)

p4 3.90 3.86 4.02 3.88 4.22 4.45 4.34 4.50 3.20
(3.86) (3.69) (4.52) (2.87) (3.38) (3.97) (4.24) (4.93) (4.71)

eq1 16.35 17.26 17.63 18.47 19.26 20.33 20.55 46.07 38.43
(11.00) (15.52) (14.48) (14.96) (17.01) (15.90) (16.47) (58.31) (58.46)

eq2 4.60 3.52 3.78 3.83 4.14 4.44 4.62 4.95 5.13
(16.06) (3.23) (3.41) (3.30) (4.10) (4.46) (4.39) (5.28) (5.30)

eq3 4.65 3.53 3.26 3.18 3.91 4.31 4.99 5.19 6.34
(16.69) (4.66) (5.02) (5.21) (6.66) (6.74) (7.95) (8.42) (9.90)

eq4 4.98 6.15 6.71 6.42 7.14 7.54 7.86 8.37 8.21
(12.49) (16.95) (21.29) (15.76) (18.41) (18.59) (17.40) (17.06) (17.63)

eq5 3.63 3.73 4.82 4.72 5.00 5.53 4.95 5.05 4.75
(3.48) (3.32) (5.17) (4.34) (4.95) (8.21) (6.10) (5.33) (4.30)

eq6 29.24 28.29 38.84 44.81 48.09 50.05 55.79 61.10 61.61
(39.15) (28.85) (50.32) (63.80) (71.12) (69.36) (80.75) (89.87) (87.63)

eq7 3.90 3.87 4.08 3.99 4.46 4.44 4.37 4.35 4.25
(3.21) (3.06) (2.93) (2.90) (4.93) (5.11) (3.21) (3.25) (3.42)

eq8 6.13 6.24 4.28 3.97 4.35 4.62 4.83 5.17 4.50
(7.33) (7.27) (3.77) (2.85) (2.90) (3.67) (3.93) (3.87) (2.79)

Note: Standard deviations in parentheses
Source: The authors, based on the Annual Survey of Hospital Beds and Discharges and the Survey of
Health Activities and Resources 2006–2014.
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2.8.2 Case-mix weights

To control for the severity of cases in this study, we construct the case-mix weight fol-
lowing the approach developed by Herr (2008). These weights are based on the across-
hospital average length of stay (LOS) of each diagnosis relative to the overall length of
stay. In developing a list of diagnostic categories (cases), we use the three-digit Interna-
tional Statistical Classification of Diseases and Related Health Problems (ICD-10).

The weights are then constructed as follows. A mean of LOS by year and main diag-
nosis m = 1, . . . ,M over N hospitals is calculated using the following formula:

LOSm =
1
N

N∑
i=1

daysmi
casesmi

(2.7)

Where cases represent the severity of the illness. The mean LOS over all diagnoses and
all hospitals is then denoted by LOSG and the final weights πm are obtained by:

πm =
LOSm
LOSG

(2.8)

The weights πm will be bigger (smaller) than one if the treatment of diagnosis m takes
more (less) time than the overall average LOS. These weights rely on the assumption of
a correlation between the length of stay and the severity of illness, so the idea is that the
great number of days a patient stays in hospital, the more severe the disease and the more
resources are used.

Finally, the weighted numbers of discharges are obtained by multiplying the number
of discharges of each case times πm and adding them up for every hospital.
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Chapter 3

Spatial dependence in hospitals
efficiency: A spatial econometric
approach for Ecuadorian public
hospitals.∗

Abstract
This study aims to analyze whether the efficiency of Ecuadorian public hos-
pitals experiences spatial dependence. The paper explores the question of
whether demand variations are affecting public hospitals’ efficiency perfor-
mance through direct and spillover effects, especially since the adoption of the
new constitution in 2008. We exploit a two-stage approach, wherein we use
an innovative panel-data DEA to estimate the hospital efficiency in the first
stage and then apply a spatial econometric framework to disentangle direct
and spillover effects in the second. The results confirm positive spatial interac-
tions among public hospitals’ efficiency, as well as positive direct and spillover
effects coming from demand increases, which have been reinforced since 2008.

Keywords: healthcare efficiency, healthcare reforms, spatial dependence.
JEL: C21, D61, I11, I18.

3.1 Introduction

In recent years, the assessment of the ability of public hospitals to optimally utilize their
resources for the provision of healthcare (i.e. how efficiently they are performing) has

∗We want to thank the participants of the Applied Lunch at UAB and at University of Barcelona, the
scientific committee of the PhD on Applied Economics, Nicola Pontarollo and Judit Vall for their valuable
comments. Any remaining errors are our own responsibility.
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become a topic of interest that has driven the attention of academics, healthcare managers,
and policymakers on measures to contain healthcare costs. Attention to this matter has
gained relevance as spending in healthcare continues to rise exponentially, which drives
policymakers to seek ways to pursue health objectives and at the same time contain cost
pressures (Papanicolas and Smith, 2013). The increase in hospital expenditures has led to
a series of reforms in developed economies to induce hospital efficiency improvements,
e.g. the introduction of activity-based hospital budgets (Pross et al., 2018).

However, healthcare efficiency improvement is not just a concern of developed economies.
The efficiency of public hospitals’ resource use is crucial in developing countries, given
the pressing need for their proper allocation due to their scarcity and limited healthcare
budgets (Hafidz et al., 2018; Kumbhakar, 2010). The importance of this is highlighted by
the World Health Organization (2000) as a measure that could decrease the gap of mor-
tality rates between rich and poor countries, and within countries. It is also important to
ensure that resources are well allocated to promote the goal of universal health coverage
(UHC) and ensure equity of access to medical services (Hafidz et al., 2018; World Health
Organization, 2000).

Despite its importance, studies of healthcare efficiency have been mainly performed
in developed economies (Hafidz et al., 2018), with a small but growing number of litera-
ture being applied to developing countries (Hollingsworth, 2008). However, the methods
used to study healthcare efficiency in developing economies have shown little consider-
ation for other variables that are specific to their local setting (Au et al., 2014). From
this perspective, healthcare efficiency can be influenced by different factors that vary
from socio-economic, environmental, political, structural, and geographical (Hafidz et al.,
2018). One important and common evidence found throughout the literature is the rele-
vance of the spatial dimension as a catalyst for the effectiveness of selected determinants
in shaping the degree of efficiency achieved by different healthcare providers. This spa-
tial dependence can impact on the needs of the population and the behavior of healthcare
providers across a wide geographical area, causing geographical concentration of needs
and risk factors, as well as the rise of network effects that are often detected in the data
(Tosetti et al., 2018) and which translate into a structure correlation, also known as spatial
dependence (Anselin, 2010).

In developing economies, this spatial structure can take the form of heavy territorial
concentration that can result in agglomeration economies.1 The presence of agglomera-
tion economies would lead to interactions in the health system that could be related to this
spatial pattern, generating some complementarities and indivisibilities such as spillover
effects (Behrens and Robert-Nicoud, 2015) that shape the healthcare behavior and effi-
ciency performance of the system if they are proven to be significant (Bhattacharjee et al.,
2014; Kinfu and Sawhney, 2015). But, once again, the literature on public healthcare
efficiency that accommodates the analysis to include spatial structure in the data for de-
veloping countries has been rather limited (Kinfu and Sawhney, 2015). In this respect,

1Here we will associate the concept of spatial unit to a region, or an area or a territory in an alternative
manner.
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one of the contributions of this paper is to fill the existing gap in the literature on pub-
lic healthcare efficiency for developing countries. To do this, we focus our analysis on
hospital efficiency and apply it to the Ecuadorian context.2

The Ecuadorian case represents a suitable context of analysis, since it is characterized
by significant territorial disparities and spatial dependence that arises due to the exis-
tence of spillovers effects, as has been pointed out in recent studies (Mendieta Muñoz
and Pontarollo, 2016; Szeles and Mendieta Muñoz, 2016). Along with other Latin Amer-
ican countries, Ecuador has been facing a process of continuous deterioration of its pub-
lic healthcare system due to neoliberal reforms carried out in the 1990s (Homedes and
Ugalde, 2005) and the crisis of 2000. As a consequence, Ecuador suffered from a deep
decline in its healthcare equity and efficiency with an increase in preexisting urban-rural
and inter-regional inequalities (De Paepe et al., 2012), and in the structural segmentation
and fragmentation of the healthcare system (Hartmann, 2016). These effects resulted in
significant technological heterogeneity between public healthcare institutions, 3 in which
the hospitals with higher technology are concentrated in the most developed cantons. 4

Given the deteriorated condition of the healthcare sector, the government of Rafael
Correa carried out a series of political reforms which introduced many changes with re-
spect to equal access to medical attention. These reforms started with the new Constitu-
tion in 2008, which established healthcare access as a right guaranteed by the state. The
free healthcare provided by the Ministry of Health’s hospitals (widely advertised by gov-
ernment campaigns), jointly with new social security and criminal-code laws that made
insurance coverage compulsory, are among the country’s most salient policies (De Paepe
et al., 2012). The new access to medical attention resulted in a higher inflow of patients
to public hospitals. According to the Public Ministry of Health (MSP), between 2006 and
2010 the number of surgeries increased by 47% hospital discharges 43% (Ministerio de
Salud Pública, 2012).

In light of this evidence, we can expect that the potential increase in demand has an
effect on hospital efficiency in the short-run. The rationale is the following: a higher
number of treated patients can lead to better use of hospital resources, which are usually
well endowed but inefficiently exploited in developing economies (Hafidz et al., 2018).
In other words, these hospitals have spare resources that are not used to provide medical
treatment. The increase in the number of patients would force the hospital managers to

2In this study, we intend “hospital efficiency” as the optimal use of a hospital’s inputs in order to pro-
duce a given healthcare output. This is commonly understood in the healthcare efficiency measurement
literature as technical efficiency (for a survey of the literature see Hollingsworth, 2008). Additionally, “hos-
pital inputs” means hospital resources that are frequently measured, such as the number of physicians,
beds, medical equipment, etc. “Hospital outputs”, on the other hand, are viewed as the units of delivery of
hospital services, and are usually measured as the number of discharges or procedures carried out.

3Here we consider technology as the set of constraints defining how one can combine or convert inputs
into outputs in the production process. In this particular context, this can relate to the availability of human
capital, infrastructure, etc.

4In Ecuador, cantons are the second level administrative divisions. The Republic of Ecuador is divided
into 24 provinces, which in turn are divided into 221 cantons. The cantons in turn are subdivided into
parishes.
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make use of these unexploited resources and therefore increase hospital efficiency would
also rise. However, the increase (decrease) of efficiency might not just affect a given hos-
pital, but also those surrounding it, given that hospitals can have strategic interactions in
terms of quality and efficiency (Longo et al., 2017) that are linked to the mobility of the
demand.5,6 The idea of how these interaction effects work is the following: when the new
reforms decrease the barriers of access to healthcare, patients seek treatment in hospi-
tals where they believe they will benefit from higher quality services (which can include
the high-tech hospitals) or they could also be referred from low-tech hospitals to receive
treatment for a complex pathology. In Ecuador, the criteria for the distribution of pub-
lic funding for healthcare services are based on the healthcare needs and the size of the
served population (Villacrés and Mena, 2017). Hence, this system generates incentives for
hospitals to attract more patients. As a consequence, within a bounded area, surrounding
hospitals can perceive how bigger hospitals are behaving and adapting to a changing re-
ality and can react by trying to capture some of this newly-created demand by increasing
their own quality (which will be constrained by their technological endowment). If the
costs of providing more quality are increasing, then higher costs stemming from higher
demand will reduce the incentives for cost control, thus reducing hospital efficiency.7

Given that hospitals have to make a decision about their efficiency, they can also react by
increasing or decreasing (strategic complements and strategic substitutes, respectively)
their efficiency in reaction to the changes in the efficiency of neighboring hospitals.

Moreover, taking into account the technological differences of the healthcare system,
an increase in demand can lead to a congestion effect for high-technology hospitals, which
is the case for the vast majority of patients treated in Ecuador. If these hospitals cannot
manage their resources efficiently, the increase in the number of patients can lead to a
decrease in their performance (Cozad and Wichmann, 2013). Thus, surrounding hospitals
could increase their quality to capture some of the demand that cannot be met by high-
tech ones. This reaction, in turn, can affect their efficiency in the same manner mentioned
earlier.

In light of this evidence, the aim of this study is to analyze whether public hospitals
in the Ecuadorian healthcare system adapt their efficiency in response to changes in the
efficiency of neighboring hospitals. We tackle the question of whether demand variations
are affecting the efficiency of public hospitals through direct and spillover effects, and
whether that level of efficiency has significantly changed since the new constitution came
into force in 2008. We make use of the hospital occupancy rate to measure the demand.

5The term “strategic interactions” is used in the literature to refer to the interdependence among fea-
tures or actions of selected units stemming from competition between those units. Strategic interactions
arise due to the existence of spillover effects (Brueckner, 2003) that cause the levels of the variables of one
unit to be affected by the levels of the same variables of neighbouring units.

6We make use of the hospital occupancy rate to measure demand. The occupancy rate has been widely
used as an index to show the actual utilization of an inpatient health facility for a given time period, and is
commonly applied in the literature to proxy medical resource utilization (Herwartz and Strumann, 2014;
Town and Vistnes, 2001).

7In fact, according to Villacrés and Mena (2017) the current funding scheme of the country can generate
inefficiencies given that the hospitals have an incentive to attract patients and inflate the costs.
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The occupancy rate has been widely used as an index to show the actual utilization of an
inpatient health facility for a given time period, and is commonly applied in the literature
to proxy medical resource utilization (Herwartz and Strumann, 2014; Town and Vistnes,
2001).

Our research covers the period of 2006–2014 and uses hospital and cantonal data
gathered from the public statistics of the Ecuadorian Institute of Statistics and Censuses
(INEC) and the Ecuadorian Central Bank (BCE). We contribute to the existing literature
by generalizing the approach by Longo et al. (2017) by means of the non-parametric ef-
ficiency measurement analysis that accounts for both the panel structure of the data and
the technological differences of the healthcare system developed in Chapter 2 to obtain
robust time-varying efficiency scores. By adopting efficiency measurement techniques,
we can account for one efficiency measure that considers the use of multiple inputs to
produce a given level of healthcare output, rather than relying on different productivity
ratios that might produce mixed results. Also, we adopt spatial panel econometric tech-
niques as a framework of analysis for performing our second part of the empirical analysis
by taking into account the spatial dependence of the data and disentangling direct and
spillover effects that can affect the hospitals’ efficiency performance.

By doing this, we combine two strands of literature that have been little exploited
jointly to implement our empirical framework referring to developing economies (Kinfu
and Sawhney, 2015). If spatial autocorrelation in hospital efficiency is found, then the rel-
evance of being able to assess spatial dependence stands to be an important consideration
in planning public policies. If so, hence when spatial dependence is identified, policymak-
ers cannot neglect the existence of spillover effects for achieving pre-established levels of
efficiency when implementing new healthcare public policies (Mobley et al., 2009). In
this study, we bring new evidence to understand the way in which the spatial dimension
may contribute to shaping more effective actions for fueling territorial healthcare access
and resource allocation, especially when dealing with very heterogeneous settings such as
those found in developing countries.

Our main results identify a significant positive spatial dependence among hospitals
in Ecuador, suggesting that their healthcare services are perceived as complementary in
terms of efficiency. Also, the higher demand for medical treatments reflects a positive
association with efficiency, regardless of the technological group; in addition, this demand
is affecting the efficiency of surrounding hospitals as well, providing evidence of spillover
effects. Both direct and spillover effects have significantly increased since 2008. This
result suggests that reforms carried out after the constitution boosted the efficiency of the
public healthcare system.

The organization of this chapter is as follows. In Section 3.2, we outline a short descrip-
tion of the institutional setting in Ecuador relevant to learning about the local healthcare
system. A literature review is presented in Section 3.3. Section 3.4 introduces the theoret-
ical framework as developed by Longo et al. (2017) and the empirical strategy is discussed
in Section 3.5. Section 3.6 describes our dataset, while estimation results and conclusions
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are presented in Section 3.7 and Section 3.8, respectively.

3.2 Institutional setting

The Ecuadorian healthcare system includes the public and private service sectors, the
former being the sector used by most of the insured population. According to the Survey
of Life Conditions (ECV) of INEC, around 66% of the population was covered by public
insurance in 2014, while private insurance accounts for only 6%.

The public healthcare sector is the result of the actions supported by the Ministry of
Public Health (MSP), the Ministry of Social and Economic Inclusion (MIES), and munic-
ipal health services and social security institutions.8 The MSP provides healthcare for
the whole population. The MIES and the municipalities establish and finance healthcare
programs to guarantee medical treatment services to uninsured citizens, which by 2014
represented around 33% of the national population, according to the ECV. Finally, social
security institutions sponsor medical services to those covered by social insurance (Lucio
et al., 2011).

As for funding sources, public services are financed mainly through the general pub-
lic budget, but they also receive funding from extra-budgetary sources, emergency and
contingency funds, and other contributions from national and international projects. The
social security services for employees works on a contributive base and is financed by the
contributions of affiliated workers. They are secured by the Social Security Law, as a right
of protection for Ecuadorian workers (Organización Panamericana de la Salud, 2008).

Since the ratification of the new constitution in 2008, many reforms have been car-
ried out to promote higher access to medical treatment for uninsured citizens such as
the provision of free medical services by the MSP in 2008, coverage for children under
18 years old in 2010, and the civil responsibility with penal charges for employers who
fail to affiliate their employees within a maximum period of 30 days in 2011. After the
implementation of these policies, there has been an increase in the annual growth rate
of active beneficiaries,9 while the number of patients seen in public hospitals increased
around 40% between 2006 and 2014 (see Chapter 2).

8The Ecuadorian Social Security Institute (IESS), the Social Security Institute of the Armed Forces
(ISSFA) and the Social Security Institute of the National Police (ISSPOL).

9Orellana et al. (2017) present descriptive data of social insurance beneficiaries and describe an annual
growth rate of 10% after 2010, compared with a 7% growth rate in previous years.
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3.3 Literature review

The importance of healthcare services around the globe is widely recognized. Investment
in healthcare has been rising rapidly, as have healthcare costs as a proportion of GDP; as
a result, there is great policy emphasis on improving efficiency (Bloom et al., 2015). The
territorial assessment of healthcare services is a key aspect of this, as there may be many
sources of geographic variation that can produce different health outcomes according to
the area of study (Allin et al., 2016; Chandra and Staiger, 2007; Williams et al., 2016).
Also, the recognition of significant geographical concentration for many health indica-
tors has motivated an extensive use of spatial methods to analyze health economic issues
(Moscone and Tosetti, 2014).

In this strand of literature, there have been many applications related to different top-
ics in health economics that address a spatial perspective; a complete review of most of
this literature can be found in Moscone and Tosetti (2014); Baltagi et al. (2018) and Tosetti
et al. (2018).

A wide body of this literature focuses on knowledge spillovers, hospital competition,
and agglomeration. Common findings suggest that agglomeration economies in health-
care markets promote a quicker adoption of a new innovation among firms, mainly hos-
pitals (Baicker et al., 2013; Chandra and Staiger, 2007; Cohen and Morrison Paul, 2008;
Goodman and Smith, 2018). It is the interaction and competition between these hospitals
that impact some market variables such as prices (Mobley, 2003; Mobley et al., 2009) or
the quality and efficiency of services (Gravelle et al., 2014; Longo et al., 2017, 2019).

Although spatial economic methods have been applied in much of the literature, there
is a lack of empirical research that addresses spatial dependence in healthcare efficiency
analysis. The consideration of efficiency analysis using a spatial approach can provide sev-
eral benefits to health providers, planners, and policymakers alike. It can help decision-
makers to identify geographic units that can attain a better outcome without increasing
the allocation of resources. Also, it can provide information on the exogenous factors
whose presence (or absence) affects the performance of services and hence health out-
comes in the country (Kinfu and Sawhney, 2015).

There are few and very recent papers that address a joint study of healthcare efficiency
analysis from a spatial perspective. Herwartz and Strumann (2012) study whether the
introduction of prospective hospital reimbursements based on diagnosis-related groups
(DRG) has caused an increase in the negative spatial autocorrelation of hospitals’ effi-
ciency due to the competition for low-cost patients. Using Data Envelopment Analysis
(DEA) and Stochastic Frontier Analysis (SFA) methods to measure hospitals efficiency in a
first stage, and Spatial Autoregressive Models with Autoregressive Disturbances (SARAR)
in a second stage, they find a statistically significant presence of negative spatial auto-
correlation among hospitals in Germany, which significantly increased after the finan-
cial reform. Herwartz and Strumann (2014) extend the analysis in Germany in order to
identify efficiency gains as a consequence of the same financial reform. They follow two
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different approaches. First, they consider a two-stage approach, starting with the decom-
position of Malmquist index technical efficiency, and then complete the analysis with a
SARAR model. In the second approach, they use a one-step fixed effects SFA model, ac-
counting for technological change and spatial dependence. Both methods fail to find any
efficiency gains from the new incentive structure in Germany. Felder and Tauchmann
(2013) also study the efficiency of healthcare provision in Germany, considering the spa-
tial perspective, which they state is important due to the regional competition and patient
migration. They adopt a longitudinal approach for Germany’s regions utilizing an order-
m DEA method to measure regional efficiency and a spatial autoregressive model in a
second step. Their findings show that accounting for spatial dependence increases the
estimated effects of federal states on district efficiency. This may be a way to understand-
ing why more efficient states are less affected by spillovers. As can be seen from these
results, introducing spatial dependence in the economic analysis clarifies the importance
of health policy at the state level. Herwartz and Schley (2018) depart from these findings
and consider socio-economic characteristics that influence the regional efficiency in the
provision of healthcare services in Germany. By means of the SFA approach, they identify
that income, unemployment, the proportion of immigrants, and educational level have an
effect in shaping the efficient provision of healthcare services in German districts.

Martini et al. (2014) analyze the trade-offs between hospital health outcomes (such
as mortality) and efficiency using a ward-level set of hospitals in Lombardy, Italy. Their
findings support the existence of a trade-off between mortality rates and efficiency, where
more efficient hospitals have higher mortality rates but lower readmission rates. They also
point out the role of the spatial dimension, since mortality rates are higher for hospitals
subject to a high degree of horizontal competition but lower for those hospitals having
strong competition but high efficiency. 10

3.4 Theoretical framework

The building blocks of the theoretical model we refer to in this analysis were developed by
Gravelle et al. (2014) and Longo et al. (2017). Their theoretical models considers strate-
gic interactions in hospital quality and efficiency arising from spillover effects within a
geographical area. The idea is that if hospitals compete within a given area, they will
attract patients by increasing their quality. If neighboring hospitals react by increasing
(or decreasing) their own quality, then we identify that hospitals are strategic comple-
ments (substitutes) in their quality. Furthermore, the reduction in a hospital’s demand
that follows from an increase in their closest neighbor’s quality also has an effect on its
efficiency. The cost of increasing quality to attract higher demand might also reduce in-
centives to control costs and thus reduce efficiency. In the way, hospitals can be strategic

10In their analysis, Martini et al. (2014) claim that when there is national health insurance, the cost of
service are irrelevant for the consumer hospital choice. This makes competition among hospitals mainly
focused on location, which they refer to as horizontal competition (Tay, 2003).
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complements (or substitutes) in their efficiency and a neighboring hospital’s increase in
efficiency can induce an increase or decrease in its own efficiency.

In order to present the framework in terms of the strategic interaction in efficiency
used by Longo et al. (2017) we consider a two-provider model of quality competition (q)
and cost-reduction effort (e).11 Let us assume qi as the healthcare quality of hospital i and
qj the healthcare quality of hospital j, with i , j. The demand function for hospital i is

given by Di = (qi ,qj), such that Diqi = ∂Di
∂qi

> 0 and Diqj = ∂Di
∂qj

< 0, so it is increasing in its

own quality but decreasing in the quality of hospital j. This assumption implies that hos-
pitals are demand (imperfect) substitutes: patients switch from one hospital to another in
accordance with the variation in the quality of the healthcare of the two hospitals. How-
ever, switching from one hospital to another entails costs in terms of time and transfer
costs. Here, we define the objective function of hospital i as:

πi = [p − ci (qi , ei ;θi)]Di
(
qi ,qj ;θi

)
−Gi (qi , ei ;θi) (3.1)

Where p is a fixed price per treatment that the hospital i receives from a third-party
payer, such as the government in our case, ci (qi , ei) are the variable treatment costs, given
that ciqi = ∂ci

∂qi
> 0 and ciei = ∂ci

∂ei
< 0, they are increasing in quality and decreasing in

efficiency, ei . Gi (qi , ei) are monetary and non-monetary fixed costs, with Giqi = ∂Gi
∂qi

> 0

and Giei = ∂Gi
∂ei

> 0, whereas θi is a vector of shift parameters, such as location of patients
and other hospitals, input prices, demographics, central policies, type of hospital, etc. The

authors assume that quality and efficiency are substitutes
(
Giqi ,ei = ∂2Gi

∂qi∂ei
> 0

)
, meaning

that an increase in quality would require a decrease in cost-reduction effort. Also, for
sake of simplicity, Longo et al., (2017) make the assumption of independence in variable

costs, that is ciqi ,ei = ∂2Ci
∂qi∂ei

= 0. The first order conditions to the equation (3.1), by which
hospital i maximizes its profit with respect to quality and efficiency, is as follows:

πiqi =
∂πi
∂qi

= [p − ci (qi , ei ;θi)]Diqi
(
qi ,qj ;θi

)
− ciqi (qi , ei ;θi)Di

(
qi ,qj ;θi

)
−Giqi (qi , ei ;θi) = 0 (3.2)

πiei =
∂πi
∂ei

= −ciei (qi , ei ;θi)Di
(
qi ,qj ;θi

)
−Giei (qi , ei ;θi) = 0 (3.3)

With Diqi > 0, ciqi > 0 and Giqi > 0. Optimal quality is achieved when the marginal
profit from one additional unit of demand is equal to the correspondent marginal cost.

11The cost-reduction effort is interpreted as an efficiency improvement. As the more efficiently the re-
sources are used to obtain a given output, the fewer costs there are for the hospital.
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On the other hand, the optimal level of efficiency is such that the marginal benefit from
lower costs and higher profits are equal to the marginal disutility from efficiency.

Since the scope of Longo et al. (2017) is to propose a model to examine hospitals’
strategic interactions, they find the interaction functions of hospital i’s quality (qi) and
efficiency (ei) as a function of the choice of quality by hospital j. The reaction functions
defined by the first-order conditions (3.2) and (3.3) satisfy:

qi = qRi (qj ;θi) (3.4)

ei = eRi (qj ;θi) (3.5)

Here, it would seem that the quality and efficiency of hospital i are independent from
the efficiency of hospital j because neither of the first order conditions of hospital i de-
pends on the efficiency of hospital j. But the total differentiation of the first-order condi-
tions yields:

∂qRi
∂qj

=
{
−πiqi ,qjπiei ,ei +πiei ,qjπiqi ,ei

}
∆−1

=
{
−
[
(p − ci)Diqiqj − ciqiDiqj

]
πiei ,ei − cieiDiqjπiqiei

}
∆−1 (3.6)

With ∆ = πiqi ,qiπiei ,ei − πiqi ,ei
2 > 0. The first term in the square brackets is the direct

effect of the neighbor’s quality on the marginal profit from higher quality. It is not clear
whether an increase in hospital j’s quality increases or decreases the marginal demand
of hospital i, so the sign of Diqiqj is unknown. For the sake of simplicity, if we assume
that Diqiqj = 0, this will lead to a reduction in the variable costs (second term in the square
brackets), because the increase in the neighbor’s quality reduces demand and the marginal
cost of output of hospital i, which will respond with an increase in quality. However, the
second term in the curly brackets also emphasizes another effect. Lower demand will
also reduce incentives to control for costs (lowering efficiency), and so variable costs may
increase.

Hospitals, then, can be affected by the patients’ perception in their quality; if the qual-
ity of a hospital is perceived to be high, this will end in an increase in patients’ demand
for this hospital, switching from its neighbors and yielding less efficiency. However, this
is conditioned to the spatial structure. The strategic interaction will be stronger for hos-
pitals that are closer to one another. Changes in quality and efficiency will matter because
of hospitals’ proximity, and because of the decay effect of spillovers.

In our case, the healthcare reforms that have been implemented relax some barriers to
access to medical services, allowing citizens to select between different hospitals. In the
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short run, a hospital gains more patients when it increases its quality since the patients
have the opportunity to choose those hospitals which they perceive as better qualified. But
the effect that the reforms can have on the demand for a particular hospital is ambiguous.
It will depend on the quality of the other hospitals and the geographical distribution of
the patients and hospitals (Gravelle et al., 2014). So, patients will decide to switch from
one hospital to another depending on the travel distance and transfer costs. Neighboring
hospitals can react to the increase in quality of a hospital by either increasing or decreas-
ing their own quality. This affects the final demand and therefore the hospitals’ efficiency.

Therefore, in order to test the spatial interaction in hospital efficiency we use the fol-
lowing function:

ei = f (ei−1,Zi , εi) (3.7)

With ei being the efficiency of hospital i = (i, . . . , I), ei−1 is the efficiency of hospital i‘s
neighbor, Zi is the vector of covariates, including hospital variables (e.g. occupancy and
mortality rate, market share, etc.), and cantonal variables (e.g. GVA, density, etc.).

3.5 Empirical strategy

The first stage of our empirical strategy involves defining a measure of efficiency. We make
use of the efficiency scores obtained in Chapter 2. As explained, these efficiency scores
are mainly based on the panel Data Envelopment Analysis (panel-data DEA) proposed
by Surroca et al. (2016), and Pérez-López et al. (2018). The advantage of this approach
over other efficiency measurement analyses such as classical DEA or other dynamical ap-
proaches such as the Malmquist index is that it allows one to estimate time-invariant
coefficients of efficiency for the period of analysis, considering the inherent panel data
structure. Additionally, these time-invariant efficiencies can be broken down into time-
variant ones, calculating efficiency values for each year under evaluation. One of the prin-
cipal advantages of this approach is that the results are robust to outliers and temporal
random shock, which provides efficiency scores representative of the complete period.

In Chapter 2, we extend this approach to account for technological heterogeneities
of Ecuadorian public hospitals by applying multivariate techniques (factor analysis in
combination with clustering methods) to obtain panel data-DEA efficiency scores for three
different groups (clusters): high-tech, intermediate-tech and low-tech.

In this Chapter, we follow an input-oriented efficiency measurement. We assume a
variable return to scale (VRS) model to deal with heterogeneous observations.12 The effi-
ciency frontier is developed by optimizing the weighted input/output ratio of each Deci-

12This is also tested in the empirical application with the Simar and Wilson (2002, 2011) returns-to-scale
test.
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sion Making Unit (DMU),13 subject to the condition that this ratio can be equal, but never
exceed one for any other DMU in the data set (Charnes et al., 1978).

The second step of our strategy defines a convenient spatial model whose main idea is
to assess whether hospitals’ efficiency is associated with the efficiency of nearby hospitals
and with other observed and unobserved variables. For this, the spatial econometrics lit-
erature has developed models that treat three different types of interaction effects among
units of analysis (Halleck Vega and Elhorst, 2015). These interaction effects account for
(i) endogenous interaction effects among the dependent variable; (ii) exogenous interac-
tion effects among the explanatory variables; and (iii) interaction effects among the error
terms.

The identification of the source of spatial autocorrelation needs to be carried out in
order to avoid model misspecifications and omitted variable bias. Following the strategy
described in LeSage and Pace (2009) and Elhorst (2010), we begin with a with a Spatial
Durbin Model (SDM) setting as a general specification and, then test for alternatives. The
process of model selection can be found in Appendix 3.9.2. We also provide Lagrange
Multiplier (LM) lag and error tests for spatial panel models (Anselin et al., 2006) and
their robust counterparts (Elhorst, 2010), which are commonly used in the literature to
make inferences for spatial interaction effects.

To select between random and fixed effects models, we ran the robust Hausman test
(Hausman, 1978) and found robust evidence for the fixed effects model. Elhorst (2014)
also recommends the selection of the fixed effects in spatial panel models when space-
time data of adjacent spatial units are located in unbroken study areas. Also, given the
assumption of orthogonality between the individual-specific component and the explana-
tory variables, this assumption is particularly restrictive and difficult to hold in empirical
applications (Baltagi, 2013; Baltagi et al., 2018).

The model selection points out a SAC model as the appropriate framework of anal-
ysis.14 This is consistent with similar applications in the existing literature (Felder and
Tauchmann, 2013; Herwartz and Strumann, 2012, 2014), suggesting that the sources of
autocorrelation occur in the efficiency performance of hospitals and unobservable factors
that we cannot measure. Thus, from equation (3.7) we specify the following spatial panel
data SAC model estimated by Quasi-Maximum Likelihood (QML):

log(eit) = ρ
∑
j,i

wijlog(ejt) + β′log(Zit) + ∅i +γt + εit

13We can call DMU to any unit of analysis, such as, individuals, departments, firms, municipalities, or,
in the case of this study, hospitals.

14The acronym SAC is consistent with the terminology of LeSage and Pace (2009), but other authors
give this model the acronym SARAR, which stands for Spatial Autoregressive Models with Autoregressive
Disturbances.
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with εit = λ
∑
j

wijεjt + εit (3.8)

The variable eit is the logarithm of the efficiency of the hospital i at time t and wij
(withj , i) are the spatial weights that capture the pattern of spatial dependence and the
strength of potential interaction between units i and j. The variable Zit is the vector
including variables such as occupancy rate, market share, mortality rate, and regional
demographics that can affect the efficiency of the hospital. The variable ∅i captures the
hospital fixed effects and γt is the time effect. Finally, εit is the error term. We define
equation (3.8) in matrix form as:

et = ρWet +Z tβ + ∅+γ t + εt

with εt = λWεt + εt (3.9)

As for the specification of the components of the weight matrix W , we use two differ-
ent specifications. The former (hereinafter W d) is the inverse of the shortest Euclidean
distance between any pair of spatial units (i and j), which has been commonly used in
the literature when the data covers healthcare providers (Tosetti et al., 2018). The latter
(hereinafter W v) uses the inverse shortest time travel distance by car still between any
pair of locations (i and j), as in Gravelle et al. (2014).

The key parameters to be estimated for the spatial autocorrelation are the coefficients ρ
and λ. These measure the strength of the spatial dependence due to efficiency changes and
to unobservable factors in neighboring hospitals respectively, conditional on the vectors
of explanatory variables. If ρ > 0 then a positive autocorrelation is found in the efficiency
of hospital i and the efficiency of their neighboring hospitals, and similarly for λ.

One of the main advantages of using spatial econometrics is its capacity to empirically
assess the magnitude and significance of spillover effects (Elhorst, 2014). In this sense,
spatial regression models exploit the dependence structure among hospitals: the effect of
the change of an explanatory variable for a specific hospital will affect the hospital itself,
and, potentially, all other neighboring hospitals indirectly. This implies the existence of
direct, indirect (spillover) and total effects. We can estimate these effects by obtaining the
matrix of partial derivatives of the expected values of eit, as proposed by LeSage and Pace
(2009). So far, the literature on spatial healthcare economics has identified the existence
of spatial spillovers based on coefficient estimates (Baltagi et al., 2018). We improve the
empirical approach by accounting for the direct, indirect, and total effects of independent
variables. As stated by LeSage and Pace (2009), the partial derivative interpretation of the
impacts coming from changes in the independent variables provides a more valid basis
for testing the existence of spillover effects. Here, we are also interested in measuring
the effects of the hospitals’ occupancy rates, which can bring tangible evidence of how the
demand for medical services is affecting the efficiency of a given hospital and whether this
is also affecting neighboring hospitals due to spillover effects. In addition, we carry out
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the LeSage and Pace (2009) partitioning analysis of the spatial multiplier.15 With this, we
are able to trace the effect of the linkages between demand levels of neighboring hospitals.
Thus, we not only concentrate on analyzing the direct, spillover, and total effects, but also
determine the impacts that the demand itself has over the higher order of contiguity. In
other words, we are able to examine how the impact of hospital demand manifests itself
over space (Jensen and Lacombe, 2012). Finally, by means of hypotheses testing, we can
check for its significant increase (or decrease) of the direct and indirect effects since 2008.

To test the statistical variations of the healthcare demand upon the hospitals’ efficiency
before and after 2008, we interact the logarithm of the occupancy rate with time dum-
mies (ocratet). Specifically, we have built the following test: Ho : ocrate1 = ocrate2, where
ocrate1 = 1/2

∑2008
t=2007 ocratet and represents the subperiod before the constitution,16 while

ocrate2 = 1/6
∑2014
t=2009 ocratet constitutes the subperiod after the constitution. These hy-

potheses are tested by means of a two-sided t-test.17

3.6 Data and variables

The database we have used covers the period from 2006 (two years before the new consti-
tution was approved) to 2014. We make use of the same information collected for Chapter
2 to carry out the first stage of our strategy. The hospital information was collected from
the Annual Survey of Hospital Beds and Discharges and the Survey of Health Activities
and Resources provided by the INEC. We excluded the psychiatric, dermatologic, and
geriatric hospitals, and removed outliers from the sample.18 We retrieved a panel data of
186 hospitals for which an average of 21 hospitals per year had missing values that were
imputed by means of Predictive Mean Matching imputation (Rubin, 1986).19 Cantonal
economic and demographic variables were retrieved from the BCE and INEC’s public
statistics respectively. A description of all the variables is presented in Appendix 3.9.1.

15Refer to Appendix 3.9.3 for an explanation of LeSage and Pace (2009) spatial effects and its respective
partitioning analysis.

16The constitution came into force in October 2008.
17The logarithmic transformation of the efficiency scores ensures an unbounded dependent variable and

thus enables a consistent maximum likelihood estimation (Simar and Wilson, 2007).
18We excluded psychiatric, dermatologic, and geriatric hospitals as they focus on specific illness and

patients that require different treatments that could bias the efficiency values. For example, psychiatric
hospitals often require inpatients to stay for long periods of time, which our analysis would consider as a
criteria for less efficiency.

19The imputation results were diagnosed by means of displays of completed data, distribution compari-
son, and checks for fit of the data suggested by Abayomi et al. (2008).
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3.6.1 Variables for the efficiency measurement

As was previously mentioned, we employed the efficiency estimations granted from Chap-
ter 2. The selection for both input and output variables was related to the existing litera-
ture on hospital efficiency measurement. A complete overview is proposed by Hollingsworth
(2008); O’Neill et al. (2008), and Cantor and Poh (2018).

In our study, the input variables (controlled by the hospitals) are the number of beds,
the medical equipment, and the availability of the infrastructure that is widely used as
a proxy for hospital size and capital investment (O’Neill et al., 2008). To proxy labor
costs, clinical staff were usually included (Hollingsworth, 2003, 2008). To this end, we
included the number of physicians and healthcare professionals beyond the number of
physicians of the hospital. To measure public hospitals’ final production of health, the
number of hospital discharges was employed. This variable is weighted with the case-mix
index proposed by Herr (2008).

3.6.2 Variables for the spatial econometric model

To account for the changes in the number of treated patients we used the logarithm of the
hospital occupancy rate.20 Herwartz and Strumann (2012, 2014) point out that the impor-
tance of this variable in relation to healthcare efficiency. It serves as a proxy to determine
whether hospitals promptly adjust their working staff to the increase in treated patients.
Thus, hospitals with a relatively low occupancy rate can be interpreted as having an over-
sized staff, and thus as being unlikely to meet the demand of patient care efficiently. This
issue has recently been highlighted for low- and middle-income countries, which present
an occupancy rate well below that recommended by the WHO (Hafidz et al., 2018).

To provide a proxy for market structure in the hospitals’ respective cantons, we used
the logarithm of the hospital’s market share. Market share has often been used as an
explanatory variable in research regarding healthcare efficiency in developed economies
to provide a measure of concentration (or competition). For example, Longo et al. (2019)
identify hospitals that compete in a given district to proxy the patients’ choice of provider.
Hence, the higher the competition in a district, the wider the range of healthcare providers
that the patients can choose from. This reaction is expected to drive hospitals to compete
in quality and increase incentives to increase efficiency to contain costs. Despite its impor-
tance, few studies have embedded this variable in the case of setting involving developing
economies (Hafidz et al., 2018). In developing economies experiencing marked healthcare
heterogeneities, market share might also have an additional implication, considering that
there would be just a few hospitals in which the patients believe they will be able to get
quality treatment for their disease. Therefore, higher market share could also to a certain
extent be a proxy for patients’ perception of the quality of a hospital. In our context, we

20All the variables expressed as percentages were on a 0–100 scale prior to obtaining the logarithms in
order to facilitate the estimations and interpretation of the results.
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envisage two scenarios. In the first case, larger market shares could be related to larger
hospitals, which are often located in more developed cantons. In Chapter 2, we find that
these types of hospitals are those with better technology and better performance (hence,
the most efficient). The second case would represent those hospitals located in less de-
veloped cantons (hence, with lower technology and efficiency) which do not have to deal
with many close competitors.

One of the limitations that we faced was finding appropriate variables in the dataset
that could properly measure the quality of the hospitals. To address hospital quality, the
variables commonly used in the literature range from mortality, readmission or health sat-
isfaction rates (Hafidz et al., 2018; Hollingsworth, 2008). Unfortunately, these were not
available in our data. For this reason, we decided to take into account hospitals’ quality
by including the logarithm of the hospital and cantonal mortality rates. Other morbid-
ity variables were also included, such as the number of disease-specific treated patients,
to provide additional controls on the complexity of cases treated. Hospitals whose per-
formance displays a significant positive relationship with these morbidity variables may
suggest not only a higher quality in the treatment of the disease, but also a process of
learning-by-doing (Gobillon and Milcent, 2013), as they would show increasing experi-
ence in the treatment of these diseases over time.

The technological differences were included as a dummy interacting with different
hospital independent variables to estimate their differential effect on the hospitals’ effi-
ciency scores.

As for canton specific variables, we included the logarithm of the density and gross
value added (GVA) to control for the canton’s level of urbanization and proxy some ex-
ogenous socio-economic factors respectively (Herwartz and Strumann, 2012, 2014). Many
have addressed the influence of the elderly population on hospital efficiency (e.g. Herr,
2008; Longo et al., 2017), as they are likely to be more cost and resource intensive and
present more complications in treatment. In addition, Orellana et al. (2017) provide evi-
dence of over-utilization of medical treatment in the Ecuadorian public health system for
people over 60 years old, which can negatively affect the systems’ performance, as they
might be using medical resources that could be employed for higher priority or more se-
vere cases. Here, we used the logarithm of the population over 65 years old to control for
this effect.

Finally, we used the logarithm of cantonal patient migration measured as the number
of patients treated in cantons different from the ones of their place of residence. Felder
and Tauchmann (2013) state the importance of accounting for regional patient migration
as it can be potentially correlated with inefficiency. Patient migration can explain effi-
ciency differences between territories, as it could be capturing deprivation effects (Her-
wartz and Schley, 2018). Bigger hospitals located in the developed regions are very likely
to treat patients from outer regions, as patients in less-developed regions have access
restrictions to good healthcare quality and perceive these bigger hospitals to have higher
quality than those located in their residence area (Martini et al., 2014). In this way, smaller
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hospitals –likely to be located in less-developed areas – can present higher efficiencies that
are not due to more efficient use of their inputs, but rather a lower local demand due to
patient migration (Herwartz and Schley, 2018).

The descriptive statistics of our data are presented in Table 3.1. We split the sam-
ple in technology cluster according to the criterion proposed in Chapter 2 (low-tech,
intermediate-tech, and high-tech). At first sight, this table emphasizes the important
heterogeneity in the Ecuadorian public healthcare system. Low-tech hospitals are the
majority in the system, but they have a much lower number of healthcare inputs on aver-
age than their high-tech counterparts. However, these high-tech hospitals treat more than
14 times the number of patients attended in the low-tech hospitals.
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Regarding hospital demand, we see a higher occupancy rate for the high-tech group
(73.80%). Despite presenting higher demand, this occupancy rate suggests an inefficient
utilization of hospital resources: there seem to be spare hospital inputs that are not cur-
rently used for treatment, implying that in general there is still room for improvement
for public hospitals. Furthermore, high-tech hospitals settle in regions that concentrate
a larger amount of the population and economic production. The lower market share
(18.48%) shows that there is more competition in these areas with respect to the low-tech
hospitals’ regions, which also present a lower level of patient migration. This prelimi-
nary evidence anticipates the need to adjust the hospitals’ efficiency performance to the
patients’ needs with strategies tailored accordingly to the technological groups.

3.6.3 Exploratory spatial data analysis

Before performing the more quantitative analysis, it is important to assess the true exis-
tence of spatial dependence in the distribution of the health resources in the Ecuadorian
territory. Hence, we perform an exploratory spatial data analysis (ESDA) to identify dif-
ferent patterns of spatial association and regional clusters or atypical locations of our ob-
servations (Anselin et al., 2006) and gain a better understanding of the spatial structure
of the data.

The aim of our spatial data analysis is to test whether strategic interaction between
hospitals is occurring. This interaction can arise from the concentration of health re-
sources in selected areas that can yield similar patterns of efficiency (Longo et al., 2017).
We test for the spatial autocorrelation and proximity of the data by means of Moran’s I-
statistic (Moran, 1948). Moran’s I has been widely used in the literature to test for spatial
dependence (LeSage and Pace, 2009). If the statistic is positive and significant, this means
that hospitals with high amounts of healthcare resources are clustered.

Figure 3.1 depicts the Moran’s map and scatterplot for the mean value of four different
hospital features between 2006 and 2014: numbers of physicians, beds, medical equip-
ment, and hospital personnel (not including physicians).21 Table 3.2 reports the Moran’s I
test results using the weight matrixW d based on the inverse Euclidean (shortest) distance
between hospitals.22

21A more detailed description of this is presented in the data section.
22We also used different weight matrices such as the inverse of the shortest time travel distance, and the

inverse of the squared distance and time travel distance. The results are similar in all cases.
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Figure 3.1: Moran’s map and Moran’s Scatterplot. (a) Physicians, (b) beds, (c) personnel,
(d) equipment
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Figure 3.1: (continued)

Table 3.2: Moran’s I test of spatial dependence

Hospital Inputs Moran’s I Prob
Physicians 0.3698 0.000
Beds 0.3279 0.000
Hospital Personnel 0.3638 0.000
Equipment and Infrastructure 0.3145 0.000
Source: The authors

The evidence shown in Table 3.2 shows an average positive spatial correlation for all
the hospital features considered. Looking at the maps, the hospitals that present pos-
itive spatial autocorrelation (black points) are clustered around Quito and Guayaquil,
which are the two biggest and most developed cantons in Ecuador (Mendieta Muñoz and
Pontarollo, 2016). It is also worth noting that the spatial pattern changes as hospitals
move further away from these cantons. Hospitals that surround them present dissimilar
amounts of resources, represented by the reddish points (low-high), and present a nega-
tive correlation as they move farther away, as depicted by the orange points (low-low).

The corresponding scatterplots confirm the finding of positive autocorrelation. Most
of the hospitals’ resources cluster in quadrant III, whereas few are in quadrant I. This
result assesses not only the high heterogeneity in terms of technological endowment for
healthcare in Ecuador, but also the uneven distribution of these high-tech hospitals in the
territory, which confirms the findings of the descriptive statistics mentioned above.

The evidence issued from this preliminary analysis implies that classic econometric
approximations to study the Ecuadorian public healthcare system would fail to obtain
unbiased results given the existence of spatial dependence. We need to consider a model
that incorporates this dependence and which can disentangle the spillover effects that
cause it (Anselin, 1988).
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In order to perform our analysis, we need an appropriate measure that allows us to
estimate to what extent healthcare resources are efficiently used in the production of a
healthcare output. In this respect, many methods have been proposed in the literature
(Cantor and Poh, 2018), but few of them have been applied in combination with spatial
econometric techniques (Felder and Tauchmann, 2013).

Another novelty of this contribution is that it bridges these two strands of literature by
proposing an empirical two-stage approach. In the first stage we estimate the efficiency
scores (from Chapter 2) that are robust over time and have the advantage of considering
the technological differences in the public healthcare Ecuadorian sector. Then, in the
second stage, we select these measures of efficiency as dependent variables to perform
spatial panel econometric estimates. In this way, we can determine the spatial dependence
in efficiency across hospitals. This empirical framework also allows for disentangling the
extent to which direct and spillover effects issuing from external factors – particularly
hospitals’ occupancy rates – affect the efficiency performance of hospitals over time.

3.7 Estimation results

Table 3.3 shows the regression results from the SAC spatial econometric model for equa-
tion (3.9). The first set of estimations refers to the model with the selected weight matrices
and without incorporating the technological discrepancies. Hereinafter, we label this first
type of setting as the baseline model.

Table 3.3: Spatial regression results. Direct, indirect, and total effects

Variables W d W v

Direct Indirect Total Direct Indirect Total
log occupancy rate 0.140*** 0.071*** 0.211*** 0.130*** 0.0983*** 0.228***

(0.019) (0.018) (0.0311) (0.0189) (0.0211) (0.0354)
log market share -0.0372*** -0.0188*** -0.0560*** -0.0342*** -0.0259*** -0.0601***

(0.011) (0.0069) (0.0166) (0.0108) (0.0094) (0.0195)
log mortality rate -0.0317*** -0.0160*** -0.0478*** -0.0289*** -0.0220*** -0.0509***

(0.008) (0.0057) (0.0134) (0.0083) (0.0074) (0.0151)
disease 1 -0.0076*** -0.0038** -0.0114*** -0.0058** -0.0044** -0.0102**

(0.003) (0.0016) (0.0041) (0.0026) (0.0022) (0.0047)
disease 2 -0.0031 -0.0015 -0.0046 -0.0034 -0.0025 -0.0059

(0.003) (0.0014) (0.0039) (0.0026) (0.002) (0.0046)
disease 3 0.0784*** 0.0395*** 0.118*** 0.0841*** 0.0639*** 0.148***

(0.02) (0.015) (0.0366) (0.0240) (0.0219) (0.0440)
disease 4 0.0232*** 0.0117*** 0.0350*** 0.0212*** 0.0161*** 0.0373***

(0.004) (0.0034) (0.0066) (0.0039) (0.0042) (0.0075)
disease 5 -0.0255 -0.0129 -0.0384 -0.0289 -0.0221 -0.0510

(0.018) (0.0101) (0.0283) (0.0184) (0.0149) (0.0329)
disease 6 0.0066*** 0.0034*** 0.0100*** 0.0067*** 0.0051*** 0.0118***

(0.0008) (0.0008) (0.0015) (0.0009) (0.0011) (0.0018)
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Table 3.3 (continued)
Variables W d W v

Direct Indirect Total Direct Indirect Total
disease 7 0.0056*** 0.0028** 0.0084*** 0.0045** 0.0034** 0.0079**

(0.002) (0.0012) (0.0031) (0.002) (0.0017) (0.0036)
disease 8 -0.0302*** -0.0152** -0.0454*** -0.0294** -0.0224** -0.0518**

(0.012) (0.0067) (0.0176) (0.0118) (0.009) (0.0211)
disease 9 0.0060** 0.0030** 0.0090** 0.0059** 0.0045** 0.0104**

(0.0025) (0.0014) (0.0038) (0.0025) (0.002) (0.0045)
log GVA 0.0877** 0.0438** 0.131** 0.0650* 0.0490* 0.114*

(0.036) (0.0199) (0.0545) (0.0357) (0.0278) (0.0625)
log density -0.610** -0.300** -0.910** -0.663*** -0.499*** -1.162***

(0.248) (0.130) (0.363) (0.132) (0.114) (0.224)
log mortality (cantonal) 0.0678* 0.0342 0.102* 0.0515 0.0391 0.0906

(0.038) (0.0215) (0.0584) (0.0377) (0.03) (0.0669)
log pop > 65 -0.0126 -0.0075 -0.0201 -0.126 -0.0976 -0.224

(0.120) (0.0606) (0.180) (0.115) (0.0933) (0.207)
log inpatient migration 0.0045 0.0023 0.0068 0.0045 0.0035 0.0080

(0.012) (0.006) (0.0177) (0.0117) (0.009) (0.0206)
ρ 0.355*** 0.453***

(0.053) (0.0454)
λ -0.419*** -0.513***

(0.064) (0.0627)
N 1,674 1,674
Number of hospitals 186 186

Note: Dependent variable is the log of hospital efficiency. ML estimations were also run and are comparable.
Direct, indirect, and spillover effects and related standard errors in parentheses computed using 2000 draws.
*** p<0.01, ** p<0.05, * p<0.1.
Source: The authors.

The results confirm the existence of positive spatial dependence among hospital effi-
ciency in the sample. These results are robust for both types of spatial matrices. Con-
sidering the weight matrix based on the shortest travel time distance,23 the estimate of ρ
indicates that a 1% increase in the efficiency of neighboring hospitals j is increasing the
efficiency of the hospital i by 0.45%. Referring to our efficiency measurement setting,
the results suggest significant strategic complementarity effects in hospitals’ efficiency.
These results contrast with those found in Longo et al. (2017), in which they use different
efficiency ratios to proxy efficiency.

The statistical significance of the estimates for λ suggests the presence of a negative
spatial error correlation. This result involves the existence of other sources of spatial cor-
relation in our sample that were not properly captured in the model. The results are in
line with previous findings in the literature. The existence of spatial error correlation is
not new in spatial health econometrics (Baltagi et al., 2018). There are several risk factors

23Henceforth, this will be used for interpretation, as it is a more realistic matrix of hospital interactions
than that of Euclidean distances (W d).
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that are difficult to measure but they are so geographically concentrated that they affect
health outcomes (Tosetti et al., 2018). These factors may not be necessarily linked to inter-
actions among hospitals, but could rather be associated with interactions among spatial
units observed at a different scale. For instance, Martini et al. (2014) discuss the impor-
tance of ward-level analysis in measuring efficiency rather than hospital aggregation, as
similar behavior can occur among wards that provide homogeneous treatments. The spa-
tial interaction in hospital efficiency can also originate in a more in depth disaggregation.
For example, hospital efficiency can be affected by the physicians’ productivity (Johan-
nessen et al., 2017): the concentration of these physicians in large hospitals, mostly lo-
cated in developed cantons, can generate interactions among them, giving rise to a spatial
pattern that cannot be captured by the data. Conversely, the sources of spatial dependence
can also come from macroeconomic phenomena such as immigration or unemployment
which can cause inefficiency in the provision of healthcare services (Herwartz and Schley,
2018), and are very likely to be influencing hospital performance in Ecuador given its
strong spatial dependence (Mendieta Muñoz and Pontarollo, 2016; Szeles and Mendieta
Muñoz, 2016).

Another potential source of spatial correlation in errors could come from the omission
of budgetary information, which has proved to be a relevant factor of influence in hos-
pitals’ efficiency and quality, especially when there are financial pressures due to budget
constraints (Herr, 2008; Mas, 2015). In this respect, it is worth pointing out an important
limitation of our dataset; this is the impossibility of retrieving the quality of hospitals’
budgetary information or public investment to properly match our dataset.

Due to the scarce literature that exploits a similar approach, especially for Latin Amer-
ican countries, a comparative analysis becomes difficult. Nevertheless, the sign of the
spatial correlation and the effect of both the spatially lagged efficiency score and the er-
ror term go in line with those of Felder and Tauchmann (2013). Although they perform a
cross-sectional analysis at the district level in Germany, the average effect of spatial depen-
dence for the hospitals’ efficiency –measured by efficiency measurement nonparametric
models – does not seem to be unrealistic in the Ecuadorian context.

Table 3.3 provides additional information about spillover effects. We present total
effects disaggregated in direct and indirect (spillover) effects (LeSage and Pace, 2009). The
logarithm of occupancy rate shows that an increase in 1% in a hospital’s occupancy rate
increases the efficiency of the same hospital by 0.13% and the efficiency of all neighboring
hospitals by 0.09%. These findings would reject the hypothesis that higher demand for
medical services (translating into higher occupancy rates) is the source of the decrease in
hospitals’ efficiency, and instead shows the opposite.24 This finding is in line with the
argument of the inefficient use of the spare resources in the public healthcare system as
argued by Herwartz and Strumann (2014).

24We tested the direction of the causality between hospital efficiency and the demand by means of the
Granger (1969) causality test for panel data models adapted by Dumitrescu and Hurlin (2012). The test
rejects the null hypothesis of non-causality.
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Instead, market share is associated with a negative estimated coefficient.25 Its direct
and indirect effects show that a 1% increase in this variable diminishes the efficiency
performance by 0.03% for the selected hospital and 0.02% for neighboring hospitals. This
implies that hospitals that host more patients tend to experience an inefficient use of
resources. However, the magnitude of this effect could be different in accordance with the
type of hospital under consideration.

In addition, it is interesting to review the negative effect of cantonal density, which
means that hospitals located in denser areas tend to record lower performance. However,
as we have previously mentioned, the higher level of efficiency in less populated cantons
does not necessarily mean that these hospitals are outperforming those in denser territo-
ries, as it might be the result of patient migration outflow to the former.26 Furthermore,
the non-significative effect of cantonal inpatient migration might not necessarily mean
that it has no effect on hospital efficiency and instead show that it is failing to capture the
true effect of patient migration.27

The negative effect of hospital mortality provides evidence that a high performance
rate is positively correlated with low mortality, which has been a common finding in re-
cent literature (Ferreira and Marques, 2019; Herwartz and Strumann, 2012, 2014).

However, the previous results do not accommodate technological heterogeneities among
hospitals. We go a step further than the applied literature by including technological dif-
ferences as interactions with hospital-related variables, since these are the ones that tend
to be relevant for the analysis.

Table 3.4 presents the estimated results including technological interactions. Model
(1) presents the baseline model using W v . Models (2), (3), and (4) show the estimation
results with the covariates at the hospital level interacted with two dummies of cluster
2 (intermediate-tech) and cluster 3 (high-tech).28 For the sake of simplicity, we exclude
from the table the morbidity estimations’ parameters.29

25For the definition of market share, refer to the Appendix 3.9.1.
26We provide more evidence for this when we consider technological effects.
27Estimation results with the other weight matrix are comparable and available upon request.
28Estimation results with the other weight matrix are comparable and available upon request.
29Complete results tables are available upon request.
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The most interesting finding refers to the market share. The estimated coefficient is
significant and robust, positively associated with the technological endowment of public
hospitals: the estimates are positive for high-and-intermediate-tech hospitals, something
which is at odds with previous results. Indeed, the estimations provide evidence that, in
case of more concentration, high-and-intermediate-tech hospitals’ efficiency performance
increases, enforcing spillover effects. These results are not far from recent findings in
the literature. Pross et al. (2018) find that regional and hospital level concentration can
improve quality and resource efficiency. Gobillon and Milcent (2013) identify that the
higher local concentration of patients in a few large hospitals rather than many small
ones improves the hospitals’ performance. As these authors state, this can be the result
of a learning-by-doing process. The hospitals with the best technology (better equip-
ment, more specialized physicians, better infrastructure, etc.), having treated more pa-
tients and more severe cases over time, experience improvements in their treatment ca-
pacity through experience. These results might evidence policy recommendations for
public investment in favor of hospital competition (which usually seek higher quality
and efficiency of the healthcare system) that is well targeted in order to avoid a negative
impact. The concentration of resources in developed areas (where most of the high-tech
hospitals are located) can be beneficial for the hospital performance in those areas. It is
desirable that public investment target less-developed areas where the low-tech hospitals
concentrate without having many close competitors. Increasing the number of hospitals
in less-developed areas would cause hospitals to compete by increasing their quality and
performance in order to avoid patient outflow. Such a measure could also attract skilled
and specialized physicians to these regions given the increased demand for qualified per-
sonnel . As a consequence, more patients could choose to receive treatment there if they
perceive that these hospitals are increasing in quality and efficiency (Ippoliti and Falavi-
gna, 2012), and thus the regional performance of the health sector would be enhanced.

Our estimations also stress that there are no significant changes in occupancy rate
and mortality rate when referring to the technological endowment. Regardless of the
technological differences, higher demand translates into higher efficiency. The reason for
this might be that all hospitals, regardless of their technological level, show low levels of
efficiency, implying an inefficient use of their spare inputs, which gives them room for
improvement when there is a higher demand for medical treatment.

To find out how the occupancy rate has influenced the efficiency of public hospitals,
we draw in Figure 3.2 the tendency of the total effect of ocratet over time. There is a
notable cut in the total effect after 2008, suggesting that the increase in demand after
this year yields an increase in hospital performance due to a more efficient use of spare
resources. This effect might also be the result of proper managerial planning that could
have anticipated an increase in the bulk of patients, given that the Ecuadorian population
had time to become informed about the potential changes that the constitution embraced.
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Figure 3.2: Occupancy rate’s total marginal effect with 95% CI

To verify whether this discontinuity in efficiency was statistically significant, Table 3.5
presents the correspondent hypotheses tests for both direct and indirect effects. The test
rejects both hypotheses with 95% of confidence. This result implies that the period after
the adoption of the new constitution enforced not only a significant upturn in the direct
effect that an increase in demand generated in a specific hospital, but bigger spillover
effects for neighboring hospitals as well.

The results presented so far highlight the importance that covariates (mainly higher
demand and more competition) can bring to the efficiency performance of the public
healthcare system, and the potential effect that policy implementation can have on it when
it is well planned at the territorial level. As has been proved, these policies do not bring
benefits exclusively for the selected hospital, but also affect neighboring hospitals due to
spillover. Nevertheless, it is worth pointing out that there are still some explanatory vari-
ables that worsen the performance of the system. Some of these are still unknown and
more research must be done in this direction.

Finally, Table 3.6 presents the different neighboring order coefficient estimates of the
partitioning analysis. The direct partitioning effect in Table 3.6 shows a significant im-
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Table 3.5: Occupancy rate effects and hypotheses tests

Effect
Occupancy rate Direct Indirect Total
2007 0.114** 0.0147** 0.129**

(0.0477) (0.0064) (0.0538)
2008 0.0662 0.00847 0.0747

(0.0493) (0.0064) (0.0555)
2009 0.161*** 0.0207*** 0.181***

(0.0534) (0.0072) (0.0600)
2010 0.187*** 0.0241*** 0.211***

(0.0486) (0.0066) (0.0545)
2011 0.160*** 0.0206*** 0.180***

(0.0487) (0.0066) (0.0549)
2012 0.175*** 0.0226*** 0.197***

(0.0510) (0.0071) (0.0576)
2013 0.180*** 0.0233*** 0.203***

(0.0512) (0.0072) (0.0578)
2014 0.0751 0.00962 0.0847

(0.0479) (0.0062) (0.0539)
Test statistics
Ho : ocrate1 = ocrate2 6.43** 6.02** 6.45**
Note: Dependent variable is the log of hospital efficiency. ML
estimations were also run and are comparable. Direct, indirect,
and spillover effects and related standard errors in parentheses
computed using 2000 draws. *** p<0.01, ** p<0.05, * p<0.1.

Source: The authors.
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pact beyond the so-called zero-order neighbor (W 0, see Appendix 3.9.3) that decreases
significantly in size from W 1 on.30 This implies that for direct impacts, those immediate
neighbors play a strong role.31

Table 3.6: Spatial partitioning results of direct, indirect, and total effects of hospital de-
mand

Direct
log occupancy rate (W d) log occupancy rate (W v)

W 1 0.12799*** 0.12571***
(6.022) (5.824)

W 2 0 0
W 3 0.00272*** 0.00265***

(2.909) (3.358)
W 4 0.00021** 0.00034**

(2.056) (2.423)
W 5 0.00018 0.00023*

(1.566) (1.858)
W 6 0.00002 0.00005

(1.251) (1.388)
W 7 0.00001 0.00003

(1.030) (1.129)
Indirect

W 1 0 0
W 2 0.04151*** 0.04744***

(4.562) (4.908)
W 3 0.01074*** 0.01525***

(2.909) (3.358)
W 4 0.00415** 0.00641**

(2.056) (2.423)
W 5 0.00123 0.00231*

(1.566) (1.858)
W 6 0.000004 0.00091

(1.251) (1.388)
W 7 0.000002 0.00033

(1.030) (1.129)
Total

W 1 0.12799*** 0.12571***
(6.022) (5.824)

30The reader will appreciate that the coefficients for W 2 and for W 1 in Table 3.6 are zero for the direct
and indirect partitioning effects, respectively. This is because the first term of the series expansion in (3.12)
(see Appendix 3.9.3) contains zeros on the off-diagonal. Consequently, W 2 will always be equal to zero for
the direct effect. Conversely, given that the spatial weight matrix W contains zero on the main diagonal, by
definition, W 1 will always be zero for the indirect effect (Jensen and Lacombe, 2012).

31The impact of the marginal change of demand of hospital i on its own efficiency is the result of local
effects plus feedback effects that pass mainly through its direct neighbor j.
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Table 3.6 (continued)
log occupancy rate (W d) log occupancy rate (W v)

W 2 0.04151*** 0.04744***
(4.562) (4.908)

W 3 0.01346*** 0.01791***
(2.909) (3.358)

W 4 0.00436** 0.00675**
(2.056) (2.423)

W 5 0.00141 0.00255*
(1.566) (1.858)

W 6 0.00002 0.00096
(1.251) (1.388)

W 7 0.00001 0.00036
(1.030) (1.129)

Note: Dependent variable is log of hospital efficiency. Z-values in parenthesis computed
using 2000 draws for the direct, indirect, and total effects. *** p<0.01, ** p<0.05, * p<0.1.
Source: The authors.

Regarding the indirect partitioning effects, these are significant for the second, third
and fourth-order neighbors (and significant at 90% of confidence for the fifth-order neigh-
bor, considering W v) and strongly decreasing in size after W 3. This effect suggests that,
although significant, demand has a limited effect over space for hospital efficiency, with
spillover effects being strong in small, concentrated areas and generating small feedback
effects.

The aforementioned results provide a useful tool for policy decisions. We have demon-
strated here not just the existence of positive spillover effects of demand on hospital ef-
ficiency, but that these spillover effects spread to a limited extent in small, concentrated
areas. Policy reforms that enhance hospital demand will have positive effect on efficiency
performance, but this will spread through spillover effects to a limited extent due to the
concentrated spatial territory of the country only.

3.7.1 Robustness checks

To test for the robustness of the results of previous estimations, we run the same estima-
tions for the model (4) by applying the Generalized Method of Moments (GMM) models
for endogeneity to control for heteroscedasticity. Although this method displays some
advantages over ML methods (Tosetti et al., 2018), GMM have been little exploited in spa-
tial health economics, and for this reason their application has been recently encouraged
(Baltagi et al., 2018). We also examine whether the results are sensitive when we consider
the remoteness between hospitals by introducing the inverse of the squared distance to
define the weight matrixW d2 and time travel distance for the weight matrixW v2 , so those
hospitals that are quite far apart are weighted less.
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Table 3.7 presents GMM estimations as well as the results with the new squared ma-
trices. The estimation is based on the Kelejian and Prucha (1999) model that was first
extended to the panel case by Druska and Horrace (2004) and later by Kapoor et al. (2007)
for the case of the random effects. The estimation in a fixed effects framework was later
adapted by Mutl and Pfaffermayr (2011). One drawback of this method is that it does not
provide an estimate of the dispersion of λ, so no significance test is possible (Croissant
and Millo, 2018).
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Looking at the ρ coefficients of the first two models, the estimations show no sub-
stantial difference with respect to the previous estimates, even if we cannot determine
whether the coefficients λ are statistically significant. Regarding the effects of the co-
variates, the results are robust, and the size of the estimation is comparable. Occupancy
rates are still significant regardless of the technological disparities, while the opposite
occurs for the market share. Although, the spillover effects of market share for interme-
diate and high-tech hospitals display no statistical significance taking into account the
squared weight matrices. It may show that the indirect effect issued from the concen-
tration of hospitals has an impact on the closest neighbors only, and this effect decays
proportionally with their distance. The findings support the partitioning analysis carried
out in section 3.7, demonstrating weaker spillover effects of demand in efficiency after the
second-order neighbor.

In addition, we identify a weaker effect for ρ. Despite the magnitude of the estimates,
once more, spatial dependence in efficiency is confirmed.

Furthermore, we test the robustness of the results of the competition detected among
hospitals. There is the possibility that the heterogeneity that we recognize in terms of
technology may also be visible in terms of the spectrum of diseases treated. Therefore,
the spatial dependence found might not be due to competition for a greater demand for
patients, but due to the existence of specialized hospitals versus other general hospitals
that include more treatments, which do not compete. To test this statement, we run the
equation (2.6), form Chapter 2, on three different subgroups provided by our dataset:
acute, chronic, and basic hospitals. Hence, we analyze homogeneous hospitals in terms of
functioning and treatment.

Table 3.8 shows the estimations of the baseline model on the three subgroups using
the weight matrix based on the shortest travel distance.32 For basic hospitals the results
are robust and comparable with the previous ones, supporting the existence of spatial
strategic interactions in hospital efficiency. Instead, acute, and chronic hospitals do not
display spatial dependence in hospital efficiency, although chronic hospitals present a
significant spatial dependence in the error term, comparable to previous results. This
could suggest that basic hospitals (which constitute more than 50% of the sample) are
those that compete in terms of efficiency with their neighbors. However, the estimations
should be interpreted with caution given the loss of information in the regressions when
we split the sample. Future research will focus on expanding the time span to reach
conclusive results.

Finally, it is interesting to remark that inpatient migration turns out to be significant
for chronic hospitals, especially when these are mainly oncological. The variable suggests
a negative relationship with the efficiency performance of chronic hospitals and sets new
insights for future research on hospital patient migration dynamics.

32As we consider three different subgroups of hospitals, the spatial weight matrix was calculated for each
hospital type. Also, these regressions were run by QML to be comparable with the main results.
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3.8 Conclusions

This study aims to analyze the spatial dependence of hospital efficiency in Ecuador. To
address this question, we apply an innovative methodology proposed in Chapter 2 to
obtain robust efficiency scores for a sample of public hospitals in Ecuador between 2006
and 2014, taking into account their technological differences to avoid biased results. We
then use this efficiency score as a dependent variable in a spatial econometric SAC model
to consider spatial autocorrelation in efficiency and disturbances. The results confirm
that an increase in the efficiency of surrounding hospitals increases the efficiency of a
selected hospital. The direction of these effects is robust to different specifications and
estimation methods. Spatial autocorrelation and spillover effects seem to diminish as the
hospitals’ distance from the most developed areas increases. As Longo et al. (2017) state,
the positive dependence between neighboring hospitals suggests that they are acting as
strategic complements in efficiency.

We also address the question of whether the variations in demand for a given hospital,
which we measure through occupancy rates, affect nearby hospitals’ efficiency through
spillover effects.The results confirm that increases in demand for medical services for
public hospitals are causing neighboring hospitals to attract some of this demand, and
that this is boosting their own efficiency, regardless of the technological endowment of
the hospitals.33 A large portion of this positive effect can be explained because the public
healthcare hospitals show low levels of occupancy rates, which might imply the existence
of spare resources that are inefficiently used to produce healthcare outputs. The increase
in demand forces hospitals to make better use of these spare resources and so their effi-
ciency performance rises. In addition, the estimates assess that after 2008, the direct and
indirect impact of occupancy rates on the efficiency performance significantly increased.
While waiting for the approval of the new constitution, which was expected to entail an
increase in the number of patients seeking medical treatments, hospital managers could
have planned strategies to adapt to these changes, and this could in part be reflected in
this higher effect after 2008.

The technological disparities among hospitals also play a key role, especially when
analyzed jointly with market share. We find evidence that high- and intermediate-tech
hospitals have a differential effect. That is, the increase of concentration of patients in
technologically better hospitals increases their efficiency and that of surrounding hospi-
tals, whereas the opposite effect is found for low-tech hospitals. These results provide
some evidence of a potential learning-by-doing process in high- and intermediate-tech
hospitals.

These differences have important policy implications. Taking into consideration that
high-tech hospitals are mostly concentrated in well-developed areas, policy decisions and

33Focusing on the types of hospitals, the results hold for basic hospitals, while acute and chronic hospitals
do not show spatial dependence in efficiency. However, these results should be taken with caution due to
the information loss when splitting the sample.

86



public funding should be allocated taking into consideration the territorial development
within the country. The rationale is that policy reforms and public investment that im-
ply more competition (by investing in the construction of more hospitals) can be coun-
terproductive for the healthcare performance of well-developed areas but beneficial for
less-developed ones.

In this line, policymakers could exploit spillover effects in well-developed areas to
reinforce the hospital performance. However, they should be aware that these spillover
effects will spread to a limited extent over space, emphasizing the importance of well tar-
geted policy decisions. Clearer criteria for public funding allocation and stronger regula-
tion of hospital resource consumption controlling (or limiting) for hospital costs’ inflation
can have a positive impact in these regions. With more control to prevent costs’ inflation,
hospitals would have incentives to increase their profits by improving their resource use
and thus increase their efficiency. Due to spillover effects, this efficiency improvement
would spread throughout the region, enhancing the performance of the public health-
care system without increasing the allocation of resources or public investment. Instead,
public investment and resource allocation could focus on less-developed areas, where a
higher supply of hospitals could motivate existing hospitals to compete for patient inflow
by increasing their quality and efficiency. These improvements can be a potential solution
that could reduce the existing regional gap in the Ecuadorian healthcare system.

The empirical application carried out in this study can also be extended to other Latin
American countries that share many socio-economic, political, and cultural characteris-
tics (Atun et al., 2015; Levy and Schady, 2013) and whose spatial disparities have been
well documented (Cuadrado-Roura and Aroca, 2013).

However, this study leaves open some questions for future research. In a country
with an important heterogeneity in the healthcare system, it would be useful to under-
stand whether internal patient migration flows affect or are affected by the hospitals’ per-
formance. High-performing hospitals might be attracting patients from low-performing
ones in neighboring regions. Understanding the mobilization patterns of patients is cru-
cial to improving the healthcare system. Understanding interregional patient migration
patterns can help central and local authorities as well as hospitals themselves to identify
under-performing hospitals, which could benefit from an increase in healthcare budget
and resource allocation in order to improve their performance and attract more demand.
Also, patient mobility flows are likely to follow a spatial pattern, as patients will be will-
ing to travel to the nearest high-performing hospital. In this sense, policymakers can
identify spatial clusters of hospitals and promote policies that encourage efficiency gain.

Further methodological innovations can also be implemented. In this analysis, we
assume that hospitals interact with each other within a bounded area, in the presence
of local competition. However, hospitals can experience global forms of interactions that
might not necessarily depend on their geographical distances but rather on long-range in-
terdependencies (Lisi et al., 2017). By keeping wij unknown, and estimating it by graph-
ical modeling (Moscone et al., 2017, 2018), future research could test the existence of
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these interdependencies in the case of developing countries such as Ecuador. Moreover,
one-stage SFA panel models that account for hospital heterogeneity and address spatial
dependence such as those recently proposed by Pross et al. (2018) can also be imple-
mented to control for possible bias in the efficiency estimations in two-stage approaches
(Simar and Wilson, 2007).34 However, the main setback of SFA approximations is that
they rely on a production function that has to be defined a priori (O’Neill et al., 2008),
and that cannot be simply proposed in the context of a developing country. Future work
defining the theoretical framework of a proper production function is therefore desirable
to provide the background for empirical applications.

Finally, we need to point out some issues referring to data availability. It is recom-
mended that future research take into account further information that has been proven
to have a significant effect on hospitals’ efficiency, such as the quality of treatments and
budgetary information. Here, we proxy hospital quality with mortality variables, which
have been widely used to approximate hospital quality and performance (Hafidz et al.,
2018; Lisi et al., 2017; O’Neill et al., 2008). However, mortality can be influenced by other
external factors, such as the severity of the disease that patients suffer when they enter the
hospital or other complications that the hospitals cannot control for, and that does not re-
flect the quality of the treatment received. The same type of consideration applies to the
readmission rates, the level of specialization (Gravelle et al., 2014; Longo et al., 2017) or
nosocomial infections (Prior, 2006) that could bring more elements for better understand-
ing the public healthcare quality-efficiency relationship in the healthcare system.

Another relevant missing piece of information refers to hospital budgets and public
investments. Hospitals can adopt a different behavior when they face financial pressures
(Mas, 2015). Such troubles are quite common in developing economies such as Ecuador,
where hospitals might be forced to make efforts towards cost limitations that could affect
their performance. The large public investment made by the government after 2008 is
very likely to have an impact on hospital efficiency. It is expected to relax some finan-
cial pressures and could have been targeted from a territorial viewpoint and thus affect
health outcomes directly. Future research should fill this gap to drive additional empir-
ical research in order to bring relevant insights for policy decisions. In this line, a clear
suggestion for policymakers is to implement strong monitoring systems that provide re-
searchers and healthcare managers with reliable and robust data.

34The main setback of two-stage approaches relies on the impossibility of knowing the underlying Data
Generating Process of DEA efficiency estimates, which raises some doubts over what is estimated in the sec-
ond stage. In addition, DEA estimates are serially correlated and consequently lead to unreliable inference
(Simar and Wilson, 2007). We control for this latter issue by accounting for panel-data robust efficiency
estimations that take into consideration the panel structure of the data.
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3.9 Appendix

3.9.1 Data description

Table 3.9: Description of the variables

Variable Description Variable construction

Output

Number of discharges
(weighted)

Patients treated in a given hos-
pital

Number of discharges*Case-
Mix index

Inputs

Number of physicians Physicians and general physi-
cians in a given hospital

Total number of physicians

Number of beds Total number of beds per hos-
pital

Total number of beds

Number of hospital personnel Medical staff not including
physicians. (e.g. Nurses, tech-
nologists, administrative staff,
dentists, etc.)

Total number of hospital per-
sonnel

Number of equipment and in-
frastructure

Physical infrastructure
(surgery rooms, intensive
care rooms, etc.) and med-
ical equipment (imaging,
diagnosis, sterilization, etc.)

Total number of equipment
and infrastructure

Explanatory Variables
Occupancy rate Inpatient days of care per beds

available in a given hospital
(Inpatient days of care/Bed
days available) *100

Market share Concentration of inpatients in
a given hospital relative to the
total amount of patients in the
canton

(Total number ith hospital in-
patients/Total number of can-
tonal patients)*100

Mortality rate Percentage of deceased pa-
tients in a given hospital

Hospital mortality*100

Number of disease 1 Inpatients with certain infec-
tious and parasitic diseases

Total inpatients with dis-
ease/100

Number of disease 2 Inpatients with neoplasms Total inpatients with dis-
ease/100

Number of disease 3 Inpatients with diseases of the
nervous system

Total inpatients with dis-
ease/100

Number of disease 4 Inpatients with diseases of the
respiratory system

Total inpatients with dis-
ease/100

Number of disease 5 Inpatients with diseases of the
skin and subcutaneous tissue

Total inpatients with dis-
ease/100

Number of disease 6 Inpatients with pregnancy,
childbirth, and puerperium

Total inpatients with dis-
ease/100

Number of disease 7 Inpatients with certain condi-
tions originating in the perina-
tal period

Total inpatients with dis-
ease/100
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Table 3.9 (continued)
Variable Description Variable construction
Number of disease 8 Inpatients with congenital

malformations, deformations
and chromosomal abnormali-
ties

Total inpatients with dis-
ease/100

Number of disease 9 Inpatients with injury, poison-
ing, and certain other conse-
quences of external causes

Total inpatients with dis-
ease/100

GVA Gross Value Added Total, cantonal
Density (population per Km2) Cantonal population per Km2 Population/km2
Mortality rate (% cantonal) Percentage of deceased pa-

tients in a given canton relative
to cantonal population

Cantonal mortality*100

Total population over 65 Cantonal population over 65
years old

Total, cantonal

Total patient migration Patients treated in a given hos-
pital residing in a different
canton from the one they are
treated in

Total, cantonal

Source: The authors.

3.9.2 Model specification

The following selection model strategy begins with a baseline model and develops around
some tests to achieve an econometric specification that fits the data at hand. First, we
present the panel LM and robust-LM tests to provide an initial idea of the potential
sources of spatial autocorrelation in Table 3.10. To develop these tests and the follow-
ing model specification in this appendix, we rely on the matrix of the inverse Euclidean
distance W d .

The robust test fails to reject the null hypothesis of no spatial autocorrelation (at 90%
and 95% of confidence) in both the dependent variable and the errors. The initial evidence
leads to take into consideration both types of spatial autocorrelation.35

Table 3.10: LM and robust-LM tests

Value Prob
LM-Lag 0.2929 0.5884
LM-Err 1.386 0.2391
Robust LM-Lag 3.2491 0.0715
Robust LM-Err 4.3422 0.0372
Source: The authors.

35The reader must take these initial results with caution, given that the classical panel data tests (Anselin
et al., 2006) and their robust counterpart (Elhorst, 2010) do not allow for any spatial or time-specific effects.
The tests run here are controlled in an ad hoc way for individual effects by demeaning the data as in Crois-
sant and Millo (2018).
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We then compare the appropriateness of a scope of spatial models taking a fixed effects
model as a benchmark in Table 3.11. The Hausman test rejects the null hypothesis of no
systematic difference between fixed and random effects, so it is coherent to apply a fixed
effect estimation. Following LeSage and Pace (2009) and Elhorst (2010), we explore the
most suitable econometric estimation by starting with the general SDM model and then
refining it towards a SAR or SEM model. Following the SDM model, we cannot find
statistical evidence of spatial dependence in efficiency. SAR and SEM models produce
the same results in efficiency and error spatial dependence, respectively. The SAC model,
on the other hand, provides significant evidence of spatial dependence both in dependent
variable and error term. Merging these outcomes with the results of the LM-tests, the SAC
model seems to be the most advisable one to apply to our data. However, the SAC model
is not nested within the SDM model (Elhorst, 2014), and so we can rely on alternative
information criteria to select between them (Belotti et al., 2016). Akaike and Bayesian
information criteria endorse the selection of the SAC model as the best specification. The
recent literature in this regard supports this finding and SAC models usually account for
spatial dependence in efficiency and potential unmeasurable variables that can affect the
hospitals’ efficient performance (Felder and Tauchmann, 2013; Herwartz and Strumann,
2012, 2014).

Table 3.11: Model specification

Variables Panel SDM SAR SEM SAC
log occupancy rate 0.142*** 0.153*** 0.142*** 0.143*** 0.135***

(0.046) (0.019) (0.019) (0.019) (0.018)
log market share -0.037 -0.041*** -0.037*** -0.038*** -0.036***

(0.038) (0.011) (0.011) (0.011) (0.011)
log mortality rate -0.032* -0.034*** -0.032*** -0.032*** -0.032***

(0.017) (0.009) (0.009) (0.009) (0.009)
disease 1 -0.007 -0.008*** -0.007*** -0.007*** -0.007***

(0.005) (0.003) (0.003) (0.003) (0.003)
disease 2 -0.005 -0.006** -0.005* -0.005* -0.003

(0.005) (0.003) (0.003) (0.003) (0.003)
disease 3 0.076* 0.077*** 0.076*** 0.077*** 0.075***

(0.045) (0.025) (0.025) (0.025) (0.023)
disease 4 0.024*** 0.024*** 0.024*** 0.024*** 0.023***

(0.008) (0.004) (0.004) (0.004) (0.004)
disease 5 -0.023 -0.025 -0.023 -0.023 -0.024

(0.047) (0.020) (0.020) (0.020) (0.019)
disease 6 0.007*** 0.007*** 0.007*** 0.007*** 0.006***

(0.002) (0.001) (0.001) (0.001) (0.001)
disease 7 0.005*** 0.005*** 0.005*** 0.005*** 0.005***

(0.002) (0.002) (0.002) (0.002) (0.002)
disease 8 -0.032* -0.033*** -0.032*** -0.032*** -0.029**

(0.017) (0.012) (0.012) (0.012) (0.011)
disease 9 0.007* 0.007*** 0.007*** 0.007*** 0.006**
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Table 3.11 (continued)
(0.004) (0.003) (0.003) (0.003) (0.002)

log GVA 0.093 0.019 0.094** 0.096** 0.087**
(0.073) (0.051) (0.043) (0.043) (0.037)

log density -0.811* -0.519 -0.823*** -0.836*** -0.606***
(0.470) (0.343) (0.274) (0.271) (0.233)

log mortality (cantonal) 0.068 0.043 0.068 0.068 0.068*
(0.047) (0.050) (0.045) (0.045) (0.039)

log pop > 65 0.033 0.051 0.036 0.037 -0.012
(0.173) (0.169) (0.139) (0.138) (0.115)

log inpatient migration 0.003 -0.006 0.003 0.003 0.003
(0.016) (0.014) (0.013) (0.013) (0.011)

Lagged Independent Variables
log occupancy rate 0.019

(0.032)
log market share -0.02

(0.021)
log mortality rate 0.005

(0.019)
disease 1 -0.007

(0.008)
disease 2 0.005

(0.005)
disease 3 0.113**

(0.055)
disease 4 -0.009

(0.009)
disease 5 0.009

(0.039)
disease 6 0.001

(0.002)
disease 7 -0.005

(0.007)
disease 8 0.002

(0.028)
disease 9 0.003

(0.005)
log GVA 0.268***

(0.096)
log density -0.867

(0.539)
log mortality (cantonal) 0.135

(0.091)
log pop > 65 -0.118

(0.227)

92



Table 3.11 (continued)
log inpatient migration 0.046**

(0.023)
Spatial
ρ -0.054 -0.011 0.355***

(0.035) (0.033) (0.053)
λ -0.026 -0.419***

(0.034) (0.064)
Hausman (p-value) 0.0000 0.0000 0.0002 0.0000
AIC 91.93 85.05 79.82 79.35 66.84
BIC 227.5 280.3 182.9 182.4 175.3
Observations 1,674 1,675 1,674 1,674 1,674
Number of hospitals 186 187 186 186 186
Note: Dependent variable is log of hospital efficiency. Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1.
Source: The authors.

3.9.3 Modeling spatial effects

Following LeSage and Pace (2009), if a particular explanatory variable in an observed spa-
tial unit changes (e.g. the change in the demand of hospital i), not only will the dependent
variable in that unit itself change (efficiency of hospital i) but also the dependent variable
in other units (efficiency of hospital j). The former are called direct effects and the latter
indirect (spillover) effects. In the SAC model, direct effects are the result of local effects plus
feedback effects mediated by spatial spillovers.36

In particular, taking the matrix of partial derivatives of the expected value of the loga-
rithm of the efficiency et with respect to the zth explanatory variable of Z t in all hospitals
(from 1 to 186) for the SAC model, we have:

[
∂E(et)
∂z1,t

, . . . ,
∂E(et)
∂z186,t

]
= (I −ρW )−1βz (3.10)

Where βz is the vector of coefficients. LeSage and Pace (2009) define the diagonal
element of (3.10) as the direct effects, while the off-diagonal contains the indirect effects.
The infinite series expansion of the spatial multiplier matrix (I −ρW )−1 can be expressed
as follows:

(I −ρW )−1 = I + ρW + ρ2W 2 + ρ3W 3 + · · ·+ ρqW q (3.11)

36This feedback effect is derived from the impacts passing through neighboring hospitals and back to the
hospital in which the change originated (from hospital i to j to k and back to hospital i).

93



Note that, since the off-diagonal elements of the identity matrix I are zero, the term
represents a direct effect of a change in Z t. Furthermore, since the diagonal elements
of ρW are zero by assumption, the term represents the indirect effect of a change in Z t.
The remaining terms in the right-hand side of (3.11) represent the second and higher
order direct and spillover effects. Thus, the spatial multiplier, as shown in (3.11) can
be expanded to determine the impacts that the explanatory variables have on the higher
order of contiguity in the following manner:

(I −ρW )−1βz = Iβz︸︷︷︸
W 0

+ ρW βz︸︷︷︸
W 1

+ ρ2W 2βz︸   ︷︷   ︸
W 2

+ρ3W 3βz︸   ︷︷   ︸
W 3

+ · · ·+ρqW qβz︸   ︷︷   ︸
W q

(3.12)

The power of the autoregressive parameter, ρ, ensures that the marginal effect of a
given variable decreases with a higher order of contiguity. In other words, the effect of
a change of an explanatory variable declines as we move over space (LeSage and Pace,
2009).

However, the presentation of both direct and indirect effects can be challenging, since
they vary from different units in the sample. Therefore, (LeSage and Pace, 2009) propose
to report direct effects as the average of the diagonal elements, while one spillover effect
can be measured by the average row sums of the off-diagonal elements. The sum of the
average direct and spillover effects is the total effect.

In order to draw inferences regarding the statistical significance of the direct and
spillover effects, (LeSage and Pace, 2009) propose simulating the distribution of the direct
and spillover effects using the variance-covariance matrix estimated by the ML method.
This is because it cannot be simply seen from the coefficient estimates and the correspond-
ing standard errors or t-values of the variance-covariance matrix whether the indirect ef-
fects in models containing endogenous interaction effects are significant (Elhorst, 2014;
LeSage and Pace, 2009).
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Chapter 4

On the dynamics of patient migration
flows: Is efficiency performance
explaining inflows for neighboring
hospitals? An application to the
Ecuadorian healthcare system.∗

Abstract
This study aims to analyze whether higher efficiency performance of Ecuado-
rian hospitals attracts larger inflows of interregional patients to a given hos-
pital and the existence of spatial dependence in terms of larger inflows of pa-
tients for neighboring hospitals in the region. We develop a novel two-stage
approach. In the first stage, we use conditional order-m estimations to ob-
tain robust efficiency values for each hospital. In the second stage, we use a
spatial Durbin interaction model to estimate the effect of hospital efficiency
on patient migration flows and disentangle the spillover effects in the mi-
gration dyad. The results show a positive effect of specialized hospitals’ ef-
ficiency in attracting patients from other regions. In addition, patient inflows
present spillover effects not just on neighboring hospitals in the same region
but also from hospitals in regions neighboring the origin. Policy implications
mostly drive the attention to the importance to elaborate well planned health-
care strategies taking care of territorial externalities. Negative shocks affecting
specialized hospitals could imply an adverse effect on the flow of patients to
the whole region, affecting the regional public healthcare performance and

∗We want to thank the participants of the seminars at UAB, the University of Brescia, the University of
Gothenburg, the WRSA and RSAI international conferences, the scientific committee of the PhD on Applied
Economics. To Riccardo Turati, Gabriel Facchini, José Luis Roig, Nicola Pontarollo, Rosella Levaggi, and
Francesco Moscone for their comments to improve this chapter. To James LeSage and Christine Thomas-
Agnan for facilitating the MATLAB and R codes. Any remaining errors are our own responsibility.
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potential welfare gains. Conversely, more resources could be directed to less-
developed regions to incentivize competition.

Keywords: hospital efficiency, patient migration, spatial dependence, spillover ef-
fects.
JEL: C18, C61, H75, I11, R23.

4.1 Introduction

In healthcare system analysis, patient choice of hospitals and the resulting patient mo-
bility has been a topic that has occupied a vast body of the literature over the past two
decades (Balia et al., 2014). Models that allow patient choice of hospitals have a wide
spread of useful applications both for governments and the hospitals’ own governance
(Lowe and Sen, 1996). In this context, Balia et al. (2014) state that the importance to
assess patient mobility can be twofold. First, the geography of patient mobility yields in-
dications on the actual level of services provided. This can be particularly useful given
that the preferences of the individuals are not perfectly observable. For example, patient
outflows might reveal the possible inefficiency or low quality of public healthcare supply
in a given region.1 Second, the flow imbalances across regions may challenge the stability
of their healthcare budgets. This kind of information can be useful for central planners
and regional authorities interested in correcting inefficiencies in the system as well as
improving the healthcare system performance. Understanding the mobility patterns of
healthcare consumers may represent an important tool for the central government and
regional planners to identify clusters of hospitals and take advantage of spillover effects
to better allocate the resources and enhance the efficiency of the system.

Essentially, patients move because they want to get the best hospital treatment that
the system can provide, or at least better services than those offered in their local region.
They can be expected to move when possible inefficiencies translate into longer waiting
lists but also when the perceived quality of the local healthcare services is low (Aiura,
2013; Balia et al., 2014). These movements might be permanent over time if the local
regions in a country present a certain level of asymmetry in their systems (Balia et al.,
2018).

In this sense, there is a strand running through the literature stating that eliminating
barriers of access to healthcare, and thus giving patients the ability to choose between hos-
pitals, creates a financial incentive for providers to compete among them, which leads to
improvements in quality of care (Bloom et al., 2015; Gravelle et al., 2014; Propper, 2012).

1Throughout this paper, hospital efficiency reflects the ability of a hospital to properly make use of
its resources or inputs (e.g., physicians, medical equipment, capacity, etc.) to provide medical attention
derived from given outputs (e.g., patients treated, treatments carried out, etc.). In this sense, a fully efficient
hospital can maximize its outputs with a given amount of inputs. This is commonly known in the healthcare
efficiency measurement literature as technical efficiency (Hollingsworth, 2008).
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This theory might hold in a country where the healthcare system is rather homogeneous
across regions. However, when regional disparities are significant and persistent over
time, high-income regions tend to offer a better quality of care. This motivates patients
to move from low- to high-income regions seeking better treatment. In turn, the dynamic
of such flows, closely relating with the spatial pattern, could be giving rise to network
effects often detected in the data and translating into a structure correlation, known in
the literature as spatial dependence (Anselin, 2010).

An interesting context of analysis is brought to this setting by Ecuador, whose marked
regional disparities offer us a framework of study that can allow us to understand the
interregional and intraregional dynamics of patient mobility that can be driven by the
performance gaps of their heterogeneous hospitals.

Like other Latin American countries, Ecuador has suffered a continuous process of
deterioration of its public healthcare system, which has been exacerbated by the neolib-
eral reforms of the 1990s and the 2000s, resulting in a widening of the existing territorial
disparities in the country. These disparities derived in a concentration of healthcare re-
sources in a few public hospitals (the high-performers), which at the same time were
located in developed regions.2 With the approval of the new constitution in 2008, new
healthcare reforms were enhanced to promote free access of medical care and an increase
of social security coverage. This gave patients the possibility of choosing the hospital
where they wanted to receive treatment.3 At the same time, this increased the demand
for medical attention, promoting a behavior of mobilization to seek treatment in devel-
oped regions.

As the barriers of access vanished, patients were expected to seek better treatment in
areas where they perceived would get the best possible treatment, leading to patient mo-
bility. Mobility then caused an increase in patient demand, and this can result in two
different outcomes. On the one hand, higher demand fuels competition among hospitals
in the region, resulting in an increase in quality of care or more efficient use of resources
in order to cope with the demand. On the other hand, when demand for hospital treat-
ment increases, hospitals become crowded and additional resources are needed to reduce
congestion, entailing eventually inefficiencies like longer waiting times and finally in an
underprovision of public services such as healthcare (Aiura, 2013). Moreover, if devel-
oped regions are the receivers of a bigger share of patients, one can expect that other
adjacent hospitals may receive patients driven by the demand at their neighbors.4

So far, the literature on patient mobility has focused on identifying and measuring the

2Refer to Appendix 4.10.1 for a description of the Ecuadorian healthcare institutional framework
3The new constitution approved in 2008 (which stated that health is a right guaranteed by the state who

will ensure full exercise of the right and access to social insurance) provided reforms aiming at providing
higher access to medical treatment, like the gratuity of medical services provided by the Public Ministry of
Health (MSP) or laws that deprived the liberty to employers that do not affiliate workers (Orellana et al.,
2017)

4For example, if a given hospital has a long waiting list, patients could try to receive attention in alter-
native hospitals in the region.
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effects of the determinants on patient flows either between regions or between healthcare
institutions, but there has not been an empirical study that assesses the dynamics of in-
terregional patient mobility in the hospitals within a given region. Understanding these
dynamics can help regional planners and hospital managers to understand the patterns
of demand as not just interregional but also intraregional patient flows. High-performing
hospitals can be prepared for potential boosts in demand generated by new reforms that
widen the insured population or allow for the gratuity of medical services. They can ac-
count for these demand increases and plan to improve their capacity, medical staff, or
technological endowment. Low-performing hospitals can also benefit from this, and en-
hance their medical resources as well, to increase their performance and avoid possible
outflows of patients.

In Chapter 3, we emphasize the important influence that patient mobility can have on
the performance of any given public hospital in Ecuador and that of surrounding hospitals
as well, given the spillover effects in hospital efficiency.5 Here we seek to understand the
patterns of these patient flows and determine the extent to which these performance gaps
are driving people to move from different regions to be treated in a (high-performing)
hospital, and what the repercussions are for their surrounding hospitals.

Thus, this study aims to analyze whether higher hospitals’ efficiency performance en-
courages larger inflows of interregional patients to a given hospital and whether these
are accompanied by larger inflows of patients for neighboring hospitals in the region. So
far, the literature on healthcare economics has focused on the measurement of the effects
of hospital competition, patterns of access to hospital services, and the determinants of
patient migration flows by just accounting for the spatial distance between hospitals or re-
gions, using gravity models (e.g., Congdon, 2001; Varkevisser et al., 2012; Moscelli et al.,
2016). A large part of the literature has concluded that the healthcare efficient perfor-
mance of hospitals and regions is a strong driver of patient mobility. But there has not
been an attempt—to our understanding—to consider the possible spillover effects that
give rise to higher patient migration flows to neighboring hospitals. In this respect, our
contribution to the literature is to provide a robust measure of hospital efficiency, con-
sistent with economic theory, that allows us to identify its effect to attract patients. In
addition, if spillover effects in the patient migration network are significant, this mea-
sure can serve as a reliable tool for decision-making to identify key hospitals that attract
demand and foster competition.

To that end, we follow an innovative two-stage approach. In the first stage, we make
use of the conditional order-m efficiency measurement proposed by Cazals et al. (2002),
Daraio and Simar (2005), and Daraio and Simar (2007b) to obtain robust efficiency mea-
sures for Ecuadorian public hospitals in 2014. This method is based upon the economic
concept of Pareto efficient allocation and takes into consideration the effect of other en-

5In Chapter 3, we provide evidence of the existence of positive spatial dependence in public hospital
efficiency deriving from the existence of global and local spillover effects. In other words, the increase in
the efficiency of neighboring hospitals is having a positive impact on the efficiency of an observed hospital
as well.
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vironmental variables (related to the region) in the hospital performance. In the sec-
ond stage, we address patient mobility flows with spatial interaction models proposed by
LeSage and Pace (2008) and LeSage and Pace (2009), which take into account traditional
origin-destination (OD) models, but incorporate spatial lags of the dependent variable in
order to account for spatial dependence, represented by flows from neighboring regions in
these models and accommodating for endogenous interactions (i.e., global spillovers). In
addition, we consider exogenous interaction arising from contextual effects, accommodat-
ing for spatial dependence of the explanatory variables, and representing characteristics
of the neighboring regions and hospitals (i.e., local spillovers) (LeSage and Fischer, 2016).
In the applied literature, these models have been used in cases where origins and desti-
nations coincide (LeSage and Thomas-Agnan, 2015). However, this is not our case: the
list of origins (regions/cantons) differs from the list of destinations (hospitals).6 This calls
for a modification in the econometric estimation which has been recently addressed by
Laurent et al. (2019) that, to our understanding, has not yet been applied, and constitutes
an additional contribution of our study.

In our context, the presence of endogenous interaction effects and, therefore, global
spillovers mean that patient flows between an OD pair directly affect one another.7 For
example, a change in patient inflows traveling along a given OD pair, generated by vari-
ations in efficiency, potentially impact patient movements originating from a canton and
going to alternative hospitals, originating from alternative cantons to a given hospital or
originating from alternative cantons going to alternative hospitals. In contrast, exoge-
nous interaction effects, hence, local spillovers imply that changes in the characteristics
of neighboring cantons or regions affect the variations in patient flows across OD dyads.
Taking once again efficiency as an example, the existence of local spillovers would be sug-
gesting a competition effect among hospitals within the canton, as the increase in neigh-
boring hospital efficiency would imply a higher inflow of patients for the region.

Our results show that efficiency is a strong determinant of interregional patients mi-
gration. However, this effect is significant just when we consider specialized hospitals (as
opposed to basic hospitals). We observe significant global spillover effects in the form of
patients traveling to neighboring hospitals within a region and coming from neighboring
regions of the origin canton. These findings represent a useful tool for policy makers.
Future healthcare reforms need to be well controlled and implemented since they need to
consider territorial differences not just in terms of healthcare resources but in the level of
specialization as well. In Ecuador, the specialized hospitals are concentrated in a few de-
veloped areas, and their performance is affecting the flow of patients coming from other
cantons. Because spillover effects are present, other hospitals within the region seem to
be benefiting from this inflow. Higher competition among hospitals could lead to higher
quality of treatment (Gravelle et al., 2014; Longo et al., 2017), but it could be detrimental

6In Ecuador, cantons are the second-level administrative divisions. The Republic of Ecuador is divided
into 24 provinces, which in turn are divided into 221 cantons. The cantons in turn are subdivided into
parishes.

7Hereinafter, we will refer to cantons (or regions) as the origin observations of our OD dyad. Conversely,
hospitals will be referred to as the destinations of the OD dyad.
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if bigger inflows give rise to congestion effects. Furthermore, future public investment in
healthcare services could target clusters of hospitals in low-income regions who are likely
to be the origin of patient migration flows toward high-performing hospitals. A sustain-
able strategy could be to support the construction of more specialized hospitals –or the
implementation of specialization wards in existing ones– that could serve more patients
and focus on incentives to fuel local hospital competition so as to reduce the healthcare
quality gap with respect to high-performing hospitals.

This study is structured in the following way. Section 4.2 reviews the literature on hos-
pital patient migration. In Section 4.3, the theoretical model is described, as introduced
by Brekke et al. (2016), which is followed throughout this study. Section 4.4 explains the
methodology of the order-m efficiency measurement and the spatial interaction model,
while Section 4.5 introduces the empirical approximation used. Section 4.6 describes our
dataset and Sections 4.7 and 4.8 present the results and robustness analysis, respectively.
Finally, the main conclusions are presented in Section 4.9.

4.2 Literature review

The aim of our study is to single out the effect that hospital efficiency has on interregional
patient mobility. Moreover, we want to disentangle the potential spillover effects found in
these mobilization flows between and within regions so, we can identify demand patterns
of healthcare treatment that can be used as a tool for decision-making. In so doing, we
combine two different strands of the literature: healthcare efficiency measurement and
patient mobilization literature. There is a vast body of literature on healthcare efficiency
measurement that focuses on obtaining a single value that measures the efficiency perfor-
mance of an observed unit through parametric and non-parametric methods that combine
multiple inputs and outputs. The idea of efficiency is linked to the concept of Pareto ef-
ficient allocation, where those efficient units are either minimizing inputs or maximizing
outputs in the production of health (i.e. in providing medical attention). The main ad-
vantage of these approaches is that we can rely in a single estimated efficiency score, more
consistent with economic theory, as it allocates technical or Pareto inefficiencies instead
of measuring efficiency based on single averages (Cantor and Poh, 2018). A rich review of
this literature can be found in O’Neill et al. (2008), Hollingsworth (2008) and Cantor and
Poh (2018).

Furthermore, we rely on the hypothesis that the performance of a given set of hospitals
is going to be determined –to a certain extent– by regional characteristics, and specially
by the level of development or income level in the region (Brekke et al., 2016) due to
the evident territorial disparities in Ecuador. In order to estimate efficiency scores that
introduce environmental variables as a constraint of hospital performance, the applied
literature indicates that they can be treated in one-step or two-step estimation models.
The main setback of two-step approaches relies on a separability condition between the
input-output space and the space of the contextual factors, assuming that these have no
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effect on the production process (Daraio and Simar, 2007b). To avoid the separability as-
sumption and provide meaningful results, we implement a non-parametric method know
as the conditional order-m efficiency estimation (Cazals et al., 2002; Daraio and Simar,
2005).8 Recent applications of this technique include Halkos and Tzeremes (2011), who
perform a conditional order-m efficiency analysis on Greek prefectures, and find a neg-
ative relationship between per-capita GVA and efficiency; whilst population density has
a positive effect in hospital performance. Other micro-level approaches as Mastromarco
et al. (2019) analyze the cost efficiency of Czech Republic hospitals during the period
2006-2010. They implement an order-m efficiency estimation controlling for non-profit
status, teaching status, presence a specialized center (in the hospital) and occupancy rate,
finding that non-profit hospitals, university hospitals and hospitals with specialized cen-
ters are generally less efficient. Another advantage of conditional order-m estimation is
that we do not need to assume a production function in the estimation process. This is
particularly important in our study, as the multidimensional nature of public hospitals
and regional heterogeneity in the country posits a difficulty at the time of defending the
assumption of a single production function for all hospitals in the sample.

However, despite the clear advantages of these methods to provide a robust estima-
tion of efficiency, there has not been an attempt to combine them along with econometric
models to study patient mobility patterns. The empirical literature directly focused on
patient mobility has been developed in the past decade. Instead of focusing on specific
determinants of patient flows, it centers on modeling hospital choices and flows across
different jurisdictions (Balia et al., 2014). Some micro-level studies single out potential
determinants of mobility. Victoor et al. (2012) offer a survey in which they put in evidence
that some common determinants of patient mobility can refer to patient characteristics
(e.g. education, income, and age) and provider characteristics. They classify the former
in Structure indicators (which concern the organization of healthcare), Process indicators
(which relate to the care delivery process), and Outcome indicators (which indicate the
effect of the care delivered). In most of these studies, the performance of a hospital has
been proxied by basic productivity indexes and capacity indicators.

In our setting, we need to take into account macro economics (regional) variables
since they impact patient decision of seeking care across regional borders. In this re-
spect (macro-level) applied economic studies have mainly been based on gravity models,
commonly used to model flows that take many forms, like population migration, com-
modity flows and traffic flows (Thomas-Agnan and LeSage, 2014). These models embed
movements of individuals between origin and destination regions. Levaggi and Zanola
(2004) look for the determinants of net patient flows from regions of Italy to the rest of
the country. They estimate gravity models for a sample of Italian regions from 1995-1997
and conclude that regions characterized by lower outflows are the ones that provide bet-
ter or faster services. Cantarero (2006) develops the same analysis to patient flows across
regions in Spain between 1996 and 1999 and identify that patients from the economically
lagged regions move more than those regions that provide better health services. Fabbri
and Robone (2010) explore the “trade” phenomenon in hospital care, exploring the role

8We explain this method on a deeper extent on Section 4.4
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of the scale economies and the impact of North-South economic divide on the mobility of
Italian Local Health Authorities (LHAs) controlling for push and pull factors of patients
related to origin and destination. They find that richer LHAs have a higher probability of
attracting more patients, who present the most severe cases.

However, the use of traditional gravity models to explain spatial interaction can be
limited. These models rely on a function of the distance of the OD to clear spatial corre-
lation and cross-section independence. As LeSage and Pace (2008, 2009) state, the notion
that use of distance functions to effectively capture the spatial dependence of observations
can be erroneous. Also, the idea that flows are independent since OD flows are fundamen-
tally spatial in nature. In our framework of analysis, we expect to find a behavior pattern
where high-income regions are the main receivers of patients, following a spatial pattern,
that, if not controlled for in the econometric estimation, could lead to biased conclusions.

So far, no studies have tried to account for the spatial dependence in patient mobil-
ity. Moreover, even when a big part of the literature implicitly concludes that healthcare
performance is a strong driver of patient flows, but there has not been an attempt to dis-
entangle its sole effect. The closest paper to our approximation is Balia et al. (2018) who
account for local spillover effects by incorporating the spatial lags of the exogenous vari-
ables in the gravity model. They use a spatial panel data framework of Italian hospital
discharges between 2001 and 2010 to assess the effect of the main determinants of inter-
regional patient flows, differentiating between the impacts of regional health policies and
other exogenous factors. Their results show that neighboring regions´ supply factors,
specialization and performance largely affect mobility by generating local externalities
that explain OD patient flows; bringing some insights of the inherent spatial-dependent
nature of hospital performance, and, its effects on patient mobility.

Our empirical estimation, hence, goes beyond the incorporation of local spillover ef-
fects as in Balia et al. (2018), and includes potential global spillover effects likely found
in OD flows, as stated by LeSage and Pace (2008, 2009). In so doing, we use the ex-
tended gravity models developed by LeSage and Pace (2008, 2009) to allow for spatial
dependence in the sample, represented by the flows from cantons (regions) to public hos-
pitals in these models. Additionally, we consider exogenous interactions of the explana-
tory variables (LeSage and Fischer, 2016) to accommodate for the contextual effect of the
neighboring regions and hospitals in the OD dyad, as in Balia et al. (2018). The introduc-
tion of endogenous and exogenous interactions in the econometric model allow us to take
into consideration the spatial structure present in OD flow data that is not completely
captured by the sole inclusion of the distance between origin and destination. If spillover
effects are found statistically significant, then policy implications may be directed to iden-
tify key players within the flow network that have an indirect effect over other hospitals.
Policy decisions can target those key players to improve healthcare performance of the
region.
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4.3 Theoretical framework

In our framework of study, the high-performing hospitals are mainly located in developed
regions (see Section 4.6) that have historically concentrated the healthcare resources in the
country. These asymmetries in hospital performance have derived in regional healthcare
performance gaps that may incentive those patients residing in less developed regions
(cantons) to seek treatment in high-performing hospitals. In this context, the backbone of
our theoretical framework builds upon Brekke et al. (2014) and Brekke et al. (2016). They
take a context of asymmetrical regions, where the regions differ in their ability to provide
healthcare services, the higher the performance gap between providers, the higher the
number of patients who will seek medical care in high-income regions. Here, Brekke et al.
(2014) state that patient mobility can have significant participation in the improvement of
welfare. Albeit, this welfare improvement comes with asymmetric effects. If competition
promotes performance, then patients living in regions with high-performing hospitals
are better-off than in a system without mobility. Conversely, in areas of low-performing
hospitals, only patients who move to high-performing areas benefit from the quality im-
provement in healthcare. Additionally, Brekke et al. (2016) consider a framework with
heterogeneous income across and within regions. They find that reducing barriers to free
patient mobility represents an incentive to reduce quality for low-middle income regions
while increasing income disparities between regions increase the interregional quality
gap.

We take upon Brekke et al. (2016) cross-border patient mobility theory. The theoreti-
cal model relies on the idea that, in equilibrium, regions with higher income offer better
quality, which creates an incentive for patient mobility from lower to higher income re-
gions. This conception can be applied to our setting, as the best-performing hospitals are
mainly located in high-income regions.9 Following Brekke et al. (2016), let us define a
uniformly distributed healthcare market where patients are distributed on a circle with
circumference equal to 1 and the total patient mass normalized to 1. Consider three dif-
ferent neighboring regions of equal size (i = L,M,H) covering 1/3 of the circle. The index
i denotes a Low, Middle or High average income regions. Healthcare is supplied by three
hospitals, each in each region, where the hospital in region i is located at si . Assuming
that each hospital is located at the center of its region, the residents of region i are lo-
cated in the line segment [si − 1/6, si + 1/6]. Each patient consumes one unit of healthcare
from the most preferred hospital. The model assumes public provision of healthcare with
general income taxation funding and free consumption.

If the patient receives treatment in their local region, we define the net utility of a

9In fact, Brekke et al. (2014) develop an Hotelling model with two regions that differ in healthcare tech-
nology, where regions with more efficient technology supply higher healthcare quality, attracting patients
from neighboring regions with less-efficient technology. However, the restriction of incorporating two re-
gions prevents from considering a case where a region can be both importing and exporting patients as
opposed to Brekke et al. (2016) (whom incorporate a three-region specification). In addition, the frame-
work used in Brekke et al. (2016) allows for extra expenses when patients demand care outside their region,
and allow for heterogeneity in income within regions (with wealthier patients more likely to move).
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patient located in zi receiving treatment from hospital in region i as:

U (zi , si) = v + bqi − t|zi − si |+u(Axi ) (4.1)

where v in the patient’s gross utility of being treated (v > 0), qi is the quality offered
by the hospital in region i, qi ≥ q

¯
, with q

¯
representing the lowest possible quality the

hospitals can provide without being charged with malpractice (for simplicity it is set to 0),
b > 0 measures the marginal utility of quality, and t is the marginal disutility of traveling.
The utility function, u(.) of income is strictly concave, while Axi is the net income of type-x
patient in region i. Assuming that patients are heterogeneous in income ax with x = P ,R,
i. e., including high-income (Rich) and low-income (Poor) patients, which implies aR >
aP . We include an income tax rate (social security contribution) τ > 0, set by the central
government.10 Then, the net income of a type-x patient in region i is given by

Axi = ax(1− τ) (4.2)

Additionally, we assume heterogeneity of residents’ income, with the proportion of
high-income residents λi being λH > λM > λL > 0 (High, Middle and Low income resi-
dents). The average gross income in region i is set to:

āi = λia
R + (1−λi)aP for i =H,M,L (4.3)

The net utility of a patient located at zi , receiving treatment from hospital in a neigh-
boring region j (different from the patient residence region), located at sj is given by

U (zi , sj) = v + bqj − t|zi − sj |+u(Axi )−F (4.4)

Where F are the non-monetary costs of looking for care in a different region. The
model also includes additional costs (π) that patients who get treatment in a different
region must pay (like co-payments or other out-of-pocket expenses), such that the net
income of type-x patient in region i who seeks care in neighboring region j is set by:

Âxi = ax(1− τ)−π (4.5)

Assuming a patient utility-maximizing choice of hospital, type-x patients traveling
from i to j for treatment are located on a line segment of length max{0,φxij}, where:

10Note that we can also allow for an income tax rate set by the government of region i as τi
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φxij =
1
2t

(b(qj − qi) +u(Âxi )−u(Axi )−F) (4.6)

Notice that

∂φxij
∂ax

= (
1− τ

2t
)(u′(Âxi )−u(Axi )) > 0 if π > 0 (4.7)

with u′(·) being the first derivative of utility function u(·).

As long as π > 0, richer patient have disutility of paying for extra costs and are more
prone to choose cross-border healthcare. The total number of patients traveling from
region i to region j is then given by max{o,Φij} where

Φij = λiφ
R
ij + (1−λi)φPij (4.8)

Notice that

∂Φij
∂qj

= −
∂Φij
∂qi

=
b
2t

(4.9)

Finally, Brekke et al. (2016) demonstrate that (in equilibrium) the optimal choice of
healthcare quality will be higher in richer regions, in such a way that q∗H > q

∗
M > q∗L; with

q∗i being the optimal quality choice in region i. This creates an incentive for patient mi-
gration from poorer to richer regions.11

Therefore, in order to analyze patient mobility across regions we rely on OD flows akin
to what is done in international trade and migration models, which are heavily drawn
on gravity model specifications. Thus, we define the following gravity function to be
estimated

E(Yij) = f (Xi ,Xj ,Gij) (4.10)

Where E(Yij) is the expected flow from i to j; Gij = f (gij), being gij a vector of separa-
tion (distance) measures. Xi and Xj are origin (canton) and destination (hospital) covari-
ates, respectively. Cantonal environmental variables include measures that approximate
the regional income level and healthcare quality such as per-capita gross value added

11Refer to Brekke et al. (2016) Section 3.2.
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(GVApc), population density, cantonal mortality, insured population rate, and a multidi-
mensional poverty index. In such a way, we can identify the poor regions that are more
likely to push away patients to neighboring (wealthier) regions.

To proxy hospital quality and performance, the literature has usually relied on basic
ratios, such as mortality rate or readmission rates, which in many cases can lead to mixed
results. We go a step forward in this approach and use a value that measures the perfor-
mance of a given hospital, comprising all their inputs and outputs and considering other
environmental variables (respective to the region where each hospital locates) that cap-
tures the pull effect of those hospitals to attract patients. This way, we rely on a single
(robust) measure that can facilitate policy decisions.

We also need to consider those potential spillover effects that may arrive from migra-
tion flows in our data. If hospitals located in high-income regions are expected to at-
tract poor-income regions’ patients, then we can assume that other regions (neighboring
those that push away patients) may also present outflow of patients, attracted by high-
performing hospitals. Conversely, spillover effects could appear in the receiving regions
as patient flow movements in their hospitals. This question is the core of our empirical
exercise.

4.4 Methodology

The method used in this study is developed in two stages. First, we need to obtain the
efficiency measures for each hospital, conditional to the environmental variables they face
and can constrain their performance. In the second stage, we develop a spatial interaction
model (based on the conventional gravity specification) to estimate the impact that the
efficiency value has on migration flows, accommodating for potential spillover effects.

4.4.1 Order-m efficiency estimation

The first stage of our strategy uses a nonparametric order-m efficiency estimation ap-
proach, introduced by Cazals et al. (2002), Daraio and Simar (2005) and Daraio and Simar
(2007b) that relies upon the production theory (Debreu, 1951; Koopmans, 1951).12 Intro-
ducing the notation used in this paper, we assume a set of y ∈ Rp+ outputs produced by
a set of x ∈ R

q
+ inputs, the production technology is the set of all feasible input-output

combinations.

Ψ =
{
(x,y) ∈Rp+q

+ | x can produce y
}

(4.11)

12We take an output oriented approach, as we expect that patients can perceive –to a certain extent– the
performance of an hospital based on the amount of patients treated.
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The multidimensional nature of public hospitals, with different functions that are
difficult to quantify, plus the impossibility to obtain input and output prices informa-
tion makes Ψ impossible to observe. To account for this, we need to estimate Ψ from a
random sample of production units denoted by X =

{
(xi , yi) ∈R

p+q
+ | i = 1, . . . ,n

}
. Follow-

ing this framework, an observed production unit (xi , yi) defines an individual production
possibility set Ψ(xi , yi), which under the free disposability of inputs and outputs can be
expressed as:

Ψ (xi , yi)=
{
(x,y) ∈Rp+q

+ | (y ≥ yi)x ≤ xi
}

(4.12)

Nevertheless, there could be other environmental factors Z ∈Rr exogenous to the pro-
duction process that could be affecting the production and the distribution of efficiency
scores. In this matter, Cazals et al. (2002), Daraio and Simar (2005) and Daraio and Simar
(2007b) use a probabilistic formulation of the production process to develop a conditional
efficiency approach to account for the environmental variables in the efficiency estima-
tion, conditioning the production process to a given value of Z = z. This conditional
function is given by:

SY
(
y
∣∣∣ x,z) = P rob(Y ≥ y|X ≤ x,Z = z) (4.13)

representing the probability of a unit operating at level (x,y) being dominated by other
units facing the same environmental conditions z. This way, the conditional output effi-
ciency can be defined as the Farrell (1957) efficiency measure:

θ
(
x,y

∣∣∣ z) = sup {θ|SY (θ · y|x,z) > 0} (4.14)

Those points where θ
(
x,y

∣∣∣ z) = 1 are the technically efficient ones and correspond to

the efficiency frontier, while those with θ
(
x,y

∣∣∣ z) > 1 are technically inefficient. To obtain

the nonparametric estimators of the conditional frontier θ
(
x,y

∣∣∣ z), mitigating the impact
of outliers, we use the order-m frontier (Cazals et al., 2002). The order-m frontier considers
as a benchmark the expectations of the best practice among m peers randomly drawn from
the population of units from which X ≤ x.13 The procedure is repeated B times resulting
in multiple efficiency measures (θ̂1

m, . . . , θ̂
B
m), where the final order-m efficiency value is

the sample mean (θ̂m). This way, the efficiency of a decision making unit (DMU)14 can
be compared with m potential DMUs that have a production larger or equal to y. The
conditional order-m output efficiency score is defined as in Daraio and Simar (2007a):

13We fix the value of m = 90, following the approach of Daraio and Simar (2005) for which the decrease
in super-efficient observations(θ

(
x,y

∣∣∣ z) < 1) stabilizes.
14We can call DMU to any unit of analysis, say, individuals, departments, firms, municipalities, or in the

case of this study, hospitals.
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θ̂m
(
x0, y0

∣∣∣ z0

)
= E(max{θ1,θ2, . . . ,θm|X ≤ x0, Z = z0})∫ ∞

0

[
1− (1− SY |X,Z(uy0|X ≤ x0, Z = z0))m

]
du (4.15)

The efficient frontier corresponds to the DMUs where θ̂m
(
x,y

∣∣∣ z) = 1. Notice that the
efficiency values can take a score lower than one. In this case, the hospitals are labeled as
super-efficient, meaning that they exhibit higher levels of outputs than the order-m fron-
tier.

To estimate the conditional order-m model, we need to incorporate smoothing tech-
niques such that in the reference samples of size m units with comparable z-values have
a higher probability of being chosen. Hence, we rely on the estimation of nonparametric
kernel functions to select the reference observations, and a bandwidth parameter h in the
estimated probability function SY (y|x,z), given by:

ŜY ,n
(
y
∣∣∣ x,z) =

∑n
i=1 I(xi ≤ x,yi ≥ y)Kĥ(z,zi)∑n

i=1 I(xi ≤ x)Kĥ(z,zi)
(4.16)

Where Kĥ(·) represents the kernel function, I(·) is an indicator function, n represent
the number of observations and h is the appropriate bandwidth. Considering that our
environmental variables Z are continuous, we estimate the appropriate bandwidth h fol-
lowing Daraio and Simar (2005) and use the k-Nearest Neighbor (k-NN) method. Finally, a
non-parametric estimate of θ̂m

(
x0, y0

∣∣∣ z0

)
is obtained by plugging ŜY ,n

(
y0

∣∣∣ x0, z0

)
in equa-

tion (4.15).

4.4.2 Spatial interaction model specification

In the second stage of our strategy we make use of spatial interaction models, which rely
on gravity models to explain OD migrations flows. In the empirical literature, gravity
models have long been one of the most successful approaches, modeling remarkably well
the observed variations in economic interactions across space (Anderson, 2011). Gravity
models have commonly been used to explain OD flows that arise in trade, transportation,
migration, among others. In the regional economics literature, these models are usually
known as spatial interaction models (Sen and Smith, 1995), as the regional interaction
is directly proportional to the product of regional size measures (e.g. regional income
in the case of interregional commodity flows). One advantage of gravity models is that
due to the nature of gravity itself, it does not apply to individuals but to spatial units as
regions, cities or countries. (Lowe and Sen, 1996). This allow us to focus exclusively on
inference about the determinants of patient migration, from the patterns of distribution
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of patients, without the need to involve what determines the total supply of medical care
of all destinations or the total demand of patients from all origins.15

However, a potential drawback for gravity models is that they rely just on a function
of OD distance to account for spatial correlation and ensure cross-section independence
(Balia et al., 2018). These assumptions have been challenged by many authors. Porojan
(2001) and Lee and Pace (2005) find evidence of spatial dependence in the residuals of
international trade and retail sales flows, respectively; while LeSage and Pace (2008, 2009)
point out that the assumption of independence among observations might be difficult
to defend, as OD flows are fundamentally spatial in nature. The explicit consideration
of flow data correlation due to the spatial configuration of the units involved has been
drawing much attention in the literature as the so-called network autocorrelation (Patuelli
and Arbia, 2016).

To embed spatial dependence in a spatial interaction setting, LeSage and Pace (2008)
consider spatial spillovers at three dimensions: origin-based, destination-based, and origin-
destination based. Using this definition of spatial dependence means that we need to model
spatial dependence for flows of patients as a spatial autoregressive specification, accom-
modating endogenous interactions. This definition will allow us to define spatial spillover
effects to hospitals neighboring the destination hospital in the flow of patients.

Additionally, we can accommodate the model for exogenous interactions in a Spatial
Durbin Model (SDM) representing a situation where local spillovers arise from changes
in the characteristics of neighboring hospitals and environmental features of neighboring
regions (cantons). The exogenous interactions can be modeled by including the spatially
lagged covariates in the econometric specification (along with the spatial lag of the en-
dogenous variable). If statistically significant, the omission of these interactions can lead
to problems of omitted variable bias (LeSage and Fischer, 2016). We control for this issue:
we begin by defining the model with no spatial interactions (based on the conventional
gravity model) and adjust it for exogenous interaction specifications as in LeSage and Fis-
cher (2016),16 and, then, we move to its SDM extension as illustrated in LeSage and Pace
(2008) and Laurent et al. (2019).17

15This property is also known as “modularity” in trade models developed by Anderson and Van Wincoop
(2003).

16This model specification is commonly referred in the literature as the spatial lag of X (SLX) model
(Halleck Vega and Elhorst, 2015)

17We move in this direction to identify the sources of spatial autocorrelation and avoid model misspec-
ification and omitted variable bias. Following this sequence, we can determine the significant effect of the
exogenous interactions by means of an SLX, and, then, those of the endogenous interactions with the SDM
model. In such a way, we can select the appropriate framework of analysis that provides the best fit to our
data.
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4.4.3 Spatial Lagged X interaction model

Form equation (4.10), we begin by setting a Y matrix of patients’ migration flows, whose
columns reflect origins (cantons), and rows destinations (hospitals). Let no be the number
of geographical observations at the origin and nd the number of geographical observations
at the destination, then N = no × nd . The no × nd flow matrix Y can be converted to an N
vector by stacking columns. The flow matrix can be arranged so the (i, j)th observation
reflects a flow from j to i (yo = vec(Y )), which is labeled origin-centric ordering. Then,
the destination-centric ordering can be obtained by yd = vec(Y ′) reflecting a flow from
i to j. We can use G to represent the no × nd matrix of distances between origins and
destinations. Then, g = vec(G) is an N vector of these distances formed by staking the
columns of the OD distance matrix. If we assume a destination-based order, the logged-
transformed gravity regression model would be as follows:18

y =∝ lN +Xoβo +Xdβd +γg + ε (4.17)

Where y is the N vector of patient migration (logged) flows, that has been obtained
by stacking the columns of the matrix Y ; Xo, Xd represent the N × k matrices of (logged)
explanatory variables containing the origin and destination characteristics respectively,
which are expected to reflect the regional and hospital factors that sustain patient choice
for medical care; βo, βd are the associated k×1 parameter vectors. The scalar parameter γ
is the effect of the (logged) distance g, and ∝ is the constant with lN vector of ones. Finally,
we have an N × 1 vector of disturbances (ε = vec(E)).

From (4.17), we consider an SLX interaction model in the following specification:19

y =∝ lN +Xoβo +Xdβd +WoXo∅o +WdXd∅d +γg + ε (4.18)

Where Wo and Wd are conventional (row-normalized) spatial weight matrices for the
origin and destination observations, respectively. It is worth noting that here we do not
account for spatial weights in W based on geographical distances, as other conventional
spatial econometric models. This is because we are considering for OD distances in the
matrix defined as G in the gravity model specification. We define the W matrix of spatial
weights to be a contiguity (row-normalized) matrix to consider the spatial configuration
of the hospitals and regions that leads to a flow of patient data correlation.20

18If we start with the standard gravity model and apply a log transformation, the resulting model would
be as shown in (4.17) (Sen and Smith, 1995).

19We estimate an SLX model in order to test and identify the existence of local spillovers. Their omission
from the econometric estimation could lead to potential problems of omitted variable bias (LeSage and
Fischer, 2016).

20In section 4.5, we will explain the empirical strategy followed in this paper, along with the specifica-
tions for Wo and Wd .
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The spatial lags of the exogenous variables WoXo and WdXd help explain variations in
flows across dyads coming from changes in the characteristics of the regions neighboring
the origin and hospitals neighboring the destination respectively. ∅o, ∅d are the parame-
ters associated to WoXo and WdXd . In our study, we enrich equation (4.17) and control
for the spatial lags of distance g, in the following manner:

y =∝ lN +Xoβo +Xdβd +WoXo∅o +WdXd∅d +γg +Wogγo +Wdgγd + ε (4.19)

Where Wdg and Wog explain the variations in flows arising from changes in the dis-
tance of neighboring hospitals in the same canton, and from neighboring cantons respec-
tively. This aligns with the idea that patients will select the hospital to be treated depend-
ing not just on their proximity (to a given hospital), but to the that of their neighbors, as
well. Finally, γd and γo are the parameters corresponding to Wdg and Wog.

4.4.4 Spatial Durbin interaction model

From equation (4.17), one can consider that a change at the characteristics of an obser-
vation i can impact inflows or outflows (or both) of other observations connected with
element i which are not explained in (4.17) (Thomas-Agnan and LeSage, 2014). LeSage
and Pace (2008) suggest that flows across networks can exhibit spatial dependence and
propose a spatial autoregressive extension of the non-spatial model in (4.17), which can
be viewed as filtering for spatial dependence related to origin and destination.

(IN−ρoWo)(IN−ρdWd)y=∝lN+Xoβo+Xdβd+γg+ε (4.20)

Here, (IN−poWo)(IN−pdWd) is the filter that capture global spillover effects, translated
into origin-based, destination-based, and origin-destination-based dependence.21As described
by LeSage and Pace (2009), origin-based spatial dependence reflects the notion that forces
leading to flows from any origin to a particular destination may create similar flows from
neighboring origins. Destination-based spatial dependence is related to idea that forces
leading to flows from the origin to a destination may generate similar flows to nearby
destinations. Thus, Origin-destination-based spatial dependence reflect those forces that
create flows from neighbors to the origin to neighbors to the destination. The model (4.20)
can be further enriched considering the spatial lags of the explanatory variables into an
SDM as follows:22

21IN−ρdWd−ρoWo−ρwWw. Where Ww is the product of the two weight matrices (Wo.Wd). The reader can
refer to LeSage and Pace (2008) for a better understanding.

22The selection of the SDM model allow us to test and identify the existence of global spillover effects in
our dataset. It also incorporates local spillover effects modeled as the spatial lags of the covariates, as in the
SLX model. Furthermore, the selection of an SDM model will produce unbiased coefficient estimates when
the source of spatial correlation is unknown (LeSage and Pace, 2009).
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y=ρdWdy+ρoWoy+ρwWwy+ ∝ lN +Xoβo +Xdβd +γg +WoXo∅o+

WdXd∅d+Wogγo +Wdgγd + ε (4.21)

Then, the spatial lag ρdWdy reflects flows from neighbors to each destination observa-
tion in the vector of origin-destination flow to form a linear combination of flows from
neighboring destinations. While ρd captures the strength of destination-based depen-
dence. Similarly, ρoWoy reflects a linear combination of flows from regions neighboring
the origin; and ρo reflects the strength of origin-based dependence. Hence, ρwWwy forms
a linear combination of flows from neighbors to the origin and flows from neighbors to
the destination, and the parameter ρw represents the strength of this dependence.

Finally, the spatial autoregressive model can be estimated by Maximum Likelihood
(see LeSage and Pace, 2008). LeSage and Pace (2009) also show how to produce Bayesian
Markov Chain Monte Carlo (MCMC) estimates for the model.23 In this study, we fol-
low the Bayesian approach using the computational methods proposed in Laurent et al.
(2019). Our decision is motivated by the flexibility that Bayesian methods offer to cap-
ture complex spatio-temporal relationships with heterogeneous data. The use of prior
distributions allows for prior constraints in the parameters which reduces the risk of over-
parametrization. In addition, it allow us to accommodate econometric specifications with
more than one spatial weight matrix, adjusting to our model when origins differ from
destinations.

4.5 Empirical application

Here, we will define our empirical strategy to understand whether the efficiency perfor-
mance of high-performing hospitals is attracting more patients, and whether this is ac-
companied by higher patient inflows to neighboring hospitals.

In our empirical application, we define an OD patient flow matrix between regions
(origin) and hospitals (destination), which are different units of analysis; this approach
constitutes a different strategy to that used in other interregional studies. In most of the
empirical literature, the OD flows have been measured by accounting for patient migra-
tion from one region to another, making it difficult to analyze the intraregional dynamics
that occur among hospitals within a region; we contribute to the current literature on
interregional patient mobility by accounting for patient migration flows, from which the
origin represents the region and the destination a given hospital in a particular region.
This way we will be able to consider the dynamic of the destination’s neighboring hospi-
tals in the same region.

23Refer to Appendix 4.10.2 for an explanation on LeSage and Pace (2009) MCMC estimation.
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In this study, we expect to find spatial dependence, embedded in the size of pa-
tient flows from a region to a hospital as well as its neighboring hospitals. Following
the methodology described above, this would mean the presence of destination-based-
dependence spillovers, which in the econometric model means that ρd , 0. However,
given the context of analysis were patients travel to just some certain high-performing
hospitals, we can expect that not just the patients from one region travel to a given hos-
pital to be treated, but also patients from neighboring regions. Thus, spillover effects, are
embedded in the flow size from neighboring regions (origin-based-dependence), which
would mean that ρo , 0. Finally, the spillovers can also come in the form of flows from re-
gions neighboring the origin to hospitals neighboring the destination (origin-destination-
based-dependence), thus ρw,0. We define a contiguity matrix Wd where hospitals are
neighbors if they are located in the same canton. Hence, Wo defines as neighbor those
cantons that share a border line. The vector of distances g is composed by the euclidean
distances between origins and destinations. On this basis, we can define the following
model:

y = ρdWdy+ρoWoy + ρwWwy+ ∝ lN + edβd +Xoβo +γg +Wded∅d+

WoXo∅o +Wogγo +Wdgγd + ε (4.22)

The vector ed contains the robust logged efficiency scores obtained with (4.15) specific
to every hospital. This measure is estimated by taking into consideration the environmen-
tal conditions that limit the hospital production, so an observed hospital is benchmarked
with a sample of hospitals facing the same external conditions.24 Therefore, it can prop-
erly be used as an indicator that measures the performance of the hospital as a pulling
factor that attracts patients. The matrix Xo accounts for economic and demographic re-
gional characteristics that proxy the regional income-level and health conditions, and
impact patient choice to seek treatment in other (developed) regions. We use cantonal
variables such as logged GVApc, logged population density, logged cantonal mortality,
logged unsatisfied basic needs index (NBI),25 and logged insured population rate.26

A problem that might arise in the application of the model (especially for the regions
that present large inflow of patients) is the presence of large flows of patients in the matrix
of OD flows, relative to smaller (or zero). This would produce the non-normality in flows
and jeopardize the estimations (LeSage and Pace, 2008, 2009; Thomas-Agnan and LeSage,
2014). In our setting, this would be representing an intraregional flow of patients (e.g.
residents of developed regions getting treatment in their local area). To deal with this
problem, LeSage and Fischer (2010) propose to modify the independent variables, by
replacing with zero the values of the independent variables for the intraregional flows.

24The environmental conditions considered are the Gross Value Added (GVA) per-capita and density of
the canton where the hospital is located as well as the occupancy rate of the hospital in the canton.

25The NBI is a multidimensional poverty index, commonly used in Latin American countries (explained
in Section 4.6).

26In order to avoid taking the log of zero, we have added the unity to the dependent and independent
variables as in LeSage and Thomas-Agnan (2015).
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The intraregional variations will be captured in a new set of explanatory variables Xi ,
WiXi , with non-zero observation for the intraregional observations as well as adding a
new intercept term, αi . If we allow for c=vec(lN), the new model would be as follows:

y = ρdWdy+ρoWoy + ρwWwy + cαi+ ∝ lN + edβd +Xoβo +Xiβi +Wded∅d +WoXo∅o+

WiXi∅i +γg +Wogγo +Wdgγd + ε (4.23)

Note that we cannot interpret βd (nor any other estimated parameter associated with
origin-destination characteristics) as the partial derivative on flows arising from changes
in the destination-efficiency. As pointed out by LeSage and Pace (2009), in the spatial
econometric specification of the interaction model, changes in the kth characteristic of an
observation i will produce changes in flows into the ith observation from other observa-
tions, as well as flows out of the observation i to other observations. Unlike conventional
regression models where it leads to changes only in observation i of the dependent vari-
able, yi .

LeSage and Thomas-Agnan (2015) propose scalar summary measures of the impacts
arising from changes in characteristics of the observations that involves averaging the cu-
mulative flow impact associated with changes in all observations, resulting in the so called
origin effects, destination effects, and network effects. Origin and destination effects express
the mean impact on flows arising from changes in the origin and destination characteris-
tics, respectively. In turn, network effects characterize the mean impact of a change in the
characteristics of the origin i on all the flows coming from other origins, different from i
to a destination j.27

In our setting we have no , nd and different covariates’ matrices for origins (Xo) and
destinations (Xd), which requires to follow the computational inefficient method to calcu-
late the scalar marginal effects. This means that we need to calculate changes in each of
the no and nd elements of the vectors Xo and Xd , respectively, to obtain scalar summary
measures of the impact of these changes on the patient flows.

4.6 Data and variables

To estimate (4.23) we collect data for the year of 2014. Hospital information comes from
the Annual Survey of Hospital Beds and Discharges and the Survey of Health Activities
and Resources provided by the National Institute of Statistics and Census (INEC, by the
acronyms in Spanish). We excluded the psychiatric, dermatologic and geriatric hospi-

27Refer to Thomas-Agnan and LeSage (2014) and LeSage and Thomas-Agnan (2015) for a deeper under-
standing on the scalar summary measures.
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tals, and took out from the sample those that presented irregularities in the data.28 As
described above, the migration flow matrix considers the rows to be the hospital destina-
tion, while the columns are the cantons (regions) of origin. We retrieved a sample of 176
destination hospitals and 106 cantons of origin. By vectorizing the flow matrix, using the
destination-centric arrangement described in Section 4.4, we obtain a vector of 18.656
observations.

The cantonal economic and demographic variables were retrieved from the Ecuado-
rian Central Bank (BCE, by the acronyms in Spanish) and INEC’s public statistics, re-
spectively. While the poverty and population insurance data was collected from the 2010
national census. The description for all the variables is presented in Appendix 4.10.3.

4.6.1 Variables for the conditional order-m efficiency measurement

For the selection of input and output variables to estimate model (4.15) in the first stage
of our strategy, we followed previous literature on efficiency measurement. A complete
review of the literature is offered in Hollingsworth (2008); O’Neill et al. (2008) and Cantor
and Poh (2018).

Regarding the input variables, we use the number of beds, the medical equipment, and
infrastructure, widely used as a proxy for hospital size and capital investment (O’Neill
et al., 2008). To proxy labor costs, clinical staff is usually included (Hollingsworth, 2003,
2008). To that end, we introduce the number of physicians and healthcare professionals
beyond the number of physicians of the hospital.

As for the outputs we use the hospital’s patient discharged to measure the final pro-
duction of health. To control for the heterogeneity of the disease-case attended, we build a
case-mix. This index is used in the healthcare efficiency measurement literature to control
for the severity of the cases treated, as not all the patients can be treated with the same
amount of resources, nor all of them have the means to treat the most severe cases (Can-
tor and Poh, 2018). As in Chapters 2 and 3, we use the case-mix index proposed by Herr
(2008), which relies on the assumption of a positive correlation between length of stay
and the severity of illness. The index is built according to the three-digit International
Statistical Classification of Diseases and Related Health Problems (ICD-10).

In addition, the Survey of Health Activities and Resources in 2014 provides informa-
tion on the total number of morbidity and emergency consults, and the total number
emergencies treated, commonly used in the literature to measure the activity of hospitals
(Cantor and Poh, 2018).

28We excluded psychiatric, dermatologic and geriatric hospitals as they focus on specific illness and
patients that require different treatments that could bias the efficiency values. For example, psychiatric
hospitals might require inpatients to stay for long periods of time, wherein our analysis would reflect it as
a criteria for less efficiency.
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Furthermore, we tried to account for a quality hospital related output with the hospital
survival rate for patients after 48 hours of admission. The intuition is that the mortality
rate after 48 hours has a stronger relationship with the resolutive capacity of the hospital
employees. Therefore, it has a higher correlation with the quality of the treatment pro-
vided. Hospital mortality rates have been usually employed to proxy the quality of the
hospital treatment (Hollingsworth, 2008), but in healthcare efficiency measurement we
need to measure the outputs as health gains of the patients; which is why the survival rate
(1-mortality rate) is usually employed.29

In this respect, other hospital indicators such as readmission rates, the level of special-
ization (Gravelle et al., 2014; Longo et al., 2017) or the nosocomial infections (Prior, 2006)
have been usually employed to proxy hospital quality. However, we do not account for
this information in our dataset, which is one of the limitations that we faced in our study.

Finally, we consider three environmental variables that can potentially affect the hos-
pital performance: the cantonal GVApc, cantonal population density and the hospital oc-
cupancy rate. The former two explain the territorial inequalities in the country, which
have a big influence in their regional development (Mendieta Muñoz and Pontarollo,
2016). Those developed regions present a high concentration of hospitals and health re-
sources, that influence healthcare performance. In Chapter 2, we find empirical evidence
that these developed regions do not just concentrate better-endowed hospitals, but these
hospitals are also the best performers in terms of efficiency. The empirical evidence of the
effect of GVApc and population density on healthcare efficiency is supported by Halkos
and Tzeremes (2011).

The third environmental variable is commonly used to proxy the utilization of poten-
tial capacity in a hospital and determine whether it is adjusting their working staff to
the increase of treated patients in the short-run (Herwartz and Strumann, 2012, 2014).
The idea behind is that hospitals with low occupancy rate may be signaling an oversized
staff and capacity, unlikely to meet the demand for medical treatment efficiently. The
occupancy rate has been used as an environmental variable for conditional order-m ap-
proaches in recent work by Mastromarco et al. (2019). Furthermore, in Chapter 3, we
provide empirical evidence of its positive direct and spillover effects on hospital’s effi-
ciency.

Table 4.1 presents the descriptive statistics of the variables for the conditional order-
m efficiency estimation. Overall, we can distinguish a big gap of hospital’s inputs and
outputs (as well as in cantonal variables), observed in the difference of the minimum and
maximum values that describes the marked discrepancies across hospitals and cantons.
In fact, in Chapter 3 we emphasize that those hospitals that present a high amount of
resources and treated population settle in regions densely populated and with high pro-
duction (measured by the GVA). This initial evidence supports our hypothesis that patient

29One additional advantage of the conditional order-m estimation model is that we can use output vari-
ables expressed both in percentage and volume and obtain robust efficiency measures. If the same structure
was applied to classical methods (such as DEA) the results would be inconsistent (Olesen et al., 2015).
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Table 4.1: Conditional order-m variables’ summary statistics

Mean Median SD Min Max

Outputs
Discharges (weighted) 2262.23 1059.03 2750.83 79.1 16262.77
Morbidity consults 41210.26 21923.5 64187.04 168 529420
Emergencies consults 43969.8 24942 58596.16 70 407485
Survival rate 0.98 0.99 0.03 0.79 1
Inputs
Physicians 71.49 30 107.39 4 786
Beds 85.87 32 126.14 6 856
Medical personnel 137.57 52 212.58 3 1453
Equipment 96.02 50.5 112.31 3 776
Environmental variables
Per-capita GVA 3081.89 2653.4 1699.52 646.32 6388.77
Density 288.02 129.32 502.56 0.4 4271.17
Occupancy rate 59.05 56.72 26.23 0.46 154.8

Source: The authors, based on information from INEC and BCE.

movement is likely to be directed to those developed regions, where more healthcare re-
sources are concentrated.

4.6.2 Variables for the spatial Durbin interaction model

First, at the hospital level, we use the efficiency scores obtained in the first stage as a
variable of hospital performance. The variable proxies the pulling effect for a hospital to
attract patients (ed in equation (4.23)). A negative sign of the efficiency variable destination
effect means a good performance, attracting patients from other cantons.30 The rationale
could be twofold. On the one side, patients identify –to a certain extent– those best per-
forming hospitals and prefer to travel to other canton (potentially the developed ones) to
get treatment in what they perceive as the best facility. So, the efficiency performance of
a hospital would also be explaining the quality perception of the patient. On the other
side, this inflow of patients can also be explained by referrals from low-tech hospitals that
might not have enough resources to treat a complex pathology. Unfortunately, we do not
account with information regarding hospital referrals in our dataset to test this hypothe-
sis. However, in both hypotheses, the significative effect of the efficiency performance is
helping to explain the patient interregional mobility and the quality perception either by
the patient or the hospital that is referring the patient (or both).

30Recall that hospitals with efficiency values higher than one are technically inefficient hospitals. Hence,
a negative relationship with patient flows would mean that the best-performers are attracting more patients.
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We proxy the cantonal level variables (Xo in (4.23)) that will impact on patients’ deci-
sion to look for medical treatment with five variables. First, we use GVApc and population
density to proxy the level of development of the region. As in the first stage, these vari-
ables can explain the regional heterogeneity that characterizes the country. Hence, it is
very likely that the most important hospitals where population and economic activities
are more concentrated are located in developed cantons, and, over time, this can foster
quality differentials (Balia et al., 2020). In Ecuador, this statement has been empirically
demonstrated in the previous chapters. The use of these variables to explain patient mo-
bility has been extensively applied in the literature (see for example Cantarero, 2006;
Fabbri and Robone, 2010). We use cantonal mortality (per 1000 individuals) and the in-
sured population rate to proxy the healthcare conditions in the region, and control for the
accessibility to medical treatment. The intuition is that higher mortality rates would be
associated with poorer healthcare conditions in the canton.

Finally, we control for the poverty level in the canton by introducing the unsatisfied
basic needs index (NBI). The index was developed by The Economic Commission for Latin
America and the Caribbean (ECLAC / CEPAL by their Spanish acronyms), and has been
widely applied in Latin American countries since the 1980s as a multidimensional mea-
surement of poverty (CEPAL, 2007). Considering that poverty is a complex and multidi-
mensional phenomenon, the NBI evaluates different dimensions of deprivation of goods
and services required to the satisfaction of basic needs. In Ecuador, these dimensions com-
prehend economic capacity, basic education access, housing access, basic services access,
and overcrowding. As stated in equation (4.7), richer patients are more prone to choose
cross-border healthcare, we try to proxy this dimension of regional patient heterogeneity
with the poverty index.

Table 4.2 presents the descriptive statistics of the variables used in the SDM model.
Additionally, Figure 4.1 shows the distributions of hospitals by efficiency performance
(ed in (4.23)) at the top panel (a), and the migration flow dynamic of the sample (y in
(4.23)) at the bottom panel (b). Panel a) of the Figure shows the most efficienct hospitals
(that is, the hospitals with an efficiency value lower than 1) to be mainly concentrated in
two of the most developed regions of Ecuador, where most of the healthcare resources are
located.31

The panel b) of Figure 4.1 shows the patient flows from origin to destination, orga-
nized by intervals. We observe that there is a clear dynamic of patients traveling to the
regions where the best performing hospitals concentrate. We can appreciate that most of
the patient inflow is coming from neighboring cantons, which is a first signal of potential
spatial autocorrelation in the migration flow. Hence, we use spatial interaction models
that allow to disentangle the spillover effects of this migration dyad. Our empirical strat-
egy begins by running the spatial interaction model, specified in (4.17), (4.18) and (4.19)
to determine the econometric specification that better fits our data.

31These hospitals concentrate mainly in Quito and Guayaquil which are the two bigger and most devel-
oped cantons in Ecuador (Mendieta Muñoz and Pontarollo, 2016).
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Table 4.2: Spatial interaction model variables’ summary statistics

Mean SD Min Max
Order-m conditional efficiency 1.3207 0.7192 0.7264 5.7265
Per-capita GVA 3081.8877 1699.5163 646.315 6388.7741
Density 288.016 502.5621 0.3954 4271.174
Cantonal mortality 3.9611 1.206 0.5902 5.8391
NBI 0.6395 0.1832 0.297 0.987
Insured rate 0.2291 0.0878 0.0519 0.4844

Source: The authors, based on information from INEC and BCE.

Figure 4.1: Hospital efficiency and patient migration flows
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4.7 Results and discussion

Table 4.3 presents the estimation results of the interaction model (4.17), adjusting for
the intraregional patient flows in column (1). Column (2) incorporates the SLX interac-
tion model (4.18); while column (3) includes the spatial lags of the distance variable g, of
equation (4.19). As the traditional gravity model posits, the flows are inversely propor-
tional to distances, as shown by the negative and statistically significant effect of distance
(g). The estimated parameters are statistically different from zero. Although, as assessed
in Section 4.4, they should not be interpreted as partial derivatives (LeSage and Fischer,
2016).

We can additionally use the estimates in Table 4.3 to emphasize that a non-spatial spec-
ification could suffer from omitted variable bias if the exogenous effects are not accounted
for. This is endorsed by the fact that all the spatial lagged variables are significantly dif-
ferent from zero. The selection of the spatial specification in column (3) is endorsed by
the Akaike and Bayes selection criteria –as well as the LR test and the R squared– as the
best specification. Hereinafter, we will refer to this model as the baseline model.32 33

Table 4.3: Spatial interaction model

(1) (2) (3)

Constant 7.089*** 6.462*** 6.398***
(0.27) (0.43) (0.43)

αi -7.148*** -6.535** -5.51**
(2.58) (2.58) (2.61)

log conditional efficiency -0.256*** -0.235*** -0.234***
(0.03) (0.03) (0.03)

log GVApc 0.309*** 0.206*** 0.207***
(0.02) (0.02) (0.02)

log density -0.015** 0.041*** 0.045***
(0.01) (0.01) (0.01)

log cantonal mortality -0.099*** 0.098*** 0.11***
(0.03) (0.04) (0.04)

log nbi 0.327** 0.043 0.1
(0.14) (0.17) (0.17)

log insured 1.883*** 0.886*** 0.937***
(0.19) (0.23) (0.23)

log conditional efficiency i -0.913*** -0.911*** -0.918***
(0.33) (0.33) (0.33)

log GVApc i 1.245*** 1.271*** 1.221***
32We test the the absence of spatial autocorrelation for the OD, patient migration flow, using the Moran

test with both Wd and Wo spatial weight matrices. The tests reject the null of absence of spatial autocorre-
lation with Moran’s I values of 0.5055 and 0.036, respectively.

33We tested the direction of the causality between migration flows and hospital efficiency by means of
Granger (1969) causality test. The test rejects the null hypothesis of non-causality.
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Table 4.3 (continued)

(1) (2) (3)

(0.24) (0.24) (0.24)
log density i -0.095 -0.103 -0.098

(0.06) (0.06) (0.06)
log cantonal mortality i 1.448*** 1.475*** 1.404***

(0.34) (0.33) (0.34)
log nbi i 5.137*** 5.252*** 4.76***

(1.58) (1.57) (1.57)
log insured i 5.909*** 6.019*** 5.995***

(1.99) (1.98) (1.98)
Wd log conditional efficiency -0.119*** -0.115***

(0.04) (0.04)
Wo log GVApc 0.217*** 0.224***

(0.03) (0.03)
Wo log density -0.089*** -0.093***

(0.01) (0.01)
Wo log cantonal mortality -0.435*** -0.431***

(0.05) (0.05)
Wo log nbi 1.395*** 1.352***

(0.21) (0.21)
Wo log insured 1.48*** 1.433***

(0.27) (0.27)
log g -0.741*** -0.771*** -0.659***

(0.01) (0.01) (0.06)
Wd log g 0.085*

(0.05)
Wo log g -0.2***

(0.05)
N 18656 18656 18656
Adj R-squared 0.4484 0.4572 0.4578
LogLik -25844.97 -25692.14 -25681.66
AIC 51721.9358 51428.2796 51411.3173
BIC 51847.2786 51600.6259 51599.3315

Note: Dependent variable is the vector of (logged) migration flows. Estimations obtained by ML.
Standard errors in parenthesis.*** p < 0.01, ** p < 0.05, * p < 0.1.
Source: The authors.

Once we have identified our baseline model, we estimate the SDM model as in equa-
tion (4.23). The Bayesian MCMC estimates based on 1000 draws are presented in Ta-
ble 4.4. Lower and upper 0.05 and 0.95 credible intervals are reported, as well as the
t-statistic.

The estimates show not just a high level of destination-based spatial dependence, but
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origin-based and origin-destination-based spatial dependence as well. The coefficients ρd
and ρo are 0.31 and 0.53, respectively. The estimated parameter ρw is -0.11 and statisti-
cally different from zero. The 95 percent intervals suggest a small standard deviation and
hence, big precision on the estimation.

These results provide evidence of the existence of spillover effects arriving from pa-
tient migration flows. Destination-based spatial dependence posits that flows coming
from a given canton of origin to a destination hospital creates similar flows to neighbor-
ing hospitals (located in the same destination canton). In addition, origin-based spatial
dependence shows that flows from any origin canton to a destination hospital creates
similar flows from neighboring origins. Finally, origin-destination spatial dependence ev-
idence that larger outflows from cantons neighboring the origin generate larger inflows to
hospitals neighboring the destination. These findings point out the existence of spillovers
steaming not just among cantons, but within cantons.

As noted by Thomas-Agnan and LeSage (2014) and LeSage and Thomas-Agnan (2015),
the coefficients and t-statistics reported in Table 4.4 should not be interpreted as reflecting
the partial derivative effects of changes in origin and destination characteristics. In turn,
we need to calculate, origin, destination, and network summary measures to draw valid
inferences on how changes in origin and destination characteristics impact the decision
of patient migration flows.

In this respect, Table 4.5 reports the scalar summary effects for the model (4.23). In
terms of hospital efficiency, the estimates show a significant expected negative effect. The
increase in efficiency of an observed hospital leads to higher inflow of patients. Specif-
ically, a 1 percent increase in efficiency on an average hospital would lead to a 0.3 per-
cent increase in patient inflows.34As mentioned, these results are supporting the hypoth-
esis that patients are selecting those hospitals that present a higher performance as more
qualified. Higher efficiency performance seems to be working as a pull factor that attracts
patients from neighboring regions. This effect can also be arising from patient referrals
from other (low-performer) hospitals, which do not account with the necessary resources
to treat complex pathologies. The information available in our dataset does not allow us
to disentangle the size of these effects. We leave this question to be explored in future
research.

Interestingly, hospital efficiency is also displaying a significative and negative network
effect. This means that 1 percent increase in the efficiency of a given hospital is increas-
ing the patient movements going to neighboring hospitals –different from their initially
preferred hospital of destination– in 0.15 percent. These finding goes in line with our
findings in Chapter 3, suggesting a competitive effect where higher efficiency in neigh-
boring hospitals increase patient inflows.

Changes in the characteristics of the canton of origin provide additional information
on the patient travel decision. For example, the positive and significant impact of GVApc

34Note that values bigger than 1 are inefficient.
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Table 4.4: Spatial Durbin interaction model

Mean Lower 0.05 Upper 0.95 t-stat

Constant 0.5591 -0.0081 1.1639 1.6045
αi -1.2612 -4.7121 2.0721 -0.6144
log conditional efficiency -0.1248 -0.1677 -0.0821 -4.7200
log GVApc 0.1351 0.1051 0.1643 7.5366
log density 0.0413 0.0296 0.0521 6.0521
log cantonal mortality 0.1149 0.0683 0.1603 4.0281
log nbi -0.1674 -0.3791 0.0560 -1.2582
log insured 0.3172 0.0154 0.6082 1.7675
log conditional efficiency i -0.8186 -1.2245 -0.4078 -3.2243
log GVApc i 0.4082 0.1022 0.7233 2.1771
log density i -0.0593 -0.1415 0.0225 -1.1901
log cantonal mortality i 0.1978 -0.2413 0.6655 0.7218
log nbi i 4.5273 2.3865 6.6296 3.5703
log insured i 3.1162 0.4836 5.6679 1.9522
Wd log conditional efficiency -0.0251 -0.0731 0.0267 -0.8293
Wo log GVApc -0.0332 -0.0787 0.0096 -1.2351
Wo log density -0.0565 -0.0727 -0.0397 -5.3821
Wo log cantonal mortality -0.2131 -0.2728 -0.1491 -5.5530
Wo log nbi 0.7526 0.4872 1.0264 4.7012
Wo log insured -0.3580 -0.6936 -0.0311 -1.6957
Wd log g 0.5162 0.4523 0.5792 13.3431
Wo log g 0.5477 0.4866 0.6114 14.4044
log g -1.1637 -1.2472 -1.0820 -22.8236
ρd 0.3068 0.2967 0.3172 29.2126
ρo 0.5346 0.5283 0.5442 31.4697
ρw -0.1085 -0.1245 -0.1004 -4.0614

Note: Dependent variable is the vector of (logged) migration flows. Bayesian MCMC estimates based on
1000 draws. N=18656 Source: The authors
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Table 4.5: Scalar summary effects

Mean Lower 0.05 Upper 0.95 t-value
Destination Effects
log conditional efficiency -0.3015 -0.3987 -0.2026 -4.9594
Origin Effects
log GVApc 0.2185 0.1653 0.2698 6.7937
log density 0.0473 0.0322 0.0620 5.1626
log cantonal mortality 0.1155 0.0414 0.1904 2.4933
log nbi 0.0558 -0.2490 0.3811 0.2817
log insured 0.4012 -0.0441 0.8513 1.4762
Network effects
log conditional efficiency -0.1529 -0.2525 -0.0590 -2.5719
log GVApc 0.1725 0.0214 0.3221 1.8814
log density -0.1026 -0.1436 -0.0607 -3.9597
log cantonal mortality -0.4405 -0.6302 -0.2635 -3.9308
log nbi 2.0840 1.2827 2.9013 4.4193
log insured -0.5705 -1.5459 0.3676 -0.9851

Note: Dependent variable is the vector of (logged) migration flows. Bayesian MCMC estimates based on

1000 draws. N=18656

Source: The authors

could be measuring the (ceteris paribus) wealth effect of the origin. If the GVApc of the
canton of origin increased, patients would have higher resources to devote to traveling
costs to get medical treatment in other regions, such to create a pushing effect in that
region. The positive and significant network effects of GVApc point to an increase in out-
flows from cantons neighboring the origin, when their wealth increases. This is support-
ing our assumption that regional income level is going to be a determinant of cross-border
patient migration, as stated in Section 4.3.

Furthermore, densely populated cantons with high mortality rates are expected to
push away patients, as expected. However, it is interesting to observe a negative network
effect for both these variables. An explanation to the latter could be that high density and
mortality in a neighboring canton reduces the incentives of patients to seek treatment in
other regions different from their origin.

Before drawing any conclusions, we need to test the robustness of our results. Thus,
we provide a robustness analysis in Section 4.8.
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4.8 Robustness analysis

In order to check the robustness of our results, we carried out several tests. First, we
want to test our efficiency estimator. In so doing, we perform a sensitivity analysis of
the order-m estimation to different m values of peers randomly drawn from the popula-
tion. We simulate different scenarios of estimated efficiencies, withm = 1, . . . ,150, and test
the difference in distributions between m and m+ 1 (H0 : efficiency m = efficiency m+ 1)
by means of Simar and Zelenyuk (2006) adaptation of the Li test for unknown distribu-
tions.35 Cazals et al. (2002) show that, when m increases and converges to∞, the order-m
estimator converge to the full frontier. Hence, for a finite m the frontier will not embed all
the data points and so is much more robust than other classic non-parametric approaches
(like Data Envelopment Analysis of Free Disposal Hull) to outliers. The results show a
convergence after m = 30 (depicted in Figure 4.2 Appendix 4.10.4) where H0 cannot be
rejected. Therefore, we can confirm that there are no significant differences within the
range of the m value selected.36

A second concern is the validity of environmental variables included in the condi-
tional order-m estimation. We rely on the fact that the level of development of a canton
has an external effect on the efficiency performance of hospitals located within. So, best
performers would be located in developed regions and would attract more patients. To
find out whether environmental variables have a significative effect on the production of
healthcare, we follow the procedure described in Daraio and Simar (2005) and Daraio
and Simar (2007b) and regress the ratio R̂ of estimated conditional and unconditional ef-

ficiency scores (R̂ =
θ̂m(x,y|z)
θ̂m(x,y)

) on the environmental variables Z, using a non-parametric

smoothed regression. As stated by Daraio and Simar (2005), in an output oriented frame-
work, an increasing regression means a favorable Z: the environmental variable acts as a
sort of ”extra input” favorable for the production process.37 Conversely, an unfavorable Z
would be observed with a decreasing regression, where the environmental variable is –in
a certain sense– penalizing the production of the outputs of interest. Then, we test the
significance of each variable.

The results show a significant and favorable impact of GVApc (p-value = 0.004) and
occupancy rate (p-value = 2e-16) on R̂ (Figure 4.4 of Appendix 4.10.4) at the 99% confi-
dence level.38 This validates our hypothesis that hospital performance is being affected by

35The Li (1996) method relies on kernel smoothing to non-parametrically estimate two density func-
tions. Simar and Zelenyuk (2006) modify this method in order to test efficiency values estimated by non-
parametric approaches and provide consistent bootstrap estimates of the p values of the Li test.

36Recall that we have fixed m = 90.
37The value of θ̂m(x,y

∣∣∣ z) would be smaller (more efficient) than θ̂m(x,y) for small values of Z than for
large values. Hence, R̂ will increase with Z, on average.

38Although density does not seem to have a significant effect on R̂, the results do not vary when we take
it off the efficiency estimation.
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the regional income levels, and this effect is being captured with the conditional model.39

Another point to test is the endogeneity of the efficiency value. As a random variable,
there is the possibility that it is correlated with the error term. To test the hypothesis of
no endogeneity (H0 : true correlation equal to 0) we perform a t test between the efficiency
score and the error terms after running equation (4.19). The test confirm that we do not
suffer from endogeneity in the efficiency term (p-value = 1).40

There is also the possibility that the effect of hospital efficiency that we find may be
biased given that our dataset si constructed using information from one single year. In
this respect, patients may be driving their decisions based upon the perceived hospital
performance of previous years. To test this hypothesis, we retrieved the hospital informa-
tion coming from the Annual Survey of Hospital Beds and Discharges and the Survey of
Health Activities and Resources of 2013. We repeated our approximation and calculated
the hospital efficiency score with equation (4.15) and used it in a second stage to estimate
equation (4.23). We find very little variation in the size of the scalar summary values with
an efficiency destination and network effects of -3.059 and -0.017, respectively.

Regarding the spatial econometric specification, we test the robustness of the esti-
mations from equation (4.23) with a new efficiency value. In so doing, we calculate the
efficiency value of equation (4.15) taking out the emergency consults from the outputs.
We consider this alternative estimation of hospital efficiency given that the patients do
not usually have a decision over the hospital where they get treatment in these cases.
The destination and network marginal effects of the hospital efficiency are significant and
comparable (-0.303 and -0.147, respectively).

In addition, we examine whether the results are sensitive to alternative specifications
of the spatial weight matrix Wd . Rather than considering the neighboring dimension for
hospitals that are located in the same canton, we chose to consider those hospitals lo-
cated within time travel distance radius. Thus, we define Wdt to be the inverse of the
shortest time travel distance by car between any pair of hospitals.41In addition, we con-
sider remoteness between hospitals by introducing the inverse of the squared travel time
distance for the weight matrix, W 2

dt, so closer hospitals receive a higher weight.

Table 4.6 show the destination and network effects estimated for our variable of in-
terest, as well as the parameters ρd ,ρo and ρw corresponding to each weight matrix after
running equation (4.23). The results for the destination effects are robust and compara-
ble. The network effects are not statistically significant with W 2

dt, which suggest that the
competition effect (in efficiency) among hospitals is diminishing for those that locate fur-
ther apart. Regarding the spillover effects on migration flows, the results are robust and

39Note that occupancy rate also presents a significant favorable effect on efficiency, which is signaling
that hospitals are making a better use of their resources and capacity to treat incoming patients as found in
Chapter 3

40We performed the same test for all explanatory variables, with comparable results to those of efficiency.
41Defining the spatial weight matrix using a measure of distance between spatial units has commonly

been used in the literature when the data covers healthcare providers (Tosetti et al., 2018)
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comparable in size for origin and destination spillovers (ρo,ρd , respectively), but loose sig-
nificance for origin-destination spillovers. The intuition behind could be associated with
the proximity of hospitals within the region. By using Wdt and W 2

dt, we consider a given
hospital as neighbor if it is located within a radius, so origin-destination spatial spillover
effects do not seem to be happening to those immediate neighbor hospitals but rather on
those located throughout the region (when we use Wd).

Table 4.6: Scalar summary effects, using Wdt and W 2
dt

Wdt W 2
dt

Mean Lower 0.05 Upper 0.95 t-value Mean Lower 0.05 Upper 0.95 t-value
log conditional efficiency
(Destination Eff.)

-0.2139 -0.3248 -0.1348 -3.4104 -0.1798 -0.2653 -0.0600 -2.9476

log conditional efficiency
(Network Eff.)

-0.4854 -0.8970 -0.2000 -2.3507 -0.4017 -0.7996 -0.0368 -1.5881

ρd 0.4757 0.4144 0.4964 15.7229 0.4308 0.2275 0.4695 5.9839
ρo 0.5159 0.3334 0.5428 3.9444 0.5160 0.4362 0.5339 17.8886
ρw -0.1695 -0.2249 1.6087 0.0107 -0.1078 -0.1532 0.0357 -1.1939

Note: Dependent variable is the vector of (logged) migration flows. Bayesian MCMC estimates based on 1000 draws. N=18656
Source: The authors

Another dimension to check the robustness of the results is by considering the spec-
trum of treated diseases. There is the possibility that the pulling effect could be mainly
driven by the presence of specialized hospitals versus other basic hospitals that provide
another scope of treatments. Thus, we split the sample in two different subgroups by dis-
tinguishing between basic and specialized hospitals (this latter include chronic and acute
hospitals).42

Table 4.7 present the scalar summary effects for efficiency and the parameters ρd ,ρo
and ρw for each hospital type. It is not surprising to note that the destination effect for
basic hospitals disappears, suggesting that the pulling effect of hospital efficiency perfor-
mance is mainly being captured by specialized hospitals, because the magnitude of the
estimation is larger. As basic hospitals spread across the country, what seems to be driving
people to travel to high-income regions is the performance of specialized medical institu-
tions, which are more concentrated in those cantons (see Figure 4.4 of Appendix 4.10.5).
However, high performance of an average basic hospital is not enough to attract interre-
gional patients as they are prone to receive medical attention in their local hospital to treat
a common disease. Instead, in the case of specific or severe illnesses, patients will select a
particular hospital on the basis of the quality of the treatment they perceive they will at-
tain over there, which is being captured by our efficiency variable. Nevertheless, spillover
effects are still statistically robust and comparable in both the cases, which means that
both arrangements are valid to guarantee patient mobility across the territory. One ex-
planation endorsing these results (particularly for basic hospitals) is that even though the
increase in efficiency of a given hospital is not enough to attract intraregional patients,

42In our database, acute hospitals embed infectious hospitals, obstetric-gynecological hospitals, pediatric
hospitals, general hospitals that treat acute diseases and other hospitals of specialization. Whilst chronic
hospitals embed oncology and pneumology hospitals
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those hospitals are taking advantage of patient inflows, initially attracted by other hospi-
tals (most likely neighbor specialized hospitals).43

Table 4.7: Scalar summary effects by hospital type

Basic ( N=7743 ) Specialized ( N=2610 )
Mean Lower 0.05 Upper 0.95 t-value Mean Lower 0.05 Upper 0.95 t-value

log conditional efficiency
(Destination Eff.)

-0.0083 -0.0828 0.0664 -0.1822 -0.8088 -1.1888 -0.4502 -3.7294

log conditional efficiency
(Network Eff.)

0.3624 0.2718 0.4556 6.3162 -0.7771 -1.0282 -0.5211 -5.0242

ρd 0.1521 0.1383 0.1634 12.1592 0.3325 0.2874 0.3690 15.6936
ρo 0.2709 0.2586 0.2834 31.9435 0.4225 0.4039 0.4464 12.1845
ρw -0.0324 0.0458 -0.0196 -3.7970 -0.1222 -0.1138 -0.1501 2.1341

Note: Dependent variable is the vector of (logged) migration flows. Bayesian MCMC estimates based on 1000 draws.
Source: The authors

Considering that the efficiency performance of specialized hospitals seems to be the
main determinant to attract interregional patients, one could doubt that patients choose to
travel because they want to receive a better treatment than what they could obtain in their
local hospital, but because there are no other alternatives to treat their disease. Hence, the
decision to travel may be forced by the complexity of the treatment, which is not avail-
able in the hospital of their respective region. To corroborate this, we provide a frequency
table of the top five morbidity causes of interregional patients (i.e., patients that get med-
ical attention in a hospital located in a canton different from where they reside) treated
in specialized hospitals, in Appendix 4.10.6 (Table 4.9). We observe that the main causes
of (interregional) patient migration are mainly related to pregnancy (with more than 6%
of treated patients). The intuition behind lead us to think that, being pregnancy-related
treatments something that is usually planned and monitored, and could be carried out
in any hospital, patients are choosing to incur in travel expenses to receive the best treat-
ment possible in their closest best-performing hospitals (located in developed cantons).44

This is backed up in Table 4.10 of Appendix 4.10.6, where we present the amount of pa-
tients treated in hospitals located at the three high-income cantons in Ecuador (Quito,
Guayaquil and Cuenca), divided by the patient’s province of residence.45 The table shows
that, for example, in Cuenca the majority of interregional patients belong to neighboring
cantons located in the same province (and that holds for Quito and Guayaquil).

Furthermore, we plot two figures in Appendix 4.10.6. Figure 4.5 describes the demo-
graphics (available in our dataset) of the patients with the top five morbidity causes, while
Figure 4.6 describes the public entity embedding the public hospital (MSP, Social Security

43For example, patients traveling to get specialized medical attention could incur in additional costs that
are not covered by their insurance, but similar treatments could be offered in alternative public hospitals.
Other scenario could imply that patients would seek medical attention in adjacent hospitals if the waiting
time for specialized ones is long enough.

44Note that other morbidity causes relate to appendicitis or calculus of the gallbladder, which are not as
complex as cancer, for example.

45Remind that, in Ecuador, the provinces are the first-level administrative division. The cantons of Quito,
Guayaquil and Cuenca belong to the provinces of Pichincha, Guayas and Azuay, respectively.
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hospitals, and other public hospitals patronized by their respective municipality). Unfor-
tunately, our database does not account with information about the patient’s income level,
but it includes their self-perceived ethnicity which can be used to proxy this variable.46

Figure 4.5 shows that more than 60% of the interregional patients describe themselves
as mixed-race. In addition, Figure 4.6 shows that mixed-race and white patients are the
ones that make use of the social security institutions. These former are the ones that ac-
count with a formal job, hence, having access to social security services. More than 90%
of indigenous and afro-ecuadorian (interregional) patients get medical attention in MSP
hospitals (which offer free healthcare). The descriptives support our theory that wealthier
patients are more prone to seek medical attention outside their area of residence. Also,
they seem to be choosing to go beyond the regional borders to treat their pathologies,
rather than being forced by the complexity of their disease.

Our results open up an important discussion in terms of policy implications. Hospital
efficiency performance seems to be capturing a deal of quality perception by public hos-
pital patients that cannot be neglected. In this respect, policy makers need to take into
consideration that the effect of an unexpected healthcare reform could entail a broader
spectrum of consequences beyond the ones addressed to those healthcare institutions ini-
tially targeted. For example, new reforms that decrease the barriers to access to more
specialized and sophisticated treatments (only available in specialized hospitals) need to
be well planned and allocated. If the increase of the demand driven by these reforms is
not controlled, they could lead to congestion effects that can impact the performance of
specialized hospitals. Due to spillover effects, neighboring hospitals (including the ba-
sic ones) could experience detrimental consequences,47 leading to a deterioration of the
regional healthcare performance.

So far, Ecuadorian healthcare reforms have been accompanied by an increase of hos-
pital efficiency, and hospitals adapted the spare resources to treat the higher inflow of
patients, but those reforms have been mainly focused on offering general treatment in
public hospitals that are abundant and spread around quite homogeneously across the
country. However, there is a lower supply of specialized hospitals which are much more
territorially concentrated. These findings highlight the importance to implement tailored
regional healthcare policies.

As Brekke et al. (2014) suggest, high-income regions could be benefiting from welfare
improvements, as we found a competition effect in efficiency among hospitals within the
same regions that leads to higher regional performance and quality. However, the welfare
effects could generate asymmetric effects as low-income regions are not accounting with
high-performing specialized hospitals, and only the patients that move to other regions
benefit from these welfare improvements. Future public investment could be focused on

46Mixed-race population is more likely to belong to the middle-income class, while indigenous, afro-
ecuadorian, and other indigenous ethnicities (apart from white) are more likely to belong the low-income
class.

47For example, they could be obliged to attend bigger amount of complex pathologies for which they do
not have the medical resources to treat.
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increasing specialized services for hospital clusters of low-income areas. More supply of
specialized hospitals could attract patients and motivate competition among hospitals to
provide welfare improvements and reduce the quality gap between regions.

4.9 Conclusions

This study aims to analyze whether the higher efficiency performance of Ecuadorian pub-
lic hospitals is resulting in a higher inflow of interregional patients to a destination hospi-
tal, and whether this is also leading to a higher inflow of patients to neighboring hospitals
within the same region. To determine the effect of efficiency on the patient migration net-
work, we follow an innovative two-stage strategy where the first step is to estimate robust
conditional order-m efficiency values, based on the economic concept of Pareto efficient
allocation and the second step makes use of a spatial Durbin interaction model to estimate
the effect of hospital efficiency in patient migration flows, and separates the spillover ef-
fects in the form of larger inflows of patients for neighboring hospitals. We contribute
to the empirical applied literature by estimating a model that considers different origins
and destinations in the OD dyad, that—to the best of our knowledge—has not yet been
applied.

We are referring to a structure in which regional disparities are modeled by means of
healthcare asymmetries over time, producing a healthcare performance gap across regions
and motivating a patient mobilization pattern since the majority of the influx of patients
was concentrated in developed regions. Our results support the hypothesis that hospital
efficiency performance is a strong pulling factor for this inflow, and the direction of this
effect is robust according to different specifications and estimation methods. However,
when we split the sample separating basic and specialized hospitals, this effect disappears
for the former, but gets even stronger for the latter. In addition, we identify spillover
effects in the mobilization flows, not just in the form of patients arriving at neighboring
destination hospitals from an origin canton, but from patients arriving at a given hospital
from cantons close to that origin, and arriving at adjacent hospitals as well.

This evidence has two implications. First, the efficiency effect suggests that patients
are perceiving—to some extent—hospital performance as a proxy for hospital quality that
is encouraging cross-border migration to receive a better medical treatment than what
they can get in their local area. However, this decision is based on the availability of
specialized hospitals in the destination region, which are mostly concentrated in highly
developed areas. The possibility also exists that other hospitals are referring patients for
complex diseases, as they do not possess the resources to treat them. Second, spillover
effects present in the data are suggesting that other hospitals neighboring the special-
ized ones are also capturing some of those inflows of patients. According to Brekke et al.
(2014), if there were competition among hospitals (which we find with the statistical sig-
nificance of the network effects), this could entail a beneficial effect on the welfare of the
population, as more competition encourages higher quality of care. However, hospitals
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from less-developed regions might not be benefiting from that welfare increase, as there
is no incentive to provide better medical attention and hence just those that travel beyond
regional borders may enjoy it.

Our results deliver useful suggestions for policy makers. On the one hand, new re-
forms need to be well-planned not just in terms of territorial discrepancies but also in
terms of hospital specialization. For example, decreasing the limitations to specialized
care could incur an increase of healthcare demand, that, if not controlled, could lead to
negative consequences like congestion effects. Negative shocks to specialized hospitals
induce a negative impact on their performance as well as the demand for the hospitals
that surround them and as consequence, affects the efficiency of the hospitals of the whole
region and the welfare of the population. Public authorities could identify those key play-
ers in the healthcare network to target strengthening reforms that could encourage better
performance within the public healthcare system of the region due to spillover effects.

Public healthcare policy can devote a larger share of their resources to targeting invest-
ment in those less-developed regions. The significant origin-based spatial dependence
suggests the existence of clusters of less-developed cantons that are recording an outflow
of patients. If there were not enough demand for local hospitals to compete, there would
be no incentive to increase the quality of care over there. Therefore, public investment
could be focused on the creation of specialized hospitals –or specialized wards in exist-
ing hospitals– in these regions to attract more demand. Once the inflow of patients is
stablished, new spillover effects could arise, benefiting adjacent hospitals and bringing
improvements both for the regional healthcare performance and welfare so as to benefit
the low-income patients of that place, who cannot afford to receive treatment in other
cantons.

Finally, future research implications can be derived from this study. As pointed out,
the effect of efficiency performance on migration flows could be driven by the percep-
tion of patients selecting a given hospital (where they perceive they could receive better
medical treatment) or by other hospitals referring highly complex cases to those best-
performers (or both). Unfortunately, our dataset does not account for information on pa-
tient referrals to disentangle the size of these effects, but it opens up interesting method-
ological research strategies to be investigated in future studies.

Further research can also aim to explore the determinants of maternal mobility. The
exploratory analysis performed in our study points to an outflow of patients looking for
obstetric services in (high-performing) specialized hospitals. These preliminary results
suggest a bad quality of public obstetric healthcare in hospitals locating in less-developed
areas. In this respect, future studies can focus on identifying the hospital’s (or regional)
features that produce this pushing effect. The results may be used to address important
issues such as reducing child or maternal mortality in low-income areas of Ecuador.
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4.10 Appendix

4.10.1 Institutional setting

The Ecuadorian healthcare system accounts for public and private service sectors. The
public sector accounts for the majority of the insured population, with a 66% covered by
the year 2014, according to the Survey of Life Conditions. Private insurance accounts for
6% only. The institutions belonging to the public healthcare sector are:

1. The Public Ministry of Health (MSP) and the Ministry of Social and Economic In-
clusion (MIES), which provide health services to the whole population, including those
that do not account with any type of insurance.

2. The social security institutions which embed the Ecuadorian Social Security In-
stitute (IESS), the Social Security Institute of the Armed Forces (ISSFA) and the Social
Security Institute of the National Police (ISSPOL). The former provides medical services
to all social security contributors; while the latter two grant medical attention to the army
and national police corps, respectively.

Ecuador is a country that has suffered from a continuous process of healthcare dete-
rioration that began in the 1990s, with a period of democratic instability that hinged the
performance of healthcare with a reduction of budget for healthcare provision, worsening
infrastructure due to lack of investment, low quality of healthcare services and a deficient
institutional structure (Granda and Jimenez, 2019).

In 2008 the new constitution came into force and many reforms have been carried
out to promote access to medical treatment and reduce financial and social barriers to
healthcare. For instance, the gratuity of medical services provided by the MSP in 2008 or
mandatory enrollment of employees to social security in 2011. After the implementation
of these policies, there was in increase in the annual growth rate of active beneficiaries
(Orellana et al., 2017), and a rise of 40% of patients attended in public hospitals between
2006 and 2014. These reforms were supported by an increasing public investment for the
core system, mostly involving the endowment of medical infrastructure and training.

4.10.2 Bayesian Markov Chain Monte Carlo estimation

In this Appendix, we describe the Bayesian MCMC robust estimation proposed in LeSage
and Pace (2009). We depart from the spatial econometric interaction model specified in
equation (4.20) and introduce a set of latent variance scalars for each observation, so we
have:

ε ∼N (0,σ2Ṽ )
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Ṽii = Vi , i = 1, ...,N

V = vec(R)

R =


v11 v12 . . . v1nd
v21 v22 v2nd
...

. . .
...

vno1 vnond

 (4.24)

Estimates of the N variance scalars are obtained using an iid χ2(λ) prior on each vij
contained in matrix R, with mean of unity and a mode and variance that depend on the
hyperparameter λ of the prior.

In order to obtain the MCMC estimations, we need to sample sequentially from the set
of full conditional distributions for all the parameter of the model: δ,σ ,ρd ,ρo,ρw and Ṽii ,
where δ = [α,βd ,βo,γ]′.

The conditional distributions for δ and σ2 are stablished by assigning uninformative
priors to the parameters δ, and independent inverse gamma distribution (IG(a,b), with
a = b = 0) prior to σ2. We rely on a uniform prior over the range −1 < ρd ,ρo,ρw < 1
and impose stability restrictions such that

∑
i ρi > −1,

∑
i ρi < 1, i = d,o,w using rejection

sampling. The prior for the variance scalars vij are based on Geweke’s iid chi-squared
with λ degrees of freedom. The prior distributions, indicated with π are expressed as:

π(δ) ∝N (c,T ), c = 0,T →∞ (4.25)

π(λ/vij) ∼ iidχ2(λ) (4.26)

π(σ2) ∼ IG(a,b) (4.27)

π(ρi) ∼U (−1,1), i = d,o,w (4.28)

The full conditional distribution for the parameters δ, σ2, and each variance scalar
vij can be taken from LeSage and Pace (2009).48 In addition, we need to sample each
of the three parameters ρd ,ρo,ρw conditional on the two other dependence parameters
and the remaining parameters (δ,σ2,V ), which is carried out using a Metropolis-Hastings
algorithm based on a tuned normal random walk.49

48Refer to LeSage and Pace (2009) Chapter 8
49Refer to LeSage and Pace (2009) Chapter 5
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4.10.3 Variable description

Table 4.8: Variable description

Variable Description Variable construction
Output
Number of discharges
(weighted)

Treated patients in a given hospital
Number of discharges*Case-Mix
index

Morbidity consults Morbidity consults in a given hospital
Total number of morbidity con-
sults

Emergency consults Emergency consults in a given hospital
Total number of emergency con-
sults

Survival rate
Rate of non-deceased discharged patients in a
given hospital

1-hospital mortality rate

Inputs

Number of physicians
Physicians and general physicians in a given
hospital

Total number of physicians

Number of beds Total amount of beds per hospital Total number of beds

Number of hospital
personnel

Medical staff not including physicians. E.g.
Nurses, technologists, administrative staff,
dentist, etc.

Total number of hospital person-
nel

Number of equipment
and infrastructure

Physical infrastructure (surgery rooms, in-
tensive care rooms, etc.) and medical equip-
ment (imaging, diagnosis, sterilization, etc.)

Total number of equipment and
infrastructure

Environmental Vari-
ables
Per-capita GVA Cantonal per-capita Gross Value Added GVA/cantonal population

Density Cantonal population density
Cantonal population/Canton’s
area in Km2

Occupancy rate
Incoming patients days of care per beds avail-
able in a given hospital

(Inpatient days of care/Bed days
available) *100

Cantonal Mortality
Percentage of deceased patients in a given
canton (per 1000 population) relative to can-
tonal population

Cantonal mortality*1000

NBI
Percentage of households that present at least
one unsatisfied basic necessity, relative to the
total households in a respective canton

NBI household/Total households

Insurance Rate
Percentage of insured population relative to
the cantonal population

Population insured/cantonal pop-
ulation

Source: The authors.
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4.10.4 Order-m robustness analysis

Figure 4.2: Order-m p-values

135



Figure 4.3: Conditional order-m partial regression plots
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4.10.5 Hospital distribution

Figure 4.4: Territorial distribution of basic and specialized hospitals
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4.10.6 Interregional patients’ demographics

The information provided in this Appendix is collected for the interregional patients
treated for the top five morbidity causes in specialized hospitals.

Table 4.9: Top five morbidity causes of interregional patients in specialized hospitals

Morbidity cause Total patients Percentage
Pregnancy (single spontanous delivery) 8307 4.66
Acute appendicitis 5068 2.84
Pregnancy (caesarean section) 3821 2.14
Calculus of the gallbladder (without cholecystitis) 3143 1.76
Pneumonia 3012 1.69
Note: Percentages calculated relative to the total amount of patients treated in specialized hospitals
Source: The authors.

Table 4.10: Total interregional patients by canton and province of residence

Province of residence/Canton
of the hospital

Cuenca Guayaquil Quito

Azuay 284 18 1
Bolı́var 1 23 40
Cañar 119 41 2
Carchi 0 1 35
Cotopaxi 1 12 76
Chimborazo 7 21 35
El Oro 49 50 15
Esmeraldas 0 52 62
Guayas 23 1709 9
Imbabura 1 3 89
Loja 28 8 14
Los Rı́os 2 260 18
Manabı́ 7 152 43
Morona Santiago 62 1 7
Napo 0 1 20
Pastaza 0 15 10
Pichincha 4 15 588
Tungurahua 2 4 36
Zamora Chinchipe 5 2 1
Galápagos 0 5 3
Sucumbı́os 1 3 37
Orellana 0 5 35
Santo Domingo de los Tsáchilas 0 16 63
Santa Elena 0 69 2
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Table 4.10 (continued)

Province of residence/Canton
of the hospital

Cuenca Guayaquil Quito

Exterior 1 2 1

Source: The author.

Figure 4.5: Share of interregional patients by gender and ethnic group.

Note: Montubio is the name given to the peasant of the Ecuadorian coast
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Figure 4.6: Share of interregional patients by hospital’s public entity and ethnic group.

Note: Montubio is the name given to the peasant of the Ecuadorian coast
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Chapter 5

Conclusions

The objective of this dissertation is to assess the efficiency performance of the public
healthcare system of a developing country such as Ecuador. This country experienced
a series of reforms aimed at guaranteeing higher equity in healthcare access and universal
coverage to overcome a deficient healthcare system that was deteriorated by erroneous
political reforms, economics crises and profound regional heterogeneities. With this in
mind, our scope is to contribute to the academic discussion of healthcare efficiency in de-
veloping countries. This topic has been left aside in the literature and has received little
attention in Ecuador.

The focus of our research hover at the implementation of the new constitution in 2008.
This event represents a milestone in the Ecuadorian history, bringing upon new healthcare
and social security reforms that decreased the barriers of access to medical attention to
the population. These reforms were accompanied by a vast deployment of public invest-
ment, mainly directed towards new medical infrastructure and training to improve the
healthcare system’s performance. However, in the short-run, this performance could have
been affected by the sudden increase in demand (derived from the healthcare reforms).

This dissertation has addressed selected and relevant issues associated with this effect
in hospital efficiency performance. In Chapter 2, we take a first look to the evolution
of hospital efficiency over the period 2006-2014 (considering two years before the new
Constitution came into force), and analyze statistically significant changes on its behavior
after 2008. In so doing, we consider the technological asymmetries among public hos-
pitals in the country, as a consequence of a marked spatial concentration of healthcare
resources. Our findings emphasize a significant increasing trend in hospital performance
after 2008, especially for low and intermediate-tech hospitals who seem to have been able
to adapt their spare medical resources and capacity –inefficiently utilized- to the patient
inflow in the short-term.

Another important aspect we took into consideration in our analysis is the evident
territorial concentration of hospitals and healthcare resources, which may be resulting in
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agglomeration economies that lead to interactions among hospitals limited to the spatial
pattern, generating spillover effects that shape their strategies. In Chapter 3, we pro-
vide evidence that these spillover effects are translating into strategic interactions among
hospitals in terms of efficiency. That is, public hospitals are reacting to changes in the
efficiency performance of their closest neighbors. Specifically, the increase in the effi-
ciency performance of a given hospital is producing increases in efficiency of neighboring
hospitals, entailing strategic complementarities due to global spillover effects.

We go deeper into this analysis and explore the question of whether demand increases
have direct and indirect (spillover) effects on hospital efficiency and whether these effects
change after 2008 (approval of the new constitution). We find that –independently to the
hospitals’ technological endowment– the increase in demand has a positive effect on the
hospitals’ efficiency and to those closest neighbors (through spillover effects), and these
effects have been reinforced after 2008. These findings support the results of Chapter
1 and confirm that hospitals have been able to adapt to demand changes stemming from
new reforms by making a more efficient use of their spare capacity and medical resources.

The importance that demand changes have on the improvement of hospital perfor-
mance raise the interest to understand the determinants of patient mobilization. In par-
ticular, in a country where those high-performing hospitals are mainly located in devel-
oped regions, encouraging interregional patient mobilization to receive the best medical
treatment. In Chapter 4, we conclude that hospitals’ efficiency performance has a pulling
effect to attract patients from neighboring (less-developed) regions. However, this effect is
significant for specialized hospitals –which are more concentrated in developed areas– as
opposed to basic hospitals, which are more homogeneously distributed across the country.

In sum, contrary to what should have been expected, the increase of medical treatment
demand after the healthcare reform promoted by the new Constitution of 2008 had a pos-
itive effect on hospital performance, both through direct and indirect (spillover) effects.
The inefficient use of spare resources and capacity of the hospitals before the reform,
jointly with the delay that hospitals had to adapt to the upcoming inflow of patients and
the public investment deployed in public health could be strong drivers of this effect. An
important determinant of this demand is the performance shown by specialized hospitals,
concentrated mainly in developed regions. These results suggest that specialized hospi-
tals are the key players. They are attracting patients form neighboring regions pushing
them to neighboring local hospitals, enhancing competition effects that may be translating
into higher hospital quality. However, as emphasized in Chapter 2, the average efficiency
after 2008 decreased. Nevertheless, the negative effects cannot be captured in our model,
as shown in Chapter 3, and thus opens new questions for future research.
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5.1 Methodological matters

In this thesis, we exploited a novel database, constructed with public information coming
from different official institutions. We managed to retrieve detailed information of hos-
pital and regional features over the period of 2006-2014. We have implemented method-
ological innovations over this dissertation. However, the results and conclusions are often
conditioned by data availability. Overall, the lack of information that allows to prop-
erly proxy hospital quality constitutes one of the main limitations throughout the thesis.
Quality indicators, commonly used in the applied literature, such as readmission rates or
nosocomial infections were not available in the databases.

Another relevant piece of information refers to hospital budgets and public invest-
ment. As stated in Chapter 3, hospitals may adapt their behavior if they face financial
pressures, specially in developing countries with limited resources and healthcare budget
such as Ecuador. The investment deployed in public healthcare could have likely affected
hospital efficiency by reducing financial pressures and cost limitations. In this respect, a
significant extension of this research would involve exploiting information on healthcare
investment and new datasources that allow us to proxy hospital quality and bring more
elements for better understanding the public healthcare’s quality-efficiency relationship.

Another improvement would be to enlarge the time period with information stem-
ming from hospital surveys available after 2014. The main inconvenient is the lack of a
common identifier, not published after 2014, but is available upon request. In this spirit,
a potential extension of our research question is thus to enlarge the time period of analysis
to achieve results referring to the medium-term.

Another potential issue may come form the potentials setback of two-stage approaches
in Chapter 3. Future research can innovate with one-stage SFA panel models that account
for hospital heterogeneity, addressing spatial dependence to control for possible bias in
the efficiency estimation of two-stage approaches.

5.2 Policy implications

Throughout this dissertation we have observed the low efficiency performance that public
hospitals present in the period of analysis and the challenges that policy and decision-
makers are forced to face. All in all, the increase of demand derived from the health-
care reforms after the new constitution was implemented seems to have benefited from
the performance of public hospitals. Nevertheless, the welfare improvements translated
from this may differ on the basis of the regional development of the country. If a single
policy recommendation had to be outlined, it would consist on designing clear and tai-
lored policy decisions for the distribution of public funding across the country. To design
these policies, we suggest to take into account three key features: regional development,
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hospital technological endowment and specialization.

Our findings suggest that efficient specialized hospitals are those that are attracting
patients to receive medical treatments. More demand is triggering a better performance
for those hospitals, but also for neighboring ones, who react by increasing their own ef-
ficiency to capture some of this patient inflow, by means of strategic complementarities
among public hospitals located within a given area (due to the spatial dependence). How-
ever, these positive effects on efficiency are different depending on the technological en-
dowment of the hospital. High and intermediate-tech hospitals –mainly concentrated in
developed regions– show a positive association between efficiency and concentration of
patients, as opposed to low-tech hospitals. In this respect, decision-makers could focus
on reforms aimed at straightening hospital performance, without the need to deploying
vast quantities of public investment in the construction of more hospitals, for example.
But rather, they could exploit spillover effects among hospitals of developed regions, en-
couraging competition with reforms that promote quality and efficiency improvement of
existing hospitals.

In this context, clear criteria for public funding allocation and stronger regulation of
resource consumption is essential to control for cost inflation and cream skimming. In
addition, public authorities need to be aware that, even if changes in demand –in the
short-term– have had an overall positive effect on public hospitals’ performance, poten-
tial decisions that translate into additional demand (specially for specialized hospitals)
may have a counter productive effect on the performance of public hospitals –located in
developed areas– if this increase translates into congestion effects.

Conversely, our results evidence the poor performance of public hospitals, mainly lo-
cated in less-developed areas, with a continuous regional outflow of patients that seek
specialized treatment in high-performing hospitals. This outflow of patients in these clus-
ters of less-developed regions suggest a clear need of specialized treatment that could be
the target of public investment. The construction of specialized hospitals or the imple-
mentation of specialization wards in the existing ones may be a sustainable strategy to
fuel demand for medical treatment in these areas and stimulate competition that may
translate into higher performance and quality.

As a final remark, this dissertation constitutes one of the first attempts to analyze
hospital efficiency performance over a period characterized by one of the biggest mile-
stones of Ecuadorian reforms in the last twenty years. We have assessed the efficiency of
the Ecuadorian public healthcare system and addressed it under a framework of analy-
sis where the spatial structure plays a key role. However, our research is a first step to
explore questions that has been barely touched in the applied literature for Latin Amer-
ican countries. In this line, there is still much ground to cover that could be exploited
in the future. For example, in this thesis, we focused on the public healthcare system of
Ecuador. Any interaction between the public and private sector (the so-called private and
public partnerships) are topics of interest that can be addresses in future work and pro-
vide useful insights for policy recommendations. As assessed, this thesis is intended as a
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first contribution to the academic debate and a tool for decision makers. But also to plant
seed for future research in a fascinating field of work that can contribute to the welfare
improvement of developing economies.
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