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Abstract
Neuronal networks are today hypothesized to the basis for the computing
capabilities of biological nervous systems. In the same manner, artifi-
cial neuronal systems are intensively exploited for a diversity of indus-
trial and scientific applications. However, how information is represented
and processed by these networks remains under debate, meaning that it
is not clear which sets of neuronal activity features are useful for com-
putation. In this thesis, I present a set of results that link the first-order
statistics of neuronal activity with behavior, in the general context of en-
coding/decoding to analyse experimental data collected while non human
primates performed a working memory task. Subsequently, I go beyond
the first-order and show that the second-order statistics of neuronal activ-
ity in reservoir computing, a recurrent artificial network model, make up
a robust candidate for information representation and transmission for the
classification of multivariate inputs.

Keywords: computational neuroscience, machine learning, neuronal
representation, statistical features, covariance coding, reservoir comput-
ing, supervised learning, classification, multivariate time series, bio-inspired
computing, covariance perceptron, working memory
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Resumen
Las redes neuronales se presentan hoy, hipotéticamente, como las res-
ponsables de las capacidades computacionales de los sistemas nerviosos
biológicos. De la misma manera, los sistemas neuronales artificiales son
intensamente explotados en una diversidad de aplicaciones industriales y
cientı́ficas. No obstante, cómo la información es representada y procesa-
da por estas redes está aún sujeto a debate. Es decir, no está claro qué
propiedades de la actividad neuronal son útiles para llevar a cabo compu-
taciones. En esta tesis, presento un conjunto de resultados que relaciona
el primer orden estadı́stico de la actividad neuronal con comportamiento,
en el contexto general de codificación/decodificación, para analizar da-
tos recolectados mientras primates no humanos realizaban una tarea de
memoria de trabajo. Subsecuentemente, voy más allá del primer orden
y muestro que las estadı́sticas de segundo orden en computación de re-
servorios, un modelo de red neuronal artificial y recurrente, constituyen
un candidato robusto para la representación y transmisión de información
con el fin de clasificar señales multidimensionales.

Palabras clave: neurociencia computacional, aprendizaje automático,
representación neuronal, propiedades estadı́sticas, codificación por cova-
rianzas, computación de reservorios, aprendizaje supervisado, clasifica-
ción, series temporales multidimensionales, computación bio-inspirada,
perceptrón de covarianza, memoria de trabajo
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Preface
Understanding how biological neuronal systems process information

is a key goal in computational neuroscience, given their outstanding per-
formance for diverse input types, their flexibility and their impressive
generalization properties. Likewise, building machines that display these
properties is a major goal in machine learning (or artificial intelligence in
general). This thesis constitutes an effort in both these directions, inde-
pendently, and is structured as follows.

Chapter 1 provides as introduction, where concepts such as neuronal
representations, encoding/decoding, neuronal networks (perceptron and
reservoir computing), learning schemes and the problem of time series
classification are presented.

Chapter 2 is concerned with the study of biological neuronal repre-
sentations. Particularly, we aim to elucidate how (mnemonic) stimuli are
represented in the neuronal activity of simultaneously recorded popula-
tions of non human primates performing a working memory task within
a naturalistic virtual reality environment. This dataset was collected and
kindly shared by Julio Martı́nez-Trujillo’s lab at the University of Western
Ontario (Canada). The introductory section of this chapter contains a re-
view of relevant working memory literature and further states the specific
question we address with the proposed experimental set-up: whether neu-
ronal populations in lateral prefrontal cortex sustain mnemonic stimulus
representations when dynamic visual activity is underway.

Chapter 3 and Chapter 4 investigate within-trial variability, a ubiq-
uitous trait of biological neuronal systems, as a basis for information
representations to perform time series classification of real and synthetic
datasets with reservoir computing systems. While the use of covariances
as features for classification has been previously studied in other settings,
we here do it for the first time for reservoir computing networks. We ex-
amine whether these recurrent models of cortex can represent or encode
input properties useful for classification in their correlated activity, aim-
ing towards the general question of unifying information representation
and learning in biologically inspired systems under a consistent frame-
work. We employ numerical simulations and analytical approaches to
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expose relationships between input and reservoir statistics and their link
with classification performance. In Chapter 3, we follow a conventional
machine learning approach that maps static features to class probability
vectors with a multinomial logistic regression classifier. We show that
the use of covariances boosts performance, reaching high accuracy levels
with low reservoir resources (i.e. number of neurons). Later, in Chapter
4, we focus on a biologically more realistic setting that maps time series
to time series, by building on previous work on the covariance perceptron.
Using a reservoir to filter the input signals, we find that covariance-based
classification accuracy stays high (matching or outperfoming a classical
mean-based perceptron), while the training cost for the covariance per-
ceptron readout is reduced, since we avoid recurrent connections at the
output layer. Our work takes a step further towards theoretically investi-
gating second-order information processing in neuronal networks.

Chapter 5 provides a general discussion of the results presented in pre-
vious chapters, points to the limitations and corresponding improvements
of the results presented here to underlie future perspectives for neuronal
information processing.
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Chapter 1

INTRODUCTION

Biological neuronal networks are assumed to process information in terms
of sequences of spikes, which are events resulting from the excitation of
a neuron beyond a threshold. From an information processing point of
view, in the context of perception leading to action, neuronal ensembles
extract informational features or properties embedded in input sequences
that are relevant for stimulus identification. Downstream, networks emit
output spike sequences with embedded information to produce a behav-
ioral response (top Fig 1.1). Associative relationships with varying de-
gree of predictive power between stimulus/action and neuronal activity
features fall under the umbrella of neuronal representations or neuronal
code, a topic that has been intensively explored in computational neuro-
science in the past decades [1, 2, 3, 4, 5, 6].

Framed from a machine learning perspective, the classification of in-
put features and their transformation are an important aspect of neuronal
coding. When features from the input signal are mapped by a neuronal
network to features in the output signal in a class dependent fashion (bot-
tom Fig 1.1), decision rules applied to the output features can lead to an
input-dependent response. Two important questions that remain, both in
biological and in artificial networks, are:

1. How do neurons represent stimulus information?
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Figure 1.1: Information processing in biological and artificial systems.
Top: a stimulus enters the network as an input time series and, after some
processing, an output time series is emitted to produce a behavioral re-
sponse. In biological systems, these time series are spike sequences. Bot-
tom: information processing in artificial systems, from a machine learn-
ing point of view. Relevant features of the input time series, computed
over a temporal window (colored rectangles in top figure), are mapped by
some model or algorithm to output features upon which a decision rule
is applied. In this thesis, we study mappings implemented via biological
and artificial networks. Adapted from [7].

2. How can networks of neurons efficiently process these representa-
tions?

These are the main issues addressed in this thesis, with a strong focus on
the temporal evolution of neuronal activity.

This introductory chapter first offers a background on the neuroscien-
tific study of biological neuronal representations, introducing the encod-
ing/decoding framework with an emphasis in populations (Section 1.1)
and the role of correlated activity (Section 1.2). Afterwards, the focus
is switched to bio-inspired networks (Section 1.3). We discuss learning
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schemes (supervised and unsupervised), input/output features mappings
and network architectures. We then introduce in detail the perceptron
(Section 1.4) and reservoir computing (Section 1.5), two network mod-
els that are the focus of Chapters 3 and 4. Chapter 2 presents the results
of a study on biological neuronal representations in non human primates.
Chapter 3 and Chapter 4 constitute the bulk of this work and are dedi-
cated to the exploration of bio-inspired representations in artificial neu-
ronal networks. Chapter 5 provides a general discussion of the results
obtained during the development of this thesis, as well as future perspec-
tives. Along this first chapter, we point to the reader how specific sections
or concepts are related to subsequent chapters.

1.1 The encoding/decoding framework

From a signal processing (i.e. information processing) point of view,
perception-induced behavior can be viewed as an instantiation of an input-
process-output model. To fix ideas, let us consider that Alice is asking a
question to Bob, as in Fig 1.1. The stimulus s (Alice’s voice) is a phys-
ical phenomenon, a mechanical wave, that propagates through the air as
pressure variations. When reaching Bob’s ear, these vibrations produce
movement in hair cells located in the cochlea, which is later transduced
into electrical activity in a frequency-dependent manner and passed to
downstream areas. The full process, then, elicits a cascade of spiking ac-
tivity n in neuronal populations within auditory brain areas. Thus, from
Bob’s brain point of view, the electrical activity generated at the sensory
organs by Alice’s voice has to be processed to identify the words spoken
and generate an answer. This constitutes a high-level cognitive example
of perception leading to action. Indeed, speech processing is a complex
task that can be hierarchically broken down into several sub-processes:
speech recognition (Bob recognizes the phonemes that make up Alice’s
speech as words or sentences with specific associated meaning), infor-
mation retrieval (Bob recalls where the train station is, a knowledge he
had previously collected) and speech production (Bob finally answers the
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question). In this thesis, we work with simplified instances of the first two
sub-processes: word recognition (Chapter 3 and Chapter 4) and informa-
tion ‘retrieval’ (short-term information maintenance in Chapter 2).

Traditionally, the study of neuronal representations (particularly in be-
having animals) involves experimental set-ups where the stimulus s is of
lower complexity than in our previous example (e.g. a single frequency
tone instead of the complex sequence of phonemes that make up speech).
Researchers can carefully control and manipulate s, while simultaneously
recording neuronal activity n. Mathematical models that aim to predict
n given s are known as encoding models. Those that do the converse
and predict stimulus (or response) s from observed neuronal activity n
are referred to as decoding models [8]. In this context, decoding can be
interpreted as inverse encoding [6].

1.1.1 Neuronal variability and probabilistic descriptions

While some experiments performed in vitro or in anaesthetized animals
with carefully controlled non-constant stimulation have shown that neu-
ronal spiking activity can be reproducible (even at the 1 milisecond time
scale) across trials [9, 10, 11], this finding is not habitual in awake and be-
having animals (but see [12] or [13]). In fact, spiking activity is typically
variable: the number of spikes and the emission times do not replicate
across trials [14, 15, 16, 17, 18, 19]. This occurs for stimuli across sev-
eral domains, as well as self-initiated behaviors, such as motor commands
[20]. The origins of variability are to present day a matter of discussion,
although it has been attributed to several different factors. These include
the internal state of the animal (arousal, attention), unobserved variables
(brain activity in unrecorded areas or fluctuations in cell membrane po-
tential or other metabolic variables), or even wrongly imposed external
time reference frames, to name a few [20, 21].

Thus, to overcome variability, encoding and decoding models are bet-
ter described in probabilistic terms [2, 3, 4, 22]. From the encoding per-
spective, we characterize the conditional probability of stimulus s in evok-
ing neuronal response n, P (n|s) [8]. Thus, the observer’s point of view
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is taken. From the decoding perspective, we instead infer the probability
of s being present in the environment given that we observe the neuronal
response n, P (s|n) [8]. Then, ‘the brain’s’ point of view is taken [1, 6].
These two perspectives are related by Bayes’ rule:

P (n|s)P (s) = P (s|n)P (n); (1.1)

where P (s) and P (n) are the marginal probabilities of stimuli and re-
sponses respectively, and each side of the equation equals the joint prob-
ability distribution P (n, s) [3, 22]. In practice, the modelling of these
probabilities can be carried out with different tools, such as statistical
Bayesian inference [8] or other machine learning methods.

A comprehensive theory for information processing in the brain thus
requires the specification of spike-based representations: what patterns or
statistical features in the spiking sequence n of neuronal ensembles are
informative for perception and behavior [2, 3, 4, 7].

1.2 Neuronal activity features: averages and
correlations

A historically de facto approach in neurophysiology data analysis is to
characterize spiking activity by averaging or collapsing spike counts. For
each neuron, the averaging procedure can be conducted in different ways.
Particularly, we distinguish between averaging only within trials and av-
eraging within and across trials (from here on termed simply across trials
averaging) [2, 3, 23]. Both these procedures require that a time resolution
d be specified for the within trial averaging (Fig 1.2).

When the averaging is conducted across trials, spiking activity is de-
scribed by peri/post stimulus time histograms (PSTHs) and tuning curves
(top Fig 1.2). PSTHs show the evolution of the mean firing rate within a
stereotypical trial and allow to detect increases or decreases in activity that
correlate with trial events, such as stimulus onset or offset. Thus, PSTHs
display the (averaged across trials) time-resolved trajectory of neuronal
activity. Tuning curves display how stimulus-conditioned mean firing rate
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varies across the whole stimulus set, within a certain trial epoch (as spec-
ified by the resolution d) [24, 25]. A classical example is the tuning curve
for orientation selectivity in visual cortex: firing rate modulations pro-
duced by the orientation of a light bar with respect to a neuron’s receptive
field [26]. In neuroscience jargon, a neuron is said to encode or be tuned
to a certain stimulus when its activity is significantly modulated by stimu-
lus variations. These constitute the earliest descriptions of features (firing
rate) of neuronal activity for information representation.

Under the view that the average across trials is the relevant informa-
tion resulting from the stimulus encoding, any trial-to-trial deviation from
the mean response (also termed trial-to-trial variability) is considered to
be noise [27]. Nonetheless, neuronal variability has been suggested to
have a different role other than corrupting noise. For example, some
theories propose it as the fundamental support for computations such as
Bayesian inference and fast sampling of probabilities represented in spike
trains [28, 29].

A particular form of variability we are interested in is that of the cor-
related type [17, 30]. Two forms of activity correlations that have been
widely studied, especially at the pairwise level, are signal and noise cor-
relations [31, 32, 33]. Signal correlations measure the degree to which
neurons fire similarly to any stimulus s in a given set across trials, i.e.
correlations due to tuning curve congruences. Noise correlations mea-
sure the similarity in the trial-to-trial deviations from the mean stimulus-
conditioned responses.

The effect of trial-to-trial correlated activity for information process-
ing is a long debated issue in neuroscience [19]. Several, often early,
studies saw correlated activity as detrimental for behavioral performance
and robust stimulus decoding [34, 35, 36, 37, 38]. For instance, influential
research by Britten and colleagues [34] linking single neuron spike counts
to psychophysical performance in a random dot motion detection task nu-
merically showed that correlated activity within neuronal pools degrades
stimulus decoding and that there is an upper bound on the information that
can be obtained by increasing the pool size. This idea was later expanded
in study where experimentally measured low pairwise correlations coef-
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ficients (∼ 0.12) were shown to significantly diminish the signal-to-noise
ratio within simulated neuronal populations [36]. However, a growing
body of work has suggested that correlated variability might not always be
a hindrance for decoding, with positive, negative or negligible effects typ-
ically depending on the noise structure [30, 31, 39, 40, 41, 42, 43, 44, 45].

1.2.1 Generalized linear models for mean
encoding/decoding

A common strategy to study the impact of correlated trial-to-trial vari-
ability on neuronal representations supported by population activity is to
conduct the averaging within trials only. In this context, generalized lin-
ear models (GLMs) are useful statistical tools to analyse neuronal data
[8, 46, 47] (bottom Fig 1.2). These models allow to probabilistically
model neuronal activity on a trial-by-trial basis. From a decoding point
of view, GLMs are much exploited in population studies, where the joint
single trial activity of neuronal ensembles is used to predict the stimu-
lus that elicited it. For example, for a random dot motion detection task
where the stimulus direction can be leftwards or rightwards (binary clas-
sification task), a GLM allows to model the conditional probability that
the stimulus was rightwards given that we recorded the multivariate (N-
dimensional) neuronal activity pattern n on a given trial, P (s = right|n),
as:

P (s = right|n, ω) = P(f−1(
N∑
i=1

ωini)), (1.2)

where ω is a vector of regressor weights or coefficients, P is a probability
distribution from the exponential family and f is called a link function
[46, 47]. Therefore, trial-to-trial correlations within the components of
the activity pattern n are taken into account and prediction accuracy is
used as a proxy for information content [22].

From an encoding perspective, GLMs allow to model the responses of
single neurons and populations considering multiple explanatory factors
at the same time, such as high-dimensional stimuli, previous history or in-
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teractions between neurons [8]. Therefore, if we encapsulate all possible
variables into vector x of dimension M , then we can model the activity
of a single observed neuron i as:

P (ni|x, α) = P(f−1(
M∑
j=1

ωjxj)). (1.3)

In this encoding context, these models thus broaden the concept of tuning
curve by refining the quantitative description of the neuronal responses.
We remark that, typically, how P and f are chosen depends on the prop-
erties of the dependent variable to model, such as whether it is continuous
(as a firing rate) or discrete (as spike-counts).

In Chapter 2, we use GLMs to characterize neuronal activity in lat-
eral prefrontal cortex of macaque monkeys performing a working memory
task within a naturalistic virtual reality environment, both from encoding
and decoding perspectives.

1.2.2 Within-trial correlations in biological networks
While GLMs for single trial firing rates or collapsed spike-counts are rel-
atively easy to implement, they exploit static snapshots of neuronal ac-
tivity during the temporal window d: coordinated fluctuations around the
within-trial temporal average are ignored (i.e. single trial second-order
statistics). However, the idea of exploiting reproducible patterns of syn-
chronized spiking activity within group of cells as a means for informa-
tion representation and learning goes back to the work of Donald Hebb
[48]: coincident firing in connected units, generally in a way such that
one takes part in triggering the firing of the others, drives them to become
more connected, leading to the formation of neuronal assemblies. Indeed,
spike synchronization has been observed even at the fine temporal resolu-
tion of 5 ms and in the absence of firing rate modulations in motor cortex
neuronal ensembles [49]. Furthermore, such patterns of within-trial cor-
related activity have been linked to behavioral variables, such as stimulus
expectation [49] and perceptual accuracy [50, 51], and to be shaped by
learning [52].

8



Averaging 

across trials

Averaging 

within trials

PSTH

time

ra
te

sliding window

static window

ra
te

stimulus value

tuning curve

trial 1

trial 2

trial j

d

trial 1

trial 2

trial j

d

static window

GLM

Figure 1.2: Neuronal features obtained by averaging. Top: spiking ac-
tivity is averaged within trials with a time resolution d and across j tri-
als. Descriptive statistics are given by PSTHs and tuning curves. Bottom:
spiking activity is averaged within trials at a time resolution d. In the limit
d → 1 milisecond, activity is described at the spiking level. Analysis is
carried out by means of GLMs that probabilistically model the neuronal
response features n with a probability distribution P from the exponen-
tial family that depends on a linear combination of relevant experimental
variables xi weighted by ωi via the link function f−1 [8, 47].
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Even though further experimental studies are needed to elucidate the
possible functions of within-trial correlated variability in biological sys-
tems, in Chapter 3 and Chapter 4, we employ within-trial correlations as
features for information processing in artificial neural networks, expand-
ing on recent previous work by Gilson and colleagues [53].

1.2.3 Other neuronal coding mechanisms

Thus far, we have only discussed features of the neuronal code based on
the spike-count structure of first (rate) or second-order (variability). How-
ever, for completeness, we will also mention that other coding mecha-
nisms have been explored in the literature. As a matter of fact, in our
previous formulation based on averaging within the temporal window d,
in the limit of d approaching 1 milisecond, the neuronal features are re-
duced to the full sequence of spike-timings, therefore constituting a “time
code” [4, 23, 54]. Other possible features for coding include latency and
phase-of-firing.

Latency codes have been suggested as faster information transmis-
sion channels than pure rate codes. Different ways to define latency have
been proposed, but typically they rely on the relative timing between spike
events within a neuronal population [55, 56], where spikes that occur ear-
lier after stimulus presentation are more informative than those emitted at
later times, as in rank-order coding [57, 58] or time-to-first spike mech-
anisms [59]. Other definitions of latency based on rate as features have
also been proposed [60].

One of the main criticisms against latency as a possible neuronal fea-
ture is that it sometimes depends on correctly establishing the time of
stimulus onset [59]. Phase-of-firing codes, on the other hand, propose
that information is represented in the spike emission times relative to the
phase of global network oscillatory behavior, which provides an internal
time reference [61, 62], as measured by local field potentials.

Altogether, the variety of proposed codes suggests that population
spiking activity patterns should be studied across different spatial and
temporal scales to understand how different mechanisms interact with
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each other and the specific functions they perform [54, 63, 64, 65].

1.3 Bio-inspired network models

For each neuronal representation or coding mechanism, a dedicated pro-
cessing is necessary, corresponding to specific dynamical properties in a
neuronal network. Conversely, the same network may perform distinct
operations depending on the information representation applied in inputs.
A popular tool both to explore (as in computational neuroscience) and
exploit (as in machine learning) neuronal representations and brain-like
information processing are artificial neuronal networks (ANNs) [66, 67,
68, 69, 70].

ANNs come in many flavours, from shallow to deep, feedforward
to fully recurrent and spiking to analogous. The only defining property
is that their constituent elements, much like the brain, be neurons (also
called nodes or units). These neurons can be chosen with different levels
of abstraction, depending on their purpose. Machine learning approaches
usually employ analogue units, which represent firing rates in biologi-
cal terms. These are analytically more tractable and generally constitute
models that are easier to train. Approaches aiming for stronger biological
realism typically model the spiking event, as in integrate-and-fire neurons
[71]. However, the strong nonlinearity inherent to spiking models makes
the learning procedure harder, although recent alternatives that use sur-
rogate gradients have shown improved results when training feedforward
and recurrent spiking networks [72, 73, 74, 75].

Regardless of the neuron model used, ANNs function by mapping in-
put features into output features by adjusting the connections (i.e. learn-
ing weights) between units in a goal-driven manner. Among the different
tasks that can be implemented via networks, we can mention classifica-
tion, pattern recall, pattern prediction, clustering or dimensionality reduc-
tion. The learning procedure aims to account for several molecular mech-
anisms that govern synaptic plasticity changes in real networks. Overall,
for a given task, how the mapping is developed in these bio-inspired net-
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works depends on learning scheme, input/output features and network
architecture. We will expand on these points in the following subsections.

1.3.1 Learning: supervised and unsupervised schemes

Two common approaches to learning in bio-inspired networks are super-
vised and unsupervised learning [3, 47], although intermediate schemes
exist (e.g. reinforcement learning, which has been argued to be relevant
to model biological phenomena like reward-gated learning [76]).

Supervised learning relies on an explicit group of input features and
associated target output features, which constitute a training set [77].
These associations act as a collection of constraints that limit the possible
values that the network weights can take and effectively shape the map-
ping, although an optimal solution might not always exist or be found.
Learning is achieved by minimizing an error or cost function that mea-
sures how different the network output is from the desired target output
across the whole training set. Models are typically tested on a holdout
portion of the data not used for training (i.e. a test set), in order to assess
their capacity to generalize to new or unseen samples. Supervised learn-
ing has proven successful at solving tasks that are deemed as cognitively
demanding, such as the recognition of real images or sounds. We study
this type of learning in Chapter 3 and Chapter 4.

Limitations of supervised learning arise when labelled training data is
scarcely available. In such a case, the small training set may lead to over-
fitting and poor generalization: a well-performing model in the training
set that performs badly in the test set.

On the other hand, unsupervised learning techniques do not depend on
precise previously established relationships between inputs and outputs.
Instead, given some stream of input data, the network must self-organize
using activity dependent learning rules established by the designer [78].
Unsupervised schemes have been shown to reproduce basic features of
neuronal representations, like the tuning curves for orientation selectivity
in visual cortex mentioned in Section 1.2 [79, 80], and are well suited
for tasks such as blind source separation, clustering and dimensionality

12



reduction [81]. Hebbian learning (previously mentioned in Section 1.2)
constitutes a classical example of unsupervised learning in biological sys-
tems: synapses are strengthened or weakened when neurons are repeat-
edly active or silent simultaneously, giving rise to neuronal assemblies
[48]. It was shown theoretically that this type of learning is sensitive to
correlations between pre and post-synaptic spiking activity [82, 83, 84]
aiming to reproduce experimental findings [85, 86].

In some cases, unsupervised learning can be used as a preprocessing
step in a pipeline, to represent inputs in a more convenient space [87, 88,
89, 90], akin to feature detectors in visual brain area V1.

1.3.2 Output features for supervised multivariate time
series classification

To expand on how input/output features can be exploited for information
representation, transmission and transformation across a network, we will
focus on the specific problem of multivariate time series classification:
given a stream of multidimensional input data, our goal is to predict to
which one of several classes it belongs to. As previously mentioned, en-
coding/decoding in biological systems can be formalized as a particular
example of this general classification set-up. Furthermore, categorization
is considered a large underlying component of cognitive behavior and a
key ability for the survival of living organisms [91, 92].

First, let us formalize the problem of time series classification, rele-
vant for our studies in Chapter 3 and Chapter 4. Let us consider that a
dynamic multivariate input u(t) ∈ RM is fed to an arbitrary network and,
after it is processed, an output y(t) ∈ RK is emitted (Fig 1.3). We aim to
classify the input trajectories u(t) into 1-out-of-K classes by applying a
decision rule on some statistical feature or property of the observed output
signal y(t) [7, 53]. This feature is computed over an observation period
of length d. Note that while the network operates by mapping input se-
quences to output sequences, as in biological systems, at the functional
level we understand the transformation to occur between features (i.e.
statistical properties of the input signal are transformed into statistical
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properties of the output signal).

A common output feature for time series classification is the mean
activity vector (i.e. the temporal average) (top pathway in Fig 1.3). A de-
cision rule can be implemented by choosing the node with highest mean
activity, thus embedding information in the first-order statistics of the out-
put time series. In essence, this type of decoding is similar to traditional
decoding methods used in neuroscience, where mean firing rates are used
as informative features and within-trial temporal fluctuations around the
mean are detrimental noise, as in classical tuning curves (see Section 1.2).

However, drawing inspiration from biology where structured temporal
fluctuations convey information and correlated activity sustains Hebbian
learning (see Section 1.2), it has been shown that other higher-order sta-
tistical moments of the output signal are also suitable to set the decision
rule, such as covariances (bottom pathway in Fig 1.3) [53]. Pairwise co-
variances measure the degree to which two neurons fluctuate around their
mean activity in a correlated manner, within a single input presentation
(i.e. within a single trial, not to be confused with noise correlations that
measure correlation on stimulus conditioned averages across trials, see
Section 1.2). Then, the output node with highest (co)variance can effec-
tively determine input class [7, 53]. This means that the output signal is
instead shaped at the second-order. The logic is that if structured correla-
tions support learning, then networks should be able to transmit them for
downstream processing and exploit them for information representation.

The first and second-order structure of the network outputs can be
imposed without explicitly setting a time-resolved teacher signal during
supervised training, but directly constraining output statistics instead [53].

We next describe in further detail the input/output mappings achiev-
able by a minimal network architecture (perceptron) in a supervised learn-
ing context, when using means or covariances as output features for clas-
sification.
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Figure 1.3: Multivariate time series classification based on temporal
statistics. An input time series u(t) is fed to a neural network and an
output time series y(t) is obtained. To predict the class, the readout must
extract information from y(t) dynamics. Here we focus on two alterna-
tive possibilities: the information relevant for classification is embedded
either in the mean activity of y(t) (top pathway), or in the covariances
(bottom pathway). In both cases, a decision rule based on these statistics
can predict input class.

1.4 The perceptron
The perceptron is one of the earliest neural network models used to per-
form a cognitive-like task, classification. It originally consists of a single
layer of M input nodes linearly connected to a single layer of K out-
put nodes [47, 93] (Fig 1.4). It was designed to act as a linear classifier
of static input patterns [93]. The perceptron network can be naively ex-
tended to operate on time series as inputs and outputs. Formally, at each
point in time, network output y(t) ∈ RK is a linear combination of current
network input u(t) ∈ RM :

y(t) = Ωoutu(t), (1.4)

where the weights Ωout ∈ RK×M are not time dependent. Whenever
we refer to a perceptron in this thesis, we refer to the network dynamics
given by Eq. 1.41. Additionally, a nonlinearity can be included at the
output neurons, which would result in a nonlinear perceptron. However,
we stick to the linear version to fix ideas.

1Note that we do not refer with ‘perceptron’ to the specific learning algorithm devel-
oped by Rosenblatt [93].
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Figure 1.4: Perceptron architecture. M inputs are linearly connected to
K outputs by plastic synapses.

1.4.1 Classical perceptron
A perceptron with output signal shaped at the first-order is a classical or
mean-based perceptron. The linear nature of the network allows to write
cost functions directly in terms of the output statistics to constrain, instead
of the time-resolved output trajectories [53]. Thus, if we aim to constrain
output mean activity mk = 1

d

∑d
t=1 yk(t) for each node k, then the cost

function C to optimize (see Section 1.3.1) is:

C =
1

2

K∑
k=1

(mk − ȳk)2, (1.5)

where ȳ is the vector of target mean activity patterns (defined by a 1-of-K
coding scheme).

Analytically, the classical perceptron has been shown to have a capac-
ity of 2M patterns, where capacity is defined as the maximum number
of random input patterns that can be separated in a binary classification
problem [94].

1.4.2 Covariance perceptron
When the output signal of a perceptron is shaped at the second-order, the
linear network is a covariance perceptron [7, 53]. The mapping is in this
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case established to match network output covariances Y to target output
covariances Ȳ in time series by minimizing the cost function:

C =
1

2

K∑
i1,i2=1

(Yi1,i2 − Ȳi1,i2)2, (1.6)

where the difference is between matrix elements (i1, i2). Thus, the re-
sulting output time series are structured at the second-order in a class-
dependent fashion. An external observer can perform classification by
applying the same winner-take-all decision (i.e. an argmax operator) as
in the classical perceptron, but on output covariance matrices instead of
output vectors of mean activity (compare Fig 1.3 pathways). In this the-
sis, we focus on variance-based decoding: the node with highest variance
predicts input class. However, the rule can be based on cross-covariances
as well [53].

The covariance approach has been formally shown to provide richer
representational spaces (in terms of the number of patterns that can be
linearly separated in a binary classification task) when compared to the
classical perceptron [7]. Indeed, while a network with K output units
is described by a mean activity vector of dimension K, its covariance
matrix has dimension K(K+1)

2
, which results in a larger space to code

information.
While we do not distinguish between classical and covariance linear

perceptrons in terms of architecture or dynamics, the first introduction
of the covariance perceptron included recurrent connections at the out-
put layer. While these connections offer greater versatility for the type of
input structures that can be categorized, the computational learning cost
to train them is bigger than for the feedforward connections, as they re-
quire that a Lyapunov equation be solved at each iteration of the training
procedure. Approximations to avoid solving these equations have been
suggested, but numerical instabilities remain in practice [53].

Applied to empirical datasets, the covariance perceptron has been
proven successful at classifying real time series consisting of images of
moving digits [53].
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1.4.3 Strengths and limitations of the perceptron
The linear perceptron, both in its classical and covariance versions, has an
important downside: due to the linear nature of the network, these models
can only sustain consistent same-order feature mappings [53]. In other
words, a covariance perceptron can classify input time series only when
there is information embedded in its covariance matrix and a mean per-
ceptron can classify input time series only when there is information em-
bedded in its mean vector. Thus, each input/output mapping is in essence
constrained by the input structure and information transmission across
statistical orders from inputs to outputs is precluded.

The classical perceptron can be nonlinear and capture to some extent
the input covariance structure. Nonetheless, this approach yields poor per-
formance when compared to the linear covariance perceptron [53]. Thus,
to satisfactorily capture both first and second-order structure in inputs, the
previous scheme needs to be extended.

More evolved architectures than a perceptron can be obtained by stack-
ing several nonlinear perceptron-like networks on top of each other: mul-
tilayer perceptrons (MLPs) or deep feedforward networks [66]. Although
deep networks have been proposed as models for the visual system [95],
they are not well suited to deal with sequential inputs. In fact, the most
pertinent architecture for sequential inputs is that of recurrent neural net-
works (RNNs) [67]. These models present lateral or recurrent connections
within neurons in the same layer. Therefore, the inputs are not processed
in a purely feedforward manner, as in MLPs, and reverberating activity
provides an intrinsic medium for memory storage. Nonetheless, super-
vised RNN training usually relies on unstable algorithms due to the van-
ishing gradient problem, such as in back-propagation through time [96].

1.5 Reservoir computing
Reservoir computing (RC) makes up a good compromise configuration
between purely feedforward and fully recurrent models [97, 98, 99, 100].
In its most simple form, a RC network has an input layer randomly con-
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nected to a recurrent layer. This recurrent layer, called reservoir, feeds
to an output layer, and the peculiarity is that only weights between these
two layers are trained to minimize a cost function (Fig 1.5). This trait
is the main advantage of RC networks when compared to fully recurrent
models, as training is reduced to that of a single layer model for the read-
out and does not require that errors be back-propagated into the recurrent
layer and through time. Furthermore, the recurrent reservoir endows the
system with a memory of past inputs well suited for time series processing
in real time, which feedforward models lack.

Large reservoirs can act as a rich high-dimensional expansion of the
inputs, in which linear separability is easier to achieve (for time series
classification) and input dynamics are easier to predict or reconstruct (for
time series prediction or recall) [97, 99]. The dynamical and structural
properties of the reservoir, which are user defined, determine the quality
of input representations [99, 101, 102, 103]. Optionally, feedback con-
nections can be included between output and reservoir [99, 104, 105].

The first primitive implementation of RC can be traced back to an
early model of language sequence learning in cortical circuits where the
network was trained through reinforcement learning [106, 107]. Later
(and simultaneously), the idea saw its renaissance with liquid state ma-
chines (LSM) [98] and echo state networks (ESN) [97].

Within the machine learning community, RC initially succeeded due
to its remarkably good performance/learning cost trade-off in chaotic sys-
tems prediction [104]. However, it has been tested in diverse applications,
such as biomedical data analysis (brain-machine interfaces, heart rate,
fMRI, EEG, EMG), speech recognition, sensor control, cryptography and
prediction of stock markets and seismic activity, to name a few (see [100]
for a more comprehensive list and further references).

ESNs, which are implemented with analogue units, are the most ex-
ploited RC variant in machine learning [99, 101, 108]. However, these
rate-based approaches have also been studied in computational neuro-
science [105, 109, 110, 111, 112], where RC has been proposed as a
model of the cerebral cortex. Indeed, LSMs are RC networks of spik-
ing neurons used to model computation in generic cortical microcircuits
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[98, 113, 114]. Typical tasks solved by LSMs include sequence classifica-
tion and input recall, which were solved in a supervised learning scheme.
Biologically more realistic learning rules, such as reward-modulated Heb-
bian learning [110] have been proposed for rate-based networks.

Experimentally, evidence for reservoir computing in biological net-
works is lacking, in the sense that while it is able to reproduce neuronal
properties observed in a variety of circuits [115, 116, 117], it has not
been able to generate falsifiable hypothesis. Furthermore, given the strong
computational abilities of a large random reservoir, any network display-
ing similar properties could potentially constitute a powerful RC network.

A main goal of research in RC is to understand how reservoir struc-
tural and dynamical properties interact with inputs to produce high-performing
systems. For example, the spectral properties of the reservoir connectiv-
ity matrix have been shown to affect how RC dynamics behave in diverse
tasks, with special emphasis placed on memory capacity and chaotic time
series prediction [97, 102, 103, 108, 118, 119, 120, 121, 122, 123, 124,
125, 126]. In this thesis, we explore the relationship between statisti-
cal features in inputs and reservoir units in simple ESNs for multivariate
time series classification, when reservoir covariances are used as features
for information representation. The next section is dedicated to RC ap-
proaches for time series classification.

1.5.1 RC for multivariate time series classification

For multivariate time series classification, several RC models exploring
different input representations within the reservoir have been developed.
A main distinction can be drawn between approaches mapping input time
series into output time series and those mapping input time series into
static class probability vectors at the output layer, like in more conven-
tional machine learning applications. In the later, the reservoir is used as
a kernel that feeds to a classifier such as multinomial logistic regression,
support vector machine or extreme kernel machine [127, 128, 129, 130].

A naive method to implement the classifier is to feed it with the con-
catenated full sequence of reservoir states (i.e. the time resolved reservoir
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Figure 1.5: Reservoir computing architecture. M inputs are fed to a re-
current layer with N units (the reservoir), which connects to K outputs.
Fixed random weights (solid lines) are used for input-to-reservoir and
within reservoir connections. Trainable weights (dashed lines) only con-
cern reservoir-to-output connections

trajectory) [127]. Note, however, that for a reservoir of sizeN , this would
imply that the input for the classifier has dimension d×N , instead of N ,
which would scale poorly (in number of trainable parameters) with in-
put length d. Thus, this approach is better suited for short sequences or in
regimes where there is enough data to avoid overfitting. Thus, other meth-
ods have been proposed, based on reservoir statistics or other properties.
For example, common features for the readout classifier are mean reser-
voir states (i.e. temporal averages during input time series presentation,
analogue to firing rates), or the final reservoir state after input presen-
tation [108, 130, 131]. Other well performing approaches are based on
model space representations. These train RC networks to perform input
time series prediction and the resulting weights are fed to the classifier.
A novel version of this method where the network instead predicts a low
dimensional embedding of its own future state has recently been studied
in [130].

In Chapter 3, we explore whether reservoir covariances constitute
powerful representations when fed as features to a multinomial logistic
regression classifier (akin to a nonlinear perceptron operating on static
inputs, but with a cross-entropy cost function).
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Approaches mapping time series into time series in RC, on the other
hand, are interesting because of their higher biological relevance, since
spike sequences are transformed into spike sequences in the brain. In this
context, information relevant for classification is embedded at the output
layer activity by choosing class-dependent target trajectories that arise as
combinations of reservoir states at each point in time. Stereotypical tra-
jectories silent all output nodes except the one that indicates the current
input class, as in 1-out-of-K coding schemes for K-class classification
problems. Thus, a prediction is made at each point in time and a final de-
cision can be implemented by winner-take-all mechanisms at the end of
input presentation [108]. For linear readouts and time-independent target
trajectories, this is equivalent to mapping reservoir mean trajectories to
output mean trajectories, thus embedding information in the first-order of
the output time series, as in the classical mean perceptron (Section 1.4.1).
In Chapter 4, we explore whether information can be embedded at the
second-order in the output time series of RC systems, hence exploit-
ing trial-to-trial variability, to solve multivariate time series classification
tasks. We achieve this by implementing a covariance perceptron (see Sec-
tion 1.4.2) as readout: a linear layer that maps time series to target time
series with structured covariances in a supervised fashion [7, 53].
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Chapter 2

CHARACTERIZING
NEURONAL ACTIVITY IN
LATERAL PREFRONTAL
CORTEX

This work was presented in poster format at the Neuro-inspired Compu-
tation Course (University of Tokyo, Japan, March 2019) and at the Oki-
nawa Computational Neuroscience Course (Okinawa Institute of Science
and Technology, Japan, July 2019).

Abstract

Neuronal activity in lateral prefrontal cortex of non human primates is
known to be tuned to visuospatial stimulus features, both when these are
perceptually available or maintained in working memory. Here, we study
perceptual and mnemonic spatial information encoding at the single neu-
ron and population levels in simultaneously recorded units in lateral pre-
frontal cortex of macaque monkeys performing a delayed-response task.
The experiment is developed in a novel virtual reality environment en-
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dowed with naturalistic conditions, where ocular behavior is not exter-
nally imposed and visual exploration is free. We find that tuning for spa-
tial stimulus coexists with tuning of gaze-behavioral variables in single
neuron activity, and that the amount of spatial information, as measured
by the accuracy of a linear classifier, remains stable across trial epochs in
population codes.

2.1 Introduction

Working memory (WM) –the ability to store and maintain information
about an absent stimulus for brief periods of time (usually spanning a
few seconds)– is a fundamental higher cognitive function, since it allows
to guide behavior by integrating information from recent percepts, not
only those available at the time a decision is made [132]. When the in-
formation to recall is of spatial nature, a vast bibliography suggests that
lateral prefrontal cortex (LPFC) is a core substrate for WM in non human
primates [133, 134, 135, 136, 137]. In fact, neurophysiological markers
of (spatial and non-spatial) memory maintenance in this area have been
found both at the single neuron and at the population levels. These include
stimulus selective persistent spiking activity (see [138] for a review) and
bursts of oscillatory activity at the gamma (∼ 50-120 Hz) and beta (∼
20-35 Hz) frequency bands of local field potentials [139, 140]. Further-
more, mnemonic population codes have been shown to have both stable
and dynamic components: while some subspaces of the neuronal activity
space are steady within an experimental trial, others change through time
[141, 142, 143, 144, 145]. This temporal evolution has been linked with
coding of additional task contingencies that may occur as the trial unfolds,
such as the appearance of distractors [146]. In addition to WM, LPFC
has also been linked with the encoding of perceptual gaze information
[147, 148, 149, 150, 151] and voluntary (i.e top-down or goal-directed)
allocation of attention [152, 153, 154, 155, 156, 157, 158]

Traditional experimental protocols in WM studies employ delayed-
response or delayed-match-to-sample tasks where subjects’ ocular behav-
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Figure 2.1: Traditional ODR task trial timeline. Subjects start each trial
by fixating the central dot. During and after cue presentation (square),
subjects maintain fixation and only break it to report their recalled cue
location with a saccade at the response period, as indicated by the arrow
[134].

ior is highly constrained throughout the trial. For example, in a basic
oculomotor delayed response (ODR) task [134], subjects face a monitor
screen and start each trial with a fixation period, followed by cue presen-
tation and a delay, where fixation must be held, and subsequent responses
are reported by a saccade (Fig. 2.1). These experimental designs prevent
the subject from turning to ocular strategies to solve the task (i.e. fixat-
ing on cue location throughout the delay period) and therefore guarantee
that observed neuronal activity during the delay period is exclusively due
to mnemonic processes (or motor suppression). Nonetheless, hypothesis
generated in such highly artificial and constrained conditions might not
generalize well to more naturalistic settings, where behavior is typically
dynamic and less restrained.

Task paradigms that involve WM and free-viewing components, such
as cued search tasks [159, 160, 161], have been deployed in the litera-
ture, but the accompanying neuronal recordings were performed in brain
areas other than LPFC. For instance, McGinty and colleagues studied
how value and fixation location jointly influence neuronal activity in or-
bitofrontal cortex [162]. The question that remains, then, is how task-
relevant spatial information is encoded along ongoing visual activity in
LPFC activity. To address this, we characterized the information encoded
in LPFC neurons of macaque monkeys during a free-viewing spatial WM
task performed within a naturalistic virtual reality environment, to de-
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scribe if and how representations of task relevant features (namely, cue
location) can coexist with that of other behavioral variables in this area.

2.2 Results

2.2.1 Animals display target-biased gaze behavior
Two adult rhesus macaques (Macaca mulatta) were trained to perform
a visuospatial task within a naturalistic virtual reality environment. The
environment was presented on a computer monitor and the animals could
navigate it using a two-axis joystick (Fig 2.2a). During all experiments,
ocular behavior was free and recorded with an eye-tracking system. All
eye movements were classified into saccades, fixations or smooth pursuits
using a custom toolbox [164] (see Section 2.4.1 for further details).

Subjects begun each trial positioned within a rectangular box. A tar-
get stimulus (red volume) was randomly presented in 1 out of 9 possible
locations within a circular arena (Fig 2.2b) for 3 seconds. After a 2 sec-
onds delay period, subject had to use the joystick to navigate towards
target location (see trial timeline for WM task, Fig 2.2c). A trial was con-
sidered correct if location was reached within 10 seconds and incorrect
otherwise. Correct trials were rewarded and incorrect ones were not. A
variant of this task with the stimulus presented during both the cue and
delay epochs was performed by the subjects as well (perceptual (P) task,
Fig 2.2c).

Subjects performed a total of 21 sessions of the WM task (13 mon-B)
and 21 sessions of the P task (14 mon-B). In a subset of these sessions,
neuronal recordings in LPFC area 8Ar were simultaneously performed us-
ing two chronically implanted 96-channel microelectrode arrays (5 WM
sessions and 2 P sessions).

Both subjects correctly performed the two variants of the task above
chance (0.11 for 1/9 locations) in all sessions (binomial test, p < 10−5,
Fig 2.3a, Section 2.4.2), with performance decreasing with initial distance
to target and response time naturally increasing with distance to target
(Fig 2.3b-c). On the WM task, subjects also displayed performance de-
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creases when targets appeared on lateral locations with respect to the start-
ing position (Fig 2.3d). This could indicate that either the animals found it
hard to maintain lateral mnemonic target representations or, more likely,
that redirecting navigation towards a nearly missed target was naturally
more difficult when such a target was not visible (Fig 2.3e). However,
due to experimental design, determining the source of error in incorrect
trials was not straightforward.
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Figure 2.2: Task description. a. Experimental set-up. b. Monkey start
location and target locations (red volumes) within virtual reality environ-
ment. c. Trial epoch timeline for WM task. d. Trial epoch timeline for P
task. Figures adapted from [163].
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Figure 2.3: Performance for each task variant and subject. a. Average
performance when pooling all trials across sessions together (bar height),
and single session results (circles). Dashed gray lines indicate chance
level. b. Performance as a function of distance to target (nominal units)
from starting location within virtual reality environment. c. Response
time vs distance to target. d. Performance vs target orientation relative to
starting position. e. Retrieval trajectories for one target during an example
WM task session from mon-T.
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Figure 2.4: Gaze analysis. a. Fraction of trial time spent with gaze on
screen for each task variant, trial epoch and monkey. Top row shows
results when pooling all types of eye movements (fixations, saccades and
smooth pursuits). Bottom row shows results for fixations only.
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Figure 2.4 (previous page): Bars indicate averages when pooling all cor-
rect trials across sessions together, while circles shows single session re-
sults. b. Decoding accuracy for target identity from gaze behavior on
trial-by-trial basis. Results are distinguished when training and testing on
data folds from same task variant (left panel) or from different task vari-
ants (right panel). Bars indicate averages across sub samples of data to
match number of trials across conditions. All error bars are sem (standard
error of the mean). ∗ ∗ ∗p < 0.001, ∗ ∗ p < 0.01, ∗p < 0.05, two-tailed
permutation test.

We explored whether there were naive gaze behavioral differences
across subjects or tasks, as measured by the fraction of trial epoch time
(cue, delay or both) with gaze within screen boundaries in correct trials
(Fig 2.4a, Section 2.4.3). The only consistent observation that we found
across subjects was that they fixated more on screen when performing the
P task, particularly during the delay epoch (Fig 2.4a, bottom row). To re-
late within-trial fixation patterns to target identity, we divided the screen
with a 4-by-3 grid and used the vector of time fraction fixated per bin to
predict target (Fig 2.4b). We found that monkeys displayed target-biased
gaze behavior in both tasks, as target identity could be decoded above
chance from the time fraction vector. Furthermore, gaze behavior was not
completely task specific, since trained decoders in one task variant also
displayed above chance performance when tested on the other variant. As
an interesting observation, for one subject (mon-B), gaze behavior was
more informative of target identity when performing the WM task than
the P task, which could indicate the subject was more overtly attentive
during the first task.

All in all, we found target-biased gaze behavior during task perfor-
mance, which needs to be accounted for when relating neuronal activity
to task relevant variables.
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2.2.2 Single-cell activity is modulated by target

Given the small number of sessions for which simultaneous behavioral
and neuronal recordings were available, we pooled neurons across mon-
keys to reach a total of 587 single cells (437 recorded during WM sessions
and 150 during P sessions) and did not discard incorrect trials. Prior to
analysis, we discarded units with trial average firing rates below 1 Hz.
Thus, we analyzed a total of 475 cells (344 during WM task, 131 during
P task). Firstly, we looked for activity modulations in epoch-averaged
firing rate with target identity within the three trial epochs (cue, delay,
retrieval; Kruskal-Wallis test). We found a significant fraction of neurons
tuned to target identity during all task epochs and task variants (Fig 2.5a,
above ∼ 19 % for all conditions, one-tailed binomial test p < 10−5). We
note that there was a decrease in fraction of neurons tuned to target be-
tween epochs, with tuned neurons dropping from cue to delay, and rising
again for the retrieval epoch. Such a tendency was, however, only signif-
icant for the P task (p < 0.05 in two-tailed permutation tests for fraction
differences).

To preclude the possibility of target-activity modulations captured by
our previous analysis arising as a by-product of target-biased gaze pat-
terns, we conducted a second and more restrictive analysis that involved
the spiking activity of each neuron during short periods of time where
fixations on-screen lasting at least 100 ms took place. During these short
time windows, gaze was naturally constrained. We used a Poisson Gen-
eralized Linear Model (GLM) to regress spike-counts during fixations to
three different categorical variables simultaneously: task epoch (cue or
delay), fixated screen region and target orientation (see details in Sec-
tion 2.4.4 in Methods). To gain more power in our analysis, we pooled
targets together by orientation relative to starting position (left, central,
right), and only considered screen locations fixated at least 10 times within
a session. We found a larger fraction of neurons encoding any of the task
or behavioral variables during the WM task than the P task (Fig 2.5b). The
source of this difference mostly arises from the larger fraction of neurons
encoding task epoch during the WM task, which becomes an irrelevant
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variable during the P task (no difference in environment between cue and
delay epochs). Importantly, when controlling for gaze and epoch, we
found neurons tuned for target orientation, which we considered a proxy
for target identity. Furthermore, 18 % of neurons were tuned for target
in the WM task, while only 5.8 % displayed the same tuning during the
P task (p < 0.01, permutation test for fraction differences). This signifi-
cant difference is consistent with the results in Fig 2.5a during the delay
period. Thus, our results hint that higher tuning for target in the WM
task than the P task maybe related to mnemonic processes taking place in
LPFC neurons even in this naturalistic setting with unconstrained ocular
behavior.

2.2.3 Target information is stable across trial epochs in
population codes
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Figure 2.5: Single neuron tuning. a. Fraction of neurons tuned to target
when averaging activity across whole task epochs for P task (blue) and
WM task (red). Gray square shows fraction levels that could have been
found by chance (α = 0.05 binomial test). ∗ = p < 0.05, permutation
test for fraction difference between cue and delay in P task. b. Fraction
of neurons tuned for task epoch, gaze location and/or target orientation
when activity is measured during on-screen fixations. ∗ ∗ ∗ = p < 0.001,
permutation test for fraction difference. Chance level in gray (α = 0.05
binomial test). c. Distribution of percentage of tuned neurons reported in
b) for encoded variables (epoch, gaze, target orientation), for the P task
(left) and the WM task (right).
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Figure 2.6: Decoding target identity from population activity.
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Figure 2.6 (previous page): a. Mean decoding accuracy across sessions
(solid lines) for three trial epochs. Circles show individual session results
and shaded areas are±1 sem across all sessions. Gray rectangle is decod-
ing chance level accuracy. b-d. Mean decoding accuracy per session (one
session per bar), distinguished per task (color) and subject. Error bars
are ±1 sem within session. One figure per trial epoch (b: cue, c: delay,
d: retrieval). e: Mean decoding accuracy per session when firing rate is
only measured during 100 ms of fixation periods. Error bars are ±1 sem
across random data subsamples per session. Note here that chance is at
0.33, since targets are pooled together by orientation. All results in this
panel figure are significant with p < 0.001 (permutation test).

To study distributed target representations in LPFC, we performed a
population level analysis. For each session, we trained logistic regression
decoders to predict target identity using population firing-rate vectors as
features (see Section 2.4.5 in Methods). Target identity could be decoded
above chance in all trial epochs for both tasks, and accuracy was consis-
tent across these two dimensions (epochs/tasks, Fig 2.6a-d).

To control for the effect of gaze behavior on neuronal activity, we
conducted a second population analysis. We created datasets where the
distribution of fixations was matched across target orientations. Thus, any
above chance decoding of target information was guaranteed to arise from
target-related activity. Furthermore, for the WM task, we only used fix-
ations occurring during the delay epoch. For this analysis, we discarded
one WM session from mon-T, as it failed to have enough number of fix-
ations per screen bin and target orientation (see Methods). Decoding ac-
curacy was significantly above chance in all sessions analyzed (Fig 2.6e),
which confirms that neurons in LPFC encode spatial representations in
naturalistic settings. We compared the mean accuracy of population codes
during the WM task and the P task and do not report a significant differ-
ence (permutation test).
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2.3 Discussion

Traditional experimental approaches to study the neuronal correlates of
WM characterize by imposing heavy constrains both on the subject and
the set of stimuli presented, which usually vary along a single dimen-
sion [165]. While these efforts have contributed with valuable knowledge
about the mechanisms that sustain this cognitive function, it remains un-
known whether hypothesis tested on such highly artificial settings gener-
alize well to more naturalistic conditions. In such situations, allocation
of attention is not forced and the brain must operate on larger sets of
non-stationary sensory attributes, while at the same time performing the
cognitive operations that guide behavior.

In this study, we have provided evidence that LPFC neurons encode
information about the spatial location of a stimulus in a virtual reality
environment, both when the stimulus is perceptually available and when
it is not, thus sustaining both perceptual and mnemonic representations
[151] in a freely-viewing setting. Target-related information was mostly
encoded by neurons displaying mixed selectivity (i.e. tuned for more
than one variable) [166], and the higher cognitive demands of the WM
task translated into a higher fraction of neurons tuned towards behav-
ioral variables (gaze location) and task features (target location and task
epoch). Population codes were informative of target location across tasks,
and this information remained stable across all task epochs. Further-
more, even in the regime where spike-counts where estimated in very
small time-windows (100 ms) and with few ‘trials’ (fixations), population
codes were still qualitatively informative. Our finding that higher tuning
(in terms of percentage of neurons) is displayed for variables other than
stimulus location, as are gaze position and trial epoch, are in line with
previous research that proposes that LPFC participates in top-down con-
trol of attention, rather than in mnemonic processes [153, 156, 158, 167].
Indeed, visual attention, visual working memory and gaze control have
been linked at behavioral and circuit levels [168]. A possible limitation
of our study might be that we underestimated neurons tuned to gaze, since
we measured neuronal activity while maintaining fixations, but it has been
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shown that the tuning is more pronounced for prospective gaze position
[150, 168].

While the rich experimental design studied here provided, in princi-
ple, many possible alternatives to explore neuronal dynamics in LPFC in
an innovative and more ecologically valid setting, the type of analysis that
could in practice be performed were very much constrained. The small
percentage of correct trials per target condition, especially mon-T in the
WM task, degraded the quality of the data. While chance performance
level was set at 11% for each target, this is possibly a lower bound. In-
deed, the time needed to go from one target to an adjacent one was ∼ 0.5
seconds. Thus, in the 10 seconds window that the retrieval epoch was
elapsed for, a subject could visit more than one target location. Since
only passing by the target location was enough for a trial to be correct,
‘random’ correct retrievals were likely. Furthermore, by looking at nav-
igation trajectories, it was not straightforward to determine when a trial
was random or the subject (again, particularly mon-T) was having trouble
directing the joystick. Another possibility for analysis could have been
to compare neuronal activity in correct/incorrect trials, to find markers of
errors that could be related to mnemonic disruptions. However, this could
only have been done for mon-T and not mon-B, whose performance was
more consistent and thus lacked enough incorrect trials.

An expanded version of this dataset that studies the effect of ketamine
on working memory was fully analyzed in [163]. One of the main results
of that study is consistent with the one presented here: LPFC neurons en-
code spatial stimulus information in naturalistic settings. However, they
do not report a significant fraction of neurons tuned towards gaze vari-
ables (saccade position), which is at odds with the results here reported.

While modern neuroscience advocates for more complex experimen-
tal designs leading to richer datasets that give rise to new hypothesis or
clarify old controversies [169], especially in the working memory com-
munity [138, 140], researchers must keep in mind the curse of dimension-
ality: going for larger complexity will probably require larger amounts of
trials to ensure that the experimental task space is properly sampled and
neuronal activity can be accurately characterized.
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2.4 Methods

2.4.1 Behavioral task and recordings

Two adult male rhesus macaques (Macaca mulatta, age: 10, 9; weight:
12, 10 kg) were used in this study. Animal care, training and surgical
procedures pre-approved by the University of Western Ontario Animal
Care Committee. Experimental design, surgeries, data collection and pre-
processing were performed by Julio Martı́nez-Trujillo’s lab at University
of Western Ontario (Canada). A recent publication from their research
group involving an expanded version of this dataset and a more exhaus-
tive description of experimental procedures can be found at [163].

The task environment was developed using Unreal Engine 3 (UDK,
May 2012 release; Epic Games). Target locations within the environment
were placed in a 3×3 grid and spaced 290 unreal units apart. Movement
speed was fixated during navigation, which translates in a ∼ 0.5 seconds
time-interval between adjacent targets.

The task was displayed on an computer LCD monitor located 80 cm
from the subjects’ eyes (27” ASUS VG278H monitor, 1024 ×768 pixel
resolution, 75 Hz refresh rate, 33.5 cm screen height and 45 cm screen
width). Experimental rooms were isolated and had no illumination sources
other than the monitor. Eye positions were recorded using a video-oculography
system with 500 Hz sampling rate (EyeLink 1000, SR Research). Stim-
ulus presentation, reward delivery and ocular and behavioral recordings
were controlled by a custom computer program.

Two 10 × 10 microelectrode Utah arrays (96 channels, Blackrock
Microsystems) were chronically implanted in each subject. They were
located in the left LPFC (anterior to the arcuate sulces and on either side
of the posterior end of the principal sulcus).

Neuronal activity was recorded using a Cerebus Neural Signal Pro-
cessor (Blackrock Microsystems) via a Cereport adapter. The neural sig-
nal was digitized (16-bit) at a sample rate of 30 kHz. Spike waveforms
were detected online by thresholding at 3.4 standard deviations of the sig-
nal. Resulting spikes were sorted semi-automatically with Plexon Offline
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Sorter (Plexon Inc.) into single and multiunits. Only single-unit activity
was analyzed in this study.

Behavioral data was collected across 21 sessions of the WM task (13
mon-B, 8 mon-T) and 21 sessions of the P task (14 mon-B, 7 mon-T). In
a subset of these sessions, simultaneous neuronal data was collected: 5
sessions of the WM task (1 mon-B, 4 mon-T) and 2 sessions of the P task
(1 mon-B, 1 mon-T). The total number of single cells recorded was 587
( 150 P, 437 WM). Prior to any analysis, we discarded units with average
firing rate below 1 Hz measured within cue and delay epochs, across all
trials. Thus, the total number of cells analyzed was 475 (131 P, 344 WM).
On average, 73±6 single cells were simultaneously recorded in a session,
with 270 ±20 (average) number of trials per session.

2.4.2 Task performance analysis

Performance was defined as the percentage of correct trials (targets reached
within the 10 seconds period), regardless of target location. Chance level
was naively set at 1/9. Pooling results across sessions for each subject,
we computed performance as a function of distance from the starting po-
sition to target. Thus, targets located within the same row of the 3×3
grid were pooled to the same distance, which was measured in nominal
units from 1 to 3. Average response times, defined as the time elapsed
between end of delay epoch and end of trial in correct trials, were also
computed as a function of distance. Performance was finally computed
when distinguishing target orientation relative to starting position (left,
central, right).

2.4.3 Gaze analysis

Ocular recordings for the first two epochs of each task (cue and delay)
were analyzed separately for each subject. For each correct trial, we com-
puted the fraction of epoch time with gaze on screen, regardless of eye-
movement type (smooth pursuits, saccades or fixations) or during fixa-
tions only. For each subject and epoch, we tested the null hypothesis that
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the mean fraction of time with gaze on screen (across trials) was equal
across task variants for each epoch with a two-tailed permutation test. We
used a permutation test instead of a t-test because the distributions were
highly skewed towards the right in the [0, 1] interval. We rejected the null
hypothesis at α = 0.05, and p-values resulting from the permutation test
were Bonferroni corrected for multiple comparisons (n = 6). The num-
ber of permutations to compute the null hypothesis distribution was set to
10,000.

Target decoding from fixated time per screen location within trials

For each subject and task, all correct trials across sessions were pooled
together. For each trial, we collected fixations that complied with the
following three requisites: lasted for at least 5 ms, were located within
the monitor screen boundaries and took place during the cue or delay
epochs.

The screen was binned with a 4×3 grid and we computed the fraction
of time spent fixating on each bin by collapsing the previously identified
fixation lengths. The vectorized grid was later used as a feature vector
to predict target identity on a trial-by-trial basis with a regularized (L2
penalization) multinomial logistic regression model (MLR). The MLR is
a generalized linear model for classification, where the conditional prob-
abilities of each class (target) Ck given regressor vector ~x (fraction time
per screen region vector, in our case) are given by:

P (Ck|~x) =
exp(~ω>k ~x)∑K
i=1 exp(~ω>k ~x)

, (2.1)

for k = 1, ..., K in the K-class problem [47]. The cost function (log-
probabilities) is in practice optimized subject to the constrain

∑K
k=1 ||~ωk||2 =

0 to regularize the model (L2 regularization [47]).
To assure that differences observed in decoding performance were not

due to dataset size imbalances across tasks or targets, for each subject we
matched the number of trials across targets and tasks by identifying the
minimum number of correct trials per target and randomly subsampling
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trials without replacement to be the same across all conditions. Thus, we
used datasets of 53 trials per target for mon-T (477 total) and 267 trials per
target for mon-B (2,403 total). Each of these sub-datasets was randomly
split in a 80/20 train-test set with balanced classes. We fitted the multino-
mial logistic regression model using a ten-fold cross-validation procedure
on the train set to find the best regularization parameter. Final model was
refitted using the whole batch of training data. Decoding accuracies re-
ported in Fig 2.4b (left) are the mean accuracy scores on the hold-out test
set across 1,000 random subsampling iterations. Chance decoding lev-
els were computed for each subsample by randomly shuffling the class
labels on the training set and repeating the training procedure. Decod-
ing accuracies reported in Fig 2.4b (right) are the mean accuracy scores
on a random subsample of data taken from the complementary task for
each trained classifier, with sample sizes matched to the test-set size of
the original train-test split.

2.4.4 Generalized linear model for spike-counts

For the GLM analysis (Fig 2.5b-c), for each neuron we fitted the spike-
count n during fixations occurring during cue or delay epochs according
to:

n ∼ Poisson

(
f−1

(
3∑

k=1

~ω>k ~xk + ω0

))
(2.2)

where the link function f−1 was the natural logarithm [47]. The argu-
ment of the link function is a sum over the product between each categor-
ical one-hot encoded regressor ~xk (trial epoch, target orientation, fixated
screen region) and its corresponding (transposed) regression weight ~ωk,
plus a bias term ω0. Since we used a consistent time window to compute
spike-counts (100 ms), we did not fit the offset of the model, which is
used to account for variations in counts due to different observation win-
dows. For this analysis, we used a 4×3 grid for the screen, but only kept
bins that had at least 10 fixations per session. Thus, we discarded 3 bins
from one P session and 3 from one WM (both corresponding to mon-B).
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To determine whether a neuron’s spike-count was significantly mod-
ulated by at least one of the previous regressors (Fig 2.5b), we created
the distribution of regressors under the null-hypothesis that they had no
explanatory effect over the spike-counts by randomly shuffling the spike-
count vector and fitting the GLM model for 10,000 iterations. This al-
lowed us to maintain correlation structures within regressors [170]. For
a neuron to be considered significantly tuned, it had to fulfill two con-
ditions. First, the deviance of the true GLM model had to be in the top
5% of the distribution of deviances fitted under the null hypothesis. Sec-
ond, at least one regressor had to be statistically significant. To asses this,
we defined the probability that a particular regressor component was not
modulating neuron’s spike count by the fraction of samples that fell above
or below the real regressor value for ωk,i > 0 or ωk,i < 0, respectively, for
each regressor component i. Two-tailed p-values for each regressor com-
ponent and neuron were twice that fraction, multiplied by the dimension
of the regressor vector (Bonferroni correction). The reported fraction of
neurons was the number of neurons that had the spike-counts significantly
modulated by each regressor ~ωk over the total number of neurons used in
the analysis, where a regressor ~ωk is significantly modulating the activ-
ity if at least one of its components is doing so (α = 0.05). A binomial
test was used to asses whether reported fractions were significant, with
Bonferroni corrected p-values for n = 3 and α = 0.05.

Figure 2.7: Single neuron tuning with linear GLM. a. Same as Fig 2.5b.
b. Same as Fig 2.5c

.

These results were qualitatively reproduced (Fig 2.7) when using a
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linear model instead of a Poisson model to fit the spike counts:

n ∼ Normal

(
f−1

(
3∑

k=1

~ω>k ~xk + ω0

)
, σ2

)
(2.3)

where the link function f−1 was the identity, and the distribution was
normal or gaussian instead of Poisson (Fig 2.7) [47].

2.4.5 Population level analysis of neuronal activity

For each epoch within a trial (3 seconds for cue, 2 seconds for delay, first
second of retrieval), we computed a vector of neuron firing-rates (each
entry corresponding to a neuron). This set of vector features was used
to predict target identity (9 locations) using a multinomial logisitic re-
gression model with L2 regularization (see Methods 2.4.3) . For each
session, we identified the target with less available trials and we matched
the number of trials across target locations by subsampling to avoid data-
biased models. The reported test accuracies in Fig2.6b-d are the mean (±
sem) across 1,000 random subsamples for each session, split in a 80/20
train-test split. For each subsample, we estimated chance performance by
randomly shuffling target locations across trials 1,000 times and fitting
the MLR model. Results pooled across sessions and subjects are reported
in Fig 2.6a.

To control for the effect of gaze behavior in the decoding of target
from neuronal activity, we went through each trial and computed the mean
firing rate of each neuron during screen fixations. We only used fixations
during the delay epoch in the WM task, and both from cue and delay
in the P task. Thus, we considered that each fixation was in this case a
‘trial’, and the goal was to predict target information from the vector of
firing rates during 100 ms of fixations. Since we aimed for fixations to
be matched (in number) across targets and screen locations, we pooled
targets together by orientation (left, central, right). Any screen location
with less than 10 fixations per target orientation was removed from anal-
ysis, which led to one session from mon-T (WM task) not being analyzed
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due to lack of data. As in our first analysis, fixation random subsampling
was performed 1,000 times and we used a 80/20 train-test split. Since
datasets were very small, we tuned the regularization parameter through
4-fold cross-validation in the training set. Final model was fitted using
the whole training data. Mean (± sem) test accuracies per session are re-
ported in Fig 2.6e. Chance decoding accuracies were computed for each
data subsample by randomly shuffling trial orientations in the training
split and fitting the model 1,000 times.

2.4.6 Code availability
All analyses were performed in Python, using custom code based on stan-
dard libraries. Code is available upon request.
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Chapter 3

COVARIANCE FEATURES
IMPROVE LOW-RESOURCE
RESERVOIR COMPUTING
PERFORMANCE IN
MULTIVARIATE TIME
SERIES CLASSIFICATION

This work was presented at the 5th International Conference on Com-
putational Vision and Bio Inspired Computing (November 25th, 2021).
Conference Proceedings to be published on Springer - Advances in In-
telligent Systems and Computing Series. Series Ed.: Kacprzyk, Janusz
ISSN: 2194-5357.

Abstract

Biological systems exhibit tremendous performance and flexibility in learn-
ing for a broad diversity of inputs, which are in general time series. In-
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spired by their biological counterpart, artificial neural networks used in
machine learning for classification aim to extract activity patterns within
input signals to transform them into stereotypical output patterns that rep-
resent categories. For the vast majority, they rely on fixed target values in
output to represent probabilities or implement winner-take-all decisions,
which corresponds in the case of time series to first-order statistics. In
other words, the basis for such classification of time series is the trans-
formation of input high-order statistics into output first-order statistics.
However, the transformation of input statistics to second-or-higher order
statistics has not been much explored yet. Here we consider a computa-
tional scheme based on a reservoir that maps information engrained in
input multivariate time series statistics to second-order statistics of its
own activity, before being fed to a usual classifier (logistic regression).
We compare this covariance decoding with the “classical” mean decod-
ing applied to the reservoir for classification with both synthetic and real
datasets of multivariate time series. We show that covariance decoding
can extract a broader diversity of second-order statistics from the input
signals, yielding higher performance with smaller resources (i.e. reser-
voir size). Our results pave the way for the characterization of elaborate
input-output mappings between statistical orders to efficiently represent
and process input signals with complex spatio-temporal structures.

3.1 Introduction

Multivariate time series classification traverses diverse scientific areas and
industrial applications, such as medical diagnosis, ambient assisted living
and finance. Reservoir computing systems have become usual tools for
the classification of time series, in addition to their most known applica-
tion to time series forecasting. A reservoir computing model consists of
an untrained recurrent layer that processes the inputs by projecting them
into a higher-dimensional space, to be then fed to a trainable readout layer
(Fig 3.1a) [97, 98, 99]. For time series forecasting, the most common ap-
proach is to map the current input activity to a target output activity (future
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input states) at the readout layer [97, 99]. This type of input-output map-
ping has also been employed for time series classification by using units
in the readout layer that each represents a class and choosing stereotypical
target output activities [99, 108]. For example, when the target configu-
ration at each time step corresponds to all outputs being silent except the
one indicating the desired class, a winner-take-all decision applied to the
output layer over the sequence presentation (thereby pooling its activity
over time) can perform the classification. Equivalently, one can consider
the mean activity of the reservoir over the input stimulation taken as a
state that is associated to the (static) class label. Thus, the reservoir is
used as a temporal kernel and its time averaged (mean) state constitutes an
informational feature relevant to classify the input time series (Fig 3.1b).

Here we go beyond the use of first-order statistics to define the reser-
voir activity states and consider the covariances (i.e. second-order sta-
tistical moments) of the reservoir activity as features for classification.
Although it has previously been shown that (co)variances convey rele-
vant information for multivariate time series classification [53, 171, 172],
this has not been fully formalized nor exploited in a reservoir comput-
ing framework. Our approach combines the high-dimensional nonlinear
expansion operated on inputs by the reservoir with a decoding of its spa-
tial (zero-lag) covariances (Fig 3.1b). We benchmark this classification
scheme with both synthetic and real datasets. Firstly, we use multivariate
time series generated with controlled zero-lag or one-lag covariances that
are the relevant information for the classification in two groups. We show
that reservoir computing is beneficial to covariance decoding and that it
allows for capturing not only the spatial structure of input time series, but
also their temporal structure (which the classical mean-based approach
completely misses). Importantly, we assess the influence of the reser-
voir parameters (Fig 3.1c) on the input-output mapping for the first and
second-order statistical moments. We then demonstrate that our method
is efficient for practical applications with two real datasets in a task of
spoken digits recognition. In particular, it outperforms mean decoding,
even with much smaller reservoirs.

After introducing the reservoir model and readout training (Section 3.2),
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Figure 3.1: Reservoir computing model and classification pipeline. a.
Reservoir computing network model where only the dashed connections
to the readouts are trained. b. Classification pipeline where an input
sequence is filtered (or processed) by the reservoir, whose activity is mea-
sured via statistical features (means or covariances) computed from the
reservoir time-resolved states and then fed to a decoder. Only the dashed
connections from reservoir features to decoder are trained to predict the
labels for the classes. c. Reservoir parameters governing its dynamical
regime: spectral radius (global parameter) and leak rate (local parame-
ter).

we present the synthetic and real datasets to benchmark the mean and co-
variance decoding of the reservoir activity. Section 3.3 highlights the ad-
vantages of our covariance-based scheme, which is further discussed in
Section 3.4.

3.2 Methods

3.2.1 Reservoir implementation

We implement the reservoir computing system with an echo state net-
work, where the reservoir is composed of N leaky integrator neurons
[99, 108]. When driven at time t by a multivariate time-dependent in-
put ut ∈ RM, the multivariate activity state xt

res ∈ RN of the N neurons
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(or units) in the reservoir changes according to:

x̄t
res = F(Ωinu

t + Ωresx
t−1
res ), (3.1)

xt
res = (1− α)xt−1

res + αx̄t
res, (3.2)

where the function F = tanh is the hyperbolic tangent function applied
to each vector component and α is a leak rate. The matrices Ωin ∈ RN×M

and Ωres ∈ RN×N determine the input and recurrent connectivities, respec-
tively. In practice, both connectivity matrices have elements randomly
drawn from the uniform distribution over the interval [−0.5, 0.5).

To characterize the reservoir, we consider two important parameters.
First, we calculate its spectral radius ρ (Ωres), which is the largest abso-
lute eigenvalue of the recurrent connectivity matrix Ωres. This parameter
has been shown to influence the reservoir performance for memory-based
tasks commonly studied in the literature [97, 173, 174]. Note that a spec-
tral radius equal to 0 corresponds to Ωres = 0, meaning that the reservoir
is in fact a feedforward layer (left-hand side in Fig 3.1c). To adjust the
spectral radius, we uniformly rescale the weights in Ωres, exploring val-
ues ranging from 0 to 1.8. Second, we vary the leak rate α in Eq 3.2 that
controls how each neuron’s dynamics is affected by its immediate past
activity state [99, 108]. Smaller α values produce slower dynamics by
smoothing the unit activity, thereby integrating the inputs over time. In
contrast, no such integration is performed when α = 1, corresponding to
fully leaky neurons.

As illustrated in Fig 3.1c, we explore the joint influence of the two
aforementioned parameters, which govern the reservoir dynamical regime,
on the classification performance using numerical simulation. As an ex-
ample from a previous study [99], if α = 1, a spectral radius close to 1
is required for tasks that need long memory depth. In contrast, a feed-
forward reservoir with α = 1 simply transforms the inputs by a point-
wise nonlinearity determined by F on the inputs randomly mixed by Ωin,
which does not implement any memory via temporal integration.

Note that all reservoirs in our simulations start with a zero activity
state when transforming a short-sequence mode, so initial transient states
are present and used in the classification task.
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3.2.2 Features and logistic regression as readout

We use logistic regression as a readout or decoder to map features, which
are computed from the reservoir activity, to the class labels [47]. We
distinguish between mean and covariance decoding, according to which
feature is fed to the classifier (Fig 3.1b).

For the mean decoding, the output yout ∈ RK that predicts the class
labels corresponds to

yout = φ(ΩoutV ), (3.3)

Vi = 〈xt
i〉 =:

1

d

∑
1≤t≤d

xt
i. (3.4)

The vector V ∈ RN is the mean of the reservoir activity over a period of
duration d, which corresponds to the input stimulation duration. Ωout ∈
RK×N is the matrix of weights that are trained and φ denotes the softmax
function (multivariate according to the number of classes).

For the covariance decoding, we simply replace the mean vector V by
the covariance Q:

yout = φ(ΩoutQ), (3.5)
Qij = 〈x̃t

ix̃
t
j〉. (3.6)

Here the zero-mean time series x̃t to compute the covariances comes from
the centering of xt. Then, the covariances are vectorized, keeping only
independent entries (upper triangle including the diagonal made of vari-
ances), meaning that Ωout ∈ RK×N(N+1)/2.

The training of the readout is performed using the standard algorithms
available in the Python library ‘scikit-learn’ [175]. We minimize a L2-
regularized cross-entropy loss function, with regularization parameter ad-
justed using a grid search in a 5-fold cross-validation scheme performed
on the training set. We use standard scaling of each feature as a prepro-
cessing step in all implementations, and the logistic regression involves a
unit bias with trained weight in all implementations.
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3.2.3 Synthetic datasets
For a binary classification task (K = 2), we consider two groups of mul-
tivariate time series, each being characterized by specific second-order
statistics. We constrain either the spatial structure (zero-lag covariances)
or the temporal structure (one-lag covariances) of these time series. The
point here is to compare how the mean and covariance readouts can cap-
ture the relevant information for classification from the reservoir activity.
Note that, for a linear reservoir, mean decoding cannot extract second-
order statistics, implying that the nonlinearity is necessary for mean de-
coding to work here. A more thorough comparison would involve a mean
structure encoded in the inputs to compare mean and covariance decod-
ing, but this is left for future work.

In practice, we use dynamic systems to generate input time series for
M = 10 inputs in discrete time 1 ≤ t ≤ d, with duration d = 20. Denot-
ing the input activity by ut ∈ RM, we consider their covariances without
and with lag to quantify their spatio-temporal structure at the second sta-
tistical order:

P 0
kl =

〈
ut
ku

t
l

〉
d
−
〈
ut
k

〉
d

〈
ut
l

〉
d
, (3.7)

P 1
kl =

〈
ut
ku

t+1
l

〉
d
−
〈
ut
k

〉
d

〈
ut+1
l

〉
d
, (3.8)

where 〈· · · 〉d is the temporal averaging over d. The spatial structure corre-
sponds to time series with distinct patterns for P 0 as a “defining statistic”,
whereas the time series for the temporal structure correspond to distinct
patterns for P 1 (but the same P 0). In both cases, we randomly draw a
number of such reference patterns and assign them to one of two classes
in a balanced manner. Then we simulate for each pattern several realiza-
tions of the time series, which include further empirical noise. Thus, there
are two sources of variability in our sample time series: one endowed with
their spatio-temporal structure, relevant for classification, and another that
relates to observational noise and must be discarded for the classification.

We rely on a 70/30 train/test validation splitting to assess the clas-
sification performance, reporting test accuracy. In addition, we use the
logistic classifier directly on the empirical statistics P 0 and P 1 for each
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sample to evaluate the linear separability of the two classes in the feature
space (mean or covariances) via the classification performance. We work
with datasets whose linear separability is below 100% in order to observe
how the performance improves or degrades across the decoding strategies
and reservoir configurations.

Spatial structure

The following dynamics are used to produce time series with specific co-
variances P 0:

ut = Wzt, (3.9)

where W ∈ RM×M is a random sparse matrix (with density equal to 0.1)
and its non-zero entries are drawn from a normal distribution. The in-
put noise zt ∈ RM is drawn from a normal distribution, yielding white
noise. The resulting time series has zero mean and the zero-lag covari-
ance matrix for this time series is P 0 = WW T , while P 1 = 0 [53]. For
each dataset with controlled spatial structure, we use 60 different refer-
ence W matrices divided in 2 equal groups. For each reference matrix,
we produce 500 noisy time series samples, obtained by simulating the
dynamical process, then split them with 70/30 ratio for the train/test sets.

Temporal structure

The following dynamics are used to produce time series with specific co-
variances P 1:

ut = Wut−1 + zt. (3.10)

To assure both that the zero-lag covariances P 0 are the same for reference
patterns P 1, we set the matrix W = exp(βIM×M + J), where parameter
β < 0, IM×M ∈ RM×M is the identity matrix and J ∈ RM×M is an
antisymmetric matrix [53]. This ensures that P 1 = WP 0, where P 0 is
a diagonal matrix equal to exp(2β)IM×M. Each dataset with temporal
structure has 6 such reference W matrices, evenly assigned to one of two
classes. To generate each W , we set β = −0.5 and create the J matrices
by drawing the modulus of the entries located above the diagonal from
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the uniform distribution over [0.5, 1). The entries’ signs are chosen in a
random fashion, and the density is set to 0.3 to obtain a sparse matrix. For
each W , we again simulate 500 noisy time series samples and keep the
70/30 ratio for the train/test sets.

3.2.4 Spoken digits datasets

We test our covariance decoding approach using two real datasets for the
recognition of spoken digits: the spoken Arabic digits [176, 177, 178]
and the S-MNIST, a dataset derived from the Google speech commands
[179, 180]. Both datasets have K = 10 classes (one for each digit from
0 to 9) and their multivariate time series consist of 13 Mel Frequency
Cepstral Coefficients (MFCC) [181], which are widely employed features
for preprocessing of audio signals [182].

The spoken Arabic digits datasets has 8,800 samples, corresponding
to 88 utterances of 10 digits spoken by 10 different native Arabic speak-
ers, split in a training/test set with a 75/25 ratio [177, 178]. Sample length
varies between 5-92 elements (median 40) in a digit dependent manner.
To have a consistent length (d = 50) across samples, we shorten or en-
large them through zero-padding in order to make code implementations
more straightforward.

The S-MNIST consists of 70,000 (60,000/10,000 train/test split) mul-
tivariate time series of digits 0-9, recorded in real-world environments
[180, 183], with consistent sequence length across samples (d = 39).

3.3 Results

We first present the results for the synthetic dataset, to explore the reser-
voir configurations that allow for efficient mean or covariance decoding
of controlled input signals. Then we compare mean and covariance de-
coding for the real datasets of spoken digits.
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3.3.1 Covariance based readouts capture a larger diver-
sity of input structures

Using the binary classification of synthetic inputs determined by specific
structures embedded in their second-order statistics (Section 3.2.3), we
explore how the classification accuracy varies with the reservoir parame-
terization (spectral radius and leak rate), as illustrated in Fig 3.2.

For the spatial structure (top rows, corresponding to Section 3.2.3),
the best performance is obtained for a reservoir that is a fully leaky feed-
forward layer, namely ρ(Ωres) = 0 and α = 1, with a decaying trend
when the spectral radius increases. This holds for all leak rates considered
and both decoding types are only weakly sensitive to the leak parameter:
a slower integration mechanism (smaller α) marginally enhances the per-
formance. Importantly, we find that the reservoir can boost the covariance
decoding (but not the mean decoding) above the benchmark performance
of a classifier directly operating on input statistics (light gray lines).

For the temporal structure (bottom rows, corresponding to Section 3.2.3),
the performance for the covariance decoding is much better than that ob-
tained with the classical mean decoding, the latter being only slightly bet-
ter than chance. Moreover, it goes beyond the benchmark of the logistic
classifier directly applied to one-lag covariances (dashed light gray line).
In other words, the zero-lag covariances of the reservoir are more easily
separable than the lagged covariances of the inputs. To achieve this, the
reservoir requires a distinct configuration for the spectral radius and leak
rate. To begin with, for all leak rates tested, both readouts reach their top
accuracy for non-null radii. Moreover, the leak rate has a strong influ-
ence here, where a fully leaky reservoir with α = 1 performs best. This
hints that reservoir global dynamics are vital when the goal is to map
the input temporal covariances into reservoir spatial statistics of first or
second-order. In this case, retaining information about past input states is
crucial and can be best achieved by having recurrent connections within
the reservoir. These optimal reservoir configurations with ρ(Ωres) ≈ 1
have been shown to maximize memory capacity for inputs of Gaussian
nature [101, 174]. In those studies, the reservoir transforms current in-
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Figure 3.2: Classification accuracy of synthetic datasets. a. Accuracy
in binary classification of structured multivariate time series that differ
by their spatial structure (top row) and temporal structure (bottom row).
We compare two types of features fed to the decoder: the mean reser-
voir activity (left column) and its spatial covariances (right column). We
show test accuracy versus spectral radius (x-axis) and for different leak
rates (indicated by the various line styles), for reservoirs of size N = 50.
The results for each reservoir model (leak and radius) are averaged across
5 different random seeds for reservoir fixed connections and synthetic
data generation, where shaded areas are ±1 standard error of the mean.
Horizontal lines indicate the benchmark performance of the two decoders
when no reservoir is used: logistic regression on input spatial covariances
(solid gray) and logistic regression on input one-lag covariances (dashed
gray). b. Same as Fig 3.2a, but for reservoirs of size N = 100.
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put activation into specific time-dependent signals (i.e. lagged inputs).
Here it does the converse, by transforming “time-dependent” (lagged) in-
formation into zero-lagged information. Furthermore, accuracy profiles
increase with leak rate for the two decoding configurations. Nonetheless,
in feedforward reservoirs (ρ(Ωres) = 0), the leaky mechanism is essential
for covariance decoding, since it implements a temporal integration of the
inputs.

As a summary for the synthetic datasets, statistics embedded in time
series can be efficiently processed by reservoirs with distinct configura-
tions depending on the nature of the input spatio-temporal structure. A
good compromise for both configurations studied here lies at reservoirs
without integration (i.e. fully leaky with α = 1) and medium-sized spec-
tral radius (ρ(Ωres) ≈ 0.9). The spatial covariances of the reservoir con-
vey relevant information that can be used for classification, but the mean
activity of the reservoir is much less informative.

3.3.2 Covariance-based decoding is efficient for spoken
digits recognition

Now, we test whether covariance decoding coupled to reservoir comput-
ing systems works with real datasets for the recognition of spoken dig-
its. Reservoir computing approaches exhibit good performance for speech
recognition, as the task has a sequential nature [119, 125, 128, 129, 184,
185, 186, 187, 188, 189]. Indeed, for the spoken Arabic digits dataset
[176, 177, 178], reservoir computing constitutes the state-of-the-art model
[129]. With an echo state network of size bounded by N = 1000 coupled
to a classical mean-based readout, the test performance is 99.9923%, and
it has been reported to reach 99.9945% when switching the representation
from the natural reservoir state space to a predictive model state space one
[129]. With a logistic regression classifier trained on input means, we ob-
tain for this dataset a 69.67% test accuracy, while using as features spatial
and temporal covariances, we obtain test performances of 91.68% and
91.13% respectively. This indicates that both statistics contain potentially
rich information to classify the time series and are thus suitable to test a
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Figure 3.3: Classification accuracy for spoken digits time series. a.
Accuracy when using mean (left panel) and covariance (right panel)
features for decoding, versus spectral radius (x-axis) and for different
leak rates (indicated by the various line styles), for reservoirs of size
N = 100. b. Classification accuracy versus reservoir size (for α = 0.2
and ρ(Ωres) = 1.2) for mean (squares) and covariance (circles) decoding.
Results for both figures are averaged across 10 different random seeds
for reservoir fixed connections, shaded areas are ±1 standard error of the
mean.
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covariance decoding scheme.

As with synthetic data, we examine the influence of the spectral radius
and the leak rate. We find that both decoders reach top performance for
small leak rate (α = 0.2) and large spectral radius (ρ(Ωres) > 1). This is
consistent with our results for the temporal structure rather than those for
the spatial structure (Fig. 3.2), suggesting that the temporal structure of
the real data is relevant to classify the digits. For this task (and unlike the
synthetic data), small leak rates are optimal, which could be explained by
the slow rate at which speech features generally vary as compared to the
sampling frequency [119]. Importantly, covariance decoding outperforms
mean decoding across all the explored model parameters, with an average
increase of 4.9 ± 0.1%. This gap in accuracy between decoders can be
reduced by increasing the reservoir size (Fig 3.3b). In fact, covariance
decoding remains quite stable, reaching 99.23± 0.04% accuracy for N =
250, while mean decoding results in 96.33± 0.04%. We remark that with
as little asN = 50, our covariance framework already reaches 98.2±0.2%
accuracy, which is way above that obtained with mean decoding, and even
comparable to the performance given by much sophisticated models, such
as the bidirectional long-short-term-memory (LSTM) network that yields
98.77% accuracy [190].

The classification task for S-MNIST [183] turns out to be more chal-
lenging than the spoken Arabic digits, as samples for a single digit dis-
play more variability and noise due to recording conditions [179]. To our
knowledge, the best reported accuracy in the literature is 75.9 ± 0.2%,
obtained with a self-organizing map [180]. A logistic regression classifier
using input means as features (i.e. without a reservoir) reaches a rather
poor performance of 32.92%, while one trained on spatial covariances
reaches 80.58%. For this dataset, we also tried a naive method that con-
sists in feeding the whole input sequence, without feature computation,
to the logistic classifier, which yielded 48.56% accuracy. This confirms
that the method to compute features (means or covariances) dramatically
affects the classification accuracy of the downstream pipeline: here co-
variances of those spoken signals convey more accurate information that
is specific to the spoken digits than their means.
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Figure 3.4: Classification accuracy for S-MNIST time series. Accuracy
when using mean (left panel) and covariance (right panel) features for
decoding versus spectral radius (x-axis), for different leak rates (indicated
by the various line styles), for reservoirs of sizeN = 100. Note that the y-
axes have different scales for the subfigures. Results are averaged across
5 different random seeds for reservoir fixed connections, shaded areas are
±1 standard error of the mean.

Now using a reservoir with N = 100, this further filtering of the time
series does not improve performance for mean decoding (Fig 3.4), and
only marginally for covariance decoding with ≈ 2% increase. Neverthe-
less, the interesting outcome of our study here is the strong effect of the
reservoir configuration on the classification performance (as earlier with
the other datasets), corresponding to ρ(Ωres) = 0.3 and α = 1 for the
optimal configuration. Once again, covariance decoding performs much
better than mean decoding and displays a more robust behavior across the
dynamical parameters space.

All in all, our findings show that covariance decoders can be success-
fully applied to small-size reservoirs to classify real time series.

3.4 Discussion
In this paper we have shown that covariance patterns can be powerful fea-
tures for the classification of real time series and that reservoir comput-
ing can boost the performance even with limited number of resources, as
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measured by the reservoir size here. Our study systematically compares
a decoding method that leverages the second-order statistical moments of
time series to the classical approach based on first-order statistics. Al-
though this has been tried in a few previous studies [53, 171, 172], it
had not been explored when coupled with reservoir computing. Reservoir
computing usually relies on first-order statistics that depend on target be-
ing e.g. mean activity or fixed profiles of activity for which variability
is undesired noise. Instead, we exploit the structured variability of the
reservoir activity in our novel decoding scheme. Together, our results
pave way to the use of higher-order statistics as features to classify time
series in bio-inspired networks dedicated to machine learning.

The reservoir operates on the covariances of the input time series by
projecting them into a higher-dimensional space where linear separabil-
ity is easier to achieve. This transformation by the reservoir is similar to
that for usual mean patterns [97, 101, 108, 125], but supposedly with an
order of magnitude larger: O(N2) for spatial covariance patterns instead
of O(N) for mean patterns, with N being the reservoir size. This partly
explains why covariance decoding outperforms mean decoding even with
much smaller reservoirs. This advantage in terms of dimensionality of the
feature space (fed to the readout decoder) is in line with previous theoret-
ical results that showed that a single-layer network can separate more co-
variance patterns than mean patterns [7]. The performance enhancement
for low resources, in terms of reservoir size, posits covariance decod-
ing as an interesting option to further explore in neuromorphic systems
[191, 192]. For large reservoir size, the dimensionality of the correspond-
ing activity covariance scales up quadratically and other regularization
than the L2 considered here may give better accuracy, like L1 to impose
stronger sparsity on the contributing features to the readout classifier.

Moreover, we have demonstrated that covariance decoding can cap-
ture a broader range of input structures than mean decoding after the op-
eration of the reservoir, using synthetic datasets where time series have
controlled second-order statistics, either with their spatial or temporal co-
variances. In this set-up, decoding temporal structures works best for
reservoir with recurrent connectivity (see Fig 3.2 bottom rows, 0.3 ≤
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ρ(Ωres) ≤ 1.8 with α = 1), whereas decoding spatial structures works
best for feed-forward reservoir (ρ(Ωres) ' 0), without much constraint
on α. A good compromise is thus ρ(Ωres) ' 0.3 with α = 1 (i.e. fully
leaky). For the real dataset of spoken Arabic digits, the top reservoir con-
figuration has spectral radius within the range of good values found for
the synthetic dataset with temporal structure, while the leak rate is smaller
(see Fig 3.3, ρ(Ωres) ≥ 0.9 with α = 0.2). This smaller leak is in agree-
ment with previous work using reservoirs with mean decoding, which
suggested that small leak rates are suitable to the inherent time scale of
the speech sequences whose structure changes at a slow pace in relation
to the sampling frequency [108, 121]. Nevertheless, this signifies that the
reservoir extracts a complex spatio-temporal structure from these input
signals. For S-MNIST, the performance increase when adding the reser-
voir is comparatively much smaller than for the Arabic digits data. This
is due to the inherent richness of MFCC as features for speech recogni-
tion, coupled with the overall bigger size of the S-MNIST dataset [191].
Therefore, our method remains to be benchmarked in multivariate times
series data of different nature and further compared to other approaches,
such as dynamic time warping and ROCKET [193].

Reservoir computing performance in time series forecasting has been
shown to be also sensitive to the detailed configurations of the input-to-
reservoir and within-reservoir connectivity matrices, as they affect the
quality of the reservoir representations of the inputs [122, 124, 126, 194].
This direction remains to be explored in our covariance set-up for classi-
fication, as well as possible extensions to deep or layered reservoir archi-
tectures [195, 196]. Recent work has shown that plasticity mechanisms
within the reservoir improve performance by decreasing its pairwise cor-
relations [125, 197], which could imply that tailoring the reservoir for
mean-based representations degrades higher-order ones. This naturally
raises the question of which mechanisms could shape the reservoir for
covariance representations, and whether both statistical orders combined
can have a synergistic effect on performance.

A comparison with deep learning is also left for future work. In the
same manner that high-order statistics can be extracted from images by

63



convolutional layers in deep networks, the same scheme has been applied
across time for time series to automatically extract high-order statistical
features [198, 199]. The comparison of extracted patterns by reservoir
computing and deep networks on time series would be interesting, to as-
sess whether they fundamentally perform similar or distinct operations
for the same classification task [200]. In addition, extension of deep net-
works (possibly with recurrent connectivity) could be developed to pro-
cess structures embedded in distinct statistical orders of the time series in
a cross-talk manner, rather than fanning in first-order statistics in outputs.
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Chapter 4

COVARIANCE BASED
INFORMATION PROCESSING
IN RESERVOIR COMPUTING
SYSTEMS

This chapter expands on the concepts of Chapter 3 and exploits variability
in a biologically more plausible setting where time series are mapped
to time series with embedded information in their structure. Part of the
methodology and synthetic datasets are, thus, the same.

The work here presented is currently in preparation for submission.
Preprint details: Lawrie, S., Moreno-Bote, R. and Gilson, M. (2021).
Covariance-based information processing in reservoir computing systems.
Bioarxiv, doi: https://doi.org/10.1101/2021.04.30.441789

Abstract

In biological neuronal networks, information representation and process-
ing are achieved through plasticity learning rules that have been empir-
ically characterized as sensitive to second and higher-order statistics in
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spike trains. However, most models in both computational neuroscience
and machine learning aim to convert diverse statistical properties in in-
puts into first-order statistics in outputs, like in modern deep learning
networks. In the context of classification, such schemes have merit for
inputs like static images, but they are not well suited to capture the tempo-
ral structure in time series. In contrast, the recently developed covariance
perceptron uses second-order statistics by mapping input covariances to
output covariances in a consistent fashion. Here, we explore the appli-
cability of covariance-based perceptron readouts in reservoir computing
networks to classify synthetic multivariate time series structured at dif-
ferent statistical orders (first and second). We show that the second-order
framework outperforms or matches the classical mean paradigm in terms
of accuracy. Our results highlight a nontrivial relationship between input
and reservoir properties in generating the output reservoir activity, which
suggests an important role for recurrent connectivity in transforming in-
formation representations in biologically inspired architectures. Finally,
we solve a speech recognition task for the classification of spoken digits
to further demonstrate the potential of covariance-based decoding for real
data.

4.1 Introduction

The variability of spiking activity is a hallmark of biological neuronal
networks. It has been observed both in vivo and in vitro, in resting and
active states and across a wide variety of species, brain areas and time
scales [17, 20, 201]. The role that trial-by-trial variability plays in infor-
mation processing in neuronal networks is currently under debate, after
early considerations that saw it as detrimental to (de)coding and learning
[18, 202], but were later proven to not always be the case [42, 43, 203].
In particular, it has recently been shown that structured variability, corre-
sponding to reproducible correlation patterns, can be a substrate for robust
information processing [53]. That study showed that patterns determined
by second-order statistics can be learned and transformed by a simple lin-
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ear analogue network, thereby implementing a ‘covariance perceptron’.
More generally, covariance coding offers a middle ground alterna-

tive between the much-debated rate coding and temporal coding theories
[12, 23, 204]. In the new view, neither the mean nor the full probability
distribution of neuronal activity are used for information transmission, but
rather the pairwise correlation between neurons, as quantified by second-
order statistics. This view is backed up by recent experimental find-
ings in neurophysiological data, where spike patterns —corresponding
to second-or-higher statistical orders— are informative about stimulus or
behavior [5, 50]. Considering statistics up to the second order to de-
fine informational patterns, we examine how neurons can classify mul-
tivariate time series, which has been also used in a variety of applications
[171, 172].

In this context, we specifically focus on the processing of patterns de-
termined by structured variability by a reservoir computing system. It
usually consists of an untrained network of neurons used to filter incom-
ing signals before feeding a readout layer [97, 98, 99, 100], which draws
on the computational power arising from the interplay between recur-
rent connectivity and neuronal nonlinearities. In particular, nonlinearities
can map inputs into spaces where linear separability is easier to achieve,
as used in many network architectures like multilayer or deep networks
[66, 205]. In addition, reservoirs of larger size than the inputs can map
them to a higher-dimensional space, which can be beneficial to separate
different input patterns. A third point is that, by only training connec-
tions from the reservoir to the readout to perform the classification, the
weight optimization procedure is simpler (fewer resources to tune) and
often more stable as compared to the training of recurrent connections.
Reservoir networks thus appear as an interesting candidate to process sta-
tistical structures of time series in a classification task, which has been
traditionally exploited by reading out the mean activity of the reservoir
[97, 99, 108, 119], although other more complex methods have been tried,
such as the model space representation [206].

This study explores the combination of reservoir computing systems
with mean/covariance decoding to classify multivariate time series (Fig. 4.1a,
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top pathway), using both synthetic and real data. Specifically, we examine
the cross-talk between the first and second statistical orders of input times
series in the reservoir activity, including both spatial and temporal struc-
ture for the second order (i.e. zero-lag and lagged covariances). To do so,
we explore through exhaustive numerical simulations and analytically de-
rived insights the influence of the reservoir parameters to elucidate their
interplay in shaping the reservoir processing. We implement our reser-
voirs by means of echo state networks, whose parameters of interest are
the spectral radius (quantifying the overall strength of the recurrent con-
nectivity) and the leak rate. These parameters have been shown to influ-
ence strongly reservoir properties such as memory capacity for Gaussian
inputs [101, 174], or the processing of input time series that involve low
frequency signals [121], so we aim to test whether similar tendencies are
observed for the processing of second-order statistics.

In addition, we compare two types of decoders: a single layer of neu-
rons that are fed from the reservoir inspired by biology (linear percep-
tron, LP); and the multinomial logistic regression (MLR) coming from
machine learning [47] (Fig 4.2b). The main difference between these two
decoders is that the LP processes its inputs in real time, producing an
output time series that has class-dependent structure at the first (mean-
LP) or second orders (cov-LP). The MLR, on the other hand, is fed by
precomputed input statistics of either first (mean-MLR) or second-order
(cov-MLR) and outputs a single class-probabilities vector.
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Figure 4.1: Processing pipeline for multivariate time series classification.
a: An M -dimensional input time series observed for d time steps is ei-
ther filtered by a reservoir layer of N neurons (‘RES-N’, top pathway) or
directly fed to a linear decoder (‘NO-RES’, bottom pathway) to perform
a classification task. The bottom pathway was studied in [53], and we
implement it here for comparison purposes. b: Our main focus of study
is the linear perceptron (LP) decoder (top pathway), but we also imple-
ment a multinomial logistic regression (MLR) decoder (bottom pathway)
whose accuracy we use as a reference.
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Figure 4.1 (previous page): There is an important operational difference
between the LP and the MLR, given by the order in which the statistics
are computed for classification. The MLR pathway first computes the
statistics of the observed activity, and outputs a class probability vector.
This implies the time series are transformed to static features. The percep-
tron, on the other hand, maps the observed activity time series to output
time series, transforming time series to time series. The output time series
thus convey information in its statistics, which are afterwards evaluated
to make the decision.

The manuscript is structured as follows. Section 4.2 describes the
pipeline that we use for classification of multivariate time series, namely
the reservoir implementation and the decoders (Fig. 4.1), followed by the
datasets used to test its performance. Results are then presented in Sec-
tion 4.3, starting with synthetic time series to uncover general principles
and followed by real data to further verify our proposed classification
scheme. They are then discussed in Section 4.4 to contextualize them
with respect to their biological and machine-learning implications.

4.2 Methods
This section first presents the reservoir implementation used in our sim-
ulations. Among the variety of reservoir implementations that have been
proposed [100], we rely on echo state networks that employ analogue sig-
moid neurons [97, 99, 108, 119], since they provide a formalism that is
compatible with the covariance perceptron (used as a decoder). We also
provide an analysis of the reservoir first and second-order statistics using
a weakly nonlinear approximation, inspired by previous work on reservoir
dynamics and memory capacity [103, 125].

Then, we explain the training of the decoder, which is done by per-
forming a gradient descent on its weights (from the reservoir units) to
minimize the mean-squared error between output activity and target ac-
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tivity as a cost function. The target activity is defined such that the classi-
fication can be performed by comparing the values (means or variances)
of the readout outputs in a winner-take-all fashion. Importantly, the gra-
dient descent depends on the metric applied to the reservoir activity and
the type of target activity, which differ across the decoders as illustrated
in Fig. 4.1b.

Last, we detail the generation of the input time series that are used to
test the classification pipeline. The classification task consists of separat-
ing the time series into K classes, with K = 2 for the synthetic datasets
and K = 10 for the real dataset. Each of these classes consist of sam-
ples that differ by their statistical features, which are transformed by the
reservoir and must be captured by the decoder.

We remark that in all the equations to be presented throughout this
work, we use lower case greek letters for real parameters, lower case latin
letters for vectors and upper case letters (greek or latin) for matrices, ex-
cept when noted (e.g M and N are natural numbers).
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Figure 4.2: Description of reservoir properties and input datasets. a: The
reservoir dynamics are characterized by the spectral radius ρ(Ωres), which
is the largest absolute eigenvalue of the reservoir’s connectivity matrix.
By convention, a reservoir with ρ(Ωres) = 0 means Ωres = 0 and cor-
responds to a feedforward layer without recurrent connectivity. We also
modulate the reservoir processing via the local units’ dynamics by adding
a leak parameter α.
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Figure 4.2 (previous page): Small leak values indicate an integration of
the input over time yielding slower update dynamics, while α = 1 indi-
cates that the units do not integrate past input information. b: We explore
an additional reservoir structure where nodes connected to inputs (recep-
tors) are segregated from nodes connected to outputs (feeders) [207]. We
choose the reservoir connectivity matrix to be fully random, symmetric
or asymmetric (see Section 4.2.1). c: For synthetic inputs, we first sam-
ple reference patterns from given probability distributions. Afterwards,
we randomly split them in two balanced classes. To generate a sample
time series for a given pattern, we add noise at each time point through
specific dynamics (see Eqs. 4.10-4.13). d: The real data consist of input
time series that correspond to spoken digits. To approximate the way the
human cochlea processes sound when entering the ear, the speech signals
are framed and windowed. For each time bin, a frequency spectrum is
computed through a Fourier transform, simulating the frequency-tuning
of nerve cells in the cochlea, and a logarithmic scale (mel scale) is used
to represent the power coefficients, simulating the nonlinear perception
of pitch in humans. These coefficients are decorrelated by means of a
discrete cosine transform, keeping 13 amplitude coefficients per time bin.
This multivariate time series is afterwards passed through the processing
pipeline in B for prediction of the spoken digit. Note that the dataset is
only available as preprocessed MFCC coefficients [176, 178].

4.2.1 Reservoir implementation

The reservoir used in the classification pipeline (‘RES-N’ in Fig. 4.1a,
top pathway) is an echo state network with N leaky integrator neurons
(or units), similar to previous studies [99, 108]. The update equations for
the activity state at time t of the N leaky neurons inside the reservoir,
denoted by x(t) ∈ RN when fed by a multivariate input u(t) ∈ RM, are

x̄(t) = F
(
Ωinu(t) + Ωresx(t− 1)

)
, (4.1)

x(t) = (1− α)x(t− 1) + αx̄(t), (4.2)
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where the function F = tanh has a sigmoidal profile, Ωin ∈ RN×M is
the connection matrix from the input time series to the reservoir units
and Ωres ∈ RN×N is the weight matrix of recurrent connections within the
reservoir. All connection weights are randomly sampled from [−0.5, 0.5),
and the resulting matrices are dense. The parameter α is a leak rate, α ∈
(0, 1], which governs how each reservoir unit integrates its own dynamical
state over time. When α tends to zero, the neuron’s dynamics becomes
slower and more dependent on previous history than on the current input
state [99, 108]. When α = 1, the activity of the reservoir (Eq. 4.2) is
x(t) = x̄(t), thus, no integration is performed and each unit’s activity state
only depends on the instantaneous inputs and activities of other neurons.

Using numerical simulation, we explore the different dynamical regimes
of the reservoir, by varying a local parameter (leak rate applied homoge-
neously to all units) or a global parameter (spectral radius), see Fig. 4.2a.
The spectral radius ρ (Ωres) is the largest absolute eigenvalue of the reser-
voir’s weight matrix Ωres. It affects the reservoir performance in differ-
ent benchmark tasks typically reported in the literature, such as memory
[97, 173, 174]. A general heuristic when α = 1 is that ρ (Ωres) should
approximate 1 (from below) for tasks that require long memory and be
smaller for tasks where a too long memory might be detrimental [99].
Since we are agnostic to the effects of this parameter for multivariate
time series classification (especially those with structured dynamics as
we have detailed in the previous section), we vary it spanning a range that
goes from 0 to 1.8. In the absence of inputs, a spectral radius larger than
1 implies that a linear reservoir (i.e. when F is the identity operator in
Eq. 4.1) is unstable, in the sense that its trajectory will deviate away from
the zero fixed-point when started from a non-zero state [121]. However,
in practice, the sigmoid function bounds the growth of the trajectory and
effectively produces a reservoir that is dynamically less excitable. Note
that, by convention, a null spectral radius implies a zero connection ma-
trix (Ωres = 0), corresponding to a feedforward layer (left-hand side in
Fig. 4.2a). Thus, α = 1 and Ωres = 0 implies a nonlinear and memoryless
transformation of the inputs randomly mixed by Ωin. When α < 1, an
effective spectral radius can be calculated for the reservoir, corresponding
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to the linearization of its dynamics: αΩres + (1−α)IN×N, instead of Ωres

[108]; here IN×N is the identity matrix.
Other possible parameters for exploration include the input scaling

and the choice for the sigmoid function F , which we leave for future
work.

All the results we present in this study are averaged across 10 different
reservoir configurations, where a configuration is given by specific con-
nection matrices Ωin and Ωres, and we always start each reservoir from a
zero state. Importantly, our work focuses on transient states, since we are
interested in learning and representations in short time scales.

Reservoirs propagate diverse input statistics

Under slightly different conditions than the ones we have stated previ-
ously (see Supplementary Material 4.5.1 for full details), it can be proven
that the first-order statistics of a neuron xi inside a reservoir with α = 1
and spectral radius ρ when fed by a multivariate input time series u(t) ∈
RM , with u1(t) a bias unit, is given by:

〈xi(t)〉 ≈
M∑
m=1

ε

1− ρ2
〈um(t)〉

−
M∑

m,r=2

ε3

1− ρ2

1

1− ρ4
〈um(t)ur(t)〉

− 2
M∑

m,r=2

ε3

1− ρ2

ρ2

1− ρ4
〈um(t)ur(t+ 1)〉,

(4.3)

where the angular brackets denote temporal average, ε denotes the strength
of connections from input to reservoir and we have assumed the neuron is
in a weakly nonlinear regime (Supplementary Material 4.5.1).

Likewise, the second-order zero-lag statistics of neurons xi and xj in
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the reservoir are given by:

〈xi(t)xj(t)〉 ≈2
M∑
m=1

ε2

(1− ρ2)2 〈um(t)〉

+
M∑

m,r=2

ε2

1− ρ4
〈um(t)ur(t)〉

+ 2
M∑

m,r=2

ε2ρ2

1− ρ4
〈um(t)ur(t+ 1)〉,

(4.4)

where in the above derivation it is enough to assume that the neuron is
behaving in a linear regime (Supplementary Material 4.5.1).

Thus, the reservoir mixes input statistics and these are reflected in
reservoir statistics of first and second-order, with a dependence on input-
to-reservoir and within-reservoir connections (i.e. ε and ρ). Full details
of this derivation can be found in Supplementary Material 4.5.1. Below
we provide some insights for a feedforward reservoir and for the case of
temporally correlated inputs.

Feedforward reservoir In the limit ρ → 0, the reservoir becomes es-
sentially a feedforward layer. In this case, reservoir spatial statistics of
first and second order do not reflect information embedded in second-
order temporal covariances (see Eq. 4.3 and Eq. 4.4 when setting ρ = 0).
Thus, a purely feedforward reservoir is not useful to process this type of
structure. Nonetheless, the nonlinear behavior of the sigmoid function
introduces a cross-talk between first and zero lag second-order statistics,
where we see that the reservoir mean activity and covariances are influ-
enced in both cases by both input means and covariances. Furthermore,
in terms of the strength of the input-to-reservoir connections ε, first or-
der input statistics have O(ε) contribution to reservoir mean and O(ε2)
contribution to reservoir covariances, while input covariances haveO(ε2)
contribution to reservoir mean and O(ε2). This hints that maintaining
consistency betweeen statistical orders for ‘encoding/decoding’ is better
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than mixed schemes when inputs have first or second-order zero lag struc-
ture. Thus, when information about class is embedded in the input mean
activity, this is more strongly reflected in the reservoir mean activity but
can in principle also be recovered from the (zero-lag) second-order statis-
tics (to a lesser extent). However, when the information is embedded in
the zero-lag covariances, the above derivation suggests that second-order
statistics of the reservoir provide better representations than first-order
ones. This constitutes a strong departure from purely linear networks,
where covariance-based information representations are only possible if
indeed such a representation is present in the inputs [53].

Temporally correlated inputs This type of input structure requires ρ 6=
0. This can be seen via the coefficients of the form 1

1−ρ2 and ρ2

1−ρ4 that in-
crease with ρ. Note that they diverge as ρ → 1, but the present anal-
ysis based on linearization does not capture well the reservoir regime
then. Therefore, the optimal value for the spectral radius is expected
to be non-zero and below 1, as it maximizes the influence of input one
lag correlation in reservoir mean and spatial covariance statistics. In our
calculations, from the coefficients in the Taylor series, we observe that
reservoir means are more influenced by input lag statistics than reservoir
covariances. However, this only holds if the Taylor series approxima-
tion remains valid when ρ increases and we thus verify that a mean-based
representation be better than a covariance based one using numerical sim-
ulation.

Analysis of reservoir dynamical regime

Since the above analysis relies on the assumption that the reservoir be-
haves in a weakly nonlinear regime (see Supplementary Material 4.5.1),
we need to define in a quantitative manner the different dynamical regimes,
in order to investigate its relationship with the efficiency of the mapping
on input statistics performed by the reservoir. In practice, we define for
each neuron three possible dynamical regimes according to its activation
state z, where the activation state is the argument inside the nonlinearity
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F = tanh at any given time point (Eq. 4.1). If |z| ≤ 0.3, the regime
is considered linear. If 0.3 < |z| ≤ |0.6|, it is considered to be weakly
nonlinear. Any other case is likely to involve strong nonlinearities. We set
these bounds for the regimes by upper-bounding by 0.01 the error in the
truncated Taylor series approximation to the hyperbolic tangent of first
and third order. For each of the datasets we work with, we numerically
compute the probability of finding a neuron in each dynamical regime as
function of spectral radius and leak rate.

Reservoir topology

In most of our study we use a reservoir implementation as detailed above,
where each neuron is fed by all the input nodes (i.e. Ωin is a full matrix)
and likewise feeds the decoder (corresponding to a full Ωout matrix).

However, it is known that the anatomical connectivity in the brain is
not full, but sparse and constrained. Getting inspiration from one of the
most known pathways of cortex from sensory areas to motor areas, we
also consider a reservoir topology that mimics this structure by simply
separating input receptor nodes from output feeder ones, as studied in
previous work (Fig. 4.2b) [207]. To study how activity propagates across
this specialized reservoir, we place the neurons along a ring and choose
the input receptor neurons to be opposite the output feeder ones. This
implies constrains in Ωin and Ωout. For all our simulations using the seg-
regated reservoir, we use a total of N = 500 neurons, where two disjoint
sets of size 50 form the receptor and feeder groups.

Within the reservoir, we try three different naive and sparse (0.1 den-
sity) connectivity patterns for Ωres: random, symmetric and asymmetric.
The motivation behind exploring these different patterns comes from the
design of the synthetic inputs in Section 4.2.3, where a mixing matrix
given by an asymmetric matrix J guarantees, via the exponential func-
tion, that the inputs are temporally but not spatially correlated. To gener-
ate these topologies, all non-null reservoir connectivity matrix elements
are uniformly sampled from [−0.5, 0.5). For the symmetric (asymmet-
ric) matrices, we only sample elements Ωres

ij for the upper triangular part,
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while the lower triangular elements are assigned to fulfil the symmetry
(asymmetry) condition Ωres

ji = Ωres
ij (Ωres

ji = −Ωres
ij ).

4.2.2 Decoders
We have four different learning and decoding schemes, as outlined in
Fig. 4.1b: mean-LP, cov-LP, mean-MLR and cov-MLR, with names fol-
lowing the convention ‘feature-classifier’, where the feature corresponds
to the statistical order used by the classifier to predict the class. We de-
note by v(t) ∈ RD the observed activity in Fig. 4.1b, which either comes
directly from the input time series (i.e. v(t) = u(t) with D = M ) or is
filtered by the reservoir (v(t) = x(t) with D = N ). The prefix ‘mean’
indicates that the classifier relies on the mean vector of the observed ac-
tivity, namely S(v(t)) = 1

d

∑d
t=1 v(t). The prefix ‘cov’ indicates that the

decoder relies on the matrix of zero-lag (or one-lag) covariances of the ob-

served activity, S(v(t)) = 1
d−1

∑d−1
t=1

(
v(t)− 1

d

∑d
t′=1 v(t′)

)(
v(t)− 1

d

∑d
t′=1 v(t′)

)>
,

with the superscript > indicating the matrix transpose. In each case, we
consider two options for the classifier: a linear perceptron [47, 93] (LP in
Fig. 4.1b) or a (multinomial) logistic regression classifier [47] (MLR in
Fig. 4.1b). Our main focus is the performance of the LP and we imple-
ment the MLR decoder only as a reference.

We stress that there is an operational difference between the two clas-
sifiers. The LP is biologically inspired in the sense that it generates, for
a K-class classification problem, an output time series y(t) ∈ RK at each
time step, and the statistical moments for classification are computed for
this vector when the observation period is over (top pathway in Fig. 4.1b).
Thus, the output activity at time t is given by:

y(t) = Ωoutv(t), (4.5)

where Ωout ∈ RK×D is the matrix of classifier parameters. We remark
that Ωout has a fixed dimension independently of the statistic used for
classification. In the mean-based instance, the predicted class is given by
the output node with highest mean activity during the observation period.
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In the covariance-based instance, the predicted class is given by the output
node with highest variance during the observation period. Note that when
using the covariance perceptron learning rule, we always implement a
mapping between spatial covariances, since we do not consider the case
of recurrent connections in the readout layer, as is needed to map temporal
covariances to spatial covariances [53].

On the other hand, the MLR is a conventional machine-learning ap-
proach which first computes the desired time series statistics and after-
wards uses it as a vector entry for the classifier (bottom pathway in Fig. 4.1b).
To do so, the MLR produces a single output vector y ∈ RK from the statis-
tics S(v(t)) of the observed time series, which is not time dependent, but
instead represents the probabilities of the input feature vector to belong to
each class:

y = exp
(
ΩoutS (v(t))

)
. (4.6)

In Eq. 4.6, S (v(t)) is D-dimensional for the mean vector and D(D +
1)/2-dimensional for the vectorized covariance matrix (taking symme-
tries into account), so the output matrix (Ωout) dimension depends on the
statistic used as feature. In practice, the output is L1-normalized so that
all the elements in y sum to 1. The class is then given by the index of
the maximum element in y. In other words, the order to the transforma-
tion by Ωout and the calculation of the statistics is swapped between the
two types of classifiers (Fig.4.1b). Therefore, the MLR for covariances is
not equivalent to the linear perceptron with an extra nonlinearity (logis-
tic function). We further emphasize that, once both decoders are trained,
while MLR always computes the statistics of the observed activity for
classification, the perceptron instead embeds this information directly in
the output time series, which are then further processed to compute the
statistics and predict the class (Fig. 4.1b).

In addition, all our models make use of a bias unit at the input-to-
reservoir and reservoir-to-output levels, which can be straightforwardly
included in all our previous equations. This unit consists of a time series
with constant (unit) activity as additional entry. Thus, it has a mean equal
to 1, null variance and null cross-covariance with other input nodes. An-
other possibility would be to choose the bias unit that feeds the decoder
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unit as a signal with zero-mean activity and variance of 1. Intuitively, this
would correspond to adjusting the offset in covariance space. However, to
keep consistency at all layers, we keep the bias as a unit constant, given its
importance for input representations (see Section 4.2.1 and Supplemen-
tary Material 4.5.1).

Learning procedures

Once that the pipeline is set (with or without reservoir, statistical order of
feature and decoder), the final step is training the decoder by tuning the
matrix weights Ωout, the only plastic aspect of the network. In all cases,
we rely on a gradient descent that aims to minimize a cost C.

For the mean-LP, learning is achieved by minimizing a regularized
mean squared cost function between the output mean activitym = 〈y(t)〉d
and a target output mean activity ȳ ∈ RK during the observation period d:

C =
1

2

K∑
k=1

(mk − ȳk)2 +
λ

2

K∑
k=1

D∑
i=1

(
Ωout
ki

)2
. (4.7)

Given the linear nature of the readout, when λ = 0, this is equivalent to
matching an output time-dependent trajectory to a constant target output
trajectory [53], which corresponds to the common winner-take-all read-
outs typically used in reservoir computing applications for classification
[108, 119, 185, 186]. We use the scikit-learn library [175] to minimize
this cost function. Importantly, we do not highly tune the regularization
parameter λ, but set it to 0.02 for all models.

For the cov-LP decoder, learning consists in minimizing a squared
error cost function from output spatial (zero-lag) covariances Y 0 ∈ RK×K

to target spatial covariances Ȳ 0 ∈ RK×K [53]:

C =
1

2

K∑
k=1

(
Y 0
kk − Ȳ 0

kk

)2
. (4.8)

Note that since only the diagonal elements of these matrices are useful for
classification, we only constrain them during training, leaving the cross-
covariances to vary freely. This is achieved through a gradient-descent
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learning rule derived for linear dynamics [53], where the weight updates
∆Ωout

ik for the connection between element k in the output and element i
in the observed activity are given by:

∆Ωout
ik = η

(
Ȳ 0 − Y 0

)
�
(
GikV 0Ωout> + ΩoutV 0Gik>

)
, (4.9)

where η is the learning rate, V 0 ∈ RD×D is the spatial covariance matrix
of the observed activity and Gik ∈ RK×D has 0s everywhere except in
element (i, k) that is equal to 1. Symbol � denotes the element-wise
(Hadamard) product followed by summation of resulting elements. The
learning rate is set for all models to 0.01 and 100 optimization steps are
performed.

For the MLR decoders, learning is done through stochastic gradient
descent to optimize an L2-regularized cross entropy cost function [47].
For this, we use the scikit-learn library [175].

Subsampling procedure for observed activity

Generally, statistical models with larger number of free parameters will
yield better performing models than those with lower resources, provided
they do not overfit the data [47]. Since the cov-MLR decoder differs
in the number of parameters to learn when compared to the other three
schemes, to fairly compare them we subsample the dimensions of the
observed activity vector v(t) so that its vectorized covariance matrix has
dimension close to D. In the reservoir pipeline, D represents the size N .
Thus, ifN = 25, we train the cov-MLR decoders with neuron subsamples
of size S = 6 and S = 7. The resulting decoders have, on average, 24.5
free parameters, thus approximately matching the complexity of cov-LP,
mean-LP and mean-MLR when trained on the full size reservoir. Each
reservoir initialization is randomly subsampled 100 times for each S, so
reported performance is not heavily dependent on a given subsampling
(as it is averaged across 10 reservoir initializations, with a total of 2, 000
subsampling iterations). For N = 50 we use S = 9, 10, and for N = 100,
S = 13, 14. For the pipeline without reservoir, we subsample the number
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of inputs following the same approach. Therefore, for the real dataset
with 13 input features (Section 4.2.4) we use S = 4 and S = 5.

4.2.3 Synthetic datasets

This section introduces the synthetic datasets of multivariate time series
whose ‘information’ relevant for classification is embedded in one of their
statistics up to second order. We also consider a mixed scenario where
the information is embedded both in means and zero-lag covariances, thus
either of these statistics can be used for classification. Note that we use the
term ‘information’ in a colloquial manner in this study, without a specific
reference to information theory.

We consider a multivariate time series given by u(t) ∈ RM that rep-
resents the activity of M = 10 input nodes observed at discrete times
1 ≤ t ≤ d with d = 20. We rely on dynamical systems to enforce a spe-
cific spatio-temporal structure that constrains its statistics up to the second
order, namely, the empirical mean activity and their zero-lag and one-lag
covariance matrices, defined as follows:

• vector of mean activity p ∈ RM, with elements pk = 〈uk(t)〉d =
1
d

∑d
t=1 uk(t);

• zero-lag covariance matrix P 0 ∈ RM×M, with elements

P 0
kl = cov (uk(t), ul(t))d

= 〈uk(t)ul(t)〉d − 〈uk(t)〉d 〈ul(t)〉d

=
1

d− 1

d−1∑
t=1

[
uk(t)−

1

d

d∑
t′=1

uk(t
′)

][
ul(t)−

1

d

d∑
t′=1

ul(t
′)

]
;
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• one-lag covariance matrix P 1 ∈ RM×M, with elements

P 1
kl = cov(uk(t), ul(t+ 1)d

= 〈uk(t)ul(t+ 1)〉d − 〈uk(t)〉d 〈ul(t+ 1)〉d

=
1

d− 2

d−1∑
t=2

[
uk(t)−

1

d− 1

d∑
t′=2

uk(t
′)

]

×

[
ul(t+ 1)− 1

d− 1

d−1∑
t′=1

ul(t
′ + 1)

]
.

Here our goal is to classify the synthetic time series into K = 2 classes.
We thus generate two groups of such time series according to one of the
above structures, where the defining statistics —p, P 0 and P 1— corre-
spond to distinct patterns that are randomly assigned to one of two classes
(Fig. 4.2c). We first draw a number of such “reference” patterns by sam-
pling given probability distributions, then we generate for each pattern
several sample time series for our classification task (each sample involv-
ing further stochastic randomness). In each category, there are then two
sources of “noise” or variability: the different patterns belonging to a
same class, and the empirical noise due to the individual probabilistic re-
alization of each sample. The rationale behind our choice is to account
for empirical noise that is typically observed in real time series, such as
speech sounds, where distinct phonemes have a similar spatio-temporal
structure, which is altered at each pronunciation.

We use cross-validation to assess the classification performance, rely-
ing on a 70/30 train/test split that is maintained in all synthetic datasets.
For each dataset, we evaluate how separable the two classes are in the rel-
evant feature space by applying a multinomial logistic regression decoder
(details in Section 4.2.2) directly on the input sample time series statis-
tics(see bottom pathways in Fig. 4.1). The performance of this bench-
mark decoding is affected by the number of patterns to classify per class
(intuitively, densely populated feature spaces are more likely to involve
overlapping classes) and by the properties of the probability distribution
the patterns are drawn from. Note that we focus on synthetic datasets with
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a benchmark classification accuracy below 100%, so we can detect per-
formance improvements and decreases across different decoding schemes
and models.

In the following subsections we describe the generative dynamics for
each statistical structure.

Mean or first-order structure

We use the following generative process for the time series:

u(t) = p+ z(t), (4.10)

where z(t) ∈ RM is a normally distributed random variable, with zero-
mean and identity covariance matrix. To characterize the mean activity
of u(t), we use a pattern vector p ∈ RM, with non-null elements sampled
from a zero-mean and unit variance normal distribution. This vector is
created sparse, with a 0.1 density. This means that 90% of the input nodes
will have zero-mean activity.

To generate a dataset of this type, we first draw 20 patterns of such
p vectors and randomly split them in two classes (10 in each), as shown
in Fig. 4.2c. Once defined the patterns for the two classes, we generate
noisy samples by using Eq. 4.10 with 500 repetitions for each pattern.
From each set of 500 samples, we use 350 samples for the training set
and the remaining 150 for the test set.

Spatial covariance or second-order zero-lag structure

We use the following generative process for the time series:

u(t) = Wz(t), (4.11)

where z(t) ∈ RM is, as before, a standard normal random variable and
W ∈ RM×M is a random sparse matrix with 0.1 density and non-zero el-
ements sampled from a standard normal distribution. The resulting zero-
lag covariance matrix is given by P 0 = WW T [53]. Note that the gen-
erated time series has zero-mean activity over time up to the empirical
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noise, as well as zero temporal correlations (P 1 = 0). Thus, the only
discriminative information for the binary classification is in P 0 (or equiv-
alently, W ), which is the defining statistic.

To generate a dataset of this type, we sample 60 W matrices and
randomly split them in two classes before simulating the dynamical pro-
cesses. As before, we then generate 500 noisy samples with a 70/30 ratio
for the train and test.

Temporal covariance or second-order one-lag structure

We use the following generative process for the time series:

u(t) = Wu(t− 1) + z(t), (4.12)

where we choose the mixing matrix W = exp(βIM×M + J), with param-
eter β < 0, IM×M ∈ RM×M is the identity matrix and J ∈ RM×M is an
antisymmetric matrix. This guarantees that the time series will not differ
neither in their mean activity vectors p (which are null) nor in their spa-
tial correlation structure P 0 (which only depends on β), but only in their
one-lag covariances P 1 = WP 0 [53].

To generate a dataset of this type, we sample 6 W matrices and ran-
domly split them in two classes before simulating the dynamical pro-
cesses to generate the noisy samples in the same manner as before. With-
out loss of generality, we set β = −0.5 and create the matrices J by
sampling unsigned upper diagonal elements from the uniform distribu-
tion over [0.5, 1). The elements’ signs are randomly assigned, and the
resulting J matrices have by construction a 0.3 density.

Mixed spatial inputs with first and second-order zero-lag structure

To create time series that differ in mean and spatial covariance structure,
we use a superposition of the signals given in Eqs. 4.10 and 4.11:

u(t) = p+Wz(t). (4.13)

To generate a dataset of this type, we randomly sample 20W matrices
and 20 p vectors. Each p is randomly paired to a W matrix and the tuple
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is randomly assigned to one of two classes. This is done with the purpose
of having mean patterns and covariance patterns that are evenly separable.
Afterwards, the dynamical processes are simulated. Note that p and W
are generated with the same density and normal distribution for their non-
zero elements, as in Sections 4.2.3 and 4.2.3 respectively.

4.2.4 Spoken Arabic digits dataset

To test our covariance-based decoding applied to reservoir computing in a
real application, we work with the spoken Arabic digits dataset [176, 177,
178]. The motivation is to use time series with spatio-temporal structures.
The dataset contains 8800 multivariate time series (10 digits x 10 repeti-
tions x 88 speakers) recorded from native Arabic speakers (44 females,
44 males, ages 18-40 years old) with the purpose of classification, split in
a training (75%) and test set (25%). Here the classification is not binary,
but there are K = 10 classes (one per digit).

The time series are represented by 13 Mel Frequency Cepstral Coef-
ficients (MFCC) [181], which constitute a widely used feature for tasks
such as speech recognition [182]. They mimic the transformation of the
audio signal by the inner ear and are a model of how sound stimuli are
“perceived” by the early neuronal auditory system. As represented in
Fig. 4.2d, when a mechanical sound wave reaches the ear, it produces
vibrations that propagate throughout the cochlea, with high frequencies
entraining the early part of the cochlea and low frequencies the end part.
Hair cells in the cochlea translate these vibrations into electrical activ-
ity in a frequency dependent manner (depending on their position), so
the sound is spectrally decomposed. This is performed by means of the
Fourier transform in the MFCC computation. Afterwards, the spectrum is
represented using a logarithmic scale (mel scale), emulating the nonlin-
ear perception of pitch. Finally, a discrete cosine transformation is applied
with the purpose of decorrelating the resulting coefficients.

Since the MFCC sequences vary in length (5-92 elements, median
40), as is natural in speech, we opt to shrink or expand them (through
zero-padding) to have the same size and a consistent observation window
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(d = 50). This is strictly not necessary since all our classification methods
can operate on varying sequence lengths, but is only motivated to make
the implementations more straightforward and does not make the classifi-
cation problem easier. Another possibility to avoid losing the information
about sequence length, which strongly relates to digit identity, is to add
it as a normalized constant input to the reservoir [108], but we choose to
not follow this approach.

4.3 Results

The purpose of our study is the comparison between mean-based and
(co)variance-based linear perceptron readouts applied to a reservoir of
sigmoid neurons for the classification of multivariate time series. To do
so, we firstly consider synthetic time series with controlled structures,
characterized by either their means, spatial covariances (zero-lag) or tem-
poral covariances (one-lag) (see Section 4.2.3).

To determine the usefulness of the reservoir in the pipeline for classi-
fication, we also compute baseline classification accuracies (i.e. without
reservoir, ‘NO-RES’ pathway in Fig. 4.2a) for each perceptron readout
type. Furthermore, we use additional multinomial logistic regression de-
coders (mean-MLR and cov-MLR) to quantify in terms of their accuracy
how ‘class-informative’ the noisy statistics of the time series that reach
the perceptron readouts are. We remark that the purpose of the MLR
decoders is merely to provide a reference, and that these decoders are op-
erationally different from the perceptron. The later receives time series as
input and likewise produces time series as output, with class ‘information’
embedded in its statistics. MLR instead receives pre-computed statistics
as input features and directly outputs a single static class-probability vec-
tor (Fig.4.1b and see Section 4.2.2 for further details).

We systematically vary reservoir parameters to allow for the identi-
fication of which properties of the reservoir (size, spectral radius, leak
rate) are important to extract the relevant information for classification,
in line with previous work that used mean-based readouts with similar
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reservoirs [97, 174, 208, 209]. In addition, we explore the influence of
the reservoir connectivity by comparing fully connected random reser-
voirs and segregated reservoirs where input-receptor neurons (receptors)
and output-sending ones (feeders) are separated by at least one neighbor
(Fig.4.2b and see Section 4.2.1) for the decoding of inputs with different
structures.

Last, we apply our analysis under the same considerations of the first
part of our study to real data for speech recognition (see Section 4.2.4),
which is a practical problem where reservoir computing has been effi-
ciently applied [108, 119, 128, 184, 185, 186, 187, 188, 189].

4.3.1 Reservoirs enhance covariance perceptron perfor-
mance and efficiently represent second-order statis-
tics from input time series
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Figure 4.3: Decoding performance for spatial and temporal structure
and reservoir dynamics. a: Reservoir classification performance for a
spatial structure (left panel) and a temporal structure (right panel) em-
bedded in the input time series when the decoder is a linear perceptron.
Accuracy is shown as a function of spectral radius (on the x-axis) and
for different reservoir sizes (see N ) and leak rates (indicated by the vari-
ous contrasts). We compare mean-based decoder (mean-LP in blue) and
covariance-based decoder (cov-LP in red). The light-gray lines on each
subplot indicate the performance of a MLR classifier directly applied to
the statistics (see bottom pathways in Fig. 4.1) that characterizes the
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Figure 4.3 (previous page): information embedded in the input time se-
ries (zero-lag covariances for the left panel and one-lag covariances for
the right panel). The dark gray line shows the performance of a covari-
ance perceptron directly applied to the input time series (top pathways in
Fig. 4.1). Shaded areas represent ±1 standard error of the mean (sem)
across 10 different simulations of time series and reservoir configura-
tions. Each class has 30 different covariance patterns in the left panel,
and 6 in the right panel. b: Probability of finding a reservoir neuron in
the linear dynamics regime (see Section 4.2.1) (pink) or in the weakly
nonlinear regime (orange) versus spectral radius, for different reservoir
sizes (overlapping dotted, dashed and solid lines for N = 25, N = 50
and N = 100 respectively) and leak rates (shades) and input structures
(spatial, top; temporal, bottom). Results are averaged across 10 different
data simulations and reservoir configurations. Shaded areas are ±1 sem.
c: Accuracy for the best models for each decoder type: blue for mean-
LP, red for cov-LP, yellow for mean-MLR and green for cov-MLR. Error
bars represent ±1 sem across 10 different simulations of time series and
reservoir configurations. Numbers in model names indicate the size of the
reservoir (RES-N , N = 25, 50, 100 as above, see the bottom pathway in
Fig. 4.2a), while NO-RES indicates that the input time series is directly
fed to the decoder (the bottom pathway in Fig. 4.1a). In the right panel,
we also include the performance of MLR on one-lag covariances (one-lag
cov-MLR) for the NO-RES case, since the other features are not informa-
tive in this case.

The linear perceptron readout (mean-LP and cov-LP in Fig. 4.1b) is
trained to perform a binary (K = 2) classification task of synthetic input
time series that differ by their second-order statistics. We create these
time series in such a way that the statistical features that determine to
which of the two classes they belong to is embedded either in their zero-
lag covariances (spatial structure, Section 4.2.3 in Methods) or in their
one-lag covariances (temporal structure, Section 4.2.3 in Methods).

For the spatial structure where the categories differ by the zero-lag
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covariance patterns, we first train mean-LP and cov-LP readouts without
the reservoir in the pre-processing stage. As expected, mean-LP operating
directly on the input time series does not produce above chance classifica-
tion accuracy, since the inputs have, by construction, zero-mean activity
(up to some observation noise). On the other hand, cov-LP achieves an
accuracy of 71± 2%. While this accuracy is much better than chance, the
decoder is not able to fully extract the second-order information embed-
ded in the input time series covariances, as quantified by the cov-MLR
performance (88.6± 0.9%).

We add the reservoir to the pipeline and vary its parameters (namely
size, leak rate and spectral radius) to assess how they influence the classi-
fication performance (Fig. 4.3a, left panel). For the classical mean-based
perceptron readout (in blue), we find similar results to previous work on
reservoir computing applied to others tasks (e.g. types of inputs): per-
formance monotonically increases with the number of units forming the
reservoir. This is due to the increased dimensionality of the representa-
tion of the inputs in the reservoir activity, which makes it easier to find
a separating hyperplane for the two categories of inputs. The new ap-
proach with the cov-LP readout (in red) displays the same trend. Fur-
thermore, the reservoir can boost the decoding performance beyond that
of a cov-LP directly applied to the inputs (dark gray line) with as little
as N = 25 neurons (half the amount needed by mean-based readouts)
and it even reaches the performance of the MLR directly applied on in-
put covariances (light gray line) for N = 100. Note, however, that the
number of trained weights per class is then equal to N = 100 for the cov-
LP, whereas it is equal to 10 × 11/2 = 55 for the (cov)MLR-NO-RES
(see Section 4.2.2). For both readout types (mean/cov), we find that the
performance decays with spectral radius, the best being achieved when
the reservoir is a feedforward layer where ρ(Ωres) = 0. This points to
interesting relationships between reservoir dynamics and representations.
Indeed, it can be shown that when the neurons inside the reservoir be-
have linearly, then mean-based reservoir representations are not able to
classify spatially structured inputs at the second-order, while covariance-
based ones can (see Section 4.2.1). However, when neurons are driven
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in a weakly nonlinear regime, mean-based representations become possi-
ble. On the other hand, when a reservoir is excited at a strongly nonlinear
regime (i.e. saturating the nonlinearity), it will provide representations
(at both orders) that are degraded when compared to the weakly nonlin-
ear case.

In fact, a neuron saturating the nonlinearity can only behave in three
possible ways: continuously saturating the nonlinearity at the top limit, at
the bottom one, or alternating from one to the other. Neurons constantly
saturating the same limit will have average state equal to 1 or -1, while
flipping neurons will have mean states that depend on the switching prob-
ability, with higher probabilities more likely leading to zero-mean states
that degrade the input representation. This degradation, nonetheless, is
expected to be more prominent in the mean than the covariance space,
since saturated neurons can display coordinated switching behavior.

Succinctly, when the goal is to process input spatial covariances, ran-
domly mixing inputs (via Ωin) and applying a point-wise nonlinearity is
enough to achieve this, while keeping a memory of past states through
reservoir dynamics appears detrimental. Indeed, strong recurrent connec-
tions within the reservoir drive it away from the linear/weakly nonlinear
regime (Fig. 4.3b, top) and the corresponding accuracy drops as represen-
tations lose quality by becoming sparser. In line with this, performance
degrades more slowly for the cov-LP than the mean-LP, although the ef-
fect becomes similar as reservoir size increases.

We also observe that cov-LP performance is largely insensitive to
changes in the leak rate, as shown by the overlapping red lines in Fig.4.3a
(left panel). On the other side, mean-LP performance degrades when in-
creasing the leak rate for reservoirs whose spectral radius is close to or
larger than 1, and this effect increases with reservoir size. Thus, the leaky
integration mechanism becomes useful when using mean-based readouts
(smaller α values yield better performance). Indeed, leaky integration
drives the reservoir away from the nonlinear regime, therefore improving
representations (see profiles in 4.3b with varying leak rate).

Then, we consider the temporal structure signal (Fig. 4.3a, right panel,
see Section 4.2.3 in Methods for details) for which the input time se-
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ries from the two classes only differ by their one-lag covariances, their
spatial covariances being identical. For these type of input structure,
mean-LP and cov-LP alone (i.e. without reservoir) cannot capture the
relevant statistics for classification, so they produce chance level accu-
racy. The reservoir thus becomes fundamental for this task. As with the
spatial structure, we find that performance increases with reservoir size
for both readout types. However, the performance for the covariance-
based decoders is well above that of mean-based ones and approximates
that of the MLR directly applied to the one-lag covariances of the inputs
(98.8±0.5%, dashed light gray line). Thus, the conversion from temporal
second-order patterns in the inputs to spatial second-order patterns in the
reservoir is more efficient than to spatial first-order patterns. The temporal
structure yields different accuracy dependencies on the spectral radius and
leak rate, as compared to the spatial structure. First, we note that mean-
based readouts perform very poorly for all tested configurations and that
both decoders achieve their best performance for non-zero spectral radii.
This indicates that the reservoir recurrent dynamics are essential to trans-
form the input lag covariances into output spatial statistics of the reservoir
activity, of either first or second order. The optimal reservoir configura-
tions have recurrent connectivity with ρ(Ωres) ≈ 1, which have also been
shown to maximize memory capacity for Gaussian inputs [101, 174]. In
those studies, the reservoir transforms dynamic signals in a way that al-
lows to retrieve past information for a given range of delays. Instead,
we here do the converse and transform the temporal structure (lag covari-
ances) into a spatial structure (zero-lag covariances). For a reservoir in
a linear or weakly nonlinear regime, indeed it can be shown that optimal
representations at both orders are obtained when ρ(Ωres)→ 1 from below
(see Section4.2.1 in Methods). Nonetheless, as these temporally struc-
tured inputs produce reservoir nonlinear dynamics that are stronger than
the ones induced by spatially structured inputs (Fig. 4.3b, bottom), rep-
resentation degradations seem much more pronounced at the first-order
than the second-one, explaining the larger gap in accuracy between mean
and covariance based decoders in Fig. 4.3a.

Second, accuracy increases with leak rate for both readout types. Nonethe-
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less, for covariance readouts in a feedforward reservoir with ρ(Ωres) = 0,
leaky integration is key, as it allows neurons to keep a memory of past
inputs in their current state.

We further compare these LP decoders to the MLR decoders, in both
mean-based and covariance-based versions as illustrated in Fig. 4.3c. As
before, we focus on the case where a reservoir is involved in the classifica-
tion pipeline (RES-N, corresponding to the bottom pathway in Fig. 4.2a),
as well as the decoders directly applied to the inputs (NO-RES, see the
top pathway in Fig. 4.2a). The best decoder performance for each case
in Fig. 4.3a across the considered reservoir parameters is displayed in
Fig. 4.3c. It can be seen that covariance-based decoders outperform mean-
based ones when the information to extract is in the second-order statis-
tics of the inputs across all models tested, and that the best decoder is the
cov-MLR, which is also the readout with highest complexity (number of
parameters).

Ultimately, temporal and spatial input structures are efficiently pro-
cessed by reservoirs, but distinct characteristics give the best performance
(especially the radius). A good compromise for both types of inputs and
covariance-based readouts is a reservoir without leaky integration and
medium-sized spectral radius, namely α = 1 and ρ(Ωres) ' 1.

4.3.2 Reservoirs with covariance-based readouts can also
extract first-order statistics

Thus far, we have shown that a consistent processing scheme between in-
puts and outputs via the reservoir for covariance-based information pro-
cessing is better than a mixed scheme that maps input covariances to
means in the reservoir activity, which are then used by the readouts for de-
coding. Now, we explore for comparison the case where the inputs have
embedded information in their mean activity. When class information is
embedded in spatial statistics, we have shown analytically and numeri-
cally that a pointwise nonlinearity is key to produce reservoir representa-
tions shaped at first and second order, while the recurrent dynamics are
less important. Thus, we restrict this investigation to a feedforward reser-
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Figure 4.4: Decoding mixed information for the mean structure and spa-
tial structure using feedforward reservoirs. a: Accuracy table for feedfor-
ward reservoirs without leaky integration coupled to a linear perceptron
when using mean or covariance readouts to classify time series charac-
terized by its mean or its spatial covariance structure. We focus on small
reservoirs (N = 10, 25, 50), since the mean structure task gives perfect
performance for such reservoir size (N ≥ 50). Each entry in the table
is the mean accuracy (with sem in parentheses) across 10 different sim-
ulations. Datasets were designed to match the performances using the
perceptron as readout: cov-LP 79(±2)%, 15 patterns per class, mean-LP
81(±2)%, 10 patterns per class.
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Figure 4.4 (previous page): b: Classification accuracy as a function of
reservoir size for a feedforward reservoir without leaky integration cou-
pled to a linear perceptron as a readout when the categories of input time
series differ by both their means and their spatial covariances. As before
in Fig. 4.3a, the performance for the mean-LP is represented in blue, that
of the cov-LP in red. Shaded areas represent ±1 sem across 10 different
simulations and gray lines indicate the performance of decoders that are
directly applied to the inputs (NO-RES). Note that the datasets are gener-
ated in such a way that the classification performance of a mean-LP and
cov-LP without reservoir is matched, equal to 78 ± 1%, with 10 patterns
of each statistic to distinguish per class (see Section 4.2.3 in Methods).

voir and no leaky integration, namely ρ(Ωres) = 0 and α = 1, as they give
the best performance in Fig. 4.3A. Note that the leak rate is less crucial
than the absence of recurrent connectivity here.

We firstly compare the performance of mean-LP and cov-LP decoders
when the input information is embedded in two different statistical orders:
either means (input dynamics in Section 4.2.3) or spatial covariances (in-
put dynamics in Section 4.2.3). We intentionally work with small reser-
voirs to avoid the case where the mean classification task becomes trivial,
with perfect performance. To fairly compare the two structure schemes,
we create the respective datasets such that the performance of a LP clas-
sifier acting on the distinctive input statistics (either mean or covariances)
is matched up to 1% of performance. Our results in Fig. 4.4a indicate that,
typically, the best strategy is to use for decoding the same order the input
is structured at, for small reservoirs. However, when the reservoirs are big
enough (N ≥ 50), switching to mean-based decoding can be beneficial,
as learning is computationally faster.

Then, we consider the situation where the input time series can be cat-
egorized by either of their first/second-order statistics, corresponding to
the dynamics in Section 4.2.3. In this setting, knowing only one of these
statistics is enough to perform the binary classification, and the question is
whether a type of decoding can make use of both types of information in
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a synergistic manner. As before, the inputs are designed to match decod-
ing performances when LP is applied directly to them. We find that both
decoders perform equally well across various reservoir sizes (Fig. 4.4b),
with a slight advantage for cov-LP over mean-LP for smaller sizes and
conversely for larger sizes.

These results are consistent with the fact that in a feedforward reser-
voir, if input-to-reservoir weights are O(ε), with |ε| < 1, then the sta-
tistical moments of reservoir neurons will depend on input statistics with
different leading orders in ε (see Methods 4.2.1). We have shown that
reservoir mean activity has O(ε) dependence on input mean activity and
O(ε2) dependence on input spatial covariances. On the other hand, reser-
voir spatial covariances display the sameO(ε2) dependence on both input
statistics. Thus, if information is on input means, it is more strongly re-
flected on reservoir means, and likewise for covariances. However, when
information is embedded in both statistical orders, then fixing a represen-
tation for the reservoir settles the other one as ‘noise’. Therefore, in a
mixed scheme, mean-based representations have a better signal-to-noise
ratio than covariance-based ones.

Together, these results show that the application of covariance-based
decoding, when combined with a reservoir, goes beyond that of its same
order encoding: information about multiple input statistical orders can be
effectively mapped to output second-order moments.

4.3.3 Covariance-based information is more efficiently
propagated in short time scales

As a last point with the synthetic data, we consider a reservoir with sep-
arated input receptor and output feeder units (Section 4.2.1) to study the
role of the reservoir topology in the transmission of different statistical or-
ders (Fig. 4.2b). In this architecture motivated by biology with segregated
functions, signals have to propagate from end-to-end of the reservoir to
reach the decoder in a short-time window d = 20. We compare segre-
gated reservoirs with different sparse connectivities (Fig.4.2b), as well as
the architecture studied until now with full connectivity from inputs and to
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Figure 4.5: Segregated reservoir (Fig 4.2b) classification performance
of spatial structure (left panel) and temporal structure (right panel) em-
bedded in the input time series when the decoder is a linear perceptron.
Accuracy is shown as a function of spectral radius and for different reser-
voir topologies (marker styles). Color coding is similar to Fig. 4.3a. The
black lines show the performance of a non-segregated reservoir of 50 neu-
rons without leaky integration (α = 1, same as in Fig. 4.3a, middle row)
for comparison.
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outputs. Importantly, we design these configurations such that they share
the same number of decoder resources, as given by the number of connec-
tions from reservoir units to output units (Fig. 4.3a, middle row, N = 50).
The leak rate is always set to α = 1. Since the density of within reservoir
connections does not affect performance in the full connectivity configu-
ration (it is only important that it is non-null, see Supplementary Material
Fig. 4.8), we set the reservoirs to have 0.1 density.

For the task of decoding input spatial covariances, we observe that
the performance is improved for mean-decoding (Fig. 4.5a, left panel,
blue) with large spectral radii when the segregated reservoir has symmet-
ric structure. On the other hand, covariance-based decoding is only reach-
ing the not segregated reservoir performance for medium radii (ρ(Ωres) =
0.9), where the segregation of receptor and feeders impedes that this task
be achieved by a feedforward reservoir.

When the information to decode is in the temporal covariances (Fig. 4.5a,
right panel), mean-LP performance is degraded. Covariance decoding, on
the other hand, is better preserved and even reaches a better performance
than a fully connected random topology for ρ(Ωres) ≈ 0.7. For sym-
metric and asymmetric connectivities, accuracy is significantly degraded
across all spectral radii when compared to the not segregated reservoir,
and we also find that the relationship between optimal performance for
these topologies and spectral radius changes. This suggests a complex
interplay between the input structure and the reservoir topology, which
would be interesting to explore in a more analytical manner in future
work.

On average, information about input covariances is better recovered
by covariance decoders even when the patterns must propagate along a
network to reach the output units in a short time window.

4.3.4 Covariance-based schemes work in classification
of spoken digits

Finally, we explore the applicability of covariance-based readouts in reser-
voir computing for the classification of spoken Arabic digits [176, 177,
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Figure 4.6: Decoding performance in spoken Arabic digits classification.
a: Accuracy for the best performing models of each size, distinguished
by decoder type. Colors and model label conventions are the same as
in Fig. 4.3b. Results are averaged across 10 different reservoir instantia-
tions. Error bars displaying ±1 sem are also included. b: Accuracy for
the best performing models with varying reservoir size, when the decoder
is covariance-based (cov-LP and cov-MLR) and the number of parame-
ters of each decoder are approximately matched. Error bars displaying
±1 sem are also included.
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178]. The dataset consist of digits 0 − 9, represented by 13 input nodes
obtained after some preprocessing mimicking the cochlea as illustrated
in Fig. 4.2d (see Section 4.2.4 in Methods for further details). Our goal
here is not so much to improve the best performance obtained so far on
this dataset. Rather we aim to evaluate our covariance-based decoding
in a real case study and speech recognition is a common area of appli-
cation for reservoir computing, given the sequential nature of the task
[119, 125, 128, 184, 185, 186, 187, 188, 189]. Indeed, the classical mean-
based decoding reaches a competitive performance of 99.9923% for a
reservoir of size bounded by N = 1, 000 [129], and it can be further in-
creased to 99.9945% when using a predictive model space representation
instead of the natural reservoir space [129].

As before, we use the two pipelines for classification, with and with-
out reservoir (same as Fig. 4.1a) and we vary reservoir properties (size,
spectral radius and leak rate) across a grid. For brevity, we only report the
test accuracy of the best performing models for each reservoir size and
decoder in Fig. 4.6a, which are obtained for α = 0.2 and ρ(Ωres) = 1.2
(see Supplementary Material Fig. 4.9 for all results). This is in line with
decoding temporal structure (Fig. 4.3a), rather than spatial structure, sug-
gesting that the temporal structure of the real data is best captured by the
reservoir to perform efficient classification. First, we note that when we
do not use a reservoir, the best decoders are the nonlinear ones (mean-
MLR and cov-MLR), and that both statistical orders contain relevant in-
formation to classify the time series. However, the higher accuracy ob-
tained with the cov-MLR indicates that the covariance patterns are poten-
tially easier to extract than the mean patterns. Indeed, the performance of
cov-MLR with N = 100 is 98.7 ± 0.1%, better than using a mean-based
decoder with an echo state network of N = 900 neurons (96.91%[127]),
but obtained with 9 times fewer neurons within the reservoir. Further-
more, the performance is at the same level of that obtained with a much
more complex network model, as is the long short-term memory network
in [190] (98.77%).

In addition, the linear decoders (mean-LP and cov-LP) perform well
above chance level, which corresponds here to 10% because the dataset
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is balanced across the 10 possible digits. The use of a reservoir in the
pipeline is beneficial to all decoders, and the resulting performance in-
creases with reservoir size. When N = 100, the performances of the
mean-MLR, mean-LP and cov-LP are closely matched, but they are still
below that of the cov-MLR. Our insight is that this gap could be further
reduced by increasing the reservoir size.

To further compare the cov-LP and cov-MLR, we subsample the num-
ber of neurons in the reservoir, so that its vectorized covariance matrix
has dimensionality close to N , instead of N(N + 1)/2 (see Section 4.2.2
for details). We find that both models exhibit similar performance un-
der this constrain (see Fig. 4.6b), which confirms that the cov-LP decoder
extracts information about covariances in an optimal manner given its
limited number of resources.

All in all, covariance-based decoders can be successfully applied within
reservoir computing frameworks to classify spoken digits. The covari-
ance perceptron (cov-LP) applied to reservoir computing offers a good
compromise between good performance and limited resources as in a bi-
ological context.

4.4 Discussion

In this study, we have explored how a neuronal reservoir can be efficiently
paired with covariance-based readouts for the classification of time se-
ries. Our goal was to investigate the potential of this new type of decod-
ing as compared to the classical mean-based decoding that has been used
with reservoir computing until now, with a two-fold motivation. First, we
aimed to characterize how reservoir dynamics can process the statistical
structure embedded in the input time series, up to the second order includ-
ing spatial and temporal structures. Second, we wanted to compare a bio-
logically inspired configuration —a perceptron network mapping time se-
ries to time series— with a machine learning configuration —multinomial
logistic regression mapping static features to class probabilities. Our re-
sults demonstrate the efficiency of covariance-based readouts applied to
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reservoirs, even in the biological configuration that involves limited re-
sources as implemented by a (linear) covariance perceptron.

We have shown using synthetic data that covariance decoding allows
for capturing a broad diversity of input structures after their transforma-
tion by the reservoir. To do so, a compromise configuration for our echo
state networks, corresponding to α = 1 and ρ(Ωres) = 1, is robust to
variations in second-order input structure. These findings are confirmed
with the classification of spoken digits from a real dataset, for which we
find better performance for covariance decoding: the performance of cov-
MLR with N = 100 (98.7± 0.1%) is better than the mean decoding with
N = 900 (96.91%) [128, 210]. Moreover, the cov-LP maximally extracts
information about covariances given its restricted resources. For the real
digits dataset, the best radius is similar to the compromise configuration
for synthetic data, but the best leak rate is smaller. This is in line with
previous work in reservoir computing studies with mean-based readouts,
which suggest that small leak rates better suit the intrinsic time scale of the
input time series, as speech spectral features vary slowly when compared
to the sampling frequency (i.e. the spacing between the windows used to
compute MFCC) [121]. In such a case, the usefulness of the reservoir is
to transform signals at those slow timescales into zero-lag correlations of
the reservoir activity.

In more detail, the collective dynamics of the reservoir, as governed
by the interplay between the spectral radius and the leak rate, have a cru-
cial effect on the input-output mapping in terms of statistics. For large
radii, small leak rates produce slower dynamics that tend to drive the
reservoir towards the linear or weakly non linear regimes, which in turn
enhances mean decoding of spatial structure. When inputs are endowed
with spatial structure, covariance decoding is less dependent on leak rate,
which suggests that reservoir pairwise correlation patterns mostly depend
on global dynamic features. On the other hand, mean decoding of tem-
poral structure performs very poorly and is negatively affected by slow
unit and global dynamics, as information from the past must rapidly pro-
duce spatial patterns distinguishable by the mean decoder. For covariance
decoding when the information source are the one-lag covariances, the
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global memory mechanism given by the spectral radius and the individ-
ual one given by the leak rate operate best when acting alone, as we find
that the presence of slow unit dynamics decreases performance when the
reservoir is scaled to operate close to the unstable regime (ρ(Ωres) ≈ 1).
The optimal reservoir in this case is one without leaky integration and
ρ(Ωres) ≈ 1, which is balanced between the linear, weakly nonlinear and
nonlinear regimes. Thus, driving the system closer to the linear regime by
decreasing the leak rate (and effectively reducing the strength of the recur-
rent connections for a given spectral radius) degrades performance. While
most analytical studies in the reservoir computing literature focus on the
linear approximation [97, 101, 108, 125], our numerical results suggest
that other input-induced dynamical regimes should be further examined
theoretically [102, 103].

Early studies in echo state networks failed to report performance im-
provements in time series prediction when using small-world or scale-
free topologies [211, 212]. However, it was later shown that connectivity
plays a role when the reservoir network displays cortex-like topological
properties [122, 207], a finding that had been observed in reservoirs of
spiking neurons earlier [213]. In those studies as replicated in ours, nodes
receiving inputs differ from those feeding the readouts, thereby mimick-
ing the separation of sensory areas from motor areas. This scheme is
most efficient to transform input temporal covariances into output spa-
tial covariances when the reservoir connectivity is fully random; note
that in this case the optimal spectral radius is smaller than for the non-
segregated reservoirs (ρ(Ωres) = 0.7 instead of 1). This could be due to
the overall bigger reservoir size that provides a faster mixing of the inputs
(N = 500). Surprisingly, symmetric connectivity enhances mean decod-
ing of spatial structure. Overall, there is a nontrivial interaction between
reservoir topology and input structure which should be further investi-
gated. We note that future work could explore more elaborate topological
properties, like small-world, scale-free, clustered [90] or even real con-
nectome patterns [214, 215], beyond the simple traits studied here. Fur-
thermore, we constrained our study to random input projections, which
take part in shaping the input representations that arise in the reservoir (as
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hinted in Section 4.2.1). Along this line, it has been shown that unsuper-
vised plasticity at the input-to-reservoir layer improves performance in
pattern recognition tasks with mean-based decoding [90], so it is natural
to question whether this effect is also observed, or even further enhanced,
for covariance-based readouts.

Last, we stress that the use of the reservoir here offers several advan-
tages with respect to the linear network studied in [53]. First, it avoids
the training of recurrent connections in the readout layer to classify tem-
poral covariance structures, by retaining past information in its own ac-
tivity. Thus, learning is computationally cheaper, as there is no need to
numerically solve Lyapunov equations, which is the case in the recur-
rent covariance perceptron [53]. Second, the cross-talk among statisti-
cal orders induced by the reservoir allows the covariance perceptron to
capture a broader variety of input statistics, in particular when the input
information is embedded in the first statistical order. Meanwhile, the neu-
ronal system remains biologically plausible and takes advantages of the
interplay between nonlinearities and recurrent connectivity [98, 116]. Al-
though we have not examined the influence of the nonlinearity used in the
reservoir, we expect a variety of biologically inspired functions to lead to
efficient computations, provided they keep the recurrent dynamics under
control for medium radii (i.e. bounded activity). Our work may also bring
a novel perspective in training recurrent networks with feedback in the
line of the FORCE algorithm, where the focus is on generating patterns
(time series) that consist of trajectories [105, 216, 217]. A possible ex-
tension is to generate time series with desired covariance-based patterns
instead.

Another extension in the direction of biological realism is to transpose
the scheme to spiking neurons [98]. Following from our results when our
analogue reservoir is close to a linear regime, we expect our covariance-
based decoding framework to give interesting perspectives in terms of
operations on covariances for spiking networks in similar linear regimes.
However, the specific nonlinearities involved in spiking neurons should
have significant effects on the input-output mapping and require a thor-
ough study. Such covariance-based learning for spiking neurons would
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be an intermediate between learning spike rate patterns and precise spike
trains, as with the ‘tempotron’ [218] or ReSuMe [219].

An important limitation of our study has been on the size of the reser-
voirs we were able to implement, as the perceptron learning procedure
for covariances becomes numerically unstable as the number of parame-
ters to tune increases. Current work on overcoming this and studying the
scaling behavior of covariance-based reservoirs is focused on using tech-
niques such as gradient-clipping [96]. Nonetheless, this approach makes
the learning procedure slow as the number of optimization steps needed
to find a good solution increases. Another issue to also address in the
future is how to efficiently regularize covariance-based decoders, since
going for larger reservoirs might lead to overfitting. These considera-
tions underlie a cost-benefit trade-off between covariance and mean-based
representations. While covariances offer higher-dimensional representa-
tional spaces than means for the same number of resources, learning is
still computationally cheaper and more stable for mean-based representa-
tions [7, 53].

4.5 Supplementary Material

4.5.1 Reservoirs propagate diverse input statistics
Let u(t) ∈ RM be a multivariate time series fed to an echo state network,
with u1(t) a bias unit. The update equations for an arbitrary neuron xi(t)
inside a reservoir with N units are given by:

x̄i(t) = F

(
M∑
m=1

Ωin
imum(t) +

N∑
l=1

ρ

γ
Ωres
il xl(t− 1)

)
, (4.14)

xi(t) = (1− α)xi(t− 1) + αx̄i(t), (4.15)

where the function F = tanh has a sigmoidal profile, Ωin ∈ RN×M is
the connection matrix from the input time series to the reservoir units and
Ωres ∈ RN×N is the weight matrix of recurrent connections within the
reservoir. Factor ρ

γ
allows to control the spectral radius of the effective
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matrix of recurrent connections Ωeff := ρ
γ
Ωres, where γ is the spectral

radius of Ωres.
In a fully leaky reservoir (α = 1) and assuming a left-infinite sequence

of inputs is presented to the reservoir, then the state at time t of a neuron
can be written as

xi(t) = tanh

(
M∑
m=1

∞∑
k=0

((
ρ

γ
Ωres

)k
Ωin

)
im

um(t− k)

)
(4.16)

If α = 1 and neurons are in a weakly nonlinear activation state, we
can approximate Eq. 4.16 by a Taylor series truncated at the third order:

xi(t) ≈
M∑
m=1

∞∑
k=0

((
ρ

γ
Ωres

)k
Ωin

)
im

um(t− k)

− 1

3

M∑
m,r,s=1

∞∑
k,l,n=0

((
ρ

γ
Ωres

)k
Ωin

)
im

((
ρ

γ
Ωres

)l
Ωin

)
ir

×
((

ρ

γ
Ωres

)n
Ωin

)
is

um(t− k)ur(t− l)us(t− n),

(4.17)

where we have collapsed the sums
∑M

m,r,s=1 =
∑M

m=1

∑M
r=1

∑M
s=1 and∑∞

k,l,n=0 =
∑∞

k=0

∑∞
l=0

∑∞
n=0 for ease of notation and have used that

tanh(z) ≈ z − z3

3
when z ≈ 0.

In the following, we will assume:

• Ωin elements are independently sampled from the uniform distribu-
tion over [−ε/M, ε/M ]

• Ωres elements are independent and identically distributed random
variables with zero mean and variance σ = 1

N
, and thus in the limit

N →∞, γ → 1 [220].

We want to observe how reservoir first and second-order statistics are
influenced by input statistics. Therefore, note that:
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• In magnitude, elements in ρ
γ
Ωres follow

(
ρ
γ
Ωres

)
pq
∼ ρ2

γ2
σ =⇒(

ρ
γ
Ωres

)k
pq
∼ Nk−1 ρ2k

γ2k
σk = Nk−1

Nk ρ2k = ρ2k

N

• Elements in Ωin follow Ωin
jr ∼ ε

M

• =⇒
((

ρ
γ
Ωres

)k
Ωin

)
im

∼ ερ2k

Thus, we get that:

xi(t) ≈
M∑
m=1

∞∑
k=0

ερ2kum(t− k)

− 1

3

M∑
m,r,s=1

∞∑
k,l,n=0

ε3ρ2(k+l+n)um(t− k)ur(t− l)us(t− n),

(4.18)

Thus, if we compute the mean 〈xi(t)〉, we obtain:

〈xi〉 = lim
T→∞

1

T

∫ t+T

t

xi(t
′)dt′

≈
M∑
m=1

∞∑
k=0

ερ2k lim
T→∞

1

T

∫ t+T

t

um(t′ − k)dt′

− 1

3

M∑
m,r,s=1

∞∑
k,l,n=0

ε3ρ2(k+l+n)

× lim
T→∞

1

T

∫ t+T

t

um(t′ − k)ur(t
′ − l)us(t′ − n)dt′

(4.19)

=⇒ 〈xi(t)〉 ≈
M∑
m=1

∞∑
k=0

ερ2k〈um(t− k)〉

− 1

3

M∑
m,r,s=1

∞∑
k,l,n=0

ε3ρ2(k+l+n)

× 〈um(t− k)ur(t− l)us(t− n)〉,

(4.20)
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If we assume that the input time series are stationary, then their sta-
tistical moments do not change when time shifted, i.e. 〈um(t − k)〉 =
〈um(t)〉 and 〈um(t − k)ur(t − k)us(t − k)〉 = 〈um(t)ur(t)us(t)〉 (they
are time invariant). Thus, we can compute the infinite sums (which are
convergent geometrical series if ρ < 1), and get the dependence of 〈xi(t)〉
in terms of the first order and second (zero and one lag) covariances of the
inputs:

〈xi(t)〉 ≈
M∑
m=1

ε

1− ρ2
〈um(t)〉

−
M∑

m,r=2

ε3

1− ρ2

1

1− ρ4
〈um(t)ur(t)〉

− 2
M∑

m,r=2

ε3

1− ρ2

ρ2

1− ρ4
〈um(t)ur(t+ 1)〉,

(4.21)

Following the same procedure, we can compute 〈xi(t)xj(t)〉 using the
linear approximation to the state of each neuron. Thus, we get:

〈xi(t)xj(t)〉 ≈
M∑

m,r=1

∞∑
k,l=0

ε2ρ2(k+l)〈um(t− k)ur(t− l)〉 (4.22)

And in terms of first and second order moments (zero and one-lag),
we find:

〈xi(t)xj(t)〉 ≈2
M∑
m=1

ε2

(1− ρ2)2 〈um(t)〉

+
M∑

m,r=2

ε2

1− ρ4
〈um(t)ur(t)〉

+ 2
M∑

m,r=2

ε2ρ2

1− ρ4
〈um(t)ur(t+ 1)〉.

(4.23)
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Thus, we observe that ρ plays a key role in how input statistics are
reflected in reservoir statistics.

4.5.2 Section 4.3.2 results when using MLR decoders as
benchmarks
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Figure 4.7: Decoding mixed information for the mean structure and spa-
tial structure using feedforward reservoirs. a: Accuracy table for feedfor-
ward reservoirs without leaky integration coupled to a linear perceptron
when using mean or covariance readouts to classify time series charac-
terized by its mean or its spatial covariance structure. Same conventions
as Fig 4.4. Datasets were designed to match the performances using the
MLR as readout: cov-MLR 85(±1)%, 30 patterns per class, mean-MLR
83(±2)%, 10 patterns per class.
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Figure 4.7 (previous page): b: Classification accuracy as a function of
reservoir size for a feedforward reservoir without leaky integration cou-
pled to a linear perceptron as a readout when the categories of input time
series differ by both their means and their spatial covariances. Same con-
ventions as in Fig 4.4. Note that the datasets are generated in such a way
that the classification performance of a mean-MLR and cov-MLR without
reservoir is matched, equal to 78± 1%, with 10 patterns of mean vectors
and 20 patterns of covariances to distinguish per class.

In Section 4.3.2, we compare the performance of cov-LP and mean-
LP decoding when the statistical information is embedded in the first or
second-order moments of the inputs (Fig 4.4a) or in both (Fig 4.4b). To be
able to compare performance across different datasets, we chose the num-
ber of patterns to distinguish per class such that mean-LP and cov-LP
decoders acting directly on the inputs obtained matching performances.
Using instead MLR decoders to match datasets, we can produce the same
figure. Note that in this case, for Fig 4.7a, we have 30 covariance pat-
terns per class (as in Fig 4.3a, left pannel) instead of 20. For Fig 4.7b
we have 20 covariance patterns per class, instead of the 10 in Fig 4.4b.
There is now a difference between the number of patterns to distinguish
in each space, given mainly because cov-MLR decoders have a higher
model complexity. Thus, to generate the dataset each mean pattern is
randomly paired to 2 covariance patterns, and then the set is randomly as-
signed to a class. We observe, nonetheless, that the results of Fig 4.4 are
mostly preserved. The difference relies in that in the mixed scenario, cov-
LP decoders now lag behind mean-LP across all sizes tested. We venture
that this difference is due to two sources. One is that when using mean
decoders, each noisy pattern is observed twice when compared with each
covariance pattern when using covariance decoders. The other is that
resources are low for small reservoirs when the input covariance space
needs to be covered. This could be overcomed with increasing reservoir
size. We observe such decrease in the performance gap between decoders
up to 25 neurons. Afterwards, the decreasing stops. This might be due to
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numerical instabilities when trying to optimize covariance decoders for
large number of weights. Overall, Fig 4.7 suggests that the first-order
information overrides the second-order one.
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Linear perceptron performance in random topology reservoir
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Figure 4.8: Linear perceptron classification performance in synthetic
time series with second-order structure. Similar color conventions as in
Fig 4.3a. Reservoir parameters are N = 100, α = 1 and ρ(Ωres) = 1.2.
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Figure 4.9: Linear perceptron classification performance for spoken
digits across reservoir configurations. Similar color conventions as in
Fig 4.5a. Missing points for N = 100, large leaks and spectral radii
are due to numerical instabilities during covariance learning.
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Dynamical regimes probabilities

lin weak-nlin

Figure 4.10: Dynamical regime probabilities for the spoken digits task.
Probability of finding a reservoir neuron in the linear or weakly nonlin-
ear activation regimes versus spectral radius, for different reservoir sizes
(overlapping dotted, dashed and solid lines for N = 25, N = 50 and
N = 100 respectively) and leak rates (color shades).
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Chapter 5

GENERAL DISCUSSION

5.1 Summary of contributions

Understanding how perception and behavior come to be has long been
a subject of study in humankind’s quest for knowledge. Thus, this has
led to a diversity of fields approaching the problem from different per-
spectives. Here, we have embraced the materialist view that cognitive
functions are sustained by computations, where the term ‘computation’ is
to be understood as a mapping between inputs and outputs. Particularly,
we have shown interest in mappings that emerge from the interactions
among inputs and the internal states of neuronal networks, either of bio-
logical or artificial nature, to determine the kind or class of inputs. This
links directly to the neuronal coding problem, which is concerned with
how properties of the outer world (as in external stimuli) and the inner
world (as in memories, emotions or imagination) are reflected or repre-
sented in the activity of neuronal populations. A fundamental question,
thus, is what mappings can be sustained. To address this issue, we com-
bined several tools: real neuronal data analyses in collaboration with an
experimental team (Chapter 2), intensive simulations for synthetic and
real data (Chapters 3 and 4) and analytic work (Chapter 4). We recall our
results here.

We first used a classical methodology based on the first-order statistics
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of biological neurons recorded in the lateral prefrontal cortex (LPFC) of
behaving macaque monkeys (Chapter 2). In particular, the subjects were
trained to perform two conditions of a free-viewing delayed-response
task. On one task variant, the stimulus was always available (percep-
tual variant), while on the other it was only presented during a cue pe-
riod (mnemonic variant). To begin with, we showed that the spike-count
of neurons in LPFC is modulated by mnemonic and perceptual stimulus
spatial location, by current gaze location and by the trial timeline epoch.
We also found a large fractions of neurons displaying mixed selectivity
[166]. As a last point, we showed that the information content of pop-
ulation codes for stimulus spatial location remained stable within trials,
as indicated by the performance of a linear decoder. Altogether, these re-
sults provide evidence for mappings between the first-order statistics of
neurons in LPFC and behavioral and task-relevant variables. The diversity
of encoded variables is consistent with previous findings that suggest that
LPFC is involved in the control of visual attention in a top-down manner
[153, 156, 158, 167, 221]: signals from upper levels in the somatosensory
pathway that bias the selection of attended features in earlier areas.

Afterwards, we changed our focus from biological to artificial sys-
tems, to study the transformation of representations achievable by recur-
rent neural networks in the framework of reservoir computing. The ques-
tion, in short, was whether second-order statistics in randomly connected
neuronal populations could constitute powerful representations, thus go-
ing beyond the first-order. We used the neural reservoir as a tool to re-
encode information from input statistics in a cross-talk manner. There-
fore, information about input averages could be recovered from reservoir
covariances and vice versa. In Chapter 3, we followed a machine learning
approach where we determined the usefulness of the second-order statis-
tics of the reservoir as features fed to a multinomial logistic regression
classifier to perform input classification. We stress the good performance
with limited resources, as given by the size of the reservoir.

Once proven that reservoir covariances constitute powerful features
to sustain mappings, we worked towards stronger biological plausibility
in Chapter 4. We developed reservoir computing systems with an out-
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put signal shaped at the second-order in an input dependent fashion. We
achieved this by implementing a covariance perceptron [7, 53] as read-
out. In this case, we were able to obtain good performance, again with
limited resources, as given now by the number of learnable connections
from reservoir to output layer.

While our results in Chapter 3 and Chapter 4 were developed in the
context of time series classification, it has recently been shown that pair-
wise interactions provide robust features for the forecasting of chaotic
systems [222]. This suggests that the second-order framework might be
even more powerful than shown here and able to sustain other type of
computations.

In the following sections, we address some specific points relevant to
the strengths and limitations of our work. Section 5.2 is related to aspects
developed in Chapter 2, while the remaining sections are mostly oriented
to Chapter 3 and Chapter 4.

5.2 Naturalistic experiments and data analysis

The main novelty in the study in Chapter 2 was the experimental design,
fully developed by our collaborators (Martı́nez-Trujillo’s lab at Western
University). In fact, it involved (to the best of our knowledge) the first
recordings from LPFC of non human primates while they performed a
spatial working memory task in free-viewing conditions, with a response
report that required navigation within a virtual reality environment [163].
While experiments in virtual environments are nowadays quite common
in the monkey hippocampus literature [223, 224] and free-viewing exper-
iments have also been reported in the literature for orbitofrontal cortex in
studies regarding the encoding of value [162], none had been performed
before to probe LPFC activity during working memory. However, we
were not able to fully exploit the innovative task design. This was mostly
due to the inconsistent behavior across subjects, the low performance dis-
played by one of them and the impossibility to conduct additional exper-
iments with other subjects.
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One limitation of our study was on how we exploited the free-viewing
setting. Eye movements are a relatively easy behavior to quantify, since
equipment for noninvasive recordings is accessible and automated classi-
fication software tools are readily available [164]. Thus, gaze is an ob-
vious candidate to study in naturalistic conditions. Although movement
implies changes through time, we turned to analyses where we artificially
recovered “static” conditions: neuronal activity was correlated to fixation
location. We also made the assumption that each fixation was indepen-
dent of all the others, even those taking place within the same experimen-
tal trial. This probably might have not been the case, since the frequency
of fixated locations was predictive of target within a trial. Thus, it would
have been interesting to perform analyses using single-trial continuous-
time paradigms that more naturally align with the dynamics both in be-
havior (eye movements) and neuronal activity.

Adapting our generalized linear model scheme to a mix of contin-
uous behavior (gaze) and static stimuli (target location) is, nonetheless,
not trivial. For example, simply using a small sliding window technique
might not yield a good enough signal-to-noise ratio or adapt well to the
time scales of different gaze patterns. Applying tools from control theory
could be another possibility. The Kalman filter, for instance, has previ-
ously been employed in the study of smooth pursuits and their relationship
to continuous stimulus motion [225, 226]. Still, implementing Kalman
filter models in a setting where the stimulus is not smoothly varied is not
straightforward [227]. Altogether, there is an evident need to develop
novel data analysis techniques to deal with naturalistic or highly-complex
behaviors and continuous neural signals [169, 227, 228, 229, 230].

An alternative worth further exploring on Chapter 2 was population
code dynamics. It has been shown that a mix of both dynamic and stable
codes support working memory [142, 143, 145], and that LPFC sustains
flexible mnemonic representations in the presence of distractors [146,
231]. Our task did not involve distractors, but we hypothesize that the
free-viewing condition drives population codes towards a more unstable
regime. Thus, it would have been interesting to compare eye-restrained
versus unrestrained task settings, for example through cross-temporal de-
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coding [141, 231]. The lack of restrained versions of the experiment pro-
hibited this.

As a last point, applying the covariance decoding framework devel-
oped in Chapter 3 (without a reservoir) to the data from Chapter 2 would
have been not only a nice way to link the two chapters, but could also have
provided new valuable insights on the biological encoding of information
from the second-order perspective. Indeed, we have mentioned that the
experimental evidence for the functional role of trial-to-trial covariances
is lacking [50, 51, 52]. Nevertheless, the low amount of trials (approx-
imately 30 per condition and neuron in the best of cases) would have
required some subsampling procedure to pre-select neurons and avoid
overfitting. In this sense, an approach using principal component anal-
ysis on mean and covariance space of neuronal activity before feeding to
a classifier constitutes a more viable alternative and is left for future work.

5.3 The functional role of covariances

One of the oldest questions in neuroscience is how neuronal spiking pat-
terns reflect characteristics of the world. Representational accounts aim-
ing to link specific features of brain activity to stimulus properties or be-
havioral responses have proposed a variety of codes. These mainly differ
in the temporal scales used to describe the spike sequences, with rate-
based and full-sequence descriptions laying at the extremes of a contin-
uum [64]. Building on previous work [7, 53], we have shown that in a
minimalist model of brain cortex (reservoir computing), a middle-ground
coding mechanism based on structured covariances constitutes a powerful
representation, as given by the decoding accuracy of a logistic classifier
across a diverse set of classification tasks (Chapter 3). Furthermore, we
have shown that covariance patterns can propagate across networks, as
given by our covariance perceptron study in Chapter 4. In both of these
chapters, the novel use of the reservoir was key to induce a cross-talk be-
tween statistical orders in the input layer signal and the output layer one,
while also avoiding the training of recurrent connections at the output
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layer.
Covariance coding proposes that information is encoded and trans-

mitted in the within-trial activity co-fluctuations of neuronal units. This
can occur both in the presence or absence of mean-rate modulations.
Thus, while coding mechanisms are usually discussed in opposing terms
(e.g. rate versus time), we propose covariance coding as a plausible al-
ternative that can coexist with other schemes, such as rated-based rep-
resentations. This is consistent with some theories that support that the
brain might concurrently employ several information coding mechanisms
[63, 64, 232, 233]. Therefore, information can be integrated across a
wider range of spatiotemporal scales than would be achievable by a single
neuronal mechanism. It has been shown, for example, that slow rhythmic
activity (local field potential oscillations in the frequency range below 30
hertz) does not constitute noise, but can instead complement the informa-
tion (theoretic) content of rate codes [63].

Interestingly, the fact that in our work different coding schemes at the
output share a common neuronal substrate opens up the way to consider
the multiplexing of information [234, 235, 236]. Indeed, we can inde-
pendently shape readouts at the first or second-order through the same
reservoir. It remains to be tested whether simultaneous signals of dif-
ferent nature can be efficiently routed through different reservoir/readout
statistical orders.

A further important aspect to consider when discussing coding schemes
is information transmission [64]. One common argument against pure
rate-based coding is that information transmission should be faster and
able to rely on few emitted spikes. For instance, the processing of visual
information for image recognition is believed to last less than 50 milisec-
onds, that is, for information to travel from the lower level sensory areas
(retina) to the higher level ones (cortex) [55]. In our work, we observed
that information represented in input one-lag covariances is better trans-
formed by a recurrent network into zero-lag covariance patterns than into
mean activity patterns. Importantly, this occurred when the stimulation
period was short and no wash-out was allowed to remove transient ef-
fects. Thus, covariance representations appear as a suitable candidate for
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fast information transmission. Additional work is needed to determine
whether lagged covariances can be efficiently represented by first-order
statistics given enough time to mix.

In a Bayesian-brain context, neuronal networks are thought to repre-
sent stimulus as probability distributions [28, 237]. In this view, different
statistical orders of neuronal activity can be linked to different parameters
in the perceptual probability distribution over stimuli. As an example, it
has been suggested that averaged activity encodes the mean of the poste-
rior distribution, while (co)variances represent the spread or uncertainty
around said mean [238, 239]. Thus, statistical moments of neuronal ac-
tivity serve distinct purposes and can vary independently of each other.
In our reservoir scheme, reservoir statistics depend on a linear sum of
diverse input statistics, due to the nonlinearity. Therefore, the “indepen-
dence” between input-driven orders is lost. Furthermore, as we developed
it, larger variance on a single output node sustained more reliable stimulus
identification, which is at odds with Bayesian coding theories. However,
by switching the decision rule to choose the output node with lowest vari-
ance (consistently setting target output covariances during learning), our
signal processing approach can be driven closer to the Bayesian infer-
ence one. In our case, lower variability would signal stronger evidence or
confidence towards a certain stimulus class.

5.4 The reservoir approach

Two key concepts in this thesis are covariance decoding, which we pre-
viously discussed, and reservoir computing. We have here merged them,
to the best of our knowledge, for the first time. Reservoirs can be used
to shape the activity of output neurons beyond the first order. We remark
the importance of nonlinear reservoir behavior to achieve this. Nonlinear-
ities mix how input statistical orders contribute to the shaping of reservoir
statistics, and thus potentially allow to develop mappings from first, sec-
ond or higher-order statistics to any desired output statistic. In this thesis,
we particularly examined the cases involving the first two orders, so ex-
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tensions to third and higher-order moments are pending. Extensions of
Chapter 3 in this direction are straightforward. On the other hand, for
Chapter 4, it would be necessary to derive a new learning rule, for exam-
ple, to map third-order moments in reservoir to third-order moments in
outputs and so on for other orders.

Reservoir computing power relies on high-dimensional heterogeneous
randomness. The more varied the dynamics inside the reservoir, the big-
ger the chances of finding subspaces where data is linearly separable or
can be reconstructed. The way we exploited heterogeneous dynamics was
through random connectivities among neurons and from inputs to reser-
voir, although it has also been suggested that variations in single neuron
time constants can also provide richer spaces [115]. This also remained
an unvisited path in our work.

Small improvements (mostly due to the larger computing capacity
available nowadays) for training fully recurrent models have resulted in
their rise of popularity for modelling neural systems [68]. A common
approach is to train the network to perform a specific task or general pur-
pose computation to later reverse engineer the model, looking for emer-
gent dynamics and structures that can be contrasted with data from real
circuits. This is not feasible in a reservoir computing framework, since
the reservoir is pre-designed and fixed. Hence, no emergent properties
can arise during training. However, it is possible to construct reservoirs
with imposed biological constraints [70], for example in the connectivity
structure [215], to examine how specific bio-realistic characteristics influ-
ence dynamics and performance when compared to the fully random case.
This is another line of research to further extend the work of Chapters 3
and 4.

In an interesting article about the evolutionary aspects of reservoir
computing [240], it was suggested that it might have evolved to provide
circuits in high-order brain areas that perform a variety of complex tasks
with large generalization properties. Therefore, reservoir computing as
a means for brain computation appears as an appealing hypothesis, but
not a universal one: circuits that solve specific dedicated computations
might be better explained by models that are highly tuned for a single
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task. Thus, a question that remains, regarding our work, is whether a
specific topography that optimally propagates covariances might emerge
when a recurrent network is fully trained.

5.4.1 Scalability and robustness to noise

Biological neuronal systems are typically formed by large number of neu-
rons [241]. However, the reservoir systems we modelled in Chapter 3 and
Chapter 4 were of small size (smaller than 300 units), although still com-
parable to the neural system of C. elegans. Furthermore, from a machine
learning perspective, it is always important to characterize the ability of
a model to improve performance as computational resources increase.
Hence, scalability studies for our reservoir computing covariance decod-
ing approach should be performed. This requires the identification of
tools to efficiently regularize the training procedure when implementing
the logistic classifier, as wells as the development of methods to numeri-
cally stabilize the learning procedure for the covariance perceptron.

We remark, nonetheless, that the fact that the covariance approach
works best for small resources is a solid good point. In fact, the deploy-
ment of large scale models is known to be energy consuming, so more
economic machine learning approaches that leave a softer environmental
footprint should be devised in the near future [192, 242].

On another matter, all our simulations in Chapter 3 and Chapter 4
were performed in the same conditions. Our reservoir always started from
a zero-state and the only noise in the system was inherently present in the
input time series, due to stochastic variability in each sample presentation.
This raises two questions.

First, since we exploited transient dynamics for classification, it is
important to know how these states vary with changing initial conditions.
Biological systems are known to have dynamically structured ongoing
activity (e.g. resting states in fMRI [243, 244, 245] or up/down states
in membrane potential [246, 247]), so reproducing the exact initial state
across trials is not possible. Therefore, our scheme should be robust to
changing initial conditions to show stronger biological plausibility.
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Second, we have mentioned that performance in living organisms can
stay high while displaying variability due to a large variety of possible
sources: internal states, unobserved variables, unidentified inputs from
other areas, etc [21]. However, we have only examined how the reser-
voir behaves when the noise comes exclusively from inputs. Specially,
our results on the S-MNIST data in Chapter 3 seem to suggest that the
reservoir is very sensitive to noise. Indeed, those speech signals were
recorded in ambient conditions, thus displaying larger variability, which
significantly diminished the classifiers performance. Hence, exploring ar-
tificial settings with controlled noise levels would help better identify the
origin of performance drops and how they relate to internal dynamics.
Possible sources of noise that can be studied are noise directly injected
into the reservoir activity, or indirectly through noise synapses, randomly
“killing” neurons on a trial-by-trial basis and switching off synapses.

5.4.2 Spiking reservoirs

Our choice to use analogue networks was mainly driven by the desire to
keep our models compatible with the covariance perceptron, the novel
readout we implemented in Chapter 4. A natural extension of our work
is, thus, switching to more biologically plausible spike-based models.
Nonetheless, a few non trivial points should be addressed in doing so.

Spiking neuron models are excited by incoming input spikes. How-
ever, real world data often come in analogue values, as the spectral coef-
ficients of speech we worked with. Thus, encoding methods to transform
input real values into discrete spike sequences are needed. Many stud-
ies use rate-based encoding mechanisms, where continuous signals are
transformed into spikes by means of Poisson processes [98, 248]. Hence,
the rate of the process is given by the intensity of the signal. However,
this neglects any information contained in other (temporal) aspects, and
therefore might hinder or opaque the true computing power of a spik-
ing network. How to efficiently represent real world data with spikes is
a currently active field of research within the neuromorphic computing
community [249, 250, 251]. Importantly, early implementations of liquid
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state machines, the spiking version of echo state networks, were usually
tested on synthetic datasets. Efforts performing speech recognition tasks
with real data also remarked on the importance of the encoding method
used to transform the analogue values into spike sequences. Yet, these
mostly exploited rate-based mechanisms, such as Bens Spiker Algorithm
(BSA) [184, 188, 189, 252].

Additionally, defining a cost function in supervised learning for spik-
ing models is not straightforward and it is not uncommon to find that the
error surface has discontinuities that make learning unstable when using
error backpropagation [248, 253]. When the objective is to map input pat-
terns into specific output patterns (i.e. spikes emitted at predefined times),
cost functions used in the literature include mean-squared-error in firing
times (SpikeProp [254]), mean-squared-error in membrane potential of
output neurons (Tempotron [218]) and the Victor-Purpura distance [255].
However, these algorithms become unstable as the number of neurons
to train at the output layer increases. Therefore, they have mostly been
studied to shape the activity of a single neuron. In our case, the gradient
descent algorithm for covariance learning should be adapted, for exam-
ple for implementation via surrogate gradients [73, 75]. In this setting, it
might be useful to first test whether a variance approach for classification
can be implemented via a single output node if a proper threshold value is
chosen, so that training cost is reduced for the binary classification task.

5.5 Endnote

A main personal take-home message of the work here presented is that
information representation, learning and transmission are intrinsically en-
tangled and should not be studied in isolation, since constraints in one of
these aspects could imply further constrains in another in turn. In this
sense, there is strong potential in the interaction between computational
neuroscience and machine learning (or artificial intelligence in general).
Exploring representation and learning mechanisms exploited by the ner-
vous system can lead to efficient representation and learning in artificial
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ones, while the converse can provide novel hypothesis and experimental
ideas to look for correlates of neuronal representations and the processes
by which these originate.

In terms of computation, any given process might be multiply real-
ized. Thus, finding a solution does not mean that such solution is uni-
versal or unique. Indeed, the space of solutions might be infinite, include
optimal and sub-optimal ones, and any given system might settle for one
or the other depending on current and previous input and internal history,
available resources or future state/input estimates. Therefore, computa-
tion (especially that of the natural type) appears as a system-subjective
context-dependent interactive process. However, as a physicist by train-
ing, I personally hold within the hope that more general underlying prin-
ciples be discovered by the scientific community in the years to come.
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dictive Coding of Dynamical Variables in Balanced Spiking Net-
works. PLoS Computational Biology, 9(11):e1003258, nov 2013.

[44] Rubén Moreno-Bote, Jeffrey Beck, Ingmar Kanitscheider, Xaq
Pitkow, Peter Latham, and Alexandre Pouget. Information-limiting
correlations. Nature Neuroscience, 17(10):1410–1417, 2014.

[45] Felix Franke, Michele Fiscella, Maksim Sevelev, Botond Roska,
Andreas Hierlemann, and Rava Azeredo da Silveira. Structures
of Neural Correlation and How They Favor Coding. Neuron,
89(2):409–422, 2016.

[46] J. A. Nelder and R W M Wedderburn. Generalized Linear Mod-
els. Journal of the Royal Statistical Society. Series A (General),
135(3):370, 1972.

[47] Christopher M. Bishop. Pattern Recognition and Machine Learn-
ing. 2006.

[48] Donald O Hebb. The Organization of Behavior: A Neuropsycho-
logical Theory. Wiley, New York, 1949.

[49] A. Riehle, Sonja Grün, Markus Diesmann, and Ad Aertsen. Spike
Synchronization and Rate Modulation Differentially Involved in
Motor Cortical Function. Science, 278(5345):1950–1953, dec
1997.

[50] Neda Shahidi, Ariana R. Andrei, Ming Hu, and Valentin Dragoi.
High-order coordination of cortical spiking activity modulates per-
ceptual accuracy. Nature Neuroscience, 22(7):1148–1158, 2019.

[51] Alireza Hashemi, Ashkan Golzar, Jackson E.T. Smith, and Erik P.
Cook. The magnitude, but not the sign, of MT single-trial spike-
time correlations predicts motion detection performance. Journal
of Neuroscience, 38(18):4399–4417, 2018.

136
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Siewert. Optimization and applications of echo state networks with
leaky- integrator neurons. Neural Networks, 20(3):335–352, apr
2007.

[109] Razvan Pascanu and Herbert Jaeger. A neurodynamical model for
working memory. Neural Networks, 24(2):199–207, mar 2011.

[110] Gregor M. Hoerzer, Robert Legenstein, and Wolfgang Maass.
Emergence of Complex Computational Structures From Chaotic
Neural Networks Through Reward-Modulated Hebbian Learning.
Cerebral Cortex, 24(3):677–690, mar 2014.
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Jean René Duhamel. Gaze-informed, task-situated representation
of space in primate hippocampus during virtual navigation. PLoS
Biology, 15(2):1–28, 2017.

[224] Roberto A. Gulli, Lyndon R. Duong, Benjamin W. Corrigan,
Guillaume Doucet, Sylvain Williams, Stefano Fusi, and Julio C.
Martinez-Trujillo. Context-dependent representations of objects
and space in the primate hippocampus during virtual navigation.
Nature Neuroscience, 23(1):103–112, 2020.

[225] Jean Jacques Orban de Xivry, Sébastien Coppe, Gunnar Blohm,
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