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Fábio José Muneratti Ortega

TESI DOCTORAL UPF / 2021

Director de la tesi

Prof. Dr. Rafael Ramı́rez Melendez,

Department of Information and Communication Technologies





To mom and dad.





Acknowledgements

My best achievement in this work is to have so many people to thank, starting from Ra-
fael, my supervisor, for having the trust and providing the means to bring me to this
point. I also want to extend my gratitude to all UPF sta� who successfully defused my
frequent states of bureaucratic armageddon: Sonia, Cristina, Montse, Jana, Vanesa, Fe-
derico, and especially Lydia, who reassured me that I would �nd at least one friendly
person in Barcelona.

To my partners in teaching, especially Patricia Santos, Montse Fernandez and Toni Lu-
nar, I want to thank for having your amazing company and for being exceptional pro-
fessional role models for me.

My dear thank you to the lovely cast of linguists (with a few additions from other �elds)
who �rst managed to lure me away from PhD work, and much further still from loneli-
ness: Mayyar, Gang(-Gang), Sylvia, Zi, Vito, Leticia. Domi, not being able to run into
you and go for co�ee was the worst part of working remotely. Rebecca, thanks for brin-
ging joy back to our home earlier this year (and for all the wine, too). Jacopo, I’m hoping
we can �nd ourselves some more philosopher meet-and-greet events soon. Meztli, my
salsa moves are not the same without your help.

Thank you also to all friends from the MTG, the o�cial members and the honorary
ones: Albin, Pritish, Xavier, Cecilia, Tessy, Oussam, Roisin, Jordi, Minz, Olga, Marius,
Sertan, Pablo Zinemanas, Rong, and Xavier Serra for welcoming me in this talented
group. I have grown as a person and as a scientist from the conversations with each one
of you. A special thank you goes to my jam partner Seva, who really put the music in

v



vi

music technology, and formed a bond with me far beyond the tunes. Likewise, thank
you to Alia, Colm, Jyoti, Nazif, and everyone who eventually joined us for the pleasure
of our ears and hearts.

In particular, I am most grateful to the friends in the Music and Machine Learning Lab.
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Lara, Runas, Pedro and everyone from Santana, thanks, and I’ll be seeing you soon.

I am also deeply thankful to everyone who participated in my experiments, in the absurd
situations I put you through for nothing else than friendship and a taste for science and
music.

And, of course, putting the words on paper is a really small fraction of what it took
to complete this work. The real accomplishment belongs to my family. With every
hardship, big or small, the only reason I move forward is their support, and the joy in
my victories I see in their eyes. Vicente, my father, Vânia, my aunt, my grandmothers
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Abstract

This thesis deals with the design and implementation of computer systems for expres-
sive music performance (CSEMP), exploring di�erent methods from machine learning
and re�ecting on the role of musical structure in the emergence of performance patterns,
as well as the applicability of each approach in a pedagogical setting. Three models are
described and evaluated: a lazy learning approach using a phrase similarity measure, an
evolution of the previous with parameterized performance features, and a deep-learning
model with sequential encoding of musical information. Results demonstrate that the
simpler phrase-level approaches can generate stimulating performances with small data-
sets, and that the deep-learning approach can achieve high accuracy predicting perfor-
mance information. Their analyses also highlight the challenges of designing systems for
instruments beyond the piano. The pedagogical potential of technologically-enhanced
settings is addressed with the proposal and pilot evaluation of a performance practice
method using the SkyNote software.
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Resum

Aquesta tesi tracta sobre el disseny i la implementació de sistemes informàtics per a
l’execució musical expressiva (CSEMP), explorant diferents mètodes de l’aprenentatge
automàtic i re�exionant sobre el paper de l’estructura musical en el descobriment de
patrons d’actuació, aixı́ com l’aplicabilitat de cada sistema en un entorn pedagògic. Es
descriuen i s’avaluen tres models: el primer d’ells utilitza una mesura de similitud de fra-
ses; el segon, una evolució de l’anterior amb caracterı́stiques d’actuació parametritzades;
i l’últim, un model d’aprenentatge profund amb codi�cació seqüencial de la informa-
ció musical. Els resultats demostren que els enfocaments més senzills a nivell de frase
poden generar actuacions estimulants amb conjunts de dades petits i que l’enfocament
d’aprenentatge profund pot aconseguir prediccions d’alta precisió sobre la interpretació
de peces musicals. Les seves anàlisis també destaquen els reptes de dissenyar sistemes per
a instruments més enllà del piano. El potencial pedagògic dels entorns tecnològicament
millorats s’aborda amb la proposta i l’avaluació pilot d’un mètode de pràctica d’actuació
mitjançant el programari SkyNote.

ix





Contents

Abstract vii

Resum ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Computer Systems for Expressive Music Performance . . . . . . . . 9
2.2 Technology-Enhanced Learning of Musical Expression . . . . . . . . 23

3 Performance Modeling by Phrase Similarity 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xi



xii contents

4 Performance Modeling by Phrase-Level Feature Parameterization 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Performance Modeling by Deep Learning on Note Sequences 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Technology-Enhanced Expressive Performance Practice 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Tools development . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Evaluation method . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Conclusions 95

Bibliography 99

Appendix A Imitation Exercise Scores 113



List of Figures

2.1 Kirke and Miranda’s model of CSEMP . . . . . . . . . . . . . . . . . . 10

3.1 Outline of the performance generation method . . . . . . . . . . . . . . 29
3.2 Adaptation of bow velocity data from a reference phrase. . . . . . . . . . 31
3.3 Boxplot of prediction errors in a leave-one-phrase-out approach. . . . . . 33
3.4 Boxplot of errors in mean phrase velocity predictions. . . . . . . . . . . . 34

4.1 Performed loudness for a section of a piece and some key measurements. . 42
4.2 Summary of perceptual evaluation participants information. . . . . . . . 49
4.3 Distribution of mean absolute errors in predictions of loudness using ESV

and EEP datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Velocity predictions across notes in a violin piece vs. performed ground truth. 52
4.5 Comparison of loudness values measured in performance, their ideal (ground-

truth) approximation, and model output for three phrases. . . . . . . . . 53
4.6 Results of perceptual survey pairwise comparisons. . . . . . . . . . . . . 55

5.1 Overview of the processing steps involved in the note-level sequence model
of performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Structure of the model input encoding, compared to a typical design. . . . 66
5.3 Diagram of the sliding window mechanism of input sequence partitioning. 67
5.4 Architecture of the sequence model of performance. . . . . . . . . . . . 69
5.5 In�uence of sequence length in model accuracy for dataset M. . . . . . . 71
5.6 In�uence of network size in model accuracy for dataset M. . . . . . . . . 73

xiii



xiv list of figures

6.1 Example of exercise from SkyNote’s original repertoire. . . . . . . . . . . 80
6.2 Original score and piano roll visualizations from SkyNote. . . . . . . . . 80
6.3 Structure of the audio-to-score alignment algorithm. . . . . . . . . . . . 81
6.4 Audio-to-score alignment example. . . . . . . . . . . . . . . . . . . . . 82
6.5 Example of dynamic tempo mapping function. . . . . . . . . . . . . . . 83
6.6 Structure of the experiment on expressive performance practice. . . . . . 84
6.7 Breakdown of reported mental e�ort for the imitation exercise. . . . . . . 88
6.8 Contrasts between survey responses when practicing with or without the

software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.9 Distributions of answers from the survey on SkyNote. . . . . . . . . . . 91



List of Tables

4.1 Input features of the model. . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Performance of note–level algorithms versus proposed phrase–level method

on EEP+ESV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Correlation coe�cients for output features. . . . . . . . . . . . . . . . . 53
4.4 RMS error in loudness levels prediction. . . . . . . . . . . . . . . . . . 54
4.5 Measured p-values for all perceptually evaluated comparisons. . . . . . . 54

5.1 Details of the datasets used for evaluation. . . . . . . . . . . . . . . . . . 71
5.2 Velocity prediction results from dataset M with various windowing con-

�gurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Prediction results from dataset V with various windowing con�gurations. 72
5.4 Prediction results under di�erent input feature sets. . . . . . . . . . . . . 73
5.5 Expressive feature prediction results across several models. . . . . . . . . 74

6.1 Pro�les of SkyNote evaluation participants. . . . . . . . . . . . . . . . . 86

xv





Chapter 1

Introduction

As far as the execution is concerned. . . the most
frequent and most serious mistake is to follow the
music instead of preceding it.

Nadia Boulanger

1.1 Motivation

Modern music notation is a powerful tool, with immense impact in the preservation
and communication of musical ideas and compositions. Music performance, however,
is far more complex than what the notation represents, leaving gaps in our ability to
communicate its elements and, as a consequence, understand them and teach them.

Expression is a key aspect of what makes music performance pleasurable. By playing in
particular manners, musicians can hold the attention of listeners, elicit emotions, facil-
itate comprehension of a piece, and communicate artistic intentions.

In the context of this work, the term expression in music refers to the elements of a mu-
sical performance that depend on personal response and that vary between di�erent
interpretations (Baker et al., 2001). These elements can be identi�ed by the sonic fea-
tures they produce, and are, in many cases, characterized by how they cause the music
to deviate from a neutral, or as we shall refer to, “deadpan” performance of a musical
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2 introduction

composition (Palmer, 1997; Seashore, 1938). For every musical instrument, several such
elements, or expressive performance actions (EPAs), may be shaped by the performer,
such as tempo, dynamics, articulation, and so on.

Music students and teachers alike have pointed to expression as the most valued skill in
performers (Laukka, 2004; Lindström et al., 2003a), however, teaching this skill presents
several challenges, and often ends up neglected in classrooms (Karlsson and Juslin, 2008;
Meissner, 2017).

In an in�uential study about expression teaching practices, Woody (2006) compared
three instructional approaches used to elicit expressivity in music students’ performances:
aural modeling, instruction about concrete musical properties, and instruction using
metaphors and imagery. His results were able to validate the e�ectiveness of all three
while highlighting advantages and disadvantages of each.

While metaphors and imagery prompted the greatest variation in students’ performances,
those variations were not necessarily leading them closer to the expert’s performance
which originated the metaphorical feedback. This is consistent with the observation by
Juslin et al. (2006) that such imagery is inherently ambiguous since it relies on perform-
ers’ personal experiences. On the other hand, that same ambiguity may give performers
more leeway to come up with their own interpretations, as many music teachers encour-
age (Meissner, 2017).

The aural modeling method led to performances more consistently similar to the model,
though large changes in performances weren’t always observed. The concrete instruc-
tions approach succeeded in inducing more practice, though not reliably in improv-
ing overall performance. Interestingly, in a survey among musicians about their pre-
ferred approaches, Bonastre and Timmers (2021) report that concrete, technical direc-
tions ranked the highest, and modeling, the lowest among the discussed techniques for
teaching adults. The authors discuss that one limitation of aural modeling is that the
student must be capable of extracting the useful information from the performance,
that is, they must know what to listen for in the model performance.

Given these pedagogical challenges, technology may o�er new approaches combining
the positive aspects and overcoming some limitations of the currently used methods for
expressive performance practice. It is now viable and relevant to investigate scenarios in
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which students would practice performance equipped with a computer system that is
able to provide visual feedback on their expressive performance actions as well as con-
trasting them to another, referential performance. This type of setting has potential to
enhance the teaching methods discussed above as it combines modeling with concrete
information that breaks down the elements of the model performance into concrete
directions, attacking the issue raised by Bonastre and Timmers (2021). Additional sup-
port to this scenario can be seen in the results obtained by Lisboa et al. (2002), that
revealed long-term improvement in musicians’ expressivity after studying by means of
performance imitation, and also in the defense of real-time visual feedback (RTVF) for
expressive music learning found in Sadakata et al. (2008).

Even though this new approach presents many advantages, the potential of computer--
assisted music learning settings extends beyond their application as improved aural mod-
eling tools. Our primary interest in the investigations reported here is to explore the use
of computers for their data analysis capabilities, assisting musicians in realizing patterns
of performance and shaping their expressive abilities according to more speci�c and cre-
ative goals.

This work discusses the development of computer systems for expressive music perfor-
mance (CSEMP) – that is, computer programs designed to generate EPA information
given a certain musical context – and their application as pedagogical tools for expressive
performance learning.

Whereas a conventional imitation exercise presents an individual musicians’ interpreta-
tion as a blueprint, if a computer generated performance is used instead, that model can
be built around data from several di�erent musicians, thus o�ering the student access
to a representation of the collective expectation around a piece. The mere contrast be-
tween a musicians’ EPAs and the computer system’s inferences about it can be a source
of inspiration for challenging one’s assumptions about elements of performance that
might otherwise be taken for granted.

Another improvement gained with CSEMP for expressive learning is that the com-
puter analyses, its model suggestions and visualizations can assume a role of mediation
between student and teacher, encouraging discussion about the character of a perfor-
mance and the translation of intentions and emotions into technique. Students can
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also be prompted to o�er their critique of the generated performances, thus fostering
critical thinking about interpretations in a low pressure environment – as no particular
performer would be criticized. Dialogic approaches have been shown to be very e�ective
for developing students’ expressive skills (Meissner et al., 2020; Meissner and Timmers,
2019) and the inclusion of computer tools opens an opportunity for doing so in a sys-
tematic way.

Lastly, technology-enhanced learning of music expression has potential to improve self-
study. Typical methods of teaching expression rely heavily on continuous feedback from
master to apprentice. As a consequence, students are left with limited tools for improv-
ing in that �eld when practicing on their own, a setting which makes up the bulk of
any musician’s practice time. If a computer model can be trained to provide relevant
expressive suggestions in a given musical context, it could further stimulate students’
perceptions and improvement even in the absence of an expert.

1.2 Goals

The main objective of the research presented herein is to propose and evaluate computer
systems that model musicians’ expressive actions in performance so that the resulting
models are applicable as tools for learning and practicing music expression.

This goal is further speci�ed and limited in its scope by some additional premises.

The modeling strategies that were explored belong to the machine-learning �eld, there-
fore the problem of generating realistic EPAs is viewed as problem of optimization and
data from real performances are incorporated in the design as observations of a target
function. This is a deliberate design decision since it provides a direct relationship be-
tween empirical observations of performance patterns and the resulting models, mini-
mizing the designer’s personal artistic in�uence in the model outputs.

The systems were developed and analyzed targeting the performance of classical music
of the western canon, as this is the musical tradition that o�ered us the largest amount
of available data in recordings, musical theory, and local practitioners.

Most signi�cant to the direction of the research is that the modeling strategies were in-
tended to be applicable to a wide range of musical instruments. This is in sharp contrast
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to the majority of the existing body of knowledge in the �eld (see chapter 2) which fo-
cuses primarily on the piano. As a compromise, we have decided to focus on the genera-
tion of signals from two classes of expressive performance actions: timing – which con-
sists of the variations in note onset time, note durations, and tempo along a piece –, and
dynamics – as represented by proxy features such as loudness or velocity of movement
of sound-producing instrument parts. These two elements are present in the perfor-
mance of most musical instruments, and can be inferred from audio recordings alone.
The instrument chosen for evaluation in most scenarios presented ahead has been the
violin.

Our research goals as stated bear a few direct consequences worth indicating. Notably,
the application of the developed models of performance to a computer-assisted study of
expression implies that not all information about expressive actions are equally impor-
tant. Information related to deliberate, long-term actions take precedence over uncon-
scious, short-term variations in sound qualities, since it is mostly learning the former
that interests a studying musician, whereas the latter is a natural by-product of a human
performance. We can build an analogy between the desired outcome of our system and
the information conveyed to musicians by an orchestra conductor – the type of expres-
sive direction which is reasonable to communicate during a performance is related to an
overall character rather than speci�c sound features, and it is slowly evolving through
time, rather than being speci�c to every note. Nevertheless, distinguishing the di�erent
sources and causes for expressive variations in music is itself a challenge to be tackled.

Finally a secondary but important objective, given our interest in the application of
CSEMP for the learning and practice of expression, is to evaluate the impact of a technology-
enhanced setting in a performance learning task.

Having presented the main context, we can summarize the scope of our work in terms
of the following research questions:

• Is it possible to design models that generate EPA signals which are useful for the
practice of music expression, particularly for instruments other than the piano?

• With current state-of-the-art algorithms, what are the most relevant features and
design decisions for modeling expressive performance?
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• Is it possible to facilitate the practice of music expression with the help of a tech-
nologically enhanced setting?

1.3 Contributions

The wide scope encompassed by this research allowed us to achieve several modest con-
tributions.

• A phrase modeling approach to expressive music performance generation was de-
veloped and evaluated, with implications to the mathematical treatment of dy-
namics and psychological perception of violin sounds as highlights.

• An expressive solo violin performance dataset was created from scratch, including
the recording of 81 musical excerpts, machine-readable score transcriptions, and
manual audio-to-score alignment.

• Another dataset, consisting of Beethoven violin sonatas, was derived from the Mu-
sicNet (Thickstun et al., 2017) recordings, with the addition of measure bound-
aries information for all available movements.

• An approach to time-series generation via deep-learning sequence models was de-
veloped, with innovations in the treatment of input sequence segmentation and
encoding for representation learning.

• As a consequence of the previous, state-of-the-art accuracy in expressive feature
prediction from scores without expressive notation was achieved, demonstrating
the importance of phrase structure to musical interpretation.

• A systematic study on the impact of deep-learning design elements to the prob-
lem of music performance generation is provided, which should hopefully assist
future research decisions.

• Finally, our secondary goal was achieved via the design and implementation of a
technology-assisted music performance method of practice in the form of new
functionality included in the SkyNote software (Ramirez et al., 2018).
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• Complementing the previous, a pilot study on the reception and impact of such
methodology to the learning of expressive performance on the violin is also re-
ported.

1.4 Thesis Outline

The following chapter discusses previously developed CSEMP, as well as some recent
advances in deep learning applicable to our problem and �nishes with a review of the
studied approaches for technology-enhanced music learning. Chapter 3 presents our re-
sults with phrase-level modeling of expression based on melodic similarity. Chapter 4
introduces the generalized version of that model and the results of its evaluation. Chap-
ter 5 discusses our note sequence model, and presents its evaluation and contrast to the
previous approach. Chapter 6 then shifts attention to our performance practice method
proposal and implementation within the SkyNote software, along with its pilot evalu-
ation. Finally, chapter 7 presents �nal remarks and the thesis conclusions.





Chapter 2

Background

2.1 Computer Systems for Expressive Music Performance

De�nitions

Expression in musical performances has been an active �eld of study for some time. Re-
searchers have approached the problem from several perspectives, from the measure-
ment and classi�cation of performance patterns to the search of parallels between struc-
tural musical features in a composition and performance actions (Widmer and Goebl,
2004; Palmer, 1997; Gabrielsson, 2003). Their motivations can be placed in two broad
categories: analytical and synthetical (Cancino-Chacón et al., 2018); when viewed from
an analytical standpoint, computer models are used as tools for gaining insight into the
way humans perform music – this is the case for the pedagogical application discussed
earlier. Nevertheless, a signi�cant amount of research in the �eld targets performance
synthesis, as that also �nds a range of applications such as producing realistic renditions
within score transcription software, improving MIDI �le playback, and even providing
expressive automatic accompaniment for musicians, among others.

Cancino-Chacón et al. (2018) de�ne computational models of expressive performance
as “attempts at codifying hypotheses about expressive performance – as mappings from
score to actual performance – in such a precise way that they can be implemented as
computer programs and evaluated in systematic and quantitative ways”. Glaring in that
de�nition is the fact that nothing is said about the nature of such hypotheses, and indeed
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10 background

it is possible to distinguish them from a number of criteria (e.g.: under what conditions
do the hypotheses apply, whether their predicted e�ects are relative or absolute, whether
they are probabilistic or deterministic etc.). Chief among them for our purposes is the
distinction between rule-based and data-driven models. The hypotheses present in rule-
based models establish direct links between composition and performance whereas in
data-driven models they are mediated by empirical evidence. As a simplistic example
for the sake of clari�cation, if a rule-based hypothesis were formulated as: “Performed
loudness increases with pitch at a rate of 2dB per octave for pitches higher than G4.”, a
similar counterpart in a data-driven model would be: “Loudness and pitch are linearly
related at the rate that best approximates the examples in the given dataset.”.

In that sense, it can be said that an overarching hypothesis common to all data-driven
models is that the collection of recurring patterns present in the dataset of performance
examples constitute the ideal reference, their di�erences being how they sample the uni-
verse of musical performances and what mathematical structures are allowed in crafting
the score-to-performance mappings.

To delve deeper into the details of CSEMP, we borrow from the generic model devised
by Kirke and Miranda (2009) and reproduced here in �gure 2.1.

Figure 2.1: Kirke and Miranda’s model of CSEMP

The diagram, although designed to represent commonalities among those systems, re-
�ects speci�cally an application in performance synthesis whereas we are primarily inter-
ested in an analytic application involving performance suggestions and feedback. To ac-
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count for that di�erence in scenario, the instrument model and sound modules should
instead be replaced by a more generic performance knowledge parser, that would, in our
case, decode the performance knowledge into tangible, humanly-comprehensible infor-
mation about concrete expressive performance actions. This, however, doesn’t preclude
the application of such knowledge in a synthesis engine much in the same vein as the two
replaced modules suggest.

The central and most important element in a CSEMP is represented in the Performance
Knowledge module, which is where the system’s “expertise” is encoded, be it via learned
parameters in a machine learning algorithm or by rules of performance programmed
directly by the designers.

The input to the system comes through the Music/Analysis module, and that is where
signi�cant design decisions regarding the representation of musical information are stored,
including, if it is the case, an analytical breakdown of musical structure. Many of our
contributions to modeling are found in this module, as we dedicated much e�ort to ex-
ploring the impact of the input encoding format to the quality of the generated output.

The Performance Context block represents additional information supplied to the sys-
tem beyond the music itself, such as the mood of the performance, e.g.: lively, melan-
cholic, aggressive, or if it adheres to a certain style, e.g.: baroque or romantic. This ad-
dition enables generating multiple variations in performance for the same musical piece
in a way that preserves causal relationship to the inputs, giving more creative control to
the users of the system.

The �nal two modules, Performance Examples and Adaptation Process, represent the
usage of past human performances to inform and perfect the performance knowledge
of the system. This is a typical setup in supervised machine learning systems, but the
authors emphasize that the work represented in the adaptation module can also be par-
tially or entirely manual, as the designers monitor the generated performances and �ne
tune the Performance Knowledge module to produce results that better match their
past experiences and expectations.

We have established a distinction between rule-based and data-driven models of expres-
sive performance in terms of how the premises for performance generation originate.
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Some of the most in�uential early models of music performance were of the former
kind, and the best example is the KTH model.

The KTH model (Sundberg et al., 1983), implemented in the Director Musices soft-
ware (Bresin et al., 2002) is a rule-based performance model continuously developed at
the Royal Institute of Technology in Stockholm over many years. With it, performance
actions can be predicted based on directly stated rules relating them to score features.
We can attribute its success and longevity to the clear scope of each rule and the possi-
bility of controlling the intensity with which each one of them is applied. Though the
rules have been derived from empirical research, it is not a learning or data–driven sys-
tem, but rather a collection of theoretical principles which don’t claim to be necessary
or su�cient to explain the expressivity of a given performance.

Also relevant as seminal theoretical models is the work of Todd (1985); McAngus Todd
(1992) which provide evidence that timing and dynamics – the primary dimensions of
expressivity in piano performances, as �rst pointed out by Seashore (1938) – tend to
be coupled to the structure of musical pieces, and also the work of Clynes (1995) that
observes how the interpretation of pieces from speci�c composers may converge to par-
ticular styles of performance that are preferred by listeners for their pieces but not for
those of other composers.

Data-driven approaches

As machine learning algorithms rose as a viable alternative to modeling a wide range of
tasks, many examples of learning CSEMP were developed. This type of CSEMP is par-
ticularly interesting to our scenario since the resulting outputs are empirically backed
by virtue of the very formulation of the system, and can re�ect di�erent musical styles
simply by training it with di�erent sets of examples. Although, to the best of our knowl-
edge, no expression models have been proposed with a pedagogical application in mind
and only a minority deal with the violin, their design and methodology are applicable
to this research. For a thorough and comprehensive review of CSEMP literature, we
refer the reader to Cancino-Chacón et al. (2018). Next is a short overview of the most
signi�cant research for giving context to our own contributions and the outlook of the
�eld.
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A general trend that can be highlighted in the progress of CSEMP research, as in other
machine-learning dominated �elds, is a growing emphasis on acquiring and processing
larger datasets. As a consequence of that, whereas in earlier systems much work was
put into parsing the musical information present in the performance examples, as re-
searchers moved towards systems prepared to learn from a wider range of pieces, this re-
sponsibility shifted to the learning algorithm, so that a bigger share of the performance
knowledge observed in such systems is derived directly from the performance examples,
and less so from the designers themselves and how they choose to structure the genera-
tion process.

The systems proposed by Tobudic and Widmer (2006, 2003); Widmer and Tobudic
(2003) are good examples of CSEMP designed to leverage performance knowledge ob-
tained from a modest number of samples. Their �nal version, named DISTALL, was
evaluated with a training set consisting of only 15 Mozart piano sonata movements with
positive results, particularly for generation of dynamics. For their approach, pieces were
hierarchically divided into three levels of phrases by a musicologist, and a measure of
phrase similarity was de�ned based on melodic and harmonic features of the phrases,
organized via a �rst-order logic language. This similarity measure is then used during
generation to select the best match in the training set for every input phrase with a
nearest-neighbor algorithm. The outputs produced are a combination of the contribu-
tions from each hierarchical level, with information from the two higher levels param-
eterized as a second-degree polynomial and the lowest, note-level information – which
the authors refer to as “residual” – being generated using rules from an earlier system,
the PLCG (Widmer, 2003).

The phrase-level and instance-based approach chosen by the authors is conceptually very
appropriate to smaller datasets, because by copying EPAs from the selected instances ver-
batim, it takes full advantage of the idiomatic vocabulary of expressive actions available
in the sampled sources, even though the number of available samples might be insu�-
cient for a CSEMP to develop such a vocabulary from scratch. Their dependency on
manual segmentation of musical pieces, however, stands out as a limitation, since it in-
jects signi�cant structural interpretation of scores, and prevents fully automated expres-
sive performance generation from symbolic music alone.

YQX (Flossmann et al., 2013) is a system from the generation of CSEMP that followed
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DISTALL, and it further illustrates the research trend that we observed. Many com-
binations of pieces were used for its training and evaluation, coming from two corpi
of performances by renowned pianists using Bösendorfer SE pianos, which are capable
of registering precise keystroke timing and velocity information. Together, the Mozart
corpus and the Magalo� corpus (Flossmann et al., 2010) sum over 15 hours of playing
time.

In terms of its design, YQX employs Bayesian network theory to model interactions
between score and performance. Score information is represented by feature vectors
of both discrete and continuous variables on the note level, quantifying melody and
rhythm, whereas performance information corresponds to the note-level signals from
the Bösendorfer SE, numerically conditioned to represent timing, velocity, and artic-
ulation EPAs. Given its Bayesian nature, the system achieves performance generation
by computing estimates of the probabilities of the outputs conditioned by the inputs
or, in other words, generating the most likely performance given its observations, under
general assumptions of independence among variables and gaussian behavior. This log-
ical and straight-forward generation strategy makes the system easier to reproduce and
interpret. Because performance generation is done on a note-level only, the system nat-
urally lacks context-awareness. To compensate for that, some input features relate notes
to their context by means of musicological concepts such as consonance and dissonance
in tonal theory and Eugene Narmour’s Implication-Realization model (Gjerdingen and
Narmour, 2006). Even more signi�cantly, in its most sophisticated instance, YQX gen-
erates performances by maximizing joint probabilities for note sequences, e�ectively giv-
ing the model awareness of past outputs.

On the one hand, YQX has great scalability with respect to training set size. The re-
quired calculations are feasible with larger datasets, and the system’s operation is entirely
automated. On the other hand, its design is limited in what it can represent. The proba-
bilistic rationale doesn’t easily incorporate complex performance patterns or con�icting
performance styles in training.

Another, more recent, example of probabilistic CSEMP is by Moulieras and Pachet
(2016). Like the previous examples, it is also a system for piano performance model-
ing, though the musical corpus used for training and evaluation consists of jazz and
popular pieces instead of western classical ones, with a total of 172 songs played by the
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same pianist. The approach consists of estimating probability distributions for the EPA
random variables following the principle of maximum entropy. The parsing of musi-
cal information is minimal, as the metrical position of notes in the measure is the only
score information reportedly collected. A theoretical bene�t of the maximum entropy
modeling design is that all performance features are jointly modelled, favoring greater
coherence among the variables then when generated independently. The system op-
erates on the note-level, with limited contextual information arising from constraints
related to a window of three notes before and after each target note, mildly enhanced
by the iterative nature of the generation process.

If we consider the types and formats of input and output information, the various mod-
els of expressive performance found in the literature also di�er signi�cantly in scope,
making a comparative evaluation or benchmark creation very hard. The Basis Func-
tions model by Grachten and Widmer (2012) serves to illustrate this point. Their sys-
tem attempts to provide a solution to a much more speci�c question about music per-
formance: given a musical score containing some performance guidance in the form
of expressive markings, in what way do musicians interpret such markings when play-
ing? The problem is very practical, since the inclusion of expressive markings in scores
is common practice, and even though the meaning of each symbol is well de�ned, their
translation into sound is very subjective and ambiguous. The approach consists of inter-
preting each type of marking as speci�c mathematical functions of timing or dynamics
and, based on training examples, optimizing the weights of each function for combin-
ing them into prediction values. Developing this model further, Gadermaier et al. (2016)
successfully applied it to predictions of dynamics in orchestral ensembles, and Cancino-
Chacón et al. (2017) generalized the system for non-linear combinations of basis func-
tions. In spite of the great results obtained by these systems, the more general problem
of performance generation in the absence of such “hints” as score markings persists, and
requires di�erent modeling approaches.

Even though systems for piano performance generation have seen gradual improvements
over the years, existing research on other, more challenging instruments is more akin to
earlier works for piano: smaller-sized training datasets compensated by carefully crafted
features with clear musical meaning.

Ramirez et al. (2008) design a model for jazz saxophone that produces performance rules
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based on data via genetic algorithms. The evolutionary aspect of their method is meant
to select the sets of logical rules that best explain the expressive features in sample perfor-
mances, therefore producing knowledge abstractions that possess musicological mean-
ing, and can be taught directly.

Though not designed for modeling expression, the system described by Maestre (2009)
is meant to predict violin bow motion directly from score notation, taking the limited
bow length and bowing techniques into consideration. The intention of the model
was to drive physical models of synthesis, but since all expressive actions are simply a
consequence of the musician’s motion, the same principle can be applied for o�ering
expressive performance guidance. The set of input features of the system include infor-
mation about the desired type of violin articulation and dynamics (e.g.: detaché, bow
down, pianissimo) so, as was the case with the Basis Functions model, it doesn’t gener-
ate expressive content from scratch, but provides a mapping from high-level, possibly
unclear instructions, to a well-de�ned performance description.

Giraldo and Ramirez (2016) tackled jazz guitar performance in their system and went be-
yond the generation of timing and dynamics EPAs by also including presence or absence
of ornamentation as an output. Their training data consisted of 16 pieces, and the input
feature set extraction was comparable to YQX in concept. Interestingly, unlike most
CSEMP, which produce EPA signals by means of regression, they opt for discretization
of the outputs, generating note level indications such as piano and shortened duration.

The examples presented so far give an overview of data-driven CSEMP which have made
use of what we may call conventional machine-learning (LeCun et al., 2015). The de-
velopment of its counterpart, deep learning, introduces a shift in design which we will
explore more deeply in the following sections. Regardless of the chosen design method-
ology, though, it is clear that expressive performance generation is a di�cult problem to
generalize, and even more di�cult to evaluate. Even though these systems are trained
to better predict the expressive elements of performance, that goal is virtually unattain-
able, and thus their predictive ability is not really a good metric of quality. The most
logical substitute, perceptual evaluation, is contingent on the population sample, not
very scalable, di�cult to reproduce, and doesn’t contribute to forming a benchmark to
measure future systems against. In short: a complex �eld, moving forward in modest
steps.
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Deep-Learning Models of Musical Language

In a signi�cant review article for Nature, LeCun et al. (2015) argue that conventional
machine-learning algorithms present di�culties processing raw data, instead relying on
the careful design of feature extractors by the system engineers themselves to transform
raw data into suitable representations for the learning tasks. Conversely, representation-
learning methods do exactly that, automatically learning the necessary features from
raw inputs. Deep learning methods, as they de�ne, are representation-learning methods
with multiple levels of representation, going from raw data to the desired output by
composing modules which operate on increasingly higher abstraction levels.

Propelled by major advances achieved by deep-learning architectures in various �elds
such as image recognition (Krizhevsky et al., 2012), speech recognition (Hinton et al.,
2012), and machine translation (Sutskever et al., 2014), research in music generation has
also become increasingly dedicated to deep-learning approaches in recent years.

The primary deep-learning architecture that enabled successful music generation sys-
tems is the recurrent neural network (RNN). RNNs are designed to process informa-
tion that is organized in a sequential form, processing one element in the sequence at
a time while retaining information derived from the previous elements in the form of
a “state vector” (LeCun et al., 2015). This allows us to create a machine-suited repre-
sentation of the music – replacing the manually crafted feature vectors in conventional
machine-learning models – which is then used to generate the desired outputs. Most
common tasks can thus be modeled in the form of encoders and decoders: the �rst lay-
ers of RNN encode the inputs as described, and the later ones learn to go from the
internal representation back to an application-ready one, decoding it. In music gener-
ation systems, the output encoding matches the input, as they are typically trained to
continue a composition: the inputs are the previous symbols representing the music, and
the outputs are the symbols best �t to complete it.

The basic idea for an RNN was �rst developed in the 1980s (Rumelhart et al., 1986), but
its application was limited due to di�culties in training and retaining meaningful infor-
mation after several steps in the sequence (Bengio et al., 1994). Improvements around
this issue were gradually achieved over time, most notably with the introduction of long
short-term memory networks (LSTM) and later, gated recurrent units (GRU), varia-
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tions of RNN developed to be able to retain short-term information learned from the
input even when processing long sequences (Hochreiter and Schmidhuber, 1997; Cho
et al., 2014).

A notable early example of recurrent neural networks applied to music generation is a
system for generating blues improvisation by Eck and Schmidhuber (2002). The system
uses long short-term memory networks (LSTM) and sequentially processes a symbolic
representation of chords and melodies, each symbol representing notes on and o� in
a quantized time-step. The training consists of learning to estimate the probability of
each note being on in the subsequent time step. Once trained, it is capable of contin-
uing a composition, preserving the blues chord sequence and generating new melodies
inde�nitely.

Douglas Eck would go on to initiate the Magenta project, within Google Research, to
further explore machine learning applications with music. Their Performance RNN (Si-
mon and Oore, 2017) uses the same principle as the blues improvisation system, but
with a much more powerful musical representation. The researchers encode musical
information as a language with symbols to represent the start of a note, the release of a
note, a shift in time, and a change in note velocity, summing up to 388 1 di�erent event
symbols. The system is trained to compose by learning to predict the next event in the
sequences of symbols representing training set pieces. By adopting this complex vocab-
ulary, PerformanceRNN is able to parse and generate symbolic music with expressive
timing – up to a precision of 10ms – and dynamics – with 32 di�erent levels of velocity,
an ability the authors analyze further in a subsequent publication (Oore et al., 2018).
In order to properly learn such a rich vocabulary, many upgrades are necessary with re-
spect to the original blues improvisation system. Most notable is the di�erence in the
network size. The seminal model consisted of 2 layers of 8 LSTM cells each, whereas
PerformanceRNN boasts 3 LSTM layers of 512 cells each. A corresponding leap in scale
is observed in the training data. Whereas the blues improvisation model was trained
with short melodies encoded manually by the authors, PerformanceRNN used around
1,400 piano performances from the Yamaha e-Piano Competition, which would later
be organized as the MAESTRO dataset (Hawthorne et al., 2019).

1The original formulation quantized time in 10ms steps resulting in 388 di�erent events. For the anal-
ysis of expressivity (Oore et al., 2018), the authors increased the granularity to 8ms steps, resulting in 413
di�erent events.
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Using much larger networks was not a revolution started by PerformanceRNN. Success-
fully training large-scale deep-learning models is a result of a combination of theoretical
developments that improved the known methods for nearly every aspect in the systems,
such as network weights initialization (Glorot and Bengio, 2010), choice of activation
function (Glorot et al., 2011), regularization (Srivastava et al., 2014), and stochastic gra-
dient descent (Kingma and Ba, 2014). Moreover, the ability to parallelize computations
using graphics processing units (GPUs) was essential to making it possible to increase
the complexity of such models (LeCun et al., 2015).

The paradigm adopted by PerformanceRNN and its successors in the literature views
music as a language, de�ning a syntax for the description of musical events and then
training algorithms designed for processing text with music datasets encoded in such
languages.

Another example to highlight is the Music Transformer (Huang et al., 2018). This model
shares the same musical representation and training set as PerformanceRNN, but struc-
tures itself around the Transformer model (Vaswani et al., 2017). The Transformer is an
alternative to RNNs that has shown superior ability in capturing and reproducing long-
term dependencies in sequences. Its architecture is also more parallelizable than RNNs,
resulting in reduced training times. The basic building block of Transformers is the
attention layer, �rst proposed for improving language translation tasks in RNN mod-
els (Bahdanau et al., 2015). Its principle is to provide a mechanism for learning which
of the time steps from the input sequence have more in�uence over the current output.
The authors of Music Transformer provide evidence that, like its counterpart for text,
the model is more successful at producing coherent long-term structures than recurrent
architectures. However, this architecture requires processing data through several atten-
tion layers, both in parallel (in a so-called multi-head attention layer) and in sequence,
resulting in a large number of trainable parameters even for modest con�gurations, and,
consequently, requiring large datasets to train properly.

All three models of music generation mentioned above share a certain limitation in their
ability to generate multiple variations of compositions and in the tools they provide
the user for controlling the generation, since they are trained to predict a single prob-
ability distribution for the next symbol in the sequence conditioned only by the previ-
ous symbols. Other variations of these models address that limitation, proposing more
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complex approaches to generation, of which we highlight two. The �rst, Transformer-
VAE (Jiang et al., 2020), blends the Transformer architecture with Variational Autoen-
coders (VAE) (Kingma and Welling, 2014) ensuring that the encoding learned by the
network is a multivariate Gaussian random variable, therefore gaining more control over
the input sent to its decoder portion. The second is the Adversarial Transformer (Zhang,
2020), which �ne-tunes the generation process by submitting the generated sequences
to a discriminator, a separate neural network designed to di�erentiate between composi-
tions from the dataset and those generated by the Transformer network. The generator
is then rewarded for “fooling” the discriminator, gradually making its music more in-
distinguishable from the human ones. Systems that take this approach are known in
general as Generative Adversarial Networks (GAN) (Creswell et al., 2018).

We have presented a brief overview of the �rst e�ects of the introduction of deep learn-
ing in the study of musical creativity, mainly automatic composition. Deep-learning
models o�er a series of mechanisms to structurally take into account some of the most
challenging elements in musical information, like temporally dependent relationships
and data variability motivated by artistic liberties. The ability of these models to pro-
cess massive amounts of data makes them capable of reproducing complex patterns that
could be useful in understanding and reproducing the intricate structure of human mu-
sic performance.

Even though these examples of deep-learning music systems are not CSEMP in a strict
sense, as they do not provide a mapping from musical score to performance actions, their
ability to process and generate musical information on a symbolic level, in some cases
even including expressive content, is an indication of the applicability of their approach
to our target scope. Next, we direct our attention to the existing work in that vein. For
a comprehensive survey of deep music generation, we refer the reader to Ji et al. (2020).

Deep-Learning approaches to CSEMP

In contrast with music generation systems, there have been fewer proposals of CSEMP
that make use of deep-learning techniques. This could be partly justi�ed by the scarcity
of large-scale datasets combining performance and symbolic music representation. Nev-
ertheless, there are relevant examples of successful attempts, with some variation in scope.
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As brie�y touched upon earlier, (Cancino-Chacón et al., 2017) expanded the basis func-
tions model to evaluate linear and non-linear models of dynamics in both piano and
symphonic performances. Their evaluations include bi-directional RNN architectures
of one or two internal (“hidden”) layers as well as a single-layered bi-directional LSTM,
besides a simpler feed-forward neural network as a baseline non-linear model, and the
original linear formulation. Bi-directional RNNs e�ectively make the outputs aware of
musical events that are yet to be performed, as well as the past ones, which is consistent
with the human experience of a musician playing a known piece. Their results indi-
cate that in CSEMP, as is the case in other �elds, a larger network size and number of
learnable parameters result in higher predictive power. Interestingly, the more complex
recurrent architectures only surpass the performance of the simpler feed-forward one
in their larger con�gurations, hinting that these models require more learning units to
reach their full potential. Though logical, the number of experiments presented is too
low to demonstrate that e�ect conclusively.

The design of expression generators often su�ers from a similar limitation to genera-
tors of music compositions, since, in most architectures, the training process penalizes
interpretations that di�er from the existing examples, �xing each model’s “style”. The
work of Malik and Ek (2017) exemplify a design that works around this issue. Their sys-
tem is structured as Siamese Neural Networks, as introduced by Bromley et al. (1993).
In it, two identical networks are trained in di�erent musical styles, one in jazz and the
other in classical music, though both share certain parameters which process the input,
pushing the system towards a shared representation that is specialized for each case in
the subsequent layers.

Yet another innovative approach to performance generation is found in Tan et al. (2020).
The authors de�ne classes of dynamics (soft or loud) and articulations (staccato or legato)
for MIDI �les of piano performances from the MAESTRO dataset (Hawthorne et al.,
2019), and train a Gaussian Mixture Variational Autoencoder (GM-VAE) (Jiang et al.,
2017) that synthesize audio performances conditioned on these expressive variables. In
a sense, the authors opt for a scope similar to Cancino-Chacón et al. (2017), where the
system learns how to interpret (vague) directions about expression, albeit in this case,
generating the performance audio itself rather than EPA signals.

Perhaps the model that most harmoniously unites the applicable approaches previously
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mentioned is VirtuosoNET (Jeong et al., 2019a). It is a system for expressive piano
performance modeling based on recurrent neural networks organized hierarchically to
process scores at di�erent temporal levels. The model generates EPA signals for veloc-
ity, timing, tempo, articulation, and pedaling. Structurally, VirtuosoNET consists of a
score encoder, a performance encoder, and a performance decoder.

The score encoder consists of a set of bi-directional LSTMs which process the score sym-
bols successively, �rst at the note level, then at the beat, and �nally measure levels. Each
level takes as input the previous level outputs, combined into the corresponding time-
scale with the help of multi-head attention layers, in the style of Vaswani et al. (2017).
The �nal score encoding contains one feature vector per note, formed by the concatena-
tion of outputs from the three levels related to the note itself, its beat, and its measure.

The performance encoder uses a conditional variational autoencoder (CVAE) design, a
probabilistic model �rst introduced by Sohn et al. (2015) which is trained to learn a la-
tent vector representation of the “performance style”, as the authors call it. This vector is
modeled as a normally distributed random variable, and each performance is considered
an instantiation of that variable conditioned by the score features. The performance en-
coder is only used during training. For performance generation, the performance style
vector is randomly sampled according to the learned mean and variance parameters and
fed to the performance decoder. Alternatively, the encoder can be used in a reference per-
formance to extract its latent style vector so it can be used for generating performances
of di�erent pieces, in theory transferring to them the style from the reference.

Finally, the performance decoder is also a recurrent model. Two LSTMs work in parallel,
for the note and beat levels, taking as inputs a concatenation of the encoded score, the
performance style vector, and the outputs from previous steps in the sequence from
both note and beat levels. Velocity, timing, articulation, and pedaling are all outputs
produced on the note level, whereas tempo is generated on the beat level.

VirtuosoNET was also trained using performances from the MAESTRO dataset. How-
ever, only audio and corresponding MIDI �les are available in it, and the authors were in-
terested in modeling a full mapping from score to performance. To make that possible,
scores for 226 pieces in the musicXML 2 format were matched and automatically aligned

2MusicXML 3.1 Speci�cation. The W3C Music Notation Community Group, 2017. URL:
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to 1,052 piano performances from the original dataset, making it the largest dataset of its
kind at the time. Evaluation for the system was conducted �rst by comparative analy-
sis of the mean squared errors (MSE) in performance predictions and later perceptually
by listeners. The mathematical analysis adds credibility to the proposed hierarchical
architecture, as it shows superior predictive capacity to a simple multi-layered LSTM
encoder. Likewise, the exclusion of the measure level in score encoding also negatively
impacts the same metric. Perceptual analysis by �ve pianists again favors the �nal archi-
tecture, even over the Basis-Mixer (Cancino-Chacón and Grachten, 2016) – an available
implementation of the models by Cancino-Chacón and Grachten.

A later paper by Jeong et al. (2019b) proposes modi�cations to VirtuosoNET, encod-
ing the score at the note level by means of a gated graph neural network (GGNN) 3 that
structurally represents several relationships between notes, such as slurs and voices. Eval-
uation in the same terms shows modest improvements, especially for generated tempo
curves.

As of this writing, the application of deep-learning architectures to creative and artistic
tasks has been spreading in a fast pace, and with the development of each new model-
ing design we see a surge of reports of their results in various tasks, including expressive
performance generation systems. In spite of the proli�c output, it remains challenging
to navigate this research �eld due to the variety of scopes and requirement speci�cities
imposed by the proposed systems, making them largely incomparable and often impos-
sible to reproduce. In fact, the success of most models is de�ned in equal measures by
the maturity of its documentation as by the quality of its generated performances. We
hope that the works described in this chapter can provide justi�cation to the thought
process applied to our own design choices, and put our contributions into perspective.

2.2 Technology-Enhanced Learning of Musical Expression

Technology-enhanced music learning is an extensive and active research �eld that has
found its way to many classrooms and commercial applications, and would be far too
complex to cover here. We merely present some of the works that seek to facilitate the

https://www.w3.org/2017/12/musicxml31/.
3for details, see Li et al. (2017).
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learning of musical expression, be it simply by delivering information about the expres-
sive content of performances in the form of visualizations or reports, or by evaluating a
complete pedagogical approach to this subject.

The pianoFORTE (Smoliar et al., 1995) is an early example of computer system that, by
taking advantage of sensory capabilities of MIDI keyboards, plots information about
timing, dynamics, articulation, and voice synchronization of a piano performance with
the goal of facilitating communication between music educators and students about
expression. Because the system lacks a model of expression, the knowledge of the music
teacher remains as the only source for feedback about a performance, so the experiment
stands out as a very good example of application scenario for a CSEMP as investigated
in this thesis.

A similar approach is also found in the InTune software (Lim and Raphael, 2010), though
here, the application is assisting the visualization and control of intonation for wind,
brass, and stringed instruments as well as voice. Though intonation can be used for
expression, the study explores only a simpler application, di�erentiating correct and in-
correct pitch intonation. In a user evaluation, the authors were able to con�rm that In-
Tune helped the majority of participants identify intonation errors they wouldn’t have
otherwise noticed. They also conduct a simple usability survey, from which it is clear
that most users are more comfortable using score and pitch views to a spectrogram for
this task.

Some models of performance for violin instruction have been proposed, though their
focus lie in predicting proper posture and bowing motion rather than expression. We
highlight the CyberViolin (Peiper et al., 2003) for articulation classi�cation and the Mu-
sicJacket (Van Der Linden et al., 2011) for posture correction via vibrotactile feedback.
The CyberViolin system uses electromagnetic motion tracking to classify in real-time
the type of articulations played by a musician. In their envisioned application scenario,
the correct articulation is known for each note, and the virtual tutor is in charge of ver-
ifying if students articulate the proper technique in each case. The MusicJacket sys-
tem explores new forms of providing performance training assistance in an experiment
where students improve their bowing skills assisted by a wearable device with vibrotac-
tile feedback capabilities. However, in any case like the above, the system must have a
prior knowledge of a ground truth, that is, a reference to form the basis of its feedback.
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A few case studies of a complete experience teaching expression with the assistance of
technological tools do exist. Hamond et al. (2019) report on the results of one-to-one
piano lessons of an advanced student augmented by the use of a digital audio worksta-
tion (DAW) connected to an electronic piano via musical instrument digital interface
(MIDI). The built-in functionalities of the DAW provided both real-time and post-hoc
visual and auditory feedback of the performances, the visual feedback being in the form
of a piano roll view with notes color-coded by velocity. Analysis of the video records
and interviews with both teacher and student indicate that they viewed all function-
alities positively, but seemed to rely more on post-hoc analysis. Particularly, the visual
feedback of velocity revealed that when playing along with the teacher, the student had
more salient articulations in the left hand than when playing alone, which prompted
them to practice that section emulating their previous, accompanied attempt.

Sadakata et al. (2008) provide a very informative analysis of the impact of real-time visual
feedback to the learning of expressive rhythmic skills. In the evaluation setup, partici-
pants were instructed to imitate a reference performance assisted by a tool that presented
a graphical representation of its loudness and timing variations. The study also included
an analysis of transfer of learning, in which previously unseen rhythms had to be per-
formed during the test phase. Learning success was measured in terms of reductions in
RMS errors between pre and post tests on each expressive dimension when comparing
participant and target performances. Under this criterion, the proposed visualization
enhanced only the learning of loudness, since the group that received visual feedback
improved more than the control group in that aspect, but not in terms of timing. The
experimental setup from this study stands out for its clarity and methodical organiza-
tion, and informs our own methods in the analysis presented in chapter 6, though its
strictly quantitative approach is a better �t for mature solutions, where a strong endorse-
ment or rejection, rather than nuanced opinions, is the ideal outcome.

An experiment described by Juslin et al. (2006) presents the most advanced attempt
in the literature of providing feedback about expression based on conclusions drawn
from a computer model. In their study, jazz/rock guitar players were asked to play a
piece expressing a certain emotion, such as sadness, and given feedback by a computer
program about speci�c changes in expression, such as playing slower or more legato,
in order to better approximate the model’s predictions for that piece and mood. The
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performances after the feedback were contrasted with those of other groups that received
feedback from a professor or no feedback at all in a listening experiment, showing that
the computer suggestions were the most e�ective in helping players convey the intended
emotions.

A surprising observation is that, when inquired about it, music students often manifest
resistance to the use of technological tools with pedagogical purposes (Lindström et al.,
2003b; Juslin et al., 2006; Karlsson et al., 2009). However, the concrete approaches dis-
cussed here have been almost universally well-received. One logical explanation could be
that there is an inherent bias in favor of technology by people who volunteer themselves
to participating such pioneer studies, but it might also be the case that many musicians
are still unaware of the bene�ts that can be reaped from a technologically-enhanced mu-
sic classroom.



Chapter 3

Performance Modeling by

Phrase Similarity

3.1 Introduction

This chapter describes the development and evaluation of a data-driven system for ex-
pressive performance modeling applicable to violin melodies and robust to training with
a reduced number of reference performances. The ability to apply generated outputs as
creative suggestions to students in the process of learning and practicing expressive per-
formance is a central guiding principle in its design.

The proposed model uses phrases rather than single notes as units of analysis using the
following approach: each phrase in a target score is matched to similar phrases from per-
formances by experts, adapting the experts’ expressive features to render a performance
of the target score. This approach shares bene�ts that were highlighted in our discussion
of the DISTALL system (Tobudic and Widmer, 2006), due to the instance-based na-
ture of both designs. By reusing the expressive content found in a human performance,
the model passively preserves much of the coherence among expressive parameters and
their relationship with the melody, ideally eliciting some form of “musical ELIZA ef-
fect”(Hofstadter, 1995) on listeners. The model’s creations gain more legitimacy if one
sees musical performance as being composed of idioms, much like human languages 1 –

1a view shared to some degree by many music theorists, from Cooke (1989) to Zbikowski (2017).
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if we consider any simple communication such as, say, ordering a cup of co�ee, all lan-
guages o�er a multitude of ways to achieve this, but a visit to a café quickly reveals that
not all of them are equally likely to be heard. In the musical context, an instance-based
model hopes to capture elements of performance conventions, the recognizable ways in
which phrases, consciously or not, are played.

modeling idioms of performance �ts the educational purpose of our system as well, en-
suring that music students are stimulated to learn performance patterns that align with
the expectations of an audience of the target genre, giving them the necessary awareness
to incorporate or break from these conventions at will.

The chosen approach belongs to a class of methods called lazy learning. Systems of this
kind defer analysis of the dataset until the time of evaluation (Aha, 2013) (for us, until
performance generation). This gives the system �exibility to alter the dataset at will at
the expense of slower execution, an opportunity for creative uses of musical references
according to the section of the performance to generate.

To assess the ability of the proposed modeling framework, we take advantage of a small
corpus of multimodal recordings and apply it to the generation of signals related to mo-
tion, speci�cally, bow velocity during violin performances.

The results from the work described in this chapter have been published in the 1st ACM
SIGCHI International Workshop on Multimodal Interaction for Education Ortega et al.
(2017a).

3.2 Method

The proposed performance generation process can be divided in three parts, as illus-
trated in �gure 3.1: �rst, the musical score to be performed is segmented into a sequence
of phrases. Then, for each phrase, the system searches the performance database for
the most similar phrases available according to a similarity heuristic that we de�ned. Fi-
nally, the performance from the most similar phrase is processed and incorporated as the
newly generated performance. In that sense, the model can be seen as an application of
nearest-neighbor regression.
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Figure 3.1: Outline of the performance generation method

In the pedagogical scenario we envision, the training set can be processed a priori, and
that allows for more human interference and manually crafted features. However, in
the interest of being able to modify the training set composition on the �y as well as
increasing the method’s reproducibility, we refrain from doing so, and instead adopt a
fully automated process for the training set preparation, which we will discuss alongside
each of the above three steps from the generation.

In the �rst step of the performance generation process, the goal is to divide pieces into
their constituent phrases, which are the actual objects of analysis. Because we are in-
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terested in fully automated performance generation, we opt for a standardized phrase
size of two measures. Naturally, the duration and number of notes in a two-measure
segment can vary widely from one musical piece to another, but for the purpose of es-
tablishing a �xed phrase size, the two-measure mark is a logical decision, as it is typically
long enough to encompass a complete musical idea and short enough to allow the per-
ception of gradual change in interpretation.

The second and crucial step in our performance generation method is identifying the
best matching phrases within the dataset of known performances for every phrase of
the desired piece. This requires de�ning a measure of phrase similarity that translates
our intuitive perception of the concept with the fewest possible aberrations. Here we
introduce a few simpli�cations: given that we opted to evaluate the method on solo vio-
lin performances of western classical music, it makes sense to compute similarity based
solely on note pitches and durations of monophonic melodies. Whenever we encounter
notes that are played simultaneously (double-stops), only the highest pitch is considered
part of the melody. With this simpler formulation, we take advantage of a measure of
melodic dissimilarity proposed by Stammen and Pennycook (1993), which is an adapta-
tion of the dynamic time warping (DTW) algorithm.

In this melodic dissimilarity algorithm, melodies are encoded as pairs of sequences, one
sequence representing tempo-invariant note durations, and the other, key-invariant note
pitches. When comparing melodies, the minimum necessary warping cost to turn each
sequence from one melody into the corresponding sequence of the other melody is
computed using DTW, and the total measure of dissimilarity is taken to be the sum of
squares of the warping cost of each sequence. For more details on the DTW algorithm
itself, we refer the reader to Müller (2007).

The third and �nal step for performance generation is the adaptation of performance
data from the reference phrase selected in the previous step. Here, the most adequate
adaptation method may vary according to the desired output feature. For the evalua-
tion of the model, we attempt to predict violin bow motion information for each note,
separated into two features: mean absolute bow velocities and bow motion direction.

Figure 3.2 breaks down the adaptation process as implemented for evaluation of bow
velocity prediction. The graph represents absolute bow velocity information from the
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Figure 3.2: Adaptation of bow velocity data from a reference phrase.

reference phrase seen in the musical score below it. Because of the articulation of each
note in the phrase, a certain degree of variation in bow velocity is observed along the du-
ration of each note. Our method tries to eliminate the in�uence of such variation com-
puting the mean bow velocity value for the performed duration of each note (indicated
by horizontal lines), because that value is indicative of the dynamics of the performance.
The dotted line tagged “interpolation line” is an approximation of the variation in mean
bow velocity along the duration of the whole phrase. Since the phrase to be predicted
can di�er rhythmically from the reference, the mean bow velocity values predicted for
each target note are sampled from the interpolation line in the instants corresponding
to the center of each note’s duration. In the example from the �gure, mean velocity in-
creased in the reference phrase between the �rst and second notes; so, since the duration
of the �rst note in the phrase to predict is longer than the �rst note of the reference,
its predicted mean velocity is also higher. The third note of both phrases, on the other
hand, has the same duration and relative placement within the phrase, so the predicted
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mean velocity matches the reference exactly.

The adaptation process for bow direction prediction is simpler: each reference note is
labeled as either bow down or bow up according to its onset velocity. Directions of
notes to predict assume the same label as the closest note onset in the nearest-neighbor
reference for the normalized moment of its own onset.

All performance data used in the evaluation were collected for prior experiments on en-
semble expressive performance (Marchini et al., 2014; Papiotis et al., 2014). This dataset,
known as the Ensemble Expressive Performance (EEP) dataset, consists of recordings of
the String Quartet no. 4, Op. 18 by Ludwig van Beethoven, organized in smaller sec-
tions and performed in various conditions. We selected excerpts exclusively from the
�rst violin. Phrases which repeat themselves throughout the piece are included only
once to avoid positively biasing the nearest-neighbor algorithm. Bowing motion data
were acquired by means of a Polhemus Liberty wired motion capture system as detailed
by Maestre (2009), at a sample rate of 240 Hz. Performance audio was recorded from a
piezoelectric pickup attached to the bridge of the instrument, and timestamps for note
onsets and o�sets were manually annotated. Synchronization of audio and motion cap-
ture data was reviewed through the alignment of linear timecode timestamps. The scores
for symbolic data processing were input in MusicXML format and all code was written
in MATLAB.

As previously mentioned, e�cacy of the model was evaluated in terms of its ability
to predict expressive signals from the chosen dataset. A leave-one-phrase-out process
was adopted, so that bowing motion information was predicted for every phrase in the
dataset using the remaining phrases as references.

3.3 Results

A total of 68.75% of notes had their bowing direction correctly classi�ed. In contrast,
the baseline most frequent label classi�er shows an accuracy of 50.94%. Though it seems
possible to improve accuracy with simple modi�cations to this model, we consider bow-
ing direction classi�cation simply as a quality indicator for the method, and instead give
more attention to the analysis of bow velocity magnitude predictions, since that is a
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feature determined more by stylistic choice and less by physical restrictions of the in-
strument when compared to bowing direction.

Figure 3.3: Boxplot of prediction errors in a leave-one-phrase-out approach.

The top plot in �gure 3.3 shows the distribution of absolute errors per note in predic-
tions as a percentage of the full-scale value. The baseline model is the prediction of
constant velocity equal to the mean absolute velocity value. We can see that the model
achieves lower median error than baseline at the cost of a wider error distribution pro-
�le. Since the dataset is very small, we are unable to reject the null hypothesis of equality
between baseline and prediction means in a one-sided t-test. Instead, in order to val-
idate our measure of phrase similarity as a predictor for bow velocity, we performed a
di�erent test. We partitioned all predicted phrases into two sets of equal size classi�ed by
melodic dissimilarity score, that is, one set containing phrases for which we could �nd
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the closest nearest neighbors during prediction, and the other, phrases for which the
nearest neighbor in the reference set were the most distant. The bottom plot in �gure
3.3 shows the distribution of errors for these two classes. In this case, t-testing con�rms
that phrases with closest neighbors present the lower mean absolute error of the two sets
with p = 0.01.

We also observe how the model compares to a constant velocity baseline on the phrase
level. Figure 3.4 shows how the expected mean velocity along entire phrases for the
modeled performance is a better approximation than baseline. Since the absolute bow
velocity curve and the loudness curve extracted from the audio recording share a high
coe�cient of determination (R2 = 0.76), this could be interpreted as evidence that
the melodic content of a phrase is indicative of its character in dynamics, i.e.: if a given
melody is typically played forte, another, similar melody, should be played forte as well.

Figure 3.4: Boxplot of errors in mean phrase velocity predictions.
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3.4 Discussion

Overall, the violin bow motion predictions obtained from the phrase similarity model
were successful in validating the hypothesis that performances of similar melodies share
expressive traits. The observed reduction in prediction errors compared to a baseline
prediction also indicate that the speci�c methodology adopted for processing musical
information is adequate for this purpose. In particular, we highlight the phrase similar-
ity heuristics and the data conditioning for expressive feature adaptation, which demon-
strate potential to be reused in models of higher complexity.

Naturally, it should be noted that the evaluated settings are very speci�c in terms of
musical style, predicted features, and most of all dataset size, which means that little is
known about the behavior of the model in other, more general conditions. The eval-
uation using phrases extracted from the same piece and played by the same performer
may have led to a positive bias in the results. On the other hand, using data from a va-
riety of pieces and performers could have had a much stronger, negative bias, failing to
provide examples of melodies that share melodic traits and that could allow us to ver-
ify a shared vocabulary of performance features. By separating predictions made from
similar melodic content from those predicted using contrasting melodies, we sought to
mitigate any biased e�ect and to understand the potential of the model given a prop-
erly catered dataset of reference performances, which would require a long-term e�ort
in data collection and preparation.

The improvement in bowing direction predictions over baseline is a surprisingly posi-
tive result, given the relative simplicity of the model’s input features. It is notoriously
di�cult, even for musicians themselves, to anticipate the best bowing strategy for an
unknown piece, but the results hint that, for a fair amount of notes, the rhythmic and
melodic patterns are su�cient information to accurately predict the best bowing direc-
tion. Though this is not likely the best computational strategy for this task, it serves as
evidence that the proposed similarity measure carries some musical meaning.

The analysis of bowing velocity was our main goal, since it has direct implications for
expressive performance teaching. Con�rming that a phrase-level approach is more accu-
rate than trivial baselines in predicting expressive features is simply a �rst step towards
proposing computer systems that can contribute meaningfully to the creative process
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behind developing an interpretation of a musical piece. The generated velocity signals,
when interpreted as predictions of a reference performance, exhibit larger variance in
the error distribution than the variance of velocities in the piece itself, which indicates
that although the mean error values are lower than baseline, the generated velocity pro-
�le of some phrases con�icts with the one observed in the reference performance. This
is not a surprising discovery given the nature of the problem. One fact that partially
justi�es that �nding is that there are multiple possible interpretations for any given mu-
sical excerpt, which means, for example, that something as simple as using a recording
from a di�erent musician as reference could yield very di�erent error pro�les while be-
ing just as acceptable perceptually. Another decisive fact that helps interpret this result is
a signi�cant design limitation of this model: because phrase similarity is the single char-
acteristic used for constructing the output signal, if the training database is kept equal
for the entire generation process, repetitions of a phrase will all produce identical per-
formances. This is typically undesirable as it is an unrealistic behavior when contrasted
with a real musician. Likewise, the lack of contextual information in the performance
generation can produce abrupt changes from phrase to phrase which are not evident in
the numerical analyses presented, but that could also feel unnatural to a listener.

In conclusion, despite the simplicity of the model and the limitations we discussed, the
proposed modeling design shows robustness in face of very small training datasets, and
for the same reason o�ers versatility, since clever manipulation of the dataset during
generation can completely change the character of generated performances. It also of-
fers a meaningful contribution to the �eld, that still lacks body of knowledge in the
development of non-piano, fully-automated CSEMP, particularly with an emphasis on
phrase-level analysis.



Chapter 4

Performance Modeling by

Phrase-Level Feature

Parameterization

4.1 Introduction

The work described in this chapter can be seen as a natural continuation of the model
development described in chapter 3. As highlighted in the discussion of that system,
the proposed instance-based performance generation approach is tolerant of small-scale
datasets but still degrades in quality in the absence of su�ciently similar reference phrases.
The method also lacks an ability to take contextual information of musical phrases into
account, which can be an important asset for preventing the generation of repetitive and
dull performances. Moreover, as we move towards larger datasets for model training,
and turn our focus to generating audio rather than motion features of expression, a no-
table limitation of the previous approach is its inability to have multiple reference sam-
ples contributing to the output, or, in other words, “blending” interpretations. With
these issues in mind, a summary of the goals addressed in this chapter are:

• To improve upon our phrase-level CSEMP, with a method for EPA feature pa-
rameterization that lets it combine contributions from di�erent training samples
and take advantage of more powerful learning algorithms;

37
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• To develop an automated method of phrase segmentation that can, as best as pos-
sible, re�ect the musical structure of pieces;

• To validate the resulting system as a generator of expressive features present in
audio recordings, such as dynamics and timing variations; and

• To contrast the e�cacy of phrase-level modeling against note-level modeling un-
der settings relevant to our scenario.

The audio feature most deeply analyzed in these experiments is loudness. Musicians ac-
tively manipulate loudness in music performances, and the variations they introduce as
an expressive resource form what is called musical dynamics. However, because mod-
eling requires quantifying these phenomena, it is important to establish a distinction
between musical dynamics itself as a perceptual feature – as well as the actions made
by musicians to create it – and the loudness of the audio in a recorded performance. It
is logical to conclude that by virtue of the recording process, several elements external
to the performance impact the loudness of the resulting audio signal, such as the sen-
sitivity of the microphones, their distance to the sound source, compression and other
post-production processing techniques used in mixing and mastering, and so on. Also
an issue that arises is mapping loudness as a physical quantity related to sound pressure
to loudness perceived by the human ear, since the latter is frequency-dependent and the
relationship between the two is known to be non-linear and complex. Lastly, it should
be noted that the majority of traditional musical instruments vary in timbre according
to the intensity with which they are played. As a result, dynamics are perceived not only
as modulations in volume, but also as changes in sound character of great importance to
communicate a performer’s expression. For an overview of di�culties relating loudness
to musical dynamics, see (Patterson, 1974).

Unsurprisingly, in light of all factors mentioned above, most data-driven CSEMP that
concern themselves with the generation of dynamics are based around some feature of
the musical instrument itself rather than the resulting loudness of the performance. For
piano, the main feature for this purpose is the velocity of the hammers that strike the
strings 1, made easy to measure by the fact that velocity sensors have become ubiqui-
tous in electronic pianos. The experiment presented in chapter 3 is another example, as

1A detailed analysis was published by Repp (1993).
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the main quantity associated with loudness in violin performances is the velocity of the
bow; nevertheless, in the violin like in many instruments, every playing style choice a�ect
multiple sound features at once 2, so other features such as the contact point between
bow and string and the tilt angle of the bow also impact dynamics in some degree.

Despite these challenges, researching e�ective methods to utilize recording loudness in-
formation as a source for performance dynamics generation can facilitate modeling a
wider variety of instruments without needing intrusive sensors or speci�c data collec-
tion, ultimately helping us learn about music expression in a broader sense.

Results from this work have been published in the 10th International Workshop on Ma-
chine Learning and Music (Ortega et al., 2017b), in Frontiers in Psychology (Ortega
et al., 2019a) and in the 12th International Workshop on Machine Learning and Mu-
sic (Ortega et al., 2019b).

4.2 Method

In the process of achieving the previously outlined goals, a series of experiments were
conducted, each with speci�c purposes. We present their shared methodology below,
highlighting di�erences when applicable.

Model enhancements

Recalling the structure of our CSEMP as shown in �gure 3.1, the �rst step, both in train-
ing and generation, is to determine phrase boundaries to segment musical pieces into the
units of analysis.

Considering that an important function of music interpretation is to highlight its struc-
ture (Palmer, 1997), if the piece segmentation method is set to follow musically mean-
ingful boundaries, the generated performances may also ful�ll that function, and sound
more natural as a consequence. The same is desirable when processing the training set to
obtain the reference phrases which will be used in generation. A musically meaningful
segmentation of the training set pieces ensures that features extracted from the resulting
phrases are more likely to capture complete ideas which would adequately translate to

2a desirable characteristic in musical instrument design, according to Jordà (2004).
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a similar phrase. Under this premise, we abandon the �xed length of two measures in
exchange for a dynamically-sized but fully automated approach.

Our piece segmentation algorithm is built upon the local boundary detection model, or
LDBM (Cambouropoulos, 2001). The LBDM is a method that attributes a score be-
tween 0 and 1 for each note in a piece which represents the likelihood of that note being
a local boundary (i.e.: the �rst in a phrase) taking into account the variations in pitch,
note durations and presence of rests. Our model uses an implementation of it available
in the MIDI Toolbox for MATLAB (Eerola and Toiviainen, 2004). The segmentation
algorithm uses the method’s score values for recursively evaluating whether a segment
should be split further. The following pseudocode illustrates how that is achieved:

Algorithm 1 Piece Segmentation
Input: The LBDM value li for every note i = 1..end.

1: procedure Segment([lk, lk+1, ..., ln])
2: if n− k ≤ 10 then
3: return one segment, from k to n
4: else
5: Calculate z-scores from values [lk+2, ..., ln−1]
6: if the largest z-score z(lmax) > 2 then
7: return Segment([lk, ..., lmax−1]), Segment([lmax, ..., ln])
8: else
9: return one segment, from k to n

As a result of its structure, the algorithm gravitates towards phrases of approximately 10
notes without imposing a hard restriction. Even though phrases of a single note might
be musicologically acceptable, we intentionally prevent their occurrence, since pieces
with ambiguous phrase boundaries often cause the LBDM to output high likelihood
values for consecutive notes in situations where one-note phrases would not be reason-
able.

Even though the analysis is done on a phrase-level, the model is designed to generate
expressive performance output features on a note-level. The chosen features for the ex-
periments are the mean level of loudness for each note, their onset time and duration.
The mean loudness levelLn of each note is computed according to equation 4.1, where
s are audio samples in the time-frame of note n.
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Ln = 20 · log


√√√√ o�setn∑

i=onsetn

s2i

 (4.1)

This process leads to loudness values measures in decibels relative to full-scale (dBFS).
When synthesizing performances generated by the model, these values are converted
into the MIDI velocity scale. This conversion follows the �ndings of Dannenberg (2006),
who observed a square-law between velocity values and RMS amplitude in synthesized
audio. Our mapping was empirically calibrated by synthesizing performances from our
recording database and ensuring that the dynamic range of the synthesized audio matched
that of the original recording.

The next important enhancement to our model design is the development of a method
of performance loudness signal parameterization. This process allows us to associate
each phrase in the training database with a set of numeric descriptors that summarize
the character of that performance’s loudness signal. These descriptors also have impor-
tant properties for the purpose of performance generation. The �rst one is that they
are normalized with respect to the scope of the whole musical piece, leading them to
describe only the local character of the phrase and making adaptations to a di�erent
context simple. The second relevant property is the smoothness of the loudness func-
tion with respect to the descriptors, which ensures that value variations only gradually
modify the character of the reconstructed signal, increasing the robustness of the repre-
sentation and simplifying its direct numerical manipulation.

Figure 4.1 shows a loudness curve plot for a piece section from the dataset, discretized on
the note level. The loudness at each note n is Ln, as computed according to equation
4.1. Between dashed lines is the section of a particular phrase in that piece. M is the
mean level of the piece, whereasm is the mean level of the phrase. The dynamic range is
given byR for the piece and r for the phrase. Considering that pieces may be performed
at widely di�erent mean levels and dynamic ranges, if we intend to use phrases from
multiple pieces as references for prediction, it makes sense to measure their values relative
to M and R and allow these to be set by the user for the predicted rendition. When
analyzing pieces from the training set, these metrics are measured as follows, where di
represents the duration of a note i:
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Figure 4.1: Performed loudness for a section of a piece and some key measurements.

M =

n∑
i=1

Li · di
n∑

i=1
di

R = maxi(Li)−mini(Li) (4.2)

Essentially,M is the weighted mean of loudness valuesLi with respect to the durations
di, andR is the range of excursion of the same random variable.

Using these metrics, we de�ne the mean loudness levelmp of a phrase p havingw notes
and beginning in note k as:

mp =
1

R
·


k+w∑
i=k

Li · di

k+w∑
i=k

di

−M

 (4.3)

This descriptor (mp) refers to the character of a phrase (e.g.: forte, pianissimo, etc.) and
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is represented by a single real number that measures how the loudness in the phrase
deviates from the mean loudness in the piece, normalized by that piece’s dynamic range.

The second descriptor is the phrase dynamic range rp:

rp =
1

R
· (maxp(Lp)−minp(Lp)) (4.4)

Analogously to what happens betweenmp andM , the descriptor rp is the phrase-level
counterpart ofR, and it measures the dynamic range of a phrase in “piece range” units.

Lastly, a third descriptor is the phrase contour (Cp), a function which describes how
each note in a phrase p contributes to its loudness once the e�ects of mp and rp are
discounted. Therefore, if mp, rp, and Cp are known for p, the loudness value for each
note i ∈ p can be determined by:

Li =M +R · (mp + rp · Cp(i)) (4.5)

This de�nition has two implications. The �rst is that we can determine the values ofCp

in each note i for phrases in the training set since their loudness valuesLi are known. Us-
ing those values,Cp is �tted in a quadratic polynomial using the least-squares method, as
inspired by observations regarding typical phrasing dynamics by McAngus Todd (1992)
and other researchers (Gabrielsson et al., 1983; Tobudic and Widmer, 2003; Livingstone
et al., 2010) who all point to their parabolic contour. This allows us to parameterizeCp

for all p in the training set using only three coe�cients for each.

The second implication of equation 4.5 is that determiningmp, rp, andCp for a phrase
p for which we wish to generate dynamics suggestions is enough to compute suggested
loudness valuesLi for all notes i ∈ p, as long as chosen values forM andR are provided.
In practice, M represents the overall character of the piece and R its overall dynamic
range, to which all phrases should conform. These can be set to default values or adapted
according to a wider context (e.g.: a lower M for an adagio than for an allegro). This
aligns with our initial desire of characterizing phrases independently of context, so that
the knowledge-base of the training set is applicable across all musical intentions.
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As previously mentioned, the proposed modeling is meant to output suggested mean
levels of loudness for each note but also a couple of timing-related features: note onset
times and note durations. By including features of timing besides dynamics we achieve
a minimal set of performance features that is su�cient to render synthesized perfor-
mances that can be evaluated perceptually. If timing features are omitted, the resulting
performances sound noticeably uncanny, and hinder our ability to evaluate the quality
of the generated loudness suggestions.

As was the case with loudness, some parameterization of timing features is needed to
make the best use of the phrase-level analysis. The local tempo curve is de�ned as the
function that describes how the tempo changes throughout the phrase. For each note
i, its local tempo value ti is computed as:

ti =
60

T
· bi

ioii
(4.6)

Where T is the piece tempo in beats per minute, bi is the duration of note i in beats
according to its rhythmic �gure in the score, and ioii is the inter-onset interval between
notes i and i + 1. The local tempo curve of each phrase is, once again, the quadratic
polynomial that best �ts its local tempo values, for x–axis values spaced proportionally
to bi.

For a suggested local tempo curve τ , one can use equation 4.6 to compute the IOI of
each note, since ti is given by τ(bi) and the desired piece tempo T should be provided.
Assuming that the �rst note starts at 0s and working sequentially, this de�nes the onset
times of all notes.

ANNmodel

The previous model based on phrase similarity was conceived with the purpose of be-
ing a good �t for small-sized datasets. Despite that, it is relevant to explore how phrase-
level modeling with the proposed segmentation and parameterization methods can take
advantage of a larger number of reference performances. As the dataset size increases,
running a DTW algorithm against all phrases for each new phrase performance gener-
ation becomes too time consuming. Rather than seeking optimization alternatives for
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the same algorithm, we test the e�cacy of a phrase-level analysis in a performance pre-
diction task using the same piece segmentation algorithm and output feature parame-
terization but replacing the phrase similarity heuristic with a set of phrase features in a
feed-forward arti�cial neural network (ANN) learning algorithm. This choice is justi-
�ed by ANNs’ ability to process very large amounts of data as well as its high modeling
power and good generalization results as shown by systems presented in chapter 2.

Table 4.1 summarizes the input features used for training. Piece keys and modes were es-
timated from pitch pro�les as detailed in Temperley (1999). Parameterization of phrase
loudness signals was slightly modi�ed: loudness measurements of each piece were com-
puted in windows of 0.1s following the EBU R 128 standard (EBU TC Committee, 2016)
normalized to zero mean and unit variance to eliminate di�erences caused by inconsis-
tent recording conditions. This method of calculation provides some correction to ac-
count for the physiological perception of loudness while maintaining methodological
reproducibility. The loudness curve of each phrase is represented simply by the three
coe�cients of the quadratic polynomial that best approximates it under a normalized
duration between values 0 and 1. This summarizes the previously de�ned parameters
into only three numbers, at the cost of some clarity in the interpretation of parameter
values. Having more parameters per phrase was not an issue for k-nearest neighbors
(k-NN) learning, but may impact performance in an ANN model.

To facilitate the optimization task, some data conditioning was performed. Phrases with
less than 4 notes and outliers (z-score above 10 in any feature) were discarded, all nominal
features were converted to “one-hot” format and all numeric features were standardized.
The processed dataset was divided into training and test sets containing 90% and 10% of
instances, respectively.

The feed-forward network was programmed in the PyTorch3 framework and built with
two hidden layers of 25 nodes each, using ReLU as an activation function and standard
mean-squared error as a loss function. The training was run for 1800 epochs in stochas-
tic gradient descent optimization with batches of 100 instances, learning rate of 0.2 and
momentum of 0.1. The learning rate was decreased by a factor of 10 every 600 epochs.
All parameters were cross-validated using a subdivision of the training set prior to the
�nal training round.

3http://pytorch.org
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Feature Data type Description
Beat in Measure x ∈ [0, 4] The beat where the phrase begins.
Metric strength x ∈ {3, 2, 1, 0} How strong the start beat is.

e.g.: down beat = 3.
Number of notes x ∈ N Total of notes in phrase.

Duration x ∈ [0,∞) Phrase duration in beats.
Location in piece x ∈ [0, 1] Where in the piece the phrase is played.

Pitch curve x0, x1, x2 ∈ R Quadratic coe�cients approximating
coe�cients the MIDI pitches of phrase notes.

Pitch contour x0, x1, x2 ∈ R Quadratic coe�cients approximating the
coe�cients variation in MIDI pitches of phrase notes.

Rhythm Drops boolean Whether a note with higher duration follows
another with shorter duration in the phrase.

Rhythm Rises boolean Whether a note with shorter duration follows
another with higher duration in the phrase.

Rhythm contour x0, x1, x2 ∈ R Quadratic coe�cients approximating the
coe�cients variation in duration of phrase notes.

Strongest note x ∈ [0, 1] Where in the phrase is the note
location with highest metric strength.
Piece key A - G# Tonality estimation of piece.

Piece mode Major/Minor Mode estimation of piece.
Chord probabilities x0..x6 ∈ [0, 1] Estimated diatonic chords

presence probabilities.
Initial chord degree I - VII Most likely chord in phrase start.
Final chord degree I - VII Most likely chord in phrase end.

Has Dissonance boolean Whether there are notes
from a di�erent tonality.

Dissonance Location x ∈ [0, 1] Location of �rst occurrence
of dissonant note.

Is solo piece boolean Solo or ensemble piece.

Table 4.1: Input features of the model.
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Data collection

In order to augment the EEP dataset used in the previous experiment, we conducted
recordings of a professional violinist, generating a new dataset, which we call Expressive
Solo Violin Dataset, or ESV 4.

Eight short (approximately 50s each) musical excerpts were recorded to be used for both
model generation and evaluation. The pieces were chosen from the violinist’s repertoire
with the intention of providing a wide range of moods and melodies of western classi-
cal violin, and were played solo and without metronome. Each excerpt was performed
three times with di�erent directions: once as inexpressively as possible, once as the mu-
sician believes they would normally play, and a third time exaggerating all expressive
actions. Only the exaggerated versions were used in the evaluation of our CSEMP, but
we believe the exercise, besides providing these contrasting interpretations for future re-
search, was helpful for raising the musician’s awareness of their own expression and thus
compensating for the lack of a concert atmosphere that would put them in the necessary
mental state for a convincingly expressive performance. The audio was captured with
multiple condenser microphones, one placed at close distance from the violin body, an-
other placed higher, above the musician’s head, and a stereo pair about 1m away from the
player in an X/Y con�guration. For the modeling, signals from the close ranged micro-
phone were used for the lower level of reverberation which improved the semi-automatic
audio-to-score alignment. The scores of all recorded excerpts were manually transcribed
into MusicXML 5 format using the MuseScore software 6. To compute audio-to-score
alignment, the audio �les were normalized to−0.1 dB and then input in the Tony soft-
ware (Mauch et al., 2015), where the onsets and o�sets played were recognized by a hid-
den Markov model designed by Mauch et al. over the pYin (Mauch and Dixon, 2014) al-
gorithm and manually corrected. This information about onsets and o�sets could then
be exported to a table and their corresponding pitches matched against the pitches from
score notes using an implementation of the Needleman–Wunsch algorithm for optimal
matching of sequences (Needleman and Wunsch, 1970), thus remedying discrepancies
between score and performance (e.g.: grace notes).

4Available at https://zenodo.org/record/5765676
5MusicXML 3.1 Speci�cation. The W3C Music Notation Community Group, 2017. URL:

https://www.w3.org/2017/12/musicxml31/.
6http://musescore.org
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Experimental procedures

Both predictive and perceptual analyses were conducted as a means of evaluation of
the proposed modeling methods. In the predictive analyses, note loudness values gen-
erated by some variation of our CSEMP are interpreted as predictions of target perfor-
mances extracted from our datasets, and measures of prediction error are used as metrics
of model quality. In the perceptual analyses, synthesized audio based on generated per-
formances as well as other baseline conditions are presented to listeners, and the quality
metrics are computed based on their feedback.

For the purpose of evaluating the method of parameterization of loudness signals, a pre-
dictive analysis was conducted using leave-one-out cross-validation on the pieces of the
ESV dataset in four di�erent performance generation conditions: without parameteri-
zation, with parameterization and nearest-neighbor predictions, with parameterization
and k-NN predictions, and inexpressively. For a clearer comparison with the results ob-
tained in bow motion predictions, the same analysis was performed on the EEP dataset
using 10-fold cross-validation on dataset phrases.

To observe how the proposed modeling approach fares against more conventional mod-
els that rely on note features rather than phrase features, we computed 41 note features
from score information and derived musicological inferences using the union of datasets
EEP and ESV, and employed the resulting feature vectors for predicting note loudness
values and local tempi using various algorithms as implemented in the Weka machine
learning software tool, version 3.8.3 (Frank et al., 2016).

The �nal predictive analysis explores whether more powerful machine-learning mod-
els powered by larger performance datasets bene�t from a phrase-level modeling ap-
proach with our phrase segmentation and parameterization methods. Here, the pre-
sented ANN model is trained to predict note loudness information from violin pieces
from the MusicNet dataset (Thickstun et al., 2017). This corpus of performances pro-
vides audio-to-score synchronization and facilitates the calculation of melodic and har-
monic features of the ANN model thanks to the abundance of chamber music pieces
with individually notated instrument parts, and was thus chosen for the task. To distin-
guish the main melody from harmony, violin parts were treated as melodies and all other
instruments, as harmony. Only the subset of pieces which contained a violin were used,
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Figure 4.2: Summary of perceptual evaluation participants information.

resulting in 122 pieces and a total of 874 minutes of recordings. All presented metrics
of prediction were computed using 10-fold cross-validation randomly sampled from the
dataset phrases.

For the perceptual analysis, note loudness values, note onset times, and note durations
were generated for all eight pieces of the ESV dataset using the nearest-neighbor imple-
mentation of the parameterized phrase-similarity model. This choice of implementa-
tion was motivated by the analysis of the �rst predictive experiment, as should become
clearer in the following section. For the generation of each performance, the training
set consisted of the remaining 7 pieces of the ESV dataset, as in a typical leave-one-out
approach. The generated loudness values were converted into MIDI velocities to con-
trol the dynamics of synthesized versions of the pieces. The syntheses were made using
Apple Logic Pro X’s EXS24 sampler7, with violin samples obtained from the Freesound
database (Akkermans et al., 2011). The sample set was chosen for its lack of vibrato, in
order to minimize the in�uence of this other expressive element in the evaluation of the
synthesized performances 8.

7https://www.apple.com/lae/logic-pro/
8Violin samples from user ldk1609 at freesound.org, licensed with Creative Commons v.1.0
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Three versions of each piece were synthesized for the evaluation, the only di�erence be-
ing the supplied velocity values and note onset times and durations, resulting in di�erent
dynamics and timing for each of them: one version used velocity and onset values de-
rived from the model suggestions as described above; a second version corresponds to
the expression of the performer in the recordings, as measured for usage in the training
set. The third and last version serves as baseline and scienti�c control, and uses the same
velocity for all notes, its value being the mean value used in the “human” version to min-
imize discrepancies in volume level, and its timing has no �uctuation, the tempo being
set to the mean tempo from the “human” version. Each of the three versions of the orig-
inal 8 pieces were manually divided into 3 excerpts of approximately 15s each and their
audio normalized (applying the same gain to all three versions of an excerpt to prevent
from modifying their relative dynamic range). Finally, the 8 most complete, melodic
sounding of those 24 excerpts were selected for evaluation.

The evaluation was conducted by means of an on-line survey. Participants were in-
structed to hear randomized pairs of audio samples from the synthesized pieces, always
consisting of two out the three existing versions of an excerpt. They were then presented
with two questions for which to choose between audio samples 1 or 2: “In terms of dy-
namics (the intensity of volume with which notes are expressed), select which audio
sample sounds most like a human performance to you.” and “Which performance did
you like best?”. Finally, participants were instructed to answer, from 1 to 5, “How clearly
do you perceive the distinction between the two audio samples?”. A space for free com-
ments was also included in each screen to encourage participants to share insights about
their thought–process.

A total of 20 people participated in the experiment. Recruitment was carried out by
personal invitation and each participant was assisted in accessing the web page contain-
ing the survey and its instructions using their own computers and audio equipment.
Each of them was asked to provide answers to 16 pairs of melodies as described above,
but early abandonment was allowed. This provided a total of 305 pairwise comparisons.
Figure 4.2 shows a breakdown of the pro�le of participants in terms of age and musical
training.

(https://creativecommons.org/licenses/by/1.0/).
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4.3 Results
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Figure 4.3: Distribution of mean absolute errors in predictions of loudness using ESV and EEP
datasets.

Figure 4.3 shows our predictive analysis for the purpose of validating the proposed pa-
rameterization method in the form of boxplots of mean absolute errors in predictions
of loudness measured on note level using the MIDI velocity scale. The left plot shows
aggregated errors across all 8 modeled pieces in the ESV dataset, whilst the right plot
presents the same metric for phrases in the EEP dataset. The baseline values measure
the mean absolute di�erence between the dynamics of each performed note and the
mean loudness of the reference performance, therefore, it represents the lowest possible
errors for a prediction with no dynamic variation. The second boxplot from the left
in each frame, labeled “NN, interpolated” are the result of applying a nearest-neighbor
prediction with the same feature adaptation process as described in chapter 3 for bow
velocity to the loudness signal, hence without using the parabolic parameterization of
the phrase contour function (Cp in the model). The enhanced method, as described
in this chapter, is applied to the other two measurements, the boxplots labeled “NN,
parameterized” using nearest-neighbor prediction and the rightmost ones using the 3
nearest neighboring phrases in the training set. The red lines indicate the median values
of each distribution.

The comparative analysis between note- and phrase-level modeling is summarized in ta-
ble 4.2. As an added reference, the best deadpan performance on this dataset measures
MAE of 18.02. The second and third columns indicate Pearson’s correlation and mean
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Algorithm r (34 feat.) MAE (34 feat.) MAE (41 feat.)
SVM 0.4557 15.44 14.11
ANN 0.3789 22.71 20.08
kNN 0.5910 13.17 12.57
Random Forest 0.7319 11.18 10.49
Phrase-Level kNN (ours) 0.2956 16.82 —

Table 4.2: Performance of note–level algorithms versus proposed phrase–level method on
EEP+ESV.

absolute errors obtained using only the input features related to melodic and rhythmic
content of a piece, thus semantically similar to the information used in the melodic sim-
ilarity calculation of our method. The rightmost column refers to errors measured after
modeling with all features available, thus including score annotations such as dynamic
markings, articulations, and slurs. The bottom row corresponds to the results of our
method using k = 3. More interpretable evidence on the pro�le of generated perfor-
mances is shown in the graph from �gure 4.4, which overlays the velocity values from
the reference performance of Edward Elgar’s Chanson de Matin, opus 15, no. 1, bars
2–28 by a real violinist against the predictions from our phrase-level approach and the
best-scoring note-level version of the above – achieved with a random forest algorithm.

0 10 20 30 40 50 60 70

Note Index

0

20

40

60

80

100

120

M
id

i 
V

e
lo

c
it
y
 (

1
-1

2
7

)

Comparison between velocity predictions

Ground Truth

Note-Level Prediction

Phrase-Level Prediction

Figure 4.4: Velocity predictions across notes in a violin piece vs. performed ground truth.

The e�ects of a larger training set over the phrase-level modeling in its ANN formula-
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Output coe�cient
Pearson’s r

(test set) (training set)
x2 0.2177 0.5222
x1 0.2375 0.7054
x0 0.2383 0.6818

Table 4.3: Correlation coe�cients for output features.

tion are presented in tables 4.3 and 4.4. Table 4.3 shows correlation coe�cients between
predictions and ground truth values for all model outputs, each of which is a coe�cient
of the polynomial curves approximating phrase loudness in the performances. Values
obtained for both training and test sets are informed for better discussion of the mod-
eling limitations. Table 4.4 provides a more concrete measure of predictive accuracy,
in terms of the mean RMS error in loudness values across all test set performances as
well as the reference values of the same quantity for a deadpan performance and for
the ground-truth values of output features, which correspond to the best-case scenario
using parabolic curve approximations. Three prediction examples which we found rep-
resentative can be seen in �gure 4.5.

Figure 4.5: Comparison of loudness values measured in performance, their ideal (ground-truth)
approximation, and model output for three phrases.

Lastly, in the perceptual analysis, a total of 305 pairs of melodies were compared by lis-
teners in terms of human-likeness and personal preference. The mean perceived dis-
tinction between pairs was 3.41± 0.13 (on a 1-5 scale, α = 0.05). Figure 4.6 shows the
results divided into the three possible pairs according to expressive character: (C1) choice
of human-based expression over “deadpan” baseline, (C2) human-based over modeled
expression, and (C3) modeled expression over deadpan. The top row includes responses
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Prediction type Error level (dB)
Deadpan performance 3.86
Ground-truth approximation 1.69
Model prediction 3.39

Table 4.4: RMS error in loudness levels prediction.

Comparison Question p-value

C1
Human-likeness 0.7500
Preference 0.8016

C2
Human-likeness 0.1440
Preference 0.1440

C3
Human-likeness 0.7500
Preference 0.8378

Table 4.5: Measured p-values for all perceptually evaluated comparisons.

from all participants. A sign-test with con�dence-level of 95% controlled for 5% false dis-
covery rate using the Benjamini-Hochberg method fails to reject the null hypothesis in
all three comparisons (p-values listed in table 4.5), thus indicating that none of the ver-
sions was perceived as signi�cantly more human-like nor preferred by users consistently,
This is unexpected particularly for the comparisons of the �rst column which don’t in-
volve the model. Results shown in the bottom row help to provide some insight about
the test setup by showing aggregate results of all comparison classes when considering
exclusively the responses given by musically active participants of the survey, here char-
acterized by the subset of people who reported practicing an instrument for at least one
weekly hour.

4.4 Discussion

Comparing the results shown in each frame from �gure 4.3, the variance of loudness sig-
nals is higher in the ESV dataset than in the EEP dataset. This re�ects the varied charac-
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Figure 4.6: Results of perceptual survey pairwise comparisons.

ter of piece excerpts which comprise the ESV dataset, which translate to a poorer predic-
tive ability of the phrase similarity model in this scenario. Still, the results show very simi-
lar error distributions between parameterized and interpolated (non-parameterized) im-
plementations on both cases, which con�rms that the characterization of phrase loud-
ness in terms of mean value, dynamic range, and parabolic contour is a proper model
design choice. Increasing the number of neighbors considered from one to three is ef-
fective at pruning out eccentric predictions as can be seen by the shorter tail of the distri-
butions, but has been observed to also reduce the overall dynamic range of the output,
making renditions a bit “dull”. In fact, this e�ect is expected for small datasets such as the
ones tested, since there ought to be very few examples of su�ciently similar melodies to
be selected as nearest neighbors. Consequently, in such conditions, employing a single
nearest neighbor is the most promising approach for a perceptually valid output, since
the most melodically-similar phrase represents the available data point most likely to
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have applicable expression data for a given target melody, and copying such data param-
eters from the same sample retains the coherence between di�erent expressive output
variables, an important trait when including timing information in the generated per-
formance. For this reason, and considering the success of the parabolic representation
as a parametric model of contour, the parameterized model with k = 1was used for the
synthesis of modeled performances for the perceptual evaluation.

Three of the four algorithms tested on note-level were able to outperform our phrase-
level model in terms of mean absolute errors in performance prediction, and all except
the note-level ANN exhibit some prediction success if compared to an inexpressive base-
line. The poor rank of our model is a logical outcome, since the mere fact of operating
on a note-level removes modeling restrictions; yet, the phrase-level model does not trail
by a large margin and even overcomes the ANN, which is likely a consequence of the
dataset size, that is much too small for satisfactory neural network training. These re-
sults are encouraging, since they indicate that the majority of the relevant information
for predicting expression present in the note features was retained and summarized in
the phrase-level form of the dataset.

Visually inspecting the velocity values predicted by the best-performing model, using
random forests, against our phrase-level predictions and ground truth values from a
recording of Edward Elgar’s Chanson de Matin (�g. 4.4), it can be seen that the note-
level model captures the oscillations in dynamics that happen between adjacent notes
whereas the phrase-level model predicts smooth transitions. This partially explains the
observed di�erence in performance, but works in favor of the phrase-level model in our
valuation, since, in the intended pedagogical application, quick transitions are of little
use as performance guidelines to students.

The predictive analysis over the larger MusicNet dataset highlight key strengths and lim-
itations of phrase-level performance modeling. The gap between training and test set
values for Pearson correlation coe�cients seen in table 4.3 can be interpreted as over�t-
ting, still, regularization attempts were not successful in increasing prediction accuracy
indicating we’ve hit an accuracy ceiling for the given performance information under
this representation. The deadpan-level (Ed) and ground-truth-level (Eg) errors in table
4.4 can be seen as lower and upper boundaries of accuracy, indicating that this mod-
eling approach o�ers a potential reduction in prediction error of up to Ed − Eg =
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2.17 dB. The 3.39 dB value obtained with our predictions implies an error reduction
of Ed − 3.39 = 0.47 dB compared to the deadpan baseline, which corresponds to
0.47/2.17 = 21.65% of the predicted potential. That is consistent with the correla-
tion coe�cient values and shows that the prediction of coe�cients translates well into
prediction of dynamics levels.

These results can be better interpreted if we compare them with the similar experiments
of the non-linear, and best-performing, implementations of the models by Cancino-
Chacón et al. (2017), also evaluated for their loudness prediction accuracy on a dataset
of symphonic performances. The authors report the coe�cient of determination (R2)
obtained for di�erent design con�gurations, with values ranging from 0.205 to 0.282,
which re�ects a maximum explained variance of 28.2%. This makes the 21.65% er-
ror reduction obtained with our model all the more impressive, because their system is
designed to parse and interpret the indications of dynamics present in musical scores,
whereas our proposal generates performance features based on note information alone.

Another limitation of the MusicNet dataset used for our evaluation is worth highlight-
ing: the provided symbolic music information provided (used in place of scores) makes
no di�erentiation between �rst and second violins in ensembles where more than one
voice for that instrument exists. This creates some distortions in our input feature set,
since the actual melodies become mingled with a counterpoint voice, potentially inter-
fering with the learning.

The prediction examples highlighted in �gure 4.5 illustrate some relevant conclusions:
It can be seen that most of the short-term variation in loudness levels occurs on note
boundaries due to note articulation, and in terms of perceived dynamics can be under-
stood as noise. The quadratic approximation (labeled ground-truth) provides a cleaner
and more intuitive visualization of the variation of loudness in a phrase, and in most
individually inspected cases represents it quite well. The leftmost example is an excep-
tion, as it shows a case in which the phrase boundaries chosen by the algorithm don’t
seem to match the performer’s choice, hence the silence during the phrase and the poor
results even in the proposed ground-truth approximation. In many observed cases, as
shown in the middle and rightmost graphs, the predicted curve shows robustness, espe-
cially with relation to thex2 andx1 coe�cients, since some variation in their predictions
doesn’t a�ect the character of the interpretation. It is reasonable to assume that despite
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the di�erence between ground-truth and predicted values in such cases, performances
executed according to instructions from the latter could be considered just as pleasing.

Regarding perceptual analysis results, typically (Katayose et al., 2012; Bresin and Friberg,
2013), one would expect a wide dominance of human-based renditions over inexpressive
ones, which was not veri�ed in the results of C1. The inclusion of such cases in the
survey was intended as a mechanism for validating the experimental setup, since the
corpus of existing results in this �eld has been based mostly on piano works, and, to our
knowledge, no similar setup has been investigated for violin pieces.

Ratings for the measure of perceived distinction between audio clips was generally high
across all comparisons. For C1, in particular, its mean value was 3.31 and standard error,
0.12 (on a scale of 1 – 5). This shows that participants were able to perceive di�erences in
the renditions, but still reached con�icting decisions. Re�ecting upon this fact and con-
trasting the melodies present in our dataset against pieces typically found in benchmark
datasets (e.g.: as used by Oore et al. (2018)) point to two main causes for participant dis-
agreements. First, the lack of some expressive features such as articulations, vibrato, and
timbre variations, which often work in conjunction with the modeled features, facili-
tating their interpretation. In particular, since loudness values for all synthesized pieces
were determined on a note-level, variations in attack-time were ignored. This can lead
to discrepancies between nominal note onset time and the perception of when a note
actually begins, changing the interpretation of timing variations. A second likely cause
for participant disagreement in C1 is the use of pieces written for an ensemble (namely
violin and piano) without the accompanying instruments, which removes the melodies
from their contexts making it harder for listeners to parse their structure.

This view is reinforced by some participant comments. One of them states, after declar-
ing preference for the deadpan rendering over the human-based one: “Little big ambigu-
ous; A is more flat and regular, but it kind of depends on the context whether this would
be appropriate or not.” A, in that case, being the deadpan performance. Another one
commented: “I prefer the dynamics in B and the time in A. It’s easy to distinguish them,
but no one sound more human than the other.”(sic). In this case, B was a human-based
rendering, and A, a deadpan one. Some comments can also be found which favor the
modeled rendering, e.g.: “I prefer the dynamics in A and the time fluctuation in B.” for a
comparison where A corresponds to the modeled rendering, and B, to the human-based
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rendering.

From the musicians’ results graph, it can be seen that the percentage of choices favoring
the deadpan renditions is smaller in this subset than in the full result set, which could
re�ect a higher ability among this group in interpreting the performances in the context
they were presented. Furthermore, the percentage of choices favoring the modeled per-
formance is larger for the musicians’ data than for the full set, which can suggest that,
moving past the limitations of the listening experience, the modeled expressive varia-
tions are aligned with real musicians’ expectations.

Despite these challenging conditions, the experiment con�rms that using only around
6 minutes of total reference audio time, our model was able to introduce high ranges
of expressive variations in the synthesized pieces which were consistently perceived as
di�erent from other renderings but not consistently rejected. The absence of a clear
tendency towards the human-based synthetic performance, however, prevents us from
stating stronger claims.

4.5 Conclusions

The phrase-similarity model has produced some convincing suggestions of expression,
at times worthy of praise by listeners in a blind setting, with considerably less train-
ing data than most state-of-the-art models and virtually no time expenditure on model
training thanks to the musically coherent approach of processing phrases rather than
isolated notes. For the desired pedagogical applications, the ability to produce musi-
cally valid expressive performances from few examples gives it versatility, allowing stu-
dents and teachers to select the most relevant reference recordings to make up a training
set, for instance for studying the style of a particular performer, or of a speci�c musical
genre. Additionally, the smoothness inherent in the curves output by our model makes
the expressive movements represented by them much easier to follow in real-time by a
student or performer.

We have been able to explore a little of the model’s creative potential during the 10th
International Workshop on Machine Learning and Music (MML2017), when we show-
cased a live performance based on generated dynamics suggestions. In this event, a tra-
ditional Puerto Rican song was performed on the violin as the musician followed vi-
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sual directions of dynamics generated by our phrase similarity model trained on a small
corpus of performances of the double violin concerto by Johann Sebastian Bach. The
software used to provide real-time feedback for the performer was an early version of
SkyNote, which will be the object of study in chapter 6.

The proposed automatic phrase segmentation algorithm was successful enough to pro-
mote a model that explains roughly 21% of the dynamic variance in pieces when given a
wider variety of samples, besides improving the sense of structure in generated perfor-
mances. However, its static nature also limits the improvements that can be made to our
model, negatively impacting the learning in cases exempli�ed by the leftmost phrase in
�gure 4.5. As we’ve seen in the evolution of piano-based CSEMP as well as automatic
composition systems discussed in chapter 2, as more and better-quality data and algo-
rithms become available, it also becomes more fruitful to incorporate the learning of
input features to the training data processing rather than imposing a certain structure
that destroys some information as it organizes the remainder.

Lastly, when contrasting the performance of phrase-level against note-level modeling,
our phrase-level approach was able to achieve comparable results despite the resulting
information compression that comes from summarizing note features in terms of phrase
similarity.



Chapter 5

Performance Modeling by Deep

Learning on Note Sequences

5.1 Introduction

In the previously presented models of performance, in order to ensure an emphasis on
the expressive variations that stem from musicians’ deliberate and long-term execution
plans – our primary interest, as presented in chapter 1 and highlighted via the conductor
analogy – our model designs actively manipulate the information presented to the core
learning algorithms, �ltering the inputs and placing restrictions in the outputs justi�ed
by musicological assumptions. The most notable of those manipulations is the summa-
rization of musical content into phrases, inducing the algorithms to learn patterns tied
to the musical structure of pieces, and which were therefore retained in the information
related to phrases.

The unfortunate consequence of these design strategies is that their methods of data
summarization are imposed rather than learned from the performance datasets. This,
combined with the static design of the algorithms with respect to the speci�c musical el-
ements of each piece meant that the proposed preprocessing of musical pieces for input
and output feature generation doesn’t always properly represent the music that origi-
nates it.

The best concrete example is the phrase segmentation algorithm itself, as presented on

61
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page 40. Even though our automatic solution using the LBDM is able to produce a
musically acceptable partition of the score, when paired with data from a speci�c per-
formance, such a representation may fail to capture the phrasing intentions of the per-
former, since, as famous violin teacher Leopold Auer put it, “no two artists phrase the
same passage in exactly the same manner” (Leopold Auer, 1920). These limitations can
also be observed with respect to the harmonic features of phrases as compiled for our
ANN model, listed on table 4.1. For instance, the estimation of chords, keys, modes,
and dissonance are all computed from the contrast between a given phrase and the en-
tire piece, which loses its meaning in the presence of key modulation, modal mixture,
or in pieces from di�erent periods or traditions that do not adhere to classical tonal har-
mony.

These data inconsistencies are worsened by the inability of the previously presented
learning algorithms to take the context of data samples into account. The patterns
learned by k-nearest neighbors or multi-layered perceptron models are always a function
of the information present in each individual data sample, in our case, a single phrase.
The hierarchical nature of musical phrasing, however, demands a broader view of piece
sections. The class of learning algorithms best suited for this comprises the Sequence
Models, developed primarily for properly parsing language in texts, and discussed in
sections 2.1 and 2.1 along with their applications to music.

This chapter presents an e�ort to develop a new model of performance which can ad-
dress the liabilities discussed above by means of deep-learning architectures which in-
corporate the context of input samples into the learned optimization functions. As we
mentioned in our review of deep-learning designs, these systems are marked by an ability
to simultaneously learn the target function and the most adequate input representation
for the task. Given this theoretical skill, we take the opportunity to investigate whether
models of musical performance built on score information using such techniques are
capable of learning optimal phrasing from the dataset itself on a note-level, without re-
sorting to previous processing as we had done, thus avoiding the pitfalls associated with
those �xed decisions.

With this broad objective in mind, the experiments described next pursue following
goals:
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• To assess whether the recent advances in language and sequence models are suited
as a design strategy for expressive performance modeling;

• To de�ne a system for encoding musical information that provides optimal re-
sults in the machine-learning task of our problem domain;

• To study the sensitivity of the produced outputs with respect to model and dataset
sizes;

• To o�er insight into the speci�c challenges of modeling violin performance and
the value of the proposed output features as descriptors of performance expres-
sion;

• To allow a comparison between the characteristics of expressive suggestions ob-
tained from note-based sequence models, and the previously proposed phrase-
based models.

5.2 Method
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Figure 5.1: Overview of the processing steps involved in the note-level sequence model of per-
formance.

The structure of our sequential model of performance is outlined in �gure 5.1. The
information in scores is translated into sequences of symbols from a machine-readable
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vocabulary by the sequence formatting module. These sequences are processed by a care-
fully designed recurrent neural network which generates sequences of note-level data on
the chosen expressive performance actions. During training, these sequences are con-
trasted against performance data extracted from reference audio recordings of the same
musical pieces, computing the loss function which feeds the neural network’s backprop-
agation algorithm. During operation, the outputs of the neural network can simply be
compiled as a new performance, be it for a synthesized rendition or analytical purposes.

Next, we provide further details about the most sensitive design choices in these mod-
ules.

Data encoding

Even though, owing to their representation learning capabilities, deep learning models
require less preprocessing of input data compared to traditional machine learning algo-
rithms, the encoding of musical scores into a sequence of pre-de�ned symbols is both
necessary and signi�cant to the system’s performance. Typically used languages for rep-
resenting musical compositions such as the MIDI �le format or MusicXML are not
yet suited to these tasks. This is due in part to their complex grammar, but also their
verbosity – neural network designs for language processing such as RNNs see best re-
sults with data sequences spanning roughly under 100 symbols. As a consequence, sys-
tems centered around learning musical languages adopt representations with a higher
information density. The encoding structure adopted by PerformanceRNN (Simon
and Oore, 2017) and shared by the Music Transformer (Huang et al., 2018) is an apt can-
didate for its similarity to MIDI, concision, and good results. This encoding includes
di�erent symbols for indicating note onsets or o�sets in each speci�c pitch, as well as
separate symbols which indicate the passage of a certain amount of time in milliseconds,
and a third set of symbols denoting note dynamics within a discrete range. This creates
a �nite vocabulary that fully represents the musical performances, which the neural net-
work learns to convert into a real-valued vector encoding the necessary information for
its task.

Our model uses an adaptation of the performanceRNN encoding that takes into con-
sideration that rhythmic and melodic note information are naturally independent, and
by virtue of that it is possible to facilitate the representation learning task of the neu-
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ral network. Instead of representing the passage of time by de�ning di�erent symbols
for quantized time advances, and representing note durations by separating onset and
o�set events, we instead limit the language vocabulary to a single type of event – note
onset – having di�erent symbols for each pitch within the well-tempered scale present
in the dataset. We then include the numerical features of those notes, namely the num-
ber of beats elapsed since the last event and the number of beats until that note’s o�set,
as extra dimensions concatenated with the embedding vector, that is, the real-valued
vector which is the learned representation of that language symbol. Figure 5.2 illus-
trates the process in question comparing it to a “typical encoding” in the style of Perfor-
manceRNN. Note velocity is not included because our encoding is not meant to repre-
sent performances, but scores without any expressive guidance. The extra feed-forward
layers in our design are aimed at unifying the representations with information shared
between both the learned pitch embedding and numeric rhythmic features.

Our encoding scheme has a few theoretical bene�ts over the PerformanceRNN design.
Total sequence length for representing a musical piece is reduced. The one-to-one corre-
spondence between input vectors and notes also simpli�es obtaining some crucial infor-
mation about notes, such as its duration, which in performanceRNN is spread across
many inputs. Additionally, our process eliminates the need to discretize the timing in-
formation, and the necessity of parsing grammar is also virtually eliminated, as any se-
quence with values within the proper domain is a well-formed musical piece. As a con-
sequence of the �nal reduction in vocabulary size, the number of network parameters in
this section is kept lower, which facilitates training and reduces memory requirements.

This decision of inducing the learning of separate representations for independent input
features also allows us to evaluate the impact of introducing some complex harmony-
related information in the model, as we will detail when discussing the model evalu-
ation. Finally, we should note that in the datasets that required so, this representation
was supplemented by an identi�cation of which musical instrument produces each note
in question, encoded in the form of a one-hot vector of possibilities and concatenated
with the rhythmic features.

Unlike many natural language processing models, the inputs and outputs of our system
do not share a format. Our model generates note-level information on performance
dynamics – either represented by MIDI velocity or loudness values, according to the
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dataset – and also articulations as variations of note durations and, lastly, performance
timing – represented by inter-onset interval ratio (IOIR), computed for each note n as
follows:

IOIRn =
onset seconds(n)− onset seconds(n− 1)

onset beats(n)− onset beats(n− 1)
(5.1)

All numeric features of the dataset are normalized so that they have zero mean and unity
variance within each piece, including the output features of the training set. This means
that, similar to the models presented in chapter 4, some features of the desired piece
performance should be de�ned prior to using the model, the most signi�cant of them
being mean loudness, dynamic range, and tempo.

Sequence preparation

encoded piece

input vector

…
1st segment

padding padding

2nd segment

context inputs main inputs

Figure 5.3: Diagram of the sliding window mechanism of input sequence partitioning.

Despite the sequence length compression achieved by our data encoding scheme, the
number of notes in each complete score from our corpi still far exceeds the maximum
amount manageable by sequence models within the memory and training time con-
straints of present-day computer architectures. The customary solution in natural lan-
guage processing models is to set a �xed sequence size and then process the input data in
batches of that size. In order to di�erentiate the real start and end of a sentence from the
starts and ends of batched segments, special start-of-sentence and end-of-sentence symbols
are typically included in the encoding language.
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Given the importance of smoothness and continuity in expressive performance features,
that approach raises concerns about the quality of generated outputs near the bound-
aries of batched segments, since the model is given no knowledge beyond those bound-
aries – a problem already observed in our phrase-level modeling approach.

Our proposal to prevent this issue is to replace the piece partition with a sliding win-
dow of input sequences, so that each segment includes extra inputs before and after the
target sequence for which the model should produce outputs. This slightly reduces the
e�ciency of the computation, since some inputs are seen more than once by the model,
but e�ectively gives it some context to guide the feature generation. In practice, the im-
plementation of this mechanism is achieved simply by discarding the outputs produced
by the model in the extremities of each sequence, both during training, excluding them
from the loss function calculation, and during runtime. The division of each piece into
smaller sequences must also account for the sliding window, including the proper over-
laps and padding according to the context size con�gurations, as seen in �gure 5.3.

Neural network design

The structure of the neural network powering our performance model is shown in �g-
ure 5.4. The input layers follow the design explained for our input encoding. A bidirec-
tional gated recurrent unit (GRU) processes the whole input sequence, generating an
encoded version of it. The output of this encoder portion of the network is then used in
a decoder section. The decoder generates an output vector per sequence step, combining
four information sources in a feed-forward network: the outputs generated in the previ-
ous step, the encoded input from the current step, the encoded score, and a state vector.
The encoded score is not entirely sent to the feed-forward network, but summarized in
a context vector via the self-attention mechanism, as implemented for the transformer
model (Vaswani et al., 2017). The state vector is produced by another GRU, and takes
into account the previous outputs as well as the context vector.

The training process was carried out using 90% of the available data in each dataset, of
which 10% was also reserved as a validation set for �ne-tuning network hyperparameters.
Regularization was achieved interposing layer normalization and dropout layers in all
network sections. Backpropagation was optimized with the Adam algorithm (Kingma
and Ba, 2014). A teacher forcing strategy was also implemented for training the decoder:
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Figure 5.4: Architecture of the sequence model of performance.

for a fraction of the decoder training steps – 50% in our implementation – the previ-
ously generated output is replaced in the network by its ground-truth values, as if the
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model had produced an optimal prediction. This process improves network weight op-
timization in recurrent networks.

Evaluation datasets

Several experiments were conducted with the purpose of validating the design decisions
and assessing the quality of performances generated with our sequence model. The
broad range of research questions we hoped to address and the speci�cities of each avail-
able dataset meant that a combination of them was necessary to cover all experiments.

The MusicNet dataset (Thickstun et al., 2017), which was previously used for evaluat-
ing of our phrase-level CSEMP as described in chapter 4, remains a good source also for
training the proposed sequence models on performance timing, given that it contains
not only the onset time and duration from notes of all instruments aligned with each
recording, but also their original, score-mandated, values, measured in beats. Two sub-
sets of MusicNet were prepared for model training. One of them consists of all pieces
which contain a violin in the ensemble – the same set employed in chapter 4. The other
one is composed only of all recordings of violin sonatas by Ludwig van Beethoven that
were available, separated by movements. Since MusicNet doesn’t include the full scores
of its pieces, we have augmented this second dataset by including important extra infor-
mation about the compositions easily found in the scores but absent in MusicNet: time
signatures and measure separations.

Lastly, we also employ the MAESTRO dataset (Hawthorne et al., 2019), version 1.0.0 1

for its large size and reliable dynamics information via velocity values. Table 5.1 high-
lights the di�erences between these datasets.

As a resource for arti�cially increasing the number of training samples, all datasets were
augmented by including transpositions of all pieces up to 3 semitones below and above
their original pitches, a technique borrowed from the Music Transformer model (Huang
et al., 2018).

The code and instructions for building models, augmenting and processing the datasets,
and reproducing the results below can be found, at the time of publication, in the au-

1available at https://magenta.tensor�ow.org/datasets/maestro#v100
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Dataset Ensemble Recs. Notes Features
MusicNet Violin (V) various (chamber) 123 3.6M I L ND NO P PD PO

Beethoven Sonatas (B) piano + violin 21 600k I L M ND NO P PD PO

MAESTRO (M) piano 1184 6.2M P PD PO V

I: instrument, L: ensemble loudness, M: measures, ND: note duration (score), NO: note onset (score),
P: pitch, PD: note duration (performance), PO: note onset (performance), V: velocity.

Table 5.1: Details of the datasets used for evaluation.

thor’s Github page 2.

5.3 Results

The �rst step in the analysis concerns itself with the in�uence of input sequence length
in the overall accuracy of models. Figure 5.5 shows the coe�cients of determination
(R2) obtained in a velocity prediction test using the validation set from dataset V for
various con�gurations of sequence length. The best results were obtained for lengths
ranging between 16 and 32 inputs, meaning, with our representation, 16 to 32 musical
notes. In all tests, the network was con�gured with a base hidden vector size ofh = 256

bits, 2 layers per GRU section, and dropout rate of 4%.
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Figure 5.5: In�uence of sequence length in model accuracy for dataset M.

Next, we move on to test the e�cacy of our sliding window design. Table 5.2 pro-
vides the summary of velocity prediction accuracy tests using the same con�gurations as

2https://github.com/fabiozeh/deep-expression
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above. The results con�rm a slight improvement over the baseline con�gurations with
no note overlaps (i.e: equal output size and sequence length values). The same e�ect
occurs for timing predictions using dataset V, as indicated in table 5.3. In this case, best
results occur for slightly shorter sequences.

Sequence Length Output (Hop) Size R2 (%)
32 32 46.26
16 16 45.25
48 32 45.14
32 16 46.44
32 30 46.47
32 1 46.50

Table 5.2: Velocity prediction results from dataset M with various windowing con�gurations.

Sequence Length Output (Hop) Size
R2 (%)

Timing Articulation Loudness
128 128 77.75 61.07 -16.32
32 16 79.02 60.60 4.36
16 16 77.94 55.50 6.67
16 8 78.75 62.84 2.32
8 8 78.58 59.58 9.95
4 1 79.21 54.65 7.80

Table 5.3: Prediction results from dataset V with various windowing con�gurations.

Using dataset B we were able to analyze the in�uence of having a semantically complex
input feature in model accuracy. Table 5.4 compares the coe�cients of determination
for all predicted EPAs using simple note descriptions and including a metric strength
feature computed according to each note’s position within the measure. Though pre-
diction accuracy for inter-onset intervals saw improvement with the inclusion of metric
strength information, the same was not true for duration predictions. Moreover, the
negative e�ect of having fewer training examples in dataset B than in dataset V far out-
weighs the bene�ts of this feature.
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Input Feature Set
R2 (%)

Timing Articulation Loudness
Basic Note Description 51.30 66.65 -20.78
Above + Metric Strength 54.62 59.88 -18.97

Table 5.4: Prediction results under di�erent input feature sets.

Finally, we focus on achieving optimal model con�guration to put it into perspective
against similar research e�orts. Figure 5.6 reports prediction accuracy values with vari-
ous network size con�gurations on dataset M, used for piano key velocity predictions.
The horizontal axis corresponds to number of network parameters, and shows the ex-
pected trend of better performance for larger networks, up to a saturation point. All
tests were run with a sequence length of 32 notes, and a sliding window with a hop size
of 16 notes, resulting in 8 context notes at the start and end of each sequence. The same
exploration was reproduced on dataset V, and a choice of con�guration was made that
provided the best combined results of all three output features. The accuracies obtained
by the chosen con�gurations on their corresponding test sets are compared to other rel-
evant models in table 5.5.
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Figure 5.6: In�uence of network size in model accuracy for dataset M.
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Model Ensemble Notes Samples∗ Feature R2 (%)
RNBM† orchestra ? 53.8k Loudness 28.2

VirtuosoNet‡ piano 3.5M 3.5M
Velocity 46.8
Timing 25.3
Articulation 31.2

Ours (phrase-level) various 3.6M 15.6k Loudness 21.6
Ours (sequence) piano 6.2M 6.2M Velocity 47.2

Ours (sequence) various 3.6M 3.6M
Loudness 3.4
Timing 52.7
Articulation 59.9

∗ Number of data samples after preprocessing.
† (Cancino-Chacón et al., 2017)
† (Jeong et al., 2019a)

Table 5.5: Expressive feature prediction results across several models.

5.4 Discussion

The analysis of generated EPA features as performance predictions reveals that the struc-
tures learned by the neural network do generalize to pieces outside the training set. The
measured accuracy in predictions either approaches or surpasses state-of-the-art models
across all features except ensemble loudness, and it does so without needing information
on expressive score markings – a unique trait among recent approaches.

On the low R2 from loudness predictions, it should be noted that, unlike the RCO/-
Symphonic dataset used for evaluating the RNBM model, listed in table 5.5, the per-
formances in datasets V and B were recorded in various circumstances, thus having
noticeable di�erences in audio quality. Although predictions were attempted for nor-
malized features, which attenuate such variations, di�erences in compression levels re-
sulting from speci�c recording conditions could decouple measured loudness from per-
formance dynamics even further, leading to inconsistent training examples that would
prevent proper optimization. Nevertheless, the higher accuracy obtained by our phrase-
level model in the same feature of this dataset supports the design choice of summarizing
ensemble scores to facilitate network training – a strategy that was also adopted in the



5.4. discussion 75

RNBM model.

The in�uence of sequence length in prediction accuracy, seen in �gure 5.5, reveals im-
provement as sequences grow and notes are processed in context, but model quality
quickly degrades beyond 32 notes per sequence. This degradation is expected beyond
a certain point in all applications of sequence models, even in modern implementa-
tions, due to the vanishing gradients problem (Hochreiter, 1998). A length of 32 sym-
bols, however, is still a modest number for GRUs, and the loss of accuracy beyond
this point reinforces our belief that the expressive content of performances is best ob-
served on a phrase-level, typically spanning one to four bars, and consistent with the
best-performing lengths observed in training. In fact, a length of 32 symbols is enough
to encircle a typical phrase spanning one to two bars and its surrounding notes, inform-
ing the model about a few elements of the context in each phrase. Combining this with
our sliding window system is a very logical decision to mitigate the issues faced in our
phrase-level model caused by arbitrary phrase separations.

Sequence models in their current form are still unable to process an entire piece at this
granularity level. This also presents itself as an issue in text generation tasks, where
model outputs struggle to maintain coherence over several paragraphs. VirtuosoNet
tries to work around this limitation learning intermediate representations for a hier-
archical architecture, but cannot achieve much lower prediction error levels. There is
evidence that this hierarchical treatment improves performances perceptually, though
while the improved sensation of quality is not properly quanti�ed, it is di�cult to in-
corporate their bene�ts to the training algorithms for taking them further.

The inclusion of complex input features attempted with the training of dataset B demon-
strates that the preference for high quantity, raw data over a smaller, preprocessed dataset
when training deep-learning models also proves true in the domain of music perfor-
mance.

Similarly, the exploration of various network sizes con�rms that our problem domain,
just like deep-learning models in general (Bengio et al., 2021), produces more accurate
models with increasing network sizes, particularly in depth. The results show, how-
ever, that a limit is reached according to our dataset size, beyond which the model’s
ability to generalize stops increasing. Unlike datasets of other �elds, such as CIFAR-
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10 (Krizhevsky, 2009), in which one knows that the training set samples contain enough
information to properly classify the entire test set, it is impossible to map all the in�u-
ences and thought processes that lead a musician to perform in a given way. Moreover,
our training examples represent only a small fraction of the musical repertoire, even if
restricted to the western classical canon.

Taking these models forward likely goes through the adoption of techniques from sta-
tistical modeling, as most similar works have proposed. This type of treatment can ele-
gantly incorporate the many possible variations in expression stemming from musicians’
creativity, which place an upper bound on the accuracy of deterministic mappings as we
have pursued. We still believe that applying deterministic methods is an opportunity
to test where this upper bound lies, and indeed we have observed that high accuracy
in EPA prediction can be achieved even without information from score markings re-
garding expression, such as dynamics and articulation annotations. Ignoring this type
of score markings was a deliberate decision, because we were interested in producing
models which can induce expressive variation in the absence of directions, which is of-
ten necessary for musicians learning from lead sheets, for instance. Therefore we didn’t
want the absence of expressive markings to be confused for an indication to play in a
certain (monotonous) way. Still, using datasets that can di�erentiate when expressive
markings are available or not is a known possibility for improvement.



Chapter 6

Technology-Enhanced

Expressive Performance

Practice

6.1 Introduction

This chapter describes the pilot evaluation of a technology-enhanced setting for the
practice of expressive performance, implemented on top of the SkyNote software for
violin learning, which was developed as part of the European project TELMI (Ramirez
et al., 2018).

In the proposed setting, the practicing performer is equipped with a computer inter-
faced with an ambient microphone. Using the software, they can view the music score
in MusicXML and rehearse in either of two modes: free or guided performance. In both
cases, the software analyses all recorded audio from the microphone, providing visual
feedback about the performance. In free performance mode, this feedback is provided
post-hoc; there is no interference from the software during play. Guided performance
mode, however, is designed to allow the musician to play along with a reference record-
ing while receiving real-time visual feedback about the expressive quality of both the
reference, and their own interpretation.

The concept of this scenario is an attempt to use technology to �nd a middle ground

77
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between pedagogical techniques typically employed in the teaching of musical expres-
sion, previously discussed in chapters 1 and 2. Guided practice as proposed has potential
to provide the precision of auditory modeling with the clarity of technical instructions.
The combined and consistent application of a recorded reference supported by feature-
related visual aid addresses some of the reported shortcomings of those teaching meth-
ods, since the visual cues indicate what the student should listen for, and the impact of
speci�c playing techniques can be heard, seen, and contrasted against a target.

As for the origin of reference performances for guided practice, there can be many sources.
The most logical and practical one can be recording one’s music tutor, if the option ex-
ists. Commercial recordings are a viable alternative, provided that the parts to perform
are prominent and clearly audible. A third option worth highlighting is the application
of a CSEMP, crafted in line with the conclusions previously stated in this thesis. If we
extend the abstraction, we can apply the CSEMP model by Kirke and Miranda (2009) to
the whole scenario and consider the human-computer system. As the musician practices
to the generated reference, they can adapt their own performance by re�ecting upon the
contrast between their expressive choices and the generated ones, e�ectively assuming
the role of the adaptation process module. More than teaching students to play in a
speci�ed way, this process can be the catalyst of a broadening in their musicality.

The goals of the evaluation described next are one step behind the use of modelled per-
formances, though. We are primarily interested in exploring the responses of musicians
with various pro�les and understanding how each can bene�t from a system such as this,
particularly with regard to the strengths and weaknesses of the proposed learning sce-
nario in terms of the proposed software features, their technical implementation, and
the impact of this pedagogical approach. To that end we have conducted a small-scale
pilot study where violinists of varied pro�ciency levels and backgrounds are asked to
practice imitating a performance to the best of their ability, either having only score
and audio as tools, or having the support of our software. Later, these participants are
queried about their perception of the task, and their impressions on the software. We
believe that this method is ideal for collecting qualitative feedback and creative sugges-
tions because the proposal is concrete and testable, even though its implementation is
in an early stage.

In a nutshell, the goals of this experiment were the following:
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• To propose and prototype a technology-enhanced platform and method for mu-
sic expression learning and practice consisting of visually and aurally assisted im-
itation exercises;

• To investigate how musicians of various pro�les respond to this scenario, and
how it may bene�t each one of them;

• To evaluate whether the technical solutions for audio-to-score alignment, intona-
tion and dynamics recognition, and dynamic tempo adjustments were properly
chosen and implemented in the software and well-received by users;

• To collect user responses and views on the performance feedback tools and visu-
alizations provided for the exercises in the software prototype;

• To gather evidence for a wider debate about the utility and e�ectiveness of technology-
enhanced methods for expressive performance teaching.

6.2 Tools development

We detail, for the sake of clarity and reproducibility, the features that were added to the
SkyNote software, and how they were programmed. In its original concept, SkyNote
was intended as a violin practice tool that could provide automatic feedback on techni-
cal aspects of performance using audio and motion capture devices. As such, the exer-
cises designed for it were essentially about violin technique, intended to be played with
metronome, and not particularly musical. Figure 6.1 shows the score for one of these
exercises, which was accompanied by instructions which read:

In this exercise you will vary your contact point while keeping your bow
weight, tilt and speed constant.

Notes in standard notation are played near the bridge and notes notated
with an “X” are played near the fingerboard.

Each bar is played with one bow. Play this exercise on the A string with your
3rd finger.
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Figure 6.1: Example of exercise from SkyNote’s original repertoire.

Figure 6.2: Original score and piano roll visualizations from SkyNote.

Naturally, monitoring the practice of expression in performance has very di�erent tech-
nical requirements. Still, we identi�ed the possibility of developing a platform for that
goal by repurposing the existing score and piano roll visualizations, shown in �gure 6.2
and relying on the pitch and volume recognitions obtained via audio processing. To
complete the technical requirements for the two desired modes of practice – free and
guided performance – it was necessary to solve two technical issues related to abandon-
ing the use of a metronome: audio-to-score alignment of a free performance, and mid-
performance tempo changes, or “dynamic tempo”, for playing along a reference.
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Figure 6.3: Structure of the audio-to-score alignment algorithm.

Audio-to-score alignment

Our analysis of music performance must begin with the association between segments
of the recording and the score. Since the original SkyNote exercises required following
a metronome, that association was purely arithmetic, as each note was expected to be
found at speci�c recording times. In an expressive recording, the tempo and timing
variations require a more sophisticated logical mapping. Even though real-time score
following systems can be developed with good accuracy (Cont, 2008; Nakamura et al.,
2013), the planned use cases for this study allow us to opt for a simpler solution.

The implemented audio-to-score alignment algorithm is represented by the block di-
agram of �gure 6.3. Every recording in free performance mode is subjected to a post-
hoc analysis by this algorithm, resulting in mapped onset and o�set times for every per-
formed note, and allowing the system to provide the same feedback on note correction
and intonation as with the metronome-based exercises, visible in �gure 6.2.

The algorithm works by comparing an ideal pitch curve for a steady-tempo performance
with the fundamental frequency (f0) estimate extracted from the performance using
the analysis algorithm proposed by Serra and Smith (1990). Using dynamic time warp-
ing, the optimal alignment between the two curves is found, indicating the best corre-
spondence between score and performance. Robustness has been observed to improve
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with the calibration of a few parameters: pitches are considered equal if their frequency
lie within 50 cents of one another; pitches which di�er by perfect octaves are also consid-
ered matching; warping penalties are set at the same value for skipping samples – indica-
tive of inconsistent tempo – and for pitch mismatches during rests, and four times as
much for other pitch mismatches – indicative of mistakes, ornamentation, or incorrect
pitch estimation. Figure 6.4 shows an example of alignment obtained with this method.
Each grey lines shows the resulting mapped onset for one score note.

Figure 6.4: Audio-to-score alignment example.

Dynamic tempo changes

For real-time accompaniment of a reference performance, as desired for a guided perfor-
mance practice, besides knowing the correct note onset and o�set instants in a record-
ing, the tempo at every instant must also be known. This a�ects many things, from the
correct overlaying of reference and real-time graphs to the length of notes drawn in pi-
ano roll view. Our solution to this issue assumes that changes in tempo in a performance
occur as smoothly as possible while still ensuring that the onset times detected with
DTW are correct. This is accomplished by constructing a transformation from ideal,
steady-tempo time and actual performance time as a monotonic piecewise cubic spline
interpolation, using the method by Fritsch and Carlson (1980). The graph in �gure 6.5
shows an example of this function for a section of a performance of the piece “Manhã de
Carnaval” in which some tempo variation occurs. The Y-axis shows time in seconds as
expected if the song were played with metronome, whilst the X-axis shows real record-
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ing time. Deviations from the diagonal are caused by expressive variations. Orange dots
represent the moments when note onsets happen, which were used as knots for the in-
terpolation algorithm. The graph shows that the interpolation is indeed smooth and
monotonic – only moving forward in time – and passes through all designated points.
This transformation also allows us to introduce a “dynamic metronome” for guided per-
formance practice – this feature can show a pulsating light and play click sounds on beats
synchronously with a reference performance. This is equivalent to having a metronome
which varies its tempo in real-time to follow a musician.

Figure 6.5: Example of dynamic tempo mapping function.

Besides these main additions, extra attention was given to the calibration and display of
input microphone loudness values for its importance as visual feedback on dynamics.
We have moved from a measurement in RMS signal energy to the LKFS scale introduced
by the EBU R 128 standard for its close relationship to loudness perception, and we have
improved its visibility when shown next to the score.

With the solution of these technical necessities, the resources available for performance
practice in the software are:

• Performance report indicating wrong intonations and skipped notes in metronome-
free recordings;

• Reference performance playback with dynamic metronome and score following,
either in conventional score view, or piano roll view;
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• Loudness graph visualization over the score;

• Overlayed graphs for pitch and loudness between reference and current perfor-
mances in piano roll view.

6.3 Evaluation method

Self-evaluation

Imitation recording

Practice to a reference 
with/without SkyNote

Experiment 
presentation

Self-evaluation

SkyNote
questionnaire

4x

Pre-imitation recording

Figure 6.6: Structure of the experiment on expressive performance practice.

Participants of the study were instructed to ful�ll a sequence of tasks structured as shown
in the diagram of �gure 6.6. After receiving an initial explanation followed by the col-
lection of explicit participation consent and personal information, the musicians had to
go through four rounds of a performance imitation exercise, in which their goal was to
practice copying the expression of a reference performance of a given piece excerpt. The
steps of each round of the exercise were the following:

Pre-imitation recording: the score to one of the four pieces, chosen randomly, is
shown to the musician, and they are given up to 10 minutes to familiarize themselves
with it. Once satis�ed, the participant records their own interpretation of the piece.
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The pieces selected for the exercise were chosen for having clear melodic lines and being
short and technically simple. The scores are included in appendix A.

Self-evaluation: The participant is instructed to grade their previous performance in
several criteria using a 7-point Likert scale from “low” (1) to “high” (7). The criteria
are: “performance quality”, “technical competence”, “musicality”, “intonation/note ac-
curacy”, “rhythmic accuracy”, “tone quality”, “dynamic control”, “quality of articula-
tion”, and “room for improvement”. The criteria list is deliberately extensive to provoke
longer and deeper re�ection.

Practice: In this step, the participant is given access to the reference recording they are
supposed to imitate. For 2 of the 4 pieces, the imitation practice must be done only
aurally, whereas for the remaining 2 pieces, the participant is instructed on how to use
SkyNote for this purpose. The choice of which pieces should be imitated in each condi-
tion is randomized, but consecutive exercises always alternate the condition (imitation
without SkyNote followed by imitation with SkyNote, and vice-versa). Before the �rst
contact with the software, the participant is given an explanation on how to operate it
by the accompanying researcher. Total practice time for each piece is again limited to 10
minutes, or whenever the musician is satis�ed. Only one reference recording was used
for each piece, regardless of the practice condition; however, the recordings used for
pieces “Twinkle Twinkle Little Star” and “Manhã de Carnaval” featured only the violin,
whereas “Frère Jacques” and “Greensleeves” had accompanying instruments.

Imitation recording: The musician records an imitation of the reference performance
under the same conditions as the previous recording. It is important to note that no
feedback from SkyNote or any other means are available at this point – the imitation is
done by memory alone.

2nd self-evaluation: Another self-evaluation form, analogous to the previous, is pre-
sented. In addition to the previous criteria, participants are also inquired on: “di�erence
from previous recording”, “e�ciency of your practice”, “mental e�ort required for this
exercise”, and “physical e�ort required for this exercise”. They are also encouraged to
provide written comments justifying their evaluation.

After the completion of the imitation exercises, a �nal survey about SkyNote as a perfor-
mance practice tool was conducted. All written explanations, questionnaires, and ran-
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domizations were programmed as a web page to provide a consistent experience among
participants.

6.4 Results and discussion

Six violinists took part in the system evaluation. Their background and experience ranged
from beginner to professional, giving us insights on the perception of our setup from
various perspectives. Table 6.1 serves as a summary of their pro�les.

Participant Years Playing/ Primary Musical Plays Practices
Taking Lessons Genre Activity Reading∗ Expression †

P1 12/2 Classical Amateur • • • • ◦ • ◦ ◦ ◦ ◦
P2 7/6 Traditional Amateur • • ◦ ◦ ◦ • • ◦ ◦ ◦
P3 5/2 Pop Amateur • • • ◦ ◦ • • ◦ ◦ ◦
P4 3/3 Traditional Amateur • • • ◦ ◦ • • • ◦ ◦
P5 20/12 Classical Professional • • • • • • • • • ◦
P6 10/10 Classical Amateur • • • ◦ ◦ • ◦ ◦ ◦ ◦
∗ Answer to question “How often do you play reading from a score?”.
† Answer to question “How often do you practice musical expression?”.

Table 6.1: Pro�les of SkyNote evaluation participants.

A few correlations can be pointed out in the data from table 6.1. It is apparent that the
emphasis on scores as the main medium for recording musical compositions in the clas-
sical repertoire leads musicians from that tradition to rely on reading more often while
playing. Another relevant fact is that the participant who claims to practice musical
expression the most is the only professional musician in the group. Finally, it is worth
mentioning that the number of years of experience and study have proven to be good
indicators of how easily each musician was able to complete the required tasks. Partic-
ipants P2, P5, and P6 had virtually no di�culty learning the necessary melodies, and
were able to approximate the interpretations of the references after practicing. P1, P3,
and P4, on the other hand, had some degree of di�culty playing correctly or memoriz-
ing the melodies well enough to be able to fully focus on expression in the short time
that was given, especially P4.
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Although the number of participants is insu�cient for a fully quantitative analysis,
some aggregate responses of the self-evaluations help us better interpret their experi-
ences and comments.

Mental e�ort

Several answers and remarks by the participants indicate that the imitation exercise was,
at times, cognitively taxing:

“Following the visual cues was very di�cult as there are many. I can just
concentrate in one. Either pitch curve (this one is very useful to follow
timing), dynamics or score.”

P6, after practicing “Manhã de Carnaval” using SkyNote

We also observed that the initial practice time was often not enough for players to mem-
orize the themes, forcing them to read from the score during their attempts to imitate
the reference recording. Some participants also realized that this was hindering their
performance:

“This song was harder for me because I haven’t memorized it, I kept read-
ing while playing and that does not work for me.”

P4, after practicing “Greensleeves” using SkyNote (translated)

The ratings attributed to the item “mental e�ort required for this exercise” in the self-
evaluation questionnaire (�g. 6.7) re�ect these observations. In the rounds that in-
cluded use of the software, the mean rating was higher than the in the remainder by a
small margin, possibly a consequence of the excess of information and the learning pro-
cess of the software itself. A positive observation, though, is that ratings for the fourth
and last round of the exercise were, on average, lower than for the �rst, signaling a quick
learning curve and even o�setting e�ects from fatigue, which were also mentioned:

“I felt tired from the mental e�ort from the previous piece.”
P4, after the third round (translated)
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(low) 1 2 3 4 5 6
(high) 7

Twinkle Twinkle Little Star
Manhã de Carnaval

Greensleeves
Frère Jacques

Without SkyNote
With SkyNote

4th round
1st round

All participants

Responses to question: "mental effort required for this exercise" (mean values)

Figure 6.7: Breakdown of reported mental e�ort for the imitation exercise.

We conclude from these observations that reducing the number of simultaneous cogni-
tive stimuli is important for e�ective use of visual feedback in music performance prac-
tice. Alternatives to achieve this include requiring the selection to visualize a single ex-
pressive feature, or a summary of features that represents them in a natural way, as with
the interfaces proposed by Dixon et al. (2002) and Sadakata et al. (2008). An additional
measure that could be encouraged is ensuring that real-time guided practice is proposed
only for pieces that the student has fully committed to memory.

Performance context

Participants have also reported it to be easier to imitate the accompanied performances
than the solo violin ones:

“It was more comfortable to practice with more instruments.”
P3, after practicing “Greensleeves” using SkyNote (translated)

“I found this one easier. I think because it is a “real” performance with
accompaniment. There is a clear �ow and intention. Even if I can’t re-
member details I get the “intention” of the performance which allows me
to perform �uently without thinking much on the details.”

P6, after practicing “Greensleeves” without SkyNote
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In addition to the comments, the mean reported mental e�ort ratings for both accom-
panied pieces were slightly lower than for unaccompanied pieces, as shown in �gure 6.7.
As mentioned earlier, though, the quantitative observations are limited in their reliabil-
ity due to the small number of participants.

Although very logical in nature, higher clarity of expression in ensembles than in solo
performances is not an entirely obvious conclusion to be drawn a priori, but taking this
e�ect into account can positively a�ect performance teaching even in a more traditional
setup. It is interesting to note that this observation coincides with our hypotheses for
participants’ di�culties in ranking our synthesized performances of solo violin melodies
in the experiment presented in chapter 4.

Perceptions and learning

Participants’ performances during the imitation practice were markedly distinct from
their original renditions. On some instances, particularly with more experienced players,
this was simply a consequence of their di�erent interpretations of the pieces, but there
were also cases, especially during the �rst round, in which the players’ original recordings
lacked expressive intention, either caused by distraction from reading the score or an
absent-minded attitude while performing.

“Simply listening to the recording made me feel the tempo better and relax
the wrist, like when a teacher shows you how to play a piece.”

P4, after the �rst round

Many more elements in�uenced the self-evaluation ratings given by participants. Some
expressed a distaste for the references they were asked to imitate, which impacted their
motivation. Di�culty to memorize the details of the reference interpretation was a fre-
quent complaint:

“I can listen and detect many features, but I have di�culties trying to re-
member them.” P6, after the �rst round
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With all these elements in mind, we can better interpret the mean ratings in responses
by participants, presented in �gure 6.8. When asked to rate the quality of their perfor-
mances before and after the imitation exercise, participants did not report higher quality
for the later recording, though they were aware of the di�erences between them. Results
from the rounds using feedback from SkyNote were very similar to the rounds without
it. The small di�erences observed for practice e�ciency and perception of room for
improvement are consistent with our vision that SkyNote is successful in making mu-
sicians more aware of the expressive possibilities in their performance, but the short ex-
perience with the software was insu�cient to help them incorporate such techniques in
their playing. We would expect, therefore, that these di�erences be con�rmed if testing
were conducted in larger groups.

(low) 1 2 3 4 5 6
(high) 7

"Performance quality" before imitation

"Performance quality" after imitation

Perceived difference between recordings

"Efficiency of your practice"

"Room for improvement" after imitation

Mean responses to questions on exercises in each condition

without SkyNote
with SkyNote

Figure 6.8: Contrasts between survey responses when practicing with or without the software.

Given all factors discussed, we may argue that the imitation exercise as it was realized,
despite its advantage of being a very tangible task, can also detract from the long-term
learning experience that would be possible from the mere exposure to reference perfor-
mances.

It was possible to notice that while novice players would pay close attention to the soft-
ware feedback for cues that could help them parse the expression on reference perfor-
mances, experienced players would often do the opposite, actively looking away to put
more focus on their listening skills. This illustrates how the inclusion of new tools repre-
sents a disruption in the study process that experienced players have already established,
and their adoption, if deemed useful by them, would follow a di�erent process than for
novice players. In accordance with this reasoning, P5, the professional player, remarks:
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“I believe it would be good to test the program with children or young-
sters beginning violin studies to know if it is useful for them, to discover
whether it really helps the study of the violin in this level.”

P5 (translated)

Opinions on SkyNote

Feedback from participants helped us reach a deeper understanding about the quality of
SkyNote’s design in terms of two main aspects: its accuracy – whether the information
conveyed is correct and appropriate – and its acceptance – whether musicians are stim-
ulated to use it and �nd value in its adoption. The responses to the post-experiment sur-
vey are summarized by �gure 6.9. Ratings were predominantly positive in all respects,
but a highlight is that mean ratings were higher for questions related to interest and
long-term use of the system (e.g: “To what degree was SkyNote something you would
use again?”, “To what degree was SkyNote something you would recommend?”) than
for those related to its immediate impact in the proposed task (e.g.: “To what degree did
SkyNote improve your performance?”).

...help you learn more quickly?

...improve your performance?

...make practicing easier?

...do what you wanted it to do?

To what degree did SkyNote...

(very little
) 1 2 3 4 5 6

(very much) 7

...useful?
...easy to use?

...accurate?
...something you would use again?

...something you would recommend?
To what degree was SkyNote...

Aggregate responses to final survey

Figure 6.9: Distributions of answers from the survey on SkyNote.

Looking deeper into the comments of participants who gave the lowest ratings reveals
the issues they encountered. P4, who replied to the question “To what degree did SkyNote
make practicing easier” with 3 out of 7, included the following comment as SkyNote’s
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greatest weakness or limitation:

“I haven’t used the other functionalities [besides note grading, synthesized,
and accompanied audio playback] because of the songs I had to play. It
would be nice if at least one easy one could be played with the software.”

P4 (translated)

Indeed, as we had mentioned, P4 found most required pieces technically di�cult, so
we might interpret that it was too early, in the state of their practice, to place so much
emphasis on expressive performance concerns. This is reinforced by the participants’ fa-
vorite features – note grading, synthesized playback of scores and reference performance
score-followed playback – which were part of the original set of features in SkyNote, tar-
geting novice players. This is still a positive result for our evaluation, since these features
were only made available for the practice of performances due to our audio-to-score
alignment and dynamic tempo implementations.

The other lowest rating was another 3 out of 7 given by P6 on the question “To what de-
gree was SkyNote easy to use?”. Their response to the inquiry on SkyNotes’ weaknesses
reads:

“Too much information at the same time. Can just concentrate on one
thing. Needs more user-friendlyness.” P6

This criticism echoes our discussion on the high mental e�ort demanded by the exer-
cise. Our conclusion on the topic is also shared by P6, as they stated in the following
“suggestion for improvement”:

“Dedicated exercises and visualization for speci�c skills. Playback/recording
and o�-line visualizations for retrospective analysis is the best [practice
method].” P6

On the adequacy of feedback-related software features, di�erent participants showed
preference for di�erent visualizations. P1 highlighted the dynamics visualization over
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the score as the most helpful in their opinion, whereas P3 and P5 chose the piano roll
view. The others did not single out one of the two views as most helpful. This variation
in opinions is an evidence that neither is strictly superior, but rather that this choice
depends on preference and occasion. Both classical musicians proposed some form of
score annotation as an improvement:

“Having a tool that allows you to make notes on the score, or an option of
comments about the exercise, to make it easier to remember the details to
be improved.” P5, on how to improve SkyNote feedback

“If you change the note lengths in the sta� based on the expected duration
of the note it will introduce some visual feedback about rhythm.”

P1, on the same topic

The inclusion of clearer rhythmic feedback when using the score view was also suggested
by P2. A general purpose annotation, as P5 suggests, would be a technically simple so-
lution for having information on complex expressive features. Watching participants
practice the exercises, one would notice that most of the time was dedicated to imitat-
ing articulations and vibrato, which involve techniques very speci�c to the violin, and
which are only reported indirectly by the software, via the pitch curve. Still, this was
considered useful, as illustrated in the following comment by P3:

“The manner of giving feedback on vibrato during the imitation was pleas-
ant to view, but it took me some e�ort to put it to use, because there were
too many stimuli.” P3, on SkyNote weaknesses and limitations

Finally, the feedback on the accuracy of technical implementations suggests that the ex-
perience could be improved with careful �ltering of the pitch extraction algorithm. P2
remarked on its visualization:

“I would have liked seeing note durations more clearly in the piano roll,
because the pitch detection wasn’t fully precise.” P2 (translated)
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A �ltered pitch detection would also have a positive in�uence in the outcome of the
audio-to-score alignment in situations where audio capture is not optimal. Precise align-
ment is key for proper rhythmic feedback and note corrections, which lend support es-
pecially to students struggling with a certain piece. This was an issue to P4 in one of the
exercises:

“I was confused by the current note indicator, it seemed to go out of syn-
chrony with the audio at times, and I got a little stressed trying to catch up
to it.” P4 (translated)

Besides the rich observations that we were able to report from the feedback we received,
our conclusions from this experience also support the idea that the best strategy for
studying the e�ects of a technology-enhanced learning scenario for music, and espe-
cially music expression, is a long-term accompaniment of participants with the help of
their own tutors. This would be a favorable setting for learning about skill retention, for
mitigating biases caused by issues related to the software learning curve and fatigue from
long sessions, and especially to understand the bene�ts of this study methodology after
the musician learns to incorporate the software feedback in their own practice routine.

The evaluation process, from our perspective, has been successful in avoiding skeptical
opinions towards technological tools in a musical environment – a recurring occurrence
in research, as we pointed out in chapter 2 – due to the concrete nature of the proposal.
Instead, the process has been instrumental in evolving our ideas about the suitability
of technology-enhanced settings for learning expression and the proper conditions to
do so. We hope that these �ndings can encourage further exploration of technology in
music classrooms, whether systematically in academia, or individually by the innovative
and creative music teachers everywhere.

“It made me reevaluate my own expressivity comparing it to others over
the dynamics that are possible with the violin, and that helps me broaden
this creative side.” P3 (translated)



Chapter 7

Conclusions

Over the previous chapters we have approached the computer modeling of expressive
performance actions by various angles, proposing models that prioritize simplicity, then
�exibility, and �nally, accuracy. We also explored the type of music education scenario
that could leverage such models to o�er learning musicians more options of creative
stimuli in the development of their personal sensibilities and expressive styles.

The fast evolution of the machine-learning �eld during recent years has made it di�-
cult to systematically evaluate the quality gains obtained from the application of novel
methods. Beyond proposing one particular computer model best suited for one particu-
lar application and subject to the availability of a speci�c bundle of musical information,
the research presented in this thesis should be viewed as a broken down report on the
impact of each design choice in modeling musical expression at the time of this writ-
ing, thus emphasizing the possibilities and the limitations with current techniques and
resources.

Considering the future of expressive performance modeling, one might start by ad-
dressing the problems that we have come across in our analyses. The prime example
is the quality of datasets. Doubtlessly, the heterogeneous recording conditions, unreli-
able note onset alignments, and the mixture of musical styles were all factors that nega-
tively impacted model learning. Improving automatic methods for ensuring consistency
might be a strategy for overcoming these issues without sacri�cing orders of magnitude
in dataset sizes. Drawing inspiration from the neural translation �eld once again, the
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methodology made famous by the BERT model (Devlin et al., 2019), consisting of pre-
training large-scale models on very large (but simpler) datasets followed by �ne-tuning
in application-speci�c, smaller datasets, seems promising. Not only could it solve the
dataset consistency problems, this approach also allows a creative personalization of the
training dataset, as we encouraged with our proposals from chapters 3 and 4. Follow-
ing the research trend that we pointed out in our discussion of deep-learning applica-
tions, the automatic music composition �eld has already begun to explore this pipeline.
Huang and Yang (2020) not only combine pre-training and �ne-tuning, as they also
propose a new musical encoding to address the issues from the Music Transformer en-
coding that we identi�ed. It would be interesting to analyze their new REMI encoding
against our own in a similar architecture.

Numerically, the performances generated by state-of-the-art CSEMP are approaching
the limits represented by the variance which exists between performances of the same
piece by di�erent musicians, so the improvement of models necessarily goes through re-
�ning the formulation of the problem, that is, understanding what questions we should
ask about what makes performances unique and pleasing in a way that lends itself to
other systematic yet inspiring ways to look at music expression.

A consistent observation across all our experiments that warrants commenting is the
complexity of violin expression from a technical standpoint. A variety of EPAs work in
tandem during a violin performance, many of which are challenging to quantify consis-
tently and automatically via music information retrieval techniques. CSEMP literature
has barely scratched the surface of this topic, and much can be learned from investigating
how interdependent these complex EPAs are, and what kind of performance learning is
transferrable between musical instruments.

Little was said in previous chapters about the performance of ensembles and how im-
portant the interaction between musicians in this scenario is. Nevertheless, our CSEMP
have been trained on performances of ensembles, and the patterns they learned certainly
include information of that nature. In particular, clever application of our sequence
models of chapter 5 could generate performance signals for one musician conditioned
on the expression of their bandmates. This could be achieved by the simple substitution
of model outputs by real performance signals of the existing musicians in subsequent
steps of the generation, in a process analogous to the operation of the Flow Machines
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model of composition (Pachet et al., 2020). The analysis of performances produced in
that manner is a planned continuation of this work.

With respect to the pedagogical utility of CSEMP, as we have highlighted before, gen-
erated performances can stimulate the critical analysis of expression and fruitful discus-
sions between musicians. Its impact, though, can be even deeper. Technology has always
profoundly in�uenced how we perceive and make music, from the evolution of tun-
ing changing our perceptions of tonality (Michèle Duguay, 2016) to the role of music
recording in the birth of modern musical genres (Borthwick and Moy, 2004). If com-
puter systems can improve our understanding of what happens in a music performance,
they will surely be part of the next aesthetic leap in the musical arts.
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F. Pachet, P. Roy, and B. Carré. Assisted music creation with Flow Machines: Towards
new categories of new. In Handbook of Artificial Intelligence for Music. Springer,
2020.

C. Palmer. Music performance. Annual review of psychology, 48(1):115–138, 1997.
doi:10.1146/annurev.psych.48.1.115.

P. Papiotis, M. Marchini, A. Perez-Carrillo, and E. Maestre. Measuring ensemble
interdependence in a string quartet through analysis of multidimensional perfor-
mance data. Frontiers in Psychology, 5(AUG):963, Sept. 2014. ISSN 16641078.
doi:10.3389/fpsyg.2014.00963.

B. Patterson. Musical Dynamics. Scientific American, 231(5):78–95, 1974. ISSN 0036-
8733.

C. Peiper, D. Warden, and G. Garnett. An Interface for Real-time Classi�cation of
Articulations Produced by Violin Bowing. In Proceedings of the International Con-
ference on New Interfaces for Musical Expression (NIME’03), pages 192–196, 2003.

R. Ramirez, A. Hazan, E. Maestre, and X. Serra. A Genetic Rule-Based Model of
Expressive Performance for Jazz Saxophone. Computer Music Journal, 32(1):38–50,
2008. ISSN 01489267. doi:10.1162/comj.2008.32.1.38.

R. Ramirez, C. Canepa, S. Ghisio, K. Kolykhalova, M. Mancini, E. Volta, G. Volpe,
S. Giraldo, O. Mayor, A. Perez, G. Waddell, and A. Williamon. Enhancing Mu-
sic Learning with Smart Technologies. In Proceedings of the 5th International
Conference on Movement and Computing, MOCO ’18, pages 1–4, New York, NY,
USA, June 2018. Association for Computing Machinery. ISBN 978-1-4503-6504-8.
doi:10.1145/3212721.3212886.

B. H. Repp. Some empirical observations on sound level properties of recorded piano
tones. Journal of the Acoustical Society of America (JASA), 93(2):1136–44, Feb. 1993.
ISSN 0001-4966. doi:10.1121/1.405561.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, Oct. 1986. ISSN 1476-4687.
doi:10.1038/323533a0.

M. Sadakata, D. Hoppe, A. Brandmeyer, R. Timmers, and P. Desain. Real-Time Vi-

https://doi.org/10.1007/978-3-030-43887-6_46
https://doi.org/10.1146/annurev.psych.48.1.115
https://doi.org/10.3389/fpsyg.2014.00963
https://doi.org/10.1162/comj.2008.32.1.38
https://doi.org/10.1145/3212721.3212886
https://doi.org/10.1121/1.405561
https://doi.org/10.1038/323533a0


bibliography 109

sual Feedback for Learning to Perform Short Rhythms with Expressive Variations in
Timing and Loudness. Journal of New Music Research, 37(3):207–220, Sept. 2008.
ISSN 0929-8215. doi:10.1080/09298210802322401.

C. E. Seashore. The Psychology of Music. Music Educators Journal, 25(3):23–23, Dec.
1938. ISSN 0027-4321. doi:10.2307/3385515.

X. Serra and J. Smith. Spectral Modeling Synthesis: A Sound Analysis/Synthesis System
Based on a Deterministic Plus Stochastic Decomposition. Computer Music Journal,
14(4):12–24, 1990. ISSN 0148-9267. doi:10.2307/3680788.

I. Simon and S. Oore. Performance RNN: Generating music with expressive timing
and dynamics, 2017.

S. W. Smoliar, J. A. Waterworth, and P. R. Kellock. pianoFORTE: A System for Piano
Education Beyond Notation Literacy. In Proceedings of the Third ACM Interna-
tional Conference on Multimedia - MULTIMEDIA ’95, pages 457–465, 1995. ISBN
0-89791-751-0. doi:10.1145/217279.215310.

K. Sohn, H. Lee, and X. Yan. Learning Structured Output Representation using Deep
Conditional Generative Models. In Advances in Neural Information Processing Sys-
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Appendix A

Imitation Exercise Scores

Traditional

Frère	Jacques

5

   
      

   
    













113



114 imitation exercise scores

Traditional
Greensleeves

12

6











     
 

  


 

 
 



  

 
  

    

  
 

  

 











 
  





 







 














 










Luís	Bonfá

(from	Black	Orpheus)
Manhã	de	Carnaval

12

6
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Traditional

Twinkle	Tinkle	Little	Star

9

5
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