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Abstract
In this thesis, I tackle the ability of deep neural networks to represent entities, and
I assess the extent to which this feature impacts tasks involving entities. I consider
two standard architectures, LSTM and Transformer, both for analysis and as the
main components of the developed models. First, I investigate the behaviour of
different model components in a controlled setup, and then I probe the referential
information encoded in these models when they are trained on language mod-
elling. Using the insights from the analysis experiments, I develop a set of models
and I test their performance on the task of character identification. I show that,
while the models achieve good results on this task, the entity representations de-
veloped by them are not at the same level. Through different analyses conducted
on these models, I investigate how the task, the models and the data impact this
difference between task performance and entity representations.
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Resum
En aquesta tesi, abordo la capacitat de les xarxes neuronals profundes per repre-
sentar entitats, i avaluo fins a quin punt aquesta caracterı́stica afecta les tasques
que impliquen entitats. Incloc dues arquitectures estàndard, LSTM i Transformer,
tant per a l’anàlisi com per al desenvolupament de models computacionals. En
primer lloc, investigo el comportament de diferents components dels models en
un entorn controlat, i examino la informació referencial codificada en aquests mo-
dels quan s’entrenen com a models de llenguatge. A continuació, utilitzant els
resultats d’aquestes anàlisis, desenvolupo un conjunt de models i poso a prova
el seu rendiment en la tasca d’identificació de personatges. Demostro que, tot i
que els models aconsegueixen bons resultats en aquesta tasca, les representaci-
ons d’entitats que construeixen aquests models no es troben al mateix nivell. A
través de diferents anàlisis, investigo com la tasca, els models i les dades afecten
aquesta diferència entre el rendiment en la tasca i les representacions d’entitats
que emergeixen.
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Resumen
En esta tesis, abordo la capacidad de las redes neuronales profundas para repre-
sentar entidades, y evalúo hasta qué punto esta caracterı́stica afecta las tareas que
involucran entidades. Considero dos arquitecturas estándar, LSTM y Transfor-
mer, tanto para el análisis como para el desarrollo de modelos computacionales.
Primero, investigo el comportamiento de diferentes componentes de los modelos
en un entorno controlado, y a continuación examino qué información referencial
está codificada en estos modelos cuando se entrenan como modelos de lengua-
je. Usando los resultados de estos análisis, desarrollo un conjunto de modelos y
examino su rendimiento en la tarea de identificación de personajes. Muestro que,
si bien los modelos logran buenos resultados en esta tarea, las representaciones
de entidades desarrolladas por los mismos no están al mismo nivel. A través de
diferentes análisis, investigo cómo la tarea, los modelos y los datos impactan esta
diferencia entre el rendimiento en la tarea y las representaciones de entidades.
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Chapter 1

INTRODUCTION

1.1 Motivation

An important component of human communication is the ability to use language
to refer to entities that are part of our life, either persons or objects. As shown in
Figure 1.1, the text from the bubble is uttered by a speaker, and it refers to real-
world entities. Modelling the process of using linguistic expressions to refer to
the external world is an important factor for computationally processing language.
For example, conversational agents became an important component of our life,
like virtual assistants (e.g. Alexa) or GPS navigation systems, and these systems
require a good grasp of the external world in order to have a coherent dialogue.

We aim to build a performant computational model of reference to entities.
We use deep learning methods when we develop the computational models in this
dissertation.

These models are very powerful, achieving state of the art results on the ma-
jority of computational linguistics tasks (Goldberg, 2017) like: sequence tagging
(İrsoy and Cardie, 2014; Ling et al., 2015), parsing (Dyer et al., 2015; Zhou et al.,
2015) or machine translation (Cho et al., 2014). A very important task that was
revolutionized by deep learning models is neural language modelling (Bengio
et al., 2003). As shown in Figure 1.2, in the case of language modelling, the
model needs to predict what is the next word in a sequence, given the previous ut-
tered words as input. The deep learning models are able to do this task very well
through learning rich lexical representations and capturing the linguistic context
of utterances.

While these models develop very competent linguistic representations, they
also manifest a few weaknesses that impact our modelling goals. First, they
mostly focus on the information encoded in the linguistic input from Figure 1.1
(snippet of the dialogue from the sitcom “Friends”), ignoring all the other compo-

1
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Figure 1.1: Example of a dialogue from the TV show “Friends”.

nents that connect the language to the real world 1. The text is not informative if
we don’t create the links to the external world where the words are produced by
a speaker in a specific situation referring to a set of individuals. For example, the
language model from Figure 1.2 understands that the next word is supposed to be
a word describing a human, but it doesn’t incorporate other types of information,
such as speaker or interlocutors, in order to consider “guy” as the most viable
option. Furthermore, they struggle with processing specific situations, where we
require fast recognition of individual elements, such as entities, events, and rela-
tionships, and the ability to reason about them (Bernardi et al., 2015).

Looking at the example from Figure 1.1, in order to understand to which enti-
ties the dialogue refers to, we need to be able to capture patterns like: “his” refers
usually to an entity introduced earlier by a more direct referential expression or
that the word “I” refers to the speaker. On the other hand, we want our model to
learn that the name “Ross” refers to a specific entity and that Julie is the partner
of Ross, which is more in the realm of having good general entity representations.
From another perspective, the model should have a good blend between global
semantic knowledge about entities and contextual knowledge (Kamp and Reyle,

1there is research using vision (Lin et al., 2014; Antol et al., 2015; Das et al., 2017), but few
works focused on entities (Lu et al., 2018)

2
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Figure 1.2: Neural network example (neural language model) - “lexical” refers to
generic information associated with a word type, “contextual” refers to informa-
tion from the linguistic context

2013). For example, “guy” is an attribute that is generally associated with half
of the characters mentioned in the dialogue, but by analyzing both the linguistic
and extra-linguistic context, the model should infer that in this case, the character
referred to with this expression is Michael who is the only male character from
the scene.

The goal of this dissertation is to define a computational model with the ability
to develop this range of features for the entities that it is exposed to. In order to
achieve this, we consider that we need a model that captures linguistic context
(e.g. anaphoric patterns), extra-linguistic information (e.g. speaker or interlocu-
tor awareness) and rich semantic representations of entities (specific character-
istics of people/objects).

Even though the deep learning models are very performant and they are end
to end, going from raw input to the desired predictions, they don’t have a trans-
parent view of how the information is encoded inside neural networks or which
types of patterns are developed, in order to solve a task. This drawback led to
the creation of a new type of research, called blackbox analysis which aims to a
better understanding of how recent computational models work. Understanding
how a system behaves is a prerequisite to improving it, so the thesis focuses first

3
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on analyzing to what extent discrete information and more specifically, referential
information is encoded in these models. Following the findings of these experi-
ments, we develop methods to improve these architectures regarding the aspect of
reference and entity representation.

1.2 Approach

Our approach for achieving the goals of this dissertation is to combine analysis
and computational system modelling to develop a model which handles reference
to entities.

The models analysed and developed in this thesis are artificial neural networks
(Rosenblatt, 1958). More specifically, they are deep learning models (LeCun
et al., 2015) which are built of multiple processing layers to learn representations
of data with multiple levels of abstraction. This type of algorithms revolutionized
in the last ten years fields like natural language processing (NLP), computer vi-
sion (Krizhevsky et al., 2012) and speech processing (Hinton et al., 2012). These
architectures are part of the representation learning paradigm, which aims to de-
tect patterns from the data and induce a series of representations as they learn
to perform a task. In order to achieve this, they compose a series of successive
transformations of the input, which are modified through various optimization al-
gorithms.

1.2.1 Basic architectures

Currently, the field of NLP has two standard deep learning architectures that are
used on most of the tasks. These models constitute the main components of all
the models analyzed or developed in this thesis.

First, Long Short Term Memory networks (LSTMs (Hochreiter and Schmid-
huber, 1997)) are models that were designed to process sequences. Consider-
ing that the linguistic input is sequential, this type of architecture is a natural fit
for Computational Linguistics. LSTMs belong to the family of Recurrent Neural
Networks (RNNs: Elman (1990)). Given a sequence, the RNN model computes
a hidden state at each time step as a function of the input vector and the vec-
tor representing the previous hidden state. The main problem of RNNs is that it
is very facile to forget the information from the initial inputs, especially in long
sequences.

This problem was overcome in LSTMs by a memory cell which should prevent
the information from the beginning of the sequence to disappear. Furthermore, the
network functions based on a gating mechanism that controls which information

4
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and how much information is added to the memory cell and to the hidden state at
each time step.

LSTMs were the standard architecture in NLP until the development of the at-
tention mechanism (Bahdanau et al., 2014) and its associated architecture: Trans-
former (Vaswani et al., 2017).

Transformers are currently the most successful architecture for NLP. While the
memory cell of the LSTM should prevent the information from the first items of
the sequence to disappear, LSTM still has problems with conserving information
in long sequences because all the past information is compressed in the memory
cell with no further access to the input representation. Transformer overcomes this
problem by getting rid of the recursion; the text is processed as a whole and not se-
quentially anymore. The main component of the Transformer is the self-attention
mechanism, which is an attention mechanism connecting different positions of a
sequence in order to compute a representation of the sequence. For each input, the
model creates a contextual representation that takes into account the other inputs
in the sequence relative to the current one following a learned criterion. Because
the model is not recursive anymore, we can also use parallel computation, which
facilitates scaling this architecture to multiple layers and attention mechanisms.

1.2.2 Enhancements

Even though LSTMs and Transformers are the backbone of deep learning in NLP,
their basic structure is not enough in many cases. These models are very powerful
when they have a multitude of layers, which requires a big amount of data to
learn from when they are trained from scratch. In some cases, it is either very
hard to get more data for a task or the cost of annotation is too high. These
limitations stimulated the development of model enhancements that can overcome
the data problem. The main two techniques that we will use in this thesis for
overcoming the data are: transfer learning (Ruder, 2019) and additional modules
enhancements.

Transfer learning The limitations brought by the amount of annotated data in
many NLP tasks was overcome in recent years through transfer learning (Ruder,
2019). This approach is widely used in model development in NLP and it was
adopted for many tasks such as question answering, natural language inference,
sentiment analysis or textual entailment (Devlin et al., 2018).

Transfer learning is the technique of first training the neural network on a
different task (e.g. language modelling) which has access to more data for super-
vision and then fine-tune the model on the task of interest. While we might not
have enough annotated data to learn complex linguistic patterns, we can use a
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task that doesn’t require annotation like neural language modelling (Bengio et al.,
2003) in order to train big neural networks on a big amount of data. Language
modelling is the task of predicting the probability of a word in the text, consider-
ing its context as input (see Figure 1.2. This procedure will result in a model that
encodes a big range of complex linguistic phenomena in its hidden representation
as a result of learning the task of language modelling. While training the original
model requires a big amount of data and computational resources, their adaptation
and fine-tuning to a different linguistic task is not as costly as the training of the
model on language modelling. This change in model development resulted in a
set of pre-trained language models that are universally used as linguistic encoding
components in most of the NLP tasks. This approach was first introduced with
Word2Vec (Mikolov et al., 2013a), and it culminated in recent years with con-
textualized architectures that are either based on LSTM like ELMO (Peters et al.,
2018b) or on Transformer like BERT (Devlin et al., 2018). We use Word2Vec to
represent the lexical information in Chapter 4, and we incorporate BERT in the
proposed model for better coverage of the contextual patterns in Chapter 5.

Additional modules A different way to improve deep learning models is to en-
hance them with some additional modules that will bias the type of patterns that
are learned by the network.

These additional modules can encode patterns that are outside of the scope of
the basic architectures and are more tailored towards task-specific patterns. One
of the first systems that used this type of module, in the form of an external struc-
ture, is the Memory Network (Sukhbaatar et al., 2015) which introduced attention
mechanisms over large external memories. Sukhbaatar et al. (2015) show that the
addition of a specialized structure improves the performance on multiple tasks like
question answering or reading comprehension. Closer to the goals of this thesis,
the recurrent entity network (EntNet - Henaff et al. (2016)) is an entity-centric
computational model with an external memory. The model contains a fixed num-
ber of memory cells, each formed by a vector key and a vector value. The cells
can be seen as slots for an entity where the key can behave like an identifier and
the values as a storage for all the known information about the associated entity.
In Chapter 4, we experiment with two different dedicated structures for encoding
entities: a static variant inspired by the memory network and a dynamic entity
library inspired by EntNet. The purpose of these structures is to facilitate biasing
the semantic knowledge and contextual knowledge (in the case of the dynamic
library) towards entities and to better capture the extra-linguistic information.

6
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1.2.3 Analysis
When we want to capture complex phenomena in our representations, such as ref-
erential information, we require a big number of parameters and transformations
(layers). This results in big models that behave like a blackbox (Linzen et al.,
2019; Alishahi et al., 2020). It is very hard to understand how the information is
encoded because the model goes from raw data to a class output without a trans-
parent view of intermediate reasoning.

More important, language follows Zipf’s law (Zipf, 1949) with the most fre-
quent words counting for a big portion of the data, and consequently specific lin-
guistic patterns counting for a big percentage of an NLP task. For example, in the
character identification task, 44% of the referential expressions are first-person
pronouns and 28% are second-person pronouns. An accuracy of 72% on char-
acter identification doesn’t tell us if the model learned multiple patterns to some
extent or if it focused on capturing the frequent phenomena. Furthermore, it was
shown that deep learning models amplify this effect, developing heuristics that
focus only on the frequent patterns from the training data (Agrawal et al., 2016;
Sanchez et al., 2018; McCoy et al., 2019). All these factors lead to the fact that
the general results on NLP tasks don’t depict a complete picture of the phenomena
captured by the model. These drawbacks of deep learning models lead to more
granular reporting of results, and it caused the development of multiple analysis
techniques (Belinkov and Glass, 2019; Rogers et al., 2020).

This thesis will use multiple analysis techniques in order to give a more thor-
ough view of the referential information encoded in computational systems. The
main two methods that we adapt for our area of interest are called: probing tasks
(Conneau et al., 2018a) and challenge sets (Lehmann et al., 1996). We also use
techniques like representation similarity analysis (RSA Kriegeskorte et al. (2008))
and t-Distributed Stochastic Neighbor Embedding (t-SNE Van der Maaten and
Hinton (2008)) for a better understanding of model behaviour.

Diagnostic classifiers In order to probe the information encoded in the hidden
representations of neural networks, the most common type of analysis method
is known as “diagnostic classifiers” (Veldhoen et al., 2016) or “probing tasks”
(Conneau et al., 2018a).

The main method for disentangling the information in a neural network is the
following: we have a model trained on a task like language modelling. Then we
use a task with annotation for the linguistic phenomenon that we want to analyze.
Using the previously trained model, we generate representations for the input of
the second task then a classifier is used to predict the answer for the second task.
The performance of the second classifier reflects the performance of the gener-
ated representations, so the reasoning is that it will also reflect the performance of

7



“output” — 2021/11/30 — 22:50 — page 8 — #22

the original model on the studied phenomenon. This type of analysis method is
known as “diagnostic classifiers” (Veldhoen et al., 2016) or “probing tasks” (Con-
neau et al., 2018a). Some examples of linguistic phenomena which were studied
using this technique are: part of speech (Shi et al., 2016), number agreement (Giu-
lianelli et al., 2018a), parsing or semantic roles (Tenney et al., 2019a). We use this
approach to get a better understanding of which referential information is captured
by pre-trained language models (Chapter 3).

Challenge sets From a different perspective, most of the benchmark datasets in
NLP are generated from text corpora, reflecting a natural frequency distribution
of language phenomena. Even though they are useful in practice for evaluating
model performance in the average case, these datasets might fail to capture a wide
range of phenomena. This weakness of benchmarks was treated from the early
days of NLP with controlled datasets, known as challenge sets (Lehmann et al.,
1996). This type of datasets saw a resurgence in recent years, in areas like natural
language inference (Poliak et al., 2018) and machine translation (Sennrich, 2017).

In order to develop a model that efficiently captures entity information, we
first want to have a better understanding of how the information related to entities
is currently encoded in neural networks, so we conduct a series of analysis studies
on referential information in neural networks. We simplify the referential task
and decompose it into a set of challenge sets (Lehmann et al., 1996) focusing on
aspects like feature extraction, contextualization, or order tracking. This allows
us to analyze standard NLP architectures (LSTM and Transformer) and zoom into
their different components in a controlled environment (Chapter 2). Furthermore,
we develop an adjacent challenge set for the task of character identification in
Chapter 4, which we use for probing the degree of semantic knowledge about
entities in the developed models.

1.3 Goals of the thesis

This thesis has the following two goals:
1. To analyze the entity encoding capabilities of neural networks. We want

to understand how current computational models, and more specifically neural
networks, capture features relevant to tasks involving entities.

We approach this research question from two different angles:

• what is the capacity of the current standard neural architectures to encode
patterns relevant to our model development, such as feature extraction, con-
textualization or order tracking?

8
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• which patterns related with entities emerge when training a neural network
on a more general task such as language modelling?

2. To develop computational models with the capacity to encode both
linguistic and extra-linguistic referential information. Our goal is to improve
NLP models on entity-centric tasks, more specifically, character identification. We
use the insights from the analysis conducted in the first part in order to develop
a complete model that can combine the contextual patterns with the more global
semantic entity representations.

We aim to reach the second goal in two steps:

• develop different specialized structures that can be attached to standard neu-
ral networks in order to address the problems discovered in the analysis that
we conducted beforehand.

• incorporate the newly developed structure into a pre-trained model in or-
der to have an architecture that combines the benefits of both component
features: the linguistic knowledge encoded in pre-trained models with the
entity-focused design of specialized structures.

1.4 Structure
The rest of the dissertation is organized as follows:

Chapter 2 presents a set of controlled tasks that are used for analysing how
different phenomena relevant to entity encoding such as feature mapping, contex-
tualization or order are processed by neural networks and which components play
a crucial role in capturing these patterns.

The content of this chapter is based on the following publication:

Ionut-Teodor Sorodoc, Gemma Boleda and Marco Baroni. 2021. Controlled
tasks for model analysis: Retrieving discrete information from sequences. In Pro-
ceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP, to appear.

Chapter 3 presents an analysis methodology to probe the entity-related infor-
mation encoded in neural network language models.

The content of this chapter is based on the following publication:

Ionut-Teodor Sorodoc, Kristina Gulordava and Gemma Boleda. 2020. Prob-
ing for referential information in language models. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics.
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Chapter 4 develops models for solving a character identification task and ana-
lyzes which entity patterns are learned and used for solving the task.

The content of this chapter is based on the following publications:

Laura Aina, Carina Silberer, Ionut-Teodor Sorodoc, Matthijs Westera and
Gemma Boleda. 2018. AMORE-UPF at SemEval-2018 Task 4: BiLSTM with
Entity Library. In Proceedings of The 12th International Workshop on Semantic
Evaluation. Winning system in the SemEval-2018 Task 4 competition.

Laura Aina, Carina Silberer, Ionut-Teodor Sorodoc, Matthijs Westera and
Gemma Boleda. 2019. What do Entity-Centric Models Learn? Insights from
Entity Linking in Multi-Party Dialogue. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies.

Chapter 5 combines the structures designed for entities from Chapter 4 with a
contextualized language model component, similar to the ones analyzed in Chap-
ter 3.

At the time of writing, the content of this chapter has not been published.

Chapter 6 presents a summary of the dissertation and the conclusions.
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Chapter 2

ANALYSIS OF FEATURE
ENCODING USING
CONTROLLED SEQUENTIAL
TASKS

2.1 Introduction

When we want to model entity-related information, an important mechanism is
the detection and extraction of information that refers to a given entity. In the
following experiments, we emulate this process through challenge sets built by
a multitude of controlled tasks. Each task is a simplified version of a linguistic
pattern relevant for representing entity information. For example, we can refer to
an entity through a proper noun (e.g. we can refer to the entity Ross using the ex-
pressions: “Ross” or “Ross Geller”), a set of attributes (e.g. Ross can be referred
as “the male paleontologist”) or a relationship with somebody else (the expression
“Monica’s brother” refers to the entity Ross). In order for a computational model
to be able to handle these patterns, it needs to be able to do feature detection and
extraction, contextualization or order tracking.

There has been a continuous increase in performance in computational linguis-
tics in recent years. This development correlates with larger and more complex
models, which are trained on ever bigger datasets. These new characteristics of
modelling made it harder to understand which model components are relevant
and how they work. This flaw has motivated the NLP community to develop new
methods for model analysis.

Given the difficulties of analyzing large models, some of this work (Hupkes
et al., 2018a; Lake and Baroni, 2018; Hewitt and Liang, 2019; Chrupała and Al-
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ishahi, 2019; White and Cotterell, 2021) has focused on controlled tasks that emu-
late specific aspects of language. We propose a new set of such controlled tasks to
explore a crucial aspect of natural language processing for dealing with entities:
the need to retrieve discrete information from sequences. 1

The controlled tasks are built using binary vectors as input in order to exclude
the possible inferences of linguistic patterns that are not the focus of our analysis.
In particular, we design the tasks such that the models need to emulate four abil-
ities that are crucial for natural language in general and entities related tasks in
particular: incremental processing, indirect mappings, contextualization, and or-
der tracking. The insights from these experiments will impact our further model
developments used for character identification.

We study model behaviour on the proposed tasks with simple instantiations of
Transformers (Vaswani et al., 2017) and LSTMs (Hochreiter and Schmidhuber,
1997), and show that, for most of the tasks, these models show significant diffi-
culties. Transformers are state of the art in deep learning for NLP, and LSTMs are
a classical architecture that was designed for sequence processing. In the analysis,
we aim at understanding the role of the different components of the models, focus-
ing on self-attention, decoder attention and positional encoding for Transformers
and decoder attention for LSTMs.

2.2 Related work
The current study belongs in the newly developed area of interpretability and ex-
plainability of computational linguistics, which seeks to understand how models
capture natural language phenomena (Alishahi et al., 2019; Belinkov and Glass,
2019; Rogers et al., 2021).

Generally, deep learning models are trained and evaluated on text following
the natural distribution of language. While it is a good strategy to mimic a natural
setup, this setup omits or downplays some phenomena. The solution for this draw-
back was the development of challenge sets (Lehmann et al., 1996), which were
defined as test suites that followed principles like: control over data, progressivity,
systematicity, the inclusion of negative data and exhaustivity.

These datasets have been used in NLP for a long time (Lehmann et al., 1996)
and they saw a resurgence in popularity in recent years. This technique was re-
cently used to study the degree to which different phenomena are captured in
standard NLP models, such as coreference in MT systems (Müller et al., 2018),
number agreement in language models (Gulordava et al., 2018b), lexical infer-
ence in NLI systems (Glockner et al., 2018) or compositionality in seq2seq mod-

1The associated dataset and code can be downloaded at https://github.com/
sorodoc/DiscreteSeq
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Figure 2.1: Schematic description of our tasks. Different tasks require different
interpretations of the query. The answer is positive for all these instances.

els (Lake and Baroni, 2018). Even though this technique is generally applied as
a controlled evaluation setup, we use the principles behind it to create complete
controlled tasks where we can investigate the capabilities of different architectures
in a range of different linguistic phenomena.

Some other work has used controlled tasks to analyze neural networks regard-
ing specific aspects, such as reasoning skills (Weston et al., 2015), compositional-
ity (Lake and Baroni, 2018; Hupkes et al., 2020), PoS tagging (Hewitt and Liang,
2019), inductive biases (White and Cotterell, 2021) or hierarchical structure (Hup-
kes et al., 2018a; Chrupała and Alishahi, 2019).

We follow this latter methodology, and design tasks that highlight one of the
core abilities that a model needs to possess in order to process natural language,
namely detecting one or more features in a sequence of tokens, possibly in a
context- and/or order-sensitive way.

2.3 Description of the tasks

2.3.1 Task description

In all tasks, the goal is to perform feature detection, that is, to provide a binary
response about whether a feature (or feature combination) is present in the input
sequence. The tasks are schematically illustrated in Figure 2.1. The model is
always presented with an input consisting in a sequence of tokens. Each token
is a 36-dimensional binary vector with a variable number of dimensions (fea-
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tures) activated (set to 1). The model is also given a query, which is a single
36-dimensional binary vector with one feature activated, except for Task 2 below,
where it has two activated features.

The tasks are meant to be incremental, in the sense that, when processing the
input sequence, the model does not know what information it will need to retrieve
from it. Some uses of Transformers in the NLP literature instead give access to
all the information from the start, such as in BERT (Devlin et al., 2019) and its
variants. Arguably, incrementality is necessary for most instances of language
understanding “in the wild”: For some applications, like Machine Translation for
documents, it is realistic to give access to all the input at once, but as we move
towards real-time applications such as virtual assistants, models will need to act
incrementally.

T1: one-feature detection. T1 asks whether the active feature of the query is
present in some token in the sequence. A linguistic example, relevant for syntactic
processing, would be: did the plural feature occur in a span of tokens?

In the example in Figure 2.1, the second input token has feature 2, which is
the one the query asks about, so the answer should be positive.

T2: two-feature detection. T2 asks whether two features occur in the sequence,
be it in the same or in different tokens. This ability is required, for example, to
check agreement between two syntactic units, or to answer a conjoint question.

In T1 and T2, query features and input features coincide: if the query asks
about feature 2, then feature 2 needs to be active in some token for the answer
to be positive. In the rest of the tasks, the relationship between query and input
features is instead indirect. For instance, as illustrated in Figure 2.1 for T3, a
query with feature 2 may ask about features 1 and 5 in the input. Models need
to learn this implicit mapping when they are trained. Translation is an example
(among many) of an indirect linguistic task, where words in the source language
map to different target-language words.

T3: set member detection. In T3, models need to detect whether at least one
out of two features is present in the sequence, that is, the task checks for feature
disjunction (see Figure 2.1). This is akin to set member detection because we
ask for a positive answer when at least one of the two features (set members) is
present.

For example, many question-answering setups require retrieving an instance
(Fido, Snoopy, . . . ) when prompted with the name of the class (dog).

14
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T4: contextualized 2-feature detection. T4 asks about a conjunction of two
features, like T2 (but with the indirect mapping). A linguistic example could in-
volve a question requiring more than one piece of information to answer (Who
played the 1982 World Cup Final? Italy and Germany). In addition, we design
the mapping such that each feature is part of 2 queries; hence, it is associated only
with two other features. This dataset structure should encourage contextualiza-
tion, because a given feature is only ever relevant in the context of one of the other
two features it is associated with.

Contextualization is crucial for natural language, where the same feature (e.g.,
a word) requires different responses depending on other features occurring in the
context. A natural hypothesis is that the Transformer is naturally good for con-
textualization (this should be the strength of self-attention), but as we will see our
results are mixed.

T5: contextualized set member detection. Like T3, the task concerns disjunc-
tion with indirect mapping, but it consists in checking whether at least one out of
two pairs of features is present in the input (e.g., (1∧5)∨ (2∧7); see Figure 2.1).
Again, in each pair, one feature is only a hit in the context of the other, so this task
also requires contextualization.

A linguistic example would be a coreference task where toy might refer to
rubber lion or plastic truck, but not to lion or truck in other contexts.

T6: ordered feature detection. T6 adds order to T4: it asks about a conjunction
of two features with the indirect mapping, where the features must be in a specific
order. This has many linguistic counterparts, e.g., parsing words in the correct
order to determine their syntactic relation.

T7: contextualized ordered set member detection. Finally, T7 adds order to
T5: It asks models to check whether at least one out of two pairs of features is
present in the input, but now the order of context matters (e.g., (1 before 5) ∨
(2 before 7)). An example would be semantic role identification, where cow is
typically an agent if it precedes eats, but not if it follows it.

Entity correspondence. We use these tasks for insight regarding model devel-
opment for character identification. They are relevant because they emulate proper
noun detection of an entity with the direct tasks, the third-person pronoun or com-
mon noun detection with the contextualized tasks or relation detection with the
ordered tasks.
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Nr. of distinct
queries

Nr. of queries
containing each

feature
T1 36 1
T2 630 36

T3, T4, T6 36 2
T5, T7 36 4

Table 2.1: Description of the query space.

2.3.2 Dataset construction

All datasets contain 100k training, 10k validation, and 10k test examples. For
each datapoint, we sample uniformly at random whether the answer is positive or
negative. For each task, we create datasets with sequence lengths 5, 10, 15, 20,
25, and 30. Also, for each datapoint, we exclude between 1 and 6 randomly cho-
sen attributes. We apply this restriction because otherwise, for longer sequences,
nearly all positive datapoints would contain all features, whereas negative data-
points must, by construction, miss at least one feature. This would allow models
to develop a degenerate guessing strategy (“datapoint is positive if it contains all
features”).

T1. For each datapoint, we choose a random feature as a query. If the answer is
positive, the feature will appear in the sequence. All other features are randomly
set to active with p = 0.2. During training, the queried feature can appear multiple
times (following the 0.2 probability), but it appears only once at test time for two
main reasons: to facilitate analysis and to avoid having the number of appearances
of the queried feature in the sequence as an informative variable.

T2. The 2 queried features are randomly chosen. This is the only task where we
have 2 query activations, instead of 1. As is highlighted in Table 2.1, the query
space is much larger for this task, in comparison with all the other tasks (630 pos-
sible queries, vs. 36 possible queries for the others). For positive datapoints, we
randomly choose whether the features are in the same token. For negative data-
points, we randomly choose whether one of the features appears in the sequence.

For T3-7, we use predefined mappings between query and input features (these
mappings will not be accessible to the models, but will need to be learned as
part of carrying out the task). The input feature pairs in these tasks consist of a
feature between 1 and 18 and one between 19 and 36. Also, we aim for an equal
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representation of features in the query space, so each feature appears twice in T3,
T4 and T6 and four times in T5 and T7 in the input-query mapping (see Table
2.1).

T3. First, we choose a random feature to activate in the query. We then check
which are the 2 features associated with the chosen query feature in the predefined
mapping. Then, for positive datapoints, we choose randomly whether one or 2 of
these features appear in the sequence. If 2 features appear, we randomly choose
whether they appear in the same token. For negative datapoints, we ensure that
none of these 2 features appear in the input sequence.

T4. The pipeline is similar to T2, the difference being that we randomly choose
1 query and we use its associated features.

T5. We choose one of the 2 pairs of features that are associated with one query.
We then apply the same pipeline as in T2 while ensuring that at least 1 feature
from the other pair doesn’t appear in the sequence.

T6. For positive cases, we randomly choose 2 positions in the sequence and
put the 2 tokens on these positions in the correct order. For negative cases, we
randomly choose whether the datapoint contains both features in the wrong order
or contains at most one of the features.

T7. We choose one of the 2 pairs of features that are associated with one query.
We then apply the same procedure as in T6, while ensuring that at least 1 feature
from the other pair doesn’t appear in the sequence.

2.4 Experiments

2.4.1 Model implementation

Transformer The Transformer architecture consists of a sequence encoder and
a decoder adapted to our tasks. We choose the most basic architecture for inter-
pretability: a single-head, single-layer architecture. To enable incremental pro-
cessing, the encoder self-attention only looks into the past, as in standard “causal”
architectures such as the one of Dai et al. (2019a).

The general structure of the model is presented in Figure 2.2. The model was
implemented using the framework Pytorch (Paszke et al., 2019).
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Figure 2.2: Diagram of the complete model.

Each datapoint has n 36-dimension binary vectors as input inp and a 36-
dimension binary vector as query q. All these vectors are embedded to 100 di-
mensions using the matrices Win and Wq. Then we apply a sinusoidal positional
encoding on the input embeddings and the ReLU function on top of the query
embedding:

embini = PosEnc(ini ∗Win) (2.1)

embq = ReLU(q∗Wq) (2.2)

with PosEnc defined for each input position pos and for each token dimension i
similarly to the method used in the main Transformer architecture (Vaswani et al.,
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2017):
PosEnc(pos,2i) = sin(pos/100002i/dmodel)

PosEnc(pos,2i+1) = cos(pos/100002i/dmodel)
(2.3)

Then, each input embedding goes through the TransformerEncoder cell which has
1 attention head and 1 layer:

hi = Trans f Enc(embini) (2.4)

as defined in Vaswani et al. (2017), TransfEnc is a scaled dot product attention
where d is the dimensionality of the input vectors. The dot product is scaled in
order to not have regions with very slow gradients.

Trans f Enc(X) = so f tmax(
X ∗XT
√

d
)∗X (2.5)

In order to decode relevant information based on the query we use a dot prod-
uct attention. αi represents the attention value that we put on token embedding hi
relative to the query embedding. We then calculate the vector c which is the sum
of the token embeddings weighted by α .

αi =
exp(hi ∗ embq)

∑
n
k=1 exp(hk ∗ embq)

(2.6)

c =
n

∑
i=1

αihi (2.7)

We then use a multi-layer perceptron to generate the answer. Firstly, we apply
a dimensionality reduction using Wo1 from 200 to 100 dimensions with ReLU
as nonlinearity on top of it. Then the hidden state hido is mapped from 100 to
1 dimension. Using the Sigmoid function, we get our result as a number in the
range of [0,1]. At test time, if o≥ 0.5, then we consider the answer to be positive.

hido = ReLU((c||embq)∗Wo1) (2.8)

o = Sigmoid(hido ∗Wo2) (2.9)

The model is optimized with a binary cross-entropy loss. At test time, a result
larger than 0.5 is considered a positive answer, as is standard.

We ablate the full Transformer architecture by removing self-attention and
skipping positional encoding when embedding the input. The variants solely
based on decoder attention are akin to Memory Networks (Sukhbaatar et al.,
2015).
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LSTM LSTM is a sequential neural network. At each time step, it reads an
input and it decides how much and which information of the input should be
kept on the internal memory and what should be ignored/forgotten. It was a staple
architecture for computational linguistics in the years preceding Transformers due
to its performance, but also due to its similarities with the human approach of
processing language.

In order to have a fair comparison with the Transformer model, we do minimal
changes to the architecture, only substituting the transformer self-attention block
with the LSTM cell described below.

An LSTM cell is formed by multiple gates which decide the flow of the infor-
mation. At a given time t, the input forget it decides how much information from
the current step should be used further and the forget gate ft decides how much
information from the previous hidden state is conserved. Then, we update the cell
state ct by multiplying the old state ct−1 by ft , forgetting the things we decided to
forget earlier. Then we add the new candidate values gt , scaled by how much we
decided to update each state value it . The last step is to create an output vector for
the current time step ht by filtering the relevant information from the cell state ct
using the output gate ot .

it = σ(Wii ∗ xt +bii +Whi ∗ht−1 +bhi) (2.10)

ft = σ(Wi f ∗ xt +bi f +Wh f ∗ht−1 +bh f ) (2.11)

gt = tanh(Wig ∗ xt +big +Whg ∗ht−1 +bhg) (2.12)

ot = σ(Wio ∗ xt +bio +Who ∗ht−1 +bho) (2.13)

ct = ft⊙ ct−1 + it⊙gt (2.14)

ht = ot⊙ tanh(ct) (2.15)

We experiment with two variants of LSTM:

• (basic) LSTM: the input goes through the LSTM and the output of the last
time step is considered the representation of the input and is concatenated
with the query embedding to be sent to the MLP.

• attention LSTM: similarly to the Transformer model, there is an attention
mechanism that compares the query embedding to the output from each
time step (again using dot product). The input representation that will be
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Tasks↓ Models→ T-Pos-Att T+Pos-Att T-Pos+Att T+Pos+Att
T1 1 feature 91.3±2.8 96.1±2.9 96.5±1.7 98.7±1.1
T2 2 features 83.4±0.2 84.7±0.5 83.2±0.2 84.9±1.5

T3 set member 98.7±1.2 100 99.4±0.9 100
T4 context. 2 features 86.2±0.6 87.7±0.3 86.4±0.6 87.7±0.2

T5 context. set member 77.4±0.4 77.7±1.2 78.8±2.5 77.8±1.1
T6 ordered feature 56.6±1 80.2±0.4 92.1±0.3 90.7±1.9

T7 ord. context. set member 57.5±0.4 65.8±0.8 78.6±0.6 67.6±0.6

Table 2.2: Results for sequence length 10. Results are averaged over 5 random
seeds, with s.d. Best results bold-faced. Models are coded as follows: +/-Pos
marks absence (-) vs. presence (+) of positional encoding, +/-Att marks absence
(-) vs. presence (+) of self-attention. The full Transformer is model T+Pos+Att.

concatenated to the query representation is then the weighted sum of the
outputs.

We opt for these two variants because the first variant has the capacity of
keeping in its hidden state the presence of different features and the position where
they were active, but it has problems with long sequences. On the other hand, the
second variant has the ability to switch between a recursive architecture to a more
independent architecture by closing the forget gate.

2.4.2 Learning procedure
All the experiments are optimized with Adam and a learning rate of 0.0001. We
apply 0.2 dropout, gradient clipping at 0.5. We run 100 epochs with batch size 10
and save the model at the epoch with the highest validation accuracy. We experi-
mented with different hyperparameters, but we found the ones we just reported to
give the most stable results.

2.5 Results

2.5.1 Transformer
Since the Transformer surpasses the LSTM in most cases, and the Transformer
patterns are quite similar across sequence lengths, we first take a detailed look at
the behaviour of the Transformer on the tasks for sequence length 10. Table 2.2
summarizes the results for this sequence length. Recall that datapoints are always
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uniformly distributed between negative and positive answers, such that a random
baseline always averages 50% accuracy.

Task 1. All the models succeed at T1 (single feature detection) with an accu-
racy of over 90%. As could be expected, there is a high correlation between the
accuracy and the degree of decoder attention on the correct token: This attention
is at an average of 0.82 when the answer is correct, vs. 0.17 when it is wrong.

Surprisingly, while this task doesn’t involve contextualization nor order, both
self-attention and positional encoding bring a boost in performance, from 91.3%
accuracy for the base model (T-Pos-Att) to over 96% for the models T+Pos-Att
and T-Pos+Att (which add positional encoding and self-attention, respectively).
We conjecture that positional embeddings act as a beneficial noising mechanism,
akin to regularization: altering a token’s embedding depending on the position
helps the model not to overfit.

We also find that self-attention triggers an inverse recency effect on accuracy:
performance is better when the target feature is towards the beginning of the se-
quence. Indeed, there is a highly significant Pearson correlation of -0.51 between
position and accuracy for models with self-attention vs. no significant correla-
tion for models without it. This recency effect is probably due to the fact that
self-attention can copy a feature through the following hidden states, so an earlier
feature will tend to be more prominent in the weighted sum, and thus easier to
detect. We find that this copying mechanism improves results for earlier tokens
without significantly harming performance in later tokens.

Thus, the first take-home message from our experiments is that the presence of
a component in a Transformer architecture does not imply that the model will learn
to use it as expected in a task, even if it puts it to a use that improves performance.
In T1, self-attention preserves information, and positional encoding possibly adds
noise, and both have a serendipitous positive effect. This underscores the need for
model analysis.

Task 2. When moving to two-feature detection (T2), there is a predictable drop
in accuracy. The models have problems when the queried features are in different
tokens (false negatives), with a 25% accuracy drop, and when only one target
feature occurs in the sequence (false positives), with a 40% drop. The main reason
why features in different tokens are missed is that decoder attention fails to operate
distributively, i.e., to focus on two different input tokens at once: On average,
the difference between the decoder attention weight of the most attended token
and the second most attended token is of 0.6-0.7 across the models, showing that
decoder attention indeed focuses on a single token.
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Given that the feature combinations are random, it is not clear how self-
attention could help, and indeed using self-attention does not improve results.

Task 3. The T3 results show that all model variants can easily learn to detect
a class instance, or feature disjunction, even when using an indirect mapping.
Decoder attention suffices, as the models learn to associate a query with both
features of its class and trigger high attention values when either of them is present
in a token (average attention on target token between 0.6-0.7 for all variants).
Here, model behaviour is as expected.

Contextualization. Self-attention should help with contextualized feature de-
tection (T4 and T5), by highlighting a specific feature only when it is preceded by
one of the other features it is associated with. However, models settle for a de-
generate strategy instead, and thus we detect no competitive advantage for models
with self-attention (compare models T-Pos-Att and T-Pos+Att in Table 2.2). In
T4, they answer ‘yes’ if one specific feature is present in the sequence (always the
same feature for each query): Average attention for the more attended feature in
each query is around 0.9, while the average attention on the other relevant feature
is around 0.05. The maximum accuracy for this strategy is 87.5%, which is about
what the best models reach in T4.

Thus, the need to contextualize by itself is not enough for models to profit from
self-attention; instead, as we will see next, the need to track order does trigger a
productive use of self-attention.

Ordered feature detection. In T6 and T7, using self-attention brings accuracy
from near chance to 92.1% and 78.6%, respectively (compare models T-Pos-Att
and T-Pos+Att in Table 2.2). We find strong evidence that the models with self-
attention use it to record the presence of the first feature in the hidden state of
the token containing the second, as we predicted it should do already for tasks
requiring contextualization: In both T6 and T7, model T-Pos+Att puts most of
the decoder attention on the second feature-carrying token in the sequence, as we
show next.

We report in Table 2.3 the difference between the average decoder attention
on the second vs. first feature-carrying token for T6, T7, and T5, which is the
unordered version of T7. In models that use self-attention as predicted, this dif-
ference will be large and positive. We see in the first column of the table that
for T5, where order does not matter, the difference is very low, while it is much
larger for T6 and T7. This confirms that there has been a change in strategy, with
self-attention being productively used in the order-sensitive tasks.
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T-Pos+Att T+Pos+Att
T5 0.03±0.02 0.01±0.01
T6 0.79±0.005 -0.14±0.55
T7 0.46±0.03 0.16±0.18

Table 2.3: Average decoder attention difference (and s.d.) between second and
first feature-carrying tokens for the two models with self-attention in the contex-
tualized tasks (T6 and T7), together with T5 for comparison.

Positional encoding is an alternative mechanism to track order, and for T6 and
T7 it also improves results substantially with respect to the base models (compare
models T-Pos-Att and T+Pos-Att), though much less than self-attention.

However, using both mechanisms actually harms performance (see results for
T+Pos+Att). Self-attention and positional encoding seem to get in the way of each
other, making it harder, when combined, for the model to converge on a single
strategy to track order. We see evidence for this in Table 2.3, where the full Trans-
former (T+Pos+Att) has a much smaller difference for T7 compared to model T-
Pos+Att, and a negative difference for T6 (meaning that it puts more attention on
the first feature-carrying token). Moreover, the full Transformers exhibit a large
standard deviation in both order-sensitive tasks, which means that different runs
converge on different strategies. In contrast, the models with self-attention show
a really low standard deviation; they always converge on the expected strategy.

Impact of sequence length. Figure 2.3 presents average accuracies for sequence
lengths from 5 to 30 (in steps of 5; error bars represent standard deviations across
5 random seed initializations). The patterns discussed for length 10 are generally
confirmed at other sequence lengths. We further notice that longer sequences are
beneficial for “easy” tasks, such as T1 and T3 (perhaps they help models avoid
trivial guessing strategies). On the other hand, when the complexity of the task
is higher (Tasks 5, 6 and 7), longer sequences are detrimental to model perfor-
mance. Accuracies for tasks for which degenerate solutions were found for se-
quence length 10 (T2 and T4) do not change across sequence length, indicating
that the strategy does not change either. Also, note that for the most difficult tasks
(T5-T7), model T-Pos+Att is consistently better in longer sequences. Thus, the
“getting in the way” effect observed above holds for the three tasks.

2.5.2 LSTM

In general, the performance of LSTM models on our tasks is markedly worse
than that of the Transformer, and they are impacted by sequence length to a much
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Figure 2.3: Model performance on multiple sequence lengths for all tasks
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larger extent (see Figure 2.3). This could be expected given general results on
the two architectures (Transformers outperform LSTMs in most computational
linguistics tasks, and LSTMs have been shown to have issues with long-distance
dependencies). There are two notable exceptions to these general trends.

First, the accuracy of the LSTM with attention in Task 1 shows a characteristic
V-shape, dropping at first and recovering for longer sequences (cf. orange solid
line in Figure 2.3).2 The result is that its performance is on par with that of the
Transformer models in sequences of lengths 5 and 30.

We find that the LSTM changes its behaviour, from a simple recurrent LSTM
to an actual attention-based LSTM. Indeed, for short sequences, it does not use
decoder attention to identify the target feature (and still performs optimally): for
instance, for sequence length 5, the attention is distributed uniformly, with atten-
tion values of around 0.2 on all the input tokens. Instead, for long sequences it
does use the attention mechanism: the attention values spike on the position of the
input that contains the queried feature (e.g., with an average of 0.85 for sequence
length 30). This ability to switch behaviours could theoretically help also for other
tasks, but it seems that the complexity of the tasks prevents the model from doing
so.

Second, the LSTM with attention surpasses all Transformer variants for short
sequences in Tasks 2 and 4. Recall that the Transformer models reached a degen-
erate solution for these tasks (with a maximum accuracy of 87.5%), in which only
one of the two relevant features was attended to; instead, the LSTM solves the
task correctly, because the information about the previous tokens flows through
the recurrent steps in the token representations.

As for the differences between the two model variants of the LSTM, the model
enhanced with the decoder attention is consistently better than the classic, basic
model. This suggests that the decoder attention mechanism (also present in all the
Transformer models) is beneficial independently of the base architecture.

2.6 Discussion
Our tasks shed light on how the main model components act and interact regarding
the retrieval of discrete information from sequences, uncovering behaviours that
would be difficult to detect when the architectures are applied to complex NLP
tasks.

A take-home message from our experiments is that the presence of a com-
ponent in an architecture does not imply that the model will learn to use it as
expected in a task. In particular, we found that only the need to track ordered

2Instead, the basic LSTM model degrades quickly and monotonically with sequence length;
see dashed orange line.
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information led the architecture to use self-attention in the predicted way, and that
decoder attention can be difficult for LSTMs to use correctly when the complexity
of the tasks increases, but it is efficient in simple tasks.

On the other hand, the components can assume unexpected functions. Self-
attention in transformers can simply serve to blindly propagate information across
time, leading to more robust representations of features contained in earlier to-
kens, that are copied over and over. Also, surprisingly, positional embeddings
provide a small but consistent benefit in tasks that do not require order tracking.
This suggests that they might have a serendipitous function, possibly adding help-
ful noise to the representations. Moreover, as both self-attention and positional
embeddings can learn to keep track of order, the two mechanisms get in the way
of each other, making it harder, when combined, for the Transformer models to
converge on a single strategy to track order.

Regarding LSTM, the sequence length is a very big factor. The model has a
steep loss in performance when the sequence gets longer. On the simplest task,
the model enhanced with decoder attention develops the ability to switch between
strategies, but this doesn’t generalize to the more complex ones.

To conclude, we hope to have shown that the proposed tasks constitute a useful
probing mechanism for the ability of models to detect discrete information in
sequences, testing in particular four key abilities: incremental processing (in the
sense that the query is not known at input processing time), indirect mappings,
context-dependence and order tracking. We have shown that most of the tasks are
difficult for models even for short sequences; and the tasks can be easily extended
to more dimensions and even longer sequences.

Future work with our controlled setup should go in two different directions:
1) examining how behaviour changes when the probed models are scaled by in-
creasing the number of layers and attention heads, and 2) modifying the models to
solve some of the problems that we encounter in the current experiments. We fol-
low the second proposal in our model developments by adding additional modules
to the default architectures.

Regarding the impact of these findings in the perspective of modelling refer-
ence to entities, we conclude that the decoder attention is a simple and efficient
mechanism for identifying and extracting a single feature from a sequence, and it
can be placed on top of both Transformer and LSTM. This can prove valuable in
the case of simple referential patterns like proper noun entity identification, and
also in the case of querying a set of entity representations to identify the specific
entity we referred to with our query (which can be the representation of a refer-
ential expression). On the other hand, capturing more complex referential phe-
nomena like attributes or relationships to other entities would involve contextual-
ization or order tracking, phenomena that get poor results in our controlled tasks.
This conclusion calls for an introduction of some biases towards these referential
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phenomena, either through data distribution or through architectural changes. We
explore the change of data distribution in Chapter 3 with analysis of pre-trained
language models trained on natural data, and we develop architectural changes to
the standard models in Chapter 4 where we propose additional modules for better
handling of entity information.
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Chapter 3

ENCODING REFERENTIAL
INFORMATION IN LANGUAGE
MODELS

3.1 Introduction

With the previous analysis study, we investigate how standard neural network
architectures capture patterns essential to the development of an entity-centric
model. Even though these insights are valuable to our model design, a prereq-
uisite for a good entity-centric computational model is a performant component
that encodes good linguistic representations, focusing especially on capturing well
linguistic context and rich semantic representations of entities.

Neural network-based language models (LMs) provide good general linguistic
representation for a wide range of NLP tasks, and they have been shown to en-
code relevant properties of language without being explicitly trained for them. In
particular, recent work suggests that they are able to capture syntactic relations to
a large extent (Gulordava et al., 2018b; Kuncoro et al., 2018; Wilcox et al., 2018).

In this chapter, we extend this line of research to analyze whether they are
able to capture referential aspects of language, focusing on anaphoric relations
(pronoun-antecedent relations, as in she-Yeping Wang in Figure 3.1).

Previous work, such as Ji et al. (2017), Yang et al. (2017) and Cheng and Erk
(2019), showed that augmenting language models with a component that uses an
objective based on entity or coreference information improves their performance
at language modelling. Intuitively, in the example in Figure 3.1, understanding
that the first she refers to Yeping Wang makes words related to studying or working
more likely to follow than other kinds of words. That is, referential information
helps language models do their task.
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. . . he1 was elected to be president of the People’s Republic of China, and
chairman of the2 Central2 Military2 Commission2. Yeping3 Wang3 was
born in Shanghai in 1926. She3 studied in Shanghai Foreign Language
College, and started working in 1949. For a long time, she3. . .

Figure 3.1: Example from OntoNotes with a window of 60 tokens (as used in our
first probe task). Both occurrences of she refer to the same entity as Yeping Wang.
Note that not all entity mentions are annotated in OntoNotes –only those that enter
into coreference relationships in the document.

The cited work includes explicit coreference guidance; however, since refer-
ential information is useful for language modelling, we expect language models to
learn referential information even without explicit supervision. Here we analyze
to what extent this is the case.

We carry out our analysis using probe tasks, or tasks that check whether certain
information is encoded in a model (Adi et al., 2016; Linzen et al., 2016; Conneau
et al., 2018c; Giulianelli et al., 2018b). The reasoning is as follows: Even if a
linguistic property is encoded in the network, it is not necessarily directly acces-
sible through the model output; therefore, we train a probe model to predict a
feature of interest, in this case anaphoric coreference, given the model’s hidden
representations as input.

We focus on two main linguistic levels that are relevant for entity processing:
linguistic context, with grammatical patterns such as the fact that pronouns agree
in number and gender with their antecedents, and global semantic representa-
tion of entities – the ability to build entity representations that encode entity’s
defining features and learn to differentiate between two entities based on their
representations.

Our hypothesis is that language models will capture grammatical properties,
but not semantic entity representations. This hypothesis is based on the obser-
vation that the former are formal properties of language that are easier to induce
from co-occurrence patterns. The fact that language refers to entities is not ob-
vious from language alone Harnad (1990), and LMs use only textual input. Fur-
thermore, we consider that the lack of explicit components for entities in the LM
makes it very difficult for the language model to create specific semantic entity
representations.

What we find is that, while it is true that language models are much better at
grammar, they do show evidence of learning semantic information to some extent
(even though this is overshadowed by factors like proximity). Our explanation
for this partially positive result is that, because the same entity underlies all its
mentions, the contexts in which the mentions appear are coherent and distinct
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from those of mentions of other entities. For instance, in Figure 3.1, the second
she mention gives additional information about Yeping Wang that is consistent
with the information given in the previous sentence.

The contributions brought by the current chapter are the following:

• First, we provide an analysis methodology to probe for referential informa-
tion encoded in language models, on two kinds of levels: linguistic context,
and global semantic representations. This methodology can be applied to
any architecture.

• The second contribution is a deeper understanding of the referential capa-
bilities of current language models, and of the differences between Trans-
formers and LSTMs. The Transformer outperforms the LSTM in all the
analyses. For the local patterns, the Transformer and the LSTM have the
same behavior with a performance difference; instead, they show different
behavior with regard to the global semantic information. These last dis-
coveries help us understand the viability of pre-trained language models as
a component of an entity-centric model and it also unveils which features
are still not present in current models and need to be induced through new
model developments.

3.2 Related work
Coreference and anaphora resolution (Mitkov, 2002; Poesio et al., 2016) are among
the oldest topics in computational linguistics and have continued to receive a lot of
attention in the last decade, as manifested by several shared tasks (Pradhan et al.,
2011b, 2012; Poesio et al., 2018). In our analysis we use the OntoNotes dataset
Hovy et al. (2006); Pradhan et al. (2012), developed within the coreference reso-
lution community. Our probe tasks are related to coreference resolution; however,
our goal is not to train a coreference system but to analyse whether language mod-
els extract features relevant for reference without explicit supervision.

A recent line of work has focused on demonstrating that neural networks
trained on language modeling, without any linguistic annotation, learn syntac-
tic properties and relations such as agreement or filler-gap dependencies (Linzen
et al., 2016; Gulordava et al., 2018b; Kuncoro et al., 2018; Wilcox et al., 2018;
Futrell et al., 2018). This is typically done by analysing the predictions of LMs
on controlled sets of data. Part of this research uses probe models (also known
as diagnostic models) to analyse the information contained in their hidden repre-
sentations (Adi et al., 2016; Conneau et al., 2018c; Hupkes et al., 2018b; Lakretz
et al., 2019; Giulianelli et al., 2018b), as we do here —applying it to referential
information.
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There is less work on referential information than on syntactic properties such
as subject-verb agreement. As for anaphoric reference, Peters et al. (2018a) in-
clude a limited test using 904 sentences from OntoNotes. Their results suggest
that LMs are able to do unsupervised coreference resolution to a certain extent;
our first probe task can be seen as an extended version of their task obtaining
more specific insights. Jumelet et al. (2019) analyze the kind of information that
LSTM-based LMs use to make decisions in within-sentence anaphora. They find
a strong male bias encoded in the network’s weights, while the information in the
input word embeddings only plays a role in the case of feminine pronouns. We
analyze anaphora in longer spans (60 tokens / whole document) and include also
a Transformer.

The above work suggests that LMs capture grammatical patterns about anaphora
to a large extent. There is much less evidence that LMs can capture a notion of en-
tity, as that which nominal elements refer to, and that they are able to track entities
across a discourse. Parvez et al. (2018) show that LSTM-based models have poor
results on texts with a high presence of entities; Paperno (2014) that they cannot
predict the last word of text fragments that require a context of a whole passage
(as opposed to the last sentence only), with data that mostly contain nominal ele-
ments. Several models (Henaff et al., 2019; Yang et al., 2017; Ji et al., 2017) were
developed as an augmentation of RNN LMs to deal better with entities, with the
implicit assumption that standard models do that poorly.

As for Transformer-based architectures, recent research suggests that they give
same or better contextualized representations in comparison with LSTM language
models, and that they better encapsulate syntactic information (Goldberg, 2019;
Wolf, 2019). On the other hand, van Schijndel et al. (2019) show that big Trans-
former model representations perform on par or even poorer than smaller LSTMs
on tasks such as number agreement or coordination, and that, like LSTMs, they
have the problem that agreement accuracy decreases as the subject becomes more
distant from its verb. Most recent work on analysis of linguistic phenomena in
NNs focuses on BERT (Tenney et al., 2019b; Clark et al., 2019; Reif et al., 2019;
Broscheit, 2019). In this chapter, we chose to use TransformerXL (Dai et al.,
2019b) as our Transformer model, and not BERT, for comparability: We wanted
to compare the two most standard architectures for LMs on as equal ground as
possible, and the two chosen models, TransformerXL and AWD-LSTM (Merity
et al., 2017), share the same training objective and are trained on the same data,
with comparable vocabularies.
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3.3 Analysis: linguistic context
To shed light into which patterns LMs encode that are useful for coreference, we
train a simple anaphora resolution probe model using the hidden layers of LMs as
input. By the logic of probe tasks, if the probe model is successful then that means
that the relevant information is encoded in the hidden states, and error analysis can
provide insight into which kinds of information are available.

3.3.1 Experimental Setup
Data. We train our probe models on data from OntoNotes 5.0 Weischedel et al.
(2013). We use the annotated coreference chains, as well as the provided part-of-
speech tags (the latter only for analysis purposes).

We take all pronouns that have at least one antecedent in a 60-token context
window; the task of the probe model is to identify their antecedent.1 An example
datapoint is provided in Figure 3.1 above (note that a window of 60 tokens allows
us to check anaphora beyond the sentence). For simplicity, antecedents are tokens,
but typically there is more than one possible token antecedent for a given pronoun:
A mention can span several tokens (Yeping Wang), and the window can contain
several mentions from the same coreference chain (Yeping Wang and the first She
in Figure 3.1); we consider any of the tokens a correct answer. Note that we are
not training the model to explicitly identify mentions, their spans or the complete
coreference chains, but to identify the tokens that are antecedents of the target
pronoun.

To obtain enough data for analysis, especially for low-frequency phenomena,
we follow Linzen et al. (2016) in reversing the original partitions of the corpus,
using the original test set for training and the original training set for testing.
Using little training data has also been shown to lessen the possibility of confounds
in the probe model results; in particular, it makes it more difficult for the probe
model to exploit regularities in the training data rather than capturing the analyzed
model’s ability to capture a phenomenon Hewitt and Liang (2019). Voita and Titov
(2020) present a theoretical justification from a information-theoretic perspective
on this problem. 2

In addition, we focus on the OntoNotes documents that belong to narrative
text sections because the dialogue data does not come with turn segmentation.3

1We also experimented with windows 20 and 200, obtaining a similar picture.
2Results on the original split confirm that the conclusions of the chapter are robust: we see an

increase in performance of around 3% overall, as could be expected because we use more data,
but the same behavior patterns (on the data that can be compared).

3We keep newswire (NW), broadcast news (BN), magazine (MZ), web data (WB), and pivot
text (PT), removing broadcast conversation (BC), telephone conversation (TC).
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Tokens Datapoints

Train 191,830 4,949
Dev 275,201 4,556
Test 2,026,565 45,665

Table 3.1: Dataset statistics for first probe task. We reverse the original train and
test partitions (see text).

Resulting data statistics for our task are provided in Table 3.1.

Language models. The base language models we use are AWD-LSTM (Merity
et al., 2017) and TransformerXL (Dai et al., 2019b), two models with the most
standard architectures for language modeling as of 2021 (LSTM, Transformer).
We chose these models for comparison because they are trained on the same
dataset (Wiki103; Merity et al., 2016), they have a comparable vocabulary, and
they are both very strong language models, with perplexities of 24 for Trans-
formerXL and 33 for AWD-LSTM. TransformerXL is a bit larger than AWD-
LSTM, though (151 million parameters compared to 126), which should be kept
in mind when assessing results.4

Probe model. For each word xi in the window of size m preceding the target
pronoun xt , we obtain its contextualized representation hi from the last hidden
layer of the language model (Eq. 3.1). The probe model takes this representation
as input and is trained to map it onto a vector oi using a non-linear transformation
(Eq. 3.2). The target pronoun representation is transformed in the same way.
The dot products between these transformed representations of target and context
word vectors give the attention weights re fi (Eq. 3.3) representing the similarity
between two representations. The weights are transformed into probabilities using
the softmax function (Eq. 3.4). Like this we obtain a probability distribution pi
over context tokens.

During training, the probe model’s objective is to assign higher probabilities
(and thus attention weights) to correct antecedents, and lower probabilities to in-
correct ones, through the use of the Kullback-Leibler divergence loss (Eq. 3.5).
We use the KL loss because we frame the task in terms of a probability distribu-
tion over mentions in the context. For the reasons discussed above, there can be

4We also trained an in-house LSTM on data that are more similar to those of OntoNotes and
a smaller vocabulary. The results for this model (not reported) follow the same patterns as those
found for the AWD-LSTM and TransformerXL models, although the performance on this probe
task is much higher than that of AWD-LSTM.

34



“output” — 2021/11/30 — 22:50 — page 35 — #49

k > 1 correct predictions out of m tokens in the window. We assume that gold
probability distribution is uniform over k correct tokens, that is, each of these
tokens has a probability p∗i =

1
k and all other tokens have a probability of 0.5

hi = LST M(xi) (3.1)
oi = ReLU(W ∗hi +b) (3.2)

re fi = oi⊙ot ,∀i ∈ [t−m, t−1] (3.3)
pi = so f tmax(re fi),∀i ∈ [t−m, t−1] (3.4)

L = KL(pi, p∗i ) (3.5)

As mentioned above, we fix m = 60. We train the probe model for 50 epochs
with a learning rate of 1e-5 and ADAM as optimizer. The transformed vectors oi
have a dimensionality of 650 in the case of both models in comparison with hi
which is 400 for the AWD-LSTM and 1024 for TransformerXL.

Baselines. We report two rule-based baselines that give relatively good perfor-
mance in anaphora resolution: Referring to the previous entity (given by the oracle
gold annotation; in Figure 3.1, she would refer to the previous She), and always
pointing to the token in the window that has the same form as the target pronoun
(that is, in Figure 3.1, she→ She —we ignore capitalization). In addition, to com-
pare the result of the probe model with the input representations, we also report an
unsupervised baseline: Referring to the token in the window that has the highest
similarity cos(hi,ht) to the target pronoun, i.e., relying on the similarity between
the non-transformed hidden representations.

3.3.2 Results
Table 3.2 summarizes the results of the pronominal anaphora probe task. The
probe model trained on top of the LSTM improves a bit over the strongest base-
line, and that of the Transformer does so substantially (75.9 vs. 61.3; the LSTM
obtains 64.8). This performance suggests that the LMs use more information than
simple heuristics like referring to a token with the same form.

The unsupervised similarity baseline performs worse than the rule-based base-
lines. This is to be expected: The “raw” similarity between hidden states is based
on many more aspects than those related to reference, given that hidden states

5Note however that minimizing KL divergence and minimizing cross-entropy gives the same
results, because KLdiv(p||q) = CrossEntropy(p,q)− entropy(p), and entropy(p) is constant.
Technically, in PyTorch the cross-entropy loss is only implemented for classification task targets,
while the more general KL loss is available for predicting probability distributions.
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Model Accuracy

closest gold entity 56.1
closest same-form token 61.3

unsup. sup.
LSTM 41.7 64.8
Transformer 48.5 75.9

Table 3.2: Probe model results on anaphora resolution.

are responsible for capturing all the contextual features that are relevant for word
prediction. This is why a probe model is needed to distill the reference-related
information from the hidden layers.

Figure 3.2: The distances between the pronoun and its gold and predicted an-
tecedents for AWD-LSTM.

A single non-linear layer trained on only 5K datapoints improves performance
by 23-28 absolute accuracy points (supervised vs. unsupervised results), which
suggests that the referential information in the hidden layers is easy to extract.
Behaviorally, the unsupervised hidden layers are quite similar to the baselines.
First, they are biased towards tokens of the same form: in 27.1% of the cases, the
LSTM layer of the pronoun presents the highest similarity to a token with the same
form; 29.1% in the case of the Transformer. Second, they prefer close antecedents,
although the LSTM presents this recency bias to a much higher degree: in 27.8%
of the cases, the LSTM layer of the pronoun has the highest similarity to the
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Figure 3.3: The distances between the pronoun and its gold and predicted an-
tecedents for TransformerXL.

previous token (16.4% in the Transformer) 6. Instead, the probe models tend to
refer to entities that are further away from the target than the closest gold entity
(74.2% cases in the case of the Transformer), suggesting that they do not rely on
a simple recency bias either . This observation is confirmed when looking at the
distribution of predicted antecedents and gold antecedents (Figures 3.3 and 3.2).

The great difference in performance between AWD-LSTM and TransformerXL
could suggest that the latter is using different strategies compared to the former.
Instead, except for the recency bias, what we find are exactly the same patterns
in behavior, with a systematic 10% accuracy gap. For this reason, although we
provide results for both models everywhere to show that this observation indeed
holds, in this section we will mostly focus on the Transformer when commenting
results.

3.3.3 Grammatical Patterns
The models clearly learn grammatical constraints related to anaphora that are
well-studied in the literature and are relied upon by traditional anaphora reso-
lution models (Sukthanker et al., 2018). First, as shown in Table 3.3, the Trans-
former identifies mentions (elements inside some coreference chain) in 92.6% of
the cases. Moreover, it correctly learns that pronouns typically refer to nominal

6The attention mechanism of the Transformer gives access to a broader context and allows it
to overcome the recency bias to some degree
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LSTM Transformer
in chain 90.2% 92.6%

POS Perc. Acc Perc. Acc
Noun phrase 15.5 50.9 17.0 62.3
Proper noun 20.2 64.3 20.0 74.9
Pronoun 59.0 71.5 59.0 82.6
Other 5.3 67.3 3.0 81.6

Table 3.3: Statistics on types of mentions that the probe models refer to, for pre-
dictions that are in a coreference chain. ‘Noun phrase’ stands for elements that are
typically within a noun phrase (note that our system points to individual tokens):
Determiners, nouns, and adjectives.

elements (almost 95% identified antecedents are pronouns, proper nouns, and el-
ements within a noun phrase headed by a common noun). Note that pronouns can
also have non-nominal antecedents, although these are the minority of the anno-
tations in OntoNotes (cf. example 4 in Figure 3.6, where it refers to an event).
Even in the cases in which the Transformer points to elements outside of a chain
(7.4%), it points to nominal elements 87% of the time (not shown in the table).
The model is most accurate when referring to pronouns (82.6% accuracy), while
noun phrases are the hardest category (62.3%). This is consistent with the strate-
gies that the model learns, since it largely relies on pronominal agreement, as
described below.

LSTM Transformer

Pron-ant. Perc. Acc Perc. Acc

sg-sg 97.7 66.3 98.7 76.0
sg-pl 2.3 20.5 1.3 36.7

pl-sg 35.5 40.8 27.5 53.1
pl-pl 64.5 67.7 72.5 72.3

Table 3.4: The types of noun phrase antecedents the models choose, by number
agreement (e.g., ‘sg-pl’ means ‘anaphoric pronoun is singular, antecedent plural’).

Second, not only do the models mostly point to nominal elements, but they
also identify the morphosyntactic properties of pronouns and learn that they should
agree with their antecedents in gender and number. Figure 3.4 shows the distri-
bution of pronoun antecedents that the Transformer predicts, for the six most fre-
quent target pronouns. Its preferred type of antecedent are pronouns of the same
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Figure 3.4: Pronominal agreement with Transformer probe model: Proportion of
cases in which elements in the rows corefer with elements in the columns.

Figure 3.5: Pronominal agreement with Transformer probe model: Proportion of
cases in which elements in the rows corefer with elements in the columns.
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1. Why had Mr. Korotich been called? “I told my driver,” he said, “that
he

2. While Peter was still in the yard, a servant girl of the high priest came
there. She saw him warming himself by the fire. She looked closely at
him

3. The performance by more than 40 members of the Rome Philhar-
monic Orchestra intoxicated the audience and the musical fountain,
hi-fi sound effect, fountain screen and stereographic projection brough
them

4. Mr. Gonzalez expressed concern over a report that the two had been
summoned to Washington by Mr. Wall last week to discuss their testi-
mony in advance. “I think he is trying to improperly influence a wit-
ness, and by God I ’m not going to tolerate it

Figure 3.6: Difficult cases of anaphora. The target pronoun and its antecedent are
in bold; the prediction of the model is in italic.

form, but it is also able to point to other pronouns agreeing in number and gen-
der. For instance, pronoun he points to 3rd person, masculine, singular pronouns
(mostly he, but also his, him) —a pattern consistent across all pronouns. We can
visualize similar patterns for the LSTM model in Figure 3.5 with slightly more
noise due to its worse general performance.

Figure 3.4 is restricted to pronouns; Table 3.4 shows that the models also
largely follows number agreement when predicting antecedents within noun phrases
(the table collapses common noun and proper noun antecedents). Given a singular
pronoun, the Transformer model chooses a singular antecedent 98% of the time;
given a plural pronoun, it identifies a plural antecedent in 73% of the cases.

Note that in cases of plural pronouns such as they it is common that the referent
be a singular noun (e.g., the audience in example 3, Figure 3.6), reflected by the
reasonable accuracy of the Transformer in pl-sg cases (53.1%).

3.4 Analysis: emergence of entity representations

The language model clearly captures grammatical properties that constrain anaphora
resolution; in this section, we show that it struggles more with the semantic (ref-
erential) aspect, but it still captures it to some extent.
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3.4.1 Ability to distinguish different entities

Figure 3.7: Transformer probe model: Accuracy as a function of the proportion
of mentions that are antecedents (vs. distractors) in the window.

If the model were able to model entities, it should be robust to distractors, that
is, mentions in the context that are not antecedents –in Figure 3.1, he and the Cen-
tral Military Commission. Figure 3.7 shows that the accuracy for the Transformer
decreases as does the proportion of gold mentions. We compute this proportion as
the number of gold mentions in the 60-token window divided by the total number
of mentions in the same window. When there are no distractors (gold proportion
= 1), accuracy is very high, which is to be expected given that the model learnt
to identify mentions in the first place (cf. previous section). The more distractors
(i.e., the lower the proportion of gold mentions), the lower the accuracy; however,
accuracy decreases rather gracefully. Even when there are only 10% gold men-
tions in the window, accuracy for most pronoun types is still around 60-80%. The
exception is it, which is the most difficult pronoun for the model, presumably be-
cause it can refer to many kinds of antecedents. When we visualize the behaviour
of the LSTM relative to the proportion of distractors (Figure 3.8, the tendencies
seem to be the same as the ones for TransformerXL, even though the curves are
steeper, the model being more confused with a higher number of distractors.

7

7While most personal pronouns refer to people, which are relatively homogeneous kinds of
referents, it refers to very varied kinds of referents. Qualitative analysis suggests that the model is
quite successful when it refers to concrete entities (province, peanut), but much less when it refers
to abstract objects like propositions or events, as in example 4 of Figure 3.6 (where it refers to the
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Figure 3.8: LSTM probe model: Accuracy as a function of the proportion of
mentions that are antecedents (vs. distractors) in the window.

Figure 3.7 thus paints a nuanced picture: distractors confuse the model, but
they do not fool it completely. Given the results in the previous section, we expect
that distractors sharing morphosyntactic features will be particularly challenging.
Table 3.5 confirms this, zooming in into pronominal distractors. We consider a
datapoint having a pronominal distractor if one of the antecedents is a pronoun
pointing to another entity.

When there are no pronominal distractors (25.9% of the test set), the accuracy
of the Transformer is 81.8%; with at least one distractor, it goes down to 73.8% —
clearly worse but not dramatically so. However, in cases where anaphoric pronoun
and antecedent have the same gender, number, or are the same pronoun, we get
much lower accuracies (48.6, 65.3, and 49.1, respectively). This suggests that that
the model overly relies on morphosyntactic features and recency (see previous
section).Among the hardest cases are those where two coreference chains in the
window have the same pronoun (e.g. he) or gender (e.g. he-his). Most of these
cases appear when the text includes reported speech (see Figure 3.6, example
1). Otherwise, there are few cases of such local ambiguity, which is presumably
avoided by language speakers. However, qualitative analysis suggests that the
presence of distractors is also problematic in the case of nouns, as illustrated in
example 2 of Figure 3.6, where the model is presumably confused by a noun of

event of trying to improperly influence a witness). A quantitative check confirms this hypothesis:
Cases in which the model fails have around 18% of verbal references, compared to less than 2%
for cases in which the model is right.
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L T Base
Type Perc. Acc. Acc. Acc.

No distractor 25.9 74.9 81.8 100

Distractor(s) 74.1 61.3 73.8 32.0
= gender∗ 4.8 40.9 48.6 15.7
= number 37.2 55.7 65.3 26.6
= pron. 10.3 39.7 49.1 20.3

Table 3.5: Percentage of datapoints with/without pronominal distractors and ac-
curacy of the models (LSTM - L, Transformer - T) and baseline (last column).
∗Excludes cases with no marked gender (like I, you).

the same gender and number as the pronoun (priest vs. Peter-him).
However, accuracy in these cases goes down but is still decent, compared to a

reasonable baseline (last column in the table). For each target anaphoric pronoun,
we calculate baseline accuracy as the percentage of gold pronouns in the window
(pronouns that are in the same chain as the target), that is, number of gold pro-
nouns divided by the total number of pronouns in the window. Then we calculate
the average of this accuracy over the respective subset (no distractors / distractors
/ same gender, etc.). The baseline when there are no distractors is by definition
100%; when there are distractors, it ranges between 15.7 and 32%. All model
accuracies are well above this baseline.

The results thus suggest that the models are able to distinguish mentions of
different entities locally to some extent, although they are far worse at this than
at capturing morphosyntactic features. In the following subsection, we provide
further support for this interpretation at a more global level.

3.4.2 Clustering of mentions into entities

Our last piece of analysis looks at whole documents. We aim at testing whether
the hidden representations of the language models contain information that can
help distinguish mentions of the same entity from mentions of some other entity,
even if they are of the same form; for instance, a pronoun she referring to two
different women. We use coreference chains to identify the tokens referring to the
same entity, and train a probe model to determine when two pronouns are referring
to the same entity, that is, whether they are part of the same coreference chain in
a document. In the previous probe task, where the model was trained to find a
correct local antecedent, the model could use cues such as linear distance and
syntactic relations; here it should rely on more persistent entity-related features in
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the hidden representations.

Experimental Setup. We focus on pronouns because they cannot be disam-
biguated on the basis of lexical features. We use the same train/test partition as in
the first probe task. For each datapoint, we have two pronouns: x and y, which
can either come from the same chain, or not. Again, we take each pronoun to
be represented by the last hidden layer representation of the language model (Eq.
(3.1)): hx and hy. We call this representation unsupervised, and will compare it to
the supervised one, obtained as follows.

Similarly to the previous probe task, the embeddings are transformed through
a learnt linear transformation to a 400-dimensional vector to extract features rel-
evant for the entity identification task (Eqs. (3.6) and (3.7)). We take the cosine
between the transformed representations as the similarity between the two pro-
nouns.

We take as positive datapoints pairs containining two pronouns belonging to
the same chain, as negative datapoints two pronouns from two different chains.
During training, for each document, we extract all positive pairs and then ran-
domly select the same number of negative pairs. The model optimises max-margin
loss on these datapoints (Eq. (3.8), where x and y belong to the same chain and x′

and y′ belong to two different chains).

ox =W ∗hx +b (3.6)
oy =W ∗hy +b (3.7)

L = 1− cos(ox,oy)+ cos(ox′,oy′) (3.8)

To evaluate the distance metric learnt by the model we use the silhouette coef-
ficient (Rousseeuw, 1987), which is commonly used for intrinsic clustering eval-
uation. The silhouette coefficient for each pronoun x is defined as in Eq. (3.9),
where a is the mean distance between x and all other items in the same chain, and
b is the mean distance between x and all other items in the closest chain (measured
in the learnt space, not in terms of linear distance). Its range is [−1,1], with 1 cor-
responding to the pronoun being much closer to the other pronouns in its chain, 0
being borderline (equally close to the two compared chains), and -1 being much
closer to the pronouns in the other chain. The average silhouette coefficient is
used as an overall measure of clustering quality. A score below 0.25 is usually
deemed a null result Kaufman and Rousseeuw (1990).

s =
b−a

max(a,b)
(3.9)
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The probe model is trained for 50 epochs, keeping the model at the best vali-
dation epoch, i.e., where the silhouette score over the validation data is highest.

In addition to the trained probe model, we provide the results on global entity
discrimination for the unsupervised baseline which computes the cosine similar-
ity between the non-transformed hidden representations of the language models,
similarly to the first probe task.

Results. All the obtained values are well below 0.25. Table 3.6 contains the
results for all the datapoints as well as divided into easy and difficult documents.
In easy documents, all the chains have different pronouns, so they can be distin-
guished by the token form only. Difficult documents contain confusable chains,
that is, there are at least two different chains which share the same pronoun. Co-
efficients are a bit higher for easy documents, but still very low, and, for complex
documents, they are virtually zero. Moreover, the supervised models performs
marginally better than the cosine baselines, but clearly do not learn any reliable
information.

LSTM Transformer

N unsup sup unsup sup

all 1142 -0.09 0.02 -0.08 0.03
easy 194 0.12 0.14 0.13 0.16
diff 948 -0.13 -0.007 -0.13 0.01

Table 3.6: Results for the second probe task (average silhouette coefficient).

Indeed, the average distances within and across chains seem to confirm these
results. If models were capturing global entity-related properties in their mention
representations, we would expect pronouns with the same form but in different
chains to be further away than pronouns (of any form) that belong to the same
chain; instead, they are at the same distance (average cosines of 0.75 / 0.76 for
Transformer, 0.74 / 0.73 for LSTM, respectively).

We conclude that the models’ sensitivity to whether two identical pronouns
belong to the same chain or not only shows if linear distance is factored out. If it
is not, as in the current experiment, the models fail completely at distinguishing
entities. This is because, with linear distance, the similarity in the entity-centered
representation space shrinks very fast; same-chain mentions that are further away
have lower average similarities than different-chain mentions that are nearby.

Following these findings, we analyze the results of the experiment relative to
linear distance. Figure 3.9 plots the similarities between positive and negative
pairs (solid and dashed lines, respectively) for the two analyzed language models,
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Figure 3.9: Linear distance in the discourse vs. cosine distance, for all the mention
pairs with the same token pronoun. Distances averaged within bins of 20 tokens.
Left: unsupervised, right: supervised.

compared to linear distance in the text. The left graph corresponds to unsupervised
similarities, the right graph to supervised similarities. To control for token form
effect, we only include data with the same pronoun pairs in this graph. Three
results stand out. First, despite training with a global objective, with no linear
information, similarities are negatively correlated with linear distance in text. This
is consistent with the tendency of the unsupervised cosine baseline of pointing to
the closest token (see Section 3.3).

The second result is that, crucially, after controlling both for distance and for
pronoun form, similarities are systematically higher for coreferring pronoun pairs
than for non-coreferring ones. Thus, some properties make their way into the hid-
den representations (and the probe model) that make coreferring mentions distinct
from non-correferring mentions —modulo distance.

Finally, the third main result is that the supervised model is able to extract
discriminating information from the hidden layers to a much larger extent in the
Transformer than in the LSTM (cf. distance between blue and red lines, respec-
tively). We interpret this to mean that such information is encoded to a larger
extent in the Transformer. Also note that the supervised LSTM model is more
sensitive to linear distance than any of the other representations (cf. the steeper
curves between 0-100 token distances). As we signaled in the previous section,
LSTM is more prone to recency biases, and it looks like global representations
contain less entity-related information than in the case of the Transformer, such
that the supervised model defaults to recency. We conclude from this that the
Transformer accounts for semantico-referential aspects better than the LSTM.

Overall, the results suggest that token form and proximity in text remain the
main properties encoded in the hidden states of entity mentions, but other prop-
erties that discriminate between coreferring and non-coreferring mentions are
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present to some extent, allowing for partial discrimination.

3.5 Conclusion
Previous work has provided robust evidence that language models capture gram-
matical information without being explicitly trained to do so (Linzen et al., 2016;
Gulordava et al., 2018b). In this chapter, we have analyzed to what extent they
learn referential aspects of language, focusing on anaphora. We have tested two
models representative of the prevailing architectures (Transformer, LSTM).

We find that the two models behave similarly, but the Transformer performs
consistently better (around 10% higher accuracy in the probe tasks).8

As expected, our results show that language models capture local anaphora
patterns: Based on the information in the hidden layers, a simple linear transfor-
mation learns to link pronouns to other pronouns or noun phrases, and to do so
largely respecting agreement constraints in gender and number. On the other hand,
models get confused when there are other mentions in the context, especially if
they match in some morphosyntactic feature, but less than could be expected.

Although it is much harder for models to induce a more global notion of en-
tity, models seem to encode slightly entity-specific information. They show some
limited ability to distinguish mentions that have the same form but are in different
coreference chains, though hampered by their heavy recency bias. The recency
bias affects LSTMs more, but is also found in Transformers, consistent with pre-
vious work on syntax (van Schijndel et al., 2019).

Our results thus suggest that language models provide representations that
capture very well contextual patterns, like gender and number. Due to the rich
general linguistic representations provided by language models and the ability to
encode contextual patterns, we consider them as a good base component for the
entity model that we aim to develop, while the rest of the model can focus on
patterns like extra-linguistic information or global semantic representations of en-
tities which are not captured by the standard language models.

8With the caveat that the model we tested is slightly bigger than its LSTM counterpart.
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Chapter 4

AN ENTITY CENTRIC NEURAL
NETWORK FOR CHARACTER
IDENTIFICATION

4.1 Introduction
Following the previous analysis studies, in this chapter, we aim at developing a
model which blends together the lexical information with the contextual one (both
linguistic and extra-linguistic) and develops meaningful entity representations that
encode specific characteristics of entities. In order to achieve our modelling goal,
we use Word2Vec embeddings for strong lexical representations of our linguistic
input. Then these embeddings are connected to a bidirectional LSTM with the
role of encoding the contextual information. Since the decoder attention proved
very powerful in identifying and extracting discrete features in Chapter 2, we use
this mechanism to query an external entity module regarding an entity represented
by the output of the LSTM.

We build on a hypothesis in recent work on referential tasks such as co-
reference resolution and entity linking (Haghighi and Klein, 2010; Clark and Man-
ning, 2016; Henaff et al., 2017; Clark et al., 2018), namely, that encouraging mod-
els to learn and use entity representations will help them better carry out referential
tasks. To illustrate, creating an entity representation with the relevant information
upon reading a woman should make it easier to resolve a pronoun mention like
she.1 In the mentioned work, several models have been proposed that incorpo-
rate an explicit bias towards entity representations. Such entity-centric models
have shown empirical success, but we still know little about what it is that they

1Note the analogy with traditional models in formal linguistics like Discourse Representation
Theory Kamp and Reyle (2013).
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JOEY TRIBBIANI (183):
“. . . see Ross, because I think you love her .”

335 183 335 306

Figure 4.1: Character identification: example.

effectively learn to model.
In this chapter, we propose two different types of modules that can facilitate

a better encoding of entities. First, we develop a static entity library, where we
have a matrix with each row representing the information about an entity. This
structure resembles the memory network (Sukhbaatar et al., 2015) which is one of
the first developments of models with external modules. Second, we implement
a dynamic entity library inspired by EntNet (Henaff et al., 2016). In this case,
each entity is associated with a key vector and a value vector. The key vector
should behave as an identifier, and it should encode more global characteristics
of the entity. On the other hand, the value vector should encode more contextual
information about each entity.

We train the developed models on the task of character identification on multi-
party dialogue as posed in SemEval 2018 Task 4 Choi and Chen (2018).2 Models
are given dialogues from the TV show Friends and asked to link entity mentions
(nominal expressions like I, she or the woman) to the characters to which they
refer in each case. Figure 4.1 shows an example, where the mentions Ross and
you are linked to entity 335, mention I to entity 183, etc. Since the TV series
revolves around a set of entities that recur over many scenes and episodes, it is
a good benchmark to analyze whether entity-centric models learn and use entity
representations for referential tasks. Even though the results are promising on the
task of character identification, this is not reflected by good entity representations,
which we reveal through representation analysis and through a new challenge set
that probes for entity information. 3

Our contributions are three-fold: First, we propose two entity-centric models
and show that they do better on lower frequency entities (a significant challenge
for current data-hungry models) than a counterpart model that is not entity-centric,
with the same model size. Second, through analysis, we provide insights into how
they achieve these improvements, and argue that making models entity-centric
fosters architectural decisions that result in good inductive biases. Third, we create
a dataset and task to evaluate the models’ ability to encode entity information such
as gender, and show that models fail at it. More generally, we underscore in this

2https://competitions.codalab.org/competitions/17310.
3Source code for our model, the training procedure and the new dataset is published on

https://github.com/amore-upf/analysis-entity-centric-nns.
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chapter the need for the analysis of model behaviour, not only through ablation
studies, but also through the targeted probing of model representations (Linzen
et al., 2016; Conneau et al., 2018b).

4.2 Related Work
Modeling. Various memory architectures have been proposed that are not specif-
ically for entity-centric models, but could in principle be employed in them: neural
turing machines (Graves et al., 2014), memory networks (Sukhbaatar et al., 2015)
Stack neural networks (Joulin and Mikolov, 2015) RelNet (Bansal et al., 2017) and
EntNet (Henaff et al., 2016). We base our first model development on the memory
network design due to its simplicity. In our second proposed architecture, we take
inspiration from EntNet because of the idea of splitting the information in keys
and values which should facilitate a more distributed encoding of contextual and
global patterns.

We show that our adaptations yield good results and provide a closer analysis
of their behavior.

Tasks. The task of entity linking has been formalized as resolving entity men-
tions to referential entity entries in a knowledge repository, mostly Wikipedia
(Bunescu and Paşca, 2006; Mihalcea and Csomai, 2007 and much subsequent
work; for recent approaches see (Francis-Landau et al., 2016; Chen et al., 2018).
In the present entity linking task, only a list of entities is given, without associ-
ated encyclopedic entries, and information about the entities needs to be acquired
from scratch through the task; note the analogy to how a human audience might
get familiar with the TV show characters by watching it. Moreover, it addresses
multiparty dialogue (as opposed to, typically, narrative text), where speaker infor-
mation is crucial. A task closely related to entity linking is coreference resolu-
tion, i.e., predicting which portions of a text refer to the same entity (e.g., Marie
Curie and the scientist). This typically requires clustering mentions that refer to
the same entity (Pradhan et al., 2011a). Mention clusters essentially correspond
to entities, and recent work on coreference and language modeling has started
exploiting an explicit notion of entity (Haghighi and Klein, 2010; Clark and Man-
ning, 2016; Yang et al., 2016). Previous work both on entity linking and on coref-
erence resolution (cited above, as well as Wiseman et al., 2016) often presents
more complex models that incorporate e.g. hand-engineered features. In contrast,
we keep our underlying model basic since we want to systematically analyze how
certain architectural decisions affect performance. For the same reason we deviate
from previous work to entity linking that uses a specialized coreference resolution
module (e.g., Chen et al., 2017).
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Analysis of Neural Network Models. Our work joins a recent strand in NLP
that systematically analyzes what different neural network models learn about lan-
guage (Linzen et al., 2016; Kádár et al., 2017; Conneau et al., 2018b; Gulordava
et al., 2018c; Nematzadeh et al., 2018, a.o.). This work, like ours, has yielded both
positive and negative results: There is evidence that they learn complex linguistic
phenomena of morphological and syntactic nature, like long distance agreement
(Gulordava et al., 2018c; Giulianelli et al., 2018b), but less evidence that they
learn how language relates to situations; for instance, Nematzadeh et al. (2018)
show that memory-augmented neural models fail on tasks that require keeping
track of inconsistent states of the world.

4.3 Models

We approach character identification as a classification task, and compare a base-
line LSTM (Hochreiter and Schmidhuber, 1997) with two models that enrich the
LSTM with a memory module designed to learn and use entity representations.
LSTMs are the workhorse for text processing, and thus a good baseline to assess
the contribution of this module. The LSTM processes text of dialogue scenes one
token at a time, and the output is a probability distribution over the entities (the
set of entity IDs are given).

4.3.1 Baseline: BILSTM

The BILSTM model is depicted in Figure 4.2. It is a standard bidirectional LSTM
Graves et al. (2005), with the difference with most uses of LSTMs in NLP that we
incorporate speaker information in addition to the linguistic content of utterances.

The model is given chunks of dialogue. At each time step i, one-hot vectors for
token ti and speaker entities si are embedded via two distinct matrices Wt and We
and concatenated to form a vector xi (Eq. 4.1, where ∥ denotes concatenation; note
that in case of multiple simultaneous speakers Si their embeddings are summed).

xi = Wt ti ∥∑
s∈Si

We s (4.1)

The vector xi is fed through the nonlinear activation function tanh and input to a
bidirectional LSTM. The hidden state

−→
h i of a unidirectional LSTM for the ith in-

put is recursively defined as a combination of that input with the LSTM’s previous
hidden state

−→
h i−1. For a bidirectional LSTM, the hidden state hi is the concatena-

tion of the hidden states
−→
h i and

←−
h i of two unidirectional LSTMs which process
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We
Joey:   think
Joey:   you
Joey:   love

{
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Inputs:  ("Speaker:  token")

Class scores: o

BiLSTM:

i

xi

Wo
...

...

hi-1 hi hi+1

Figure 4.2: BILSTM applied to “...think you love...” as spoken by Joey (from
Figure 3.1), outputting class scores for mention “you” (bias bo not depicted).

the data in opposite directions (Eqs. 4.2-4.4).

−→
hi = LSTM(tanh(xi),

−→
h i−1) (4.2)

←−
hi = LSTM(tanh(xi),

←−
h i+1) (4.3)

hi =
−→
hi ∥
←−
hi (4.4)

For every entity mention ti (i.e., every token4 that is tagged as referring to an en-
tity), we obtain a distribution over all entities, oi ∈ [0,1]1×N , by applying a linear
transformation to its hidden state hi (Eq. 4.5), and feeding the resulting gi to a
softmax classifier (Eq. 4.6).

gi = Wo hi +bo (4.5)
oi = softmax(gi) (4.6)

Eq. 4.5 is where the other models will diverge.

4For multi-word mentions this is done only for the last token in the mention.
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Figure 4.3: ENTLIB; everything before hi, omitted here, is the same as in Fig-
ure 4.2.

4.3.2 ENTLIB (Static Memory)
The ENTLIB model (Figure 4.3) adds a simple memory module that is expected
to represent entities because its vectors are tied to the output classes. We call this
memory ‘static entity library’, since it is updated only during training, after which
it remains fixed.

Where BILSTM maps the hidden state hi to class scores oi with a single trans-
formation (plus softmax), ENTLIB instead takes two steps: It first transforms hi
into a ‘query’ vector qi (Eq. 4.7) that it will then use to query the entity library.

As we will see, this mechanism helps dividing the labor between representing
the context (hidden layer) and doing the prediction task (query layer).

qi = Wq hi +bq (4.7)

A weight matrix We is used as the entity library, which is the same as the speaker
embedding in Eq. 4.1: the query vector qi ∈ R1×k is compared to each vector in
We (cosine), and a gate vector gi is obtained by applying the ReLU function to
the cosine similarity scores (Eq. 4.8).
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Thus, the query extracted from the LSTM’s hidden state is used as a soft
pointer over the model’s representation of the entities. This mechanism is sim-
ilar to the decoder attention analyzed in Chapter 2, which proved to be a simple
and good mechanism in direct feature detection and extraction.

gi = ReLU(cos(We,qi)) (4.8)

As before, a softmax over gi then yields the distribution over entities (Eq. 4.6).
So, in the ENTLIB model Eqs. 4.7 and 4.8 together take the place of Eq. 4.5 in the
BILSTM model.

We implemented an earlier version of the EntLib model as a participating
model to the SemEval competition where the task of character identification was
introduced. The original model did not do parameter sharing between speakers
and referents, but used two distinct weight matrices. We will refer to this model
as SemEval-1st in Section 4.4.

Note that the contents of the entity library in ENTLIB do not change during
forward propagation of activations, but only during backpropagation of errors,
i.e., during training, when the weights of We are updated. If anything, they will
encode permanent properties of entities, not properties that change within a scene
or between scenes or episodes, which should be useful for reference. The next
model attempts to overcome this limitation.

4.3.3 ENTNET (Dynamic Memory)
ENTNET is a model inspired by the structure proposed in Recurrent Entity Net-
works (Henaff et al., 2017, Figure 4.4) and we adapt it to the task. Instead of
representing each entity by a single vector, as in ENTLIB, here each entity is rep-
resented jointly by a context-invariant or ‘static’ key and a context-dependent or
‘dynamic’ value. For the keys the entity embedding We is used, just like the entity
library of ENTLIB. But the values Vi can be dynamically updated throughout a
scene.

As before, an entity query qi is first obtained from the BILSTM (Eq. 4.7).
Then, ENTNET computes gate values gi by estimating the query’s similarity to
both keys and values, as in Eq. 4.9 (replacing Eq. 4.8 of ENTLIB). 5 Output
scores oi are computed as in the previous models (Eq. 4.6).

gi = ReLU(cos(We,qi)+ cos(Vi,qi)) (4.9)

The values Vi are initialized at the start of every scene (i = 0) as being identical
to the keys (V0 = We). After processing the ith token, new information can be

5Two small changes with respect to the original model (motivated by empirical results in the
hyperparameter search) are that we compute the gate using cosine similarity instead of dot product,
and the obtained similarities are fed through a ReLU nonlinearity instead of sigmoid.
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Figure 4.4: ENTNET; everything before hi, omitted here, is the same as in Fig-
ure 4.2.

added to the values. Eq. 4.10 computes this new information Ṽi, j, for the jth

entity, where Q, R and S are learned linear transformations and PReLU denotes
the parameterized rectified linear unit He et al. (2015):

Ṽi, j = PReLU(QWe j +RVi, j +Sqi) (4.10)

This information Ṽi, j, multiplied by the respective gate gi, j, is added to the values
to be used when processing the next (i+ 1th) token (Eq. 4.11), and the result is
normalized (Eq. 4.12):

Vi+1, j = V j +gi, j ∗ Ṽi, j (4.11)

Vi+1, j =
Vi+1, j

∥Vi+1, j∥
(4.12)

Our adaptation of the Recurrent Entity Network involves two changes. First,
we use a biLSTM to process the linguistic utterance, while Henaff et al. (2017)
used a simple multiplicative mask (we have natural dialogue, while their main
evaluation was on bAbI, a synthetic dataset). Second, in the original model the
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gates were used to retrieve and output information about the query, whereas we
use them directly as output scores because our task is referential. This also allows
us to tie the keys to the characters of the Friends series as in the previous model,
and thus have them represent entities (in the original model, the keys represented
entity types, not instances).

4.3.4 Hyperparameter search

Besides the LSTM parameters, we optimize the token embeddings Wt , the en-
tity/speaker embeddings We, as well as Wo, Wq, and their corresponding biases,
where applicable. We used five-fold cross-validation with early stopping based on
the validation score. We found that most hyperparameters could be safely fixed
the same way for all three types. Specifically, our final models were all trained
in batch mode using the Adam optimizer Kingma and Ba (2014), with each batch
covering 25 scenes given to the model in chunks of 750 tokens. The token em-
beddings (Wt) are initialized with the 300-dimensional word2vec vectors, hi is set
to 500 units, and entity (or speaker) embeddings (We) to k = 150 units.With this
hyperparameter setting, ENTLIB has fewer parameters than BILSTM: the linear
map Wo of the latter (500×401) is replaced by the query extractor Wq (500×150)
followed by (non-parameterized) similarity computations. This holds even if we
take into account that the entity embedding We used in both models contains 274
entities that are never speakers and that are, hence, used by ENTLIB but not by
BILSTM.

Our search also considered different types of activation functions in differ-
ent places, with the architecture presented above, i.e., tanh before the LSTM
and ReLU in the gate, robustly yielding the best results. Other settings tested—
randomly initialized token embeddings, self-attention on the input layer, and a
uni-directional LSTM—did not improve performance.

We then performed another random search (> 200 models) over the remain-
ing hyperparameters: learning rate (sampled from the logarithmic interval 0.001–
0.05), dropout before and after LSTM (sampled from 0.0–0.3 and 0.0–0.1, respec-
tively), weight decay (sampled from 10−6–10−2) and penalization, i.e., whether to
decrease the relative impact of frequent entities by dividing the loss for an entity
by the square root of its frequency. We report the best model of each type, i.e.,
BILSTM, ENTLIB, and ENTNET, after training on all the training data without
cross-validation for 20, 40 and 80 epochs respectively (numbers selected based on
tendencies in training histories). These models had the following parameters:
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BILSTM ENTLIB ENTNET

learning rate: 0.0080 0.0011 0.0014
dropout pre 0.2 0.2 0.0
dropout post: 0.0 0.02 0.08
weight decay: 1.8e-6 4.3e-6 1.0e-5
penalization: no yes yes

Table 4.1: Hyperparameter setup for the proposed models

Train Test
Entities 372 106
Mentions 13,280 2,429
Scenes 374 74
Episodes 47 40

Table 4.2: Summary statistics of the SemEval 2018 Task 4 dataset. The union of
entities in the training and test sets is 401.

4.4 Character Identification
The training and test data for the task span the first two seasons of Friends, divided
into scenes and episodes, which were in turn divided into utterances (and tokens)
annotated with speaker identity.6 The set of all possible entities to refer to is
given, as well as the set of mentions to resolve. Only the dialogues and speaker
information are available (e.g., no video or descriptive text). Indeed, one of the
most interesting aspects of the SemEval data is the fact that it is dialogue (even if
scripted), which allows us to explore the role of speaker information, one of the
aspects of the extralinguistic context of utterance that is crucial for reference.

We additionally used the publicly available 300-dimensional word vectors that
were pre-trained on a Google News corpus with the word2vec Skip-gram model
Mikolov et al. (2013a) to represent the input tokens. Entity (speaker/referent)
embeddings were randomly initialized.

We train the models with backpropagation, using the standard negative log-
likelihood loss function. For each of the three model architectures we performed
a random search (> 1500 models) over the hyperparameters using cross-validation
as presented in the previous section, and report the results of the best settings after
retraining without cross-validation. The findings we report are representative of
the model populations.

6The dataset also includes automatic linguistic annotations, e.g., PoS tags, which our models
do not use.

58



“output” — 2021/11/30 — 22:50 — page 59 — #73

all (78) main (7)
models #par F1 Acc F1 Acc
SemEv-1st - 41.1 74.7 79.4 77.2
SemEv-2nd - 13.5 68.6 83.4 82.1
BILSTM 3.4M 34.4 74.6 85.0 83.5
ENTLIB 3.3M 49.6∗ 77.6∗ 84.9 84.2
ENTNET 3.4M 52.5∗ 77.5∗ 84.8 83.9

Table 4.3: Model parameters and results on the character identification task. First
block: top systems at SemEval 2018. Results in the second block marked with
∗ are statistically significantly better than BILSTM at p < 0.001 (approximate
randomization tests, Noreen, 1989).

Results. We follow the evaluation defined in the SemEval task (Choi and Chen,
2018). Metrics are macro-average F1-score (which computes the F1-score for
each entity separately and then averages these over all entities) and accuracy, in
two conditions: All entities, with 78 classes (77 for entities that are mentioned in
both training and test set of the SemEval Task, and one grouping all others), and
main entities, with 7 classes (6 for the main characters and one for all the others).
Macro-average F1-score on all entities, the most stringent, was the criterion to
define the leaderboard.

Table 4.3 gives our results in the two evaluations, comparing the models de-
scribed in Section 4.3 to the best performing models in the SemEval 2018 Task 4
competition: the first iteration of our EntLib as ”SemEv-1st”, and the model pro-
posed by Park et al. (2018) as ”SemEv-2nd”. Our proposed modules outperform
the previous developed models and the models containing one of the proposed
external modules improve over the base model. This signals that the addition
of a structure designed for encoding entity information is beneficial and we plan
to conduct further analysis in order to reveal what are the phenomena which are
captured better in the newly developed models.

All models perform on a par on main entities, but entity-centric models out-
perform BILSTM by a substantial margin when all characters are to be predicted
(the difference between ENTLIB and ENTNET is not significant).

The architectures of ENTLIB and ENTNET help with lower frequency char-
acters, while not hurting performance on main characters. Indeed, Figure 4.5
shows that the accuracy of BILSTM rapidly deteriorates for less frequent enti-
ties, whereas ENTLIB and ENTNET degrade more gracefully. Deep learning ap-
proaches are data-hungry, and entity mentions follow the Zipfian distribution typ-
ical of language, with very few high frequency and many lower-frequency items,
such that this is a welcome result.
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Figure 4.5: Accuracy on entities with high (>1000), medium (20–1000), and low
(<20) frequency.

Moreover, these improvements do not come at the cost of model complexity
in terms of number of parameters, since all models have roughly the same number
of parameters (3.3−3.4 million).

Given these results and the motivations for the model architectures, it would
be tempting to conclude that encouraging models to learn and use entity repre-
sentations helps in this referential task. However, a closer look at the models’
behavior reveals a much more nuanced picture.

Figure 4.6 suggests that: (1) models are quite good at using speaker infor-
mation, as the best performance is for first-person pronouns and determiners (I,
my, etc.); (2) instead, models do not seem to be very good at handling other con-
textual information or entity-specific properties, as the worst performance is for
third-person mentions and common nouns, which require both;7 (3) ENTLIB and
ENTNET behave quite similarly, with performance boosts in (1) and smaller but
consistent improvements in (2). Our analyses in the next two sections confirm this
picture and relate it to the models’ architectures.

7first person: I, me, my, myself, mine; second person: you, your, yourself, yours; third person:
she, her, herself, hers, he, him, himself, his, it, itself, its.
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Figure 4.6: F1-score (all entities condition) of the three models, per mention type,
and token frequency of each mention type.

4.5 Analysis: Architecture

We examine how the entity-centric architectures improve over the BILSTM base-
line on the reference task, then move to entity representations (Section 4.6).

Shared speaker/referent representation. We found that an important advan-
tage of the entity-centric models, in particular for handling low-frequency enti-
ties, lies in the integrated representations they enable of entities both in their role
of speakers and in their role of referents. This explains the boost in first-person
pronoun and proper noun mentions, as follows.

Recall that the integrated representation is achieved by parameter sharing, us-
ing the same weight matrix We as speaker embedding and as entity library/keys.
This enables entity-centric models to learn the linguistic rule “a first-person pro-
noun (I, me, etc.) refers to the speaker” regardless of whether they have a mean-
ingful representation of this particular entity: It is enough that speaker represen-
tations are distinct, and they are because they have been randomly initialized. In
contrast, the simple BILSTM baseline needs to independently learn the mapping
between speaker embedding and output entities, and so it can only learn to resolve
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Figure 4.7: ENTLIB, 2D TSNE projections of the activations for first-person men-
tions in the test set, colored by the entity referred to. The mentions cluster into
entities already in the hidden layer hi (left graph; query layer qi shown in the right
graph). Best viewed in color.

model type main all
BILSTM 0.39 0.02
ENTLIB 0.82 0.13
ENTNET 0.92 0.16
#pairs 21 22155

Table 4.4: RSA correlation between speaker/referent embeddings We and token
embeddings Wt of the entities’ names, for main entities vs. all entities (right)

even first-person pronouns for entities for which it has enough data.
For proper nouns (character names), entity-centric models learn to align the

token embeddings with the entity representations (identical to the speaker em-
beddings). We show this by using Representation Similarity Analysis (RSA)
(Kriegeskorte et al., 2008), which measures how topologically similar two differ-
ent spaces are as the Spearman correlation between the pair-wise similarities of
points in each space (this is necessary because entities and tokens are in different
spaces). For instance, if the two spaces are topologically similar, the relationship
of entities 183 and 335 in the entity library will be analogous to the relationship
between the names Joey and Ross in the token space. Table 4.4 shows the topo-
logical similarities between the two spaces, for the different model types.8 This
reveals that in entity-centric models the space of speaker/referent embeddings is

8As an entity’s name we here take the proper noun that is most frequently used to refer to the
entity in the training data. Note that for the all entities condition the absolute values are lower,
but the space is much larger (over 22K pairs). Also note that this is an instance of slow learning;
models are not encoding the fact that a proper noun like Rachel can refer to different people.
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Figure 4.8: ENTLIB, 2D TSNE projections of the activations for mentions in the
test set (excluding first-person mentions), colored by the entity referred to. While
there is already some structure in the hidden layer hi (left graph), the mentions
cluster into entities much more clearly in the query qi (right graph). Best viewed
in color.

topologically very similar to the space of token embeddings restricted to the en-
tities’ names, and more so than in the BILSTM baseline. We hypothesize that
entity-centric models can do the alignment better because referent (and hence
speaker) embeddings are closer to the error signal, and thus backpropagation is
more effective (this again helps with lower-frequency entities).

Further analysis revealed that in entity-centric models the beneficial effect
of weight sharing between the speaker embedding and the entity representations
(both We) is actually restricted to first-person pronouns. For other expressions,
having two distinct matrices yielded almost the same performance as having one
(but still higher than the BILSTM, thanks to the other architectural advantage that
we discuss below).

In the case of first-person pronouns, the speaker embedding given as input cor-
responds to the target entity. This information is already accessible in the hidden
state of the LSTM. Therefore, mentions cluster into entities already at the hidden
layer hi, with no real difference with the query layer qi (see Figure 4.7).

Advantage of query layer. The entity querying mechanism described above
entails having an extra transformation after the hidden layer, with the query layer
q. Part of the improved performance of entity-centric models, compared to the
BILSTM baseline, is due not to their bias towards ‘entity representations’ per
se, but due to the presence of this extra layer. Recall that the BILSTM baseline
maps the LSTM’s hidden state hi to output scores oi with a single transformation.
(Gulordava et al., 2018a) observe in the context of Language Modeling that this
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BILSTM ENTLIB ENTNET

hi hi qi hi qi
0.34 0.24 0.48 0.27 0.60

Table 4.5: Average cosine similarity of mentions with the same referent.

creates a tension between two conflicting requirements for the LSTM: keeping
track of contextual information across time steps, and encoding information useful
for prediction in the current timestep. The intermediate query layer q in entity-
centric models alleviates this tension. This explains the improvements in context-
dependent mentions like common nouns or second and third pronouns.

We show this effect in two ways. First, we compare the average mean similar-
ity s of mention pairs Te = {(tk, tk′)| tk→ e∧ k ̸= k′} referring to the same entity e
in the hidden layer (Eq. 4.13) and the query layer.9

s =
1
|E| ∑e∈E

1
|Te| ∑

(tk,tk′)∈Te

cos(htk ,htk′ ) (4.13)

Table 4.5 shows that, in entity-centric models, this similarity is lower in the hidden
layer hi than in the case of the BILSTM baseline, but in the query layer qi it
is instead much higher. The hidden layer thus is representing other information
than referent-specific knowledge, and the query layer can be seen as extracting
referent-specific information from the hidden layer. Figure 4.8 visually illustrates
the division of labor between the hidden and query layers. Second, we compared
the models to variants where the cosine-similarity comparison is replaced by an
ordinary dot-product transformation, which converts the querying mechanism into
a simple further layer. These variants performed almost as well on the reference
task, albeit with a slight but consistent edge for the models using cosine similarity.

No dynamic updates in ENTNET. A surprising negative finding is that ENT-
NET is not using its dynamic potential on the referential task. We confirmed this
in two ways. First, we tracked the values Vi of the entity representations and
found that the pointwise difference in Vi at any two adjacent time steps i tended
to zero. Second, we simply switched off the update mechanism during testing and
did not observe any score decrease on the reference task. ENTNET is thus only
using the part of the entity memory that it shares with ENTLIB, i.e., the keys We,
which explains their similar performance.

This finding is markedly different from Henaff et al. (2017), where for instance
the BaBI tasks could be solved only by dynamically updating the entity represen-
tations. This may reflect our different language modules: since our LSTM module

9For the query layer, Eq. 4.13 is equivalent, with cos(qtk ,qtk′ ).
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This person is {a/an/the} <PROPERTY> [and {a/an/the} <PROP-
ERTY>]{0,2}.
This person is the brother of Monica Geller.
This person is a paleontologist and a man.

Figure 4.9: Patterns and examples (in italics) of the dataset for information ex-
traction as entity linking.

already has a form of dynamic memory, unlike the simpler sentence processing
module in Henaff et al. (2017), it may be that the LSTM takes this burden off of
the entity module. An alternative is that it is due to differences in the datasets.
We leave an empirical comparison of these potential explanations for future work,
and focus in Section 4.6 on the static entity representations We that ENTNET

essentially shares with ENTLIB.

4.6 Analysis: Entity Representations
The foregoing demonstrates that entity-centric architectures help in a reference
task, but not that the induced representations in fact contain meaningful entity
information. In this section we deploy these representations on a new dataset,
showing that they do not—not even for basic information about entities such as
gender.

Method. We evaluate entity representations with an information extraction task
including attributes and relations, using information from an independent, un-
structured knowledge base—the Friends Central Wikia.10 To be able to use the
models as is, we set up the task in terms of entity linking, asking models to solve
the reference of natural language descriptions that uniquely identify an entity. For
instance, given This person is the brother of Monica Geller., the task is to deter-
mine that person refers to Ross Geller, based on the information in the sentence.11

The information in the descriptions was in turn extracted from the Wikia. We do
not retrain the models for this task in any way—we simply deploy them.

We linked the entities from the Friends dataset used above to the Wikia through
a semi-automatic procedure that yielded 93 entities, and parsed the Wikia to ex-
tract their attributes (gender and job ) and relations (e.g., sister, mother-in-law).

10http://friends.wikia.com.
11The referring expression is the whole DP, This person, but we follow the method used in the

main experiments of asking for reference resolution at the head noun.
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model description gender job relatives
RANDOM 1.5 50 20 16
BILSTM 0.4 - - -
ENTLIB 2.2 55 27 22
ENTNET 1.3 61 24 26

Table 4.6: Results on the attribute and relation prediction task: percentage ac-
curacy for natural language descriptions, mean reciprocal rank of characters for
single attributes (lower is worse).

More in detail, we performed a two-step procedure to extract all the avail-
able data for the SemEval characters. First, using simple word overlap, we auto-
matically mapped the 401 SemEval names to the characters in the database. In
a second, manual step, we corrected these mappings and added links that were
not found automatically due to name alternatives, ambiguities or misspellings
(e.g., SemEval Dana was mapped to Dana Keystone, and Janitor to The Zoo Em-
ployee). In total, we found 93 SemEval entities in Friends Central, and we ex-
tracted their attributes (gender and job) and their mutual relationships (relatives).

We automatically generate the natural language descriptions with a simple pat-
tern (Figure 4.9) from combinations of properties that uniquely identify a given
entity within the set of Friends characters. Also, models require inputting a
speaker, so we use speaker UNKNOWN. We consider unique descriptions com-
prising at most 3 properties. Each property is expressed by a noun phrase, whereas
the article is adapted (definite or indefinite) depending on whether that property
applies to one or several entities in our data. This yields 231 unique natural lan-
guage descriptions of 66 characters, created on the basis of overall 61 relation
types and 56 attribute values.

Results. The results of this experiment are negative: The first column of Ta-
ble 4.6 shows that models get accuracies near 0, our prosed models having a per-
formance similar to the random baseline.

A possibility is that models do encode information in the entity representa-
tions, but it doesn’t get used in this task because of how the utterance is encoded
in the hidden layer, or that results are due to some quirk in the specific setup of
the task.

However, we replicated the results in a setup that does not encode whole ut-
terances but works with single attributes and relations.

Gender and job analysis. We use the same models, i.e. ENTLIB and ENTNET

trained on the character identification task, and (without further training) extract
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representations for the entities from them. These representations are directly ob-
tained from the entity embedding We of each model.

For this analysis, we are given an attribute (e.g., gender), and all its possible
values V (e.g., V = {woman, man }).

We formulate the task as, given a character (e.g., Rachel ), producing a rank-
ing of the possible values in descending order of their similarity to the character,
where similarity is computed by measuring the cosine of the angle between their
respective vector representations in the entity space. We obtain representations
of attributes values, in the same space as the entities, by inputting each attribute
value as a separate utterance to the models, and extracting the corresponding en-
tity query (qi). Since the models also expect a speaker for each utterance, we set
the speaker to UNKNOWN.

We evaluate the rankings produced for both tasks in terms of mean reciprocal
rank Craswell (2009), scoring from 0 to 1 (from worst to best) the position of the
target labels in the ranking. The second and the third columns from Table 4.6
present the results. Our models generally perform poorly on the tasks, though
outperforming a random baseline. Even in the case of an attribute like gender,
which is crucial for the resolution of third-person pronouns, the models’ results
are still very close to that of the random baseline.

Relation prediction. Instead, the task of relation prediction is to, given a pair
of characters (e.g., Ross and Monica), predict the relation R which links them
(e.g., sister, brother-in-law, nephew; we found 24 relations that applied to at least
two pairs). We approach this following the vector offset method introduced by
Mikolov et al. (2013b) for semantic relations between words. This leverages on
regularities in the embedding space, taking the embeddings of pairs that are con-
nected by the same relation to having analogous spatial relations.

For two pairs of characters (a,b) and (c,d) which bear the same relation R,
we assume a−b≈ c−d to hold for their vector representations. For a target
pair (a,b) and a relation R, we then compute the following measure:

srel((a,b),R) =
∑(x,y)∈R cos(a−b,x−y)

|R|
(4.14)

Equation (4.14) computes the average relational similarity between the target
character pair and the exemplars of that relation (excluding the target itself), where
the relational similarity is estimated as the cosine between the vector differences
of the two pairs of entity representations respectively. Due to this setup, we re-
strict to predicting relation types that apply to at least two pairs of entities. For
each target pair (a,b), we produce a rank of candidate relations in descending or-
der of their scores srel . The last column of Table 4.6 contains the results, again
above baseline but clearly very poor.
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Thus, we take it to be a robust result that entity-centric models trained on the
SemEval data do not learn or use entity information at a satisfactory level —at
least as recoverable from language cues. This, together with the remainder of
the results presented above, suggests that models rely crucially on speaker in-
formation, but hardly on information from the linguistic context. Note that 44%
of the mentions in the dataset are first person, for which linguistic context is ir-
relevant and the models only need to recover the relevant speaker embedding to
succeed. However, downsampling first-person mentions did not improve results
on the other mention types. Future work should explore alternatives such as pre-
training with a language modeling task, which could improve the use of context.

4.7 Conclusion
The two proposed model variations contain an external structure that was designed
to capture entity information. Compared to a similar model without entity library
(BiLSTM), the proposed architectures perform particularly well on rare entities,
which is reflected in higher scores when we aggregate the results on all the entities.
This finding is encouraging, because rare entities are especially challenging for the
usual approaches in NLP due to the scarcity of information about them.

We offer the following explanation for this beneficial effect of the entity li-
brary, as a hypothesis for future work. Having an entity library requires the LSTM
of our model to output some representation of the mentioned entity, as opposed to
outputting class scores more or less directly as in the variant BiLSTM. Outputting
a meaningful entity representation is particularly easy in the case of first-person
pronouns and nominal mentions (where the beneficial effect of the entity library
appears to reside; Figure 4.6): the LSTM can learn to simply forward the speaker
embedding unchanged in the case of pronoun I, and the token embedding in the
case of nominal mentions. This strategy does not discriminate between frequent
and rare entities; it works for both alike.

For referring expressions that require either strong entity representations or
an integration of the context, such as common nouns or third-person pronouns,
all three model variants have a very poor performance. This trend indicates that
training the LSTM component from scratch on this amount of data doesn’t result
in a good contextualization, nor strong global entity information. We will address
this limitation in the following chapter, by substituting the LSTM component with
a pre-trained contextualized language model.

Even though we expected a difference in performance and behaviour between
the two proposed models, the model enhanced with the dynamic module con-
verges to a similar behaviour to the one of the architecture enhanced with the static
module. Therefore, our hypothesis that the value vector of the dynamic module
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would encode more episodic information about entities was not met. Further re-
search is needed to understand how to incorporate this feature in the additional
module.

We furthermore analyzed the entity representations developed by the proposed
models in terms of their ability to capture the properties of entities, and created
a new challenge dataset that we used to probe entity representations. We showed
through our analysis that, even though the models reach good performance on the
character identification task, they do not yield operational entity representations,
neither do they make good use of contextual information for the referential task.

More generally, we highlight in this chapter the need for model analysis to
test whether the motivations for particular architectures are borne out in how the
model actually behaves when it is deployed.
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Chapter 5

LANGUAGE KNOWLEDGE
IMPACT ON CHARACTER
IDENTIFICATION

5.1 Introduction

We show in Chapter 3 that pre-trained language models encode morpho-syntactic
features and local information about entities while they struggle when they need
to encode semantico-referential information.

In Chapter 4, we developed an architecture with a dedicated entity library
which showed promise in encoding extra-linguistic patterns, such as “the word
I refers to the speaker” or “the word Ross always refers to the character Ross”,
while it struggled with referential expressions that require a better understanding
of the context, like third-person pronouns and noun phrases.

In this chapter, we propose a unified architecture for character identification,
with the aim of combining the contextualization features encoded in pre-trained
language models with the extra-linguistic patterns developed by the entity library.
We hypothesize that a model that is fine-tuned on the task of character identifi-
cation can find a balance between the strengths previously exhibited by its com-
ponents and reach a better performance than the previously developed models.
Furthermore, we aim for better global entity representations, which we think can
be obtained via the richer lexical representations and better contextualization pro-
vided by the pre-trained language model.

We run the experiments on the same task as in Chapter 4, followed by different
analyses to obtain more insights into the knowledge encoded in these models. We
expect that this will take us one step closer to successfully modelling entities.

Our hypothesis is only partially borne out. On the positive side, our proposed
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model improves the performance for contextualized input, such as third-person
pronouns. On the negative side, it encounters problems with second-person pro-
nouns because it doesn’t contextualize the speaker information. The pre-trained
models are designed for narrative text, and they are not familiar with speaker in-
formation as input. Additionally, we show through our probing mechanisms that
the model doesn’t encode entity attributes or relationships, but it contains traces
of gender information.

5.2 Related work
Pre-trained language models had a strong impact in the field in recent years, dom-
inating most developments in computational linguistics.

This type of model is trained on a big amount of textual data with no need for
further annotation. They are trained on general tasks such as predicting the next
word (TransformerXL (Vaswani et al., 2017)) or predicting a masked word (BERT
variants (Devlin et al., 2018)). While we analyzed the referential capacities of
TransformerXL in Chapter 3, we decided to use BERT in the current experiments
because it exhibits better performance in the majority of NLP tasks.

It has been shown that BERT can be used after this pre-training stage on a
diverse set of NLP tasks, such as language understanding, question answering,
common sense inference, named entity recognition (Devlin et al., 2018). For text
classification tasks such as language understanding tasks (Wang et al., 2018), the
pipeline is the following: after the model is fully trained on language modelling,
the text input goes through the BERT component and then the representation is
encoded in a special token called “[CLS]” which is used as input for a small
classifier that solves the task. During the training stage on the new task, the in-
formation is also backpropagated in the BERT layers in order to fine-tune it to the
new task. For token classification tasks like named entity recognition, the BERT
output of each token is fed to the small classifier in order to predict features re-
lated to the token. The task used in this chapter is a token classification task, so we
follow the second approach for fine-tuning BERT and adapting it to a new task.

Even though the initial BERT architecture is used widely in computational
linguistics, there is current research that has developed the model further. First,
there are variants of BERT that are designed for specific types of text through
a change of training data domain: biomedical, bioBert (Lee et al., 2020); scien-
tific publications, SciBert (Beltagy et al., 2019); knowledge graphs, Ernie (Zhang
et al., 2019). Also, other variants altered the structure of the training data: moving
from words to spans, SpanBert (Joshi et al., 2020); or from a linguistic input to a
multimodal one, ViLBERT (Lu et al., 2019). While we use the basic model in our
experiments, we consider that both lines of model development are relevant to our
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further modelling plans.
Besides the fact that these models achieve state of the art performance on

multiple tasks, recent research has shown that they encode a multitude of linguistic
patterns to some extent (Rogers et al., 2020).

For example, Tenney et al. (2018) find that contextualized pre-trained mod-
els give big gains in performance relative to non-contextual models on morpho-
syntactic tasks, such as part of speech tagging, constituent and dependency la-
belling. These patterns are basic components in the NLP pipeline in general, lead-
ing to a better language understanding for the model. The contextualized models
show improvement also on entity labelling and relation classification, which we
can consider as subcomponents of the character identification task to some extent.

Liu et al. (2019) reveals similar patterns to Tenney et al. (2018) for most of the
linguistic phenomena that were probed, but they also reveal a few shortcomings:
the models lose performance on tasks requiring fine-grained linguistic knowledge
(e.g. conjunct identification). Also, training on in-domain data or more data in
general results in a boost in performance. From a different perspective, Ettinger
(2020) analyzes BERT’s capacity relative to human performance. They show that
BERT is competitive in detecting role reversal or retrieving noun hypernyms, but
it struggles with common sense and pragmatic inference or negation, which are
more complex phenomena.

Also, related to the task of character identification, BERT has a strong pos-
itive impact on coreference resolution. Joshi et al. (2019) adapts BERT for this
task and they test it on 2 different datasets: paragraph-level coreference reso-
lution (GAP Webster et al. (2018)) and document-level coreference resolution
(OntoNotes Hovy et al. (2006)). BERT improves relative to previous pre-trained
models, especially on distinguishing between related but different entities (for in-
stance, President or CEO). On the other hand, it shows limitations on handling
document-level context, paraphrasing or conversations. These last shortcomings
are a worrying finding for our purposes, considering that we deal with sitcom
dialogues.

Considering all these findings of linguistic phenomena about BERT and the
analysis conducted in Chapter 3, we expect that the addition of BERT to the model
proposed in Chapter 4 will bring a boost of performance on datapoints that are
based on morpho-syntactic features, but it will struggle to some extent in cases
that require common sense reasoning or a deeper understanding of the text.

5.3 Model
In order to combine the ability of the pre-trained language model to encode local
contextual information with the global patterns developed by the entity library, we
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combine these techniques in a unified architecture. Figure 5.1 highlights the main
characteristics of the model: the tokens go through a pre-trained BERT, then the
speaker information is added to the token representation. This representation is
fed to a multi-layer perceptron (MLP). The output of this step is compared to the
entity library (EntLib) in order to produce the final prediction.

The main component of the new neural network is formed by a pre-trained
masked language model: the basic BERT architecture. This architecture has be-
come a standard method for the contextualization of tokens.

The model was previously trained using two corpora: the BooksCorpus (800M
words) and English Wikipedia (2,500M words) on the following two tasks:

• masked language modelling: 15% of the tokens present in the input are
replaced by a [MASK] token and the model needs to predict the replaced
token.

• next sentence prediction: the model receives two sequences as input (Xa, Xb)
separated by a special token [SEP] and preceded by a classification token
[CLS]. The model needs to predict if Xb is the continuation of Xa using the
encoding from the classification token [CLS].

While there is a multitude of BERT variants (see Section 5.2), we use the
original model. BERT is a multi-layer bidirectional Transformer encoder. We use
BERT-base, which is built using a stack of 12 transformer blocks (described in
chapter 2) with a hidden size of 768 units and 12 attention heads. This architecture
has 110 million parameters. Besides this pre-trained model, we also experiment
with DistilBert (Sanh et al., 2019), which compresses the previous model by 40%
while retaining 97% of its language understanding through knowledge distillation.
This addition was necessary due to computation power issues, as we wanted to see
how the model performance and behaviour change when it is exposed to longer
sequences.

The last hidden representation of this model (embtok) has 768 dimensions and
it is concatenated with a speaker embedding (embsp). The speaker embeddings
are initialized through a linear mapping (equation 5.2) and their dimension size is
subject to hyperparameter search with values between 100 and 400.

embtok = BERT (tokenid) (5.1)

embsp = speakerid ∗W1 (5.2)

hid1 = embtok||embsp (5.3)
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Figure 5.1: Proposed model
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The concatenated representation (eq. 5.3) is fed to a 3-layer fully connected
network (eqs. 5.4-5.6). This MLP is formed by nonlinear transformations. The
first one reduces the dimensionality to a given hidden dimensionality (hyperpa-
rameter between 200, 300 and 400). The other layers conserve the size of the
corresponding inputs.

hid2 = ReLU(hid1 ∗W2) (5.4)

hid3 = ReLU(hid2 ∗W3) (5.5)

hid4 = ReLU(hid3 ∗W4) (5.6)

Similarly to the EntLib model in chapter 4, the output of this network is com-
pared to each entry of the entity library matrix (eq. 5.7), which was initialized with
the same weights as the speaker embeddings (parameter sharing between EntLib
and speaker embeddings is a part of the hyperparameter search). This comparison
outputs 401 similarity scores, one for each entity. Then we apply a softmax on
these scores in order to get the entity predicted by the network.

entsim = hid4⊙EntLib (5.7)

out = So f tmax(entsim) (5.8)

The backpropagation is conducted on the whole network, including all the
BERT components.

We conduct a set of ablation experiments in order to investigate the benefits of
different components:

• random embeddings: the BERT component is substituted by a random
embedding which linearly maps the token id into a vector of dimension
between 100 and 400. Equation 5.1 is substituted by embtok = tokenid ∗Wtok

• frozen BERT: the BERT component is not fine-tuned towards the character
identification task. We continue to fine-tune all the other components of the
model.

• -EntLib: the model does not include the entity library. Instead, the output
of the MLP is directly mapped to 401 dimensions to predict the referred
entity.
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Currently, the speaker embedding is not contextualized because it is concate-
nated at the BERT output level. This limitation is a big problem in the case of
second-person pronouns, especially because the entity we refer to when we use
“you” is most probably an interlocutor who is the speaker of previous or future
utterances. The current architecture doesn’t have the ability to access this infor-
mation.

In order to overcome this shortcoming, we experimented with adding a self-
attention layer on top of the concatenation of the token and speaker information
hid1. The self-attention layer operates on the whole sequence given as input: it
compares the hidden representation hid1 at time step t with the hidden representa-
tion at all the other time steps. These comparisons are used to create a weighted
representation.

This component can have 1, 2 or 4 attention heads and 1 or 2 layers of atten-
tion. While we expected this mechanism to help especially with second-person
pronouns, this was not reflected in our hyperparameter search because our best
models don’t use this component. Our hypothesis for this result is that the com-
ponent doesn’t have a recency feature in order to focus more on the speakers
surrounding the current token and instead it focuses on all the spans of BERT,
which are more than 100 for our setup. It is harmful to attend equally on all the
representations because in most of the cases, the referred entity with expressions
like “you” is an active speaker in the vicinity of the current utterance.

5.4 Results
Because we want a comparable setup to the previous experiments, the dataset and
the task are the same as the ones described in Chapter 4. The task is character
identification and the training and test data for the task span the first two seasons
of the sitcom Friends.

The main results of the current experiments are presented in Table 5.1. 1 The
newly proposed model is comparable with the model from the previous chapter
(we use the static entity library model for comparison): it is better on F1 score for
all entities while it is surpassed for the other three metrics.

While the LSTM with entity library (LSTMEnt) has the best overall results, it
surpasses fine-tuned BERT with the entity library (BERTEnt) only on a few input
patterns. Figures 5.2 presents the F1-score for the studied models for different
types of tokens: first/second/third-person pronouns, proper nouns and common
nouns when we consider all the entities. Figure 5.3 looks instead at the model per-
formance on these token types when we compress all the non-main entities in one

1While the prediction is over 401 entities, “all entities” in Table 5.1 are only 78 because this
is the number of entities appearing in the test data.
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all (78) main (7)
models F1 Acc F1 Acc

random
-EntLib 40.4 63.6 70.6 69.4
+EntLib 43.8 64.4 71.2 70.4

BERT

frozen-EntLib 31.6 64 72.5 72.8
frozen+EntLib 35.3 63.8 70.9 71.1
finetuned-EntLib 38.6 62.2 68.9 69.1
finetuned+EntLib 51.4 70.5 76.9 77.6

LSTM +EntLib 49.6 77.6 84.9 84.2

Table 5.1: Model parameters and results on the character identification task.

class. As shown in Figures 5.2 and 5.3, LSTMEnt is better than BERTEnt on first
and second-person pronouns, while the latter is better on third-person pronouns
and proper nouns with similar results for common nouns. So, having a better
contextualized textual representation of the input is beneficial for datapoints that
require a broader linguistic understanding of the input, such as third-person pro-
nouns. This is similar to our findings from the controlled experiments on chapter 2
where easier patterns don’t require nor use contextualization, while self-attention
becomes more fruitful on more complex phenomena. While each model outper-
forms the other in specific types of input, LSTMEnt is better generally because
of the data distribution: 44.4% of the datapoints are first-person pronouns, and
27.9% are second-person pronouns.

When we focus on the models proposed in this chapter, we see a constant
improvement when we add the entity library for all 3 model variations. Also,
the complete model (BERTEnt) is the one reaching the best performance. This
suggests that all the components are beneficial for the task.

Surprisingly, the best model has DistilBERT as its main component, which
is contrary to our expectations and previous literature, which showed that bigger
pre-trained models lead to better results on downstream tasks (Devlin et al., 2018).
Our explanation for this result is the following: it is too hard to induce dataset or
task-specific biases when you have a big amount of parameters and a very small
training dataset, which is the case for the BERT model.

Also, the model initialized with the random embeddings is comparable with
the model with frozen BERT embeddings. This result suggests that the encoded
representations of BERT are not directly applicable to the current task and that
they need to be adjusted through fine-tuning. An explanation for this pattern is
that the data from dialogues, and more specifically TV sitcoms is very different in
comparison to the data used for training BERT which is narrative text generally.

Furthermore, the performance of the models is different relative to the type of
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Figure 5.2: F1-score PoS analysis for new models for all entities

Figure 5.3: F1-score PoS analysis for new models for the main entities

79



“output” — 2021/11/30 — 22:50 — page 80 — #94

the referring expression (Figure 5.2).
When we look at first-person pronouns, the best model is the model with ran-

dom embeddings and entity library (randomEnt), surpassing the other variants,
especially in the case of “all entities” (91.5% vs 80%). Also, we get similar
results as in the previous chapter, with the entity library being a beneficial com-
ponent for rare entities across all the models. For these referential expressions,
the model can develop the simple mechanism that the character referred to is the
same as the speaker and that the token representation is a constant that functions
simply as a prompt. BERT models are constructed with the goal to contextualize
the tokens, which goes against the patterns necessary for first-person pronouns, so
it is harder to develop this pattern.

Proper nouns are tokens that follow a similar pattern as first-person pronouns.
We don’t need information from the context in order to predict which character we
refer to when we say “Ross”. While for first-person pronouns, we require external
information about the speaker in order to predict the target character, this is not
necessary for proper nouns. While the BERT-based models were not able to fully
harvest the speaker information in the case of first-person pronouns, it looks that
the model learns the token pattern in the case of proper nouns when we fine-tune
the BERT component, surpassing the previous LSTM-based model.

Opposite to the results from the previous chapter, the results are better for
third-person pronouns than for second-person pronouns for BERT-based models.
This behaviour is expected considering that third-person pronouns are tokens that
require extracting more information from the context in order to make a meaning-
ful prediction, and BERT develops contextualized representations. Moreover, the
third person pronouns generally follow a more direct referring expression, such
as proper nouns (e.g. “Ross is a paleontologist. He is at the museum now”), in-
formation which can be harvested easily by BERT. On the other hand, the results
are much worse for second-person pronouns in the case of the BERT variants. As
presented in the previous section, this is a drawback of the current architecture
because it can’t contextualize the speaker information, which is a crucial feature
for solving second-person pronoun character identification.

Lastly, the performance for common nouns is similar to the previous model.
This result is unexpected because this type of referring expression requires similar
reasoning as third-person pronouns, based on contextual information: We can’t
say to which character we refer to when we have the token “man” if we don’t take
into account also the words surrounding it.

Figure 5.4 presents the model accuracy for the developed models when the en-
tities are clustered considering their frequency in the text: high frequency (>100
occurrences), medium frequency (between 20 and 100 occurrences) and low fre-
quency (<20 occurrences). The figure shows a smoother decline for BERTEnt in
comparison to LSTMEnt, which is a good pattern because it is easier to improve
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Figure 5.4: The model accuracy for entities with different levels of frequency

on more frequent entities. The two models that have different behaviour in this
figure are the random model with the entity library (randomEnt) and the BERT
model without the entity library (BERT). The former has a bigger drop in perfor-
mance for medium frequency entities, while the latter has the opposite pattern.
Our explanation for this behaviour is that medium frequency entities are more
often the subject of the conversation without being present in the scene, which
would lead to more contextual tokens for these entities.

To bring more insights on the model prediction, we also look at some patterns
for BERTEnt in Tables 5.2 and 5.3. Table 5.2 presents the type of the predicted
entity (main or not main) relative to the type of the target entity when the model
doesn’t have a correct answer. Table 5.3 shows the gender of the predicted entities
when the model makes a mistake relative to the gender of the target entity.

First, Table 5.2 shows that the model tends to predict main entities even when
it is not correct, which is expected considering that 70% of the training data refers
to these 6 main entities. On the other hand, we expected that the models would

1we didn’t include the datapoints that have as input the following third-person pronouns: it,
itself
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prediction⇒
target ⇓

main
ent

other
ent

main ent 289 45
other ent 210 172

Table 5.2: BERTEnt mistakes relative to
main/not main entities

prediction⇒
target ⇓ masculine feminine

masculine 155 81
feminine 159 68

Table 5.3: BERTEnt mistakes for third
person pronouns2

develop gender associations for the characters because this information is given
by third-person pronouns directly: for example, it is more probable to predict
“Chandler” or “Joey” than “Rachel” when the model doesn’t predict correctly
“Ross”. Contrary to our expectations, the results from Table 5.3 reveal that the
model will predict more often male characters than female characters, even in
cases where you have referring expressions like “she”, “herself” or “her”. So,
the pattern follows more the training data frequency 3 than the character gender
association.

5.5 Analysis

5.5.1 Layer structure
Similar to the analysis from the previous chapter, we plot t-SNE projections
(Van der Maaten and Hinton, 2008) of the BERT output (emtok) and the output of
the MLP (hid4) in order to get more insights into the flow of information through
the network. For both Figure 5.5 and 5.6, we present the projections for the BERT
output on the left side of the figure, and we plot the projections for the MLP output
on the right side of the figure.

First, we look at the layer structure when the input is a first-person pronoun
(Figure 5.5). The output of BERT doesn’t manifest any structure, which is ex-
pected considering that BERT is not exposed to the speaker information and the
context for first-person pronouns is not very meaningful in general. After the
information passes through the MLP, we see very clean clusters associated with
the main entities while all the other characters form another cluster. This pattern
suggests that the MLP assures full integration of the speaker information into the
representation.

Second, we look at the layer structure for all the tokens that are not first-person
pronouns (Figure 5.6). The BERT representations generate slight clusters this
time. An explanation for this pattern is that the input either carries information

3there are 947 masculine utterances in the training data in comparison with 728 feminine
utterances

82



“output” — 2021/11/30 — 22:50 — page 83 — #97

Figure 5.5: BERTENT, 2D TSNE projections of the activations for first-person
mentions in the test set, colored by the entity referred to. BERT output embtok left
graph; MLP output hid4 shown in the right graph. Best viewed in color.

characteristics to an entity in the case of proper nouns and common nouns to
some extent or that the context information is harvested. In this case, we see that
the structure doesn’t change very much between BERT representations and MLP
representations, which suggests that the main role of the MLP is to integrate the
speaker information when it is necessary.

5.5.2 Entity representations
We conduct the same analysis as in Chapter 4 where we have developed sentences
for probing entity information, such as “This person is a singer-songwriter”,
which requires the prediction for “person” to be “Phoebe Buffay”.

Additionally, we conduct experiments where we substitute “This person” with
third-person pronouns.

We do this change in 2 different ways:

1. we substitute the ”this person” component with the third-person pronoun
associated with the character (“he” for men and “she” for women). For
example, the previous example becomes “she is a singer-songwriter” and
we have “he is a manager” for Chandler Bing.

2. we substitute the “this person” component with the incorrect third-person
pronoun. We use “he” for female characters and “she” for male characters.
The previous examples become “he is a singer-songerwriter” and “she is a
manager”.

The purpose of these additional setups is two-folded: first, the model is more
familiar with third-person pronouns than the expression “this person” because
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Figure 5.6: BERTENT, 2D TSNE projections of the activations for mentions in
the test set (excluding first-person mentions), colored by the entity referred to.
BERT output embtok left graph; MLP output hid4 shown in the right graph. Best
viewed in color.

This person Correct pronoun Wrong pronoun
Accuracy 2.9 3.8 1.9

Table 5.4: Entity representation probing for BERTEnt

they are much more frequent in the training data. Second, it also gives us in-
sights regarding gender encoding in the network: we hypothesise that a model
that encodes gender information will exhibit a better performance when the cor-
rect gender information is added to the probing sentences while adding the wrong
gender pronoun should be detrimental.

Even though BERTEnt has slightly better accuracy than LSTMEnt (2.9% v.s.
2.2%), the new model still has a very poor performance when we look at the
general results (Table 5.4). While it is not the desired result, it is also not a very
surprising behaviour. Even for humans, it is hard to remember that we refer to
“Terry” when we say “This person is a coffee shop owner” if we saw Terry only
once when we watch the TV show. On the other hand, the model is sensitive
to some extent to the gender information added by third-person pronouns. We
have almost one percent improvement when we substitute the previous referential
phrase with the correct third-person pronoun, going from 2.9% to 3.8%. When we
use the wrong pronoun as the referential expression, the accuracy drops to 1.9%,
indicating that this information is detrimental to the predictions.
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5.6 Discussion
The hypothesis that we had when designing BERTEnt was that the new architec-
ture would surpass in performance the previous model by having the same perfor-
mance as LSTMEnt on extra-linguistic patterns while improving contextualization
and building more meaningful entity representations.

Our proposed model is solving, to some extent, the referring expressions that
require contextualization, improving on third-person pronouns (however, it does
not improve on common nouns). The model is also developing the token-based
patterns we identified in Chapter 4, such as those that allow for the solving of
proper nouns. In the case of extra-linguistic patterns related to first-person pro-
nouns, the model doesn’t find the complete balance exhibited by models that don’t
contextualize (the random model), but it is very competitive. Most importantly,
the model is not able to contextualize the speaker information because this infor-
mation is not a component of BERT; this leads to a big drop in performance for
second-person pronouns.

Even though the proposed model doesn’t surpass LSTMEnt, both the entity li-
brary and fine-tuning BERT prove to be beneficial when we compare the proposed
model to the ablated ones. First, fine-tuning BERT finds a balance between the
behaviour of the model with random embeddings and the behaviour of the model
with frozen representations. Second, similar to the findings from Chapter 4, the
entity library proves to be a valuable additional module. It boosts the performance
for rare entities and improves the results across most of the types of referring ex-
pressions. Furthermore, future work should experiment with the dynamic entity
library in this setup. The contextualized embeddings produced by the BERT com-
ponent could enhance the ability to capture episodic information of the dynamic
part of the additional module.

Finally, the model doesn’t develop representations that encode basic entity
information, such as attributes or relations when we refer to entities. While we
expected the development of general entity representations, this is the hardest
feature to learn. Also, this feature might be impossible to learn with the amount
of data available; or in the context of this task (though we hypothesize that the
relatively low amount of data, rather than the task, is responsible for the results).

While the model develops in a good direction, there are still clear ways to
improve it: most prominently, a better way to incorporate extra-linguistic infor-
mation such as speaker information or visual information. While the need to add
this kind of information is clear, it is not so clear how to do it; a large amount of
training data is required to pre-train a model like BERT. Another possible model
development is to expose the model to the domain language first by either fine-
tuning the BERT component on the task of masked language modelling on TV
dialogues or designing a multi-task fine-tuning with both character identification
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and language modelling as objectives. We think that more familiarity with the TV
show language or more training data would have a big impact on improving the
performance of the proposed model.
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Chapter 6

CONCLUSION

The goals of this dissertation are to have a better grasp of the entity information
encoded in current computational models and develop a performant computational
model of reference to entities.

We developed a set of datasets and procedures that can be used to detect the de-
gree of referential patterns encoded in computational models, both in a controlled
and in a more scaled and natural setup.

In the second part of the thesis, we proposed a set of computational models
with the ability to refer to entities and to build entity representations, and we incor-
porated them into current neural network architectures. Through various analysis
studies, we showed both the benefits and the weaknesses of the proposed models.

The rest of the chapter focuses on summarising and discussing the main find-
ings and contributions of the thesis (Section 6.1), and on suggestions for future
research (Section 6.2) concerning the two research goals stated in the Introduc-
tion.

6.1 Main findings

Goal 1: To analyze the entity encoding capabilities of neural networks. First,
we investigated the capabilities of standard architectures to encode different pat-
terns relevant to entity-related tasks when these models are trained from scratch
in a controlled environment. We found that feature detection and extraction from
sequences can be solved with a simple attention mechanism. On the other hand,
the structure of current standard architectures encountered problems when they
had to capture more complex patterns such as contextualization or order tracking.
Furthermore, the models were negatively affected when the sequence increased
in length. Contextualization, order tracking, and longer sequences are all relevant
properties of entity-related tasks.
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We next turned to the analysis of the referential capabilities of language mod-
els. This is because we hypothesized that transfer learning could alleviate some
of the shortcomings presented by the standard architectures when they are trained
from scratch. This strategy implies training a part of a model on a different task
first, where we have access to more data. The most common pre-training task for
transfer learning is the task of neural language modelling.

When we analyzed the types of entity-related patterns present in neural lan-
guage models, we determined that these models encode local contextual patterns
very well. One linear-layer transformation learns to do anaphora resolution, with
a strong detection of gender and number agreement constraints. This was as ex-
pected given previous work on language models. What was more surprising was
the fact that, even though it is very hard to capture a more global notion of entity,
neural language models develop entity-specific information to some extent. First,
we discovered that, while the models are confused by mentions in the context that
are not antecedents, they are still much better than baselines. Second, the models
could predict when two pronouns are referring to the same entity, though only af-
ter we controlled both for distance and for pronoun form. In summary, we found
that pre-trained language models provide good representations of the contextual
linguistic input concerning referential information, and that they encode entity-
specific information to some extent. Considering all these factors, we concluded
that we could use transfer learning from language modelling for models developed
for entity-related tasks.

Goal 2: To develop computational models with the capacity to encode both
linguistic and extra-linguistic referential information. In the first part, we de-
veloped two types of structures that should suit the encoding of entities: a static
one (EntLib) and a dynamic one (EntNet). The static module is a matrix where
each vector is associated with an entity, and these vectors are updated only through
backpropagation. In the case of the dynamic module, each entity is represented
by a static “key” vector, which is similar to the EntLib vectors, and a dynamic
“value” vector which is updated at every step with new information. We hypoth-
esized that the static library would develop a global semantic representation for
each entity which would contain the main characteristics of each entity like gen-
der, job or relations to other characters; and that the dynamic structure would
encode the semantic global information in its key, while it would capture the sit-
uational/contextual information about an entity in the “value” vector associated
with a specific entity.

Our findings were surprising, not following our initial hypothesis. First, there
is no difference in results or behaviour between the model enhanced with the static
structure in comparison with the dynamic one, suggesting that the “value” com-
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ponent was not updating as intended. Furthermore, the vectors associated with
the entities didn’t encode crucial characteristics such as gender, job or relation-
ships. However, the addition of the entity-specialized structures did help with the
handling of extra-linguistic information, such as a good integration of the speaker
information and the association of an entity label with the correct name.

We considered that the weak representations in the first round of model devel-
opment might be caused by the fact that in the character identification dataset
that we used, there was not enough training data to learn, from scratch, both
morpho-syntactic and global entity patterns. Following the analysis of pre-trained
language models from Chapter 3, we hypothesized that using transfer learning
from pre-trained contextualized language models could overcome the shortcom-
ings of the previously developed models. Pre-trained contextualized language
models (e.g. BERT) provide strong contextual representations and general lexi-
cal patterns, while specialized structures like EntLib and EntNet provide a good
mechanism to capture extra-linguistic information.

Our second hypothesis was that the combination of these two mechanisms
(transfer learning and specialized modules) would bring a boost in performance
in the character identification task. Furthermore, we considered that taking the
burden away from the main network and providing richer lexical representation
would lead to better entity representations. Our results didn’t fully match our
expectations. As expected, the model improved on references that require more
contextual information, such as third-person pronouns, in comparison with the
models trained from scratch. However, the main difficulty we encountered is
the fact that pre-trained models come with a predefined structure that can’t be
changed easily. Generally, they are trained on running text, with the input always
being formed by words, without knowledge of speakers or other extra-linguistic
information. This limitation affected our model development because the speaker
information was not contextualized, which lead to a loss of interlocutor awareness.
This model flaw generated a decrease in performance in second-person pronoun
referents which counterbalanced the improvement brought about by third-person
pronoun referents. Regarding the entity representations developed in the dedi-
cated slots, they improve relative to the previous experiments, but they are still far
from being satisfactory.

6.2 Limitations and future work

We discuss future research directions related to the two goals of the thesis. In the
discussion, we use the same structure as in the previous section for the sake of
clarity.
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Goal 1: To analyze the entity encoding capabilities of neural networks. The
first line of experiments built a controlled environment where we could isolate
and study different linguistic phenomena without the interference of unwanted
factors. The tested models struggled to solve the tasks we defined. Future work
can expand on our framework in two different directions. First, they can study
the effect of scaling up the tested models such that they are closer to the size of
state-of-the-art models, to see whether this change leads to a big improvement in
performance in the currently defined tasks. A second direction is to test whether
changes to the architectures bring models closer to solving the tasks, thus cap-
turing the studied phenomena. Also, the flexible construction of the controlled
environment offers the possibility of extending the current datasets to more fea-
tures, different sequence lengths, a different number of training examples, and
new task types covering different linguistic phenomena.

In the second round of analysis studies, we developed a pipeline to analyse
the referential information in pre-trained contextualized language models. Pre-
trained language models keep changing, and further research should apply our
analysis pipeline to newer pre-trained models. This additional analysis could re-
veal which changes in training data or model structure lead to different encodings
relative to referential patterns, and these insights can be translated into design de-
cisions for newer architectures. Future work can also extend the analysis from
narrative texts to dialogue. This change would give a better understanding of the
impact of speaker information, as well as how the frequency of different referring
expressions impacts the analysis of referential information: narrative texts are
dominated by third-person pronouns and common nouns, while there are more
first- and second-person pronouns in dialogue.

Goal 2: To develop computational models with the capacity to encode both
linguistic and extra-linguistic referential information. We developed two
entity-focused modules that can be connected to different computational mod-
els. This addition brings an improvement on rare entities and in capturing extra-
linguistic patterns. As shown through our experiment, the proposed architectures
have strong general results on the task of character identification. In future work,
it would be advisable to test the proposed architectures on different entity-related
tasks that can benefit from the specialized structure, such as question answering
and coreference resolution.

In the case of the developed specialized entity structures, an aspect left for
future research is a better understanding of the causes for the dynamic model to
converge to a similar behaviour to the static model. This can be achieved by
further analysis, testing the architecture on different datasets, and/or connecting
the module to a different linguistic context encoder.
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An important factor for the results in deep learning is the amount and the
structure of the data used for training. While we consider the task of character
identification a suitable one to test reference to entities and to encourage compu-
tational models to build entity representations, an increase of annotated data and
the inclusion of visual information would be necessary to make stronger claims
about model development.

Regarding the development of the challenge set used for probing the entity
information in the models trained on character identification, the models reach
low performance on this task; however, we argue that it is a difficult task even for
humans. Therefore, future work should collect human annotations for this dataset
to obtain a more complete view of the difficulty of the challenge set and to allow a
more thorough analysis. Prior to the collection of human annotations, it would be
important to determine which are the most salient characteristics of each entity;
these properties can be expected to be the most important for the entity library to
capture, in order to distinguish between characters. Note, however, that the data
collection is challenging because it requires prior knowledge of the sitcom.

In the case of the model that combines contextualized language models with
the entity structures, the BERT component is not as powerful as we expected. Our
conjecture for this performance is the fact that the data used for training BERT
is very different in comparison with the new input. The first step after the exper-
iments presented in the thesis should be to first fine-tune the BERT component
using all the series seasons and then move to the task of character identification.
This change requires only access to the raw utterances from the TV show with-
out further annotation. While this is an immediate solution, it will probably still
not solve the lack of awareness of interlocutors in the case of deployed mod-
els. In order to address this issue, a possible approach for future research would
be to develop a model similar to ViLBERT (Lu et al., 2019), which extends the
classic BERT architecture to a multi-modal two-stream model. With access to a
large amount of dialogue data with speaker annotation, one can train a two-stream
model with two parallel BERT-style models operating over speaker information
and text segments. This change in BERT structure should lead to a better blend-
ing of speaker information with linguistic information, which is necessary for a
better grasp of the entities participating in a conversation.

Even though the dynamic entity library was not successful in the experiments
conducted in Chapter 4, its structure could be more suitable if used in conjunction
with a pre-trained language model like BERT, which provides a good contextu-
alized representation of the input. The dynamic component of the entity library
could ensure that the contextual information outputted by BERT is grounded in
the space of entities by detecting the referred entity and updating its episodic rep-
resentation. Further experiments with this approach might lead to a behaviour
closer to our expectations regarding this architecture.
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