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Extended abstract

Multiple initiatives are being implemented to mitigate and, in the worst-case scenarios, adapt

society to climate change. The vast majority consider renewable energies key to accomplishing

a necessary transition from fossil fuels to clean energies. The electricity system, in particular,

is facing a significant transformation, being it more dependent on renewable production and,

subsequently, on meteorological factors like wind speed or solar radiation. The prediction of

anomalies of meteorological variables is well-established and trusted from minutes to days ahead,

and so is the amount of renewable generation. Beyond those time scales, seasonal predictions

start to produce beneficial results in anticipating the amount of generation months in advance, but

their quality is still far from that offered by weather forecasts. In this regard, the climate community

is advancing towards better seasonal predictions, both from the perspective of climate modelling

and its post-processing.

To further increase the value of seasonal predictions, climate services have recently appeared

to make climate information —sometimes deemed challenging to digest— more understandable

and practical for non-experienced users. Climate services facilitate the integration of seasonal

predictions into the renewable industry. The wind power industry, for example, employs seasonal

predictions not only to advance the future availability of the wind resource but also to schedule

maintenance activities in wind farms. A better understanding of the opportunities of seasonal

predictions allows wind energy users to identify gaps and report specific needs. This PhD thesis

looks into those user needs to improve the quality of seasonal predictions for wind speed.

More specifically, the enhancement of seasonal predictions is achieved from the perspective of

wind observations. We first focus on wind records measured at tall meteorological towers, a non-

standard type of climate data widely used within the wind industry. We identify, retrieve and collect

climate records from 222 tall tower locations distributed worldwide. After unifying the data format

xxiii



Extended abstract

and performing an exhaustive quality control, specifically designed for this type of wind data,

we release the dataset under the name of The Tall Tower Dataset. The data collection is made

publicly accessible through a data web portal. We later explore reanalysis datasets to quantify

how they differ from the true observed wind speeds. We consider five global reanalyses and

describe their agreements and discrepancies in representing surface wind speeds. By comparing

reanalysis data against winds from The Tall Tower Dataset, we conclude that representativeness

errors in reanalyses can be large sometimes, to the extent not to trust gridded estimates in

specific areas. We also conclude that ERA5 shows the closest wind speed estimates to those

observed at the tall towers.

Once wind observations are characterised, and their quality is ensured to be sufficiently high

to produce robust results, they are used to enhance seasonal predictions. The hybrid seasonal

forecasts provided in this work allow predicting near-surface wind speeds at a point scale —

e.g. wind farm location. Those forecasts rely on the information of the large-scale atmospheric

circulation, summarised in the state of the four main Euro-Atlantic Teleconnections. In general,

hybrid predictions show skill at lead times two and three, while dynamical predictions do not.

Another aspect that is improved is the skill assessment of seasonal predictions. We illustrate

the strong dependency of the score estimates, namely the Brier Score, on the choice of the

observational reference. This has implications in, for example, the selection of the best prediction

system among a set of possible candidates. To solve this issue, we consider two methodologies

already proposed in the literature and apply them to seasonal predictions for wind speed. We

evaluate their strengths and weaknesses to end up recommending the use of the observation-

error-corrected scoring rules.
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Resum ampliat

Són múltiples les iniciatives que s’estan implementant per mitigar i, en el pitjor dels escenaris,

adaptar la societat al canvi climàtic. La gran majoria consideren les energies renovables claus

per tal d’acomplir una transició necessària des dels combustibles fòssils a les energies netes.

El sistema elèctric, per exemple, està patint una transformació significativa, ja que és molt més

depenent de la producció renovable i, per tant, de factors meteorològics com la velocitat del vent

o la radiació solar. La predicció d’anomalies de variables meteorològiques està ben assentada

i es confia en ella en escales temporals des d’uns quants minuts a dies vista. Més enllà, les

prediccions estacionals comencen a produir resultats beneficiosos pel que fa a l’anticipació de la

quantitat de producció a mesos vista, però la seva qualitat encara està lluny de la què ofereixen

els pronòstics meteorològics. En aquest sentit, la comunitat climàtica avança cap a la producció

de prediccions estacionals millorades, tant des de la perspectiva de la modelització climàtica

com del seu post-processat.

Per tal d’incrementar encara més el valor de les prediccions estacionals, els serveis climàtics

han aparegut recentment per tal de fer la informació climàtica —de vegades considerada difícil

de digerir— més entenible i pràctica per a usuaris inexperts. Els serveis climàtics faciliten la

integració de les prediccions estacionals en la indústria renovable. La indústria eòlica, per ex-

emple, utilitza les prediccions estacionals no solament per predir la disponibilitat futura del recurs

eòlic, sinó també per planificar el manteniment dels parcs. Un millor enteniment de les oportunit-

ats que ofereixen les prediccions estacionals permet als usuaris de la indústria eòlica identificar

manques i reportar necessitats específiques. La present tesi doctoral investiga aquestes neces-

sitats a fi de millorar la qualitat de les prediccions estacionals de vent.

Més concretament, la millora de les prediccions estacionals s’aconsegueix des de la perspectiva

de les observacions de vent. Primerament, ens centrem en dades de vent mesurades en torres
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meteorològiques altes, un tipus de dades climàtiques que no són estàndard però que s’utilitzen

àmpliament dins de la indústria eòlica. Identifiquem, recuperem i col·lectem dades climàtiques

de 222 torres altes localitzades arreu del món. Després d’unificar el format de les dades i por-

tar a terme un exhaustiu control de qualitat de les mateixes, específicament dissenyat per a

aquest tipus de dades, publiquem el conjunt de dades sota el nom de The Tall Tower Dataset.

La col·lecció de dades està disponible de forma pública a través d’un portal de dades. Després,

explorem dades de reanàlisi per tal de quantificar la diferència d’aquestes respecte de les dades

reals observades. Considerem cinc reanàlisi globals, i descrivim les principals similituds i difer-

ències entre ells a l’hora de representar la velocitat del vent en superfície. Comparant les dades

de reanàlisi amb les dades del Tall Tower Dataset, concloem que els errors de representativitat

són grans en els reanàlisi, fins al punt de no poder confiar en aquestes estimacions de vent en

àrees específiques. També concloem que ERA5 mostra les estimacions de vent més properes a

aquelles observades a les torres altes.

Una vegada les observacions de vent han sigut caracteritzades, i s’ha assegurat que la seva

qualitat és suficientment alta per produir resultats robustos, poden ser utilitzades per tal de mil-

lorar les prediccions estacionals. Les prediccions estacionals híbrides proporcionades en aquest

treball permeten predir la velocitat del vent a prop de la superfície a escala puntual (per exemple,

a un parc eòlic). Aquestes prediccions es basen en la informació de la circulació general atmos-

fèrica, resumida en l’estat de les quatre teleconnexions Euro-Atlàntiques principals. En general,

les prediccions híbrides mostren habilitat per predir el clima futur (també anomenat skill) a dos

o tres mesos vista, cosa que les prediccions dinàmiques de velocitat de vent no fan. Un altre

aspecte que s’ha millorat és l’avaluació de l’skill de les prediccions estacionals. Il·lustrem la

forta dependència de les estimacions dels valors d’skill amb l’elecció de la referència observa-

cional. Això té implicacions en, per exemple, la selecció del millor sistema de predicció entre

un conjunt de possibles candidats. Per solventar-ho, considerem dos metodologies que ja han

estat proposades en la literatura i les apliquem a les prediccions estacionals de velocitat de vent.

Avaluem els seus punts forts i febles, per acabar recomanant l’ús de les mètriques que han sigut

degudament redefinides per incorporar l’error observacional.
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Chapter 1

Introduction

1.1 Renewable energies: current scene

and future targets

The European Union aims at becoming climate

neutral by 2050: as much carbon would have to

be absorbed as released into the atmosphere.

The so-called European Green Deal (European

Commission, 2019) is an ambitious transforma-

tion that needs that all sectors of our economy

take action in order to reduce the magnitude

and effects of climate change. The energy sec-

tor, for example, is required to continue with the

decarbonisation for it to be based largely on re-

newable sources.

The European Green Deal is in line with other

national initiatives like the compromise of the

United States to reach net zero emissions

economy-wide by no later than 20501, introdu-

cing renewable sources for energy production

in key sectors like transportation or industry.

In 2019, the share of renewables in gross fi-
nal energy consumption stood at 19.7% in the

European Union (Figure 1.1 left). This per-

centage has doubled since 2004, mirroring the

growth in installed power capacity and the rising

investments in clean energies. This is indeed

the way forward to meet the 38–40% target set

by the Green Deal agreement, which has been

confirmed by the European Union2. Among re-

newable energies, wind power has recently be-

come the main source of electricity generation

(Figure 1.1 right), overtaking hydropower which

has remained steady since the 1990s.

Nevertheless, the integration of renewable en-

ergies into the electricity mix for consumption

poses some risks. Unlike conventional power

plants, the power output from renewable plants

cannot be fully controlled because it is inter-

1https://www.whitehouse.gov/briefing-

room/statements-releases/2021/04/22/fact-sheet-

president-biden-sets-2030-greenhouse-gas-pollution-

reduction-target-aimed-at-creating-good-paying-union-

jobs-and-securing-u-s-leadership-on-clean-energy-

technologies/
2https://ec.europa.eu/commission/presscorner/detail/

en/ip_21_3541
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Figure 1.1: Left: yearly evolution of the share of renewables and non-renewables in gross final energy

consumption (in percentage) in the European Union. The two red stars indicate the Green Deal’s target

by 2030. Right: yearly evolution of electricity generation (in GWh) by the different renewable sources in

the European Union. Source data: Eurostat and International Energy Agency.

mittent and highly dependent on meteorolo-

gical factors like wind speed or solar radiation.

Moreover, nowadays, it can be stored only for

hours or a few days at maximum. Prolonged

lack of renewable resource may then threaten

the availability of the renewable energy supply,

as it occurred in parts of Europe during winter

2016-2017 (see the detailed case study in Box

I). Since the shortage of renewable production

is backed up by fossil-fuel-based energy, a total

disconnection of conventional power plants is

currently inconceivable without timely and ac-

curate anticipation of the future availability of

the renewable resource.

1.2 Climate prediction

The prediction of the amount of future renew-

able production can be much specified with the

prediction of the anomalies of Essential Climate

Variables (ECV) like wind speed or solar radi-

ation. These anomalies can be predicted at a

wide range of timescales: from a few minutes

ahead to daily or monthly averages and up to

seasonal or centennial scales. At a weekly

to decadal timescales, forecasts of future wind

speeds benefit many stakeholders in the wind

energy sector. These are referred to as climate

predictions (Figure 1.2), which can be used to

schedule maintenance activities months in ad-

vance, anticipate weekly to decadal total gener-

ation or advance electricity prices at the differ-

ent timescales.

2
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Box I: Wind speed variability and its implications in energy production

Around mid-January 2017, a cold wave affected large areas in central and southern Europe. Cold
spells are common in winter and usually increase electricity demand to power the heating of houses.
The energy system is already prepared to absorb this peak demand to guarantee the correct electri-
city supply. That winter, however, a combination of several climatic factors threatened the electricity
supply leading to a high-risk situation (S2S4E, 2020).

The situation was especially critical in France, where the cold event found several nuclear reactors
shut down to maintain and check some of their components (APPLICATE, 2020). In a country where
around 70% of the total electricity generated comes from nuclear power, searching for alternative
power sources became a priority at that moment. Renewables (which may represent up to 18%),
and in particular wind power, could have been an asset to cover the demand. However, wind speeds
were weaker than average in France during that week and in five out of the six previous (see figure
below), so the renewable energy supply was low too. In the end, the electricity system could cope
with the high demand thanks in part to stock energy and the imports from neighbouring countries.
Nuclear reactors were back to production a few days later and winds recovered by the end of January.

With this example, we merely intend to illustrate the direct impact of climate on energy and the
fact that renewable energy production is shaped by atmospheric variability (Bloomfield et al., 2016).
Further persistence of this combination of low temperatures and weak winds could have collapsed the
electricity system in France. Could not have this anomalous climate event been foreseen weeks or
months before? Accurate anticipation of future conditions of ECV such as temperature or wind speed
appears to be vital to estimating future renewable energy production, planning maintenance activities,
anticipating revenues, and ultimately guaranteeing the balance between supply and demand.

Left: surface wind speed anomaly field for the 17th to 23rd of January 2017 in Europe. The black rectangle indicates the region where

the weekly anomalies shown in the right plot are computed. Right: weekly anomalies of surface wind speed averaged over the region

[5◦W, 12◦E; 47◦N, 54◦N] compared to the corresponding observed weekly values. In both cases, data is sourced from the ERA-Interim

reanalysis and the reference period is 1980-2017. Source: S2S4E (2020).
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1.2.1 Modelling the Earth System: dynam-

ical vs empirical models

Accurate climate models are the crucial ele-

ment to produce high-quality climate predic-

tions. They can be divided into dynamical and

empirical models, both equally employed in the

climate prediction arena.

Dynamical climate models build on a set of

equations to represent the climate system as a

whole and its processes. The so-called primit-

ive equations are initialised with climate obser-

vations (initial value problem), which represent

the initial state of the climate system. Then, the

model is run towards the future to simulate the

evolution of the climatic fluctuations.

Since many elements of the Earth system are

represented in the dynamical climate models,

they are formally referred to as climate predic-

tion systems. The atmosphere, for example, is

included analogously as weather forecast mod-

els do. Additional components of the climate

system such as the ocean, the land surface or

the sea ice are also incorporated depending on

the forecast horizon being targeted. Indeed,

the latest developments in seasonal to decadal

forecasting involve fully coupled models of the

ocean and atmosphere and the two-way inter-

action between them (Haarsma et al., 2020).

In contrast to dynamical models, empirical cli-

mate predictions are based on past experi-

ence, or in the modern era, on a statistical-
mathematical relationship between observa-

tional data of current and past climate states.

Empirical predictions originated before dynam-

ical forecasts, more than a hundred years ago,

with fairly simple techniques, like persistence

(i.e., current weather/climate is predicted re-

peatedly over a period of time). Current em-

pirical forecasts’ methods evolved into more

sophisticated methods like regression analysis

(Wilks (2011), chapter 7) or analogs (Van

Den Dool, 1994), and have been shown to be

as accurate as dynamical predictions (Turco

et al., 2017; Wang et al., 2017). Section 1.5.3

expands on the different statistical methods ap-

plied to empirical seasonal predictions.

1.2.2 The S2S2D scales: from subseasonal

to decadal predictions

Climate forecasting relies on the predictability3

provided by the wide variety of climatic fluctu-

ations that exist at the Sub-seasonal to Sea-

sonal to Decadal (S2S2D) scales. In dynamical

climate models, the initial state of such oscilla-

tions is provided to the climate model as initial

conditions. However, their information is gradu-

ally lost as the forecast time increases (Figure

1.3). That is why climate predictions at the

longest time scales also benefit from the ex-

tended predictability given by external forcings

that other elements of the Earth system exert

as boundary conditions (e.g. anomalies of sea

3Defined as "the extent to which an informative predic-

tion is possible if an optimum procedure is used" (Doblas-

Reyes et al., 2013).
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Figure 1.2: Time horizon of different short to medium range forecasts, climate predictions and climate

projections. Seasonal forecasts are highlighted as they are the forecasts used in this thesis. Adapted from

Torralba (2019).

ice extent or sea surface temperature). There-

fore, it is necessary to subdivide climate predic-

tions according to their main sources of predict-

ability and configure the climate models appro-

priately. The subdivision yields three categor-

ies: sub-seasonal, seasonal and decadal pre-

dictions (Figure 1.2).

Sub-seasonal predictions extend out weather

forecasts by targeting all the processes that

occur on a timescale of two to eight weeks.

At these timescales, the effect of the atmo-

spheric initial conditions has substantially de-

creased, but the influence of some of the

slow-moving components of the Earth system

like the ocean is still not dominant. How-

ever, some climatic oscillations, and in partic-

ular the Madden-Julian Oscillation (MJO), have

been reported to provide significant predictabil-

ity in the tropics and extratropics (Zhang, 2013;

Lledó and Doblas-Reyes, 2020). Other poten-

tial sources of predictability at the sub-seasonal

scale are the soil moisture (Koster et al., 2011),

the sea ice state (Jeong et al., 2013), the stra-

tosphere–troposphere interactions (Domeisen

et al., 2020) and tropical–extratropical telecon-

nections (Vitart et al., 2015).

At the other end of the spectrum of climate

predictions, decadal forecasts encompass pre-

dictions on annual, multi-annual to decadal

timescales. Predictability at these times-

cales is given by decadal climatic oscillations

like the Atlantic Multidecadal Variability (AMV)

(Christensen et al., 2013) or the Interdecadal

Pacific Oscillation (IPO) (Salinger et al., 2001),

which are the main modes of variability in the

Atlantic and Pacific, respectively. External for-

cings from Greenhouse Gases (GHGs), aer-

osols and volcanoes also provide predictabil-

ity to decadal forecasts (van Oldenborgh et al.,

2012), thanks to which the future state of cli-

mate variables can be inferred. Decadal pre-

diction studies have focused largely on tem-

5
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Figure 1.3: Schematic representation of the impact of the initial conditions and boundary forcings on

weather forecasts, climate predictions and climate projections. Adapted from Intergovernmental Panel on

Climate Change (2013)

perature, whose annual mean variations have

been proven to be predictable over much of the

globe (Wu et al., 2019). There is currently less

skill in predicting wind speed or precipitation,

although progress is expected to be made as a

consequence of the Decadal Climate Prediction

Project (DCPP) (Boer et al., 2016) of the World

Climate Research Program (WCRP) and other

initiatives and investigations.

The seasonal timescale falls between the sub-

seasonal and decadal timescales, i.e., between

more than one month and slightly longer than

one year. In this prediction range, the inform-

ation for the prediction comes from both initial

conditions and external forcings (Figure 1.3).

The sources of predictability involve long-lived

phenomena that have much longer variability

timescales than those in sub-seasonal and in-

clude details on the state of the ocean (Kush-

nir et al., 2006), sea ice (Guemas et al., 2016)

and land surface (Prodhomme et al., 2016b).

The main mode of variability at the seasonal

timescale, and hence the main source of pre-

dictability, is the El Niño/Southern Oscillation

(ENSO), a two-way ocean-atmosphere interac-

tion in the tropical Pacific whose fluctuations

on the Sea Surface Temperature (SST) im-

pact the climate conditions worldwide (Doblas-

Reyes et al., 2013). Although seasonal pre-

dictions have been developed for more than 30

years (Cane et al., 1986), their quality is still im-

provable. In this regard, seasonal predictions

will be the focus of this PhD thesis.

1.2.3 Addressing the uncertainties in cli-

mate prediction

During recent decades, much progress has

been made to understand the climate system

6
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Figure 1.4: Schematic representation of the concepts of probabilistic and deterministic forecasts. The

solid line represents the evolution of the deterministic forecast, whose initial state (initial time) is known with

certainty. The dashed lines represent the evolution of the different ensemble members of the probabilistic

forecast, originating from various perturbations of the initial state. The growing size of the ellipses respond

to the deviation of the ensemble trajectories, illustrating the increasing uncertainty from the initial to the

final forecast time. Source: Wilks (2011).

and the processes occurring at the S2S2D

scales (Merryfield et al., 2020). The climate

community has devoted efforts to translating all

this knowledge into climate models to generate

predictions. Despite the continuous attempts,

the accuracy of those predictions is rather lim-

ited due to the atmosphere’s non-linearity and

its chaotic character. Consequently, any user

of climate prediction data has to be aware of

their associated uncertainty which, in practice,

comes mainly from errors in the climate model

and its initialisation.

As stated by Slingo and Palmer (2011), it is

essential to distinguish between two types of

model error: the uncertainty coming from the

imperfect knowledge of the climate system and

the uncertainty arising from the sub-grid scale

phenomena that, although understood, are mis-

represented in the climate model due to its

limited resolution (representativeness errors).

Circumventing such constraints requires signi-

ficant investments in computational resources

(Shukla et al., 2010).

Aside from model error, a considerable propor-

tion of uncertainty comes from the observations

employed as initial conditions since they are im-

perfectly known. In 1963, Lorenz showed that

the uncertainty in the initial conditions, however

small, leads to a particular uncertainty in the

forecasts after a period, responding again to the

climate system’s chaotic nature (Lorenz, 1963).

In other words, minimal perturbations in the

initial conditions are amplified by chaotic pro-

cesses so that diverging forecasts are obtained.
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Considering such uncertainty is the basis for

employing probabilistic forecasts and ensemble

prediction systems.

In a probabilistic forecast, predictions indicate

the probability of occurrence of a specific event

rather than a single value. This is possible

because probabilistic predictions provide mul-

tiple outcomes (realisations) for every predicted

event, resulting from the several calculations

generated after performing minimal perturba-

tions to the initial conditions and/or model para-

metres (Figure 1.4). This set of realisations

or ensemble members generates a distribution

that allows for inferring probability estimates to

each predicted event. For example, a prediction

of 70% chance of above-average rain in Octo-

ber mirrors that 70% of the realisations indic-

ated above-normal rain. Thus, although most of

the ensemble members indicate above-average

rain in October, one cannot be fully certain that

the event will eventually occur.

1.3 The importance of developing a cli-

mate service

Understanding the probabilistic nature of cli-

mate predictions can sometimes be challen-

ging for the vast majority of users from outside

the climate prediction field. For instance, in

the wind energy sector, most of the decisions

the users deal with are yes/no measures (e.g.

shut down a wind turbine above/below a certain

wind speed threshold), thus not being used to

work with forecast probabilities and what they

imply. Besides, other barriers make climate in-

formation difficult to digest for non-experienced

users. One of them is the lack of a common

and widely accepted terminology between cli-

mate scientists and user communities, mak-

ing the language sometimes very technical and

misleading. Another instance is the low qual-

ity of climate predictions compared to weather

forecasts, being the latter much more reliable

and integrated into the decision-making pro-

cesses. Lastly, climate predictions are issued

at global and coarse scales, hindering their us-

age from anticipating anomalies at a fine scale

(e.g. power plant scale).

Fortunately, many initiatives have appeared to

increase understanding and value of climate in-

formation and make it relevant to different users

(McNie, 2007; Buontempo et al., 2014). All

these actions fall under the umbrella of climate

services. Climate services translate and inter-

pret the climate information generated by cli-

mate scientists into tailored products and tools

that can be integrated into practical applications

for both society and industry. Such is the im-

portance of climate services that the WMO mo-

tivated the creation of the GFCS, a coordinated

effort to strengthen the engagement between

scientists and users for the integration of cli-

mate information in users’ decision-making pro-

cesses (Hewitt et al., 2012). The implementa-

tion of the GFCS has five pillars (Figure 1.5) or

components:

1. Observations and Monitoring: collection

8
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Figure 1.5: The five pillars of the GFCS and the interactions between them and the priority areas/sectors.

This thesis will focus on the two pillars highlighted in green. Adapted from WMO.

of climate data and development of stand-

ards to be used in their generation.

2. Research, Modeling and Prediction: fur-

ther understanding of the climate system

dynamics and change.

3. Climate Services Information Systems:

generate, protect and distribute climate in-

formation according to the users’ needs.

4. User Interface Platforms: monitor users’

requirements by providing a forum for dia-

logue.

5. Capacity Building: provide support for

the effective development of climate ser-

vices.

This thesis will focus on pillars 1 and 2. Firstly,

the collection of observations of various types

and adequate quality and format is required

to create effective climate services. Obser-

vations are utilised in almost all climate ana-

lyses: from attribution studies (i.e., unveil the

drivers of a particular event of interest) to pre-

constructive renewable resource assessments.

Secondly, advancing in the art of climate pre-

diction and in particular seasonal forecasting

is essential to boost the integration of renew-

ables in the electricity mix. High-quality sea-

sonal predictions are undoubtedly beneficial to

many activities within the renewable industry

that require previous planning, as well as to an-

ticipate the future availability of the renewable

resource. For example, operations involving

9
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a wind farm’s maintenance need to be sched-

uled either avoiding periods of strong winds for

safety reasons or during prolonged times with

weak winds and minimal production (Brower

et al., 2012). Besides, having estimates of re-

newable energy production weeks or months

in advance can help decide whether they are

sufficient to satisfy the electricity demand or if

alternative power supply sources are needed

(Foley et al., 2012). For example, the impact of

the cold spell in the electricity system that oc-

curred in France during January 2017 (see Box

I) could have been minimised with the correct

utilisation of sub-seasonal and seasonal predic-

tions.

1.4 A wide range of wind observations

1.4.1 On-site measurements: a close look

to reality

Around the globe, millions of weather observa-

tions are recorded each day, by both human ob-

servers and automated instruments. To make

them usable for later climate analyses or fore-

casting, these weather observations undergo a

quality control process, and are finally stored in

datasets to become climate observations.

The Global Historical Climatology Network

(GHCN) and the Integrated Surface Dataset

(ISD), both hosted by the National Oceanic At-

mospheric Administration (NOAA), are two of
the largest archives containing point observa-

tions from more than 100,000 and 35,000 land

surface stations, respectively, multiple variables

and spanning up to 175 years (Menne et al.,

2012; Smith et al., 2011). Wind series such

as those represented in Figure 1.6 can be ac-

cessed online through a unique access point4,

and unified formats and quality control. In fact,

having such type of common attributes is es-

sential to make a dataset profitable for obser-

vational data analyses.

The World Meteorological Organization (WMO)

through the Instruments and Methods of Obser-

vation Programme (IMOP) has coordinated the

establishment of standards and conventions to

be followed by the climate community (WMO,

2017). Those guidelines concern the installa-

tion and monitoring of measuring stations, as

well as the analysis, quality control and stor-

age of those observations. The benefits of such

coordination efforts are varied: from facilitating

the usage of observational data for climate ana-

lyses and forecasts to ensuring fair comparis-

ons against different sets of data.

Besides, observations should be accompan-

ied by the so-called metadata: an up-to-date

documentation of a scientific, technical, oper-

ational, and administrative nature that involves

the observing station and aims at enhancing

knowledge of the climate observations (Aguilar

et al., 2003). The metadata can be very help-

4In the case of GHCN:

https://www.ncdc.noaa.gov/data-access/land-based-

station-data/land-based-datasets/global-historical-

climatology-network-ghcn
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Figure 1.6: Time series of wind speed (green lines) and wind direction (grey dots) at Lindenberg meteoro-

logical observatory, Germany [52.17◦N, 14.12◦E] in January 2007. The peak wind speed observed on the

18th of January corresponds to the passing of windstorm Kyrill. Source data: GHCN and Frank Beyrich

(DWD).

ful to identify quality issues —as well as their

sources— in the wind series. The importance

of a having a complete metadata has triggered

the creation of specific initiatives like the Cli-

mate and Forecasting (CF) metadata conven-

tions to promote the processing and sharing of

climate data files with a unified metadata in-

formation (Gregory, 2003).

Apart from land surface stations, other ob-

serving systems such as weather radars, ocean

buoys, aircrafts or ships equipped with meteor-

ological sensors provide us with climate ob-

servations (Figure 1.7). Remote sensing sys-

tems are becoming increasingly popular due to

their easy installation and cheap maintenance.

LiDAR (based on laser detection) and SoDAR

(measures the scattering of sound waves) in-

struments are well known for wind data users,
and emerged as efficient alternatives to replace

on-site measurements (Lang and McKeogh,

2011). Orbiting the Earth, satellites measure

a wide range of climate variables from surface

to the upper levels of the atmosphere. The

most recent satellite missions have focused

on improving accuracy of measurements, to

make it comparable to that reported by surface

sensors. Still, the recently launched wind-lidar

satellite Aeolus is reporting systematic errors

in the range of 1-5 m/s for tropospheric wind

speeds (Baars et al., 2020; Martin et al., 2021).
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Figure 1.7: The varied types of individual surface- and space-based observing systems. Source: WMO.

1.4.2 Reconstruction of the past climate by

reanalyses

Reanalysis products provide physically consist-

ent and continuous reconstructions of spatio-

temporal fields of climate variables (Figure 1.8).

A reanalysis is generated by combining a nu-

merical model with the assimilation (inges-

tion) of historical observations (Fujiwara et al.,

2017). In this way, most of the error coming

from the historical model run is corrected util-

ising real observations.

The result of such modeling is delivered on a

global or regional grid with time series spanning

more than 30 years, which makes reanalyses

sometimes advantageous over station data. In-

deed, reanalyses can provide knowledge of the

past atmospheric conditions in remote places

where no station data is available, or where

long homogeneous records are lacking (Thorne

and Vose, 2010).

Reanalyses are a common source of histor-

ical data for wind-derived analyses. Attribu-

tion studies rely on reanalysis data to provide

knowledge about the magnitude and causes

of anomalous wind events (Lledó et al., 2018).

The wind power industry uses those products in

pre-constructive wind farm assessments (Tam-

melin et al., 2013), as well as to estimate the

long-term wind-energy production (Jude and

Leseney, 2017). Reanalysis values are also

used to assess the quality of gridded forecasts

such as seasonal predictions (e.g. Clark et al.

(2017)).

1.4.3 Uncertainties in wind observations

Since wind is highly variable in space and time,

every observed wind value is inherent to con-
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Figure 1.8: Reconstruction of the wind speed field (left) and anomaly field (right) by the ERA5 reanalysis

for January 2007. Anomalies are calculated with respect to January mean wind speeds over the period

1981-2020. The passing of various windstorms across northern Europe produced wind speed anomalies

of up to +10 m/s over the North Sea.

taining a certain degree of uncertainty. Not all

wind observations are the same and some are

considered of higher quality than others, but if

their quality is known and demonstrable, they

can be used appropriately (Table 1.1).

On-site measurements are possibly the most

accurate wind data we can obtain. The extent

to which they deviate from the true value (i.e.,

the value that would be measured in the ab-

sence of error) is diverse depending on the in-

strument, but usually lesser than that for reana-

lysis. Therefore, it is little wonder that in-situ

measurements are considered perfect in some

analyses (e.g. Gubler et al. (2020); Molina

et al. (2021)), despite being subject to contain-

ing some degree of uncertainty, coming mainly

from instrumental errors (WMO, 2017).

The assimilation of uncertain observations by

an imperfect model in the generation process

of a reanalysis leads necessarily to uncertain

response values. Since each reanalysis pro-

ducing centre uses its own configuration there

is an added component of uncertainty coming

from (i) the different assimilation methods used

in the generation of a reanalysis to nudge fields

towards observed values (see Fujiwara et al.

(2017) for a review), (ii) the varied paramet-

risation schemes implemented, and specially

those for surface levels (e.g. boundary layer

or cloud physics), and (iii) the changing dens-

ity and quality of the assimilated observations,

which may produce inconsistencies leading to

spurious low-frequency trends sometimes dif-
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Table 1.1: Summary table of the different types of wind datasets employed in this thesis.

In-situ

observations

Reanalyses Seasonal

predictions

Native grid Irregular Gaussian or regular Gaussian or

regular

Timespan Up to centennial

scale

30-50 years typically but also

centennial scale

Up to 40 years

normally

Time resolution Sub-secondly Up to 1-hourly Up to 6-hourly

Spatial resolution ∼1 m ∼10 km ∼100 km

Main source of uncertainty Instrumental

error

Representativeness error Model error

ficult to distinguish from the real wind speed

trends (Dee et al., 2011a).

However, all these errors originated during the

creation of a reanalysis could be small —and

even negligible— when compared against the

representativeness errors (Janjić et al., 2018).

Given the gridded nature of reanalysis data,

each datum represents a unique wind estimate

for an area of hundreds of square kilometres

—suppose a grid cell with horizontal dimen-

sions 30 km x 30 km, which is the finest resolu-

tion of the currently available global reanalyses.

Hence, those areas with special topographic

features at much finer scales (e.g. mountainous

areas or coastlines) within a grid cell are not

properly represented by the model, and neither

are the local-scale winds induced by this fine to-

pography (e.g. anabatic and katabatic winds).

The misrepresentation of those winds gener-

ates systematic errors (biases) that could be

significant (Molina et al., 2021). Being aware

of such limitations of reanalysis data is crucial,

so that the representativeness error in reana-

lysis will be investigated further in Chapter 4 of

this thesis.

1.5 Searching for accurate seasonal

predictions

Advances towards better seasonal predictions

have been achieved from two different angles.

On one hand, climate scientists have expanded

their understanding of the climate processes

to eventually incorporate them into seasonal

prediction systems. On the other hand, nu-

merous studies have focused on producing a

wide range of post-processings to be applied
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on the prediction systems’ output. These post-

processings include the adjustment of the bi-

ases of the model output, the improvement of

the techniques for the forecast quality assess-

ment and the development of statistical meth-

ods to be combined with dynamical predictions.

1.5.1 The need for bias-adjustment

An important issue affecting the quality of sea-

sonal predictions is the model-specific biases

that, unlike weather forecast models, grow

more strongly in a fully coupled system (Slingo

and Palmer, 2011). These biases in the output

of a climate model result from the inability of

the climate models to numerically reproduce all

the relevant processes responsible for climate

variability, the initialisation of the primitive equa-

tions, and the coarse grids in which seasonal

predictions are computed (Table 1.1).

Those biases can become large, to the extent

that the distribution of probable outcomes of

the seasonal forecast is notably different from

that of the observed distribution (Figure 1.9).

This inconsistency makes seasonal forecasts

less useful, and does not fulfil an acceptable

accuracy requirement for their adoption in spe-

cific fields like the wind energy sector (Torralba,

2019). The magnitude of those biases can

be inferred using the so-called hindcasts of a

seasonal prediction system, i.e. retrospective

forecasts made with the same configuration as

the real-time forecasts. Since observations are

available for the hindcast’s timespan, hindcasts

are compared against an observational refer-

ence dataset (e.g. station-based or reanalysis).

Once characterised, the biases in the seasonal

predictions can be corrected. Over the years,

many methods have been proposed to adjust

prediction biases (Torralba et al., 2017b; Man-

zanas et al., 2019), which affect not only to the

mean value, but also to other moments of the

wind distribution (Marcos et al., 2018).

In particular for seasonal predictions for wind

speed, three different bias-adjustment ap-

proaches have been proposed in the literat-

ure: simple bias correction (Leung et al., 1999),

quantile mapping (Themeßl et al., 2011) and

calibration (Doblas-Reyes et al., 2005). All

these post-processing methods address differ-

ent aspects of forecast error and produce sea-

sonal forecasts with similar statistical properties

to the observed distribution.

Firstly, simple bias correction adjusts predic-

tions to have an equivalent standard deviation

and mean to that of the observations:

yi,j = (xi,j − x)
σref
σe

+ o. (1.1)

In Equation 1.1, yi,j refers to the adjusted fore-

cast for each year i and member j, xi,j is the

raw forecast for year i and member j, x rep-

resents the mean value of all raw forecasts for

all years i and members j. σref and σe refer to

the standard deviations of the observations —

understood as a reference— and the forecast
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Figure 1.9: Surface wind speed seasonal predictions for December-January-February from the SEAS5

seasonal prediction system at a location in the east Pacific during the 1981-2017 period. (a-b) depict the

raw seasonal predictions (i.e., without performing any bias correction procedure), while (c-d) represent the

same predictions after applying a simple bias correction. Reds in (a,c) represent the ensemble members

of the prediction, in particular, the mean (solid line) and the range of the ensemble (shadow). Black solid

lines in (a,c) represent the observed seasonal wind speeds, sourced from the ERA5 reanalysis. Red and

black curves in (b,d) represent the probability distribution of the predicted and observed (ERA5) values,

respectively. Predictions were initialised on the 1st of November.

—given by the ensemble members—, respect-

ively. Finally, o is the climatological value of the

observations. It is common practice that the

reference observations oi are used later in the

verification of the bias-adjusted seasonal pre-

dictions. In such cases, and to ensure the fair-

ness of the verification, it is highly advisable

considering cross-validation techniques (Wilks,

2011).

Unlike simple bias correction, quantile mapping

adjusts all moments of the forecast distribution

so that seasonal forecasts have an equivalent

Cumulative Density Function (CDF) to that of

the observations. Calibration techniques, on

the other hand, encompass a set of method-

ologies that adjust forecast probabilities to re-

semble the observed frequencies. However, all

these post-processings do not necessarily lead

to an increase in the quality of the predictions,

especially when cross-validation is applied. Ad-

justing for one metric can lead to degradation
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for another one. The following subsection elab-

orates on how the quality of seasonal predic-

tions is measured and why an estimate of it is of

primary importance whenever a seasonal pre-

diction is delivered.

1.5.2 Measures of the quality of a seasonal

prediction

The forecast quality assessment (Jolliffe and

Stephenson, 2012) is a fundamental step in

seasonal prediction because a forecast product

is useless without an estimate of its quality (or

skill) that is based on past performances. The

hindcasts of a seasonal prediction system are

compared against an observational reference

dataset so that good seasonal prediction sys-

tems exhibit a close correspondence to that ob-

servational reference.

Many verification scores have been proposed

over the years to assess different aspects of the

predicted wind speed distribution adequately

(see Jolliffe and Stephenson (2012) for a re-

view). The ensemble mean correlation (based

on Pearson’s correlation) is one of the most

used in forecast quality assessment. It meas-

ures the linear association between predic-

tions and observations, with a particular fea-

ture sometimes considered an advantage: it ig-

nores systematic biases, which can be pretty

large in seasonal forecasts. Other scores are

defined specifically for probabilistic forecasts.

The most commonly used is the Ranked Prob-
ability Score (RPS), and its continuous ver-

sion the Continuous Ranked Probability Score

(CRPS). Both scores measure the quality of

the entire predicted probability distribution by

measuring its distance to the observations, with

the difference that the RPS discretises the

probability distribution by transforming it into

ordered categories.

All these scores assume the reference obser-

vation values to be perfect, known with abso-

lute certainty. However, as discussed in Sec-

tion 1.4.3, all observations are inherent to con-

taining some degree of error. Not accounting

for such error has several implications such as

the diverging verification results obtained de-

pending on which observational reference data-

set is used (Gómez-Navarro et al., 2012). This

leads to an ambiguity for which some solutions

have been proposed. One option is to re-build

the verification scores to account for observa-

tional uncertainty (Ferro, 2017). However, its

implementation into seasonal forecast verifica-

tion has not yet been made. Chapter 6 of this

thesis will tackle this issue.

1.5.3 Statistical methods applied to sea-

sonal prediction

The limitations and pitfalls of dynamical mod-

elling in climate predictions has favoured the

adoption and development of statistical tech-

niques for empirical seasonal forecasting. A

wide range of approaches have been proposed,

with varying complexity, but all achieving com-
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parably good results. Statistical methods can

be applied to predicting seasonal anomalies

(Rust et al., 2015), the assessment of climate

extremes (Ortizbeviá et al., 2011) or the down-

scaling of data from coarse to fine grids (Huang

et al., 2014). The selection of the most appro-

priate method highly depends on the climate

variable being targeted as well as on the pur-

pose of the study.

Linear regression is the most simple statist-

ical method, and it is easily understandable

from the point of view of the simple and mul-

tiple linear regression (Wilks, 2011). Much of

the relationships between different sets of cli-

mate variables can be described linearly so

that simple and multiple linear regressions seek

to summarise that relationship between two or

more climate variables, respectively. Analytic-

ally, this consists of the computation of a set of

coefficients for the linear equation relating the

two sets of variables, being the least-squares

method the most commonly used for fitting such

coefficients. In particular, least-squares regres-

sion looks for the coefficients that minimise

the sum (or, equivalently, the average) of the

squared errors.

All the traditional methods like regression may

sometimes appear less efficient, especially

when there is plentiful data to deal with. The

current climate data archives are growing rap-

idly thanks to the increasing data acquisition

by satellites and the massive climate model-

ling projects like the Coupled Model Intercom-

parison Project (CMIP) (Taylor et al., 2012). As
a result, climate scientists have recently begun

to explore new computationally efficient tech-

niques to incorporate this new information into

climate analyses. Machine Learning (ML) tech-

niques are advancing in the art of climate pre-

diction (Bonavita et al., 2020), helping in the

creation of coherent and computationally tract-

able models. Nevertheless, the development of

such methodologies is still in its infancy.
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Chapter 2

PhD thesis within the BSC-ES department

This PhD thesis has been conducted within the

Earth Sciences Department of the Barcelona

Supercomputing Center-Centro Nacional de

Supercomputación (BSC-ES). The department

is directed by Dr. Francisco J. Doblas-Reyes

and its mission is to develop and implement

global and regional models and data solutions

for air quality and climate forecasting as well

as their applications. The present thesis deals

with the topic of climate prediction, which can

be sub-divided into a wide variety of research

lines aimed at enhancing the quality of those

forecasts (Figure 2.1). All three types of climate

predictions are studied at the BSC-ES depart-

ment, and for each group, different compon-

ents of the Earth System are targeted. The im-

provement in the quality of climate prediction is

achieved from various perspectives, which in-

clude not only the tuning of the prediction sys-

tems but also the application of post-processing

methods.

In particular, this study will target seasonal pre-

dictions for wind speed to eventually provide

results in the form of a climate service. Part of

the work presented here has been conducted

within the framework of two European projects:

INDECIS1 and S2S4E2. Furthermore, this re-

search expands on the advances of two PhD

thesis carried out at BSC-ES. Torralba (2019)

constituted the first PhD thesis of the depart-

ment aimed at developing a climate service for

the wind energy sector. They collect, assess

and ultimately recommend the most appropri-

ate techniques for delivering the best seasonal

predictions for wind speed. These methodolo-

gies regard bias adjustment, forecast verifica-

tion and dynamical-empirical seasonal predic-

tion. Besides, Lledó (2020) gain insight into

the wind speed variability and its sources at

sub-seasonal and seasonal timescales. Hav-

ing said that, the present PhD thesis uses the

knowledge provided by these two theses, and

continues with the ultimate goal of improving

the quality of seasonal predictions. The use

of high-quality observations will be the key ele-

ment introduced to achieve successful results.
1www.indecis.eu
2www.s2s4e.eu
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Chapter 3

Objectives and structure of this work

The overall goal of this thesis is to improve

the quality of seasonal predictions for the wind

energy sector from the perspective of the cli-

mate observations. Even though observations

are routinely employed in seasonal prediction,

little attention has been traditionally paid to

their opportunities to understand the coming cli-

matic conditions better. The aim is addressed

through the following objectives:

Objectives

1. Adjust seasonal predictions to the local scale by combining information from point

observations.

2. Account for the uncertainty in the observational reference in seasonal forecast

quality assessment.

3. Evaluate the quality and quantify the error in observational sources, to later use

them in the verification and enhancement of seasonal predictions.

4. Bring the advances to the wind energy users.

Resulting from this work, an observational data-

set as well as novel methods and approaches

will be delivered. Since the wind energy in-

dustry is one of the biggest users of the var-
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Objectives and structure

ied types of wind data, our results ultimately

provide knowledge in the form of a climate ser-

vice. While some outputs are already available,

others will shape future climate services. With

our conclusions and recommendations, we in-

tend to guide individuals and organisations

on their choices among alternative courses

of action to increase benefits and reduce ex-

penses. Therefore, we are indirectly increasing

the value of seasonal forecasts.

This work is presented in the form of a com-

pendium of three publications. These articles

appear numbered in three different high-impact

journals, namely, Quarterly Journal of the Royal

Meteorological Society, Earth System Science

Data and Environmental Research Letters.

Chapter 3 includes the scientific paper in which

we present the Tall Tower Dataset, a collection

of non-standard climate observations from 222

tall towers distributed worldwide. This chapter

also describes the quality-control process car-

ried out over the dataset, as well as the result

of such exercise. Chapter three deals with the

third objective.

Chapter 4 also focuses on the third objective.

In the article included there, the error in reana-

lysis data is quantified by means of a compar-

ison and a later verification of five widely used

global reanalyses. We eventually select the

product that best approximates near-surface

wind speeds to those observed in-situ at 77 in-

strumented tall towers.

Chapter 5 tackles the first objective. Here we

describe the methodology to produce hybrid

seasonal predictions for wind speed. By com-

bining observations from the Tall Tower Dataset

and the reanalyses with dynamical predictions

of the synoptic state of the atmosphere, we aim

to provide accurate seasonal predictions at a

fine scale.

Chapter 6 evaluates the impact of observa-

tional error in the context of seasonal forecast

quality assessment, i.e. the second objective of

this thesis. We discuss various approaches to

account for such error in the verification scores

and study the implications in a model ranking

exercise. Will the best seasonal prediction sys-

tem stand out as so regardless of the observa-

tional reference used to verify it?

In each of the above-mentioned chapters, we

analyse in what way a climate service is

provided. We describe the potential usage of

each output in wind-related studies, and within

the wind power industry. By bringing our res-

ults to the wind energy users (fourth objective),

the non-experienced audience can also benefit

from the advances of the present thesis.

Chapter 7 presents the conclusions of this

work. The main scientific contributions and the

ideas for the continuation of this study are out-

lined in this chapter.
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Chapter 4

Winds blowing at 100 metres

Objective

Create a quality-controlled dataset containing wind data measured at tall meteorological masts.

The height of these structures ranges between 20 to more than 400 metres so that the vertical

wind profile in the lowermost levels of the troposphere can be characterised. Since modern wind

turbines reach heights around 100 metres, a data collection with such qualities would be of high

value for the wind energy sector.

Methodology

• Collect climate data from sparse existing datasets.

• Create and apply a quality control suite to ensure the high quality of wind data.

Results

• The Tall Tower Dataset contains data from 222 tall tower locations.

• The timespan of the series is diverse, ranging from 2 to 34 years.
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• The 95.2% of the original data passed successfully the 18 quality control tests.

• A simple exercise demonstrates that our quality control suite is effective in detecting bad

data.

• The Tall Tower Dataset is publicly accessible at talltowers.bsc.es

Conclusions

• The wind industry and the research academy are the target users of the Tall Tower Dataset.

• There is still a general reluctance to share climate data. However, recent initiatives like the

Tall Tower Dataset aim at boosting the open data.

Publication

• Ramon, J., Lledó, L., Pérez-Zañón, N., Soret, A., and Doblas-Reyes, F. J. (2020). The Tall

Tower Dataset. A unique initiative to boost wind energy research. Earth System Science

Data, 12:429–439, doi: 10.5194/essd-12-429-2020
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Abstract. A dataset containing quality-controlled wind observations from 222 tall towers has been created.
Wind speed and wind direction measurements covering the 1984–2017 period have been collected from existing
tall towers around the world in an effort to boost the utilization of these non-standard atmospheric datasets,
especially within the wind energy and research fields. Observations taken at several heights greater than 10 m
above ground level have been retrieved from various sparse datasets and compiled in a unique collection with
a common format, access, documentation and quality control. For the last, a total of 18 quality control checks
have been considered to ensure the high quality of the wind records. Non-quality-controlled temperature, relative
humidity and barometric pressure data from the towers have also been obtained and included in the dataset. The
Tall Tower Dataset (Ramon and Lledó, 2019a) is published in the repository EUDAT and made available at
https://doi.org/10.23728/b2share.136ecdeee31a45a7906a773095656ddb.

1 Introduction

Renewable energies have experienced the fastest growth
among all electricity sources in the last few years
(OECD/IEA, 2018, 2019). Together with solar photovoltaic,
the wind power sector is leading this development, and the
number of new wind farms and the installed capacity is cur-
rently facing an important increase worldwide (WindEurope,
2018; AWEA, 2019).

With higher shares of electricity generation depending on
wind speed conditions, it is crucial to advance understand-
ing of wind speed conditions at heights between 50 and
150 m above ground – where current wind turbines are in-
stalled – and at multiple timescales ranging from turbulence
to mesoscale circulations, seasonal to decadal oscillations
and climate change impacts. To characterize these features,
high-quality meteorological observations are needed.

Vast numbers of surface wind measurements taken at the
standard height of 10 m above surface level do already exist,
and efforts have been made to compile the existing surface
wind observations (Lott, 2004; Dunn et al., 2012; Klein Tank

et al., 2002; Lucio-Eceiza et al., 2018a, b). However, me-
teorological data at turbine hub heights are much scarcer
than surface observations. To take those measurements, a tall
tower or met mast needs to be installed and instrumented.
The basic structure of these masts consists of a high vertical
tower reaching heights of 100 to 200 m above ground with
several platforms distributed along the vertical structure. It
allows the placement of several wind sensors (i.e. anemome-
ters and wind vanes) at different heights so that the vertical
wind shear can be profiled. In addition, it is also typical to in-
stall several horizontal booms at each measuring height ori-
ented to different directions. Thus, more than one sensor per
measurement level can be installed to correct or replace data
from one of these redundant sensors in case it is affected by
a technical failure or by the wind shadow produced by the
mast itself. The physical structure of a tall tower, as well as a
typical instrumentation layout, is illustrated in Fig. 1.

Recently, the usage of remote sensing devices to measure
atmospheric profiles has increased as an alternative to the tall
tower in situ measurements. Atmospheric lidars, for exam-
ple, are becoming more popular due to their easy installa-
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Figure 1. (a) Measuring levels at University of Hamburg meteo-
rological mast (Germany). Source: https://icdc.cen.uni-hamburg.de
(last access: February 2020).(b) Arrangement of the instrumenta-
tion in booms at Hyytiälä forest met tower (Finland). Courtesy of
Jesús Yus-Díez.

tion and maintenance when compared to tall towers. How-
ever, the lack of historical lidar data limits their utilization in
long-term assessment studies. One more example of that new
trend is the lidar-based satellite Aeolus, which was launched
by the European Space Agency in 2018, and has just started
acquiring profiles of Earth’s wind on a global scale (https://
www.esa.int/Applications/Observing_the_Earth/Aeolus, last
access: February 2020).

Hub-height observations are widely used in different ini-
tiatives to (a) evaluate the wind resource characteristics
and derive wind power generation estimates (Brower et al.,
2013); (b) study local wind shear, turbulence and the dynam-
ics of the planetary boundary layer, PBL (Li et al., 2010); (c)
enhance or verify reanalysis products (Ramon et al., 2019;
Decker et al., 2012); (d) correct meteorological forecasts
(Baker et al., 2003) and climate predictions (Torralba et al.,
2017); or (e) calibrate and verify wind atlas products (e.g.
Troen and Petersen, 1989; Fernando et al., 2018; Tammelin
et al., 2013).

Most of the existing met masts are owned by private com-
panies mainly from the wind energy industry. Wind energy
companies need to take those measurements prior to the con-
struction of a new wind farm to characterize the wind speeds
in the area and eventually ensure the return of the initial in-
vestment. In addition, some local effects such as topographic
channelling, sea breezes, turbulence or vertical wind shear
must be inferred because they can have a substantial impact
on the electricity production (Hansen et al., 2012). Since the
maintenance costs of these large and complex structures are
rather expensive, the energy industry typically takes mea-
surements for a relatively short period (1 or 2 years usu-
ally). Then the towers are decommissioned, so the lack of
long records of tall tower data reduces the possibilities to
study, for example, wind variability at seasonal to decadal

timescales. In addition, private companies are usually reluc-
tant to share the tall tower data with third parties, obstructing
their further usage even more.

Fortunately, many of the initiatives from (a) to (e) also take
tall tower measurements for their research and then the data
are usually made freely accessible for non-commercial pur-
poses. Derived from these diverse efforts devoted to boosting
the utilization of tall tower records, there exist various sparse
datasets containing measurements from instrumented towers.
Regrettably, they are often difficult to find or access, and the
lack of coordination in terms of formats, metadata, data ac-
cess and quality control (QC) hinder their usability outside
the owner institution.

The INDECIS (http://www.indecis.eu/, last access: Febru-
ary 2020) project is making attempts to collect existing non-
standard meteorological observations, among other efforts.
In this paper, a dataset is presented, and the QC of the wind
data is further detailed. The reader is referred to Ramon and
Lledó (2019b) to find complete information on the identifica-
tion and collection of towers, data formatting and documen-
tation. Section 2 of this article describes the main features
of the dataset, as well as the data characteristics. The QC
software suite is defined in Sect. 3. Then, a wrap-up of the
results after running the QC checks is presented in Sect. 4.
The benchmark experiment carried out to test the robustness
of the QC software is shown in Sect. 5. Finally, conclusions
are presented in Sect. 6.

2 Tall Tower Dataset description

The Tall Tower Dataset (Ramon and Lledó, 2019a) is a
unique collection of data from 222 tall towers resulting from
an exhaustive process of identification of existing masts and
their later data retrieval. Figure 2 presents the global distribu-
tion of the sites, which is highly heterogeneous. Most of the
masts are located in Asia (51 %), mainly clustered in Iran, re-
sulting from a national campaign aimed to boost renewable
energies at a country level. Then, tall towers appear more
spatially distributed over North America (23 %) and Europe
(16 %), mirroring the important deployment of wind power
that is taking place in those regions. Africa (8 %), Oceania
(1 %) and Antarctica (1 %) follow. Unfortunately, it has been
hard to retrieve data from South America, so no records from
this area can be found in the Tall Tower Dataset.

The height above the surface where the top sensor is lo-
cated for each tower is also depicted in Fig. 2. On the one
hand, masts placed in historical observatories (i.e. often hav-
ing more than 20 years of data) tend to be short, with heights
ranging between 18 and 50 m above the ground and usually
consisting of one measuring level at the top of the pole. Two
examples are the American masts in Utqiaġvik (formerly
known as Barrow) and Mauna Loa. On the other hand, mod-
ern towers often reach 100 to 200 m of altitude. Indeed, most
of the masts in northern Europe have been installed during
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Figure 2. Global distribution of the 222 tall tower locations within the Tall Tower Dataset. Colours indicate the top measuring level for each
tower. Further information can be found in Sect. S1 of the Supplement.

the last 15–20 years and are generally taller than 80 m, usu-
ally reaching 150 to 200 m. However, the tallest structures
are located in the USA, reaching the exceptional height of
500 m, allowing the placement of sensors at that height. The
top anemometer at Walnut Grove tall tower in California is at
488 m above ground level. The number of measuring levels
in these masts is almost always higher than three, and up to
eight in the case of the FINO met masts.

A list of the towers included in the Tall Tower Dataset,
as well as their main characteristics such as the owner insti-
tution, country, geographic coordinates or specific recording
periods, can be found in Sect. S1 of the Supplement. The
record lengths and other structural features such as height
or instrumentation are quite diverse as they depend on the
purpose they were designed for. Most of the towers are typi-
cally installed to provide in situ observations for experimen-
tal field campaigns within the research or industry fields. In
this case, the tall towers are commonly referred to as mete-
orological masts or met masts, and they represent up to the
87 % of all the tall towers in the dataset. However, other sen-
sors are installed over marine platforms (11 %) or at the top
of lighthouses (1 %) to monitor the coastal weather condi-
tions. Finally, 1 % of the towers are instrumented commu-
nication transmitters that take meteorological measurements
at several platforms along with the antenna. Concerning the
location, almost 80 % of these tall towers are found inland
while the other 20 % are placed offshore.

Information indicating the representative features men-
tioned above is included in the dataset within the correspond-
ing site metadata, which have been standardized for all the
sites. This material was sometimes confusing, sparse or even
missing in the datasets distributed by the owner data cen-
tres, especially when it comes to the conventions in which
the initial data were prepared. For example, if the time zone
in which the time stamps were delivered was not specified,
it could be challenging to discern whether they are provided

in local time or Coordinated Universal Time (UTC). Another
example concerns the data units, which were not explicitly
stated in a few cases either. In both of these confusing situa-
tions, the data provider was contacted to confirm the original
convention. Further information on the diverse standards in
which the data were provided as well as the final conventions
employed in the Tall Tower Dataset can be found in Ramon
and Lledó (2019b).

The time span of the 222 time series is depicted in Fig. 3a.
First, we split the series according to their time resolution,
which varies from every 10 min to once per hour. Most of
the series, i.e. a total of 172, provide 10 min averaged data,
meeting the WMO standard (WMO, 2007) for estimating
mean wind speeds. The other 50 masts report 15 min, 20 min,
30 min or hourly data. Information on how these averages
have been taken is hardly ever available. The fact is that re-
sulting aggregated values vary depending on whether aver-
ages are taken over the horizontal wind components or speed
and direction modules independently. WMO (2007) does not
prefer one option over the other, as it may depend on the ap-
plication or available instrumentation. Even though the ef-
fects of this choice are rather small, especially for higher
wind speeds, it represents an additional source of uncertainty
for the values themselves.

The total coverage of the Tall Tower Dataset ranges from
1984 to 2017. While the 90 % of the series span less than
20 years, 3 % cover 30 or more years. The precise beginning
and end of recording periods can be found in Sect. S1 of
the Supplement for each tall tower. Nevertheless, several of
these masts have been recently installed, and measurements
are currently operational. Missing data periods – 12.1 % of
the dataset – appear sometimes embedded within the series.

Concerning the data retrieval process, the initial efforts
focused on collecting the largest number of wind observa-
tions possible. Those records have been complemented with
temperature, relative humidity and surface pressure data also

www.earth-syst-sci-data.net/12/429/2020/ Earth Syst. Sci. Data, 12, 429–439, 2020
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Figure 3. (a) Time coverage of the 222 tall towers depending on whether they report 10 min data (top) or lower resolutions up to 1 h data
(bottom) and (b) time evolution of the total number of observations within the Tall Tower Dataset for wind speed (green), wind direction
(blue), temperature (red), relative humidity (orange) and pressure (purple).

measured at the different platforms along the tower. The time
evolution of the number of these five variables is plotted in
Fig. 3b. Most of the data fall within the 21st century, with a
significant increase at the beginning of the millennium. Up
to 2.7 million wind speed records have been retrieved for
one single month, i.e. December 2015, which constitutes the
month with the maximum amount of wind speed data. In the
case of wind direction, the month with the highest number of
records is October 2012 (2.1 million measurements). A de-
crease in the number of observations has been noticed from
2017 onwards. Generally, some of the data providers prefer
to keep the most recent data and release them once measure-
ments are preliminarily checked for gross errors. Tempera-
ture, relative humidity and pressure are not always available.
We note that the fewest records correspond to barometric
pressure, which is usually measured only at surface level (i.e.
2 m above ground level).

3 The Quality Control Software Suite for Tall Towers
(QCSS4TT)

To ensure the high quality of tall tower wind data and guar-
antee the accuracy of any result derived from these records, a
QC procedure needs to be carried out. The scientific literature
has devoted efforts to QC wind data taken at surface stations
(e.g. Dunn et al., 2012; Lucio-Eceiza et al., 2018a, b). How-
ever, no QC software has been specifically designed to tackle
the same problem with tall tower observations, whose fea-
tures vary considerably when compared to surface wind data
(e.g. measurements are taken at higher altitudes, the spatial
density of stations is considerably lower). Unique measur-
ing techniques, such as the parallel measurements at differ-
ent platforms along the mast or sensor redundancy at a given

height, can also be taken into account to complement and en-
hance the typical QC.

After a review process of the existing QC routines, a set of
18 sequential QC tests (two preliminary and 16 main tests)
has been selected and designed to be performed over wind
measurements. The Quality Control Software Suite for Tall
Towers (QCSS4TT) designed here is applied to all the wind
speed and wind direction data within the Tall Tower Dataset,
regardless of whether they were previously quality controlled
or not by the providing institution. A general description of
the QCSS4TT is presented below in this section. The soft-
ware is fully described in Sect. S2 in the Supplement.

The QC tests within the QCSS4TT are all intra-station
checks, as they do not compare series from nearby tall tow-
ers. QC routines ingest entire time series of winds at a spe-
cific heights, whose time frequencies vary between 10 min
and 1 h. The recommended sequence for the application of
the QC tests is presented in Fig. 4. Checks are grouped in
five categories depending on the purpose they were designed
for. The two preliminary checks are designed to detect gross
manipulation errors. Then, the 16 main QC tests ensure the
limits, spatio-temporal and internal consistency of the wind
speed and wind direction time series. We note that the rou-
tines can be run independently, with the exception of the
quartile occurrences and isolated pass tests which feed on the
output of other tests within the QCSS4TT. After deciding the
appropriate order, the tests have been applied over the Tall
Tower Dataset according to the flux diagram in Fig. 4.

The QCSS4TT starts with two preliminary tests. Firstly,
the time stamp check is carried out during the data format-
ting process and ensures that all the time stamps are included
in the dataset and equally sampled according to the tower
reporting frequency. Those time stamps that are either du-
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Table 1. Main QC tests summary. The abbreviations ws, wd and tmp stand for wind speed (in metres per second), wind direction (in
meteorological degrees) and temperature (in degrees Celsius), respectively. The reader is referred to Sect. S2 in the Supplement for detailed
information on each of the tests.

QC Fail Suspect Remarks

Plausible values ws 6∈ [0,113.2) wd 6∈ [0,360] ws ∈ (75,113.2]

Difference between ex-
treme values of the dis-
tribution

max(ws)−max2nd(ws)>max2nd(ws) Runs iteratively until the condi-
tion is not satisfied

Persistence test ifA= {xt , . . .,xt+60} is a set of 60 con-
secutive values, max(A)−min(A)< 0.7
for ws and max(A)−min(A)< 5 for wd

Skips calms (ws≤ 0.5 m s−1)

Flat line Six or more consecutive ws val-
ues all equal, or 40 or more con-
secutive wd values all equal.

Three or more consecutive ws values
all equal, or 20 or more consecutive wd
values all equal

Icing max(tmp)< 0 and max(ws)=
0 for a 4 d period or longer.

Abnormal variations σi 6∈ [σ ± 4 · sd(σ )], where σ is the dis-
tribution generated by the standard de-
viations of all the 30 d periods within a
time series and σi is the standard devia-
tion of the ith 30 d period

Only for ws. Disabled when
more than 50 % of data within
a 30 d period are missing

Systematic errors mi 6∈ [m±4·sd(m)], wherem is the dis-
tribution generated by the means of all
the 30 d periods within a time series and
mi is the mean of the ith 30 d period

Only for ws. Disabled when
more than 50 % of data within
a 30 d period are missing

Quartile occurrences Given a period of time, all the
observations fall above or be-
low the first, second or third
quartiles of the ws distribution
(see Table S2 of the Supple-
ment)

Given a period of time, all the observa-
tions fall above or below the first, sec-
ond or third quartiles of the ws distribu-
tion (see Table S2 of the Supplement)

Rate of change wst+1−wst ≥ 3 · IQR 2 · IQR≤ wst+1−wst < 3 · IQR IQR is the interquantile range
of the ws distribution

Step test wst+1−wst ≥ 20

Repeated sequences Repetition of a sequence of 20
or 30 consecutive ws values, or
repetition of a sequence of 30
consecutive wd values.

The values of the sequences
need not be all equal. The maxi-
mum allowable length of the ws
sequence depends on the deci-
mal places of the data

Tower shadow ws values falling in the wake of the ver-
tical structure

Only works if the tower con-
tains redundant anemometers at
the same level

Vertical ratios Ratio between parallel ws ob-
servations at different levels ex-
ceeds 30 units

Ratio between parallel ws observations
at different levels exceeds 15 units

Skips ws lower than 1 m s−1

Isolated pass Unflagged ws or wd values are
surrounded by sequences of er-
roneous or missing data (see Ta-
ble S3 of the Supplement)

Unflagged ws or wd values are sur-
rounded by sequences of suspect data
(see Table S4 of the Supplement)

This QC test needs to be run af-
ter the other routines

Occurrences of 0’s and
360’s

The occurrence of 0’s repre-
sents more than 30 % of ws val-
ues, or the occurrence of 0’s
and 360’s represents more than
30 % of wd values

Does not flag individual records
but the entire time series

Internal consistency ws= 0 and wd 6= NA
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Figure 4. Summary of the workflow of the QCSS4TT routines applied over wind data within the Tall Tower Dataset.

Table 2. Flag level definitions.

Flag value The observation...

0 has not been evaluated by three or more QC
tests (partly QCed)

1 has passed all QC tests successfully
2 is deemed suspect
4 has failed at least one of the tests
5 is a calm wind
9 is missing

plicated or wrongly spaced have been discarded, and those
missing have been included, setting the corresponding record
to “not available” (NA). Secondly, the surroundings check
is performed by detecting nearby elements that could poten-
tially perturb the wind flow and then produce unreal records.
To do so, detailed descriptions of the encircling area of the
mast as well as its possible changes over time are required.

Then, the 16 main QC tests follow. A summary can be
found in Table 1 and complete information can be found in
Sect. S2 in the Supplement. Most of them are standard checks
typically performed over wind and other Essential Climate
Variables such as temperature or precipitation. However, we
propose two new QC tests (the so-called tower shadow and
vertical ratios checks, respectively) here to guarantee the spa-
tial consistency of the data by considering the special char-
acteristics of the tall tower measurements since classic inter-
station comparisons appear challenging due to poor spatial
density of sites.

After running the QCSS4TT, a natural number (hereafter
referred to as QC flag or flag; see Table 2) is attached to

each observation according to its nature and/or level of con-
fidence. To decide which flag should be assigned to each ob-
servation, different threshold values have been set for each
of the QC routines. The threshold selection has been based
on the World Meteorological Organization (WMO) standards
(WMO, 2007; Aguilar et al., 2003), QC software manuals
(IOSS, 2017) or state-of-the-art bibliography (e.g. Jiménez
et al., 2010). Many of these standards, if not all, have been
developed specifically for surface winds (i.e. 10 m winds),
whose features vary importantly when compared with winds
observed at higher altitudes, such as those from the present
work. After a preliminary test of the thresholds over the wind
data within the Tall Tower Dataset, it was noted that some
tests considerably overestimated the amount of erroneous
data (also known as Type I errors; see Hubbard et al., 2004).
The WMO allows adjustment of some of the fixed-value lim-
its proposed in the WMO (2007) to reflect singular climate
conditions more accurately. As the QCSS4TT aims to clean
data from towers located all over the world regardless of the
prevailing climate conditions in the area, thresholds need to
be adjusted manually to not deem wrong the general and par-
ticular climate features observed in a wide variety of world
climates. It is also vital to take into account that this sensi-
tive experiment should reduce the number of Type I errors
without increasing the number of invalid data that have been
accepted by the tests (also referred to as Type II errors).

Based on these thresholds and the nature of the individual
wind records, six different categories have been defined (Ta-
ble 2), and each datum is flagged appropriately. The quality
of a record is inferred automatically by checking if it passes
all the tests successfully (flagged as “1”), passes the tests but
might need further checks such as a visual inspection (here-
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after referred to as suspect and marked as “2”) or fails at
least one of the tests (flagged as “4”). When an observation
is not considered suspect or wrong by any of the QC tests,
additional levels may indicate that the observation was not
evaluated by three or more tests (indicated as “0”) or cor-
responds to a calm period (“5”). Finally, missing values are
flagged uniformly (categorized as “9”).

Wind records flagged as “4” are deemed to be erroneous
data and thus unreliable. They have been removed by chang-
ing the original record to NA. Suspect data as well as those
observations that have not been evaluated by all the QC tests
remain unaltered because they might be potentially correct
and usable for some applications. But in case the user prefers
to impose their own level of restriction, we also include the
raw data jointly with the flag values resulting from the quality
controlling. Therefore, the data user is able to filter the raw
data based on the flag values. Still in those cases, we strongly
discourage the usage of data marked as erroneous (“4”).

4 Results of the application of the QCSS4TT

The QCSS4TT has been applied sequentially over the Tall
Tower Dataset according to the flux diagram in Fig. 4. We
present here the global results obtained from the quality con-
trolling of the Tall Tower Dataset, as well as a summary of
the performance of the main tests.

As stated in Sect. 3, the surroundings check needs detailed
original metadata of the tower location. Unfortunately, this
valuable information is not always available so the surround-
ings check cannot be carried out over all the tower sites. The
unique case when this QC test confirms that a series of wind
speeds were disturbed by the surrounding forest occurs at
Wallaby Creek met mast. After running the main QC rou-
tines, long sequences of wind speeds measured at the lower-
most level of this met mast – placed at 10 m above surface –
have been flagged as wrong. A close look at the site metadata
reveals that the canopy well exceeds the 10 m height during
the whole recording period, considerably reducing the ob-
served wind speeds. Hence, all the individual observations
of the Wallaby Creek 10 m wind series have to be used with
caution, even those that have not been considered problem-
atic by other tests.

Then, the main QC routines have examined each of the
240 371 908 wind speed and wind direction values individ-
ually in the Tall Tower Dataset and flagged them accord-
ingly. After this process, 228 780 679 values (95.2 % of the
total data) passed successfully all the checks and can be con-
sidered reliable. Conversely, 6 827 880 observations (2.8 %)
have been considered erroneous by at least one of the QC
tests. They have been replaced by NA, increasing the to-
tal number of missing data from 12.1 % to 14.6 %. A total
of 1.8 % of the dataset is flagged as suspect. Some of the
QC tests, particularly those that compute period-aggregated
statistics such as moving averages or variances, require a

Figure 5. Percentage of data flagged as “fail” (dark) and “suspect”
(light) by 15 of the main QC tests within the QCSS4TT. Asterisk (*)
indicates that the QC test only flags data as suspect. Double asterisk
(**) denotes that the QC test only flags data as erroneous.

minimum amount of data. Due to this constraint, 0.2 % of
the data have not been evaluated by three or more QC tests
to avoid the computation of such statistics with reduced sam-
ple sizes. Records identified as calm (i.e. wind speeds un-
der 0.5 m s−1) have also been skipped on purpose by a small
group of tests, i.e. those that compute quotients between pairs
of simultaneous observations. However, calm wind records
can be trusted as they successfully passed all the other QC
checks. The percentage of calm wind values is highly depen-
dent on the geographical location of the tall tower. Met masts
located in Southeast Asia contain the largest percentage of
calm wind records, reaching up to 24 % of the total data.

The amount of data flagged by each test is considerably
different, as can be noticed in Fig. 5, which depicts the per-
centage of data flagged as erroneous and suspect by the main
QC tests. We note that both the flat line and quartile oc-
currences checks have flagged the largest amount of data
(1.74 %). The former detected the most substantial amount of
erroneous data (1.52 %), followed by the repeated sequences
and quartile occurrences tests (1.29 % and 0.88 %, respec-
tively). The vertical ratios check has detected very few erro-
neous or suspect records, and the difference of extreme val-
ues test has flagged no data. The occurrences of 0 and 360
values tests is not included in Fig. 5 since this test does not
flag individual records but the entire time series according to
their quality. Results for this QC show that no wrong or sus-
picious time series have been detected after the inspection of
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Table 3. Percentage of the detected errors (%) depending on the
proportion of data that were set to missing. The percentages of miss-
ing data are approximately 20 %, 10 %, 5 % and 0 % (NA-free). The
table differentiates between land and offshore locations.

NA-free 5 % 10 % 20 %
missing missing missing

Land sites 40.3 40.2 39.8 39.1
Offshore sites 40.0 39.8 39.4 38.8
Total 40.2 40.0 39.6 39.0

the frequency of appearance of null wind speeds and 0 and
360 wind direction values.

5 How reliable is the QCSS4TT?

The performance of the QCSS4TT needs to be assessed.
Here, a benchmark experiment has been specifically de-
signed to test the ability of the QCSS4TT in detecting wrong
values. In the following, the preparation of the experiment
and its results are described.

The setup of the experiment consists of generating a set
of presumably QC-free time series where a set of errors will
be purposely introduced later on. The time series have been
extracted at 50 randomly selected points from the ERA5 re-
analysis (Copernicus Climate Change Service , C3S) global
grid at hourly frequency, thus meeting the requirements of
the QCSS4TT concerning the time resolution. These time se-
ries span the 10-year period from 2007 to the end of 2016,
which constitutes the time range with the largest number of
records within the Tall Tower Dataset (Fig. 3b). To better em-
ulate the features of the tall tower data, we retrieve two par-
allel series at each of the 50 points. These wind speeds are
those provided at 10 and 100 m, respectively.

The set of 50 series is replicated fourfold. Three of these
four groups of series are firstly modified by introducing miss-
ing data at random, either by erasing data individually or re-
moving sequences of records. The percentages of missing
data in these series are approximately 5 %, 10 % and 20 %.
The introduction of missing records emulates the frequently
observed sporadic sensor failures and no data periods within
the wind speed series. Finally, the remaining group of series
is left with no datum set to missing.

The error “seeding” process is carried out following the
methodology in Hubbard et al. (2004), where the perfor-
mance of a set of basic QC tests for temperature and precip-
itation data is assessed. In this publication, a subset of 2 %
of the total data is selected to be modified by introducing an
error of magnitude:

Eix = σxri, (1)

where σx is the standard deviation of the time series x and
ri is a randomly selected number generated using a uniform

Figure 6. Percentage of detection of seeded errors as a function of
the magnitude of the random number r .

distribution ranging from −3.5 to +3.5 specifically for the
ith observation. Once the errors are inserted, the QCSS4TT
is executed.

Table 3 summarizes the differences in the error detection
depending on whether missing data are introduced or not into
the wind series for both continental and oceanic locations. It
is worth noting that the QCSS4TT shows a slight sensitivity
to missing data, reducing the percentage of detected errors
when the percentage of missing records increases. This de-
crease might be attributed to the fact that some QC tests are
deactivated when a period with very sparse data is encoun-
tered. No important differences are noted between onshore
and offshore sites, as the percentages of identified errors are
quite similar. Results that follow in this section are presented
for the set of series containing approximately 10 % of miss-
ing data, which is close to the average of absent records
within the Tall Tower Dataset (12.5 %).

The QCSS4TT has detected on average nearly 40 % of all
the seeded errors (see Table 3). Indeed, this result is at the
average of the percentage of detection observed for precipi-
tation data in Hubbard et al. (2004), which was 30 %–40 %
for complex terrain sites and 40 %–50 % for the other loca-
tions.

At this stage of the experiment, it is important to study the
role of the random number r , and particularly its magnitude,
which subsequently influences the size of the error E. Val-
ues of r close to zero will introduce smaller errors, which
will be less likely to be caught by any of the QC checks. Fig-
ure 6 presents the percentage of detection as a function of the
r values, which have been grouped in intervals of 0.5 units.
We note that the QC tests detect most of the biggest errors.
However, the percentage of detection decreases as the magni-
tude of r does, as we expected. Thus, the smallest errors are
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usually skipped by all the QC tests. Indeed, this result mir-
rors the conservative philosophy employed in the threshold
selection of the checks.

Finally, it has been observed that Type I errors have been
made in 8 % of the total data, corresponding mainly to sus-
pect flagging.

6 Code and data availability

Records from 181 out of the 222 tall towers within
the Tall Tower Dataset (Ramon and Lledó, 2019a)
are publicly accessible through the following EU-
DAT repository: https://doi.org/10.23728/b2share.
136ecdeee31a45a7906a773095656ddb. Data from the
other 41 tall towers are not directly provided for download
within the Tall Tower Dataset but can be downloaded from
specific tower websites (mostly after registration). Links
to all the 222 tall tower original sources are provided in a
data catalogue website at http://talltowers.bsc.es (last access:
February 2020), which also facilitates browsing the Tall
Tower Dataset and visualizing the main climatic features of
all the data.

The QCSS4TT code as well as an explanatory vignette on
how to use it is also available via GitLab at: https://earth.bsc.
es/gitlab/jramon/INDECIS-QCSS4TT (Ramon and Lledó,
2019c).

7 Conclusions

Hub-height wind data are vital to assess the local wind flow
features at heights ranging from 20 to 120 m, where wind
turbines are located. Nonetheless, the wind industry is not
the only user of these observations; the research academy is
also interested in retrieving hub-height winds for their studies
such as PBL experiments or the verification of climate prod-
ucts. Unfortunately, these non-standard climate data appear
sparsely, and the lack of standardized formats, quality and
metadata jeopardizes their further usage. This is the first time
efforts were devoted to gathering the most substantial possi-
ble amount of existing data measured at tall towers around
the world and perform an exhaustive QC assessment to even-
tually make them publicly available for non-commercial pur-
poses in a standard format and access point.

Wind speed, wind direction, temperature, pressure and rel-
ative humidity observations measured at different heights on
222 tall towers – owned mainly by public institutions such
as universities, meteorological weather services or research
centres – have been retrieved from sparse archives, compiled
in a unique collection, quality controlled – in the case of wind
speed and wind direction data – and released under the name
of the Tall Tower Dataset. Data from of 181 of these sites
are stored in the EUDAT data repository and can be publicly
accessed. Records from the other 41 towers are not available
there since the authors of the Tall Tower Dataset do not own

the observations and the data providers do not grant rights to
share with third parties. Although some initiatives such as the
Climate Data Store (https://cds.climate.copernicus.eu/, last
access: February 2020) are starting to boost the free utiliza-
tion of climate observations, there is still some reluctance,
mainly in Europe, to contribute to open initiatives that in-
clude data in public external archives, thus hindering their
further usage.

To guarantee the reliability of the wind measurements, a
QC software suite has been designed and applied over the
Tall Tower Dataset, and the erroneous data have been re-
moved. Some of the QC functions are coded to deal simul-
taneously with huge amounts of data so that the computa-
tion costs may be high, especially when considering high-
resolution data. After the application of the QCSS4TT, the
vast majority of the dataset (i.e, the 95.2 % of the wind data)
passed all the tests successfully.

A benchmark experiment based on Hubbard et al. (2004)
has been designed to assess the efficacy of the QCSS4TT in
detecting wrong wind speed data. The exercise is based on
the detection of a set of seeded errors introduced in 100 wind
hourly time series at 50 randomly selected locations obtained
using the ERA5 reanalysis. On average, 40 % of these seeded
errors have been identified, even though the magnitude of
the error is sometimes close to zero and therefore difficult
to detect. This result agrees with those obtained by the pre-
viously mentioned publication, thus assuring the reliability
of the QCSS4TT results. We do not perform any analogue
experiment for wind direction data since the nature of these
data requires a more complex exercise.

Even though some tall towers have been decommissioned
recently due to several different reasons, most of the loca-
tions within the Tall Tower Dataset continue taking measure-
ments that could be added to the collection in the near future.
In addition, the authors of this work are open to receive use-
ful input on new tower locations not included in Sect. S1 of
the Supplement and whose data could be potentially added
to the Tall Tower Dataset in future updates. Enlarging the
collection of these non-standard climate data and increasing
the density of stations may allow, for instance, further qual-
ity checks by means of inter-station comparisons with nearby
tall towers.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-12-429-2020-supplement.
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S2 QC main tests

S2.1 Plausible values

Wind speed and wind direction records falling outside a physically possible range of values are commonly found within the
time series. They are mainly produced by gross errors in the data loggers or storage. This test detects and flags unrealistic
values such as negative wind speed values or observations above a maximum allowed threshold. The absolute maximum limit5
has been set to the maximum wind gust measurement ever recorded on the earth surface, which is 113.3 ms−1 measured in
Barrow Island (Australia) under the effects of Olivia cyclone in April 1996 (Courtney et al., 2012). A lower threshold can be
selected from which wind speed values can be flagged as suspect. This value is set to 75 ms−1, which is the one suggested by
the WMO (WMO, 2007) and besides, this fixed-value also corresponds to Vaisala’s sensors highest measurable value. Wind
direction values falling outside the range from 0 to 360 degrees are also flagged as erroneous.10

S2.2 Difference between extreme values of the wind distribution

One of the potential uses of the Tall Tower Dataset is the detection of severe weather events by looking at the extreme values
of the empirical wind speed distribution. However, some of these extreme measurements might be erroneous and need to be
flagged accordingly. This QC check detects and flags unrealistic extreme wind speed values of the time series by checking the
difference between the maximum and the second maximum values of the distribution of wind speed values. If the difference15
between them exceeds the absolute value of the second maximum, the first maximum is flagged as suspect. This test runs
iteratively until the previously mentioned condition is not satisfied.

S2.3 Persistence test

Wind time series are usually characterised by strong variability, alternating periods of high and low fluctuations. Neverthe-
less, the presence of long periods of extremely low variability can be unrealistic since they can be produced by errors in the20
measuring sensors or instrumental drift. The persistence test detects and flags sequences of wind speed and wind direction
observations with abnormally low variability. However, it is important to take into consideration those relatively long periods
with very low variability and mean wind speed values close to zero are typical of the observed natural variability (e.g., static
high-pressure systems during several days in a row producing weak winds). Hence, these data cannot be considered erroneous.
Thus, the persistence test does not introduce any flag to wind speeds weaker than 0.5 ms−1. These measurements are then25
flagged as calms.

The WMO proposes that 1-minute data should vary at least 0.5 ms−1 over 60 consecutive wind speed values, and 10 degrees
in the case of wind direction records. Otherwise data should be flagged as doubtful. These thresholds have been adapted to
the resolutions reported by the towers. Thus, wind speed periods are flagged as suspect if the wind speed does not change
more than 0.7 ms−1 in 60 consecutive values. Wind direction values will be considered suspicious when the range between30
the maximum and the minimum values in a sequence of 60 records is lower than 5 degrees.

The example plotted in Figure S1 shows wind speed observations measured at 18 meters at the top of the Barrow tower
(Arctic Circle) during 51 consecutive days. In except of the two spikes on 14th October and 3rd November, wind speed
values range from 4.8 ms−1 to 5.3 ms−1. This variability is significantly low when compared with the rest of the wind series
(not shown). Although the Persistence test flags the records as a suspect, a visual inspection reveals that they are potentially35
erroneous and should not be used as reliable data.

S2.4 Flat line

A sequence of numbers with null standard deviation is the extreme case of a period with low variability and indicates that
several constant values are observed consecutively. The probability of recording constant values in a row decreases with the
number of significant figures that a sensor can record, being almost unlikely to have more than five consecutive exact matches40
for wind speed (IOSS, 2017) and 40 for wind direction measurements. In this sense, data fail the flat line test when there exist
6 -or more- constant wind speed values in a row. This threshold is increased to 40 for the wind direction variable. Observing
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Figure S1. Wind speed time series at 18 meters above ground level at Barrow site (71.32ºN 156.61ºW, 11 m), USA

3, 4 or 5 exact consecutive matches is more likely for wind speed values, but still unlikely to happen frequently. Therefore,
the tests flags as suspect those flat sequences. Analogously for wind direction data, flat sequences containing 20 to 40 wind
direction records are flagged as suspect. It is also frequent to observe an alternation of no data periods with null speed values,
which are usually produced by failures in the sensors or data loggers. If the period containing this alternating pattern exceeds
30 days, all the measurements within this period are flagged as erroneous.5

A detection of a flat line is shown in Figure S2. Various sequences of constant values are encountered at the three different
levels between September 14th and September 20th. Like that, flat lines are often detected simultaneously at all levels of the
tower.

S2.5 Icing

Freezing rain or fog usually frosts the anemometers and vanes placed along the tall tower preventing them from measuring10
non-zero wind speed values and changes in the wind direction. Hence, these records should be detected by checking wind and
temperature observations simultaneously. Based on Jiménez et al. (2010), data are considered wrong when the Icing test detects
4 or more days with 0 ms−1 as the maximum wind speed value and below zero temperatures during all the same period.

Wind speed series at different heights at Hegyhatsal tower are represented in Figure S3. A flat line is observed in the two
uppermost levels from December 8th to December 18th 2002. However, the air temperature observations (Figure S4) reveal15
that negative Celsius temperatures occurred during all the ten days in the two top levels of the tower. Given these conditions, it
is very likely that an icing event happened and frosted the two upper anemometers.

S2.6 Abnormal variations

Random and gross errors in the measurements might produce periods of abnormally high or abnormally low variability and
usually, appear embedded in the wind speed time series. Various authors have proposed several different thresholds that define20
a period with extreme variability (see Jiménez et al. (2010)) since the threshold selection should depend on the local wind
features. In an attempt of generalisation, in this work it is proposed that these limits are defined by statistical parameters
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Figure S2. Wind speed time series at 31, 45 and 62 meters above ground level at Butler Grade site, USA (45.95ºN, 118.68ºW, 545 m).

Figure S3. Wind speed time series at 10, 48, 82 and 115 meters above ground level at Hegyhatsal tall tower, Hungary (46.96ºN, 16.65ºE,
248 m).

derived from the wind distributions themselves. In this way, the abnormal variations check compares the variability (computed
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Figure S4. Temperature measurements at 10, 48, 82 and 115 meters above ground level at Hegyhatsal tall tower, Hungary (46.96ºN, 16.65ºE,
248 m).

as the variance) of 30-day periods with the mean variance of all 30-day periods of the time series using moving variances. If
the standard deviation of a specific 30-day period departs more than four standard deviations from the mean standard deviation,
records within these 30 days are all flagged as suspect.

S2.7 Systematic errors

Another approach to detecting random and systematic errors in the experimental measurements is based on the computation5
of moving averages. Similar to the abnormal variations check, this QC routine computes the mean wind speeds over a 30-day
moving window. Wind speed values within a 30-day period whose average departs more than four standard deviations from
the mean value of all 30-day moving means are all considered suspect.

In Figure S5, the Systematic errors check flags as suspect 12 consecutive days of wind speed measurements taken at the top
of Hegyhatsal tower. A close inspection reveals that the minimum wind speed record is over 5 ms−1 during all the mentioned10
period, which is in disagreement with the wind speeds observed at lower levels. Indeed, the three anemometers located at 10,
48, and 82 meters report weaker winds or even calm during these 12 days. It is likely that an offset value could have been
inserted in the data logger producing the inconsistency observed in the uppermost wind speed measurements. In this case,
these 12 days of winds at 115 meters should not be considered reliable.

Figure S6 shows a false detection of a systematic error at WLEF tall tower. Although the test flags as suspect a period of15
2 months of wind speed data at the 122-meter level, a visual inspection and comparison with winds reported at other tower
heights does not reveal any inconsistency in the suspicious observations. Hence, these data should not be discarded unless a
sensor failure is reported in the metadata of the site.

S2.8 Quartile occurrences

A third method to detect periods containing gross errors in the measuring process is suggested here by looking at the number of20
consecutive days where no value is above or below the first, second and third quartiles of the empirical wind speed distribution.
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Figure S5. Wind speed time series at 10, 48, 82 and 115 meters above ground level at Hegyhatsal tall tower, Hungary (46.96ºN, 16.65ºE,
248 m).

Figure S6. Wind speed time series at 30, 122, 396 meters above ground level at WLEF tall tower, USA (45.95ºN, 90.27ºW, 472 m).

Table S2 summarises the different thresholds (in days) that define the trustworthiness of an observation. As an example, the

21

Winds blowing at 100 metres

56



first row indicates that if all the observations in 30 days fall above the first quartile, data within this period will be flagged as
erroneous. Observations are suspicious when the period without any occurrence within the first quartile ranges between 15 and
30 days. Spans shorter than 15 days without any value falling within the first quartile are considered correct by this test.

Table S2. Threshold values (in days) that set the different levels of confidence for the Quartile occurrences check.

All the observations are... Pass Suspect Fail
>1st quartile <15 [15,30] >30
>2nd quartile <10 [10,20] >20
>3rd quartile <5 [5,10] >10
<1st quartile <5 [5,10] >10
<2nd quartile <10 [10,20] >20
<3rd quartile <15 [15,30] >30

S2.9 Rate of change

The presence of spikes in the wind series is usually observed during extreme wind phenomena events. However, the magnitude5
of these peaks is constrained to a specific allowable range of values specially when the very high-frequency wind data are
averaged in periods of several minutes (which is the case of the observations within the Tall Tower Dataset). This test compares
pairs of adjacent observations. To pass the test successfully, differences between consecutive values must be lower than a spe-
cific threshold, that can be either dynamically established or fixed (IOSS, 2017). The Rate of change test uses the interquantile
range (IQR) of the considered series, defined as the difference between the third and first quartiles of the empirical distribution.10
When the difference between two consecutive values exceeds three times the value of the IQR, both values are considered
wrong. If the difference is between twofold and threefold the IQR, the pair of observations is considered as suspect.

S2.10 Step test

The Step test uses a similar methodology as the Rate of change test to detect spurious peaks of wind speed data. In the Step
test, the maximum permissible difference between two consecutive observations is fixed to 20 ms−1 (WMO, 2007), instead of15
using a statistic derived from the wind series. Although the WMO suggests this limit specifically for 2-minutely averaged wind
speed data, their usage has been deemed appropriate for the data within the Tall Tower Dataset since the time stamp samplings
observed in this collection are larger. Indeed, by averaging data in longer periods, one can expect a general smoothing of the
series, hence reducing the possibility of observing big data spikes.

S2.11 Repeated sequences20

This check looks for sequences of observations that appear repeated within the same time series. Duplicated sequences of at
least 30 wind speed values are flagged as erroneous if data do not contain any decimal places. The threshold is decreased to
20 wind speed observations if data are measured with one or more decimal digits. Wind direction series are also checked for
duplicate sequences, and they are flagged when the length of the repeated sequence exceeds 30 values.

Duplicated sequences have been found in the three parallel wind time series at Abadan tall tower time series (Figure S7).25
A careful inspection reveals that the values within the two black rectangles in the top series match perfectly. An analogous
situation is noticed for the two lower levels. This is probably due to an standard procedure to fill in no-data periods, which
takes previously observed wind speed sequences of data. However, it has been deemed appropriate to the detect and consider
erroneous these sequences of data.

S2.12 Tower shadow30

One of the singularities of the tall tower data is that wind measurements are not taken at the top of a pole where a sensor is
placed. Instead, anemometers and wind vanes are distributed along with the vertical structure of the tall tower, which usually
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Figure S7. Wind speed time series at 10, 30 and 40 meters above ground level at Abadan met mast, Iran (30.45ºN, 48.31ºE, 4 m). The two
black boxes in the upper graph represent two duplicated sequences of wind speed values within the same time series.

consists of a solid vertical cylinder or a lattice structure that inherently produces a wind shadow in the downwind area. If an
anemometer is measuring in the shadow area, wind speeds are affected by this shadow and cannot be considered reliable.

To help overcome this handicap, a common practice in the instrumental installation is to place redundant sensors at the same
height in booms oriented to different cardinal directions. Shadowed records can then be replaced by those from a sensor not
affected. The Tower shadow test identifies first the shadowed directions and anemometers by dividing wind speeds from two5
sensors at the same level. Ideally, they should measure the same values so that the ratio is expected to be equal to the unit unless
the winds from one sensor are shadowed. Then, all wind speed ratios are grouped in wind direction sectors of 1 degree. The 5th

and 95th percentiles of the distribution generated by all the ratios are calculated next. Those directions showing ratios below
the 5th percentile and above the 95th are considered to be in the wake of the tower. After identifying the shaded directions for
each anemometer, the test marks as suspect those wind speed values affected.10

Figure S8 exemplifies the previous explanation presenting the ratios between simultaneous wind speeds observations mea-
sured by redundant sensors at 60 and 100 meters at the FINO3 met mast in the North Sea. The quotient between wind speeds
reported by two different sensors is approximately one for most of the wind directions. However, wind speeds coming from
50±5 and 170±5 degrees of direction are affected by the vertical pole at the two measuring levels. Thus, the anemometer
measuring the weakened winds is identified, and those records should not be considered correct.15

S2.13 Vertical ratios

QC checks that employ nearby stations are not suitable for meteorological variables with remarkably localised features such
as precipitation or wind speed, because the correlation between neighbour series is considerably lower when compared to
temperature or pressure time series (Dunn et al., 2012). In addition, those tests require a dense network of stations, which
is not the case of the Tall Tower Dataset. However, another particularity of tall tower data is the simultaneous records taken20
at the same time at different heights along the mast. These series can be compared among them as they are expected to be
highly correlated. The Vertical ratios is a particular test which considers pairs of time series measured at different heights and
computes the mean ratio (r) of all the pair-wise measurements ratios (ri). To avoid duplication and save computation time, the
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Figure S8. Ratio between simultaneously measured wind speed values at 60 and 100 meters at FINO3 met mast, Germany (55.20ºN, 7.16ºE,
0 m).

test only computes the ratio between one level an all the lower levels. In except local effects such as low-level jets, wind speeds
tend to increase in height, so the computed mean ratio is expected to be greater or equal to unity. Taking this assumption into
account, the Vertical ratios test will detect and flag as erroneous those pairs which ratio (ri) satisfies the following condition:

ri ≥ r+30 (1)

Values are considered dubious when the following condition is satisfied:5

ri ≥ r+15 (2)

Even though the allowable ranges of ratios was initially chosen somewhat arbitrarily, it has been tested and adjusted using
the data within the Tall Tower Dataset to ensure that only gross errors are detected and flagged as erroneous. Wind speeds
under 1 ms−1 are not considered in this test.

S2.14 Isolated pass10

After running some of the QC tests, a certain amount of sequences might be flagged as wrong or dubious. These sequences
can be found close in time and encircle values marked as correct by the QC checks. However, it is very likely that those
presumably correct values are not be acceptable since a prolonged sensor failure may have occurred, but the previously run QC
checks missed it. The Isolated pass check is applied after running at least one QC test and attempts to detect those apparently
correct (we note that calms are also identified as good data) sequences of observations surrounded by wrong or suspect values,15
and change their flag into erroneous or suspect. Besides, we also force to be wrong those scattered individual records appearing
randomly within long no-data periods.

A total of 12 predefined sequences (see Table S3) containing data flagged as correct (’Pass’ or ’Calm’) but surrounded to the
left and right by, wrong (’Fail’), dubious (’Suspect’) or absent (’Missing’) records have been defined. Wherever these series
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are found, the central ‘Pass’ or ’Calm’ values are changed from ’Pass’ to ’Fail’. Table 6 defines similar sequences, but their
central records will be changed from ‘Pass’ to ‘Suspect’.

Table S3. Explicit definition of the sequences to be searched within the wind time series which central value or values flag will be changed
from ‘Pass’ or ’Calm’ to ‘Fail’.

Fail,Fail,Fail,Pass,Fail,Fail,Fail

Fail, ...,Fail︸ ︷︷ ︸
5

,Pass,Pass,Fail, ...,Fail︸ ︷︷ ︸
5

Fail, ...,Fail︸ ︷︷ ︸
10

,Pass,Pass,Pass,Fail, ...,Fail︸ ︷︷ ︸
10

Fail, ...,Fail︸ ︷︷ ︸
15

,Pass,Pass,Pass,Pass,Fail, ...,Fail︸ ︷︷ ︸
15

Fail, ...,Fail︸ ︷︷ ︸
25

,Pass,Pass,Pass,Pass,Pass,Fail, ...,Fail︸ ︷︷ ︸
25

Missing, ...,Missing︸ ︷︷ ︸
50

,Pass,Missing, ...,Missing︸ ︷︷ ︸
50

Missing, ...,Missing︸ ︷︷ ︸
50

,Calm,Missing, ...,Missing︸ ︷︷ ︸
50

Table S4. Explicit definition of the sequences to be searched within the wind time series which central value or values will be changed from
‘Pass’ flag to ‘Suspect’.

Suspect,Suspect,Suspect,Pass,Suspect,Suspect,Suspect

Suspect, ...,Suspect︸ ︷︷ ︸
5

,Pass,Pass,Suspect, ...,Suspect︸ ︷︷ ︸
5

Suspect, ...,Suspect︸ ︷︷ ︸
10

,Pass,Pass,Pass,Suspect, ...,Suspect︸ ︷︷ ︸
10

Suspect, ...,Suspect︸ ︷︷ ︸
15

,Pass,Pass,Pass,Pass,Suspect, ...,Suspect︸ ︷︷ ︸
15

Suspect, ...,Suspect︸ ︷︷ ︸
25

,Pass,Pass,Pass,Pass,Pass,Suspect, ...,Suspect︸ ︷︷ ︸
25

S2.15 Occurrences of 0s and 360s values

The lack of coordination concerning the data storage and formatting conventions in the original data may produce some issues
that must be detected. For example, in the wind speed time series, missing records are sometimes set to zero, thus leading5
to a spurious increase in the occurrence of the zero value. Similarly, some conventions use the value 0 degrees to refer to
the northern wind direction while others identify this direction with 360 degrees. Stations with properly detailed metadata
information include the convention adopted by the data managers. Regrettably, most of the stations whose data was accessed
to be included in the Tall Tower Dataset did not attach such complete information. In those cases, the original basic standards
such as assigning the 0 or the 360 value to the north direction need to be inferred.10

This routine computes the percentage of occurrence of each of these three cases:

1. Occurrences of 0s within the wind speed time series,

2. occurrences of 0s within the wind direction series and

3. occurrences of 360s within the wind direction series.
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The Occurrences of 0s and 360s values does not flag individual records, but provides a value for each of the series indicating
the percentage of the aforementioned occurrences to the total data. The whole series is considered incorrect if any of these
occurrences exceeds 30%, which has been chosen appropriately to take into account that a considerable percentage of calms
may exist.

S2.16 Internal consistency5

Whenever a null wind speed is recorded, the associated wind direction value is meaningless since it is very likely that the wind
vane is still pointing to the direction defined by the last non-zero wind speed observation. According to the WMO guidelines,
whenever a null wind speed is reported, the simultaneous wind direction measurement must be forced to be null as well.
However, in the Tall Tower Dataset the zero wind direction value indicates the true North. Therefore, for null wind speed
records, wind direction must be set to NA. We note that the condition must be only applied for wind measurements taken at10
the same height above ground level.
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Chapter 5

Reanalysis versus reality. Are they too

different?

Objective

Investigate to what extent reanalyses are capable of representing the true near-surface wind

speeds. These products are widely recognised as trusted sources to derive wind speed estim-

ates. Therefore, by quantifying the error associated with each reanalysis, we ultimately help the

reanalysis user choose the most accurate product.

Methodology

• Describe the main differences and agreements between five reanalyses for surface wind

speeds.

• Verify the set of reanalyses against the Tall Tower Dataset.
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Reanalysis versus reality. Are they too different?

Results

• Important discrepancies are found in terms of seasonal mean winds, interannual variability

and trends.

• For example, while JRA55 displays high values of interannual variability inland, ERA-Interim

and ERA5 depict systematically lower values in the same regions.

• Trends —both positive and negative— are seen over specific regions by all five reanalyses.

• Reanalyses suffer from representativeness errors, and these can be large sometimes.

• The ERA5 outperforms the other reanalyses in reproducing the tall tower winds.

Conclusions

• We discourage using global reanalyses to obtain accurate estimates of seasonal mean

winds.

• The temporal variability of near-surface wind speeds is well represented in global reanalyses,

but representativeness errors make absolute values less reliable.

• The analysis of trends requires further attention, particularly in those regions where winds

have been weakening during decades.

Publication

• Ramon, J., Lledo, L., Torralba, V., Soret, A., and Doblas-Reyes, F. J. (2019). What global

reanalysis best represents near-surface winds? Quarterly Journal of the Royal Meteorolo-

gical Society, 145(724):3236–3251, doi: 10.1002/qj.3616
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Abstract
Since global reanalysis datasets first appeared in the 1990s, they have become

an essential tool to understand the climate of the past. The wind power industry

uses those products extensively for wind resource assessment, while several cli-

mate services for energy rely on them as well. Nowadays various datasets coexist,

which complicates the selection of the most suitable source for each purpose. In

an effort to identify the products that best represent the wind speed features at tur-

bine hub heights, five state-of-the-art global reanalyses have been analysed: ERA5,

ERA-Interim, the Japanese 55-year Reanalysis (JRA55), the Modern Era Retrospec-

tive Analysis for Research and Applications-2 (MERRA2), and the National Centers

for Environmental Prediction (NCEP)/National Center for Atmospheric Research

(NCAR) Reanalysis 1 (R1). A multi-reanalysis ensemble approach is used to explore

the main differences amongst these datasets in terms of surface wind characteristics.

Then, the quality of the surface and near-surface winds is evaluated with a set of 77

instrumented tall towers. Results reveal that important discrepancies exist in terms

of boreal winter seasonal means, interannual variability (IAV), and decadal linear

trends. The differences in the computation of these parameters, which are mainly

concentrated inland, reach up to the order of magnitude of the parameters themselves.

Comparison with in situ observations shows that the ERA5 surface winds offer the

best agreement, correlating and reproducing the observed variability better than a

multi-reanalysis mean in 35.1% of the tall tower sites on a daily time-scale. However,

none of the reanalyses stands out from the others when comparing seasonal mean

winds. Regarding the IAV, near-surface winds from ERA5 offer the values closest

to the observed IAV.

K E Y W O R D S
hub-height wind, reanalysis, surface wind, tall towers, verification, wind resource assessment

1 INTRODUCTION

Global reanalysis datasets are an essential tool in differ-
ent research disciplines to investigate past atmospheric con-
ditions. Reanalyses are the result of combining a frozen

state-of-the-art numerical model with the assimilation of past
observations from several sources (Fujiwara et al., 2017)
to produce a consistent dataset for a long record of time
(typically more than 30 years). These datasets allow us to
infer features such as variability or trends for regions or

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
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variables where in situ observations are lacking. However,
these products have inherent uncertainties that derive from
model simplifications, observational uncertainties, and the
data assimilation procedure. Although there are several ongo-
ing initiatives in the community to produce reanalysis datasets
(e.g., Copernicus Climate Change Service (C3S), 2017), only
a few efforts have been devoted to comparing their quality
in a coordinated way (Fujiwara et al., 2017). It is true, how-
ever, that several studies have focused on verifying reanalysis
data on a regional scale (Kumar and Hu, 2012; Alvarez et al.,
2014; Kaiser-Weiss et al., 2015; Sharp et al., 2015; Olauson,
2018; Rehman Tahir et al., 2018; Uotila et al., 2018). Oth-
ers intended to cover the whole world by using interpolated
observational datasets (Donat et al., 2014) or employing some
stations distributed worldwide (Decker et al., 2012). A more
comprehensive verification would be beneficial, especially
for socio-economic sectors that employ reanalysis datasets.

The energy industry is one of the biggest user groups
of reanalysis datasets (Gregow et al., 2015). Specifically
for the wind industry, the lack of long and homogeneous
records of wind speed observations has favoured the adoption
of reanalyses for assessing wind resources (Cannon et al.,
2015). Preconstructive wind resource assessment studies
need to determine long-term mean wind speed (Tammelin
et al., 2013) and its probability distribution accurately at
each turbine location to estimate wind power generation and
revenues. The characterization of year-to-year variations of
the wind speed is crucial to understanding the risk of a wind
farm project (Pryor et al., 2006; Brower et al., 2013) and
also estimating the amount of debt that banks can finance.
Information on long-term trends can also be used to foresee
changes in the performance of wind farms during their life-
time, which typically comprises between 20 and 30 years
(Jude and Leseney, 2017). All these evaluations require long
records, which typically are not available at the location
where the farm is planned to be built, which has led wind
energy users to rely on reanalysis products.

Another frequent usage of reanalyses for already operat-
ing wind farms is to understand the causes of anomalous wind
speed episodes that impacted generation and revenues on
monthly or seasonal time-scales. In recent years, the climate
prediction community has started to unveil the climate drivers
of anomalous events such as wind droughts (e.g., Lledó et al.,
2018) and to produce seasonal forecasts (Doblas-Reyes et al.,
2013; Clark et al., 2017) to anticipate those wind speed
anomalies that can have an impact on wind energy activity.
In this climate prediction framework, reanalyses are also used
as observational reference for the adjustment of systematic
errors affecting these predictions (Torralba et al., 2017b) and
to assess the forecast quality (Jolliffe and Stephenson, 2012).

The different applications that use—either directly or
indirectly—reanalyses require a scientific evaluation of the
quality of the different available reanalysis datasets. An

assessment is needed especially in those cases in which one
single product is employed and commonly chosen ad hoc
without taking into account its related uncertainty.

In this work, we aim to shed light on the uncertainty
associated with observational references to help the reanal-
ysis user decide about the suitability of a reanalysis dataset.
The assessment will be done by comparing surface wind
speeds from different global reanalysis datasets and verify-
ing them further with in situ observations to eventually select
the most accurate sources. The analysis focuses on three dif-
ferent aspects of the datasets: mean wind speeds, variability,
and trends. Section 2 describes the reanalysis and observa-
tional datasets employed. The methodology is described in
section 3. An intercomparison of the reanalysis set is pre-
sented in section 4 and the verification results are presented
in section 5, including an interpretation in both sections.
Discussion and conclusions follow in section 6.

2 DATASETS

2.1 Reanalysis datasets
Five widely used state-of-the-art global reanalyses are con-
sidered in this study. They include the two European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalyses
ERA5 (Copernicus Climate Change Service (C3S), 2017)
and ERA-Interim (Dee et al., 2011b), the Japanese 55-year
Reanalysis (JRA55: Kobayashi et al., 2015), NASA’s Modern
Era Retrospective Analysis for Research and Applications-2
(MERRA2: Molod et al., 2015), and National Centers for
Environmental Prediction (NCEP)/National Center for Atmo-
spheric Research (NCAR) Reanalysis 1 (R1: Kalnay et al.,
1996). Table 1 lists the main characteristics concerning the
time periods, data assimilation schemes, spatiotemporal res-
olution, single levels employed in this study, and references.

Other reanalysis products were considered preliminarily to
be included in this work, but have been disregarded for sev-
eral reasons. The climate forecast system reanalysis (CFSR)
dataset (Saha et al., 2010), which is published by NCEP, has
been produced with two different model configurations before
and after March 31, 2011, including different spectral resolu-
tions.1 Since this discontinuity produces detectable changes
in mean wind speeds, the CFSR dataset has not been consid-
ered for the present study. Previous versions of the selected
datasets such as JRA-25, ERA40, and MERRA have been dis-
carded too, as they have been discontinued and superseded by
newer products released by the respective centres. The case
of NCEP/NCAR R1 is an exception. After its first publication
in 1996, the National Oceanic and Atmospheric Administra-
tion (NOAA)/NCEP and NCAR released a newer reanalysis

1https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-
forecast-system-version2-cfsv2
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T A B L E 1 Summary of the basic characteristics of the five reanalysis datasets used in this study (ordered alphabetically)

Name ERA-Interim ERA5 JRA55 MERRA2 R1
Institution ECMWF ECMWF JMA NASA GMAO NOAA/NCEP

and NCAR

Period coverage 1979 to present𝑎 1980 to present𝑏 1978 to present 1980 to present 1948 to present

Time resolution 6-hr 1-hr 6-hr 1-hr 6-hr

Assimilation scheme 4D-VAR 4D-VAR 4D-VAR 3D-VAR-FGAT 3D-VAR

Horizontal grid spacing 0.75◦ × 0.75◦ 0.3◦ × 0.3◦ 1.25◦ × 1.25◦ 0.5◦ latitude ×
0.625◦ longitude

1.875◦ latitude ×
2◦ longitude

Vertical levels 60 hybrid (𝜎 − 𝑝) 137 hybrid (𝜎 − 𝑝) 60 hybrid (𝜎 − 𝑝) 72 hybrid (𝜎 − 𝑝) 28 (𝜎)

Single levels available surface surface, 100 m surface surface, 50 m surface

Top level 0.1 hPa 0.01 hPa 0.1 hPa 0.01 hPa 3 hPa

Reference Dee et al. (2011b) Copernicus Climate
Change Service
(C3S) (2017)

Kobayashi et al. (2015) Molod et al. (2015) Kalnay et al.
(1996)

𝑎Expected to be discontinued at the end of August 2019
𝑏Expected to be expanded back to 1950 by the end of 2019

in 2002, namely the NCEP/DOE Reanalysis AMIP-II or R2
(Kanamitsu et al., 2002). Nonetheless, some studies (e.g.,
Lucio-Eceiza et al., 2018) have revealed its poor performance
in estimating surface wind speeds, which is worse than its
predecessor R1. Many regional reanalyses with higher spa-
tial resolutions exist as well, but they do not cover the whole
globe, and their usage may be limited in some applications,
such as verification and bias adjustment of subseasonal to
seasonal predictions made at the global scale. Moreover, all
regional reanalyses are refinements of a global reanalysis
produced through dynamical downscaling and data assimila-
tion techniques (Mesinger et al., 2006; Gleeson et al., 2017).
Therefore, their value largely depends on the quality of the
driving reanalysis, so that they have not been included here.

The whole set of reanalyses used in this study assimilate
both conventional data (such as surface synoptic (SYNOP)
ocean stations, radiosonde profiles, or aircraft records) and
satellite measurements (provided mainly by scatterometers
and the Special Sensor Microwave Imager (SSMI)). All
of the selected datasets include some observations of sur-
face oceanic winds and all of them, except R1, assim-
ilate satellite observations of ocean surface winds (Fuji-
wara et al., 2017). It is worth mentioning that none of the
reanalyses ingests surface winds from land stations. This is
known to be problematic, especially over areas with inho-
mogeneous terrain, where stations experience strong local
influences and do not represent the grid-area winds appro-
priately. Instead, the 10-m wind speeds, hereafter referred
to as surface wind speeds, are parametrized in planetary
boundary layer schemes from surface characteristics, stabil-
ity indices, and the lowest native model winds. For instance,
ERA5 and ERA-Interim use Monin–Obukhov theory and an
open-terrain roughness to make the field more comparable
with SYNOP stations. MERRA2 also uses a scheme based

on the Monin–Obukhov similarity theory (Helfand and Schu-
bert, 1995), which includes the effect of a viscous sublayer
for heat and moisture transport over all surfaces except land
(Molod et al., 2015). The NCEP/NCAR R1 uses a bulk model
(see Stull (2012), section 11.2.3) with an aerodynamic for-
mula that considers the fluxes of sensible flux, heat, and
momentum proportional to the difference between values at
the surface and the adjacent atmosphere (Kanamitsu, 1989).
The proportionality constants depend on the wind speed as
well as the static stability of the surface layer and are based
on the work of Businger et al. (1971), and subsequently the
Monin–Obukhov similarity theory. According to Torralba
et al. (2017a), the extrapolation of surface winds in the JRA55
reanalysis from the lowest model level is carried out assuming
neutral stability. In areas where this level is located too high
above the surface (such as forested zones), this assumption
may lead to a significant reduction of wind speeds after
extrapolation to the surface level.

Some of the most recent reanalyses (e.g., MERRA2 and
ERA5) have started to provide winds at turbine hub heights,
in reaction to the demands of the wind-power industry. Those
winds can describe the vertical wind profile better within
the first 100 m of the atmosphere. In particular, ERA5 sup-
plies wind speeds at 100 m above the ground, while MERRA2
offers wind speeds computed at the 50-m level. In this article,
they will be referred to as ERA5 and MERRA2 near-surface
winds, respectively.

2.2 Tall tower observations
The accuracy of the reanalysis in the representation of both
surface and hub-height wind speed is assessed in this study
through a comparison with hub-height wind-speed observa-
tions measured in tall meteorological towers (also known
as met masts) distributed worldwide. This type of structure
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F I G U R E 1 Global distribution of the 77 tall towers. Colours indicate, for each tall tower, the height of the measuring level employed in this
study

allows the placement of several sensors along a high verti-
cal tower, the altitude of which commonly varies from 10
to more than 100 m (e.g., Van Ulden and Wieringa, 1996;
Kouwenhoven, 2007). Tall tower data are widely used within
the wind power industry to characterize the wind-flow fine
features at turbine hub heights, that is, between 80 and 120 m
for modern turbines, as well as monitoring the current weather
situation in wind farms. Thus, these measurements are pre-
ferred over those taken at surface level, which are usually
disturbed by the surrounding elements. The maintenance of
these structures, however, is much more expensive than for
surface stations, and therefore these data appear sparsely and
are usually difficult to find for public usage.

A new unique dataset containing quality-controlled wind
observations plus other climate observations such as temper-
ature or relative humidity from 222 different observational
sites has recently been created under the name of the Tall
Tower Dataset (Ramon and Lledó, 2019). The reporting time
sampling of these masts ranges from 10 min to 1 hr. Due
to the high tower maintenance costs mentioned above, the
record length of these time series represents a major handi-
cap in this study, as most tall towers do not have a lifespan of
more than three years. Moreover, these series often contain
interruptions in the measuring process, most likely produced
by sensor failures or tower maintenance tasks, so that the
net record length available can be shortened even more. To
reach a balance between quality and amount of data, we have
selected those towers containing at least three years of data.
Although this threshold has been chosen somewhat arbitrar-
ily, we considered it optimal for the purposes of the present

work. Hence, the total number of towers employed in this
study is eventually set to 77. Their spatial distribution is pre-
sented in Figure 1 and the main meta information is specified
in the Supporting Information in Table S1. Even though the
masts appear over all continents, their distribution is highly
heterogeneous, and most of the locations appear clustered
in Europe and North America, which are areas with a large
deployment of wind energy. For each of the towers, we have
selected the anemometer that is measuring at the closest level
to 100 m (see Figure 1 and Table S1), which is the average
of modern turbine hub heights. Note that in some towers only
one anemometer is installed at the top of the mast, and it is
sometimes placed far from a 100 m height.

As far as the authors know, the Tall Tower Dataset con-
stitutes an independent set of observations that has not been
assimilated previously by any reanalysis, thus assuring the
statistical independence with the reanalysis products. This is
important to ensure a fair comparison, since a verification
with observations employed in the assimilation of a reanalysis
would lead to biased scores.

3 METHODS

3.1 Reanalysis intercomparison
To establish the main differences and agreements amongst
the five global reanalyses, the common period 1980–2017
has been selected. Firstly, the surface wind speeds from
all reanalyses have been computed from the corresponding
zonal and meridional components. Then, seasonal averages
have been calculated from 6-hr (in the case of ERA-Interim,
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JRA55, and R1 datasets) or hourly (for ERA5 and MERRA2
reanalyses) instantaneous values. Results have been pro-
duced for each season: December–January–February (DJF),
March–April–May (MAM), June–July–August (JJA) and
September–October–November (SON). As the five reanaly-
ses use different grids (Table 1), an interpolation to a common
grid is needed for comparison. All grids have been interpo-
lated to the F47(T62) horizontal grid, which is R1’s grid and
is the coarsest out of the five reanalysis grids. A conserva-
tive interpolation method from the R package s2dverification
(Manubens et al., 2018) has been employed to this end.

The differences in terms of seasonal mean wind
speeds, the interannual variability (IAV)—computed sep-
arately for each season as the standard deviation of the
seasonal means within the 1980–2017 period and nor-
malized by the seasonal climatology of all years under
consideration—and the long-term trends have been assessed.
A multi-reanalysis approach, which is analogous to the often
applied multi-model approach in climate modelling, has been
used for mean winds and IAV. Firstly, the seasonal mean
and IAV are computed for each of the reanalyses. Then,
the multi-reanalysis mean (MR) is computed at each grid
point with a nonweighted mean. Together with the MR, the
spread is computed as the range of values (i.e., the difference
between the absolute maximum and minimum values) at each
grid point. This parameter highlights the areas where different
datasets are in disagreement. Finally, the difference between
each reanalysis and the MR is computed (also referred to as
the departure) in order to quantify the contribution of each of
the reanalyses to the overall uncertainty.

Long-term linear trends have been computed using a sim-
ple linear regression equation, where the independent variable
is time and the dependent variable is wind speed. Thus,
the slope represents the rate of change in wind speed over
time. This parameter has subsequently been normalized by
the seasonal mean-wind speed value and unit-converted to be
expressed as a percentage change per decade, which can also
be referred to as a decadal trend. We also test the significance
of the decadal trends being different from zero by applying
a Student’s 𝑡-test. This methodology followed in the compu-
tation of decadal trends is identical to the approach used in
Torralba et al. (2017a) to facilitate the comparison of results.

3.2 Verification with tall tower
observations
Tall tower observations are originally available at hourly or
subhourly time resolution. Daily and seasonal mean values
have been computed, so they can be compared against reanal-
ysis daily and seasonal means (which were obtained from
hourly or 6-hr model outputs). Although one might argue that
reanalysis products with hourly resolution have an advantage
in the verification, some tests (not shown) revealed that this
factor does not change any of the conclusions. Moreover, a

user-oriented verification has to highlight the quality of the
entire product available, including all its features, such as
better spatial or time resolution.

To verify reanalysis datasets with in situ observations,
the gridded data have to be interpolated horizontally at each
tower location. Three horizontal interpolation methods have
been tested in order to select the most appropriate one for the
objectives of this work.

• Nearest-neighbour (i.e., takes the closest grid point to the
location of interest). This has been considered in the lit-
erature as the most suitable method for variables with
high spatiotemporal variability like precipitation (Acca-
dia et al., 2003). Additionally, this approach has also been
employed in wind-speed variability studies such as that of
Lucio-Eceiza et al. (2018).

• Nine-point average (i.e., averaging the nine nearest grid
points). For variables with high spatial variability, this
method produces smoother results.

• Bilinear interpolation (Press et al., 2006, equation 3.6.5).
Several studies (Stohl et al., 2002; Mentis et al., 2015) have
used the bilinear method to regrid wind fields.

To compare reanalysis surface and near-surface data
against each tall tower’s winds, a vertical extrapolation of
reanalysis wind speeds (𝑊𝑆) to the tower measuring height
closest to 100 m (ℎ) is performed using a power law:

𝑊𝑆(ℎ) = 𝑊𝑆(ℎref)
(

ℎ
ℎref

)𝛼

, (1)

where ℎref is the reference height of the reanalysis field (i.e.,
10, 50, or 100 m). Alpha (𝛼) is a non-dimensional wind-shear
exponent. A value of 0.143 has been used for land (Touma,
1977), while 0.11 has been employed over water bodies (Hsu
et al., 1994). We note that both exponents assume neutral
stability. According to the previous two references, whereas
neutral stability prevails in oceanic areas, the onshore shear
exponent is more dependent on stability conditions. This
approximation is fair enough when considering long-period
averages (such as seasonal means), but might add some uncer-
tainty when considering daily averages (Kelly, 2016).

Daily averages at each location have been verified in terms
of spatiotemporal correlation, standard deviation, and centred
root-mean-squared error (CRMSE: Jolliffe and Stephenson,
2012, equation 6.2). A Taylor diagram (Taylor, 2001) is used
here to visualize these three statistical parameters from mul-
tiple reanalyses in one single graph. In addition, two tests of
significance have been performed to evaluate the statistical
significance of the change in correlation and standard devia-
tion when comparing the results from two different datasets.
For the correlation, the Williams test (Williams, 1959) has
been employed to assess the difference between two depen-
dent correlations that share one variable. Analogously, the
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(a) (b)

(c) (d) (e)

(f) (g)

F I G U R E 2 (a) Multi-reanalysis mean (MR) and (b) associated spread of seasonal surface wind speeds in DJF derived from the five
reanalyses in the 1980–2017 period. Departures from MR follow for (c) ERA-Interim, (d) ERA5, (e) JRA55, (f) MERRA2, and (g) R1 reanalyses

statistical significance of the change in standard deviation has
been analysed using the𝐹 -test (von Storch and Zwiers, 1999).
Finally, reanalysis seasonal means and IAVs are compared
against those computed using the observational dataset.

4 REANALYSIS
INTERCOMPARISON

A comparison of surface wind speeds from five global reanal-
ysis datasets is presented here for DJF. Similar results are
obtained for MAM, JJA, and SON, so only the comparison in
the boreal summer (JJA) is included in Figures S1, S2, and S3
within the Supporting Information to avoid repetition. Agree-
ments and differences in terms of climatology, variability, and
trends at surface level are noted and described in the following
subsections.

4.1 Differences in mean wind speed
The differences between reanalyses in terms of seasonal mean
wind speeds in DJF are shown in Figure 2. Although the
strongest winds occur over extratropical oceans (Figure 2a)
with values exceeding 10 m/s, the spread derived from

the five mean wind speed fields (Figure 2b) reveals that
the main differences lie inland. These discrepancies can be
partly explained by differences in the land-surface roughness
(which is derived from land cover and vegetation databases)
and elevation representation. Indeed, the grid resolution of
the reanalysis models has a strong influence on the final
roughness and elevation representation. It can be noted that
those products with coarser resolution (i.e., JRA55 and R1,
Figure 2e and g, respectively) tend to show the highest
wind speeds over high elevated mountain ranges. The JRA55
(Figure 2e) also shows a systematic negative departure pattern
over continental regions, which is particularly extended over
Eurasia. Over the ocean, the main differences are noticed by
R1 in the eastern Pacific and at high latitudes (Figure 2g). This
disparity maybe explained by the fact that R1 does not assimi-
late ocean surface winds from satellite observations (Fujiwara
et al., 2017).

4.2 Differences in variability
The discrepancies in the year-to-year variations of the surface
wind speeds in the different reanalyses have been explored
through the IAV (expressed as a percentage of the mean
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(a) (b)

(c) (d) (e)

(f) (g)

F I G U R E 3 Same as in Figure 2, but for the IAV

wind speed). The MR for the IAV (Figure 3a) shows that
the highest IAVs are encountered over oceanic regions along
the Equator, especially in the maritime continent (Indonesia)
and Pacific, where values that exceed 16% of the climatology
are found. Furthermore, we also notice spots of high IAV in
the Iberian and Scandinavian peninsulas, as well as northern
Asia. Figure 3b informs us that the highest spread is observed
inland. Indeed, the disagreements between the five reanaly-
ses in the computation of the IAV value reach 10 percentage
points, which is actually of the same order of magnitude as
the IAV itself. The areas with the highest spread values often
match densely vegetated regions. A detailed look at the depar-
tures of each reanalysis from the MR reveals that JRA55
(Figure 3e) concentrates the highest IAVs in the aforemen-
tioned regions and is the main contributor to the high spread.
The other products offer negative departures over continental
areas (Figure 3c,d,f,g), with the exception of some scattered
spots of high IAV displayed by MERRA2 (Figure 3f) and R1
(Figure 3g).

4.3 Differences in long-term trends
Linear trends are presented in Figure 4 as the rate of change
of wind speed over the considered period 1980–2017 for five

reanalysis products. Results for ERA-Interim (Figure 4a),
JRA55 (Figure 4c), and MERRA2 (Figure 4d) are similar to
those obtained by Torralba et al. (2017a) for the 1980–2015
period and the reader is referred there for complete informa-
tion. Here, the addition of the newly released ERA5 reanalysis
(Figure 4b) shows good agreement with its predecessor
ERA-Interim (Figure 4a) as well as MERRA2 (Figure 4d).
However, the NCEP/NCAR reanalysis (Figure 4e) shows dif-
ferent behaviour for the two hemispheres. For this product,
decadal trends are systematically stronger in the Southern
Hemisphere and the intertropical area, probably induced
by the different amount of observations—which is consid-
erably larger north of the Equator—assimilated by the R1
reanalysis in the two hemispheres (Kalnay et al., 1996). In
addition, since R1 does not ingest any ocean surface record
from satellites, this difference between hemispheres is more
appreciable.

Several causes can produce observed trends in reanalysis
surface wind speeds (Thorne and Vose, 2010; Vautard et al.,
2010; Dee et al., 2011a; Wohland et al., 2019):

• decadal variations in the atmospheric circulation (e.g.,
changes in the location or intensity of the storm tracks),
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(a) (b) (c)

(d) (e)

(f)

F I G U R E 4 Normalized linear trend (% per decade), calculated as the linear trend of surface wind speeds divided by the seasonal mean
surface wind speeds in DJF over the 1980–2017 period for (a) ERA-Interim, (b) ERA5, (c) JRA55, (d) MERRA2, and (e) R1. Hatched regions in
(a)–(e) indicate where the trends are significant at the 95% confidence level. In (f) we represent an agreement map between the five reanalyses.
Blues (reds) indicate agreement between the five reanalyses about the negative (positive) trends in the surface wind speed in DJF in the 1980–2017
period. An asterisk indicates that the trends are significant at the 95% confidence level: no asterisk indicates that the trends are not significant. One
asterisk (∗) means that only one of the reanalyses has significant trends, two asterisks (∗∗) inform us that two reanalyses have significant trends, and
so on (adapted from Torralba et al., 2017a)

• changes in surface roughness due to land cover and vege-
tation changes,

• spurious trends in assimilated observations due to instru-
mental drift, measuring errors, or station relocations that
produce inhomogeneities, or

• the growing number of observations available for assimi-
lation in more recent periods.

The role of each driver, however, is still uncertain.
Although separating spurious from real causes in the observed
trends might be challenging, some remarks can still be made.

Firstly, changes in climate dynamics, such as the strength-
ening of the Walker circulation due to climate change and the
subsequent reinforcement of the Hadley cell, can increase the
trade winds within the intertropical area (L’Heureux et al.,

2013). This change in the dynamic of the tropical atmo-
sphere is well observed in the multi-reanalysis agreement
map (Figure 4f), where all five reanalyses depict a significant
trend over several marine tropical areas in the Southern Hemi-
sphere. This has been documented in previous studies, such
as Wu et al. (2018). Similarly, a significant strengthening of
wind speeds is observed in the Southern Hemisphere storm
track (Figure 4f). Lee and Feldstein (2013) studied a shift of
westerly winds polewards in the Southern Hemisphere and
attributed this fluctuation to either an increase of greenhouse
gas concentrations or a decrease of stratospheric ozone.

Secondly, surface roughness can vary substantially over
vegetated regions, due to changes in the forest canopy. A sta-
tistically significant diminution of wind speeds is noticed over
an extended area in Eurasia (Figure 4f), possibly mirroring the
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wind-stilling effect already reported by Vautard et al. (2010).
Vautard et al. (2010) attributed the stilling by alluding to
an increase of the surface roughness produced partly by the
growth of the forest extension in the last 30 years. A reduc-
tion of winds is observed in India too, but no particular driver
has been suggested so far.

Concerning the last two items, one might expect that arte-
facts originated by the assimilation systems and available
observations are partially compensated after considering sev-
eral reanalysis products, since they employ diverging data
assimilation schemes and ingest different amounts of records.
For this reason, and as recommended in Wohland et al. (2019)
for 20th century reanalyses, the use of more than one reanaly-
sis to derive a single trends map, as in Figure 4f, can provide
more robust conclusions than any single product.

5 VERIFICATION WITH TALL
TOWER OBSERVATIONS

The reanalysis intercomparison has revealed that several
agreements and discrepancies do exist between these prod-
ucts. However, at this point it cannot be concluded which of
the sources represents each surface wind speed feature bet-
ter. A further comparison of the reanalysis output (hereafter
referred to as modelled winds) against wind-speed in situ
measurements (from now on referred to as observed winds) is
needed to evaluate the uncertainty of the reanalyses in repro-
ducing the previously described wind speed characteristics.
Furthermore, this comparison can also be helpful to identify
the reanalysis that represents the observed winds better within
the first 100 m of the atmosphere.

In the following subsections, reanalysis surface and
near-surface winds are extrapolated vertically to the selected
tower measuring height (for each tower location, this is the
measuring level closest to 100 m, see Table S1) and all the
comparisons with tall tower data are made at that level. The
set of 77 tall towers distributed worldwide is employed (see
section 2.2).

5.1 Comparison of different horizontal
interpolations
The first comparison of observed and modelled daily wind
speeds is presented by means of a Taylor diagram. We note
that only the vertically extrapolated surface winds from the
five reanalysis are utilized here. Three different interpola-
tion methodologies (see section 3 for details) have been
applied over the wind speeds from the reanalysis to pro-
duce wind speed values at the locations of the 77 tall tow-
ers. Results are presented in Figure 5. Generally, the bilin-
ear method provides the highest correlation coefficients out
of the three interpolation approaches. A maximum corre-
lation coefficient of 0.82 is obtained for MERRA2 when

F I G U R E 5 Taylor diagram of the pairwise observed and
modelled daily-averaged surface wind speeds for the 77 tall towers and
the five reanalyses. Three different interpolation methods are tested
here: bilinear (bil), nearest-neighbour (nea) and nine-point average
(9pt). The radial dimension represents the model standard deviations
normalized by the observations. Pearson correlation coefficients are
represented in angular coordinates, whereas the arcs show the CRMSEs

using this method, followed closely by ERA5 with 0.81.
The lowest correlations (i.e., below 0.76) are obtained from
those reanalyses with the coarsest grids, which are R1 and
JRA55. The bilinear method, however, still stands as the
best interpolation method in these cases. In terms of vari-
ability, both the nearest-neighbour and bilinear methods are
approaches that better represent the variability of the wind
speed from the tall towers. The nine-point average smooths
the reanalysis winds, significantly decreasing the variability
compared with the other methods. It is also worth noting that
JRA55 displays a substantial overestimation of the variabil-
ity for the nearest-neighbour method. This result matches the
observed increase of IAV with respect to the other reanal-
yses in Figure 3e. The best results in terms of CRMSEs
are also observed for the bilinear method; for that reason,
this method has been employed for spatial interpolation of
the reanalysis data to the tall tower locations for the rest of
the study.

5.2 Verification of daily-averaged surface
winds
The quality of the vertically extrapolated reanalysis sur-
face winds is assessed now in terms of correlation, standard
deviation, and CRMSE. Results are presented by compar-
ing each reanalysis product with the MR obtained from the
averaging of the five reanalyses (Figure 6). Arrows within
the Taylor diagrams depict the change of points from the
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(a) (b)

(c)

(e)

(d)

F I G U R E 6 Taylor diagram of the differences in correlation, standard deviation, and CRMSE between (a) ERA-Interim, (b) ERA5, (c)
JRA55, (d) MERRA2, and (e) R1, and the MR computed from all the five reanalyses. Daily-averaged modelled surface winds are vertically
extrapolated and compared with the nearest 100-m measuring level winds from 77 tall towers. Blue arrows indicate that the MR provides better
correlations and standard deviations closer to the observed than the reanalyses individually and that both changes are significant at the 95%
confidence level. Red arrows imply that the MR improves neither the correlations nor the standard deviations, and that both changes are significant
at the 95% confidence level. Grey arrows represent all other possible cases

reanalysis (beginning of the arrow) to the MR (arrowhead)
produced by the difference in correlation, standard deviation,
and CRMSE, compared with the in situ data set. Only ERA5
(Figure 6b), which contains 1-hr data, presents a definite
improvement with respect to the MR, showing statistically
significant improvements in correlation as well as standard
deviation in 35.1% of the masts (i.e., a total of 27 tow-
ers). Nevertheless, the MR still improves the performance

of ERA5 in 5.2% of the masts. MERRA2 (Figure 6d) also
provides 1-hr data, but NASA’s reanalysis does not show an
overall improvement or worsening, as most of the sites (i.e.,
79.2%) do not present either significant results or improve-
ments in both correlation and standard deviation parame-
ters. The reanalyses with 6-hr values, ERA-Interim, JRA55,
and R1 (Figure 6a,c,e, respectively) show poor performance
compared with the MR. Neither JRA55 nor R1 provides better
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(a) (b)

F I G U R E 7 Box plots summarizing the differences between observed and modelled seasonal climatologies for 77 tall towers in (a)
December–January–February and (b) June–July–August

results than the MR in any of the tall towers, and the MR
presents a statistically significant improvement in half of the
total tall tower set (with percentages of 53.2% and 42.9%,
respectively).

5.3 Verification of surface and
near-surface winds on a seasonal time-scale
In this subsection, we assess the ERA5 and MERRA2
near-surface winds, together with surface winds from the
five reanalysis products, in terms of seasonal mean winds
and IAV. The MR mean, which has been computed using
only surface wind fields, is also included. Both surface and
near-surface winds are adjusted vertically to the closest 100-m
tower heights.

Seasonal climatologies have been computed from both tall
tower observations and reanalysis datasets and their differ-
ences are plotted in Figure 7 by means of box plots. In general
terms, reanalysis datasets tend to show weaker seasonal mean
winds than observed in both DJF and JJA, JRA55 being the
dataset that provides the widest range of values, as well as
the biggest underestimation, out of the five reanalyses plus
the MR. This negative bias was also observed in Figure 2e
extended over continental areas and is now confirmed by the
observed wind data. Conversely, none of the other reanalyses
stands out from the others as the best predictor of seasonal cli-
matologies, since all of them offer quite similar results. With
respect to near-surface datasets, no improvement is noticed for
MERRA2 near surface winds compared with surface winds in
DJF (Figure 7a), whereas, in JJA (Figure 7b), the near-surface
winds tend to adjust the observed mean winds better by shift-
ing the median of the differences to the zero value. Likewise,

in the case of ERA5 it is observed that the near-surface winds
reduce the spread of differences in JJA compared with the
ERA5 surface winds (Figure 7b).

Analogously to Figure 7, the observed and modelled IAVs
have been computed, and their differences are plotted in
Figure 8. We note that the value of the IAV, as defined here,
is not affected by the vertical extrapolation, as normalization
by the seasonal means cancels the correction factor. As seen
in Figure 8, reanalyses tend to underestimate the observed
IAV, particularly in DJF (Figure 8a). This is a result some-
what expected, since grid values in a reanalysis represent an
average within a cell of hundreds of square kilometres, thus
smoothing the modelled variability. The wider range of values
noted in DJF (Figure 8a) illustrates the complications of the
reanalysis in reproducing the observed IAV in that particular
season. These difficulties are related to the high variability
of the wind speed in the Northern Hemisphere, where most
of the towers are located. The widest spread of difference
values is noticed for JRA55 in winter (Figure 8a). We note
that JRA55 is the only dataset that overestimates the IAV by
5 or more percentage points in more than one tower loca-
tion. These sites correspond to the Juelich, Puijo, Sodankyla,
and WM09 tall towers, which are located mainly near
forested areas in Europe and South Africa, which confirms
the results presented in section 4.2 concerning overestima-
tion of the variability over vegetated areas. The near-surface
winds provided by ERA5 show a slight improvement in both
seasons, presenting a narrower range of values oscillating
around zero. In the case of NASA’s reanalysis hub-height
winds, only a minor enhancement of quality is found
in DJF.
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(a) (b)

F I G U R E 8 Box plots summarizing the differences between observed and modelled seasonal IAVs for 77 tall towers in (a)
December–January–February and (b) June–July–August

6 DISCUSSION AND
CONCLUSIONS

Climate researchers and wind energy users often rely on
reanalysis datasets for different activities such as the assess-
ment of the wind energy resources in a particular region.
However, the coexistence of several reanalysis products chal-
lenges the choice of source that characterizes the hub-height
wind speed features most accurately. Indeed, disagreements
in the representation of these near-surface winds have
been encountered after analysing five global state-of-the-art
reanalyses, demonstrating the unavoidable degree of uncer-
tainty affecting these datasets. In this work, we describe and
quantify this uncertainty in order to inform the reanalysis user
about the product that describes the hub-height winds best.

Differences in DJF mean wind speed, year-to-year vari-
ability, and long-term trends have been spotted between the
five global reanalyses. In particular, the most significant dis-
agreements are encountered within continental areas. Mean
wind-speed differences can be partly explained by different
representations of land-surface roughness and elevation at
the various grid resolutions employed in the reanalysis mod-
els. The ability of the assimilation methods to nudge fields
towards observed values can also have an impact, as well as
the density and quality of assimilated data or the boundary
layer parametrization schemes in each model. Similarly, the
main discrepancies in the IAV are seen inland. The strong
IAV displayed by JRA55 is in opposition to the variability
depicted by the other reanalyses. These high IAV values, as
well as the systematic negative biases in the seasonal mean
winds, may result from a deficiency in deriving the surface
winds, as reported by Torralba et al. (2017a). In addition, the

different amounts of available observations over time and the
possible quality defects within these time series may affect the
derived wind speeds. A comparison of linear trends (follow-
ing Torralba et al., 2017a) confirms the exceptional nature of
the strong trends observed in JRA55, which are not displayed
by any of the other datasets.

The multi-reanalysis agreement map reveals that, with
some exceptions, significant positive and negative trends are
displayed over marine areas and continental regions, respec-
tively. All reanalyses coincide with signalling an increase
of wind speeds in the Southern Hemisphere along the storm
track. Taking into account the results obtained by Lee and
Feldstein (2013), we point out that this strengthening of winds
mirrors the shift of westerlies towards the South Pole. It is
worth noting that some trends observed in only some of the
reanalyses may be generated by artefacts in the assimilation
process, due mainly to the abrupt evolution of the availability
of observations. To overcome this handicap, we emphasize
the advantages of using a multi-reanalysis approach, because
most of these spurious trends can compensate each other or
even cancel.

After intercomparing the set of five reanalyses, the quality
of these datasets has been assessed by means of a compari-
son with point data measured at 77 different tall-tower sites.
The interpolation of the gridded data to each tower loca-
tion is carried out using the bilinear method, which has been
proven to offer a slight improvement in terms of daily cor-
relation compared with the other two approaches tested (i.e.,
nearest-neighbour and nine-point average). To extrapolate the
surface and near-surface reanalysis data vertically to each
tower measuring level, a power-law equation has been used.
Even though this vertical extrapolation is very simple and
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assumes neutral stability, the differences between extrapo-
lated reanalysis winds and observed values are centred around
zero. However, representativeness errors (single location ver-
sus grid area) make the distribution of errors quite large.

The verification process offered insights into which
reanalyses perform better than others on daily and seasonal
time-scales. Amongst all five surface wind datasets plus the
MR, ERA5 shows the best results in terms of correlation and
standard deviation. Indeed, the improvement in both corre-
lation and variability with respect to the MR is statistically
significant in 35% of tall tower sites, which is considerably
high when compared with other reanalyses such as MERRA2
(9.1%) and ERA-Interim (1.3%). Neither JRA55 nor R1 beats
the MR in any of the tower locations. Near-surface winds
from ERA5 and MERRA2 have been included in some of
the comparisons, particularly those made at seasonal scale.
Results show a slight improvement of these variables over
surface winds from the corresponding reanalyses. Notably,
this enhancement is more evident for the IAV than for the
seasonal means. For the latter, the high uncertainty derived
from the comparison with tall tower seasonal averages leads
us to discourage the use of global reanalyses to estimate
mean winds. In spite of that, ERA5 outperforms all other
reanalysis datasets plus the MR.

All in all, we conclude that the newly produced ERA5
near-surface wind dataset offers the best estimates of mean
wind speed and variability at turbine hub heights. This is
actually a crucial result, especially if we take into account
that ERA5 is a reanalysis that will be updated operationally,
providing useful climate information in near-real time that
can be easily integrated into different decision-making pro-
cesses. Moreover, many wind energy applications (e.g., the
study of sudden wind changes that may lead to sudden energy
ramps) can also benefit from the 1-hr data available from
ERA5. Nevertheless, when it comes to the analysis of trends,
we recommend a multi-reanalysis approach instead of using
one single product.

Unfortunately, it has been difficult to ensure the validity
of the linear trends in the five reanalyses by comparison with
observations at the tall tower sites, since long and homoge-
neous records are not generally available. We intended to filter
those tall towers within the Tall Tower Dataset, containing
data spanning more than 20 years and without homogeneity
issues. The experiment left only four tall towers that fulfilled
this condition (Barrow, Cabauw, Mauna Loa, and National
Wind Technology Center Mast 2), so that any conclusion
can be derived from this exercise, due to the reduced sam-
ple of masts available for calculations. A more comprehensive
description of the experiment design, as well as verification
with the set of four masts, is detailed in section S3 and Figure
S4 in the Supporting Information.

Although reanalyses are intended to cover the absence of
high-quality and long observational records, in situ data are

still needed, not only to verify climate products, but also for
other applications such as model configuration. For instance,
in the creation of the New European Wind Atlas (NEWA,
2019), only eight meteorological masts placed in northern
Europe were used to decide the optimum configuration of the
Weather Research and Forecasting (WRF) model employed
in the generation of the wind atlas (Witha et al., 2019),
even though the domain covers the whole of Europe. In this
regard, efforts should be made to facilitate the availability
of hub-height wind measurements. New initiatives, such as
the Tall Tower Dataset (Ramon and Lledó, 2019) within the
context of the European project Integrated Approach for the
development across Europe of user oriented climate indica-
tors for GFCS high priority sectors: agriculture, disaster risk
reduction, energy, health, water and tourism, are starting to
appear to promote the usage of these data. Future work will
be devoted to the study of the possible improvements that a
vertical extrapolation that considers the stability of the plan-
etary boundary layer could introduce, and their implications
for the impact models currently employed in the wind energy
sector to perform wind power estimations.
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Supporting information

S1. List of tall towers employed in this study

Table S1: List of tall towers employed in this study. A season is defined complete if each of the constituent months
contain at least 50% of non-missing data.

Name Longitude Latitude Offshore Countrya Complete seasons
(DJF/MAM/JJA/SON)

Measuring
height (m)

42361 -92.490 27.550 yes US 4/4/6/4 122
42887 -88.496 28.191 yes US 4/4/4/5 48
BAO -105.004 40.050 no US 6/6/5/6 100
Barrow -156.611 71.323 no US 27/29/28/28 18
BCI -79.850 9.167 no PA 15/15/15/14 48
Berms Aspen -106.200 53.629 no CA 7/7/7/7 38
Braschaat 4.520 51.308 no BE 10/16/17/16 41
burl1 -89.428 28.905 no US 29/29/28/29 38
Butler Grade -118.683 45.950 no US 12/14/13/15 62
bygl1 -90.420 29.789 yes US 9/11/11/11 31
Cabauw 4.926 51.971 no NL 26/27/27/27 80
Cape Point 18.480 -34.350 no ZA 5/7/7/7 30
Cardington -0.417 52.100 no GB 8/8/8/9 50
Chinook -119.534 45.833 no US 10/11/10/10 50
chlv2 -75.713 36.905 no US 32/31/26/27 43
CVO -24.868 16.850 no CV 4/5/4/4 30
desw1 -124.485 47.675 no US 30/30/32/33 31
Docking Shoal 0.648 53.158 yes GB 3/3/3/3 90
Fino 1 6.588 54.015 yes DE 12/14/14/12 100
Fino 2 13.154 55.007 yes DE 10/8/10/11 102
Fino 3 7.158 55.195 yes DE 6/8/8/7 100
fmoa1 -88.024 30.228 yes US 8/8/8/8 36
Fuji Hokuroku 138.765 35.444 no JP 3/3/4/4 35
fwyf1 -80.097 25.591 no US 21/21/21/23 44
Goodnoe Hills -120.550 45.783 no US 14/16/14/16 59
Greater Gabbard MMZ 1.922 51.944 yes GB 9/6/6/8 82
Gunfleet Sands 1.197 51.726 yes GB 5/5/6/5 61
Hamburg University 10.103 53.519 no DE 13/13/14/14 110
Hegyhatsal 16.652 46.956 no HU 18/16/14/12 115
Ijmuiden 3.436 52.848 yes NL 5/4/4/4 90
Inner Dowsing 0.436 53.127 yes GB 7/7/8/9 43
Juelich 6.220 50.928 no DE 5/5/6/6 100
Kennewick -119.117 46.100 no US 5/6/4/6 37

aUsing the ISO ALPHA-2 Country codes
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Table S1: Continued.

Name Longitude Latitude Offshore Countrya Complete seasons
(DJF/MAM/JJA/SON)

Measuring
height (m)

Lindenberg 14.123 52.166 no DE 17/18/18/18 98
London Array 1.386 51.594 yes GB 5/6/6/6 82
lopl1 -90.025 28.885 yes US 5/4/5/6 58
Lutjewad 6.353 53.404 no NL 14/15/12/15 60
Malin Head -7.332 55.353 no IE 29/30/29/30 22
Mauna Loa -155.576 19.536 no US 24/26/23/24 40
Megler -123.877 46.266 no US 7/8/8/8 53
Naselle Ridge -123.797 46.422 no US 7/8/8/8 30
NWTC M2 -105.235 39.911 no US 21/20/20/21 80
NWTC M4 -105.225 39.906 no US 3/3/3/3 100
Obninsk 36.598 55.111 no RU 8/9/9/9 121
Oestergarnsholm 18.983 57.433 no SE 3/4/5/6 29
OSU -84.714 45.560 no US 10/11/10/10 46
OWEZ 4.390 52.606 yes NL 5/4/4/6 116
Palangkaraya 114.036 2.345 no ID 3/4/4/4 42
Park Falls -90.273 45.945 no US 16/18/13/18 122
Pasoh 102.300 2.967 no MY 6/7/7/7 53
Puijo 27.653 62.906 no FI 9/10/8/10 75
Race Bank 0.748 53.314 yes GB 5/5/6/6 89
roam4 -89.313 47.867 no US 26/26/28/28 47
Samoa -170.564 -14.247 no AS 20/18/19/21 21
Seven Mile -121.267 45.634 no US 14/16/14/15 30
sgof1 -84.858 29.408 no US 11/12/9/11 35
Sodankyla 26.638 67.362 no FI 11/12/13/12 24
South Pole - 24.800 -89.980 no US 9/9/9/9 50
stdm4 -87.225 47.184 no US 30/28/29/33 35
Summit -38.480 72.580 no GL 8/8/6/8 50
Trinidad -124.151 41.054 no US 14/14/13/14 20
Troutdale -122.402 45.558 no US 6/8/8/8 30
Tumbarumba 148.152 -35.657 no AU 13/14/14/14 70
upbc1 -122.121 38.038 yes US 3/4/4/4 100
Vielsalm 5.998 50.305 no BE 4/4/6/5 52
Walnut Grove -121.491 38.265 no US 4/5/5/5 122
Wasco -120.767 45.500 no US 11/12/12/13 30
WM01 16.664 -28.602 no ZA 6/6/6/7 62
WM02 19.361 -31.525 no ZA 5/6/6/7 62
WM03 18.42 -31.731 no ZA 6/6/6/7 62
WM04 18.109 -32.846 no ZA 3/3/3/3 62
WM05 19.692 -34.612 no ZA 6/5/6/6 62
WM06 20.691 -32.557 no ZA 6/6/6/6 62
WM07 22.557 -32.967 no ZA 6/5/7/7 62
WM08 24.514 -34.11 no ZA 5/5/6/7 62
WM09 25.028 -31.253 no ZA 4/6/5/6 62
WM10 28.136 -32.091 no ZA 5/4/5/7 62

aUsing the ISO ALPHA-2 Country codes
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S2. Reanalysis intercomparison for JJA

Fig. S1: (a) Multi-reanalysis mean (MR) and (b) associated spread of seasonal surface wind speeds in JJA derived
from the five reanalyses in the 1980-2017 period. Departures from MR follow for (c) ERA-Interim, (d) ERA5, (e)
JRA55, (f) MERRA2 and (g) R1 reanalyses.
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Fig. S2: Same as in Fig. S1 but for the IAV.
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Fig. S3: Normalized linear trend (% per decade) calculated as the linear trend of surface wind speeds divided by the
seasonal mean surface wind speeds in JJA over the 1980-2017 period for (a) ERA-Interim, (b) ERA5, (c) JRA55, (d)
MERRA2 and (e) R1. Hatched regions in (a)-(e) indicate where the trends are significant at the 95% of confidence
level. In (f) we represent an agreement map between the five reanalyses. Blues (Reds) indicate agreement between
the five reanalyses about the negative (positive) trends in the 10 m wind speed in DJF in the 1980-2017 period.
Asterisk indicates that the trends are significant at the 95% confidence level: no asterisk indicates that the trends
are not significant. One asterisk (∗) means that only one of the reanalysis has significant trends, two asterisks (∗∗)
informs that two reanalyses have significant trends, and so on (adapted from Torralba et al. (2017)).

5

Chapter 5

87



S3. Verification of observed trends

In this subsection we aim to assess the accuracy of the wind speed trends in the reanalyses by
their comparison with trends in the observations taken at the tall tower locations. Before that,
some comments regarding the computation of trends must be made and taken into account.

Fig. S4: Bar plot of the observed (Obs) and modelled linear trends expressed as a percentage per decade at (a)
Barrow, (b) Cabauw, (c) Mauna Loa and (d) NWTC M2 met masts.

The computation of linear trends requires from a reference a period between 15 to 20 years of
length (Liléo et al., 2013) with complete observations. A total amount of 23 tall towers within the
Tall Tower Dataset have been recording for a period equal or larger than 15 years, and only 14 of
these time series span more than 20 years. The number is reduced to 7 if the recording length is
increased to 30 years. As mentioned in Section 2.2, these time series usually contain interruptions
thus the record lengths needed to compute the long-term trends can be reduced even more.

As stated in Section 4.3, there exist several drivers such as tower maintenance activities or
changes in the tower surroundings that may introduce inhomogeneities in the time series producing
spurious trends hiding the real climate trend, if it really exists. Although an exhaustive quality
control procedure has been applied over the Tall Tower Dataset, no attempt to homogenize these
data has been performed so far. In an effort to carry out a preliminary homogeneity examination
of the data from the 23 longest series (i.e., spanning at least 15 years), a homogenization test using
the R Package climatol (Guijarro, 2011) has been performed. This evaluation reveals that there
exist several breakpoints producing inhomogeneities in most of these 23 time series. To avoid these
imperfections without performing exhaustive homogeneity tests that may derive in the inclusion of
contaminated data within the Tall Tower Dataset, a common practice is to divide the time series
into separately homogeneous periods (see Aguilar et al. (2003), Section 3.5). Unfortunately, this
procedure shortens, even more, the wind series.

The result of this exercise left only four tall towers (Barrow, Cabauw, Mauna Loa and NWTC
M2) with reliable measurements for the study of trends. The comparison of the observed linear
trend at these sites compared with the trends obtained from the five reanalyses is shown in Fig.
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S4. All the reanalysis match the sign of the trend at Barrow (Fig. S4(a)) and Cabauw (Fig.
S4(b)) sites. The module, however, is not accurately reproduced, especially at Barrow where all
the reanalyses overestimate the observed positive trend. All but JRA55 are able to reproduce
the decrease of winds at Mauna Loa (Fig. S4(c)), but a significant disparity is noticed for their
modules. None of the reanalyses with the exception of JRA55 matches the negative trend observed
at the MWTC M2 mast (Fig. S4(d)). Unfortunately, these sample of four masts is too small to
extract robust conclusions on the reproducibility of trends.
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Chapter 6

Local-scale winds captured by seasonal

forecasts

Objective

Generate seasonal predictions of near-surface wind speeds that eventually capture local wind

effects. The local-scale is generally misrepresented in coarse-scale models because their output

represents an averaged value for a grid cell of hundreds of square kilometres. In this regard, refin-

ing the output of the prediction system is a sound way forward to improving seasonal predictions’

accuracy.

Methodology

• Hybrid predictions are generated through a statistical downscaling with a perfect prognosis

approach that allows for transferring the coarse-scale information to the local scale.

• The four main Euro-Atlantic Teleconnections (EATC) are the predictors of the statistical

model.

• The skill of hybrid predictions is compared to that of dynamical predictions of wind speed.
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Results

• Overall, hybrid predictions show skill at lead times two and three, while dynamical predictions

do not.

• The gain in skill by the hybrid predictions is particularly noted in central and northern Europe.

• We illustrate with an example that hybrid predictions are skilful at a site where local wind

effects occur.

• Hybrid predictions can be generated using either station data or reanalysis, but specific

considerations have to be taken in each case.

Conclusions

• Hybrid predictions are easily interpretable because they use the information of the large-

scale atmospheric circulation.

• Hybrid predictions can be applied to anticipate wind speed anomalies at a wind farm level.

Publication

• Ramon, J., Lledó, L., Bretonnière, P.-A., Samsó, M., and Doblas-Reyes, F. J. (2021a). A per-

fect prognosis downscaling methodology for seasonal prediction of local-scale wind speeds.

Environmental Research Letters, 16(5):054010, doi: 10.1088/1748-9326/abe491
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Abstract
This work provides a new methodology based on a statistical downscaling with a perfect prognosis
approach to produce seasonal predictions of near-surface wind speeds at the local scale. Hybrid
predictions combine a dynamical prediction of the four main Euro-Atlantic Teleconnections
(EATC) and a multilinear statistical regression, which is fitted with observations and includes the
EATC as predictors. Once generated, the skill of the hybrid predictions is assessed at 17 tall tower
locations in Europe targeting the winter season. For comparative purposes, hybrid predictions have
also been produced and assessed at a pan-European scale, using the ERA5 100 m wind speed as the
observational reference. Overall, results indicate that hybrid predictions outperform the dynamical
predictions of near-surface wind speeds, obtained from five prediction systems available through
the Climate Data Store of the Copernicus Climate Change Service. The performance of a
multi-system ensemble prediction has also been assessed. In all cases, the enhancement is
particularly noted in northern Europe. By being more capable of anticipating local wind speed
conditions in higher quality, hybrid predictions will boost the application of seasonal predictions
outside the field of pure climate research.

1. Introduction

Recent advances in the fields of climatemodelling and
seasonal prediction have resulted in skilful seasonal
predictions of surface variables over the extratrop-
ics (Merryfield et al 2020). This has, in turn, led
to the development of climate services that inform
weather-and-climate-vulnerable socio-economic sec-
tors of seasonal anomalies a few months ahead
(Buontempo et al 2018). The energy sector takes
advantage of such valuable information since energy
production and demand are strongly linked to cli-
mate variability. In particular, the renewable energy
industry can profit from seasonal predictions of sur-
face wind speed (Clark et al 2017, Torralba et al
2017) and wind power generation (Lledó et al 2019)
to anticipate revenues, balance electricity supply and
demand or schedule maintenance activities among
others. However, those predictions still suffer from
some limitations, mainly due to (1) the limited skill

levels on surface variables available from current sea-
sonal prediction systems and (2) its relatively coarse
spatial scales.

Generally, seasonal anomalies of atmospheric
variables arise from large-scale forcings that other
components of the Earth system exert as bound-
ary conditions, such as anomalies of sea ice extent,
sea surface temperature or soil moisture. These
boundary-condition forcings can be adequately
represented in coarse-scale coupled models—often
delivered in grids of tens of square kilometres—
leading to some skill in the predictions. However, the
absolute values that are experienced near the surface
at the local scales can be highly affected by local effects
and vary substantially even at short distances. Values
of surface temperature or precipitation are affected by
the local topography, particularly in complex-terrain
regions (e.g. Anders et al 2006). Near-surface wind
speeds are affected not only by topography but also
by surface roughness, buildings and obstacles. For

© 2021 The Author(s). Published by IOP Publishing Ltd
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instance, near-surface wind speed conditions can be
very different at the top of a ridge, at a mountain
pass or at a valley floor. These differences in mag-
nitude are especially relevant for deriving indicators
that are non-linear and therefore sensitive to absolute
magnitudes, such as the capacity factor (CF) of wind
power (Pickering et al 2020).

To transfer climate information from coarser to
finer scales, many downscaling techniques have been
developed and employed inweather and climate stud-
ies to refine model outputs. There are essentially two
different downscaling approaches. Firstly, dynam-
ical downscaling couples a Regional Climate Model
(RCM) to a Global Circulation Model (GCM) over
a limited region within the global domain, using the
data from the GCM as boundary conditions. The
computational costs of dynamical downscaling are
rather high and the additional skill is sometimes neg-
ligible (Robertson et al 2012), which explains its lim-
ited use in seasonal predictions (García-Díez et al
2015, Schwitalla et al 2020).

Secondly, statistical downscaling relies on the
assumption that a relationship exists between the
large-scale information provided by a GCM and the
fine-scale variable. Once a statistical relationship is
built, local values —predictands— are inferred using
large-scale information—predictors—. Then, future
dynamical predictions of the large-scale variables (i.e.
those generated using the physically-based equations
of the dynamics of the atmosphere) can be inserted as
predictors into the statistical relationship to produce
local-scale predictions. Statistical downscaling tech-
niques (see Gutierrez et al 2013 for a review) can be in
turn subdivided depending on whether the statistical
model is fitted using observational data for both pre-
dictors and predictands (known as Perfect Prognosis
or PP; Klein et al 1959) or using data from the GCM
itself (often referred to as Model Output Statistics or
MOS; Glahn and Lowry 1972).

The statistical downscaling approach is relat-
ively easy to implement with climate prediction sys-
tems containing several ensemble members and has
already been employed in some studies for downscal-
ing temperature and precipitation forecasts at sea-
sonal timescales (e.g. Pavan and Doblas-Reyes 2013,
Manzanas et al 2018). However, to the best of the
authors’ knowledge, no attempt has yet been made to
downscale seasonal predictions of wind speed.

The selection of the employed predictors is vital
for the success of the statistical downscaling method.
Not only do the predictors need to be strongly related
to the predictand, but also predictable from the
dynamical model. Teleconnection indices that sum-
marise the state of the atmospheric circulation are
optimal for this purpose. In this work, four Euro-
Atlantic Teleconnection (EATC) indices (namely the
North Atlantic Oscillation (NAO), East Atlantic (EA),
East Atlantic/Western Russia (EAWR) and Scand-
inavian Pattern (SCA)) are employed as predictors

to anticipate near-surface wind speed conditions in
Europe. Those teleconnection indices are strongly
related to wind speed conditions in Europe (Zubi-
ate et al 2017) and wind power generation (Yang et al
2020), and have been recently shown to be predictable
(Lledó et al 2020). Since the downscaled predictions
combine a dynamical forecast of a circulation variable
and a statistical relationship with a second variable
of interest, they are referred to as hybrid predictions
(see chapter 2 in WMO 2020), to differentiate them
from purely statistical seasonal forecasts that employ
observed values of potential forcing fields to derive
the predictions (Kämäräinen et al 2019). Hybrid pre-
dictions take advantage of the predictability of the
EATC indices from dynamical predictions, especially
in winter, and thus help to overcome limitation (1).
At the same time, the downscaling allows for trans-
ferring such information to a finer grid scale, circum-
venting limitation (2).

The objective of this work is to generate and assess
the quality of a hybrid seasonal prediction of near-
surface wind speeds and wind power CF by applying
a statistical downscaling with a PP approach to a set
of dynamical predictions of EATC indices. Sections 2
and 3 describe the data and methodology employed,
respectively. Results are presented in section 4 while
conclusions are drawn in section 5.

2. Datasets

The hindcasts from five different operationally-
produced seasonal prediction systems have been used
in this study: the System2 from Deutscher Wet-
terdienst (DWD2, Deutscher Wetterdienst 2019), the
GloSea5-GC2 from the UK Met Office (GS5GC2,
Maclachlan et al 2015, Williams et al 2015), the
System 6 from Météo France (MF6, Dorel et al
2017), the SEAS5 (Johnson et al 2019) from the
European Centre for Medium-Range Weather Fore-
casts (ECMWF) and the Seasonal Prediction System
3 from Centro Euro-Mediterraneo sui Cambiamenti
Climatici (SPS3, Sanna et al 2017). All five prediction
systems have been retrieved from the Climate Data
Store data portal in a regular grid of 1◦ × 1◦ of spa-
tial resolution and covering the 1993–2016 period.
Particular details of the employed seasonal prediction
systems, as well as the two observational references,
can be found in table 1.

The ERA5 HRES (hereafter ERA5) reanalysis
dataset (Hersbach et al 2020) produced by the
ECMWF has been used as the gridded observational
reference. The dataset has been downloaded through
the ECMWF retrieval system (MARS) in its native
grid (i.e. 0.3◦ approximately), and at 1-hourly time
resolution. Then, the ERA5data has been horizontally
interpolated using a conservative approach to match
the spatial resolution of the predictions, allowing for
bias adjustment and verification at the grid level.
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Table 1. Specific details of the datasets employed.

Dataset Type of dataset Available period Time resolution
Horizontal grid
spacing

Ensemble
members

DWD2 Seasonal prediction 1993–2016 6 h 1◦ × 1◦ 30
GS5GC2 Seasonal prediction 1993–2016 6 h 1◦ × 1◦ 28
MF6 Seasonal prediction 1993–2016 6 h 1◦ × 1◦ 25
SEAS5 Seasonal prediction 1993–2016 6 h 1◦ × 1◦ 25
SPS3 Seasonal prediction 1993–2016 6 h 1◦ × 1◦ 40
multi-system Seasonal prediction 1993–2016 Seasonal 1◦ × 1◦ 148
ERA5 Reanalysis 1950–present Hourly 0.3◦ × 0.3◦ —
TTD In-situ observations 1984–2017 Sub-hourly Irregular —

Table 2. Particular details of the 17 tall towers employed in this study. r represents the Pearson correlation coefficient between the
seasonal tall tower winds and the ERA5 100 m winds from closest grid point to each tall tower location.

ID Name
Longitude
(deg east)

Latitude
(deg north) Offshore

Measuring
height (m)

Original
time spana r

T1 Braschaat 4.52 51.31 No 41 1996–2015 0.82
T2 Cabauw 4.92 51.97 No 80 1986–2017 0.91
T3 Cardington −0.42 51.10 No 50 2004–2013 0.98
T4 Fino1 6.59 55.01 Yes 100 2004–2017 0.96
T5 Fino2 13.15 55.01 Yes 102 2007–2017 0.90
T6 Fino3 7.16 55.20 Yes 100 2009–2017 0.94
T7 Greater Gabbard

MMZ
1.92 51.94 Yes 82 2005–2015 0.97

T8 Hamburg
University

10.10 53.52 No 110 2004–2017 0.93

T9 Hegyhatsal 16.65 49.96 No 115 1994–2016 0.21b

T10 Inner Dowsing 0.44 53.13 Yes 43 1999–2008 0.83
T11 Juelich 6.22 50.93 No 100 2011–2017 0.88
T12 Lindenberg 14.12 52.17 No 98 1999–2017 0.98
T13 Lutjewad 6.35 53.40 No 60 2001–2017 0.89
T14 Malin Head −7.33 55.35 No 22 1988–2017 0.89
T15 Obninsk 36.60 55.11 No 121 2007–2016 0.90
T16 Puijo 27.65 62.91 No 75 2005–2016 0.76
T17 Sodankyla 26.64 67.36 No 24 2000–2015 0.83
a May contain no-data periods.
b T9 will not be included in the results.

At the local scale, wind speeds measured in-situ
at 17 tall tower locations over Europe have been
considered (see details in table 2 and their spa-
tial distribution in figure S1 (available online at
stacks.iop.org/ERL/16/054010/mmedia)). Those
observations have been obtained from the Tall
Tower Dataset (TTD, Ramon et al 2020), a quality-
controlled collection of wind data taken at tall met-
eorological masts of 20 to more than 200 m height.
Since these structures measure winds simultaneously
at several heights above ground, we have selected at
each of the 17 locations the wind speed series which
is closest to the 100-metre height. Modern wind tur-
bines are placed at those heights since the wind flow
is notably less affected by surface roughness than
at surface level. The 17 time series span from 6 to
30 years within the 1984–2017 period. To unify the
timespan of the series, and ensure the representative-
ness of the comparisons against predictions, the 17
time series have been averaged into hourly values and
reconstructed to cover the entire 1981–2017 period.
To this end, a Measure-Correlate-Predict approach

with a simple linear regression has been employed
(see Carta et al 2013 for further details), using as the
reference series the hourly 100 m wind series of the
ERA5’s closest grid point to each tall tower location.

3. Methods

3.1. Hybrid predictions
Hybrid predictions for the boreal winter
(December–January–February, DJF) have been pro-
duced using the PP methodology as represented in
figure 1. Once the dynamical forecasts of the predict-
ors (i.e. the EATC indices) are generated, they are used
in a statistical model that accounts for variations in
wind speed related to variations in the EATC indices.
The statistical model has been previously built solely
on observations of wind speed and EATC indices. For
the purposes of our work, the PP approach represents
an advantage over MOS, because (1) it uses one
single statistical relationship that can be applied over
various dynamical prediction systems, and (2) the
amount of data available for fitting the relationship
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Figure 1. Schematic representation followed in the generation of the hybrid predictions.

is not limited to the length of the hindcast, but to
the timespan of the observational series (Marzban
et al 2006). A more precise description of the differ-
ent steps of the PP and the generation of the hybrid
predictions follows.

Firstly, four EATC indices are computed as
described in Lledó et al (2020). The EATC patterns
and indices have been derived from the 500 hPa geo-
potential height field anomalies employing a Rotated
Empirical Orthogonal Function (REOF) analysis
over the Euro-Atlantic domain [90◦ W–60◦ E; 20◦

N–80◦ N]. The four teleconnections obtained cor-
respond to the North Atlantic Oscillation (NAO),
East Atlantic (EA), East Atlantic/Western Russia
(EAWR) and Scandinavian pattern (SCA). This pro-
cedure has been followed to obtain both observed—
using the ERA5 anomalies—and predicted—
employing the anomalies from DWD2, GS5GC2,
MF6, SEAS5 and SPS3—EATC indices. The observed
EATC patterns are shown in figure 1 in Lledó
et al (2020).

Then, a statistical model that relates seasonal
anomalies of near-surface wind speed and the EATC
indices is built from historical observations. A very
simple multilinear regression model (equation (1))
has been used here, due to the rather small sample

size available for fitting the model. This method has
already been used in Rust et al (2015) to model
European temperatures from several teleconnections.
A model that expresses anomalies of near-surface
wind speeds (predictand: w ′) as a linear combin-
ation of the EATC indices (predictors: NAO, EA,
EAWR, SCA) is built separately at each grid point
or tall tower location (x, y). The fit adjustment para-
meters an are obtained employing an ordinary least
squares method (see their spatial distribution in
figure S2). The reference period that is used in all the
model fits is 1981–2017. Additionally in the genera-
tion of the multilinear models, a leave-one-out cross-
validation approach has been considered. The EATC
observed indices and its corresponding wind obser-
vation of the year under consideration are excluded
from the sample used to estimate the fit adjustment
parameters. In this way, they can be used later for
verification

w ′(x,y, t) = a0(x,y)+ a1(x,y) ∗NAO(t)

+ a2(x,y) ∗ EA(t)+ a3(x,y) ∗ EAWR(t)

+ a4(x,y) ∗ SCA(t). (1)

To avoid overfitting in the statistical model, a
selection of the best subset of predictors that retains
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Figure 2. (a) Coefficient of determination R2 of the linear fit between the ERA5 near-surface wind anomalies and the EATCs over
the 1981–2017 period. Time resolution is seasonal and the map corresponds to DJF. The higher the R2, the better are surface
winds explained by the EATCs. Grey-masked areas show R2 values lower than 0.3. (b) Interannual variability of ERA5
near-surface boreal-winter wind speeds over the 1981–2017 period. Interannual variability has been computed as the standard
deviation of all boreal-winter seasonal means of the years under consideration.

the maximum information in the model without
necessarily keeping all the predictors is made at each
location by using the Akaike Information Criterion
and a backward stepwise selection (James et al 2013).
Albeit using a relatively simple statistical model, the
coefficient of determination (R2) of the fit presented
in figure 2(a) shows that the EATCs explain most of
the year-to-year variability (also known as interan-
nual variability) in the near-surface winds over exten-
ded areas of Europe (figure 2(b)).

In order to obtain an ensemble of hybrid near-
surface wind anomaly predictions, the individual-
member predictions of EATC indices are inserted
into the multi-linear regressions, both at gridded
and local scales. The seasonal ensemble predictions
of the EATC indices are initialised at the begin-
ning of winter (December) and one, two and three
months in advance (i.e. November, October and
September, respectively). In this work, lead-zero pre-
dictions will refer to those initialised in Decem-
ber, lead-one predictions will be those initialised in
November, and so on. Finally, all members from the
five prediction system are pooled together to create
a new dataset, the multi-system henceforth, with a
total of 148members. Multi-system ensemble predic-
tions can outperform individual-system predictions
(Athanasiadis et al 2017).

3.2. Wind capacity factor
The wind-based CF index is obtained using the
6 h wind speed data from the predictions, and the
1-hourly winds from the ERA5 and TTD. The con-
version between wind speed and power output has
been made employing a power curve, which takes
into account the specific efficiency characteristics of
the wind turbine. Specifically, a power curve for
the turbine Type I defined in the IEC-61400-12-1
international standard has been considered (see IEC
2017 and Lledó et al 2019 for further information).

Although this turbine type might not be the most
suitable for all the investigated locations, it serves the
purpose of investigating whether the non-linearities
of its power curve affect the quality of the hybrid pre-
dictions. Once the conversion is made, CF values are
obtained dividing by the nominal power capacity of
the turbine. Lastly, seasonal anomalies are calculated.

Hybrid predictions of CF, which might be of
particular interest at a turbine or wind farm level
within the wind industry, are studied in detail at one
tall tower location where local wind effects repres-
ent a huge proportion of the seasonal mean wind
speed value, and subsequently the seasonal CF value.
The relatively low r obtained for Puijo tall tower
(T16, table 2) envisages that local wind effects are
likely to occur there, and a comparison against a sur-
face station located two kilometres away reveals so
(Leskinen et al 2009).

3.3. Verificationmetrics
The quality of the hybrid predictions has been
assessed employing both gridded and local-scale
observations. Multiple verification scores have been
considered to account for different aspects of forecast
quality: association, discrimination and reliability
(Jolliffe and Stephenson 2012, Mason 2018). In some
of those scores, the performance of the hybrid predic-
tions is compared to that of a benchmark prediction.
Two different benchmarks have been employed: the
climatological forecast (i.e. a 33% of probability for
all tercile categories) and the dynamical predictions of
near-surface wind speed from the considered systems
(table 1). Skill scores using the climatological forecast
as a reference are identified with the sub-index cwhile
those using the dynamical prediction use d.

To prepare the dynamical prediction benchmark,
seasonal anomalies of surface (10 m) wind speeds
for the 1993–2016 period have been obtained at
gridded and local scales (in the latter case using a
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bilinear interpolation) and then bias-adjusted using a
simple bias correction approach (Torralba et al 2017).
The method adjusts predictions to have an equi-
valent standard deviation and mean to that of the
reference dataset, which has been the ERA5 reana-
lysis near-surface wind speeds. A leave-one-out cross-
validation approach has been again used: the predic-
tion to be adjusted and its corresponding observation
are excluded from the sample used to estimate the
adjustment parameters (see equations (1)–(4) in Tor-
ralba et al 2017). The multi-system of the dynamical
predictions is also generated by pooling together all
the bias-corrected anomalies from the five prediction
systems.

The considered scores for the skill assessment are
both deterministic and probabilistic, and the R pack-
ages easyVerification and SpecsVerification have been
used for their computation:

• The Ensemble Mean Correlation (EMC) quanti-
fies the association (i.e. linear dependency) between
observed and predicted wind speeds. The EMC
ranges from −1 to 1, with a value of 1 indicating
a perfect association. A Student’s t-test at the 95%
of confidence level has been applied to emphasise
statistically significant areas.

• The Relative Operating Characteristic Skill Score
(ROCSS) assesses the discrimination of probabil-
istic single-category forecasts. Here, predictions are
prepared in the formof probability of occurrence of
three categories defined by the 33rd and 66th per-
centiles of the hindcast values. The ROCSS meas-
ures the proportion of hits (i.e. correct predictions)
versus false alarms (i.e. non-occurrences that were
incorrectly predicted) for each of the three categor-
ies. The ROCSS ranges from−1 to 1, with negative
values indicating a weaker discrimination capacity
than that of the benchmark prediction.

• The Rank Histogram (RH) tests the reliability of
the probabilistic predictions, by comparing how
the observations rank with respect to the ensemble
members of the predictions. Reliable ensemble pre-
dictions show a flat RH, which has been statistic-
ally assessed with a decomposed Pearson’sχ2 test as
in Jolliffe and Primo (2008). When the sample size
is small in comparison with the number of ranks
available (i.e. the ensemble size), non-flat rank his-
tograms are likely to occur due to randomness,
which is not desirable. To prevent this from hap-
pening, counts from every ten adjacent bins have
been grouped so that the number of ranks has been
reduced by a factor of ten.

• The Continuous Ranked Probability Skill Score
(CRPSS) measures the quality of the cumulat-
ive forecast probability distribution by measuring
the distance between the observed and predicted
probability distributions. The CRPSS penalises
both reliability and resolution—the latter is closely
related to discrimination—errors. It ranges from

−Inf to 1, and positive values indicate an increased
skill compared to the benchmark forecast. The
Diebold–Mariano test (Diebold andMariano 1995)
has been applied to explore the statistical signi-
ficance of the differences between the CRPSSs of
hybrid and dynamical predictions.

Finally, areas where the hybrid model shows a
poor performance based on the R2 of the statistical
fit being smaller than 0.3—grey areas in figure 2(a)—
have been omitted in the verification. Those areas are
located around the Black Sea and scattered around the
northernMediterranean,where low values of interan-
nual variability are noted (figure 2(b)). There, winds
respond mainly to mesoscale systems rather than
large-scale circulation patterns, which may explain
the inability of the hybrid model in reproducing the
year-to-year variations of near-surface wind speeds.
T9 has been omitted in the results as well since the
local winds correlate very poorlywith the ERA5winds
(table 2), thus not giving robustness to the Measure-
Correlate-Predict reconstruction.

4. Results

In the following sections, we analyse the skill of
the hybrid predictions at the local scale. We com-
plement these results with the verification of grid-
scale hybrid forecasts (i.e. adjusted to reanalysis data
instead of tower observations) at a pan-European
scale [27◦ N–72◦ N; 22◦ W–45◦ E]. This is import-
ant because potential users of hybrid predictions may
face the limitation of the unavailability of in-situ local
data needed to generate the predictions. The verific-
ation focuses on three key attributes of a probabil-
istic prediction: association, discrimination and reli-
ability. For the sake of simplicity, results are shown
only for the multi-system prediction. Remaining res-
ults for the individual systems are available from the
authors upon request. We focus on the winter season,
when wind speed variability is highest, and so is the
importance of its anticipation.

4.1. Do hybrid predictions improve their
dynamical counterparts?
The association between the observed and hybrid-
predicted near-surface wind anomalies is measured
by the EMC and illustrated in figures 3(a)–(d) at both
local and grid scales. The EMC is a deterministic met-
ric which is insensitive to forecast errors in the mag-
nitudes and the spread of the ensemble, so only some
association with the observations is required for a
forecast to be skilful. In this regard, the negative cor-
relation values noted across the Mediterranean basin
anticipate a poor performance of the hybrid predic-
tion over there. Conversely, positive and significant
correlations above 0.6 have been obtained for lead
month zero across northern Europe (figure 3(a)).

6

Local-scale winds captured by seasonal forecasts

98



Environ. Res. Lett. 16 (2021) 054010 J Ramon et al

Figure 3. (a)–(d) EMC of the multi-system near-surface wind speed hybrid predictions over Europe for DJF. Black dots highlight
areas statistically significant at the 95% of confidence level. (e)–(h) Differences between the EMC of the hybrid predictions and
the EMC of the dynamical predictions. Filled points indicate the EMC of the hybrid predictions ((a)–(d)) and the differences in
EMC ((e)–(h)) at the 16 tall tower locations. Grey-masked areas indicate regions where the R2 of the multi-linear regression is
below 0.3.
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Figure 4. EMC of the DWD2, GS5GC2, MF6, SEAS5 and SPS3 near-surface wind speed predictions at the 16 tall tower locations
for DJF. The circle of the lollipop shows the EMC of the hybrid prediction, whereas the opposite end represents the EMC of the
dynamical prediction. Right-side-up lollipops show that the hybrid prediction outperforms its dynamical counterpart, and
vice-versa. Predictions were initialised in December (lead month 0, first row), November (lead month 1, second row), October
(lead month 2, third row) and September (lead month 3, fourth row).

At longer leads, correlations decrease but still
depict positive values above 0.4 in the British Isles
and the east of the Baltic sea. For the latter region,
we observe increased and statistically significant EMC
values at lead month two, which are not seen at
lead months one and three. This improvement in
the hybrid prediction at that particular lead month
responds to an increase in the skill values of the
EATC predictions. More specifically, the SCA index
has the greatest weight in the hybrid model over
that region (figure S2), and shows a relative max-
imum in correlation at lead month two (i.e. 0.42; see
table S1). The differences in EMC between the hybrid
and dynamical predictions (figures 3(e)–(h)) reveal
that the highest gains in skill are seen at the longest
leads. While the dynamical forecast offers skill only
at leads zero and one (see figure S3), the hybrid pre-
diction shows positive EMCs at all lead times. The
increased scores for predictions based on the circu-
lation patterns in the hybrid method appear to match
the increase in skill seen in other recent studies (e.g.
Scaife et al 2014, Baker et al 2017).

Results are similar at the local scale. The lollipop
plots (figure 4) depict the most noticeable differences
between hybrid and dynamical predictions at longer
leads, where the improvement of the hybrid predic-
tion is substantial for all systems but the SPS3.

The sensitivity of the predictions to discriminate
between observations belonging to different categor-
ies has been exploredwith theROCSS. TheROCSSc of
the lower-tercile category for the multi-system hybrid

and dynamical predictions is compared in figure 5.
While both hybrid and dynamical predictions show
similar skill score values at lead zero (panel (a); the
density is centred around the y= x line), it is noted
that hybrid predictions enhance the discrimination
ability at leads one, two and three (panels (b), (c) and
(d); most of the density is found above the y= x line).
Furthermore, this improvement is not only restricted
to a particular region but positive ROCSSd values are
observed all over Europe (not shown).

Analogous results are obtained for the predic-
tions of the upper-tercile category (figure S4). On
the other hand, neither hybrid nor dynamical pre-
dictions show skill for the central-tercile category
(figure S5). The lack of skill in predictions for
near-normal is a recurrent issue which has already
been addressed in the literature and stems from
the definition of the skill scores itself, thus not
requiring any physical or dynamical explanation
(Van Den Dool and Toth 1991).

To gain more insight into the performance of
the hybrid predictions at the local scale, we have
selected four tall tower locations to evaluate the
reliability of the ensemble predictions by explor-
ing their rank histograms (figure 6). The set of
four locations include T2 (Cabauw, The Nether-
lands), T5 (Fino2, Germany), T15 (Obninsk, Rus-
sian Federation) and T16 (Puijo, Finland), which
are located in both continental—flat and com-
plex terrain—and offshore platforms across northern
Europe.

8

Local-scale winds captured by seasonal forecasts

100



Environ. Res. Lett. 16 (2021) 054010 J Ramon et al

Figure 5. Two-dimensional density plots showing the ROCSSc of the lower-tercile hybrid and dynamical predictions from the
multi-system at all the grid points within the pan-European domain. On a linear scale, greens represent the highest density of
points, whereas purples depict the lowest density estimates. The region above the y= x dashed line indicates an improvement of
ROCSSc of the hybrid forecast over its dynamical counterpart. Predictions were initialised in (a) December (lead month 0),
(b) November (lead month 1), (c) October (lead month 2) and (d) September (lead month 3). Grid points where the R2 of the
multi-linear regression is below 0.3 have not been included.

Focusing on lead zero, the RHs of the hybrid pre-
dictions at T2 and T5 (figures 6(a) and (b), respect-
ively) are both U-shaped, mirroring an overpopu-
lation of the outermost ranks which can occur due
to either a lack of ensemble mean signal or a lack
of spread around the ensemble mean (Eade et al
2014) in the hybrid prediction. The non-flatness of
the RH is statistically supported by the p-values of the
Jolliffe–Primo statistical test—at the 95% of confid-
ence level. Conversely, the RH at T15 (figure 6(c))
depicts an opposite convexity (i.e. overdispersion),
but this outcome is not statistically significant. These
results envisage a poor reliability of the multi-system
hybrid predictions at these particular locations, which
can also be noted for the individual systems (figures
S6–S10), especially at T5. The unreliability of the
multi-system hybrid predictions is observed in the
RHs of 10 out of the 16 tall tower locations, while
the other 6 locations show a flatter plot such as that
observed at T16 (figure 6(d)). This indicates that
the probability distribution of the ensemble at these
six locations is in agreement with the observed val-
ues. Similar results are obtained for the other leads

(not shown). The performance of the hybrid predic-
tions could be improved further by employing calib-
ration methods (Doblas-Reyes et al 2005, Manzanas
et al 2019) or performing variance corrections to the
ensemble mean and members (Eade et al 2014).

To complete the skill assessment we compute the
CRPSS, a restrictive quality metric of the ensemble
distribution that accounts for both discrimination
and reliability at the same time. Figure 7 presents
the CRPSSd, highlighting areas where the hybrid
approach improves (positive values) or degrades
(negative values) the dynamical prediction. In gen-
eral, the results match those discussed for the EMC
and ROCSS (figures 3 and 5, respectively) with the
highest gains seen for leads two and three. How-
ever, the corresponding CRPSSc values of the hybrid
predictions are mostly negative (figure S11). Positive
CRPSSc values are only noted for the lead-zero pre-
dictions and, in the case of MF6, the hybrid forecast
is the only that offers skill (figure S12).

According to Mason (2004), some scores such
as the Ranked Probability Skill Score—and thus the
CRPSS—are often too harsh when the climatological
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Figure 6. Rank histograms of the lead-zero multi-system near-surface wind speed hybrid predictions for DJF at (a) T2 [Cabauw;
4.92◦ E, 51.97◦ N], (b) T5 [Fino2; 13.15◦ E, 55.01◦ N], (c) T15 [Obninsk; 36.60◦ E, 55.11◦ N] and (d) T16 [Puijo; 27.65◦ E,
62.91◦ N] tall tower locations. The p-value of the Jolliffe–Primo test statistic for convexity under the null hypothesis of a flat rank
histogram is indicated.

forecast is considered as benchmark. This gives high
chances of getting negative values even when pre-
dictions provide useful information. Such is the case
observed here: although the CRPSSc is generally neg-
ative, we observe gains in association and discrim-
ination and, in some cases, hybrid predictions are
reliable. Therefore, one should not rely solely on a
single skill score but take into account the whole
verification.

4.2. Can hybrid predictions always be trusted at a
local scale?
At this point in the results, it has been shown that
hybrid predictions improve the dynamical in many
aspects, primarily in northern Europe. However, little
has been discussed about how hybrid predictions per-
form at the micro-scale level, especially when local
wind effects occur. In the following, we illustrate how
hybrid predictions could be applied to predict the
absolute values of the wind CF at a location where
local wind effects have been reported, and quantify
the error made when reanalysis gridded data—which
sometimes misrepresent those effects—are used to fit
the hybrid model.

The ensemble predictions of CF for Puijo site
are presented in figure 8 in the form of Probability
Density Functions (PDF).Wenote that the direct out-
put of the grid-scale hybrid predictions is consider-
ably biased, being the seasonal mean CF systemat-
ically underestimated (figure 8(a)). A CRPSSc value
of −4.215 indicates that the prediction is completely
useless. A later bias adjustment of this prediction
(figure 8(b)) removes the bias and adjusts the variab-
ility to that observed at Puijo—though the skill score
of the prediction is still negative (−0.046), indicating
a similar performance to that of a climatological fore-
cast. Finally, the hybrid prediction fitted with in-situ
data also adjusts well to the observed CFs, and the
CRPSS increases a bit more, up to a positive value of
0.0007, indicating that the use of local observations
with the hybrid method provides the most accurate
prediction of seasonal CF values.

The important bias in the grid-scale predictions
in figure 8(a) responds to the fact that gridded data
are a representation of the average value within a
grid cell of hundreds of square kilometres. Therefore,
values of variables with high spatial variability such
as wind speed in complex terrain regions may dif-
fer substantially from the actual values observed at
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Figure 7. CRPSSd of the multi-system near-surface wind speed predictions over Europe for DJF. Predictions were initialised in (a)
December (lead month 0), (b) November (lead month 1), (c) October (lead month 2) and (d) September (lead month 3). Filled
points indicate the CRPSSd of the predictions at the 16 tall tower locations. Black dots highlight areas statistically significant at the
95% of confidence level. Grey-masked areas indicate regions where the R2 of the multi-linear regression is below 0.3.

different locations within the grid cell. This misrep-
resentation of local values is said to produce repres-
entativeness errors. In the case of wind, local effects
such as katabatic winds over complex terrain regions
may account for a large proportion of the mean wind
speed value, thus enlarging the representativeness
error of thewind speeds in the reanalysis. These errors
are propagated to the CF values, and eventually to the
hybrid predictions. Hence, reanalysis gridded data are
sometimes not suitable to generate hybrid predictions
because these datasets are unable to represent local
wind effects occurring at much finer scales, such as
those observed at Puijo. A later bias-correction may
enhance the grid-scale hybrid predictions, but this
post-processing can only be carried out where in-situ
measurements are available.

5. Summary and conclusions

This research proposes and applies a methodology to
overcome two main restraints of seasonal predictions
that jeopardises every decision based upon them. The
first impediment is the limited skill levels observed in
the prediction of surface variables such as wind speed,
while the second is the lack of adaptation to the local
scale due to the relatively coarse scales in which fore-
casts are delivered.

Results show that hybrid predictions of near-
surface wind speed based on a PP statistical
downscaling technique help reduce the effects of both
issues simultaneously. Using the indices of the four

main EATCs as predictors, the hybrid predictions
proposed here have been shown to improve the skill
of the same predictions obtained from a dynamical
approach. Besides, the statistical downscaling has
enabled to transfer the coarse-scale predictions to a
station-scale level, and the comparison with station-
based observations has revealed certain level of agree-
ment even when local wind effects play an important
role. In particular:

• Hybrid predictions enhance the skill scores of
the dynamical predictions at both local and pan-
European scales.

• In general, hybrid predictions are able to provide
skill at leads two and three, while dynamical fore-
casts cannot.

• The highest gains in quality are observed in the
association with the observations and the discrim-
ination against the different observed outcomes.

• Although hybrid predictions can also be built using
reanalyses, it is advisable not to use gridded data
to build the statistical model over areas where local
effects are considerable.

• EATC predictions—and thus hybrid predictions—
provide no added value in theMediterranean basin.

Hybrid forecasts foster the information available
in the EATC predictions to anticipate near-surface
wind speed or CF anomalies. The derived predic-
tions are consistent with the main features of the
atmospheric circulation, which are summarised in
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Figure 8. Lead-three hybrid predictions generated using (a) grid-scale data, (b) grid-scale data followed by a bias-correction with
local observations, and (c) local-scale observations at Puijo tall tower [27.65◦ E, 62.91◦ N]. The multi-system predictions are
presented in the form of probabilities for the three tercile categories for the 2005–2016 period. The CRPSSc values are calculated
over the 1993–2016 hindcast period. The probability density functions have been built by dressing the ensemble members with
the kernel density estimate method.

the status of the EATCs. This provides interpretabil-
ity of the results, which enables users to make more
informed decisions. For example, one can link higher
winds across the UK and the North Sea to a positive
NAO phase.

The wind power industry is one of the potential
users that can profit most from hybrid predictions.
Wind and CF forecasts have been proven to offer use-
ful results at a wind farm scale, provided that site
observations fromametmast are available.Moreover,
the skilfulness is not restricted to the shortest leads—
as it is often the case of the dynamical forecasts—
but hybrid predictions issued two or three months in

advance can already anticipate understanding of the
conditions for the coming season.

The PP is a simple and effective approach but
also suffers from some limitations. For instance, the
proposed hybrid model does not account for the
biases in the EATC predictions. Future workmay look
into existing post-processingmethods like calibration
techniques to bias-correct the model output. Besides,
the optimal number of EATCs employed to explain
the wind variability can be tuned for each region as in
Bastien (2018) (chapter 3), who found varying results
over France. Investigating whether these improve-
ments lead to a marginal or substantial increase in
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skill would be valuable for any potential user of the
hybrid predictions.
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Carta Je A, Veĺazquez S and Cabrera P 2013 A review of
measure-correlate-predict (MCP) methods used to estimate
long-term wind characteristics at a target site Renew.
Sustain. Energy Rev. 27 362–400

Clark R T, Bett P E, Thornton H E and Scaife A A 2017 Skilful
seasonal predictions for the European energy industry
Environ. Res. Lett. 12 119602

Deutscher Wetterdienst 2019 Seasonal forecasting with the
german climate forecast system (available at: https://
www.dwd.de/EN/ourservices/seasonals_forecasts/
project_description.html?nn=641552&lsbId=619784)

Diebold F X and Mariano R 1995 Comparing predictive accuracy
J. Bus. Econ. Stat. 13 253–63

Doblas-Reyes F J, Hagedorn R and Palmer T N 2005 The rationale
behind the success of multi-model ensembles in seasonal
forecasting–II. Calibration and combination Tellus A
57 234–52

Dorel L, Ardilouze C, Déqué M, Batté L and Guérémy J F 2017
Documentation of the METEO-FRANCE pre-operational
seasonal forecasting system METEO-FRANCE Technical
Report (available at: http://seasonal.meteo.fr/sites/data/
Documentation/doc_modele/Model_MF-S6_C3S_
technical_en.pdf)

Eade R, Smith D, Scaife A, Wallace E, Dunstone N, Hermanson L
and Robinson N 2014 Do seasonal-to-decadal climate
predictions underestimate the predictability of the real
world? Geophys. Res. Lett. 41 5620–8

García-Díez M, Fernández J, San-Martín D, Herrera S and
Gutiérrez J M 2015 Assessing and improving the local added
value of WRF for wind downscaling J. Appl. Meteorol.
Climatol. 54 1556–68

Glahn H R and Lowry D A 1972 The use of model output
statistics (MOS) in objective weather forecasting J. Appl.
Meteorol. 11 1203–11

Gutierrez J M, Bedia J, Benestad R and Pagé C 2013 Local
predictions based on statistical and dynamical downscaling
Technical Report 308378 (SPECS)

Hersbach H et al 2020 The ERA5 global reanalysis Q. J. R.
Meteorol. Soc. 146 1–51

IEC 2017 International Standard—IEC61400-12-1 Technical
Report (International Electrotechnical Commission)
(available at: https://webstore.iec.ch/publication/26603)

James G, Witten D, Hastie T and Tibshirani R 2013 An
Introduction to Statistical Learning (Springer Texts in
Statistics vol 103) (New York: Springer)

Johnson S J et al 2019 SEAS5: the new ECMWF seasonal forecast
system Geosci. Model Dev. 12 1087–117

Jolliffe I T and Primo C 2008 Evaluating rank histograms using
decompositions of the Chi-square test statisticMon. Weather
Rev. 136 2133–9

Jolliffe I T and Stephenson D B 2012 Forecast Verification (Oxford:
Wiley)

Kämäräinen M, Uotila P, Karpechko A Y U, Hyvärinen O,
Lehtonen I and Räisänen J 2019 Statistical learning methods
as a basis for skillful seasonal temperature forecasts in
Europe J. Clim. 32 5363–79

Klein W H, Lewis B M and Enger I 1959 Objective prediction of
five-day mean temperatures during winter J. Meteorol.
16 672–82

Leskinen A, Portin H, Komppula M, Miettinen P, Arola A,
Lihavainen H, Hatakka J, Laaksonen A and Lehtinen K E J
2009 Overview of the research activities and results at Puijo
semi-urban measurement station Boreal Environ. Res.
14 576–90 (https://helda.helsinki.fi/handle/10138/233514)

Lledó L, Cionni I, Torralba Vonica, Bretonnière P-A and Samsó M
2020 Seasonal prediction of Euro-Atlantic teleconnections
from multiple systems Environ. Res. Lett. 15 074009

Lledó L, Torralba V, Soret A, Ramon J and Doblas-Reyes F J 2019
Seasonal forecasts of wind power generation Renew. Energy
143 91–100

Maclachlan C et al 2015 Global seasonal forecast system version 5
(GloSea5): a high-resolution seasonal forecast system Q. J.
R. Meteorol. Soc. 141 1072–84

Manzanas R, Gutiérrez J M, Bhend J, Hemri S, Doblas-Reyes F J,
Torralba V, Penabad E and Brookshaw A 2019 Bias
adjustment and ensemble recalibration methods for
seasonal forecasting: a comprehensive intercomparison
using the C3S dataset Clim. Dyn. 53 1287–305

Manzanas R, Lucero A, Weisheimer A and Gutiérrez J M 2018 Can
bias correction and statistical downscaling methods improve

13

Chapter 6

105



Environ. Res. Lett. 16 (2021) 054010 J Ramon et al

the skill of seasonal precipitation forecasts? Clim. Dyn.
50 1161–76

Marzban C, Sandgathe S and Kalnay E 2006 MOS, perfect prog
and reanalysisMon. Weather Rev. 134 657–63

Mason S J 2004 On using ‘climatology’ as a reference strategy in
the Brier and the ranked probability skill scoresMon.
Weather Rev. 132 1891–5

Mason S J 2018 Guidance on verification of operational seasonal
climate forecasts Technical Report (WMO) (available at:
www.seevccc.rs/SEECOF/SEECOF-10/SEECOF-LRF-
TRAINING/November 13th 2013/CCl verification
recommendations.pdf)

Merryfield W J et al 2020 Current and emerging developments in
subseasonal to decadal prediction Bull. Am. Meteorol. Soc.
101 1–90

Pavan V and Doblas-Reyes F J 2013 Calibrated multi-model
ensemble summer temperature predictions over Italy Clim.
Dyn. 41 2115–32

Pickering B, Grams C M and Pfenninger S 2020 Sub-national
variability of wind power generation in complex terrain and
its correlation with large-scale meteorology Environ. Res.
Lett. 15 044025

Ramon J, Lledó L, Pérez-Zañón N, Soret A and Doblas-Reyes F J
2020 The tall tower dataset: a unique initiative to boost wind
energy research Earth Syst. Sci. Data 12 429–39

Robertson A W, Qian J H, Tippett M K, Moron V and Lucero A
2012 Downscaling of seasonal rainfall over the philippines:
dynamical versus statistical approachesMon. Weather Rev.
140 1204–18

Rust H W, Richling A, Bissolli P and Ulbrich U 2015 Linking
teleconnection patterns to European temperature—a
multiple linear regression modelMeteorol. Z.
24 411–23

Sanna A, Borrelli A, Athanasiadis P J, Materia S, Storto A,
Navarra A, Tibaldi S and Gualdi S 2017
RP0285—CMCC-SPS3: the CMCC seasonal prediction
system 3 Technical Report (Centro Euro-Mediterraneo sui
Cambiamenti Climatici) (available at: www.cmcc.
it/publications/rp0285-cmcc-sps3-the-cmcc-seasonal-
prediction-system-3)

Scaife A A et al 2014 Skillful long-range prediction of European
and North American winters Geophys. Res. Lett. 41 2514–19

Schwitalla T, Warrach-Sagi K, Wulfmeyer V and Resch M 2020
Near-global-scale high-resolution seasonal simulations with
WRF-Noah-MP v.3.8.1 Geosci. Model Dev. 13 1959–74

Torralba V, Doblas-Reyes F J, MacLeod D, Christel I and Davis M
2017 Seasonal climate prediction: a new source of
information for the management of wind energy resources
J. Appl. Meteorol. Climatol. 56 1231–47

Van Den Dool H M and Toth Z 1991 Why do forecasts for ‘near
normal’ often fail? Weather Forecast. 6 76–85

Williams K D et al 2015 The met office global coupled model 2.0
(GC2) configuration Geosci. Model Dev. 8 1509–24

WMO 2020 Guidance on Operational Practices for Objective
Seasonal Forecasting 1246 (available at: https://library.
wmo.int/doc_num.php?explnum_id=10314)

YangW, Foster K, Llorenç Lledó, Torralba V, Cortesi N, Schaller N,
Cionni I, De Felice M, Brayshaw D and Bloomfield H 2020
Modes of variability in Europe and their impact on the
energy indicators S2S4E project (available at: https://s2s4e.
eu/sites/default/files/2020-06/s2s4e_d32.pdf)

Zubiate L, McDermott F, Sweeney C and O’Malley M 2017 Spatial
variability in winter NAO—wind speed relationships in
western Europe linked to concomitant states of the East
Atlantic and Scandinavian patterns Q. J. R. Meteorol. Soc.
143 552–62

14

Local-scale winds captured by seasonal forecasts

106



Supplementary Information

Table S1: EMC of the SCA index dynamical forecasts for DJF and the corresponding observed (ERA5) values for
each system and lead time in the 1993–2016 hindcast period. See Lledó et al. (2020) for complete information on
the skill of the remaining EATCs.

System Lead month 0 Lead month 1 Lead month 2 Lead month 3

DWD2 0.65 0.33 0.40 0.08
GS5GC2 0.53 0.30 0.50 0.30

MF6 0.59 0.35 0.43 0.52
SEAS5 0.57 0.21 0.25 0.40
SPS3 0.61 0.20 -0.03 -0.17

multi-system 0.71 0.39 0.42 0.32

Fig. S1: Spatial distribution of the 17 tall towers considered for this study. The anemometer measuring height is
also indicated.
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Fig. S2: Spatial distribution of the coefficients ai; i = 1, 2, 3, 4 of the multilinear regression (Equation 1). The
coefficients provide an estimate of the weight/importance of each EATC in the hybrid model. In particular, the four
coefficients go with (a) NAO, (b) EA, (c) EAWR, (d) SCA, respectively.

Fig. S3: EMC of the multi-system dynamical near-surface wind speed predictions over Europe for DJF. Predictions
were initialised in a) December (lead month 0), b) November (lead month 1), c) October (lead month 2) and d)
September (lead month 3). Filled points indicate the EMC of the predictions at the 16 tall tower locations. Black
dots highlight areas statistically significant at the 95% of confidence level. Grey-masked areas indicate regions where
the R2 of the multi-linear regression is below 0.3.
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Fig. S4: Two-dimensional density plots showing the ROCSSc of the upper-tercile hybrid and dynamical predictions
from the multi-system at all the grid points within the pan-European domain. On a linear scale, greens represent
the highest density of points, whereas purples depict the lowest density estimates. The region above the y = x
dashed line indicates an improvement of ROCSSc of the hybrid forecast over its dynamical counterpart. Predictions
were initialised in a) December (lead month 0), b) November (lead month 1), c) October (lead month 2) and d)
September (lead month 3). Grid points where the R2 of the multi-linear regression is below 0.3 have not been
included.

Fig. S5: Two-dimensional density plots showing the ROCSSc of the central-tercile hybrid and dynamical predictions
from the multi-system at all the grid points within the pan-European domain. On a linear scale, greens represent
the highest density of points, whereas purples depict the lowest density estimates. The region above the y = x
dashed line indicates an improvement of ROCSSc of the hybrid forecast over its dynamical counterpart. Predictions
were initialised in a) December (lead month 0), b) November (lead month 1), c) October (lead month 2) and d)
September (lead month 3). Grid points where the R2 of the multi-linear regression is below 0.3 have not been
included.

3

Chapter 6

109



Fig. S6: Rank histograms of the lead-zero SEAS5 near-surface wind speed hybrid predictions for DJF at a) T2
[Cabauw; 4.92oE, 51.97oN], b) T5 [Fino2; 13.15oE, 55.01oN], c) T15 [Obninsk; 36.60oE, 55.11oN] and d) T16
[Puijo; 27.65oE, 62.91oN] tall tower locations. The p-value of the Jolliffe-Primo test statistic for convexity under
the null hypothesis of a fl at rank histogram is indicated.

Fig. S7: Rank histograms of the lead-zero DWD2 near-surface wind speed hybrid predictions for DJF at a) T2
[Cabauw; 4.92oE, 51.97oN], b) T5 [Fino2; 13.15oE, 55.01oN], c) T15 [Obninsk; 36.60oE, 55.11oN] and d) T16
[Puijo; 27.65oE, 62.91oN] tall tower locations. The p-value of the Jolliffe-Primo test statistic for convexity under
the null hypothesis of a fl at rank histogram is indicated.
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Fig. S8: Rank histograms of the lead-zero GS5GC2 near-surface wind speed hybrid predictions for DJF at a) T2
[Cabauw; 4.92oE, 51.97oN], b) T5 [Fino2; 13.15oE, 55.01oN], c) T15 [Obninsk; 36.60oE, 55.11oN] and d) T16 [Puijo;
27.65oE, 62.91oN] tall tower locations. The p-value of the Jolliffe-Primo test statistic for convexity under the null
hypothesis of a fl at rank histogram is indicated.

Fig. S9: Rank histograms of the lead-zero MF6 near-surface wind speed hybrid predictions for DJF at a) T2 [Cabauw;
4.92oE, 51.97oN], b) T5 [Fino2; 13.15oE, 55.01oN], c) T15 [Obninsk; 36.60oE, 55.11oN] and d) T16 [Puijo; 27.65oE,
62.91oN] tall tower locations. The p-value of the Jolliffe-Primo test statistic for convexity under the null hypothesis
of a fl at rank histogram is indicated.
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Fig. S10: Rank histograms of the lead-zero SPS3 near-surface wind speed hybrid predictions for DJF at a) T2
[Cabauw; 4.92oE, 51.97oN], b) T5 [Fino2; 13.15oE, 55.01oN], c) T15 [Obninsk; 36.60oE, 55.11oN] and d) T16
[Puijo; 27.65oE, 62.91oN] tall tower locations. The p-value of the Jolliffe-Primo test statistic for convexity under
the null hypothesis of a fl at rank histogram is indicated.

Fig. S11: Two-dimensional density plots showing the CRPSSc of the hybrid and dynamical predictions from the
multi-system at all the grid points within the pan-European domain. On a linear scale, greens represent the
highest density of points, whereas purples depict the lowest density estimates. The region above the y = x dashed
line indicates an improvement of CRPSSc of the hybrid forecast over its dynamical counterpart. Predictions were
initialised in a) December (lead month 0), b) November (lead month 1), c) October (lead month 2) and d) September
(lead month 3). Grid points where the R2 of the multi-linear regression is below 0.3 have not been included.
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Fig. S12: Two-dimensional density plots showing the CRPSSc of the hybrid and dynamical predictions from MF6
at all the grid points within the pan-European domain. On a linear scale, greens represent the highest density of
points, whereas purples depict the lowest density estimates. The region above the y = x dashed line indicates an
improvement of CRPSSc of the hybrid forecast over its dynamical counterpart. Predictions were initialised in a)
December (lead month 0), b) November (lead month 1), c) October (lead month 2) and d) September (lead month
3). Grid points where the R2 of the multi-linear regression is below 0.3 have not been included.
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Chapter 7

Prediction skill inherent to observation

error

Objective

Investigate the dependencies of the seasonal prediction skill on the choice of the observational

reference dataset. A wide variety of skill scores are defined in a way that the forecast probabilities

are contrasted against observations, being these reference observations regarded as perfect.

However, recent studies such as those included in Chapters 4 and 5 of this thesis report certain

levels of error affecting these observations. Is this observation error sufficient to impact the

prediction skill estimates? Is it possible to achieve skill values that are independent of the choice

of the reference dataset?

Methodology

• Qualitatively see the impacts of observation error through the ranking of a set of seasonal

prediction systems.

• Apply a methodology to obtain unbiased estimates of the prediction skill (Brier Score).

• Compare against the traditional approach that does not account for observation error.
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Results

• When observation error is not considered, the Brier Score values are highly dependent on

the choice of the reference dataset.

• It may be well impossible to recognise the best prediction system among a set of candidates

if observation error is not taken into account, or is not properly adjusted.

• Achieving unbiased Brier Score values is possible, as long as observation error is known.

Conclusions

• We recommend employing the error-corrected scoring rules for categorial predictands.

• Uncertainty estimates are valuable for many applications so they should be included in future

observational datasets.

Publication

• The work presented in this chapter is a potential future publication to be submitted on a

peer-reviewed scientific journal.
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Uncertainty in the observational reference: implications in
skill assessment and model ranking

Jaume Ramona, Llorenç Lledóa, Christopher A.T. Ferrob and Francisco J. Doblas-Reyesa,c

aBarcelona Supercomputing Center (BSC), c/ Jordi Girona, 29, Barcelona 08034, Spain
bUniversity of Exeter, Laver Building, North Park Road, Exeter EX4 4QE United Kingdom

cICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain

Abstract. The probabilistic skill of seasonal prediction systems is often inferred using reanalysis data,

assuming these benchmark observations to be error-free. However, increasing studies report non-

negligible levels of uncertainty affecting reanalysis observations, especially when it comes to variables

like precipitation or wind speed. This study explores how this observational uncertainty affects the skill

assessment of seasonal predictions for wind speed. Two different methodologies that take into account

observational uncertainty are considered: the observational probability method and the error-corrected

scoring rules, the latter extended to the particular case of categorical predictands constructed by

dichotomization. These two approaches are compared against the traditional procedure of not accounting

for observation error. While Brier Score values depend on the choice of the observational reference if the

observational probability method or the traditional approach are used, unbiased outcomes are obtained

when the error-corrected Brier Score is utilised. We emphasise the perils and quantify the error committed

when the observational reference, either reanalysis or point dataset, is selected arbitrarily for verifying a

seasonal prediction system.

Keywords. Model scoring, observation error, Brier Score, seasonal prediction, wind speed.

7.1 Introduction

Climate predictions on seasonal time scales

are becoming increasingly skilful mostly due to

the recent advances in understanding of cli-

mate processes and their modelling (Merryfield

et al., 2020). Still, the quality of such predictions

is far from that of weather forecasts, whose

higher quality allows for issuing timely early

warnings for extreme events and thus reduce

human and material losses. Though some of

high-impact climate events can also be cor-

rectly anticipated by seasonal predictions, there

is a general reluctance to make any decision

based upon them.

Generally, seasonal predictions for essential cli-

mate variables (e.g., temperature, precipitation

or wind speed) are provided together with a
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measure of their quality, or skill, which is de-

termined after a comparison against climate

observations. Past forecasts of a prediction

system are statistically assessed to judge how

good that system is, or which is the "best" sys-

tem among a set of candidates. Besides quality,

the goodness of a forecast can also be meas-

ured by their consistency and value (Murphy,

1993), but these two aspects will not be focus

of this work.

On a typical skill assessment, reference obser-

vations are considered as the ’ground truth’,

unquestionably exact. However, these ob-

servations might have some degree of uncer-

tainty, especially when they come from pro-

cessed datasets such as reanalyses. Reana-

lysis products provide gridded observational

data resulting from a combination of a numer-

ical weather prediction model and the assimil-

ation (ingestion) of past observations from sev-

eral sources. In this regard, random uncertain-

ties in the observations (e.g. measuring errors)

mix with the uncertainty coming from the nu-

merical model (e.g. parametrizations and sys-

tematic model errors), and both propagate into

the reanalysis response values.

Some authors, however, argue that the uncer-

tainty in the observational reference (whatever

type of data, not necessarily reanalysis) is sig-

nificantly low when compared to the uncertainty

in the seasonal prediction (Santos and Ghelli,

2012; Saetra et al., 2004). This is true, in

principle, for the furthest forecast horizons (say

beyond five or six months) where skill levels de-

cay significantly and seasonal predictions are

much less useful.

At shorter forecast times, current research

shows that these effects are not negligible at

all. What is more, different quality outcomes

can be obtained depending on which obser-

vational reference has been utilised. Juricke

et al. (2018) evaluated the observational uncer-

tainty by assessing monthly and seasonal fore-

casts against two reanalyses with different ho-

rizontal resolutions (1◦ and .25◦). Results re-

vealed a strong dependence of the Brier Skill

Score and reliability on the reference data. Sim-

ilarly, Sunyer et al. (2013) and Gómez-Navarro

et al. (2012) ranked different Regional Climate

Models from best to worse using varied metrics

such as the mean bias or spatial correlation.

They both conclude that for most of the metrics

analysed, the performance of a model is sens-

itive to the choice of the observational refer-

ence, and so are the scoring rankings obtained.

Reichler and Kim (2008) went beyond that and

showed that the error in the reanalyses can ex-

ceed that of a climate model. They refer to

the fact that the driving models and assimilation

schemes in some of the currently used reana-

lyses were designed many years ago, so that

they can become deprecated nowadays. For

example, the NCEP-NCAR R1 (Kalnay et al.,

1996) reanalysis is still widely used, but was

generated more than 20 years ago and remains

unaltered ever since.

Apart from considering several data sources as

a reference, the observational uncertainty can
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be inferred using other approaches. For ex-

ample, Massonnet et al. (2016) tackle the prob-

lem with an opposite perspective by assess-

ing different observational datasets against a

set of climate models used as a reference.

Other authors (Ben-Bouallègue, 2020; Can-

dille and Talagrand, 2008) studied and re-

commended the so-called perturbed-ensemble

approach, which randomly perturbs the pre-

dicted ensemble of a probabilistic prediction

with a noise meant to simulate the uncertainty

in the observations. Nevertheless, it requires

for making arbitrary assumptions on the mag-

nitude and distribution of such noise. Finally,

other approaches consider the observation as a

probability distribution (Candille and Talagrand,

2008), or even propose a method to re-build the

scoring rules to make them account for obser-

vation error (Ferro, 2017).

Most of these approaches have already been

tested either with synthetic experiments or by

adding arbitrary errors to the models or ob-

servations. However, newly-developed global

reanalyses contain ensemble members that

already allow for inferring estimates on the ob-

servation uncertainty so that the last two ap-

proaches (hereafter referred to as CT08 and

F17, respectively) can be easily implemented

without making further assumptions.

7.2 Scoring rules that take into account

observational uncertainty: CT08

versus F17

In this section, we summarise two methodolo-

gies proposed to account for observation er-

ror in skill assessment. The methodologies are

those in CT08 and F17, with a new extension

for the latter approach. The objective of this

work is to quantify the impact of the observa-

tional uncertainty in forecast verification by em-

ploying CT08 and F17 approaches with state-

of-the-art climate data. Sections 7.3 and 7.4 list

the employed datasets and present the meth-

odology, respectively. Results are described in

Section 7.5 and further discussed in Section

7.6. Finally, conclusions are drawn in Section

7.7.

The ’observational-probability’ method intro-

duced in CT08 considers the verifying obser-

vation, y, as a probability distribution, g, which

is then compared against the probability distri-

bution defined by the predicted ensemble, f .

Therefore, the observed probabilities are no

longer restricted to 0 or 1, but they take val-

ues within [0, 1]. Scoring rules such as the Brier

Score (BS):

BSREF (f, y) = (f − y)2, (7.1)

remain defined in this method, and are algebra-

ically identical to their original definition:

BSCT08(f, g) = (f − g)2 (7.2)

Nevertheless, some authors such as F17 con-

sider the CT08 approach as inappropriate,

since the new scoring rules are no longer

proper (see definition of ’proper scoring rule’
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in Jolliffe and Stephenson (2012) Sect. 2.7),

which implies that better forecasts of the truth

are not always rewarded. Furthermore, F17 ar-

gues that CT08’s scoring rules appear biased

under the observation model, indicating that the

expected value of the score —the metric that

determines the overall quality of a forecast—

obtained using the CT08 method is not gener-

ally the same that would be obtained if the true

value was known. It is therefore desirable that

the expected values of the skill scores remain

unaffected by observation error.

F17 proposes a general method to construct

proper scoring rules that are both proper and

unbiased. These error-corrected scoring rules

account for observation error in a way that fore-

casters who issue better forecasts of the truth

are favoured. In particular, for categorical pre-

dictands, the new BS is:

BSF17(f, y) = (f − y)2+

+ ry
(f − y)2 − (f − 1 + y)2

1− r0 − r1
(7.3)

Where y is the observed probability which, al-

beit uncertain, takes the unique values 0 and

1. x refers to the true value of the observation,

which is generally unknown. The observation

error is included in the so-called misclassifica-

tion probabilities r0 = Pr(y = 1 | x = 0)

and r1 = Pr(y = 0 | x = 1). After perform-

ing the adjustment, F17 notes that BSF17 may

happen to be negative, which is mathematic-

ally meaningless. In such cases, F17 recom-

mends truncating the reported BSF17 to zero,

but warns of the loss of both propriety and un-

biasing conditions.

There are some particular cases for which y

is not conditionally independent of f given x

which, equivalently, means that both r0 and r1
depend of f . Such cases can arise when cat-

egorical predictands are created by dichotom-

izing numerical predictands, a common way of

delivering the predictions at the seasonal times-

cale. Seasonal predictions are most commonly

probabilistic forecasts derived by thresholding

so that Equation 7.3 is no longer valid as it is.

Instead, a slight modification has to be intro-

duced here, i.e. the extended error-corrected

BS needs to consider the dependencies r0(f)

and r1(f):

BSF17−E(f, y) = (f − y)2+

+ ry(f)
(f − y)2 − (f − 1 + y)2

1− r0(f)− r1(f)
(7.4)

While the BSF17−E is no longer proper (C.

Ferro, personal communication), we can still

achieve unbiased estimates of the score using

the extension in Equation 7.4.

7.3 Datasets

The hindcasts for surface wind speeds from five

different operationally-produced seasonal pre-

diction systems have been used in this study

(see details on Table 7.1). All five hindcasts

have been retrieved from the Climate Data
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Store1 (CDS) data portal in a regular grid of

1◦x1◦, at 6-hourly time resolution and spanning

the 1993–2016 period. These hindcasts will be

referred to as predictions or forecasts through-

out the text. Surface wind speeds from the five

prediction systems have been derived from the

zonal and meridional components at 6-hourly

resolution. Then, monthly and seasonal av-

erages have been prepared. Lead-zero pre-

dictions, i.e., those initialised at the beginning

of the forecasted month or season, have been

considered in this study.

Eight observational references providing sur-

face wind speeds have been considered to

evaluate the set of predictions at a monthly

and seasonal timescales. Specific details can

be found in Table 7.2. The set of datasets

comprise reanalyses (i.e., ERAI, JRA55, ERA5-

HRES, MERRA2 and R1, see Ramon et al.

(2019) for a review), station-based datasets

(i.e., HadISD), reanalyses with ensemble mem-

bers (i.e., ERA5-EDA) and a multi-reanalysis

(MR). All datasets cover the 1993-2016 period.

HadISD version 2.0.2.2017f (Dunn et al., 2014)

is a station-based dataset consisting of 8103

stations spanning from 1931 to the end of

2017. A wide variety of quality-controlled

climate variables is freely accessible at ht-

tps://www.metoffice.gov.uk/hadobs/hadisd/.

Zeng et al. (2019) filtered all these 8103

stations and selected only those that have

that have uninterrupted, continuous monthly

records during the 1978–2017 period, thus
1cds.climate.copernicus.eu

assuring a top-level quality for the monthly

mean wind speeds in the 1993-2016 period.

The process left a sample of 1542 stations,

which are located mainly inland, but covering

the whole globe.

The newly released reanalysis ERA5-EDA (or

EDA for simplicity) contains 10 members (one

control plus nine perturbed members) aiming

to represent estimates of analysis and short-

range forecast uncertainty at each grid point

(Hersbach et al., 2020). However, authors in

Hersbach et al. (2020) warn of fact that this

uncertainty does not represent the total obser-

vation error. Even though the generation of

EDA takes into account random uncertainties

in the observations, sea surface temperature

and the physical parametrisations of the model,

other sources of uncertainty such as systematic

model errors are not considered.

Aiming to provide a more accurate represent-

ation of the total observation error, an extra

observational reference has been generated in

this study, i.e. the MR. Differences between

different reanalyses have already been studied

for surface and near-surface winds, and have

been shown not to be negligible (Ramon et al.,

2019). These discrepancies quantified as the

spread of the sample can provide a lower bound

estimate of the total observational uncertainty

(Parker, 2016; Bellprat et al., 2017). The MR

uses ERAI, JRA55, HRES, MERRA2 and R1

as source data and its generation is presented

in the following section.
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Table 7.1: Specific details of the seasonal prediction systems employed in this study

System Institution Ensemble members Reference

SEAS5 ECMWFa 25 Johnson et al. (2019)

SPS3 CMCCb 40 Sanna et al. (2017)

DWD2 Deutscher Wetterdienst 30 Deutscher Wetterdienst (2019)

GS5GC2 UK Met Office 28 Maclachlan et al. (2015)

MF6 Météo France 25 Dorel et al. (2017)

a European Centre for Medium-Range Weather Forecasts
b Centro Euro-Mediterraneo sui Cambiamenti Climatici

7.4 Methodology

7.4.1 Computation of the probabilities

Predictions are evaluated at a subset of the

1542 HadISD point locations (Figure 7.1): sta-

tions where seasonal predictions do not show

skill, using HadISD as reference data, are

filtered out to better visualise the effects of ac-

counting for observation error. We note that

the filtering depends on the type of the pre-

diction (i.e., monthly or seasonal) as well as

on the considered prediction system(s). Grid-

ded data —both predictions and reanalysis

observations— are interpolated bilinearly to

each of the stations. Once interpolated, pre-

dicted and observed probabilities are obtained.

The present work focuses on events exceeding

the 90th percentile, being the percentiles com-

puted using the climatological distribution gen-

erated by each dataset separately. A probab-

ility of 1 is assigned when winds exceed the

90th percentile, 0 otherwise. In case of hav-

ing ensemble members, the resulting probab-

ility of occurrence is obtained by averaging all

realisations. Both the predicted probabilities, f ,

and the observed probabilities g are computed

in this way.

7.4.2 Generation of the multi-reanalysis

The MR has been produced after pooling ERAI,

JRA55, HRES, MERRA2 and R1 data into

one dataset. In this way, for each location

and month/season, a set of five wind values

representing an ensemble distribution is avail-

able. Before that pooling, however, the ob-

served probabilities have to be computed. This

is because, unlike the five prediction systems

or the EDA, the ensemble of the MR has been

generated from entirely independent datasets

(including NWP models and data assimilation

schemes). Therefore, they have differing clima-

tologies, and the observed probabilities have to

be computed for each dataset separately prior

to pooling the source data into the MR.
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Table 7.2: Specific details of the observational datasets employed in this study

Dataset Institu-

tion

Ensemble

members

Native time

resolution

Horizontal grid

spacing

Reference

ERAI ECMWFa - 6-hourly 0.75◦ x 0.75◦ Dee et al.

(2011b)

JRA55 JMAb - 6-hourly 1.25◦ x 1.25◦ Kobayashi

et al. (2015)

ERA5-HRES ECMWFa - 1-hourly 0.3◦ x 0.3◦ Hersbach et al.

(2020)

MERRA2 NASA-

GMAOc

- 1-hourly 0.5◦ latitude x

0.625◦ longitude

Molod et al.

(2015)

R1 NCEP-

NCARd

- 6-hourly 1.875◦ latitude x 2◦

longitude

Kalnay et al.

(1996)

HadISD

(v.2.0.2.2017f)

UK Met

Office

- sub-daily irregular Dunn et al.

(2014)

ERA5-EDA ECMWFa 10 3-hourly 0.5625◦ x 0.5625◦ Hersbach et al.

(2020)

MR - 5 seasonal irregular -

a European Centre for Medium-Range Weather Forecasts
b Japan Meteorological Agency
c National Aeronautics and Space Administration - Global Modeling and Assimilation Office
d National Centers for Environmental Prediction - National Center for Atmospheric Research

7.4.3 Preparation of the model rankings

The first part of our work investigates how ob-

servational uncertainty changes a set of rank-

ings, in which the five prediction systems are

ordered from best to worst based upon their

skill. The BS of the 90th percentile (BS90) of

each system —lead-zero predictions for the ag-

gregated period December-January-February,

DJF— is obtained using all the set of observa-

tional references, with and without taking into

account observation error. Filtering out sta-

tions where at least one of the prediction sys-

tems does not provide skill (BSS90 < 0) re-

duces the sample from 1542 to 143 stations.

Moreover, since we are comparing the skill of

different systems with different number of en-

semble members, we consider the fair version

of the BS (Ferro, 2014), fBS.

On one hand, when observation error is not ac-

counted for (hereafter referred to as REF), all

the references are used without any consider-

ation of their uncertainty —as it would be done

in a traditional forecast verification (Jolliffe and

Stephenson, 2012). The BS90 is obtained as in
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Figure 7.1: Spatial distribution of the 1542 HadISD stations.

Equation 7.1 and later transformed into its fair

version, fBS90. When multiple-observations

from EDA and MR, yi, are available the BS90

is obtained for each observation separately and

then aggregated into an averaged BS90. Addi-

tionally for those references, the ’observational

probability’ method in CT08 is used (Equation

7.2), employing the ensemble observations to

build the the probability distribution of the veri-

fying observation, g.

On the other hand, to systematically account

for observation error in all observational refer-

ences, F17 method is selected assuming the

true observed value at each location, x, to be

that in HadISD. These true observations are

also utilised to compute r0(f) and r1(f), which

in this case can be seen as a measure of the

quality of the set of reanalyses. To this end,

the forecast probabilities, f , are discretised in

bins of 0.1. For each bin, the corresponding

uncertain observations, y, from all the subset

of stations and for each of the reanalyses and

ensemble members, are contrasted against the

corresponding true values, x.

Since the fair version of the BS preserves pro-

priety, F17 method is still applicable. Firstly, the

BS90 is obtained for each fixed f and y (Equa-

tion 7.1) and later transformed into its fair ver-

sion, i.e. fBS90. Then, the extended error-

corrected BS (BSF17−E , Equation 7.4) is ap-

plied to obtain the score values that account

for observation error. It is noted that when en-

semble observations are available, yi, the res-

ulting fBS90 is the average of the fBS90 ob-

tained for each observation separately. Be-

sides, the fBS90 for the climatological forecast

is also computed using REF, CT08 and F17.

The climatological forecast is used here as a
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baseline forecast, allowing the computation of

the fair version of the Brier Skill Score, fBSS90.

7.4.4 Observation error in a monthly pre-

diction

The second part of this work quantifies the

error committed when verification scores are

computed without assuming observation error

(i.e., using REF method), or when the obser-

vational uncertainty is not properly introduced

(i.e., using CT08 with ensemble reanalyses) in

the BSS90 of monthly predictions. In particular,

we analyse 12 monthly predictions, each one

initialised at the beginning of each month of the

year, and for lead time zero. To better focus on

the effects of the observational uncertainty, only

one prediction system, i.e. SEAS5, is analysed.

The removal of the stations with no skill is car-

ried out for each month separately, leaving a

sample of 738–938 point locations, depending

on the analysed month.

7.5 Results

7.5.1 The choice of the observational refer-

ence in model scoring

The fBSS90 of five prediction systems has

been computed using eight different obser-

vational references, and systems have been

ranked from best to worse according to their

fBSS90 estimates (Figure 7.2). Scoring rank-

ings are different depending on whether the

verification takes into account the error in the

observational reference.

Indeed, when observation error is not accoun-

ted for (Figure 7.2 left), the five prediction sys-

tems rank differently depending on which ob-

servational reference is used. No consensus

is reached about which prediction system is

best. For example, SPS3 is best when veri-

fied against JRA55, MERRA2 and R1; second

best when verified against HRES, EDA, MR

and HadISD, and occupies the central posi-

tion when ERAI is employed. This highlights

the dangers of arbitrarily selecting the reference

dataset. An evaluation of the best observational

reference (as in Ramon et al. (2019)) is there-

fore essential to obtain accurate conclusions on

which product is better, i.e. more accurate, if

only one reference is to be used. Comparing

the results in Ramon et al. (2019), for instance

we see that JRA55, which is not a good ob-

servational reference for surface wind speeds,

yields systematically very low estimates of the

true skill. The relationship between the qual-

ity of observational references and the forecast

verification results they give has already been

studied in Massonnet et al. (2016): prediction

systems score better against the most recent

and advanced reanalyses.

All rankings from the reanalyses-based refer-

ences are generally different to those obtained

with HadISD, a reference assumed here to be

error-free. This mirrors the bias in the fBSS90
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Figure 7.2: Scoring rankings for the fBSS90 of five seasonal prediction systems and eight observational

references. All predictions correspond to lead time zero and for December-January-February. On the

left, the observational reference values are considered perfect, except for EDA and MR whose uncertainty

estimates have been accounted for as in CT08. On the right, the observational error in the BSS90 is

considered as in F17, considering HadISD as ground truth. Within a panel, the lower the square, the

worse the skill is.

estimates, arising from not accounting for ob-

servation error in the reanalysis-based refer-

ences. When using CT08 with ensemble reana-

lyses, the score is less biased than the ana-

logous verification with REF, but it is still ob-

served a deviation (positive in this case) of the

true skill score. Besides, it is noted that some

reanalyses tend to favour forecasts from pre-

diction systems that share some configuration

components (e.g. atmospheric model). Such

is the case of SEAS5 when assessed against

ERAI, HRES and EDA, all of them produced

at the ECMWF. In these evaluations, SEAS5

scores best (Figure 7.2 left). For other refer-

ences like JRA55 or MERRA2, SEAS5’s skill

appears worse —i.e. second and third best, re-

spectively. Whether this leads to an overestim-

ation of the fBSS90 should be further investig-

ated in future studies. Having said all this, hav-

ing fBSS90 estimates that are independent of

an arbitrary choice of the dataset would ensure

fair verification outcomes and comparisons.

When observation error is considered in the

error-corrected fBSS90, all scoring rankings

are identical whatever the observational refer-

ence (Figure 7.2 right) —albeit the skill score

values can slightly differ. Whilst SEAS5 stands

out as the best prediction system, MF6 shows

the lowest skill estimates.
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7.5.2 Obtaining unbiased estimates of the

prediction skill

The error-corrected BSS90 yields unbiased es-

timates for the skill of the five systems. Fig-

ure 7.3 shows the BSS90 values before and

after considering the error-corrected version of

the BSS90 for one of the prediction systems,

namely SEAS5, for a set of monthly predictions.

Firstly, when the error in the reference data-

set is not taken into account, or is not properly

adjusted, the estimates for the BSS90 appear

generally underestimated (Figure 7.3 left). As in

Figure 7.2, the highest bias is noted for JRA55,

which systematically shows the worst skill es-

timates for all months. On the contrary, HRES

is the single-value reanalyses that shows the

closest skill score values to those obtained with

HadISD, but still shows a negative bias. This

is yet another example which shows that the

more advanced products provide the best skill

estimates. The discrepancies between BSS90

values obtained by the single-value reanalyses

relate to their quality, being the HRES data

closest to HadISD (on average) and thus of

higher quality.

The skill assessment against the ensemble

reanalyses shows slightly different outcomes.

The verification of the monthly predictions with

CT08 and the MR overestimates the true

BSS90. This is also noted for EDA, but only

for some specific forecast months (e.g. Febru-

ary and April). These results can be explained

either because 1) observation error is not com-
pletely/correctly accounted for in the ensemble

reanalyses or 2) CT08 methodology fails to ad-

just observation error properly.

Finally, when all the observational uncertainties

are considered by the scoring rules, the dis-

crepancies in the fBSS90 values vanish (Figure

7.3 right).

As stated before, the discrepancies in the

BSS90 values arise from the differences in the

quality of the observational references. To go

into deeper detail, we explore the misclassi-

fication rates r0 and r1, which are also varied

depending on which reference is used (Figure

7.4). These discrepancies increase as f does,

since sharp forecasts (high f ) are very rare for

these monthly predictions. Even for some f ,

the corresponding values of r1 and specially r0
cannot be inferred. There are two reasons for

this situation: i) there are no occurrences for

some f values (e.g. f = 1 in October) and

ii) for the highest values of f , it coincides that

the event is almost always observed, thus im-

peding the computation of some values of r0.

Having said that, we can expect the estimates

of the misclassification rates for the highest f

to be less robust. With regard to the reanalyses

individually, we do not spot any of them stand-

ing out systematically from the others. Over-

all, it appears EDA and HRES show the lowest

values for r0 and r1, respectively, mirroring the

good quality of the ERA5 reanalysis.
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Figure 7.3: BSS90 of the lead-zero SEAS5 monthly predictions for surface wind speeds at a subset of

HadISD locations before (left) and after (right) adjusting for observation error. We note that all eight curves

overlap after adjusting for observation error (right).

7.6 Discussion

Observation error has been shown to play a key

role in skill assessment of seasonal predictions.

Different possibilities have been proposed in

the literature for the uptake of such error. Here

we have focused on those that consider the

reference observation associated with its error,

leaving the predicted ensemble elements as

they are. Three different approaches have been

tested: the traditional approach (REF) which

considers one single verifying observation with

no error, the observational probability method in

CT08 with ensemble reanalyses, and F17 with

all the set of observational references together

with their uncertainty.

Both REF and CT08 methodologies yielded dif-

ferent skill score values to those that would be

obtained with a perfect observational reference.

In most of the cases, the real performance of

the prediction systems is underestimated, in ac-

cordance with previous works (e.g. Santos and

Ghelli (2012); Ferro (2017); Candille and Talag-

rand (2008)). The different fBSS90 and BSS90

values obtained with REF and CT08 mirror

the important disagreements between reana-

lyses themselves and between reanalyses and

point observations (Ramon et al., 2019). To

catch the discrepancies between reanalyses,

a MR dataset has been created in this work.

Though the MR combined the data from five

global reanalyses, providing a more accurate

estimate of the observational uncertainty, it still

offered a biased skill score. The scores that

an error-free reference would achieve have not

been obtained by any of the observational ref-

erences. Neither is sufficient having the best

single reanalysis, i.e. HRES, to have unbiased

estimates of the score values. This suggests
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Figure 7.4: Misclassification probabilities r0 (left column) and r1 (right column) for the different predicted

probabilities, f , and for an event exceeding the 90th percentile of the wind distribution. For the sake of

simplicity, only four forecast months —i.e. January, April, July and October— have been represented.

that the differences between reanalysis values

and point observations, i.e. representativeness

errors, are large and are not traditionally ac-

counted for in the verification.

Besides, an important issue has to be noted

when CT08 is used with too uncertain obser-

vational references, in which the true observed

outcome is almost unknown and its associated

probability of occurrence is nearly the climato-

logical value. When this happens, the uncer-

tainty term of the BS decreases significantly,

showing a misleading improvement of the over-

all BSS. For instance, for an event exceeding
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the median value, a very uncertain observation

outcome would have a probability of occurrence

of approximately 50% —the observer is unsure

whether the observation falls above or below

the median value. In those cases, the climatolo-

gical forecast will score extremely well, being it

almost impossible to beat by any other forecast.

To take into account all the observation error,

and ensure we are not obtaining ambiguous

verification outcomes, we recommend to use

F17 methodology. Although the generalised

scoring rules do not preserve propriety, they still

provide unbiased estimates of the true expec-

ted score. This is key in many aspects. For ex-

ample, an apparent useless prediction verified

against an uncertain reference may be profit-

able if observation error is properly considered.

The downside of the method, however, is that

either the misclassification probabilities r0, r1
and their dependence on f (parametrisation)

have to be known beforehand, or true observa-

tions have to be available for generating the er-

ror distribution. In this study, we have assumed

the in-situ dataset to be perfect, but other eval-

uation might assume a reanalyses —preferably

a high-resolution or regional reanalysis— to be

the ground truth.

F17 methodology has one important advantage

for the particular case of the verification of sea-

sonal predictions. Unlike weather forecasting

or sub-seasonal predictions, the sample size

available for the verification of seasonal fore-

casts (hindcast length) is often limited. Any skill

score derived will be less robust, and this is par-

ticularly noticeable when considering more ex-

treme properties such as high percentiles of the

wind distribution (Sunyer et al., 2013). We have

shown that the scoring rankings based on the

fBSS90 are highly dependent on the verification

dataset (Figure 7.2), but rankings appear more

stable when considering other percentiles in the

center of the distribution like the 50th or 66th (not

shown). As long as observation error is prop-

erly accounted for, the stability of the rankings

can be assured regardless of the definition of

the categories or the hindcast length.

7.7 Conclusions

The main conclusions of this study are:

• Skill scores are highly sensitive to the

choice of the observational reference. This

poses a risk in many situations, for ex-

ample, when selecting the best prediction

system among a set of potential candid-

ates.

• Observational references that provide es-

timates of their associated uncertainty ap-

proximate better the true skill scores.

• The Brier Score values of a seasonal pre-

diction do not depend on the choice of

the observational reference dataset if F17

methodology is used. However, the ap-

proach requires for knowledge about the

error distribution of the verifying observa-

tions.
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• The need for information about observa-

tional uncertainty should be taken into ac-

count in the production of future reanalysis

datasets. Estimates of this uncertainty are

beneficial for many applications.

Many users of seasonal predictions employ

gridded forecasts to infer future anomalies of

climate variables at a point scale and then verify

these predictions using point data. Such is the

case of the wind power industry, where wind ob-

servations taken at wind farms (point scale) are

utilised in skill assessments of forecasts that

represent a larger-scale quantity (grid scale,

Ramon et al. (2021a)). Our work provides in-

sights on the outcomes of verifications of grid-

ded forecasts using point data and compare

this against an analogous verification using

gridded observations (reanalyses). We even

go beyond this, showing how point observa-

tions can be used to adjust observation error in

reanalyses, allowing reanalysis data to extend

the verification to other locations where in-situ

measurements are not available.

Future works could expand on F17 methodo-

logy to generalise the calculation of the estim-

ates of the error distribution of the observa-

tions, avoiding the need of assuming a ground

truth. Even though this manuscript emphasises

the strong dependency of the misclassification

rates on the observational reference dataset, a

relationship between these and the predicted

probabilities can be established in the form of,

for example, a parametrisation equation. How-

ever, the extent to which it can be generalised,
has to be explored in further detail.
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Conclusions and future perspectives

8.1 Conclusions

Seasonal predictions tailored to the wind en-

ergy sector represent an innovative step in us-

ing climate information to better administer the

future availability of the wind resource. Nev-

ertheless, the uptake of those predictions is

not yet complete. Many barriers act as chal-

lenges for wind energy users, including the

low skill levels and the difficulties in integrat-

ing such technical material into their decision-

making processes. This PhD thesis provided

advances in both directions.

The accomplished goals consist of the produc-

tion of methodologies aimed at increasing and

better characterising the quality of seasonal

predictions for wind speed through appropri-

ate climate observations. Secondarily, notable

contributions have been made to provide high-

quality wind observations in the form of a pub-

licly accessible dataset as well as an exhaust-

ive assessment of the uncertainty in reanalysis

wind data. In the following, the conclusions of

this PhD thesis are presented in more detail.

8.1.1 Delivering high-quality observations

(Chapter 4)

Previous to the usage of wind observations

in enhancing seasonal predictions, exhaustive

quality control tests have to be designed and

applied to ensure the high quality of the wind

data. The collection of climate observations

from tall towers to generate the raw version of

the Tall Tower Dataset revealed the presence

of erroneous data, the amount of which var-

ied enormously from one location to another.

For example, wind data outside a plausible

range of values or abnormally long sequences

of constant/duplicated values populate the wind

series randomly.

To detect and remove all these bad data, a

set of 18 quality-control tests have been run

over the raw version of The Tall Tower Dataset.

While most of the data, i.e. 95.2 %, were cor-
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rect, some values had to be removed prior to

producing the quality-controlled version of the

Tall Tower Dataset. Later, these clean data

have been made publicly accessible —with a

few exceptions— at talltowers.bsc.es. The data

portal allows for browsing through the different

tall tower locations as well as a rapid visualisa-

tion of some characteristics of the wind data

(e.g. timespan or extreme values). Initiatives

delivering climate data freely available are un-

deniably beneficial for both climate scientists

and wind energy users.

8.1.2 Gaining insight into the various types

of error in observations (Chapters 4

and 5)

As explained in the subsection above, the er-

rors and inconsistencies encountered within the

wind series from the tall towers were diverse.

This led to the creation of a quality control soft-

ware suite specifically designed to detect all

these errors in tall tower wind data. Among the

different types of errors, random errors in wind

sensors are often the most difficult to detect.

Having parallel series from various instruments

in the same tall tower allows for intra-station

comparisons, an efficient feature to detect fail-

ures in one particular sensor, which was not im-

plemented before in the existing quality control

software. The Quality Control Software Suite

for Tall Towers (QCSS4TT) is publicly available

through a GitLab repository.

Reanalysis winds, on the other hand, are more

susceptible to systematic errors. The compar-

ison of surface winds from five different global

reanalyses showed important differences in

terms of the seasonal mean values, variability

and linear trends. The differences in the sea-

sonal mean values respond mainly to repres-

entativeness errors: the finer horizontal resolu-

tions in the newest reanalyses such as ERA5

seem not to be enough to account for local

wind effects. Nevertheless, reanalyses are still

a useful source tool in downscaling studies, and

the current efforts in creating high-resolution re-

gional reanalyses appear to be fruitful in many

regions like Europe (Kaiser-Weiss et al., 2019).

Besides, wind speed trends have also been

found in all datasets. While some of those

trends may be spurious, responding to artifacts

in the creation of the reanalyses, others may in-

dicate a real change in the behaviour of wind

speeds. Little attention has been traditionally

paid to those fluctuations, although they can be

used to foresee changes in wind power gener-

ation and the performance of wind farms during

their lifetime (20-30 years typically).

8.1.3 Enhancing seasonal predictions

of wind speed at the local scale

(Chapter 6)

To have complete coverage of the whole globe,

seasonal predictions need to be delivered on

coarse grids (i.e., horizontal resolution of ∼100

km), thus misrepresenting atmospheric phe-

nomena happening at much finer scales. Ac-
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counting for such effects might be crucial for

wind speed analyses, primarily where local-

scale winds represent a high percentage of the

mean value.

To take into account these fine-scale wind

features, a downscaling methodology for sea-

sonal predictions has been provided. The hy-

brid predictions proposed here outperform the

purely dynamical predictions of near-surface

wind speeds, indicating that the information of

the synoptic scale provides an added value for

predicting local-scale wind speeds. The strong

point of these hybrid predictions is that they

can be generated using a series of wind data

from one single point station, provided that the

timespan is sufficiently long (at least 20 years).

With that, wind energy users can generate their

own hybrid forecasts using their data collected

at the wind power plant. Besides, seasonal pre-

dictions of wind power generation are also pos-

sible. With complete series of indicators like the

wind capacity factor known beforehand, hybrid

predictions can anticipate the amount of renew-

able production for coming months or seasons.

8.1.4 Achieving more robust estimates of

the quality of seasonal predictions

(Chapter 7)

The quality of seasonal predictions is assessed

by comparing those forecasts against an obser-

vational reference dataset. Reanalyses most

commonly serve as benchmark observations,
but forecast verifications against station data

are also performed. However, neither station

data nor reanalyses are exempt of containing

errors, which can be propagated into the skill

estimates producing undesirable results. For

example, one prediction system may appear

skilful or not depending on which observational

reference is used in the verification. Another

instance may happen when selecting the best

prediction system among a set of candidates,

or their ranking based on their skill, being both

outcomes strongly dependant on the election of

the observational reference dataset.

To get rid of such dependencies, and obtain the

real skill of seasonal prediction systems, skill

scores need to be re-defined to account for ob-

servation error. This methodology was already

proposed in the literature, but never applied to

seasonal predictions for wind speed. Further-

more, an extension to the case when the pre-

dictand is categorised —as it is usually done

in seasonal forecasting— is provided in this

thesis. The error-corrected Brier Score yielded

unbiased values of the skill of five seasonal pre-

diction systems, allowing also a correct rank-

ing of these. A verification against ensemble

reanalyses is also introduced here, highlighting

the benefits of the uncertainty estimates they

provide.
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8.1.5 Tailoring observations and methods

to user needs (Chapters 4, 5, 6 and 7)

The scientific contributions of this work satisfy

a wide variety of needs and gaps reported by

users from the wind energy industry.

Firstly, the global and coarse grids of sea-

sonal predictions are not practical for the spa-

tial scales in which wind energy users work. At

a wind farm level, for instance, local wind ef-

fects need to be characterised. That might be

the case of a wind farm location over a moun-

tain ridge, where winds tend to be stronger than

in the surroundings. By using the methodology

for creating the hybrid predictions with their own

observation data, wind energy users can gen-

erate downscaled seasonal predictions at their

locations of interest.

Another case where point wind speed obser-

vations can be used is in the verification of

seasonal predictions. Our study provides an

insightful comparison between a skill assess-

ment with these local observations and reana-

lysis winds. We warn of the noticeable differ-

ences encountered and the perils that an arbit-

rary choice of an observational reference may

suppose. The solution proposed is to use these

point observations —which can be regarded as

ground truth— to infer the error distribution of

the reanalysis winds and insert it into the error-

corrected scoring rules. In this way, the verific-

ation of gridded seasonal forecasts can be ex-

tended outside the measurement location, al-

lowing a correct use of reanalyses for example

to explore new areas for prospecting in the con-

text of wind resource assessment.

One type of wind observation, which is non-

standard for climate studies but massively em-

ployed within the wind industry, is taken at

tall meteorological towers. These structures

provide accurate estimates of the wind flow

at turbine hub heights. However, those wind

measurements are scarce and difficult to reach

until the creation of the Tall Tower Dataset.

Due to its limited spatial coverage, the Tall

Tower Dataset will not discharge energy com-

panies from installing meteorological masts be-

fore constructing wind farms. Instead, the prin-

cipal usage of the Tall Tower Dataset will be

to serve as a reference for inter-comparison or

verification activities. Series between nearby

masts can be contrasted to check for inconsist-

encies in the wind data or assess long-term cli-

mate variability, among other instances.

In the absence of point observations, the use of

reanalyses among wind energy users has been

traditionally widespread as they are handy and

easy-to-use climate data sources. However, the

new knowledge gained after the intercompar-

ison and verification should warn of the pitfalls

of these types of observations. Though the dir-

ect output of global reanalyses is never used to

infer the mean wind speed value at a potential

farm site, some applications such as wind at-

lases or downscaling feed on reanalysis values.

Therefore, the reported problems like biases or

spurious trends may eventually be transferred

136



Chapter 8

to the high-resolution datasets.

8.2 Future perspectives

The work presented in this PhD thesis should

serve as a starting point for coming studies

aimed at improving the quality of seasonal pre-

dictions. New climate services can be produced

with the most up-to-date methods and sound

techniques. Those results can then be com-

pared against those presented here to evaluate

the gains of future innovations. In particular, the

following ideas can be implemented.

Although this PhD thesis has focused on wind

speed, the methodologies can be applied to

other ECV. Being also highly variable in space

and time, precipitation is also a challenging

variable to be predicted at the seasonal times-

cale. Following an analogue methodology, hy-

brid seasonal forecasts for precipitation could

produce accurate anticipations of the amount

of water at a river catchment, which is highly

beneficial for the hydropower sector. The avail-

ability of precipitation observations is not a lim-

itation, especially in Europe, since tens of data-

bases containing long and homogeneous re-

cords already exist, and the dense spatial distri-

bution of stations allows for characterising fine-

scale details.

Besides, a new set of techniques that are cur-

rently entering the field of climate prediction

is Artificial Intelligence. Further improvements

than those offered by the purely statistical ap-

proaches may come from techniques like ML.

They have been shown to perform well, for ex-

ample, in pattern recognition, with the consid-

eration that substantial amounts of data are

needed to train the models. This might sup-

pose a major handicap in climate prediction,

which, unlike weather forecasting, the time ag-

gregation of the data reduces the sample size

considerably (e.g. monthly, seasonal and an-

nual means are preferred over daily averages).

Therefore, working on the lengthening of the

timespan of observational datasets should help

increase the quality of ML models.

Only the 3% of the meteorological masts in the

Tall Tower Dataset span more than 30 years.

While this percentage might appear insufficient

for a dataset to be helpful in climate analyses,

one must bear in mind that the average lifetime

of most of these structures ranges between one

and five years. Fortunately, recent research

projects like FINO1 in the North Sea are in-

stalling tall towers to collect meteorological data

for as many years as possible. These new

records and those from newly installed masts

could be added to the Tall Tower Dataset in fu-

ture updates of the data collection.

Lengthening the timespan of the tall tower

series may also serve for assessing climatic

fluctuations and their effects on meteorological

variables. The declining trend (stilling) of sur-

face wind speeds observed since the 1980s

and its recent recovery reported by Zeng et al.

1www.fino1.de
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(2019) has been attributed to decadal climatic

oscillations. Since the Tall Tower Dataset of-

fers wind series not only at surface level but

also at higher altitudes, future research may

evaluate a possible decoupling of wind speed

trends between these different heights. Gain-

ing insight into the periods and drivers of such

oscillations would be tremendously valuable for

advancing in the modelling and initialisation of

seasonal and decadal predictions.

As commented before, regional and high-

resolution reanalyses (e.g. ERA5-Land,

Muñoz-Sabater et al. (2021)) are fundamental

when dealing with variables with high spatio-

temporal variability. An analogue verification

exercise to the one carried out with the five

global reanalyses would be helpful to evaluate

how close regional reanalyses are with the true

observations.
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