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descubrir dos mundos: el viejo continente y un área completa de la f́ısica. Gracias por
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Abstract
This thesis is devoted to the study of radiation in generic conformal field theories

in four dimensions. In the first part of the thesis we explain at the classical level the
implications of considering accelerated probes coupled to conformal scalar fields: the
radiative energy density is not positive definite, the radiated power in not Lorentz in-
variant and the appearance of terms proportional to the derivative of the acceleration.
Furthermore, we conjecture that the spacetime dependence of the expectation value of
the energy-momentum tensor of a conformal field theory with extended supersymmetry
is independent of the value of the coupling constant. In the second part of the thesis we
focus on the determination of the coupling dependence of radiation for probes coupled to
superconformal field theories. In order to do so we compute the vacuum expectation value
of a circular Wilson loop for different theories preserving a certain amount of supersym-
metry, and the way we compute it is using a novel technique coming from supersymmetric
localization, which reduces the path integral computation to matrix models computations.
The approach we take to compute both the expectation value of the Wilson loop and the
partition function gives general results valid for different representations of different gauge
groups. For N = 4 super Yang-Mills theory we find an exact expression for the circular
Wilson loop valid for arbitrary gauge groups and different representation, thus unifying
known results. For N = 2 superconformal quiver theories we find that the problem can
be described as a multi-matrix model involving an infinite sum of single- and double-trace
terms. We pay special attention to the case of a quiver theory with two nodes and we
find an all-order expression for both the partition function and the expectation value of
the circular Wilson loop in the limit where the number of colors tends to infinity. These
expressions have a nice interpretation in terms of tree graphs and each of these graphs
can be interpreted as a generalized Ising model; we conjecture that the contributions of
each graph, as well as the sum of the contributions of the graphs with the same number of
edges, satisfy the Lee-Yang property: the roots are unitary. Finally, we argue that every
matrix model with double-trace terms in the potential can be described in the planar
limit as a sum over tree graphs.
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Resumen
Esta tesis está dedicada al estudio de la radiación en teoŕıas de campos conformes en

cuatro dimensiones. En la primera parte, explicamos a nivel clásico las implicaciones de
considerar part́ıculas de prueba aceleradas acopladas a campos conformes escalares: la
densidad de enerǵıa radiativa no es positiva definida, la potencia radiada no es invariante
de Lorentz y la aparición de términos proporcionales a la derivada de la aceleración.
Conjeturamos que la dependencia espaciotemporal del valor de expectación del tensor
de enerǵıa-momento de una teoŕıa de campo conforme con supersimetŕıa extendida es
independiente del valor de la constante de acoplamiento. Posteriormente nos centramos en
la determinación de la dependencia de la constante de acoplamiento de la radiación. Para
lograrlo empleamos una novedosa técnica proveniente de localización supersimétrica que
nos permite calcular, en ciertas clases de teoŕıas supersimétricas, de manera general tanto
el valor de expectación del Wilson loop como la función de partición. En el caso de la teoŕıa
de Yang-Mills conN = 4 supersimetŕıas encontramos una expresión exacta para el Wilson
loop circular válida para diferentes grupos de gauge en distintas representaciones. Para
teoŕıas quiver superconformes con N = 2 supersimetŕıas encontramos que el problema
puede ser descrito como un modelo de multi-matrices involucrando una suma infinita
de términos de una y doble traza. En el caso especial de una teoŕıa quiver con dos
nodos, encontramos una expresión a todo orden para la función de partición y el valor de
expectación del Wilson loop en el ĺımite en que el número de colores tiende a infinito. Estas
expresiones tienen una agradable interpretación en términos de grafos de árbol, donde
cada uno de estos grafos puede ser interpretado como un modelo de Ising generalizado;
conjeturamos que las contribuciones de cada grafo, aśı como las contribuciones de los
grafos con el mismo número de aristas, satisfacen la propiedad de Lee-Yang: las ráıces
son unitarias. Finalmente, argumentamos que cada modelo de matrices con términos de
doble traza en el potencial puede ser descrito en el ĺımite planar como una suma sobre
grafos de árbol.
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Introduction
Understanding the natural phenomena has always led to progress, so when the first

humans learned to manipulate the heat and light of a tree on fire, unknowingly they
progressed as humankind (together with a lot more factors into play). Now we know that
these two terms are two sides of the same coin, electromagnetic radiation. Nonetheless,
the phenomenon of radiation is not exclusive of the electromagnetic theory, in the last
years it was confirmed that massive objects can emit radiation in form of gravitational
waves. The purpose of this thesis is to deepen the knowledge of radiation, specifically in
gauge theories with massless quanta as photons, and help in the progress the first humans
started thousands of years ago.

So far two fundamental forces have been mentioned: the electromagnetic and the
gravitational one. The former along with the weak and strong force can be beautifully
described in the so-called Standard Model. This model practically describes all the matter
interactions, and it is the most successful quantum field theory (QFTs) considered so far.
When dealing with QFTs the most common approach is perturbation theory, and even
though this approach has predicted a lot of results, its range of validity is limited. It
has been a constant desire in modern theoretical physics to unveil the non-perturbative
nature of QFTs. A natural and rich arena for exploring the non-perturbative aspects of
QFT is to include extra symmetries, like conformal symmetry, supersymmetry or even
both.

Symmetries are often used as a tool to simplify problems, they always constrain the
dynamics. As mentioned before when dealing with arbitrary QFTs, we are limited to
perturbation theory around a parameter where the theory is solvable, but of course, the
most interesting models are the ones that manage to have enough symmetry in order to
have analytic control over them but also exhibit at least some of the phenomena present in
more physical (less symmetrical) systems. A special class of QFTs with extra symmetry
are conformal field theories (CFTs), and among all the theories described within this class
is Maxwell theory. The benefits of these theories are twofold: first allow a nice explanation
of the phenomenon of radiation and second reduce the level of difficulty of the problem.
Even though the dynamics of these theories is far more constrained and they describe
theories where there is no intrinsic scale, they are present in several areas of physics
from string theory to condensed matter, it is within this last theory that they provide an
accurate explanation for the existence and the features of critical phenomena, like phase
transitions. Another good example are supersymmetric field theories not only because
they are phenomenologically appealing for physics beyond the Standard Model, but they
have yielded important physical insight on certain phenomena which are part of Nature,
like confinement in quantum chromodynamics (QCD), yet they can be handled with
much more control, serving as calculable models for four dimensional gauge theories. Also,
conformal symmetry and supersymmetry contain the Poincaré group –which encompasses
the most basic symmetries: translations, rotations and boosts– as a subgroup leading to
non-trivial QFTs.

This thesis will be focused in the study of radiation in conformal field theories and
superconformal field theories. In the following sections we will give a taste of how to deal
with a particular set of these theories.
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� Classical radiation
To start describing the phenomenon of radiation, it is convenient to start with the

canonical example of classical electromagnetic radiation [1, 2]. Lets consider an accel-
erated charged particle following a prescribed trajectory, L, like the one depicted in the
figure below. The trajectory is described by zµ, its derivative is żµ and xµ is the point
where the emitted radiation is observed, also we can define the null vector `µ = xµ− zµ.

Diagram describing the radiation of a charged particle.

The equation of motion describing this situation is given by

�Aµ = jµ, (4.1)

where � = ∂µ∂
µ is the d’Alembert operator, Aµ is the vector field and jµ is the 4-current

of charge q; to achieve the above equation we made use of the Lorenz gauge, ∂µAµ = 0.
We will be working in four spacetime dimensions, so the index runs µ = 0, 1, 2, 3, also
we will consider the speed of light c = 1 and there is an implicit sum whenever we see
repeated indices. Equation (4.1) can be obtained from the corresponding Lagrangian, L,
in the following way

∂L
∂Aµ

− ∂ν
(

∂L
∂(∂νAµ)

)
= 0. (4.2)

The solution to the equation of motion (4.1) is

Aµ = q
żµ

` · ż
, (4.3)

which is known as the Liénard-Wierchert potential [1]. It is important to highlight that
the vector field is evaluated at the retarded time, which is the time at which an observer
at the point O detects the radiation emitted by the particle at the position P

t = tret + |~x− ~z| . (4.4)

Once we know the value of the vector field, Aµ, we proceed to the evaluation of its
energy-momentum tensor, which is

T µν = 1
4π
(
F µαF ν

α + 1
4g

µνFαβFαβ
)
, (4.5)
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with F µν = ∂µAν − ∂νAµ and gµν is the inverse of the metric gµν . In the general case,
we can obtain the energy-momentum tensor from the corresponding action, S, in the
following way

Tµν = −2√
−g

δS

δgµν
. (4.6)

After evaluating (4.3) in (4.5) we obtain

T µν = q2

4π

(
`µuν + `νuµ

(` · u)5 (1− ` · a) + `µaν + `νaµ

(` · u)4 − a2

(` · u)4 `
µ`ν

−(1− ` · a)2

(` · u)6 `µ`ν − 1
2

ηµν

(` · u)4

)
,

(4.7)

here ”·” denotes contraction of 4-vectors, AµBµ = A · B, and AµAµ = A2, for simplicity
we made the identification of żµ with the 4-velocity uµ and z̈µ with the 4-acceleration
aµ. Radiation is captured by the terms of the energy-momentum tensor decaying as 1/r2,
where r is the distance form the source to the observation point. Also, radiation is energy
and momentum that escapes to infinity and we can see this because after performing
Gauss’ law we obtain finite contributions arbitrarily away from the source and this part
of the energy-momentum tensor is conserved by itself, ∂µT µνr = 0, this is not the only
definition of the radiative energy-momentum tensor, for a more restrictive definition please
see [3, 4] In our case we have that the radiative part of the energy-momentum tensor is

T µνr = − q
2

4π

(
a2 + (` · a)2

(` · u)2

)
`µ`ν

(` · u)4 . (4.8)

From the radiative energy-momentum tensor, T µνr , we can construct several quantities
which will allow us to characterize the spacetime dependence of radiation. The first
quantity is [2]

dP µ

dτdΩ = r2T µνr uν , (4.9)

where τ is the proper time, Ω stands for the solid angle and uν is the 4-velocity. From
the above equation derives a series of quantities relevant for our purposes, if we integrate
it over the solid angle we obtain dP µ/dτ , which tells us the rate at which the probe is
losing energy and momentum due to radiation. Restricting to the zeroth component of
this 4-vector we obtain the radiated power, P ,

P = dP 0

dt
, (4.10)

but if instead of restricting to the first component of the 4-vector we contract it with the
4-velocity, we obtain the invariant radiation rate [2], R,

R = dP µ

dτ
uµ. (4.11)

The difference between these two quantities, P and R, is that while the former is not
always Lorentz invariant, the latter is by construction. Another quantity of interest
appears when we do not integrate over the solid angle and put our attention to the zeroth
component of (4.9), this gives us the angular distribution of radiated power, dP/dΩ.
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Having reviewed radiation in a classical field theory, the natural next step is to study
it in quantum field theories. Indeed, there has been a lot of work on radiation in quantum
electrodynamics [5]. For non-Abelian theories, like QCD, things are conceptually more
complicated, since massless quanta do not appear in asymptotic states, due to confine-
ment. In this thesis, we will focus on a very particular kind of quantum field theories,
conformal field theories. As we discuss below, for these theories, the question is concep-
tually clean, and furthermore, due to their additional symmetry, we have more technical
control over them.

� Conformal field theories
The simplest definition of a conformal field theory is a quantum field theory invariant

under the conformal group [6]. The conformal group is the symmetry group composed of
translations, rotations and boosts (this forms the Poincaré group) plus transformations
preserving angles: dilatations and special conformal transformations. A dilatation is just
a rescaling by a factor, xµ → λxµ, and a special conformal transformation can be seen
as an inversion followed by a translation and by an inversion again, where an inversion
is xµ → xµ

x2 . It is in this sense that the conformal group is an extension of the Poincaré
group since the latter is enhanced, SO(1,3)→SO(2,4). Furthermore, in a conformal field
theory the value of the beta function, which tells how the coupling of the theory varies
when the energy scale changes, is zero, this means that CFTs are fixed points of RG flows
[7].

In a conformal field theory, the energy-momentum tensor (4.6) has dimensions [T µν ] =
L−4, where L stands for length dimension, and has the following properties

Symmetric T µν = T νµ

Conserved ∂µT
µν = 0

Also, for this kind of theories, the coupling constants, g, have dimension [g] = 0, these
are known as a marginal couplings. Furthermore, the energy-momentum tensor shows an
additional condition, the traceless condition, which translates into

Conformality T µµ = 0
As a consequence of this property, the 1-point function of the energy-momentum tensor

in the presence of a static line operator is totally fixed by symmetry [8]〈
T 00(x)

〉
= h

r4 ,
〈
T 0i(x)

〉
= 0,

〈
T ij(x)

〉
= h

δij − 2ninj
r4 , (4.12)

where h is a function of the marginal couplings of the CFT, which accounts for the energy
measured at infinity [9], and ni are unitary coordinates, ~xi

|x| .
One of the striking aspects of radiation in conformal field theories is that Coulombic

fields and radiative fields are not independent: a very particular contour can be related
to the static one. By a special conformal transformation, the straight line is mapped to
a trajectory with constant proper acceleration (see figure below). In this case the 1-point
function of the energy-momentum tensor is

〈T µν(x)〉 = 2h
[
−1

2
ηµν

(` · u)4 + (1− ` · a)`
µuν + `νuµ

(` · u)5 − (1− ` · a)2

(` · u)6 `µ`ν

−a2 `µ`ν

(` · u)4 + `µaν + `νaµ

(` · u)4

]
. (4.13)
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A special conformal transformation relates a straight line to a hyperbola.

We can further constrain the energy-momentum tensor if we make a couple of assump-
tions. We are going to consider that 〈T µν〉 depends only on u(tret), a(tret) and ȧ(tret),
but not on the worldline for times t < tret, and the powers of u, a and ȧ are integers,
so 〈T 〉 contains terms that decay as 1/r4, 1/r3, and 1/r2, but no other powers. Having
this in mind it is possible to see that velocity terms (no acceleration) are fixed by con-
formal symmetry; they are universal for all probes in all CFTs. Now we pass to terms
linear in the acceleration (they decay like 1/r3), there are six tensor structures one can
consider, more than the three generated by a special conformal transformation that ap-
pear in (4.13). One might worry that a particular linear combination of these structures
vanishes for motion with constant proper acceleration, but it is possible to prove that it is
not the case. So terms linear in a are also universal for all CFTs, and are the linear terms
that appear in (4.13). It is easy to check that these universal terms (velocity plus linear
in the acceleration) are conserved, so it follows that the radiative terms are separately
conserved, ∂µ〈T µνr 〉 = 0, as mentioned before.

Regarding the radiative terms, we see that contain either ȧ or two powers of a. For the
case of constant proper acceleration ȧµ = −a2uµ, therefore expressions written in terms
of ā = ȧ+ a2u automatically vanish. The possible terms are

〈T µνr (x)〉 =
[
A1a

2 + A2
(` · a)2

(` · u)2 + A3
` · ȧ
` · u

]
`µ`ν

(` · u)4

+B1
uµāν + uν āµ

(` · u)2 +B2
` · ā

(` · u)3η
µν +B3

` · ā
(` · u)3u

µuν +B4
`µāν + `ν āµ

(` · u)3 (4.14)

where Ai and Bj are Lorentz scalars and functions of the marginal couplings of the CFT.
Tracelessness imposes 4B2 + B3 + 2B4 = 0. To further constrain the coefficients, we
require ∂µ〈T µνr (x)〉 = 0. The terms with Ai coefficients are individually conserved, so
this constraint only applies to terms with Bi coefficients. This yields B1 = B3 = 0 and
B2 +B4 = 0. Together with the previous relation, this implies that all Bi coefficients are
zero. The radiative part of the energy-momentum tensor has thus the following form

〈T µνr (x)〉 =
[
A1a

2 + A2
(` · a)2

(` · u)2 + A3
` · ȧ
` · u

]
`µ`ν

(` · u)4 , (4.15)
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For a trajectory with constant proper acceleration, this must reduce to (4.13); this implies

A1 − A3 = −2h, A2 = −2h. (4.16)

Furthermore, from (4.9) if we integrate over the solid angle we obtain a 4-vector that
gives the rate of energy and momentum emitted by the probe [10], explicitly we have

dP µ

dτ
= −4π

3 (−3A1 + A2 + 4A3)a2uµ − 4π
3 A3ȧ

µ, (4.17)

According to [11], we can identify from the term with a2 the Bremsstrahlung function
(which we will define properly later), B,

B = 2
3(−3A1 + A2 + 4A3) . (4.18)

Thus, for CFTs such that 〈T µν〉 depends only of kinematics of the particle at retarded
time, the radiative part is

〈T µνr (x)〉 =
[(3

2B − 6h
)
a2 − 2h (` · a)2

(` · u)2 +
(3

2B − 4h
)
` · ȧ
` · u

]
`µ`ν

(` · u)4 . (4.19)

As we can see, the radiative part of the energy-momentum tensor is fixed up to two
different functions, B and h. An intuitive argument for why we need two independent
functions to characterize radiation in generic CFTs is that the probe can be coupled to
scalar and vector fields, and the radiation pattern of these two types of fields are different.
This result raises a couple of questions: first, to derive it we assumed that 〈T 〉 depends
only on the retarded time. Are there any interacting CFTs where this is true? As we
will see later, the answer is positive for N = 4 SYM theory, at least in the holographic
regime. Second, how do we compute B and h efficiently? Since conformal symmetry does
not help, we need other tools. As we will see, these tools exist for CFTs with extended
supersymmetry. We thus conclude this section recalling the very basics of supersymmetric
theories [12].

As we mentioned before, there exists another non-trivial extension of the Poincaré
group, this is possible by including supersymmetry. The reason the Poincaré group allows
an extension is because it is not simply connected, so it admits spinor representations.
In other words, the Poincaré group can be extended if we include symmetry generators
transforming in the spinor representations [13], the supersymmetry generators, Q. Fur-
thermore, it is possible to introduce more than one copy of the Q, this corresponds to
extended supersymmetry. We can introduce N copies of supersymmetry generators QA

α

transforming in the fundamental representation of SL(2,C), and Q̄A
α̇ , transforming in the

conjugate representation, with α = 1, 2 and A = 1, . . . ,N ; this is because the univer-
sal cover of the Lorentz group is SL(2,C). Requiring that the multiplets do not contain
massless states with spin 2 imposes that N ≤ 4.

In this thesis, besides free conformal field theories, we are going to be particularly
interested in conformal field theories with extended supersymmetry, N ≥ 2, that admit
a Lagrangian description. Let’s discuss a bit the casuistics: Lagrangian N = 2 super-
symmetric field theories have been classified [14, 15], but not all theories have conformal
symmetry, if we want to preserve conformality we have to impose certain conditions on
the matter the theory contains in order keep this symmetry. It is possible to prove that
there are no weakly coupled N = 3 SCFTs [16] and they don’t have exactly marginal
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couplings, so they will not be considered in this thesis. Finally, all known N = 4 super-
symmetric field theories are automatically conformal and have a Lagrangian description,
but it is not known if there are non-Lagrangian N = 4 theories (see [17] for a discussion
on this point).

The probes we will couple to these theories are of a particular kind, they will be all
BPS particles. Let’s define this property. In extended supersymmetry, the supersymmetry
algebra contains the following anticommutator

{QA
α , Q

B
β } = εαβZ

AB, (4.20)

where ZAB are called central charges. Since one of the two Casimirs of the Poincaré group,
PµP

µ, is still a Casimir of the supersymmetry algebra, all the states of a supersymmetry
multiplet share the same mass m. In this case the central charges are non-vanishing and
one can prove the inequality

m ≥ 1
2N Tr

√
Z†Z, (4.21)

where Z is the central charge matrix defined in (4.20). Multiplets that saturate this bound
are called BPS multiplets. They are shorter than the generic massive multiplets, and are
under better control.

As we will discuss later, for Lagrangian conformal field theories with extended super-
simmetry, we have tools to compute the coupling dependence. Moreover, for arbitrary
N = 2 SCFTs and 1/2 BPS line defects it can be proven that B = 3h [9] . Then (4.19)
takes the form

〈T µνr (x)〉N=2 = h

[
−3

2a
2 − 2(` · a)2

(` · u)2 + 1
2
` · ȧ
` · u

]
`µ`ν

(` · u)4 . (4.22)

An intuitive explanation as to why for N = 2 SCFTs we need only one function to
describe radiation is that now the scalar and vector field content of the N = 2 vector
multiplet is fixed by supersymmetry. This is the most general form the radiative part
of the energy-momentum tensor can take assuming supersymmetry, conformal symmetry
and that it depends only on the retarded time.

� Wilson loops
Wilson loops are of great importance because they are observables, and in a broad

sense an observable is a quantity containing physical information that can be measured.
Before we proceed to the definition of a Wilson loop and how we are going to use it, it is
worth to spend a few lines in its origin and evolution.

In QFT we have spacetime dependent fields, so at different points the same field will
have different values, and if we want to make comparisons of a field evaluated at two
different points we need a quantity relating both points, this quantity is the Wilson line
[18]. This Wilson line plays the role of a comparator between two points, so if both points
are infinitesimally together, we can define the difference of two field values as a derivative,
this derivative is known as covariant derivative. Once we know what a Wilson line is, we
can define it in the following way

W (x, y) = exp
(
i
∫ y

x
Aµ(z)dzµ

)
, (4.23)
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where Aµ(z) is the gauge field; in more geometrical terms it plays the role of a connection.
If we take the initial and final point to be the same we are performing a closed contour
integral and it is known as Wilson loop, so we have

W = exp
(
i
∮
Aµdx

µ
)
. (4.24)

The reason the Wilson loop is an observable is because it is invariant under gauge transfor-
mations. In an Abelian gauge theory, the Wilson line operator has the physical interpre-
tation of representing the phase change experienced by a charged particle as it traverses
a closed loop, the non-Abelian version is a generalization of this statement.

For the case of non-Abelian gauge theories, like Yang-Mills theory and its supersym-
metric generalizations, if we want to preserve gauge invariance we need to add some extra
ingredients to the previous definition. The first requirement is to include the path-ordering
operator, P , because now the gauge field is a matrix-valued quantity and the order of in-
tegration matters (matrices in general do not commute), and the second ingredient is to
take the trace of the operator necessary to preserve the gauge invariance, so we arrive at

W = TrR P
(

exp
(
i
∮

Aµdx
µ
))
, (4.25)

where TrR stands for the trace in the representation R of the gauge group we are consid-
ering and Aµ(x) = Aaµ(x)T a with T a the generators of the gauge group.

So far we have kept the discussion about Wilson loops without considering supersym-
metry. In N = 4 SYM theory the Wilson loop in Euclidean signature we can include not
only the gauge field but scalar fields too in the following way [19]

W = TrR P
(

exp
[ ∮ (

iAµẋ
µ + |ẋ|ΦIΘI

)
ds
])
, (4.26)

where I = 1, . . . , 6 are the six scalar fields of the theory and ΘI are unitary coordinates
of the 5-sphere. This Wilson loop for the case of a straight line and a circular trajectory
preserves half of the supersymmetries, and it is called 1/2 BPS Wilson loop. The inclusion
of the scalar field is a key component for our purposes, this is the Wilson loop which is
solved using supersymmetric localization.

One crucial property of this last definition of Wilson loop is that it now, depending
on the trajectory, preserves a fraction of the supersymmetry charges of the theory. This
protects it from acquiring divergent contributions at quantum level. Nevertheless, their
vacuum expectation value (vev) is in general a non-trivial function of the coupling constant
of the theory.

As said before, Wilson loops are relevant because of their physical content, and in the
context of SCFTs they are not the exception. Wilson loops with particular contours have
connections with other physical quantities like the Bremsstrahlung function and the cusp
anomalous dimension. The physical definition of the Bremsstrahlung function, B, can
be seen as the generalization of the Larmor formula in electrodynamics and corresponds
to the energy lost by an accelerated massive particle moving in the vacuum of a gauge
theory [20]

E = 2πB
∫
a2dt, (4.27)

where E is the energy and a2 = aµa
µ is the square of the 4-acceleration. In general B is

a non-trivial function of the coupling constant of the theory.
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The Bremsstrahlung function it is also related to the cusp anomalous dimension
Γcusp(ϕ). This is the quantity that controls the logarithmic divergence of a Wilson op-
erator evaluated on a cusped contour, this contour is made by two semi-infinite straight
lines that meet at a point forming an angle ϕ, as we can see in the figure below.

ϕ

Cusped trajectory.

Close to the cusp short distance singularities appear, which exponentiate as

〈W 〉 ∼ e−Γcusp log ε
Λ , (4.28)

here ε is the IR regulator and Λ the UV regulator [21]. For small angles, ϕ� 1, the cusp
anomalous dimension [11] behaves as

Γcusp = −Bϕ2 +O(ϕ4), (4.29)

where B is our Bremsstrahlung function.

Later it was shown [11] an explicit relation between the Bremsstrahlung function and
the Wilson loop for the case of a circular trajectory in N = 4 super Yang-Mills theory.
The relation goes like

B = 1
2π2λ

∂

∂λ
log 〈W�〉, (4.30)

where λ is the ’t Hooft coupling, λ = g2
YMN , and 〈W�〉 stands for the vev of the circular

Wilson loop.
The vev of the circular Wilson loop in the fundamental representation of SU(N) was

first computed perturbatively for all values of the coupling constant in the planar limit
[22]

〈W�〉 = 2√
λ
I1
(√

λ
)
, (4.31)

where I1(λ) is the modified Bessel function of the first kind. Later its exact value was
found [23] fort the gauge group U(N)

〈W�〉 = 1
N
L1
N−1

(−λ
4N

)
exp

(
λ

8N

)
, (4.32)

which in the 1/N expansion reduces to (4.31); Lmn (x) is the Laguerre polynomial

Lmn (x) = 1
n!e

x
(
d

dx

)n(
e−xxm+n

)
. (4.33)
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This computation was possible because the contributions of planar diagrams are iden-
tical and the problem reduces to combinatorics. This result hints a remarkable property
of the supersymmetric circular Wilson loop, its expectation value can be computed in
terms of a matrix model. One way to see this is because the Wick contractions appearing
in its computation are coordinate independent, so the path integral of a four-dimensional
field theory turns into a matrix integral.

This conjecture was later proved and generalized to N = 2 SYM theories [24], using
localization techniques. The paper shows that the path integral over the four-dimensional
fields reduces to an integral over a zero mode, which corresponds to the variable of inte-
gration in the matrix model integral.

These results suggested a possible generalization of (4.30) but now relating the h
function for N = 2 SCFTs and the vev of the circular Wilson loop. In fact it was first
conjectured in [20] and later proved in [25] that these two quantities are related

h = 1
12π2∂b ln 〈Wb〉|b=1, (4.34)

where 〈Wb〉 is the vev of the circular Wilson loop placed on an ellipsoid with parameter b
instead of a sphere [26], and the limit b = 1 corresponds to the sphere. An intuitive idea
of why the previous formula is valid lies in the fact that a deformation of the sphere is a
change in the metric, which induces a perturbation in the energy-momentum tensor, this
perturbation can be interpreted as radiation which is captured by the h function.

There is an extra relation coming from these computations valid first for N = 4 SYM
[27] and later proposed to hold for N = 2 SCFTS [20] and later proved [9], B = 3h. This
result, along the previous ones, will allow us to fully characterize the radiation of generic
N = 2 Lagrangian conformal field theories.

Now we will focus on the determination of the functions B and h within the framework
of the AdS/CFT correspondence and supersymmetric localization.

� The AdS/CFT correspondence and localization
One of the most promising approaches to study the strong coupling regime of certain

QFTs is the holographic correspondence, also known as gauge/gravity duality, between
QFTs in d spacetime dimensions and gravity/string theory in d+ 1 dimensions [28]. This
new paradigm in physics relates strongly coupled quantum systems without gravity to
purely (semi)classical gravitational phenomena, and has been applied to study from con-
densed matter problems at strong coupling to aspects of the strong nuclear interactions,
to name a few examples. In all such situations the d-dimensional QFT under considera-
tion is said to reside at the boundary of the dual d+ 1-dimensional gravitational system.
The former is thus a hologram of the latter.

This correspondence is also a weak/strong duality. This means that while the gauge
theory is weakly coupled, its holographic dual will be strongly coupled, and vice versa. In
fact, the correspondence was first established for the four dimensional N = 4 SYM theory
in the strong coupling regime whose gravitational dual is a weakly coupled string theory
living in ten dimensions, more concretely in a space formed by the product of anti-de
Sitter space in five dimensions and a 5-sphere. There have been many applications of this
correspondence, obtaining field theory observables in regimes where ordinary methods do
not apply. One of these phenomena is radiation at strong coupling, which it was first
studied for the case of a probe following circular motion [29] and later generalized for
arbitrary motion [30].
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Let us briefly describe how radiation is studied in this scenario. Consider a string
with one of its ends free while the other is attached to the boundary of the spacetime
under consideration, which is anti-de Sitter in five dimensions (AdS5), the trajectory of
the end that it is attached to the boundary will correspond to the trajectory of the probe
in the dual theory. Once the string starts moving it will create an energy-momentum
tensor in the bulk, but at the same time this tensor will cause perturbations in the bulk
metric. The perturbations of the bulk metric will travel through the spacetime and once
they reach the boundary, they will induce a new metric in the boundary of AdS5, which
is Minkowski spacetime in four dimension. Finally this induced metric will generate a
energy-momentum tensor which will correspond to the one of the gauge theory. For our
purposes this comes in handy because the dual theory in Minkowski spacetime is the
λ→∞ and N →∞ limit of N = 4 SYM theory, which cannot be easily studied by any
other methods. The result they obtained was the following

T 00
N=4 =

√
λ

24π2r2

4 |~a|2 + 3γ2(~β · ~a)2 + ~β · ~̇a
(1− ~β · ~n)4

+ 5(~β · ~a)(~n · ~a)− γ−2~n · ~̇a
(1− ~β · ~n)5

− 4 γ
−2(~n · ~a)2

(1− ~β · ~n)6

 .
This result implies that in this regime h =

√
λ

12π2 . More strikingly, the answer depends only
on the retarded time; this is currently the only example of an interacting CFT where this
property holds. Finally, the radiative energy density exactly matches the general result
(4.22).

Shortly after the AdS/CFT correspondence was first established with the canonical
example of N = 4 SYM theory, people started to look for new theories possessing a grav-
itational dual theory. Superconformal quiver theories with N = 2 are one of the theories
that in certain limits have a holographic description. The specific quiver theory we are
going to consider is depicted in the figure below. Each node represents a vector multiplet
of the SU(N) gauge group in the adjoint representation, while the lines connecting the
nodes represent a chiral multiplet in the bi-fundamental representation. As we can see, all
the gauge group have the same N , this is a necessary condition to preserve conformality
[31].

In general, each node corresponds to a copy of N = 2 superconformal quantum chro-
modynamics (SQCD), therefore each node has different coupling constant. Two relevant
scenarios are the case where all the coupling constants are the same –it would correspond
to an orbifold of N = 4 SYM theory, thus it possess a dual description– and the case
where all the coupling constants except one are zero –this corresponds to N = 2 SQCD
which lacks of a gravitational dual description [32]–.

In the previous section we discussed that Wilson loops are among the most interesting
operators in a gauge theory and how they are related to the phenomenon of radiation.
We also mentioned that supersymmetric localization applied to the calculation of exact
physical observables is one of the most spectacular results in non-abelian gauge theories
and it is intended to compute functional integrals exactly. Now we will describe how
supersymmetric localization has reduced the calculation of the exact partition function
and Wilson loop operators in supersymmetric gauge theories from a four dimensional to a
zero dimensional problem, including all perturbative and non-perturbative contributions
taking into account instanton effects [24]. In the next lines we will try to explain in a
simple way the main idea behind supersymmetric localization and how we are going to
exploit the result in order to determine the functions characterizing the radiation, B and
h.
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Quiver diagram containing 12 nodes; each node represents a SU(N) gauge group factor.

Lets consider an integral in one dimension in real space in the following way

Iλ =
∫ b

a
g(u)e−λf(u)du, (4.35)

the variable of integration is u, λ is a parameter and g(u) and f(u) are real functions of
u. This is an oversimplified version of a path integral if we make the identification of du
with Dx, f(u) with the action S and g(u) with an observable. In general the integral
(4.35) cannot be solved, but in the limit where λ is very large, an approximation can be
made and the integral will be dominated by the minima of the function f(u). To make
the example even easier, we take g(u) = 1 and consider the minima of f(u) such that
f ′(u∗) = 0 and f ′′(u∗) > 0. In this case and considering the expansion of f(u) up to
second order the integral will look like

Iλ ≈ e−λf(u∗)
∫ b

a
d−

λ
2 (u−u∗)2f ′′(u)du, (4.36)

and we can solve this integral because it is Gaussian, leading to

Iλ = e−λf(u∗)
√

2π
λf ′′(u∗) , (4.37)

where the first term can be seen as the classical contribution and the integral the 1-loop
determinant.

The idea behind localization is that in certain cases a similar approximation leads to
exact results. Another simple example that might explain why the name localization is
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the following. Consider an integral over a 2-sphere

Iλ =
∫
eiλ cos(θ)ds2

=
∫ 2π

0
dϕ
∫ π

0
eiλ cos(θ) sin(θ)dθ

= 4π
λ

sin(λ).

The reason the above integral is exact is because the integrand does not depend on the
variable ϕ, which means there is a symmetry, ϕ→ ϕ+ α, this is a rotation so there is an
axis of symmetry and the two fixed points are 0 and π, in this sense the integral localizes
around the fixed points, so the name localization.

The original calculation of [24] is more complicated than the examples above men-
tioned. Without going into details and following [33] what happens is the path integral
is restricted to a space invariant under a fermionic symmetry, Q, so the Lagrangian, L, is
invariant under the action of the supercharge Q

L → L+ tQ · V,

The restriction on the choice of V is such that if Q2 generates a symmetry and a gauge
transformation, then V must be gauge invariant and also invariant under the action of the
symmetry. Another requirement is that the path integral must be convergent after the
deformation. The supersymmetry generated by Q must be realized off-shell in order to
localize the gauge fixed path integral, so a gauge fixing procedure must be implemented.
This is done by introducing auxiliary fields which determine the measure of integration
of the fluctuations.

Since the path integral is independent of t, we can consider the limit where t tends
to infinity. In this limit the saddle points of the path integral are the saddle points of
the deformed action Q · V . It is in this limit where the integral becomes 1-loop exact
and can be evaluated by summing over all saddle points. Then the path integral can be
calculated by evaluating the original Lagrangian on the saddle points and by integrating
out the quadratic fluctuations in the Lagrangian deformation Q · V . Even though the
path integral is 1-loop exact in t, it yields results to all orders in perturbation theory with
respect to the original gauge coupling constant of the theory.

After a brief and simplified explanation of supersymmetric localization, without further
ado the result of [24] for the partition function of N = 2 super Yang-Mills theories (not
necessarily conformal) is the following

ZS4 =
∫
e
− 8π2
g2YM

Tr(a2)
Z1-loop |Zinst|2da, (4.38)

where Z1-loop is a factor coming from a 1-loop computation, while Zinst is the instanton
contribution. The expression for the vev of a 1/2 BPS circular Wilson loop is

〈W 〉 = 1
ZS4

∫
Tre−2πbae

− 8π2
g2YM

Tr(a2)
Z1-loop|Zinst|2da. (4.39)

We will consider the instanton contribution equals to 1 since in the large N limit are
exponentially suppressed [31].

There are two cases to point out in these matrix integrals: first is that for the case
of N = 4 SYM theory the 1-loop determinant contributions are exactly 1, so we end up
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with a Gaussian matrix model; second is that the Z1-loop will be treated as an effective
action, e−S, so the calculations will be perturbations around a Gaussian matrix model.

The way we are going to consider the vacuum expectation value of a quantity will be
the following [34]: consider f(a) which depends on the matrix a, so its vev it is given by

〈f(a)〉 = 1
ZS4

∫
f(a)e−Tr(a2)Z1-loop da

=
∫
f(a)e−Tr(a2)e−S(a)da∫
e−Tr(a2)e−S(a)da

,

and as we said before, the effective action can be treated as an interaction in the Gaussian
matrix model, so we can write the vev of f(a) in the Gaussian matrix model as

〈f(a)〉 =

〈
e−S(a)f(a)

〉
0

〈e−S(a)〉0
, (4.40)

where subscript 0 denotes the vev is taken in the Gaussian matrix model. So the vev in
the Gaussian matrix model is

〈f(a)〉0 = 1
Z0

∫
f(a)e−Tr(a2)da, (4.41)

with Z0 =
∫
e−Tr(a2)da. The computation of the vevs will be according to (4.40).

In the following chapters we will put to work the tools learned so far and finally we
will determine the spacetime dependence of radiation of conformal field theories, as well
as the coupling dependence of radiation in certain superconformal field theories in four
dimensions.
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Spacetime dependence of
radiation

This chapter includes the publication:

• B. Fiol and J. Mart́ınez-Montoya, On scalar radiation, JHEP 03, 087 (2020),
arXiv:1907.08161 [hep-th].
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1 Introduction

The study of the creation and propagation of field disturbances by sources is one of the ba-

sic questions in any field theory. In classical electrodynamics, emission of electromagnetic

waves by charged particles is of paramount importance, both at the conceptual and prac-

tical level [1]. Similarly, the recent detection of gravitational waves [2] provides a striking

confirmation of General Relativity, and opens a new way to explore the Universe.

Understandably, radiation of massless scalar fields due to accelerated probes coupled to

them, has received much less attention [3]. An exception is the study of radiation in scalar-

tensor theories of gravity, since the radiation pattern can differ from General Relativity [4].

The comments above refer to classical field theories. Recent formal developments,

like holography and supersymmetric localization, have allowed to explore radiation in the

strong coupling regime of conformal field theories (CFTs), which if they admit a Lagrangian

formulation, very often include scalar fields. Some of the results of these explorations are,

however, unexpected and even conflicting, as we now review.

In field theory, radiation is determined by the one-point function of the energy-

momentum tensor of the field theory in the presence of an accelerated probe, which is

described by a Wilson line W ,

〈Tµν〉W =
〈WTµν〉
〈W 〉 (1.1)

Instead of computing 〈Tµν〉W for arbitrary trajectories, one can consider particularly simple

kinematical configurations. A first possibility is motion with constant proper acceleration.

The reason for this choice is that in any CFT, a special conformal transformation maps a

worldline with constant proper acceleration to a static one, for which 〈Tµν〉W is fixed up

to a coefficient [5] 〈
WT 00

〉

〈W 〉

∣∣∣∣∣
~v=0

=
h

|~x|4 (1.2)
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where |~x| is the distance between the static Wilson line, placed at the origin, and the point

where the measure takes place. The coefficient h should thus capture the radiated power,

at least for a probe with constant proper acceleration [6].

A second interesting kinematical situation is that of the probe receiving a sudden

kick. The Wilson line associated to the probe exhibits a cusp, and its vacuum expectation

value develops a divergence, characterized by the cusp anomalous dimension [7] Γ(ϕ), that

depends on the rapidity of the probe after the kick. The expansion of Γ(ϕ) for small ϕ,

Γ(ϕ) = Bϕ2 + . . . (1.3)

defines the Bremsstrahlung function B [8]. It was argued in [8] that this function determines

the energy radiated by a probe coupled to a CFT, since it appears in

E = 2πB

∫
dt(~a)2 (1.4)

If one grants this relation and further assumes that for arbitrary CFTs the radiated power

is Lorentz invariant, one arrives at a Larmor-type formula

P = −2πBaλaλ (1.5)

where aλ is the 4-acceleration. It was further argued in [8] that in any CFT, the

Bremsstrahlung function is universally related to the coefficient CD of the 2-point function

of the displacement operator of any line defect [9], by 12B = CD. For Lagrangian CFTs

with N = 2 supersymmetry this function can be computed using supersymmetric localiza-

tion [6, 10, 11]. For N = 2 SCFTs it was argued [10, 12] and then proved [13] that B = 3h.

This relation is not satisfied in Maxwell’s theory [12], proving that no universal relation

between B and h exists that is valid for all CFTs.

Turning to holography, radiation by accelerated charges in a CFT is studied by first

introducing a holographic probe, a string or a D-brane. Computations can be done at the

worldsheet/worldvolume level, or taking into account the linear response of the gravity

solution due to the presence of the holographic probe. Intriguingly, these two methods do

not fully agree. At the holographic probe level, the computation of [14], followed by [15, 16]

indicated that for a 1/2-BPS probe coupled to N = 4 super Yang-Mills, in the large N ,

large λ limit, the total radiated power is indeed of the form given by (1.5). The beautiful

works [17, 18] dealt with the backreacted holographic computations, see also [19–21]. The

work [17] considered only a probe in circular motion, and found agreement with (1.5).

However, the work [18] dealt with arbitrary trajectories, and found

P = −2πB

(
aλaλ +

1

9

ȧ0

γ

)
(1.6)

where γ is the usual Lorentz factor. The additional term in (1.6) would imply that the

radiated power in N = 4 SYM is not Lorentz invariant. The work [17] was restricted to

circular motion in a particular frame where ȧ0 = 0, so by construction, it was not sensitive

to the presence of the additional term in (1.6).
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The angular distribution of radiated power is a more refined quantity than the total

radiated power. At strong coupling it has been studied in [17, 18], where the angular

distribution of radiation emitted by a 1/2-BPS probe coupled to N = 4 super Yang-

Mills was determined holographically. Some of the features of the angular distribution of

radiation found in [17, 18] were unexpected, like regions with negative energy density, or its

dependence on the derivative of the acceleration, eq. (1.6). This prompted [18] to consider

them artifacts of the supergravity approximation.

In this work we revisit the issue of radiation in scalar field theory, bringing new insights

to many of the issues reviewed above. Our key observation is rather elementary: scalar

fields couple to the scalar curvature of spacetime via the term [22] ξRφ2 so, even in flat

spacetime, the energy-momentum tensor [23] and therefore the pattern of radiation, depend

on ξ. In particular, radiation in conformal field theories requires considering conformally

coupled scalars (ξ = 1/6) instead of minimally coupled ones, ξ = 0, as done in the field

theory computations of [17, 18].

Once we take this observation into account, we find that already at the level of free

theory, radiation for a free conformal scalar displays the features that were found holograph-

ically for N = 4 super Yang-Mills: the radiated power is not Lorentz invariant, it depends

on ȧ and the radiated energy density is not everywhere positive. We conclude that these are

generic features valid for all conformal field theories that include conformal scalars. In par-

ticular, eqs. (1.4) and (1.5) are not valid for arbitrary trajectories in CFTs with scalar fields.

Our observation also brings a new perspective to the lack of a universal relation between

the coefficients B and h discussed above. In [1, 24] a manifestly Lorentz invariant quantity,

the invariant radiation rate R, was defined in the context of Maxwell theory. We extend

the definition, and show that while in Maxwell theory R = P, this is not true in general

CFTs. For the probes and CFTs considered in this work, R can be written as

R = −2πBRaλaλ (1.7)

where BR is a new coefficient that in general differs from the Bremsstrahlung function B.

Furthermore we find that the relation

BR =
8

3
h (1.8)

holds in all the cases considered. This relation has thus the potential to be universal for

all probes and all CFTs.

We turn then our attention to Lagrangian N = 2 SCFTs, and for N = 4 super Yang-

Mills, we do find a surprise. The full one-point function of the energy density in the presence

of a probe following an arbitrary trajectory has exactly the same spacetime dependence

at weak and at strong ’t Hooft coupling. This leads us to conjecture that this quantity is

protected by non-renormalization. This would be rather surprising, as for generic timelike

trajectories, 〈Tµν〉W is not a BPS quantity.

The structure of the paper is the following. In section 2, we revisit radiation by probes

coupled to free field theories. We show that once we take into account the improvement

term of the energy-momentum tensor for non-minimally coupled scalars, the radiative en-

ergy density is not positive definite, which is just a manifestation of the more general fact
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that non-minimally coupled scalars can violate energy conditions even classically [25]. Fur-

thermore, for non-minimally coupled scalars, the radiated power P is not Lorentz invariant.

The new term that we find in the rate of 4-momentum loss is formally similar to the Schott

term that appears in the Lorentz-Dirac equation in electrodynamics [1]. We will argue

however that in theories with non-minimally coupled scalars its origin and meaning are

different than the Schott term in classical electrodynamics.

In section 3, we discuss constraints imposed by conformal symmetry on the one-point

function of the energy-momentum tensor of a conformal field theory, in the presence of an

arbitrary timelike line defect.

In section 4 we discuss radiation by 1/2-BPS probes coupled to N = 2 SCFTs. Quite

remarkably, for a 1/2-BPS probe coupled to N = 4 super Yang Mills following an arbitrary

trajectory, the classical computation with conformally coupled scalars matches exactly the

angular distribution found holographically [17, 18].

In section 5 we mention some open questions. Our conventions are as follows: we

work with a mostly minus metric, so the 4-velocity u and the 4-acceleration a satisfy

u2 = 1, a2 < 0. Dots have different meaning for vectors and 4-vectors: ȧ = da/dτ , but

~̇a = d~a/dt. Our overall normalization of the energy-momentum tensor for scalars is not the

usual one; it has been chosen for convenience when we add scalar and vector contributions

in supersymmetric theories.

2 Radiation in free field theories

Consider a probe coupled to a field theory, following an arbitrary, prescribed, timelike

trajectory zµ(τ). One first solves the equations of motion for the field theory, in the

presence of this source, choosing the retarded solution. Let xµ be the point where the

field is being measured; define τret by the intersection of the past light-cone of xµ and the

worldline of the probe, and the null vector ℓ = x− z(τret).

One then evaluates the energy-momentum tensor with the retarded solution. Usually

one defines the radiative part of the energy-momentum tensor Tµν
r as the piece that decays

as 1/r2 so it yields a nonzero flux arbitrarily far away from the source. A more restrictive

definition of Tµν
r was introduced in [26, 27], who required that

• ∂µT
µν
r = 0 away from the source.

• ℓµT
µν
r = 0 so flux through the light-cone emanating from the source is zero.

• Tµν
r = A

(ℓ·u)4 ℓ
µℓν with A a Lorentz scalar.

• A ≥ 0 so the radiative energy density is nonnegative.

In this work we will consider theories that don’t satisfy the weak energy condition classi-

cally; for these theories, the requirement that the radiative energy density is nonnegative

is less well motivated. In this work we use the first definition of Tµν
r , but we will discuss

the implications of considering the second one. From Tµν
r we define [1]

dPµ

dτdΩ
= r2Tµν

r uν (2.1)
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and integrating over the solid angle we obtain dPµ/dτ . It is a 4-vector [28] that gives the

rate of energy and momentum emitted by the probe. From it one can define two quantities.

The first one is the radiated power P,

P =
dP 0

dt
(2.2)

which is not manifestly Lorentz invariant. Following Rohrlich [1], we define a second

quantity, the invariant radiation rate R as

R = uµ
dPµ

dτ
(2.3)

which is manifestly Lorentz invariant. For free CFTs, this invariant radiation rate can be

written as

R = −2πBRaλaλ (2.4)

We don’t have a proof that this is the most generic form that R can take in interacting

CFTs, but let’s mention some restrictions. In principle there could be also a term in (2.4)

proportional u·ȧ, but since a2 = −u·ȧ, it would be redundant. Furthermore, by dimensional

analysis, terms with higher derivatives of a can’t appear in (2.4). In conclusion, (2.4) is

the most general form that R can take, if it depends only on Lorentz invariants evaluated

at a single retarded time.

2.1 Maxwell field

The energy-momentum tensor is

Tµν =
1

4π

(
FµλF ν

λ +
1

4
ηµνFαβF

βα

)
(2.5)

It is traceless, without using the equations of motion. Consider a probe coupled to the

Maxwell field, with charge q, following an arbitrary trajectory. The full energy-momentum

tensor evaluated on the retarded solution is [28]

Tµν =
q2

4π

(
ℓµuν+ℓνuµ

(ℓ ·u)5 (1−ℓ ·a)+ ℓµaν+ℓνaµ

(ℓ ·u)4 − a2

(ℓ ·u)4 ℓ
µℓν− (1−ℓ ·a)2

(ℓ ·u)6 ℓµℓν− 1

2

ηµν

(ℓ ·u)4
)

(2.6)

where all quantities are evaluated at retarded time. Evaluating (2.6) for a static probe we

derive the h coefficient [5]

T 00
∣∣
~v=~0

=
q2

8π

1

r4
⇒ h =

q2

8π
(2.7)

The part of (2.6) decaying as 1/r2 is

Tµν
r = − q2

4π

(
a2

(ℓ · u)4 +
(ℓ · a)2
(ℓ · u)6

)
ℓµℓν (2.8)

It satisfies all the criteria of [26, 27], so it is the radiative part according to both definitions.

Integration over angular variables yields

dPµ

dτ
= −2

3
q2aλaλu

µ (2.9)
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It is a future-oriented timelike 4-vector, guaranteeing that all inertial observers agree that

the particle is radiating away energy. The relativistic Larmor’s formula follows

P = R = −2

3
q2aλaλ (2.10)

recall that a2 < 0 in our conventions. From (2.10) we derive the Bremsstrahlung coefficient

for Maxwell’s theory,

B =
q2

3π
(2.11)

It follows from (2.7) and (2.11) that [12]

B =
8

3
h. (2.12)

2.2 Scalar fields

Consider a free massless scalar field, with arbitrary coupling ξ to the Ricci scalar. The

energy-momentum tensor is [23]

4πTµν = ∂µφ∂νφ− 1

2
ηµν∂αφ∂

αφ− ξ(∂µ∂ν − ηµν�)φ2 (2.13)

In general, the trace of (2.13) does not vanish, even when applying the equations of motion.

For the conformal value ξ = 1
6 it vanishes away from the sources, if we apply the equations

of motion. For ξ 6= 0, this energy-momentum tensor can violate the weak energy condition

at the classical level [25], even in Minkowski space.

Now consider a probe coupled to the scalar field, following an arbitrary trajectory.

The energy-momentum tensor (2.13) evaluated on the retarded solution of the equation of

motion is

4πTµν =
q2

(ℓ ·u)4
(
(1−6ξ)uµuν−(1−8ξ)

1−ℓ ·a
ℓ ·u (ℓµuν+ℓνuµ)+2ξ(ℓµaν+ℓνaµ) (2.14)

+ (1−8ξ)
(1−ℓ ·a)2
(ℓ ·u)2 ℓµℓν+2ξ

ℓ · ȧ
ℓ ·uℓ

µℓν+
1−8ξ

2
ηµν−(1−6ξ)(ℓ ·a)ηµν

)

evaluated at retarded time. It depends on ȧ = da/dτ , because the improved energy-

momentum tensor (2.13) involves second derivatives of the field, and the solution depends

on the velocity of the probe.

In the conformal case ξ = 1/6 the terms independent or linear in the acceleration are

the same as in (2.6), up to an overall factor. In the next section, we will argue that these

terms are actually universal for all CFTs.

Evaluating (2.14) on a static probe for the conformal value ξ = 1/6, we derive [5]

T 00
∣∣
~v=~0

=
1− 41

6

8π

q2

r4
⇒ h =

1

24π
q2 (2.15)

The part of (2.14) decaying as 1/r2 is

Tµν
r =

q2

4π

(
(1− 8ξ)

(ℓ · a)2
(ℓ · u)6 + 2ξ

ℓ · ȧ
(ℓ · u)5

)
ℓµℓν (2.16)
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It satisfies the first three criteria of [27] to be the radiative part. It also satisfies

|T 00| = |T 0i|. As a check, for ξ = 0, it reduces to the energy density found in [17], which

is manifestly positive definite. However, for ξ 6= 0, T 00 is not guaranteed to be positive.

After integration over the angular variables, we find

dPµ

dτ
= −1

3
q2aλaλu

µ − 2ξ

3
q2ȧµ (2.17)

The improvement term in the energy-momentum tensor of the scalar field (2.13) induces a

qualitatively new term in dPµ/dτ , compared with the electrodynamics case. The additional

term in (2.17) is a total derivative, and it is formally identical to the Schott term in classical

electrodynamics [1]. However, the origin is different. In classical electrodynamics, the

Schott term appears in the Lorentz-Dirac equation of motion of the probe, and it can be

deduced from the fields created by the probe, in the zone near its worldline. It does not

appear from evaluating the radiative part of the energy-momentum tensor (2.8). On the

other hand, in (2.17) the new term appears directly from evaluating the energy-momentum

tensor of the fields that decay like 1/r2, away from the probe.

This additional term that we have encountered in (2.17) in a free theory computation

has the same form as the additional term found holographically by [18], eq. (1.6). In that

context, the works [20, 21] have advocated using the more restrictive definition of Tµν
r ,

thus setting ξ = 0 in (2.16), (2.17). An argument in favor of doing so is that the new term

in (2.17) is a total derivative so, for instance, its contribution vanishes for any periodic

motion when integrated over a full period. This clashes with the intuition of radiated

energy as something irretriavably lost by the particle. However, we think this intuition

is built on the idea that the energy density is positive definite, which is not the case for

non-minimally coupled fields.

For a minimally coupled scalar field, ξ = 0, dPµ/dτ is again a future-oriented, timelike

4-vector, and P = R, as in Maxwell’s theory [3, 17]. On the other hand, for ξ 6= 0, this

4-vector is no longer guaranteed to be timelike. This is related with T 00 no longer being

positive definite. In the instantaneous rest frame,

dPµ

dτ

∣∣∣∣
~v=0

=

(
1− 2ξ

3
q2~a2,−2ξ

3
q2~̇a

)
(2.18)

So for ξ < 1/2, in the instantaneous rest frame, there is energy loss. However, if dPµ/dτ

is spacelike, the sign of its zeroth component is no longer the same in all inertial frames.

For a non-minimally coupled scalar, P and R no longer coincide, and P is not Lorentz

invariant. Indeed,

P = −1

3
q2aλaλ − 2ξ

3
q2

ȧ0

γ
(2.19)

and

R = −1− 2ξ

3
q2aλaλ (2.20)

For non-minimally coupled scalars, we will still define 2πB as the coefficient in front of the

−aλaλ term in (2.19). We furthermore introduce a new coefficient Bξ, as the coefficient in
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R = −2πBξa
λaλ. We obtain

Bξ =
1− 2ξ

6π
q2 (2.21)

Notice that Bξ=0 = B; we also define BR = Bξ=1/6. In particular, for the conformally

coupled scalar it follows that BR = 8
3h. This ratio is the same as in Maxwell’s theory,

eq. (2.12).

3 One-point function of the energy-momentum tensor in CFTs

In this section we discuss the constraints that conformal invariance imposes on the one-

point function of the energy-momentum tensor of a conformal field theory, in the presence

of a timelike line defect. While in the rest of the paper we consider Lagrangian field theories

and the line defects are Wilson lines, the arguments of this section apply to arbitrary line

defects in general CFTs.

For classical conformal field theories, we have seen in the previous section that the

full one-point function of the energy-momentum tensor at a point in spacetime depends

on the value of the 4-velocity and the 4-acceleration evaluated at a single retarded time.

It is far from obvious that this feature should hold for generic line defects in arbitrary

CFTs. In fact, once one considers strongly coupled conformal non-Abelian gauge theories,

there are compelling arguments [18] that virtual timelike quanta will decay into further

quanta thus forming a cascade, so the radiation measured at a point in spacetime does not

have its origin at just a single retarded time in the probe worldline. This picture suggests

that at least in some theories, the full one-point function should include integrals over the

worldline of the probe, up to the retarded time,

〈Tµν〉W =

∫ τret

dτf(a) + . . . (3.1)

to take into account radiation originated by the cascade of timelike virtual quanta. Intrigu-

ingly enough, the holographic computations of [17, 18] do not find such terms for N = 4

SYM in the planar limit. We will make a small comment about the presence or not of

these terms for generic CFTs at the end of this section.

In the present discussion we will focus on the terms where the kinematic 4-vectors,

like the 4-velocity and the 4-acceleration appear in the answer evaluated at a single time,

without any integrals. Dimensional analysis, conformal symmetry and conservation of the

energy-momentum tensor constraint the form of the answer.

The full energy-momentum tensor of a CFT in the presence of a static probe is fixed

by conformal invariance [5], up to an overall coefficient,

〈
T 00
〉
W

=
h

|~x|4
〈
T 0i
〉
W

= 0
〈
T ij
〉
W

=
h

|~x|4
(
δij − 2

xixj

|~x|2
)

(3.2)

By applying a boost, it is then also fixed for a probe with constant velocity. This deter-

mines all the acceleration independent terms; since they are universal, they can be read off

from (2.6) or (2.14). These terms decay as 1/r4 as dictated by dimensional analysis,

〈Tµν〉W |~v=constant = h

(
− ηµν

(ℓ · u)4 + 2
ℓµuν + ℓνuµ

(ℓ · u)5 − 2
ℓµℓν

(ℓ · u)6
)

(3.3)
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Furthermore, by applying a special conformal transformation to a static worldline, one

obtains a worldline with constant proper acceleration. Therefore, for any CFT, the full

energy-momentum tensor for a hyperbolic line defect is completely determined up to an

overall constant. It is immediate to check that 〈Tµν〉W for Maxwell theory, eq. (2.6), and

for a conformal scalar, eq. (2.14) with ξ = 1/6, have the same spacetime dependence for

hyperbolic motion, since in this case ȧ = −a2u.

We will now argue that the previous property implies that the terms linear in the 4-

acceleration a must also be universal. The argument goes as follows. Since a worldline with

constant proper acceleration satisfies ȧ = −a2u, terms that are not universal in Tµν and

change from one CFT to another, must be such that they collapse to the same universal

expression when ȧ = −a2u. But terms linear in a don’t depend on ȧ or a2, so they must

be universal for all CFTs. These terms decay as 1/r3 as dictated by dimensional analysis.

All in all, the terms independent or linear in a are,

〈Tµν〉W |O(a)=2h

(
−1

2

ηµν

(ℓ ·u)4 +(1−ℓ ·a)ℓ
µuν+ℓνuµ

(ℓ ·u)5 +
ℓµaν+ℓνaµ

(ℓ ·u)4 −(1−2ℓ ·a) ℓµℓν

(ℓ ·u)6
)

(3.4)

We then conclude that the terms in 〈Tµν〉W independent or linear in the 4-acceleration aλ

— which respectively decay as 1/r4 and 1/r3 — are universal for all CFTs. On the other

hand, terms that involve a2 or ȧ and decay like 1/r2 are not uniquely fixed by conformal

invariance. Indeed, the 1/r2 terms for Maxwell’s theory (2.8) and a conformal scalar (2.16)

are different.

The formula (3.4) refers only to terms that depend only on the probe worldline at the

retarded time, and does not exclude potential additional terms of the schematic form (3.1).

To conclude this section, let’s comment on the restrictions that conservation of the energy-

momentum tensor imposes on the presence of possible terms of the type (3.1), that depend

on the worldline of the probe, and not just the retarded time. First of all, the full energy-

momentum tensor is conserved. We can further require that the piece of the energy-

momentum tensor that decays like 1/r2 is conserved by itself, since it corresponds to energy

that is detached from the probe. It then follows that the piece of 〈Tµν〉 that doesn’t decay
like 1/r2 must also be conserved by itself. It is straightforward to check that the terms that

appear explicitly in (3.4) are conserved. This implies that if there are additional terms of

the type (3.1) that decay like faster than 1/r2 beyond the ones that appear in (3.4), they

must be conserved on their own.

4 Radiation in N = 2 superconformal theories

The discussion in the previous section was completely classical. In this section we consider

N = 2 Lagrangian SCFTs, for which powerful techniques to study the strong coupling

regime are available.

Consider the energy-momentum tensor created by a 1/2-BPS probe coupled to a La-

grangianN = 2 SCFT in the classical limit. The probe is coupled to a vector and a scalar in

the adjoint representation of the gauge group. As argued in [17, 18], at very weak coupling

this amounts to adding the contribution of the Maxwell (2.8) and free scalar (2.16) terms,
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with an effective charge. However [17, 18] considered a free minimally coupled scalar. In

CFTs, the correct computation amounts to adding (2.6) and (2.14) with the conformal

value, ξ = 1/6. We obtain

Tµν
N=2 = 2hN=2

(
−1

2

ηµν

(ℓ · u)4 + (1− ℓ · a)ℓ
µuν + ℓνuµ

(ℓ · u)5 +
ℓµaν + ℓνaµ

(ℓ · u)4 − (1− 2ℓ · a) ℓµℓν

(ℓ · u)6
)

+
hN=2

2

(
− 3a2

(ℓ · u)4 +
ℓ · ȧ

(ℓ · u)5 − 4
(ℓ · a)2
(ℓ · u)6

)
ℓµℓν (4.1)

In three-dimensional language, with ~n = ~r−~z
|~r−~z| , the radiative energy density is

T 00
N=2 =

hN=2

2r2

(
4 |~a|2 + 3γ2(~β · ~a)2 + ~β · ~̇a

(1− ~β · ~n)4
+

5(~β · ~a)(~n · ~a)− γ−2~n · ~̇a
(1− ~β · ~n)5

− 4
γ−2(~n · ~a)2
(1− ~β · ~n)6

)

(4.2)

Our free classical computation only guarantees (4.1), (4.2) at leading order in λ, for small

λ. Strikingly, the 00 component of (4.1) is exactly the same result found by a rather

elaborate holographic computation for a 1/2-BPS probe in the fundamental representation

of N = 4 SU(N) super Yang-Mills in [17, 18], in the planar limit and at strong ’t Hooft

coupling where [14] 3h = B =
√
λ/4π2 ! To elaborate, we have computed the 1/r4, 1/r3

terms at strong coupling, using the results of the holographic computations of [17, 18] and

have found exactly the first line of (4.1). The match of the spacetime dependence of these

terms at weak and strong coupling is not surprising, as we have argued in section 3 that

they are universal. Nevertheless, this match does provide a strong check of the holographic

computations in [17, 18]. On the other hand, the 1/r2 term (4.2) was already computed

at strong coupling in [17, 18], and again it displays the same spacetime dependence as the

classical result. We stress that we find exact agreement at the level of energy density, before

performing any time average. This agreement prompts us to conjecture that (4.1) is true for

all values of λ, in the planar limit. It is tempting to conjecture that (4.1) is true even at finite

N and finite λ, but we currently don’t have evidence for this stronger claim. Conformal

symmetry alone is not enough to explain this agreement: comparing (2.8), (2.16) and (4.1)

it is clear that the radiative energy density of a probe in arbitrary motion is not the same for

different conformal field theories. Furthemore, while the probe is 1/2-BPS, it is following

an arbitrary trajectory, so the Wilson line does not preserve any supersymmetry globally.

Many of the unexpected features of (4.2) have simple classical explanations that arise

from properties of conformally coupled scalars: the fact that (4.2) is not positive definite

everywhere, was interpreted in [17] as an inherently quantum effect. In fact, it’s a feature

already present at the classical level, reflecting that conformally coupled scalar fields can

violate energy conditions even classically. As first noticed in [18], (4.2) depends on the

derivative of the acceleration; now we understand that this follows from the fact that the

improved tensor (2.13) involves second derivatives of the field. Another puzzle raised in [18]

is that in N = 4 SYM, radiation was isotropic at weak coupling; as our classical derivation

of (4.2) shows, this isotropy is just an artifact of considering minimally coupled scalars,

instead of conformally coupled ones.
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In [17] it was noticed that for circular motion, while the angular distribution of radiated

power computed holographically did not match the classical computation of Maxwell plus

minimally coupled scalar, the respective time averages over a period did match. The reason

is now easy to understand: the details of the angular distribution depend on ξ, but after

averaging over a period, the averaged angular distribution is independent of ξ.

Let’s discuss now the total radiated power in N = 2 SCFTs. Integration of (4.2) over

angular variables yields

dPµ

dτ
= −2πBN=2

(
aλaλu

µ +
1

9
ȧµ
)

(4.3)

Our computation ensures that this formula is valid at the classical level. At strong coupling,

the only evidence is the N = 4 SYM holographic computation of [18].

To conclude, let’s comment on the relation BN=2 = 3hN=2 conjectured in [10, 12] and

proved in [13] for generic, not necessarily Lagrangian, N = 2 SCFTs. This is a relation

between the Bremsstrahlung coefficient as defined in (1.3) and the hN=2 coefficient, as

defined in (1.2). The proof presented in [13] relies on 12BN=2 = CD, but not on the

argument [8] that identifies BN=2 defined in (1.3) with the hN=2 coefficient in (1.2). The

values obtained in section 2 allow to test that this relation is satisfied by a free U(1) N = 2

SCFT, and in fact by any Lagrangian N = 2 SCFT at weak coupling,

BN=2 = BEM +Bscalar = 3(hEM + hscalar) = 3hN=2 (4.4)

On the other hand, it also follows that the coefficients BN=2
R and hN=2 of any Lagrangian

N = 2 SCFT satisfy, at weak coupling, the same relation as in Maxwell theory or for a

conformal scalar,

BN=2
R = BEM

R +Bscalar
R =

8

3
hEM +

8

3
hscalar =

8

3
hN=2 (4.5)

At strong coupling, contracting (4.3) with uµ and using BN=2 = 3hN=2, we again obtain

BN=2
R =

8

9
BN=2 =

8

3
hN=2 (4.6)

which is again the relation found for Maxwell’s theory and for a free conformal scalar.

So if (4.3) holds, (4.6) would be true for all the probes coupled to CFTs considered in

this paper. Currently, the only evidence for (4.3) at strong coupling is the holographic

computation of [18] for N = 4 SYM.

5 Discussion and outlook

In this work we have discussed radiation for theories with scalar fields. We have found

that for non-minimally coupled scalars, the energy density is no longer positive definite,

it depends on the derivative of the acceleration of the probe, and the radiated power is

not Lorentz invariant. These three features were also encountered in the strongly coupled

regime of N = 4 super Yang-Mills, by holographic computations [17, 18]. In the intro-

duction we mentioned that these computations do not quite agree with the holographic
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computations at the probe string/brane level. The backreacted computations of [17, 18]

are on a firmer theoretical ground, but the results they yielded were unexpected, casting

doubts on their validity. Our work implies that these features are to be expected for any

conformal field theory with conformal scalars, and confirm the validity of the holographic

computations of [17, 18].

In this work we have not discussed radiation reaction on the probe coupled to the scalar

field. It would be interesting to discuss it for the case of non-minimally coupled scalars.

We have shown that the relation (4.6) holds for probes of free CFTs, and we have

presented evidence that it also holds for 1/2-BPS probes in N = 4 SCFTs. At this point

it is not clear whether it holds for arbitrary probes of generic CFTs. A possible case to

further test it would be less supersymmetric probes of N = 4 super Yang-Mills.

The fact that (4.2) holds both at weak and strong λ in the planar limit of N = 4

super Yang-Mills is rather mysterious, as it is not a BPS quantity. It will be important to

prove if (4.2) holds for any λ, in the planar limit, or even at finite N . An even stronger

conjecture is that it holds for generic N = 2 superconformal theories, but currently we lack

techniques to study 〈Tµν〉W at strong coupling for generic N = 2 SCFTs and arbitrary

timelike worldlines.

Finally, this note has only considered radiation of scalar fields in Minkowski spacetime.

It will be interesting to generalize our results to other spacetimes.
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1 Introduction

Wilson loops are among the fundamental operators in gauge theories. Nevertheless, when

it comes to extracting physically interesting quantities, many of them are determined in

terms of the logarithm of the vacuum expectation value (vev) of certain Wilson loops, and

not the vevs themselves. For instance, the quark anti-quark static potential is determined

from the logarithm of the vev of a rectangular Wilson loop. Similarly, the cusp anomalous

dimension [1] is the logarithm of the properly regularized vev of a Wilson loop with a cusp,

dependent on the boost parameter ϕ

〈Wϕ〉 ∼ e
Γcusp(ϕ) ln

ΛUV
ΛIR (1.1)

The question then arises whether one can directly compute the logarithm of the vacuum

expectation value of the Wilson loop, bypassing the computation of the vev of the Wilson

loop itself. At the perturbative level, according to the non-Abelian exponentiation theo-

rem [2, 3] (see [4] for a pedagogical review), for certain cases the answer is positive. One has

to evaluate just a subset of the Feynman diagrams that would appear in the computation

of the vev of the Wilson loop, with the proviso that each Feynman diagram carries now a

modified color factor, and not the standard one assigned according to the ordinary Feyn-

man rules. The application of the non-Abelian exponentiation theorem to the computation
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of the perturbative cusp anomalous dimension is discussed for QCD in [5] and for N = 4

super Yang-Mills in [6].

In order to understand the content of the non-Abelian exponentiation theorem, it is

very clarifying to consider Wilson loops WR in arbitrary representations R of the gauge

group G. The perturbative expansion of their vevs can then be written in terms of color

invariants. These color invariants involve contractions of the fully symmetrized traces [7, 8]

da1...an
R =

1

n!
tr
∑
σ∈Sn

T
aσ(1)

R . . . T
aσ(n)

R (1.2)

where T aR are the generators of the Lie algebra of the group G, in the representation R.1

Some examples of color invariants are daabbR or dabcdR dabcdA . The non-Abelian exponentiation

theorem implies that certain color invariants present in 〈W 〉R are absent in ln 〈W 〉R.

In the bulk of this paper we will consider the interplay of the non-Abelian exponenti-

ation theorem and the evaluation of the vev of Wilson loops in N = 4 SYM, leaving the

case of N = 2 SCFTs for future work. Nevertheless, before describing the results obtained

that are specific of N = 4 SYM, we want to argue that this theorem — which is valid for

non-Abelian gauge theories regardless of the amount of supersymmetry — also provides

evidence for a conjecture formulated for generic N = 2 SCFTs [9]. To present the conjec-

ture, and our argument, it is necessary to introduce a couple of quantities that will also

appear in the main body of the paper.

First, the Bremsstrahlung function B associated to a heavy probe is defined [10] from

the small boost limit of the cusp anomalous dimension (1.1),

Γcusp(ϕ) = Bϕ2 +O(ϕ4) (1.3)

This coefficient determines a number of interesting properties of a heavy probe coupled

to a conformal field theory: its energy loss by radiation [10], its momentum diffusion

coefficient [11] and the change in entanglement entropy it causes in a spherical region [12].

Since the cusp anomalous dimension satisfies the non-Abelian exponentiation theorem, so

does the Bremsstrahlung function: only a subset of the most general color invariants will

appear in its expansion. On the other hand, in any four-dimensional conformal field theory,

the two-point function of the stress-energy tensor and a straight Wilson line is determined

by conformal invariance, up to a coefficient hW [13]〈
T 00(x)W

〉
〈W 〉

=
hW
|~x|4

(1.4)

This coefficient appears also in the two-point function of the stress-energy tensor and a

circular Wilson loop. From this definition, there is no hint that hW should involve only

a subset of color invariants. Nevertheless, for N = 2 SCFTs, these two coefficients are

related as

B = 3hW (1.5)

1We follow the convention that the previous definition with no indices means dR = trR 1 = dim R. The

appendix contains our conventions for color invariants, a summary of techniques useful to evaluate them,

and their evaluation for various representations and gauge groups.
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This identity was first noticed to hold in N = 4 super Yang-Mills, by explicit computa-

tion [10, 14]; it was conjectured to hold for N = 2 SCFTs in [9, 12] and recently proven

in [15]. However this identity is somewhat surprising in light of the previous comments.

For arbitrary gauge group G and representation R, B can be expressed in terms of just a

subset of color invariants. Why should that be the case also for hW ? In [9], it was further

conjectured that for N = 2 SCFTs

hW =
1

12π2
∂b ln 〈Wb〉|b=1 (1.6)

where 〈Wb〉 is the vev of a circular Wilson loop in a squashed sphere of parameter b. This

conjecture has been checked up to three loops [9, 16]; we want to show that the non-Abelian

exponentiation theorem — which applies to non-Abelian gauge theories regardless of the

amount of supersymmetry — provides evidence of this conjecture (1.6) by arguing that

both sides of (1.6) involve at every order in perturbation theory the same subset of color

invariants. On the one hand, given that (1.5) is now an established result [15], we know

that hW involves that same subset of color invariants as B. On the other hand, by virtue

of the non-Abelian exponentiation theorem, the perturbative expansion of ln 〈Wb〉 involves

also just the reduced set of color invariants implied by this theorem. What this argument

doesn’t prove is that the coefficients that appear in front of the color invariants in the

expansions of both sides of (1.5) also coincide; it doesn’t address the non-perturbative

validity of (1.5) either. The same comments apply to similar relations between various

Bremsstrahlung functions and logarithms of Wilson loops in 3d ABJM theories [17–20].

After this detour, let’s now describe the contents of the body of the paper. In this

work we will focus on 1/2 BPS Wilson loops of N = 4 super Yang-Mills, and the quantities

that can be obtained from these operators. Locally BPS Wilson loops of N = 4 super

Yang-Mills depend on a representation R of the gauge group G, and a spacetime contour C

WR[C] =
1

dim R
trRP exp

(
i

∫
C
(Aµẋ

µ + |ẋ|Φiθ
i)ds

)
(1.7)

When the contour is a circle (in Euclidean signature) the vev of this Wilson loop can be

computed by supersymmetric localization [21] that reduces it to a Gaussian matrix model

over the Lie algebra g

〈W 〉R =
1

dim R

∫
g dMtrRe

M e
− 1

2g
tr M2

∫
g dMe

− 1
2g

tr M2
(1.8)

The most common approach to tackle this type of matrix integrals is to first reduce the

integral over the Lie algebra to an integral over a Cartan subalgebra h. This introduces a

Jacobian, given by a Vandermonde determinant ∆(X)2,

〈W 〉R =
1

dim R

∫
h dX∆(X)2 trRe

X e
− 1

2g
tr X2

∫
h dX∆(X)2 e

− 1
2g

tr X2
(1.9)
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Then one applies either the method of orthogonal polynomials at finite N , or the saddle

point approximation at large N (see [22] for a pedagogical review). This approach yields

compact expressions for particular choices of G and R, but obscures the generic structure.

In the current work, we are not going to follow this approach. Instead, following recent

works [23, 24] we will not restrict the integrals to a Cartan subalgebra h as in (1.9), but

rather integrate over the full Lie algebra g, as in (1.8). At the technical level, the advantage

is that the Vandermonde determinant is not generated, and the matrix integrals are truly

trivial, since they are Gaussian. They can be carried out at once, for any R and G, just

applying Wick’s theorem. At the conceptual level, the benefit of this approach is that the

results obtained are in terms of color invariants. Our first result is that the vev of WR can

be written in term of symmetrized traces (1.2), with pairwise contracted indices,

〈W 〉R =
1

dR

∞∑
k=0

da1a1...akak
R

1

k!

(
g2

YM

4

)k
(1.10)

This expression gives the vev of 1/2 BPS circular Wilson loop for any representation R of a

gauge group G. It allows to discuss exact relations among vevs in different representations.

For instance, if Rt is the transpose representation of R (in the sense of having Young

diagrams transpose to each other), we will argue that

〈W 〉Rt(λ,N) = 〈W 〉R(λ,−N) (1.11)

thus relating, for instance, vevs in the symmetric and the antisymmetric representations

of SU(N). It is possible to take the logarithm of (1.10), to obtain a closed expression

for ln 〈W 〉R, but this closed expression is of very little use; in particular, the non-Abelian

exponentiation theorem is not manifest. On the other hand, the color invariants da1a1...akak
R

in (1.10) can be reduced to lower order color invariants. As it will be illustrated in the main

body of the paper, this expansion is simpler for ln 〈W 〉R than for 〈W 〉R itself: the only

color invariants that appear in the perturbative expansion of ln 〈W 〉R at a given order are

those that can’t be written as products of color invariants that appear at lower orders of the

perturbative expansion, thus providing an illustration of the non-Abelian exponentiation

theorem.

The structure of the papers is as follows. In section 2 we derive an exact expression

for 〈W 〉R in terms of color invariants, and present some exact relations among vevs of

different representations. In section 3 we study the large N limit of 〈W 〉R for arbitrary,

but fixed, representations of SU(N), up to order 1/N2. In section 4, we present the

expansion of ln 〈W 〉R in terms of color invariants; we provide a diagrammatic interpretation

of the expansion, and discuss some patterns present in the perturbative expansion. The

appendix contains our conventions for color invariants, a summary of the techniques we

use to evaluate them, and tables of the evaluation of various color invariants.
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2 〈W 〉R in terms of color invariants

In this section we revisit the evaluation of 〈W 〉R for N = 4 super Yang Mills, for an

arbitrary representation R of a generic Lie algebra G. Thanks to supersymmetric localiza-

tion [21] this problem reduces to a Gaussian matrix model, and it has been solved exactly,

for various choices of gauge group G and representation R [25–27]. As mentioned in the

introduction, typically this is done by first reducing the matrix integral to an integral over

the Cartan subalgebra, as in (1.9). While this procedure allows to obtain compact expres-

sions for 〈W 〉R for some choices of R, this has to be done in a case by case basis, and it

obscures the dependence on the choice of G and R. Since in this work we are particularly

interested in expressing 〈W 〉R in terms of color invariants, we will follow a different route.

We will instead carry out the integrals over the full Lie algebra. Specifically,

〈W 〉R =
1

dR

〈
trR e

2πM
〉

=
1

dim R

∫
g dM trRe

2πM e
− 8π2

g2
YM

tr M2

∫
g dM e

− 8π2

g2
YM

tr M2
(2.1)

If we denote by ma the coefficients of the matrix M in the Lie algebra, the two-point

function in this Gaussian matrix model is

〈
mamb

〉
=
g2

YM

8π2
δab a, b = 1, . . . , dA (2.2)

To compute the vev of the normalized Wilson loop, we expand the exponent insertion

in (2.1), use the two-point function (2.2) and apply Wick’s theorem,

〈W 〉R =
1

dR

∞∑
k=0

(2π)2k

(2k)!
〈ma1 . . .ma2k〉tr T a1

R . . . T a2k
R =

1

dR

∞∑
k=0

da1a1...akak
R

gk

k!
(2.3)

where g = g2
YM/4 and da1...ak

R are the symmetrized traces defined in (1.2). This expression

for 〈W 〉N=4
R is exact — recall that there are no instanton corrections for 〈W 〉R in N = 4 [21]

— and valid for any G and any R. It encompasses and unifies all the known results for

particular choices of G and R [25–27].

Now it is a matter of evaluating da1a1...akak
R , the fully symmetrized traces (1.2) with

pairwise contracted indices. At every order, the outcome is a combination of lower order

color invariants, involving the original representation R, and the adjoint representation A.

At low orders, it’s easy enough to evaluate them by hand, using the techniques detailed

in [7]. For instance,

daaR = tr T aRT
a
R = cRdR

daabbR =
1

3
tr
(

2T aRT
a
RT

b
RT

b
R + T aRT

b
RT

a
RT

b
R

)
=

(
c2
R −

1

6
cAcR

)
dR
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To push the evaluation to higher orders, we use FormTracer [28]. Up to order g14
YM we obtain

〈W 〉R= 1 + cRg +

(
c2
R −

1

6
cRcA

)
g2

2!
+

(
c3
R −

1

2
c2
RcA +

1

12
cRc

2
A

)
g3

3!

+

(
c4
R − c3

RcA +
5

12
c2
Rc

2
A −

5

72
cRc

3
A +

1

15

dabcdR dabcdA

dR

)
g4

4!

+

(
c5
R −

5

3
c4
RcA +

5

4
c3
Rc

2
A −

35

72
c2
Rc

3
A +

35

432
cRc

4
A

+

(
1

3
cR −

2

9
cA

)
dabcdR dabcdA

dR
+

1

90
cR
dabcdA dabcdA

dA

)
g5

5!

+

(
− 35

288
cRc

5
A +

35

48
c4
Ac

2
R −

35

18
c3
Ac

3
R +

35

12
c2
Ac

4
R −

5

2
cAc

5
R + c6

R +
1

10

dabcdR dcdefA defabA

dR

+

(
1

15
c2
R −

11

180
cRcA

)
dabcdA dabcdA

dA

+

(
c2
R −

3

2
cAcR +

11

18
c2
A

)
dabcdR dabcdA

dR
− 8

63

dabcdefR dabcdefA

dR

)
g6

6!

+

(
c7
R −

7

2
cAc

6
R +

35

6
(c2
Ac

5
R − c3

Ac
4
R) +

175

48
c4
Ac

3
R −

385

288
c5
Ac

2
R +

72757

326592
cRc

6
A(

7

3
c3
R −

35

6
c2
RcA +

21

4
cRc

2
A −

91

54
c3
A

)
dabcdR dabcdA

dR

+

(
7

30
c3
R −

7

15
c2
RcA +

817

3240
cRc

2
A

)
dabcdA dabcdA

dA

691

18900
cR
dabcdA dcdefA defabA

dA
− 80

27

dabcdefA dabcgR ddefgA

dR
+

14

45

dabcdefR dabcgA ddefgA

dR

7

10
(cR − cA)

dabcdR dcdefA defabA

dR
+

8

9
(cA − cR)

dabcdefR dabcdefA

dR

)
g7

7!
+ . . . (2.4)

By construction, every color invariant in this expansion involves an even number of indices.

Since da1...ak
A = 0 for k odd, for every color invariant the adjoint representation contributes

an even number of indices, and thus the representation R also contributes an even number.

Up to the order computed, no color invariants involving da1...ak
R with an odd number of

indices appear in the expansion. They would necessarily involve more than one da1...ak
R , e.g.

dabcR dadeR dbcdeA . It is not clear to us whether such color invariants will appear at higher orders.

The reader that feels intimidated by the expansion (2.4) might find some comfort

in the fact that, as we will show in section 4, the perturbative expansion of ln 〈W 〉R is

considerably simpler.

Besides the possibility of evaluating 〈W 〉R order by order in gYM for all G and R at

once, the result (2.3) allows to derive some general exact relations among vevs of 1/2 BPS

Wilson loops in different representations. The first identity that we will point out is rather

obvious. For a generic representation R, recall that the complex conjugate representation
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R̄ of R has generators TR̄ = −T tR. Then, since dim R = dim R̄, it follows that

〈W 〉R̄ = 〈W 〉R (2.5)

As an illustration of this equality, we have that 〈W 〉SU(N)
Ak

= 〈W 〉SU(N)
AN−k

, an identity that is

readily seen to hold in the explicit results of [26].

A less trivial relation involves representations of classical Lie groups with transposed

Young diagrams. For instance, irreducible representations of SU(N) are labelled by Young

diagrams, and exchanging symmetrization and antisymmetrization of indices amounts to

transposing the Young diagram. It is known [8, 29] that under this operation, color in-

variants change as N → −N , up to an overall sign. For a representation R whose Young

diagram has k boxes, the overall sign is

da1a1...amam
Rt (N) = (−1)k+mda1a1...amam

R (−N) (2.6)

In particular, dim Rt(N) = (−1)k dim R(−N), as one can check for SU(N) using (A.3).

Since we are considering normalized Wilson loops, divided by dim R, the (−1)k cancels

in (2.3). The remaining (−1)m can be absorbed by expanding the vev in powers of the ’t

Hooft coupling λ = g2
YMN instead of in powers of g2

YM. Overall, we arrive at the relation

〈W 〉Rt(λ,N) = 〈W 〉R(λ,−N) (2.7)

In the next section, we will provide an alternative derivation of this identity for SU(N).

As a first illustration, a particular example of this identity is the relation

〈W 〉Sp(N)
F (N) = 〈W 〉SO(2N)

F (−N) (2.8)

found in [27]. Moreover, (2.7) implies that the vevs of Wilson loops in the symmetric and

antisymmetric representations of SU(N) satisfy

〈W 〉Sk(λ,N) = 〈W 〉Ak(λ,−N) (2.9)

since the Young diagrams of the k−symmetric and k−antisymmetric representations are

transpose of each other. Okuyama [30] recently found evidence for this particular conse-

quence of the identity in eq. (2.7).2 To illustrate the relation in eq. (2.9) we evaluate (2.3)

for G = SU(N) and R = Sk, Ak up to seventh order in λ, applying methods explained in the

appendix. For compactness, we actually display the perturbative expansion of ln 〈W 〉Sk/Ak ,

with the upper signs corresponding to the symmetric representation, and the lower signs

2To compare our identity (2.9) with the one in [30], note that the Wilson loops in [30] are not normalized

by the dimension of the representation. If the Young diagram associated with the representation R has k

boxes, dim Rt(N) = (−1)k dim R(−N), so normalizing the Wilson loop by dim R introduces an additional

(−1)k factor in the relation, proving the equivalence of the result in [30] and ours.
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to the antisymmetric one,

ln 〈W 〉Sk/Ak =
k(N ± k)(N ∓ 1)

2N2

(
λ

4
− 1

12

(
λ

4

)2

+
1

72

(
λ

4

)3

+
−4N2 ∓N + k(k ±N)

1440N2

(
λ

4

)4

+
13N2 ± 10N − 10k(k ±N) + 3

21600N2

(
λ

4

)5

−
(

11

112
+

43(±N − k(k ±N))

280N2
+

109

1008N2

+
±73N − 113Nk(N ± k) + 20k2(N ± k)2

2520N4

)
1

6!

(
λ

4

)6

+

(
647

20321280
± 89

1036800N
+

10501

101606400N2
± 17

268800N3
+

197

12700800N4

∓ 5471k

65318400N
− 19

268800N2
− 4499k2

65318400N2
∓ k

44800N3
∓ 19k2

268800N3

± k3

33600N3
− k2

44800N4
+

k4

67200N4

)(
λ

4

)7
)

+ . . . (2.10)

Notice that, at least up to order g14
YM, all the coefficients factorize, and have a common

factor that happens to be essentially the quadratic Casimir cSk/Ak ,

cSk/Ak =
k(N ± k)(N ∓ 1)

2N
(2.11)

This factorization is unexpected and, as the next example shows, it does not happen for

generic representations. In the next section we will discuss this factorization in more detail,

and argue that for ln 〈W 〉Sk/Ak it holds to all orders.

Another implication of the identity (2.7) is that if R is a SU(N) representation with

a self-transpose Young diagram, 〈W 〉R(λ,N) admits a 1/N2 rather than the more general

1/N expansion. A first illustration of this point is the fact that 〈W 〉SU(N)
has a 1/N2

expansion. As a second illustration of this point, we display the perturbative expansion of

ln 〈W 〉SU(N)
up to seventh order in λ, showing that every coefficient has a 1/N2 expansion,

ln 〈W 〉SU(N)
=

3(N2 − 3)

2N2

λ

4
− N2 − 3

8N2

(
λ

4

)2

+
N2 − 3

48N2

(
λ

4

)3

+
−4N4 + 19N2 − 27

960N4

(
λ

4

)4

+
13N4−106N2 + 261

14400N4

(
λ

4

)5

+
−495N6+6796N4 − 23269N2+9720

2419200N6

(
λ

4

)6

+
3235N6 − 71360N4 + 310273N2 − 268572

67737600N6

(
λ

4

)7

+ . . . (2.12)

While we are discussing identities (2.5) and (2.7) for 1/2 BPS circular Wilson loops of

N = 4 SYM, since they are mostly based on group theoretic properties of the color invari-

ants, we expect that similar identities hold in more generic theories, for other observables

defined in terms of a representation R of a classical Lie group G.

Equations (2.5) and (2.7) are exact relations, valid for finite λ and N . When the

gauge group has a classical Lie algebra (and therefore a large N gravity dual), these exact
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relations have implications for the holographic dual. In particular, let’s comment briefly

on the implications of 〈W 〉SU(N)
R having a 1/N2 expansion when R is a representation with

a self-transpose Young diagram.

In the probe limit, the holographic dual to a Wilson loop operator with an arbitrary

Young diagram is a system of D3 and D5-branes in IIB [31–33]. Considering the transpose

representation amounts to exchanging D3 and D5 branes. The identity (2.7) implies that

in the particular case when the D-brane system is invariant under the exchange of D3

and D5 branes, corrections have a 1/N2 expansion. If we keep increasing the size of

the Young diagram, the correct dual gravitational description eventually is in terms of

bubbling geometries, half-BPS solutions of IIB supergravity, fully described in [34]. The

representation R is geometrically encoded in a hyperelliptic curve, and a self-transpose

Young diagram corresponds to hyperelliptic curves with an additional Z2 symmetry. Again,

our results imply that corrections to the supergravity action evaluated on these backgrounds

have 1/N2 as expansion parameter, instead of 1/N . It would be interesting to check these

predictions on the various regimes of the holographic dual.

3 Large N expansion of 〈W 〉SU(N)
R

In this section we expand the vev of the unnormalized 1/2 BPS Wilson loop for a generic

but fixed representation of SU(N) in the large N limit. We will obtain the leading term, the

1/N and the 1/N2 corrections. We do so for a fixed representation, i.e. we do not consider

the interesting case where the number of boxes in the Young diagram of the representation

scales with N . For recent work in that direction see [35–38].

The strategy to obtain this expansion will be the following. We will first recall some

basic properties of the representation theory of the symmetric group, including Frobenius

formula. By virtue of the Schur-Weyl duality, this formula yields an exact relation for vevs

of Wilson loops of U(N): it gives the vev of the Wilson loop in an arbitrary representation

as a linear combination of correlators of multiply-wound Wilson loops in the fundamental

representation. The 1/N expansion of these correlators allows then to derive the large N

expansion of 〈W 〉U(N)
R in arbitrary representations. Finally, since the rest of the paper deals

with SU(N) rather than U(N), we will take into account the relation between 〈W 〉U(N)
R

and 〈W 〉SU(N)
R in order to be able to make detailed comparisons with the results in the

previous section.

Let R be an arbitrary irreducible representation of U(N), whose associated Young

diagram has k boxes. Due to the Schur-Weyl duality, this Young diagram is also associated

to an irreducible representation r of the symmetric group Sk. For our purposes, it will be

convenient to recall some basic facts about the symmetric group Sk [39]. A permutation

π ∈ Sk is of cycle type (1m1 , 2m2 , . . . , kmk) if it has mj cycles of length j. Two permutations

of Sk are in the same conjugacy class if and only if have the same cycle type. Conjugacy

classes of Sk are labelled by partitions of k, or equivalenty by Young diagrams with k boxes:

the conjugacy class λ = (1m1 , 2m2 , . . . , kmk) corresponds to a diagram with mj rows of j

boxes. Finally, if we define zλ = 1m1m1!2m2m2! . . . kmkk!, the number of elements in the

conjugacy class λ is k!/zλ.
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Frobenius formula allows to write the Schur polynomial of a irreducible representation

as a linear combination of power sum symmetric polynomials [39],

sλ =
∑
π

χλ(π)

zλ
pπ (3.1)

where χλ(π) is the character of λ evaluated in the conjugacy class π, and the sum runs

over conjugacy classes of Sk, so there are p(k) terms, the number of partitions of k.

Thanks to the Schur-Weyl duality, (3.1) can be uplifted to a statement relating rep-

resentations of U(N). First, the Schur polynomial corresponds to the character of the

representation R, so its integral precisely yields 〈W 〉R. On the other hand, the n−times

wound Wilson loop in the fundamental representation, which we denote by W (n), cor-

responds to tr
(
e2πM

)n
. Then, for the conjugacy class (1m1 , . . . , kmk), the power sum

symmetric polynomial corresponds to the insertion of W (1)m1 . . .W (k)mk . All in all, we

arrive at

〈W 〉R =
∑
λ

χr(λ)

zλ
〈W (1)m1 . . .W (k)mk〉 (3.2)

where χr(λ) is the character of R evaluated in the conjugacy class λ. This relation is exact,

valid for finite N . As already mentioned above, the sum in (3.2) involves p(k) terms, the

number of partitions of k. However in the large N limit, only a few of these terms contribute

to the leading behavior and the first subleading corrections. In fact, we will argue that

to compute the first three terms in the large N expansion of 〈W 〉R, one needs to consider

only four terms in the sum (3.2).

Let’s now recall a couple of properties of the n−point functions 〈W (1)m1 . . .W (k)mk〉.
Large N factorization implies that the leading behavior is given by N

∑
j mj ; notice that∑

jmj is the number of rows of the corresponding Young diagram. Furthermore, all these

correlators have a 1/N2 expansion. These two properties allow us to give a different deriva-

tion of (2.7) for SU(N), or more precisely, its formulation for unnormalized Wilson loops,

〈W 〉Rt(λ,N) = (−1)k〈W 〉R(λ,−N) (3.3)

The argument goes as follows. If R is an irreducible representation of Sk, rt = r ⊗ sgn is

also an irreducible representation, and their Young diagrams are transpose of each other.

We then have χr
t
(λ) = sgn λχr(λ). The sign of a permutation can be easily read off from

its Young diagram,

sgn λ = (−1)k−
∑
j mj (3.4)

where k is the total number of boxes and
∑

jmj is the number of rows. In other words, the

exponent is the total number of boxes not in the first column. On the other hand, according

to the two properties explained above, 〈W (1)m1 . . .W (k)mk〉 picks a sign (−1)
∑
j mj under

N → −N . Plugging these two results into (3.2) yields the relation (3.3).

Let’s discuss now the correlators of multiply wound Wilson loops that contribute to the

leading terms of the large N expansion of 〈W 〉R. There is just one λ whose Young diagram

has k rows, the vertical column, see figure 1. This is the only n−point function contributing

to the leading term, of order Nk, and because it has a 1/N2 expansion, it also contributes
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(a) 15 (b) 2113 (c) 3112 (d) 2211

Figure 1. The large N expansion of 〈W 〉SU(N)
R for any fixed R can be computed up to order 1/N2,

in terms of four correlators of multiply-wound Wilson loops. Each correlator of multiply-wound

Wilson loops has its own Young diagram, and the four relevant ones are displayed in this figure.

They are shown for the particular example of an arbitrary irreducible representation R with k = 5

boxes in its Young diagram. The first one contributes at leading order, and at 1/N2 order. The

second one contributes at 1/N order. The last two ones contribute at 1/N2 order.

at order Nk−2, but not at order Nk−1. For its conjugacy class, z1k = k!. There is also just

one (k−1)−point function contributing at order Nk−1, the one corresponding to the Young

diagram where the k boxes are distributed in k − 1 rows, (211k−2), see figure 1. For its

conjugacy class z211k−2 = 2(k−2)!. At order 1/N2, there are subleading contributions from〈
W (1)k

〉
, and also leading contributions from two (k−2)−point functions,

〈
W (3)W (1)k−3

〉
and

〈
W (2)2W (1)k−4

〉
, see figure 1. All in all,

〈W 〉R =
χr(1k)

k!

〈
W (1)k

〉
+
χr(211k−2)

2(k − 2)!

〈
W (2)W (1)k−2

〉
+
χr(311k−3)

3(k − 3)!

〈
W (3)W (1)k−3

〉
+
χr(221k−4)

8(k − 4)!

〈
W (2)2W (1)k−4

〉
+O(Nk−3) (3.5)

To compute the leading contributions to the vevs, we use that in the large N limit, the

n−point functions of the Gaussian matrix model factorize, and in the planar limit [40],〈
1

N
W (n)

〉
→ 2

n
√
λ
I1(n
√
λ) (3.6)

where I1(
√
λ) is the modified Bessel function. Let’s consider finally the subleading con-

tributions of
〈
W (1)k

〉
, that contribute at order 1/N2. To do so, it is convenient to write〈

W (1)k
〉

in terms of connected correlators. At this order the relevant terms are

〈
W (1)k

〉
= 〈W (1)〉k +

(
k

2

)
〈W (1)〉k−2〈W (1)W (1)〉c + . . . (3.7)

The dots correspond to more connected diagrams, which don’t contribute at 1/N2 order.

We see that 1/N2 contributions can come from two types of diagrams: first, from diagrams

with k disconnected pieces, k − 1 planar ones and a non-planar one; second, from planar

diagrams with k− 1 disconnected pieces (k− 2 of them are 1−point functions, the last one

is a connected 2−point function). The first contribution is obtained expanding the exact
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result of [25]

〈
1

N
W (1)

〉k
=

(
2I1(
√
λ)√

λ
+
λI2(
√
λ)

48N2
+ . . .

)k
=

2kI1(
√
λ)k

λ
k
2

+ k
2kI1(

√
λ)k−1I2(

√
λ)

96λ
k−3

2

1

N2
+ . . .

For the second contribution we need the leading term of the connected two-point function

of Wilson loops 〈W (1)W (1)〉c [41],

〈W (1)W (1)〉c =

√
λI0(
√
λ)I1(

√
λ)

2
+ . . . (3.8)

All in all, the vev of the unnormalized Wilson loop has the following 1/N expansion,

〈W 〉U(N)
R =

χr(1k)

k!

(
2√
λ
I1(
√
λ)

)k
Nk +

χr(211k−2)

4(k − 2)!

(
2√
λ

)k−1

I1(
√
λ)k−2I1(

√
4λ)Nk−1

+

(
χr(1k)

(k − 1)!

2kI1(
√
λ)k−1

16λ(k−3)/2

(
I2(
√
λ)

6
+ (k − 1)I0(

√
λ)

)
+
χr(311k−3)

3(k − 3)!

2kI1(
√
λ)k−3I1(

√
9λ)

12λ(k−2)/2

+
χr(221k−4)

8(k − 4)!

2kI1(
√
λ)k−4I1(

√
4λ)2

16λ(k−2)/2

)
Nk−2 + . . . (3.9)

We are now going to check that the general expansion (3.9) reproduces the explicit

computations presented in the previous section. In order to make a detailed comparison,

there are a couple of factors to take into account. The first one is that in the rest of the

paper, the vevs are for SU(N) and not for U(N). This is not relevant for the leading term,

but it affects the subleading terms. For the vev of 1/2 BPS Wilson loop in a representation

R whose Young diagram has k boxes, they are related by

〈W 〉SU(N)
R = e−

λk2

8N2 〈W 〉U(N)
R (3.10)

Since k is fixed (it does not scale with N), this introduces a correction at order 1/N2. The

other issue is that in this section, unlike in the rest of the paper, we have been considering

Wilson loops not normalized by the dimension. However, since we will compare the generic

result with explicit computations of ln 〈W 〉R, the dimension only contributes as a coupling-

independent additive constant.

As a first check, let’s consider the case of the Sk and Ak representations of SU(N).

The corresponding representations of the symmetric group Sk are the trivial and the sign

representations: k1 and 1k, respectively. Since these are one-dimensional representations

of Sk, their characters coincide with the representation elements: χk(π) = 1, and χ1k(π) =

sgn π. The signs of the four relevant permutations can be computed using (3.4) and

consulting the figure 1. Applying then the formula (3.9) to Sk/Ak we obtain, up to a
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coupling-independent constant,

ln 〈W 〉SU(N)
Sk/Ak

= k ln
I1(
√
λ)√
λ
± k(k − 1)

8

√
λI1(
√

4λ)

I1(
√
λ)2

1

N
+

(
− k2

8
λ+

kλ3/2I2(
√
λ)

96I1(
√
λ)

+
k(k − 1)λ3/2I0(

√
λ)

16I1(
√
λ)

+
k(k − 1)(k − 2)λI1(

√
9λ)

36I1(
√
λ)3

− k(k − 1)(2k − 3)λI1(
√

4λ)2

64I1(
√
λ)4

)
1

N2
(3.11)

The 1/N correction vanishes for k = 1, as it had to, since then the Wilson loop admits a

1/N2 expansion. This expression correctly reproduces the leading, 1/N and 1/N2 terms

of the first orders computed in (2.10).

As a second check of the general result (3.9), consider the representation . Its charac-

ter evaluated on the relevant conjugacy classes is χ ( ) = 2, χ ( ) = 0, χ ( ) = −1.

The evaluation of (3.9) is then

ln 〈W 〉SU(N)
= 3 ln

I1(
√
λ)√
λ

+

(
−9

8
λ+

3λ3/2I0(
√
λ)

8I1(
√
λ)

+
λ3/2I2(

√
λ)

32I1(
√
λ)
− λI1(

√
9λ)

12I1(
√
λ)3

)
1

N2
+ . . .

(3.12)

which correctly reproduces the explicit computations displayed in (2.12).

4 Logarithm of 〈W 〉R

In section 2 we have obtained a formula (2.3) for the vev of the 1/2 BPS Wilson loop,

for arbitrary G and R. For many applications, we are actually interested in ln 〈W 〉R. In

this section we will obtain a closed expression for ln 〈W 〉R and discuss its perturbative

expansion.

From (2.3) it is possible to write the power series for the logarithm of 〈W 〉R, in terms

of partial Bell polynomials Bn,k. Let’s quickly recall the argument. A convenient way to

define these polynomials is through its generating function,

e

(
u
∑∞
j=1 xj

tj

j!

)
=
∑
n,k≥0

Bn,k(x1, . . . , xn−k+1)
tn

n!
uk (4.1)

Then, for any power series of the form

a(g) = 1 +

∞∑
k=1

1

k!
fkg

k (4.2)

making use of the Taylor series for ln(1 + x) near the origin, we easily derive that

ln a(g) =
∞∑
k=1

gk

k!

k∑
j=1

(−1)j−1(j − 1)!Bk,j(f1, f2, . . . , fk−j+1) (4.3)
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Coming back to our specific problem, after defining fk = da1a1...akak
R /NR, we have

ln 〈W 〉R =

∞∑
k=1

gk

k!

k∑
j=1

(−1)j−1(j − 1)!Bk,j(f1, f2, . . . , fk−j+1) (4.4)

As an application, using the result of [10], we obtain a closed formula for the Bremsstrah-

lung function (1.3) of any 1/2 BPS particle, for generic G and R

BR(λ,N) =
1

2π2
λ
∂ ln 〈W 〉R

∂λ
=

1

2π2

∞∑
k=1

gk

(k−1)!

k∑
j=1

(−1)j−1(j−1)!Bk,j(f1, f2, . . . , fk−j+1)

(4.5)

Taking into account the B = 3hW relation (1.5), this also gives an expression for the

coefficient hw appearing in the two-point function of the 1/2 BPS Wilson loop and the

stress-energy tensor, for arbitrary gauge group G and representation R.

While (4.4) is a closed expression for ln 〈W 〉R, valid for any G and any R, it is extremely

inefficient, and it obscures the fact that the perturbative expansion of ln 〈W 〉R is actually

simpler than that of 〈W 〉R. To make this point manifest, let’s compute ln 〈W 〉R from

eq. (2.4), up to order g14
YM,

ln 〈W 〉R = cRg −
1

6
cRcA

g2

2!
+

1

12
cRc

2
A

g3

3!
+

(
− 5

72
cRc

3
A +

1

15

dabcdR dabcdA

NR

)
g4

4!

+

(
35

432
cRc

4
A −

2

9
cA
dabcdR dabcdA

NR
+

1

90
cR
dabcdA dabcdA

dA

)
g5

5!

+

(
− 35

288
cRc

5
A +

11

18
c2
A

dabcdR dabcdA

dR
− 11

180
cAcR

dabcdA dabcdA

dA

+
1

10

dabcdR dcdefA defabA

dR
− 8

63

dabcdefR dabcdefA

dR

)
g6

6!

+

(
72757

326592
cRc

6
A−

91

54
c3
A

dabcdR dabcdA

dR
+

817

3240
c2
AcR

dabcdA dabcdA

dA

− 7

10
cA
dabcdR dcdefA defabA

dR
+

691

18900
cR
dabcdA dabefA dcdefA

dA
− 8

27

dabcdefA dabcgR ddefgA

dR

+
14

45

dabcdefR dabcgA ddefgA

dR
+

8

9
cA
dabcdefR dabcdefA

dR

)
g7

7!
+ . . . (4.6)

Comparing with (2.4), we see that many color invariants present in the expansion of 〈W 〉R
are absent in the expansion of ln 〈W 〉R. For instance, there are no color invariants in (4.6)

involving ckR with k ≥ 2. This simpler structure is a consequence of the non-Abelian expo-

nentiation theorem [2, 3]: at every order in perturbation theory, the only color invariants

that can appear in ln 〈W 〉R are the ones that can’t be written as products of color invari-

ants that appear at lower orders in the perturbative expansion of 〈W 〉R. So in practice, to

obtain the expansion of ln 〈W 〉R in terms of color invariants, it is more efficient to expand

〈W 〉R as in (2.4) and then discard by hand the terms that involve products of lower order

color invariants.
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4.1 Casimir factorization

In section 2, we noticed that the evaluation of the perturbative expansion (4.6) of ln 〈W 〉R
for the case of the symmetric and antisymmetric representations of SU(N), eq. (2.10),

showed an unexpected pattern up to the computed order, that we will refer to as Casimir

factorization (not to be confused with the Casimir scaling hypothesis, as we discuss below).

On general grounds, the coefficients at every order in λ in ln 〈W 〉R are polynomials in

1/N . Equation (2.10) shows that up to at least order λ7, these coefficients factorize (as

polynomials in 1/N) with a universal factor, the quadratic Casimir divided by N , which

is also quadratic polynomial in 1/N . We refer to this feature as Casimir factorization. We

will now argue that Casimir factorization of ln 〈W 〉Sk/Ak holds to all orders

ln 〈W 〉Sk/Ak
?
=
cSk/Ak
N

fSk/Ak(λ,N) (4.7)

where fSk/Ak is such that at every order in λ the coefficient is a k−dependent polynomial

in 1/N . Recall that

cSk/Ak =
k(N ± k)(N ∓ 1)

2N
(4.8)

so if we argue that at every order the coefficients of lnWSk/Ak are divisible by (N ± k)

and (N ∓ 1), we are done. First, because of the relation 〈W 〉Ak = 〈W 〉AN−k , that follows

from the identity (2.5), ln 〈W 〉Ak must vanish when k = N , and together the identity (2.9),

this implies that at every order the coefficients must have a (±N + k) factor. Similarly,

〈W 〉SU(N)
Sk

|N=1 = 1, so ln 〈W 〉SU(N)
Sk

|N=1 = 0. Again, together with the identity (2.9), this

implies that at every order the coefficients must have a (N ∓ 1) factor, concluding the

argument for (4.7).

The Casimir factorization (4.7) can’t be true for generic representations, since the

evaluation of ln 〈W 〉 , eq. (2.12), shows that it does not hold for that representation.

Namely, as derived in the appendix, c = 3(N2−3)
2N , but starting at order λ4, the coeffi-

cients in the expansion of ln 〈W 〉 , eq. (2.12), are not divisible by N2 − 3, so they don’t

satisfy the Casimir factorization. It would be interesting to determine if the Casimir fac-

torization (4.7) of ln 〈W 〉R holds for other representations beyond the symmetric and the

antisymmetric one.

Casimir factorization bears a superficial resemblance to the hypothesis of Casimir

scaling, that states that various quantities derived from vevs of logarithms of Wilson loops

in QCD — chiefly the quark-antiquark static potential [42] — depend on the choice of

representation of the matter fields only through the quadratic Casimir cR. Namely, for the

logarithm of the vev of a Wilson loop,

ln 〈W 〉R
?
= cRf(λ,N) (4.9)

where f(λ,N) is a universal function, independent of the representation R. In QCD,

Casimir scaling of the quark-antiquark potential is known to be violated at three

loops [43, 44]. For the cusp anomalous dimension, Casimir scaling holds up to three

loops [45], but in QCD is violated starting at four loops [46]. For 1/2 BPS particles
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coupled to N = 4 SYM in arbitrary representations, it follows from the results of [10] —

and our expression (4.6) makes it abundantly clear — that ln 〈W 〉R does not satisfy Casimir

scaling, starting at four loops. Due to the relation (4.5), it follows that the Bremsstrahlung

function, and therefore the full cusp anomalous dimension, also violates Casimir scaling

starting at four loops. This violation at four-loops has also been observed by explicit

computation in the light-like limit of the cusp anomalous dimension [47].

It is worth emphasizing that this Casimir factorization is a property of the color invari-

ants themselves, and in this regard, doesn’t provide any information about the dynamics

of the theory. On the other hand, the original Casimir scaling is a statement about the

vanishing of the coefficients in front of higher order color invariants.

Finally, let’s remark that this discussion was at finite N . In the planar limit, it follows

from (A.6) that for a representation R whose Young diagram has k boxes,

cR →
k

2N
(4.10)

so it follows from eq. (3.9) that

ln 〈W 〉planar
R =

2cR
N

ln
2I1(
√
λ)√

λ
(4.11)

and we conclude that in the planar limit, the ordinary Casimir scaling actually holds for

ln 〈W 〉R and the quantities derived from it, like the Bremsstrahlung function BR.

4.2 Diagrammatic interpretation

We now want to provide a diagrammatic interpretation of the perturbative expansion (4.6)

of ln 〈W 〉R. It was argued in [25, 40] and proven in [21] that in the Feynman gauge, the

only Feynman diagrams that contribute to 〈W 〉R involve gluon propagators starting and

ending on the Wilson line. In the Mathematics literature these diagrams have been studied

thoroughly, and are called chord diagrams [48]. At order 2n there are (2n − 1)!! of them.

On the other hand, by virtue of the non-Abelian exponentiation theorem [2, 3], to compute

ln 〈W 〉R one only needs to take into account a subset of them, the so-called connected chord

diagrams: diagrams where all gluon lines overlap with some other gluon line, see figure 2.

The number of connected chord diagrams with n chords satisfies the following recursion

relation [49, 50]

a1 = 1 an = (n− 1)

n−1∑
k=1

akan−k (4.12)

so the first values up to the seven loops considered in this work are

an = 1, 1, 4, 27, 248, 2830, 38232, . . . (4.13)

It can be proven [51] that asymptotically the ratio of the number of connected chord

diagrams to the total number of chord diagrams with n gluons is given by

lim
n→∞

an
(2n− 1)!!

=
1

e
(4.14)
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Figure 2. Various examples of chord diagrams: the first one is a generic gluon diagram, they

contribute to 〈W 〉R at finite N . For k gluons, by Wick’s theorem there are (2k−1)!! such diagrams.

The second one is a connected chord diagram. They contribute to ln 〈W 〉R. Their number is given

by the recursion relation (4.12). The last diagram is a fully disconnected chord diagram. These are

the diagrams that contribute to the planar limit of 〈W 〉 [40]. For k gluons, there are Ck = (2k)!
(k+1)!k!

of them.

−(2 + )

c̄ = cR
(
cR − 1

2
cA
)2 −

(
2cR
(
− 1

2
cRcA

)
+ c3

R

)
= 1

4
cRc

3
A

Figure 3. Example of the determination of the modified color factor. The modified color factor

of this connected diagrams with three gluons is obtained by considering the usual color factor and

subtracting the color factor of all possible decompositions.

So, asymptotically, the number of connected Feynman diagrams is e times less than the

total number of Feynman diagrams.

To compute ln 〈W 〉R by evaluating just the connected gluon diagrams, we have to take

into account that according to the non-Abelian exponentiation theorem [2, 3], the color

factor we have to assign to each diagram is not the ordinary one, but a modified color factor

c̄i. To compute c̄i of a given connected gluon diagram, we have to consider the original

color factor, and subtract the color factor of all possible decompositions of the diagram,

see figure 3 for an illustration of this procedure.

There is a further reduction on the number of gluon diagrams that one needs to con-

sider, since many connected chord diagrams have the same reduced color factor. The

relevant object that determines whether two chord diagrams have the same reduced color

factor is the intersection graph associated to a given diagram. For every chord diagram one

defines an intersection graph as follows [52]: for each chord introduce a point on the plane;

if two chords cross, draw an edge between the two points, see figure 4 for an example.3

If the crossing graphs are isomorphic, then the reduced color factors of the original chord

diagrams are the same. Since only connected chord diagrams contribute to ln 〈W 〉R, we

can restrict our attention to connected intersection graphs. The number of non-isomorphic

connected intersection graphs for chord diagrams has been discussed in [55]. Their num-

3Intersection graphs of chord diagrams have appeared recently in discussions of the SYK model [53, 54].
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Figure 4. Example of intersection graph associated to a Feynman diagram with four gluons: for

each gluon, draw a dot on the plane; each time two gluon lines intersect, draw a link between the

corresponding two dots.

bers are

1, 1, 2, 6, 21, 110, 789, 8336, 117283, . . . (4.15)

So for instance, at order g4, there are 7!! = 105 chord diagrams, 27 connected chord

diagrams and only 6 connected intersection graphs.

We currently don’t know how to read off the modified color factor directly from the

intersection graph. Therefore, the procedure we propose is the following: first, group all

connected chord diagrams, according to their intersection graphs. For each intersection

graph, evaluate the modified color factor by computing it for any of the associated con-

nected chord diagrams. Finally, add the contributions of all connected chord diagrams.

We have carried out this procedure up to four loops. The results appear in figure 5. At

first order there is a single diagram, with modified color factor c̄ = cR. At second order

there is a again a single diagram, with c̄ = −1
2cRcA. At third order, there are four con-

nected chord diagrams; three of them share the first intersection graph with three dots,

and have c̄ = 1
4cRc

2
A, while the fourth one has c̄ = 1

2cRc
2
A. At fourth order there are 27

connected chord diagrams, grouped according to the displayed six intersection graphs as

follows 27 = 8 + 4 + 8 + 2 + 4 + 1.

If n is the number of gluon propagators, we have

ln 〈W 〉R =
∞∑
n=1

1

2n!

(
gYM

2

2

)n∑
conn

c̄i (4.16)

where the sum
∑

conn runs over connected chord diagrams with n gluon propagators. Sum-

ming over all connected chord diagrams with up to four gluons, weighted by the modified

color factors that appear in figure 5, we reproduce the expansion (4.6) up to fourth order.

4.3 Comments on the coefficients

In this concluding subsection, we indulge in a bit of numerology, and point out some pat-

terns that we have spotted in the numerical coefficients that appear in the expansion (4.6)

of ln 〈W 〉R. Before we proceed, we must emphasize that starting at seventh order, color

invariants are not all independent; the first identity they satisfy is [7]

dabcdefA dabcdefA − 5

8
dabcdA dcdefA defabA +

7

240
c2
Ad

abcd
A dabcdA +

1

864
c6
AdA = 0 (4.17)

For this reason, starting at seventh order, one must make a choice of color invariants to

present any result, and any claim about the coefficients in front of the color invariants must

take this ambiguity into account.
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cR

−1
2cRcA

1
4cRc

2
A

1
2cRc

2
A

−1
8cRc

3
A

−1
8cRc

3
A

−1
4cRc

3
A

− 5
12cRc

3
A +

dabcdR dabcdA
dR

−13
24cRc

3
A +

dabcdR dabcdA
dR

−19
24cRc

3
A +

dabcdR dabcdA
dR

Figure 5. The first column displays all the non-isomorphic intersection graphs, up to four loops

(graphs with four dots). The middle column shows a representative of the connected chord diagrams

that share the given graph. The last column displays the modified color factor that must be assigned

to all diagrams with the same intersection graph.

The first observation is that, up to sixth order, the coefficients of cR in the perturbative

expansion (4.6) are of the form

CkcR
(
−cA
12

)k
gk+1 (4.18)

where Ck are Catalan numbers

Ck =
1

k + 1

(
2k

k

)
= 1, 1, 2, 5, 14, 42, 132, . . . (4.19)

At first sight, the appearance of Catalan numbers is hardly surprising, since they are

ubiquitous in combinatorial problems, and in particular in graph enumeration. In fact,

– 19 –



J
H
E
P
0
5
(
2
0
1
9
)
2
0
2

Catalan numbers appear in the planar approximation of the 1−point functions in the

Hermitian Gaussian matrix model [56]〈
tr φ2k

〉
= CkNk+1 +O(Nk−1) (4.20)

or equivalently, see figure 2, in the planar approximation to the vev of the Wilson loop in the

fundamental representation, where Ck counts the number of diagrams with k non-crossing

gluons [40]

〈W 〉planar =
1

N

∞∑
k=0

〈
tr φ2k

〉
planar

g2k
YM

(2k)!
=

∞∑
k=0

Ck
(2k)!

(
λ

4

)k
=

2I1

(√
λ
)

√
λ

(4.21)

However, we haven’t been able to argue that the coefficients of cR in (4.6) should follow the

pattern (4.18). The difficulty in finding such an argument is that these coefficients arise

from the interplay of combinatorics (diagram counting) and manipulations of Lie algebra

generators, and we haven’t managed to translate this interplay into a purely counting

problem.

A second observation is that the coefficients of the dabcdR dabcdA invariant, up to seventh

order, follow a similar pattern, where now the numerators are given by Eulerian numbers,

A(k, 1) = 2k − k − 1,

A(k, 1)

10
ck−2
A

dabcdR dabcdA

dR

(
−g
6

)k
g2 (4.22)

A third an final observation is that, again up to sixth order, when a color invariant appears

for the first time in the expansion (4.6) of ln 〈W 〉R, the coefficient in front of it is a unit

fraction, a fraction with numerator equal to one.4

At seven loops, in the basis of color invariants chosen to present the result (4.6), the

pattern (4.18) no longer holds. However, the numerical coefficient in front of cRc
6
A comes

strikingly close to follow the pattern (4.18), if we recall that C7 = 132

72757

1646023680
cRc

6
A =

131.985 . . .

126
cRc

6
A (4.23)

Similarly, the third observation doesn’t hold either: the color invariants that appear for

the first time at seven loops in (4.6) have coefficients that are not unit fractions. At this

order, the second observation is not affected by the ambiguity due to the relation (4.17),

but presumably at higher orders it will be affected by similar identities involving da1...ak
R .

As emphasized above, seven loops is precisely the first order where there are identities

among color invariants, (4.17) being the first one. So it is natural to ask whether the

breakdown of the patterns spotted up to six loops can be restored by the use of this

relation. Since equation (4.17) is an identity among invariants, we can use it to impose by

hand that the coefficient of cRc
6
A is indeed the one following the Catalan pattern, at the

4To avoid confussion, the coefficients that this observation refers to include the 1
k!

factor in the gk term

in (4.6).
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expense of introducing an overcomplete basis of color invariants. The terms that will be

affected by the change are

72757

1646023680
cRc

6
A +

817

16329600
c2
AcR

dabcdA dabcdA

dA
+

691

95256000
cR
dabcdA dabefA dcdefA

dA
(4.24)

and after the use of the identity (4.17), they turn into

132

126
cRc

6
A +

13

259200
c2
AcR

dabcdA dabcdA

dA
+

1

216000
cR
dabcdA dabefA dcdefA

dA
+

1

238140
cR
dabcdefA dabcdefA

dA
(4.25)

Notice that if we impose by hand that the pattern (4.18) is preserved at seventh order,

it turns out that the coefficients of the color invariants that appear for the first time at

this order are now unit fractions, thus restoring also the validity of the third observation

at seventh order. While the relevance of this fact is unclear to us, there was no a priori

reason for it to happen.

So in closing, an open question is whether at higher orders in the expansion (4.6) it is

always possible to use relations among color invariants to present the result in a way that

the three observations presented above hold to all orders. If this turns out to be the case,

a second question would be if these patterns hint at an alternative way of computing (4.6),

in which they are easily explained.
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A Color invariants

In this appendix we collect our conventions for color invariants, which are largely those

of [7]. We also present the explicit results we use in the main body of the paper; some of

them are already listed in [7, 8, 59].

Let R be a representation of a Lie algebra: F and A denote the fundamental and the

adjoint representations. The dimension of R is denoted by dR. The generators T aR of the

representation satisfy

[T aR, T
b
R] = ifabcT cR a, b = 1, . . . , dA (A.1)
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N N+1 N+2

N-1 N

d = N(N+1)(N+2)(N−1)N
4×3×1×2×1

Figure 6. Example of the computation of the dimension of an irreducible representation of SU(N).

This does not fix the normalization of the generators T aR. We introduce two representation-

dependent constants,

tr T aRT
b
R = I2(R)δab

T aRT
a
R = cR1dR×dR

These two representation-dependent constants are related as follows

dAI2(R) = dRcR (A.2)

In this work, we consider representations different from the fundamental only for the group

SU(N). Irreducible representations of SU(N) are labelled by Young diagrams, given by

k ≤ N − 1 rows of λi boxes, (λ1, . . . , λk) with λ1 ≥ λ2 ≥ · · · ≥ λk. We recall briefly how to

compute the dimension and cR of a representation from its Young diagram.

One can compute the dimension of the representation R of SU(N) from the Young

diagram as follows [60]: given a box of the diagram, define its hook length hi by the

number of boxes in the hook formed by the boxes to its right (in the same row), the boxes

below it (in the same column), and the box itself. Then, to compute the dimension of

R, start writing N inside the box at the upper left corner of the Young diagram. Then

fill the remaining boxes with numbers Ni, obtained by adding one every time one moves

to the right, and subtracting one every time one moves down. The dimension of the

representation is

dR =
∏
i

Ni

hi
(A.3)

Figure 6 displays the computation of dR for a particular example. It follows from

this formula that if R is a representation whose Young diagram has k boxes, and Rt the

representation with transpose Young diagram

dRt(N) = (−1)kdR(−N) (A.4)

The quadratic Casimir cR for the representation with Young diagram (λ1, λ2, . . . , λm) is

given by [61]

cR = I2(F )

(
m∑
i=1

λi(N + λi + 1− 2i)−
(
∑

i λi)
2

N

)
(A.5)

This expression can be rewritten as follows [62],

cR = I2(F )

(
kN +

∑
i

λ2
i −

∑
j

(λTj )2 − k2

N

)
(A.6)
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where k is the number of boxes of the Young diagram, k =
∑

i λi. This formula makes

manifest that

cRt(−N) = −cR(N) (A.7)

Once one has dR and cR for a given representation R, I2(R) follows from eq. (A.2).

A.1 Higher order invariants

Define the fully symmetrized traces as a normalized sum over all the possible index per-

mutations

da1...ak
R =

1

k!

∑
σ∈Sk

tr
(
T
aσ(1)

R . . . T
aσ(k)

R

)
(A.8)

It will be very useful to define the Chern character of a representation [7], as a function

of dummy variables F a. The symmetrized traces defined above appear in the expansion of

the character,

chR(F ) = tr eF
aTaR =

∞∑
k=0

1

k!
da1...ak
R F a1 . . . F ak (A.9)

In the main body of the paper we need the evaluation of color invariants for various

representations of SU(N), and also for the fundamental representation of SO(N). The

strategy we have used is to first derive results for the fundamental representation (most

of them are already available in [7]). For higher dimensional representations, we will first

relate their Chern character to that of the fundamental representation, and then evaluate

their color invariants, making use of the results found for the fundamental representation.

A.2 Invariants for the fundamental representations of SU(N) and SO(N)

The following formulas have been computed using FORM [57], and in the SU(N) case,

checked with FeynCalc [58].

A.2.1 Color invariants for SU(N)

For SU(N) we choose the usual normalization I2(F ) = 1/2. Then

dF = N cF =
N2 − 1

2N
dA = N2 − 1 cA = I2(A) = N (A.10)

The relevant color invariants are

dabcdF dabcdA =
N(N2 − 1)(N2 + 6)

48

dabcdA dabcdA =
N2(N2 − 1)(N2 + 36)

24

dabcdF dcdefA defabA =
N3(N2 − 1)(N2 + 51)

432

dabcdA dcdefA defabA =
N2(N2 − 1)(N4 + 135N2 + 324)

216

dabcdefF dabcdefA =
(N2 − 1)N(N4 + 36N2 + 120)

3840
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dabcdefF dabcgA ddefgA =
N2(N2 − 1)(N4 + 45N2 + 84)

3840

dabcdefA dabcgF ddefgA =
N2(N2 − 1)(N4 + 141N2 + 540)

3840

A.2.2 Color invariants for SO(N)

For SO(N) we choose the usual normalization I2(F ) = 1. Then

dF = N cF =
N − 1

2
NA =

N(N − 1)

2
cA = N − 2 (A.11)

The relevant color invariants are

dabcdF dabcdA =
dAcA

24
(N2 − 7N + 22)

dabcdA dabcdA =
dAcA

24
(N3 − 15N2 + 138N − 296)

dabcdF dcdefA defabA =
dAcA
432

(2N4 − 31N3 + 387N2 − 1582N + 2048)

dabcdA dcdefA defabA =
dAcA
432

(2N5 − 47N4 + 971N3 − 7018N2 + 23272N − 29440)

dabcdefF dabcdefA =
dAcA
960

(
N4 − 32N3 + 273N2 − 902N + 1312

)
dabcdefF dabcgA ddefgA =

dAcA
960

(
N5 − 16N4 + 193N3 − 1214N2 + 3656N − 3920

)
dabcdefA dabcgF ddefgA =

dAcA
960

(
N5 − 40N4 + 697N3 − 4598N2 + 14576N − 17888

)
A.3 Invariants for Sk/Ak representations of SU(N)

Applying the formulas (A.3) and (A.5) for the representations Ak/Sk of SU(N), we have

dAk =

(
N

k

)
c2(Ak) = I2(F )

k(N + 1)(N − k)

N
I2(Ak) = I2(F )

(
N − 2

k − 1

)
dSk =

(
N + k − 1

k

)
c2(Sk) = I2(F )

k(N − 1)(N + k)

N
I2(Sk) = I2(F )

(
N + k

k − 1

)
We now turn to color invariants involving higher order symmetrized traces da1...am

R ,

for R = Sk/Ak. For invariants involving up to dabcdR , we first derive the formulas valid for

arbitrary k, and then check them via an alternative computation, for k = 1, 2, 3, 4.

For invariants involving dabcdefR , we have explicitly computed the results for k =

1, 2, 3, 4, and then we have guessed a formula for generic k, imposing that the formulas

are invariant under k → N − k for Ak. So the formulas quoted have been only derived for

k = 1, 2, 3, 4 but are probably true also for any k. According to [59]

dabcdSk
=
N(N−1) + 6k(N+k)

(k − 1)!(N + 3)!
(N + k)!dabcdF +

(
N+k+1

k − 2

)
I2(F )2

(
δabδcd + δacδbd + δadδbc

)
(A.12)

dabcdAk
=
N(N + 1)− 6k(N − k)

(k − 1)!(N − k − 1)!
(N − 4)!dabcdF +

(
N − 4

k − 2

)
I2(F )2

(
δabδcd + δacδbd + δadδbc

)
(A.13)
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To obtain the relevant color invariants, we contract these formulas with various sym-

metrized traces in the adjoint representation, and use

daacdA =
5

6
c2
Aδ

cd (A.14)

daacdefA =
7

10
cAd

cdef
A (A.15)

The results are as follows (the upper sign is for Sk, the lower one is for Ak),

dabcdR dabcdA = cRdR
N

24

(
N2 ∓ 6N + 6k(k ±N)

)
dabcdR dabefA dcdefA = cRdR

N2

216

(
N3 ∓ 6N2 − 9N ∓ 54 + 6Nk(k ±N) + 54k(N ± k)

)
dabcdefA dabcgR ddefgA = cRdR

N2

1920

(
N4 ∓ 6N3 + 81N2 ∓ 594N + (N2 ± 54N + 540)k(k ±N)

)
Note that they satisfy the N → −N symmetry when Sk → Ak (up to global sign) and

for Ak the k → N − k symmetry. In order to repeat the same procedure to evaluate color

invariants involving dabcdefSk/Ak
, we would need formulas similar to eqs. (A.12) and (A.13) for

dabcdefSk/Ak
. From [59] one can derive the leading terms in such formulas

dabcdefSk
=

k−1∑
i=0

(k − i)5

(
N + i− 1

i

)
dabcdefF + . . .

dabcdefAk
=

k−1∑
i=0

(−1)k−1−i(k − i)5

(
N

i

)
dabcdefF + . . .

but we are not aware of complete formulas for arbitrary k. Instead, we will compute them

for small values of k, from the character formulas for the symmetric and antisymmetric

representations [7]

ChSk(F ) =
∑
ni,mi
k=nimi

∏
i

1

mi!

(
Ch(niF )

ni

)mi

ChAk(F ) = (−1)k
∑
ni,mi
k=nimi

∏
i

1

mi!

(
−Ch(niF )

ni

)mi

where the sum is over all partitions of k into different integers ni, each appearing with

multiplicity mi. From these formulas, we obtain the characters of Sk, Ak for k = 2, 3, 4,

ChS2/A2
(F ) =

1

2
(ChF )2 ± 1

2
Ch( 2F )

ChS3/A3
(F ) =

1

3!
(ChF )3 ± 1

2
Ch 2FChF +

1

3
Ch 3F

ChS4/A4
(F ) =

1

4!
(ChF )4 ± 1

4
Ch 2F (ChF )2 +

1

8
(Ch 2F )2 +

1

3
Ch 3FChF ± 1

4
Ch 4F
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We expand in powers of F up to sixth order. At zeroth, second and fourth orders

we recover the formulas for NSk/Ak , cSk/Ak and dabcdSk/Ak
for k = 2, 3, 4. At sixth order, we

obtain the following formulas for dabcdefSk/Ak
,

dabcdefS2/A2
= (N ± 32)dabcdefF + I2(F )

(
δabdcdefF + . . .

)
+
(
dabcF ddefF + . . .

)
(A.16)

dabcdefS3/A3
=
N2 ± 65N + 486

2
dabcdefF + (N ± 10)I2(F )(δabdcdefF + . . . )

+ (N ± 8)(dabcF ddefF + . . . ) + I2(F )3(δabδcdδef + . . . ) (A.17)

and

dabcdefS4/A4
=
N3 ± 99N2 + 1556N ± 6144

6
dabcdefF +

N2 ± 21N + 92

2
I2(F )(δabdcdef + . . . )

+
N2 ± 17N + 68

2
(dabcF ddefF + . . . ) + (N ± 6)I2(F )3(δabδcdδef + . . . ) (A.18)

Using these expressions, we evaluate the following color invariants,

dabcdefSk/Ak
dabcdefA =

cRdRN

1920

(
N4 ∓ 30N3 + 186N2

± 60N + 30N2k(k ±N) + 120k2(N ± k)2 − 300Nk(N ± k)
)

(A.19)

dabcdefSk/Ak
dabcgA ddefgA =

cRdRN
2

1920

(
N4 ∓ 30N3 + 105N2 ± 150N + 144

+30N2k(k ±N) + 120k2(N ± k)2 − 210Nk(N ± k)− 180k(k ±N)
)

(A.20)

We emphasize that these last two formulas have been proven only for k = 1, 2, 3, 4,

although we are confident that they are true for arbitrary k. We find that all the color

invariants we have computed for Sk and Ak are related by N → −N , as expected [29].

We can perform some checks for specific values of N. For SU(4) the invariants for A2

coincide with those of SO(6) in the fundamental.

A.4 Results for the representation of SU(N)

In the main body of the paper, we display various results for the representation, since it

is the simplest representation that is not fully symmetric or fully antisymmetric. Further-

more, its Young diagram is self-transpose, thus it allows to illustrate the 1/N2 expansion of

〈W 〉R for these representations. Some of the results we need are already available in [59],

but we have derived all the formulas below independently and checked them with [59] when

possible.

To obtain the character for this representation, we recall

× × = + 2 + (A.21)

from which we deduce

Ch F =
1

3
(ChF )3 − 1

3
Ch 3F (A.22)
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Expanding this result up to sixth order in F we obtain

d =
N(N2 − 1)

3
c =

3(N2 − 3)

2N
I2( ) =

N2 − 3

2
(A.23)

dabcd = (N2 − 27)dabcdF + 2NI2(F )2
(
δabδcd + δacδbd + δadδbc

)
(A.24)

dabcdef = (N2−35)dabcdefF + 2N(dabdcdef +. . . ) + 2N(dabcddef +. . . ) + 2(dabdcddef +. . . )

(A.25)

The results for d and c can also be derived from the general formulas (A.3) and (A.5).

With these formulas we derive the following color invariants

dabcddabcdA =
N(N2 − 1)(N4 + 39N2 − 162)

48

dabcddabefA dcdefA =
N3(N2 − 1)(N4 + 192N2 − 729)

432

dabcdefdabcdefA =
N(N2 − 1)(N6 + 213N4 + 6492N2 − 29160)

3840

dabcdefdabcgA ddefgA =
N2(N2 − 1)(N6 + 402N4 + 1389N2 − 11772)

3840

dabcdefA dabcgA ddefg =
N2(N2 − 1)(N6 + 282N4 + 2781N2 − 14580)

3840

We can provide two checks for these results. First, all the color invariants have a 1/N2

expansion, as expected since the Young diagram is self-transpose. Also, for SU(2), the

invariants evaluate to the same numbers if we replace dabcd, dabcdef by dabcdF , dabcdefF .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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1 Introduction

The emergence of quantum gravity from a gauge theory is one of the most fascinating

issues that can be addressed with the AdS/CFT correspondence. Since the work of [1] it

has been clear that not every conformal field theory (CFT) in the large N limit can be

dual to a gravitational theory described by a two derivative Einstein-Hilbert action. For

instance, for four dimensional CFTs a necessary condition is that the two central charges

coincide in the large N limit, a = c [1]. For instance, this property is satisfied by N = 4

super Yang-Mills, but it is not satisfied by N = 2 SU(N) with nF = 2N hypermultiplets

in the fundamental representation, thus ruling out that the large N limit of this CFT has

a holographic dual well described by gravity.

Since the early days of the holographic correspondence, it has been important to find

further examples of CFTs with holographic duals, beyond the original example of N = 4

SYM. Four dimensional quiver gauge theories with N = 2 superconformal symmetry satisfy

an ADE classification [2], and for certain values of the marginal couplings, they are orbifolds

of N = 4 SYM and have a gravity dual [3, 4]. These quiver gauge CFTs constitute thus

an interesting laboratory, as variation of their marginal couplings allows to connect CFTs

with and without gravity duals in the large N limit [5–12].

In this work we will considerN = 2 SCFTs with gauge group a product of SU(N)s, pay-

ing special attention to the simplest case, the Â1 theory, with gauge group SU(N)×SU(N).

This theory has two marginal couplings (g1, g2) and varying them one can reach an orbifold

of N = 4 SYM and N = 2 SU(N) SQCD. Our main technical tool will be supersymmetric

localization [13]. Thanks to this tool, the planar free energy and expectation value of the

1/2 BPS circular Wilson loop are known to all orders in the ’t Hooft coupling for the

limiting theories mentioned above N = 4 SYM and N = 2 SU(N) SQCD [14–19].

– 1 –
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Four dimensional N = 2 quiver CFTs have already been studied using localization [7,

10–12, 20]. The novelty of this work is that we evaluate various quantities of these theories

in the planar limit, to all orders in the ’t Hooft couplings λi. We do so by applying the

same strategy developed for CFTs with simple gauge groups in [19]. For these quiver

CFTS, supersymmetric localization [13] reduces the evaluation of various quantities to

matrix integrals. Compared to the case of N = 2 SCFTs with a simple gauge group, the

main novelty is that the resulting matrix models are multi-matrix models. In the simplest

case, the model to solve is a two-matrix model. As in our recent work [19], we rewrite the

1-loop factor as an effective action involving an infinite number of double-trace terms, in

the fundamental representation of the respective gauge groups. We then show that this

double-trace form of the potential implies that the perturbative series considered admit a

combinatorial formulation, as sums over tree graphs.

While we will present results valid for all N = 2 quiver CFTs, we will pay special

attention to the simplest theory, Â1. This theory has a Z2 symmetry exchanging the two

nodes of the quiver. Since the ranks of the gauge groups are equal, this Z2 symmetry

amounts to exchanging g1 ↔ g2. We will be particularly interested in observables that

transform nicely under this symmetry: the free energy and particular linear combinations

of the usual 1/2 BPS circular Wilson loop defined for each node [7].

In section 2, after introducing the theories we will consider, we derive the perturbative

series of the planar free energy, to all orders in the ’t Hooft couplings λi. Let’s present

here the answer for the Â1 theory. It is convenient to define F0(λ1, λ2) = F0(λ1, λ2) −
F0(λ1)

N=4 − F0(λ2)
N=4. The perturbative series is given by a sum over tree graphs,

F0(λ1, λ2) =
∞∑

m=1

(−2)m
∞∑

n1,...,nm=2

ζ(2n1 − 1) . . . ζ(2nm − 1)

n1 . . . nm
(−1)n1+···+nm

×
n1−1∑

k1=1

(
2n1

2k1

)
· · ·

nm−1∑

km=1

(
2nm

2km

) ∑

unlabeled trees
with m edges

1

|Aut(T)|
m+1∏

i=1

V̄i ,

(1.1)

where the product at the end of the last line runs over the vertices of a tree, and V̄i are

factors to be defined below. This expression is formally identical to the one found for

N = 2 SQCD in [19], except for the fact that now the factors V̄i depend on two ’t Hooft

couplings, λ1 and λ2. The terms in (1.1) with a single value of the ζ function have already

appeared in [20]. In the perturbative expansion of F0(λ1, λ2) above, each product of values

of the ζ function is accompanied by a polynomial in λ1 and λ2, that can be rewritten as a

palindromic polynomial in λ2/λ1. Intriguingly, up to the order we have checked explicitly,

all such polynomials have all roots on the unit circle of the complex λ2/λ1 plane. This is of

course reminiscent of the seminal work by Lee and Yang [21] for the zeros of the partition

function of the ferromagnetic Ising model on a graph. We are able to prove this property for

all the terms in (1.1) with a single value of ζ, and formulate two conjectures for general trees.

In section 3, we compute the planar limit of the expectation value of the 1/2 BPS

circular Wilson loop defined for the gauge group in one of the two nodes of the Â1 theory,

and in the fundamental representation. The answer is now given as a sum over rooted

– 2 –
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trees. This Wilson loop is defined for one of the two nodes of the quiver, so it does

not transform nicely under the Z2 symmetry of the theory. For this reason we consider

〈W 〉± = 〈W1〉 ± 〈W2〉 (with the N = 4 results subtracted). For 〈W 〉± we find again that,

up to the orders we have checked explicitly, all the polynomials in λ2/λ1 that appear have

all roots on the unit circle.

In the appendices, we write the first terms in the explicit expansion of the planar free

energy and expectation value of various Wilson loop operators.

This work leaves open a number of interesting problems. First, there are general

arguments that the perturbative series of the planar limit of quantum field theories have

finite radius of convergence [22]. We have been able to determine the domain of convergence

of just a small subset of the perturbative series found in this paper - see also [20] - but

rigorously determining the full domain of convergence of the full perturbative series seems

like a much harder problem. Second, in the main text we formulate two conjectures on the

zeros of the polynomials that appear in the perturbative series of the planar free energy

and expectation values of Wilson loops. It would be interesting to prove these conjectures,

and further investigate if this property is related to the integrability of these theories, that

has been encountered both in the planar limit [6, 9, 23, 24] and in the full theory [25, 26].

2 The partition function of N = 2 quiver CFT

In this section we introduce the theories we are going to study, and recall how supersym-

metric localization reduces the evaluation of selected quantities to matrix integrals. In

particular, we will study first the planar free energy of the theory. Following [27–29], the

integrals are performed over the full Lie algebra instead of restricting to a Cartan subalge-

bra, and the 1-loop factor is rewritten as an effective action. We will focus on the planar

limit and in this limit, as in [19], we will unravel the underlying graph structure of the

perturbative expansion.

Let us start by briefly reviewing the classification and field content of N = 2 su-

perconformal quiver gauge theories with SU(N) gauge groups. They are in one-to-one

correspondence with simply-laced affine Lie algebras ÂDE, and thus follow an ADE clas-

sification [2]. The gauge sector and matter content are encoded in the extended Cartan

matrix of the affine Lie algebra. The gauge group is
∏

i

SU(niN) , (2.1)

where ni is the Dynkin index of the i-th node of the affine Dynkin diagram. The hyper-

multiplets transform in the representations

⊕ aij

(
niN, njN

)
, (2.2)

where aij is the adjacency matrix of the Dynkin diagram.

These theories have a marginal coupling for each gauge group and, in the particular

case where the complexified couplings satisfy

τi = niτ , (2.3)

– 3 –
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the quiver theory can be obtained as an orbifold of N = 4 SU(N) super Yang-Mills by the

discrete subgroup Γ of SU(2) [2], which also follow an ADE classification. These theories

can be engineered in string theory via a suitable brane configuration and even more, in

a suitable limit, they admit a weakly curved gravity dual in terms of the AdS5 × S5/Γ

geometry [3, 4]. On the other hand, when all the couplings are set to zero except one, say

g1, the quiver theory reduces to N = 2 SQCD.

After having reviewed N = 2 superconformal quiver theories, let’s discuss supersym-

metric localization for them. Following [13] it is possible to localize the ÂDE theories on

S4. It is also possible to localize the theory on a squashed sphere of parameter b for which

in the limit b → 1 we recover the sphere, in such configuration the exact partition function

is given by

Z =

∫
daI Z1-loop(aI , b)| Zinst(aI , b)|2e

− ∑n
I=1

8π2

g2
I

Tra2
I
, (2.4)

where aI denotes the eigenvalues of the vector-multiplet scalars ΦI restricted to the constant

mode on S4. In what follows we will be mostly interested in quantities that are relevant

in the b ≃ 1 limit, such as the Wilson loop operator, or even more just observables defined

on the sphere. As usual we will restrict our analysis to the zero-instanton sector, thus

neglecting |Zinst|2, and expanding (2.4) in b we obtain

Z =

∫
daI Z1-loop(aI) e

− ∑n
I=1

8π2

g2
I

Tra2
I
+O((b − 1)2) , (2.5)

higher order terms in b were studied before in [10] and we refer the reader there for more

details. The factor Z1-loop is the 1-loop contribution determined by the matter content.

For instance for the Ân−1 theory it is given by

Z1-loop =
n∏

I=1

∏
i<j H2(iaI

i − iaI
j )∏

i,j H(iaI
i − iaI+1

j )
, (2.6)

where we identify the node n+1 with the first one and H(x) is the Barnes function whose

expansion is given by

logH(x) = −(1 + γ)x2 −
∞∑

n=2

ζ(2n − 1)

n
x2n . (2.7)

Following the previous works [27–29] the strategy will be once again to interpret the

matter content as an effective action

Sint = − logZ1-loop . (2.8)

Given that the theory is conformal for arbitrary values of the couplings, the quadratic

terms in (2.7) will exactly cancel and the effective action will start at order g4i .

Let us first illustrate the process with the Â1 quiver since the extension to the gen-

eral case is straightforward. In this case the field content of the Â1 quiver consists of

– 4 –
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two vector multiplets in the adjoint: (AI
µ,ΦI ,Φ

′I), I = 1, 2, and bi-fundamental matter:

(X, Y, X†, Y †) : DµX = ∂µX + A1
µX − XA2

µ. The l-loop factor reduces to

Z1-loop =

∏
i<j H2(ia1i − ia1j )H

2(ia2i − ia2j )∏
i,j H2(ia1i − ia2j )

. (2.9)

Following the procedure presented in [19] and using (2.7) it is possible to arrive to the

effective action, obtaining

Sint =
∞∑

n=2

ζ(2n − 1)(−1)n

n

×
[

n−1∑

k=1

(
2n

2k

)(
Tr a

2(n−k)
1 Tr a2k1 +Tr a

2(n−k)
2 Tr a2k2 − 2Tr a

2(n−k)
1 Tr a2k2

)

−
n−2∑

k=1

(
2n

2k + 1

)(
Tr a

2(n−k)−1
1 Tr a2k+1

1 +Tr a
2(n−k)−1
2 Tr a2k+1

2

− 2Tr a
2(n−k)−1
1 Tr a2k+1

2

)]
, (2.10)

where all traces are in the fundamental representation of the respective gauge group. Let’s

comment upon a couple of features of this result: first, as we already encountered in

our previous work for theories with simple gauge groups [19], the effective action involves

infinite sums of double-trace terms, that split into even and odd powers. By the same

large N counting arguments as in [19], the odd powers will not contribute to the planar

computations, so we discard such terms in what follows. Second, the pattern of double-

trace terms in (2.10) is dictated by the Cartan matrix of Â1,

1

2
C =

(
1 −1

−1 1

)
. (2.11)

This shouldn’t be a surprise, since for N = 2 quiver superconformal field theories, the mat-

ter content is fixed by the 1-loop β functions, which are captured by the generalized Cartan

matrix [2]. This last observation allows us to generalize (2.10) to arbitrary N = 2 super-

conformal quiver theory. The effective action, keeping just the terms with even powers, is

Sint =
1

2

∑

I,J

CIJ

∞∑

n=2

ζ(2n − 1)(−1)n

n

n−1∑

k=1

(
2n

2k

)
Tra

2(n−k)
I Tra2kJ , (2.12)

where CIJ is the Cartan matrix of the corresponding affine Lie algebra.

2.1 Planar free energy

We turn now to the large N limit of the free energy on S4, F (λi, N) = logZS4 . In

fact, as usual, we will compute the difference of free energy with the Gaussian model,

– 5 –
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F(λi, N) ≡ F (λi, N) −∑i F (λi)
N=4. Our goal is to determine the leading term in the

large N expansion, i.e. F (λi, N) = F0(λi)N
2 + · · · . In general we have

F (λi, N) = logZS4 =
∞∑

m=1

(−1)m+1

m

( ∞∑

k=1

(−1)k

k!
〈Sk

int〉
)m

, (2.13)

the free energy scales like N2 in the planar limit, so there are many cancellations in (2.13)

and we need to fully identify the N2 terms from (2.13) that survive these cancellations.

The argument to extract those terms is exactly the same as in our recent work [19]: for

a disconnected 2m-point function, the pieces that scale like N2 are products of m + 1

connected correlators. These connected correlators in the planar limit are given by [30]

(see also [31] for a more recent derivation)

〈Tr a2k1Tr a2k2 . . .Tr a2kn〉c = V(k1, . . . , kn)λ̃
dN2−n, λ̃ =

λ

16π2
, (2.14)

with

V(k1, . . . , kn) =
(d − 1)!

(d − n + 2)!

n∏

i=1

(2ki)!

(ki − 1)!ki!
, d =

n∑

i=1

ki. (2.15)

The products of m + 1 connected correlators that contribute to the planar free energy

are those where the 2m traces are distributed in a way that can be characterized by a

tree graph [19]: for each correlator introduce a vertex, and join them by an edge if they

have operators from the same double-trace. The contributions to F0(λ) at fixed order in

the number of values of ζ function are then obtained following a similar procedure as in

our recent work [19], but with a couple of modifications. Terms with m values of the ζ

function have m pairs of traces, coming from m double-trace terms, which are of the form

CIJTr a
2(n−k)
I Tr a2kJ .

To find the contribution to the planar free energy at this order, first draw all the

trees with m edges. For every tree, assign each of the m double-traces to one of the m

edges; this labels the m edges of the tree, turning it into a edge-labeled tree. Next, add

an arrow to each of the m edges, turning the tree into a directed edge-labeled tree. Assign

Tr a
2(n−k)
I to the vertex at the start (i.e. origin of the arrow) of the i-th edge. Assign Tr a2kJ

to the vertex at the end (i.e. end of the arrow) of the i-th edge. This procedure assigns

to each of the m + 1 vertices a number of traces equal to its degree αj , i.e. the number

of edges connected to that vertex. For each vertex, consider now the connected correlator

of all its trace operators and assign it its numerical factor Vj , eq. (2.15), times λ̃
dj

j , with

j = 1, . . . , m + 1. For the connected correlator to be nonzero, all traces at a given vertex

must be of the same matrix, and this enforces that they have the same index. Finally,

multiply the contribution of this tree graph by a product of m components of the Cartan

matrix, one per edge, with the indices fixed by those at the vertices of each edge. Summing

– 6 –
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over all the possible choices, we arrive at

F0(λ̃1, . . . , λ̃n) =
∞∑

m=1

(−1)m

m!

∞∑

n1,...,nm=2

ζ(2n1 − 1) . . . ζ(2nm − 1)

n1 . . . nm
(−1)n1+···+nm

×
n1−1∑

k1=1

(
2n1

2k1

)
· · ·

nm−1∑

km=1

(
2nm

2km

)
1

2m

∑

directed trees
with m labeled edges

∑

I,J

CI1J1 . . . CImJm

m+1∏

i=1

λ̃di
Ii
Vi .

(2.16)

This expression is the perturbative series for the planar free energy of any N = 2 supercon-

formal quiver theory, with quiver determined by the affine Lie algebra with Cartan matrix

C. In what follows, we will discuss mostly the simplest quiver theory, Â1, that has gauge

group SU(N)×SU(N), and Cartan matrix (2.11). This means that double-traces where

both operators belong to the same gauge group, e.g. Tr a
2(n−k)
1 Tr a2k1 are weighted with a

+1, while mixed double-traces, e.g. Tr a
2(n−k)
1 Tr a2k2 are weighted with a −1. The overall

sign of a given product of correlators is then −1 raised to the number of mixed double-

traces. These signs can be transferred from the edges to the vertices: just assign an extra

factor (−1)αj to all vertices of the tree corresponding to correlators of, say, the second gauge

group (this choice is arbitrary and the final result is independent of it). To convince oneself

that these two rules are the same, write every sign on top of the edges of the tree: if it is a

−1 assign it to the vertex with operators of the second gauge group. If it is a +1, and it is

joining two vertices with operators of the second gauge group, just write +1 = (−1)(−1)

and again assign one −1 to each vertex. Then each vertex contributes a factor

V̄(x1, . . . , xα) = V(x1, . . . , xα)
(
λ̃

∑
i xi

1 + (−1)αλ̃
∑

i xi

2

)
, (2.17)

and the generic expression (2.16) simplifies to

F0(λ̃1, λ̃2) =
∞∑

m=1

(−1)m

m!

∞∑

n1,...,nm=2

ζ(2n1 − 1) . . . ζ(2nm − 1)

n1 . . . nm
(−1)n1+···+nm

×
n1−1∑

k1=1

(
2n1

2k1

)
· · ·

nm−1∑

km=1

(
2nm

2km

) ∑

directed trees
with m labeled edges

m+1∏

i=1

V̄i .

(2.18)

Finally, by exactly the same arguments as in our previous paper [19], the last sum can be

reduced to a sum over unlabeled trees

F0(λ̃1, λ̃2) =
∞∑

m=1

(−2)m
∞∑

n1,...,nm=2

ζ(2n1 − 1) . . . ζ(2nm − 1)

n1 . . . nm
(−1)n1+···+nm

×
n1−1∑

k1=1

(
2n1

2k1

)
· · ·

nm−1∑

km=1

(
2nm

2km

) ∑

unlabeled trees
with m edges

1

|Aut(T)|
m+1∏

i=1

V̄i .

(2.19)

Let’s mention a further property of F0(λ̃1, λ̃2). Since F0(λ̃2, λ̃1) = F0(λ̃1, λ̃2) and

F0(λ̃1, λ̃1) = 0, it follows that F0(λ̃1, λ̃2) has a double zero,

F0(λ̃1, λ̃2) = (λ̃1 − λ̃2)
2f(λ̃1, λ̃2) , (2.20)
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this implies that at the orbifold point λ1 = λ2 - see comment below (2.3) - not just the

free energy, but also its first derivative with respect to λ coincides with the N = 4 result.

To see that this property is implied by our result (2.19), we are going to prove that the

contribution of every tree to (2.19) is of the form

(λ̃1 − λ̃2)
vodd p(λ̃1, λ̃2) , (2.21)

where vodd is the number of vertices of the tree with odd degree, and p(λ̃1, λ̃2) is a symmetric

polynomial in λ̃1 and λ̃2 with positive coefficients. This follows from inspection of the factor

attached to each vertex, (2.17). When the degree α of a vertex is odd, λ̃1 = λ̃2 is a simple

root of that factor. After pulling out these factors, what is left is a polynomial with positive

coefficients. As a check, notice that vodd is always even: for a tree with m + 1 vertices,∑m+1
i=1 αi = 2m, and since

∑
i α

even
i is even,

∑
i α

odd
i must be even also, which implies that

vodd is even. This concludes the argument for (2.21). Now, since every tree has at least

two vertices of degree one, vodd ≥ 2, and (2.20) follows.

To illustrate (2.19), let’s work out the first terms. The m = 1 terms in (2.19) are terms

with a single value of ζ [20]. To write them, it is convenient to first recall the definition of

the Narayana numbers

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
, (2.22)

and the Narayana polynomials

Cn(t) =
n−1∑

k=0

N(n, k + 1)tk , (2.23)

that satisfy Cn(1) = Cn with Cn the Catalan numbers. At this order, we have to consider

trees with two vertices. There is just one such tree, and both vertices have degree one.

Then,

F0(λ̃1, λ̃2)|ζ = −
∞∑

n=2

ζ(2n − 1)

n
(−1)n

n−1∑

k=1

(
2n

2k

)
Cn−kCk

(
λ̃n−k
1 − λ̃n−k

2

)(
λ̃k
1 − λ̃k

2

)

= −
∞∑

n=2

ζ(2n − 1)

n
(−1)nCnλ̃n

1

[(
1 +

λ̃n
2

λ̃n
1

)
Cn+1 − 2Cn+1

(
λ̃2

λ̃1

)]
, (2.24)

where to avoid confusion, the first term in the parenthesis involves the Catalan number

Cn+1, and the second one the Narayana polynomial Cn+1(λ̃2/λ̃1). A first question we can

ask about this series is what is its domain of convergence in C2. As pointed out in [19, 20],

when λ2 = 0 it is straightforward to prove that the radius of convergence is λ1 = π2, and

the same holds, mutatis mutandi, when λ1 = 0. When both couplings are different from

zero, since F0(λ1, λ1) = 0 the series trivially converges when both couplings are equal.

When the two couplings are different, one of them is larger, say λ1, applying the quotient

criterion it follows that for any |λ2| < |λ1| ≤ π2, the series is convergent. All in all, this

series is convergent in |λ1| ≤ π2, |λ2| ≤ π2 plus the λ1 = λ2 line.

For N = 2 superconformal field theories with a simple gauge group, terms with a

fixed number of values of the ζ function form an infinite series. In [19] we sketched an
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argument that all these series have the same radius of convergence. It seems possible that

this property extends to quiver theories.

Let’s work out a couple more of terms in (2.19). Terms with two values of the ζ

function are given by a sum over trees with two edges. There is just one tree with two

edges, and its vertices have degrees (1, 2, 1). As a last example, terms with three values of

the ζ function are given by a sum over trees with three edges. There are two such unlabeled

trees. The degrees are (1, 2, 2, 1) for the first tree, and (3, 1, 1, 1) for the second, all these

trees are despicted in figure 1 and 2. Up to this order,

F0(λ̃1,λ̃2)=−
∞∑

n=2

ζ(2n−1)

n
(−1)n

n−1∑

k=1

(
2n

2k

)
V(n−k)V(k)(λ̃n−k

1 −λ̃n−k
2 )(λ̃k

1−λ̃k
2) (2.25)

+
1

2

∞∑

ni=2

ζ(2ni−1)

n1n2
(−1)n1+n2

ni−1∑

ki=1

(
2ni

2ki

)
4V(k1)V(n1−k1,n2−k2)V(k2)

×(λ̃k1
1 −λ̃k1

2 )(λ̃n1−k1+n2−k2
1 +λ̃n1−k1+n2−k2

2 )(λ̃k2
1 −λ̃k2

2 )

− 1

3!

∞∑

ni=2

ζ(2ni−1)

n1n2n3
(−1)n1+n2+n3

ni−1∑

ki=1

(
2ni

2ki

)
8
[
3V(n1−k1)V(k1,n2−k2)

×V(k2,n3−k3)V(k3)(λ̃n1−k1
1 −λ̃n1−k1

2 )(λ̃k1+n2−k2
1 +λ̃k1+n2−k2

2 )

×(λ̃k2+n3−k3
1 +λ̃k2+n3−k3

2 )(λ̃k3
1 −λ̃k3

2 )+V(n1−k1,n2−k2,n3−k3)V(k1)V(k2)V(k3)
×(λ̃n1−k1+n2−k2+n3−k3

1 −λ̃n1−k1+n2−k2+n3−k3
2 )(λ̃k1

1 −λ̃k1
2 )(λ̃k2

1 −λ̃k2
2 )(λ̃k3

1 −λ̃k3
2 )
]

+O(ζ4).

As a first check, when either of the two couplings vanishes, we recover the result of N = 2

SCQD presented in [19]. Also, in this expression we can see rather explicitly that at every

order the contribution has at least a double zero (λ̃1− λ̃2)
2. In appendix A we have written

the outcome of these sums, up to order λ̃6.

2.2 The Lee-Yang property of the planar free energy expansion

We would like to discuss one further property of the perturbative expansion (2.19). Notice

that the contribution of a given tree is obtained by summing over all the possible ways

to assign one gauge group, 1 or 2, to each vertex in the tree, see figures 1 and 2. This is

reminiscent of the Ising model defined on that tree, where on each vertex we can have a spin

up or down. It is indeed possible to construct a generalized Ising-type model, with inho-

mogeneous external magnetic field, whose partition function yields each tree contribution

in (2.19). This generalized Ising model is admittedly a bit contrived, but following the clas-

sical work by Lee and Yang [21], it motivates the study of the zeros of its partition function.

In more detail, every tree graph contributes to the planar energy in (2.19) a homo-

geneous polynomial in λ1 and λ2. Being homogeneous, these polynomials can be thought

of as polynomials of a single variable λ2/λ1. Inspired by the classical work by Lee and

Yang [21] on the ferromagnetic Ising model, we are going to put forward two conjectures

regarding the zeros of these polynomials: first, that for a given tree, all the zeros of the
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corresponding polynomial are on the unit circle in the complex λ2/λ1 plane. Second, that

when we sum the contributions from different trees with the same number of nodes, the

same property holds.

To provide context, let’s start by briefly recalling the definition of the Ising model on a

graph and the Lee-Yang theorem. Let G be a finite graph, E its set of edges and V its set

of vertices. The Ising model on G is defined by assigning to each vertex i ∈ V , a σi = ±1

(spin up/down). The Hamiltonian is

H = −J
∑

i−j∈E

σiσj − H
∑

i∈V

σi , (2.26)

with J the coupling among spins and H the external magnetic field. The partition function

can be written as

Z(βJ, βH) =
∑

all states

e−βH = eβJ |E|−βH|V | ∑

all states

e−2βJe± e2βHv↑ , (2.27)

where e± is the number of edges connecting different spins, and v↑ the number of spins up

in a given configuration. Define τ = e−2βJ , x = e2βH . The last sum defines a polynomial

palindromic in x,

P (τ, x) =
∑

all states

τ e± xv↑ . (2.28)

In [21], Lee and Yang proved that for τ ∈ [−1, 1], the polynomials P (τ, x) have all their

x roots on the unit circle. In fact, they proved it for arbitrary ferromagnetic couplings

Jij ≥ 0, and different magnetic fields per site Hi.

To construct an Ising-type model whose partition function yields the polynomials that

appear in (2.19), proceed as follows. Take the graph G to be a tree T,

1. Assign a positive integer ni to each of the e edges of the tree graph.

2. For every edge, split ni into two positive integers, ni = ki + (ni − ki) and assign each

of these two integers to one of the vertices at the ends of that edge.

3. Then, if a vertex has degree dj this procedure assigns to that vertex dj integers. Let

mj be the sum of these integers at a given vertex; the magnetic field at that vertex

is then mjH.

So far, for a fixed partition of all ni, this is a peculiar way to assign external magnetic

fields that are different at each vertex. This defines

P (τ, x, ki, ni) =
∑

all states

τ e±
∏

vertices
with spin up

xmj , (2.29)

Lee and Yang already proved (lemma in appendix II of [21]) that all the zeros of these

polynomials are on the unit circle. Finally, consider the sum over all the partitions of each

of the ni into two

P (τ, x, n1, . . . , ne) =

n1−1∑

k1=1

· · ·
ne−1∑

ke=1

ρ(ki, ni)
∑

all states

τ e±
∏

vertices
with spin up

xmj , (2.30)
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Figure 1. Trees contributing to the first and second order expansion of the free energy.

where ρ(ki, ni) is a distribution that weights different configurations. The contribution

of every tree to the planar free energy in (2.19) is obtained from the free energy of this

Ising-type model, by setting τ = −1, x = λ2/λ1, and the distribution

ρ(ki, ni) =

(
2n1

2k1

)
. . .

(
2nm

2km

) m∏

i=1

Vi . (2.31)

The main reason we have defined this family of Ising-type models is that there is numerical

evidence that suggests that they share the Lee-Yang property with the original Ising model.

This leads us to formulate the following two conjectures:

Conjecture 1. For any tree with e edges, any fixed positive integers n1, . . . , ne and

arbitrary ρ(ki, ni) > 0 the polynomials P (τ, x, n1, . . . , ne) have all their x roots on the unit

circle.

Conjecture 2. If we sum the polynomials of all the trees with the same number of edges,

the resulting polynomial still has the Lee-Yang property.

We can prove the first conjecture in the particular case of the simplest tree. In this

case, (2.30) is simply

P (τ, x, k, n) = xn + τxn−k + τxk + 1 , (2.32)

that for |τ | ≤ 1 has its roots on the unit circle. Then

P (τ, x, k, n) =
n−1∑

k=1

ρ(n, k)
(
xn + τxn−k + τxk + 1

)
, (2.33)

with arbitrary ρ(n, k) > 0. To prove that these polynomials have their roots on the unit

circle, we make use of the following theorem [32]: if P (x) = Anxn+An−1x
n−1+· · ·+A1x+A0

is a palindromic polynomial and 2|An| ≥
∑n−1

j=1 |Aj |, then all its zeros are in the unit circle.

In our case, the inequality in the theorem is satistifed as long as |τ | ≤ 1, so the result follows.

Back to the free energy of the quiver theory, one can check indeed that the polynomials in

the expansion (2.24) have the Lee-Yang property.

We haven’t been able to prove these two conjectures for arbitrary tree graphs. After

the seminal work [21], the proof of the Lee-Yang unit circle theorem has been extended

to many other systems, see e.g. [33, 34]. It would be interesting to see if any of these

arguments can be adapted to prove our conjectures.
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(a) (b)

Figure 2. The two trees with three edges: (a) Tree with vertices of degrees (1,2,2,1). (b) Tree with

vertices of degrees (3,1,1,1). There are 16 ways to color each of them.

3 Wilson loop in the large N limit

For each of the gauge groups of the quiver theory, we can define a 1/2 BPSWilson loop, with

circular contour in Euclidean signature. The evaluation of its expectation value reduces to

a matrix integral thanks to supersymmetric localization. We will now evaluate the planar

limit of this expectation value and show that the perturbative series involves a sum over

rooted trees. While the Wilson loop can be defined for arbitrary representations of the

gauge group, in order to take advantage of the results of [19, 31], we will restrict its study

to the fundamental representation

〈W I〉 = 〈 1
N

TrFP exp

∮

C
ds
(
iAI

µ(x)ẋ
µ +ΦI(x)|ẋ|

)
〉 , (3.1)

where I = 1, · · · , n. The theory can be localized [13] on the sphere with squashing param-

eter b, where b = 1 corresponds to S4, in such case the vev of the 1/2 BPS Wilson loop

reduces to

〈W±
I 〉 = 1

Z

∫
daITr

(
e−2πb±aI

)
e
− ∑n

I=1
8π2

g2
I

Tra2
IZ1-loop(aI , b)|Zinst(aI , b)|2 , (3.2)

now ± represents the two different trajectories in which we can compute the Wilson loop

on the squashed sphere [11]; from now on we will avoid the ± to make the notation less

cumbersome, bearing in mind that in order to switch between trajectories we need to make

the replacement b → b−1 in the following results. Once again we will consider the 1-loop

contribution as an effective action, given by (2.10), and as discussed on the previous section

we will compute the large N limit of this interacting theory while restricting ourselves to

the zero-instanton sector. We are interested in observables that are only sensitive to the

linear dependence of 〈Wb〉 in (b−1), and since the dependence of Z1-loop(aI , b) is quadratic

in b − 1, for our purposes we can compute 〈Wb〉 directly on S4 [35],

〈W±
I 〉 = 1

Z

∫
daITr

(
e−2πb±aI

)
e
− ∑n

I=1
8π2

g2
I

Tra2
IZ1-loop(aI) +O((b − 1)2) . (3.3)

Let us expand the Wilson loop insertion

〈WI〉 =
∞∑

l=0

(4π2b2)l

(2l)!

〈N−1Tr a2lI e−S〉
〈e−S〉 . (3.4)

As argued in our recent work [19], the large N expansion of this expectation value scales

like N0, so given the overall normalization factor 1/N , the relevant terms to keep from
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〈Tr a2lI Sm〉 are products of m+1 connected correlators. Now there are 2m+1 traces to be

distributed in m+ 1 correlators, but since 〈Tr a2lI 〉 can’t be by itself, we effectively have to

distribute 2m traces into the m+1 connected correlators, which is the by now familiar sign

that the possibilities are given by tree graphs. As in [19], one of the vertices is singled out by

the presence of 〈Tr a2lI 〉, so these are rooted trees. The correlator that contains 〈Tr a2lI 〉 is a
correlator of aI operators, so it involves the λI coupling; by convention, the root vertex cor-

responding to this correlator will be referred as the vertex 1. The remaining m correlators

can be either products of aI traces or aJ traces. As we found in the evaluation of the planar

free energy in the previous section, this is accounted for by modifying the numerical factor of

the correlator by a weighted sum over the coupling. eq. (2.17). All in all, for the case of Â1

〈W1〉−〈W1〉0=
∑

l=1

(2πb)2l

(2l)!

∞∑

m=1

(−2)m
∞∑

n1,...,nm=2

ζ(2n1−1)...ζ(2nm−1)

n1 ...nm
(−1)n1+···+nm

×
n1−1∑

k1=1

(
2n1

2k1

)
···

nm−1∑

km=1

(
2nm

2km

) ∑

unlabeled rooted trees
with m edges

1

|Aut(T)| λ̃
d1
1 V1

m+1∏

i=2

V̄i , (3.5)

In the language of Ising-type models on trees introduced in the previous section, we can

think of the Wilson loop insertion as a spin that is pinned to be up, at the rooted vertex.

To illustrate this result, let’s expand it up to second order,

〈W1〉−〈W1〉0=
∞∑

l=1

(4π2b2)l

(2l)!

{
−

∞∑

n=2

ζ(2n−1)

n
(−1)n

n−1∑

k=1

(
2n

2k

)
2V(l,n−k)V(k)λ̃l+n−k

1

(
λ̃k
1−λ̃k

2

)

+
1

2

∞∑

n1,n2=2

ζ(2n1−1)ζ(2n2−1)

n1n2
(−1)n1+n2

ni−1∑

ki=1

(
2n1

2k1

)(
2n2

2k2

)
(3.6)

×
[
8V(l,n1−k1)V(k1,n2−k2)V(k2)λ̃l+n1−k1

1

(
λ̃k1+n2−k2
1 +λ̃k1+n2−k2

2

)(
λ̃k2
1 −λ̃k2

2

)

+4V(l,n1−k1,n2−k2)V(k1)V(k2)λ̃l+n1−k1+n2−k2
1

(
λ̃k1
1 −λ̃k1

2

)(
λ̃k2
1 −λ̃k2

2

)]}
,

for which the corresponding rooted trees can be seen in figure 3.

In appendix B, we present the result of these sums up to order λ̃7. We have checked

that they reproduce the results of [10, 11]. Contrary to what happened for the free energy,

the expectation value of this Wilson loop does not have nice properties under the exchange

λ̃1 ↔ λ̃2. The reason is obvious, the Wilson loop is defined for one of the two gauge groups

in the quiver, thus breaking the Z2 symmetry. For this reason, let’s consider the linear

combinations 〈W1〉 ± 〈W2〉, which were referred in [7] as twisted and untwisted. These are

symmetric and antisymmetric under the λ̃1 ↔ λ̃2 exchange, so we can introduce

〈W1〉+ 〈W2〉 − 〈W1〉0 − 〈W2〉0 = (λ̃1 − λ̃2)
2 w+(λ̃1, λ̃2) , (3.7)

〈W1〉 − 〈W2〉 − 〈W1〉0 + 〈W2〉0 = (λ̃1 − λ̃2)w−(λ̃1, λ̃2) , (3.8)

with w± symmetric under λ̃1 ↔ λ̃2. What is more, to the orders we have checked explicitly,

again all the polynomials that appear in the expansion of w± have all their roots in the unit

– 13 –



J
H
E
P
0
8
(
2
0
2
0
)
1
6
1

(a)

(b)

Figure 3. Rooted trees corresponding to the Wilson loop in the large N , we see that inserting the

operator selects from figure 1 trees with the same color as the operator that we are inserting, trees

containing two different colors arise from interaction terms in (2.10). (a) Terms corresponding to

V(l, n1−k1)V(k1). (b) Trees corresponding to V(l, n1−k1)V(k1, n2−k2)V(k2) and V(l, n1−k1, n2−
k2)V(k1)V(k2).

circle of the complex λ̃2/λ̃1 plane. We again conjecture that this is true for the polynomials

generated by every tree.

For the polynomials that appear in w+(λ̃1, λ̃2), this would follow from our first conjec-

ture if it is true. In particular, since in the previous section we proved the first conjecture

for the simplest tree, it follows that it holds also for w+, for the simplest tree. For w−
the argument does not apply immediately, since 〈W1〉 − 〈W2〉 − 〈W1〉0 + 〈W2〉0 produces

antipalindromic polynomials.

To conclude, we can use these results to compute the one-point function of the energy-

momentum tensor with these 1/2 BPS Wilson loops. This one-point function is fixed up

to a coefficient hW [36], which can be obtained from the expectation value of the deformed

Wilson loop 〈Wb〉 by the formula [35, 37]

hW =
1

12π2
∂b ln 〈Wb〉|b=1 . (3.9)

finally, we can also compute the Bremsstrahlung function B [38] using the relation B =

3hW [35, 39, 40], valid for any N = 2 superconformal field theory [41]. The results we

obtain agree with those of [11].
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A Planar free energy up to 6th order

Here we present the explicit form of the planar free energy in terms of λ̃i =
λi

16π2

F0(λ̃1, λ̃2)= (λ̃1− λ̃2)
2
[
−3ζ3+20ζ5

(
λ̃1+ λ̃2

)
−70ζ7

(
2λ̃2

1+3λ̃1λ̃2+2λ̃2
2

)

+84ζ9

(
λ̃1+ λ̃2

)(
13λ̃2

1+10λ̃1λ̃2+13λ̃2
2

)

−154ζ11

(
61λ̃4

1+116λ̃3
1λ̃2+141λ̃2

1λ̃
2
2+116λ̃1λ̃

3
2+61λ̃4

2

)

+36ζ23

(
λ̃2
1+ λ̃2

2

)
−240ζ3ζ5

(
λ̃1+ λ̃2

)(
3λ̃2

1−2λ̃1λ̃2+3λ̃2
2

)

+840ζ3ζ7

(
8λ̃4

1+5λ̃3
1λ̃2+2λ̃2

1λ̃
2
2+5λ̃1λ̃

3
2+8λ̃4

2

)

+200ζ25

(
19λ̃4

1+12λ̃3
1λ̃2+4λ̃2

1λ̃
2
2+12λ̃1λ̃

3
2+19λ̃4

2

)

−144ζ33

(
5λ̃4

1−2λ̃3
1λ̃2+6λ̃2

1λ̃
2
2−2λ̃1λ̃

3
2+5λ̃4

2

)]
+O(λ̃7).

(A.1)

Up to the order we have explicitely checked, the polynomials have all unimodular roots.

B Wilson loop up to λ̃7

Here we present the explicit expansion of the circular Wilson loop corresponding to an

insertion in the first node of the quiver; it is possible to obtain the insertion in the second

node by making the change λ̃1 ↔ λ̃2. For simplicity, in the expansion we have set b = 1

and λ̃i = λi
16π2 . If one wishes to restore the powers of b that appear in the perturbative

expansion of 〈Wb〉 evaluated on S4, one only needs to add in each term as many powers of

b as powers of π there are.

〈W1〉 − 〈W1〉0 =
(
λ̃1 − λ̃2

)[
− 24π2ζ3λ̃

2
1 − 32π4ζ3λ̃

3
1 − 16π6ζ3λ̃

4
1 −

64

15
π8ζ3λ̃

5
1 −

32

45
π10ζ3λ̃

6
1

+ 80π2ζ5λ̃
2
1

(
3λ̃1 + λ̃2

)
+

80

3
π4ζ5λ̃

3
1

(
13λ̃1 + 4λ̃2

)

+
32

3
π6ζ5λ̃

4
1

(
17λ̃1 + 5λ̃2

)
+

64

9
π8ζ5λ̃

5
1

(
7λ̃1 + 2λ̃2

)

− 280π2ζ7λ̃
2
1

(
8λ̃2

1 + 5λ̃1λ̃2 + λ̃2
2

)

− 112

3
π4ζ7λ̃

3
1

(
91λ̃2

1 + 55λ̃1λ̃2 + 10λ̃2
2

)

− 112

3
π6ζ7λ̃

4
1

(
49λ̃2

1 + 29λ̃1λ̃2 + 5λ̃2
2

)

+ 336π2ζ9λ̃
2
1

(
5λ̃1 + λ̃2

)(
13λ̃2

1 + 8λ̃1λ̃2 + 3λ̃2
2

)

+ 672π4ζ9λ̃
3
1

(
51λ̃3

1 + 41λ̃2
1λ̃2 + 17λ̃1λ̃

2
2 + 2λ̃3

2

)
(B.1)

− 3696π2ζ11λ̃
2
1

(
61λ̃4

1 + 56λ̃3
1λ̃2 + 36λ̃2

1λ̃
2
2 + 11λ̃1λ̃

3
2 + λ̃4

2

)

+ 288π2ζ23 λ̃2
1

(
2λ̃2

1 − λ̃1λ̃1 + λ̃2
2

)

+ 192π4ζ23 λ̃3
1

(
5λ̃2

1 − 3λ̃1λ̃2 + 2λ̃2
2

)
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+ 192π6ζ23 λ̃4
1

(
3λ̃2

1 − 2λ̃1λ̃2 + λ̃2
2

)

− 960π2ζ3ζ5λ̃
2
1

(
15λ̃3

1 − 5λ̃2
1λ̃2 + λ̃1λ̃

2
2 + 5λ̃3

2

)

− 320π4ζ3ζ5λ̃
3
1

(
77λ̃3

1 − 32λ̃2
1λ̃2 + λ̃1λ̃

2
2 + 20λ̃3

2

)

+ 3360π2ζ3ζ7λ̃
2
1

(
48λ̃4

1 − 7λ̃3
1λ̃2 − 7λ̃2

1λ̃
2
2 + 11λ̃1λ̃

3
2 + 11λ̃4

2

)

+ 1600π2ζ25 λ̃2
1

(
57λ̃4

1 − 8λ̃3
1λ̃2 − 10λ̃2

1λ̃
2
2 + 14λ̃1λ̃

3
2 + 13λ̃4

2

)

− 3456π2ζ33 λ̃2
1

(
5λ̃4

1 − 5λ̃3
1λ̃2 + 5λ̃2

1λ̃
2
2 − 3λ̃1λ̃

3
2 + 2λ̃4

2

)]
.

Note that we are inserting the operator in only one of the two nodes of the quiver thus

breaking the Z2 invariance of the theory. This is the reason why the vev (B.1) does not

exhibit the same properties as the free energy. It is possible to retain the Z2 invariance if

we consider the sum and the difference, for the case of the sum we have

w+(λ̃1, λ̃2) =

[
− 24π2ζ3

(
λ̃1 + λ̃2

)
− 32π4ζ3

(
λ̃2
1 + λ̃1λ̃2 + λ̃2

2

)

− 16π6ζ3

(
λ̃1 + λ̃2

)(
λ̃2
1 + λ̃2

2

)
− 64

15
π8ζ3

(
λ̃4
1 + λ̃3

1λ̃2 + λ̃2
1λ̃

2
2 + λ̃1λ̃

3
2 + λ̃4

2

)

− 32

45
π10ζ3

(
λ̃1 + λ̃2

)(
λ̃4
1 + λ̃2

1λ̃
2
2 + λ̃4

2

)
+ 80π2ζ5

(
3λ̃2

1 + 4λ̃1λ̃2 + 3λ̃2
2

)

+
80

3
π4ζ5

(
λ̃1 + λ̃2

)(
13λ̃2

1 + 4λ̃1λ̃2 + 13λ̃2
2

)

+
32

3
π6ζ5

(
17λ̃4

1 + 22λ̃3
1λ̃2 + 22λ̃2

1λ̃
2
2 + 22λ̃1λ̃

3
2 + 17λ̃4

2

)

+
64

9
π8ζ5

(
λ̃1 + λ̃2

)(
7λ̃4

1 + 2λ̃3
1λ̃2 + 7λ̃2

1λ̃
2
2 + 2λ̃1λ̃

3
2 + 7λ̃4

2

)

− 280π2ζ7

(
λ̃1 + λ̃2

)(
8λ̃2

1 + 5λ̃1λ̃2 + 8λ̃2
2

)

− 112

3
π4ζ7

(
91λ̃4

1 + 146λ̃3
1λ̃2 + 156λ̃2

1λ̃
2
2 + 146λ̃1λ̃

3
2 + 91λ̃4

2

)

− 112

3
π6ζ7

(
λ̃1 + λ̃2

)(
49λ̃4

1 + 29λ̃3
1λ̃2 + 54λ̃2

1λ̃
2
2 + 29λ̃1λ̃

3
2 + 49λ̃4

2

)

+ 336π2ζ9

(
65λ̃4

1 + 118λ̃3
1λ̃2 + 138λ̃2

1λ̃
2
2 + 118λ̃1λ̃

3
2 + 65λ̃4

2

)
(B.2)

+ 672π4ζ9

(
λ̃1 + λ̃2

)(
51λ̃4

1 + 41λ̃3
1λ̃2 + 68λ̃2

1λ̃
2
2 + 41λ̃1λ̃

3
2 + 51λ̃4

2

)

− 3696π2ζ11

(
λ̃1 + λ̃2

)(
61λ̃4

1 + 56λ̃3
1λ̃2 + 96λ̃2

1λ̃
2
2 + 56λ̃1λ̃

3
2 + 61λ̃4

2

)

+ 288π2ζ23

(
λ̃1 + λ̃2

)(
2λ̃2

1 − λ̃1λ̃2 + 2λ̃2
2

)

+ 192π4ζ23

(
5λ̃4

1 + 2λ̃3
1λ̃2 + 4λ̃2

1λ̃
2
2 + 2λ̃1λ̃

3
2 + 5λ̃4

2

)

+ 192π6ζ23

(
λ̃1 + λ̃2

)(
3λ̃4

1 − 2λ̃3
1λ̃2 + 4λ̃2

1λ̃
2
2 − 2λ̃1λ̃

3
2 + 3λ̃4

2

)

− 960π2ζ3ζ5

(
15λ̃4

1 + 10λ̃3
1λ̃2 + 6λ̃2

1λ̃
2
2 + 10λ̃1λ̃

3
2 + 15λ̃4

2

)

− 320π4ζ3ζ5

(
λ̃1 + λ̃2

)(
77λ̃4

1 − 32λ̃3
1λ̃2 + 78λ̃2

1λ̃
2
2 − 32λ̃1λ̃

3
2 + 77λ̃4

2

)
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+ 3360π2ζ3ζ7

(
λ̃1 + λ̃2

)(
48λ̃4

1 − 7λ̃3
1λ̃2 + 30λ̃2

1λ̃
2
2 − 7λ̃1λ̃

3
2 + 48λ̃4

2

)

+ 1600π2ζ25

(
λ̃1 + λ̃2

)(
57λ̃4

1 − 8λ̃3
1λ̃2 + 34λ̃2

1λ̃
2
2 − 8λ̃1λ̃

3
2 + 57λ̃4

2

)

− 3456π2ζ33

(
λ̃1 + λ̃2

)(
5λ̃4

1 − 5λ̃3
1λ̃2 + 8λ̃2

1λ̃
2
2 − 5λ̃1λ̃

3
2 + 5λ̃4

2

)]
.

For the case of the difference we have

w−(λ̃1, λ̃2)=

[
−24π2ζ3

(
λ̃2
1+ λ̃2

2

)
−32π4ζ3

(
λ̃3
1+ λ̃3

2

)
−16π6ζ3

(
λ̃4
1+ λ̃4

2

)

− 64

15
π8ζ3

(
λ̃5
1+ λ̃5

2

)
− 32

45
π10ζ3

(
λ̃6
1+ λ̃6

2

)

+80π2ζ5

(
λ̃1+ λ̃2

)(
3λ̃2

1−2λ̃1λ̃2+3λ̃2
2

)

+
80

3
π4ζ5

(
13λ̃4

1+4λ̃3
1λ̃2+4λ̃1λ̃

3
2+13λ̃4

2

)

+
32

3
π6ζ5

(
λ̃1+ λ̃2

)(
17λ̃4

1−12λ̃3
1λ̃2+12λ̃2

1λ̃
2
2−12λ̃1λ̃

3
2+17λ̃4

2

)

+
64

9
π8ζ5

(
7λ̃6

1+2λ̃5
1λ̃2+2λ̃1λ̃

5
2+7λ̃6

2

)

−280π2ζ7

(
8λ̃4

1+5λ̃3
1λ̃2+2λ̃2

1λ̃
2
2+5λ̃1λ̃

3
2+8λ̃4

2

)

− 112

3
π4
(
λ̃1+ λ̃2

)(
91λ̃4

1−36λ̃3
1λ̃2+46λ̃2

1λ̃
2
2−36λ̃1λ̃

3
2+91λ̃4

2

)

− 112

3
π6ζ7

(
49λ̃6

1+29λ̃5
1λ̃2+5λ̃4

1λ̃
2
2+5λ̃2

1λ̃
4
2+29λ̃1λ̃

5
2+49λ̃6

2

)

+336π2ζ9

(
λ̃1+ λ̃2

)(
65λ̃4

1−12λ̃3
1λ̃2+38λ̃2

1λ̃
2
2−12λ̃1λ̃

3
2+65λ̃4

2

)
(B.3)

+672π4ζ9

(
51λ̃6

1+41λ̃5
1λ̃2+17λ̃4

1λ̃
2
2+4λ̃3

1λ̃
3
2+17λ̃2

1λ̃
4
2+41λ̃1λ̃

5
2+51λ̃6

2

)

−3696π2ζ11

(
61λ̃6

1+56λ̃5
1λ̃2+37λ̃4

1λ̃
2
2+22λ̃3

1λ̃
3
2+37λ̃2

1λ̃
4
2+56λ̃1λ̃

5
2+61λ̃6

2

)

+288π2ζ23

(
2λ̃4

1− λ̃3
1λ̃2+2λ̃2

1λ̃
2
2− λ̃1λ̃

3
2+2λ̃4

2

)

+192π4ζ23

(
λ̃1+ λ̃2

)(
λ̃2
1+ λ̃2

2

)(
5λ̃2

1−8λ̃1λ̃2+5λ̃2
2

)

+192π6ζ23

(
3λ̃6

1−2λ̃5
1λ̃2+ λ̃4

1λ̃
2
2+ λ̃2

1λ̃
4
2−2λ̃1λ̃

5
2+3λ̃6

2

)

−960π2ζ3ζ5

(
λ̃1+ λ̃2

)(
15λ̃4

1−20λ̃3
1λ̃2+26λ̃2

1λ̃
2
2−20λ̃1λ̃

3
2+15λ̃4

2

)

−320π4ζ3ζ5

(
77λ̃6

1−32λ̃5
1λ̃2+ λ̃4

1λ̃
2
2+40λ̃3

1λ̃
3
2+ λ̃2

1λ̃
4
2−32λ̃1λ̃

5
2+77λ̃6

2

)

+3360π2ζ3ζ7

(
48λ̃6

1−7λ̃5
1λ̃2+4λ̃4

1λ̃
2
2+22λ̃3

1λ̃
3
2+4λ̃2

1λ̃
4
2−7λ̃1λ̃

5
2+48λ̃6

2

)

+1600π2ζ25

(
57λ̃6

1−8λ̃5
1λ̃2+3λ̃4

1λ̃
2
2+28λ̃3

1λ̃
3
2+3λ̃2

1λ̃
4
2−8λ̃1λ̃

5
2+57λ̃6

2

)

−3456π2ζ33

(
5λ̃6

1−5λ̃5
1λ̃2+7λ̃4

1λ̃
2
2−6λ̃3

1λ̃
3
2+7λ̃2

1λ̃
4
2−5λ̃1λ̃

5
2+5λ̃6

2

)]
.

The series w±(λ̃1, λ̃2) are symmetric. At the considered orders, the polynomials that

appear also have all unimodular roots.
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Conclusions
This thesis has been mostly devoted to the study of radiation in generic conformal

field theories in the regimes of parameters where ordinary perturbative methods are not
applicable and its essence can be captured in three main achievements: an improved com-
prehension of the angular distribution of radiation for generic conformal field theories, the
implementation of a new method to compute the partition function and the expectation
value of the Wilson loop operator using supersymmetric localization and the determina-
tion of the coupling dependence of radiation for generic LagrangianN = 2 superconformal
quiver theories.

The first result stems from the realization of the peculiar features of radiation in
theories with conformally coupled scalars, even at the classical level: the radiative energy
density is not positive definite, the radiated power is not Lorentz invariant and as a matter
of fact, it depends on the derivative of the acceleration. The determination of the angular
distribution of radiation for theories with holographic dual reveals two surprising results:
first, it depends on the probe worldline only through the retarded time, and second, it
matches exactly the angular distribution obtained by a free theory computation.

Additionally we conjectured that the energy-momentum tensor for a conformal field
theory with N = 2 supersymmetry has the same spacetime dependence independently
of the value of the coupling. Following this line of research, we are currently trying to
determine for which theories and scenarios this unexpected factorization of the coupling
dependence for the angular distribution of radiation is valid. So far we have been able
to show what is the most general form of the expectation value of the energy-momentum
tensor by arguments of conformal symmetry; if we further impose it depends only on the
retarded time and it has N = 2 supersymmetry, its radiative part will be exactly the same
as the one found holographically. This raises a question: for what interacting CFTs does
the angular distribution of radiation depend only on the retarded time? One approach to
tackle this interrogation is to observe the response of an arbitrary 4d CFT in the presence
of a line defect within the formalism of defect conformal field theory.

Another issue that could be addressed in the future is to find the proper analogue of the
Abraham-Lorentz-Dirac equation for probes of CFTs with scalar fields [35]. In classical
electrodynamics the so-called “Schott term” amounts to the self-force of a charged particle,
an identical term appeared in the radiated power of conformally coupled scalar fields, but
the origin of both terms is totally different. The former comes from the fields created
by the probe near its worldline, the latter comes from evaluating the energy-momentum
tensor away from the probe. The possible generalization of the Abraham-Lorentz-Dirac
equation, which describes this problem at the classical level, for the conformally coupled
scalar case could help gain some insight about this similarity.

The second result comes from the implementation of a new method to compute exactly
the vacuum expectation value of the circular Wilson loop in N = 4 SYM theory. This new
approach was obtained via supersymmetric localization techniques in which the problem
reduces to a matrix model computation. The beauty of the formula obtained encompasses
and unifies many known partial results, already present in the literature. Furthermore,
it allows to derive various exact relations among different cases. Some of these relations
had been noticed but not explained, and some of these relations appear to be new.
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The third result is based on the generalization of the method explained above in the
derivation of an all-order expression for the vacuum expectation value of the circular Wil-
son loop for N = 2 superconformal quiver theories possessing a Lagrangian description,
in the limit where the number of colors tends to infinity. Likewise we found a compact
expression for the planar free energy for these theories. All the expressions found are given
by a purely combinatorial expression and have a simple diagrammatic representation in
terms of tree graphs.

Various observables in these theories are effectively described by a multi-matrix model
containing single- and double-trace terms, but the relevant contributions come only from
the double-trace terms. We proved that any matrix model with double-trace terms in the
potential, the planar free energy will be described by a sum over tree graphs. For the
specific case of the quiver theory containing two nodes the planar free energy is still given
by a sum of tree graphs, but now each tree can be interpreted as the partition function
of a generalized Ising model defined on the tree structure. We claim the zeros of each
partition function lie on the unit circle, as well as the sum of the contributions of each
tree at a given order still has its zeros on the unit circle. It would be interesting to further
investigate this relation, as well as to prove the conjectures above mentioned.
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