
Interpretable machine learning
through radiomics and

attribute-regularized neural
networks for cardiology

Irem Cetin

TESI DOCTORAL UPF / 2022

Directors of the thesis

Prof. Oscar Camara
Prof. Miguel Angel Gonzalez Ballester

Department of Information and Communication Technologies





Directors

Oscar Camara Full Professor
Universitat Pompeu Fabra
Barcelona, Spain

Miguel Angel Gonzalez Ballester ICREA Professor
Universitat Pompeu Fabra
Barcelona, Spain

Review Committee:

Daniel Rueckert Full Professor
Technical University of Munich
Munich, Germany

Gemma Piella Full Professor
Universitat Pompeu Fabra
Barcelona, Spain

Alistair Young Full Professor
King’s College London
London, United Kingdom

This work was carried out in the Sensing in Physiology and Biomedicine (PhySen-
se) and Simulation, Imaging and Modelling for Biomedical Systems (SIMBIOsys)
research groups, at BCN Medtech, Department of Information and Communica-
tion Technologies of Universitat Pompeu Fabra, Barcelona, Spain. This thesis was
supported by the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 825903 (euCanSHare project) and a scho-
larship of the Department of Information and Communication Technologies at
Universitat Pompeu Fabra (DTIC-UPF).





Resumen

El diagnóstico asistido por ordenador de enfermedades cardiovasculares (CVD)
con resonancia magnética cardíaca (CMR) es un campo importante de investiga-
ción para el fenotipado avanzado de imágenes cardíacas. Las mediciones existentes
sobre este tipo de datos, como la fracción de eyección y los volúmenes de las cáma-
ras, son demasiado simples y, a menudo, no son capaces de captar cambios sutiles
que afectan a las estructuras cardíacas durante las primeras etapas de la enferme-
dad. Por su parte, los algoritmos de aprendizaje automático (ML) aplicados a este
tipo de datos se basan principalmente en la utilización de índices morfológicos. La
radiómica CMR es una técnica emergente para el fenotipado cardíaco más profun-
do y preciso. Utiliza datos a nivel de píxel para obtener múltiples cuantificadores
de forma y textura del tejido. Sin embargo, se enfrenta algunos desafíos como la
falta de interpretabilidad y reproducibilidad. Otros tipos de métodos, como los de
aprendizaje profundo (DL), revolucionaron las imágenes médicas. A pesar de estos
métodos son capaces de aprender representaciones complejas a partir de los datos,
una limitación de los mismos es que su naturaleza de “caja negra” provoca falta de
explicabilidad e interpretabilidad de los resultados. Recientemente, la inteligencia
artificial explicable (XAI) ha mostrado un excelente potencial en esta línea, donde
los enfoques de XAI tienen como objetivo explicar cómo se realizan las elecciones
de los sistemas de inteligencia artificial (IA). Los modelos basados en represen-
tación latente, como los autoencoders variacionales (VAE), tienen el potencial de
aliviar las limitaciones anteriormente mencionadas de los modelos basados en DL,
ya que pueden codificar atributos ocultos de los datos en un espacio latente de baja
dimensión.

Esta tesis presenta enfoques interpretables basados en aprendizaje automático con
técnicas de radiómica, aplicadas a imágenes de CMR, y con modelos basados en
representación latente regularizada, con el objetivo de identificar cambios en la
estructura cardíaca y en la textura del tejido. Usando conjuntos de datos multimo-
dales, esta tesis se esfuerza por generar biomarcadores de imágenes que puedan
ser utilizadas para la caracterización de diversas afecciones cardiovasculares. Es-
ta tesis tiene tres contribuciones principales. En primer lugar, se desarrolló una
metodología de análisis basada en radiómica sobre imágenes de CMR para cuanti-
ficar automáticamente distintos índices estructurales y de función cardiovascular.
En segundo lugar, se realizó una de las evaluaciones más grandes y completas del
uso de radiómica sobre imágenes de CMR para el fenotipado de las principales
enfermedades cardiovasculares, empleando la base de datos de UK Biobank. Por
último, se desarrolló una red neuronal regularizada a partir de atributos, con el
objetivo de generar explicaciones sobre cardiopatías combinando biomarcadores
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clínicos y marcadores radiómicos.

Palabras clave: radiomica, inteligencia artificial explicable, enfermedades cardio-
vasculares, interpretación, resonancia magnética cardiaca.

Translated from english by Guillermo Jiménez Pérez.
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Abstract

Computer-aided diagnosis of cardiovascular diseases (CVD) with cardiovascular
magnetic resonance (CMR) is an important research topic for advanced cardiac im-
age phenotyping. Existing quantifiers, such as ejection fraction and chamber vol-
umes, are overly simplistic and often do not capture subtle and complex changes
that affect the heart structures at early disease stages. Machine learning (ML) ap-
proaches have primarily been concerned with shape indices. CMR radiomics is
an emerging technique for deeper and more accurate cardiac phenotyping. It uses
pixel-level data to derive multiple quantifiers of tissue shape and texture. Yet, it
faces some challenges, including the lack of interpretability and reproducibility.
Deep learning (DL) methods, on the other hand, revolutionized medical imaging.
While these methods are capable of learning complex representations from data, a
limitation of many of these models is that their black-box nature suffers from lack
of explainability and interpretability. Recently, explainable artificial intelligence
(XAI) has shown excellent potential in this line, where XAI approaches aim at
explaining how the choices of artificial intelligent (AI) systems are made. Latent
representation based models, such as Variational Autoencoders (VAEs) have the
potential to alleviate the limitation of DL-based models as they are able to encode
hidden attributes of the data in a low-dimensional latent space.

This thesis presents interpretable machine learning-based approaches through
CMR radiomics and regularized latent-representation based models for identify-
ing changes in cardiac structure and tissue texture due to various cardiovascu-
lar conditions from multi-modal datasets and endeavors to generate explanations
from different imaging biomarkers. The contributions of this thesis are three-fold.
Firstly, a CMR radiomics-based pipeline was developed to quantify cardiovascular
conditions automatically. Secondly, one of the largest and most comprehensive as-
sessments of CMR radiomics for image phenotyping of important cardiovascular
diseases was carried out employing the UK Biobank dataset. Thirdly, a DL-based
attribute-regularized network is proposed to generate explanations from cardiovas-
cular pathological cases combining clinical biomarkers and radiomics signatures.

Keywords: radiomics, explainable artificial intelligence, cardiovascular diseases,
interpretation, CMR.
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CHAPTER

1

Introduction

Machine learning (ML) is having a transformational effect in many sectors, includ-
ing healthcare. Recent advances in artificial intelligence methodologies, such as
deep learning (DL), are expected to revolutionize the way health monitoring and
care is approached. However, such data-driven methods often lack interpretability
and explainability, which is crucial for health applications. In this thesis, we focus
on the development of novel interpretable machine learning methods, based on
radiomics and DL, and their application for cardiovascular disease diagnosis and
stratification.

This chapter introduces the motivation for the research undertaken in this the-
sis and aims at providing the reader with all the necessary background including,
clinical and technical context. This chapter firstly starts introducing cardiovascu-
lar diseases (CVD) in Section 1.1.1. In Section 1.1.2 the role of cardiac imaging
with a special focus on cardiovascular magnetic resonance imaging (CMR) is ex-
plained. This is followed by imaging-derived indices of cardiovascular function
in Section 1.1.4. Section 1.2.1 introduces ML-based cardiovascular analysis and
its challenges. After that radiomics based analysis is described, explaining its use
both in cardiology and its limitations in Section 1.2.2. DL-based cardiovascular
analysis is introduced in Section 1.2.3. explainable artificial intelligence (XAI)
is introduced in Section 1.2.4. Finally, this chapter is concluded with a summary
of the objectives and contributions of this research work and with an overview of
thesis content in Section 1.3.
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1.1. Clinical context

1.1.1. Cardiovascular diseases

Cardiovascular diseases are the leading cause of morbidity and mortality world-
wide, representing 32% of all deaths globally (17.9 million), being 85% of these
deaths due to heart attack and stroke, according to the World Health Organization
(WHO) [1]. The decline in age-standardized mortality rates and in the incidence
of coronary artery disease (CAD), also known as ischemic heart disease (IHD), in
many countries illustrates the potential for prevention of premature deaths and for
prolonging life expectancy.

The cardiovascular system consists of the heart, which is an anatomical pump with
four chambers and an equal number of valves (see Figure 1.1). By contracting and
relaxing in turns, it transports blood to different parts of the body through the ves-
sels [2]. Heart muscle (myocardium) cells need oxygen to function properly. The
oxygen is provided by the blood that comes from the coronary arteries. The reduc-
tion of blood supply to coronary arteries is known as ischemia. An ischemic event
is generally caused by atherosclerosis in the coronary arteries, which occurs when
the arteries become clogged, restricting blood flow to the myocardium. Without
adequate blood flow from the coronary arteries, the heart cannot get enough oxy-
gen and vital nutrients to work properly. Myocardial infarction (MINF), which is
an irreversible damage to the myocardial tissue, occurs when there is a complete
blockage of the arteries [3]. MINF can cause abnormal loading conditions in the
myocardium. In time, these abnormalities result in shape alterations of the heart
such as localized thinning of the wall and also, in some extreme cases might result
ventricle aneurysm [4].

Heart failure being the final common stage of several CVD such as MINF, atrial
fibrillation (AF), and valvular heart diseases, indicates a dysfunction of the heart’s
pumping ability [6]. Congenital heart disease (CHD), on the other hand, is an ab-
normality of the structure of the heart and usually occurs at birth. A variety of
conditions can cause these abnormalities during embryonic development. These
conditions can be treated via surgical intervention. Some examples of congeni-
tal heart disease are: cardiac shunts, valve abnormalities, aortic coarctation, and
transposition of the great vessels [7].

Cardiomyopathy is a group of diseases that affects the heart muscle. The classi-
fication of cardiomyopathies can be done by separating them into genetic, mixed,
and acquired [8]. The most common genetic cardiomyopathy is hypertrophic car-
diomyopathy (HCM) which is a condition in which the ventricles and the septum
(the wall separating the left and the right side of the heart) as seen in Figure 1.1,
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Figure 1.1: Internal view of the heart. Source: [5]

becomes thicker without an obvious reason. The thickened areas cause narrowing
or blockage in the ventricles and make it harder for the heart to function prop-
erly [9]. HCM is the most common cause of sudden cardiac death in young peo-
ple, especially in athletes. The most common mixed (genetic and non-genetic)
cardiomyopathy is dilated cardiomyopathy (DCM) which is characterized by ven-
tricular chamber enlargement (dilation) and systolic dysfunction with normal left
ventricle wall thickness. The causes of DCM include infectious agents, partic-
ularly viruses, often producing myocarditis. DCM is also caused by a number
of mutations in other genes encoding cytoskeletal/sarcolemma, nuclear envelope,
sarcomere, and transcriptional coactivator proteins [8].

New therapeutic options for prevention and treatment of CAD have resulted in an
increasing number of patients who survive a cardiovascular event. In developed
countries the burden has shifted from the middle-aged to the elderly, and the preva-
lence of CAD increases exponentially with aging [10]. Therefore, early diagnosis
of CVD plays an important role to reduce mortality and improve the quality of
life for patients. In this regard, medical imaging is a major asset due to its unique
capability for capturing in vivo the most subtle structural and functional changes
in diseased organs.

1.1.2. Cardiovascular imaging

Non-invasive cardiac imaging techniques allow to diagnose and monitor the struc-
ture and function of the heart in a safe manner. These techniques aim to avoid
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Figure 1.2: Images from different modalities: 3DUS= Three-dimensional ultrasound,
CT= Computed Tomography, SPECT= Single Photon Emission Computed Tomography,
MRI = Magnetic Resonance Imaging. Figures are taken from wikipedia.org

unnecessary invasive procedures, which require catheters to be inserted in the
heart. As opposed to invasive techniques, non-invasive techniques are safe and
can be used to diagnose a wide range of CVD [11]. Common modalities for car-
diac imaging include computed tomography (CT), positron emission tomography
(PET), single-photon emission computed tomography (SPECT), ultrasound (US)
and magnetic resonance imaging (MRI) [12]. Images from different cardiac imag-
ing modalities can be seen in Figure 1.2.

CT is based on tomographic reconstruction methods, which generate a high-reso-
lution 3D volume from sets of X-ray images. Anatomical information of the heart
and coronary arteries is clearly visible in CT. It is relatively inexpensive and pro-
vides fast image acquisitions. However, the disadvantage of this imaging modality
is that it is based on X-rays, so patients are exposed to radiation [13].

SPECT and PET are both functional imaging techniques that measure radioactive
tracers that are injected intravenously to the subject under examination. In cardiol-
ogy, SPECT is mostly used to study myocardial perfusion, which investigates the
function of the heart muscle. This technique is useful to quantify CAD and it is
usually performed in conjunction with CT or MRI. The strength of SPECT is that
it directly assesses tissue viability. However, the weakness of this modality is the
low spatial and temporal resolution of the generated images [14].

Cardiac US, also known as echocardiography is the fastest, least expensive and
least invasive modality to visualize structure of the heart. It uses high frequency
sound waves (ultrasound) that can provide a real-time visualization of heart cham-
bers. The low costs and absence of radiation associated with US makes it the
most common technique to analyze the heart status for the first assessment. Its
limitations include low signal-to-noise ratio and poor contrast between different
tissues.

4



1.1. CLINICAL CONTEXT

Figure 1.3: Orientation of major cardiac planes with respect to the heart. Image is taken
from [21].

MRI is a technique that uses strong magnetic fields and radio-frequency waves
to produce detailed images of the organs and tissues in the body. As US, MRI
does not use ionising radiation and in contrast to US, MRI provides images with
higher soft tissue contrast. These aspects make of MRI an accurate, reproducible
modality and convenient for population studies, despite its high cost [15, 16].

Among the many different modalities of cardiac imaging, this thesis deals mostly
with data from MRI, specifically cardiovascular magnetic resonance imaging
(CMR), which represents the current gold standard for the assessment of cardiac
structure and function.

1.1.3. Cardiovascular magnetic resonance imaging (CMR)

CMR is the reference imaging modality for assessment of cardiac structure and
function; accordingly, its use in clinical practice is increasingly widespread [17].
It allows easy discrimination of soft tissues and blood pool without using any con-
trast agent. The main advantages of using CMR are image quality, noninvasive-
ness, accuracy and no exposure to radiation. CMR imaging is able to provide new
insights to understand the pathophysiologic processes of underlying cardiac dis-
eases, such as tissue damage from heart attack, reduced blood flow in myocardium,
heart valve disorders, and abnormal right and left ventricular function [18–20].

CMR uses MRI pulse sequences techniques within a single study, leading to a
comprehensive assessment of the cardiovascular system [23]. Most CMR images
are acquired in breath hold and synchronized to the electrocardiography (ECG)
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Figure 1.4: Planning used for the short-axis SSFP cine stack shown on 4- chamber and 2-
chamber slices (top panel), with examples of some short-axis slices (bottom panel). Figure
is taken from [22].

using cardiac gating [24]. Currently, the preferred MRI sequence for myocardial
assessment is cine balanced steady-state free precession (bSSFP) [25].

CMR acquisition is acquired using stack of 2D slices from different imaging
planes in different cardiac time frames (e.g. end-diastole (ED) and end-systole
(ES) frames) to include the whole cardiac cycle. The standard cardiac planes in-
clude short axis, horizontal long axis (four-chamber view), and vertical long axis
(two-chamber view) [22] as it be seen in Figure 1.3. Example 2D cine BSSFP
CMR acquisitions for two- and four-chamber views can be found in Figure 1.4.
The main cardiac structures that can be identified with CMR include right atrium
(RA), left atrium (LA), right ventricle (RV), left ventricle (LV) and coronary arter-
ies. For quantification, LV epicardial and endocardial contours are usually drawn
at ED and ES frames (see Figure 1.5) which provides a way to calculate left and
right ventricular volumes, mass and function [26].

1.1.4. Clinical indices of cardiac function

Heart performance, i.e., cardiac function is usually divided; systolic and diastolic.
Systolic function refers to contraction of the ventricles in order to push blood into
the arteries. Diastolic function refers to the relaxation of the ventricles to receive
blood from the atria (filling). Different quantitative indices have been suggested to
evaluate cardiac function at global and regional levels for both ventricles and are
based on ventricular volumes at end-diastole (EDV) and end-systole (ESV).

For the clinical assessment, global indices include:
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Figure 1.5: Epicardial (green), endocardial (red) and right ventricular (yellow) contours
at end-diastole (ED) and end-systole (ES) [22].

Ventricular mass (VM) is a global indicator of cardiac function and is cal-
culated based on the volume contained within epicardial borders minus the
chamber volume, multiplied by the density of the muscle tissue.

Ejection fraction (EF) quantifies the quantity of the blood pumped out of
the heart in each beat as a percentage. Usually to diagnose many CVD
(e.g. cardiomyopathy, remodeling after MINF), left ventricle ejection frac-
tion (LVEF) is used [2]. For example, high LVEF can often be seen in LV
hypertrophy (e.g. hypertrophic cardiomyopathy (HCM)) [27]. In addition,
right ventricle ejection fraction (RVEF) may also be decreased after myocar-
dial infarction including parts of the RV.

Cardiac output (CO) refers to the amount of systemic flow per minute. When
the CO is normalized by body mass index (BMI), it is referred as left ven-
tricle cardiac index (LVCI). Left ventricle cardiac output (LVCO) and LVCI
are decreased in the case of congestive heart failure [28].

Wall thickness (WT) is the thickness of the myocardium (MYO), and it is
used to assess the systolic performance. It may be increased in conditions
with increased afterload, such as hypertension. Some conditions also af-
fect WT as a regional increase (with or without increased left ventricle mass
(LVM)) typically referred to as asymmetric hypertrophy, such as in HCM
[2]. In contrast, some cardiovascular diseases cause regional changes in
wall thickness, for example MINF leads to a regional thinning as a conse-
quence of cardiac remodeling [29]. LV wall thickening indicates the change
of myocardial WT during systole.
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1.2. Methodological context

1.2.1. Machine learning in medical image analysis

Machine learning (ML) methods in medical imaging show promise to automatize
many medical image processing tasks. ML is a set of techniques that enable the
extraction of meaningful patterns from examples [30]. Specifically, it can learn
rules and identify patterns progressively from larger datasets without being ex-
plicitly programmed or given any prior assumptions [31]. ML techniques can
perform either classification where discrete labels are determined, or regression,
where continuous variables are estimated.

ML is now being applied to many areas of medical imaging, such as segmentation
of anatomical structures [32], computer-aided diagnosis [33], medical image re-
construction [34] and clinical decision support [35]. ML methods can be devised
for the segmentation and analysis of CMR. For example, ML methods can be used
to determine LVEF from a CMR study [36].

In a ML model, important characteristics or features for a certain task are extracted
from the images, by training on an example dataset (training phase). In testing
phase the trained model is used to make a prediction on the data not seen previ-
ously in the training (called testing data). To evaluate performance of the model,
it is of paramount importance to keep training data, which is used during model
development, separated from the testing data which is used to evaluate the perfor-
mance. However, another dataset (called validation dataset) is also used during the
training phase to help determine the optimal design of the ML model. The valida-
tion dataset is used to optimize the parameters of the model and to ensure that the
model does not overfit. Overfitting is a phenomenon that is seen when a trained
model performs extremely well on training data but shows poor performance on
unseen data (testing data) [36, 37].

The availability of reference labels in training data determines the type of ML as
supervised or unsupervised [31, 38]. In supervised ML methods, the ground truth
labels are provided in training data, e.g., cases with clinical cardiovascular indices
(EF, ventricular volume, or mass), cases with imaging features (intensity, edges, or
shape), cases with pathological status and images with ground truth segmentations.
Supervised ML techniques are the most commonly used approaches, as learning
from expert annotated data is the most intuitive way to mimic human performance
in comparison to unsupervised ML methods where training data are given without
ground truth labels [36]. With unsupervised learning, the data are processed with
the aim of separating or clustering the training data into groups based on a measure
of similarity or distance [30, 31].
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The ability of ML techniques to analyze high dimensional data has facilitated the
emergence of a novel field called radiomics. As this thesis explored the use of
radiomics analysis in cardiac imaging, the next section will focus on radiomics.

1.2.2. Radiomics analysis

Radiomics is a novel image analysis technique, whereby digital medical images
are converted to minable high dimensional data extracting hand crafted imaging
features of shape and tissue character (referred to as radiomics features) [39].
These features may be used as predictor variables in ML models for diagnosis
or clinical outcome prediction. Radiomics features are extracted from regions of
interest (ROIs) and they can be roughly divided into shape-based, signal inten-
sity-based (also called histogram-based), texture-based and transform-based fea-
tures [40].

Shape-based radiomics features quantify the morphological characteristics and are
extracted directly from the segmented region. Most of the shape-based features are
conceptually simple, such as axes, minimum or maximum 2D and 3D diameters.
Yet, some surface- and volume-based features use meshes and are more complex.
For example, features include sphericity and compactness, that defines how the
shape differs from a sphere [41].

Signal intensity-based radiomics features define the global gray-level his-
togram-based properties such as minimum, maximum, mean, median, percentiles
and variance of gray-level values within the image region defined by the ROI [42].
More sophisticated features that quantify the shape of the intensity distribution of
data including, skewness which defines asymmetry of the distribution of inten-
sity values about mean value (negative skew: below the mean and positive skew:
above the mean), and kurtosis which measures the tailedness of intensity distribu-
tion relative to a Gaussian distribution due to outliers (higher kurtosis: the mass of
the distribution is concentrated towards the tail rather than towards the mean and
lower kurtosis implies the reverse) [43]. Other features include histogram unifor-
mity, standard deviation, mean absolute deviation and root mean squared.

Texture-based radiomics features are derived from different types of gray-level in-
tensity matrices. These features are obtained using second- or higher-order statis-
tics, and they can be categorized into several subgroups depending on the type
of gray-level intensity matrix they are derived from (see Figure 1.6). Gray-level
co-occurence matrix (GLCM) is a second-order histogram matrix that defines the
spatial neighborhood relationship of pairs of pixels or voxels, with intensity val-
ues, in defined directions (horizontal, vertical, or diagonal for a 2D analysis or
13 directions for a 3D analysis), with a predefined distance between the pixels
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Figure 1.6: Characterization of textural features. For a given ROI, differences in the un-
derlying histological structure will result in different texture patterns that can be described
using higher-order features that reflect the unique spatial arrangement of voxels and their
attenuation on computed tomography. Histogram-based first-order features only reflect
the voxel attenuation distribution. Different texture patterns (same number of voxels with
similar attenuation values but different location) may still have identical histogram and
therefore similar first-order statistics.Figure is depicted from [44].

or voxels [41] as it can be seen in Figure 1.6. GLCM features include joint en-
tropy, which is a measure of randomness or variability in neighborhood intensity
values, maximum correlation coefficient assessing the complexity of the texture,
inverse difference moment (also called homogeneity), which reflects gray-level
homogeneity or order and contrast emphasizes gray-level variability between pix-
els or voxels belonging to a predefined pixel or voxel pair [45]. Gray-level size-
zone matrix (GLSZM) quantifies the number of connected voxels that share the
same gray-level intensity (so-called gray-level zone) [46]. GLSZM is not com-
puted for different directions as in GLCM, but rather calculated for different pixel
or voxel distances that define the neighborhood in 2 dimensions (8 neighboring
pixels) or in 3 dimensions (26 neighboring voxels). GLSZM features include frac-
tions, large and small area emphasis, that assess the percentage of pixels or voxels
that are part of gray-level zones, defining the type of texture (fine or coarse). Other
GLSZM features include gray-level non-uniformity, which measures homogene-
ity of the image, and size-zone non-uniformity, which measures the variability
of size-zone volumes in the image. Gray-level run-length matrix (GLRLM) as
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described in [47], quantifies gray-level runs, which are defined as the length in
number of pixels, of consecutive pixels that share the same gray-level value, in
one or more directions and in 2 or 3 dimensions. Following GLSZM definitions,
GLRLM features also include fraction (the percentage of pixels or voxels within
the ROI that are part of gray-level runs and thus reflects graininess [41]); short-run
(greater value indicates shorter run length and more fine texture) and long-run em-
phasis (greater value implies longer run length and more coarse texture). Other
features include, for example, gray-level and run-length non-uniformity, that as-
sess the similarity of run lengths over different gray-level values and run lengths,
respectively. Gray-level dependence matrix (GLDM) defines gray-level relation-
ship between a central pixel or a voxel and its neighborhood within a predefined
distance [48]. In this definition, a neighboring pixel or voxel is considered as being
connected to the central pixel or voxel only if it meets certain dependence crite-
rion in terms of a defined range of gray-level differences [41, 48]. GLDM features
comprise of dependence non-uniformity, dependence variance, dependence en-
tropy, and as in GLSZM and in GLRLM, features that represent the fraction, such
that small dependence emphasis measures the distribution of small dependencies
(greater value is an indication of less homogeneous texture) and large dependence
emphasis which is a measure of the large dependences in the image (greater value
implies more homogeneous texture). Finally, Neighbouring gray tone difference
matrix (NGTDM) quantifies the difference between a gray-level value of a pixel
or voxel and the average gray-level value of its neighbors within a predefined dis-
tance [49]. Key features include coarseness which quantifies the gray-level dif-
ference between the central pixel or voxel and its neighbors, and thus it is an
indication of spatial rate of change in gray-level intensities, with a higher value
indicating a lower spatial change rate and a locally more uniform texture. Contrast
and busyness are both measure of gray-level intensity change where contrast as-
sesses global change which is dependent on overall gray-level dynamic range and
busyness quantifies rapid gray-level changes between the central pixel or voxel
and its neighbors, so that an image with many small areas of different gray-level
values will results in a greater busyness.

Transform-based features analyze gray-level patterns from the images that are
transformed using different techniques, including Fourier, Gabor, and wavelet
transforms [50]. Fourier transform [51] analyzes the spatial frequency informa-
tion of the image, ignoring temporal and spatial representation, by converting the
image in the spatial domain into a set of sine and cosine components. Gabor trans-
form [52], on the other hand, describes textural patterns by sinusoidal functions
and allows the spatial, temporal, and frequency representation of the signal [53].
Wavelet transforms allow a more detailed analysis of the image components, quan-
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tify the frequency content of an image at different scales by decomposing it into
high frequency (heterogeneity) and low frequency (homogeneity) regions [54, 55].
Wavelet decomposition of an image is done with a pair of so-called quadrature
mirror filters, a high-pass and a low-pass filter [56].

Radiomics workflow

Standard radiomics workflow as illustrated in Figure 1.7 consists of several steps.
Radiomics can be applied to any standard medical imaging modality without a
defined requirement for dedicated acquisitions or imaging protocols.

Once the images to be analyzed are determined, for any radiomics framework,
delineation of the ROI is a crucial step, as the ROI defines the region in which ra-
diomics features are calculated. There are several approaches to determine the
segmentations for the images; it can be done manually, semi-automatically (it
can be done using segmentation algorithms such as thresholding and then apply-
ing manual corrections) and fully automatically (with ML or nowadays DL tech-
niques). Manual and semi-automatic segmentations are the most used methods
especially in radiomics analysis, however they are time-consuming and observer
bias. DL-based image segmentation is rapidly emerging, and many different al-
gorithms have already been proposed to segment various structures in medical
images. Although DL-based automated image segmentation is the best option as
it avoids intra- and inter-observer variability of radiomics features, the generaliz-
ability of trained algorithms is currently the biggest drawback and applying those
algorithms on a different dataset often results in complete failure [57]. For this
reason, further research is needed to develop robust and generalizable automated
image segmentation.

Image preprocessing is the step just before radiomics feature extraction which aims
to homogenize images from which radiomics features are extracted. This can be
done with respect to pixel spacing, gray-level intensities, and bins of the gray-level
histogram. Preliminary results have shown that the robustness of the extracted
radiomics features depends mostly on the segmentations and image processing
techniques [59–61]. For this reason, the selection of these techniques is crucially
important for reproducible research [57]. After image preprocessing, radiomics
features are extracted within ROI. Extraction of features can be performed using
dedicated open-source software packages such as pyRadiomics [62]. As there
are many different ways to calculate those features, use of the Image Biomarker
Standardization Initiative (IBSI) guideline is recommended [42]. This guideline
offers a consensus for standardized feature calculations from all radiomic feature
matrices.
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Figure 1.7: Strategy for extracting radiomics analysis of CT images with tumor. (I) De-
lineation of the tumour areas by human experts, on all CT slices. (II) Radiomics features
are extracted from within the defined tumour ROI on the images, quantifying tumour in-
tensity, shape, texture and wavelet texture. (III) For the analysis, the radiomics features
are compared with clinical data and gene-expression data. Figure is taken from [58].

Depending on the experimental setting (i.e., type of the software package used for
feature extraction, number of filters, number of image transformations) applied
during the process, the number of extracted radiomics features to deal with can
vary between 100s and 1000s. The higher the number of features in a model and
the lower the number of cases in the study, the higher the risk of a model to overfit.
For that, reducing the number of features during the feature selection step is of
paramount importance to generate valid and generalizable results and to identify
an optimal set of radiomics features to be used for model building. Although there
are some rules of thumb for deciding the optimal number of features to select re-
garding the size of data, there is no true evidence for these rules in the literature
[57]. Feature selection, or dimensionality reduction, is a multistep process lead-
ing to the exclusion of the features that are less informative, redundant, unstable,
and provide repetitive information. There are several ways for feature selection.
The most commonly followed feature selection pipeline [40, 63–65] starts with
the exclusion of non-reproducible, non-informative, and non-robust features then
the feature importance is evaluated in a ML framework. Various techniques are
available for this step, such as recursive feature elimination [66], random forest al-
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gorithms [67], least absolute shrinkage and selection operator (LASSO) [68] and
sequential forward or backward feature selection algorithm [69]. The remaining
non-correlated and highly relevant features are used, in most of the approaches, to
train the model for the respective task.

Analysis of model performance is done with an independent external dataset. This
step is crucial for assessment of performance and generalizability of the proposed
model. Model performance is thus evaluated using several metrics such as sensi-
tivity, specificity, receiver operating curves and area under the curve (AUC). Ad-
ditionally, the model performance can also be compared with clinical indices and
gene expression, depending on the task. Finally, the main motivation of radiomics
analysis is that certain radiomics features are used as a predictor of particular dis-
ease states, the identified radiomics features (radiomics signatures) may be used
to classify clinical outcomes.

Radiomics in cardiology

Although radiomics has been applied most prominently in the field of oncology,
recently there has been an interest in applying radiomics in cardiology. One of
the earliest attempts in cardiology was done to distinguish certain clinical condi-
tions such as cardiac amyloid [70] and hemochromatosis [71] in echocardiogra-
phy. Promising results were also obtained with computed tomography imaging
studies to analyze coronary artery plaques and perivascular fat [50, 72]. How-
ever, limited proof-of-concept studies and difficulties with reproducibility of these
aforementioned studies, have demonstrated the potential value and feasibility of
CMR radiomics [36, 64, 73–75].

Myocardial tissue characterization in cardiology is a crucial but challenging task
to distinguish various cardiovascular diseases. Although shape-based radiomics
features have shown good performance in oncology, radiomics analysis in CMR
mostly rely on intensity-, texture- and transform-based features such as wavelet
transform [76–79]. The application of radiomics analysis to CMR imaging has re-
cently shown great success in order to provide further insights into complex tissue
alterations and pathology of cardiovascular diseases [64, 74, 80]. For example,
several studies show that cardiomyopathy can be differentiated from healthy co-
hort using texture-based features [81, 82], as well as textural changes are observed
in the myocardium of patients with acute myocarditis [83].

In CMR radiomics any image from CMR study can be used to extract radiomics
features, however the short-axis stack is the most convenient to analyze with ra-
diomics, because of existing endocardial and epicardial contours which can be
used to define the ROI, avoiding extra segmentation steps [75]. Radiomics anal-
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Figure 1.8: Radiomics pipeline in CMR. Radiomic feature extraction can be performed
on all types of CMR images, e.g. cine images or T1 / T2 maps. The myocardium is seg-
mented then feature extraction is performed. After extracting a high number of quantitative
features, high-level statistical modelling is applied in order to perform either classification
or prediction tasks. Figure is taken from [36].

ysis in CMR follows the standard radiomics framework as can be seen in Figure
1.8. The ROI can define a single area (e.g. a ROI with a delineation of either LV
or RV) or multiple areas together (e.g. a ROI with delineations of LV and RV).
Cardiac motion information may also be captured through analysis of temporal
images (analysis of images from ED and ES) or assessment of images from all
cardiac cycle phases [84, 85].

Current limitations in radiomics

Although radiomics analysis has shown great potential for diagnostic, prognostic,
and predictive purposes in numerous studies, including oncology and cardiology,
it faces several challenges.

First and foremost, the large number of potentially available features is one of the
primary challenges in radiomics studies where it leads to a risk of overfitting and
presents the problem of radiomics model selection [78]. As the performance of
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all ML systems depend on the quality of raw data and features use to train these
models, it is also important in radiomics analysis to use an accurate dataset with
minimal missing values and proper parameterization; yet this is often a challenge
in big data studies that include a huge amount of cases from different sources [31].

The redundancy in radiomics features needs to be noted and accounted for, and
thus proper validation approaches should be applied to minimize this risk [44].
Additionally, radiomics feature values are influenced by patient variabilities in ad-
dition to the variations in scanners and settings. For example, geometric structure
of the ROI has a big impact on the levels of noise and presence of artifacts in an
image which directly affect the intensity- and texture-based features [57].

The reproducibility of radiomics studies is often poor because of insufficient re-
porting of experimental settings, lack of standardization, or limited open-source
code and data [86]. Finally and perhaps most importantly, the lack of inter-
pretability of radiomics features, especially those derived from intensity- and tex-
ture-based features, is one of the major challenges that the radiomics studies face
and thus often hamper the translation to clinical practice and the use in clinical
decision support systems [57, 75, 87].

1.2.3. Deep learning in medical image analysis

Although ML models have shown great promise to fully automate many medical
image processing tasks, it is only until introduction of DL models that they are
reaching widespread use [88]. DL is a subclass of ML and uses artificial neural
networks with hidden layers to make predictions directly from datasets without the
need for extracting any discriminative hand-crafted features [89].

The reason behind the success of DL methods is their extraordinary ability to learn
complex task-specific imaging features through the stacked layers of non-linear
processing which constitutes a neural network [90, 91]. For example, in case of
finding the contours of myocardium, DL methods simply learn the image features
that are the most useful for predicting the location of the corresponding contours.
This new learning paradigm, end-to-end learning, has been made possible only
in the last decade because of advancements of high-tech central processing units
(CPUs), graphics processing units (GPUs), and tensor processing units (TPUs),
availability of big data to collect vast amounts of imaging data, developments of
learning algorithms, open-source development libraries and freely available work-
ing examples [89, 90].

Due to these improvements, DL models have managed to outperform most of ML
methods in a variety of medical imaging tasks. In 2017, for example, a challenge
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was organized by Bernard et al. [92], the Automated cardiac diagnosis challenge
(ACDC), aimed at evaluating the performance of different automatic methods for
the classification of 150 subjects into 5 categories (healthy, HCM, DCM, ARV
and MINF) as provided by clinical experts. Several approaches were proposed for
this problem where the results clearly open the door to highly accurate and fully
automatic analysis of CMR, mainly using DL models. Additionally, according to
a survey [93], in the last six years to 2017, 300 DL-based approaches have been
published in medical image analysis, including CMR, with the numbers growing
exponentially.

In medical image analysis, a special type of neural network, called as Convolu-
tional neural network (CNN), is often used. A typical CNN is composed of three
different types of layers: convolution, pooling and fully connected layers. Convo-
lution and pooling layers carry out feature extraction employing a set of filters that
are applied directly to the data. Fully connected layers, on the other hand, map
the features into the final output, such as prediction of a clinical outcome. For the
medical image segmentation and image reconstruction tasks, upsampling opera-
tions (transposed convolutional layers) are used to return the image dimensions
back to the original input size. Finally, non-linearity is performed with a softmax
layer which rescales the components producing a non-negative probability to each
pixel class so that outputs sum up to 1 in the output layer.

There are several differences to note between deep CNN networks and radiomics
studies. First, CNN does not require hand-crafted feature extraction, and they do
not necessarily need segmentation of cardiac substructures by human experts, par-
ticularly for the classification tasks. Second, CNN networks involve many millions
of weights to optimize and therefore they require a huge amount of data. Although
the features outputting from the intermediate convolutional layers contain relevant
information to the task under study, because of their black-box nature, it is often
difficult to interpret why the network predicts what it predicts or why it fails.

Explainable artificial intelligence (XAI) is, therefore, an emerging research field
to answer a question on how a DL network obtains a particular solution. As XAI
constitutes the second main part of this thesis, the following section focuses on
XAI, while addressing its use in medical image analysis.

1.2.4. Explainable artificial intelligence (XAI)

XAI has experienced significant growth recently due to the broad use of ML appli-
cations, specifically DL, that provide highly accurate models but lack of explain-
ability and interpretability. Although the terms, explainability and interpretability
are used interchangeably, there are some distinctions between them [94, 95], such
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that the explainable models can be interpretable by default; however, the reverse
is not always possible [96]. Interpretation is the extent to which a cause and effect
can be detected in a system so that one can predict what is going to happen in
the case the input or a parameter in a DL system, is changed. On the other hand,
explainability is to expound a set of parameters that contribute to the output model
decision [96].

Generally speaking, XAI can be categorized in model-agnostic and model-specific
approaches. Model-agnostic approaches are applied in post-hoc analysis and not
attached to specific model architecture and rely on a simple surrogate function
to explain the predictions, whereas model-specific approaches only benefit from
parameters of the individual models and can be used with or without post-hoc
analysis [94, 97]. For example, for the complex models like SVM, CNN, RNN
and ensemble models, a model specific and post-hoc XAI strategies are specified
[98].

Recently model-specific XAI techniques have shown great success to emphasize
the importance of different features of the high-dimensional input data providing
an explanation of a representative instance. For example, in the case of classifica-
tion in cancer imaging, an attention module can be applied to explain to the user
what image fragments the model focuses on to produce clinical outcome [98–100].
Model-agnostic XAI techniques develop surrogate representations to approximate
an interpretable model for the black-box approaches. For example, to evaluate a
treatment response on different clinical symptoms, an interpretable decision tree
can be employed to approximate more complex DL model [98]. A well-validated
model-agnostic XAI tool, local interpretable model-agnostic explanation (LIME),
is able to provide local explanations for a complex DL model in the neighborhood
of an instance [101].

Moreover, latent representation based models, such as Variational autoencoder
(VAE) or Generative adversarial network (GAN), have also become powerful tools
in this direction [102–104], as their latent space is able to encode important hidden
variables of the input data [105, 106]. In case of interpreting different features (so
called data attributes) or imaging biomarkers, these approaches provide a way to
see how and if these attributes have been encoded in the latent space [107–111].

1.3. Research goals and context

The objectives of the thesis and how the rest of the document is organized are as
follows:

18



1.3. RESEARCH GOALS AND CONTEXT

Chapter 2 describes the development of a radiomics-based algorithm for auto-
matic quantification of complex cardiovascular conditions. The developed method
was used to analyze cardiovascular diseases from ACDC MICCAI17 dataset and
hypertensive patients from UK Biobank. The results of this chapter were published
in :

Cetin I., Sanroma G., Petersen S.E., Camara, O., Gonzalez Ballester M.A.,
Lekadir K., A Radiomics Approach to Computer-Aided Diagnosis with Car-
diac Cine-MRI. Statistical Atlases and Computational Models of the Heart.
STACOM, 82-90 (2018).

Bernard O., Lalande A., Zotti C., Cervenansky F., Yang X., Heng P-A.,
Cetin I., et. al., Deep Learning Techniques for Automatic MRI Cardiac
Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?,
IEEE Transactions on Medical Imaging, 2514-2525 (2018).

Cetin I., Petersen S.E., Camara, O., Napel, S., Gonzalez Ballester M.A.,
Lekadir K., A Radiomics Approach to Analyze Cardiac Alterations in
Hypertension. International Symposium on Biomedical Imaging. ISBI,
640-643 (2019).

Chapter 3 describes the identification of CMR radiomics signatures for the quan-
tification of five different cardiovascular risk factors, using large-scale biomedical
dataset, UK Biobank. This chapter was published in:

Cetin I., Raisi-Estabragh Z., Petersen S.E., Napel, S., K. Piechnik S.,
Neubauer S., Camara, O., Gonzalez Ballester M.A., Lekadir K., Radiomics
Signatures of Cardiovascular Risk Factors in Cardiac MRI: Results From
the UK Biobank. Frontiers in Cardiovascular Medicine, Volume 7 (2020).

Chapter 4 describes the development of novel attribute-based approach using DL
in cardiovascular pathological cases linking both with clinical and interpretable
features and also exploring the association with radiomics features. This chapter
is adapted from:

Cetin I., Camara O., Gonzalez Ballester M. A., Attri-VAE: attribute-based,
disentangled and interpretable representations of medical images with vari-
ational autoencoders. Medical Image Analysis. Medical Image Analysis.
(2022) [Submitted].
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Chapter 5 summarizes the main ideas, contributions, limitations and future direc-
tions of the thesis.
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CHAPTER

2

Radiomics Approach to Computer-Aided
Diagnosis with CMR

2.1. Introduction

Despite continuous progress in clinical research and practice, cardiovascular dis-
eases (CVD) remain the leading cause of mortality and morbidity globally [112].
In this context, cardiac imaging such as cardiovascular magnetic resonance imag-
ing (CMR) is expected to play an essential role due to its ability to quantify struc-
tural and functional properties of the heart [113]. However, visual assessment of
CVD using CMR remains challenging and labor-intensive due to the complexity
of these diseases, mainly when the structural and functional disorders are sub-
tle [17]. Quantitative assessment can be suboptimal for borderline cases through

This chapter is adapted from:
Cetin I., Sanroma G., Petersen S.E., Camara, O., Gonzalez Ballester M.A., Lekadir K., A Ra-
diomics Approach to Computer-Aided Diagnosis with Cardiac Cine-MRI. Statistical Atlases and
Computational Models of the Heart. STACOM, 82-90 (2018). https://doi.org/10.1007/
978-3-319-75541-0_9
Bernard O., Lalande A., Zotti C., Cervenansky F., Yang X., Heng P-A., Cetin I., et. al., Deep
Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis:
Is the Problem Solved?, IEEE Transactions on Medical Imaging, 2514-2525 (2018). https:
//doi.org/10.1109/TMI.2018.2837502
Cetin I., Petersen S.E., Camara, O., Napel, S., Gonzalez Ballester M.A., Lekadir K., A Radiomics
Approach to Analyze Cardiac Alterations in Hypertension. International Symposium on Biomedical
Imaging. ISBI, 640-643 (2019). https://doi.org/10.1109/ISBI.2019.8759440
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existing clinical indices such as volumetric measures, ejection fraction (EF), and
thickening measures.

Additionally, cardiovascular risk factors, particularly hypertension, remain as the
major risk factor for developing CVD and cardiac events. Approximately 77% of
people who have a first stroke and 70% of people who have a first heart attack have
hypertension [114]. While not directly linked to the heart, this condition can in-
duce longitudinal alterations in the heart over a long period, well before symptoms
of cardiovascular disease development. Eventually, this can lead to significant car-
diac diseases like heart failure and left ventricular hypertrophy. Therefore, it is of
paramount importance to identify individuals with a risk of developing hyperten-
sion-related diseases at an early stage to apply preventive and corrective measures.
Furthermore, there is a significant knowledge gap about which perturbations occur
in the heart over time in hypertensive patients, leading to full-blown cardiovascu-
lar remodeling and dysfunctions. Consequently, more advanced automated tech-
niques are needed to exploit the richness of the cardiac data to estimate diagnosis
and the severity of the phenotype, which is often associated with prognosis.

This work proposes a radiomics approach to the automated image-based diagno-
sis of complex CVD for imaging phenotyping of cardiovascular alterations due to
hypertension. Radiomics is the task of calculating a large number of imaging de-
scriptors from delineated images, which has been developed and exploited mainly
in oncology with promising results for tumor classification and treatment planning
[115–121]. In CMR, radiomics analysis has been applied to describe changes in
image appearance due to CVD only recently [36, 64, 73–75].

The proposed approach estimates a large number of radiomic features, including
intensity, shape, and textural descriptors, and assesses their ability to discriminate
between different clinical conditions automatically and robustly within a machine
learning framework based on support vector machines (SVM). We used two sep-
arate datasets in this study: CVD obtained from a database of CMR cases corre-
sponding to five different subclasses from the ACDC challenge of MICCAI 2017
and hypertensive patients acquired from UK Biobank.

The rest of the chapter is organized as follows. Section 2.2 introduces the
state-of-the-art that is relevant for this study. Section 2.3 describes the employed
databases. Section 2.4 details the methodology followed in this work. Section
2.5 addresses the results obtained, where Section 2.5.1 shows the results from the
ACDC challenge, and Section 2.5.2 demonstrates the results from the patients with
hypertension identified from UK Biobank. Finally, Section 2.6 discusses the ob-
tained results, their implications on the feasibility of applying this pipeline to other
use cases and summarizes the conclusion of this work.
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2.2. Related works

2.2.1. Machine learning in cardiovascular analysis

Over the years, machine learning (ML) has been used to address many cardiac
imaging issues, including developing fully automatic tools that will directly sup-
port clinical experts for decision making, quantification, and visual assessment of
cardiac structure and function [36].

Several approaches that use geometrical information have been proposed based
on eigendecomposition of the moving cardiac shapes [122–128]. Myocardial tis-
sue characterization is also a crucial task in cardiovascular analysis, and it has
also been heavily investigated. Engblom et al., for example, developed an au-
tomatic algorithm for quantifying myocardial infarction (MINF) cases based on
the expectation-maximization algorithm and weighted intensity [129]. Fahmy et
al. developed a novel automated cardiac scar quantification in hypertrophic car-
diomyopathy (HCM) patients. They combat one of the problems of using thresh-
olding techniques such that variations in CMR centers result in a model where
accuracy and reproducibility remain a preeminent challenge. The same group has
also shown the capability to use ML techniques for cardiac relaxometry for tissue
characterization [130].

ML has also shown its potential to assess different clinical indices of cardiac func-
tion. Winther et al. proposed a deep learning (DL)-based algorithm to assess
cardiac mass and functional parameters by automatically segmenting left ventricle
(LV) and right ventricle (RV) epicardium and endocardium [131]. They achieved
an outcome that is comparable to human experts. However, their small sample
size must also be taken into account. In contrast, Bai et al. applied a fully convo-
lutional neural network (CNN) on an extensive database containing 93500 images
from 5000 patients to measure LV and RV mass [132]. DL methods have also
been used to calculate other functional parameters from cardiac imaging, such
as the determination of left ventricle ejection fraction (LVEF), which can subse-
quently be used to discriminate patients into different CVD using with or without
hand-crafted imaging features [133].

Although clinical cardiac function indices are used to diagnose different diseases
in today’s clinical practice, there are many encouraging ML models for cardio-
vascular diagnosis. Generally, these techniques either use only the features that
DL-based network extracts or use conventional and hand-crafted imaging features
together in a machine learning framework. Zhang et al. developed a DL model
to extract cardiac motion features from LV and used these features to diagnose
MINF patients. They achieved an AUC score of 0.94 out of 299 cases [134]. Ad-
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ditionally, Moreno et al. used an approach based on SVM and random forest (RF)
to predict MINF and HCM. They obtained a 0.94 AUC score out of a relatively
small dataset consisting 45 cases [135]. Puyol-Antón et al. has taken this approach
a step further and used a database containing CMR and ultrasound (US) images
and added clinical indices into their experimental setting to design an automatic
diagnostic algorithm. They analyzed dilated cardiomyopathy (DCM) patients in
an SVM framework [136].

Even though ML, particularly DL, methods are powerful tools that revolutionized
the cardiac imaging field, they have several limitations that need to be addressed.
Most ML methods lack robustness and reproducibility due to different scanners,
vendors, sequences, spatial and temporal resolutions, reconstruction algorithms
and parameters [75]. Furthermore, one of the major issues is their black-box nature
since it is often unclear what information is used to come to a particular outcome.

2.2.2. Radiomics analysis

Radiomics, as defined by Gillies et al. [39], is a process of converting digital med-
ical images into mineable high-dimensional data. Radiomics analysis extracts a
large number of hand-crafted imaging features using different mathematical and
statistical methods. Definition of the radiomics features and radiomics workflow
can be found in Section 1.2.2. Radiomic features have been used so far primarily
for cancer image quantification [39, 40], such as for the estimation of patient prog-
nosis and treatment response based on the characteristics of the tumors as encoded
by the image data. Its use in cardiology, on the other hand, is only recent.

Prior studies showed that radiomics features could encode different tissue charac-
teristics [137]. For example, Aerts et al. employed radiomics analysis to determine
tumor phenotype in lung and head-and-neck cancer patients. They extracted 440
features quantifying tumor shape, intensity, and texture from computed tomog-
raphy (CT) data of 1019 patients. Their results reveal that prognostic radiomics
features encode tumor heterogeneity, and obtained radiomics signature is associ-
ated with underlying gene-expression patterns [119]. Vallieres et al. extracted
radiomics features from positron emission tomography (PET) and magnetic reso-
nance imaging (MRI) images to predict lung cancer metastases in soft tissue sar-
comas. They computed only texture-based radiomics features and used a logistic
regression (LR) algorithm, achieving a performance of 0.98 ROC, with only four
texture features [138]. Timmeren et al. identified radiomics signatures for survival
prediction of non-small cell lung cancer patients. They extracted 1119 radiomics
features from data consisting of 194 CT scans. After feature selection, they iden-
tified 149 relevant features.
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Furthermore, in a study exploring the impact of three ML framework variables
in radiomics pipeline, namely feature selection, classification, and the number of
selected features, for radiomics based survival prediction, Parmar et al. [139] com-
pared different combinations of 13 feature selection methods and 11 ML classifiers
based on 440 radiomics features extracted from CT images of 231 head-and-neck
cancer patients. After evaluating each combination with multifactor analysis of
variance (ANOVA) on ROC and AUC, they found that the choice of ML classi-
fication methods is the primary factor in performance variations (accounted for
29.02% of the total variance). In contrast, the classifier and feature selection inter-
action results in 14.02% of the total variance. These results indicate that selecting
the appropriate combination of feature selection and ML models is extremely im-
portant on the performance [120].

Recently radiomics started being exploited in cardiology. Baessler et al. employed
texture-based analysis for the diagnosis of subacute and chronic MINF. Five tex-
ture features identified to discriminate ischemic scar and normal myocardium
achieved an AUC score of 0.92 in combination with LR [140]. Similarly, another
texture analysis using CMR images to detect non-viable segments in patients with
MINF yielded an AUC of 0.84 [73]. This concept has also been shown to apply to
the diagnosis of other CVD. Neisius et al. recently used radiomics analysis to dif-
ferentiate between hypertensive heart disease (HHD) patients and HCM patients
identifying six radiomics features in SVM framework [141].

2.3. Materials

In this study, two datasets were employed, one for CVD diagnosis conducted in the
context of the MICCAI 2017 challenge on automated cardiac diagnosis challenge
(ACDC) and the other for hypertensive cases obtained from UK Biobank dataset.

The ACDC database consists of 100 cases for training and 50 cases for testing,
comprising short-axis CMR data at both end-dyastolic and end-systolic phases,
as well as height and weight information for each subject. Five subclasses were
included, namely (see examples in Fig. 2.1):

Normal subjects (NOR).

Patients with dilated cardiomyopathy (DCM).

Patients with hypertrophic cardiomyopathy (HCM).

Patients with abnormal right ventricle (RV)
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Figure 2.1: Examples of CMR images for the four abnormalities classified in this study
(Top: ED, bottom: ES). DCM : dilated cardiomyopathy, HCM : hypertrophic cardiomy-
opathy, MINF : myocardial infarction, RV: abnormal right ventricle.

Patients with myocardial infarction (MINF).

The images were acquired at the University Hospital of Dijon (France) by using
1.5 Tesla or 3 Tesla MR scans (Siemens Medical Solutions, Germany) with the fol-
lowing parameters depending on the examination: image sequence = SSFP CMR,
slice thickness = 5 mm or 8 mm, inter-slice gaps = 5 mm or 10 mm, spatial resolu-
tion = 1.37 to 1.68 mm2/pixel, number of frames = 28 to 40. This training dataset
was then manually segmented for the LV, MYO and RV by an experienced manual
observer at both ED and ES time frames.

On the other hand, hypertensive cases are part of the UK Biobank. The UK
Biobank holds an exceptional amount of data (500,000 individuals) which in-
cludes biomedical data, physical measures, accelerometry, multimodal imaging
including abdominal, brain, and CMR scans as well as whole-body DXA imag-
ing, genome-wide genotyping, and longitudinal follow-up for a wide range of
health-related outcomes [142].

For this work, 200 cardiac CMR images were randomly selected, including 100
hypertensive patients and 100 cases without hypertension. Both subgroups have no
evidence of CVD. The cardiac images were acquired with 1.5 Tesla scan (MAG-
NETOM Area, Syngo Platform VD13A, Siemens Healthcare, Erlangen, Germany)
and have an in-plane resolution of 1.8 x 1.8 mm2, a slice thickness of 8.0 mm and
a slice gap of 2 mm [143]. Manual annotation of the images was performed by
clinical experts, resulting in a segmentation of the LV, MYO and RV boundaries
[143].
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2.4. Methodology

2.4.1. Segmentation

To segment the ACDC testing dataset, we employed a semi-automatic atlas-based
segmentation approach. Atlas-based segmentation exploits the knowledge ac-
quired from previously labeled training images to segment the target image [144].
For this, we used a publicly available cardiac atlas [145]. To this end, we first
define manually six anatomical landmarks on each CMR case, more specifically
at:

1. Mid-ventricular slice: RV insertion point next to the liver.

2. Mid-ventricular slice: A point on the RV free wall.

3. Mid-ventricular slice: RV insertion point next to the lung.

4. Mid-ventricular slice: A point on the LV free wall.

5. Apical slice: Apex.

6. Basal slice: Center of the base.

We then use the atlas-based technique described in [146] to extract the car-
diac structures of interest, namely the LV, RV, and MYO. This is followed by
user-friendly manual correction of the segmented contours to correct for potential
errors using the ITK-SNAP tool1. Note that this segmentation approach will be
only used to segment the testing dataset of the ACDC and that this work focuses
only on the classification part of the ACDC challenge.

The hypertensive cases, including training and testing, were already manually seg-
mented, and thus we only employed this segmentation on to ACDC dataset.

2.4.2. Radiomics feature calculation and extraction

Most existing techniques included in clinical practice use shape and motion in-
dices such as EF, left ventricle end-diastolic volume (LVEDV) or left ventricle
end-systolic volume (LVESV), and wall thickness (WT) to classify the subjects
under investigation. It means that a lot of information produced by the image is
lost during this operation, particularly imaging evidence in relation to the tissue

1http://www.itksnap.org/pmwiki/pmwiki.php
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appearance in the blood pool, MYO and RV, as well as more complex morpho-
logical and functional information. But it is unclear which advanced indices could
contribute to improved classification of cardiovascular cases. To address these is-
sues, we propose a radiomics approach for computer-aided diagnosis and analysis
in CMR.

In this work, we estimate a large pool of radiomic features from the segmented
cine-MRI images, which will be then analyzed to extract the most powerful fea-
tures for classification. In other words, we augment the set of indices to be lever-
aged for cardiac diagnosis by considering more complex shape and motion ra-
diomic features, as well as advanced textural radiomic features. Specifically, we
use 567 features (including height, weight, ED-ES duration, plus 188 features per
structure: LV, MYO, RV at ED and ES) from ACDC dataset for cardiovascular
diagnosis and 686 radiomics features from hypertensive patients and healthy cases
for the purpose of capturing cardiac alterations.

Radiomics features were extracted based on three main categories using the PyRa-
diomics library [62], namely:

Shape-based features (Volume, surface area, sphericity, compactness, di-
ameters, elongation, etc.) capture geometrical alterations in the cardiac
structures, while size features measure global and localized remodeling or
dilation/hypertrophy due to a cardiovascular condition. The main shape/-
size radiomics include sphericity, compactness, elongation, ratios, diame-
ters, and main axes. In this study, these estimated shape/size radiomics be
used to identify morphological remodeling occurring in hypertensive but not
in non-hypertensive individuals.

Intensity first-order statistics (e.g., mean, standard deviation, energy, en-
tropy, etc.) inform on the distribution of the gray level values in the cardiac
tissues without focusing on their spatial relationships. These include simple
measures such as the mean intensity in a particular region of the tissue or
the standard deviation, as well as more advanced measures such as skew-
ness, uniformity, or entropy.

Advanced textural features measure changes in the spatial relationships, lo-
cal contrasts, and tissue homogeneity within the different cardiac structures.
These radiomic features can be beneficial, for example, to capture potential
alterations in the trabeculae, papillary muscles, and fibrosis in hypertensive
vs. non-hypertensive subgroups. Different texture methods are included:
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GLCM (autocorrelation, contrast, dissimilarity, homogeneity, inverse differ-
ence moment, maximum probability, etc.), GLRLM (short/long run empha-
sis, gray-level/run-length non-uniformity, etc.), NGTDM (coarseness, busy-
ness, complexity, and strength), and Fractal Dimension.

Note that the first group of radiomics features consists of pure shape information.
In contrast, the other remaining groups are intensity-based features, describing the
intensity variations inside the cardiac structures and the complexity and repeatabil-
ity of the tissue texture. In this study, we hypothesize that some of these radiomic
values will be modified in the presence of cardiac abnormality in a way that is
unique to each subgroup of patients when compared to normal individuals.

2.4.3. Radiomics feature selection

Due to the large number of radiomic features, radiomic-based analysis can easily
suffer from overfitting due to the limited number of examples that can be realisti-
cally collected for training. As a result, it is of paramount importance to identify
a smaller subset of radiomic features optimal for the respective task. In this work,
we do this by using sequential forward feature selection (SFFS) [147], through
which radiomic features will be added to the final subset one at a time until the
classification becomes negatively impacted as a result of adding new radiomic
features.

SFFS is a greedy search algorithm that aims to reduce an initial d-dimensional
feature space to a k-dimensional feature subspace where k < d. In a nutshell,
SFFS removes one feature at a time based on performance of the ML classification
method, until termination criterion is met [147, 148].

In this concept, within a cross-validation scheme, the SFFS technique will enable
to select sequentially, one at a time, the radiomic features that improve the overall
classification of CVD vs. healthy cases and hypertensive vs. non-hypertensive
individuals. The very first radiomic feature to be selected with this procedure is
the one that has the highest predictive performance among all radiomic features.
Sequentially, new radiomic features are added to provide complementary evidence
for the classification and description of the cardiac phenotypes. In this work, we
applied this feature selection algorithm using python-based library, mlxtend [148].

At the end of the procedure, radiomic features that have similar or overlapping dis-
tributions between the classes of interest are ignored, while those that contribute to
the ML-based classification of pathological and normal hearts are included within
the final set of optimal radiomic features, indicating their relevance for describing
changes in asymptomatic hearts.
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2.4.4. Classification method

To combine the heterogeneous radiomic features within a classification scheme
that will learn to discriminate between the different patient subgroups and healthy
individuals, we choose to use support vector machines (SVM) [149] due to well-
known performance when classifying image data, particularly in small sample
size.

An SVM model corresponds to a transformation of the examples to a hyperspace
where the hyperplanes achieve a good separation with the largest distance to the
nearest training-data point of any class (so-called functional margin). This ensures
that the examples belonging to the different classes are separated as clearly as
possible. New cases are then mapped onto that same hyperspace and classified
based on their location with respect to the hyperplanes separating the different
classes [150]. As such, it is suitable for cardiovascular disease classification as the
challenge is precisely to identify subtle changes and differences between normal
cardiac characteristics and those of pathological cases [151].

2.5. Results

This section demonstrates the results for the two databases described above: Sec-
tion 2.5.1 shows the results from the ACDC dataset, and Section 2.5.2 explains the
results using hypertensive cases from UK Biobank.

2.5.1. Results from the ACDC

For all experiments that were conducted with ACDC data, we used leave-one-out
tests to evaluate the proposed method and measured accuracy as a proportion of
correct classifications. Firstly, we assessed the accuracy of the CVD classifica-
tions by using only intensity-based or only shape-based radiomics features. For
intensity-based radiomics, we obtained a maximal accuracy of 0.98 (two misclas-
sifications) when using 13 optimal features. For shape radiomics, we achieved an
accuracy of 1.0 (all cases correctly classified) but by using a total of 32 features.
Subsequently, we combined intensity, shape, and patient information (height and
weight) all together, and the forward feature selection results are provided in Fig-
ure 2.2. It can be seen that the best single feature only achieves a 0.62 accuracy.
However, after adding three selected features to the classification task, the accu-
racy is improved beyond the 0.90 accuracy line to reach 0.91 and even 0.94 after
five chosen features. A maximum accuracy of 1.0 (all cases correctly classified)
is reached in training, and by combining 10 features only when linking intensity,
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Figure 2.2: Training accuracy of the proposed CVD classification as a function of the
number of radiomic features trained in the model.

NOR DCM HCM MINF RV
Precision 1 0.85 0.9 0.95 1
Recall 0.87 1 0.86 1 1

Table 2.1: Precision, recall obtained by using the first five optimal radiomic features at
accuracy of 0.94 in training.

shape, and patient information. Additionally, we obtained an accuracy of 0.92 in
testing with the chosen features.

The shape of the curve in Figure 2.2 indicates the importance of feature selection,
as after reaching the maximum accuracy, incorporating additional features leads
to model overfitting and reduced accuracy. While these preliminary results are ob-
tained in a small and controlled study, they are encouraging. In comparison, we
obtained an accuracy of 0.84 when using all radiomic features and 0.86 when com-
bining conventional clinical indices only, such as ejection fraction, cavity volumes,
and body mass index (BMI).

To understand the behavior of the model, we evaluated the precision, recall (see
Table 2.1) and confusion matrix (see Table 2.2) after selecting five features, at an
accuracy of 0.94 in the training phase. It can be seen that the least accurately
detected classes are for the HCM and DCM patients. However, after adding all
optimal features, we finally reach a maximal accuracy of 1.0.

The selected list of optimal features is given in Table 2.3, which include one con-
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NOR DCM HCM MINF RV
NOR 20 0 0 0 0
DCM 0 17 0 3 0
HCM 2 0 18 0 0
MINF 1 0 0 19 0
RV 0 0 0 0 20

Table 2.2: Confusion matrix obtained by using the first five optimal radiomic features at
accuracy of 0.94 with training dataset.

Name Type Frame Structure W/O Alone
Volume Conventional shape ED MYO 0.92 0.5
Surface Area to Volume Advanced shape ES LV 0.88 0.62
Least Axis Advanced shape ES LV 0.95 0.42
Maximum 2D diameter Advanced shape ED LV 0.95 0.41
Maximum 3D diameter Advanced shape ES RV 0.97 0.36
GLCM Inverse Difference Intensity/textural ES RV 0.96 0.34
Compactness 2 Advanced shape ES LV 0.91 0.40
Maximum 3D diameter Advanced shape ES MYO 0.96 0.47
Surface area Advanced shape ED RV 0.97 0.29
Height Patient Information - - 0.91 0.18

Table 2.3: List of 10 selected radiomic features as selected by the proposed technique for
CVD classification. W/O: Accuracy without the feature. Alone: Accuracy using only this
feature.

ventional shape index (volume), seven advanced shape radiomic features (e.g.,
compactness, least axis, surface area), one patient information (height), and one
textural radiomic feature (GLCM inverse difference). This shows how multiple
radiomics of different nature can be complementary to each other, which enables
identifying all cases correctly. Also, the table shows that the features are well dis-
tributed among the three cardiac structures (LV, MYO, RV), as well as for the ED
and ES frames.

To show the relevance of the selected features, we have added to the table the
accuracy results by removing each feature from the SVM model (column W/O).
It can be seen that the removal of each of these features negatively affects the
final accuracy, which is reduced from 1.0 to 0.88 by removing the Surface Area to
Volume feature, and to 0.96 by removing the Inverse Difference Intensity (GLCM)
feature. This shows how these features can play a role in discriminating some of
the challenging and ambiguous cases.

To further show the relevance of combining all of the selected features, we have
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also added to the table in the last column the accuracy by using a single radiomic
feature. It can be seen that on their own, these features do not enable a satisfactory
classification, with the accuracy values varying between 0.18 (Height) and 0.62
(Volume). In particular, the Height variable cannot produce any meaningful clas-
sification on its own but contributes to the overall accuracy of the multi-radiomic
model by normalizing with respect to size.

2.5.2. Results from the UK Biobank

In this study, 10-fold cross-validation tests are performed to select the optimal ra-
diomic features that best separate hypertensive and non-hypertensive hearts. Note
that after applying the proposed feature selection method, the classification accu-
racy, measured as the number of correct classification divided by the number of
cases, reaches 0.8. This confirms the hypothesis that hypertension does alter the
values of radiomics features even at the subclinical stage. This is further illustrated
in Figure 2.3, which shows that using conventional imaging phenotypes of cardio-
vascular function (i.e., ejection fractions, stroke volumes, and volumes of left and
right ventricles at ED and ES time frames) results in a low classification of the
healthy and hypertension subgroups, with an AUC score of 0.62 ± 0.09. This is
an expected result as the hypertensive individuals are asymptomatic with normal
cardiovascular structure and functions as evaluated by the clinicians. Instead, the
proposed radiomics model significantly improves classification with an AUC score
of 0.76 ± 0.13.

ROC Curve Conventional indices ROC Curve Radiomics approach

Figure 2.3: ROC curves using the proposed method with selected radiomics features (top)
and conventional imaging phenotypes (bottom).

After demonstrating the relevance of the radiomics approach for discriminating hy-
pertension and healthy subgroups, Table 2.4 lists the selected radiomics features,
which sum to 11 radiomics features. It can be seen that all selected features are
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Name Frame Structure Alone W/O
Homogeneity 1 ES LV 0.495 0.77
Inverse variance ES LV 0.55 0.685
IDMN ED MYO 0.415 0.74
Sum of squares ED MYO 0.485 0.765
Large area emphasis ED LV 0.455 0.785
Zone entropy ED LV 0.56 0.725
LALGLE ED RV 0.485 0.765
Short run emphasis ES RV 0.505 0.79
Long run emphasis ED MYO 0.555 0.795
Coarseness ED MYO 0.62 0.76
GLNN ES MYO 0.635 0.71

Table 2.4: List of 11 radiomics features selected by the proposed method for discrimi-
nating the hearts of hypertensive and normal individuals. Alone: Classification accuracy
using only this feature. W/O: Accuracy when removing the feature. ED: end-diastolic.
ES: end-systolic. IDMN: Inverse difference moment normalized, GLNN: Gray level non-
uniformity; LALGLE: Large area low gray level emphasis.

intensity- and texture-based radiomics, which indicate that the main changes due
to hypertension are in the actual tissues rather than the geometry and size of the
ventricles or myocardium. This also explains the inability of conventional indices
to characterize changes due to hypertension as these typically focus on quantify-
ing cardiac structure and function only. It is important to note that the selected
radiomic features cover both ED and ES (second column in Table 2.4), and all
three cardiac substructures (LV, MYO, RV - third column in table 2.4). Further-
more, the fourth column of the table lists the classification scores when using each
feature alone, showing they do not separate well between the two subgroups, with
the accuracy varying between 0.415 (Inverse difference moment normalized) and
0.635 (Gray level non-uniformity). This result confirms that hypertension-related
changes are indeed small and subtle. It is the combination of all the features into
a radiomic signature, describing multiple co-occurring changes in the heart that is
best suited for optimal classification reaching a score of 0.8.

Finally, to further demonstrate the benefit of the radiomics approach, Figure 2.4
shows a comparison between two hearts corresponding to normal (above) and hy-
pertensive (bottom) cases, respectively. Both hearts look visually normal, and fur-
thermore, they have the same left ventricle ejection fraction (LVEF) value of 60%,
indicating normal cardiac functions in both cases. In contrast, as shown in Table
2.5, the proposed radiomic signature enables to show apparent differences between
the two cases in the radiomic space. Several of the normalized radiomic values
(using z-normalization) indicate differences between the values in the normal and
hypertensive cases, such as for the large area emphasis (-1.31 vs. 0.15), short-run
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Normal ED Normal ES

Hypertensive ED Hypertensive ES

Figure 2.4: Images of hypertensive and normal cases with the same LVEF values and
different radiomics signature.

Original Normalized
Normal Hypertensive Normal Hypertensive

Homogeneity 1 0.543 0.546 -0.199 -0.133
Inverse variance 0.395 0.390 0.838 0.644
IDMN 0.981 0.992 -1.3880 1.386
Sum of squares 0.706 0.936 -0.467 0.161
Large area emphasis 196 6910 -1.315 0.151
Zone entropy 5.79 5.62 0.910 0.089
LALGLE 5 100 -0.885 -0.532
Short run emphasis 0.913 0.831 2.217 -0.325
Long run emphasis 1.76 2.80 -1.692 -0.401
Coarseness 0.00968 0.00203 7.761 -1.090
GLNN 298 1670 -2.192 1.427

Table 2.5: Original and normalized radiomics values for the two cases of Figure 2.4.
IDMN: Inverse difference moment normalized, GLNN: Gray level non-uniformity; LAL-
GLE: Large area low gray level emphasis.

emphasis (-2.21 vs. 0.32), and gray level non-uniformity (-2.19 vs. 1.42). The
obtained results show textural differences between hypertensive and normal sub-
groups that cannot be captured using conventional clinical indices such as EF or
visual examination.
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2.6. Discussion and conclusions

In this chapter, we proposed the use of large amounts of radiomic features, inte-
grating advanced shape and textural descriptors, to predict cardiovascular disease
subgroups and hypertensive patients from two separate datasets. To the best of
our knowledge, this is the first radiomics study performed to identify subclini-
cal changes and quantify intermediate phenotypes associated with hypertension in
otherwise healthy hearts.

The obtained results from the ACDC dataset suggest that radiomics are indeed
capable to encode alterations in the anatomy and tissues of the affected cardiac
structures. Furthermore, the feature selection results indicate that shape and inten-
sity descriptors complement each other and their combinations enable to enhance
the prediction power of the system, in particular for uncertain cases situated close
to the boundary between two disease classes.

The results from hypertensive cases, on the other hand, indicate that the main
changes are in the cardiac textures and tissues, which explains the inability of
conventional imaging indices, which focus on structural and functional quantifica-
tion, to identify these alterations. This work shows the promise of the proposed
radiomics approach for analyzing subtle and more complex effects of other risk
factors of heart disease such as high blood pressure. Future work includes clinical
interpretation of the results (e.g. fibrosis formation), as well as application to other
risk factors such as diabetes and cholesterol effects.

Finally, the high training accuracy in CVD classification, suggests that further
evaluations with additional datasets are required to test this radiomics model in
larger and more variable data samples. In particular, inter-subject variability due
to semi-automatic segmentation of the boundaries will need to be assessed.

Data Availability

This work was conducted using the UK Biobank resource under Application
2964. UK Biobank will make the data available to all bona fide researchers
for all types of health-related research that is in the public interest, without
preferential or exclusive access for any person. All researchers will be sub-
ject to the same application process and approval criteria as specified by UK
Biobank. For the detailed access procedure see http://www.ukbiobank.
ac.uk/register-apply/. Additionally, the ACDC data is freely avail-
able and can be accessed in https://www.creatis.insa-lyon.fr/
Challenge/acdc/
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CHAPTER

3

Radiomics Signatures of Cardiovascular
Risk Factors in Cardiac MRI: Results From
the UK Biobank

3.1. Introduction

Cardiovascular magnetic resonance imaging (CMR) is the reference standard for
assessing cardiac structure and function and is used widely in research and clinical
settings. Routine assessment is reliant on visual inspection of CMR images for
identifying global and local abnormalities; this is both labor-intensive and reader
dependent [123–125, 127]. Existing quantifiers, such as ejection fraction (EF)
and chamber volumes, are overly simplistic and often do not capture subtle and
complex changes that affect the myocardium at early disease stages [152]. Current
approaches are thus suboptimal for early disease detection and outcome prediction.
Therefore, there is a need for novel, more advanced quantitative techniques for
CMR image analysis to improve clinical diagnosis and risk prediction.

CMR radiomics is a novel image quantification technique whereby pixel-level data
is analyzed to derive multiple quantifiers of tissue shape and texture [75]. Tech-
nological advancements and the availability of high computational power have

This chapter is adapted from: Cetin I., & Raisi-Estabragh Z., Petersen S.E., Napel, S., Piech-
nik S. K., Neubauer S., Camara, O., Gonzalez Ballester M.A., Lekadir K., Radiomics Signatures of
Cardiovascular Risk Factors in Cardiac MRI: Results From the UK Biobank. Frontiers in Cardio-
vascular Medicine, Volume 7 (2020). https://doi.org/10.3389/fcvm.2020.591368
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allowed the deployment of machine learning (ML) methods with radiomics fea-
tures to discriminate disease or predict outcomes [153]. A distinct advantage of
radiomics modeling over unsupervised algorithms is the potential for explainabil-
ity by identifying the most defining radiomic features in the model. It is thought
that radiomics features correspond to alterations at both the morphological and
tissue levels, and thus, the most defining characteristics of a particular condi-
tion (or its radiomics signature) may provide insights into its pathophysiology
[119]. Within oncology, where radiomics is most well-developed, the incremental
value of radiomics models for diagnosis and prognosis has been widely reported
[39, 40, 119, 154–157]. In cardiology, early studies have shown promising results
from CMR radiomics models for the discrimination of important conditions such
as myocarditis, hypertrophic cardiomyopathy (HCM), and ischemic heart disease
(IHD) [73, 83, 141].

While existing works have primarily focused on image phenotyping of established
cardiovascular diseases, CMR radiomics may also provide incremental informa-
tion to conventional approaches for improved quantification of cardiac alterations
related to cardiovascular risk factors at the subclinical stage. This work thus
presents the largest and most comprehensive assessment of the performance of
CMR radiomics for image phenotyping of important cardiovascular risk factors,
including diabetes, hypertension, high cholesterol, and smoking status, by using a
large annotated CMR dataset from the UK Biobank.

The rest of the chapter is organized as follows. First, Section 3.2 describes the
used dataset and its segmentation protocol. The methodology adopted in this work
was explained in Section 3.3. The proposed radiomics workflow is depicted in
Figure 3.2. Section 3.4 extensively summarizes the results and compares them
with the existing literature. Finally, Section 3.5 contextualizes the obtained re-
sults. We have made our code publicly available in https://github.com/
iremcetin/radiomics_cardio_risk_factors.

3.2. Materials

3.2.1. Population and setting

UK Biobank is a large-scale population health resource aimed at enhancing
biomedical research and ultimately improving the prevention, diagnosis, and treat-
ment of a wide range of serious and life-threatening illnesses [158]. Over 500,000
participants aged 40-69 years old were recruited from around the UK between
2006 and 2010. The UK Biobank holds an exceptional amount of data, including
detailed lifestyle information, medical history, serum biomarkers, physical mea-
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sures, and multi-modal imaging, including magnetic resonance imaging of the ab-
domen, brain, and heart [142]. Thus, UK Biobank provides the ideal platform for
assessing the performance characteristics of novel quantitative biomarkers, such
as radiomics, in discriminating common cardiovascular risk factors.

3.2.2. CMR imaging protocol

CMR cine images were acquired using a standardized UK Biobank protocol, de-
tailed in a dedicated publication [143]. In brief, all scans were performed with a 1.5
Tesla scanner (MAGNETOM Area, Syngo Platform VD13A, Siemens Healthcare,
Erlangen, Germany), with typical cine parameters as follows: TR / TE (repetition
time / echo time) = 2.6/1.1 ms, flip angle 80°, Grappa factor 2, voxel size 1.8 mm
× 1.8 mm × 8 mm, and a slice gap of 2.0 mm. The actual temporal resolution of
32 ms was interpolated to 50 phases per cardiac cycle (∼ 20 ms). The protocol
includes a complete cine short-axis ventricular stack with a base to apex coverage
acquired using balanced steady-state free precession (bSSFP) with one breath-hold
per image slice.

3.2.3. CMR image segmentation

CMR scans of the first 5,065 UK Biobank participants that completed the imaging
study were manually analyzed across two core laboratories (London, Oxford) us-
ing a pre-defined standard operating procedure, which is detailed elsewhere [159].
In brief, left and right ventricular (LV, RV) endocardial contours and LV epicar-
dial contours were drawn in end-diastole (ED) and end-systole (ES) on the short
axis stack images using the CVI421 post-processing software (Version 5.1.1, Cir-
cle Cardiovascular Imaging Inc., Calgary, Canada). These contours were used to
define three regions of interest (ROIs) for radiomics analysis: RV blood pool, LV
blood pool, and LV myocardium (MYO). All acquisitions were ECG gated, and
thus ED was defined as the first phase in the sequence. ED was defined as the
frame with the smallest LV cavity area by visual assessment detected at the mid-
cavity level. Papillary muscles were considered part of the blood pool. Slices with
more than 50% circumferential LV myocardium were included in LV contours.
RV volume was defined as areas below the pulmonary valve plane identified by
visual assessment.

1https://www.circlecvi.com/
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Figure 3.1: The data selection process.

3.3. Methodology and experimental setting

3.3.1. Selection of study sample

We considered the first 5,065 UK Biobank participants to complete CMR imag-
ing. We excluded 174 individuals due to incomplete segmentations (having either
one or more cardiac structures missing in the segmentation). From the remaining
4,891 individuals, a healthy cohort (n = 1,394) was defined by considering partic-
ipants without known cardiovascular disease or risk factors. Diabetes (n = 224),
hypertension (n = 1,394) and high cholesterol (n = 779) were taken from self-re-
ported conditions. Smoking status was taken as a self-report of current (n = 320)
or previous (n = 1,394) tobacco smoking. Participants positive for each risk factor
were compared with an equal number of randomly selected reference healthy sub-
jects to eliminate bias in the machine learning models due to class imbalance (see
Figure 3.1).
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3.3.2. Conventional CMR indices

For comparison and quantification of the added value of CMR radiomics, con-
ventional CMR indices were also assessed, specifically: left ventricle end-dias-
tolic volume (LVEDV), left ventricle end-systolic volume (LVESV), right ventri-
cle end-diastolic volume (RVEDV), left ventricle end-systolic volume (LVESV),
left ventricle stroke volume (LVSV), right ventricle stroke volume (RVSV), left
ventricle ejection fraction (LVEF), right ventricle ejection fraction (RVEF), left
ventricle mass (LVM).

3.3.3. Radiomics analysis

The overall radiomics workflow is depicted in Figure 3.2. Radiomics shape- and
signal intensity-based features were extracted from the three segmented ROIs (LV
blood pool: LV, LV myocardium: MYO, RV blood pool: RV) in end-diastole (ED)
and end-systole (ES)). The analysis of the radiomics features in the myocardium
may enable the identification of tissue-level changes due to cardiovascular risk fac-
tors. The inclusion of LV and RV cavities aims to identify changes in the shapes
of each ventricle or the patterns of the trabeculation and papillary muscles. Au-
tomated extraction of radiomics features was performed using the open-source
python-based radiomics library Pyradiomics2 (version 1.3.0, October 2017) [62].

The customization of image preprocessing and feature extraction was performed
with Pyradiomics default settings, including a gray value discretization with a bin
width of 25 to extract the intensity-based and texture radiomics features. In total,
684 radiomics features were extracted per study (consisting of 114 radiomics fea-
tures per cardiac structure: LV, RV, and MYO at two time-points of the cardiac
cycle: ED and ES).

Shape-based radiomics features

Sixteen radiomics shape-based features were extracted per ROI at ED and ES (see
supplementary material in chapter 6.1.1). Radiomics shape features describe geo-
metrical properties of the defined ROI, and provide incremental value to existing
CMR indices as they include conventional shape indices (e.g., cavity volumes) as
well as more advanced geometric quantifiers (e.g., sphericity, flatness). They also
have the potential to define disease-specific patterns of cardiac alterations beyond
those possible with existing CMR indices.

Signal intensity-based radiomics features
2https://pyradiomics.readthedocs.io/en/latest/
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Figure 3.2: The proposed radiomics workflow.

Nineteen signal intensity-based radiomics features were extracted where they may
potentially decode variations in cardiac tissue due to abnormalities induced by dis-
ease processes. First-order features are histogram-based statistics describing the
global distribution of signal intensities within the defined ROI without considera-
tion to their spatial relationships. These include simple measures such as the mean
intensity or standard deviation and more advanced measures such as skewness,
uniformity, or entropy (the complete list is provided in chapter 6.1.1).

Texture-based radiomics features

In contrast, texture radiomic features allow the quantification of spatial inter-pixel
relationships using more advanced matrix analysis methods [81, 160]. Through
this, signal intensities patterns within the ROI may be numerically quantified us-
ing pre-agreed mathematical definitions. Many texture patterns may be considered
to quantify characteristics such as the complexity, heterogeneity, coarseness, or
repeatability of the building blocks of the tissue. The idea is that these texture fea-
tures may reflect myocardial tissue characteristics, which in turn reflect underlying
disease processes. In this study, seventy-nine texture features were extracted from
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each ROI per cardiac phase.

3.3.4. Identification of optimal radiomic signatures

This study aims to leverage feature selection and ML techniques to identify ra-
diomics signatures that best describe the structural and tissue differences between
a risk factor (at-risk) and healthy (no-risk) groups in CMR imaging. To this end,
we use the risk factors as “proxy” output variables and build multiple machine
learning models by varying the combinations of input radiomic features through
systematic feature selection. We obtain various models (and thus multiple candi-
date radiomic signatures), and through statistical testing, one can select the best
model and, therefore, the radiomic signature that best separates the at-risk and
no-risk groups. Because these selected radiomics signatures differentiate at-risk
from healthy individuals, they can be considered and analyzed as potential de-
scriptors of the cardiac alterations due to the risk factors in question. Importantly,
we use machine learning as a more advanced means to combine multiple radiomic
features into risk-specific signatures while considering non-linear complementari-
ties between the parameters.

For feature selection, we used the sequential forward feature selection (SFFS)
method as it has demonstrated good performance in previous CMR radiomics stud-
ies [141], including the work described in previous chapter [161, 162]. The ter-
mination criterion was set to 2% in all experiments following literature standards,
i.e., the process was stopped if an added feature did not increase model perfor-
mance beyond the termination criterion. Ten-fold cross-validation was used in the
feature selection process, rotating training, and validation folds (80% and 20% of
the dataset, respectively), to obtain more robust estimates and improve generaliz-
ability.

We combined SFFS with classical ML algorithms [support vector machines
(SVM), random forest (RF), logistic regression (LR)] to identify the combination
of radiomics features that best define each studied cardiovascular risk/subgroup.
For each ML method, hyperparameter optimization was performed to enhance the
discrimination between no-risk and at-risk subgroups (see supplementary material
in chapter 6.1.2 for the explanation of model selection). Implementation of the
SFFS and the ML techniques was based on the mlxtend3 (version 0.17.0) [148]
and scikit-learn4 (version 0.20.3) [163] python-based libraries, respectively.

3http://rasbt.github.io/mlxtend/
4https://scikit-learn.org/stable/
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The selected radiomics features resulting from the SFFS algorithm and ML tech-
niques were combined to create the radiomics signature that best encodes the
changes in CMR induced by the different cardiovascular risk factors. To quantify
the added value of the proposed radiomics approach, we built similar ML model-
s/risk signatures using conventional CMR indices as input variables. All radiomics
features and cardiac indices were normalized (to a mean of zero and standard de-
viation of one) to ensure they are equally weighted in all analyses. Note that
individuals with multiple risk factors were not excluded. In the ML models, we
set the outcome to each risk factor individually, which enabled the identification
of the radiomics signatures specific to that risk factor.

In this work, we assess model performance (i.e., the ability of the radiomics signa-
tures to discriminate at-risk vs. no-risk subjects) using receiver operating charac-
teristic (ROC) curve and area under the curve (AUC) scores. We also report model
accuracy, defined as a number of correctly discriminated no-risk vs. at-risk cases
based on the radiomics signatures, divided by the total number of cases. Addi-
tionally, statistical tests were performed to assess the statistical significance of the
differences between the various ML models by using McNemar’s test for pairwise
comparisons, as well as the Cochran’s Q test, which is an extension of McNemar’s
test for the comparison of more than two models [164, 165].

3.4. Results and Discussion

3.4.1. Summary of subgroups and conventional CMR indices

The subjects included in the analysis are summarized in Table 3.1. Across all risk
factor groups, there was a higher proportion of male participants (between 52.3%
and 60.1% depending on the risk factor), whereas, in the healthy cohort, there
were fewer men (42.5%). The average age across the risk groups was between
59 (±8) and 65 (±6) years, while it was equal to 60 (±7) years for the healthy
cohort. As expected, there were differences in conventional CMR metrics be-
tween the at-risk subgroups and healthy subjects. In particular, on average, all risk
groups had greater indexed left ventricle mass (LVMi) compared to the healthy
cohort, with the most significant difference in the hypertensive group (50.3 g/m2

vs. 46.3 g/m2). All risk factor groups had lower indexed left ventricle stroke vol-
ume (LVSVi) and indexed right ventricle stroke volume (RVSVi) in comparison to
the healthy cohort. There were also variations in chamber volumes, with different
directions of difference depending on the risk category. Finally, it is worth noting
that no statistically significant differences (Welch’s t-test) in the conventional in-
dices were found between the healthy and each at-risk subgroups, except for LVEF
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Diabetes

n=243

Hypertension

n=1,394

High cholesterol

n=779

Current smoker

n=320

Previous smoker

n=1,394

Healthy

n=1,394
Male n(%) 146 (60.1%) 786 (56.4%) 460 (59.1%) 172 (53.8%) 729 (52.3%) 592 (42.5%)
Age mean (sd) years 64 (±7) 64 (±7) 65 (±6) 59 (±8) 63 (±7) 60 (±7)
LVEDVi (ml/m2) 73.4 (±13.8) 76.7 (±14.2) 75.0 (±13.9) 77.2 (±15.1) 76.9 (±14.8) 77.9 (±14.7)
LVESVi (ml/m2) 30.8 (±9.2) 31.6 (±9.3) 30.8 (±8.8) 32.5 (±9,4) 31.9 (±10.5) 31.6 (±8.8)
LVMi (g/m2) 49.1 (±9.6) 50.3 (±10.2) 48.6 (±9.7) 49.3 (±9.9) 48.3 (±10.1) 46.3 (±9.7)
LVEF (%) 58.5 (±7.3)* 59.2 (±6.9) 59.3 (±6.7) 58.3 (±6.9) 59.0 (±6.7) 59.7 (±5.9)
LVSVi (ml/m2) 42.7 (±8.3) 45.2 (±8.4)* 44.2 (±8.3) 44.7 (±8.9)* 45.1 (±8.2) 46.3 (±8.8)
RVEDVi (ml/m2) 77.2 (±14.5) 80.1 (±14.9) 79.1 (±14.9) 81.2 (±16.1) 80.8 (±14.8) 83.1 (±16.2)
RVESVi (ml/m2) 34.3 (±9.6) 34.8 (±9.7) 34.7 (±9.7) 36.3 (±10.4) 35.6 (±9.5) 36.8 (±10.5)
RVEF (%) 56.0 (±6.9) 56.9 (±6.7) 56.5 (±6.8) 55.7 (±6.9) 56.3 (±6.4) 56.2 (±6.3)
RVSVi (ml/m2) 42.9 (±8.2) 45.3 (±8.4) 44.4 (±8.5) 44.9 (±8.9) 45.2 (±8.3) 46.3 (±8.5)

Table 3.1: Summary of conventional CMR indices for the risk and healthy groups in-
cluded in the analysis. LV: left ventricle, RV: right ventricle, EDV: end-diastolic volume,
ESV: end-systolic volume, SV: stroke volume, EF: ejection fraction, LVM: left ventricle
mass, i: indexed, absolute values divided by body surface area (calculated according to Du
Bois formula). Values are given as mean ± standard deviation for continuous variables,
and count (%) for categorical variables. *: Indicates statistical differences with respect to
the healthy subgroup according to Welch’s t-test.

in diabetes and LVSVi values in hypertension and current smokers (see Table 3.1).

3.4.2. Radiomics signatures have superior discriminatory
performance over conventional CMR indices

In comparison to conventional indices, radiomics signatures provided better dis-
crimination between healthy and at-risk subjects for diabetes (0.80 AUC for ra-
diomics vs 0.70 for conventional indices), hypertension (0.72 vs. 0.69), high
cholesterol (0.71 vs. 0.65), and previous smokers (0.63 vs. 0.60) (see Figure 3.3).
The obtained models with radiomics vs. conventional indices were also compared
using McNemar’s test; the differences were found to be statistically significant for
diabetes, hypertension, high cholesterol, and previous smokers but not for current
smokers.

3.4.3. Comparison of the degree of discrimination achieved for each
subgroup

The degree of discrimination (no-risk vs. at-risk hearts) achieved using radiomics
models varied between the different cardiovascular risks, as these have different
effects on the heart. The highest degree of discrimination with radiomics mod-
els was seen in diabetes (0.78), suggesting that radiomics features are particularly
important in distinguishing diabetes-related cardiac changes. The smallest degree
of separation was seen in previous smokers (0.61). High cholesterol, hyperten-
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Figure 3.3: Receiver operating characteristic curves for radiomics and conventional CMR
indices models for the five cardiovascular risk factor subgroups. AUC: area under the
curve.

sion, and current smokers achieved similar degrees of separation by the radiomics
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models (i.e., 0.68, 0.68, and 0.67, respectively).

3.4.4. The identified radiomics signatures for each cardiovascular
risk factor

The identified radiomics signatures for each risk factor are described in Table
3.2. Overall, there was a more prominent role for shape- and texture-based fea-
tures than first-order features. For instance, in diabetics, five of the eleven fea-
tures included in the model were shape-based, and in the hypertension group, no
first-order feature was selected. As expected, radiomics features from the LV blood
pool and LV myocardium were the most relevant regions, with the RV blood pool
having a minor role for the risk factors studied in this work.

In Table 3.3, we consider the most discriminative radiomics feature for each risk
factor, i.e., the feature assigned the most important in the model, and compare
it with the most discriminative conventional CMR measure, which was LVM for
all risk groups. For all the subgroups, the mean value of the most important ra-
diomics features and conventional CMR indices was significantly different in the
risk factor vs. healthy cohorts (p < 0.001, Table 3.3). In addition, the single best
radiomics feature outperformed the conventional CMR indices in its relevance for
all risk factors. However, it was the combination of several radiomics features
into a radiomic signature (Table 3.4) that provided the best overall discriminative
power.

3.4.5. Summary of findings

This study described a methodology based on radiomics, machine learning, and
feature selection to discover new discriminatory signatures in CMR. Based on
over 5,000 datasets, we presented the largest and most comprehensive study to
demonstrate the feasibility and performance of CMR radiomics for identifying
new imaging signatures associated with important cardiovascular risk factors such
as diabetes, hypertension, cholesterol, and smoking. Over conventional indices,
we showed that radiomics enable improved quantification of alterations in both
cardiac structure and tissue due to the effects of these risk factors. From the sta-
tistical tests performed in Table 3.1, it can be seen that the conventional indices
do not capture statistically significant differences between the healthy vs. at-risk
subgroups, with very few exceptions (LVEF values in diabetes, LVSVi values in
hypertension, and current smokers). In contrast, McNemar’s statistical tests com-
paring the radiomics models and the conventional indices show statistically sig-
nificant differences between the two approaches for all cardiovascular risk factors,
except for current smokers. This indicates that for diabetes, hypertension, high
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CV risk factor Radiomics signature Type ROI Phase Alone

High cholesterol

SD Shape MYO ED 0.61
Compactness Shape MYO ED 0.60
Skewness First-order LV ED 0.59
IMC Texture LV ES 0.57
GNN Texture RV ED 0.55
Contrast Texture RV ES 0.52

Diabetes

Median First-order MYO ES 0.65
SVR Shape MYO ED 0.61
Energy First-order LV ED 0.61
Surface area Shape MYO ES 0.58
DV Texture LV ED 0.57
LAHGLE Texture MYO ED 0.57
Energy First-order LV ES 0.57
Flatness Shape RV ED 0.56
Surface area Shape LV ES 0.55
Max2D Shape RV ED 0.50
DA Texture LV ES 0.44

Hypertension

SVR Shape MYO ED 0.61
Percentile 10 First-order RV ES 0.58
IMC Texture LV ES 0.55
DNN Texture LV ED 0.54
SZNN Texture RV ED 0.54

Current smokers

GNN Texture MYO ES 0.60
DE Texture LV ED 0.57
STD First-order MYO ED 0.53
Max2D Shape RV ED 0.50
LDLGLE Texture RV ED 0.45

Previous smokers

SVR Shape MYO ED 0.57
Busyness Texture LV ES 0.54
Run entropy Texture MYO ES 0.50
Skewness First-order RV ES 0.50
RNN Texture RV ED 0.49
ZV Texture LV ED 0.49

Table 3.2: Radiomics features selected for each risk factor. Features are presented in order
of importance (accuracy using only one feature) in the model for each risk factor. Alone:
model performance using each radiomic feature individually, SD: Spherical disproportion,
DV: Dependence variance, DA: Difference average, DE; Dependence entropy, STD: Stan-
dard deviation, ZV: Zone variance, IMC: Informal measure of correlation, DNN: Depen-
dence non-uniformity normalized, SZNN : Size zone non-uniformity normalized, LAH-
GLE: Large area high gray level emphasis, LDLGLE: Large dependence low gray level
emphasis, GNN: Gray level non-uniformity; SVR: Surface area to volume ratio, Max2D:
Max 2D diameter column, RNN: Run length non-uniformity.
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CV risk factor Single most defining feature CV risk cohort Healthy cohort ACC
Mean SD Mean SD

High cholesterol
Rad: Spherical disproportion MYO ED (S) 3.631 0.290 3.779 0.311 0.611
Conv: LVM (g) 93.493 24.199 85.667 24.104 0.576

Diabetes
Rad: Median MYO ES (F) 67.887 9.058 74.652 10.514 0.658
Conv: LVM (g) 97.856 24.250 85.931 25.024 0.605

Hypertension
Rad: Surface area to volume ratio MYO ED (S) 0.390 0.054 0.425 0.06 0.618
Conv: LVM (g) 97.131 25.849 85.623 24.101 0.593

Current smokers
Rad: Gray level non uniformity MYO ES (T) 573.448 134.355 515.789 140.307 0.609
Conv: LVM (g) 93.614 24.804 84.549 25.426 0.564

Previous smokers
Rad: Surface area to volume ratio MYO ED (S) 0.405 0.058 0.425 0.062 0.574
Conv: LVM (g) 91.902 24.896 85.623 24.101 0.552

Table 3.3: Values of the best radiomics features (Rad) and the conventional CMR indices
(Conv). Feature values from risk groups and healthy individuals were statistically signif-
icantly different for all selected features (Bonferroni adjusted p-value < 0.05/684). S:
shape, F: first-order, T: texture, SD: standard deviation, ACC: accuracy, CV: cardiovascu-
lar, MYO: LV myocardium, ED/ES: end-diastole/systole, LVM: left ventricular mass (in
grams, g).

CV Risk factor Radiomics features Clinical indices
# S/F/T LV/RV/MYO ED/ES ACC/AUC # LV/RV ACC/AUC

High cholesterol 6 2/1/3 2/2/2 4/2 0.682/0.712 2 1/1 0.626/0.645
Diabetes 11 5/3/3 5/2/4 6/5 0.782/0.803 4 3/1 0.681/0.704
Hypertension 5 2/0/3 2/2/1 3/2 0.682/0.721 2 1/1 0.646/0.690
Current smokers 5 1/1/3 1/2/2 5/0 0.675/0.675 3 2/1 0.628/0.648
Previous smokers 6 1/1/4 2/2/2 3/3 0.612/0.626 2 1/1 0.579/0.599

Table 3.4: Selected number of radiomic features used for each risk factor and their dis-
criminative accuracy, and results obtained based on conventional imaging indices and size
information. #: total selected number of features, S: shape features, F: first-order ra-
diomics, T: texture features, LV: left ventricle, RV: right ventricle, MYO: Myocardium,
ED: end-diastole, ES: end-systole, ACC: accuracy (prediction performance), AUC: area
under the curve.

cholesterol, and previous smokers, radiomics models provide incremental value
in identifying structural and textural differences between healthy and at-risk sub-
groups.

3.4.6. Clinical interpretation of the radiomics signatures

A distinct advantage of radiomics modeling over black-box techniques such as
deep learning is the potential interpretability of the obtained results. Therefore,
we can attempt to reason the prominence of certain radiomics features in disease
discrimination models. Shape features were highly featured in all models and in-
dicated subtle patterns of ventricular remodeling that are specific to conditions
under study. For instance, spherical disproportion (i.e., the inverse of sphericity)
of the myocardium at end-diastole was lower in participants with high cholesterol
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compared with healthy individuals, indicating that the overall shape of the LV is
elliptical and more spherical in this risk factor group. Similarly, for hypertensive
individuals and previous smokers, the surface area to volume ratio was smaller in
the risk subgroups vs. healthy subjects; this may reflect a pattern of concentric
LV hypertrophy in these conditions. For certain risk factors, intensity/texture fea-
tures seemed more important, such as median intensity for diabetes. As this was
a retrospective study, we can only speculate as to the cause of this association.
One hypothesis is that diabetes leads to a global alteration of the myocardial tis-
sue and thus of the overall myocardial appearance in CMR images, resulting in
higher median intensities compared to non-diabetic subgroups. However, testing
this hypothesis is beyond the scope of this study.

As another example of a prominent textural feature, the most important feature
identified for current smokers in this study was gray level non-uniformity. In a
previous study, [74], the very same radiomic feature was identified as the most
important radiomic feature in Hypertrophic cardiomyopathy (HCM). However, as
the authors pointed out in their paper, the intensity heterogeneity of myocardial
tissue is not unique to HCM, and it might be of importance for other conditions. As
smoking is a well-known cause for such cardiovascular diseases [166], there may
be some commonality in the patterns of myocardial hypertrophy and tissue fibrosis
in these cardiovascular conditions that is being reflected in the observed texture
features. Indeed, the increased heterogeneity in grey level intensities for current
smokers, as found in our study, supports the potential effects on the myocardium
for these subjects.

Thus, radiomics allows more granular distinctions between health and disease in
comparison to conventional CMR indices where, rather crudely, the single most
discriminatory feature for all risk factors was higher LVM. These findings indicate
the potential clinical utility of radiomics in improving understanding of the effects
and pathophysiology of important cardiovascular risk factors.

3.4.7. Comparison with the existing literature

Literature in support of the superior diagnostic performance of CMR radiomics
models over conventional image analysis is slowly gaining momentum. Several
studies have shown the feasibility and clinical utility of CMR radiomics for distin-
guishing important disease entities. A small study by Baessler et al. [74] demon-
strates the superior performance of CMR radiomics in discriminating hypertrophic
cardiomyopathy (n=32) from healthy comparators (n=30). The most discrimina-
tive feature was grey level non-uniformity, a radiomics texture feature representing
heterogeneity. It seems intuitive that this feature would be defining the irregular
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myofibrillar architecture of hypertrophic cardiomyopathy. Similar to our obser-
vations, in particular with diabetes, it appears that the observed radiomics signa-
tures may reflect clinically meaningful information about significant tissue-level
changes.

Furthermore, studies have demonstrated the ability of CMR radiomics to distin-
guish important conditions that appear morphologically similar to conventional
image analysis. For instance, Neisius et al. [141] shown high performance of
CMR radiomics models applied to native T1 images to distinguish hypertensive
heart disease (n=53), hypertrophic cardiomyopathy (n=108), and healthy volun-
teers (n=71). There is also emerging work on using CMR radiomics to identify
areas of myocardial infarction from non-contrast cine images [73, 140, 167] and
to identify acute from chronic myocardial infarction [167].

Our work constitutes the most comprehensive study to assess the relationship be-
tween CMR radiomics and cardiovascular risk factors. However, the concept of
utilizing information from CMR to obtain more complex geometric information
has been addressed previously using atlas-based shape measures. Cardiac atlases
produce statistical shape models, giving highly detailed morphometric information
[145, 168, 169]. Directly comparable to our findings, Gilbert et al. [170] demon-
strate unique morphometric variations associated with individual risk factors (high
blood pressure, smoking, high cholesterol, diabetes, angina), which could be quan-
tified and visualized on constructed atlases. The derivation of radiomics shape fea-
tures is methodologically different from cardiac atlases; however, there are con-
ceptual similarities about the type of information they provide. Both seem to sug-
gest that geometric features not captured by current image analysis approaches
may be extracted from existing CMR images and that this information appears to
provide additional insight into patterns of cardiac remodeling. CMR radiomics has
several advantages over cardiac atlas models. The signal intensity-based radiomics
features (first-order, texture) have great potential for not only better disease dis-
crimination and outcome prediction but also gaining deeper insights into disease
processes at the tissue level; such information is not provided by cardiac atlas mor-
phometrics. CMR radiomics analysis does not require any dedicated acquisitions
or post-processing and the extraction of radiomics features and model building are
computationally simpler than atlas models. Therefore, there is real potential for
radiomics to enter the clinical workflow as a very high yield and complementary
image analysis tool.

Note that in this study, we chose to select a different healthy subsample than in
Petersen et al. [159]. This is due to the differences in the objectives of the papers.
While Petersen et al. [159] focused on the estimation of normal ranges of cardiac
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indices of structure and function and thus used very strict inclusion criteria, we are
concerned with the study of cardiovascular risk factors, and therefore we excluded
subjects with known cardiovascular risk factor or disease.

3.4.8. Limitations and future work

To the best of our knowledge, this is the largest study to assess the performance
of the CMR radiomics model in discriminating several important cardiovascular
risk factors. Our findings demonstrate the feasibility of CMR radiomics models to
identify cardiac changes related to important cardiovascular risk factors (diabetes,
hypertension, high cholesterol, and smoking) with greater accuracy than conven-
tional indices. The UK Biobank provides an excellent platform for this study with
a large sample of well-characterized participants with linked CMR imaging. How-
ever, the data collection was conducted through a combination of a touchscreen
questionnaire and a face-to-face nurse interview, and thus there remain some con-
cerns about the accuracy and objectivity of the self-reported conditions. Studies
with consideration of more sophisticated statistical methods to better account for
confounding factors, as well as with the inclusion of external validation cohorts,
are needed to produce and validate more disease-specific and generalizable mod-
els. In particular, there is a need for prospective studies to determine the clinical
utility of these models in providing incremental cardiovascular risk information.

As for the pipeline implemented in this paper, alternative approaches may merit
exploration, such as testing different methods for feature selection (e.g., LASSO
[171], a combination of filter and wrapper-based methods [172]) or applying ex-
tensive hyperparameter optimization for each risk group. Also, while cross-val-
idation was performed in the feature selection process to reduce the instability
of radiomics features, other strategies have been proposed, such as prior cluster-
ing of redundant features [173], or using a concordance correlation coefficient
[174]. Additionally, there is a need for proper evaluation of the reproducibility
of radiomics features across segmentation protocols and also across imaging ac-
quisitions, which is important due to non-standard pixel values and large variation
in signal intensities [175]. Wider use of radiomics quality scores [176] would
also enable better quality and more uniform reporting of radiomics studies and
foster research reproducibility. Finally, as a common problem of artificial intel-
ligence-based radiomics approaches, we have not assessed the practical value of
the present results since there is no comparative gold standard that can be used for
comparison.
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3.5. Conclusions

CMR radiomics is an emerging technique for deeper and more accurate cardiac
phenotyping in comparison to conventional image analysis. Our preliminary re-
sults based on a large sample from the UK Biobank indicate the feasibility of
CMR radiomics analysis and potential clinical utility in superior image pheno-
typing of major cardiovascular risk factors, including diabetes, hypertension, high
cholesterol, and smoking. The clinical value of these radiomics signatures for
the prediction of downstream events warrants further investigation in prospective
cohorts.
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CHAPTER

4

Attribute-based, disentangled and inter-
pretable representations of medical images
with variational autoencoders

4.1. Introduction

Deep learning (DL) methods have recently shown great success in many fields,
from computer vision [106, 177, 178] to natural language processing [179, 180],
among numerous others. In addition, DL methods have started to dominate the
medical imaging field [89], being used in a variety of medical imaging problems,
such as segmentation of anatomical structures in the images [92, 181, 182], disease
prediction [183], medical image reconstruction [184, 185] and clinical decision
support [35]. Despite achieving exceptional results, DL methods face challenges
when applied to medical data regarding explainability, interpretability, and relia-
bility because of their underlying black-box nature [94, 95]. Hence, the need for
tools that investigate the interpretability in DL is also emerging in healthcare.

Recent reviews of interpretable DL can be found in [94, 186–188]. Some methods
have been proposed that employ backpropagation-based attention maps to either
generate class activation maps that visualize the regions with high activations in

This chapter is adapted from:
Cetin I., Camara O., Gonzalez Ballester M. A., Attri-VAE: attribute-based, disentangled and inter-
pretable representations of medical images with variational autoencoders. Medical Image Analysis.
(2022) [Submitted]
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specific units of the network [189] or saliency maps using gradients of the in-
puts with respect to the outputs [190, 191]. Other methods also proposed creating
proxy models that focus on complexity reduction such as local interpretable mod-
el-agnostic explanation (LIME) [101] or by approximating a value based on game
theory optimal Shapley values to explain the individual predictions of a model
[192]. However, it is key to design models that are inherently interpretable, rather
than creating post-hoc models to explain the black-box ones [193].

Recently, models based on latent representations, such as variational autoencoder
(VAE), have become powerful tools in this direction [102, 103], as their latent
space is able to encode important hidden variables of the input data [105]. Espe-
cially, when dealing with data that contains different interpretable features (data
attributes), it is interesting to see how and if these attributes have been encoded in
the latent space. Even though the proposed approaches provide promising results,
they have some limitations, one of which is that the encoded variables cannot be
easily controlled; they mostly show an entangled behavior, meaning each latent
factor maps to more than one aspect in the generative process [194].

In order to bypass this limitation, much effort has been done to enforce disentan-
glement in the latent space [110, 195–198], being the majority of them unsuper-
vised techniques [194, 199]. While many of these methods show good disentan-
glement performance, they are not only sensitive to inductive biases (e.g., choice
of network, hyperparameters, or random seeds), but also some amount of super-
vision is necessary for learning effective disentanglement [199]. Moreover, since
these methods are able to learn a factorized latent representation without attribute
specification, they require a post-hoc analysis to determine how different attributes
are encoded to different dimensions of the latent space [111].

On the other hand, attribute-based methods aim to establish a correspondence be-
tween data attributes of interest and the latent space [107–109, 111]. However,
these methods also have their drawbacks: some of them are limited to work only
on certain types of data attributes [108]; some impose additional constraints [109];
very few of them are designed to work with continuous variables [107, 111]; some
require differentiable computation of the attributes; and they are extremely sensi-
tive to the hyperparameters [107]. However, [111] have recently shown promising
results for interpretability with their approach, associating each data attribute to
a different regularized dimension of the latent space, which they have applied in
the MNIST database for digit number recognition. The same approach was also
employed as a post-processing step to generate interpretable and temporally con-
sistent segmentations of echocardiography images [200].

In this work, we propose an attribute-interpreter VAE (Attri-VAE), an approach
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based on attribute-based regularization [111] in the latent space, for an en-
hanced interpretation of clinical and imaging attributes obtained from multi-modal
sources. Additionally, the proposed approach also enables classification, e.g., to
identify healthy vs. pathological cases. Furthermore, we incorporate gradien-
t-based attention map computation [102] to generate explanations of the attributes
that are encoded in the regularized latent space dimensions. The main contribu-
tions of this work can be described as follows:

The proposed approach is able to interpret different data attributes where
specific ones are forced to be encoded along specific latent dimensions with-
out the need for any post-hoc analysis, while encouraging attribute disentan-
glement by employing β -VAE as a backbone [195].

The structured latent space enables controllable data generation by changing
the latent code of the regularized dimension (i.e., following the correspond-
ing attribute), generating new data samples as a result of manipulating these
dimensions. For instance, if the attribute represents volume in a region of
interest (ROI) and the corresponding regularized dimension is the first one
of the latent code, then increasing values of the dimension would result in
increasing the ROI volume.

Attribute-based gradient-based attention maps provide a way to explain how
the gradient information of individual attributes flow inside the proposed
architecture.

The classification network provides a way to stratify different cohorts, based
on the attributes in the latent space. In this way, the most discriminative fea-
tures for the classification task are identified by projecting original samples
into the latent space.

In this work, we have applied the proposed Attri-VAE approach to study cardiovas-
cular pathological conditions, such as myocardial infarction, using the EMIDEC1

cardiac imaging dataset [201], including clinical and imaging features, also ex-
ploring the association with radiomics descriptors. Additionally, we used ACDC
MICCAI17 database2 as an external testing dataset.

The remainder of this chapter is organized as follows. Firstly, we define the
state-of-the-art approaches in Section 4.2. We present the methodology and the

1http://emidec.com/
2https://acdc.creatis.insa-lyon.fr/description/databases.html
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Figure 4.1: Training framework of the proposed approach. Loss functions are shown in
red arrows. The total loss function of the model is: L =Lrecon+βLKL+LMLP+γLAR.
(a) Losses computed for each data sample: multilayer perceptron (MLP) loss (LMLP),
Kullback-Leibler (KL) loss (LKL), and reconstruction loss (Lrecon). (b) Attribute-
regularization loss (LAR), computed inside a training batch that has n data samples. The
input, a 3D image (X), first goes through the 3D convolutional encoder, qϕ(Z|X), which
learns to map X to the low dimensional space Z by outputting the mean (µ) and variance
(σ ) of the latent space distributions. The decoder, pθ (X̂ |Z), then takes Z and outputs
the reconstruction of the original input, (X̂). The predicted classes of the inputs, yc, are
computed with a MLP module that consists of three fully connected (FC) layers. The
corresponding MLP loss function is computed between yc and the ground truth label yGT .
In (b), LAR is shown to regularize the first dimension of the latent space (Z1) with the
attribute a1 (a1 and a2 represent the first and the second attributes, respectively). DistZ1

is the distance matrix of the first latent dimension, while Dista1 represents the distance
matrix of the attribute a1.

details of our architecture in Section 4.3. We then describe the experimental setup
and employed dataset in Section 4.4. Section 4.5 demonstrates our results. Sec-
tion 4.6 discusses the obtained results and proposes future lines of work. Finally,
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in Section 4.7 we conclude our findings. We have made our code publicly available
in https://github.com/iremcetin/Attri-VAE.

4.2. Related work

4.2.1. Explainable AI in medical imaging

DL-based models have shown great promise in different machine learning tasks.
Despite achieving remarkable performance in the medical domain, artificial intel-
ligence (AI) based models still did not significantly deploy in the clinical routine.
The main reason is the underlying black-box nature of DL-based networks and
their high computational cost. In this line, explainable artificial intelligence (XAI)
is an emerging field of research aimed at explaining how AI systems’ black-box
choices are made [98].

The proxy or shadow model approaches like local interpretable model-agnostic
explanation (LIME) [101] and SHapley Additive exPlanations (SHAP) [202] are
the simplest way to explain the model’s decisions. LIME is a model-agnostic tech-
nique that aims to understand the model by perturbating the input of data samples
and observing how the predictions change. SHAP is another perturbation-based
technique that approximates so-called SHapley values by taking each input fea-
ture for a sample number of times. These techniques have been generally used in
decision support systems [203]. Du et al. employed the SHAP technique to ap-
proximate the interpretability of the radiomics features in assessing patients with
non-metastatic nasopharyngeal carcinoma (NPC). They analyzed 277 patients and
extracted 525 radiomics features. The obtained SHAP values revealed that tumor
shape sphericity, first-order mean absolute deviation, and overall stage were im-
portant factors in 3-year disease progression [204]. de Sousa et al. used the LIME
approach to generate explanations on how a CNN detects tumor tissue in lymph
node metastases [205]. However, these approaches have some drawbacks. SHAP
is computationally expensive as the network must run samples × number of fea-
tures times. On the other hand, the explanations provided by LIME can be unstable
[94, 203].

Backpropagation-based attention generation techniques primarily determine an in-
put feature’s contribution to the target neuron, which is usually the output neuron
of the correct class for a classification problem [94]. These techniques are also
called as gradient-based techniques which can be applied to a black-box CNN
without altering the underlying architecture. Some methods, such as DeepTaylor
[206], only provide positive evidence and are only suitable for a limited number of
tasks [94]. However, some of them, particularly gradcam variations (Grad-CAM
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[189], Grad-CAM++ [207]), gained popularity in different medical imaging tasks.
In a method proposed by Brinker et al., Grad-CAM was used to assess melanoma
images. Their results suggest that proposed CNN-based model outperforms hu-
man experts [208]. Joshua et al. presented a study where they employed Grad-
CAM++ to explain the decision of their proposed 3D CNN model for classifying
lung cancer [209].

The latent representation-based models gained popularity to make deep learning
models intrinsically explainable. The main advantage of these models is that their
latent space can encode important hidden variables of the input data. Biffi et al.
[103, 210] proposed two approaches for classifying heart pathologies (HCM) with
cardiac remodeling. The explainable anatomical task-specific shape descriptors
were learned directly from 3D segmentations using the latent space of VAE. Other
approaches were also proposed to generate explanations in different clinical con-
ditions. Clough et al. [211] introduced a VAE-based method to analyze its latent
space to identify meaningful coronary artery disease detection biomarkers. Shak-
eri et al. [212] employed a VAE approach based on spectral feature representa-
tions using hippocampus morphology to classify Alzheimer’s disease. Addition-
ally, Puyol et al. [213] used existing clinical knowledge to constrain the latent
space of a VAE by employing two task-specific classifiers together for the CRT
response prediction of cardiomyopathy patients.

4.2.2. Attribute-based models

Attribute-based models establish a correspondence between data attributes of in-
terest and the latent space by encoding different attributes along different latent
space dimensions. This procedure is done in two ways; latent space can be de-
composed into different parts representing specific attributes [214], or each data
attribute can be encoded along individual dimensions [107, 215].

Recently, the InfoGAN [215] was proposed where it generates these aforemen-
tioned encodings maximizing the mutual information between specific dimensions
of the latent vector and the generated data points. After training on images, it has
been shown that InfoGAN can encode attributes such as rotating, lighting, etc.
The significant limitation of this approach is that it is not possible to choose which
attributes to encode. As an alternative to this Hadjeres et al. [107] proposed an ap-
proach, GLSR-VAE, which introduces a regularization loss to encode a selected at-
tribute along specific latent space dimensions. However, the loss function requires
the differentiable computation of the attributes and extensive hyperparameter tun-
ing. Pati et al. [111] proposed AR-VAE where they introduced an attribute-based
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regularization loss function to generate a structured latent space in which individ-
ual attributes are encoded along specific dimensions of the latent space.

Generative adversarial network (GAN)-based models are also used to encode dif-
ferent attributes, such as Donahue et al. [214] proposed a method to encode the
facial identity of a person in the latent space of a GAN model where they decom-
posed the latent space into two parts: one encoded variation in facial identity and
the other encoded variation due to all of the other attribute. Engel et al. trained a
generator-discriminator GAN framework on the latent space of a trained VAE to
enforce conditional generation. For this, they use conditioning input similar to the
conditional GAN framework [216].

There are, however, some limitations of these approaches. Some methods design
the work only on certain types of data [108]. Additionally, some techniques im-
pose additional constraints, such as requiring the ability to generate data points
by independently varying attributes [217], requiring differentiable computations
of attributes [107], or the ability to group data points concerning specific attributes
[214]. In addition, just a few of them are designed to work with continuous value
attributes [107, 111, 218].

4.3. Methodology

The overall structure of our framework is shown in Figure 4.1 (training) and Fig-
ure 4.2 (testing). The proposed Attri-VAE incorporates attribute regularization
into a β -VAE framework that was used as a backbone for the interpretation of data
attributes. The trained network enables to generate new data samples by manip-
ulating the data attributes, whereas the generated attribute-based attention maps
explain how the gradient information of each attribute flows inside the proposed
architecture. This section is organized firstly explaining the overall training crite-
rion of the proposed model, with the following subsections describing each of the
elements of our methodology and their integration.

4.3.1. Training criterion

Attri-VAE is trained with a loss function, L , which is composed of four terms, as
follows:

L = Lrecon +βLKL +LMLP + γLAR. (4.1)
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Figure 4.2: The trained network can be used for: (a) latent space manipulation; and (b)
generating attribute-based attention maps. For a given 3D data sample, X , the trained 3D
convolutional encoder, qϕ(Z|X), outputs the mean (µ) and variance (σ ) vectors, then Z
being sampled with the reparameterization trick. (a) Data generation process by changing
only first (Z1) and second (Z2) regularized latent dimensions of Z, which correspond to
two different data attributes (volume and maximum 2D diameter, respectively). Then, the
decoder, pθ (X |Z), generates 3D outputs, X1 and X2, using the manipulated latent vectors,
Z1 and Z2, respectively. (b) Attribute-based attention map generation for a given attribute,
which is encoded in the first latent dimension (Z1). First, (Z1) is backpropagated to the
encoder´s last convolutional layer to obtain the gradient maps (Grads1 and Grads2) with
respect to the feature maps (F1 and F2). The gradient maps of (Z1) measure the linear
effect of each pixel in the corresponding feature map on the latent values. After that, we
compute the weights (w1 and w2) using global average pooling (GAP) on each gradient
map. A heat map is generated by multiplying these values (w1,w2) with the corresponding
feature map, summing them up and applying an activation unit (ReLU). Finally, the heat
map is upsampled and overlaid with the input image to obtain the superimposed image
(3D attention map). Additionally, the class score of the input, yc, is computed with the
multilayer perceptron (MLP) that is connected to Z. Note that, in the figure it is assumed
that the last convolutional layer of the encoder has 2 feature maps.

The reconstruction loss, Lrecon, is based on the binary cross-entropy (BCE) be-
tween the input X and its reconstruction X̂ , while the second term, LKL, employs
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the Kullback-Leibler (KL) divergence between the learned prior and the poste-
rior distributions, weighted by a hyperparameter (β ). An additional term, LMLP,
estimates the BCE loss for the classification between the network prediction, yc,
and the ground truth label, yGT . The final loss term, LAR, includes the attribute
regularization, with a tunable hyperparameter (γ) that weights its strength. In the
following sections, detailed explanations of each loss term in our training criterion
can be found (also see Figure 4.1).

4.3.2. Variational autoencoder (VAE) and β -VAE

A variational autoencoder [105] is a generative model that consists of an encoder
and a decoder. The encoder, qϕ(Z|X), approximates the posterior distribution with
parameters ϕ , taking as input X from a high dimensional space, and learning to
map it onto a low dimensional space by outputting the mean and variance (µ and
σ , respectively) of a Gaussian probability density. The resulting low dimensional
space is referred to as a latent space, with points Z in the latent space being the
latent vectors. The decoder, pθ (X |Z), parameterized by θ , takes a latent vector
Z that is sampled from p(Z) (prior distribution, e.g., unit Gaussian), using the
reparameterization trick [105], and outputs X̂ , which is a reconstructed version of
the input X .

A variational autoencoder aims to maximize the marginal likelihood of the recon-
structed output, which is written as:

logpθ
(X)≥ EZ∼qϕ (Z|X)[logpθ (X |Z)]−DKL(qϕ(Z|X)∥p(Z)) (4.2)

In this objective function, the first term is the log likelihood expectation that the
input X can be generated by the sampled Z from the inferred distribution, qϕ(Z|X).
The second term corresponds to the KL divergence between the distribution of Z
inferred from X , and the prior distribution of Z. Note that both distributions are
assumed to follow a multivariate normal distribution.

In practice, the loss function of the VAE consists of two terms: a first term that
penalizes the reconstruction error between the input and output; and a second term
forcing the learned distribution, qϕ(Z|X), to be as similar as possible to the prior
distribution, p(Z). In this case, the overall VAE loss can be written as:

LVAE(θ ,ϕ) = Lrecon(θ ,ϕ)+LKL(θ ,ϕ), (4.3)
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where the reconstruction loss, Lrecon(θ ,ϕ), and the KL loss, LKL(θ ,ϕ), are com-
puted as follows:

Lrecon(θ ,ϕ) =
N

∑
i=1

∥X̂ −X∥2
2, (4.4)

LKL(θ ,ϕ) = DKL(qϕ(Z|X)∥p(Z)). (4.5)

When qϕ(Z|X) is a multivariate normal distribution with parameters µ and σ2,
the objective loss function is differentiable with respect to (θ ,ϕ,σ ,µ) [105], and
the parameters of the VAE can be optimized iteratively with stochastic gradient
descent algorithms [219].

A latent representation is disentangled if each dimension in the latent space is
sensitive to one generative factor and comparably invariant to the changes in the
other factors [220]. Such a disentangled representation is a great asset for inter-
pretability. In this work we chose to use β -VAE as the backbone of our approach
to encourage the disentanglement as it is easy to formulate and it has shown good
performance based on one or more disentanglement metrics [195, 221].

The β -VAE approach [195] is an extension of the standard VAE that aims to learn
a disentangled representation of the encoded variables in a completely unsuper-
vised manner [195, 199] by simply giving more weight to the KL term, compared
to the original VAE, with an extra hyperparameter β :

LVAE(θ ,ϕ) = Lrecon(θ ,ϕ)+βLKL(θ ,ϕ), (4.6)

The main idea here is that adding β restrains the latent representation, forcing it to
be more factorized [195, 221]: when β > 1, it encourages dimensional indepen-
dence in the latent space, hence leading to a better disentanglement. On the other
hand, when β = 1, it becomes equivalent to the standard VAE. Although, higher
values of β have shown promising results to encourage disentangling [222], they
often lead to a trade-off between reconstruction accuracy and the disentanglement
of the latent space. For this reason, a well chosen β is necessary for both recon-
struction accuracy and disentanglement.
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4.3.3. Attribute-based regularization

In order to better interpret the data attributes that are encoded in the latent space,
we employ an attribute-based regularization loss [111], which aims to encode an
attribute a along a dimension d of the latent space (regularized dimension). In this
way, as one interpolates along dimension d (in a D-dimensional latent space), the
attribute value of the generated data is also monotonically changed. Therefore, our
hypothesis is that a model trained with an attribute-based regularization not only
improves interpretation but also can be used to generate controllable images by
manipulating different dimensions of the latent space, which are corresponding to
different data attributes.

In this sense, the attribute regularization loss, LAR, is calculated for the dimension
d of the latent space in a training batch containing n training examples for the
purpose of forcing the dimension d to have a monotonic relationship with the
attribute values of a. The attribute regularization loss is then computed as follows:

LAR(d,a) = MAE(tanh(δDistZd )− sgn(Dista)), (4.7)

where MAE is the mean absolute error, Dista is the attribute distance matrix, and
DistZd is the distance matrix of the latent dimension d. These matrices are com-
puted for all n data examples in the corresponding training batch, such that:

Dista = a(Xi)−a(X j), (4.8)

DistZd = Zd
i −Zd

j , (4.9)

where i, j ∈ [0,n), Xi and X j are two exemplary samples (Equation 4.8), and each
D-dimensional latent vector is represented as Z = {Zd}, where d ∈ [0,D) (Equa-
tion 4.9).

In Equation 4.7, tanh and sgn refer to hyperbolic tangent function and sign func-
tion, respectively, whereas δ is the hyperparameter that modulates the spread of the
posterior distribution. As we are interested in whether a certain sample´s attribute
value is higher or lower than the others inside the corresponding mini-batch, the
sgn function is used. Additionally, a tanh function was chosen for the regularized
dimension’s distance matrix, Distd , because it has the same range as sgn(Dista),
and it is a differentiable function (i.e., the loss is also differentiable with respect
to the latent vectors and the encoder’s parameters). Consequently, the objective
function tries to minimize the MAE between tanh(δDistZd ) and sgn(Dista) so that
the regularized dimension has a monotonic relationship with the attribute values.

While the above procedure gives an objective function for one attribute, for multi-
ple selected attributes of interest to be encoded in the latent space, the overall loss
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function can be computed by summing all the corresponding objective functions
together. Specifically, when the attribute set is A : {ak}, where k ∈ [0,K) con-
tains K attributes (K ≤ D, being D the latent size), then the overall loss function is
computed as:

LAR =
K−1

∑
k=0

Ldk,ak , (4.10)

where dk represents the index of the regularized dimension for the attribute k. This
process is represented in Figure 4.1 (b).

4.3.4. Classification network

Recently, performing a classification task using VAEs has been proposed to learn
and separate different cohorts in the latent space. For example, Biffi et. al. [103]
classified heart pathologies with cardiac remodelling using explainable task-spe-
cific shape descriptors learned directly with a VAE architecture from the input
segmentations. Additionally, other approaches based on VAE have also been ap-
plied to analyse coronary artery diseases [211], Alzheimer’s disease [212] or to
predict the response of cardiomyopathy patients to cardiac resynchronization ther-
apy [213].

In this line, to enforce class separation to the Attri-VAE, a multilayer perceptron
(MLP) prediction network was connected to the latent vector, p(yc|Z) ( see Fig-
ure 4.1). The corresponding objective function can be computed as the binary
cross-entropy (BCE) between the network prediction yc and the ground truth label
yGT , such that:

LMLP = BCE(yc,yGT ) (4.11)

4.3.5. Attribute-based attention generation

The Attri-VAE facilitates data interpretation by generating new data samples as a
result of scanning the regularized latent dimensions. Furthermore, it also provides
a way to obtain attention maps from these dimensions (attribute-based attention
map generation) for a better understanding on how gradient information of these
attributes flows inside the proposed architecture (as can be seen in Figure 4.2).

Attribute-based visual attention maps were generated by means of gradient-based
computation (Grad-CAM) [189], as proposed by [102]. Basically, a score is calcu-
lated from the latent space that is then used to estimate the gradients and attention
maps. Specifically, given the posterior distribution inferred by the trained network
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for a data sample X , qϕ(Z|X), the corresponding D-dimensional latent vector Z
is sampled using the reparameterization trick [105]. Subsequently, for a given at-
tribute set A : {ak}, where k ∈ [0,K) contains K attributes, attribute-based attention
maps, Mdk , are generated for each regularized latent dimension Zdk by backprop-
agating the gradients to the encoder´s last convolutional feature maps (F : {Fi}
where i ∈ [0,n)):

Mdk = ReLU(
n

∑
i=1

wiFi), (4.12)

where dk is index of the regularized latent dimension for a given attribute k. The
weights, wi, are computed using global average pooling (GAP), which allows us
to obtain a scalar value, as follows:

wi = GAP(
∂Zdk

∂Fi
) =

1
T

j

∑
p=1

l

∑
q=1

(
∂Zdk

∂F pq
i

), (4.13)

where T = j× l, (i.e., width×height), and F pq
i is the pixel value at location (p,q)

of the j× l matrix Fi. This process is visually summarized in Figure 4.2.

4.4. Application for interpretable cardiology

4.4.1. Datasets

Initially, the EMIDEC dataset [201] was used in our experiments. It is a pub-
licly available database with of delay-enhancement magnetic resonance images
(DE-MRI) of 150 cases (100 and 50 cases for training and testing, respectively),
with the corresponding clinical information. Each case includes a DE-MRI ac-
quisition of the left ventricle (LV), covering from base to apex. The training set,
with ground-truth segmentations, includes 67 myocardial infarction (MINF) cases
and 33 healthy subjects. The testing set includes 33 MINF and 17 healthy sub-
jects. Some clinical parameters were also provided along with the MRI: sex, age,
tobacco (yes, no, and former), overweight, arterial hypertension, diabetes, family
history of coronary artery disease, electrocardiography (ECG), killip max3, tro-
ponin4, LV ejection fraction (EF), and NTproBNP5. Furthermore, we also used an

3A score based on physical examination and the development of the heart failure to predict the
risk of mortality.

4A parameter that shows the level of the protein that is released into the blood stream.
5A parameter that shows a level of a peptide, which is an indicator for the diagnosis of heart

failure.
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additional external testing dataset for a more robust assessment of the classifica-
tion performance, the ACDC MICCAI17 challenge training dataset 6 (end-diastole
(ED), and end-systole (ES), cine-MRI from 20 healthy volunteers and 20 MINF
cases). The ACDC dataset includes ground-truth segmentations of the left ventri-
cle, myocardium and right ventricle by an experienced manual observer at both
ED and ES timepoints [92]. The reader is referred to [92, 201] for more details on
the MRI acquisition protocol.

As a pre-processing step, the intensities of the left ventricle in all images were
scaled between 0 and 1. Additionally, each image was cropped and padded (x =
80; y = 80; z = 80; t = 1).

4.4.2. Cardiac attributes

Three different types of attributes were studied in our experiments. Initially, the
Attri-VAE was trained with cardiac shape descriptors (e.g., wall thickness, LV
and myocardial volumes, ejection fraction), extracted from ground-truth segmen-
tations, which can easily be visually interpreted. In addition, attributes available
from clinical information with the highest discriminative performance were iden-
tified using recursive feature elimination (RFE) with a support vector machines
(SVM) classification model (linear kernel, regularization parameter C = 10) since
this approach has already shown good performance for feature selection tasks
[223–225]. The most discriminative attributes were then included in our analy-
sis (e.g., gender, age, tobacco). The feature selection pipeline was done using the
python-based machine learning library scikit-learn (version 1.0.2).7

Finally, the Attri-VAE was also trained with radiomics features. Radiomics anal-
ysis was originally proposed to capture alterations at both the morphological and
tissue levels in oncology applications[40, 119], deriving multiple quantifiable fea-
tures from pixel-level data. More recently, radiomics approaches have provided
promising results on cardiac MRI data, for discriminating different cardiac condi-
tions [73, 83, 141, 162], and to study cardiovascular risk factors in large databases
[226]. Radiomics analysis represents a step towards interpretability compared to
other black-box approaches since some features can be related to pathophysiolog-
ical mechanisms [226]. However, there is a need for improving robustness and
reproducibility of radiomics outcomes across different feature selection strategies
and imaging protocols, which would lead to enhanced explainability. For this
reason, radiomics features were employed in our experiments to benefit from the

6https://www.creatis.insa-lyon.fr/Challenge/acdc/
7https://scikit-learn.org/stable/
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proposed network’s ability to explain the encoded attributes. The open source li-
brary PyRadiomics (version 3.0.1) 8 was used to derive 114 features per analysed
cardiac structure. Subsequently, radiomics features with the highest discriminative
performance were identified using the above-mentioned feature selection approach
as this strategy has also demonstrated good performance with previous radiomics
studies [66, 227, 228]. The top performing features of this process were then se-
lected to train the Attri-VAE.

4.4.3. Architectural details

The 3D convolutional encoder of the proposed Attri-VAE framework compresses
the input into a 250 dimensional embedding through a series of 5 3D convolu-
tional layers with kernel size 3 and stride 2, except the last convolutional layer
that has stride 1. The prediction network was constructed with a shallow 3-layer
MLP to be able to discriminate between the healthy and infarct subjects, using a
ReLU activation function as a non-linearity after the first two layers. The upsam-
pling and convolutional layers used in the encoder and the decoder were followed
by batch normalization and ReLU non-linearity, except the decoder’s last convo-
lutional layer (Attri-VAE output) where a sigmoid function was applied. All the
network weights were randomly initialized with xavier initialization [229]. The
tunable parameters of the loss function (Equation 4.1) were fixed as follows: KL
weight β = 2; and regularization weight γ = 200. Additionally, δ (Equation 4.7)
was set to 10. The model architecture and other details are provided in our GitHub
repository 9.

The Attri-VAE was trained on a NVIDIA Tesla T4 GPU using Adam optimizer
with learning rate equals to 0.0001 and batch size of 16 for 10000 epochs. The
dataset was splitted into 70/30 training (47 pathological, 23 healthy) and testing
(20 pathological and 10 healthy subjects) sets. Subsequently, random oversam-
pling of the normal subjects was employed in the training set as a strategy to treat
the unbalanced behavior of the dataset; however, testing set was kept unchanged.
Note that the proposed model is implemented using python programming language
and PyTorch library (version 1.10.0) 10. Image pre-processing and transformations
were done using the python-based MONAI library (version 0.8.0) 11.

8https://pyradiomics.readthedocs.io/
9https://github.com/iremcetin/Attri-VAE

10https://pytorch.org/
11https://monai.io/
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4.4.4. Experimental setting and evaluation criteria

The performance of the proposed Attri-VAE, both qualitatively and quantitatively,
was compared with baseline VAE and β -VAE models in several experiments. First
of all, the degree of disentanglement of the proposed latent space was evaluated
with respect to different data attributes, using the following metrics available in
the literature: the modularity metric, to analyse the dependence of each dimension
of the latent space on only one attribute [230]; the mutual information gap (MIG),
to evaluate the MI difference between a given attribute and the top two dimensions
of the latent space that share maximum MI with the corresponding attribute [198];
the separated attribute predictability (SAP), to measure the difference in the pre-
diction error of the two most predictive dimensions of the latent space for a given
attribute [231]; and the spearman correlation coefficient (SCC) score, to compute
its maximum value between an attribute and each dimension of the latent space.

In parallel, the interpretability metric introduced in [232] was used to measure the
ability to predict a given attribute using only one dimension of the latent space.
As for the β -VAE mode, dimensions having a high MI with the corresponding
data attribute were chosen for the interpretability estimation. The reconstruction
fidelity performance was also evaluated, employing the maximum mean discrep-
ancy (MMD) score [233], which measures the distance between the distributions
of real and reconstructed data examples, as well as their mutual information (MI)
as an image similarity metric. The interpretability and MI metrics were then used
to identify the optimal values of the most relevant hyperparameters in Equation
4.10 and Equation 4.7 (i.e., β , γ and δ ), evaluating the influence of the KL diver-
gence (β ) and attribute regularization (γ) loss terms, as well as the weight of the
distance matrix between two samples in a latent dimension. As a proof-of-concept,
the hyperparameter sensitivity analysis was performed with only the four cardiac
shape-based interpretable attributes.

Another set of experiments was carried out to explore the potential of the latent
space generated by the Attri-VAE approach to create synthetically realistic sam-
ples. First, two samples in the Attri-VAE latent space, corresponding to input
data with distinct cardiac characteristics (e.g., thin vs. thick myocardium, absence
vs. presence of myocardium infarct), were chosen as references to synthetically
generate interpolated images through their trajectory. Secondly, we qualitatively
evaluated the control over individual data attributes during the generation process
of the Attri-VAE model. Given a sample with a latent code z, a given attribute (e.g.,
LV volume) can be scanned from low to high values changing the latent code of
the corresponding regularized dimension, due to their monotonic relationship. The
attribute scanning creates synthetically generated samples in a latent space trajec-
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tory where only the chosen attribute is changing, facilitating its interpretation. In
order to further facilitate the identification of each attribute’s visual influence in
the synthetically generated images, gradient-based attention maps were also esti-
mated.

Finally, the performance of the Attri-VAE model for classifying healthy and patho-
logical hearts was assessed using the area under the curve (AUC) and accuracy
(ACC) metrics, using both the EMIDEC and the ACDC17 challenge datasets.
The Attri-VAE results were benchmarked against other VAE-type approaches
(VAE+MLP, β -VAE+MLP), as well as to classical radiomics analysis (with SVM).
The latent space projections of the Attri-VAE model, regularized by different at-
tributes, were also qualitatively analysed to identify the attributes better differenti-
ating healthy and pathological clusters of samples.

4.5. Results

4.5.1. Hyperparameter sensitivity analysis

Figure 4.3 shows the effect of several hyperparameters on the interpretability and
the reconstruction fidelity of the Attri-VAE scheme. For comparison, the perfor-
mance of β -VAE (β = 3) is also represented. A visual inspection of the figure
suggests that γ , i.e., the hyperparameter controlling the attribute regularization,
was the key to obtain good interpretability values while keeping reasonable re-
construction fidelity (mutual information ≥ 0.88), with values of γ ≥ 100. Ad-
ditionally, values of δ ≤ 10 (e.g., hyperparameter on the attribute regularization
controlling the weight of the distance matrix between two samples) also ensured
a good trade-off between interpretability and reconstruction fidelity. On the other
hand, the β hyperparameter was not as relevant as the other two. As expected, the
β -VAE approach without attribute regularization, provided acceptable reconstruc-
tion fidelity results but low values of interpretability. We need to point out that the
same results were obtained when using radiomics features instead of shape-based
attributes.

4.5.2. Disentanglement and interpretability

The proposed Attri-VAE approach outperformed β -VAE across all tested disen-
tanglement metrics using shape and clinical attributes, implying a more disentan-
gled latent space. Firstly, both Attri-VAE and β -VAE provided high modularity
values (Attri-VAE: 0.98 vs. β -VAE: 0.97), signalling that each dimension of the
latent spaces in both models only depended on one data attribute. The Attri-VAE
also resulted in higher MIG/SAP scores than β -VAE (Attri-VAE: 0.60/0.63 vs.
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Figure 4.3: Effect of hyperparameters on the interpretability and reconstruction fidelity
of the Attri-VAE approach. The hyperparameters β and γ of the Attri-VAE model control
the influence of the loss terms for the Kullback-Leibler divergence between learned prior
and posterior distributions, and attribute regularization, respectively. In its turn, δ weights
the contribution of the distance matrix between two samples in a latent dimension in the
attribute regularization scheme. Each marker represents a unique combination of the hy-
perparameters β , γ and δ , which is indicated by color, size and marker type, respectively.
For comparison, the performance of β -VAE (β = 3) is also represented. Best performance
combinations are located in the top right corner of the graph.

β -VAE: 0.02/0.05). In its turn, the SCC metric estimated for Attri-VAE was sub-
stantially higher than the corresponding β -VAE one (Attri-VAE: 0.97 vs. β -VAE:
0.46) due to the monotonic relationship between a given attribute and the regu-
larized latent dimension enforced by the former. When using radiomics features,
the same trend was observed, with some Attri-VAE disentanglement metrics (MIG
and SAP) slightly lower than when using shape and clinical attributes (Attri-VAE /
β -VAE): modularity, 0.98/0.98; MIG, 0.49/0.01; SAP, 0.51/0.06; SCC, 0.98/0.42).

Table 4.1 shows the interpretability scores for both Attri-VAE and β -VAE obtained
with shape, clinical and radiomics attributes. The radiomics feature selection iden-
tified seven of them having the most discriminative power: four shape-based, being
the sphericity of the left ventricle, the maximum 2D diameter of the myocardium,
as well as left ventricle and myocardial volumes; three texture-based, being the
correlation of the left ventricle, the difference entropy of the myocardium and the
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Figure 4.4: Three examples of real and reconstructed images using the VAE, β -VAE and
Attri-VAE approaches. Three slices are shown in every example: apical (APEX), mid-
ventricle (MID) and basal (BASE) slices. Sample 1 and 3 correspond to healthy hearts
while Sample 2 shows an infarcted myocardium.

Attri-VAE β -VAE
LV volume 0.89 0.14
MYO volume 0.93 0.02
Wall thickness 0.95 0.10
EF 0.94 0.03
Gender 0.98 0.19
Age 0.93 0.12
Tobacco 0.70 0.19
Radiomics 0.91 0.06

Table 4.1: Interpretability score [232] of most relevant shape, clinical and radiomics at-
tributes, as encoded in the latent space, with the Attri-VAE and β -VAE approaches. LV:
left ventricle, MYO: myocardium, EF: ejection fraction. Maximum interpretability is 1.0.

inverse variance of the left ventricle.

It can easily be observed that the Attri-VAE provided a high degree of interpretabil-
ity (i.e., close to 1.0) for all attributes, with the exception of tobacco (0.70). Among
shape and clinical features, gender was the attribute with a higher interpretability
(0.98), followed by the wall thickness (0.95), meaning that they could be predicted
with only one dimension of the latent space. As for radiomics features, the average
interpretability metric value was of 0.91, with shape-based ones showing slightly
larger values than texture features (0.93 and 0.89, respectively); the maximum
2D diameter of the myocardium presented the highest value (0.97). On the other
hand, the β -VAE clearly resulted in lower interpretability values (average of 0.11
for shape/clinical attributes and 0.06 for radiomics features).
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4.5.3. Reconstruction fidelity

Table 4.2 summarizes the results of the reconstruction fidelity metrics (MMD and
MI) for the VAE, β -VAE and Attri-VAE models. The proposed Attri-VAE ap-
proach obtained the lowest MMD values, representing a lower distance between
input and reconstructed images. However, the VAE approach had the (slightly)
best MI (0.91 and 0.89 for VAE and Attri-VAE, respectively), since its latent space
was less constrained, compared to the other models.

Figure 4.4 shows the reconstructions of three data examples from the EMIDEC
dataset using the VAE, β -VAE and Attri-VAE approaches. Even though the three
models achieved similar qualitative reconstruction results, the Attri-VAE model
generated images better preserving the heart shape and details than the other mod-
els: see the papillary muscles in mid-myocardium slices (dark regions in the blood
pool) or the left ventricular cavity in apical slices of Sample 2 and Sample 3 in
Figure 4.4. We can also observe in the figure that apical slides were more difficult
to reconstruct that mid-ventricle and basal ones for the three tested models.

4.5.4. Latent space interpolation and attribute scanning

Figure 4.6 shows three examples of interpolation between two distinct and
well-separated samples in the learned latent space of the Attri-VAE model. As
it can be appreciated in the figure, the proposed approach generates synthetic in-
terpolated images that have a realistic appearance, gradually changing the main
sample characteristics in the trajectory between the chosen samples. The first row
of Figure 4.6 clearly demonstrate the Attri-VAE model’s ability to create smooth
transitions between hearts having largely different characteristics such as (thin to
thick) wall thickness. The other two rows of the figure demonstrate a similar be-
haviour from non-infarcted/scar to infarcted/scar patients.

Figure 4.5 illustrates the effect of scanning an individual attribute along its corre-
sponding regularized dimension in the Attri-VAE model, where all the remaining
attributes remain fixed. The first three rows of the figure exemplify the attribute

MMD ×102 MI
VAE 1.86 ± 0.06 0.91
β -VAE 1.38 ± 0.04 0.87
Attri-VAE 1.18 ± 0.03 0.89

Table 4.2: Reconstruction accuracy on the EMIDEC dataset of the VAE, β -VAE and Attri-
VAE approaches, quantified with the maximum mean discrepancy (MMD) and mutual
information (MI) metrics. The MMD results are given as ± standard deviation.
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Figure 4.6: Linear latent space interpolation between two data samples (extremes of each
row in yellow frames) from the EMIDEC dataset. Each row depicts the interpolation from
the left to the right latent vector dimension. Top: from thin to thick myocardium. Middle:
from a myocardium with scar to one without. Bottom: from healthy subject to a patient
with a myocardial infarct.

scanning that was done on the latent space of Attri-VAE, which was trained with
clinical plus shape features. The rest of the rows represent the attribute scanning
on the latent space of Attri-VAE trained with selected radiomics features. For
shape-based attributes, the changes in the attribute when moving along different
values of the regularized dimension are clearly seen. For instance, from the left to
the right in Figure 4.5, how LV and myocardial volumes are increasing in the first
and two rows, respectively, or how the LV becomes more spherical. More subtle
changes are observed with texture-based radiomics but they can still be identified
with a careful inspection of the generated images. For example, moving along
the latent space dimension corresponding to the correlation LV, we find more or
less intensity homogeneity in the LV. The LV inverse variance (LV-IV) and the
difference entropy of the myocardium (DE-MYO) only produced small changes
that consisted in slightly thicker myocardium with lower values of LV-IV (left
samples in Figure 4.5) and some more darker patches and heterogeneous texture
in the myocardium for higher values of DE-MYO (right in Figure 4.5). It needs
to be pointed out that attribute scanning for clinical attributes such as age, gen-
der and tobacco is not shown since the images do not visually change along the
corresponding regularized dimensions.

Additionally, the right side of Figure 4.5 shows the attention maps associated with
the changes in each regularized dimension of the Attri-VAE model, as a way to
better understand the effect of each studied attribute. We can see in the figure
that more attention (i.e., higher response) is paid to more varying regions for
shape-based attributes (e.g., right side of the slide for LV volume, where LV is
increasing from the left to the right in the regularized dimension). In general, at-
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tention maps for texture-based features have less high-response regions than for
shape-based attributes. However, in some texture-based features such as the dif-
ference entropy of the myocardium, higher response can still be localized (in this
example, darker regions in the top left part of the slice). On the other hand, inter-
pretation and validation of the resulting attention maps for other attributes such as
for LV-IV are more challenging.

4.5.5. Classification

EMIDEC ACDC
Attri-VAE (Clinical+Shape) 0.96 / 0.94 0.58 / 0.54
Attri-VAE (Radiomics) 0.98/ 0.96 0.59 / 0.52
β -VAE+MLP 0.91 / 0.90 0.45 / 0.31
VAE+MLP 0.87 / 0.80 0.54 / 0.35
Radiomics analysis (SVM) 0.77 / 0.75 0.60 / 0.61

Table 4.3: Classification performance of EMIDEC and ACDC datasets (healthy vs my-
ocardial infarction) with different models. The results are reported as accuracy / AUC
score. SVM: support vector machine.

Table 4.3 shows that the Attri-VAE approach, besides increasing interpretability,
it also achieves a better classification performance comparing to state-of-the-art
models. The best result was obtained in both EMIDEC and ACDC datasets with
the Attri-VAE trained with radiomics features (accuracy of 0.98 and 0.59 for both
datasets), while the standard radiomics+SVM analysis was the worst for EMIDEC
(accuracy of 0.77) and the β -VAE+MLP for ACDC. There were only minor dif-
ferences in the accuracy of the Attri-VAE method when trained with clinical and
shape attributes or radiomics features. All the evaluated models, trained with the
EMIDEC data, substantially dropped their performance when tested on the exter-
nal ACDC dataset, specially the VAE-based approaches.

Finally, the latent space projections of different regularized latent dimensions are
visualized in Figure 4.7, with plot axes representing the encoded data attributes.
As it can be observed in the figure, our model is able to build several reduced
dimensionality spaces, based on different attributes, where healthy and patholog-
ical cases (red and blue in the figure, respectively) can easily be clustered. For
instance, the maximum 2D diameter of the myocardium and the LV volume at-
tributes correctly separate most samples into two clusters. Interestingly, despite
Attri-VAE having poor control over clinical attributes such as age or gender, they
also facilitate the construction of the latent spaces and sample discrimination, as
can be seen in the gender-age plot of Figure 4.7.
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Figure 4.7: Latent space projections of regularized dimensions for different clinical, shape
and radiomics attributes. Each point in the graphs represent a healthy or a myocardial
infarction patient (red and blue, respectively), LV: left-ventricle, MYO: myocardium, IV:
inverse variance, DE: difference entropy, Max 2D dia: maximum 2-dimensional diameter.

4.6. Discussion

The analysis of medical data demands for interpretable methods. However, the ma-
jority of deep learning methods do not fulfill the minimum level of interpretability
to be used in reasoning medical decisions [35], being difficult to relate clinically
and physiologically meaningful attributes with model parameters and outcomes.
Fortunately, interpretable and explainable deep learning methods are starting to
emerge. Models creating latent space representations, such as variational autoen-
coders, are promising but attributes are usually entangled in the resulting reduced
dimensionality space, hampering its interpretation. In this work, we have pre-
sented the Attri-VAE approach that generates disentangled and interpretable rep-
resentations where different types of attributes (e.g., clinical, shape, radiomics) are
individually encoded into a given dimension of the resulting latent space.

The results obtained by the proposed Attri-VAE model based on disentanglement
and interpretability metrics clearly outperformed the state-of-the-art β -VAE ap-
proach, indicating a high degree of disentanglement and a monotonic relationship
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between a given attribute and the corresponding regularized dimension. However,
Attri-VAE values for some metrics such as the MIG and SAP, although substan-
tially better than those of β -VAE, were far from the maximum (e.g., 1.0). The
same trend was observed by [111] in the MNIST (i.e., for digit number identifica-
tion) dataset, suggesting that other latent dimensions, beyond the regularized ones,
share a high MI with different attributes.

Hyperparameter selection was a key step to find the optimal Attri-VAE configu-
ration providing an excellent trade-off between reconstruction fidelity, at the level
of state-of-the-art alternatives, and interpretability; even though the Attri-VAE ap-
proach had a more constrained latent space, it generated reconstructions that are
less smooth than other VAE models and more similar to the original input images.
The most critical parameter to enforce interpretability was the weight of the at-
tribute regularization loss term (γ in Equation 4.1), together with the influence of
the distance matrix between two samples in a latent dimension (δ in Equation 4.7).
The Attri-VAE plot of reconstruction fidelity vs interpretability, shown in Figure
4.3 had the same pattern as the one obtained by [111]. Interestingly, their opti-
mal γ values were lower than ours ([5.0, 10.0] vs ≥ 100), likely due to the higher
complexity of the cardiac MRI data and corresponding latent space compared to
the MNIST dataset. On the other hand, the best δ values were the same in the two
studies ([1.0, 10.0]).

One of the most interesting characteristics of the Attri-VAE approach is the ability
of creating realistic synthetic data by sampling the created latent space and inter-
polating between different original reconstructed inputs, which can be very useful
for controllable and attribute-based data augmentation of training datasets in ma-
chine learning applications. Scanning a regularized dimension of the latent space
creates synthetic images where the corresponding attribute changes its values, as
can easily be observed for shape descriptors (e.g., LV and myocardial volumes,
wall thickness) in Figure 4.5. In addition, the proposed approach allows a better
understanding of some (texture-based) radiomics features, which are often difficult
to interpret. However, clinical attributes such as age, gender or tobacco consump-
tion, despite obtaining good interpretability scores, did not create visually different
interpolated samples over the regularized dimensions. One potential reason is the
difficulty of the attribute regularization to control binary attributes, as suggested
by [111]. Furthermore, the studied clinical attributes cannot be disassociated from
shape and image intensity variations (e.g., morphological changes of the heart with
age), thus it is too restrictive to keep all attributes fixed except a clinical one. In
consequence, more work is needed to better construct latent spaces where clinical
information can be disentangled from other attributes.
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The generated gradient-based attention maps contributed to locally identify the
cardiac regions where the attributes were influencing, which was particularly use-
ful for global attributes and for complex features such as the texture ones. How-
ever, we only employed the well-known Grad-CAM method, which could be com-
plemented with additional interpretability methods (e.g., LIME and its variations
[101]) to better understand the attribute effects on the latent space. Additionally,
the reliability of attention maps still requires further investigation to assess its ro-
bustness and reliability with respect to data input and model parameter perturba-
tions [234]. In parallel, enhanced 3D visualizations of the generated samples are
needed to have an overall perspective of the cardiac differences, beyond 2D slice
views of the resulting images.

The proposed Attri-VAE model also achieved excellent classification performance
(healthy vs. myocardial infarction), outperforming the other VAE-based ap-
proaches, with slightly better results when trained with radiomics. When eval-
uated in the EMIDEC training dataset with ground-truth labels, the Attri-VAE
approach provided accuracy results (0.98) equivalent to the best challenge partici-
pants reporting their performance on the same dataset (1.0 [235], 0.95 [236], 0.94
[237] and 0.90 [238]). For the testing EMIDEC dataset [239], the best participant
method obtained a decreased accuracy (0.82, [235, 240]), increasing to 0.92 for the
challenge organizers [236]. As for the ACDC dataset, which was tested as an ex-
ternal database (i.e., without considering it in training), classification accuracy was
substantially reduced (0.59), being worst than results reported by challenge partic-
ipants [92] (0.96) to classify between the different pathologies (not only between
healthy and myocardial infarction). Therefore, further work is required to improve
the generalization of the Attri-VAE model to unseen data, being more robust to
different quality and imaging acquisition protocols, through domain adaptation
techniques, using databases such as the M&Ms challenge [241].

One limitation of the Attri-VAE approach, also acknowledged by Pati and Lerch
[111], is the dependence on the selection of the data attributes to train the model.
An incorrect attribute selection could lead to undesired strong correlations of sev-
eral attributes that will not ensure a monotonic relationship with the corresponding
regularized dimension, leading to less attribute interpretation and reconstruction
quality. However, the projection of original samples in latent spaces with regu-
larized dimensions for different attributes (see Figure 4.7) could be used as an in-
terpretable attribute selection, identifying the ones better separating the analyzed
classes such as the maximum 2D diameter of the myocardium and the LV vol-
ume attributes in our experiments. Further work will focus on fully integrating
advanced feature selection techniques with the Attri-VAE model, as well as ex-
ploring alternative interpretability methods (see the recent review of Salahuddin
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et al. [242]) to better understand the role of clinical and imaging attributes on
medical decisions in cardiovascular applications.

4.7. Conclusion

We have presented a novel approach, referred to as Attri-VAE, which implements
attribute-based regularization in a β -VAE scheme with a classification module for
the purpose of attribute-specific interpretation, synthetic data generation and clas-
sification of cardiovascular images. The basis of the proposed Attri-VAE model
is to structure its latent space for encoding individual data attributes to specific
latent dimensions, being guided by an attribute regularization loss term. The re-
sulting constrained latent space can be easily manipulated along its regularized
dimensions for an enhanced interpretation of different attributes. Additionally, the
proposed approach improves the current state-of-the-art for classifying cardiovas-
cular images and allows the visualization of the most discriminative attributes by
projecting the trained latent space. Future work will be focused on improving the
generalization of the trained Attri-VAE models to images with different acquisition
characteristics.

4.8. Availability of data and materials

This research was conducted using the publicly available EMIDEC and ACDC
datasets. These datasets can be accessed in http://emidec.com/dataset
and https://www.creatis.insa-lyon.fr/Challenge/acdc/. We
have also made our code publicly available and can be found in https://
github.com/iremcetin/Attri-VAE

81

http://emidec.com/dataset
https://www.creatis.insa-lyon.fr/Challenge/acdc/
https://github.com/iremcetin/Attri-VAE
https://github.com/iremcetin/Attri-VAE




CHAPTER

5

General discussion and conclusions

Cardiovascular magnetic resonance imaging (CMR) is the reference gold standard
for analyzing cardiac structure and function and is used widely in research and
clinical practice. The current understanding of cardiac alterations due to different
clinical conditions has relied mainly on visual inspection of CMR images to iden-
tify global and local abnormalities; this is both labor-intensive and observer-de-
pendent [123–125, 127]. Existing functional parameters such as ejection fraction
(EF) and ventricle volumes are overly simplistic and mainly insensitive to sub-
tle and complex modifications that affect the myocardium at the earliest disease
stages [152]. Machine learning (ML) approaches have gained tremendous success
in addressing these challenges in cardiovascular research tasks. It is mainly due to
their excellent capability at feature selection and at learning highly-complex func-
tions modeling a specific task under study [33–35, 88, 150]. Yet, ML approaches
infrequently result in image features/biomarkers that a clinical expert can readily
understand, and explaining why a model has made a specific prediction is often
tricky. This poses the need for the development of novel methodologies that can
successfully employ learning-based strategies while, at the same time, being ex-
plainable.

Therefore, this thesis has delved deeply into developing ML models to identify
changes at both morphological and tissue levels in CMR, while also focusing on
developing explainable learning strategies to identify the most relevant and inter-
pretable biomarkers for clinical decisions. In chapter 2, a radiomics model was
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developed and applied to different cardiovascular pathologies. Chapter 3 presents
one of the largest CMR radiomics studies for image phenotyping of important car-
diovascular risk factors. In chapter 4, a DL-based algorithm based on attribute
regularization was developed, which is able to provide explanations of imaging
biomarkers, and we also explored the association with radiomics descriptors.

In Chapter 2, the development of a machine learning-based radiomics approach,
aiming at deeper imaging phenotyping of cardiovascular alterations and diagno-
sis of complex cardiovascular diseases was presented. The results suggest that
radiomics are capable to encode alterations in the anatomy and tissues of the af-
fected cardiac structures. The results from CVD reveal the importance of how
shape-based and intensity-based features complement each other, and their com-
binations enhance the prediction power of the proposed model, particularly for
the cases situated close to the boundary between two diseases. The results from
hypertensive patients indicate the main alterations are in the cardiac textures and
tissues, which explains the inability of conventional clinical images. Functional
parameters of the heart focus on structural and functional quantification to identify
these alterations. This work showed the great potential of using radiomics analysis
in cardiac imaging and opened a way to apply this method to the study of other
risk factors.

Chapter 3 presents the most extensive application of CMR radiomics analysis to
discover new discriminatory signatures associated with important cardiovascular
risk factors such as diabetes, hypertension, cholesterol, and smoking status, by
using a large annotated CMR dataset from the UK Biobank. The results reveal
that radiomics features lead to improved quantification of cardiac structures and
tissue alterations due to the effects of underlying risk factors over conventional
indices. Additionally, it has also been shown that the standard clinical indices
do not capture the statistical differences between healthy and at-risk cohorts, with
very few exceptions. In contrast, the proposed radiomics models outperformed the
conventional indices according to the statistical tests employed during the study.

The explainability of different imaging biomarkers was studied in Chapter 4.
An attribute-based regularization in the latent space of the proposed DL-based
network was developed for an enhanced interpretation of clinical and imaging
biomarkers obtained from multi-modal sources. Furthermore, a gradient-based
attention calculation was also incorporated to explain the attributes encoded in the
proposed model’s latent space. The experimental results obtained from several
quantitative and qualitative experiments suggest that the proposed approach gen-
erates disentangled and interpretable latent space representations, that can be used
to develop explanations by manipulating interpretable data attributes while also
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classifying various clinical conditions.

Limitations and future work

This work, however, faces several challenges which can open up avenues.

As for the pipelines implemented in chapter 2 and chapter 3, alternative approaches
may merit exploration, such as testing the effects of different feature selection
methods, for example, LASSO [171], a combination of filter and wrapper methods
[172], or applying extensive hyperparameter sensitivity analysis for each cardio-
vascular cohort. Exploring the effects of different varieties of ML-based classifiers
and combinations of different feature selection algorithms for each cardiovascular
subgroup under the study is also needed, as Parmar et al. studied [139] this for
the analysis of head-and-neck cancer patients. Additionally, as cross-validation
was performed for feature selection in the proposed radiomics pipelines to iden-
tify the most relevant features (Chapter 2 and Chapter 3), other strategies can also
be studied, including prior clustering of redundant features or using a concordance
correlation coefficient [173, 174].

As the performance of the machine learning approaches is highly influenced by
the selection of data to train the network, it is also vital to identify an accurate
dataset with minimal missing values. In chapter 3, for example, data collection
was conducted through a questionnaire and a face-to-face nurse interview. Thus,
there are some concerns about the accuracy and objectivity of the self-reported
conditions. For this reason, studies with more sophisticated statistical methods
to better account for confounding factors and the inclusion of external validation
cohorts are needed to produce and validate disease-specific generalizable models.

The approach proposed in Chapter 4 is able to create realistic synthetic data by
sampling the designed latent space and interpolating between different recon-
structed inputs. This characteristic can be extremely beneficial for attribute-based
controllable data augmentation in ML-based medical imaging applications. At-
tribute scanning generated synthetic images changing the values of the correspond-
ing attributes as can be observed in Chapter 4, for example, with shape descriptors
(e.g., volumes of left ventricle and myocardium). However, some attributes such
as age, gender, and smoking status did not create a visually noticeable difference
in the images. One of the reasons for this, as suggested by [111], is that the formu-
lation of attribute-regularization loss is not suitable for binary attributes. The other
reason is that the studied binary attributes are clinical and primarily associated
with variations in shape and image (e.g., aging results in morphological changes
in the heart). For these reasons, our future work will include better understanding
of the latent space so that clinical information can be disentangled from other at-
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tributes. Moreover, further research will be needed to assess the potential of the
approach by combining different attributes to visualize their joint effect.

Hyperparameter selection in Chapter 4 demonstrated the importance of finding
optimal configurations for the proposed Attri-VAE. Although Attri-VAE has more
constrained latent space, it provided an excellent trade-off between interpretability
and reconstruction. The most critical parameter that made the significant change
was the weight of attribute-regularization loss. The Attri-VAE plot of reconstruc-
tion fidelity vs. interpretability, as shown in Chapter 4 had the same pattern as the
one obtained by [111]. However, their optimal values are slightly lower than ours.
One potential reason is that the higher complexity of the employed CMR data re-
sults in a more complex latent space than the MNIST dataset. For this reason,
future work will include studying the effects of different datasets on the optimal
parameter selection.

The attention map generation identified the local cardiac regions most affected by
changes in attributes. This approach was beneficial for global shape descriptors
and some texture features. However, we only employed the well-known Grad-
CAM approach [189]. For this reason, further work is needed in this direction by
complementing attention map generation with additional interpretability methods,
such as local interpretable model-agnostic explanation (LIME) and its variations
[101] to better understand the impact of different attributes on the latent space. Ad-
ditionally, the reliability of attention maps still requires further research to evaluate
its robustness concerning other datasets and model parameter perturbations [234].
Additionally, the results in Chapter 4 presented in 2D, and yet, enhanced 3D vi-
sualizations are needed to have an overall idea of the cardiac differences. Further
work will include 3D visualizations of the changes in different attribute.

The proposed Attri-VAE showed good classification performance where it outper-
formed the baseline models. It demonstrated similar performance to the best chal-
lenge participants on the same training dataset (1.0 [235], 0.95 [236], 0.94 [237]
and 0.90 [238]). However, we observed worse results with the ACDC dataset,
which was used as an external testing dataset ( 0.96 [92] vs. 0.59). Therefore,
future work is needed to improve the generalization and the robustness of the pro-
posed Attri-VAE on different datasets with different imaging protocols.

The selection of attributes plays a vital role on the performance of the network
proposed in Chapter 4. Strongly correlated features result in a latent space that
does not have a monotonic relation with the corresponding regularized dimension,
leading to poor control and reconstruction quality. Future work should consider
selecting appropriate attributes to encode into latent space. Finally, the predic-
tion property of the proposed network indicates that the trained latent space could
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constitute an interesting tool for feature selection by simply projecting different
attributes as encoded in the latent space. However, the projection of data examples
in latent space with regularized dimensions for different attributes could be used
as an interpretable feature selection, identifying the ones better separating differ-
ent clinical conditions. Our further work will continue to fully integrate advanced
feature selection techniques using the Attri-VAE model, and other alternative in-
terpretability approaches to assess the effect of different attributes (e.g., clinical
and imaging attributes) on cardiovascular disease diagnosis.
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6

Appendix

6.1. Supplementary materials for chapter 3

6.1.1. Supplementary material 1

The purpose of creating this supplementary material is to demonstrate the poten-
tial and to explain the meaning of each radiomics feature used in the radiomics
pipeline in Chapter 3. In the following sections you will find the description of
radiomics features generated from the segmented region of interest (ROI) of the
image. We extracted 684 radiomics features which encode two phases: end-dias-
tolic and end-systolic information of left ventricle, right ventricle and myocardium
using 114 unique radiomics plus demographic information (height, weight) and
fractals (117 unique features total).

Shape Features

Feature name Interpretation

Volume The volume of the ROI is approximated by mul-
tiplying the number of voxels in the ROI by the
volume of a single voxel.

Surface Area Surface Area is an approximation of the ROI sur-
face based on triangulation interpretation.
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Surface Area to Volume ratio For details refer to preceding 2 features. Lower
values of this parameter indicate a sphere-like
shape of the ROI.

Sphericity A measure of the roundness of the ROI relative to
a sphere.

Compactness1 A measure of how compact the shape of the ROI
is relative to a sphere.

Compactness2 A measure of how compact the shape of the ROI
is relative to a sphere.

Spherical Disproportion The inverse of Sphericity. Measures the ratio of
the surface area of the ROI to the surface area of a
sphere with the same volume as the ROI.

Maximum 3D diameter The largest pairwise Euclidean distance between
ROI surface voxels.

Maximum 2D diameter (Slice) The largest pairwise Euclidean distance between
ROI surface voxels of specific axial slice.

Maximum 2D diameter (Column) The largest pairwise Euclidean distance between
ROI surface voxels of specific coronal slice.

Maximum 2D diameter (Row) The largest pairwise Euclidean distance between
ROI surface voxels of specific sagittal slice.

Major Axis A feature derived from the principal component
analysis proportional to the square root of length
of the largest principal component axes

Minor Axis A feature derived from the principal component
analysis proportional to the square root of length
of the second largest principal component axes.

Least Axis A feature derived from the principal component
analysis proportional to the square root of length
of the second largest principal component axes.

Elongation A feature derived from the principal component
analysis proportional to the ratio of lengths of the
second largest and the largest principal component
axes.

Flatness A feature derived from the principal component
analysis proportional to the ratio of lengths of the
smallest and the largest principal component axes.
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First Order Features

Energy Energy is a measure of the magnitude of voxel val-
ues in an image.

Total Energy Total Energy is the value of Energy feature scaled
by the volume of the voxel in cubic mm.

Entropy Entropy specifies the uncertainty or randomness in
the image values. It measures the average amount
of information required to encode the image val-
ues.

Minimum Minimum intensity value present in the ROI.

10th percentile Value below which 10% of the intensities may be
found in the histogram of the ROI.

90th percentile Value below which 90% of the intensities may be
found in the histogram of the ROI.

Maximum Maximum grey level intensity found in the ROI.

Mean Mean gray level intensity found in the ROI.

Median Median grey level intensity found in the ROI.

Interquartile Range The difference between the 25th and 75th per-
centile of ROI.

Range A difference between the maximum and minimum
gray tone present in the ROI.

Mean Absolute Deviation MAD is the mean distance of all intensity values
from the Mean Value present in the ROI.

Robust Mean Absolute Deviation Robust MAD is a modification of MAD which
takes into account only ROI intensities present in
between 10th and 90th percentile which helps to
avoid noise impact.

Root Mean Squared RMS is the square-root of the mean of all the in-
tensity values squared. Characterizes the magni-
tude of the image gray tone.

Standard Deviation Measures the amount of variation from the mean
intensity value.

Skewness Skewness measures the asymmetry of the distri-
bution of values around the Mean value
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Kurtosis Kurtosis measures the ‘peakedness’ of the values
distribution in the image ROI.

Variance Variance is the the mean of the squared distances
of each intensity value from the Mean value.

Uniformity Uniformity is a measure of the sum of the squares
of each intensity value. This is a measure of the
heterogeneity of the ROI.

Texture Features

Gray level co-occurence matrix (GLCM)

Autocorrelation Autocorrelation detects repetitive patterns present
in the ROI. Intends to measure the magnitude of
the fineness and coarseness of texture .

Joint Average Returns the mean gray level intensity of the i dis-
tribution.

Cluster Prominence Cluster Prominence is a measure of the skewness
and asymmetry of the GLCM.

Cluster Shade Cluster Shade is a measure of the skewness and
uniformity of the GLCM.

Cluster Tendency Cluster Tendency is a measure of groupings of
voxels within the ROI with similar gray-level val-
ues.

Contrast Contrast is a measure of the local intensity vari-
ation, favoring values away from the diagonal of
the GLCM.

Correlation Correlation is a value between 0 (uncorrelated)
and 1 (perfectly correlated) showing the linear de-
pendency of gray level values to their respective
voxels in the GLCM.

Difference Average Difference Average measures the relationship be-
tween occurrences of pairs with similar intensity
values and occurrences of pairs with differing in-
tensity values in GLCM.

Difference Entropy Difference Entropy is a measure of the random-
ness/variability in neighborhood intensity value
differences.
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Difference Variance Difference Variance is a measure of heterogeneity
that places higher weights on differing intensity
level pairs that deviate more from the mean.

Dissimilarity Mathematically equal to Difference Average

Joint Energy Energy is a measure of how homogeneous are the
patterns in the ROI.

Joint Entropy Joint entropy is a measure of the randomness/vari-
ability in neighborhood intensity values.

Correlation1 Alternative definition of Correlation based on ra-
tio of entropy dependencies to the maximum en-
tropy.

Correlation2 Alternative definition of Correlation based on en-
tropy dependencies. Uses square root of entropies
difference instead of the max.

Inverse Difference Moment (IDM) IDM is a measure of the local homogeneity of an
image.

Inverse Difference Moment Nor-
malized (IDMN)

Normalization of IDM. IDMN normalizes the
square of the difference between neighboring in-
tensity values by dividing over the square of the
total number of discrete intensity values.

Inverse Difference (ID) ID is another measure of the local homogeneity of
an image.

Inverse Difference Normalized
(IDN)

IDN normalizes the difference between the neigh-
boring intensity values by dividing over the total
number of discrete intensity values.

Inverse Variance Inverse of the variance. Sums up the elements
of the GLCM matrix while decreasing the values
which lay further from the diagonal proportional
to the distance.

Maximum Probability Maximum Probability is the occurrence of the
most predominant pair of neighboring intensity
values.

Sum Average Sum Average measures the relationship between
occurrences of pairs with lower intensity values
and occurrences of pairs with higher intensity val-
ues.
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Sum Entropy Sum Entropy is a sum of neighborhood intensity
value differences.

Sum of Squares Sum of Squares is a measure in the distribution of
neighboring intensity level pairs about the mean
intensity level in the GLCM.

Homogeneity1 An alternative measure of the local homogeneity
of an image.

Homogeneity2 An alternative measure of the local homogeneity
of an image.

Gray level size zone matrix (GLSZM)

Small area emphasis (SAE) SAE measures how many small regions with the
same intensity value(fine texture) are present in
the ROI opposed to big regions with same inten-
sity value(homogeneous texture).

Large Area emphasis(LAE) LAE measures how many big regions with same
intensity value(homogeneous texture) are present
in the ROI opposed to the small regions with the
same intensity value(fine texture).

Gray Level Non-Uniformity (GLN) GLN measures the variability of gray-level inten-
sity values in the image, with a lower value indi-
cating more homogeneity in intensity values and
higher value indicating the presence of fine tex-
ture texture.

Gray Level Non-Uniformity Nor-
malized (GLNN)

Normalized version of GLN which takes into ac-
count the number of zones with the same intensity
present within the ROI.

Size-Zone Non-Uniformity (SZN) SZN measures the variability of the size zone vol-
umes(regions with the same intensity) in the im-
age, with a lower value indicating that ROI has
even size zones volumes.

Size-Zone Non-Uniformity Nor-
malized (SZNN)

Normalized SZN which takes into account the
number of zones with the same intensity present
within the ROI.

Zone Percentage (ZP) ZP measures the coarseness of the texture by tak-
ing the ratio of number of zones with the same
intensity and number of voxels in the ROI.
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Gray Level Variance (GLV) GLV measures the variance in gray level intensi-
ties for the zones (regions with same intensity).

Zone Variance (ZV) ZV measures the variance in zone(region with the
same intensity) size .

Zone Entropy (ZE) ZE measures the uncertainty/randomness in the
distribution of zone sizes and gray levels.

Low Gray Level Zone Emphasis
(LGLZE)

LGLZE measures the distribution of lower gray-
level size zones, with a higher value indicating a
greater proportion of lower gray-level values and
size zones in the image.

High Gray Level Zone Emphasis
(HGLZE)

HGLZE measures the distribution of the higher
gray-level values, with a higher value indicating
a greater proportion of both higher gray-level val-
ues and size zones in the image.

Small area low gray level emphasis
(SALGLE)

SALGLE measures the proportion in the image of
the joint distribution of smaller size zones with
lower gray-level values.

Small area high gray level emphasis
(SAHGLE)

SAHGLE measures the proportion in the image
of the joint distribution of smaller size zones with
higher gray-level values.

Large area low gray level emphasis
(LALGLE)

LALGLE measures the proportion in the image
of the joint distribution of larger size zones with
lower gray-level values.

Large area high gray level emphasis
(LAHGLE)

LAHGLE measures the proportion in the image
of the joint distribution of larger size zones with
higher gray-level values.

Gray level run length matrix (GLRLM)

Short run emphasis (SRE) SRE is a measure of the distribution of short run
lengths, with a greater value indicative of shorter
run lengths and more fine textural textures.

Long run emphasis (LRE) LRE is a measure of the distribution of long run
lengths, with a greater value indicative of longer
run lengths and more coarse structural textures.
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Gray level non-uniformity (GLN) GLN measures the similarity of gray-level inten-
sity values in the image, where a lower GLN value
correlates with a greater similarity in intensity val-
ues.

Gray level non-uniformity normal-
ized (GLNN)

GLNN measures the similarity of gray-level in-
tensity values in the image, where a lower GLNN
value correlates with a greater similarity in inten-
sity values. This is the normalized version of the
GLN formula.

Run length non-uniformity (RLN) RLN measures the similarity of run lengths
throughout the image, with a lower value indicat-
ing more homogeneity among run lengths in the
image.

Run length non-uniformity normal-
ized (RLNN)

RLNN measures the similarity of run lengths
throughout the image, with a lower value indicat-
ing more homogeneity among run lengths in the
image. This is the normalized version of the RLN
formula.

Run percentage (RP) RP measures the coarseness of the texture by tak-
ing the ratio of number of runs and number of vox-
els in the ROI.

Gray level variance (GLV) GLV measures the variance in gray level intensity
for the runs.

Run variance (RV) RV is a measure of the variance in runs for the run
lengths.

Run entropy (RE) RE measures the uncertainty/randomness in the
distribution of run lengths and gray levels. A
higher value indicates more heterogeneity in the
texture patterns.

Low gray level run emphasis
(LGLRE)

LGLRE measures the distribution of low gray-
level values, with a higher value indicating a
greater concentration of low gray-level values in
the image.

High gray level run emphasis
(HGLRE)

HGLRE measures the distribution of the higher
gray-level values, with a higher value indicating
a greater concentration of high gray-level values
in the image.
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Short run low gray level emphasis
(SRLGLE)

SRLGLE measures the joint distribution of shorter
run lengths with lower gray-level values.

Short run high gray level emphasis
(SRHGLE)

SRHGLE measures the joint distribution of
shorter run lengths with higher gray-level values.

Long run low gray level emphasis
(LRLGLE)

LRLGLE measures the joint distribution of long
run lengths with higher gray-level values.

Long run high gray level emphasis
(LRHGLE)

LRHGLE measures the proportion in the image
of the joint distribution of larger size zones with
higher gray-level values.

Neigbouring Gray Tone Difference Matrix (NGTDM)

Coarseness Coarseness is a measure of average difference be-
tween the center voxel and its neighbourhood and
is an indication of the spatial rate of change. A
higher value indicates a lower spatial change rate
and a locally more uniform texture.

Contrast Contrast is a measure of the spatial intensity
change, but is also dependent on the overall gray
level dynamic range. Contrast is high when both
the dynamic range and the spatial change rate are
high, i.e. an image with a large range of gray lev-
els, with large changes between voxels and their
neighborhood.

Busyness A measure of the change from a pixel to its neigh-
bor. A high value for busyness indicates a busy
image, with rapid changes of intensity between
pixels and its neighborhood.

Complexity An image is considered complex when there are
many primitive components in the image, i.e. the
image is non-uniform and there are many rapid
changes in gray level intensity.

Strength Strength is a measure of the primitives in an im-
age. Its value is high when the primitives are eas-
ily defined and visible, i.e. an image with slow
change in intensity but more large coarse differ-
ences in gray level intensities.

Gray level dependence matrix (GLDM)
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Small dependence emphasis (SDE) Measures how many small dependencies are
present in ROI. Greater values represents smaller
dependence and less homogeneous texture

Large dependence emphasis (LDE) Measures how many large dependencies are
present in ROI. Greater value indicates larger de-
pendence and more homogeneous texture.

Gray level non-uniformity (GLN) Measures the similarity of gray-level intensity val-
ues in the image. Higher value indicates smaller
similarity whereas lower value indicates higher
similarity in gray level intensity values.

Gray level non-uniformity normal-
ized (GLNN)

GLNN measures the similarity of gray-level in-
tensity values in the image, where a lower GLNN
value correlates with a greater similarity in inten-
sity values. This is the normalized version of the
GLN formula.

Dependence non-uniformity (DN) Measures the similarity of dependence throughout
the image, with a lower value indicating more ho-
mogeneity among dependencies in the image.

Dependence non-uniformity nor-
malized (DNN)

Measures the similarity of dependence in the im-
age, with a lower value indicating more homo-
geneity among dependencies in the image. This
is the normalized version of the DLN formula.

Gray level variance (GLV) Measures the variance in grey level in the image.

Dependence variance (DV) Measures the variance in gray level dependence
size in the image.

Dependence entropy (DE) DE measures the randomness in the gray level de-
pendencies and gray levels.

Dependence percentage (DP) DP is the ratio between voxels with a dependence
zone and the total number of voxels in the image.

Low gray level emphasis (LGLE) Measures the distribution of low gray-level values,
with a higher value indicating a greater concentra-
tion of low gray-level values in the image.

High gray level emphasis (HGLE) Measures the distribution of the higher gray-level
values, with a higher value indicating a greater
concentration of high gray-level values in the im-
age.
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Small dependence low gray level
emphasis (SDLGLE)

Measures the joint distribution of small depen-
dence with lower gray-level values.

Small dependence high gray level
emphasis (SDHGLE)

Measures the joint distribution of small depen-
dence with higher gray-level values.

Large Dependence Low Gray Level
Emphasis (LDLGLE)

Measures the joint distribution of large depen-
dence with lower gray-level values.

Large Dependence High Gray
Level Emphasis (LDHGLE)

Measures the joint distribution of large depen-
dence with higher gray-level values.

6.1.2. Supplementary material 2
This supplementary material explains the strategy to select the best model.

Radiomics feature selection and model building

After radiomics feature extraction, the next step consisted of identifying the combination
of features that best discriminate the no-risk vs. at-risk subgroups for all risk factors. In
this case, the selected radiomics features would encode alterations due to the risk factors
under investigation. For this purpose, ML techniques (support vector machines, SVM;
random forests, RF; logistic regression, LR) were implemented in combination with a
feature selection algorithm.

Implementation of the SFFS and the ML techniques was based on the mlxtend (version
0.17.0) and scikit-learn (version 0.20.3) python-based libraries, respectively. An optimiza-
tion process was performed by tuning the hyper-parameters of the ML techniques to find
the optimal approach for the discrimination tasks. In total 33 combinations of ML methods
and hyper-parameter values were tested:

SVM (15 configurations): linear vs radial-basis function (RBF) kernel, gamma pa-
rameter of the RBF kernel (values of 0.1, 1 and 10) and regularization parameter
(C, with values 0.1, 1 and 10);

Classifier S F T W ACC AUC

SVM 1 2 4 1 0.763 0.770

LR 5 3 3 0 0.782 0.803

RF 2 2 5 1 0.761 0.791

Table 6.2: Selected radiomics features and prediction performance for the optimal ma-
chine learning technique configurations. SVM: Support vector machines, LR: logistic
regression, RF: random forests, S: shape, F: first-order, T: texture, W: size, ACC: accu-
racy, AUC: area under the curve
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LR (6 configurations): l1 (liblinear library [243]) vs l2 (lbfgs library [244]) penalty
regularization and regularization parameter (C, with values 0.1, 1 and 10);

RF (12 configurations): number of trees/estimators in the forest (nest with values
of 10 and 100), maximum number of features in the best split (maxfeat = none, i.e.
taking all features; maxfeat = sqrt, i.e. taking the square root of the number of fea-
tures; maxfeat = log2, i.e. taking log2 of the number of features) and split quality
criterion (gini impurity vs entropy). The selected radiomics features resulted from
the SFFS algorithm and ML techniques were combined to create the radiomics sig-
nature that best encode the changes in CMR induced by the different cardiovascular
risk factors.

Hyperparameter optimization on a subset of the data

To illustrate the process of hyperparameter optimization, we compared variants of the three
studied ML techniques (SVM, RF, LR) on the subset of the data composed of diabetes
vs. healthy controls (on 243x2 cases), generating a total of 33 different combinations of
methods and hyper-parameter values.

The best discriminative performances for each ML technique were of 0.763 (SVM), 0.782
(LR) and 0.761 (RF), as can be seen in Table 6.2. These results were obtained with dif-
ferent amount (8, 11 and 10 features, respectively) and distribution of radiomics features.
Notably, the best prediction performance in this data subset was provided by the LR tech-
nique, which selected 5 shape, 3 first-order and 3 texture based radiomic features.

Table 6.3 shows the results of two phases of the Cochran’s Q statistical tests, aiming at first
identifying the best hyper-parameter combinations within each ML technique separately
and secondly comparing the different ML techniques among them. In a first step, statisti-
cally significant differences were found for the different combinations of the LR and RF
techniques but the null hypothesis was accepted for SVM.

Subsequently, 9 classifiers were implemented with different ML techniques and hyperpa-
rameters for the next test; 2 SVM (C1, C2), 2 LR (C3, C4) and 5 RF (C5, C6, C7, C8,
C9) classifiers. A statistical test was performed on all the classifiers and a p-value less
than 0.5 was obtained, showing that there was a statistical difference among them. Af-
terwards a Bonferroni corrected post-hoc test was employed, with the new p-value equal
to 0.0014, to perform pairwise comparisons. As a result of this test, statistical significant
differences were found when comparing five different ML techniques (C1, C2, C3, C4 and
C9), as illustrated in Table 6.3. After considering the overall prediction performances of
these selected classifiers and the pairwise comparison results in Table 6.3, the optimal LR
classifier, i.e. C4, was selected as the best method overall.
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CLF
Cochran’s Q test results Post-hoc

Q p-value Result BC Selected classifiers

SVM 11.97 p=0.6 H0 accepted -

Best AUC:

C1: SVM (RBF, gamma = 0.1, C = 10)

Best ACC :

C2: SVM (linear, C = 1)

LR 19.37 p<0.05 H0 rejected 0.03

C3: LR (l1, C = 0.1)

Best AUC and ACC:

C4: LR (l1, C = 10)

RF 45.09 p<0.05 H0 rejected 0.0008

C5: RF (nest = 100, maxfeat = sqrt, gini)

(best AUC and ACC)

C6: RF (nest = 100, maxfeat = log2, gini)

C7: RF (nest = 100, maxfeat= none, gini)

C8: RF (nest = 100, maxfeat = none, entropy)

C9: RF (nest = 10, maxfeat = none, entropy)

Second test

38.32 p<0.05 H0 rejected 0.0015 C1, C2, C3,C4 and C9

Identified pairwise comparisons

1. C1 vs C9: C1 is better (with 39:85 ratio)

2. C2 vs C9: C2 is better (with 46:93 ratio)

3. C3 vs C4: C4 is better (with 29:65 ratio)

4. C4 vs C9: C4 is better (with 44:100 ratio)

Table 6.3: Results of the Cochran’s Q test and Bonferroni corrected McNemar post-hoc
analysis. The results of the pair-wise tests show the misclassified ratios of the respective
machine learning techniques. SVM: support vector machines, LR: logistic regression, RF:
random forest, C (in SVM): regularization parameter, RBF: radial basis functions kernel,
nest: number of estimators in RF, maxfeat: maximum number of features, AUC: area
under the curve, ACC: accuracy, CLF: Classifier, BC: Bonferroni corrected p-value.
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6.2. Supplementary material for Chapter 4
This supplementary material provides the architectural details of the proposed Attri-VAE
(explained in Chapter 4).

The input is compressed into a 250-dimensional embedding through a 5-layer convolu-
tional encoder. The prediction network (MLP linear stack) is constructed with a shallow
3-layer linear stack. The 3D convolutional decoder consists of 3 convolutional and 4
transposed convolutional layers. The proposed architecture can be seen in Figure 6.1. The
details of configurations of the network are provided in Table 6.4.

Model Architectural Details

Encoder

(5-layer convolutional network)

Conv3D( input = 1, output = 8, ks = 3, s = 2, pad = 1) + BN + ReLU

Conv3D( input = 8, output = 16, ks = 3, s = 2, pad = 1) + BN + ReLU

Conv3D( input = 16, output = 32, ks = 3, s = 2, pad = 1) + BN + ReLU

Conv3D( input = 32, output = 64, ks = 3, s = 1, pad = 1) + BN + ReLU

Conv3D( input = 64, output = 2, ks = 3, s = 2, pad = 1) + BN + ReLU

Encoder linear stack

fc1: Linear( input = 250, output = 128) + ReLU + Dropout(d = 0.25)

fc2: Linear( input = 128, output = 96) + ReLU

fc3: Linear( input = 96, output = 64) (x2 in parallel)

Bottleneck Z (latent dimension = 64)

MLP linear stack

fc5: Linear(input = 64, output = 32) + BN + ReLU

fc6: Linear(input = 32, output = 16) + BN + ReLU

fc7: Linear(input = 16, output = 1)

Decoder linear stack fc8: Linear(input = 64, output = 250) + ReLU

Decoder

(7-layer convolutional network)

Conv3D( input = 2, output = 64, ks = 3, s = 1, pad = 1) + BN + ReLU

Trconv3D( input = 64, output = 32, ks = 3, s = 2, pad = 1) + BN + ReLU

Trconv3D( input = 32, output = 16, ks = 3, s = 2, pad = 1) + BN + ReLU

Trconv3D( input = 16, output = 8, ks = 3, s = 2, pad = 1) + BN + ReLU

Trconv3D( input = 8, output = 4, ks = 3, s = 1, pad = 1) + BN + ReLU

Conv3D( input = 4, output = 2, ks = 3, s = 1, pad = 1) + BN + ReLU

Conv3D( input = 2, output = 1, ks = 3, s = 1, pad = 1)

Table 6.4: Configurations of the proposed approach as visualized in Figure 6.1. Conv3D:
3-dimensional convolutional layer, Trconv3D: 3-dimensional transposed convolutional
layer, input: input channels, output: output channels, ks: kernel size, s: stride, pad:
padding, BN: batch normalization, d: dropout probability, ReLU: Rectified linear unit.
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Figure 6.1: Architectural details of the proposed Attri-VAE. Conv: convolutional layer,
Trconv : transposed convolutional layer, BN: batch normalization, fc: fully connected
layer, ReLU: Rectified linear unit. Details of the configurations were provided in Table
6.4.

6.3. Additional radiomics experiments
This section explains additional experiments that were conducted during the thesis work.
Section 6.3.1 briefly demonstrates the radiomics analysis to study in-depth the changes
due to atrial fibrillation. Section 6.3.2, on the other hand, shows the results of a radiomics
analysis in abdominal aortic aneurysm.

6.3.1. Identifying alterations in the cardiac ventricles in atrial
fibrillation: a radiomics approach

Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia, increasing the risk of
stroke, heart failure, and other cardiovascular diseases. Furthermore, remodeling of the
cardiac ventricles may occur due to AF. However, the exact nature of these changes re-
mains unclear. Conventional imaging studies using imaging indices of cardiac structure
and function might not be able to identify the subtle and complex changes that occur in
the ventricular muscles due to AF.

This section is adapted from: Cetin I., Petersen S.E., Camara, O., Gonzalez Ballester M.A.,
Lekadir K., Identifying alterations in the cardiac ventricles in atrial fibrillation: a radiomics approach
CARS, 82-90 (2019).
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In this work, we propose a radiomics approach to study in-depth the changes that occur in
AF, integrating a comprehensive set of size, shape, intensity and texture radiomic descrip-
tors in the analysis. The method combines then feature selection and machine learning to
discriminate AF subgroups as compared to healthy individuals.

The obtained results demonstrate that the proposed radiomics model is capable of detect-
ing intensity and textural changes well beyond the capabilities of conventional imaging
phenotypes, indicating its potential for improved understanding of the longitudinal effects
of atrial fibrillation on cardiovascular health and disease.

Methods

In this work cardiovascular magnetic resonance imaging (CMR) images from the first
5065 UK Biobank participants were assessed. The CMR parameters are: scanner = 1.5
Tesla Siemens, in-plane resolution = 1.8 x 1.8, slice thickness = 8.0 , slice gap = 2. Man-
ual annotation of the images was undertaken by our clinical collaborator, resulting in a
segmentation of left ventricle (LV), right ventricle (RV) and myocardium (MYO).

To develop and validate the proposed method, 60 AF patients were identified from UK
Biobank. Furthermore, to develop a multi-classifier approach with 10 different classifiers,
600 normal subjects were added to our sample. Each classifier (AF vs. healthy) is built
by analyzing a large pool of diverse radiomics features such that relevant ventricular al-
terations due to AF can be captured. Concretely, we calculated a total of 686 radiomic
features using pyRadiomics library [62], describing a range of shape, intensity and textu-
ral characteristics of the cardiac substructures and tissues. A radiomic feature selection is
thus necessary to select only those features that specifically deviate from normality in the
presence of AF.

For each classifier, we implemented a sequential forward feature selection (SFFS) to iden-
tify the most relevant radiomic features as those that best discriminate AF and healthy
hearts in a classification setting. Support vector machines (SVM) was chosen as the un-
derlying classification model. The ventricular radiomic features that have similar or over-
lapping distributions between AF and healthy classes are ignored, while those that con-
tribute to the SVM classification of AF and normal hearts are included within the final set
of optimal radiomic features. This process was employed 10 times to obtain 10 different
classifiers from 45 AF cases and 450 normal cases (by varying randomly the reference
set of normal cases). The remaining 15 AF patients and 150 normal cases were used for
testing. Note that for each test, majority voting was used to fuse the individual predictions
from each of the 10 base classifiers.

Results

Table 6.5 lists the list of most common radiomic features within the 10 trained classifiers.
The proposed approach achieved a classification accuracy of 0.83, indicating the relevance
of radiomics features for describing AF-specific changes in the ventricles. In Table 6.5, the
frequently identified features are shape-, intensity- and texture-based radiomics features,
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Name Frame Structure Type

Maximum ES LV Intensity

Maximum ED RV Intensity

Large area emphasis ES RV Texture

Kurtosis ED RV Intensity

Surface area to volume ratio ED MYO Shape

Strength ED RV Texture

Low gray level zone emphasis ED MYO Texture

Least axis ED LV Shape

Energy ES LV Intensity

Least axis ED LV Shape

Table 6.5: List of the most frequently identified radiomics features in 10 classifiers, for
healthy/AF classification. ED: End-diastole. ES: End-systole.

suggesting that AF induced changes concern shape and also the tissues of the ventricles.
Note that the selected radiomics cover all three ventricular substructures (LV, MYO and
RV). This indicates that the changes are multi-form and that these radiomics features form
a multi-variate signature to describe AF related remodeling in the ventricles.

Finally, to compare the obtained results, conventional imaging indices of cardiovascular
structure and function (e.g ejection fraction (EF), stroke volume, LV and RV volumes,
volume of left atrium (LA)) were tested as an alternative to the radiomics using the same
machine learning approach. The most common indices are: stroke volume of RV and
LV, maximum volume of LA in 2- and 4-chamber views, LV ejection fraction, volume
of LV at ED and ES. They result in a classification accuracy of 0.73 (versus 0.83 for the
radiomics model), which suggests that the radiomics carry additional information on the
tissue changes that take place in AF individuals.

Conclusion

This work shows the promise of cardiac radiomics for analyzing changes in the ventricles
caused by AF. Future work includes the clinical interpretation and applicability of the
results.

6.3.2. 3D radiomics analysis to predict patient evolution after
endovascular aneurysm repair

An abdominal aortic aneurysm (AAA) is a dilation of the aorta which, if not treated, tends
to grow and rupture with a high risk of mortality [245]. In the last decade, the treatment of
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AAA has shifted from open surgery to a minimally invasive technique known as Endovas-
cular Aneurysm Repair (EVAR). In EVAR, a stent is deployed inside the aorta to isolate
the damaged aneurysm wall from the blood flow. After a successful EVAR intervention,
the excluded aneurysm is thrombosed and reabsorbed. However, in a large percentage
of patients the aneurysm continues growing after the intervention due to EVAR-specific
complications known as endoleaks [246]. These endoleaks refer to a persistent blood flow
entering into the excluded aneurysm, which increases the risk of rupture and may lead to
a re-intervention.

There are different types of endoleaks depending on its source, among which the following
are considered in the current work:

Type I: there is a gap between the stent and the aneurysm wall at the sealing zones,
which requires urgent attention due to a high risk of aneurysm rupture.

Type II: there is a retrograde flow inside the aneurysm coming from side branches;
it is the most common type, considered to have a good prognosis, but are sometimes
unpredictable.

Type V-Endotension: it is the least understood endoleak, referring to the case where
the aneurysm grows but there is no visible leak in the image.

Thus, patients treated with EVAR undergo lifelong surveillance, based on yearly Com-
puted Tomography Angiography (CTA) scans, to detect possible complications and evalu-
ate the risk of aneurysm rupture. Currently, the clinical procedure to evaluate the progress
and prognosis of an AAA postoperatively consists in a qualitative evaluation of the CTA
images to detect endoleaks and the measurement of the 2D maximum diameter in manu-
ally selected CTA slices. Hereby, our goal is to study the feasibility of using radiomics to
assist the clinician during this evaluation.

Radiomics methods refer to the estimation and mining of a large number of advanced
imaging features that describe shape, size, intensity and textural properties of anatomical
structures and tissues. While they have gained great popularity in oncology to predict
tumor progression and treatment response [247, 248], their use in other clinical domains
such as cardiology is only recent [162, 249].

In this study, we combine 3D radiomics and machine learning for analyzing the first two
postoperative CTA volumes of 12 patients with the aim to predict their evolution during
follow-up. In contrast to previous works analyzing postoperative data [250, 251], our
method performs the analysis in 3D, combining shape, texture and histogram features and
taking into consideration all the information within the thrombus without the need to select
certain slices that could influence the outcome of the algorithm. Furthermore, analyzing
always the first two postoperative scans increases the complexity since in some cases the
leak is still not visible in the image. Our hypothesis is that a multi-scale quantification
of complex, as well as subtle changes in morphology, function or appearance within the
AAA may provide new clinically-useful information for predicting unfavorable evolution
after EVAR and identify at-risk individuals.
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Figure 6.2: Sample slices of the two postoperative CTA series of the patients with unfa-
vorable evolution, where the arrows point to the endoleak when it is visible.

Materials and Methods

Dataset description

Our experiments are run on postoperative CTA datasets of 12 different patients treated
with EVAR in Donostia University Hospital (Spain). For each patient, we employ the first
two follow-up scans, since our goal is to predict their evolution shortly after the interven-
tion. The datasets have been obtained with scanners of different manufacturers and have
a spatial resolution ranging from 0.725 mm to 0.977 mm in x and y, and 0.625 mm-1 mm
in z. They also have varying contrast agent doses.

Six patients in our database have a favorable evolution, i.e. the aneurysm shrank. The
other 6 patients present complications: two of them have a type I endoleak; another two
a type II endoleak; and another two are endotension cases. Only in some cases is the
endoleak visible in the image, as shown in Fig 6.2.

Aneurysm segmentation

Radiomic features are extracted from the delineated 3D aneurysm region. The segmen-
tation of the AAA is obtained with the algorithm described in [182], which combines a
convolutional neural network and a k-means based post-processing approach to isolate the
thrombus in postoperative CTA images. The resultant segmentations are further refined by
an expert vascular surgeon with an in-house semi-automatic software to include all image
information that could be relevant to characterize the aneurysm.

Radiomic features

In this work, an extensive pool of imaging features are estimated to characterize a range of
geometric, functional and appearance properties of the aneurysms that may predict favor-
able vs. unfavorable patient evolution after EVAR intervention. A total of 104 radiomic
features are calculated, which include:

Shape features, such as sphericity, elongation and diameters.
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First-order statistics, such as intensity variance and skewness, which may identify
asymmetries in the intensity distribution.

Well-established textural features extracted with different methods, such as the
Gray Level Co-occurrence Matrix (GLCM) or the Gray Level Run Length Matrix
(GLRLM).

Advanced textural features, such as those computed from the Neighboring Gray
Tone Difference Matrix (NGTDM), to identify more localized contrast changes.

Other descriptors, such as the Fractal Dimension, to characterize the complexity of
the AAA appearance.

Note that all these radiomic features are estimated in 3D to obtain an anatomically mean-
ingful analysis of the aneurysm, while existing 2D approaches may lead to information
loss.

Classification method

The next step is to combine the heterogeneous radiomic features within a classification
scheme that will learn to discriminate patients according to their evolution. We employ
the support vector machines (SVM) classifier due to its well-known performance when
classifying image data, in particular with small sample sizes. An SVM model finds a
hyperplane in the feature space that induces the largest distance to the nearest training data
point of any class (so-called functional margin). This ensures that samples belonging to
different classes are separated as clearly as possible. New cases are then mapped onto that
hyperspace and classified based on their location with respect to the decision boundary.

Feature selection

Due to the large number of extracted radiomic features and the limited number of sam-
ples used for training, the classification can easily suffer from overfitting. Thus, it is of
paramount importance that we select a smaller and optimized subset of radiomics for the
classification task. This is achieved using the sequential forward feature selection (SFFS)
method [148, 252], through which features are added to the final subset one at a time
until the classification becomes negatively impacted when adding a new feature. Due to
their heterogeneity, all radiomic features are normalized to a mean of zero and standard
deviation of one to eliminate a potential bias.

Experiments and results

In this work, two different experiments are conducted:

Experiment 1: The radiomics features are analyzed from the first and the second
follow-up CTA scans separately

Experiment 2: The radiomics features are combined from both postoperative CTA
scans
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Leave-one-out (LOO) tests are carried out to evaluate the proposed method and the accu-
racy is measured as the number of correct classifications divided by the test sample size.

Radiomics analysis of the two CTA scans separately

Using only the first postoperative CTA scan, the proposed method yields a classification
accuracy of 0.92, corresponding to one misclassification. As shown in Fig. 6.3, the pre-
dictive power of the 104 radiomics features in this case varies greatly, which indicates the
importance optimal feature selection. Table 6.6 lists the classification results obtained by
including into the SVM classifier all the radiomic features for each radiomic type sepa-
rately (shape, first-order, texture), showing that the texture features provide more predic-
tive evidence than shape and first order features. Table 6.6 also shows the classification
accuracy by using the best feature from each type, with the best accuracy achieved by
using the gray level variance as the classification variable.

Finally, Fig. 6.4 plots the classification accuracy as a function of the number of radiomic
features sequentially added to the SVM classification. It can be seen that no improve-
ment is achieved when adding new features to the classifier or when combining features
of different types due to model overfitting. Note that by using the first CTA scan for
radiomics-based classification of AAA, the only misclassification corresponds to patient 4
with a Type II endoleak. This is an expected result since type II endoleaks usually have a
good prognosis and they can dissappear, although they are considered unpredictable [253].

Subsequently, we tested the classification performance by using the second postoperative
CTA scan instead of the first one. In this case, the best classification accuracy is reduced
to 0.83, as shown in Table 6.7. In this case, two cases are misclassified, i.e. patient 3 and
patient 4. Patient 3 present a very subtle endoleak, which can probably lead the model to
misclassifying it.

Type Accuracy using all features Best Feature Accuracy of the Best Feature

Shape 0.58 Maximum 2D diameter 0.83

Histogram/ First-order 0.5 Entropy 0.83

Texture 0.66 Gray level variance (GLCM) 0.92

Table 6.6: Accuracies using 3 types of radiomic features separately for the first CTA
series.

Type Accuracy using all features Best Feature Accuracy of the Best Feature

Shape 0.33 Minor axis 0.75

Histogram/ First-order 0.66 Mean 0.75

Texture 0.75 Large dependence emphasis (GLDM) 0.83

Table 6.7: Accuracies using 3 types of radiomic features separately for the second CTA
series.

Radiomics analysis of the first and second CTA scans simultaneously
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Figure 6.3: Classification accuracy by using each radiomic feature estimated from the
first CTA scan.

Figure 6.4: Classification accuracy as a function of the number of radiomic features
added to the classification model.

In this experiment, all tests are performed by enabling the proposed technique to combine
radiomic features from both postoperative scans. However, the obtained classification
accuracy is the same as when using only the first CTA scan, i.e. 0.92. Subsequently, we
also build a classification model based on features computed as the difference between the
radiomics values of the first and second CTA scans. Again, the achieved accuracy remains
0.92. This result suggests that a single CTA scan taken just after the EVAR intervention
is sufficient to predict the longer term evolution of a patient. In all these experiments, the
misclassified case remains being patient 4 with a type II endoleak.
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Figure 6.5: Comparative distribution of the radiomic values for the favorable and unfavor-
able patient groups for selected radiomic features: left image illustrates a radiomic feature
with a good predictive power (gray level variance from scan 1), right image illustrates a
shape feature that induces overlap between the two subgroups (major axis from scan 2).

Type Accuracy using all features Best Feature(s) Accuracy of the Best Feature(s)

Shape 0.16 Surface to volume ratio 0.75

Histogram/ First-order 0.66 Entropy 0.83

Texture 0.83
Inverse difference moment normalized (GLCM)

0.92
Correlation (GLCM)

Table 6.8: Accuracies using 3 types of radiomic features separately computed from the
differences between the radiomics values of the first and the second CTA scans.

Experiment Selected Features Feature Type Accuracy

Only first CTA series Gray level variance (GLCM) Texture 0.92

Only second CTA series Large dependence emphasis (GLDM) Texture 0.83

First and second CTA series Gray level variance (GLCM) Texture 0.92

Difference between the CTA series
Inverse difference moment normalized (GLCM) Texture

0.92
Surface area to volume ratio Shape

Table 6.9: Summary of classification results of EVAR patients using different radiomics
strategies

Conclusions

This work presents several experiments testing the feasibility of a 3D radiomics for pre-
dicting patient evolution after EVAR from postoperative CTA scans. The results, summa-
rized in Table 6.9, show that texture features describing alterations in the 3D aneurysm’s
appearance are best suited for predicting patient evolution, as they provide information
on the presence and type of endoleak. Furthermore, radiomics from the first CTA scans
appear to be sufficient identify patients at risk, since a classification accuracy of 0.92 is
obtained. However, further research in a larger clinical dataset is required to confirm and
further interpret these results, which will be the subject of our future work.
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