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HQET Heavy quark effective theory

NRQCD Non relativistic QCD
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IR Infrared
UV Ultraviolet
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LO Leading order
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Abstract

Perturbative series in QCD are expected to be divergent asymptotic expansions, and therefore, there is an
intrincic fuzzyness to the information that can be extracted from them. Consequently, many summation schemes
can be defined to assign them a reasonable finite number, each with its advantages and disadvantages. This
discussion is particularly relevant when one considers OPEs, where non-perturbative corrections are considered on
top of a perturbative expansion. These non-perturbative corrections will intimately depend on how the divergent
perturbative expansion is regulated.

In this dissertation, one summation scheme to regulate divergent series is explored: Borel summation with the
PV prescription. Two different avenues to estimate the Borel sum from truncated versions of the perturbative
expansions are presented. These methods are then applied to obtain the gluon condensate from the OPE of the
plaquette, and the HQET power correction A, both from the lattice and B physics. We also obtain a value for the
QCD strong coupling «(M,) from lattice data of the singlet static quark-antiquark energy making use of PV Borel

sums.






Contents

[1 Divergent series, asymptotic expansions and Borel summation| 1
[LT Introductionl. . . . . . . . . . e 1
[1.2  Asymptotic eXpansions|. . . . . . .« . .t e e e e e e e e e e e e e e e e e e 2
L3 Borelsummationl . . . . . . . . o o 4
I1.4  Directional Borel sums, the discontinuity function and the principal value Borel sum| . . . . . . . .. 8
[L1.5  The large order behavior of perturbation theory|. . . . . . . . ... .. .. oL oL 9
I1.6  Superasymptotics| . . . . . . . L L e 12

[2Renormalons| 17
2.1 A first glimpse on renormalons| . . . . . .. .. 18
2.2 'The u plane and the t plane| . . . . . . . . . . . . . 19
2.3 'The Borel transtorm ot the QCD singlet static potential in the large 5y approximation| . . . . . . . . 20
2.4 The Borel transtorm of the pole mass in the large Sy approximation| . . . . ... .. ... ... ... 22
2.5 The operator product expansion| . . . . . . . . . . . .0 e e e e 23
2.6 The OPE and renormalonsl . . . . . . . . . . o 25
2.7 Fixing the condensates from the OPE| . . . . . ... . 0o o oo 29

[3 Approximating the PV Borel sum: Method 1] 31
8.1 Dingle’s terminants|. . . . . . . .. Lo 31
3.2 xamples| . .o e 33

13.2.1 The Stieltjes function| . . . . . . . . . . 33
3.2.2 A branch cut singularity in the Borel plane] . . . . . ... .. ... o oo 34
[3.2.3  The double Stieltjes tunction| . . . . . . . . . .. Lo 34
3.3 Beyond the leading terminant| . . . . . . . . ... 35
3.4 The hyperasymptotic expansion|. . . . . . . . . . . . . 36
13.4.1 The double Stieltjes tunction revisited| . . . . . . . . . . . ... oL 38
8.5 Terminants in QCD| . . . . . . . . 40
3.6 The QCD singlet static potential in the large §y approximation| . . . . . . . . .. .. ... ... ... 43
3.7 The pole mass in the large Sy approximation| . . . . . . . .. ... .. oo 50

vii



[4  Approximating the PV Borel sum: Method 2| 57
M1 _Themethodl . . . . . . . .. 58
[4.1.1 Beyond one loop running in Eq. (4.19)] . . . . . . . . ..o o 62

4.2 The QCD singlet static potential in the large 5y approximation| . . . . . . . .. ... ... ... ... 62
21 Alternative methodl . . . . . .. ... .. .. 64

4.3 'The pole mass in the large fy approximation| . . . . . . ... ... ... ... L oL L. 67
4.4 Qualitative comparison with Method 1| . . . . . . . . .. . o oo 68

[F Hyperasymptotics of the average plaquette and the gluon condensate] 71
5.1 Gauge fields in the lattice, the plaquette and the Wilson action| . . . . . . . . ... ... ... .... 71
9.2 'The average plaquette and the gluon condensate| . . . . . . . . ... ... ... ... ... ... . 73
5.3 The hyperasymptotic expansion of the average plaquette|. . . . . . . . . . . ... .. ... ... ... 76
D4 Frror sourcesl . . . ... 78
BS _TReHEH . . . o ot 82
[5.5.1  Order (0, Np(4))| - - - o o o o o 82

[5.5.2  Order (4,0)] . . . . . . . . 83

[5.5.3  Order (4, N")| . . . o o o 85

5.6 Some plots on the asymptotics of the series of the average plaquette] . . . . . . . . ... .. ... .. 85
b7 Final remarks| . . . . ..o 85

[6 Hyperasymptotics of the heavy quark pole mass and A 91
(6.1 Apy(n; = 3) from B physics in the MS scheme] . . . . .. ... ... ... 91
6.1.1  Comparison with other works| . . . . . . . . . . .. . 94

6111 TheRSmass. . ... ... 94

6112 TheBRmassl. .. ... ... 95
6.1.1.3 The MRS massl. . . ... .. . 96

[6.11.4 Determinantions of Al . . . . ... ... 97

[6.2 Apy(ng =0) from the lattice scheme| . . . . . . . ... L 97
6.2.1 The Polyakov loop and om| . . . . . . . . . . ... 98

6.2.2  Hyperasymptotics of ompy| . . . . . . . . L 98

16.2.3  Fits of Apv| . . . . . . 99

6.3 'The PV Borel sum of the top quark polemass| . . . .. ... . ... ... ... . ........... 103
6.3.1 About the pole mass ambiguity| . . . . . . . ... oL 103
6.3.2  Decoupling and running| . . . . . . . ... 104
[6.3.3 |d| =2renormalons?| . . . . ... 110

viii



[7 Hyperasymptotics of the static quark antiquark energy and o (M. )| 113

[r.1 Introductionl. . . . . . . o L e 113
7.2 The singlet static energy and the multipole expansion| . . . . . . ... ... .. ... ... ... ... 114
[7.3  The singlet static potentiall . . . . . . . . . L 115
7.3.1  Resumming ultrasoft logarithms in the static potential|. . . . . . ... .. ... ... ... .. 116

[7.4  The ultrasoft energyl . . . . . . . . . . L e e e e 118
[7.4.1 Expanding AV and Vg inofvyg| . . . . . 0 0 oo oo 119

(7.5 Cancellation of vys In E(7)| . . . o o 0 119
7.6 The singlet static energy revisited|. . . . . . . . . . .. e 120
(7.7 Getting rid of the w = 1/2 renormalon| . . . . . . . . . .. ... .. L L L 120
[7.8 Taking an 7 derivative in E(7)| . . . . . . .. 121
[7.9  Hyperasymptotics and F| . . . . . . . . oL e 123
[7.10 The normalization of the v = 3/2 renormalon| . . . . . . . . ... .. ... ... L L. 124
[(.11 The lattice datal. . . . . . . . . oL o e 126
[7.12 The expressions that go on the fits| . . . . . . . . . . . . .. . . . 127
[(13 Central value results] . . . . . . . o o o o 128
[7.13.1 Dependence on vg| . . . .. ... ... .. 132
[7.13.2 Dependence on vyg| . . . . . . . oL 134
[7.13.3 Dependence on Z3'| . . . . . ... 135
[7.13.4 Other estimates of higher order contributions| . . . . . . . . . ... .. ... ... ....... 135
[7.13.5 Dependence on rpeel . . . - . . . Lo e 136
[(.14 Final numbersl. . . . . . . . L e e 136
[7.15 Comparison with fixed order computations| . . . . . . . . .. . .. . Lo o 137
[7.16 What if v, = constant?|. . . . . . . . . . . . 138
|7.17 A nonperturbative %5Eus| .......................................... 139
[7.18 Comparison with earlier work| . . . . . . . . . . . .. L 140
(19 Final remarks| . . . . . . oL e 141
[Conclusions] 143
[A The large 5y approximation| 145
149

149

150

153

[C The computation of Af) 157
IC1 ThelR casel . . . . . . . o o e e 157
[CII Analternative methodl . . . . . . . . . . o L o 159

[C2 The UV casel . . . . . . . 0 e e 159

ix



[D Further contributions from the Borel plane in Method 2| 161

ID.1  Subleading contributions from the leading IR renormalon| . . . . . . . ... ... .. ... ...... 161
[D.2 The analytic part of R(E)| . . . . . . . o o 162
D3 UV renormalond . . . . . . . . .. 162
ID.4 Subleading IR renormalons| . . . . .. .o L 163

|[E The computation of v 165
IE.1 Thed=1,A=1and N =Ngcasel. . . .. ... . . .. 165
[E.1.1  The log Ng term| . . . . . . . . o e e e 166

[E.1.2° Wick rotating =| . . . . . .. 167

[E.1.2.1 Thepath C| . . . . . . o o e 168

[E.1.2.2 Thepath Cs| . . . . . . . . . 168

[E.1.2.3 The path Cg| . . . . . . . . e 168

[E.1.2.4 Thepath C7| . . . . . . o o e 168

[E.125 Fimalresultfor =l . . .. .. .00 o 169

IE.1.3 Wick rotating @ . . . . . . . . e e 169

IE.1.3.1 Thepath Cy| . . . . . . . . o e 169

[E.1.3.2 Thepath Cl. . . . . . . oo 169

IE.1.3.3 Thepath Cs| . . . . . . . . . 169

134 Fialresultfor & . . . .. ..o o 170

1.4 Finalresult]l . . . . . o o o o 170

[E2 Thed=1, A=1—-ca(l/r)and N =Npcase . ... ... ... ... .. 170
IE.2.1  Wick rotationl. . . . . . . o L 171

[E2.1.1 Thepath C . . . . . . o e 172

[E.2.1.2 Thepath Crl . . . . . . o o e 172

[E.2.1.3 The path Cs| . . . . . . . . o e 172

[E2.1.4 Thepath C7| . . . . . o o e 173

IB.2.1.5 Final result for Y| . . . . . . . . o o 173

[E.2.2 The r ~ 0 asymptotics| . . . . . . . . . . e 173

[ The pole mass of a quark] 177
[F.1  The bottom quark pole mass| . . . . . . .. .. . 177
|[F.2  Massive bottom and charm effects in the top quark pole mass| . . . . . . . ... ... ... ... ... 178
[G_pNRQCD] 181
|H The r derivative of the singlet static energy with 1, = = and v, = xuscAg—T(l’S) 183
Bibliography] 185



Chapter 1

Divergent series, asymptotic expansions
and Borel summation

1.1 Introduction

Divergent series are the invention of the devil,
and it is shameful to base on them any
demonstration whatsoever.

Niels Henrik Abel

As Abel’s quote suggests, divergent series have a history of suspicion surrounding them. When one first learns
about infinite series, it is customary to spend a fair amount of time on convergence criteria and on computing
convergence radii. It is then not without irony, how many of the most useful expansions that one encounters
happen to be divergent, a fact that is very often not pointed out. Stirling’s approximation to the factorial features
a classical example. The well-known n! =~ (27n)/2(n/e)" formula is nothing but the LO of the Stirling series

n 1 1 139 571
| = (27n) /2 (@) 1+ — _ _ Y 1.1
nt= (2mn) t 190 T 98302 T B1840n® 24883201t (1.1)

As illustrated in for a fixed value of n the expansion above will keep converging to the true value as
we add more terms in the series, up until a point where it will start to diverge{ﬂ This behavior of converging at
first, only to end up diverging, is the hallmark of the so called asymptotic expansions, of which the Stirling series is
but an example. We will see that asymptotic expansions give information about the behavior of a function when a
variable tends to a certain value, but regardless of this, are not required to ultimately converge. Nonetheless, they
remain useful in practice since by truncating them before they blow up, we can extract valuable information.

This discussion is particularly relevant for quantum field theories. The lack of analytic tools to deal with
them in the non-peturbative regime has given perturbation theory an importance that cannot be overstated. Quite
interestingly, and perhaps at first surprisingly, perturbative expansions in field theory are expectecﬂ to be divergent.
The first person to appreciate that in QED perturbative expansions were very likely to be divergent was Freeman
Dyson [I]. An account of this story by Dyson himself can be found here https://www.youtube.com/watch?v=
g2x1.212z093g.

In spite of all this, the fact that perturbative expansions in field theory have been so successful in accounting

for experimental data clearly suggests that they are far from being useless expansions that add up to infinity.

1The order in 1/n where the series starts to diverge depends on the value of n, for higher n more terms in the series can be kept.
2We use the word expected because there is no rigorous proof of this fact for non-trivial theories such as QCD.


https://www.youtube.com/watch?v=g2xLZlz093g
https://www.youtube.com/watch?v=g2xLZlz093g
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Figure 1.1: Left panel Eq. (1.1)) with n = 3. Right panel Eq. (1.1)) with n = 4. The horizontal axis displays
the last order in 1/n kept inside braces in Eq. (1.1]). In both cases, we see that at high orders the series begins to
diverge.

Therefore, it is expected that, just like the Stirling series, these expansions are at least asymptotic expansions.
Asymptotic expansions will play a very prominent role in this thesis, which is why we will precisely define this term

in the next section.

1.2 Asymptotic expansions

Theﬂ intuitive idea behind asymptotic expansions goes along these lines. Let us have a function f defined in some
subset D of the complex plane that includes a point ag. Let f be analytic in D. Expanding this function in a

Taylor expansion around ag

X (o —ag)"+ Ry(a). (1.2)

a=aop

N mn
f) =3 =y
n=0

n! da™

The error function Ry («) satisfies that it goes to zero for a fixed N as a — ag. It also satisfies that Ry («) goes
to zero as N — oo for values of « inside the convergence radius of the series above. If on the other hand, we had
an asymptotic expansion of a function f, the error function would still go to zero for fixed N as a — «q, but this
need not be the case for fired o as N — oo. Therefore, asymptotic expansions can yield accurate predictions if
truncated, but in general are not guaranteed to converge.

We will now rigorously define them. In order to properly be able to do that, we first need to introduce a few
building blocks. As a starter, we need to define the so called little-oh notation. Let f(a) and g(«) be two complex
valued functions defined in some subset D of the complex plane, whose closure contains a point «g (that is «q is a

limit point of D). Then
fla) =o(g(a)), (1.3)
as a — g from D, if for any € > 0 there is a § > 0 such that

[f(@)] < elg(a)l, (1.4)

for o in D satisfying 0 < | — ap| < ¢. That is, we can always find a region around g which is contained in D,

such that f is smaller in absolute value than any multiple of g. For instance, let n and m be integers satisfying

3This section is mainly based on [2].



n > m, then " = o(a™) as & — 0. We can also state an analogous definition at infinity. Let f(a) and g(«) be

two complex valued functions defined in an unbounded subset D of the complex plane. Then

fla) = o(g(a)) , (1.5)

as o — oo from D, if for any € > 0 there is a M > 0 such that

|f(@)] < elg(a)l, (1.6)

for a in D satisfying || > M. That is, we can always find a region in D with points « that are sufficiently far from
the origin so that f is smaller in absolute value than any multiple of g. For instance, let m,n be integers satisfying
n > m, then o™ = o(a™) for a — oco.

Closely related to the little-oh notation, we have the big-oh notation. Whereas in the former case we demanded
|f(a)| < elg(a)| for any e > 0, for the big-oh we will just require for there to be some € > 0 with an associated
d > 0. We write this as

fla) =0(g(a)) , (1.7)
as o — ag from D. An analogous definition can be given at infinity.

We now need to define asymptotic sequences. Let {¢, ()}, be a sequence of complex functions defined on
some subset D of the complex plane whose closure contains a point cg. This sequence is called an asymptotic

sequence as « — g from D if whenever n > m, we have that

¢n(a) =0 ((bm(a)) ) (18)

as a — ag from D. That is, loosely speaking, we see that the functions on the sequence get smaller and smaller the
further we go on the sequence. With obvious modifications, we can also define an analogous version when oo — oo.
In perturbative QCD, we will mainly be concerned with the asymptotic sequence {a"}22, as o — 0.

We are now in a position to state the definition of an asymptotic expansion. Let {¢,(a)}22, be an asymptotic
sequence as « — g from some D. Let f(a) be a complex function defined on D. Let {a,}32, be a sequence of

complex numbers. Let

N
(@) =" andn(a) = 0 (6n(a)) . (1.9)
n=0
or equivalently
N
fl@) = andn(@) = O (dn11()) (1.10)
n=0

as o — ag from D for each integer N > 0. Then, the formal series

> andala), (1.11)

n=0

is said to be an asymptotic expansion of f as o — «q from D. This is typically denoted as
(oo}
fl@)~ > andn(a). (1.12)
n=0

With obvious changes, an analogous version at infinity can be given. The term formal series has been used to
denote Eq. (1.11]) because the series displayed there in general need not be convergent. We will in the following
section say a few more things about formal series. There are some important facts about asymptotic expansions

that are useful to keep in mind:



a) A function f(a) can have several asymptotic expansions with respect to different asymptotic sequences. In
practice though, we will not care about this much since, as we have already mentioned, in perturbative QCD

we will mainly be concerned with the asymptotic sequence {a™}52 .
b) If a function has an asymptotic expansion to a given asymptotic sequence, then this expansion is unique.
¢) Two different functions can both have the same asymptotic expansion.

This last one is easy to illustrate. Let us have some function f defined around the origin with the asymptotic

expansion
fla)~> ana™. (1.13)
n=0
Then, we will also have
(o]
fla)+e V*~ Y anan, (1.14)
n=0

-1/

that is, the new non-analytic term e is not seen by a small o expansion. There is one last interesting property

we want to highlight:

d) Let us have an asymptotic sequence {¢, ()}, as o — ag from D. Let us consider an arbitrary sequence of
complex numbers {a,}>2 . Then, there will exist at least one function f(«) defined for & € D with o #

such that -
(@) ~ 3" andna), (1.15)
n=0

that is, given an asymptotic sequence and any sequence of complex numbers, without setting any constraint
to how wildly they may grow with n, there is always a function to which the formal series above will be

asymptotic.

1.3 Borel summation

In this sectionEL we will introduce Borel summation, and we will see its connection to asymptotic expansions. Let

us consider the series that appears in the cover of this thesis

> (= (1.16)

This series oscillates indefinitely between 0 and 1, and it is clear that it does not converge to a sum in the
conventional sense of the word. Nevertheless, we could try to bypass this issue by defining a generalized sum that
may indeed assign a finite number for a conventionally divergent series. Let us call s to this would be sum

oo

s = Z(—l)n. (1.17)

n=0
Notice that in the equation above, the symbol = is meant to imply equality with respect to our generalized concept

of sum. We could ask to this generalized sum to reasonably satisfy the following propertiesﬂ

4This section draws mainly from [3} 4].

5These constraints seem reasonable for the concept of a generalized sum, and many summation methods satisfy them, but not all
summation methods satisfy them all. For more details see [4]. For instance, Borel summation (which will be our focus) satisfies the
first three but not necessarily the last.



—

CIEY Jan =s, then Y0 ka, = ks.

2. I > jap =sand > 2 b, =t, then >~ (an +b,) = s +1.
3. I Jan =8 —ag, then Y07 ja, = s.

4. I8 jan = s, then Y0 a, = s — ap.

Then, by virtue of property 1 above

Y —Ix(-1)"=—s. (1.18)
n=0
By performing a simple summation index redefinition
—s=) —Ix (=)= _(-1)". (1.19)
n=0 n=1
From property (3)
D= ()" +1=—s+1, (1.20)
n=0 n=1
but the LHS above is the original series, and therefore
s=—-s+1 = s=1/2, (1.21)

and we see that our generalized sum for the series in Eq. is s = 1/2. In this simple example, the knowledge
of some properties that we have asked s to satisfy has been enough to obtain a generalized sum for the series in
question, without actually defining the summation procedure, but for more complicated divergent series things are
not that simple. There are many summation methods for divergent series that allow us to assign a finite number to
them that satisfies some properties that are reasonable for the concept of a generalized sum, and that in addition,
reproduce the usual sum for convergent infinite series. A thorough exposition can be found in [4].

In this thesis, we will be concerned with Borel summation. We will define Borel summation on formal series,
so before defining it, we will mention a few elementary remarks on formal series, and then we will go on to define
Borel summation and its relation to asymptotic expansions. The space of all formal complex power series series in

« is denoted by

oo
Cllo]] = { Z ana”, for any ag, aq,- -+ € (C} . (1.22)
n=0
This set is a complex vector space, with addition of two formal series defined in the following way
Z ana™ + Z bpa™ = Z(an + bp)a™. (1.23)
n=0 n=0 n=0

The product of a formal series in C[[a]] with a complex number is done by multiplying each element in the series

by the complex number
k Z apa”™ = Z ka,a™ . (1.24)
n=0 n=0

It also makes sense to multiply two formal series by the so called Cauchy product

(Z ana”> . (Z bna"> = Z cpa, (1.25)
n=0 n=0 n=0



where ¢, = Y apby, which actually makes C[[a]] into an algebra. We emphasize that when doing algebra with

ptg=n
fomal series, the = symbol does not indicate numerical equality (as in general these series need not be convergent),
but rather, equality of all the coefficients of the series on the RHS and on the LHS with respect to the algebraic
rules defined above. We will typically work with formal series without a constant ternﬂ The space of all such

formal series is called aC[[a]]. Let R be a formal power series without a constant term
R= Z rpa . (1.26)
n=0

We can then define the Borel transform R of the power series in equation (1.20) as the following power series

oo

Rty=>" %t”, (1.27)

n=0

where t is a complex variable. In mathematical jargon, we would say that the Borel transform is a linear isomorphism
between aC[[a]] and C[[t]]. Some remarks on notation. In the QCD literature it is customary to denote the Borel
transform of R as B[R|(t). In most of this thesi&ﬂ we will use the more minimalistic notation found for instance
in [3], and denote the Borel transform of the formal series R simply by a hat R(t).

It can be proven that the Borel transform has an infinite radius of convergence, and defines an entire function
of bounded exponential type (that is, that there exist A, ¢ > 0 such that |R(t)| < Ael!l for all t € C) if and only if
|rn] < Ac™ (which actually notice that implies that R is convergent with a radius of convergence of 1/c). We state
this fact for completeness, as the series we will find in QCD are not expected to grow at most as ¢, but rather as

nl.

c

These formal series that grow at most factorially are called 1-Gevrey formal series. Being more precise, let
R =7 ,rna™. This series is called a 1-Gevrey formal series if there exist A,c¢ > 0, such that |r,| < Ac"nl.
It can then be prove that R has a finite radius of convergence of 1/c¢. The reverse also holds, that is, Borel
transforms with finite radius of convergence correspond to 1-Gevrey formal seriesﬂ It can be seen that the set of
all 1-Gevrey formal series makes up a vector space on its own.

In order to define the Borel sum of R, one then consider the analytic continuation Ran in some region of the
complex t plane of R. For 1-Gevrey formal series, this function is in general expected to have singularities in the ¢
plane. By an abuse of notation, it is common practice to also call the analytically continued Borel transform the
Borel transform, and to even use the same symbol R to denote it. Usually, one can unambiguously deduce from

the context to which object we are referring to, so we will also interchangeably refer to both the power series in

Eq. (1.27) and to its analytic continuation as the Borel transform.

6There is no loss of generality here since, if we indeed had a series with a constant term, we could always leave it out and consider
Borel summation in the series that begins at order a. Nevertheless, if for whatever reason we insist on working with series with a
constant term, this can be done. See for instance [3].

"There is one caveat that should be mentioned. In we will see that in the QCD literature it is common to work in the
complex u plane defined by Eq. , and thus, we will denote a slightly altered version of Eq. with B(u).

rg1/ ()t

8Just take the ratio test: limp— oo T LR

=clt| <1 = [t| < 1/e.

9 Assume the opposite, that is, assume R( H=>r"0 T" t" has a finite radius of convergence, and that there is no A, ¢ > 0 such that
[rn| < Ac™n!. Then, for any and all A,c > 0, the ﬁxed order term of the series of the Borel transform satisfies |Z¢™| > Ac™[t|™. Let
us pick a ¢ inside the radius of convergence, and let us also pick ¢ > [t|. Then, for n — oo, |72t™| > Ac™[t|"™ 1mphes that the (absolute
value of the) fixed order term of the series of the Borel transform goes to infinity, Wthh contradlcts that t lies inside the radius of
convergence.



The Borel sum of the formal series R is then defined as the Laplace transform of the analytically continued

Borel transform

Rps = / dte ™ R(t). (1.28)
0

Recall that the Laplace transform above is well defined if R is continuous in Rt and if
|R(t)] < Ae*t,  fort>1, (1.29)

for some A > 0 and w € R. Then, the Borel sum is analytic in the complex « plane in the region {a € C :
Re(l/a) > w}. Now comes the important statement: it can be seen that the original formal series R is an

asymptotic expansiorm of Rps(a) as a — 0.
(o)
Rps(a) ~ Y rpa"tt, (1.30)
n=0

This is just Watson’s lemma for the case of the Borel sum. Thus, we see that by starting off with a formal series,
we construct a function, the Borel sum, such that the original formal series is an asymptotic expansion of this
function. Borel summation [5] is a well known methoﬂ to sum divergent series. It satisfyes properties 1,2 and 3
of the beginning of this section, but not the fourth [4]. Moreover, it can be seen that if R converges, we have that
R = Rpg, a property known as regularity of the summation method [4].

A heuristic argument motivating the connection between the Borel sum and the formal series R is that if one
inserts the Borel transform written as a power expansion in ¢ as in Eq. , and commutes with impunity sum
and integral (even though we may be integrating outside the radius of convergence of the power series), the original

formal series R is recovered

/oo 0 r 0 r jo%s) e}

dte "N " —”/ dte ot = "ttt (1.31)
| | n

0 n=0 n n=0 n:Jo n=0

To illustrate the method, let’s consider again the series of the beginning of this section Eq. (|1.16))
R=> (-1)". (1.32)
n=0

The Borel transform is Clearlyﬁ (we may consider the series above as a power series with a = 1).

R(t) = i (’nl')ntn —et (1.33)
n=0 :

Therefore, the Borel sum is

> 1
Rps = / dte te ™t =2 R (134)
O 2

which is the same sum we obtained beford3}

101n this case, {a™}22  is the asymptotic sequence considered, and D is the set where the Borel sum has been said to be analytic.

H1n fact, there are two methods to sum divergent series due to Borel, the one we have just mentioned which is known as the integral
summation method, and a so-called exponential summation method. Nevertheless, it can be seen that the integral method is stronger
in the sense that both methods agree on the sum whenever a formal series is summable by the two methods, but the integral method
can sum all the functions the exponential method can and more. For more details see [4].

I2Notice that the Borel transform is entire and of bounded exponential type, but there is no contradiction with the fact that R above
is divergent. In this example R = Zfzo(—l)"a"+1 which is convergent only for @ < 1, and we are considering the o = 1 case.

13This hardly comes as a surprise, as the method of Borel summation satisfies properties 1 and 3 of the beginning of this section
which have allowed us deduce the value 1/2.



1.4 Directional Borel sums, the discontinuity function and the princi-
pal value Borel sum

In the previous sectiorﬂ we have introduced Borel sums as a summation method for divergent series. This
procedure involves an integral in the positive real line. Unfortunately, in QCD one expects to find singularities in
the integration path of Eq. [7], and one cannot perform the integral present in the Laplace transform of the
analytically continued Borel transform. To circumvent this problem, other paths of integration where the Borel
transform doesn’t have singularities are considered. This leads us to define the lateral Borel sums as

+in

e ce .
Re= [ aretoR) = o [T dee S Rt 1.35)
Ct 0

where the paths of integration C are parametrized by t = xe*™. Even if all the coefficients 7, of the original
formal series of Eq. are real, lateral Borel sums are in general complex. Actually, Ry and R_ only differ
by an imaginary part that has a different sign for each lateral Borel sum (when 1 — 0). This imaginary part that
would be absent in a Borel sum along the positive real line is what sometimes is called the ambiguity of the formal
series R. The idea is that in the presence of singularities in the integration path, we can only define the Borel
sum up to this ambiguous term, that makes the Borel sum itself ambiguous. We can isolate this imaginary part by
taking the difference of both lateral sums

disc(R) = lim { /C dte '/*R(t) — / dtet/o‘R(t)}. (1.36)

n—0+

The function disc(R) above is called the discontinuity function. This function is a non-analytic exponentially
suppressed function in a. The strength of the suppression is related to the location of the singularity of R that is

closest to the origin in the ¢ plane. For instance, if t = A where A > 0

|
2L

disc(R) =e™= x (...). (1.37)

We will see in Eq. an example of a discontinuity function for the case of a branch point singularity in the
Borel plane. The non analytic term e is reminiscent of a non-perturbative term which hints to a connection
between perturbative and non-perturbative sectors. This connection is captured in the resurgent approach to field
theory, which we will very briefly mention in

Coming back to physics for a while, let’s consider the perturbative expansion of the QCD singlet static potential,

whose Borel transform’s singularity that happens to be closest to the origin is located aﬂ B8]

27
t=—, 1.38
B (139)
where [y is the first coefficient of the perturbative expansion of the beta function. In this thesis, we follow the
convention
d B j+1
M@a(ﬂ) = B(a) = —2a(p) E T (1), (1.39)

7=0
where in particular, 5y = 11 — %nf and 8, = 102 — 33—8nf. Then, the discontinuity function is

—2m

disc(R) = ePo> x (...) =Agep x (-..), (1.40)

M This section draws mainly from [6].

15We will see this proven in the large Sy approximation in



which is what prompts the often mentioned statement that the ambiguity of the Borel sum of the static potential
is of order Aqcp.
Since both lateral Borel sums differ by an imaginary constant, we can define a real term by taking the averaged
sum of both. This is the principal value Borel sum (PV Borel sum for short)
Rey = > lim { /C dte ™V R(t) + / dt e_t/o‘f%(t)} . (1.41)
+

2 n—0+

We will also sometimes use the notation

Rpy =PV / dte '/*R(t), (1.42)
0
or
Rpy =PV Z rpa T (1.43)
n=0

This object will have a very prominent role in this thesis. We will further on see two methods to compute it from
truncated versions of Eq. , and use it for various purposes in subsequent chapters. We will see in
that by assuming some properties of Ran, the PV Borel sum of a formal series that is formally renormalization scale
and scheme indenpendent is renormalization scale and scheme independent. This is in contrast to what happens

to truncated versions of Eq. (L.26), which (when truncated at order o™ (1)) have a O(aN™! (1)) dependence in the

scale and the scheme (for more details see [Appendix B).

1.5 The large order behavior of perturbation theory

In the previous section, we have seen that in general we expect singularities in the Borel transforms of perturbative
expansions in QCD. In this section, we will see that the large order behavior of the coefficients r,, of Eq. is
intimately related to singularities in the ¢ plane of the Borel transform in Eq. .

This idea stems from an old theorem by Darboux [9] that links the large order behavior of the coefficients of the
Taylor expansion of a function that is analytic around the origin with its singularities in the complex plane. This
theorem can be applied to 1-Gevrey divergent series, once one realizes their Borel transforms do have a finite radius
of convergence, which allows us to apply the theorem to their coefficients, which are straightforwardly related to
the coefficients of the original series by a factorial [10].

Let us be more explicit. Let us consider a complex function f defined in some subset of the complex plane that
is analytic in an open ball around the origin, but that has singularities in the complex plane. The singularity that

lies closest to the origin will be called ¢;. Let the Taylor expansion around ¢ = 0 of f be
&)= ant". (1.44)
n=0

Now, let’s consider another function g that has the same singularity at ¢; in the sense that f — g is not singular at

this point. Let the Taylor expansion around ¢ = 0 of g be
g(t) => but". (1.45)
n=0

Then, it can be proven that [I1]
an = by +o(Jt;]™"). (1.46)



Thus, we see that the large n behavior of the coefficients a,, is dictated by the the coefficients b,, of the Taylor
expansion of g. We will apply this method to the Borel transform Eq. (1.27)) of the formal series Eq. (L.26]), so that
f= R. Then, one would have

'n

(1.47)

an:jv
n.

and by Eq. (1.46]), we can easily obtain the large n behavior of r,,. In this thesis, we will be concerned with Borel

transforms whose behavior around its singularities located at the points ¢; is of the form

Reng(t) = Z i /t ij —t/t;) (1.48)

for some Z,w;, s. Therefore, our choice for g will simply be

g(t) = 1_t/t Zw] —t/t;)’ (1.49)

The form b, takes for such a g is readily obtained by noticing that at ¢t = 0, we can Taylor expand

(1—-t/t;)) = Tn+s—7) 1
— = —t". 1.50
(A Ny e R (130
This immediately leads to
1 & P(n+s—j)
b, = 72— i - . 1.51
i ;“’Jr(s — )T+ 1) (1.51)

It can be easily seen that each subsequent term in the j expansion above goes like n~7, and is thus, less and less

important for large n. In order to make this explicit, we just have to factor outIE the gamma function in Eq. (1.51)

1 Tnts) X fr -k
by = Zﬁmzw I (1.52)

At long last, combining Egs. and (| with Egs. and (|1.52)

oo

1 C(n+s—j)
Z— —— 1.
" TG ) (153)

or alternatively

rnazimiwjﬁﬂ. (1.54)

Notice that the closer the singularity lies in the Borel plane, its contribution to the large n asymptotics of r,, will
be more important (as long as s doesn’t change the picture of course) due to the 1/t suppression. Nonetheless, it
must be mentioned that, even though the former statement is true as n — 0o, in some cases it is possible that the
residue Z of some singularities to be suppressed (or enhanced) for whatever reason, and that it may happen that
a singularity that lies further from the origin dominates a singularity that lies closer, for some values of n where
naivelyE you would expect this not to be the case. We will see this happening in for the pole mass in
the large [y approximation.

So far, we have computed the large order behavior of the coefficients of a formal series whose leading singularity

in the Borel plane is given by Eq. (1.48]), but no mention to physics has been done. In QCD, we will expect this

16Keep in mind that HZ( .)=1lifb<a.

17Using the arguments we will review in
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behavior in the Borel plane, so the results of Egs. (1.53)) and (1.54]) still apply, but there is an additional feature
that deserves mention. Let us consider the formal series computed using perturbative QCD of a quantity that has

zero mass dimensions (for instance, if we had the QCD static potential V' in mind, we would consider V')

R= Zrn " (), (1.55)

where we have made explicit the dependence on p, the renormalization scale. We will now prove that if the large
order asymptotics of 7, (u) for p = @, where @ is some external scale{ﬂ is given by Egs. and - then

for arbitrary p we need to perform the replacement

ZZ (g)d , (1.56)

where the singularity in the ¢ plane of the Borel transform of Eq. (1.55]) is located at ¢; = %)d. At this point, d can
be an arbitrary complex number, but in the next chapter, we will see that in fact, we will be interested in positive
and negative integer values. We will later call the constant Z the normalization of the renormalon. Let us consider

first the formal series in Eq. (1.55|), where the renormalization scale takes the value p = Q.
R= Z " Q). (1.57)

As we have said, we assume the singularity of the Borel transform of the series above to be located at t; [3 , and
to be given by Eq. (1.48). Therefore, the large order asymptotics of the coefficients of the series above is simply
given by either Eq. (1.53)) or Eq. (1.54]). Keeping this in mind, we consider the relation between «(Q) and a(u)

a(p)
a(Q) = , (1.58)
1+ a(u)g—; log (%)

where we have considered the one loop relation for simplicity. Making use of the equation above, we re-expand

Eq. in terms of a(pu)
Dl (1) =" (@)
n=0 n=0

a" )

(1 + a(u)g—fr log (%))RH

n=0m=0

(1.59)

where (Z) is a binomial coeﬂicien Changing the summation index above to j = n + m, and renaming after

7 — n, we get

im( a" Z Z T (‘” _ni + m) (fgm log™ (i) o™t (), (1.61)

n=0 n=0m=0

where we have defined 7pegative = 0. Thus, we can write

_ zn: P (Q) (" 77; + m> (2%"); log™ <§) . (1.62)

m=0

I8For example, typically Q = 1/r for the static potential.
19The binomial formula for negative exponents is defined by (7kN) = (fl)k(NjL:*l), with N > 0 and k > 0, where (Z) = ﬁib)!
for a,b > 0.
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We are interested in the large n asymptotics of the equation above. In order to obtain that, we will substitute the

large order behavior of the coefficients 7;(Q) that we already know from Eqs. (1.53]) and (1.54). Thus, we get

1 — 1 " [-n—14+m Q
@) (1) = Z— — > I'(n— - d™log™ (<) . 1.
A =253 g STt DT e (4 (163)
Noting .
'n—m+s—j)=Tn+s—j) Hn+8 ) (1.64)
=1

we can further write

as 1 n+s m —n—1+m\ 13 1

(s —
i =0 7) m=0 =1

Expanding for large n

(—n— 1 +m> 11 n+81 L (=Hm +Oo(m, (1.66)

N |
m P j—1 m!

we see that Eq. (1.65) becomes

[—dlog((j)]m

m!

1 < n+s—] -
90 = 2 S w2 s

(5=
=0 7)

+ O(nl)} . (1.67)

m=0

Thus, we see that when we consider the large n asymptotics of the expression above, the logs add up to an

exponential, so for n ~ co we write

as i1 I'n+s—7
i =2(5) L (163

The equation above is the generalization of Eq. (1.53)) for arbitrary u. We can also write Eq. (1.54)) for a general

value of p in a similar fashion

7,,1(13,5)( ):Z Jad 1F7’l+8 > J (169)
a (Q) ;) 1;[ n+s—

As it has already been mentioned, we will later be interested in singularities in the ¢ plane parametrized by positive
and negative integer values of d. The ones with positive (negative) d will be called IR (UV) renormalons. It is

worth noticing that for IR renormalons, we will have the factor

(g)'dl , (1.70)

whereas for UV renormalons, we we will instead have

<§)|dl . (1.71)

1.6 Superasymptotics
Let us consider again the formal series

R= Z rpatl (1.72)

n=0

12



and let’s assume that it is asymptotic to some function f(a) ~ > o7 rpa™t! for a — 0. It has already been stated
that for a fixed truncation point, the truncated R series will converge to the value given by f for small values of .
One may wonder which is the best truncation point, so that, for a given fixed small value of «, the error committed

is the smallest. In order to answer this, let us consider the (absolute value of the) fixed order term
[P (1.73)

where r, grows factorially in n. For a fixed small value of «, this fixed order term becomes smaller and smaller
as n gets bigger due to the power suppression in o”t'. However, eventually, no matter how small o may be, the
factorial growth in r, will overpower the power suppression, and the fixed order term will reach a minimum, and
will boundlessly grow henceforth. This behavior can be illustrated in the simple example of the series

oo

Z(—l)”n!a"'H . (1.74)

n=0

This series is an asymptotic expansion of the function aS(«a) where

o0 w 1
S(a):/o dze TF oz’ (1.75)

is the Stieltjes function. depicts the behavior of the fixed order term for this series for o = 1/10, as well
as the behavior of the truncated series for various orders of truncation. As it can be seen, the fixed order term
seems to converge around n = 10, and explodes a few orders later. The same behavior is exhibited by the truncated
asymptotic expansion. The prediction becomes stable around the orders on which the fixed order term is minimal,
and afterwards, the series diverges.

We also see in that the asymptotic series truncated at the orders on which the fixed order term is
minimal in absolute value, yields a prediction that agrees quite well with the exact value (the dot dashed blue
line in the right panel). Asymptotic expansions truncated at the minimal term are said to be superasymptotic
[12] 13} [14]. The first thing one needs to notice is that the truncation point for a superasymptotic approximation
is a blurry concept since, in general, there may be a few orders on which the minimal term is small and more or
less of the same size, and there is no absolute rule that says which is the best. This behavior is clearly seen in
where between N = 7 and N = 12 we have a plateau. Nevertheless, one can always obtain the order

at which truncating the sum yields superasymptotic accuracy by simply minimizing the absolute value of the fixed

order term in Eq. (1.73]). For the series in Eq. (1.74)), we have

d
N (=DM NNt =0, (1.76)
*
which implies
Y(Ne+1)+loga =0, (1.77)

where 9 is the digamma function. This function has the following asymptotic expansion for large values of IV,

1

N, +1) =log N, —— ... 1.78
YN A1) =log N+ 55 =~ 555 + (7)
Assuming N, is large enough, we can approximate Eq. (1.77) by

log(Ny) +loga =0, (1.79)

13
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Figure 1.2: Plots with a = 1/10. Left panel: (—1)"nla™*t! for various orders n. Right panel: S (—1)"nla"*!
for various truncation points N. The dot dashed blue line in the right panel is the exact value given by a.S(a).

which leads to
N, ==. (1.80)

For w = 1/10, we see that the superasymptotic approximation is obtained around the order N, = 10, which agrees
with what is displayed in We emphasize again that the value of NV, above is not a well defined concept,
and that we can truncate a few orders below or above that. This prompts the idea that, so to speak, the resolution
of the asymptotic expansion is of the order of this minimal term, and that we can estimate the ambiguity due to
the arbitraryness of the optimal truncation point by evaluating the fixed order term around the superasymptotic

truncation point

N

A (Z rna”+1> = |ry, o™t (1.81)
n=0

= N, !N+ (1.82)

Using the asymptotic expansion of the factorial of Eq. (1.1)), we can obtain for large enough values of N,

N
A (Z rna”H) ~ (2m)/2al 2ew | (1.83)

We obtain a non-analytic term that is reminiscent of the ambiguity of the Borel sum we have ecountered before in
Eq. . All of this seems to suggest that, no matter what we do to try to make sense of divergent asymptotic
expansions, we will always encounter a source of ambiguity that will be non analytic and reminiscent of non-
perturbative terms.

Needless to say, that the asymptotic series we have just considered is a very simple example, where we only
have a sign alternating factorial. In general, the coefficients 7, of the series we will have in QCD will by far not
be so simple. Nonetheless, assuming they are 1-Gevrey formal series, we still can say that, just as we have seen
in the previous section, their large order behavior is again factorial (or being more precise, a gamma function as
given by Egs. and ) Therefore, the qualitative behavior seen in the simple example of the asymptotic
expansion of the Stieltjes function will take place in this scenario too. That is, the series will be at first dominated
by the power suppression in a”*!, and become smaller as n gets bigger, but eventually, the I'(n + s) in 7, will
become the dominant term in r,, and will overpower the power suppression making the series diverge.

Therefore, we can use the large n behavior of the coefficients r,, to obtain an estimate of the optimal su-

perasymptotic truncation order for 1-Gevrey formal series, by repeating the same procedure as before, using the

14



leading term in Eq. (1.54) for r,, and minimizing the absolute value of the fixed order term. This yields

log ('1;) — (N, +5)=0. (1.84)

In this case, we have the following asymptotic expansion for the digamma function

—142s —1+6s—6s2

N, +5) =log N
(N, + s) =log N, + N, 1ONZ +

(1.85)

so assuming again that N, is high enough to allow us reliably take the leading term in Eq. (1.85]), we obtain from

Eq. (1.84) "
N, = 4. 1.86
(1.86)

In this thesis, we will use the relation given above between IV, and « to superasymptotically truncate perturbative
expansions. In general, it reproduces very well the order at which the fixed order term becomes minimal. Never-
theless, it should be emphasized that in order to obtain Eq. , we have assumed that at the order at which
the fixed order term is minimal, rx, to be given by its leading asymptotic expression given by Eq. . Thus,
the precission of Eq. at giving the optimal truncation point depends on how well ry, is saturated by its
asymptotic expression.

Just as we have done for the series of the Stieltjes function, estimating the ambiguity of the superasymptotic

truncation by assuming ry, to be saturated by its large N, behavior

N,
A (Z rna"H) = |ry, oMt (1.87)
n=0

zZ 1
\@WF(N* + 5)a™M T, (1.88)

Using again the LO of the Stirling series to approximate the gamma function

Itil

N.
- Z ) X s
(S ) m g m el (159
n=0

and yet again, a non analytic term in a appears.

Just as in let us again consider the case of the perturbative expansion of the QCD singlet static

potential. We have already mentioned that the leading singularity in the Borel plane is located at t = %—z Thus,

the superasymptotic approximation is obtained around the order

2w
N,=—. 1.90
" Boa (1.90)
The ambiguity in the superasymptotic approximation is
e Fos x (...) = Aqep X (...), (1.91)

just as in Eq. (1.40).
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Chapter 2

Renormalons

We have pointed out in the previous chapter that perturbative series in field theory are expected to be divergent.
This divergence of perturbative expansions is not a phenomenon that is expected to happen only in quantum field
theories, but it is more a feature that seems to follow perturbation theory wherever it goesﬂ It also happens in
quantum mechanics [I7), I8, [T9], in perturbative string theory [20], and even in more simple settings, such as field
theory in 0 dimensions, where path integrals are just ordinary integrals, and in some examples you can actually
compute the general form of the n-th order coefficient of the series, and the divergent nature of the expansion is
explicitly seen. Let us for instance consider the partition function of zero dimensional Euclidean ¢* theory defined

on just a point

1 1,2 a4

Z=——0 [ dpe 29 59, 2.1

Gy o (21)

Expanding the integrand for small o, and commuting sum and integral, we find the following asymptotic expansion
1 (—1\"T(2n+1/2)

Z ~ —_ | — | ————2%a". 2.2

nz_()wl/?(b‘) NCESTI (22)

Clearly, the factorials above will eventually beat the power suppression of a’, no matter how small « is, and the
series ultimately diverges.

We have seen in that the large order behavior of the coefficients of perturbative expansions are
related to singularities on the Borel plane. The closer the singularity, the bigger its impact on the large n behavior.
In quantum mechanics, this large order behavior is related to instanton singularities in the Borel planeﬂ and is due
to the proliferation of the number of Feynman diagrams [2I]. There are other settings beyond quantum mechanics
where the large order behavior of perturbation theory is still dominated by instantons. This seems to be the case
too for super—renormalizableﬂ field theories [25] 26}, 19 27].

In renormalizable quantum field theories there is another source of divergence that is more important than
instantonsﬁ renormalons [7]. This divergence is not related to the existence of saddles in Euclidean actions, but
rather, it is related to momenta integration regions in the computation of Feynman diagrams. We distinguish
two types of renormalons, UV and IR. UV renormalons correspond to the UV part of Feynman diagrams, and IR

renormalons correspond to the IR region of Feynman diagrams. Wording this differently, there would be no IR(UV)

1See [15} [16] for a nice exposition of the divergent high order behavior of perturbation theory on various settings.

2For a heuristic argument for the relation between instantons and the Borel plane, see [7].

3The viewpoint presented is the usual lore, nevertheless, there are recent papers claiming renormalons in a super-renormalizable
theory [22]. See also [23] [24] for renormalons in quantum mechanics.

4That is, they are closer to the origin in the Borel plane.
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renormalon singularities in the Borel plane associated to perturbative expansions in renormalizable quantum field
theories, if in the computation of the Feynman diagrams, we set an IR(UV) cutoff in the momentum integration.
In this thesis, we will be concerned with QCD, and therefore, the large order behavior of the series we will
consider will be dominated by renormalons. In the next section, we use the large 8y approximation (see
to illustrate the relation between momenta integration regions for Feynman diagrams and singularities in the Borel

plane.

2.1 A first glimpse on renormalons

We will make use of the framework of the large [y approximation in QCD to showcase how renormalons make
their appearance. We review the large 8y approximation to QCD in Let us consider an observable
R in QCD. As it is explained in detail in the perturbative expansion associated to R in the large 3y

approximation is given by Eq. (A.15))

Riarge 5o = (1) Ti /O " dq F(q){ﬁoﬁmbg <Z226—CX) }" (2.3)

In the equation above, p is the renormalization scale, and cx is related to the renormalization scheme chosen and,
for instance, in the MS scheme, we have cyis = —5/3. F will of course depend on the observable in question, and
as seen in Eq. , it is related to the LO term in the perturbative expansion of R. The equation above features
a momenta integral. We will show how the IR and the UV regions of this integral give rise to singularities in the

Borel plane. Let us first consider the Borel transform of this series

N b 1 o0 n
Rlargeﬂo(t):ZE ; qu(q){ﬂo log (Z? X)} (2.4)
n=0 "
B oo BOt ,LL2 Cex n
-/ qu(q)nz:jo { 2 tog (q26 )} (2.5)
:(u%*”‘)%/ qu(Q)%- (2.6)
0 q2w

Let’s first worry about the IR part. In order to do this, we will introduce a cutoff A in the integral

st (A
RIR (1) = (uPeox) & / dg F(q) (27)

qz2r
Also, since we are dealing with the IR behavior of the integral, we are interested in the small ¢ behavior of F', and

therefore, we can perform a small g expansion

)
F Q) = Z fnqnv (28)
n=0
and hencd]
Bot 2 A Bot
2 — anr _ 2ot
Rlargeﬂg( ) = (.u € CX) * an dq q" 2m (29)
n=0 0
2 1+n
Y g A
- ()\26 Z fnim . (2.10)
n=0 27
5 S S ks - ~ Bot . .
The equality fo dqq" " 2m = " is only true if Re(n — %) > —1 which for low values of n can look like a problem.
[

Nevertheless, notice that we can always compute the Borel transform for ¢ < 0 values, for which the relation holds. Then, by analytic
continuation, the expression obtained in Eq. (2.10) is true.
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This is the expression we wanted to obtain. We see that we have singularities in the Borel plane located at t = j X5 2n

for j = 1,2,3,4,5,.... These singularities are the IR renormalons. Since in QCD Sy > 0, we see that they are
located in the positive real line, and indeed, they pose a problem to Borel summation. Let us now come back to

Eq. (2.6]), and explore the UV region

2 _—c Bot OO 1
Rlargeﬁo( ) (M € X) o /}\ dq F(q) Bot (211)
q 2w

In this case, we will be dealing with the UV behavior of the integral, and hence, we will be interested in the large

q behavior of F. Therefore, we will perform a large g expansion

|
Fla)=Y fn—> (2.12)
n=2 q
which leads to
2 —CX /jlvrt — > 1
Rlarge ﬂo( ) Z f dq T Bot (213)
A T
2 ﬁot 1—n
:LL —CXx
== _ 2.14
(Aze ) St 214
Thus, we see that we have singularities at ¢ = —j X %—: for j = 1,2,3,4,5,.... These singularities are UV

renormalons. Since in QCD [y > 0, we find that they are located at the negative real line.

2.2 The u plane and the t plane

Before going any further, it is worthwhile to make a remark on notation. There is a trend in the literature to,

instead of working in the complex t plane, to work with the complex variable u where

_ P,
2.15
= 1t (2.15)
This is equivalent to considering formal series where the expansion parameter is i instead of «. That is, instead
of
[o ]
R=> rua", (2.16)
n=0

we consider

00 o] /8004 n+1
R=Y ra™=%p, (M) : (2.17)

n=0 n=0

and take the Borel transform with respect to the expansion parameter i"—;"
[ee]
Bu)=S " 2y, (2.18)

Notice that B(u) and R(t) are not the same objectﬂ although they are trivially related. The expression for the

Borel sum when working in the u plane is

/ due” Pon B(u) . (2.19)
0

6To avoid any potential for ambiguity, in this thesis, we will use the symbol R when we are working in the ¢ plane, and the symbol
B when we are working in the u plane. The reader is warned though, that in the literature, one may find B to denote either case.
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Making this agree with the Borel sum we have been using in the ¢t plane

/ due*%B(u)z/ dte 5 R(t), (2.20)
0 0

which implies

_47rA _47r

B(u) fER(t = %u), (2.21)
R(t) :%B(u = %t) : (2.22)

Despite both objects not being the same, we will denote them both as the Borel transform, and the context (and
the notation) will make it clear to which we are referring to. We finish this section by mentioning that in the u

plane, the IR and UV renormalons of the previous section are located at

1
Urenormalon = :l:j X 5 ; (223)

that is, at positive and negative entire and semi entire values.

2.3 The Borel transform of the QCD singlet static potential in the
large () approximation

We will later use the QCD singlet static potential in the large By approximation as a toy model, so we will review

it in this section. Let us consider its pertubative expansion
o0
V=> V"t (2.24)
n=0

The LO term is
—2CF sin(gr)

VLo = Voo = —%a = a/ dg , (2.25)
T 0 T qr

where CF is the Casimir of the fundemantal representation of SU(3). Therefore, recalling Eq. (A.11)), we have that
—2CF si
Flg) = —2Zr sinlar) (2.26)

s qr

Therefore, from Eq. (A.15), we find that the perturbative expansion of the singlet static potential in the large Sy

approximation is

—2Cpa(p) / > sin(gr) [ Boo(p) p o "
Vierge g = ———F ) d log [ £ emex . 2.27
large Bo p TLZ:;) 0 q qr A 0og q2 € ( )
Let us consider its Borel transform. From Eq. (2.6), we can write

20 < sin(gr) (m

A — F —Bot sim(qr 1% 4
Vare t) = ar X d — . 2.28
s (f) = Eete [ g S0 (1) (2:29)

Let’s now notice [2§]

B wfi * w—1_—zq/p
<q> _F(w)/o dezV e , (2.29)
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so that

o —2C —Bot o0 1 1 oo P
Vg (1) = e e [y I [ g e (2:30)
T 0 qr I‘(ﬁ) 0
—2Cp =t 1 e ¢ o i
= F o =itex i / d:vxl%_l/ dq MQ—W/M (2.31)
@ r'sx) Jo 0 qr
—2Cp =sot 1 o ¢
= e ; / dz 2% 1 arctan (@) (2.32)
o 1"(%) 0 z
—Cp =sgt ¢ 1 t
_ TR Sletex (Tﬂ)%ﬁti sec(ﬁo> , (2.33)
r resx+1) 4

and we obtain the expression for the Borel transform. Nevertheless, in the literature, it is customary to write this

function in another way. In order to do that, we recall the trigonometric identity

1
sec(z) = ———, (2.34)
s1n(§ — z)
and Euler’s reflection formula
™
I'l —2)T'(z) = 2.35
(=90 = g (235)
which allow us to write Eq. (2.33)) in the following way
B()t ﬁ()t
) Cp e D(12422)T (172 22)
Viargeso (t) = e e A X (ry) 2w F(% ey . (2.36)
Writing this Borel transform in the u plane
—4C T'(1/2 I'(1/2 —
B(u) — Fe—cxu(,ru)Zu ( / + U’) ( / u) (237)

Bor

The above expression is the expression found in the original article [8] where this Borel transform was first computed.

I'(1+ 2u)

There is another, shorter way to write it. In order to compute it, we make use of the Legendre duplication formula

I'(2u)
r(1/2 = ol 2ugl/2 7 2.38
(1/2+u) = 2t 2er 22, (239)
which leads to
—4Cpmt/? r?p? T (1/2 —u)
B(u) = ————e~ X% “ 2.39
) G ¢ T g (2:39)
or writing the Borel tranfrom in the ¢ plane
- —Cr o2\ "T(1/2 - )
P (1(0) = oo (T4 ) TR (2.40)
From the above equation, we find that this Borel transform has IR renormalons located at u = % for n =
0,1,2,..., that is, at half integer values v = 1/2,3/2,5/2,.... There are no UV renormalons. The Laurent
expansion around the leading singularity u = 1/2 of Eq. (2.40) yields
~ —2CF _, 1
Viarges, (H(u)) = p——Te™x/2—— (2.41)

s 1—2u 77

where the dots denote analytic terms. It is customary to call to the residue of the pole the normalization of the

u = 1/2 renormalon in the following way

-2C
Zi/argeﬂo - Fe—CX/Q_ (2.42)
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Writing Viargeg, = D neo Vo1, the large n behavior associated to this v = 1/2 renormalon is

o —4Cp _ Bo\" '
(as:u=1/2) __ ex/2 [ 2O | 2.4
n P75, © <27r) a (243)

It is worthwhile to point out that there is no r dependence on this renormalon. Furthermore, it is also interesting
that, as we will see in the next section, the singularity in Eq. (2.41)) coincides with the u = 1/2 singularity of the
Borel transform of minus twice the pole masss, which makes the sum V + 2mog devoid of the u = 1/2 renormalon

[29]. The Laurent expansion of the Borel transform around u = 3/2 is

- C 1
Viargeﬁo (t(u)) = T2IU/37F6_3CX/27 + sy (244)

97 1— 2

where the dots denote analytic terms. Thus, the subleading large order behavior associated to this singularity is

n+1
Wgas:u:3/2) _ T2M3 2CF 6*3CX /2 @ n!. (245)
350 67

We note that we can obtain similar formulas for all the singularities present in Eq. (2.40)).

2.4 The Borel transform of the pole mass in the large 5, approximation

After having dealt with the static potential in the large [y approximation, we will now review the pole mass, also

in the large By approximation. Let us consider M, the perturbative expansion of the pole mass mggge Fo minus the
MS mass 7 in the large 5y approximation
B oo
M=mdE —m=> rpa"tt. (2.46)
n=0
The Borel transform in the MS scheme of the series above reads [30, 31} [32]
2 _Cpl[/m*\ ™" _ FwI'(l—2u) 3
Netw) = mCE (T exsug(l — u)—m L "2 2 p 2.47
() =m | (T5) o - g - 2 re) (2.47)
where u = ;%”rt, and
=1 ar . 5 35 9
_ n-1_ _9 99 2.4
R(u) ; CE dz”G(Z) Z:Ou 3 + 24u+ O(u?), (2.48)
1 I'(4 + 2u)
G =—=(3+2 . 2.49
W) = =3B+ 2 s Pt oG T ) (249)

The formula for R(u) above is only valid in the MS scheme. The Borel transform in Eq. (2.47)) has singularities at the
positive real line located at w = 1/2,3/2,2,5/2,7/2,9/2, ..., and at the negative real line at u = —1,—2,-3,—4, ...,
and thus, as opposed to what we had with the static potential, we have UV renormalons. The Laurent expansion

around the leading singularity located at u = 1/2 is

W) = pEememsrz L

2.
i 1—2u ’ (2.50)

and we see that it is exactly —1/2 times the one we have in Eq. (2.41)), and thus, as we have already mentioned,

we see that the formal series 2m18§geﬁ ® + Viarges, has no renormalon at u = 1/2 [29].
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2.5 The operator product expansion

The operator product expansion (OPE) and its relation with renormalons will be important for this thesis, so we
will briefly review it in this section. The OPE was introduced by Wilson in [33] (see also [34]) as a conjecture for
the short distance expansion of products of local operators. At first, it was rigorously proven to hold true in the
framework of perturbation theory [35]. Afterwards, it was posited to also be valid beyond perturbation theory, and
implemented in the famous QCD sum rules [36] B7, [38] (see also [39]). Being more precise, let A(z) and B(y) be
local operators on some field theory, where with local what is meant is that they only depend on one spacetime
point. Then, the idea is that we can write their operator product when = — y as a sum over all local operators O,,

A@)By) =S CAP @ —y)Ouly)  for a~y. (2.51)

n

The CZ'B above are known as the Wilson coefficients, and due to translational symmetry, they depend only on
the difference = — y. Typically, the Wilson coefficients will be singular for x = y, and in general, they will be
distributions. Let d4, dp and dp, be the mass dimensions of the operators A, B and O,, respectively. Then, naive

dimensional arguments suggest thaﬂ
CiP(x —y) ~ (x —y)lon—dade, (2.52)

If we organize the sum in n in Eq. according to the mass dimension of the operators O,,, then Eq.
tells us that only the operators with lowest mass dimensions will be singular as z — y.

Eq. is meant to be understood as an operator equation, that is, it is valid when taken inside any two
states (U| A(z)B(y) |®), and the beauty of it is that the Wilson coefficients will remain the same regardless of (|

and |®). In this thesis, we will mainly be interested in vacuum expectation values
(QIT{A(2)B(y)} [2) = (A(z)B(y)) , (2.53)

where |?) is the full vacuum of QCD. Thus, we write

(A@)By) = Y CiP@—y){Oaly) for z~y, (2.54)

d=diowest
where we have now organized the operators in the sum according to their mass dimension, from lower to higher.
Typically, the operator with lowest mass dimension will be the identity operator 1 with d = 0. It is worth
mentioning that the vacuum expectation values (O4(y)) in Eq. cancel in perturbation theory, except for
the trivial operator, where we simply have (1) = 1. Furthermore, since we are considering vacuum expectation
values in Eq. , only gauge invariant Poincaré scalar operators Qg4 will survive. These are the first few vacuum
expectation values in the OPE (also called the condensates) that we will have in QCD, ordered according to their

mass dimension:
e for d = 0 the identity operator trivially leads to (1) =1,
e for d = 3 the quark condensate (G*g“),

e for d = 4 the gluon condensate (G%,,G7,,),

pv

"Eq. (2.52) holds for free theories, but in general, renormalization slightly alters it.
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e for d =5 the quark gluon condensate (§“0,.,t%3¢°GS,),

iz
o for d = 6 the three gluon condensate (f***Gf, GY Gg ), and the four quark condensate (7°Tapd®T5¢°),

where a, b, c are SU(3) adjoint indexes, a, 3,7, d are SU(3) fundamental representation indexes, tg,; are the genera-
tors of SU(3) in the fundamental representation with the normalization tiﬁt%a =1/2 x 6%, f are the structure

constants satisfying [t?, t*] = i f2%t¢ and

i
Opv = 5('7;/71/ =NV 5 (2.55)

where v, are the usual gamma matrices acting on spinors. We will not bother defining the I' terms in the four
quark condensate, as we will not use them. It is worth mentioning that there are no allowed operators with d = 1
ord=2.
We haven’t explicitly said it so far, but the terms in Eq. depend on a factorization scale p that separates
long and short distance effects. Making this explicit
(A@)B(y)) = > _ CiP(x —y,m)(Oaly,p)) ~ for z~y. (2.56)
d
The Wilson coefficients will contain the short distance behavior, and the condensates parametrize long distance
effects. Thus, the Wilson coefficients can be approximated using perturbation theory, whereas for the condensates,
a non-perturbative treatment is necessary. After renormalization, the condensates we have seen so far will, in
general, depend on the scale p. RG invariant versions can be defined [40} 41], [42]. For instance, for the quark and

gluon condensate, we would have

(mq®q”), (2.57)
;2<MGZVGZD> ’ (2.58)
Bo ' «

where (3 is the beta function, and m is the quark mass. We finish by writing the Fourier tranformed version of the

OPE. Without loss of generality, we can consider the y = 0 case.
(A(2)B(0) = Y CP (2, 1)(0a(0, ) for a~0. (2.59)
d
We can write a Fourier transformed version of Eq. ([2.59))

[ dtae (4@ BO) =Y (Ou0.n) [ dteeCE @ p) (2.60)

d

=3 GaCiP(@mOu0.) (2.61)
d

where @ is Euclidean momenta, and we have factorized the Q~¢ from the Wilson coefficients in momentum space.
Just as the position space version works for & ~ 0, the Fourier transformed version is expected to be true for

Q — oo.
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2.6 The OPE and renormalons

In this sectiorEl7 we will highlight the relation between renormalons and the OPE. Let us consider an OPE in

momentum space of a dimensionless observable R (we skip the tilde in the Wilson coefficients on momentum space)

> 1
=> dc (Q, 11)(0a(0, 1)) . (2.62)
d:O

The d = 0 operator will just be the identity operator, so we write

— 5 CHR(Q.10(Oua 0,1)+ 5 O (Qui) Oy (0. )+ (263)

where d; is the mass dimension of the operator Oy, and d; is the lowest non-trivial one. As we have already

(R)ope = C3H(Q, )+ 54~ Cit (Q, 1)(Oa, (0, 1)) +

mentioned, the Wilson coefficients are usually computed as power series expansions in the strong coupling

o0

CL(Q.u) = Y dM(Qua" (), (2.64)

n=-—1
where the series above is understood as a formal series that, in general, is expected to be divergent and asymptotic.

Thus, the OPE takes the form

(Bors = 3 Qa1 (u) + 2L 57 Q)+ (2.65)

n=-—1 n=—1

We emphasize again that the series above are, in general, expected to be divergent and asymptotic. In practice,
when implementing them, one has to choose a way to handle the divergent series, say by truncating them, or say by
doing something else, for instance Borel summation. It is only after the specific way to regularize the perturbative
sums has been stated, that one can give well defined numbers for each of the terms of the OPE. Note, however,
that different regularizations of the perturbative sums will yield different numerical values, which will affect the
values of the condensates. This is somewhat analogous to the freedom of scheme one has in the renormalization of
the coupling constant.

There is a method that exploits these ideas to fix some coefficients of the Borel transform of the first series in
the RHS of Eq. in the vicinity of the closest IR renormalon. The idea is to compare the ambiguity of the
first series in the RHS of Eq. with the first condensate sector. In particular, we will see that this approach

2mdy

fixes the location of the first IR renormalon to be at ¢t = ot Let us see how this works in more detail. We will

use p independent versions of the condensates by considering

@ /
Oa) = ©@at0.mpe ] [ a8 (2.66)
where k is an integration constant that will be irrelevant for us. Just as in Eq. , the beta function is
d
u@a(u) Ala(p))- (2.67)
The anomalous dimension v, of the operator Og;, is defined in the following way
<Od (0, 14)) = =704, (O, (0, 1)) , (2.68)

d

8This section is based on [43} 44l 45| [46] 47, 48).
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and

Yo, (@) =Y 7ok, (2.69)
k=1

It is easy to see using Eq. (2.68) and Leibniz’s integral rule that
i@ ) =0 (2.70)
Mdu di/ = VY- :
Also, we expect the condensate to be proportional to the QCD scale

(Oa,) = #AEep - (2.71)

and recall that we can write the small a(u) expansion of Agcp by integrating the beta function in Eq. ((1.39)

. —b 00 _ n
Aqcp = QePor@ (502:5@)) exp {— nz::l Sn (bﬂ;o:(@)) } , (2.72)
where we have defined
_ b
b= 25 (2.73)
2 _

s51 = 612502%)152 ) (2.74)
o A0 i, o)
5 = D1 = 3PoBE0 + 26i§355§3 + B85 — Boba (2.76)

_ BY — 4B B + 3638183 + 3838185 — 2835184 — 2838283 + 5o Bs
54 = 51 , (2.77)

80551

All in all, a generic term of the OPE in Eq. (2.63]) becomes

1 1 o yo, (a)) -
g CEQuOw@u) = GrCi@uen{ - [ a ST bon). (2.79)
Let us now define o (o
~R R atp ,'7(9,11. o
CR(Q) = CR(Q.p) exp{ [T Bm} , (2.80)
and expand
27‘.,Y§di> 00
CRQ) =" xa 7 (Q){l +>° cgd”a”“(Q)} : (2.81)
n=0

Notice that the coefficients e will mingle the coefficients £, v,gdi') and those of the perturbative expansion of

C(f. With these definitions, a generic term in the OPE becomes

1 1 - _
@Qﬁ(@ﬂxodi (0, p)) = @Cﬁ(QﬂOdi)a (2.82)
which using Eq. (2.81)), we write as
L ARV (Oa) (4 i S o) gt
i Ca(@)(0a) = Tggdila™ Q1+ 3 aa™!(@Q) . (2.83)

n=0
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Using Eq. (2.72) to to kick out the 1/Q% dependence

7 CA(@)(00) = B\ Bo ) hzeﬂ*bdi
Qd: 2, (@)(Oy,) = const x <47T> o T @
oo . ) 3
x {1 + Zésﬂi)anﬂ(@)} exp { § :Sn <bﬂg7c:@) } | .
n=0 =

where const = #c(:ili) is an irrelevant constant. Ignoring this constant, and all the other @) independent constants

above, and expanding it all in «(Q)

d,;
1 —d;27 27m§ i)

G CR(@(0a) ~ o H (Q){l S féd”a"“(Q)} , (2.85)
n=0

where the constants ffld"') combine the s,, and the E%di). We will now consider the ambiguity associated to an IR
—d2m

renormalorﬂ located in u = d/2, and we will find out that the ambiguity associated to it will scale like efo~(@).

We will then use this fact to fix some coeflicients of the Borel transform in the vicinity to the aforementioned

renormalon. Thus, let’s consider the formal serieﬂ of the first term on the RHS of Eq. (2.63))

Q) =Y Va"Q), (2.86)
n=0
and its Borel transform
AR = 0510) n
Ciy =>" -t (2.87)
n=0

In the large 5y examples we have considered so far, we have found renormalons to be poles in the complex plane.
For real QCD, we will generalize this behavior to a branch cut singularity, so that for an IR renormalon located

at u = d/2, we assume the behavior of the Borel transform around this singularity to be the one we have seen in

.
CE(t(u)) = ZW JE::O w;(1—2u/d)7, (2.88)

with wy = 1, and the rest of the coefficients w;, | and Z are arbitrary. We have seen in that the

ambiguity associated to the singularity above is related to the discontinuity function

disc(Cf) = lim { dte /@D CE @) — dt e_t/o‘(Q)CA'(I)%(t)} , (2.89)
=0t LJe, c_
where C is parametrized by ¢t = ze*". These integrals yield
2d\ ey Z T(n—1) (—Bo\"
dise(C) = 2 (2N gisin(r[l + )T (—lesa-i(@) S L =D (BO) waa™(Q) (2.90)
Bo — T(-1) \2nd
where ignoring the constant factors, we obtain
isc(OR) ~ eFoata@ o =0 (=Bo\" »
disc(Cgt) ~ ePoe@ ¢ (Q)ngo r—1) \rd wpa(Q) . (2.91)

9Recall that, as we saw in [section 1.5] the Borel transform around an UV renormalon located at u = d/2, where d < 0, will

be proportional to (Q/u)!¥. Then, the discontinuity function of Eq. (2.91) will schematically be ~ Q"“/pmd‘/\glcr), as opposed to

~ A‘(SHCD/QW| if we had an IR renormalon located at u = |d|/2, and thus, it cannot be absorbed in the condensates of the OPE whose
terms are all powers of Aqcp/@Q-

10We assume the c<_oi term to be zero.
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Taking a look at Eq. (2.91) and Eq. (2.85)), we notice that the parametric dependence in «(Q) is the same. Keeping
this in mind, let us come back to Eq. (2.63)

1

1
on Cit(Oa,) + =

Q"

1
0

(R)ope = »_ Va4 CH(Os) + =~ CR(Og) + ... . (2.92)
n=0

As we have just seen, the ambiguity associated to the leading IR renormalon of the series of the first term of the
RHS above has a parametric dependence in «(Q) that is the same as that of the condensates. The heuristic idea
then is that since the LHS of the equation above is meant to be a well defined object, then for the leading ambiguity

of the perturbative series to be absorbed in the leading condensate (Og4,). Thus, we need to equate the parametric

dependence in a(Q) of Eqgs. (2.91)) and (2.85]), yielding the relations

d=d, (2.93)
(d1)
= dp— 2T (2.94)
Bo
d
w = —F53 27TEO + bdﬂosl 5 (295)
bdy — 2my ™) { }
d? 9
Wy = {87r ¢1 + 4bdmBysico + b2dB2 (dst — 252)} , (2.96)
2(bdBy — 2771 (bd — 1)By — 2771™)
—d3 B B
wy = — peCy pwCy —CY {487%¢, + 24bdr* Bys1 61 (2.97)
Gﬁo(—bd + Tt) + 2)(—bd + ﬁ + 1)(—bd + T:))
+ 6b%dm 35 (dsT — 2s2)co + bPdBj(d°sT — 6dsysy + 6s3) } (2.98)
Wy =.... (2.99)

In particular, we see that the location of the leading IR renormalon of the perturbative expansion is dictated by
the mass dimensions of the leading condensate, and that the coeficients w; parametrizing this singularity are given
by the beta function coefficients and the coefficients of the Wilson coefficient. It is worth emphasizing that with
this approach, we cannot fix the normalization of the renormalon Z of Eq. .

Before finishing this section, it is noteworthy pointing out the similarities between the procedure that has just
been carried out, and resurgent transseries [49, [50, [51]. Roughly speaking, a transserieﬁ is essentially an expansion

in exponentials and powers of some parameter]

o0 oo

> e (m) gn+ (2.100)
m=0

r
=0

n
Let ap = 0 so that the first exponential sector above is just a perturbative expansion. Resurgence remarkably
hypothesizes that the coefficients of the series of the various exponential sectors in the object above are deeply
related, and that knowledge of the large order behavior of the coefficients rflo) in fact gives us knowledge on the
coeflicients rﬁm) of the rest of non-perturbative sectors. That is, perturbation theory seems to encode information
of non-perturbative physics already(!), and its all hidden in its large order behavior. Moreover, each sector has a
formal series that is in general divergent and whose sum is ambiguous, but these ambiguities can be made sense

of when the whole transseries is considered. The connection with these ideas and the OPE comes from realizing

that as we see in Eq. (2.85)), a generic term in the OPE follows the schematic form displayed in the transseries

M For a nice introduction to transseries see [52].
12In general, there can also be logarithms, and the functions that appear can have higher depth, that is, things like eefl/a can

appear.

28



above with various exponentially suppressed sectors. To name a few applications of resurgence in physics, we have
quantum mechanics [53], 54, (5], 56, 57] and certain asymptotically free theories [58] 59, 60, [61]. For a perspective

on resurgence and the OPE in supersymmetric theories see [62] 63].

2.7 Fixing the condensates from the OPE

Let us now consider again the OPE

o0

(Rjopr = Y e(Q, m)a™ ! (u) +

n=0

1

on CH(Ou) + ..., (2.101)

where we have only explicitly written the first condensate term. A major theme in the following chapters will be

to use the equation above to fix the leading condensate. We will do this by writing

(Og,) = Q™ CIR{<R>OPE - Z C%O)(Qv,u)anﬂ(u)} +..., (2.102)
di n=0

where we ignore the contributions of subleading terms in the OPE. As we have already emphasized many times, the
various series in the equation above are divergent, and therefore, before making sense of the equation above, these
need to be regularized. Consequently, the ambiguity on the method chosen to regularize them will translate itself

N,iiJrl

on the condensate. For instance, we could simply truncate the various series above at order « , and obtain for

the condensate a value

No
(Oa,)n = lecl|{<R>OPE - Z C%O)(Qyﬂ)anﬂ(u)} +... (2.103)
dy Na, n=0

One must keep in mind that since (Og4, )N is expected to scale as AélCD, the series in braces above needs to be
regularized with Aéch precision, because it is pointless to attempt to extract ~ AdQlCD terms from (R)opg if the
Wilson coefficient of the trivial operator that we are subtracting to (R)opg itself doesn’t have ~ AdQlCD precision.
For instance, this is achieved if we truncate the series in braces above at the optimal truncation point as given in
Eq. dictated by the leading IR renormalon, which as we have seen in the previous section, will be located at
t= %. It is worth pointing out that, as we have already mentioned, we can always keep one order more, or one
order less around the optimal truncation point, and by doing this, the value of the condensate changes by terms
that are of order AdQlCD.

Truncation has the obvious advantage that one can always do it if one simply knows enough coefficients of the

series. Nonetheless, truncation is not without its drawbacks. So far, we have assumed the various terms in the

OPE to be formally u independent, which implies
d — (0) n+1
p,@ Z cn (@, pex (1) =0, (2.104)
n=0

order by order in a(u). Despite this, when one truncates the series above, there will always linger some residual
O (a™*2(p)) scale dependence (where we truncate at aNo™! (1)), which will be carried to the condensate as defined
in Eq. . In this thesis, we will use the PV Borel sum to regularize the formal series in braceﬁ in Eq. .
As we show in assuming some properties for the analytically extended Borel transform of C¥¥, we can

BWe will not worry much about the Wilson coefficient C‘ﬁ because in the cases we will consider, the series will not be known to
high enough orders to reach its asymptotic behavior, and in practice, we will just truncate it.
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see that the PV Borel sum is renormalization scale and scheme independent. Thus, a condensate defined in the

following way

(Ou)rv = Q" gt —{ (Flore = PV Y@ i)+ (2.10)
d11Ng, n=0

will be renormalization scale and scheme independent (up to subleading terms in the OPE).

The obvious drawback, of course, is that in order to compute the PV Borel sum, we need the Borel transform
first, and this requires the knowledge of all the coefficients of the divergent series. Quite remarkably, it is possible
to relate truncated formal series with their PV Borel sums. In this thesis, we will explore two avenues for that,
which will be shown in the next two chapters. The first is based in the so called Dingle’s theory of terminants [10],

and the second draws from [64, [65], [66] 67].
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Chapter 3

Approximating the PV Borel sum:
Method 1

In this chapter, we review Dingle’s method to obtain the PV Borel sum of a divergent series from truncated versions

of it, and then apply it to some examples in the large 5y approximation (see [68], 69, [70] for the original articles).

3.1 Dingle’s terminants

In chapter 21 of his book [10], Dingle was concerned with the problem of extracting information from the remainder
tail of a truncated divergent asymptotic expansion (which of course is also divergent), what he refers to as termi-
nating a truncated series. Inspired by Borel summation, he proposed a method to assign a finite number to the
remainder tail of a series, and called this object a terminant. Let’s make all of this more precise. First of all, we
should remind ourselves a feature of Borel summation. Let’s consider a divergent asymptotic series and its Borel

transform

R= Z Pt (3.1)

R=3" ", (3.2)

As we have already seen, if we introduce this object in a Laplace transform, ignoring the fact that we are considering

the power series of the Borel transform outside its convergence radius, and commute sum and integral with impunity

jo%s) [e%¢) r [e%¢) r Jo%e) o
/0 dte /o Y2 g 3 Tage /0 dtett" = 3 rpamt = R, (3.3)
n=0 n=0

n=0
we recover the original series. Let us now remark that the same can be achieved with a slight modification. We

can define an analogue of the Borel transform of R changing slightly the factorial

o0

/! n n
= - ¢ A4
i T]Z::O 'n+14o0) (34)

and modifying slightly the Laplace transform, introducing a factor (¢/«)? to compensate

o0

o0
dte Ve (t/a)? Tint" 3.5
[ e S g >
n=0
such that, when we again commute integral and sum
dte Vo (t/a)° T 747710‘7“1/ dte "7 = rpatt =R, 3.6
/0 (t/a) ;r(n+1+o) ;F(n+1+a) 0 nz::o (3.6)
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we again obtain the original series. This change to the Borel sum might seem strange at this point, but the reason
to consider it will be apparent soon. Keeping this in mind, let’s consider a truncated divergent asymptotic series

and its remainder
N

R= Z rpatl 4 i rpa™ . (3.7)

n=0 n=N+1
As we have mentioned earlier, Dingle was concerned in trying to assign a value to the (divergent) remainder tail

above. In order to do that, he applied the expression in Eq. (3.5)) to the remainder tail. That is, he considered

—f/a n
/ dte (t/a)” Z Fn+1+0)t. (3.8)

n=N+1
Dingle sought to apply the method to series that for large n diverged factorially, that is, r,, ~ T'(n+1+0) for some o,
for large enough n. Now, since we are appplying Eq. to the remainder tail, ,, will be already well approximated
by the leading asymptotic behavior, and we can substitute it above. Therefore, we see that in Eq. , we will
basically have a geometric series and the reason for having introduced the ¢ in Eq. is clear. Dingle considered
botlrl ﬁxed sign and sign alternating factorials r® = KA"T(n+1+0) and ) = (-1)"KA"T'(n+1+0), where
we have added a power A™ to match prec1se1y the type of behavior we have seen in Eq. . Let’s first consider

the fixed sign factoral. Introducing r = KA"T'(n+ 1+ o) in Eq. (3.8), we see that the analogue of the Borel
transform becomes
oo t N+1
K AMt = KANHL .
2 =T (3.9
n=N-+1

The sum above is true if |At| < 1, but we generalize it to C — {1/A} by analytic continuation. Plugging it back in
the expression of Eq. (3.8)

L gan+ /oo dte *WE (3.10)
(0% 0 1-— At ’

Now there is a catch. The integral above is ill defined, as there is a singularity on the integration path. Dingle
proposed using the PV prescription to regulate it

N+1+0

e (3.11)

T, = —KAN“PV / dte-t/et "

The object above is what we will call a terminant. The subscript + is meant to denote that the singularity in
the ¢ plane of the integrand is located at a positive value of t. We will generically denote a terminant with the
symbol T', and sometimes add a subscript to specify some feature. It is worth mentioning that what Dingle called
a terminant in chapter 21 of his book is slightly different to the object above. Quoting Dingle’s bookﬂ “Defining
the terminant Tpingle as the function which when multiplied by the (N + 1)-th term in an asymptotic series would

correctly terminate that series...”. That is

T = ryp10™ T Thingle (3.12)

N+1

where we truncate the series at order a , as we have done in Eq. (3.7). Had we had a sign alternating factorial,

every step above could be repeated verbatim, except for the fact that we would not have a singularity in the

1 Actually, Dingle distinguishes other two cases where the series h D rna™t! has an index n that does not range in all the integers,
but instead lacks every second term, just like the series expansions of the sine and the cosine. In any case, these cases will not be
relevant for us.

2Page 404. We have adapted his notation to match ours. In particular, he considers asymptotic expansions at infinity and not at
the origin, and he also includes a constant term (what for us would be ~ a9) in his series.
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integration path, and the terminant would simply be

1 e} tN+1+a
T = (—1)N+1§KAN+1/O dt €_t/am . (313)

The subscript — denotes that the singuarity of the integrand in the ¢ plane is located at a negative ¢ value.

Summarizing, we consider a (factorially) divergent asymptotic series

oo
R=) rpa™t, (3.14)
n=0
we truncate it
N [e’e)
R= Z rpa” Tt 4 Z rpa” (3.15)
n=0 n=N+1

and we estimate the remainder series by the terminant T;

o0 1 ) N+1+0
> ot AT, = —KAN“PV/ dte=t/ , (3.16)
(%4 0 1-— At
n=N+1
or
S 1 oo tN+1+U
S T = ()R [ e , (3.17)
ac 0 1+ At
n=N+1
depending on whether the factorial is fixed or alternate signed. Therefore, the terminated series would be
N
> a4 T (3.18)

n=0
We will see that this expression approximates the PV Borel sum of the original divergent series R.
3.2 Examples

3.2.1 The Stieltjes function

This is a very simple example where we will see that, in fact, adding Dingle’s terminant will reproduce the original

function ezxactly. Let us consider the Stieltjes function S(a) that we have already encountered in

o 1
S(a) = dre™™ . 3.19
@=[ e (319)
As we have already seen, aS(«a) has the following divergent asymptotic expansion
aS(e) ~ Y (=1)"nla™", (3.20)
n=0

that is, a simple sign alternating factorial. Therefore, from Eq. (3.17]), the terminant is

[e'e) tNJrl
T =(-1)N+! / dtet/e—— (3.21)
0 1+1¢
and the terminated series is
N N o0 tN+1
O4‘Sftermilr18uted(04) = T;)(_l)nn!an+1 + (_1) + /0 dt e_t/am . (322)

Numerical evaluation of the terminated series vs. the exact Stieltjes function reveals exact agreement to any desired

number of decimal places. This is just a consequence of the simplicity of the example. As it happens, the equation

above is an exact one, as it can be seen from the relation

(—az)N+1
14+ ax

1 N
= (~1)*(ax)" + ; (3.23)
n=0

1+az
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that when inserted in Eq. (3.19)), exactly reproduces Eq. (3.22)). In general, things will not be so simple, and we

will not obtain exact results.

3.2.2 A branch cut singularity in the Borel plane

The previous example is a very simple one, where we only have one singularity in the Borel plane (the Borel
transform of Eq. (3.20)) is just R= %H) which is a simple pole. As we have already discussed, in QCD, we typically
expect singularities in the Borel plane to be of the form

A 1

R(t) = A= By (3.24)

where we have picked a singularity at ¢ = %—z From Eq. (1.53)), we know that the associated divergent series is

2 Bo\"T(n+1+0b) ..y
Z(mi) rarn ¢ (3.25)

n=0

Therefore, from Eq. (3.16]), the associated terminant is

1 1 50 N+1 00 . tNJrler
T=——o (22) PV [ dtet/ 2
abF(1+b)(27r> V/O R T (3.26)

and the PV Borel sum of the series in Eq. (3.25) is

N n
* 1 Bo\" T(n+1+b)
PV Vo =3 (2) a7 3.27
/e (- Eo n_o<2w> N (3:27)

Indeed, numerical evaluation shows agreement. It is interesting noticing that on the LHS above, we have a branch

cut singularity, whereas on the RHS, we take the PV over a simple pole.

3.2.3 The double Stieltjes function

We come back now to the Stieltjes functions with which we have dealt before, but with a slight twist that will let
us highlight a few things. Let us consider the double Stieltjes function in the following WayE|

Sa(a) = S(a) + S(a/2). (3.28)

where S(«) is the Stieltjes function. From the asymptotic expansion of the the Stieltjes function, we easily obtain

the following asymptotic expansion

aSs(a) ~ i(—l)”n!{l + 2171}0/”1 . (3.29)

n=0
Notice that the large n behavior of the coefficients of the expansion above is the same as for the Stieltjes function
since the 1 inside braces above dominates over 1/2". Consequently, the function can be terminated using the same

terminant as for the Stieltjes function

N N+1

1 ° t
- =3 (-1l ntl | (_q\N+1 “t/a
@S2 terminated () (-1) n.{l + on }a +(-1) /0 dte 1ot (3.30)

n=0

3This example is drawn from [T4].

34



Let us compare this expression against the exact result and the superasymptotic one. From Eq. (1.80)), we know
that the optimal truncation point for a series whose leading asymptotic behavior is rﬁf‘s) =(=1)"nlis N, ~ 1/a.

For a = 10~%, we have (we display 12 decimal places)

Sy (ar) =0.187000424931 , (3.31)
Sy superasymptotic = 0.187019023312 , (3.32)
Sterminated = 0.187000437252 . (3.33)

We see that the terminated expansion improves the result obtained by traditional asymptotics. Actually, we will
now see that we can improve upon this by considering the contribution to the remainder tail of the series coming

not only from the leading singularity in the Borel plane, but from the subleading ones as well.

3.3 Beyond the leading terminant

Let’s get back to Eq. . So far, we have considered the contribution to r, coming from the leading factorial
divergence in r, and associated to it a terminant. In general, we may have subleading factorial divergences as well.
For instance, that is the case we had in Eq. . In general, in QCD, we expect a factorial divergence associated
to each singularity in the Borel plane, where the ones closer to the origin give the leading behavior as n — oc.
We will now include the contributions of this subleading terms. Being more precise, so far, we have considered a

formal series R

o0
R=>) rpa™t, (3.34)
n=0
we have superasymptotically truncated it
Na, o
R= Z Pt 4 Z Pt (3.35)
n=0 n=Ng, +1

we have estimated the contribution of the remainder tail of the leading factorial behavior in 7, with a terminant
o0
S et Ty, (3.36)
?’L=Nd1 +1
and then, written the following expression for the PV Borel sum of R

Ndl
RPV ~ Z Tnan+1 + Td1 ) (337)

n=0
where d; is meant to parametrize the location of the singularity in the Borel plane closest to the origin by

27Tdi
ty, =

Y B
Now, coming back to Eq. (3.35), we still have not accounted for most of what is in the remainder tail. In particular,

(3.38)

the last term of the RHS below still has not been considered

Nd1 [e'e) [e’s}
R= Z rpa Tt 4 Z r,(laS:dl)a"H + Z (rp — 7“7(135:‘11))04”4'1 i (3.39)
n=0 n=Ng, +1 n=Ng, +1
The term
Z (Tn . Tgas:dl))anJrl , (340)
n:Nlerl
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will in general be a formal series that at some point will start to diverge as dictated by a subleading (we will assume
for this section that we have many singularities in the Borel plane of R) divergence in 7, that we call r(as dz) . Thus,
the situation is the same as we had initially, and we can truncate this series superasymptotically, and then associate

a terminant to its leading divergence. That is, we write

Ndl Nd2
R= Zr an-‘,—l + Z T(as dl) n+1 + Z r;as:dl))an—&-l
n= Nd1+1 n= Nd1+1
+ Z (as ds) n+1 + Z _ (asidy) (as:dg))an+1 , (341)
n= Nd2+1 n= Nd2+1

(as:dl))an+1

where Ny, is the superasymptotic truncation point of the series y Na, 41T =T . Then, just as in

Eq. (3.36]), we associate a terminant to the divergent tail associated to the subleading factorial divergence

)
Z rgLaS:d2)an+1 ~ Td2 ’ (342)
’I’L:Nd2+1

just as we have done for the leading divergence. Of course, the values of K,A,N and o in Egs. (3.17) and (3.16) will
be different compared to the terminant associated to the leading factorial divergence, and recall that from Eq. (1.54 -
A = 1/t;, where t; is the location in the Borel plane of the singularity associated to the factorial divergence we are
considering. Thus, we write

N’il Nd2

va = Z T an+1 + le + Z rr(las:d1))an+1 + Td2 + Z (rn _ Téas:dl) _ Téas:dg))an-&-l ) (3.43)
n=Ng, +1 n=Ng,+1

Of course, nothing stops us from systematically iterating this procedure, taking into account all the singularities

in the Borel plane of R by writing

Ndi+1 7
RPV = Z { Z (T’n - Z T,Slas:dj))anle + Td7:+1} 9 (344)

i=0 ~ n=Ng,+1 j=1

where Ny, = —1, and d; is meant to parametrize singularities in the Borel plane.

3.4 The hyperasymptotic expansion

Let’s continue with Eq. (3.44]). We have said that Ny, , Ng,, ... are the orders around which the series

> (- Yt (3.45)
n:Ndi +1 Jj=1

reaches the superasymptotic regime. Following Eq. (1.86]), we will take these to be given by

27|d|
Bocx

where the value of ¢ is chosen as smallest as possible in absolute value, so that we do not deviate much from

Np(d) = (1-ca), (3.46)

Eq. (L.86), while still making sure Np(d) is an integer for whatever value of o we are considering. We will now
consider the expression in Eq. (3.44)), but keeping only a few terms in the expansion, parametrized by the numbers

D and N [69]. For D = 0, we have
RGN Z rpa (3.47)
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and for D >0

Np(D)+N
D’N = as: n
Rpv™ = 37 St D0 Ta+ D, (ra—rSISPhar (3.48)
|d|<D |d|<D n=Np(D)+1

where the first two sums in the RHS above take all the values of d parametrizing singularities in the Borel plane
of R located at Qér—od, as well as the value d = 0. Notice that there may be more than one singularity for a |d|. For
instance, for the case of the pole mass in the large 8y approximation, we have seen in that we have

singularities at ¢ = i%—’g, and in this case, both would need to be considered. Furthermore, for d = 0, we write

Np(dl)
So = Z rpatl (3.49)
n=0

where d; parametrizes the singularity in the Borel plane of R that lies closest to the origin. For |d| > 0

Np(d")
Sa= Y, (rp—rMAISPD)antt (3.50)
n=Np(d)+1

where d’ parametrizes the singularity in the Borel plane of R that is next to t = % in terms of distance to the

origin, and we have that

|D]
TSLas:|d|§|D\) = z Tglas:\d\) 7 (351)
Idl=ldx]
where 1) is the large n factorial behavior of r,, associated to singularities located at |t| = 2;—'5' We emphasize

again that there may be more than one singularity with the same |d|, and in that case, the large n behavior

associated to all of them has to be considered. Likewise, T}y is meant to include all the terminants associated with

singularities such that |t| = 22'{?', and in particular, we define T = 0.

Roughly speaking, D parametrizes the location of the last singularity in the Borel plane whose terminant is
included in the expansion, and N tells us whether we add on top of this terminant, the series whose leading
large order behavior is dictated by the singularity that is subleding to the one parametrized by D. In particular,
we see that the order (D = 0,N = Np(d;)) gives us the superasymptotic approximation to R, and the order
(D = dy, N = 0) includes the terminant associated to the leading singularity in the Borel plane on top of the
superasymptotically truncated series.

The expression found in Eq. or in Eq. will be called throughout this thesis as the hyperasymptotic
expansion. Hyperasymptotics [12], [13] 14] is a term denoting the improvement over a superasymptotically truncated
asymptotic series using exponentially suppressed terms. It can be seen that each term in the hyperasymptotic

expansion above follows this pattern of exponential suppression. We will see in the next section that the terminant

Ty associated to a singularity in the Borel plane located at ¢t = %fl, whose associated factorial divergence is
r5 ) = (K, (%) I'(n + 1+ o4) will have the following small o behavior
—27d|
Ty~ at/?%d Hon | (3.52)

so that the further away from the origin the singularity is located in the Borel plane, the more exponentially
suppressed the associated terminant is. In order to obtain a rough estimate of the small a behavior of the series
we add on top of the terminants, where the leading divergences of r, are subtracted, such as the third term in the

RHS of Eq. (3.43), let us consider a divergent expansion R whose Borel transform has many singularities in the
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Borel plane. Let one of these singularities be parametrized by d;, and let the next singularity in terms of distance
with respect to the origin of the Borel plane be parametrized by dy, that is, |d;| < |d¢|. Then, the hyperasymptotic

expansion would look

Np(d1) Np(dz)
Rpy = Z rpa™ 4Ty + Z (rp — r@sidi))gntt
n=0 n=Np(d1)+1
Ne(dy)
+ 4Ty + Z (rp —r(asidn) .. plasidi)yandl Ty + ... . (3.53)
n=Np(d;)+1

Let us roughly approximate

(=100 — =100 s ) = s, () Tk 1), (354

for some K4, and og4,, and let us consider the absolute value of the fixed order term of the series in the second
term of the second line in the RHS of Eq. (3.53)) around n = Np(d;) + 1. Using Stirling’s approximation for the

gamma function, we can obtain the leading small « behavior

_ —27|d;| ldyl
[Pt} o Ne D2 g1/ 20y ¢ TR OB T (3.55)
Since |d;| < |d¢|, we see that
—27|d;| —2m|d,| ldgl —2mldy]|
e Fost < ¢ Foe- (TS TT) o Hal (3.56)

and therefore, the small o behavior of the second term on the second line on the RHS of Eq. (3.53)) sits between

that of Ty, and T,, and we have a hierarchy of exponentially suppressed terms in the hyperasymptotic expansion.

3.4.1 The double Stieltjes function revisited

Let us come back to the double Stieltjes function we have seen in [subsection 3.2.1] and apply the ideas of the
previous section. As we have seen in Eq. (3.30), we can write the terminated double Stieltjes function (times «) in

the following way

70
["’0 2)

_Bo 1
O452;terminated(05) = OtSé 20 Z {1 + 271}(1”+1 + ( )+1/ dte —tlal

Ve (—52)+
1+1¢

(3.57)
that is, in the notation of the previous section, we have reached precisio (D,N) = (*%’ 0) in the hyperasymptotic

expansion. The subleading singularity in the Borel plane is located at

-2 = a=-2 (3.58)

and therefore, the next order in the hyperasyptotic expansion would be

Ne(— 52) —fo
(=27 Ne(=352) 2{ { 1} nt1 )N (——)+1/ N )+
S 2 nlkl4 —a™ + (=17 dte
2n 1+t
Np(J*TO) 1
+ (—1)"n! —a"*!, (3.59)

27’L
n=Np(—52)+1

4 Admittedly, the various By and 7 factors look rather ugly here. Notice that the notation is tailored to QCD examples where
2nd

renormalons are located at t = B and all the awkward factors we have in this toy example simplify.
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Figure 3.1: Comparison of the exact double Stieltjes function and the hyperasymptotic expansion for o = 1/10
(notice that this implies Np(—52) = 10). The blue dots denote [Sy — SN (=1)"n! (1 + 5&) a™™1|. In the
orange dots, we add the leading terminant, and we keep adding more terms of the second series, that is,

1Sy — S22 (1)t (1+5&)am™ =T 45 — ij:lo“(—l)"n!%a”*% For the green dot, we add the last ter-
27

n=0
minant, that is, |Sy — 27110:0(_1)””! (1+57) ™™t =T 5, — Ziozlo+1(—l)"n!2%a"+l —T g |- The horizontal axis
2 ™

denotes the last order in « kept in series in the blue andworang‘e dots, that is N + 1.

that is, we reach precision (D, N) = (—g—;’r, NP(—%)) in the hyperasymptotic expansion by adding the superasymp-

totically truncated series where the leading large n behavior associated to the leading terminant has been subtracted.

We can improve upon this by adding the terminant associated to the t = —2 singularity
(- 0) Ne g 1 8 oo {Ne (= 52)+1
-5 o 1\ . n+1 _1\NVe(—52)+1 —t/a B
Sy (a) = ; (—1) n.{1+2n}a +(=1)7r 2 /0 dte 7

Np(—20) Np(=20)41 Lo Np(—5o
1 1 B t P( e )+1
—1)"pl—ant! _Z / dte t/lel____ ~ 60
+ E ( )nQna +< 2) ; e T 1/ (3.60)

n=Np(-22)+1

that is, we reach (D, N) = (f%, 0) precision in the hyperasymptotic expansion. In we compare the exact
double Stieltjes function versus the hyperasymptotic expansion. We see that by going further in the expansion,
the accuracy is improved by orders of magnitude. It must be mentioned that, just as for the Stieltjes function, in
this simple case, the hyperasymptotic expansion yields the exact result, and therefore, the green dot should be at
0. The fact that it is around 10720 is due to the precision at which the numerical integrals in the expression of the
double Stieltjes function, and the terminants have been implemented. This number can be made arbitrarily small
by improving the implementation. In realistic QCD scenarios, things will not be so simple. In general, we will have
an infinite tower of singularities in the Borel plane, all of which can in principle be taken into account.

In we show the behavior of the hyperasymptotic expansion for various values of «. In this figure,
we observe the hierarchy of exponential suppression given in Eq. .
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Figure 3.2: Comparison of the exact double Stieltjes function and the hyperasymptotic expansion at various orders

for various values of a. The values of o have been chosen so that NP(—%?_) is integer, and ¢ = 0 for all cases.

Therefore, the horizontal axis plus 1 is the order in « at which the superasymptotic truncation is carried out. The
_ba
blue dots denote | Sy — ZNP( 2r)

n=0

_Bo
15y — SO 270’)(—1)”n! (1+ 55) a™™t—T s, |. For the green dots, we have |Sy—>
27

n=0

(=1)"n! (1 + 5=) a™*![. In the orange dots, we add the leading terminant, that is,

_5a
Ne( 22)(_1)71”[ (1 4 2%) atli—

n=0
Ne (—52)

T*%Jr B Zn:NP(*éL?r)Jrl

(green). The dotted lines are the same functions multiplied by /a.

(=1)"nlzza"T!]. The continuous blue lines are e~ = (blue), e« (1+1982) (orange) and e~ a

3.5 Terminants in QCD

There is one last twist we need to take into account in order to apply the hyperasymptotic expansion to observables

in QCD. Let us consider the perturbative expansion of an observable in QCD that has no mass dimensions

R=> ra(pa™(u). (3.61)
n=0
So far, we have considered factorial divergences of the form
r®) = (£)KA"T(n+1+0). (3.62)
Nevertheless, we have seen in Eq. (1.68) (we write s = [+ 1 here) that in QCD one expects (wg = 1)
d n oo .
@) () — 7 (P (Lo Tnt+i+l-j) 363
Tn (ﬂ) d(@) (27Td ;wj F(l—i—l—]) ( . )
to be the factorial divergence associated to a singularity in the Borel plane located at t; = %Lod
d [eS) j
S I 1 Bo
(1 — mt) j=0

where notice that d can, in general, be complex. Therefore, as opposed to Eq. (3.62)), one has an infinite sum of
factorial divergences instead of just one. Nonetheless, it is easy to extend everything we have done so far for the

realistic QCD case. Let us consider first the terminant associated to the j = 0 term above, and call it AQ(1). The
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terminant associated to the j = 1 term in the sum in Eq. (3.63) is easy to write down, once one realizes that going
from j = 0 to j = 1 is the same as performing [ — [ — 1 inside the gamma functions, as well as wy — w;. Thus,

the terminant associated to the j = 1 term is simply
w AQ(I —1). (3.65)

From all this, it is clear that the full terminant associated to the full divergence in Eq. (3.63) is

Q= iw,AQ(l — 7). (3.66)
§=0

We will use the symbol 2 to denote terminants associated to formal series that have no mass dimensions, that is,
for instance, any terminant of the singlet static potential V' would be denoted by T, and any terminant associated
to rV by Q. We will see by computing the small a(u) expansion of AQ(]) that each subsequent term in Eq.
is subleading compared to the previous one. We will now give explicit formulas for the small a(u) expansion of
both AQ(l) and of @ for IR and UV renormalons. We will start with the IR case. Let us consider the series in
Eq. , and we assume the leading large n asymptotics of (1) to be dominated by a singularity in the Borel

plane of R given by
b 2md

B
where d > 0. We further assume ! and the w; coefficients of Eq. (3.63) to be determined by the procedure of

(3.67)

assuming compliance with a condensate of dimension d, so that

59 (1) Zd<ﬂ>d<50>niwf(n+l+dbvj)’ (3.68)

Q 27d T(l14db—~—3j)

where looking at Eq. , we have defined
_ 2my?
N
for simplicity. Following the procedure outlined so far, we truncate the series in Eq. at order aNP(D+1(y),
where Np is given by Eq. and the terminant associated to the 7 = 0 term in Eq. related to aforemen-

tioned singularity is then given by Eq. (3.16))
d 1 Np(d)+1 o0 db—~y+Np(d)+1 ,—x
AQR() = Zoler ———— (&)) aNP<d>+2(u)Pv/ dz 2 ° . (3.70)
0

QIT(1+db—~) \2nd 1 — Bl

(3.69)

where we remind that [ = db — v and wg = 1. We can write the small «(u) expansion of the above equation in the

following way (for details on the computation see [Appendix C))

d db—~y+1 1/2
17 1 2md _—2md_ 1/2—db+ 0 1
AQ =, (== Boo(u) gl 70 | -
el deF(lerbv)(ﬂo) o CAPTE] R

RPN/l B SO DS U B YIRSD: Il RN NS BRI e
md3/2 | 127¢ 7 247° 1080 72d5/2 | 160°¢ 96 ¢ 144 ¢
1, 1 25 ]

+ 56" ~ gl

60" ~ 2atez) T O (") } ’ (3.71)

where 1. = —db+v+ Zﬂiodc —1. From the above expression, we see that by performing I — [ —1 in AQgr(1), we pick
an extra a(p) from the a/2=%+7(;) term that will make the j = 1 term in Eq. (3.66) subleading compared to the

j = 0 term, or perhaps phrasing things better, only a finite amount of terms in Eq. (3.66]) will contribute to each
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order in a(u) in Qir, so that knowing a finite amount of the coefficients w; (as is the case in realistic scenarios),
we can still obtain Qg in a small a(u) expansion, and the higher the value of j in Eq. (3.66) the less important it

is. By performing some algebra, we find that the small a(u) expansion of the full terminant is

Boc —db 2rd _
Qr = KIR Qd ( 0475 ) € ﬁoa(”)al/HW(N) 1+KI(1§,)104( )+KIR)2a (u)+0(a3(u)) ) (3.72)
or in terms of Aqcep
» Mo (P) P :
Uk = K 7a1/2+7(u) <1 + Kiga(p) + Ky ho 2(n) + O (a®(w)) ) , (3.73)
where
K =Za (2T G\ g\ (3.74)
R " T(1+bd—7) \ Bo i d T3 '
d) 11\ 1 1 1
(L= TAGC)N R [ DS - S B .
1= 2 T wi(bd =) | 57+ 3 ) = 5%+ 55~ 15501 (3.75)
P P bBods1
Kiph = K{gh - o (3.76)
7@ _ B/ (xd)? 1 5
Kigjp = —O’7+§ wa(bd — v — 1)(bd — ) 17T 15
1 1 5 23 1
bd — n? 2 e— | = —
+wi(bd =) ( 24~ g T 38" 1080) 160"
Los, 1 1 25
967 T g’ T o6t " Gag 24192] (8.77)
Kijih = g5 (87 Kig ), — dbdms fo Ky + ds165 + 20°dsa53) (3.78)

Let us now consider the case of an UV renormalon, that is, we consider a singularity in the Borel plane located at
—2m|d|

t=—5— where in this case d < 0. The Borel transform around this singularity behaves like
. Q! 1 J
AR(t) = Z4 e Zw + 5o ‘d| : (3.79)
(1 + 27r|d| )
and the associated large order behavior of r, (1) is given by
QU By \"§~,  Llnt+1+1—j)
n 1)"Zy ; . .
rali) = (S Za” T \ 57 j;]wf TA+0—J) (3.80)

We distinguish the w; and [ we have fixed in the IR case in and the primed versions above. We will
not encounter any UV renormalon in this thesis (except for the pole mass in the large 5y approximation, where
the Borel transform is known exactly, as we have seen in Eq. , and therefore, the terminant is exactly known
anyway), so we will not bother about I’ and w}. For more details, one can see [47]. Thus, from Eq. , we see

that if we truncate the series at a™?(D+1 the terminant is

d| 1 8 Np(d)+1 00 e~ T pNp(d)+1+1
AQco (1) = (—1)Ne(@+1 5 Q _Po Ne (d)+2 / doe —— 3.81

The expression above can be written in a small a(u) expansion (see [Appendix C|for details)

Al pirlgr g\ s
N = (L) Neily @O T Bo 121 5 a(p) Bo 2
AQU\/(Z) = ( 1) Zq M‘d‘ F(l'—|—1) <|d> a(u) e Bo (u){1—|— - ]_2|d| [ 1—|—37’]C]
a®(n) B3

72 1152|d]?

+ [13 — 481, — 601 4 481> + 36774 + 0 (a®(p)) } , (3.82)
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where we now define n, = -1’ + % —1. With this, we can compute the small a(p) expansion of the full terminant
which is
Il _ana -
p) @ i Boor(p (P — (P .
Quy = Ké\zmesoam (0475)> a1/2(ﬂ){1 + K3 o) + K5 g2 (n) + o(oﬁ(ﬂ))}, (3.83)
where now
-1/2 =
1 2
KP) _ 7 \Ne(@)+1 Bo 2 .
uv d( ) 7T2|d| F(l/ I 1) |d‘ ) (3 8 )
AP <2>1/2 (w' Bol’ n Bo (—1+3 2)> (3.85)
W=\ Yov2nld| | 12]d[ver el ) '

P (2)”2 (w, V(-8 VB 30+ 1)?)
uv.2 T 240V2dREndr Y 240 R|dPr

B

1152d|221/273/2

+ [13 — 487, — 60n2 + 4873 + 36173]) : (3.86)

Before finishing this section, we take a small detour and, as an interesting aside, we mention that the expression
for the terminants that we have obtained allows us to quantify the p dependence of the truncated series

Np(d)

Ro= Y ra(wa™(u), (3.87)
n=0

where d parametrizes the location of the closest singularity to the origin in the Borel plane of R. The hyperasymp-

totic expansion reads

Rpv(Q) = Rp(Q,p) + Qp, Q) + ... (3.88)

Since the PV Borel sum is p independent, the leading term in the p derivative above will be given by just the

terminant
d

—R

K dp P

the dots containining terms exponentially more suppressed than the leading terminant. Therefore, plugging
Eq. (3.73) (we just consider the IR case)

d @ (Aeon\! sy, Po
e == K (222 ) ot - L)

d
—u (3.89)

+ o) g | - AR+ 2) - a1+ 22)
+a® (1) g [ ~ 16Kg )y fo(2y + 5) — 4Ky mBy (29 + 3) — a2y + 1)} + O(a3(u))} . (390)

3.6 The QCD singlet static potential in the large (5, approximation

After having seen the general case for a terminant associated to a branch point singularity on the Borel plane,
we will now focus on a non-trivial, albeit simpler, QCD example: the singlet static potential in the large [
approximation. In this toy example, the analytically extended Borel transform is fully known, as we have seen in
and hence, we can compute the PV Borel sum ezactly. Consequently, we can test the hyperasymptotic
expansion against the exact result, and see how well it performs.

We will now write down the form terminants take for this specific example. The first thing to keep in mind is that,

as we have mentioned in all the singularities in the Borel plane lie on the positive real line. Furthermore,
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all these singularities in the Borel plane happen to be simple poles, which simplifies the form terminants take since
in Eq. , we will only have the 7 = 0 term, and thus, we will be able to know the terminant exactly. We
will only consider the terminants associated to the d = 1, 3,5 renormalons. Adapting Eq. to this case, the
(dimensionless) terminant associated to a singularity located at t = Qﬁiod to be added on top of the series truncated

at order aNP(D+1 whose large n behavior is dictated by the aforementioned singularity is

B Bo Ne(d)+1 A Ne(@+2 oo L Np(d)+l,—z
Qa = Za(pr)? (2 d v (W)PV ; dil?W, (3.91)
2nd
and the dimensionful terminant Ty is, of course, just
1

It is also instructive to consider its small a(u) expansion. Adapting Eq. (3.73))

Qu = K (rhqop) a2(u) {1+ K{Rha(n) + K ha* (1) + O(@® () } | (3.93)
where now
K® — _z, 2”21/1:2 [ ] (3.94)
Bo
K, = %[ 3+ i 10180] : (3.95)
Ky = W{ 1(15077? 916nc + 1i4n3 + %n? — 6710% — % (3.96)
and 7, = %c — 1. Note also that since in the large By approximation, we only include ﬁo in the running of

the strong coupling, we have that Aqcp = pe —27/(Boa(m)) exactly, and therefore, Eqs. and are the
same. Eq. (3.91)) is the expression that is used to generate all the plots that will be shown later, and is an exact
expression for the terminant. Nevertheless, it is worthwhile to keep in mind that in realistic QCD examples,
instead of simple poles in the Borel plane, we will have branch cuts, and we will need to consider the whole series
in Eq. . Therefore, it is instructive to study how well the exact result is reproduced by the small o expansion
of the terminant. This comparison is done for the terminant associated to the u = 1/2 renormalon in
We observe that the exact result is very well reproduced by the first terms of the expansion.

We will consider the case of the MS scheme and the lattice scheme, both wit ny = 0. Recall that, as we

have seen in Eq. (A.15]), in the large Sy approximation, the scheme dependence is parametrizeﬂ by cx. For the

MS scheme, we have cyis = —5/3. To fix claee, we have used the fact that e™x / 2A(§CD is renormalization scheme
independent [32]. This implies
Nty
Clats = cxrg + 2log ( 9 ) : (3.97)
AMS
QCD
We will also need
—_— 2nd
AEp =m0 At (3.98)
where
ans(0) = ens{ 1+ s () + O (0 1) }. (3.99)

5See [68] for an analysis also for ny = 3.
6Do not confuse this ¢x with ¢ in Eq. -
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MS-Scheme (ny = 0)

r in ro units c Opgact | |poo- — 1| x 107 | |§o — 1] x 10° | |Fae — 1) x 104
1.5 0.1786 | 8.3643 22.4162 47.5334 1969.2176
1.2 0.5693 | 2.9883 0.4033 24.9029 253.6241
1.0 0.8885 | 1.8767 3.9895 17.1315 24.5298
0.8 1.2791 | 1.1346 4.6169 3.8201 43.2013
0.6 0.0321 | 2.3128 5.1448 0.9797 9.6112
0.4 0.7419 | 1.2686 1.1501 2.5458 1.8752
0.2 0.2047 | 1.4294 1.5391 0.3529 1.5947
0.1 1.4182 | 0.5194 1.1653 0.2750 1.3679
0.01 0.1972 | 0.9148 0.6543 0.0730 0.1209

Lattice-Scheme (ny = 0)

7 in 7o units c L Qpxact Q%I;fct —1| x 103 ggi —1| x 10* QI;;M —1| x 10°
1.5 0.8101 | 0.7825 6.4931 4.4345 0.0788
1.2 1.2008 | 0.5624 9.5418 1.2988 4.3698
1.0 1.5200 | 0.3953 7.3017 3.2941 5.5745
0.8 0.1599 | 1.0434 9.3353 0.8118 2.3144
0.6 0.6636 | 0.7654 3.0040 2.8190 0.7265
0.4 1.3734 | 0.4195 7.0275 0.6984 2.6968
0.2 0.8362 | 0.6128 4.4603 1.7421 0.1626
0.1 0.2990 | 0.7906 3.4270 0.8249 0.6717
0.01 0.8287 | 0.4959 2.8716 0.7300 0.0478

Table 3.1: Values of the d = 1 terminant in ¢ units for the ny = 0 singlet static potential in the large S
approximation. Qgyact corresponds to Eq. , and the LO, NLO and NNLO subscripts correspond to truncation
orders inside brackets in Eq. , where the LO is just order o, and so on. Upper panel computed in the
MS scheme. Lower panel computed in the lattice scheme. Lattice seems to be better, but in both schemes the

truncated version of the terminant approximates well the exact one.
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Figure 3.3: Left panel: We plot Vpy (black line) and the differences: (a) Vpy — Vp (cyan), (b) Vpy — Vp — T

(orange), (c) Vpy —Vp — T} — ZnNiﬁz(l)H(Vn - V;L(asidzl))an-i-l (green), and (d) Vey — Ve —T1 — Zgiﬁ;u)ﬂ(vn _
(as:d=1)

n Ja™tt — Ty (blue) in the lattice scheme with ny = 0 quark flavours. For each difference, the bands are
generated by the difference of the prediction produced by the smallest (in absolute value) positive or negative values
of ¢ that yield integer values for Np. Right panel: As in the left panel but with smaller vertical and horizontal
range.

and [711, [72, [73] d1 = 5.88359144663707(1). All of this then implies

471'd1

0

Clatt = C\fg — ~ —8.38807. (3.100)

Moreover, we remark that a change of the renormalization scheme of « in the large 8y approximation is equivalent to
a change of scale, that is, if we are in the, say, MS scheme with ays (o), and then, we go to another renormalization
scheme X of the strong coupling, we can have the same value of the strong coupling staying in the MS scheme

ABS .
1x2. From Eq. (3.98), we see that for the lattice scheme we have

and instead changing the scale to u = pg+=
QCD

27d _
= poe o A 29u0. In any case, we will fix the renormalization scale to p = 1/r for both the lattice and the MS

schemes. We will work in 7y units (ry* ~ 400 MeV) where we take A%D =0.602r; ' ~ 0.238GeV [74].

We will compare the exact value of the PV Borel sum of the static potential against the hyperasymptotic

expansion. The first few orders read

Np(d=1) Np(d=3)
VP = > Vaa"tami+ ) (V= Wit ey (3.101)
n=0 n:Np(d:1)+1

where V,, are the coefficients of the perturbative expansion of the singlet static potential in the large 5y approx-

imation V. = Y77V, a"tl.  We will also define Vp = Zgiél) Vo™t We test the following stages of the

n=0

hyperasymptotic expansion: (D, N) € {(0, Np(1)),(1,0),(1,2Np(1)), (3,0)}, that is, we evaluate:
a) Vv — Vp,
b) Vey — Vp — 11,
¢) Vev = Vo =Ty = 00 1)y (Vo = Vi )an

d) Vov — Vo — T — ZNP(d=3) v, — VTSaS:d:l))anJrl — T

’n:Np(l)+1(
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Figure 3.4: As in |[Figure 3.3/ but in the MS scheme.
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Figure 3.5: Comparison of lattice and MS scheme results for n ¢ = 0. Left panel: We plot Vpy and the differences:
(a) Vpyv — Vp (cyan), and (b) Vpy — Vp — T3 (orange). Right panel: Right panels of [Figure 3.3| and [Figure 3.4]
combined.
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We consider various values of r, and for each value we consider two values of ¢ in Eq. , the positive and
negative values of ¢ that are smallest in absolute value. This way, for every value of r, and for every stage in
the hyperasymptotic expansion, we have two points that form a band. The results are displayed in
[Figure 3.4} and [Figure 3.5|

We observe a very nicely convergent pattern in all cases up to surprisingly large distances. The size of the band
generated by the different values of ¢ (in other words, the ¢ dependence) decreases as we introduce more terms
in the hyperasymptotic expansion, as we would expect. Let us now go order by order in the hyperasymptotic
expansion. We observe that the r dependence of Vpy is basically eliminated in Vpy — Vp. This happens both in the
lattice and MS scheme. The latter shows a stronger ¢ dependence. This is to be expected since in the MS scheme
« is bigger which makes the ambiguity in the truncation (that goes like eg%;r) bigger. As we can see in the left
panel of both schemes yield consistent predictions for Vpyv — Vp.

Let’s now consider Vpy — Vp — T1. Adding the new term gets us closer to zero than before. The width of the
orange band is also considerably narrower than the cyan one. After the introduction of Ty, the MS scheme yields

nNig\‘,i;?:l)H(Vn - ,faS:dzl))a"“‘l is incorporated, most of

more accurate results than the lattice scheme. Once )
the difference disappears although, the lattice scheme is marginally better. Nevertheless, after introducing T3, we
get even closer to zero, and the MS becomes marginally better again. In any case, the difference between schemes
gets smaller as we go further in the hyperasymptotic expansion.

An alternative interesting presentation of these results can be seen in Here, we take one particular
value 7 = 0.0479 ~ 0.1GeV ', and consider Np values so that c is the smallest positive one (NFW(l) = 3 and
Nt (1) = 7). We then start by subtracting to Vpy the perturbative expansion at different orders (blue points)

as specified in the horizontal axis. Eventually, we reach the superasymptotic regime, and at order a™N?(M)+1 we

introduce the first terminant which greatly improves the convergence. Then, we proceed at incorporating term after

Np(3)
TL:NP

term (yellow points) in ) (y41(Vn— Véas:dzl))a"“. Again, when the superasymptotic regim is reached, we
introduce the second terminant (at the order aNP(?’)“), and again, the precission is greatly improved. From this
point on, we proceed in the same fashion (green points) subtracting the series whose leading large order asymptotics
is dictated by the u = 5/2 renormalon.

We nicely see that, once reached the minimum, both lattice (empty circles) and MS (full circles) schemes yield
similar precision, the only difference being that in the lattice scheme (which recall has a smaller «(1/r) for the
same r) more terms of the perturbative expansions are needed to reach the same precision. From this, we could
say that for the purpose of estimating the PV Borel sum, the smaller the renormalization scale p the better, since
we achieve the same precision with having to know less exact perturbative coefficients.

As a final plot, it is also interesting to display the hierarchy of exponentially suppressed sectors of the hyper-

asymptotic expansion depicted in Eq. (3.56) for this toy model. We do thi&ﬁ in [Figure 3.7| and the desired behavior
is clearly displayed.

"Notice that the superasymptotic regime of the formal series Z?:Np(d:1)+1(vn — V7§aS:Cl:1))o¢7‘+17 and of 7 Via™tl are
different things.
8This figure is for the case ny = 3. We have employed Ag(SjD = 0.174 GeV so that a(M;) ~ 0.3.
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Figure 3.6: |Voy — Vg P ™% in v units for r = 0.0479. NMS(1) = 3 with ¢ = 1.2717 and N§*(1) = 7 with
¢ = 0.1524. Full points have been computed in the MS scheme and empty points in the lattice scheme. Points
above the horizontal line at 10~ are |Vev — V| (in ¢ units) where Vjy is the series of the static potential in the
large [y approximation truncated at the order indicated in the horizontal axis. Points between the horizontal lines
at 107! and 1075 are |[Vpy — Vp — T} — ZLNPO)H(Vn — VA=) a4 where again oVt s dictated by the

horizontal axis. Points below the horizontal line at 1075 are |[Vpy — Vp — Ty — Zﬁ’jﬁ’;(lm(vn - Vn(as;d:l))o/”r1 —

Ty — Ziv:NP(B)H(Vn — ylasd=l) _yasd=3)y (nt1) where yet again oV +! is dictated by the horizontal axis. Jumps
correspond to the inclusion of the various terminants.

1 5 10 | 50 100
1 e, | | 1
0.001 0,001
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Figure 3.7: Blue points are |r(Vpy — Vp)|, orange points are |r(Vpy — Vp) — Q4] and green points are |r(Vpy —
V)= —7r Zgiﬁi(l)ﬂ(Vn - V}Ea&d:l))a”‘Irl |. They are plotted as functions of 1/r in logarithmic scale (which is
equivalent to plotting them in terms of 1/«). In the notation (D, N) of Eq. (3.48)), they correspond to (0, Np(1)),

(1,0) and (1,2Np(1)) respectively. The continuous lines are e oa (blue), e~ I+ T (orange), e Foa (green).

The dashed lines are the same functions multiplied by \/a. This factor v/« is introduced in compliance with
Egs. (1.89) and (3.55)), but is overall not too important. The computation has been done with ny = 3, in the MS
scheme, taking for each value of r the smallest positive value possible of ¢ that yields integer values for Np.

49



3.7 The pole mass in the large [, approximation

After having dealt with the static potential in the large Sy approximation, we will now toy with the pole mass, also
in the large [y approximation. The discussion will run parallel to the static potential, the main difference being
that, just as we have seen in in addition to IR renormalons, the pole mass also has UV renormalons.
The setup will be analogous to the static potential. We consider agairﬂ ny = 0 light quark flavors, the values of
Aqcp used will be the same, and we will again consider the MS and the lattice schemes. Nevertheless, there is one
caveat that we should mention regarding the schemes used. In Eq. , we have seen that the Borel transform of
the pole mass depends on a function R(u) that is given in Eq. , which has been computed in the MS scheme.
Nonetheless, we will not be too bothered by this, and we will use the same function in the lattice scheme too.
Strictly speaking, then, the object we compute in the lattice scheme is not the pole mass, but it will have the same
singularity structure in the Borel plane. These singularities happen to be again simple poles, and therefore, we can
obtain the exact terminant with just AQ. Let us first write the case of the IR renormalons (which is analogous to

what we have seen with V') located at t;g = 2[;er’ where d > 0, by adapting Eq. (3.70) to this case

d Np(d)+1 2 Ne(d)+1—a
Q4 Zd Bo. VP2 PV / da: - (3.102)
>0 — omd xﬁOQi(dM) ’ .

and of course, the dimensionful terminant is

Just like for the static potential, the exact expression above is what will be used to generate the figures. Nevertheless,

it is instructive to also consider the small « expansion of the terminant. This is done by adapting Eq. (3.73)) to

this case J
A
P)2Qcp P
Quso = Ki) 2P a'*(u) {1+ Kifholn) + Kigho () + 0 (a* () | . (3.104)
where again
®) 2md/? 1
K’ = —Za— 17~ gz | s (3.105)
1 1 1
g® _Pofrd [ 1 s 1 3.106
R1= 2T 27 T 52~ 1020 | ( )
2/(rd)? 1 1 1 1 1 25
K(P):M 5 S S LI 1
2= T T 160 96" T 41" T 967 " Gan™ ~ 54199 (3.107)
and n, = QLd — 1. By adapting Eq. -, the terminant associated to UV renormalons tyy = B , where d < 0,
takes the form
—d| 3 Np(d)+1 oo Np(d)+1 ,—=z
— m 0 Np(d)+2 x e
Queo = (~1)Ne@D+l 7, () a’'P (,u)/ dr —— (3.108)
= pldl \ 2m|d| 0 1+ 230
The small « expansion of this terminant is obtained by adapting Eq. (3.83))
7ld]
p)m d P P
Qoo = KL 2‘dlA‘Q'CD 1/2(#){ + KG9 ja(p) + K5 502 (1) + O (a®(n)) } , (3.109)

9For an analysis of the ny = 3 case (which is qualitatively the same as for ny = 0) see [70].

50



where

and 7, = Lﬁl(‘j'c

P
K[(J\;1:

2

® 9\ 1/2
0= (2) gaara

— 1. As we have already mentioned, in what is to follow, we have used the exact expression for

/BO —-1/2
= Zd(_l)NP(d)+1 (7T2|d|) 3

1/2 BO
<7r> 12|d|v/2r

53

[13 — 487, — 60n? + 481> + 3617 | ,

(3.110)
(3.111)

(3.112)

Qg. In full QCD we will not know the exact expressions, and therefore, it makes sense to study how well the exact
result is reproduced by its small « expansion. Since the residue of the d = 1 renormalon of the pole mass is the
residue of the d = 1 renormalon of the static potential divided by —2 [29], both terminants will be related by this
factor —2. Therefore, the results of can be recycled with the trivial identification » — 1/, and we see
that the exact terminant is well approximated by its small « expansion. For 2_5, we compare in the
exact result and the truncated expansions for an illustrative set of values. We observe that the exact result is very

well saturated by the first terms of the expansion.

MS-Scheme (ny = 0)
minrg ! c T QExact pao- — 1| x 107 | | e — 1| x 10% | |Fuuo — 1) x 10*

0.6667 | 0.1786 0.2089 33.8725 147.6403 3372.6316
0.8333 | 0.5693 0.0572 8.1940 93.6387 922.9926
1 0.8885 0.0362 14.1752 45.6019 16.0275
1.25 | 1.2791 0.0260 5.7282 13.6703 130.9304
1.6667 | 0.0321 0.0199 12.0969 7.3724 12.2818
2.5 0.7419 0.0094 4.9357 7.7804 6.5465
5 0.2047 0.0042 2.9590 0.5254 4.8485
10 1.4182 0.0018 0.2254 2.2970 2.3334
100 0.1972 0.0001 1.2994 0.1190 0.3921

Lattice-Scheme (ny = 0)
minry’ ¢ | Myaet X 107 | |giko- —1| x 10° | |§Le — 1) x 10" | |20 — 1) x 10°

0.6667 | 0.8101 33.6426 23.0068 12.0234 0.0662
0.8333 | 1.2008 26.3200 13.9400 5.2020 12.6514
1 1.5200 21.9714 11.9588 13.8372 5.6692
1.25 | 0.1599 17.2326 20.0735 0.3375 6.8312
1.6667 | 0.6636 12.0608 15.0134 9.1011 3.3875
2.5 1.3734 7.7980 1.2511 7.4890 5.3010
5 0.8362 3.5950 14.9013 4.4611 0.5006
10 0.2990 1.7262 4.2812 2.3903 2.5575
100 0.8287 0.1453 9.6561 1.8908 0.1339

Table 3.2: mf)_5 in the large 8y approximation for ny = 0 in 7 units compared with truncated versions at different
powers of a. Upper panel computed in the MS scheme. Lower panel in the lattice scheme. Lattice seems to be
better, but both schemes yield very good convergence.

We are now in a position to compare the exact expression for the PV Borel sum of the pole mass

oo A
mgg:m+/ dtet/*W (), (3.113)

0
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Figure 3.8: Left panel: We plot (in ro units) m§¥ — m (black line) and the differences: (a) mg§ — mog (cyan),

Np(— as:d= n
(b) mg¥ — mEg — Th (orange), (c) mog — mbg — T — Znigfpz()l)ﬂ(rn — U)a 1 (green), and (d) mgY —

mebg —T1 — Zgig\/?()l)ﬁ(rn — ppd=ygntl _ T, (blue) in the large By approximation using the lattice scheme
with ny = 0 light quark flavours. The (c) and (d) bands are one on top of the other. Right panel: As in the left
panel, but with a smaller vertical and horizontal ranges. The value of Np(1) depends on the scale 1/ we use.
For instance, for the positive ¢ values we have: Np(1) = 9 for 1/m € [0.003rg,0.00457¢], Np(1) = 8 for 1/m €
[0.006r,0.00157], Np(1) =7 for 1/ € [0.0165r0, 0.0435r], Np(1) = 6 for 1/m € [0.045r0, 0.01185r¢], Np(1) = 5
for 1/m € [0.12r0, 0.3217¢], Np(1) = 4 for 1/m € [0.3225r0,0.876r¢] and Np(1) = 3 for 1/m € [0.8775r¢, 1.299r].

where we recall that M is given in Eq. (2.47), with its hyperasymptotic expansion. The first few orders read

Np(1) Np(—2)
mgg’hyp =m+ Z Pt Ty Z (rp —r@s =g+l pp )4 (3.114)
n=0 n=Np(1)+1

where the formal series of the pole mass is written mog = m + ZZOZO rna™ 1, and we set throughout this section
w=Tm. In (D, N) notation, we will consider the orders (D, N) € {(0, Np(1)),(1,0), (1, Np(1)), (—2,0)}, that is, we

evaluate

PV P
a) mog — Mos;

PV P
b) mog — mag — 11,

PV P Np(-2) (aS:d:l) n+1
C) Mos — Mog — T — Zn:NP(1)+1(Tn —Tn )Oé y

d) mgg —mos = T1 = Zgig\/_p?()l)ﬂ(rn - Tv(taszdzn)anﬂ —T_o,

where we have defined the superasymptotically truncated pole mass

Ne(1)
mog = 7+ Z rpa™tl (3.115)

n=0
Analogously to what we had for the static potential, we again consider various values of 7, and for each value, we

consider two values of ¢ in Eq. (3.46)), the positive and negative values that are smallest in absolute value and yield

integer values of Np. The results are displayed in [Figure 3.8] [Figure 3.9| and [Figure 3.10]

Just as with the static potential, we observe a nicely convergent pattern in all cases down to surprisingly small
scales. The main difference is that the second terminant 75, that is, the one associated to the first UV renormalon

gives a very small contribution overall, in particular in the lattice scheme. This small contribution of the second
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Figure 3.9: As in [Figure 3.8, but in the MS scheme. The values of Np(1) for positive ¢ are: Np(1) = 6 for
1/m = 0.003r¢, Np(1) = 5 for 1/m € [0.004579,0.01057¢], Np(1) = 4 for 1/m € [0.012r,0.03r¢], Np(1) = 3 for
1/m € [0.03157,0.08257], Np(1) = 2 for 1/m € [0.084r¢,0.22357¢], Np(1) = 1 for 1/m € [0.225r¢, 0.6105r¢] and

Np(1) =0 for 1/m € [0.612r, 1.57¢].
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Figure 3.10: Comparison of lattice and MS scheme results for n ¢ = 0 obtained in Figs. |Figure 3.8| and |Figure 3.9L
Left panel: We plot m8Y¥ —m and the differences: (a) mbY¥ — mEg, and (b) mEY — mgq — T1. Right panel:

Lower panel Figs. [3.§ and [3.9] combined.
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1, the series 3577 v (1)1 (7n —plasd=ly g

dominated by the d = —2 renormalon, and therefore, the optimal truncation formula we have obtained in Eq. (1.86))

Np(*Q) n+1

terminant is due to the fact that around the order « is still not
fails because to obtain it, we have assumed the series to be saturated by the renormalon around the truncation
point. The reason is that, even though we would expect from Eq. that, the further away from the origin a
singularity in the Borel plane is located (for singularities with the same s, which since all of them are simple poles
is the case), the smaller its contribution to the large n asymptotics to be, this can be spoiled if the residues Z; of
some singularities are very suppressed. This is indeed the case for UV renormalons in the pole mass. Notice that
all singularities in the Borel plane of the pole mass stem from the following term in the Borel transform Eq.

eexug(] U)W _ % _ (3.116)

Consequently, in the Laurent expansion of this term around the singularities located at u = d/2, they all pick a
e~ cx4/2 factor. For the schemes we have considered cx < 0, and therefore, for IR renormalons with d > 0, we have
an exponential boost to Zg, but for UV renormalons that have a negative d, we have an exponential suppression
of Z;. Because of this, it is possible for an IR renormalon that is further away from the origin than an UV one to
dominate the coefficients, or at least to contribute quite sizably to them. This is exactly what happens with the
d = —2 and d = 3 renormalons in the pole mass. This explains the modest contribution of the inclusion of T_»
in the hyperasymptotic series. The effect is more pronounced in the lattice scheme because cjatt is considerably
bigger in absolute value than cyrs. In any case, the convergence is still quite good, and the inclusion of the d = 3
terminant makes things even better as it is seen in .

Let us discuss the results in more detail. We first observe that the m dependence of mEY, is basically eliminated
in mg\S/ - mgs, as expected. This happens both in the lattice and MS scheme. The latter shows a stronger ¢
dependence. This is to be expected, as in the MS, we truncate at smaller orders which makes the truncation
ambiguity bigger. As we can see in the left panel of both schemes yield consistent predictions for
mEY —mEg. We can draw some interesting observations out of this analysis. Since the lattice scheme works better
than the MS scheme, specially for lower mass scales (and keeping in mind that, as we have said earlier, the lattice
scheme can be considered the MS scheme with a larger renormalization scale 1), to evaluate mg\sf — mgs it seems
that working with a larger renormalization scale may be better, at least if enough coeflicients of the perturbative
expansion can be obtained.

We now turn to mg\sf — mgs —Ty. Adding the first terminant brings much better agreement with expectations,
and we get closer to zero. After the introduction of 77, the MS scheme yields more accurate results than the lattice
scheme. This can already be seen in the left panel of and in greater detail in the right panel of said
figure. Once foiﬁvf()l) G Ty(zas:dzl))anﬂ is incorporated in the prediction, most of the difference between
schemes disappears. As we have already discussed, the effect of introducing T_5 is very small, in particular in the
lattice scheme. In any case, the difference between schemes gets smaller and smaller as we go to higher orders in
the hyperasymptotic expansion, in particular at short distances. We also want to stress that this analysis opens

the window to apply perturbation theory at rather large distances. Note that in the left panel plots in

[Figure 3.9, and [Figure 3.10] we have gone to very large distances. It would be interesting to see if the same happens

beyond the large By approximation.
We can display the convergence in the same fashion it was done in by showing what happens order

by order. In analogy with the plot of the static potential, where we took r = 0.04ry, we now take m = 25 ral
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Figure 3.11: |m&Y — mg\sf’hyp| in 7o units for ny = 0 and ™ = 25r;'. Full/Empty circles correspond to the

MS/lattice scheme. We choose the smallest positive ¢ that yields an integer value of Np: NIQTS (1) = 3 with
c = 1.2717 and N{t(1) = 7 with ¢ = 0.1524. Blue points are |[mE¥ — My|, where the order at which the series

of the pole mass is truncated oV ! is specified in the horizontal axis. Orange points are |mg\S/ - mgs - T —

N :d=1 . Np(—2 :d=1
S st (i — pas ))a"+1|. Green points are |mEY —mEg — Ty — Znigvp(a)ﬂ(rn —plas ))an-i-l ST,

N s:d=1 s:d=—2 s Np(—2 s:d=1
2 n=nNp(—2)+1(Tn e ))O/H'l |. Red points are [mEY —mEq—T1 — Znigvp ()1)+1 (rn e ))oz"H -

Np(3 as:d=1 as:d=—2 n N as:d=1 as:d=—2 as:d=3 n
Toa =38 oy (=70 = Nt — Ty 3N (D ) _plasd=3)y qnt1

Notice that all terms have a series that is truncated at order oV 1!
correspond to the inclusion of the various terminants.

as specified in the horizontal axis. The jumps

and consider the Np with the smallest positive ¢ (notice that since 1/25 = 0.04, the values of Np and ¢ will be the
same here as we had in NMS(1) = 3 with ¢ = 1.2717 and Nt (1) = 7 with ¢ = 0.1524). The numbers
are shown in We find that the inclusion of the d = 1 terminant improves the convergence, and just
as we have seen earlier, the d = —2 renormalon is barely visible, specially in the lattice where we see that the
inclusion of the terminant does not seem to do much, and we have a seamless transition between the yellow and
green points. Nevertheless, we also find that the inclusion of the d = 3 renormalon once again introduces a nice
converging pattern. All of this is in agreement with the discussion we have had around Eq. , where we have
remarked that UV renormalons are suppressed with respect to IR renormalons.

Just as we saw in both schemes yield similar precision, but in the lattice scheme (bigger scale u)
more terms of the perturbative expansions are needed to reach the same precision. One important lesson one
may extrapolate from this exercise is that, if the number of perturbative coefficients is limited, the smaller the
renormalization scale p, the better since one can obtain much better precision for an equal number of perturbative

coefficients.
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Chapter 4

Approximating the PV Borel sum:
Method 2

This chapter can be skipped on a first reading without losing continuity with the rest of the thesis. In the previous
chapter, a method to systematically approximate the PV Borel sum of a formal series, making use of a truncated
series and knowledge of the singularities in the Borel plane has been introduced. In this chapter, we will also relate
the PV Borel sum with a truncated series, but in a different way. The method relies on a equation first written
by Stevenson [64], and further polished on the works of Maxwell [75], Chyla and Burdik [65] 66], and Acoleyen
and Verschelde [67]. The outline of the method is as follows: we will consider a formal series in perturbative QCD

where the renormalization scale is fixed at a particular value p = @

R=3 ru(u= Q" (1 =Q). (4.1)

n=0

Let’s assume that the IR renormalon that lies closest to the origin in the Borel plane is located at

dp2
= 20T (4.2)
Bo
Then, from Eq. (1.86)), we know the optimal trucation point is around
do2
L= el (4.3)
Boar(pt)

We will run the renormalization scale in Eq. (4.1)), and consider a slight variation of the equation above, where the

truncation point and the scale at which the series will be evaluated will be correlated in the followng way

Na
Ryy =3 ralma™ (). (4.4)
n=0
where
A= (1 a(Q) (4.5)

and ¢’ is some positive and small number. We will then consider the Ny — oo limit of Eq. (4.4) (notice that this
also implies p — 00)

lim Ry, . (4.6)

Np—oo
Quite surprisingly, the limit above yields a finite number(!), despite the fact that the series in Eq. (4.1)) is divergent.

That is, considering a particular correlation between the truncation order and the scale at which the renormalization
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scale is evaluated as given by Eq. , we are able to obtain a convergent series which actually gives a sum when
the whole infinite series is considered. In addition to this, we will se that this sum can be related with the PV
Borel sum, using knowledge about the renormalon closest to the origin. Admitedly, the steps above look rather
mysterious at this point, so we will review in the next section the rationale behind them. This chapter is based on

68].

4.1 The method

The origin of this discussion is a paper by Stevenson [64]. In this paper, the following sign alternating factorially

divergent series was considerecﬂ
o0
R=> (-1)"nlag™", (4.7)
n=0
where aq is a small expansion parameter. Then, he considers the following equation

Qo
Q= — 4.8

where 7 is a real number, and re-expands the formal series above in the expansion parameter «

o0

= Z(f )l Z m' ymantt (4.9)

The inspiration for the transformation in Eq. (4.8) is the one loop relation between the coupling at some scale @

ap = a(Q) and the coupling at some other scale a(p)

=N
;‘Q

ol 4.10
0= @ E e (4.10)
where we would have 7 = g—g log 5 Stevenson then considers the truncated version of Eq. (4.9))
N
m n+l
Ry(r)=> (-1)"n! Z — (- , (4.11)
n=0

and uses the so called principle of minimal sensitivityﬂ [76] to obtain an “optimal” value of 7 which itself depends

on the truncation order N

1 XStevens
— — _~Stevenson_ 1o0( N 4 1) + O(1), 4.12
21 +X/Stevenson g( ) ( ) ( )

o
Toptimal = XStevenson

where X§iovenson = 0.278. Then, it is proved that when one evaluates the series in Eq. (4.11]) taking N — oo, one

obtains
1/x' +/ 1
lim Rn( dte t/*0 4.13
Neoo N( optlmal) 0 1 +t ( )
At
IBeing accurate, Setevenson actually considered R = o o(=1)"n! 7r91+1. We have ignored the 7-s to simplify the expressions
employed.

2Very briefly, the principle of minimal sensitivity is defined as follows. One considers perturbative expansions of physical quantities
Yoo o rn(r)a™ (k) evaluated at the renormalization scale p1, and then, the truncated version Ry = 27]1\7:0 rn(p)a™ (1), Motivated
by the fact that physical quantities do not depend on u, the principle of minimal sensitivity posits that the optimal scale poptimal on

which to evaluate the series is the one for which the dependence on p of the truncated series is minimal. Thus, one considers dﬁi\’ =0,

or equlvalently —= =0.
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which is a finite number. That is, beginning with a divergent expansion, imposing a renormalization scale dictated
by the principle of minimal sensitivity, which depends on the truncation order of the series, leads to an expansion

that is convergent. Furthermore, noticing that the Borel transform of the series in Eq. (4.7)) is

A 1

R(t) = 1 (4.14)

we see that the sum of the series in Eq. (4.11]), as dictated by the principle of minimal sensitivity, is the Borel sum
of the series in Eq. (4.7), where the integral of the Laplace transform is cut-off at a finite value

N—o0

1/x' )
lim Ry (Toptimal) = / dt =190 R(t) (4.15)
0

This is the key equation we are interested at. Later work generalized this result. In [75], the result in Eq. was
generalized to a wider class of sign alternating series, and shown to depend on the Borel transform of the formal
series in question having a finite radius of convergence.

The consideration of series with fixed sign diverging behavior was done by Chyla et al. in [65] [66]. For sign
alternating series, the principle of minimal sensitivity yields a relation between the renormalization scale and the
truncation order as given by Eq. 7 which is the key in obtaining a finite sum for the infinite series. Applying
the principle of minimal sensitivity to fixed sign factorially diverging series does not work, but Chyla et al. observed

that we can still consider, analogously to Eq. (4.12), the relation
™ =XN, (4.16)

provided that 1/x’ < p, where p is the radius of convergence in the ¢ plane of the Borel transform of the formal
series. Furthermore, they showed that the linear dependence in N, as given by Eq. , is the only type of N
dependence 7 can have to obtain a non-trivial (that is, finite but non-zero) limit for the truncated formal series
when N — oo. The procedure proposed by Chyla et al. obtains a finite sum for a divergent series, that however,
depends on an arbitrary constant x’, whose only constraint is for its inverse to lie inside the radius of convergence
of the Borel transform of the formal series.

The result obtained by Chyla et al. was rederived in [67] by Acoleyen et al. employing a different method that
implements the method of steepest descent. Furthermore, the authors were able to obtain the corrections in 1/N of
Eq. . The outline of their method is as follows. They considered formal series of physical quantities evaluated

at some renormalization scale Q)

R= 3 (@@, (.17
n=0
and they again considered the one loop scale transformation given by Eq. , and rewrote the series in terms
of a(n) .
R="ra(ma™ (). (4.18)
n=0
They then truncate the series above N
Ry(p) = . o™ (s) (4.19)
n=0

and consider a scale change that depends on the truncation order
pn = Qe (4.20)
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where notice that the equation above is the same as Eq. (4.16]) since trivial algebra in the above equation implies

Bo BN o
B o _ o 4.21
27(_ Og Q T 471_X ] ( )
and trivially deﬁnin X' = %OrX
S (4.22)

just as in Eq. (4.16). The scale change in Eq. (4.20]) is considered at one loop, and then it is proved that for large
N

—t

1/x’ R
lim Ry(un) :/ dt =@ R(t), (4.23)
N —o00 0

where above we have the Borel transform of the series in Eq. (4.17))

R(t) = i T”T(L'Q) £ (4.24)
n=0 :

Eq. (4.23) is precisely the result that Chyla et al. derived using another method. Also, as we have already
mentioned, Acoleyen et al. also gave the leading corrections in inverse powers of N of Eq. (4.23]).
We haven’t explicitly mentioned it so far, but with Eq. (4.23), we can obtain the PV Borel sum from the

truncated series by noticing

1/X/ —t ~ o0 —t A o0 -t ~
/ dtes@ R(t) = PV / dte=@ R(t) — PV / dte=@ R(t), (4.25)
0 0 1

/x’

and thus, using Eq. (4.23)

PV / dtes@ R(t) = lim Ry(uy)+ PV / dt =@ R(t) . (4.26)
0 N —o00 I/X/

That is, to obtain the PV Borel sum of Eq. (4.17), we need to consider the truncated series of Eq. (4.19) with the
relation between truncation order and renormalization scale of Eq. (4.20]), take the N — oo limit, and add on top
of that

PV / dt = R(t). (4.27)
1/x

Eq. (4.26) has an arbitrary parameter x’. We have earlier said that 1/x’ has to be smaller than the radius of
convergence of the Borel transform p, but other than that, we have not imposed further constraints. In [67], it was

seen that the value of ¥’ that made the cut-off Borel sum

1/x —t .
/ dt e5@ R(t) (4.28)
0

closest to the actual PV Borel sum is such that 1/x’ is slightly less than the first IR renormalon (located at
to = 22,%) of the Borel transfor Therefore, they chose

1 - 27Td0

X Bo

3As we have mentioned after Eq. , 1/x’ has to be smaller than the radius of convergence of the Borel transform in the ¢ plane.
x plays the role that x’ plays in the u plane.

4Notice that, in general, there can be UV renormalons closer than the leading IR one. Actually, this is the case that is considered
in the paper by Acoleyen et al. in [67], where they talk about the Adler function in the large By approximation, which has an IR
renormalon at v = 2 and an UV one at u = —1.

(1-d@), (4.29)
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where ¢/ > 0 is a strictly positive number. We will also see that this choice of x' makes Eq. (4.27)) scale like the
leading condensate in an OP Different terms coming from R(t) contribute to Eq. (#.27) differently. The most

important one is the one associated to the leading IR renormalon (notice that we pick R with no mass dimensions)
P (do) _
AR (t) = Zdo — /to oy Z w;i(1 —t/t)’ (4.30)

for some Zg,, w; and [. For simplicity, for now, we will only consider the j = 0 term above (in [Appendix D|it can

be seen that further j terms are subleading)

3 1 1
AR (1) = 7, =74 . (4.31)
IR |j=0 0 (1 _ t/to)l-‘rl 0 (1 - %(éot)1+l
Thus, from Eq. (4.27)), we obtain
PV /oo dt 5@ AR | (#) = Zgy x PV " et ﬁ;” (4.32)
/x = 1/x' (- gogp 't
o - 1
= Zg, x PV dtes@ ——— (4.33)
2240 (1-c'a(Q)) (1= Sttt
2ndy —2mdg_ e —2wdg, ]
= Zdo 60 « (Q)e Boa(@) x PV . dxe Po W , (434)

where we have substituted the value of x’ of Eq. (4.29), and we have factored out all the (@) dependence from

inside the integral by performing the variable change

x1<1+ bo t). (4.35)

Defining

0 727rd0x ]_
U EPV/C dre Po m, (4.36)

we see that Eq. (4.26) basically becomes

2md —2mdg_
200 a~H(Q)eFoa @ + ..., (4.37)

and we see that analogously to the method of we obtain the PV Borel sum by adding terms that are

PV / dt e @ R(t) = Jm R () + Zag
0

exponentially suppresed in negative inverse powers of the strong coupling. As we have already mentioned, by
considering terms other than j = 0 in Eq. (4.30), we obtain subleading corrections to the above equation. In

particular, from Eq. (D.4), we know that they amount to

A 2ndy  _ —2mdg
PV/ dt e=@ T R(t) = hm Ry(pn) + Zg, 500 e%a(Q) Zw 2 (Q )\If’l_ﬂ_j—l-.... (4.38)

The dots in the RHS of the above equation contain the contributions to Eq. (4.27) coming from further singularities
in the Borel plane, as well as the analytic part. It can be seen (see |[Appendix DJ) that the contributions coming
from these terms have the same parametric dependence in a(Q), and thus, all need to be taken into account at the

same time. Fleshing out the content hidden in the dots above, we have

o0

PV / " dtem @ R(t) = Jim Ry () + Za, 27/;?%%17@{ QY wid (Y, +0(a<62>)}, (4.39)
0 —00

=0

5The relation between x’ and non-perturbative terms was also appreciated in the papers of chyla et al. [65] [66].
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where we are blind to the last O(a(Q)) terms quoted above. Notice that if [ and w; are fixed according to the

method of [section 2.6| with Eq. (2.94) and so on, we have that

Il =dob—17, (4.40)
where we have defined
2
y= T (4.41)
Bo

and therefore, recalling Eq. (2.72)), we have that Eq. (4.39)) becomes a correction in powers of Aqcp

9] bdo do
PV/ dtes @ R(t) = Jim Ry (un) + ZdoM (60) v (AQCD) Q{1+ 0(a(Q))}, (4.42)
0 —00

Bo \4m Q

where we have only explicitly written the leading small a(Q) behavior.

4.1.1 Beyond one loop running in Eq. (4.19)

Let us come back to the relation of Eq. (4.16]

B0 g B/ (4.43)

27 Q

This relation between  and N has been key in obtaining the results outlined in the previous section. Let us write

the relation implied by the above equation between «(u) and N using the 1 loop relation on Eq. (4.10))

N = 27Td0 . 27Td0
~ Boa(p) Poc(Q)

It can be seen that we need not restrict ourselves to one loop running when writing down Eq. (4.18]), as long as we

(1-ca(Q)) (1-ca(Q)). (4.44)

keep the relation between a(u) and N as dictated by the equation above. Therefore, considering the running at
any loop order will yield the same limit for Eq. (4.19) for N — oo, so we might as well stick with 1 loop running
for simplicity. Furthermore, it can be seen that dropping the constant term in Eq. (4.44]) also yields the same limit.

Thus, we will in fact take

o 2’/Td0 ’
Na= oo (1-ca(Q)), (4.45)

which is the relation we have mentioned in Eq. (4.5)), and the one we will use with Method 2.

A few words about ¢/. As we have seen around Eq. , ' is a strictly positive number: ¢’ > 0. Nonetheless, we
should try to keep ¢’a(Q) close to zero, so as to not deviate much from the optimal truncation formula. Nonetheless,
we will see later that we should neither take ¢’ too close to zero, because the leading power correction diverges
logarithmically in ¢ (at least in the large 5y approximation). Usually, keeping ¢’ ~ 1 will be fine. Also, it should
be mentioned that in the large 3; approximation, there is a value of ¢’ that makes the leading power correction

vanish, as we will later see.

4.2 The QCD singlet static potential in the large (5, approximation

We will now test Eq. (4.39) against the exact formula of the PV Borel sum of the QCD singlet static potential in
the large By approximation. Adapting Eq. (4.39) to this case by including the leading d = 1 renormalon that we
have seen in [section 2.3 we get

/

VPV
! 0 Bo

arge fo

)+ O(a(1/r)), (4.46)
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Figure 4.1: Left panel: We plot Vpy — V4 — T10 for ny = 0 in the MS scheme with ¢/ = 1 versus the truncated
sums Vpy — fo;o Vo™ () — Tro, where p is fixed using Np defined in Eq. (4.45). Right panel: As in the left
panel, but in the lattice scheme.

where we have defined®|
Na

2z (1-c'a(1/r)

B N

Va= lim Y Ve (u(Ny))a™ 1 (u(Na)) = / ° dt e O Viarge 5, (1), (4.47)
0

Np—o0
A n=0

where p and N are correlated as given by Eq. (4.45), we have chosen @ = 1/r, and we have defined

A=ex?Agep, (4.48)
where the exponential integral function is
o0 eft
For future ease, we also define
4Cp - . 27
Tio = ——LAEI(Z2S). (4.50)
Bo Bo

In Eq. , we see that V4 is an infinite series. In realistic QCD scenarios, we will not be able to sum the infinite
series, nor will we have the full Borel transform to implement the RHS of Eq. , S0 it is interesting to consider
how high in Ny one needs to go in practice so that we converge to the infinite sum. In we can see this
for both the MS and lattice schemes. The values of Aqcp and cx have been chosen as in We see that
we do reach agreement with the limiting value, but that we have to go to rather high values of N4. This problem
can be severe if one tries to apply the method to realistic QCD examples, where at most we will have a handful
of exact coefficients. Luckily, we find that the use of the asymptotic expression for the coefficients for n > N*
(~ 3 in the MS and ~ 8 in the lattice scheme) is very efficient, and basically yields the same results as the exact
result. Nonetheless, it must not be forgotten that in realistic QCD examples, the asymptotic coefficients will not
be known exactly, as in this toy example, and thus, this could jeopardize the whole method. We also mention that
numerics suggests that for a given r value, the smaller x — 2 is, the larger Na has to be to achieve convergence.
Nevertheless, you cannot compare different y — 2 values for different values of r as also, in general, as r becomes

smaller, convergence is reached at higher N-s.

6Do not confuse this V4 with the V4 of Eq. (G.12)) in the context of pNRQCD.
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Figure 4.2: We plot (a) va — Va — T for ny = 0 in the lattice and MS scheme. For each case, we generate bands
by computing V with ¢/ =1 and ¢’ = ¢/, = 0.652, where ¢/ . is chosen such that YT(c/ ;) = 0. We also compare

min

with (b) Vpy — Vp — Tfll obtained with method 1 with the bands generated for Fig.

Finally, we can compare how well method 2 fares against method 1. We have displayed this in
where we have included bands taken from In both cases, we add a term proportional to Aqcp on top
of a truncated series (although, keep in mind that the parametric dependence in « is not exactly the same, being
method 1 the more precise one since 791 ~ AQCDa and T ~ Aqcp). We see that method 1 does a better job
of approximating the PV Borel sum, for both lattice and MS, and that MS works slightly better in both cases.

4.2.1 Alternative method

For the case of the static potential, there is an alternative method to compute the difference between the truncated
static potential and the PV Borel sum, by adapting the steps of some papers by Sumino [77, [78 [79, B0]. As a
bonus, we will see that this alternative path will allow us to compute subleading O(a(l / r)) terms in Eq.
that we were unable to obtain before. We will now review these steps. In these papers, Sumino considered the
singlet static potential in the large By approximation

o0

Viarge gy = 3 Voo foantt, (4.51)

n=0

and recall that in Eq. (2.27), we have seen this series to be

—2Cra(p sin(gr o 2 "
Viargeﬁo = =R Z/ q {60475 ) IOg </;26_CX> } . (452)

He then truncated it at order o’V
N-1
— 1
Vv =Y Va(wa™ (n), (4.53)
n=0
wherd’]
2d
N=_-""_A. (4.54)
Bocr(p)
"Notice that Eq. (#.54) is slightly different to the convention we have been following in this thesis where we truncate series at aN 1
where N ~ 27d

Boa®
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For now, we will leave A general, and will come back to it later. Thus, we have

— 2 "
i = S [ (B e () o

—2CFa(p) /°° sm(qr) 1—-LN
=" d 4.56
T 0 1 gr 1—-L°~° (4.56)
where we have defined
— /Boa(lu’) /1’2 —c
By virtue of Eq. (4.54)), we notice that }
dA A
L=14+—log— 4.58
+ oy los (4.58)
where we have defined
A=e?Agep . (4.59)
Substituting Eq. (4.58)) in Eq. (4.56)
4Cp /°° sin(gr) 1 { [ dA ]\} N}
VN =—— dg ——= —<1—|1+—1o , 4.60
N %o /o = log% N g ( )

and we see that we have traded all explicit o dependence in Vi for IV dependence. Sumino then makes a variable

change
q
k==, 4.61
4 (4.61)
and he also redeﬁne p= Ar, so that
4Cp . [  sin(kp) 1 dA N
VN =—=A dk 1—|1——logk . 4.62
N Bo / kp —logk N 8 ( )
Later in the computation, Sumino uses Cauchy’s theorem in the complex k plane, so the sine is writen as a complex
exponential
ACF + o eike dA N
Vy = —AIm dk 1—|1— —logk . 4.63
N5 /0 kp —logkz{ { N 8 } (4.63)

He then splits Vi in two terms, such that all N dependence of Vi is put into one term. In order to do that, we
split the integrand of Eq. (4.63) in two. Notice that if we do that, we introduce a singularity in the integration
patkﬂ at k = 1, and therefore, we need to regulate the integral before splitting. We do this by introducing a in in

the denominator

oo ikp N ~ ~ ~
Vn = @AIm lim dk S— 1{1 - {1 - % logk} } = 4CFA{1)1(TA) + UQ(rA,dA,N)} , (4.64)

Bo -0 J, kp —logk —in Bo
where
Rztmtm [ ar L 4
Il 65
vi(rd) g 0 kp —logk —in’ (4.65)
- oo elke 1 dA N
va(rA,dA, N) = — Im lim dk ————|1— —logk| . (4.66)
n—0 Jg kp —logk —in N

8Do not confuse this p with the radius of convergence of the Borel transform that we have seen earlier.
9That is, the Landau pole at g = A.
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Notice that (by construction), v; above is independent of d and A, and thus, it doesn’t care about how the series

is truncated. It was proven in [7(7] that

1 o0
v (rA) = —~/ dx e " arctan [W[\} , (4.67)
rA 0 210g(%)

where arctan(z) is defined in the branch [0, 7). Furthermore, making use of the Sokhotski-Plemelj theorem, we

can write from Eq. (4.65))

< o in(k 1
vi(rA) = PV/ dk sin(kp) + cosp, (4.68)
0 kp —logk p
which allows us to relate v; and the PV static potential
4CF ~ T ~
pv  _ ZVEF _
Viarge Bo — BO A{Ul T’]\ COs (T‘A) } . (469)

Let us turn our attention to vs, which as opposed to v1, depends on how the series is truncated. Sumino in his
[(7] considers the values d = 3 and A = 1 in Eq. , that is, he truncates the series at the optimal point as
dictated by the subleading d = 3 renormalon. He then considers the large N asymptotics of Vi, and he sees that
Vi diverges logarithmically in N. We are more interested in what happens with Vy if one truncates the series as

dictated by the leading d = 1 renormalon. In this case too, if one considers d = 1 and the simplest case with A =1
as given by Eq. (1.86])

27

~ Boalp)’

one again encounters that Vi diverges logarithmically in Ng. In fact, the expression for the large Ng asymptotics

of v in this case is (the detailed computation can be found in [Appendix EJ)

Ns

(4.70)

: % - o -1 1-— log 2
e Ns (] 1 Ng) = 4 / da & tobl-z)  log, (4.71)
p 0 x? log” 2 +m2/4
1 2 1 _
t3 log (log2 p+ 7;) - 5(*7}2 +log 2 4 log Ng) + O(Ng 1/2) ) (4.72)

where 6 is a Kronecker delta.

Let us now make contact with the contents of the previous section. We have seen in the previous section that
we can get a finite limit for a divergent series, if we correlate truncation point an p, not as shown in Eq. ,
but slightly below the optimal truncation poinﬂ, as seen in Eq.

_ 2T
-~ Boa(w)

Indeed, by taking Ny — co, we obtain a convergent expression for Vi, in compliance with all we have seen in the

previosu section. The expression for v in this case is (the computation can be found in [Appendix El)

Na (1-ca(1/r). (4.73)

~ o0 -z _ 1L T — +InZsin(Z[1 —
lim ,02(,,,/\7 1 — CIOZ(]./T‘)7NA) =g = _E _ ps—2/ dx € 2 COS(Q[ S])2 n mQSln(z[ SD ’ (474)
Na—oo P 0 s In" 2 4 7=
where s =2 — ¢/a(1/r). And thus, we have that
- _ 4CF £
Va= lim Vi = WA{v1 +vs}. (4.75)

10Notice that, so far, we have truncated at order a¥A*1 and now we are truncating at aVA. Nonetheless, both scehemes yield
the same limit when Na — oo, and therefore, there is no inconsistency by comparing the functions obtained in this section and the
previous one.
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Of course, this expression is nothing but an alternative version of Eq. (4.47)), all we have done is to reimplement

what we did earlier in another guise, and we fully expect to have

2w /
4C 1 - ZZ(1=c'a(1/r)) R
—FA{vl + 113} = ’ dt e_t/o‘(l/r)V]arge 8o (t) . (4.76)
Bo 0
Nevertheless, there is one advantage. Notice first that combining Eqgs. (4.75) and (4.69)), we can relate the truncated

series and the PV Borel sum in the following way

40 ~ ~
VEY 5o — Va = BCOFA{ - 7«1 cos (rA) — vg} . (4.77)

We stress again that this is another formulation of Eq. . Neverheless, we have seen in the previous section
that with the former formulation, we cannot go beyond the leading contribution, which is associated to the closest
IR renormalon. Interestingly, with Eq. , we are able to reproduce the leading term that we have already
encountered it Eq. , and on top of that, to obtain the first correction in a(1/r). The expression found is (the

details of the computation can be found in [subsection E.2.2)

(Vlapr‘geﬁo - VA) = 46/;1;/\{ - Ei(2g0d) + a(1/7~)62?#f' %(72 —cx +2v) + (9(a2(1/r))} . (4.78)
r~0

As we see comparing with Eq. (4.46)), the leading term agrees. As a finishing remark, we recall that by taking ¢/ = 0
in Eq. (4.45), we essentially obtain Eq. (4.70]). It is interesting to see what happens in the ¢/ — 0 asymptotics of

Ea. (7T5)

(Vs —v2)

and we see that we have a logarithmic divergence in ¢'.

4CpA
T 51; {vEﬂog(g;) 10gc’+af§(2cx+27E)+(9(02(1/7"))}’ (4.79)

r~0

4.3 The pole mass in the large 3, approximation

We can revisit the analysis we have done with the static potential for the case of the pole mass in the large
By approximation. Moreover, since the normalizations of the leading renormalons of both objects are related by
Zy = —27Z,,, we can recyle all the formulas of changing only this factor —2. Nonetheless, the big
difference will be that we do not have as much analytic control over the pole mass, and we are unable to repeat
the analysis of Thus, adapting Eq. to this case by including the leading d = 1 renormalon
that we have seen in we get

2CF . 2nc

where recall that M = m&e® o —m = oo orna™ ! as we have seen in Eq. (2.46). We have also defined

)+ O(a(m)), (4.80)

- Na g—g(lfc'a(ﬁ)) S
My = lim Fa((NA))a" T (u(Ny)) = dte= /2P NI (1), (4.81)

Na—
A oon:O 0

where p and Ny are correlated as given by Eq. (4.45), and we have chosen Q = 7. In this section, Y takes the

form

_2CF~ 27TCI

Tro Ami(=

_ 2k ). (182)
0
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Figure 4.3: Left panel: We plot (black line) mg\sf —m — My — Yo for ny = 0 in the lattice scheme with ¢ = 1

versus the truncated sums mgY — m — ZnNio rna™t(p) — Yro, where p is fixed using Na defined in Eq. (4.45),
for various values of Na. Right panel: As in the left panel, but in the MS scheme.
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Figure 4.4: We plot (a) mg\S/ —m— My — Y0 for ny = 0 in the lattice and MS scheme. For each case, we generate

bands by computing My with ¢/ =1 and ¢/ = ¢

/
min

= 0.652 and such that Y1,0(c/,;,,) = 0. We also compare with

(b) mE¥ — mEg — M obtained with method 1 with the bands generated for Fig. [3.10

Analogously to what we have done in[section 4.2] we can check how high we have to go in N to reach the limit value.
This is displayed in The same discussion as in applies. We again find good convergence,

albeit again, at relatively high values of Nj.

Finally, we compare method 1 against method 2, analogously to what we did in We display this in
Just like for the case of the static potential, we again find that method 1 does a better job than method
2, and that the MS scheme works slightly better in both cases.

4.4 Qualitative comparison with Method 1

Having reviewed in detail two methods to obtain the PV Borel sum of a formal series from truncated expressions,

it is worthwhile to discuss how they compare with each other. Method 2 has the nice feature that p dependence

vanishes from the truncated sum and from the leading power correction in Eq. (4.39)), which complies well with

the fact that the PV Borel sum is g independent. This is unlike method 1, where there is always a residual u

dependence, which nevertheless, becomes more and more exponentially suppressed as more terms are included in
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the hyperasymptotic expansion. Method 2 also has the nice feature that the leading correction to add on top of
the truncated sum has the same scaling as the NP power corrections dictated by the OPE, unlike method 1, due
to the a'/? term.

Nonetheless, as we have already mentioned, method 2 has some clear shortcomings. On the one hand, we
cannot go beyond Eq. and add more and more terms to obtain a better precission, as it is detailed in
Method 1 is in principle systematically improvable, as long as we know enough about the Borel
plane of the observable in question. Moreover, there are other more practical difficulties. First, in order to apply
Eq. , we need to know the Borel transform exactly, which in general will never be known. If one tries then to
use truncated sums for large truncation orders, asymptotic coefficients will need to be used at some (rather early
in most cases) point, which will introduce more uncertainties. Furthermore, these asymptotic coefficients will not
be known exactly in general, due to uncertainties in the normalizations of the renormalons, which will hinder the
method even more.

Due to to the fact that it is systematically improvable, and to its cleaner practical implementation, we will favor

method 1 in the rest of the thesis.
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Chapter 5

Hyperasymptotics of the average
plaquette and the gluon condensate

This chapter is based on the article [8I]. We will consider the OPE of the average plaquette in gluodynamicsﬂ

oo 2
T
(P)mc = ana"H + %CGG4<G2> + O (a®Adep) (5.1)
n=0
and use it to give an estimate of the gluon condensate (G2>7
2 36 —1 - n+1 2 A6
(G = 5 3Ca"{ (Phc — > pna + 0 (a*Adep) - (5.2)
n=0

The equation above must be handled with care since, before we are able to use it, we must set a prescription to

n+1 We will consider the PV Borel sum to regulate the perturbative

sum the divergent infinite series ZZOZO P
series of the plaquette, and employ the method of to obtain it from truncated versions of the perturbative
series. To set the stage, we will very briefly review in the next section gauge theories on the latticeE] with the aim

of introducing the main character of this chapter: the average plaquette.

5.1 Gauge fields in the lattice, the plaquette and the Wilson action

We consider four dimensional Euclidean space, and we discretize it with a hypercubic lattice [83] of N = N3 x N3 x
N3 x Ny lattice sites, where each N, € N denotes the total number of lattice sites on the direction p. We denote
the lattice with the symbol Ag. The distance between neighboring points, the lattice spacing, will be denoted by
a. Points in the lattice will be denoted by n = (n1,n2,n3, n4), where n, =0,1,..., N, — 1. The position of a given
lattice point from the origin is = an = (any, ans, ans, any). We will denote with i a step of one lattice spacing
unit on the positive direction p. Thus, if ¢(n) is a field at the lattice point & = (any, ang, ans, any), then ¢(n + 4)
is a field located at the point @’ = (ani, ans,ans, a(ng + 1)).

For a lattice formulation of Yang-Mills theory, it proves convenient to use the discretized version of the gauge

transporter. The continuum version is

Glx,y) = Pe ewy @ A (5.3)
where Cyy is a path that goes from x to y, and P denotes path ordering. The discretized versiorﬂ is

Uy (n) = eadn) | (5.4)

1SU(3) Yang-Mills theory without quarks.
2The introductory sections of this chapter are based mainly on the book [82].
3 Actually, the discretized version when z and y are infinitesimally close.
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n Uu(n) n+ip  p Ul(n) = U_p(n+ f1) n+ i

Figure 5.1: Left image: Link variable connecting n to n + . Right image: Link variable connecting n + [ to n.

We will call the above object the link variable. A, (n) is the discretized version of the gauge connection, and thus,
it is a SU(3) Lie algebra valued object. Notice that then U,(n) is a SU(3) matrix. Graphically, this object is meant
to be understood as the oriented link going from n towards n + fi. Notice that then, U_,(n + fi) brings us back
from n + {1 to n, so that U,(n)U_,(n + (1) = L3xs. Since we are using unitary matrices Uu(n)UZ(n) = T3x3, and
therefore

Uj(n) = U_uln+ ). (5.5)
that is, the adjoint matrix U 2: (n) depicts a link going towards n from n + fi. This is all portrayed in

In the lattice, instead of using the field A,,, it is customary to use the link variable U, as the degree of freedom to

construct the theory. Gauge transformations of the link variable are implemented via
Uu(n) = Uy, (n) = E(n)U,(n)E (n + f) (5.6)

where E(n) is also a SU(3) matrix. From Eq. (5.6)), one can deduce that the ¢race of the product of link variables
in a closed loop is a gauge invariant quantity. The simplest of these products is the plaquette, which is a product of

link variables starting at the point n, that goes through n + &, n + i + 7, n + ¥ and back to n. This is illustrated
in [Figure 5.2, We will denote this object by U, (n). Thus, we see that

Upa(0) = U, (n)U, (n + @)U} (n + 0)U (n). (5.7)

Notice that quite trivially, we have that
U;L,(n) =Uypu(n). (5.8)

The lattice action for Yang-Mills fields, the so called Wilson action [83], is a sum over all plaquettes on the lattice,
where each plaquette is counted with only one orientation
IieonlU] = = 30 3 Rete {1 - Uy (n)} (5.9)
9" veAp n<v
where g is the gauge coupling in the lattice. It can be seen that in a naive small a expansion, this action returns
the continuum action for Yang-Mills theory. Noticing that the trace of the transpose of a complex matrix is the
same as the trace of the original matrix, one can write also write

Iwitson[U] = g% SN (1 - %tr {Uu(n) + ij(n)}> : (5.10)

n€Ap p<v

or defining as it is customaryﬂ 8= g% = =

IWilson[U] = ﬂ Z Z (1 - étr {Um/(n) + Ulu(”)}) . (511)

neEAp p<v

4Do not confuse this 8 and the beta function u%a(u) =p.
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Figure 5.2: The plaquette.

5.2 The average plaquette and the gluon condensate

Let us define
1
Pow=1- étr{UW(n)—l—UlL,(n)} , (5.12)

where, notice that Eq. (5.8) implies that P, ,,,, = Py, We further define

1
Py=c > P (5.13)

p<v

With these definitions, the Wilson action of Eq. (5.11)) can be written in the following way

Iwitson[U] = 68 ) Pa. (5.14)
nEAg
We now define the average plaquette as
1
(P)= 7 > (P, (5.15)
neAg

where the brackets above denote the following correlation function

1
() =3 SU(3) [dU)e eVl p, (5.16)
1 I 1
:672 SU(3) [dU]e IWI]SOD[U] Z (1 — 6 tr {U’“/(n) =+ UJV(”)}) 5 (5.17)
p<v

where the integration measure is the Haar measure, and Z is the partition function

zZ = [dU]e—IWilﬁon[U] . (518)
SU(3)

(P,) is translation invariant so that (P,) = (P)

P =5 3 )= (), (5.19)
neEAE
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where of course, we could have taken any other lattice point besides n = 0. Let us consider expanding the integrand

in Eq. (5.17)) in a small a(1/a) expansion, commuting sum and integral, and then performing the path integral
P -3 [ » )[dU]e’IW“SO" vip, (5.20)

~ an a"(1/a) = (P)pere(N) - (5.21)

The series above is the perturbative expansion of the average plaquette for a lattice with IV lattice sites and lattice
spacing a. The coefficients of the series above were computed first until O(a?) using diagrammatic techniques

[84] [85, [86] and with NSPT [87, [88l, [89] in [88] [0, (911 [92] 93] 94] at various orders in perturbation theory. We

use the data from [94], that was able to obtain the cofficients of the series until O(a3®). In this reference, the

coefficients p,, (N) were computed for lattices with varying N values, and then, the large volume N — oo expansion
of these finite volume coefficients was considered

fn(N)

Nio O(N~%), (5.22)

pn(N) = DPn —

and the infinite volume coefficients p,, were computed. Coming back to Eq. (5.17), we can perform an OPE of the
average plaquette as in Eq. (5.1))

s 2
T
<P>MC = E pna"'H 4+ %CGG4<G2> +0 (aﬁAgCD) . (5.23)
n=0

The series in the first term in RHS above is the infinite volume perturbative expansion of the average plaquette,

(G?) is the RG invariant gluon condensate [95]

(G2) = — <’5 Ge,Ge,

> - <Q ‘[1 +0(a)] %GZVGZV

Q> , (5.24)

and the Cg is the Wilson coefficient of the gluon condensate, which is proportional to the inverse of the beta

function [96], [O7]

@) =1+ caft foo” (5.25)
= o = — .
=0 2mB()
CBia B = BB f Nt B} —2B01Ba + B3P (a3 4
TR m® (47r> 3 (47r) +0(e)
The scheme independent coefficients read
Bo =11, (5.26)
£ =102. (5.27)

For j < 3, the coefficients 3; are scheme dependent. The Wilson action lattice scheme (; has been computed
diagrammatically [7T], 98] [99]
B2 = —6299.8999(6) . (5.28)

The value for 83 that we use is an update of [I00, [I01], and was obtained [70] by calculating the normalization of
the leading renormalon of the pole mass, and then assuming the corresponding MS-scheme expansion to follow its

4

asymptotic behaviour from orders o* onwards

Bs = —1.16(3) x 10°. (5.29)
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Similar estimates, 83 ~ —1.37 x 10% up to 83 ~ —1.55 x 105, were found in [I02] using a very different method.

For convenience, we also write the expansion coefficients ¢ defined in Eq. (5.25)

2 3
Cco = —b§77(;7 cl = 81b (262_) 5 Cy = —282b2 (26;) N (530)

where we have employed the constants defined in Eq. (2.73)), Eq. (2.74) and Eq. (2.75). As we have already
mentioned, Eq. (5.23)) can be used to give an estimate of the gluon condensate

36
m2q4

(G?) = 051{<P>Mc -3 pna"H} + 0 (a*Adcp) - (5.31)
n=0

The series of the plaquette above is divergent, and therefore, in order to obtain the gluon condensate, we need to
first choose a method to assign a number to it. Extracting the gluon condensate from the average plaquette was
pioneered in [84] [T03] 104, [105], 106], and many attempts followed during the next decades, see [85, 88| 107 90,
108, (109, 9T, 110, 111, @3]. Nevertheless, they suffered from insufficiently high perturbative orders and, in some
cases, also finite volume effects. The failure to make a controlled contact with the asymptotic regime of the series
of the plaquette prevented a reliable lattice determination of (G?), where one could quantitatively assess the error
associated to these determinations. Any reasonable definition consistent with (G2) ~ A* can only be given if the
asymptotic behaviour of the perturbative series is under control.

This problem was first solved in [94, [TT2] where for the first time, the perturbative series of the average plaquette
of 4 dimensional SU(3) gluodynamics was computed with superasymptotic accuracy, up until O(a%). The observed
asymptotic behaviour was in full compliance with renormalon expectations, with successive contributions starting
to diverge for orders around a?”-a?3° within the range of couplings a typically employed in present-day lattice
simulations. This made possible a reliable determination of (G?) that scaled as AéCD. In these references, the IR

renormalon of the series of the average plaquette was regularized by simply truncating the series superasymptotically

no

(G = 7§§4051{<P>Mc - anam} £ O (Al | (5:32)

n=0

where ng is chosen such that |p,,a™*!| is numerically smallest. One issue raised was to determine to which extent
such a result was independent of the scheme used for the coupling constant. The answer to this question can
be given within the framework of hyperasymptotic expansions of renormalizable quantum field theories that we
have seen in as developed in [68] [70, [69]. Instead of truncating the perturbative series of the average
plaquette, we can use the PV Borel sum to regulate the renormalon, and approximate it from truncated sums using

terminants, as we have already seen:

0o N
PV ana""‘l = ana"'H +T+..., (5.33)
n=0 n=0

where T denotes the leading terminant. Since the PV Borel sum is scheme independent, as we have seen in
Eq. 7 the scheme dependence of using the superasymptotic approximation to the perturbative sum is of
O(m Z pAéCD), where Zp is the normalization of the leading renormalon that we will find in Eq. . This
error then sets the parametric precision of the determination of the gluon condensate using the superasymptotic
approximation. Note that the scheme dependence of Zp and A‘éCD cancels each other. Therefore, the only

remaining leading scheme/scale dependence of the error is due to the y/a(1/a) prefactor. In this chapter we
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revisit the analysis found in [I12], and use the PV Borel sum to regulate the perturbative expansion of the average

plaquette
© 2
(Pyyic =PV pamt! + %cea4<c:2>w +0 (aAdcp) (5.34)
n=0
36 =
(GPpy = o CG1{<P>MC ~PVY paa +1} + 0 (a®Adyep) - (5.35)
n=0

We will reach better accuracy by incorporating the leading terminant. We will also discuss subleading effects. We
confirm that the result we obtain is independent of the scheme/scale used for the renormalization of the coupling

constant (up to terms that are higher order than the accuracy reached by the hyperasymptotic approximation).

5.3 The hyperasymptotic expansion of the average plaquette

In order to implement the PV Borel sum of the series of the average plaquette, we will employ Dingle’s terminants
and the hyperasymptotic expansion of To ease notation, we will denote the PV Borel sum of the average

plaquette by Spy. The expansion reads

Np(4) N/
Spy = Z pra”™ ™t + Qa2 + Z [pn — PPt 4. (5.36)
n=0 n=Np(4)+1

The leading IR renormalon of the perturbative series of the plaquette is located at t = %’; (in compliance with a

condensate of dimension four in the OPE), and therefore, in Eq. (5.36) we take

8w

Np(d=4)= ——(1 —ca(l/a)). 5.37
Pl = 4) = 5= (1= ca(1/a) (537
To simplify notation, we also define
Np(4)
Sp= Y pna"tt. (5.38)
n=0

By default (just like in the examples we have seen in the large 8y approximation), we will take the smallest positive
value of ¢ that yields an integer value for Np, but we also explore the dependence of the result on c. In principle, N’
would be given by the location of the next singularity in the Borel plane. In practice, we will not have knowledge
of enough p, coefficients to reach the second singularity, and hence, N’ will be limited to these known orders.
Therefore, we will have an incomplete Zf; Np(4)+1 [pn — p%as)]anﬂ. We will come back to this later. The large n
behavior associated to the d = 4 renormalon of the coefficients p,, is given byﬂ

(as) _ Bo\" T(n+1+4b) 4b 4b(4b — 1) 1
P = Zp <87r> iz U nran Tarmmrn-ntola)y 639

where w; and wq are those of Egs. (2.95)) and (2.96]), adapted to this particular case

2mcy

= 4 5.40
w1 60{) + S1, ( )
4b 472y 4s1  2mcy
= — 4 — —4 5.41
w2 ab— 1 { 68()2 + 451 ( 2 + Bob 52 ¢, ( )
5The notation is slightly different in [04), 112] [81], where w; is called by and wo = %.
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where, just as before, s; and s are given by Eqgs. (2.74) and (2.75), and the small o expansion coefficients of the
Wilson coefficient of the gluon condensate are given by Eq. (5.30). Using these values for ¢y and ¢1, we can simplify
further

wy, = 481 -1 5 (542)

16b 4sy 1
w2—4b_1{81 (2—1+%) _52}- (543)

The value of Zp was determined approximately (for ny = 0) in [94]
Zp = (42+17) x 10*. (5.44)

We name Qg2 the terminantﬁ associated to the d = 4 renormalon of the series of the plaquette. It is given by

Eq. (3.66)
Qge = AQ(4D) + w1 AQAD — 1) + we AQ(4b — 2) + - -, (5.45)

where we take AQ from Eq. (3.70). The small a(1/a) expansion of Qg2 can be written adapting Eqgs. (3.72]) and
(3.73)) to this particular case

Qe = Kf?a‘*AaCDaW(l/a){l + Kigha(l/a) + Kip 5a®(1/a) + O (a*(1/a)) } : (5.46)
or
—4b
Qe = K (W} e~ T o 1/2(1 /a>{1 + E®a(1/a) + K a2(1/a) + 0<a3<1/a>>} . (547
where
KP) _ F(%ﬁb)QQ—&-%Wﬁglh <—77¢+ ;) ’ (5.48)
ﬂm:&ﬁﬁﬂ—%m(bﬁé)—é@+im—£®y (5.49)
1(§P>::135P)__2§€§§1, (5.50)
R = 5_320(%:); [_ w)(4b — 1)4b (in + 152>
+m%ﬂgﬁﬁéﬁ—im—£;)wgﬁ—$¢+éﬁf
+$ﬁ_éﬁfd§§y (5.51)
K" = 8%(879[‘(;” — 16bms1 B0 K" + 166753 83 + 8b25232) , (5.52)
and n. = —4b+ %—:c — 1. The error on Zp will give the biggest source of uncertainty in the determination of Qge,

of the order of 40%. The other source of error is that, as opposed to the examples in the large 3y approximation,
only approximate expressions are available for Qg2 (see Eq. (5.45), Eq. (5.46), and Eq. (5.47)), since we do not
know the complete set of coefficients w;. Being that as it may, we can study the convergence pattern of the various
expressions we have presented for the terminant. We show the results in Table for a representative set of values

of o in the interval that we will use later. The first observation is that we observe a very good convergent pattern

6Notice that, since the series of the plaquette has no mass dimensions, Q = 7.
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s | Np | Q%eePxa05 | ol%Px10° [ 0505107 | 0P x107 | 08 Px10° [ 08%9x10° | 02)x10° | 08P x10° [ 05aD) 107
58 | 27 | -230.14 -16.23 -16.50 -146.41 -23.06 -23.07 7479 2431 -24.30
6. | 28 | -50.114 6.611 -6.723 -32.821 -9.344 -9.349 -18.509 -0.883 -9.886
62| 29 | -14.031 -2.689 2735 -0.433 -3.781 -3.783 -5.746 -4.013 -4.011
6.4 | 30 -4.639 -1.092 L1l -3.194 -1.528 -1.529 -2.069 -1.625 -1.624
6.6 | 31 | -1.6640 -0.4426 -0.4505 -1.1705 -0.6165 -0.6170 -0.7974 -0.6571 -0.6561

Table 5.1: A representative set of values of Qg2 using Eq. (5.46) (Aqcp), Eq. (5.45) (exact) and Eq. (5.47) (exp).
LO, NLO and NNLO with regards to the exact expression mean that in the LO expression, we just take the first

term on the RHS of Eq. (5.45). In the NLO, we take also the second term, the one proportional to wi, and for
NNLO, we take also the one proportional to wy. Of course, LO, NLO and NNLO for Eq. (5.47) and Eq. (5.46)
mean various orders in the expansion in « inside braces in Eqgs. (5.47) and (5.46)).

of the weak-coupling expansion of the terminant using Eq. or Eq. : consecutive terms quickly become
smaller. The second observation is that the strict weak-coupling expansion used in Eq. is quite close to the
exact numerical determination of Eq. for analogous precision.

On the other hand, if we use Eq. , the version with Aqcp, the convergence is not goodﬂ As it can be seen
in Table we have to go to [-values rather larger than 6 to get decent accuracy. What lies behind is the fact
that AISSD is not well approximated by its weak coupling expansion at low orders. A similar behavior, albeit less
severe, will be seen later for the B meson mass in the lattice. The main difference with that case is that now the
power of Aqcp is four instead of one. This makes the relatively bad convergent behavior of the small o expansion
of Aqcep get amplified by a factor of four. Thus, in what follows, we will always use Eq. as our approximated
expression for g2, as it produces a nicely convergent series, and the weak coupling expansion is organized in terms
of a single parameter a. The error associated to truncating the expansion in Eq. is estimated by observing
the convergent pattern of the LO, NLO and NNLO results in Table [5.1] From LO to NLO, in the worst cases,
the differences are close but below 50%, and from NLO to NNLO the differences are below 10%. One could then
expect the NNNLO contribution to be at the level of few percent, which can be neglected altogether in comparison

with the ~ 40% error associated to Zp.

5.4 Error sources

Let’s get back to Eq. ((5.35)

36

(GHpy = WCG {(P)Mc - Spv} + O0(a*Adcp) - (5.53)

This equality is expected to hold up to corrections of order O(aQA%CD). This would be the accuracy we would have
in the determination of the gluon condensate, if all the elements of the equation above were known exactly, but
unfortunately, this is not the case. Neither Spy nor (P)yc are known exactly. On top of that, we have to account
for the fact that C 1 and the relation between the lattice spacing a and 3 are also known in an approximated way.
We now discuss how we determine them and their associated individual errors.

We take the MC data for (P)yc from [114], and we display it with its associated error in Table Similarly
to what was done in [112], we restrict ourselves to data for lattices of 324 points, and to keep finite volume effects
under control to 8 < 6.65. We also limit ourselves to 8 > 5.8 to avoid large O(a?) corrections. It is noteworthy
that at very large [-values there is a strong cancellation between two huge numbers, Sp and (P)yic, giving rise to

a comparatively much smaller number. We illustrate this cancellation in Fig. [5.4

—2md,

"We use the value Aqcp =e 50 x 0.602 1”51 113} [74], where d1 = 5.88359144663707(1) |71l [72} [73].
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(G*)py

0.10 0.15 0.20 0.25

a in rp units

Figure 5.3: Gluon condensate with superasymptotic approximation (0, Np) (blue lines) and with hyperasymptotic
accuracy (4,0) (black lines). In both cases, for each corresponding 8, we show the value obtained for the gluon
condensate with the values of Np using the smallest positive (upper line) and negative (lower line) value of ¢
that yields an integer value of Np. For the hyperasymptotic approximation with positive ¢, we also show the
statistical errors of the MC determination of the plaquette (inner error), and its combination in quadrature with
the statistical error of the partial sum (outer error). We also show the superasymptotic approximation obtained
in [I12] truncating at the minimal term determined numerically (brown line). The horizontal green band and its
central value are our final prediction, and the associated error, for the gluon condensate displayed in Eq. .

4x10*
36 Cg
4 \PIMe
3x10* ]
36 Cs
50 [(Pyyyc-Se]
AN
ty 2x10°
~
10*
OFrem—— = —— — e s om o = —— & o & ST E———y
0.10 0.15 0.20 0.25
a in ry units
Figure 5.4: %<P>MC (continuous blue line) and % [(P)mc — Sp] (dashed red line). The second line is

basically indistinguishable with respect to zero with the scale resolution of this plot. The statistical errors are
smaller than the size of the points.

79



B a in ro units 1—(P)mc Np(4) c
5.8 0.27285 0.5676510(205) 27 0.3302
5.85 0.24628 0.5751226(54) 27 0.4350
5.87 0.23672 0.5778923(54) 28 0.0392
5.89 0.22771 0.5805461(44) 28 0.0811
5.895 0.22554 0.5811950(46) 28 0.0915
5.9 0.22340 0.5818383(49) 28 0.1020
5.91 0.21921 0.5831025(46) 28 0.1229
5.925 0.21314 0.5849659(46) 28 0.1544
5.95 0.20357 0.5879738(40) 28 0.2067
5.98 0.19293 0.5914373(39) 28 0.2696
6 0.18630 0.5936846(39) 28 0.3114
6.04 0.17404 0.5979958(40) 28 0.3952
6.06 0.16836 0.6000816(34) 28 0.4371
)
)
)
)
)
)
)
)
)
)
)
)

6.065 0.16698 0.6005991(35 29 0.0099
29 0.0204
29 0.0413
29 0.0832
29 0.1251
29 0.1670
29 0.2926
30 0.0644
30 0.1691
30 0.2738
31 0.1503
31 0.3598

6.07 0.16563 0.6011049(36

6.08 0.16296 0.6021223(38

6.1 0.15782 0.6041315(38

(
(
(
(
(
(
6.12 | 015292 | 0.6060953(33
6.14 | 014825 | 0.6080241(35
(
(
(
(
(
(

6.2 0.13545 0.6136303(32
6.3 0.11746 0.6224187(30
6.35 0.10972 0.6265895(30
6.4 0.10265 0.6306291(28
6.55 0.08460 0.6420618(26
6.65 0.07450 0.6491831(19

Table 5.2: We depict various quantities associated to the various lattice spacings considered. MC data for the
average plaquette extracted from [I14] for 32* lattices and various values of 3. The values of a have been obtained
with Eq. (5.54). The Np(4)-s are the ones associated to the smallest positive values of ¢, which are listed in the
last column.
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In the lattice scheme, Eq. (2.72) is not accurate enough to relate the lattice spacing a with g for the -values

used in this paper. Instead, we employ the phenomenological parametrization of [I13] (z = 5 — 6)
a=roexp (—1.6804 — 1.7331x + 0.78492° — 0.44282°) | (5.54)

obtained by interpolating non-perturbative lattice simulation results. Equation was reported to be valid
within an accuracy varying from 0.5% up to 1% in the range [113] 5.7 < 8 < 6.92, which includes the range
B € [5.8,6.65] we use in this paper. The values of a obtained with Eq. for the $-s considered are shown in
Table 5.2

From Eq. , we get the small o expansion of the inverse Wilson coefficient

2
Cgl(a) =~ gi(;) (5.55)
- B« Bo a2 (3 /a\3
“+ gt g (o)t (a) Foe.

The corrections to Cg = 1 are small. However, the O(a?) and O(a?) terms are of similar sizes. We will account
for this uncertainty in our error budget. For the central value fits, we will use the expansion above including the
o term.

We now turn to Spy. As we have mentioned above, we compute it using the hyperasymptotic expansion. This
introduces a parametric error according to the order at which we truncate the expansion, as seen in
On top of that, we also have uncertainties in the building blocks of the expansion. The coefficients p,,, obtained
in Ref. [94], are not known exactly. They carry statistical errors, and successive orders are correlated. Using the
covariance matrix, also obtained in Ref. [94], the statistical error of Sp can be calculated. In that reference, the
coefficients p,, (IV) were first computed on finite volumes of N4 sites, and subsequently extrapolated to their infinite
volume limits p,,. This extrapolation is subject to parametric uncertainties that need to be estimated. We follow
Ref. [94], and add the differences between determinations using N > v points for v = 9 (the central values) and
v =7 as systematic errors to our statistical errors. This is the same error analysis as the one used in [112].

We emphasize that the order at which we truncate the perturbative series (that is, «**1), is different from
the one used in [112]@ The difference between both determinations gives an estimate of the parametric error of
the determination of Spy by using the hyperasymptotic approximation to (0, Np(4)) level. The magnitude of Qg
gives an alternative estimate of this error. It is also interesting to see the magnitude of changing Np by one unit
by fine tunning ¢ from the smallest positive value that yields an integer value of Np to the smallest (in absolute
value) negative value that yields an integer value of Np. Typically, this yields slightly smaller errors. We illustrate
this discussion in Fig. All these error estimates scale with the parametric uncertainty predicted by theory
~ 0(6_4W) ~ O(a*AQcp) times y/a, as mentioned in.

If we increase the accuracy of the hyperasymptotic expansion by adding the terminant Qg2 on top of the su-
perasymptotic approximation, the parametric error decreases, and the accuracy reached is (4,0). With this accuracy,
the parametric error in the hyperasymptotic expansion is ~ 0(6_4W(1+log(3/2))) ~ O((aAqep)*(1+1ee(3/2)),
As it has been mentioned before, we only approximately know Qg2, and its error will obfuscate the signal of these

O((aAqep)*(1+108(3/2)) effects. For Qg2, we use the analytic expression in Eq. (5.47) truncated at O(a?). The

8 As we have already mentioned around Eq. (5.32), in this reference the perturbative expansion was truncated at a™0*1 and in
general ng is not for all 5-s equal to the Np values we use, although the differences are minimal.
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error of this expression comes from Zp, and from the truncation of the weak coupling expansion of the terminant.
The largest source of error comes from Zp, which due to its size, overwhelms the parametric error associated to
higher-order terms in the hyperasymptotic expansion. We also emphasize that at (4,0) level, we add the terminant
to Sp, so the statistical error associated to it also needs to be taken into account.

Irrespective of the discussion of the error of the (4,0) accuracy, it is nice to see that adding the terminant to
the superasymptotic expression makes the jumps that we had with the superasymptotic approximation disappear.
Adding the terminant also makes the resulting curve flatter. The dependence in Np (or in other words ¢) gets
much milder too. We illustrate all this in Fig.

In principle, we know perturbation theory to high enough orders to include the last term written in Eq.
and reach (4, N') accuracy. Nevertheless, we find that the errors of p,, for large n hide the signal. We show in Fig.
how the statistical errors grow as we increase N'. Despite all of this, it is rewarding to see that the dependence

in ¢ basically vanishes. We will elaborate more on the (4, N) case later.

5.5 The fits

We now perform the fits for the determination of the gluon condensate, and implement the discussion of the errors

of the previous section. Based on Eq. (5.53)), we fit

e { e~ s (5.50)

to a linear function in a*, hereby obtaining the gluon condensate. We perform fits to various orders in the
hyperasymptotic expansion of Spy. For our central value fit, the range will be 3 € [5.8,6.65], and Cg b will be
truncated at order o3, although we will also consider variations to these specifics. The error introduced in the
fitting algorithm is the sum in quadrature of the error of the MC determination of {P)yc, and the statistical error
of Spy coming from uncertainties in the p,, coefficients. As it has already been mentioned, to obtain the latter, we
use the covariance matrix and, by error propagation, compute the statistical error of Spy. This is the same method
followed in [IT2], where the series of the plaquette was truncated superasymptotically. We show the size of these
two different errors in Fig. We now give results for the fits of the gluon condensate for different truncation

orders in the hyperasymptotic expansion.

5.5.1 Order (0, Np(4))

We start by considering fits where the perturbative expansion of the plaquette is truncated superasymptotically.

We obtain
(G*)py = 2.87(2)stat. (6) pext (4)range (8) e (T (28)nyp 1o * = 2.87(31) g ™. (5.57)

The first error displayed in Eq. is the statistical error of the fit. The following errors are systematic. The
second error is the error associated to different infinite volume extrapolations of the coefficients p,. Up to this
point, the discussion runs parallel to the error analysis made in [I12]. Nevertheless, unlike in this reference, we do
the fit in the range 8 € [5.8,6.65]. If we do the fit in the range 8 € [6,6.65], as it was done in that reference, the
result is -0.04 smaller, a small shift. This is indeed the third error in Eq. . For both ranges the reduced x?2
are similar: 0.44 and 0.42 for the range 8 € [5.8,6.65] and the range § € [6, 6.65], respectively.
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The fourth error is the difference of the fits by truncating Ci;' at O(a?) or at O(a®). The change is significant.
This seems to be due to the slow convergence of the weak-coupling expansion in the lattice scheme. We have checked
that there is convergence (albeit slow) by including higher-order terms of the beta-function using the estimates
obtained in [70].

Following [112], we assign a 2.5% error for the conversion from a to ro units. This is the fifth error in Eq. .
The last error is the estimate of the higher-order terms in the hyperasymptotic expansion not included in the
superasymptotic approximation. It is taken as the difference between the fits including or not including the leading
terminant. This basically gives the same error as considering the difference of doing superasymptotic fits truncating
the perturbative sum at the numerical minimal term, or using Eq. . Other possible ways to estimate the
error (like taking c to be negative such that Np changes by one unit) give smaller errors. This error is by far the
major source of uncertainty in Eq. . In the last equality in Eq. , we have combined all these errors in
quadrature.

For reference’s sake, we also state the results of the fits by truncating at the numerically minimal term as it
was done in [[12]. This yields, (G?) = 3.18 ry* with x2, = 0.69 for the range 8 € [6,6.65], and (G?) = 3.05 ry*
with x2 4 = 1.28 for the range 3 € [5.8,6.65].

5.5.2 Order (4,0)

We now add the leading terminant to the superasymptotic approximation and obtain
(G*)pv = 3.15(2)stat. (5) pext (9)range (9) i (8)r (8) 2, 1o * = 3.15(18) 75t (5.58)

The error analysis follows to a large extent the error analysis of the order (0, Np). The first error is the statistical
error of the fit. We mention that the central value fit yields x2,; = 0.43. The rest of the errors are systematic. The
second error is the error associated to different infinite volume extrapolations of the coefficients p,,. We emphasize
again, that we do the fits over the whole range 8 € [5.8,6.65]. If we do the fit in the range 8 € [6,6.65], the
result is +0.09 larger with a rather small x2 ; = 0.019. This is the third error in Eq. . Having a look to the
points in Fig. [5.3] the remaining a dependence is very small but may point to a small negative slope. If anything,
this effect is only visible for the largest distances. At short distances, the a dependence is completely hidden by
the errors, which reflects in this very small x?2 ,, but even at the largest distances, the errors hide any meaningful
signal of these effects. Note that this possible remaining a dependence can be associated to higher-order terms of
the hyperasymptotic expansion of Spy, which would then scale as O((aAQCD)4(1+1°g(3/ 2))) rather than to genuine
nonperturbative corrections that would scale as (’)(aGAgCD). In this respect, and as we will see in the next section,
it is worth noting that this small slope somewhat tends to disappear as we work with precision (4, N'), albeit with
a huge error (see Fig. [5.6]).

The fourth error is the difference of the fit truncating to O(a?) or to O(a?) the perturbative expansion of Cg'.
The fifth error is the one associated to the conversion from a to rg units. The last error is the error associated to
Zp, the normalization of the leading renormalon. The error of this quantity is heavily correlated to the knowledgeﬂ
of the coefficient wy. Therefore, to estimate this error, we correlate the change of Zp to setting we = 0, that is,

we perform fits taking Zp = (42 + 17) x 10* where wy is set to zero everywhere, and then take the difference of

9Very briefly, in [94] Zp was estimated by comparing pag with its asymptotic behavior given by Eq. (5.39), and the error of Zp
comes from including the wg term in Eq. (5.39) or not.
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Figure 5.5: Determinations of (G?)py with hyperasymptotic approximation (0, Np), (4,0), (4,31), (4,32), (4,33),
(4,34) (black points). We also display the determination obtained in [I12] (square blue point). The error displayed
is the sum in quadrature of all the errors considered.

the result with the central value fit. As it has been stressed before, the subleading terms of the weak coupling
expansion in Eq. produce a smaller change and can be neglected.

We now discuss the error associated to the truncation of the hyperasymptotic approximation. As it has
been mentioned before, the leading contributions to the hyperasymptotic expansion of Spy that are not in-
cluded in the (4,0) precision are expected to scale as O((aAQCD)4(1+1°g(3/2))), and to be suppressed by a factor
O((aAqep)*1°8B/2)) with respect to the typical size of Qg2. Unlike in the case of the superasymptotic approxima-
tion, the error commited by truncating the hyperasymptotic approximation of the PV Borel sum at (4,0) level are
small compared with other errors. Finally, we combine all the errors in quadrature, producing the last equality in
Eq. . This is our most precise prediction for (G?)py, which we display in Fig. [5.3

The central value we obtain does not change much with respect to the central value obtained in [I12]. Nev-
ertheless, this is to some extent by accident, as the fit is made over different intervals. On the other hand, the
superasymptotic approximation truncated at the numerically minimal term appears to approach better the central
Valuﬂ We will see this also for the self-energy of the static quark in a subsequent chapter. Nevertheless, the error
is larger because the points are more scattered around, and because of the intrinsic inaccuracy of the superasymp-
totic approximation. In our case, the total error is basically shrunk by a factor 1/2. Note that the statistical error
and the error associated to the infinite volume extrapolation of the coefficients are smaller now. The improvement

in the quality of the fit can also be observed by the flatter curve we have now, as seen in Fig. [5.3

10Tn this respect, one could also think of fine tuning the value of ¢ to make Np coincide with the numerically minimal term ng.
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5.5.3 Order (4,N’)

We may try to increase the accuracy reached with the (4,0) hyperasymptotic approximation by adding the last
term of Eq. . Nevertheless, the errors quickly grow and get out of hand. This is mainly due to the error of the
coefficients p,, of the perturbative expansion for the last few orders in a. We have repeated the same error analysis
as in the previous sections for N/ = 31, 32, 33, 34. We show the obtained central values and errors in [Figure 5.5
(see also . We see how the errors quickly grow. The most important source to the error comes from the

infinite volume extrapolation of the perturbative coefficients p,,.

5.6 Some plots on the asymptotics of the series of the average plaque-
tte

Before finishing the chapter, it is interesting making a parallel with the toy models studied in and

reproducing the analogue of [Figure 3.6| and |Figure 3.11| in a realistic scenario. nicely displays, for a

four-dimensional gauge theory, the standard behavior expected for a factorially divergent asymptotic series (we take
B = 6 for illustrative purposes). We first discuss the blue points. First, as we add more terms to the perturbative
series, we get closer to the MC simulation of the plaquette. We remind the reader that for 8 = 6, the Np(4) for
the smallest positive ¢ is 28, as seen in We see that that past the optimal truncation order, the blue
points still keep converging. As it can be seen in the fixed order terms p,a”*! are already growing in
absolute value for the last blue points, but they are still not large enough to have the blue points blow up. We can

be sensitive to this effect if we also subtract our central value fit result of the gluon condensate Eq. (5.58]). We are

then in the same situation as for instance the blue points in [Figure 3.6| and [Figure 3.11} where the nonperturbative

contribution is zero by construction. This is what is displayed in the black square points in We nicely

reach a minimum, and after that the series deteriorates if one continues adding extra perturbative terms.

We can now carry on and subtract the leading terminant. This is what is done for the black squares in
(we are still in the case § = 6), and one gets a plateau, which of course corresponds with g—ZC’Ga‘l(GZ)pV ~ 0.001 for
B = 6. If one also subtracts the gluon condensate, we are in the same situation as the orange points in
This is what is displayed in the red diamond points in whose qualitative behavior is analogous to the
one displayed by the aforementioned orange points of the large 3y case, in the sense that we get a jump after adding
the terminant. If more coefficients p,, were known, and if the errors in the currently known ones could be reduced,

it would be interesting to carry on with the plot.

5.7 Final remarks

We will now summarize what we have seen in this chapter. We have given the hyperasymptotic expansion of
the PV Borel sum of the plaquette, with a precision that includes the terminant associated to the leading d = 4
renormalon. Subleading effects have also been considered. This has been used to give a determination of the gluon

condensate in SU(3) pure gluodynamics
(G*Ypy(ns =0) = 3.15(18) ry . (5.59)

As we have seen, at present, the limiting factor for improving the determination of the gluon condensate in pure

gluodynamics is the error of perturbation theory. All systematic sources of error have its origin in the errors of
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Figure 5.6: Gluon condensate in r( units with hyperasymptotic accuracy (4, N') for N’ = 31 (upper panel), N’ = 32
(middle panel) and N’ = 33 (lower panel). In all cases, for each corresponding 3, we show the value obtained for
the gluon condensate with the values of Np using the smallest positive (upper line) and negative (lower line) value
of ¢ that yields an integer value of Np. Notice that except in the upper panel, these two lines are on top of each
other. In any case, keep in mind that from we see that for the highest 8-s the Np(4) associated to the
positive/negative ¢ is 31/32. Therefore, for some values of a, we cannot add any order at all (specially for the
nagative ¢ case which has a higher Np) in the cases N’ = 31 and N’ = 32. The error is the statistical error of
the MC determination of the plaquette and of the perturbative sum combined in quadrature. The horizontal green
band and its central value are our final prediction, and the associated error, for the gluon condensate displayed in
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Figure 5.7: We draw (P)ymc — Zf@v:o pna”™t1 (full blue circle points), and pya™ 1 (full red squares points) for
different values of N, up to N = 34 for § = 6. The error of the blue points is the statistical error of of the MC
simulation and of the sum Zf:;o pna” ! combined in quadrature (for large N the error of the perturbative sum is
dominant). The error displayed here of the perturbative sum does not include the systematic error of the infinite
volume extrapolation of the coefficients p,,. The error displayed for the red points is the complete error (statistical
plus systematic combined in quadrature) of the py coefficients obtained in [94] times a™*!. The black diamond
stands for the numerically minimal value of pya™ 1. The black triangle is pNP(4)aNP(4)+1 using the smallest
positive ¢ that makes Np an integer. Note that the plus/minus error does not display symmetrically in the plot
because of the logarithmic scale.
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Figure 5.8: We draw |(P)yc — S0 pna™ | (blue points) and [(P)vc — (X0 pra™ + = Cg(a) a*(G2)pv)|
(black squares) for 8 = 6 and N € [0,34]. The error, in all cases, is the statistical error of the sum ZT]LO prottt
and of {P)ye combined in quadrature. Note that the plus/minus error does not display symmetrically in the plot
because of the logarithmic scale, and also because of the logarithmic scale the error looks different for different
points located at the same N.
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Figure 5.9: For 8 = 6, we draw (P)ymc — ZnN:o ppa™t for N < Np (blue points). For N = Np, we draw (P)yc —
SV et —Qge (black square at N = 28). For N > Np, we draw (P)yo— (30", pna 1 + Qe +Zﬁ:Np+1 [Dn—
pﬁ? S)]0/”‘1) (the remaining black squares). We repeat with red diamonds the points displayed in black squares by
subtracting the central value result for the gluon condensate. For N = Np, we draw (P)yc — (Zivzpo pra™tt +
Qg2 + g—;CG(a) a*(G*)py) (red diamond at N = 28). For N > Np, we draw (P)yc — (Zgiopna"‘*‘l + Qg2 +
g—;CG(a) a(G?)py + Zg:NPH[pn - p%as)]a”"'l) (red diamonds). The error in all cases is the statistical error
of the sum ZnN:o pna™tt and (P)yc combined in quadrature. Note that the plus/minus error does not display
symmetrically in the plot because of the logarithmic scale. Also, because of the logarithmic scale, the error looks

different for different points located at the same N. In the small box, a zoom of the points for N > 27 are shown
in non-logarithmic scale.
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perturbation theory (even what we call statistical errors of Eq. are dominated by the statistical errors of
the coefficients p,). More precise values of these perturbative coefficients, and their knowledge to higher orders,
would yield a more precise determination of the normalization of the renormalon Zp, and would allow working
with hyperasymptotic accuracy (4, N').

Nowadays, if we try to reach this accuracy, we find that the error of the coefficients are too large to get accurate
results. The situation with active light quarks is in an early stage but starts to be promising. The coefficients of
the perturbative coefficients have been computed at finite volume in [I15] for QCD with two massless fermions.
More data at different volumes, and the infinite volume extrapolation of these coefficients, would then allow us to
repeat the analysis we have carried out, and to give a determination of the gluon condensate in QCD with two

massless fermions.
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Chapter 6

Hyperasymptotics of the heavy quark
pole mass and A

In this chapter, we will give an estimate of the power correction A of HQET, following the same rationale we have
followed in the previous chapter for the gluon condensate. We will consider the ny = 3 and ny = 0 cases. A very

important player in this chapter will be the perturbative series relating the pole mass of a quark with its MS mass

(for details on the formulas see |[Appendix F)

mos = -+ 3 ran/m)" (). (6.1)

n=0

This chapter is based on [70].

6.1 Apy(n; = 3) from B physics in the MS scheme

B mesons are like the hydrogen atom of QCD, with a heavy b quark playing the role of the proton. In HQET,

their mass Mp has the following expansion in inverse powers of the heavy quark
Mp =mpos +A+0 (m;gs) , (6.2)

where my, is the perturbative series relating the MS and the pole mass of the bottom quark, written in terms of the
strong coupling of QCD with 3 active massless flavors. The formula used is Eq. (6.1), with ny = 3 and m;, = 4.186
GeV taken from [116]

o0

Mb0s =, + »_ 7o (p/T)a" (1) (6.3)

n=0
where the coefficients r,, are the ones given in Eq. (F.3). In accordance to what we say in[Appendix F| we estimate
non-zero charm quark mass effects by adding -2 MeV to the above expression. The series above is understood as
a formal series. A ~ Aqcp is a power correction reminiscent of the power corrections in the OPE. Being bound

states of two quarks, B mesons can have either spin 0 or spin 1. The spin 0 version of Eq. (6.2)) readsE]

_ 1 3
Mp =mpos + A — AL —
2myp,0s 2my,0s

Yo+ 0 (mids) | (6.4)

where A1, g ~ A2QCD are new power corrections. The spin 1 version of Eq. (6.2)) reads

) 1 1
Mp. = A— A A 0( =2 ) . 6.5
B mp,08 + 2mb,os 1 + 2mb$os 2 + mb,OS ( )

IThese formulas can be found for instance in [T17].
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We see that the expansions are identical up until the term proportional to Ay, where we have a spin dependent

splitting. In fact, we can work with the so called spin-averaged mass by taking

1 _
(Mp) = Z(MB +3Mp+) = my08 + A — 5 A1+ 0O (m;és) ) (6.6)

Mp,08
and get rid of the spin dependent Ao term. The above equation is indeed the one we will consider in what is to
follow. As we have already mentioned, the expression above is reminiscent to the OPEs we have seen before. It
contains a perturbative expansion, the pole mass of the b quark, and on top of that, terms that are exponentially
suppressed in « are introduced. The series of the pole mass of the b quark is (expected to be) divergent, so there
will be an inherent ambiguity to it. This ambiguity is translated to the power corrections, such that the whole sum,
that is, the mass of the B meson, is unambiguous. Analogously to what we did in with the plaquette,

we will regulate the formal series my og using the PV Borel sum, which we will approximate using the method of

chapter 3l We will disregard the ml;(l)s terms, so that

- 1

We will use the above equation to estimate Apy.

The leading renormalon of the series of the pole mass minus its MS mass is located at u = 1/2. Defining

m = myp,0s — My, the Borel transform of /m around this singularity reads

m(t(u)) = Zip {1+w1(1—2u)+w2(1 —2u)? 4+ w3(1 —2u)2+...}. (6.8)

1
(1 — 2u)l+0

Recall that as always u = %‘;t. Z1 = 0.56255(260) has been extracted from [118| [119]. The coeflicients w; are those
of adapted for this specific case. They read

w1, = 81, (69)
1 b
wWo = 2 b— 1( — 282) (610)
I S R (6.11)
w3 = 6 (b — 2)(b — 1) Sq 81582 S3), .

where b and s; can also be found in Accordingly, the terminant associated to this renormalon is

& = oK) Lo i <ﬁ°0‘( )) {1+Kf§?1a(u) + BE,02(1) + 0 (o () } (6.12)
b
where
Z2tb 1
o _ 4 el oL 6.13
L v L BT (6.13)
_ 11\ 1 1 1
K(P) _ 60/(77) —wib (= 4+=) - — 3, . ——— 6.14
L L t3) 1% T Tog0 | (6.14)
_ 2 /2 15 1 1, 5 23
g LR il BT b =8 — 2me — e — ——
R2 =, T walb=1b{ gt 15 ) Fwnb{ =53 = g%~ 35"~ 1080
L5 1 P 1 25
S = | 6.15
1607 96"t 1aa™ * 96" ~ 5a0” 24192] (6.15)
where
2
ne = —b+ 1€ 1. (6.16)
Bo

92



With these ingredients, we construct the hyperasymptotic expansion of the PV Borel sum of the pole mass of the

botom quark

Np(2)
mpbs =mbos M+ > (ra—r8)a" (1) + O (eiﬁoa(u)) ’ (6.17)
’rL:Np(l)Jrl
where
Np(1)
mpos =+ Y (/M) (1), (6.18)
n=0
and
, "T(n+1+b) b b(b—1) b(b—1)(b— 2)
(aS) = Z @ 1 : DY .
" 1 (%) T(L+b) { N b= T Bt b )ntb—2)

(6.19)
In Eq. , we have assumed the subleading renormalon of the pole mass to be parametrized by |d| = 2.
Nevertheless, in practice this is not relevant, as we only know until the coefficient r3, and we will be limited by
this.

Let’s now give a value for the superasymptotically truncated pole mass of the bottom quark. For our central
value, we consider u = . For such a value of p, the integer Np(1) that has the smallest ¢ is Np(1) = 3, with
¢ =0.3611. This yields

my, os = 5077(p) 1555 MeV . (6.20)

The quoted error comes from varying p in the range p € [my/2,2m). If instead, we take Np(1l) = 2 (with
¢ =1.7935) we get
my, os = 49221107 MeV . (6.21)

Let’s now consider again the Np = 3 case, and include the terminant. This yields the PV Borel sum of the pole

mass of the bottom quark to (D, N) = (1,0) order in the hyperasymptotic expansion
M bs = 4836(11) 117(Z1) 112(0) T MeV . (6.22)

For the variation of p, we have taken again the range u € [my/2, 2. We find that the scale dependence of the
PV mass is much smaller than for the superasymptotic approximation, in accordance with what we would expect.
As we have already mentioned, for the error of Z;, we have taken Z;(ny = 3) = 0.5626(260). For the uncertainty
in a, we take AU =Y = 332 £ 17 MeV from [120].

Notice that with Np(1) = 3, we cannot add more terms in the hyperasymptotic expansion beyond the leading
terminant, as we do not know the necessary exact coefficients of the series of the pole mass of the b quark. To
roughly estimate the size of subleading terms in the hyperasymptotic expansion, we could compute the PV Borel
sum with Np(1) = 2. In the counting of the hyperasymptotic expansion, the precision is then (1,3 — Np(1)). The
difference is below 1 MeV (after including [rs —réas)]oz4, otherwise, that is, just considering the order (D, N) = (1,0)
with Np(1) = 2, the difference is 7.5 MeV). Even considering Np(1) = 1, which formally allows us to reach the
next renormalon located at 2Np(1) = 2 (i.e. (D, N) = (1, Np(1) = 1) precision), the difference is ~ 7 MeV.

Alternatively, the remaining u scale dependence of mf’ os(Mp) + M2 also gives a measure of the uncomputed
Zgiﬁ; 1) (= rﬁfs))a”“ term, as such scale dependence should cancel in the total sum. We will then take it

as the associated error. Actually, the error associated to Z; is also a measure of the lack of knowledge of higher
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order terms in perturbation theory, and therefore, there is some degree of double counting by considering these two

errors separately. At last then, we determine Apy from Eq. . We obtain
Apy = 477() 3 37(Z1) 115 (a) 15 (O(1/m)) T38 MeV (6.23)

where we have included an extra error source compared to Eq. (6.22)). This extra error is associated to the O(1/m)
corrections in Eq. . The existence or not of genuine NP 1/m corrections may introduce a significant error.
In case they exist, if we take the hyperfine energy splitting as a measure of 1/m corrections, we find shifts from
the central values of order ~ 46 MeV and ~ 140 MeV for B and D mesons respectively. As Eq. has been
obtained from the B meson spin-averaged mass, we conservatively estimate the error associated to genuine NP 1/m
corrections to be of order ~ 46 MeV, as it is the most we can do from phenomenology and perturbation theory.
Let us recall however, that recent lattice simulations point to much smaller genuine NP 1/m corrections for the

spin-independent average [121].

6.1.1 Comparison with other works

6.1.1.1 The RS mass

We now compare our analysis with existing threshold masses. We focus on the RS (renormalon subtracted) mass
[122], and its relativesﬂ To define the RS mass, one considers the series of the pole mass of Eq. (6.1]) evaluated at
some (1 = vy, and subtracts to it the leading asymptotic behavior associated to the d = 1 renormalon of Eq. (6.19))

oo
mrs(vp) =M+ Zrn(vf/m)oz"H(uf) 6m(n° =0 (6.24)
n=0
where
> "T(n+1+0) b
smi) = Z @ —1 —— 4 ... pamtt 6.25

and then re-expands the series of Eq. (6.24) for a(u)
mrs(vy) =m Z (1, vp)ex )" (). (6.26)

The series above is a formal series, which in practical applications is typically truncated at oV 1(u), where N =
Nmax = the maximal number of coefficients of the perturbative expansion that are known exactly (we assume
that Nmax is not high enough to make us worry about subleading renormalons). In order to lessen the v scale
dependence, the RS'= RS™ scheme was also defined, by taking ng = 1 in Eq. before re—expandin in a(u)
Obviously, one can generalize to RS("0) | where the subtraction starts at order a"0*!

no—1

n (n ) n
mpseo (V) = mos — omigd) =T+ Y r(u/m)a” ! (u Z R (s vp)a™t () (6.27)

n=0 n=no

To connect with the approach used in this chapter, we take vy = u. Note that then rf}s("m(u,u) = rp(u/m) —

res) (). We also fix ng = N = Np(1). This smoothly connects the RS schemes with the schemes where the series

2Conceptually they are equivalent to the kinetic [123] or PS mass [124], as they have an explicit cut-off as well. These other schemes
are different at low orders, but they share the same asymptotic behavior.

3Nevertheless, we can not increase ng arbitrarily, otherwise the renormalon is not canceled. Moreover, the value of ng for which
there is no cancellation of the renormalon will depend on p. Therefore, when including higher orders, one should do it with care once
approaching the minimal term.
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is truncated at the minimal term. One can then connect the RS masses with the PV Borel sum straightforwardly

Np(1)
Moo (V) =T+ Y rolp/T)a™ (1) = r§ (e ()| (6.28)
n=0
0,Np(1 n
mpseo (vp) = mpn " =0 (e (), (6.29)

where we have used the notation of [section 3.4
6.1.1.2 The BR mass

We now consider the threshold mass named mpr (BR stands for Borel resummation), defined in [I25] (see also
[126]). The author directly works with the Borel transform, and then regulates the Borel integral using the PV
prescription. The Borel transform is approximated by including the exact known coefficients, plus the leading

asymptotic behavior. In our notation, the considered expression reads

N " 1 M ﬂ L
er(t)N,M = E hntn + Zliil—i-b E w](l - 270)J 5 (630)
n=0 m (1 — %) Jj=0 i

where wyg = 1. In the above expression, N = M = 2 was considered (the known coefficients at that time). Thus
oo
mpr =M + Pv/0 e Wit N - (6.31)
The p dependence of mpr was usually fixed to p = m, except in [I27]. To make a quantitative comparison with
our analysis, we make explicit the p dependence in mpgr. Eq. contains information of the series truncated
at oV T1(p), plus the leading divergence, and thus

N
MBrR = m—+ Z Tn (M/m>an+l(ﬂ) + T1<N) ’ (6'32)

n=0

where T7(N) is the terminant associated to the tail

TiN) ~ Y (). (6.3
n=N+1

Since the upper limit of the second sum in the RHS of Eq. (6.30) is M, 71 (V) is computed by including up until
wyy in Eq. (3.66]). We can relate this terminant to the one we have been considering so far, 77, which is associated

to a remainder tail that begins at o¥?M+2 If N > Np(1), we have

N
Ti= > S wamt (w) + Ti(N). (6.34)
’rl:Np(l)-‘rl

If N = Np(1), we simply have that T} (N) =T}, and if N < Np(1)

Np(1)
Ti(N)= > 8 (wam(p) + T (6.35)
n=N+1

Therefore, if N < Np(1), from Eq. (6.32), we get

Np(1) Np(1)
mpr =4 > (/e ) + T =Y (ralp/m) - () o (), (6.36)
n=0 n=N+1
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Np(1)

mar = mih” = 3 (ral/m) = 10 0)) @™ ), (6.37)
n=N+1
where we have used the notation of If N = Np(1), we simply get
mpr = moy (6.38)

and if N > Np(1), from Eq. (6.32), we get

Np(1) N
mpr =M+ Y ra(p/ma" (@) + i+ > (rn(u/m) — (u)) a"(u), (6.39)
n=0 n=Np(1)+1
mpg =m0 (6.40)

6.1.1.3 The MRS mass

We can also connect our results with myrs (minimal renormalon subtracted), defined in [128]. Let us consider the
formal series of the pole mass again

mos =T+ »_ ra(p/m)a™ (1), (6.41)

n=0

and let us add and subtract the leading asymptotic behavior

mos =7+ (ralua/m) = & () @™ () + 3 1) ()™ (1) (6.42)
n=0

n=0

The borel transform of the last series in the RHS above contains the leading renormalon of the pole mass. As
we have seen, one cannot just compute a Borel sum from the Borel transform of this series due to the singularity

in the integration path. Nonetheless, one can compute the integral in the Laplace transform until we reach the

renormalon
7 _ R b o=t/ e () i 6.43
MRs (1) = /0 e T;) T (6.43)
and the part of the full Borel sum where one needs to regulate the integral is
sm= [ dte-t/ow f: mt” (6.44)
£ A
0 n=

where we emphasize that the above integral needs some prescription to avoid the branch cut singularity. The idea

of the MRS mass is just to subtract this ambiguous term dm from the pole mass. That is, heuristically, we can

write Eq. (6.42) as
mos =T+ Y (m(u/m) - rﬁ;‘“)(u)) o™ () + Jurs + 6m, (6.45)

n=0

where we emphasize that being rigorous, the above equation is meaningless due to the dm term, and is just meant

as a heuristics. The idea, as we have said, is then to subtract this dm from the pole mass and to define
MRS =T+ (rn(u/m) — (u)) a" (1) + Tnrs (1) (6.46)
n=0

where notice that the above series is well defined as a formal series. One can relate the MSR mass and the RS
mass in the following way

mrs(vf) = murs(vy) — Tvrs(vy) - (6.47)
In [I28], we can also find the relation between the PV and the MSR mass given by

47T (-b)

X
g, 21 A (6.48)

mes = mygrs — cos(mb)
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6.1.1.4 Determinantions of A

Earlier direct determinations of Apy or mpy can be found in [125], [127]. The formulas are equivalent to those used
here to one order less (using Np(1) = 2). They also include less terms in the sum in Eq. (6.19). More recently, a
determination of A has been obtained in [121] using lattice data. In this case the formulas are equivalent to those
used here since we use Np(1) = 3 (see Eq. (57) of Ref. [68]), except for the fact that the scale u was always
fixed equal to the heavy quark mass, and that the mass was obtained in the MRS scheme [128]. As we have seen
in Eq. , the relation between the PV and the MRS mass is also given in this reference. Using it we obtain
(where we combine quadratically the error of ZMS and Ays)

47 T(—=b)

szg/\x = —120(8) MeV . (6.49)

nf:3

/&pv — ]\MRS = COS(’/Tb)

The prediction of [121] translates then to Apy = 435(31), where we only include the error quoted in [121]. In
particular, we do not include the error in Eq. . Note that Eq. scales like O(Aqcp), whereas M€, scales
like O(v/aAqep). There is a 40 MeV difference with the number given in Eq. (6.23). 10 MeV can be understood
because the value of T, used in [121] is around 10 MeV bigger. Another 10 MeV can be understood by the inclusion
of 1/m nonperturbative effects. The remaining 20 MeV difference is more difficult to identify, although they are
well inside uncertainties.

Leaving aside the different a’s used, another source of difference is the value of Z;. The value used in [121]
comes from [129] (where the effect of scale variation was not included in the error analysis). This determination
used a sum rule that is free of the leading pole mass renormalon. The possibility of using sum rules to determine
the normalization of renormalons was first considered in [I30]. For the determination of Z;, sum rules were first
used in [I22]. Later sum rule analyses can be found in [I3I]. Alternatively, one can use the ratio of the exact and
asymptotic expression of the coefficients r,, to determine Z7, as in [132] 100, 10T, 118, 133]. For an extra discussion
on this issue see [134].

Finally, it is worth mentioning that Z; can be determined either from the static potential or from the pole
mass (and its relatives). The only value of Z; that uses the static potential is from [II8]. A preference for the
determinations of Z; from the static potential can be theoretically motivated, as it is less affected by subleading
renormalons. There are no UV renormalons, and the next IR renormalon is located at d = 3. On the other hand,
the pole mass is expected to have renormalons at |d| = 2. Only in the event that there is no d = 2 renormalon, and
the effect of the d = —2 renormalon is subleading, both determinations would be on equal footing on theoretical

grounds. In any case, irrespective of this discussion, consistent numbers are obtained between different analyses.

6.2 Apy(n; =0) from the lattice scheme
Analogously to what we had in the previous section, in the lattice scheme, we can write
Enc = 0m+ A+ O(ahyep) (6.50)

where dm is the self energy of a static source in the Wilson action lattice scheme, and FEyic is the ground state
energy of a static heavy-light meson. Just as in the previous section, we will give an estimate of A by employing

the PV Borel sum to regulate the formal series of dm.
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6.2.1 The Polyakov loop and im

Let us look more closely to dm. We will write its perturbative expansion in the following way
1 oo
om =~ z_%cnanﬂa/a) , (6.51)

where a is the lattice spacing. This object can be computed from the Polyakov loop. Let us consider an asymmetric
lattice of N2 x N points (Ng is the spatial extent in a given spatial direction, and Ny the temporal extent), where
we apply periodic boundary conditionsﬂ The Polyakov loop is then defined by taking the trace of products of the

link variable throughout all the (Euclidean) time direction

P(n) = tr { ]:f_[: U4(n)} , (6.52)

where recall that n = (n1,n2,n3,n4) denotes a point in the lattice. Notice that due to the periodic boundary
conditions we have implemented, we have in the equation above a trace over a closed loop, and therefore, P(n) is
gauge invariant. We can define the average value by considering
L(Ng,Np) = 3]1753 > Pn), (6.53)
neAg
where keep in mind that we denote all the lattice by Ag. The above object can be related to the self energy of a

static source in the infinite volume limit in the following way [136]

m=  fim  —1o8Ws, Nr)) (6.54)
Ng,Npr—o00 aNT

6.2.2 Hyperasymptotics of dmpy

Let us come back to A. As we have said, we will estimate it by
Apyv = Enc — dmpy + O(aAycp) - (6.55)

The coefficients of the series of Eq. were computed from Eq. using NSPT up until order «?° in
[10T), 100} 132, 135], which are the coefficients that we will use. MC data for Eye can be found in [I37, 138 [139].
These points expand over the following energy range: 1/a ~ 2.93 ry 12974 To 1. In order to implement the PV
Borel sum of ém, we will employ the method of To be able to do that, it must be mentioned that the
large n behavior of the coefficients ¢, in Eq. needs to be known. As it happens, this large order behavior
is closely related to the pole mass of a heavy quark, where it can be seen that the large n asymptotics of the
coefficients ¢,, of Eq. , and that of r,/p in Eq. (with ny = 0) is the same, and given by the u = 1/2
renormalon we have mentioned many times already (modulo subleading renormalons). Therefore, we can recycle
Eq.

) = %rg”) . (6.56)

Thus, we write the PV Borel sum of ém in the following way

N/ENP(Q)
1 S
dmpy = dmp + 591 + § E(Cn — a4 O(ahep) (6.57)
Np(1)+1

4Being accurate, in the sources we use for the coefficients ¢, of Eq. (6.51)), the authors used periodic boundary conditions in time,
and twisted boundary conditions in all spatial directions [101}, [T00, 132} [135].
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B | ain rg units | Np(1) c
5.7 0.34032 6 1.434
5.9 0.22340 7 0.102
6.0 0.18630 7 0.311
6.1 0.15782 7 0.521
6.2 0.13545 7 0.730
6.3 0.11746 7 0.940
6.4 0.10265 7 1.149

Table 6.1: We depict various quantities associated to the various lattice spacings considered. The values of a have
been obtained with Eq. (5.54). The Np(1)-s are the ones associated to the smallest positive values of ¢, which are
listed in the last column.

where we have defined
Np (1)

1
omp = Z Ecnanﬂ, (6.58)
n=0
and as usual
_ 2mld|
Np(d) = Boc (1--ca). (6.59)

The next renormalon on ém is expected to be at d = 2, and thus we truncate the last series in the RHS of Eq.
at aNP(+1 In we see that Np(1) = 6,7 for the various lattice spacings considered, and therefore, since
we have the ¢, coefficients up until ¢;9, we are able to reach order (D, N) = (1, Np(1)) in Eq. in the counting
of the hyperasymptotic expansion introduced in In principle, we know more coefficients ¢, than we
make use of in Eq. , but our ignorance on the normalization of the next renormalon makes it impossible to
go further in the hyperasymptotic expansion, since we cannot then compute the subleading terminant.

Due to Eq. , the expression we use for ; is Eq. with the substitutions u/m, — 1. Keep in mind
too that we need to pick the normalization Z;, and beta function coeflicients appropriate for ny = 0 and the lattice
scheme. For the normalization of the renormalon, we employ Z; = 17.9(1.0) [I01I]. The terminant is implemented
in exponential form, and truncated at order O(a?). The error committed by this truncation is smaller than the
error associated to Z7, and therefore, we will neglect it in the following.

For the coefficients ¢\*, we use Eq. taking into account Eq. (6.56]), which we truncate at order O(n™3).

This means using the estimates for S5 and 34 listed in [Table 6.2| (we will see how these are obtained in
tion 6.2.4). Results of the fits truncating the asymptotic coefficient to order n~2 and n~* can befound in [Table 6.3

6.2.3 Fits of Apy

We now move onto the fits. We fit Apy — Ka to the (Apy and K being the parameters of the fit) RHS of Eq. ,
where we take the order (D, N) = (1, Np(l)) in the hyperasymptotic expansion of dmpy. We show our results in
The figure follows the same logic as|Figure 3.3| in the sense that we display various bands corresponding
to Eq. , where dmpy is taken to various orders in the hyperasymptotic expansion. The bands are generated
by making the fits with different ¢ values in Eq. : the smallest (in absolute value) positive and negative values
that yield integer values for Np(1).

We observe that the subtraction of the perturbative expansion accounts for most of the 1/a dependence. Still,

we have enough precision to be sensitive to O(aA?QCD) effects. A fit of the RHS of Eq. (6.55) to just Apy gives a
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Figure 6.1: Upper panel: Ey;c is the MC lattice data. The continuous lines are drawn to guide the eye. The other
lines correspond to Eq. (6.55), where dmpy is truncated at different orders in the hyperasymptotic expansion. (a)

EMc(a) — 5mp(1/a), (b) EMc(a) — 5mp(1/a) — %Ql, (C) EMc(CL) — 5mp(1/a) — %Ql — pr?lj;fi(lg) %(Cn — Cglas))oﬂﬁ’l
(in this last case, we also include the error of the MC Ejyc points in the middle of the band), (d) is the value of
Apvy obtained from the fit of the RHS of Eq. to Apy — Ka with the green points. The bands are generated
by making the fits with different ¢ values in Eq. (6.59)): the smallest (in absolute value) positive and negative values
that yield integer values for Np(1). Lower panel: As in the upper panel but with a smaller vertical range. Recall

that 75! ~ 400 MeV.
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large 2.4 ~ 6 — 7. On the other hand, by fitting the RHS Eq. (6.55) to Apy — Ka, we obtain a fit with a good

x%4 = 1.17/1.06 (positive/negative c). Our central value result is
Apy = 1.42 751 (0.04) 5441 (0.05).(0.16) z,, - (6.60)

This number is not very different from the number obtained in [I12], where a superasymptotically truncated dm
was used E Let us now discuss the error budget in Eq. . The first error is the statistical error of the
fit. The remaining errors are different ways to estimate the error produced by the approximate knowledge of the
hyperasymptotic expansion. One possibility is to take the modulus of the difference with the evaluation using the
positive and negative values of ¢ that are smallest in absolute value. This is the second error we quote in Eq. .

The last error we include is due to the variation of Z1(ny = 0) = 17.9(1.0) [I0I] (correlated with the error of

¢n). The error that the uncertainty of Z; produces in €; is small. Comparatively, most of the error associated

NP(Q) 1

(as)
n=Np(1)+1 a n ot

to Z; comes from the differences in 3 (cn —c , evaluated for different Z; values. Whereas

ZNP(2) 1

n=Np(1)11 a(Cn ~ C%as))

a™! is quite small for the central value of 7y, it significantly changes after considering
the uncertainty in Z;. This variation is only partially compensated by the variation of the coefficients ¢,,, which
have smaller errors, producing a significant change in ZnNiﬁi(l) 1 %(Cn — cgfs))anﬂ.

We have also determined the central value in Eq. (6.60), not including the O(1/n?) corrections in the asymptotic

. (as)
expressions for ¢,

. The difference we obtain is -0.08. This is significant, showing that 1/n corrections in the
asymptotic coeflicient are sizable in the lattice scheme. Nonetheless, by adding one more term in the asymptotic
coefficient instead of subtracting, that is, by including O(1/n*) terms, we obtain for the difference with the entral
value fits -0.03, which is smaller. This suggests a convergent pattern, which we illustrate in Table [6.3]

Overall, the largest source of uncertainty comes from the incomplete knowledge of Zﬁig% L %(Cn — cgf“s))o/“rl’
which is closely linked to the incomplete knowledge of Z;. In this regard, it is noteworthy that the green band in
[Figure 6.1]is broader than the orange band, which is one order less in the hyperasymptotic expansion. Nevertheless,
the difference of the central value result, with the fit to this orange band is -0.008, which is way smaller than the
other uncertainties considered.

Finally, we mention that one error that we do not include here is the error associated to the relation between
a(1/a) and a. Just as in[chapter 5] we have used the phenomenological formula deduced in [I13] of Eq. (5.54). The

error of this formula is claimed to be around 0.5-1% in the range 5 € (5.7,6.92), which contains the range we have

used.

6.2.4 Renormalon dominance and the beta function coefficients in the lattice

Taking somewhat of a detour, let us turn our attention to the beta function coefficients in the lattice. By and [
are scheme independent and thus, well known. As we saw in Eq. , B2 is known numerically, but that’s about
it. B3 and onwards are unkown, although estimates exist, and actually, we gave one in Eq. . In this section,
we will see how this estimate was obtained from the coefficients ¢,, of the series of dm that we have used.

Let us consider the MS and the lattice schemes. Let us consider the strong coupling in the MS scheme aygs (1),
evaluated at some scale p;. The idea is to obtain from this the strong coupling at some other scale and in the

lattice scheme cuag(tf). There are two ways to go about doing this, first run the strong coupling in the MS scheme

5Their superasymptotic truncation slightly differs from ours, in the sense that they did not truncate at a¥P()+1 but rather took
the order that makes |c,a™ 1| smallest. The difference with what we call dmp is small in any case.

101



to the scale pf, and then convert from MS to lattice, or first convert from MS to lattice at the scale j;, and then
run the coupling to p1y. In the the first approach, we obtain aiate(fer) as a series of agg(pi), where the coefficients
of the series will depend of the beta function coefficients in the MS scheme. In the second approach we obtain
Qatt (ff) as a series in ogpg(p;), where the coefficients of the series depend on the beta function coefficients in the
lattice scheme. Therefore, by comparing the cofficients of both series at various orders in agg(j;), knowledge of
the beta function coefficients in the MS scheme translates to knowledge of the coefficients in the lattice scheme.

For instance, comparing the coefficients proportional to aiTS(Mi), in particular the part of the coefficient that is

, we can obtain 3. The next order yields 84. There is one important caveat to this method

proportional to log “;

“w
though. In order to implement it, we need to know the conversion formula of the strong coupling between both

schemes. We have seen this equation already in Eq. (3.99)
> .
ons(0) = s { 143 1)} (6.61)
j=1

where [711 [72] [73] d1 = 5.88359144663707(1), and [71] 98] [99] dy = 43.4073028(2). ds and onwards are in general

unkown, and this is where renormalon dominance comes to help. Let us consider again the series of adm

adém = Z cpa™ (6.62)

n=0
and let us consider the conversion formula of Eq. (6.61)). Using this two pieces, we can re-expand the series above
in terms of agg

o)
adm = Z C%S(X%l , (6.63)
n=0

and obtain the coefficients ¢M> in terms of the coefficients c,, and d;. In particular, c3 will only depend on ¢, and d,
with n < 3, of which only d3 is unkown. Therefore, assuming that in the MS scheme the coefficient CQTS is already
dominated by the renormalon, we can use the asymptotic expressiorﬂ and in this way obtain d3. The obtained
value is d3 =~ 351.91, which was obtained in [I0T] [T00]. This approach can be iterated again by considering CETS to
be dominated by the renormalon, to give an estimate of dy ~ 2996.51. Nonetheless, we need to keep in mind that
this prediction uses the value of d3 computed before, which is already an estimate. Iterating this procedure a few
times, we obtain ds & 26299.99, dg ~ 235183.79 and d- ~ 2.12 x 106,

Thus, using this estimate of ds3, we are now able to estimate 83 ~ —1.16 x 10%, which was obtained in [TOT, [100].

Making use of the estimates of d3 and d4, we can obtain 34 ~ —1.35 x 10%. EI}TS is not yet known, and therefore, in
principle, we cannot use this approach to estimate 5 in the lattice. In spite of this, a crude estimate can be given
by implementing the method we have already used, despite not knowing ,B})\TS. Of course, doing this introduces
uncertainties because we are not including ﬂé\TS when we do the running in the MS scheme, and therefore, the
result is more dubious than for 83 and B4. In any case, we show in estimates for various beta function

coeflicients estimated using this approach.

6.2.5 Fits in the MS scheme

It is interesting to consider the scheme dependence of Eq. . In [I12], relative large differences were found

for fits to A after (approximated) scheme conversion to the MS scheme. The real problem is not transforming the

6The normalization of the renormalon in the MS employed is ZW = 0.62 [101].
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B3 B4 Bs Be
T1.16(3) x 10° | —1.35(10) x 105 | —1.44(28) x 101 | —1.41(60) x 102

Table 6.2: Estimates of the coefficients of the beta function for the bare coupling in the lattice scheme using
renormalon dominance. The error quoted in the table gives the difference with the values of the beta coefficients

obtained if instead of the value of the normalization of the renormalon used here Z%TS = 0.62 [I01], one uses
ZMS = 0.6 [I18] (which yields more negative values), and it is only meant to illustrate the typical spread of values
of the beta coefficients if one uses different values of ZMS.

latt || O(s5) | O(z5) | O(x) || MS | Nu=7 | Nue=6 | Npo=5 | Ny =4
Apy || 1.33 | 142 | 145 || Apy | 148 1.52 1.59 1.68

Table 6.3: Determinations of Apy in the lattice and MS schemes from fits of Apy — Ka to the RHS of Eq. (6.55),

where dmpy is given by Eq. (6.57)). The first three numbers show the impact in the fit of including the O(1/n™)

corrections for m = 2, 3, 4 in the asymptotic expressions for c%as) in the lattice scheme (in the MS this effect is

negligible). The other numbers are the fit of Apy in the MS scheme, using ays = Mate {1 +ZTIY':’T0 dnofl,. } truncated
at Ny = 4,5,6,7.

coefficients c,, from the lattice to the MS scheme, but transforming ayae to agrs With enough precision which needs
knowledge of the coefficients d,, of Eq. (6.61]) to high orders. Making use of the estimates of the previous subsection
makes the determinations of Apy in the MS and lattice scheme approach each other as we include more terms in

the perturbative expansion of the relation between agrg and aqae;. We show the comparison in Table

6.3 The PV Borel sum of the top quark pole mass

We finish the chapter with a section devoted to obtaining the PV Borel sum of the top quark pole mass. The reason
we cannot straightforwardly apply the formalism of terminants that we have applied to the bottom is that the top
quark is significantly heavyer, with m; = 163 GeV, which makes «(7;) smaller, which makes Np(1) ~ 7, which is
too high, since we do not know enough coefficients of the series of the pole mass to reach those orders. Therefore,
we will try to get around this fact employing different tactics. Before doing that though, we will comment on a few

things about the ambiguity of the pole mass.

6.3.1 About the pole mass ambiguity

The top quark mass is one of the key parameters of the standard model. A lot of experimental work has been
devoted to its determination (see for instance [140], 141], T42]). Whereas this is a matter of debate, it is typically
assumed that the masses obtained from experiment correspond to the pole mass. Thus, there has been an ongoing
discussion on the intrinsic uncertainty of these determinations (see for instance [133},[143], and [144] for a more recent
discussion). We believe that, without further qualifications, the question is ill posed, or may lead to confusion.

Tt is well known that the pole mass is well defined (IR finite and gauge independent) at finite (albeit arbitrary)
order in perturbation theory [145]. It is also well known that this series is expected to be divergent. Therefore, no
numerical value can be assigned to the infinite sum of the perturbative series of the pole mass. Truncated sums are
well defined, but depend on the order of truncation, as we have already mentioned many times. These truncated
sums can be related with observables, or with intermediate definitions of the heavy quark mass, like the PV mass

in a well defined way.
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In this context, the shortest answer to the above question is that the ambiguity (of a well defined mass) is zero.
As a matter of principle, mg\sf (or mgs) can be defined with arbitrary accuracy (this also applies to any threshold
mass), if one computes high enough orders of the perturbative series, and if 7 is given. One can discuss (actually
one can compute) the scheme/scale dependence (if they have) of them.

A different question is to determine the typical difference (not the ambiguity) between (reasonable) different
definitions of the pole mass. The short answer to this question is that the differences are (at most) of order Agcp
for (reasonable) different definitions of the pole mass. We emphasize that one can not be more precise unless stating
the specific definition used for the pole mass. For instance, as we have seen, the difference between mg\s/ and mgs
is of O(y/aAqep) with a known prefactor. Truncating the perturbative series at various orders near the ambiguous
superasymptotic truncation order is also a legitimate definition of the pole mass, whose typical differences are of
order Aqcp, as we have already seen. One could even use Mp as a definition for the pole mass, whose difference

with m! ¥q is of order Aqcp. If one defines an imaginary mass by doing the Borel integral just above the positive

b,
real axis, the difference with m&Y¥ is of O(iAqcep). The authors of [I133] choose to divide this number by 7, and
take the modulus as their definition of the ambiguity. These examples illustrate that, even if the ambiguity is of
O(Aqcp), the coefficient multiplying Aqep is arbitrary. Overall, it should be clear that not much more can be
said, and we are indeed against dwelling too much on this issue. Instead, we strongly advocate to avoid generic
discussions about the pole mass, which is not well defined beyond perturbation theory, and restrict the discussion
to the precision and errors of specific, well-defined, heavy quark masses which can be related with the perturbative
expansion of the pole mass.

Once working with well-defined heavy quark masses like mf,\ols or mEOS, we can address the more relevant
question of determining the precision with which 7m; can be determined if mﬁ\és or mEOS is known (and viceversa)
with current knowledge of the pertubative expansion. For reference, we will take the value m; = 163 GeV in the

following. We will see in the next section that indeed, the precision is quite good, and that the error is significantly

smaller than typical numbers assigned for the ambiguity of the pole mass.

6.3.2 Decoupling and running

As we have already mentioned, in order to compute the PV Borel sum of the top quark pole mass, we cannot
straightforwardly use the same approach as for the bottom, because we do not have enough terms to reach the
asymptotic behavior of the perturbative expansion. Instead, we will exploit the fact that the formal series of the
m derivative of the top quark pole mass does not have the leading d = 1 renormalon found in the series of the pole
massﬂ Then, this function will be used to relate the PV masses of the top quark and a ficticious top quark at a
scale low enough, so that we are able to implement terminants. Let us see how this works in practice. We first

defindf]

F(m,ng) = % {me.0s(m) —m}, (6.64)

where m; 0g(7) is the formal series relating the top quark pole mass with an MS mass given byﬂ m. For now, we

leave T arbitrary. The series of m og(7) is computed for ny = 5, and the expansion parameter of the series is the

"The idea is similar to what we will do in with the static potential, where we will consider its r derivative to get rid of its
d = 1 renormalon.

8We set 1 = m in the series of the pole mass, which simplifies the computation.

9Being completely precise, 77 denotes the MS mass evaluated at its own scale in a theory with 6 active quarks, that is 7 = mg) (m(6) ).
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strong coupling with 5 active massless flavors. The coefficients r,, are given by Eq. (F.3)). That is, we have
myos(m) — =y i) (m)agh (m), (6.65)
and the formal series of the m derivative of the above series is

F(m,ny) = i{mt os(m m} Z ( ) Zf(nf) ?rj_l)( m) . (6.66)

Let us consider now the PV Borel sum of the above formal series

PV%{mtVOS( _m} =PV Z £ () ) (6.67)
and let us also commute

PV%{mt,OS(m) —-m} = %Pv{mt,os(m) —m}, (6.68)
so that

LB {my os(m) — ) = PV Z J (o (m) (6.69)

As we have said, the above formal series F is devoid of the d = 1 renormalon of the pole mass, and therefore, in

order to implement the RHS above, we do not need a leading terminant, and we just write

Np(2) b __
P A = 3 gm0 (). 61
n=0

where following large By expectations, we assume the leading renormalon of the series of the 7 derivative of the

top pole mass is parametrized by |d| = 2, and the subleading at d = 3. Thus

d Np(2) ( . —67r( )
PR n n 1 0% (n ) O
deV{mt’OS( —m} = § Flne) (;)( )+O< (ng) ) . (6.71)

We now integrate the above equation between the actual top quark MS mass and a fictitious top quark mass

Np(2)

Mt mt —6m
/ dm%lﬁv{mt,os(m)fm}: { Z A m)agt (m )+O< °°“<nﬂ""’>} (6.72)
H Ho

b

Np 2)

PV {myos(mi) —mi} — PV{mios(u) — mp} = /Hmr { Z £ m nH( )+ 0O ( W) } (6.73)

b
The idea is to pick up low enough, so that we are able to implement Dingle’s terminants on it, and consequently,
obtain the PV Borel sum of the top quark by the above relation. Nevertheless, there is a caveat to all this that
one needs to keep in mind. There are two heavy quarks, the bottom and the charm, with masses much larger than
Aqep, that generate extra corrections to the pole-MS mass relation of Eq. due to the finite mass effects of
the bottom and charm quark. Consequently, the corrected version of Eq. is

my.os (M) — T = Z O m)agsy! (m) + omy”) () + 6mE) (m) + omy, (), (6.74)

for m ~ m;, and we have explicitly written ny = 5. The explicit formulas for non-zero bottom and charm quark

mass terms can be found in|[Appendix F} The O(a?) term of 5mg”) was computed in [I46], and the O(a?) term in

[147]. Note as well that at O(a?) there is a new contribution including a vacuum polarization of the bottom and
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charm at the same time. We name it 5m( 7)

Eq. (6.73] - becomes

PV{myos(my) —m} = PV{myos(u) — s}
Np(2)

/Hmt {Z a?sﬁl(m)ﬂL%wmﬁ () + 6m) (m) + omi.) (m )]+O(e‘*°“<§;<m>>}. (6.75)

b

, and it has been computed in [I43]. Taking into account these terms,

("f) n+1

We emphasize that the fp (1) above are the coefficients of the 77 derivative of the series ST n=0Tn 00 s where the
( ") do not contain non-zero charm and bottom effects. The question now becomes how to handle
PV{my,o0s(1) — i} - (6.76)

We will take p small enough, such that the bottom decouples. As we decrease the value of 7, the bottom and
charm quark will decouple. This decoupling will be absorbed in 5m£7£}bc, which are polynomials in powers of
Q(n;)- In general, this is not just changing ny in the original expressions from ny =5 to ny =4 or 3. The explicit
expressions can be found in the Let us discuss the decoupling in more detail (for the analysis we take
mp = 4.186 GeV and m,. = 1.223 GeV [I10], but the sensitivity to the specific values we use is very tiny). As
already discussed in [31], the natural scale of a n-loop integral is not m; but mme~ ™. For the case of the bottom
versus charm quark, it was observed in [I 18]|E| that the charm quark effectively decouples at order a?/a? for the
case of the charm quark effects in the bottom pole mass-MS mass relation. If we lower the mass of the top, we can
also observe at which scales it is more convenient to decouple the bottom and charm quark in the top pole mass-MS
mass relation. This is illustrated in where we plot the corrections associated to the bottom and charm
with and without decoupling, in terms of the fictitious top mass (assuming a single heavy quark). Obviously, for
very large top masses it is not convenient to do the decoupling. Nevertheless, as we decrease the mass of the top, it
becomes much more effective to decouple, first the bottom, and afterwards the charm quark. Once this is done, the
corrections due to the bottom and charm masses are very small. Comparatively to other errors, the uncertainty
associated to the O(a*) corrections is negligible. Also, the correction associated to the bottom and charm quark
masses to Eq. (which, as we will shortly see, is the equation we use to obtain the PV pole mass of the top
quark) is, comparatively to the total running, very small. From this analysis, and from what we see in
we will take as central values p, = 20 GeV and p. =5 GeV.

Thus, in Eq. , we implement the top quark pole mass at the scale u, = 20 GeV with the bottom quark

decoupled, and by integrating its derivative from p. to p, we are able to write

migs (M) —my = mﬁgs(uc) — He

b e —67
+/N dm{ > eyt m )+—[5m(4)( ) + om{® (m )+5mg§)(m)}+o<erww>}
c n=0

Np(?)

<[ {Zf<5> ) + lom? )+ 6 + D ()] + 0 ()} o

)

We have taken p; small enough so that the bottom decouples, and . small enough so that the bottom and charm

decouple, and also such that we reach the asymptotic limit of the pole-MS mass perturbative expansion with the

10Tn that reference MeV should read GeV instead from Eq. (8) to Eq. (12).
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existing known coefficients. At the fictitious top mass p., we find that Np(1) ~ 3, so that we are able to implement

the terminants. Doing just this

__2m °
mp Os(e) = mp os(e) + 116 + 0mi” (11e) + 6mE) (1) + Imip) (1e) + O(pee™ Fontrar HHE@)) 0 (6.78)

where the superasymptotically truncated series mt os (te) is the same as Eq. (6.18) with 7, — pe. The O(uce™ Bontie) (1+10g(2)))

term stands for subleading corrections in the hyperasymptotic expansions, which are not known. Let us also check

the size of the contribution to Eq. (6.77) of the non-zero charm and bottom quark mass terms

L (5m?) ) + 6m ) () + 55, ()
w
oy @)
+ ; ﬁdm(ém )(m) + sm® (m )+(5m(b)( m))
+ omy” (pe) + 0m® (1) + 0mp) (11e) = =25 o2y + 08 o 00y = —1.7 MeV . (6.79)

The specific value depends on up and p., but the good convergence and smallness of this correction holds true for
other values of pp, and p.. We next explore the convergence pattern of 7. We find
e 1o
dm F(m,5) + / dm F(m, 4) = 8445 + 837 + 53 — 43 = 9291(22) MeV . (6.80)
o e
We observe a convergent pattern. For the last two terms, the convergence deteriorates. On the other hand, the
perturbative expansion becomes sign alternating. This may indicate sensitivity to the d = —2 renormalon. We
discuss this further in the next section. For sign-alternating asymptotic perturbative expansions, the left-over
is ~ —1/2x(the last computed term) (see [I0]J7]} Therefore, we take it as the error of the truncation of the
perturbative expansion, which is the error we quote in Eq. .

We also explore the dependence of Eq. on up and p.. The dependence is very small, as we can see in
For p. the variation is negligible, and for u; one gets variations of ~ 5 MeV for a central value of p of
around 20 GeV. Therefore, we will neglect these for the total error budget.

Other source of error is associated to the approximate determination of Eq. (except for the dmy terms,
which have already been taken into account in Eq. ) The error analysis is analogous to what we had for the
bottom quark in Eq. , adapted by changing m;, = 4.186 GeV — p. = 5 GeV (the error associated to « is
only computed for the full Eq. )

(mt og(pe) + 1) \M:E,) ey = D744() 15 (Z1) T MeV . (6.81)
Finally, we also include the error associated to . Combining all errors, we obtain
my os(163MeV) = 173033 (h.0.) T35 (1) 715 (Z1) 75 () T153 MeV . (6.82)

By far, the largest uncertainty is associated to a. For the purely theoretical error budget, the error is associated to
higher order corrections in perturbation theory. They show up in different ways. One is the approximate knowledge

(1+10g(2))) corrections

of Z1, which shows up in ;. The other is the error in u, which is a measure of the O(e ™ Foax @
to Eq. (6.78]). h.o. stands for the error associated to higher order terms in perturbation theory of Eq. (6.80). All

these errors would profit from higher order perturbative computations. We have also explored other sources of

1'We emphasize that these arguments do not apply to IR renormalons (and in particular to the d = 1 renormalon).
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Figure 6.2: Upper panel: Plot of the correction to the PV mass of a top mass with varying m; mass due to a
heavy quark with MS mass equal to 4.185 GeV (bottom) with and without decoupling (assuming a single heavy

quark). The blue dashed line corresponds to the order a?5) term of 5ml()5). The continuous red line corresponds
to the order 04%5) term of 6m1()5). The dashdotted black line corresponds to the order a?4) term of 5m1()4), and the
dotted brown line corresponds to the order oz%4) term of 5m,(74). Lower panel: As in the upper panel with a heavy
quark with MS equal to 1.223 GeV (charm). The blue dashed line corresponds to the order oz?4) term of 5mg4).
The continuous red line corresponds to the order a?4) term of (5m£4). The dashdotted black line corresponds to the

order a33 term of 5m£3), and the dotted brown line corresponds to the order a?g) term of §m£3). Explicit formulas

(3)
for the employed expressions can be found in
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Figure 6.3: Plots of Eq. (6.77) in terms of p, (upper panel) and p. (lower panel) truncating the perturbative
expansion of F (7, nys) at different orders in o in Eq. (6.80). In the upper figure, we set y. =5 GeV. In the lower
figure, we set up = 20 GeV.
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F(m,ny) 91 g2 g3 g4 s

ny=0 4/3 6.11 25.52 18.46

ny=3 4/3 4.32 12.76 —63.37

ny =6 4/3 2.53 —0.74 —105.70

(Large (p/exact) ny = 1020 | 4/3 | —=5.97 x 1019 | —4.15 x 10%® | —2.54 x 10°® | —5.09 x 1077

(Large () ny =0 4/3 9.85 —11.31 114.33 -377.22
(Large B) ny =3 4/3 8.06 —~7.57 62.62 -169.04
(Large By) ny =6 4/3 6.27 —4.58 29.46 -61.86

Table 6.4: The coefficients g,, of F(7,n). Note that g4(n; = 0) has a 9% error from the determination in [149].
The ny = 10?Y case is used as a test for comparison with the large 3. The last three (four) rows are the coefficients
gn in the large [y approximation.

uncertainty, and find them to be comparatively very small: the error (and the effect) associated to the finite mass
of the bottom and charm quark is found to be very small, and similarly for variations in the values of u; and p..
It is also useful to make the error estimate of the ratio of the pole and MS top mass. We obtain (m; = 163

GeV)

[m%s

08 1] 107 = 6155(h.0) 00§20 6 ) T

(6.83)

Note that there is no ambiguity error associated to this number. Except for «, all errors are associated to the lack
of knowledge of higher order terms of the perturbative expansion. In comparison with [133], we find that our result

is less sensitive to Z; and to its associated error.

6.3.3 |d| = 2 renormalons?

As we have many times mentioned already, the perturbative expansion of F (7, ny) is free of the d = 1 renormalon.
Therefore, it is the ideal object on which to study the subleading renormalons of the pole mass. In principle, these
are located at d = 2 and d = —2. The existence of an IR renormalon at d = 2 has been a matter of debate [148)].
The existence of an UV renormalon at d = —2 can be established in the large 5y approximation [31l 82], as we
have already seen, but not beyond.

With respect to this discussion, some interesting observations can be drawn out of our analysis. The coefficients
gn show an interesting dependence in ny (with sign changes of fixed order coefficients for various values of ny). In
we give the numbers of g, for different values of ny and also in the large 8y approximation. We observe
that for ny = 3 the O(a?) flips sign. For ny = 6, the O(a®) and O(a*) flip sign. The situation is somewhat puzzling.
Let us first note that the sign of the coefficients would be interchanged compared with the large Sy predictions (for
ny = 3). This could still be understood from a d = —2 renormalon, if Z_, flips sign from the large 5y prediction to
real QCD. This would indicate a large dependence of Z_5 on ny compared with what has been seen for Z;, where
the large fy approximation gave the right sign and order of magnitude. For n;y — oo, the results agree with QED
expectations (fp becomes negative, and the perturbative series is non sign-alternating). For ny = 6, we observe
that the last two terms are negative. One may then wonder if what we are seeing for ny = 6 (and maybe also for
ny = 3) is that the d = —2 renormalon’s effect is subleading compared to another IR renormalon, which should be
subleading, but that for sufficiently low orders could dominate over the UV one. Obviously, we need higher order

coefficients g, to clarify this issue.
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Tt is usual lore that IR renormalons dominate over UV ones (this is somewhat based on large 8y analyses where
UV renormalons are typically suppressed by the factor ~ edCTX, whereas IR renormalons are enhanced by it, as we
saw in . If we take this seriously, and also the numbers we obtain for g,, as an indication of the existence
of a d = —2 renormalon, this may indicate that the d = 2 renormalon is indeed zero. In this respect, it is worth

mentioning the analysis of [I121I], where the NP correction associated to the d = 2 renormalon was found to be zero

within errors, which is consistent with this discussion.
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Chapter 7

Hyperasymptotics of the static quark
antiquark energy and «a(M.)

7.1 Introduction

(=T/2,7/2) (T/2,7/2) Let us consider the Wilson loop depicted on the left

Y

WnolA] = Tr {Peig $ dm“AM)} : (7.1)

where P stands for path ordering, and let us consider

A

(=T/2.-r/2) (/2. =r/2) the following vacuum expectation value

Wold)) = [laAldudbiWolaleee. &)

where Igcp is the Euclidean QCD action D The static energy of a quark-antiquark pair separated by a distance r
is defined in the following way(’]
L1
E(r) = lim = log((Wg[A])). (7.4)
T—oo T

This object has been studied thoroughly due to its relevance in order to understand the dynamics of QCD. A linear
growing behavior at long distance is signaled as a proof of confinement. Moreover, it is a necessary ingredient in
a Schrodinger-like description of heavy quarkonium dynamics. It will play a very promiment role in this chapter,
where we will make use of the static energy computed in the lattice and in the MS scheme in perturbation theory
to give a prediction of the strong coupling a/(M.).

The static energy can be determined accurately using MC simulations in the lattice. Throughout the last years,
lattice simulations with dynamical fermions have improved their predictions at short distances, see for instance
[150, 15T 152] 153, 154, [155] 156 157, 158]. On the other hand, Eq. can also be computed using perturbative
techniques in the continuum [159, 160, 161, 162, 63| (164, [165, 166, 167, 168, 169, 170, [71]. The precision
reached nowadays is N®LO for fixed order computations, and N3LL order for RG improved computations. Eq.

computed in the lattice is linearly divergent in 1/a (where a is the lattice spacing) by an r-independent constant.

ILater, we will compare lattice evaluations of Eq. (7.2 with MS calculations. In the lattice case, we will have three massive quarks,
but in the continuum case, we will disregard their masses.
2 Actually, being completely accurate, the energy of a static quark-antiquark pair in a singlet configuration is

B(r) = 2mos + lim_ log(Wo[A]), (7.3)

where mog is the pole mass, but for reasons that will be mentioned later we can disregard the 2mosg.
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Therefore, we can compare lattice evaluations of the static energy with theoretical continuum computations by
considering the difference

B (p) — Bt (p o) = BR(r) — BN (r ), (7.5)

(up to O(a) lattice artefacts which can be r dependent) that is, we subtract the aforementioned r independent
constant by picking an arbitrary reference point Trefﬂ.

The combination of these two approaches, namely, high-order perturbation theory and lattice data at short
distances, potentially allows quantitative comparison between perturbation theory and lattice simulations. Never-
theless, a naive comparison between lattice data and perturbative results may lead to strong disagreement depending
on how the perturbative expansion is implemented in practice. This was the state of the art circa 1998, when it
was realized that what lies behind the disagreement/agreement, is the large ambiguity associated to the u = 1/2
renormalon of the static potential (as we will see in Eq. , the static energy contains the static potential), which
jeopardizes the overall convergence of E(r), clouding the result (see [I72] for a discussion on this issue).

As we have already mentioned in this thesis, it was discovered [29] that the u = 1/2 renormalon of V' cancels with
the u = 1/2 renormalon of 2mog, where mog is the pole mass, (keep in mind that schematically F(r) = V4+2mog), if
both series are expanded using the same «o(p). By taking advantage of this renormalon cancellation, the ambiguities
of the series of E(r) are reduced to a point where the series converges better, and meaningful predictions can be
obtained. Nonetheless, keep in mind that, as we have said around Eq. , the lattice can only predict E'@* up to
an r independent constant. Hence, when considering E*"(r), we will leave out the pole mass. In order to achieve
renormalon cancellation, we will work with the r derivative of E'(r) [172} 173, 174, 172, 126} 167, 175].

Nowadays, more recent unquenched data and knowledge of higher orders in perturbation theory have allowed to
obtain competitive determinations of A%ZS) (and consequently of a(M,)) from the static energy, see for instance
[153), 156], 176l 177, [158]. We revisi this procedure, by considering N3LL order terms in the MS side, and by
handling the renormalons by using the hyperasymptotic expansion of the PV Borel sum that we have seenE| in
See [I78] for the article on which the chapter is based.

We will start the chapter by reviewing what goes inside the continuum MS expressions for the static energy,
and later, we will move on to perform the fits to the lattice data to extract a(M,). On the way to do that, we will
see how to use the current perturbative knowledge on the static potential to give an estimate of the normalization

of the u = 3/2 renormalon of the static potential, which we will need in order to implement the terminants.

7.2 The singlet static energy and the multipole expansion

Taking advantage of the hierarchy of scalesﬁ AV ~ C“O;i(rl/r) << %7 the energy E(r) of a static quark-antiquark
pair in a colour singlet configuration, separated by a distance r admits an OPE using pNRQCD [1779, [180]

E(r) = V(r,vus) + 0 Eus(r, vus) » (7.6)

3In principle, the analysis should not depend on the value of r..f we use in this equation, but in practice, there will be some
dependence (we will check this dependence later). By default, we will take the value riot = Tmin = 0.353 GeV~!, which will be the the
shortest distance we will consider.

4For a comparison with other works, see

5 Actually, and as we will later see, being accurate, we have also made use of taking an r derivative in the static energy to get rid of
the u = 1/2 renormalon of V.

6AV has been defined in Eq. (G-13)).
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where the singlet static potential V (r,vys) encodes physics associated to the scale 1/r, while §Eys(r, 1ys) encodes
physics associated to scales smaller than 1/r. V(r,vys) is computed as a formal series in a(vs). JEys appears at

order O(r?) in the multipole expansion

0 Eus(r, vus) = f; r?V3 /0 dte™"2Y (gB*(t,0)¢%) (t,0)gE"(0,0)) (vus) + O(r7) , (7.7)

where E® is the chromoelectric field, V4 is a Wilson coefficient of pNRQCD (see [Appendix GJ), whose small o(vs)
expansion reads [166] [169] [167]
Va=1+0 (1)) , (7.8)

and thus, for all practical purposes, it can taken to be 1. AV is the difference between the static octet and the

singlet potentials. Its perturbative expansion in a(vy) reads

AV=V,-V = %a(:s) <1 + aiz:) (a1 + 2Bp log(vse?®r)) + O(a2(us))) . (7.9)

qbz(;j (t,0) is the Wilson line in the adjoint representation connecting (¢,0) and (0,0) by a straight line. Notice that
Eq. (7.7) is written in Euclidean time. We will now take a closer look at the two terms in Eq. (7.6]).

7.3 The singlet static potential

The perturbative expansion of V is known to N3LO in a(vs). We will write it in the following Way[]

oo

V= Valrve vas)a™ () (7.10)

n=0
Of course, the series above is meant to be understood as a formal series. We recall that the perturbative expansion

of V is formally vs independent, that is

d
= 11
V=0 (7.11)

is satisfied order by order in «(vs). The coefficients read

C 1
Vi (r, vg, tus) = —TF (47T)na”(T’ Vs, Vus) » (7.12)
and
ap =1, (7.13)
al(rv l/s) =a;+ 250 IOg (Vse’YET) ; (714)
2
as(r,vs) = ag + %63 + (4a180 + 2B1) log (vs€?E71) + 453 log? (vs€™®r) | (7.15)

5
a3(r7 Vs, Vus) =az+ alﬁgﬂ-2 + Tﬂo@ + 16C3ﬂ8

16
+ <27T268 + 6a283g + 4ai 81 + 262) log (vs€"%r) + EC:OZ‘WQ log (vuse™®r)

+ (12a1ﬁ§ + 10/3051) log? (1s7E7) + 863 log® (vse®7) | (7.16)

7"To make the notation more compact, we have written all Vi, in Eq. (7.12) as if they all depended on all r,vs and vys, but notice
that ag is just a constant, and that the dependence on vys does not show up until as(r, vs, vus).
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where vg = 0.577 is the Euler-Mascheroni constant and

o 3ICA — QOTFTLf

ay 9 y (717)
400n2T2 55
_ i 2
as = 31 CFTLfTF < 3 16C(3))
Lo (8343 16—t 22(B) o (1798 56((3) (7.18)
A\ 162 4 3 ARTE 781 3 ) ‘
as = agg’)n‘j} + a:(f)nfc +aMng+al”, (7.19)
where
92 3
ald) = — (90) T3, (7.20)
() _ (12541 368((3)  Gdm' o (14002 4166(3)Y .\ .o o1
s _(243 5 Tags ) CaTr Ty 5 ) OrTr. (7.21)
dabcddabcd 1264 184 2 1 6
A ) iy 04 _ %g(:&) + log(2)[64 4+ 672¢(3)] | + 7 — B, 3—10g(2) —321l0g*(2) | + om
N4 9 3 3 3 3
286 296 71281
+ TF{C%; (Q + TC(?’) - 160§(5)> + CACF< -~ e 264¢(3) + 80<(5)>
58747 17 4 19
2= % - — 320, + log(2){ — = — 14 - = -
+ (- T g~ 320 log(2){ — § — 14C3)} - <) - 350C(3)
157 5 1091 57 761
42— Sog(2) + log?(2 —_ =2 — x84 22
bt = = Son(2) +102@)| + 29000) + T 2(0) 4 o~ s} (122)
dabcddabcd 4392 14752 1
o) = ZE _ZA g2 3 — 473604 + log(2) 14752 —3472¢(3)| — @g(s)
N4 9 3 3
560 496 151176 385645 953 584 175
af oby 90 9 3 2f  I99  J0% 29
+7r< 156 + 3 log(2) + 3 log (2)>+ I }—l—CA{ 2016 +7T< 54+ 304+ 2C(3)
922 217 584 1349 20 40 1927 143
log(2)| — == + =2 == 22— T og(2) — —10g2(2) ) — ——((5) — —=¢?
+1o6@)| - 22+ 2Te)| ) + e + o (g - S0 - o)) - KEem) - )
462175
- <o 144y6} , (7.23)
and]
abed jabed _ 2 4
diPeldited 18— 6NZ 4 NE (7.2
N4 96N2
dgbeddabed N (N2 + 6)
7 Ta— (7.25)
—log(2))"
0, = Lin(1/2) + % , (7.26)
Y = 4(75’ 71) + 4(6) ) (727)

where ((z) is the Riemann zeta function, {(z1, z2), is the multiple zeta function, and Li,(z) is the polylogarithm.

7.3.1 Resumming ultrasoft logarithms in the static potential

Just as it is clear from Eq. (7.16]), at N3LO the static potential has a logarithm of the ratio of the soft and ultrasoft
scales

-1
Vo () = TWC%CFC#(VS)L +.o., (7.28)

81n [I71], from where the formulas for aé” and ago) are taken from, what we call 6,, is called ay,, and what we call yg is called sg.

The change of notation is to avoid any ambiguity, as these symbols have already been used in this thesis.
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where to ease notation, we have defined L = log(”“s) This is not just a peculiarity of this order, and further terms
will exhibit further such logs. For instance, at order a®(vs) there is an a’(vs)L? and an o°(vs)L term, at order
ab(vy), we have a®(vs) L3, ab(vs)L? and ()L, and so it goes from there on. These ultrasoft logarithms in the
static potential can be resummed using RG techniques. They have been computed in [166] with N2LL accuracy,
and in [167] with N3LL accuracy (see also [168]). Recall that terms that go like a™(vs)L" =3 for n > 4 are called
N2LL, and terms such as a™(vs)L"~* with n > 5 are called N*LL. Keep in mind that when one resums these logs,
one assumes a(vs)L ~ 1, so that in this counting, N2LL logs contribute just as O (a?’(l/s)) terms, and N4LL logs

just as O (a4(us)) terms. These ultrasoft logarithms are absorbed in an object called 6Vra (7, vs, Vus)
V(T, Vus) = V(Ta Vus = Vs) + 5VRG(T7 Vs, Vus) . (729)

In the equation above, we have just considered the formal series of the static potential, and we have absorbed all
the ultrasoft logarithms in the second term on the RHS. With this we mean that if Vg (7, Vs, Vus) is expanded in
a(vg), we recover order by order all the ultrasoft logaritms in V(r,vys). Let’s take a closer look at §Vrg. If we

resum only the N2LL logs, it takes the form

1 4 al(Vus)
—C3C s) = 1 . 7.30
8 50 ALFQ (V)?) Og( Ol(l/s) ( )
Notice that the strong coupling evaluated at the ultrasoft scale has a subscript. With o4 (vys) what is meant is

that the running of this object needs to be taken at one loop, that is, when writing a4 (vys) as a series in a(vs), we

would set 5, = B = 33 = --- = 0. If in addition to the N2LL logs, we also resum the N3LL logs in §Vgg, we have
4 o (Vys)
5 NOLL sy Pus) — s 71 2w
VaG  (r, ve, vus) = 8BOCACFQ (vs) 5 log ()
1 . a1 (Vys)
+ 27K (a(vs) — aq(vus)) + ;a(ys)(cu + 28 log(vsre™®)) log () : (7.31)
where we have defined
_8p 1 1
=_-= (Ca (47 4 67%) — 10Tpny) . (7.32)

~ 3B (4m)? 272
In some places of Eq. (7.31)), the subscript of the strong coupling evaluated at the ultrasoft scale is 2. With this

what is meant is that we take the running at two loop level. The need to evaluate a(vy,s) sometimes at one loop

and sometimes at two loops is clear once one considers the following small a(v5) expansions
1 1
atn) =a() + g-et{ — i} + et {2 - i
1
+ 32773@4@5){ —AB3L3 + 53081 L% — ﬂQL} +0(a’(1s)), (7.33)

and

log (%&))) :;ﬁa(ys){ - ﬁoL} + Sia (1 ){50L2 51L}
+ 9623043(:/5){ — 485 L% + 9801 L — 362L} +0(at () - (7.34)

We see that by setting the various §,, coefficients to zero, as indicated by the subscripts in Egs. and -,
we get only up to N?LL and N3LL terms. Nonetheless, in practice, we will not be so rigorous, and we will not

bother with the proper subscripts, and we will just use

2 . . 4 us
5VI§GLL(T7 Vs, Vus) - OiCFOLS(VS)g log (OC(V )) s (735)

a(”S)

1
8rfBo
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and

6VNéLL(r, Vs, Vys) = 3 150 C3Cra (VB){;L log (0;((”1:)))
+ 27K (a(vs) — avgs)) + %a(l/s)(al + 25 log(vsre?®)) log (O(;((Vyis))) } , (7.36)

that is, when using the N2LL expression we will keep all N°LL terms and some subleading terms, and when working

with the N3LL expression, we will have all N3LL terms and some subleading terms. Finally, and for reference’s

sake, we write next the first few ultrasoft logarithms of the static potential by expanding 6V}1§G3LL in a(vs)

SVRGM (1, v, vs) = %CiCpa4(VS) + 5 ﬂo —C3Cpa (ys){ﬁgo
+L {Bl + KBy — i (a1 +2Bo log(rvseVE))} } +0(a’(v)) . (7.37)

Thus, summarizing all, we have that the static potential at N>LL order reads

2
VL (7, Vs, Vus) = Z Vo (r, ve, Vs = )™ (1) + SVNGE (r, v, s ) (7.38)

n=0
and at N3LL level, we have that

3
VnsLL (7, Vs, Vus) = Z Vi (ry Vs, Vus = Vs)an'H(VS) + 5VI§SLL (7, Vs, Vus) - (7.39)

n=0

7.4 The ultrasoft energy

Let us come back to Eq. (7.6]), and consider now the second term on the RHS. We have seen in Eq. (7.7) that at

order 72 in the multipole expansion § Eys (7, vys) takes the form

Tr .
0Bus(r,vus) = 3 N, r*Vi / dte™ ™V (gE*(t,0)¢™V (t,0)gE (0, 0)) () + O(%) . (7.40)
This quantity has a different behavior depending on the relative size between Aqcp and AV. If both scales, Aqcp
and AV, are similar in size, d Fys is an unknown function of the ratio of these two scales. On the other hand, if

Aqcp > AV, the above expression can be approximated to

Tr

OBy (r, Vus) = 3N,

VA/ di(gE" (t,0)¢5 (t,0)9E"(0,0)) ~ r*Adcp (7.41)

Finally, if Aqcp < AV, 6E,s can be computed at weak coupling as an expansion in powers of a(vys). This

expansion is known to order r2(AV)3a?(vys) ~ ta®(vg) in the MS schemeﬂ At LO in o(vys), we have

T

—6log2 + 5) + O (a*(vus)) - (7.42)

VUS

. R us A
SELOmatme) — cFrQ(Av)dvj% (610g v

At NLO in a(vys) [166]

. 1 AV % (Vs AV
6E§SLO ina(vus) = CFTQ(AV)Bng{O[(VuS) |:—610g ( ) — 610g2 + 5:| + M |:18ﬁ0 10g2 ( )
v 1%

us 127 us

— 6 (Ca(13 +47%) — 28y(—5 + 3log 2)) log (AV

us

) —2C4(—84+39log2 + 4n*(—2 + 3log 2)

+72¢(3)) + Bo (67 + 372 — 601og 2 + 1810g”(2)) } + O (a®(vus)) } : (7.43)

91ts expression in the large By approximation can be found in [79].
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7.4.1 Expanding AV and V, in 0F

So far, we have written JE,s as a power series in a(vys) with AV and V4 taken explicitly. As it has already been
said, AV and V4 both admit a small a(vs) expansion. Implementing them in Egs. (7.42) and (7.43)), we arrive at

NALL _ 3 1 3 _ Cao(vs) _ 3 vs
0B, =CpCy v (us){a(uus) { 6log ( T 6log2+ 5+ 47Ta(us) (a1 + 2B log(rvse™))

x (—6log (C‘W(”)) —6log2 + 3) ] 1 02 0s) {1860 log? (C"‘O‘(”)>

2TV 127 2TV

— 6 (Ca(13+47%) — 285(—5 + 3log 2)) log <C§Z‘/(”)> —2C4(— 84+ 39log2 + 4% (—2 + 3log 2)
+72¢(3)) + Bo (67 + 37 — 601og 2 + 181og”(2)) } + O (a®(vs)) } : (7.44)

where we have only kept terms that got at most a® (regardless of the scale at which it is evaluated). Let us just
focus on terms that have at most o*

Caa(vs)

3 1
6E11:IS LL = CFC:ZWQB(VS)O[(VuS){ - 610g < 2TVus

) — 6log(2) + 5} . (7.45)

Let’s think about the ultrasoft logarithms above. We need to keep in mind that the we will typically choose
Vus ™~ @, so that the logarithm of () featured in the equation above will be regarded as order 1. Therefore,
from Eq. , we readily see that the equation above contains N3LL termﬂ Moreover, we easily see that the
order a?(vys) terms and the order a(vs)a(vys) terms in Eq. give rise to N*LL terms. We will not reach this

level of precision in this thesis, so we will not consider these terms in what follows. Thus, in our N3LL expressions

for the singlet static energy, we will use Eq. (7.45).

7.5 Cancellation of vy in E(r)

It has been long known [I81] [I82] that the static potential has IR divergences starting at O (a4(us)) when vy — 0.
This divergence parametrized by vy of the first term on the RHS of Eq. (7.6]) gets cancelled with the second term
in the RHS, so that E(r) is vys indedepent. In order to show this cancellation, we first write the ultrasoft energy
as a small a(vs) expansion by expanding «(vys) in terms of a(vs) in Eq. (7.44). This yields
. 1 C s 3 C s
B = o CrCl )| - stog (1Y) - tes2 5]+t Gt (55 )
™

27r 21y 21 Vs

1 log <C“‘O‘(”)> <?’f° log <”> b (Ca(13 + 472) — 28(—5 + 3log 2))

9
YE
2rvgs Vs o0t (a1 + 280 log(rvse )))

™

1 v, 9 1 1
— —fBolog [ == ) (—61log2 — 2601 1)) (= —log?2)+ — | —2 — 84 log 2
27760 og<l/S )( 6log2 + 5) + 27r(a1+ Bo log(rvse ))(2 0g2) + 127r( Ca(—84+39log

+47%(—2 + 3log 2) + 72¢(3)) + Bo (67 + 37 — 601og 2 + 181og” 2) )] } + 0(a®(v)) - (7.47)

It is worth mentioning that this object is known one order more in «(vs) than the static potential. Now, from
Eq. (7.16]), we know that at order a*(vg) the v, dependence of V' is

_ _1 3 4 Vus
V= 127TTCFCAC“ (vs) log < m ) +.... (7.48)

10 And, analogously to what happened to Eqs. (7.31)) and (7.36]), we also have more subleading terms. If we wanted to be rigorous,
and only keep the N3LL logs, we would consider

Caa(vs)

SEN'LL _ o
2rvys

FCS ——
Aoy

ocg(l/s)oq(uus){ —6log ( ) —6log(2) + 5} . (7.46)
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From Eq. (7.47), we see that the v, dependence of the ultrasoft energy at order a*(vy) is

6Eys = %Ccho/l(ys) log (02“‘:/(”)> +.... (7.49)
By summing both
E(r) =V + 6By (7.50)
1271760[4*0;‘20[4(1/5){ log (”“) +log (%) } 4. (7.51)
=%CFC§044(VS)1Og (CAJIEVS)) .oy (7.52)

and we see that the v,s dependence explicitly cancels, rendering the static energy v,s independent, as it is expected.

Similar cancellations will take place at higher orders.

7.6 The singlet static energy revisited

Having fleshed out the terms on the RHS of Eq. (7.6]), we now summarize the main formulas to consider for the

static energy. If we do not resum ultrasoft logarithms, up until order a(v;), we just have the static potential

Exio(r) = 3 Via™ (1), (7.53)

n=0
for j < 3. For N3LO order, we will add on top of the series of the static potential the appropriate term from § E,
that is, we will add the order a*(15) term in Eq. (7.47)

CAOé(Z/S)

2rVus

3
1
ENsLo(’I") = Z VnOénJrl(Vs) + %CFCZ(XZL(VB) |: — 610g (
n=0

) —6log2 + 5} . (7.54)

We repeat here that the vy, dependence on the second term of the RHS above disappears with the a*(v) term of

the static potential. If on the other hand, we do resum ultrasoft logarithms, we have that, at the N2LL level,
ENQLL (7") = VN2LL 5 (755)
that is, only the static potential contributes. At the N3LL level,

EN3LL(T) = VNSLL + (SELI:I:’LL . (756)

7.7 Getting rid of the u = 1/2 renormalon

Let’s recall Eq. (7.5)
E™(r) — E¥(reef) = E™(r) — E™ (rres) - (7.57)

We have reviewed in past sections the theoretical expressions for E'(r) as given by Eq. . As it has been
mentioned in the introduction to this chapter, the singlet static potential suffers from an r independent v = 1/2
renormalon that jeopardizes the overall convergence of E(r). We can completely forget about this renormalorﬂ
by simply taking the r derivative of the static energy, and just working with this object by taking

Elatt(r) _ Elatt(rref) _ /7- d?"/—F(TI)7 (7.58)

Tref

M For an analysis without taking the derivative see [T78].

120



where

F(r)= d%lnE(r) (7.59)

Eq. (7.58) was originally used in [I73] (see also [I72]), but its use for competitive determinations of Aqcp was first

made in [I53]. We will in the next section take the derivative on the expressions of the static energy we have seen.

7.8 Taking an r derivative in E(r)

We now consider the r derivative of the static energy

Fir) = LB0) = Lv(rm) +

d
= o — 8 Fyus (7, vus) - (7.60)

dr

It is customary to define the force as the derivative of the static potential

d
F(Tv Vus) = %V(ra Vus) . (761)
Its perturbative expansion reads
F= Z fu(r,vs, Vus)an+1(Vs) ) (7.62)
n=0

where, needless to say, that the series in the RHS is meant to be understood as a formal series. Taking a derivative

on the expressions of [section 7.3, we obtain

oo =SB = SR anm) 280} (7.6
fo = o lea(n) — o) — 281}

f3 = _Cr as(r, vs, us) — 6ag(r, vs) Bo — 4day (r, vs) 8 —QB—ECBWQ

3 - (47’(’)37’2 3\"y Vsy Vus 2\ Vs )P0 1\ VYs)P1 2 3 A .

Notice that, just as with V(r, 1), we have vy dependence in the coefficient that goes with a*(14). Also, just as
with V (7, vus), we can resum the ultrasoft logarithms of the series of the force. Taking the r derivative in 0Vgrgq,
we get at N2LL level

_ 1

d
6F}I{\IC2}LL(T7 Vs, Vus) = 76VRG(T> Vs, Vus)
N2LL 650

dr

CFCi%a?’(us)log <a1(Vus)> ) (7.64)
7

and at N3LL level

: d
5FII§(;LL(T7 Vs, Vus) = *6VRG(73 Vs, Vus)

= CFC,?%:QCYB(Z/S){ L g (aQ(V“S)>

d’/‘ N3LL a % © a(Vs)
T 1 1 ey ) el a1 (Vys)
+ mK{al(uus) —a(vs)} + - <2 % [a1 + 2B log(rvse )]) () log < ) ) } , (7.65)

where recall that K has been defined in Eq. (7.32). We have bothered to write the proper subscripts for a(vys)
but, just as with the static energy, in practice, we will not take this detail into account. Thus, the RG improved

version of the force at N2LL reads

FNZLL(Ta Vs, Vus) = F(T7 Vys = Vs + §FRN(2;‘,LL(T7 Vs, Vus) ) (766)

)|N2LO

and at N3LL

Fropn (7, vs, vas) = F(r, vus = U + 5FRN(S;LL(7’, Vs, Vus) - (7.67)

)|N3LO
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Finally, let’s turn our attention to the r derivative of 0 Eys. The analogous of Eq. (7.45) reads

d

3 1
—6EN LL — Cp rCir—s a3(vs)a(vus){log (OAQ(V“)

QWU) +log(2) + 1/6} : (7.68)

Just as with Eq. (7.45)), the equation above contains N®LL logs. Likewise, the order a?(vys) contains N*LL terms,

so we do not consider it in this thesis. Finally, writing d Eys as an expansion (modulo logs) in a(vg)

d ¢ N'LO _ 1 31 [ 4 Cao(vs)
dréEus (r, Vs, Vus) = 727TCFCA 59 (vs)|6log e +6log2+1
+ a5(ys) [ — 10g2 (CAO‘(VS)) % + log (CAO‘(VS)> (_ % log (V“S> + %bg(ﬂ/se“m) _ % + % _ K1>
2TV 2w 2rvys 2w s s 2
11§ 1 1
f@(6log2+1)log +@(910g2+g)log(ryseVE)Jrfal(glongL -)+ @(7791 g2) — K1 — —K>
Vg 2 T 4 2 127
+ (’)(ozG(VS))} , (7.69)
where
1
K, = —%[CA(13+47T2) —2Bo(—5 + 3log2)] , (7.70)
Ky =—2C4[ — 84+ 39log2 + 47%(—2 + 3log 2) + 72¢(3)] + Bo(67 + 37% — 60log 2 + 1810g” 2) . (7.71)

We emphasize that the r derivative of E(r) in the above equations has been taken with respect to constant v and

vus- Nevertheless, we will later consider this scales to have the following r dependence

Ls

>, (7.72)

Vg = —
CAOé(l/S)

.
—§ (7.73)

Vus = Tus

for some values of x4 and x,s. Therefore, one could at first have some reservations about using the expressions
that have been computed above. Fortunately, it can be seen that if we consider this r dependence before taking the

derivative in E(r), we actually obtain the same formula for F(r). The individual terms %V Vra and JEus

change, but the changes add up to the same F(r). We show this in [Appendix H

Thus, summarizing all, if we do not resum the ultrasoft logarithms we have for j < 3

)y dr

J
Friro = Z fn(ﬁ Vs, Vus)a”-‘rl(ys) . (774)

n=0
At N3LO, we have to add a contribution from the derivative of §Ey in Eq. (7.69)

CA(X(VS)

3
., 1 1
FN3LO = Z T (7, Vg, v )™ T () + mC’FC’%ﬂa‘L(VS){ log ( .

n=0

>+log2+1/6}. (7.75)

We stress again that the v, dependence on both terms in the RHS above cancels out. On the other hand, if we

resum ultrasoft logarithms, we would have
Frerr = Fnern(r, vs, Vus) (7.76)

1 Caa(vs
FrnoLn(r) = Fason (7, vs, vus) + CFOjWag(Vs)@(Vus){ log <;r1/()> +1log(2) + 1/6} . (7.77)
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7.9 Hyperasymptotics and F

As we have already mentioned, by construction, F' does not have a renormalon at u = 1/2. Nonetheless, we expect
it to have a renormalon located at u = 3/2. As it has been stated in the introduction, the goal of this chapter is
to obtain an estimate of «(M,) by comparing lattice data for the singlet static energy with theoretical expressions
for it, where the PV Borel sum is used to assign a sum to the formal series present in the expressions. In our case,

we have two such series, that is, recalling
E(r) =V (r,vus = vs) + 0Vra (1, Vs, Vus) + 0Eus (7, Vus) (7.78)

we have seen V to be a formal series in a(vs), and §Eys to be a formal series{ﬂ in a(vys). We will employ the
terminants of to approximate the PV Borel sum from truncated expressions. V and dE,s both have
a renormalon at u = 3/2. It was shown in [I80] that these renormalons cancel out in the total energy E(r), if
the series of V and of dF,s are evaluated at the same scale, that is v, = vs. This cancellation has also been
shown to take place in the large 3y approximation [79]. Therefore, we know that ZY = —ZgE“S, or analogously,
ZE = fZ;%éE“S. Notice also that since F' is the r derivative of V', we have tha ZEF =27Y. Consequently, if we
included the d = 3 terminants of V' and 0 F5, they would cancel out if we picked v,s = vg, and if we truncated both
series at the same Np. In any case, later in the fits, we will not in general consider v,s = 15, and the truncation
points of the series will not be equal, so the terminants will not cancel each other. Thus, adapting Eq. , we
obtain the d = 3 terminant of F:

—3b
TF = Oz(VS)KI(IF{))TV367/3027(er) (W) (1 + Kl(g)la(ys) + 0 (a*(1s)) ) , (7.79)
= :

where 7. = —3b + % —1 and

ZF2173b,/T33b+1/2 _ 1
K®) 43 /2| _ . = .
IR I'(1+ 3b) Po 3] (750
. 37) 11 1 1 1
g® _ B/Gm) g (L Ly L Lo 1) 7.81
IR,1 et 1 Pa™3) T % T 2T Tos0 (751

The above terminant is to be added on top of F' truncated at the scale o™7(4=3:)+1 (1) where

67

Ne(d=3,1) = 5 )

(1—ca(ry)) . (7.82)

We will in the fits typically consider Np(d = 3,v5) = 3. As we have said, the terminant to add on top of d%éEuS
d
is the same as in Eq. (7.79) with the changes Z:f — Z3dT5E“S = —Z?f? and vy — Vys. The truncation point

Ve (d=3.1u)+1(, ) for AL 5By is

No(d = 3, v0) = —2F ) (1= csa(vs)) - (7.83)

ﬂOa(Vus

We will in the fits typically consider Np(d = 3,vy5) = 0.

12 As shown in Eq. (7-43). Of course, after expanding AV and V4 in a(vs), we will also have a(vs) dependence.

13 Just compare the r dependent part of the Borel transforms around u = 3/2 which are Zfrl/g’ and Z¥T2I/S3.
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7.10 The normalization of the u = 3/2 renormalon

In order to implement the formula of the u = 3/2 terminant of V or § Ey5 (or of those of their r derivatives), we need
to know the normalization of the u = 3/2 renormalons of these series. We could in principle try to estimate it by

V3(a5:d:1) with its large n theoretical expression, but this approach is obfuscated by our approximate

comparing V3 —
knowledge on the normalization of the u = 1/2 renormalon Z}, whose innacuracies would be inherited by ZY if
estimated in such a manner. On the other hand, the force is not contaminated by the u = 1/2 renormalon, and it
is trivial to relate the normalization of the u = 3/2 renormalon of the force with that of the static potential (one

only needs to realize one is the r-derivative of the other):
z¥ =27y . (7.84)

Therefore, the force is an ideal object to test whether perturbation theory, as we know it at present, is already ap-
proaching the asymptotic behavior dictated by the u = 3/2 renormalon. From Eq. (1.69), we know this asymptotic
behavior of the coefficients of the (dimensionless) force to bﬂ

as Bo\"I(n+143b 3b 1
[ )=Z§(w)3<6;) (?(1+3b) ){1+ - w1+0(nz> } (7.85)

We remark that we can fix w; = 3s; using the procedute of but that our current knowledge on Vyu
makes us unable to fix ws. For reference’s sake, we also explicitly write the behavior of the Borel transform of the

series of 2 F associated to this factorial behavior

2 AF(t) = Z;(TM)SIH%{I +wy (t - g%) +... } . (7.86)
) ”

By considering the ratio of the exact coefficients given in Eq. and the asymptotic expression above, we can
obtain an approximate determination of the normalization of the u = 3/2 renormalon. We display the results in
This figure shows various curves where the ratio has been taken with the exact coefficient to various
orders. We also show our central value determinations for the normalizations of the renormalons with the error
bands. We determine these central values by considering the N3LO curve at the point # where the derivative of

the curve is zero, which are z = ur = 1.30, and = 1.52 for ny = 0 and 3 respectively. They read

gynfzo = 0.5179%%(Az) + 0.05(N2LO) — 0.10(O(1/n)) + 0.02(us) = 0.51(24) , (7.87)
F
3

s = 0-372395(Ax) +0.02(N’LO) — 0.05(O(1/n)) +0.005(us) = 0.37(17) . (7.88)

For the error estimates, we explore different possibilities. We vary = by multiplying and dividing the central value
by v/2. This is the first error quoted in Egs. and , and we see that it is the biggest contribution
to the final error. We also consider the difference between the fa/ fQ(aS)sz and f3/ féas) zZF result This is the
second error quoted in Egs. and . We also estimate the importance of subleading 1/n corrections
by considering the difference of including the 1/n term or not in Eq. , which is the third error quoted in
Egs. and . Finally, we also explore the importance of the ultrasoft associated terms (as they should

4We will only consider the d = 3 renormalon in F, and therefore, to ease notation, we drop the d = 3 label everywhere here, that

is, we will not write f,(LaS:dzg).

15Notice that in |[Figure 7.1} we see that fg/féas)fo has no point where the derivative is zero in the range considered, and therefore,
we use the value of z used with the N3LO coefficient.
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Table 7.1: Normalization constant, ZE | of the leading renormalon of the force for different number of flavours n ¥
in the MS scheme. We also give predictions of some asymptotic coefficients with p = 1/r.

ny 0 1 2 3 4 5 6
ZF [ 051(24) | 0.47(22) | 0.42(20) | 0.37(17) | 0.31(14) | 0. 23( 0) | 0.15(8)

P2l 1 8(4) 6(3) 4(2) 3(1) 15(7) | 08(3) | 0.3(2)

r2fl [ 31(15) | 21(10) | 13(6) 8(4) 4(2) 1.8(8) | 0.65(33)

not affect, or little, the determination of the normalization of the renormalon). The error associated to ultrasoft
effects is estimated by using the coefficient f3 obtained by eliminating the last term in the second line of a3 in
Eq. m ) before taking the r derivative in V. The variation is indeed small, as we show in the last error item in
Eqgs. and -

The first and second error (and to some extent the third) are somewhat redundant, as they both measure the
fact that n = 3 is still finite. Nevertheless, we combine them all in quadrature and make the variation symmetric
around the central value. This indeed yields a conservative estimate of the error. In the left panels of
we can see the dependence of ZI' i.e. of fn/f(as)Z:f, with respect to = for different values of n. Around the
scale where the central value has been chosen, they are all inside the error band, even for a coefficient as low as
fi/ fl(as) Z¥. We also give determinations for other values of n using the same error analysis. They can be found
in where we also give estimates of the higher order coefficients of the perturbative series of the force with
w=1/r.

1.0

N - ol ZE
=3 (a5) ,F
08 \ ------- fiIf 2,

\ ........... 11179 ZF
0.6 \ ity zr

Figure 7.1: Left figures. Determination of Zf using fn/f(ag)ZF as a function of ru and for different values of n
in the MS scheme. Right figures. Determination of Z¥ using Eq. (7.92). Upper figures are determinations with
ny = 3. Lower figures are determinations with ny = 0.

Our conclusions are different from those in Ref. [I83], where it was concluded that it was not possible to
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determine the normalization of the u = 3/2 renormalon. The authors consider the function

(1— g—ot)1+3br2F(t), (7.89)

s

which when it is evaluated at t = %—: clearly yields

(1— g—;t)HSbrzF(t)

= ZF (rp)3. (7.90)

— 67
t= o

We remark that the expansion around ¢ = 0 of Eq. (7.89) has a radius of convergence bigger than ¢ = %’;. Let us

write the following Taylor expansion

Bo 14362 gy — - n
(1= D2 R(t) = > vat". (7.91)
n=0
Then, by equating the above two equations, we can obtain the normalization of the renormalon as the sum of the
following series
78 =1 i 6m)" (7.92)
5 = — o | — | . .
? 3 "\ Bo
n=0
This method was proposed in [I30} [I84], and first quantitatively applied to the leading renormalon of the pole
mass and the static potential in [122]. The results of the evaluation of ZI" using the above series up until N3LO
in %—g is displayed in |[Figure 7.1} both for ny = 0 and ny = 3. We observe that the convergence is worse than for
the determination of Z1" using f,,/ fy(LaS)Zf . This was also observed very clearly in [I00] for the energy of an static
source. In that case, and this case here, we observe convergence but at a slower pace. Actually, the N?LO and N3LO
predictions are well inside the error band of our predictions in Egs. (7.87) and (7.88]), although the curves display
a bigger dependence on z, and the variation between different orders is bigger than with the previous method. For
the method using Eq. (7.92), stability is found for z ~ 2. For this method, working with x = 1 does not yield a

convergent series, which is what was done in [I83], which may explain the conclusions reached in that reference.

7.11 The lattice data

For the fits, we will use ny = 2 + 1 lattice data of [I58] (supplemented with information given in [I55]), which has
made an updated error analysis of the data of [I54]. Of these data points, we only consider those obtained with
B = 8.4, as they correspond to the shortest distances available a = 0.025fm = 0.125 GeV~!. The lattice spacing a
has been fixed by the scale 1 which is defined by

dE(r)
2 _
T e =1, (7.93)

r=ry
with r1 = 0.3106(17) fm. In this ensemble, the up and down quarks get the masses m; = m/5 where mg, the strange
quark mass, has been tuned to its physical value, and the pion mass gets the value 320 MeV in the continuum.
This is only statistically Signiﬁcanﬂ for r > 0.471 ~ 0.625 GeV~! (see [I57]). The uncertainty associated with
fixing the physical units of the parameter r was seen in [I58] to be comparatively small compared with other
uncertainties. Therefore, we will neglect it in the following. It was also observed in this reference that the effect of

the correlation of the points to the final error was small. Thus, we also neglect this source of error.

16We thank J.H. Weber for informing us of this.
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The discretization errors depend on the size of the parameter r/a. They have been studied in detail in [I58],
where it was concluded that, for r/a < /8, tree-level improvement was enough to bring the discretization errors
down to the point where they were smaller than the statistical errors and could, in comparison, be neglected.
Therefore, we will use tree-level improved data and disregard the lattice data at shortest distances (for r/a < v/8),
as well as the special geometry r/a = v/12. This corresponds to one of the methods followed in [I58] to account
for discretization effects. This means that the shortest distance we consider is ryi, = 2.827 a, which in GeV units
reads T, = 0.353 GeV 1.

To test the sensitivity of the fit to the data, we will consider different ranges of data (similarly to what was done in
[153]). We consider the following ranges: Set I: 0.353 GeV~! < r < 0.499 GeV~!, Set II: 0.353 GeV~! < r < 0.612
GeV™!, Set III: 0.353 GeV ™! < r < 0.8002 GeV~! and Set IV: 0.353 GeV~! <7 <1 GeV~'. The number of data
points of each set is 8, 17, 31 and 50, respectively.

7.12 The expressions that go on the fits

For the central values of the soft and ultrasoft scales, we take the standard expressions (vs, vys) = (1/r, Cac(vs)/(21)).
Our central value determination of the strong coupling will be done with expressions where logarithms of ratios of
the soft and ultrasoft have been ressummed, although we will also explore fixed order expressions in
We will consider different orders for F(r') in Eq. (we also include fixed order expressions that we will later

use)
e LL/LO
Fro(r) = F(r,vus = vg) , (7.94)
LOin a(vs)
e NLL/NLO
FnLo(r) = F(r,vys = vg) , (7.95)
NLO in a(vs)
e N2LO
]:NQLO(T) = F(T7 Vys = Vs) y (796)
N2LO in a(vg)
e N2LL
d
]:NZLL(T) = F(T‘, Vus = Vs) + 75VRG(T7 Vs, Vus) ) (797)
N2LO in av(vs) dr N2LL
e N3LO
d
fN3LO(T) = F(Tv Vus = Vs) + 75Eus(7ﬂa Vus = Vs) s (798)
NS3LO in a(vg) dr NS3LO in a(vs)
e N3LL
d d
Fronn(r) = F(r, vus = 1) + —0Vra(r, Vs, Vus) + —0FEus(r, vys) , (7.99)
N3LO in or(vs) dr INCIAT LOin a(vus)
° N3LOhyp
FN3LOy,, (T) =F (1, vus = v5) +T5(Z5 , Np = 3,15)
NS3LO in a(vs)
d
+ — 0By (1, vas = Us) +T3(—Z% , Np = 0, vy = 1), (7.100)
dr NS3LO in a(vs)
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o N3LLyy,

d
INSLLhyp(r) :F(T7 VllS = VS) + T3(Z£7NP = 37 VS) + %5VRG(T7 VS) Vus)

N3LO in ar(vs) N3LL

+ T3(_Z§?,NP = 07 Vus) . (7101)
LOin a(vys)

+ %5Eus (7“, Vus)

Notice that in the last item above, which we name N3LLyy,,, we have introduced the d = 3 terminants of the series of
F and d%&Eus. We have already mentioned that the renormalons of these two series cancel out if if both quantities
are expanded in powers of « evaluated at the same scale, and if both perturbative expansions are truncated at the
same order. It can be seen in Eq. that this is something that we do not do. The natural energy scales in
F and %5Eus are different, and thus, we evaluate F as a series in a(vs) to order a(vs)?, and %5Eus is evaluated
as a series in a(vys) to just the LO. The terminants are chosen accordingly. We finish by mentioning that we have
also performed fits changing the order at which we start including the terminant in the static potential from three

to two. We indeed find the variation to be small.

7.13 Central value results

We now state the results of the fits at NE"LL}lyp and N3LL orders with vy = 1 /Ty Vus = CA;T(VS) and 7 =

0.353 GeV~! for the various ranges considered. For N3LLyy:
o Set I: AVS™ = 338(2) MeV with x2%, = 0.50.
o Set II: AY™) = 341(1) MeV with x2,, = 0.53.
o Set III: AL/=Y = 343(1) MeV with x2,, = 0.62.
o Set IV: AU=Y = 343(0) MeV with x2,, = 0.67.
The error shown is the statistical error of the fit. For N3LL:
o Set I: A=) = 337(2) MeV with x2,4 = 0.50.
o Set I1: AU =Y = 340(1) MeV with x2,, = 0.53.
o Set III: A=) = 349(1) MeV with X%, = 0.57.
o Set IV: A=) = 340(0) MeV with X%, = 1.22.

We display these numbers and those of LL, NLI_E and N2LL orders in As one would expect, as we
increase the number of points in the ranges, the statistical errors get smaller. We observe the dependence of
Agzs on the range of the data set to be very small. This small dependence holds irrespective of the order in the
approximation for the theoretical expression used. We only see very small differences at N3LL and N?’LL}lyp order
between the value obtained from the data Set T and the rest (within one sigma for the statistical error, which is
the only one we display in Fig. , and basically vanishing between the data sets I, IIT and IV.

To display the reliability of the fits, we also show the reduced x? obtained with each fit in the lower panel of
Figure 7.2l For the data sets I and II, the fit yields X%ed ~ 0.5 to all orders in the hyperasymptotic expansion.

170f course, LL=LO and NLL=NLO.
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Figure 7.2: Upper panel Determination of A%ZS) at LL, NLL, N2LL, N®LL and N3LLyy, using the data sets:
Set I (continuous black line), Set II (dashed blue line), Set III (dash-dotted green line), and Set IV (dotted red
line). The error displayed is only the statistical error of the fits. Lower panel x2, for the fit of Al(\%:g) at

LL, NLL, N?LL, N3LL and N3LLyy,, using the data sets (continuous black line), Set II (dashed blue line), Set II1
(dash-dotted green line), and Set IV (dotted red line).

129



Therefore, there is no significant dependence on the number of data points. For the data Set III, there is a mild
increase: Xfed ~ 0.5 — 0.6, but still well below 1. It is when we consider data Set IV, which includes points up to
r =1GeV ™!, that we see a significant increase in the Xfed' The magnitude of this increase, however, depends on
the order, and even in the worst case is not much bigger than 1. The LL and NLL fits yield x2 4 slightly below 1,
with a slight increase when going from LL to NLL. The 2, reaches the maximum, 1.46, at N2LL. Order N3LL
shows a decrease of the reduced x?, albeit still above 1, and at order N?’LL}lyp the X?ed significantly drops getting
close to the x2,4 ~ 0.6 value we have for other data sets.

Set IV is the more sensitive to the IR, as it goes up to r ~ 1 GeV~!. This may reflect in a larger sensitivity
to ultrasoft associated physics, which will then need to be described more accurately. This matches with what we
see for the Xfed with set IV: LL, NLL, N2LL and N3LL show a bigger X?ed (we emphasize, nevertheless, that they
are still of order 1), which then goes down to a value similar to the one obtained with the other data sets after
the inclusion of the terminants. It is non-trivial that the larger sensitivity to the IR we expect for data Set IV
to be well described by our weak-coupling analysis. Indeed, it is surprising that the ultrasoft effects do not blow
up in any of the fits since a(vys) is evaluated at a rather low scale. For illustration, we show the values a(vys)
takes for the various ranges considered™} for Set I a(vys) € (0.46,0.57), for Set IT a(vys) € (0.46,0.65), for Set III
a(vys) € (0.46,0.75), and for Set IV a(vys) € (0.46,0.78). For this last data set, the very last points, those with
larger r-s, reach a regime where v grows as r increases, that is, as v decreases v starts to increase. Therefore,
their inclusion in the fits should be taken with caution.

Overall, by only looking at the x2 ,, we do not have a clear signal of which data set to use and, indeed, the fits
yield similar numbers and X?ed at N3LLhyp. Therefore, we will use set I as it is less sensitive, in principle, to long
distances, although, as we said, the x% of the fits does not give a clear signal of a deterioration of the quality of
the fit (something that one would expect if our perturbative approximations were not a good approximation to the
data).

Another motivation to use the data Set I is that the f = 8.4 ensemble suffers from frozen topological charge
in the MC evolution. It has been shown (see [I57]) that the effects of frozen topology in different sectors are
statistically irrelevant for r < 0.47; ~ 0.62 GeV~!. Therefore, by using the data Set I this problem is completely
avoided. On top of that, as mentioned above, the effects due to finite light-quark masses are not statistically
significant for this energy range.

In order to see the quality of our fit, we also compare our theoretical expression using the values of Al(\%:?’)
obtained from the fit with the lattice data. It is customary to compare directly with the potential (this can be
done after fixing a normalization constant K that we fix below). The comparison is very good in the whole range
we compare (up to 1 GeV), as we can see in the upper panel of Fig. Nevertheless, such comparisons do not
allow us to see the fine details due to the dependence in powers of r of the potential. For such comparison, it is

better to define
r

ay(r) = “Cn (/T dr' FRG () + K) , (7.102)

and we adjust K, such that most of the  dependence vanishes. We show the comparison in the lower panel of Fig.

[7:3] It is remarkable that pure perturbation theory predicts very well the data down to 1 GeV. The error band

=3)

18To produce these numbers, we take AI(\/%f = 330 MeV.
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Figure 7.3: Upper panel: fC'FaVT(T) = [, drFRO(') + K at N*LLyy, with A%:B) = 338(12) MeV and
K = —1.2 GeV (solid blue line and blue band) versus the lattice points E'**(r) — E't () + K. Only points to
the right of the vertical dashed line are included in the fit. Lower panel: ay (1) at N3LLyy,, with A%:S) = 338(12)

MeV and K = —1.2 GeV (solid blue line and blue band) versus the lattice points — g (E"™(r) — E"**(ryt) + K).
Only points to the right of the vertical dashed line are included in the fit.
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Figure 7.4: Determination of Al(\%:g) at LL, NLL, N?LL, N3LL and NB’LLhyp using data Set I with vy =
Caa(vs)/(2r) and vy = 2/r (continuous blue line), vs = 1/r (continuous black line) and vy = 1/(v/2r) (con-

tinuous red line). We also plot the determination of A%ZS) at LL, NLL, N2LL, N3LL and N?’LL}lyp using data Set

I with vys = 1 GeV and v, = 2/r (dashed blue line), v = 1/r (dashed black line) and vs = 1/(v/2r) (dashed red
line). With the resolution set by the figure, the continuous and dashed black lines are hardly distinguishable. This
also happens to a large extent with the continuous and dashed red lines. The error displayed is only the statistical
error of the fits.

perfectly encodes all the data. This means, in particular, that with the precision of our computation, we do not

see any trace of nonperturbative effects down to scales 1/r ~ 1 GeV.

7.13.1 Dependence on v;

We now test the sensitivity of the fits on v5. We will mainly work with data Set I with which we can do variations
of the parameters without entering in a regime where perturbation theory breaks down. We consider variations of
vs with v = x,/r within the range z, € [1/v/2,2]. The lower limit of v is chosen so as to avoid reaching scales
too low for our weak coupling analysis to break down. Had we chosen x; = 1/2 as lower bound, for data Set
I, we would have obtaine for the largest distances values of a(vs) ~ 0.5. If we stick to z; = 1/21/2, we stay
around a(v;) ~ 0.3 which is safer. It is important to keep in mind that for our central value of the ultrasoft scale
s = Caa(vs)/(2r), variations on vy imply variations on vys. Due to this, and since for data Set I the central value
of v yields values of the ultrasoft scale around vy = 1 GeV, we will also consider variations of vy fixing v,s = 1
GeV.

We display the results of the fits for data Set I in For vs = 1/r both fits, with vy = Caa(vs)/(2r)
and with v, = 1 GeV, yield very similar results. Indeed, in the figure, the fits with (vs, vys) = (1/7, Cac(vs)/(2r))
(continuous black line) and with (vs,vys) = (1/r,1 GeV) (dashed black line) are hardly distinguishable with the
resolution set by the figure. The fits with v = 2/r exhibit a different behavior compared to the v = 1/r fits. On
the one hand, working with v, = 1/r gives a result that changes very little as we add more terms in the expansion.

On the other hand, when working with vs = 2/r, the LL result is quite off the expected result, but then, adding

=3)

19We use A(Mlsf = 330 MeV to get this number.
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Figure 7.5: Determination of A%zg) at LL, NLL, N?LL, N3LL and N3LLyy,, using data Set I with different options
for the (soft, ultrasoft) scale: A) with (vs,vys) = (1/r,Caa(vs)/(2r)) (continuous black line with filled black
points), with (v, vys) = (2/r, Caa(vs)/(2r)) (continuous blue line with filled blue diamonds), and with (v, vys) =
(1/(v/2r), Cac(vs)/(2r)) (continuous red line with filled red triangles); B) with (v, vys) = (2/r,2Caa(vs)/(2r))
(dashed blue line with filled blue squares), and with (i, vs) = (1/(v/2r), Caa(vs)/(2v/2r)) (dashed red line with
filled red inverted triangles); and C) with (vs, vys) = (1/7,1 GeV) (dotted black line with empty black points), with
(Vs vus) = (2/7,1 GeV) (dotted blue line with empty blue points), and with (v, vys) = (1/(v/2r),1 GeV) (dotted
red line with empty red diamonds). The error displayed is only the statistical error of the fits. We also show the
error band generated by our prediction Eq. . Note that the resolution in this figure has been increased with

respect to the one in
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higher order terms makes the prediction converge to the same result as with vs = 1/r. The convergence is perfect
within statistical errors, and also irrespective of which of the two values of the ultrasoft scale v,s = Caa(vs)/(2r) or
vus = 1 GeV we decide to pick. Nonetheless, as opposed to what we had for vs = 1/, these two cases (the two blue
lines in do not agree until we reach N3LLyyp,, with the N3LL order values differing quite significantly
from each other. Nevertheless, this difference is nicely eliminated after the inclusion of the terminants associated to
the u = 3/2 renormalons. Furthermore, the inclusion of these terminants is fundamental to get agreement between
these fits and the fits with v = 1/r.

A similar discussion holds for the case with vy, = 1/(y/2r), even though the overall behavior is better. The
LL result is closer to the value obtained with vs = 1/r, and the difference between the determinations with
(Vsy vus) = (1/(V2r), Cac(vs) /(2r)) or with (vs, vus) = (1/(v/2r),1 GeV) at N3LL is small.

In the whole parameter range we have studied, the x?2 , is reasonable. Therefore, all fits are equally good in
this respect. The only exception is the N®LL prediction for (v, vus) = (2/7, Caa(vs)/(2r)), which has a x2 4 ~ 1.9.
We find then significant that, as seen in this point moves away from the convergent pattern that is
observed in the other fits. It is also then significant that the inclusion of the terminants brings agreement with the
other fits, and lowers the x% 4 down to x2 4 = 0.42, much below 1.

We state now the data plotted in [Figure 7.4 for the NSLL}lyp case, and draw our error estimate:

s 1GeV), we get AVL™) = 338(2) MeV with x%, = 0.47.

e For (vs, vys)

o For (vs, vys) (2 CAO‘(V° ), we get Al(\%f:g) = 335(2) MeV with x2 , = 0.50.

2,1GeV), we get AP = 340(2) MeV with x2,, = 0.47.

o For (vs,vys) =

r? 2r

o For (v, vus) = (2 M) we get AUY= = 340(2) MeV with 2, = 0.42.

The quoted errors are the statistical errors of the fits. Comparing with the central value result (which we remind
is A%:S) = 338 MeV), we conclude that in the range v, € [1/(v/2r),2/r] the result is stable at the 2 MeV level if
we fix vys =1 GeV, and at around the 3 MeV level if we instead set vy = Caa(vs)/(2r). Thus, we conclude that
with the present level of precision reached by theoretical expression, the dependence on vy of the fit to be of order

~ 2 MeV, which can be neglected compared with other uncertainties.

7.13.2 Dependence on v

We now test the sensitivity of the fits on 1. Just as in the previous section, we only explore data Set I. In order
to keep the hierarchy of scales between the soft and the ultrasoft scale, we have varied them in a correlated way as
a function of a single parameter x

L W) . (7.103)

(VS7VuS) = (xrvx o

The range we take for z is z € [1/v/2,2], similarly to what we did in the previous section. We note that if we take
x = 1/2, the N3LLyy,, fit is quite bad with a x2,; = 3.97 and A%Z3) ~ 411(7) MeV, with the situation improving
noticeably by taking x = 1/v/2 with A(nf:?’) = 347(3) MeV with 2, = 0.56. The other edge of the range we have

nf 3) = 347(2) MeV with x2,, = 0.53. Notice that the difference between the

considered, that is, x = 2 yields A
z =1 and the z = 1/\/2 ) results, and the x = 1 and the x = 2 results is 9 MeV. Therefore, the fit with z =1 can

be considered to be close to a minimum in the family of fits with the correlation of Eq. (7.103)).
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The results of the fits are displayed in Fig. [7.5] In this figure, we also plot the lines featured in Fig. [7.4] The
new fits are the the family of fits named B (the dashed lines) in the caption of whereas the fits presented in
the previous section are A (the continuous lines) and C (the dotted lines).

It is noteworthy that the new family of fits B already find good agreement at the N3LL level. Both the z = 2
and = = 1/2"/2 yield AU = 347 MeV, whilst the = = 1 fit yields AU/~ = 337 MeV, that is, the difference
is merely 10 MeV. Notice that as Fig. [7.5 clearly shows, this is not so when we consider the fits A that feature
vus = Caa(x/r)/(2r), or the fits B with 1 = 1 GeV, where there are big differences at the N3LL level.

Nonetheless, when we add the terminants and go to N3LLyy,, level, all lines in Fig. find good agreement.
This reflects that terminants play a crucial role to diminish the dependence in v,s, and to get convergence to the
same value, irrespective of how we correlate the soft scale with the ultrasoft scale. These are the results of the fits

at the N3LLyy,, level that we use to draw our error estimates

o For (vs,vus) = (21}27«’ 573 CA;"T(”S)>, we get A%Zg) = 347 MeV with x2 , = 0.56.

o For (s, Vus) = (%, 2%@)) we get A=Y = 347 MeV with x2,, = 0.53.

Comparing with the central value A%z?’) = 338 MeV, we obtain a difference of 9 MeV (with the same sign) with
both values above. In this respect, the fit with & = 1 can be considered a (close to the) minimum within the

families of fits with (vs, vys) = (x%,m%)

7.13.3 Dependence on ZI

We have also studied the dependence of our central value on ZZ'. We find it to be very small compared with other
uncertainties, since the contribution associated to Q£ is small for our central value determinations. The variation
does not change the last digit. Therefore, we will omit it for the final error budget. It is worth mentioning, though,
that for other values of v5 and vy, the terminant is a crucial element to get agreement with our central value. For

completeness, we state the result of the fits considering the errors in ZZ
o For Z§ = 0.37+0.17, we get AL/=%) = 338(2) MeV with x2,4 = 0.50.
=3 .
o For Z§ = 0.37 - 0.17, we get AL/=%) = 338(2) MeV with x2,4 = 0.50.

7.13.4 Other estimates of higher order contributions

For the error analysis, we need to determine the error associated to our lack of knowledge of the complete perturba-
tive series of the static energy. We have several ways to estimate this error. We have studied the error produced by
the variation of v, and found it to be very small, of the order of 2 MeV. We have also studied the error produced
by the variation of v,s, and found it to be of around 9 MeV for data Set I. As an alternative way to estimate
the error, we considered the difference between the N3LL and N?’LL}1yp7 i.e. adding or subtracting the terminants.
This produces a very small shift. Alternatively, we have also performed fits changing the order at which we start
including the terminant in the force from Np(d = 3) = 3 to Np(d = 3) = 2. We indeed find the variation to be
small: ~ 6 MeV. The fits, so far, have been performed using the running of « with 4 loop accuracy [I85]. We have
also made fits implementing the running of « with 5 loop accuracy [186], and found a 3 MeV difference with our

central value. To consider more conservative estimates of the error, we have also looked at the difference between

135



N2LL and N3LL fits. For data Set I, we obtain similar numbers, marginally larger than from the variation in vs:
~ 10 MeV. We take the largest of all these possibilities. We believe this yields a conservative error estimate for

higher order contributions.

7.13.5 Dependence on 1,

The fit should be independent of 7.t used in Eq. (7.58]). In practice, however, the result may depend on the value
of r.of use. We state below the N3LLhyp fits where all the values of r found in data Set I are used as 7t (except,

of course, for ret = 0.353 GeV ™! which is our central value, and has already been used)

o For ryer = 0.372GeV ™, we get A= = 339(3) MeV with x2,, = 0.99.

For 7ot = 0.376 GeV ™", we get ATZ=Y = 337(3) MeV with x2,4 = 0.51.
e For rer = 0.394GeV ™!, we get Al(\%:g) = 342(4) MeV with x2 , = 0.86.
o For ryes = 0.414GeV ™!, we get A%ZS) = 336(4) MeV with x2 , = 1.95.
o For e = 0450 GeV ™, we get A=) = 335(4) MeV with X%, = 0.87.
o For e = 0.468 GeV ™!, we get A=) = 338(3) MeV with x%, = 0.5.

o For ryer = 0.499 GeV ™!, we get AU ™) = 346(3) MeV with x%, = 1.21.

Comparing with the central value A%Z?’) = 338, we find the largest difference to be of 8 MeV. For other data sets,
the spread is slightly smaller, except for data Set IV, where it is slightly larger ~ 9 MeV. This one is obtained with
the largest distance ¢ = 1 GeV ™! we have in our data Se which, on the other hand, produces a rather large
X2gq ~4.8.

7.14 Final numbers
Out of this analysis, we proceed to give our prediction, for which we use data Set I. It reads
AZI= = 338(2)stat (10).0. (8)r,, MeV . (7.104)

The central value is taken from the fit of the N3LLyy,, expression with (vs, vus) = (1/r, Caa(vs)/(2r)) to data Set L.
The first error is the statistical error of the fit. The second one is the error associated to higher order corrections.
We estimate it by taking the biggest number among the different estimates for higher order corrections we have
discussed above, which corresponds to the difference between the N3LL and N2LL number. The final error comes
from variations on r.er. This error is a mixture of two sources: on the one hand, it is partially related to our lack of
knowledge of higher order logarithms, and, on the other, on the error of the lattice data point. Still, we will treat

it as an additional source of error. We then combine all errors in quadrature, and obtain

A=Y = 338(12) MeV . (7.105)

20This fit yields A(T;f:3> = 334 MeV with x2 , = 4.8. Notice that the 9 MeV difference comes from comparing with the central value
MS red

fit in data Set IV which yields AU/~ = 343 MeV.
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Note that the determinations of Al(\%:s) obtained at LL, NLL, N?LL and N3LL are all perfectly inside the one
sigma error bar quoted in Eq. , as you can see in Fig. We also give the strong coupling constant at the
scale of M,

o =3 (M) = 0.3151(65) . (7.106)

This number can be compared with other determinations of the strong coupling at around these low energies. One
can, for instance, compare with determinations using the heavy quarkonium spectrum [I87, [116]. Those also have
as a fundamental input the static potential but, at present, they suffer from larger errors than those presented
here. In this respect, applying hyperasymptotic expansions to these analyses may improve the accuracy of such
determinations.

Out of these numbers, we can also determine a("/=5)(M,). We follow the preferred method advocated in [188],
which has built in the error from decoupling and truncation when going from the scales we have made the fit, up

to the M, mass. We obtain

al"r=5) (M) = 0.1181(8) Ao (4) a1, - ar, = 0.1181(9) . (7.107)

(ny=3)

The first error is the error associated to the error of our determination of Am

, and the second to the trans-
formation of this number to (/=% (M) as described in [I88]. In the last equality, we have combined the errors
in quadrature. Our number is perfectly consistent with the world average number [120], or with the lattice final
FLAG average value [I89], and with a very competitive error.

As we have mentioned above, our prediction has been obtained using data Set I, which is the one less sensitive

to long distances. Nevertheless, we have performed similar error analyses for the other data sets. We find

Set I AP = 341(1)stat (1) oo, (6)r, MeV = 341(14) MeV (7.108)
Set 1T AP = 343(1) st (13) .o, (T)r,o MeV = 343(14) MeV (7.109)
Set IV API=D = 343(0)sta (13) .0, (9)r,.e MeV = 343(16) MeV . (7.110)

Notice that all the central values obtained with the different data sets are within one sigma of our preferred value.
The data sets II, ITI, IV have smaller statistical errors, but larger errors associated to higher orders in perturbation

theory effects, as they suffer from a larger difference between the N2LL and N3LL result.

7.15 Comparison with fixed order computations

Fixed order computations can be obtained from the RG improved ones by setting vy = vy and therefore, this
approximation does not incorporate the resummation of large ultrasoft logarithms. This effect can be important.
We show the results of the fixed order computation and the comparison with the RG improved result in Fig.
Let us first remind that the first two orders are equal, i.e.: LL=LO and NLO=NLL, as there are no ultrasoft
logarithms to resum. The difference shows up at higher orders. For the same value of 14, and for order NLO and
N3LO versus N2LL and N3LL, the fits at fixed order give significantly lower values than those that perform the
resummation of logarithms. On top of that, the incorporation of the w = 3/2 terminants does not improve the
convergence of the determination, unlike when resuming the large ultrasoft logarithms, where we see a very nice

convergence pattern.
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This shows that the resummation of large logarithms appears to be compulsory to find convergence, and to
cancel the scale dependence that we have in the terminants. The magnitude of the incorporation of the terminants
is larger for larger v5. This may say that using Np(d = 3) = 0 for the ultrasoft contribution for a scale as large as
s = 2/7 could be a bad approximation. In this respect, notice that as we lower vy (see the fits with vy = 1/r,

and, particularly, with v, = 1/(v/2r) in Fig. , the convergence of the fixed order computation significantly

improves.
450 -
: —(nf-3)
: Ars” [MeV]
400 -
350
300 -
250 N

LO/LL NLO/LL NNLO/LL NNNLO/LL NNNLO/LLpyp

Figure 7.6: Determination of Al(\%:s) at LL, NLL, N?LL, N3LL and N?’LLhyp using the data Set I with (vs, vys) =

(1/r,Caa(vs)/(2r)) (continuous black line). We also give the determination of A%ZS) at LO(LL), NLO(NLL),
N2LO, N3LO and N?’LO}lyp using the data Set I with v5 = v,s = 2/r (dashed green line), vs = v,s = 1/r (continuous
blue line) and vy = vys = 1/(v/2r) (dotted red line). The error displayed is only the statistical error of the fits. We
also show the error band generated by our prediction Eq. .

7.16 What if v, = constant?

In principle, the optimal way to resum the large logarithms is to scale vy with 1/r and vy with a(v)/r. In
practice, the range of scales we have is not that large. We then consider fits with fixed 15 and v,5. We choose
(Ve as) = (1/7zet, 1 GeV). For the data sets I, IT, IIT and IV, the N®LLy, fits yield AUZ™ = (339,342, 344, 346)
MeV respectively. Note that, for the data sets I and II, the result is identical (difference is indeed below 1 MeV and
only gets to 1 MeV after rounding) to the central values obtained before and displayed in Eq. and Eq.
respectively. For the data Set III, the difference is 1 MeV, and for the data Set IV, the difference is slightly more
significant: 3 MeV. This agreement is very rewarding, since fits at low orders in the hyperasymptotic approximation
show large differences with the analogous fits using the default scales: (vs, vys) = (1/r, Caa(vs)/(2r)).

For the data Set I, we show the values of A%:3) obtained with (v, vus) = (1/7res, 1 GeV) (i.e. the RG improved
results) and with vy = vys = 1/rer (i.e. the fixed order results) in Fig. For the RG improved results, we
observe how the LL, NLL are outside the error band (actually the LL fit have a large x% 4 ~ 3.9, which then goes

below 1 as we increase the accuracy), but then steadily converge to the central value, such that, as we said, the
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difference for the N3LLy,y,, prediction is below 1 MeV. The fixed order fits, which are also displayed in Fig. [F.2

show the same kind of behavior to the one discussed in the previous section.

3801

3601
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320} ;

~/
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LO=LL NLO=NLL N2LO/NPLL NPLOIN’LL NLOpo/N°LLyy,

Figure 7.7: Determination of A%:S) at LO=LL, NLO=NLL, N2LL/O, N3LL/O, and N?’LL/Ohyp using data set
I with (Vs, Vus) = (1/71ef, 1 GeV) (blue continuous line) and with (v, vus) = (1/7ef, 1/7ref) (red dashed line). The
error displayed is only the statistical error of the fits. We also show the error band generated by our prediction in

Eq. (7-105).

L5E

7.17 A nonperturbative -

In all the determinations so far, we have assumed that the ultrasoft scale is in the perturbative regime, and
consequently, we have used a small «(vys) expansion for d%(SEuS. In this situation, nonperturbative effects are
parametrically suppressed compared with the precision obtained with our hyperasymptotic approximation. This
assumption is safer if we take the points at shortest distances. For the points of the data Set I, v,s moves in the
range vyg = CA+T(V) € (1.06,0.86) GeV, for which we consider safe to use perturbation theory at the ultrasoft scale.

If the ultrasoft scale is in the nonperturbative regime, we can say little from first principles about dilr(SEus. To
make an estimate, we consider the data Set IV after subtracting the points of the data Set I (that is, we take the
set with largest distances, and subtract the points at smallest distances that we used in the previous section for
the central value determination of Ayg in the purely perturbative regime). As a test, we assume that for this set
of data the ultrasoft scale is in the nonperturbative regime.

To simplify the parametrization of these nonperturbative effects, we assume that we are in the regime where
1/r > Aqcep > a(1/r)/r. In this situation, §Eys = kAiTSr2 (where k is a nonperturbative dimensionless constant),
instead of Eq. , and of course, d%(SEus = 2k’A§/I—Sr. Moreover, the terminant of d%(SEus is not included on the
fits, as it makes no sense to talk about terminants if we have no perturbative series in the first place. We want
to see how sensitive the determination of Ayg is to considering the ultrasoft scale to be in the nonperturbative
regime, which implies that we also have to fit the parameter k in §Ey,s. The soft scale is the same, v5 = 1/r, and

we have fixed vy = 1 GeV in d%(SVR(;. The fit yields Agg = 356(3) MeV (the error is only the statistical error of
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the fit) with a x2,; = 0.55 . Notice that this number for Agg is consistent with the value obtained from the pure

perturbative fit (only a little bit more than one sigma away of Eq. (7.105))). For the value of k we obtain
k=-0.82(7). (7.111)

In principle, we did not care much about k. Nevertheless, its value rings a bell. In the perturbative regime, we

have that
Np(d=3)

1
SERY = Y end™ ™ (1s) — QY (1), (7.112)
n=0 r
where we set Np(d = 3) = 0. At low scales, this expression is dominated by the terminant, which, we remind, has
the following form

- %Qg(uus) =K'V a(vus) Al (1 + kla(vs) + O(a” (1)) - (7.113)

The dependence on vy is mild and, effectively, the terminant scales as
Lov 3 .2
- ;93 (l/us) ~ kterminantAWST 5 (7114)
and for vys = 1 GeV, we get
kterminant = _125(58) ) kterminant = _104(48) 5 (7115)

where in the first number, we have used Al(\%zg) = 338 MeV, the outcome of the perturbative fit, and in the second

(ny=3) _
ANTS =

the error of the normalization ZY obtained in Eq. (7.88). Therefore, what the nonperturbative fit seems to be

356 MeV, the outcome of the nonperturbative fit. In these numbers, we have put the central value and

doing is to effectively fit the terminant assuming that the O(a(vys)) term of JELY is subdominant. Notice that
Eq. is, within one statistical standard deviation, the value predicted by perturbation theory, Eq. .
We take this as a very strong confirmation that our weak coupling analysis is safe, and that, indeed, one can apply
perturbation theory to scales as small as 1/r ~ 1 GeV.

Finally, to confirm this picture, we do the fit over the complete data Set IV assuming dF,s = kAiTSrg. The
results barely change: we obtain Agrg = 355(3) with also x2,; = 0.55 and k = —0.8. Overall, we can even take this
analysis as a strong indication that the data has enough precision to be sensitive (and, to some extent fit, albeit
with large errors) the value of ZY . This discussion could also explain why the nonperturbative fit also has a small
X2.4, as it loosely corresponds to the perturbative expression, but letting the normalization of the terminant to be

a free parameter of the fit.

7.18 Comparison with earlier work

hationg (ny=3)
Determinations of ANTS

using lattice data of the static energy have been obtained in the past. Some recent
determinations are those of [I76l I77]. They compare with a different data set including lattice data at longer
distances. They work directly with the potential. The precision of the theoretical expression is N3LO in our
counting. No resummation of ultrasoft logarithms, nor the incorporation of the terminants is considered, but they
use an alternative method for dealing with the renormalons. In the large [y, it is possible to see what is the

precision that corresponds to in the hyperasymptotic approximation, but not beyond the large 8y. The ultrasoft

scale is assumed to be in the nonperturbative situation. Therefore, the comparison should better be done with the
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number we have just obtained in the previous section. If we set 6E,s = kAiTer’ fix v5 = vys = 1/7, and we work
with N®LO precision in F plus the u = 3/2 terminant of F, we obtain A%:S) = 305(2) MeV, where we only put
the statistical error. This number is smaller than the number obtained in [T76] [177].

Closer to our analysis are [I53] [I58]. In particular from the last reference, we borrow the lattice data. In
these references, they use the force as the starting point, and later integrate it to recover the static energy, as we
have done above. Their central values are obtained by fitting to the N3LO result after adding the N2LL ultrasoft
contributions. Therefore, they mix different orders according to our counting, and do not include the complete

N3LL result. The number they obtain is smaller than ours. In this respect, note that our numbers with analogous

N3LO precision are also smaller.

7.19 Final remarks

Summarizing it all, making use of lattice data and theoretical expressions for the singlet static energy, using
its r derivative as a starting point, using the hyperasymptotic expansion to handle the v = 3/2 renormalons,
and implementing N3LL resummation of ultrasoft logs, we have obtained a precise determinations of Agrs and
amr=5) (M)

A;%:S) =338(12) MeV, «(M,)=0.3151(65), «(M,)=0.1181(9). (7.116)

The resummation of logarithms and the introduction of the terminants associated to the u = 3/2 renormalon are
essential to get a very well convergent series. This, together with precise data at short distances, allows us to get
accurate values for Agrs. The lack of any of these novel elements significantly deteriorates the convergence, and
consequently, the accuracy of the prediction.

The largest source of error comes from unknown higher order corrections in perturbation theory. The statistical
errors of the fit are small, although the dependence on 7..¢, which is a mixture of lattice and theory error, is large.
Increasing the number of points of the data set gives a very mild tendency to increase the value till stabilizing at

343 MeV, very well inside the error we give.
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Conclusions

In an OPE of an observable, we have a tower of contributions of various condensates together with their Wilson
coefficients. These Wilson coefficients are thought to be well approximated by power series expansions in the strong
coupling «, which in general are expected to be divergent and asymptotic. Therefore, the way these divergent series
are regularized will see itself reflected on the various condensates of the expansion, so as to keep the whole thing
independent of these choices.

In particular, in this thesis, we have explored Borel summation with the PV prescription as a means to regulate

divergent series in QCD. In [chapter 3| and [chapter 4] two methods to compute PV Borel sums from truncated

versions of the series have been highlighted by exploiting the singularity structure in the Borel plane. Special
emphasis has been put in the method of which shows more promise. In this method, the computation of
the PV Borel sum is organized in a hyperasymptotic expansion, where we have a hierarchy of exponential suppresion
in the terms of the expansion. These terms can be systematically computed if one knows enough exact coefficients
of the perturbative expansion, and if one knows the structure of the various singularities in the Borel plane.

The method has then been applied to the OPE of the average plaquette, which has been used to give an estimate

of the gluon condensate in [chapter 5| Inchapter 6| an analogous procedure has been carried out to give an estimate

of A, both from the lattice and B physics.
Finally, in an estimate of the QCD strong coupling has been obtained from lattice data of the singlet
static quark antiquark energy. Resummation of N3LL logarithms and the use of terminants is essential to obtain

a stable result.
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Appendix A

The large [y approximation

The large By approximation [190] [32] [191] will be frequently used in this thesis, so we will briefly review it in this

appendix. Let us consider a dimensionless observable R computed in QCD perturbation theory
oo
R= Z rpa . (A1)
n=0

We will condiser observables whose LO (order a!) features a one gluon exchange diagram. One such example would

be the QCD static potential, where the LO diagram is:

Notice that at NLO, the coefficient r; will have a contribution that will be the LO diagram with a quark loop

insertion in the gluon line. For the static potential we would have

We stress here that quark loop insertions in gluon lines are proportional to the number of quark flavors ny, and

actually, the only source of ny dependence. Each of these quark loops gives a factor

Y

V(¢?) = —gffa(u) log (Zje“”‘> : (A.2)

where ¢ is the total Euclidean momenta going through the gluon line, u is the renormalization scale, and cx is a
scheme dependent constant. For instance, for the MS scheme, we have that cyis = —5/3. Therefore, we can write

the NLO coefficient as an order one polynomial in ny
r1L="r1nfg+7ro, (A.3)

for some ry; and rjp. At order o, we will have the LO diagram with two quark loop insertions, as well as

contributions coming from diagrams featuring only one quark loop. Therefore, this time the polynomial in n; will
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be order two

ro = ?"2271? +roing + 120, (A.4)

for some 792, r21 and ro9. We see that in general, the coefficient r,, will be an order n polynomial in ny
Ty = rnnn}l + Tn(n_l)n?fl + e+ TNy + Tho - (A5)

Now, let’s recall the one loop coefficient of the beta function

2 3 33
60:11—§nf—>nf:—560—|—?. (A6)

Therefore, the ny polynomial of Eq. (A.5) can also be written as an order n polynomial in Gy

Tn = Trn B0 + Thn_n)B0 4+ B0+ - (A7)

Obviously

Ton = (=3/2)" T (A.8)

The large By approximation consists basically of just taking the term with highest power of Gy in Eq. (A.7))
T,Large Bo — Timﬁg k (A.9)

The reason to consider this idea is that in some cases it was appreciated that just keeping the highest power in [
approximated fairly well the exact results [191]. Regardless of this, the reason the large 3y will be of importance
to us is that it will allow us to work with formal series that are known at all orders in «, and we will be able to
obtain closed expressions for Borel transforms.

From Eq. 7 we see that in order to obtain the perturbative series of R in the large 8y approximation, we
only need to compute diagrams that feature the LO diagram with n quark loop insertions in the gluon line (because
this diagrams will yield the highest power of ny at each order of ). The computation of such a diagram with n

quark loop insertions (for n > 1) is simplified once one notices [190]

m@m@mm@m

) U (q* = k%), (A.10)

m <n” v k‘2 +in
where a,b are SU(3) adjoint representation color indices, and k is the (Minkowski) momentum going through the
gluon chain (that is k? = —¢?). We see above, that a gluon propagator with n quark loop insertions is equivalent to
a gluon propagator in the Landau gauge times the factor U™. Therefore, if we write the LO term in the following
way

matn) =aln) [ daF (o). (A11)

we see that the n-th order coeflicient with the highest power of n; will be given by
rantja™ ) =a() [ da Fl)¥(@) (A12)
0

—a() [ aa P - e g (L) | (4.13)
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because the diagram leading to Eq. (A.12) is basically the diagram leading to Eq. (A.11) with an exra U™ factor.
Thus, from Egs. (A.8) and (A.9)), we see that in the large Sy approximation we have

Riargep, = »_ mi8 oo (1) (A.14)
n=0
_ [~ Bocr(p) TG
—oz(u)nz_%/o qu(q){Mlog (qu ) } . (A.15)

We finish mentioning that it is customary to consider only one loop running in the strong coupling while working

in the large By approximation.
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Appendix B

Renormalization scale and scheme
invariance of the PV Borel sum of an
observable

B.1 On the renormalization scale dependence of perturbative expan-
sions of observables

Let us consider a QCD observable, that we will call Ro,s. Let us also consider the perturbative expansion of this

observable, which we will call R

R=Y" ralpa"™ (n), (B.1)

n=0

where in the above series, we have made explicit the dependence on the renormalization scale . As we have already
mentioned, we assume the above series to be asymptotic to Rops as @ — 0. From Eq. (1.10)), we know that this

implies thatT]
N-1

Robs = > ra(p)a”™ (u) = O (N () (B.2)

n=0

for any integer value N. Let us now consider the series defined at another renormalization scale p'. Again, we will

have
N—1

Rops =y ra()a" (1) = O (" H (1)) - (B.3)

The relation between both couplings can be written solving the beta function equation

a(u') = a(u) {1+ O(a()} - (B4)

All of this implies that, we have
N—1

Rops = Y ra(p)a™ (1) = O (N () (B.5)

n=0
N-1

Robs = 3 rali)a™ () = 0 (@™ () (B.6)

n=0
or in other words, the two series above only differ by a term that for small a(u) behaves like aN*1(u). Taking

infinitesimal variations of u, we can write

LN (e (1) = 0 (@ () (B.7)

1Following the notation of Eq. (1.10), we redefine r,, = an+1, and assume our series not to have a constant value, that is, r—_; = 0.
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Thus, the LHS above when expanded in a(y) cannot have terms smaller than order a™*+!(x). Moreover, since N
in principle can be made to be arbitrarily large, we actually have that all the coefficients of the a(u) expansion of
the LHS above actually vanish. This is what is meant when one says that R is formally p independent, and we
denote this by

%R =0. (B.8)
We emphasize again that what we are not taking a derivative of R (since R in general is divergent), but rather,
that the formal series obtained by introducing the derivative inside

ar=3 2 {nwaiw}, (5.9

n=0

is zero to all orders in a(u).

B.2 Renormalization scale invariance of the PV Borel sum

Let us continue with the formal series in powers of the QCD gauge coupling of an observable

R=Y ru(wa"(p), (B.10)
n=0

where we again explicitly denote the renormalization scale p. As we have just seen, if R is a perturbative expansion

that is (assumed to be) asymptotic to an observable, then it satisfies formally (that is at every order in a(pu))

d
—R=0. B.11
M (B.11)

We define 7 = log A;CD. Notice that - = ,u%. Slightly abusing notation, we will name «(7) = a(u(7)), and

rn(7) = (7)), so that .
R=Y "ry(r)a"(r). (B.12)
n=0

The Borel transform of R is

R(t, ) = i (7). (B.13)

n=0
where we make explicit the RG scale dependence. We now consider Ran(t77'), the analytic continuation in the
complex t plane of the function above. Ran(t,T) is assumed to have some singularities in the complex plane, in
particular, in the positive real line. With this object, we consider a lateral Borel sum either just above or just below
the real line, as in Eq. . We do assume that we can define these lateral Borel sums without encountering any
singularity on the way.

We want to prove the RG scale invariance of the PV Borel sum. From Eq. , we clearly see that this object
is the averaged sum of two lateral Borel sums, so 7 invariance of both lateral sums implies 7 invariance of the PV
Borel sum. This is what we will look at. Thus, we are interested at

I = 4 dte /DR (t, 7). (B.14)
dr Jo "

Inserting the 7 derivative inside the integral

Ii:/ dt 2{e—t/@(ﬂ_lfzan(t,T)}, (B.15)
Cy 87’
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defining

961 = S 4O Run(t,7)} (B.16)

so that o
L[ T e Rt 7)) (B.17)
= G, (coer™) — G, (0). (B.18)

We will next get G, (t) for ¢ inside p, the radius of convergence of the Borel transform. In order to do that, let’s

come back to Eq. (B.16)

d _ 9 —tjatn p
SGa(t) = 5 {e Ran(t.7)} (B.19)
t da - o -
— o t/a(r)
e {a2 = Ron(t,T) + 5 Ran(t, T)} . (B.20)

For 0 < [t| < p the Borel transform is just the series in Eq. (B.13]), so we can substitute

d _ t do 0 7 (7)
_ r/a T) E E n
dtGT(t) {a2 dr + or n! t } ’ (B.21)

Introducing the 7 derivative inside the infinite sum

d —t/ ( ) t dO[ (7') s d 1
_ — al(T N an . 4 B.22
dtGT(t) ‘ o? dr ;) n! ! +HZ:;) dTrn( )n't ( )

We will now show that the RG equation of « allows us to write the equation above as a derivative in ¢t of a function,

thus obtaining G (¢). First, let’s recall that

[e%s) Jj+1
%a(r) = —2a(7) Z,Bj (a(r)) (B.23)
7=0

= i bjad T3 (). (B.24)

Now, we turn our attention to the 7 dependence of 7, (7). As saw in Eq. (B.11)

d
~R= B.2
—R=0, (B.25)

which is satisfied at every order in .. Therefore, we obtain
+1 ni+2(y
Z@”n( a” Zozob (n 4+ Dr(7)a”™75(r) =0, (B.26)
n= n=0 j

where in the first term on the LHS above, the 7 derivative is understood to act only on 7,. This readily implies

that
(1) =D bi(n = j)ra—ja(7), (B.27)

where to arrive here, we have defined r, = 0 for negative n. Now, we can come back to Eq. (B.22), and plug in

Egs. (B.24) and (B.27), which yields

i —t/a T) n+1 m+1 m+I+1
;G0 = { Z Zb D) gy Z Z b (D) T . (B.28)

7=0n=0 =0 m=0
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Noticing that the j = 0 term above cancels the [ =0 ternﬂ we can write

d _ —t/a(r) n+1 m+ 1 m+1+1
—Gr(t)=c { ZZ@ ralr), +Z Z b () o T D : (B.29)

j=1n=0 1=1 m=0
We will have no more cancellations between j = [ = 1 terms, nor for any other j = [ terms. What instead happens
is that the sum of the j = terms gives rise to a total derivative on ¢, which allows us to extract G, (t). In order to
see this, let’s first simplify matters, and pretend that we only considered two loop running in equation Eq. .
If so, all b; = 0 for ¢ > 1, which implies that Eq. is just

d m+1
— G (t) = e V) b ") s b7 (T) ———t™ T2 4 B.30
on0 =eeof -3 3 nn) (B30
Using the product rule for derivatives, it is simple enough to realize that
e~ t/amymt2 —(9 4 m)a(r)e t/aDpmtl a%{e‘t/o‘(T)tm+2} . (B.31)

Introducing the RHS above in the second term in braces in Eq. (B.30]), one sees a cancellation that leaves us with

d m+1 d i it m
g birm (T () 7)%{6 t/a(m)y +23 (B.32)
— d . m+1 —t/a(T)ym+2
=—a(r)h il mgzo T (T) m 2)!6 t . (B.33)

Likewise, the j =1 = 2 terms in Eq. (B.29)) give rise to another total derivative in ¢. In this case, one needs to use

instead of Eq. (B.31]
d d
e—t/a(r)ym+3 =(3+m)(2+ m)a2(7')€7t/a(‘r)tm+1 . a@_)@{eft/a(‘r)thrB} — 3+ m)OéQ(T)%{eft/a(‘r)tm+2} .
(B.34)
For a general value of [, one needs to use
I+1 l I+1

d
e t/a(m)ml+l — <H(s + m)) ale t/amym+l _ Z H (m+s) ap(T)%{e_t/a(T)th_pH} , (B.35)

s=2 p=1 \s=l—p+3

where we emphasize that HZ( ..) =11if b < a. Thus, substituting Eq. (B.35) in Eq. (B.29), we obtain

oo 00 1+1
d m+1
—G.(t) =— e—t/a(r) Z Z b tn+1 + e t/aln) Z Z blal(T)Tm(T)i (H(S + m)) gmtl
dt j=1n=0 =1 m=0 (m+l+1)' s=2
1 I+1
m+1 d
- Z Z by (T [I (s+m)|ar(r) {e t/aOpmtizrt2y (B.36)
=1 m=0 m+ l + 1 ! p=1 s=l—p+3 dt
Upon noticing
m+1 (T 1
= B.37
(m4+1+1)! (g(Ser)) m!’ ( )
the first line in Eq. (B.36) cancels out, leaving us with
oo oo l 141
aaf(t):—ZZblrm D ,Z II G+m a? (1) {e talm)gmtl=p+21 (B.38)
=1 m=0 p=1 \s=l—p+3

?Notice that this means that had we only included one loop running in Eq. m, we would have dtG (t) =0, and thus G = C
for some complex constant C, which implies that I = 0 in Eq. (B.18).
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We can further simplify this expression by noticing

I+1
m+1 1
(m+ 1+ 1)1 T (m+i-p+2) B.39
(m+1+1)! s_ll_!,+3(5+m) m+i—pr2) ( )
so that
[ ') 1
d m+1 d
_ b m — P _ —t/a(r)tm+l_p+2 B.40
dt ;mz::(); i m+l—p+2)!a (T)dt{e } ( )
d
=_ d{ —t/a(T) Z Z Zblrm l m p)ap( )tm+lp+2} ’ (B,41)
=1 m=0p=1
where
m+1
l “mtl-prol B.42
a(l,m,p) (m+1—p+2)! ( )

Thus (modulo an irrelevant additive constant)

Golt) = —e /"M Y 3 Zblrm all,m, p)a? (1)t HP (B.43)

=1 m=0p=1

Having obtained this expression, let’s come back to Eq. (B.18])
I+ = G, (c0e®™) — G,(0). (B.44)

Recall that we have derived the expression in Eq. for |t| < p, that is, for values of ¢ inside the radius
of convergence of the Borel transform. Therefore, we can readily say that at ¢ = 0, we have that G.(0) = 0.
Assuming that upon performing the [, m,p sums in Eq. , we get a function in ¢ that after being analytically
extended in the ¢ plane, does not overpower the exponential suppression of the e~t/®(7) term, we would have that

GT(ooei"’) = 0. We will assume this is indeed the case. This leaves us with
1. =0, (B.45)

and thus, the lateral Borel sums are renormalization scale invariant, and therefore, so is the PV Borel sum of R.
The computation given here first appeared in [68] for finite amount of I terms in the first sum of Eq. (B.43), and
it was confirmed in [192], where the infinite sum in ! in Eq. (B.43)) was also considered.

B.3 Renormalization scheme invariance of the PV Borel sum

Let’s now worry about the renormalization scheme dependence of the PV Borel sum. Being more specific, let us

consider again the series in Eq. (B.10))
R= Z rpa (B.46)
n=0

and let’s consider the following renormalization scheme change for the strong coupling
(o]
o =a+) dialt (B.AT7)
j=1
We can invert Eq. (B.47)), and write
o0
o = al —+ Zw]-a/jﬂ s (B48)

Jj=1
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where the coefficients w; depend on d;. In particular, it is simple to find that

w1 = —dl 5 (B49)

Wy = 2d% —dy, (B.50)
where we could write similar relations for all w;. We can use Eq. (B.48) to re-expand R in o

R= Z o™t (B.51)

n=0

The scheme change is parametrized by the arbitrary coefficients d;. Just as with scale dependence, formally, we

have
(9 8 - ! In+1
pr— n p— B. 2
5‘d¢R 8d¢;T”a 0, (B.52)
nE:O [8(21- ot (n 4 1)a™ (‘;c)ii a’} =0, (B.53)

where in the first term in the LHS above, the partial derivative is understood to only act in 7/,. Consider now
o .
—a' =aift, (B.54)

where we have used Eq. (B.47). Using Eq. (B.48)), we can write the RHS above as a formal series in o/

O Nl siee
8diO/:Z#j oIt (B.55)

Jj=0

where notice that #5-0 =0 for j < i — 1. Introducing this equation in Eq. (B.53|)

> 8 /m+1 S (2) ! In+7+2
> aq, T > Z #j (n+ a7 =0, (B.56)
n=0 n=0 j=0
which readily implies
O N~y
%T;L = Z _#g )(n - J)r;z—j—l ) (B.57)
1 =0

where we have used in the middle steps 7/, = 0 for negative n. As the reader may have noticed, there is a clear
similitude between both equations above, and Eqs. and . The idea of the proof for the renormalization
scheme dependence is the same we have employed for the scale dependence in We consider the Borel
transform of Eq. , that is, of the series of R written in terms of o’

> - T;L n
R(t,d;j) =" e (B.58)
n=0

where with dj, we make explicit the dependence on all d; coefficients. Just as in we consider the
analytic continuation in the ¢ plane of the function above, and with it construct lateral Borel sums. The PV Borel
sum will be the averaged sum of two lateral Borel sums. Thus, d; independence of both lateral sums imply d;
independence of the PV Borel sum, and thus, renormalization scheme independence. Thus, analogously to what
we saw in Eq. , we are interested in

0

Lis= dt e Ron(t,d;) . (B.59)
ad; Je.,
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The algebra is the same we had in the previous section, and therefore, following analogous steps, we arrive to an

equation that is analogous to Eq. (B.22)
d ot O =Tl 9 , 1
— Gy ()=t g —r —t" B.60
Loty = (LS A 0 L) o

where analogously to Eq. (B.16)), we have defined

d

%Gdi (t)

O ¢ A
= 8d»{e Y Ran(t,d;)} - (B.61)

Introducing Eqgs. (B.55) and (B.57) in Eq. (B.60]), we arrive at

d _ _—t/a’ o (i) 2T n+1 — (i), m+1 m—+1+1
S Ga(t)=e {leo#j o g *ZZ Zo#l T . (B.62)
j=1ln= =1 m=

Notice the similarity with Eq. (B.29). Both equations are the same equation with the correspondences

G, < G, (B.63)
o & alr), (B.64)
v (7)) (B.65)
by —#. (B.66)

Therefore, everything that is done in the previous section after Eq. (B.29) can be recycled here using the dictionary
displayed above. Thus, just as we had 7 independence, we will also have d; independence of the PV Borel sum of

R, or in other words, independence in the renormalization scheme chosen for the strong gauge coupling.
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Appendix C

The computation of Af)

In this appendix, we will compute Egs. (3.71)) and (3.82]). We start off with the IR case.

C.1 The IR case

The starting point in order to compute Eq. (3.71) is Eq. (3.70))

A1) = 225 Ao \ M etz py [ g 2O e .1
= Zad s = (ama) [ Eem (O

We will review two methods. The first will use some relations found in Dingle’s book [I0], and in the second, we
will expand around the singularity of the integrand of the equation above. Let us consider first the first method.

Let us consider just the integral in the equation above and define

o] xdbf'H»Np(d)leefa:
HEPV/ dx ) (C.2)
o T 1 oPE
It can be seen that
H =T(db—7 + Np(d) + 2)Agp s Np ()41 (—2) (C.3)
where
2nd
T = , C4
B0 (C.4)
and Ag(—z) is a formula found in page 407 on Dingle’s book [10]. It reads
Ao(—a)= — Pv/wde* a (C.5)
s(—2) = —/——— ce ‘——. .
I'(s+1) 0 1—¢/x
We will be interested in the case
s=db—~y+ Np(d) +1. (C.6)

The procedure is the following, we will first obtain the small a(u) expansion of H, and then, we will use this to
obtain the small a(u) expansion of AQr(1). As we see in Eq. (C.3)), H has two parts: a gamma function and the
function of Eq. (C.5)). Making use of the Stirling series of Eq. (1.1]), we can write

1/2+1-n. 1/2—n,
_ 1/2,- 522 (_2md Boa(u)[_ 2md D
Flh @) +2) ~ a2 (00 ) (Pt |-+ st

X exp(Bf;T&) Z(—l)"'Hi{ Qiodnc (,u)} > X {1 + é + @ + 0(8_3)} , (C.7)

=2
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where we have defined ., = —db+~v—1+ 2gdc

, and we again stress that s = db — v+ Np(d) + 1. In the expression
above, we see that all the non analytic behavior in () is in the first line, and the rest is ready to be expanded in
a(p). Notice that the last braces in the above equation follow the same pattern as in Eq. (1.1). The term found
in Eq. (C.5) will be worked out using some expressions found in [I0]. We consider As(—z), and expand it around
r=s

— — d 1 d?> 9

Ag(—2) = Ag(—8) + —Ay(—2) (x—s)+ §d—A( x) (x—s5)4+..., (C.8)

dm =S Tr=s

where notice that from Egs. (C.6|) and (C.4]), we have that

2mde
Bo

is just a constant. In order to obtain A,(—s), we employ equation (60) from page 419 of [10] that reads

r—s=—-db+y—1+ =1 (C.9)

1 4 8 16 8992 334144 698752

Ro(s)= = - —
(=80 = =3 ¥ 1355 T 283557 ~ 55055 126299251 T 10256707557 | 147770122556

(C.10)

which can be easily expanded in «(u). To obtain the derivatives in Eq. (C.8]), we use the recursive relations found

in equation (47) on page 416 in [10]

mxgl)(—x) =(s—x+1)As(—2) +z, (C.11)
ZJ:K(Q)(—x) =(s— x)Kil)(—x) —As(—z) + 1, (C.12)
nmA(n)( x)=(s—z+2-— n)Xin_l)(—m) - Xi"‘”(—x) for n > 2, (C.13)

where we have defined

with these pieces, it is easy to obtain the various derivatives of A;(—x) at 2 = s, and hence, to construct the small

a(p) expansion of Ag(—x). The first few orders read

3 dm 135 6 3 6

Combining Egs. and (| in Eq. -, we obtain

ord \ TN s /2 1 2 1 1
H—_[_™_ soxds 172 0 | _p o4z 0 S T
<ﬁoa(u)) W gz | et g e TEm | T %t 5™ T Tos0

Ru—a) = — S 4 ()ﬁo{ 1nc+1n3—1nf}+0(a2<u>). (€.15)

5/2
1 1 1 1 1 25
2 0 5 3 2
o I, S 0 . C.16
e (“)ﬁdw{ 1607 o6 T 1aa™ o6~ oao 24192} +0 (% ))} (C-16)
Plugging this in Eq. (C.1)), we readily obtain
d db—~+1 1/2
H 1 2md ootk 1/2—db+ 0 1
AQr()=—z, 2+ (274 Foa (i) T()d 2o | -
0= ~Zigrrra— () o G e
3/2 5/2
1 1 1 1 1 1
0 w 2 0 _ 5 L 3
ol e [ 127 T gl T 1080] ) G [ 160" " 96" T 1ag'"
1 1 25 ,
1 2 , 1
* 567~ Gao”" 24192] +0(a (“))} (C.17)
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C.1.1 An alternative method

There is one alternative method to compute this expansion, which we will now highlight. Let us come back to

Eq.

xdb*’YJer (d)+1 e~ T

H= PV/ dz (C.18)
Boa ()

0 1— a2 r
We will basically expand around a Gaussian term around the singularity in z = 502(’;&). We first perform the

variable change

Boa(p) -

y=-1+""Fc, (C.19)
1—ne+ 5228
- _( 27d ) 1T Boalm eﬁgiiﬁ)PV mdyle%ii’%y-&-(—m-&-%)log(l-%y). (C.20)
Boar(p) -1 Y

We assume the above integral to be dominated by its behavior around y = 0, and thus, expand the logarithm

around y =0

l_nc"l‘ﬂQ;réi) _on o0 _ond - o _1\k N
~ — (ﬁ271'(d )) o eﬂoi(:f) PV/ dy leﬁy_(_nc_‘—ﬁc?ai&)) 2h . ’i) vt , (CQI)
o\ p -1 Y

where we employ the & symbol as the Taylor expansion we have employed only holds for |y| < 1. We now normalize

everything with respect to the order y? term in the exponent above by changing variables

1 ord \)?
S ey (e 7 C.22
c=r{5( -+ i)} cz
so that
1—ﬂc+ﬁ —ord o0 2
H~— < 2md ) ePoel) x PV e dlefC
Boc() f{é(fnﬁﬁj%,))} ¢
—212p.a'/? () 23/2 /302 (1) a(p)
xexp{ = C+ 52 Ct+ 5 ¢t 0 (PP ()¢ }
it —a(ume) 27 CEL—a(pne) 27 (=32 + a(u)n.)'/? ( )

(C.23)
We can now expand the second exponential in the integrand above in powers of o and (. Extending the inferior
limit of the integral to —oo, we can integrate to obtain precisely the expansion in Eq. . We have no rigorous
proof, but it seems unlikely that the series in Eq. is anything but an asymptotic expansion. Notice that in
order to derive it above, we have approximated log(1 + y) with its small y behavior, and then commuted sum and
integral, which typically yields asymptotic expansions. Notice also that in Eq. , we write H as a product of a

gamma function and A,, where the gamma function is expanded using the asymptotic Stirling series.

C.2 The UV case

The computation of Eq. (3.82) runs parallel to what we have seen in the previous section. The starting point is

Ba,

\d| 1 Np(d)+1 0 —z,.Np (d)+1+1'
AQuy(l') = (~1)Nr@+1 7, ( bo > aNP<d>+2(u)/ o R — (C.24)
0

A
pld T+ 1) \ 27|d| 1+ xgt;o‘tu(l‘u)
Analogously to what we have done earlier, we define
00 —z . Np (d)+1+1’
0 L+ =5
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for which we can write

J - F(l/ + NP (d) + 2)Al/+NP(d)+1(x) 9 (026)

where x is given again by Eq. (C.4)), and As(z) is defined in equation (22) on page 407 of [10]

1 i €
A, = — dee™ € . C.27
() F(s—|—1)/0 ce 1+e€/x ( )
We are interested in the case
s=1"4+Np(d)+1. (C.28)

We use Eq. (C.7)) for the gamma function again with the substitution db — v — I'. A4(z) is dealt with just as

Ag(—z). We expand it around z = s

d 1 d?

A =A —A - ——A —8)2+... 2
@) =)+ A (@) 4 A @ s (©29)
where now
27|d
r—s=-l'-1+ l |CE770. (C.30)
Bo
As(s) is obtained via equation (59) on page 419 of [10]
1 1 1 1 13 47 73 2447
A =—- - — — — ce C.31
(%) 2  8s + 3252 * 1283  512s* * 2048s° + 819256  32768s7 + ( )

We will again use the recursive relations of equation (46) on page 415 of [I0] to obtain the various derivatives of

As(z)

AN (@) = (s + 2+ DAs(2) -z, (C.32)
20A P (2) = (s + 2)AV (2) + Ag(z) — 1, (C.33)
chg”)(x) =(s+ax+2- n)Ag"_l)(x) + Ag"_Q)(x) for n > 2, (C.34)
where we have defined
1 d»
(n) = — =
AV (z) = g Ag(x). (C.35)

With these expressions, it is simple to obtain the small «a(u) expansion of Ag(z). The first few orders read

1 Bo 83 2
Ay(z) = = _ B
@) =35 F Todr 128]d2n2 "

a(p) (=1 + 2n.) + (L) (1 = 6nc + 4n2) + O (®(n)) - (C.36)

Therefore, combining Egs. (C.36]) and (C.7) in Eq. (C.26)), we can write

27|d|
orld| \' T Roet 1/2 /2
J = e Boalw /2 o X i3
. <ﬂ00‘(ﬂ)> o) 2|d|1/2 + 247r|d|3/20‘('“) +3n;
5/2

— 02 13 — 48n,. — 6012 + 481> + 36n*| + O (o ) C.37
+23047T2d|5/2a(u){ 0 Nz + 4817 +36n, | + O (a®(u)) (C.37)

Plugging this in Eq. (C.24)), we obtain Eq. (3.82))

|d| 7r1+l’2l’ 5 —1'=1/2 2l a(,u) B
AQuv(l) = (=1)Ve@+1 7 Qii 0 1/2-1 g apat J 1 0 4 9
ovlt) =0 T T 1) \[d o) P emn Lo = oy [ 3]

o?(p) B8

2 TT52/dP {13 — 487, — 60n? + 4873 + 36773} + 0 (a®(p)) } : (C.38)

+
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Appendix D

Further contributions from the Borel
plane in Method 2

In this chapter, we will prove Eq. which shows why Method 2 is not systematically improvable beyond the
leading IR renormalon. In Eq. , we have seen how to relate the PV Borel sum of a formal series with the
truncated series (when N — oo) through the leading IR renormalon. In doing so, we have considered the leading
renormalon in Eq. . We will explore other terms in this section, and unfortunately, we will see that we cannot
systematically improve on Eq. by including them. We also assume that we only have singularities in the
Borel plane located in the real line. The starting point is Eq. .

PV / Qe Rt = lim Ry(un)+ PV | dtes@ R(t), (D.1)
0 N—oo 1/X/

where we need to explore the last term in the RHS above

el —t ~
PV/ dt e=@ R(t) . (D.2)
1/x!
We will start by considering the subleading terms on the leading IR renormalon that we have neglected so far.

D.1 Subleading contributions from the leading IR renormalon

Let us come back to Eq. (4.30). So far, we have only considered the leading j = 0 term there, and we will now
consider the full term associated to the leading IR renormalon. In this particular case, we will obtain systematic

improvement. Thus, we consider

00 T o —t 1 = BO J
PV/ dt es@ AR (1) = Z4 x PV dtem@ ———— N w1 - t)”. (D.3)
Y ’ 2700 (1 /(Q)) (1 — 52-0)1+ ; 2mdy
Notice that any j # 0 term is basically the j = 0 with the changes Zgq, = Zg,w; and | — [ — j. Therefore, we can

recycle Eq. (4.34) with these changes, and obtain

- AP 2rdy —2mdg ,
PV /1/X/ dt e=@ ARERO)(??) = Zdowa Z(Q)eﬁoa(@ ijoﬂ (Q)\I/‘lﬁl—j 7 (D.4)
=0

and we see that each further term in the series in j is subleading in «(Q).

IThis is equation (36) in Acoleten et al.’s paper [67], where it appeared first.
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D.2 The analytic part of R(t)

We now consider the analytic part of the Borel transform in Eq. (D.2))
Rl —t ~
PV / dt 557 A Runaryiie (£) (D.5)
o0 (1-c'a(Q))
where notice that the PV above is superfluous, since we have no singularities in the integration path. In order to
flesh out the «(Q) dependence of the above integral, we will expand the Borel transform around the leading IR

renormalon (the function is analytic by construction so we can expand it anywhere we want)

R 27Td
A]%analytlc Z b 0 . (DG)
and we perform the variable change
1 27Td0
r=——(t— , D.7
2(Q) ( %o ) (D.7)
which leads to
e’} e R —2mdg n+1 —271’d0 ’
PV dt €D ARppaigtic(t) = eFoa(@ Z b Q)T (n + 1, ). (D.8)
2280 (1 ¢/ a(Q)) = Bo

D.3 UV renormalons

We now consider UV renormalons in the Borel transform

° 1

> _—t_ ~(d =t i d 6 1
PV/2 dt 5@ AR (1) = Zd/ﬂ dtes@—————N"wl?(1- 1)’ (DY)

20 (1_10(Q) 220 (1 r0(Q)) (1= goyt)itla = 2nd

where d < 0, and again, the PV is not needed, so we can forget about it. Due to the exponential suppression of
the integrand, we can expect the integral to be dominated by its behavior around its lower end. Motivated by this,

we expand around t = %

. nl"(n+1+ld—j) 1 2mdo\n
(1- 2 Bo )i+la—i an (Qﬂd> T(1+1;—j) (1_%0>n+ld—j+1 (t ) )" (D.10)

and thus, employing this expansion above in Eq. , and performing the variable change of Eq. , we obtain

/ dte‘“ﬁé) ARUv(t) =
220 (1-c'a(Q))
=1/ B \" —2rdy 1 —2mdg n—i—l—l—ld—]) 1
7 il r 1 n+ Boa(@) — .
12,5 (%d) b QT L T ) (1 ey

(D.11)

Looking at the above formula, we note first that any UV renormalon, regardless of the value of d, has the same
parametric dependence in «(Q), and thus, we have no hierarchy in the contributions. We also note that the
parametric dependence in a(Q) is the same as in Eq. , and therefore, all UV renormalons and the analytic

part of the Borel transform have to be taken into account together, which is unfeasible in realistic cases.
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D.4 Subleading IR renormalons

We will now explore the contribution to Eq. (D.2)) of subleading IR renormalons, that is, those with d > dj

) @ AR - e 1 — Bo
PV/ dt e =@ AR%) (t) = ZyxPV dtest@ N, )(1 _ —t) (D.12)
ot (L-'a(@) 250 (1-¢/a(Q)) (1— Lot)ltha ];J J 2md

where now d > 0. We again expect that the integral above to be dominated by its behavior around the lower edge,
due to the exponential suppression of the integrand. Nevertheless, since now d is positive, we have a singularity
present at t = 2/;; d and therefore, we will also take into account this region. Thus, we divide the integration path

in two parts: between the leading IR renormalon and the one we are considering, and the rest

o —t ~(d 2ﬁL(Jd(l_CIO‘(Q)) —t 1 d BO
PV [ dt e AR (1) zzd{ L dtes @ ———— 3w ( —gt)’
70 (1-c'a(Q)) 70 (1-c'a(Q)) (1 — ggt)He = ™
oo —
+ PV dtea< w; 1——1& } D.13
224 (1-c'a(Q)) (1- ﬁ" L ¢)1+Ha Z_: 2xa?) | (P13

As we have said, the first integral in the RHS above will be dominated by its behavior around the lower edge.
Thus, we expand as in Eq. (D.10]), and extending the upper integration limit to infinity, we obtain

25d(1-c'(Q)) © ;
B —
Zd/2 do dt@o‘(é) (1 1+l Zw 1 — ﬂt)

et (1-c'a(Q) ‘= T

Bo 2mrd j=0
o0 n
1/ By —27dy , n—|—1+ld—j) 1
7 il T 1. =227 nL( Fon ) - D.14
125 (27rd> (41, —g =) (@er e (e e .-

where we find the same parametric dependence in «(Q) as for UV renormalons and the analytic part. The second
integral in the RHS in Eq. (D.13)) is the same expression as in Eq. (D.3)), with the substitution dy — d. Therefore,
we can recycle Eq. (D.4)), and perform dy — d.

Zy x PV / dt e Wi (1 - 2y
2 (1-c'a(Q)) (1- ﬂo )it ]Z 2md
2rd . —amd oo d
=ZdEOé (Q)erot@ E :wj o (Q)\Ij|l—>ld—j,do—>d’ (D-15)

and we see that the parametric dependence in «(Q) is even smaller than what we have seen so far with the rest of
the terms. Nevertheless, due to Eq. (D.14]), we still find that subleading renormalons contribute parametrically in

(@) just as UV renormalons and the analytic term.
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Appendix E

The computation of v9

In this appendix, we will explicitly show the computation of Eqgs. (4.72) and (4.74)). We will basically adapt the

steps of Sumino’s papers [77, [78, [79] [80] to our particular cases. For context on the various expressions presented

here, one should look We start with Eq. (4.72)).
E.1 Thed=1, A=1and N = Ng case

The starting point is Eq. (4.66)

. o etk ] dA N
vo(rA,dAN) = —Tmlim | dkS——— |1 Zlogk| . (E.1)
n—0 Jg kp —logk —in N
We remind that p = Ar. Using the Sokhotski-Plemelj theorem, we can trade the in for a PV, and write
N 7r < sin(kp) 1 dA N
A dAN) = —— - PV dk 1— —logk| . E.2
V2 (T ) ) ) p cos p /0 kp — log k N og ( )
We will pick d = A =1 and N = Ng, as given by Eq. (4.70)).
. T ° sin(kp) 1 1 Ns
A,1,Ng) = ——cosp— PV dk 1— —logk . E.3
UQ(T P S) pCOSp /() k,O —lng |: NS og :| ( )
Let us ignore everything but the integral
> sin(kp) 1 1 Ns
I1=-PV dk 1——logk E.4
/0 kp —logk| Ns ® : (E.4)
which we will write as a complex exponential
[ = — lim lim Im / a1 [1 ~Ll k} - (E.5)
e—046—0 (6,1—€)U(1+€,00) kp —logk; NS & ’ '
where, for later convenience, we have explicitly shown various limits. Let us now recall that
im 1o Liogh] = (E.6)
im - — == .
Ng—o00 NS g ]f ’
and, therefore, by naively taking the Ng — oo limit, we would write
etke 1
lim [ = —lim lim Im P (E.7)
Ng—00 €060 (5,1—)U(14e,00)  k*p —logk

The order k' stemming (the order k° is real, and does not survive after takig the imaginary part) from the

exponential above yields and integral that is divergent as § — 0

. 1 1
— 111m — =
50 J(51—¢) Kk —logk

—00. (E.8)
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The rest of contributions ~ k2, k% and so on, are well behaved. This term is thus, the source of the divergence in

v9 as Ng — 00, and consequently, it will prove useful to explicitly subtract it

1—e 'L'k'p o NS
I = — lim lim Im{/ e = kp 1 {1— llogk}
)

€050 kp —logk Ns
1—e i 1 Ns oo ctkp 1 1 Ns
dk ——|1— —logk dk — 1——logk . E.9
+/5 _1ogk{ Ng ] T e —logk{ Ns } } ()

We emphasize that in the way we have written the integral above, it is extremely important to take the imaginary
part before taking the § — 0 limit on the first integral because, otherwise, we get a divergent contribution in the
IR stemming from the O(k®) term coming from the exponential in the first integral. We can make things more
flexible amputating this purely real divergence too without changing anything

1—e ikp _ 1 _ ik 1 1 Ns
I = — lim lim Im / dk < i 1— —logk
e—=06—0 5 kp - log k Ng

+/1_6dk L R kNS+/mdkeikp_1 L PR S (E.10)
— |1 ——1o — —|1-—1o . .
s “logk|  Ng 8 e kp  —logk| Ns &

We have also included the —1 in the (1 + €, 00) integral because it changes nothing, since it will not survive taking

the imaginary part, and because it will be covenient later. Now that the pathological term when Ng — co has been

subtracted, we take the Ng — oo limit whenever it is safe

tme ethr —1—ikp 1
Targens = — lim lim Im { / k< e
5

=050 k2p —logk
1—e . Ns oo ik
] 1 e —1 1
dk 1——logk dk ————¢. E.11
v —logk[ Ns "g} L 7 —logk} (E11)

E.1.1 The log Ng term

At this point, we will deal with the second term in braces. Recall that, as we have said, in this term lies the

divergence as Ng — oo

1—/1Edk L PO WV b (E.12)
L= “logk | Ng BF| - '

The above integral is pathological when € — 0. Of course, this pathological behavior in e will cancel out when the

rest of the terms in Eq. (E.23) are taken into account, but for now, it is useful to flesh it out. This can be done by

1—e i 1 Ns 1—e i
I = 1——1 -1 . E.1
1 /5 dk—logk<[ N ogk} >+/5 dk—logk (E.13)

The seeming singularity at k¥ = 1 in the integrand in the first integral in the RHS above is just spurious, and thus,

we can just take € = 0 there

1 i 1 Ns 1—e i
I = 1——1 —1 . E.14
: /5 dklogk([ Ns ng} >+/5 W gk (E.14)

The last integral in the RHS above can be done analytically

1—e¢ -
/ dk—' = —iLoglIntegral(1 — €) + iLogIntegral(d) , (E.15)
5 —logk

where we have used the Log integral function. It is known that Loglntegral(0) = 0, and therefore, we can forget

about the last term in the RHS above. Expanding the remaining term around € = 0

1—e -
/6 dk _légk = —iloge —ivp + O(c) , (E.16)
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where v is the Euler-Mascheroni constant v =~ 0.5777. Let’s now deal with the first term in the RHS of Eq. (E.14)).
We have seen this integral to be pathological for § — 0, when Ng — oo has been taken. We will not take the

Ng — oo limit, but rather, we will extract the asymptotic behavior for large Ng. Thus, we can safely take 6 = 0,

LS| 1 s
I, = 72/ dk — Tog k ([1 N logk} - 1> . (E.17)

We change the integration variable

and proceed in the following way

z =logk (E.18)
SR
/ ;( Nstog(1- 55 ) _ 1) (E.20)
/ i( —a—x?/(2Ns)+O(N5?) _ 1) (E.21)
/ 316[ —2?/2Ns+O(Ng?) _ er} %( ve + log(2Ns)) + O(Ng /%), (E.22)

and we see that we have suceeded in obtaining the logarithmic divergence in Ng. Gathering all the pieces, we so

far have

i lim lim T /1 a =t +/ g =11
are = — lim lim Im — _—
farge N =060 5 k —logk = J51-c)u(1+e,00) k?p  —logk

E'( — e +10g(2Ns)) + O(N, _1/2)} : (E.23)

—iloge+ O(e) + 5

We will smoke out the e behavior of the first line above by performing a Wick rotation to the imaginary k line on

both integrals. Let us first define

ke —1 1
== / dk (E.24)
(5,1—€)U(14¢,00) k2p —logk
1—e .
i 1
¢ = dk ——— E.25
/5 klogk’ ( )
and, of course
. — 1 .
DNargens = — 11_% }LI}I%) Im {<I> +E+ 5( — g + log(2Ng)) —iloge + O(e)} . (E.26)
E.1.2 Wick rotating =
Let’s focus first on Z. We consider the following function
e 1 1
f@)=—7F——— (E.27)

z?p —logz

and we will Wick rotate it to the imaginary axis following this contour

167



Im(z)

Cauchy’s theorem tells us

E—l—/cjdzf(z)—&-/Cedzf(z)—i—/cédzf(z)—&-/ dz f(z) =0. (E.28)

Cr
E.1.2.1 The path C.

z = 11is a simple pole, and therefore, a well known theorem tells us that

. . et —1
!l_rf(l) .. dz f(z) = —inRes.—1 (f(2)) = in 5 (E.29)
E.1.2.2 The path Cj
izr 1 1
/ f(z)dz = dz %7 (E.30)
Cs Cs z?p —logz
= 1 1
= Z —'pnfli"/ dz 2" (E.31)
= n! Cs —log 2
1 0 1
_ = n—1:n+lgn—1 (n—1)ie
= Pt TES / dpe _ E.32
nz::l n! /2 —log(de?®) ( )
All the integrals above vanish except the one for n = 1, which leaves us with
f(2)dz =7 +ilog (log(id)) — ilog ( —log4) . (E.33)
Cs
E.1.2.3 The path Cg
An application of Jordan’s lemma shows us that
lim dz f(z) =0. (E.34)
R—o0 CR,
E.1.2.4 The path C;
We choose the parametrization z(z) = %”
oop T _ 1 _
/ dz f(z) = / dx < 3 Zm . (E.35)
Cr 5,[) T log (?)
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E.1.2.5 Final result for =

Summing up all the pieces, Cauchy’s theorem yields

1, ©r eTT_1
E=—in—(e"”-1)+ / dz & ! — —m —ilog (log(id)) + ilog(—1logd). (E.36)
p 5 x=  log

E.1.3 Wick rotating ¢

Let’s Wick rotate ® now. To this end, we consider

71

== E.37
9(2) zlogz’ ( )
and the contour
1 Im(z2)
C] Y 05 C
\ Re(2)
0 7
0 1—e€
Cauchy’s therem tells us
D+ dzg(z) + dzg(z) + / dzg(z)=0. (E.38)
Cr Cs C
E.1.3.1 The path C;
We follow the path z(z) = %. Thus
[ azgr= [t (539)
dz g(z :/ dr — ———. E.39
Cr po z log (%)
E.1.3.2 The path C
We follow the path z(¢) = (1 — €)e™?
/ dzg(z) —/ﬂ/zd - =7 —ilog (—log(1 —€)) +ilog (log(i — ic)) = T tilogZ —ilo e+ O(e)
L 9E) = | e ey T g (—log g (log =5 +ilog 5 —ilog 7
(E.40)
and we see that the —iloge term will cancel the one in Eq. (E.26]).
E.1.3.3 The path Cj;
We choose the parametrization z(p) = de’®?
0 ~1
dz g(z :/ dp ———— = —mw —ilog (log(id)) + ilog(—logd), E.41
L= [ e & (108(i5) + ilog(~ o5 ) (B.41)

and we see that this term will cancel the singular behavior in ¢ in Eq. (E.36).
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E.1.3.4 Final result for ®

Summing up all the pieces, we get

(1=e)p 1
o :/ R — —ilogz—kiloge—l—(’)(e)+7r+ilog(log(i6)) —ilog(—logd). (E.42)
5p zlog (%) 2 2

We see that the part with logs of § will cancel out with the analogous term in .
E.1.4 Final result

Gathering all the pieces, taking the imaginary part, and taking the € — 0 limit in Eq. (E.26)

o -z _1 log 2 P log £
Narge Ns :%im {/ g & - 0g +/ du ng} (E.43)
p

=0 | Jps T log? 24+ n2/4 s ﬁlog2 2 4 %2
1 _
+ %(cosp —-1)+ logg — 5(—7]5 +log 2 4 log Ng) + O(Ng 12y (E.44)

We have not taken the § — 0 limit yet because each integral above is singular around = = 0 on its own. Of course,
the singular behavior disappears when both terms are taken inside the same integral. Before doing that though,
we will kick the awkward p in the second integral on the RHS of the first line above by noticing the immediate

integral

1 log2 1 p
dor ————%— = ——1 2 4 410g? (£ E.45
/ xx10g2§+%2 2 8 (ﬂ- +alog (x)) ’ ( )

which implies
/pd:cli()g“/;Q:/ldxl210g52—10gﬁ+110g(10g2p+ﬁ2>. (E.46)
ps Tlog” 2+ 7= Jps  xlog” 24 T 2 2 4
Plugging now the above equation in Eq. , summing up both integrals, taking the § — 0 limit, and plugging
everything in Eq. , we obtain

: % - o -1 1-— log 2
e Ns (] 1 Ng) = 4 / dz & tofl-z)  log, (E.A7)
p 0 x? log” 2 +m2/4
1 2 1 _
t3 log (log2 p+ 7;) - 5(*7}2 +log 2 4 log Ng) + O(Ng 1/2) . (E.48)

where we have used a Kronecker delta to make the expression more compact. This equation is precisely Eq. (4.72)).

E.2 Thed=1,A=1—-da(l/r) and N = Nj case

Let us come back to Eq. , but this time, we pick d =1, A =1 —a(l/r) and N = Ny. We emphasize again
that we can take N = N, and be consistent with what is done in even though, in that case we have
truncated at the order a™21(u(Nya)), and in this one at a™2(u(Nya)), because after taking the Na — oo limit,
we get the same (finite) result. Therefore, Eq. becomes in this case

sin(kp) 1 [ A 1}“_

1+ —log+
ko logl| T Na Tk

va(rA, 1 — da(1/r), Np) = _T;T cosp — PV/ dk (E.49)
0

Just like in the previous section, we are interested in the large order asymptotics of the expression above. We again
notice that

, A 1M
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where A < 1. Taking this limit in the equation above

sin(kp) 1
E+2p log £

lim wo(rA,1—ca(l/r),Ny) = _TjT cos p — PV/ dk (E.51)
0

NA—>OO

In this case, and unlike in Eq. (E.7)), there is no trouble in the integral above, nor around the origin, at infinity, or
around the singularity at & = 1. This is due to A being smaller than one. If A = 1, we have problems in the IR,
as we have already seen. Thus, the large Na asymptotics in this case is just given by the above equation

sin(kp) 1
k27c’o¢(1/r)p 10g % :

lim vy(rA,1—ca(l/r),Na) = T cosp— PV/ dk (E.52)
P 0

Np—o0

Nevertheless, we will again perform a Wick rotation to the imaginary k line, and by doing so, we will get rid of the
PV in the integral. Before performing the Wick rotation, we will first write the sine above as a complex exponential.
There is one problem, though, if one straightforwardly does that. If we write

eikp 1

lim vy(rA,1—ca(l/r),Na) = - cos p — lim lim Im dk (E.53)

Na—o0 p €050 (6,1—)U(14e00)  KEEal/Mp log% ’

we are unable to commute the § limit and the Im operation (and we are gonna want to do this) because the
exponential has a ~ k¥ term that is absent in the sine, that makes the integral divergent in the IR. Consequently,
we introduce a —1 that will kill this divergence, and that is irrelevant as it will not survive since it is real, but that

allows us to commute operations

< — ke —1 1
. o _ ™ T . (&
N}ngoo va(rA, 1 — ca(l/r), Na) = - cos p ll_r}r& }13(1) Im o) dk el plog 1 (E.54)
lim vy(rA, 1 —ca(1/r), Na) —" cosp — Im lim lim dk Sl S (E.55)
im v — =— — Im lim li . .
NaTie 2 3 s VA P) P 50550 (61— )U(14,00) k?—c/a(l/r)p lOg %

E.2.1 Wick rotation

Let us define _
etkr — 1 1

T= / dk —— , (E.56)
(5 1-U(14e,00)  K2C a(1/7) p log %
and of course, we have that
. It ) _ ;’/T . . .
Nllgm va(rA, 1 —ca(l/r),Np) = 5 cosp — Im 11_1)% }%T . (E.57)
It is T what we will Wick rotate. In order to do that, we consider the complex function
-1 1
F(z) = "—-—, (E.58)
z%p  log <
where we have defined s =2 — ¢’a(1/r). By Cauchy’s theorem
Y+ [ a:Fe)+ / =P+ [ deFe) + [ dzF(), (E.59)
Cs Ce Cr Cr

where we have considered the same contour as in Eq. (E.28)
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Im(z)

E.2.1.1 The path C.

It is easy to verify that the singularity at z =1 is a simple pole. Then, a well known theorem tells us that

1 A
lim dz F(z) = —inRes,—1 F(z) = —ir—(1 — e').
e—0 C. P

E.2.1.2 The path Cg

An application of Jordan’s lemma tells us that

lim dzF(z)=0.

R—oo Jop,
E.2.1.3 The path Cjs
gi_% . dz F(z)
= lim dz -1 1

60 J oy zZ5p log%

= lim dz Lt %(zzp)" !
60 J oy zZ5p log

1
z

=1 x S—

we pick the parametrization z = de'’

lim [ dzF(z)=lim ip"—lz'"“é"—sﬂ dg e?(n—s+1)
5—0 J 60 £~ n!

) 0
= Zi,p”*lz’"“ lim (5”“ / dgetn—si L )
—_ n! §—0 x)2 log(ge )

It can be seen that

0
lim {5”—8“ / e ——— } =0
5§50 /2 log(1e=%) ’

lim dzF(z)=0.
6—0 Cs

which leaves us with
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E.2.1.4 The path C;

Let us deal with imaginary line. We pick the parametrization z = %

/ dz F(z) (E.70)
Cr

s pee v -1 1
= —il_épé_Q/ d.’L' € 3 71) . (E?l)
pd z* log(£)

E.2.1.5 Final result for T

Gathering all the pieces

1 : < etr_1 1
T =im—(1— ) 4 il ~5p° 2 / . - (E.72)
0

p s log(ﬁ) ’

where we have taken all the due limits since there is no issue in doing so. Thus, finishing up all the remaining
algebra in Eq. (E.57)), we finally arrive at

~ ) o 2 _ 1 ZTcos(Z[1 —s])+1logLsin(Z[1 —s
v3 = lim UQ(TA,l—C/Oé(l/T),NA):—E—pb_Q/ da & 2 (2[ DQ g””Q (2[ ])
Na—00 P 0 s log™ £ + 7

. (B.73)

which is precisely Eq. (4.74]).
E.2.2 The r ~ 0 asymptotics

The goal of this section will be to show the computation of Eq. (4.78]). In order to do that, we begin by recalling
Eq. (4.77)

4CpA
Vin, ~va = 55

5 s [1- COS(T[N\)} + (Ar)s_ZL} , (E.74)

rA

where

L /OO o et —17/2 cos(g[l — S]) +log 2 Sin(%[l - SD . (E.75)
0

xs log® £ 4 ==
The idea is to obtain the r ~ 0 asymptotics of Eq. (E.74]), which will get us an expansion in «(1/r). The first term
in braces in Eq. (E.74]) is trivial to handle
z [1- cos(]\r)] = SpA - DA TRy (E.76)
r 2 4! 6!

and, therefore, for r ~ 0, we can neglect these power terms. We will now turn our attention to

(Ar)s=2L, (E.77)
and, in particular, to
(]\’I‘)872 _ (efcx/%%)_c “ , (E78)
27¢l L, Lma o 3
=e Po 1—|—§c ch—&—gc cxa” +0(a?) ¢, (E.79)

where from now on, we will write « instead of a(1/7) to ease notation. We see that we have a power series expansion

in . Thus, all that remains to be done is to consider L. Notice now that

T Lgin(m] —
/2 cos( 51 s])2 + log : s1n( s s]) R GRETCR 1 ‘ ’ (E.80)
log= 2 4 - log 2 — &

T
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which simplifies L to

L=Im elg(l*s)/ dxeimil ! . .
0 s 1og§f%

ei%(l—s) _ ei%(—1+c’o¢) _ s i5cd

Notice that

=i+ gca +0(a?),

which is another analytic function in «, so that we can ignore it for now, and just consider

S R |
E/ da:e
0 z°  log £ —

Making all the oo dependence explicit

1
J = /dx oo X .

It will prove convenient to split the integral in two

1 1
dx dx .
/ r2—ca —;x_;oia_logx_i / r2—ca _Sx—m—logl‘—*
We will name the first integral above J;, and the second Js, so that J = J; + Jo. We will further write
1 _
1 1
Ji :/ dr S — = —
0 peToe QX—ﬁo—aflogxf—
-1 - 1
/ dx 2 jax ) —cx
=5 — g —loga —
1 — 1
r -1 1 / 1
:/ d:ce 2_,+x76 f/ dxz71+co‘7c .
0 Temee 2X7/3Ta*10gx*7 0 2X7ﬁ(7xilogx77
Focus on
1 , 1
. / dz ‘rflJrc «a —
0 55— BTa —logx — &
1 —2xe’ —1, ) 1 2cw 4drc!
= ¢ Bo e¢2°¢ (CX““)O‘{2E1 —d(ex +im)a + + 2log(cda) — log (¢
: (3¢ (ex + ima+ ZT) + 2log(¢'a) ~log .

—2lo —2hoa +lo 450
S \ar + (cx +im)Boc &\ ancd + d(ex +im)Boa ) |’

where the integral has been carried out using Wolfram Mathematica. If one notices

—2500&
ex +im)Boa

2w 1
) =2lo g( ) —2m’+%(cx +im) Boa + O(a?),

2log(c'a) — 21
og(c'ar) — 2log ( pr— 5

then, it is easy to expand Eq. (E.91)) in « to obtain

1 , 1
_ / dx x71+c a —
0 5 m — logaf - 5
—onxe! 2 _ o 2 /
— e ri— BT = Yex +imd 220 4 e E [~ omi 4 28T L 1 0(a2).
Bo 4 m Bo
Let’s now deal with the other part in equation Eq. (E.89)
Looe 14z 1
dx 12— —cx _ 27 _imt
0 2 Boa 08T — 5
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We will expand the integrand in «, and then, integrate term by term

1 x
—1 1
/ dzx e 275’:— - —c 21 i (E96)
0 x T2 Boa 1087 — G
_ Do 2
=ag | E +Ei(-1) | + O(a?). (E.97)

This wraps up Jj, which up til order « is

Ty = —e [m‘—Ei(QWC/)]+a{ﬂ§ < —vg + Ei(— 1))—i(cx—|—iﬂ'){ﬂ0+c 5 [omirori(2T C/)] H +O(a?).

Bo Bo
(E.98)
Let us turn our attention to Jy now
> -1 1
Jo :/ e . . (E.99)
1 T C‘l%—%—ﬂa—logx—g
We will again expand the integrand in «, and then, integrate term by term
_ ﬁO — 2
Jo=a ag - f+1—E1( 1) ] +0(a?). (E.100)
7r
Combining Eqgs. and (| m7 we obtain J
—2nc! / 1 - —2mc’ 2 /
J=—e P [mi El( e )]+ {BO (1 ’YE)(Cx+Z7r){BO+C/e h [—2mi+2Ei( e )]}} +0(a?). (E.101)
Bo 2m 4 m Bo
and, thus, from Eq. (E.81))
L—Im{(z‘+gc’a+0(a2))J} (E.102)
e 27¢! — —2mc! 2mc
— _e R E( ;OC HO‘{QiO (1—p) — cj;fo +gexce % Ei( ;00 )} +0(a?). (E.103)
Coming back to Eq. (E.77))
(Ar)s—2L (E.104)
2rc !
= —Fi(Z2) +ae® 222~ ex + 29p) + O(a?), (E.105)
Bo dr

and finally, we can write

2mc!

) + ae Po 4—0(—2 —cx +2vg) + (’)(aQ)} , (E.106)

0 7

4CEA o
(Vlapr\g’e o — VA> _ *r { _ Ei( T
0 Bo

which is precisely Eq. (4.78).
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Appendix F

The pole mass of a quark

The pole mass of a quark will be an important object in this thesis, so we will very briefly review some facts in
this appendix. The pole mass of a quark is defined as a pole in the quark propagator. It is well known that it is IR
finite and gauge independent in perturbation theory [I45]. Let’s first consider the case of QCD with one massive
and n; massless quarks, that is, ny = n; + 1. Obviously, the massive quark is the one whose pole mass we are
considering. Let mog denote the pole mass, and let m be the MS mass of the heavy quark whose pole mass we are
considering (evaluated at its own scale m(7m)). Let us write the perturbative expansion of the relation between the
pole and MS masses in the following way

mos =7+ »_ rua™ (). (F.1)

n=0
Notice that we have evaluated the renormalization scale at ;¢ = ™. The coefficients r¢ ;2 are kown analytically

from [193], [146], [194], [195], [196], [I97]. r3 was computed in [149] and [I98]. Displaying them

) 4 . 2 S 3
o) S+ (O‘(;r”)> [— 1.0414m, + 13.4434] + (O‘Srm)> [0.6527n? — 26.655n, + 190.595]

mos erm{

. 4
+ (O‘(m)) [ —0.678141n} + 43.3963n; — (745.721 % 0.040)n; + 3567.60 = 1.64] + O (a°(m)) } . (F.2)

T
We emphasize again, that the coefficients r,, above are written in the case y = m, and can be written for arbitrary
1 by re-expanding the series in «(u). We can also write the series above, where the expansion parameter is the
strong coupling of QCD with n; massless active quarks, by decoupling the heavy quark. This yields

__ . 2
mos = m+m{ om(m) 4 | (O‘"l (m)> {6.248Wm) = 3.739]
T 3 T 4

an, (M) ° B3 (ny) B1(ng) Bo(n1)
+ (ﬂ) |:23.497 12 + 6.248 2 + 1.019 T 29.94:|

__ 4
+ (a"’ <m)) [ —0.678141n} + 43.3963n7 — (745.721 4+ 0.040)n; + 3567.60 + 1.64

™

1172 12205\  83099C(3) 1lx® 209567 1l2log2
- - - O (a (m F.3
* m( 648 46656) 20736 108 23328 21| TOlnm) (F3)

where o, is the coupling of QCD with n; active massless quarks.

F.1 The bottom quark pole mass

Let us consider now the particular case of the bottom quark. If we compute the pole mass using QCD with

ny =5 =4+ 1 active flavors, that is, with n; = 4 massless and one massive quark (the bottom itself), the result
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is of course Eq. (F.2). This formal series can be re-expanded in ay, that is, the coupling of QCD with 4 active
b

massless quarks, and the result would be given by Eq. (F.3). We can improve on Eq . by considering also
massive charm quark effects §m,. on the pole mass of the bottom quark

mp,08 = My + Z r(4)a”+1 + ome,
n=0

(F.4)
where (" denotes the coefficients of Eq. - ) for the case n; = 4. In [I18], it was seen that the dm,. above yields
a badly convergent series, but that the massive charm contributions can be rendered small by simply re-expanding
the above series in terms of the strong coupling of QCD with three massless quarks o)

1
mbos—mb+z Sl "+ +ome.
n=0

(F.5)

It was seen in the aforementioned reference, that the effects due to the massive charm in the above equation are

~ 2 MeV. When we work with the bottom quark in we will use the above equation

F.2 Massive bottom and charm effects in the top quark pole mass

Just like for the bottom quark, the top quark pole mass also has corrections due to non-zero charm and bottom
quark mass effects. Thus, we write

me,08 = My + Z rPa "H + 5m V() + om (my) + dmy, ) ()
The O(a?

(F.6)
n=0
) term of §mgbf) was computed in [146], and the O(a?) term in [I47]. Note as well, that at O(a?3) there

) as
is a new contribution including a vacuum polarization of the bottom and charm at the same time. We name it
dm,.’, and it has been computed in [143]. They rea

2 (e 3 (7
@ _ s 0% ™M 054%™
omy, ), = 5mb/c ) + omy), e (F.7)
a3 m
5 = m <5)i ). £8)
where the order a(25) term reads

== == 2
_ T (log (mq) n 3) © log? (mq) + W},
m m 2 m

6

(F.9)
where Lis(2) is the dilogarithm function. Notice that this term above is np-independent. The order a5 corrections
are

(F.10)
mp
om (2) - —w —, F.11
be 64 \m'm )’ (F11)
IExpressions for 5m(6) 5m(6> and 6ml()i) can be found in [I43].
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where ny = 5 for ¢ = b, and ny = 4 for ¢ = ¢, and we use the representation for the functions h(zx), w(z,y) and

p(zx) given in [I43]. They read

h(1) = 1870.7877 (F.12)
h(r) = r(1486.55 — 1158.03 log r)
72(—884.044 — 683.967 log r) + 73(906.021 — 1126.84 log 1)
74(225.158 + 11.4991 log r — 80.3086 log® r + 21.3333 log® )
7°(126.996 — 182.478log ) + 75(—22.8899 + 38.3536 log r — 54.5284 log” 1)
77(15.3830 — 34.8914 log ) + 75(2.52528 — 3.822701log r — 20.4593 log® r) 4+ O (1Y), (F.13)
p(1) = —82.1208, (F.14)
p(r) = 33/000 dz {; + (1 — ;) (1 + j) 1/Q}P <TZ2> (logz - ?,) (F.15)
= r(—66.4668 + 70.1839log r) + r*14.2222 + r3(14.4143 + 70.1839 log )
+ r4(—23.1242 + 18.0613 log 7 + 15.4074 log® r — 4.74074log® r) — 1°31.5827
+r%(11.9886 — 1.70667 log ) — 4.177617" + 7%(2.40987 — 0.161088 log ) + O(r?) (F.16)
w(1,1) = 6.77871, (F.17)
w(l,r) = r214.2222 — r318.7157 + r*(7.36885 — 11.1477 log )
+ r%(3.92059 — 3.60296 log  + 1.89630 log? )

+75(0.0837382 — 0.0772789 log 7 + 0.457144 log? r) + O(r?) , (F.18)

w(ry, ) = p(ra) + % /OOO dz {; + (1 - ;) <1 + i)l/z}P (Tj) P (?) : (F.19)

where

P(x) =(x) + logx + g ,

2)1/2
I(z) = é -(1- 2:,;){2 — (14 42)'?log (W) } : (F.21)

(F.20)

We can also write this non-zero charm and bottom quark mass corrections after decoupling the bottom and the

charm quark. The expressions read

o?,, (m) a?, (m)
om? = [omi? + omfll| <L+ [omPY 4 omiP| <, (F.22)
™
ag(m
sm 5mg1><4;§ )+5m£2’4) (‘”( ) (F.23)
3
0‘4( )
omir = [omfY +omi2. ] <L— (F.24)
2 (7 Ly a—
) W, 5o 1% ™ ) ()
om) = [omi +omie] 2 + [omY +omi3. | 5 (F.25)
a?, (m al, (M
m® = [5mg1>+5m§gec}¢+[5 GO+ om®), ] <3>§ ) (F.26)
’ ™ ™
O‘3(m)
5m£i) — [5m(2)+5m}()3)dec+5m$?dec}%, (F.27)
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where 5mE? dec) T€ generated by the decoupling and read

—9 2
(1) 2 (n m, T
5m(q7dec) - _§m (32 + log %g + I ) (F28)
2353 7 1372 (n* 71 2 8Lis (3)
(5 (2,nf) _ — b 3 _ o e 1 o 2
"M (q.dec) ™\ 161 T2t 1o\ 51 ) o8 w2 )| T
751 617 11372 29869 log*(2) 2 ,. 11
- - — —71?1log?(2) — —m?log(2
516¢3) T Tour ~ T2 2016 st Tar” og (2 gy loe(?)
1225 1 21, m2 1. (w2
e T~ 2%10g(2) ) log [ 75 ) + —10g? [ 2
i ( 288 1803 T g T losl )> o8 <m§ Tore w2
1 2
+=log [ — | omV . F.29
3 og <m3> my ( )

(2,5)

Note that 5mg7)dec) = 5m(b7dec), and 5mE2)

c,dec

)= §mg’3ic). This last expression indeed corresponds to Eq. (17) of

[118] changing 7, by m. Finally, we also have

2 1 m>
(;ml(nc?dec = g log <Tn127> 5m£1) ) (F30)
s = oo (T2 15 o 5m @) P
mcb,dec - g og % [ my + mb,dec] . ( 31)
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Appendix G

pNRQCD

To provide some context on the expressions used throughout we provide here a very brief appendix
devoted to the effective theory of QCD called pNRQCD [179] 180]. This appendix is not meant to be comprehensive,
and we refer the reader to the original articlesﬂ for a more thorough treatment.

Bound states of a heavy quark and a heavy antiquark are known as heavy quarkonium. Examples include the
J/¢ and the T mesons, which are bound states of charm-anticharm and bottom-antibottom quarks respectively.
These heavy quarkonium systems are characterized by three widely separated scales: the hard scale given by m,
the mass of the heavy quarks, the soft scale given by the typical relative momentum of the quark and the antiquark
|p| ~ mv, where v < 1, and the ultrasoft (US) scale, which is given by the typical kinetic energy E ~ muv? of
the heavy quark and antiquark. Also, since quarks are heavy m > Aqcp. The hierarchy is m > |p| > E and
m > Aqcp. This hierarchy of scales is fully exploited to construct pNRQCD, an EFT of QCD designed with heavy
quarkonium systems in mind.

In order to construct it, one begins with QCD, and sets up a cut-off vnr = (vp, vs), where v}, is the cut-off of
the relative three momentum of the heavy quark and antiquark, and vy is the cut-off of the energy of the heavy
quark and antiquark. These cut-offs satisfy F,|p|,Aqcp < /s < m, so that the hard scales are integrated out.
We are then left with NRQCD [201]. To go from NRQCD to pNRQCD, one also integrates out the soft scale
by imposing the cut-off v,ng = (Vp, Yus), Where v, is again the cut-off of the relative three momentum of the
heavy quarks, and vy is the cut-off of the energy of the heavy quark-antiquark pair. They satisfy the inequalities
Ip| < v, < m and p?/m < vys < |p|. One distinguishes two cases depending on the relative size of |p| and Aqcp.
The |p| > E £ Aqcp will be called weakly coupled pNRQCD, whereas the case |p| ~ Aqcp is called strongly
coupled pNRQCD. We focus here on the weakly coupled version.

In the weak-coupling regime, the degrees of freedom of pNRQCD are heavy quark-antiquark pairs, gluons and
light quarks with cut-off v,nr. These degrees of freedom can be represented with the same fields of NRQCD,
namely Pauli spinors for the heavy quark and the heavy antiquark, Yang-mills gauge fields for gluons, and Dirac
spinors for light quarks. Additionally, we can also use singlet S(r,R,t) and octet O(r,R,t) fields for the heavy
quark-antiquark pair, where

1
R=—-—- , G.1
—— (m1x1 + maxa2) (G.1)

is the center of mass position, and the relative position is

r =X — X2, (GQ)

I This appendix draws mainly from the reviews [199, 200].
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where x7,%2 and m1, mgy are the position and the masses of the quark and the antiquark. The most general action
that can be written using singlet and octet fields, ultrasoft gluons and light quarks compatible with the symmetries

of QCD to NLO in the multiple expansion is

IonrQen[S, 0, 4,7, 4] = /dt/ng{ /dgr (Tr ST (idy — ha(r,p, PR, S1,82))S + O (iDy — ho(r, p, PR, S1,82)) O]

1 1 ny
+gVa(r) Tr [O'r - ES + S'r - EO] + 95VB(r) Tr [O'r-EO + O'Or - E]) — (G (G + > qiiﬁql} .
i=1
(G.3)
There is a lot of information packed in the above expression, so we will now flesh it all out. Gluon and light quark

fields are evaluated at the center of mass coordinate: A,(t,R), ¢(¢t,R). For the singlet and octet fields, we choose

the color normalizations

1. T
S=—38  0=—;0" (G.4)
N T
For hs and h,, we have
p’ Pk
hs ) 7P 7SuS = Y ‘/S ) 7P 7S7S 9 .
(r,p,Pr,S1,S2) 2mr+2mt+ (r,p,Pr,S1,S2) (G.5)
p2 P2
ho(rv P, PRa Slv SZ) = + T + Vo(rvpapR, Sl7 S2) ) (GG)

2mr th

where
m, = _mamz_ @)
m1 + ms
my =mq +ms. (G.8)
Furthermore, p = —iV,, Pr = —iVRr when it acts on singlet fields, and Pr = —iDgr when it acts on octet fields.
We also have that
ZD()O = 1000 - g[A()(R, t), O] . (Gg)

Also, S1 = 01/2 and Sa = 02/2, where the sigmas are Pauli matrices. It is worth noticing the similarity between
hs/o in Egs. (G.5) and (G.6) and the Hamiltonian of a two body system in ordinary quantum mechanics. Vi and
V, are the singlet and octet potentials respectively. They can be expanded in an expansion in inverse powers of

the heavy quark masses

VS(LO) VS(OJ) Vs(2’0) VS(0,2) Vs(l’l)
+

V.=V + +E S +..., (G.10)
mi mo my ms mimso
(1,0) V(O’l) V(Q’O) V(012) V(lal)

Vo=VO 42 42 4240+t (G.11)
my mo mi my mima

In this thesis, we will only be concerned about the singlet static potential VS(O). Therefore, to ease notation, we will

often drop the subscript and the superscript, and simply call it V. We have seen in its explicit form.
For Vy, it can be seen that [166] [167]
Va=1+0(c?), (G.12)

and therefore, for all practical purposes, we can set V4 = 1 in this thesis. Vp will not enter our expressions, so we

will not bother about it. The octet static potential VO(O) will only enter our expressions via

AV =V O _y0 = %a(:s) {1 + aij:) (a1 + 2Bplog(vse?®r)) + O (az(ys))} , (G.13)

where vg =~ 0.577 is the Euler-Mascheroni constant, and a; is given in Eq. (7.17]).
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Appendix H

The r derivative of the singlet static

energy with vy ==& and vy = :CUSCAQO;(VS)

In we have performed many fits using the r derivative of the singlet static energy. This derivative has

been taken assuming constant values of vg and v,s. Nevertheless, we have typically set

vs(r) = xg /1, (H.1)
Caa(v(r))

5 , (H.2)

Vus (T) = Tus

for some constant value of x5 and x,s. These expressions have r dependence, and therefore, one may wonder what
happens if we set the r dependence given in Egs. and before taking the r derivative. In this appendix,
we show the expressions one obtains if this is done. The end result is that, whilst the building blocks of the
derivative of the static energy do change, when adding them all up, the changes cancel out, leaving us with the
same expressions. We will show this for the N3LL case.

Thus, we consider now the the singlet static energy with N3LL precision, with the soft and ultrasoft scales given
by Egs. and . We then take an r derivative, and from the resulting expression only keep terms up to
N3LL order

d d d
Norn = —V(r,vs(r), vs(r)) + —Vra(r, vs(r), vus(r)) + —(SE}J\I:LL(T, Vs(T), Vas(r)) . (H.3)
dr nsLo AT NsLL A7 N3LL
We have added the superscript new to distinguish it from the old expressions, where the r derivatives have been
considered for constant v and vy, and the r dependence given by Eqgs. (H.1) and (H.2|) has been considered after

taking the r derivative. Defining for the first term on the RHS above

d oo

V) = 3 F3 ), (1.4)
we have _
= SR = () - 260) (13)
I = e (@) o ()0~ 281
P = etz (@), () = B (7)o — s (4 (7)Bs — 282).
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From Eq. (7.63) we can deduce that the relation between the new force and the old is

iV(T Vs, Vs)

d
V(r,vs(r), ve(r
(r,vs(r), vs(r)) oL I

dr

1
+ CFC‘%WaZL(VS(T)) . (HG)

vs=vs(r)

For the second term in the RHS of Eq. (H.3)

_ CFC’jTLozS(VS(r)){ - b log (W)
il 1

(45 K+ —){a(uus(r)) —afvs(r))} + & (2 - % [a1 + 280 log(rvs(r)e?®)] )a(uS(T)) log ( Vus( ) } .

%5VRG (’/“7 Vg (’I“), Vus(r))

NSLL

Recall that K has been defined in Eq. ((7.32). Comparing with its analogous version Eq. (7.65)), we find

d d 1
—O0VRra(r, vs(1), vus(r = —0VRa(r, Vs, Vus +C0pC3 —— a3 (s (r)) { a(vus (1) —a(vs(r) V.
VR e = Vi | 50Ol () {a(r) o)}
(H.8)
Considering now the last term on the RHS of Eq. (H.3))
1 5
CT(;EEL LL (1 vy (1), vas (1)) - = CFC’ZWQ(VUS)Q?’(VS){ —log(zys) + log2 — 6} . (H.9)

Comparing with its analogous version Eq. ((7.68)

d
J(SEN LL (r,vs(r), vus(r))

d

EN3LL
dr(S (T7VS7VuS)
N3LL

1
- CFC‘%Wa<VuS)Oé3(VS) . (HlO)

Vs =V (1) ,Vus=Vus (1)
We see that adding up Eq. (H.6), Eq. (H.8) and Eq. (H.10) that the extra terms cancel out, and therefore,

considering the r dependence before or after taking the r derivative leads to the same function.
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