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1 
Introduction 

1.1 The Earth system and the biogeochemical cycles 

Following the bases of physics and chemistry the Earth is considered a closed system, where 
energy enters and escapes freely but matter conforming it does not, excepting for the eventual 
income of rare meteorites. At the same way as energy, matter is not created nor destroyed but it is 
transformed (Lavoisier, 1785) so all the matter conforming the Earth can flow around the system 
without disappearing. In other words, there is a limited and static number of atoms of each 
element conforming our planet. Thus, all this matter can move around the abiotic (atmosphere, 
lithosphere, hydrosphere) and biotic (biosphere) compartments of the Earth changing in estate 
(solid, liquid and gas) and conforming what is known as biogeochemical cycles. Each chemical, 
depending on its atomic properties and how the evolution used them conform its own cycle, 
subjected to different processes and paths to cross the compartment boarders. To understand 
and describe each cycle, science characterized them through their reservoirs, where the matter is 
stored, and fluxes, which are the different ways that each element can “escape” from each 
reservoir to flow into another. The carbon (C), nitrogen (N), phosphorus (P) and potassium (K) 
cycles have enormous impacts in biosphere and its development and due to that are the most 
studied matter cycles on Earth.


C-cycle 
Carbon is the 15th most abundant element in Earth’s crust, relatively light, solid in ambient 
temperature and is capable to establish stable and unstable bounds with a vast number of 
compounds. We can consider carbon as the base of live up the point that chemistry based on C 
is called organic chemistry. On the Earth, the biggest C reservoir is the ocean, containing more 
than 37000 Gt of C. Then follows the soil, with 2300 Gt of C, the atmosphere with almost 800 Gt 
and finally plants, with about 550 Gt of C. All these reservoirs are connected through biotic and/or 
abiotic reactions, exchanging C between them. Roughly speaking, oceans and atmosphere are 
connected both-sides through different processes: gas exchange, which produces carbonic acid 
when CO2 dissolves into the ocean; through living beings’ respiration, emitting CO2 from the 
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ocean to the atmosphere; and finally with autotrophs photosynthesis, absorbing CO2 to the ocean 
and incorporating it to oceanic life matter. Atmosphere interacts with plants, animals and 
microbes through respiration, where they emit CO2 to atmosphere, and through photosynthesis, 
where plants incorporate CO2 from atmosphere becoming organic matter. Finally, soil interacts 
with atmosphere, through soil organisms respiration and through the trophic webs with animals, 
fungi and microbes that emit great part of the CO2 previous fixed by plants as organic matter.  Soil 
also interact with plants, incorporating C from organic matter decomposition (Figure 1.1). Despite 
the Earth system is more complex than that, the aforementioned relations are the most important 
in terms of quantity moving almost all C in our planet.


N-cycle 
Nitrogen is the 7th most abundant element in Via Lactea but due to the stability of its di-atomic 
covalent bond that yields very stable gas forms is difficult to be found in solid from in Earth 
surface conditions of pressure and temperature. On the Earth, 78% of the atmosphere is N, where 
is found as N2 gas bonded with a triple covalent bond, one of the strongest union types which 
make it difficult to move between reservoirs. Paradoxically, N is also crucial to life on Earth, being 
part of structures as important as nucleic acids, proteins and amino acids. All living being on 
Earth needs from this difficult to achieve element. Consequently, the strategy that life has had to 
develop in order to incorporate N into the trophic chain has been challenging. To better 
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Figure 1.1. Schematic C cycle with compartments estimated Gt. 

Ref: futurelearn.com (23/07/21) Tim Doheny-adams
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understand N cycle, it is useful to separate their reservoirs between atmosphere, plants (including 
both marine and terrestrial) and soil with high importance of microorganisms. The main 
mechanism life has to transform this inorganic N2 into easier to absorb nitrogen compounds, such 
as nitrate, nitrite or ammonia is called nitrogen fixation and is conducted in more than 90% by 
marine or terrestrial microorganisms. This transformed N can now be assimilated by plants and 
animals which will return to the ground through decomposition. The return of N to the atmosphere 
can occur through denitrification process, also done by bacteria, or through organic matter 
combustion (Figure 1.2).



P-cycle

Phosphorus is the eleventh most abundant element in Earth crust and it is also a vital element for 
life. All living beings need P on their structures as far as it is part of nucleic acids, such as DNA 
and RNA, ATP, which is responsible for biological information storing, organisms energy storage 
and release and part of membrane cells as phospholipids. Inorganic phosphorus lays on the soil 
crust generally in orthophosphate form (PO43-) and it is simply absorbed by plant roots. Different 
from C and N, phosphorus organic form is not transformed chemically by living beings and is 
always ortophosphate form, surrounded by 4 oxygens. The rest of successional trophic levels 
incorporate P by ingesting this biomass which already incorporated P. On one side this P come 
back to the soil crust through decomposition but on the other side soils are also renovated at 
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Figure 1.2. Schematic Nitrogen cycle. Ref: Lappalainen et al., 2016.
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geological scale through soil creation process of weathering, deposition and geological uplift. The 
concern regarding P is that through years of life succession the soils can be P depleted due to 
biomass removal or leaching and become P limited, constraining life development. Consequently, 
young soils have more available P because their reservoirs have not been spent yet (Walker and 
Syers, 1976) (Figure 1.3).




K-cycle

Potassium is the seventh most abundant element in the soil crust. In living beings potassium is 
responsible for nucleic acids stabilization and it is used as ion to control osmotic pressure. It is 
very important in plant physiology contributing to photosynthesis through stomatal control and 
linked to water use and efficiency. In animals, K is responsible to transmit neurological impulse 
and for muscle contraction. The biggest K reservoir in biosphere are the oceans where K lays in 
water solution. Through geomorphic processes this K is incorporated into the lithosphere where 
generally it conform some minerals such as illite and mica or can be absorbed onto clay. Plants 
have the ability of pumping the exchangeable K from the lower soil layers to the top layers 
increasing its availability. This K can be dissolved in water and leached back to the oceans. Also 
some ocean water spray can be transported by air generating some K deposition which could be 
important in some coastal ecosystems (Figure 1.4). Differently to C, N and P which conform 
tissues and remain typically longer times in vegetal tissues K can be absorbed and released 
faster, as being used normally as ion.
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Figure 1.3. Schematic phosphorus cycle. Ref: Lappalainen et al., 2016.
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1.2 Climate change and plants 

The last centuries and especially since industrial revolution, human being have been postulated as 
one of the major disruptors of biogeochemical cycles in modern times, endangering their stability 
(Canadell et al., 2007). Our massive production system based on exponential growth demands 
huge interactions with this biogeochemical cycles altering its reservoirs and creating new artificial 
fluxes that rarely occur in natural conditions or modifying existing ones. Is true that the Earth 
faced climate changes and unstable periods in the past which affected biogeochemical cycles, 
but not in this short time period and intensity. As a clear example we can have a look in C 
biogeochemical cycle, which is a recurrent topic in human’s agenda. Massive amount of C has 
been released from the lithosphere to the atmosphere lately, provoking an atmospheric CO2  
increase reaching levels never seen before (Monastersky, 2013; IPCC 2018) (Figure 1.5). These 
biogeochemical cycles alteration directly affect humans development but also have many direct 
and indirect implications in other live forms such as plants, which are going to be protagonists in 
this thesis.


One of the biogeochemical cycles alteration important for plants communities comes from 
the atmosphere CO2 rise. Plants absorb CO2 from the atmosphere to incorporate C into their 
structures in sugar form through photosynthesis process. This autotroph process is the base of C 
incorporation to organic chain. Initially, this CO2 rise is linked to an increase of C absorption by 
plants called “Greening effect” or “CO2 fertilization”, due to this major C availability for 
photosynthesis (Keenan et al., 2016) allowing plants to tampon partially the atmospheric CO2 
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Figure 1.4. Schematic potassium cycle. Ref: wikipedia.
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increase. Sooner, though, this CO2 absorbing capacity from plants is reduced due to other 
elements and/or soil moisture limitation (Wang et al., 2020). This phenomenon was already 
described by Sprengel in 1840 but popularized by Liebig in its low of the minimum. This law 
postulates that plants productivity or growth is limited by its scarce element, which could be N, P 
or many others, and hinders plants efficiency to buffer atmosphere C increase in medium/long 
therm. Furthermore, this increasing unbalance between C and the rest of elements available 
would also generate plant nutrition deficiencies. By now we are already detecting a dilution of N, 
P, K, Ca, Mg and S in plant foliar tissues in Europe (Peñuelas et al., 2020a) and we still do not 
know for sure which additional effects this would cause.


The aforementioned atmospheric CO2 and other gases increase also participates into the 
“greenhouse effect” keeping the heat from escaping back to the space. The greenhouse effect is 
responsible for global warming which have multiple consequences such as poles melting, 
temperature increase, risk of alteration of water fluxes in the ocean, sea level rise, alteration of 
pluvial regimes, increase of extreme climatic events between many others which contribute to the 
climate change (IPCC, 2018). Thus, the climate change is a multifactorial pool of alterations that 
differently affect plants depending on the species, placement and ecological pressure (Vallicrosa 
et al., 2021). For instance, an Oak into the Mediterranean will not be equally affected by 
temperature rise as a pine in Finland or Amazonian tree species will not be equally affected by 
torrential rains as a cactus in Atacama. Hence, the challenge for the scientists is to assess how 
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Figure 1.5 Global average long-term atmospheric concentration of carbon dioxide (CO₂), measured in parts per million 
(ppm). Long-term trends in CO₂ concentrations can be measured at high-resolution using preserved air samples from 
icecores.
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the conditions are going to be modified by climate change and how those conditions are going to 
affect the different species.


Nitrogen cycle is another biogeochemical cycle highly modified by humans. Some 
paragraphs before we talked about the difficulties of N2 fixation and its importance for plant 
development, so we became able to artificially synthesize N in industrial fertilizers to fertilize 
crops. This industrialized process which fixes N2 from the atmosphere through high pressures is 
called Haber-Bosch process. The volatilization of a portion of this N fertilizers applied into 
agriculture in conjunction of fossil fuels combustion and the continuous increase of N2 fixing crops 
generate an elevated income of atmospheric N which through precipitation reaches natural 
environments (Galloway et al., 2008; Schmitz et al., 2019; Peñuelas et al., 2021). This extra N 
fertilization reaching natural environments is associated with the alteration of plant-plant, plant-
fungus, plant-soil and plant-herbivore relationships (Gilliam, 2006; Friedrich et al., 2012; Ochoa-
Hueso et al., 2011), plant growth  and C fixation increase (Bontemps et al., 2011; Schulte-Uebbing 
& de Vries, 2017), plant N increase (Baron et al., 2000), plant P decrease (Kowalenko, 2006) and 
increase of N:P ratios (Huang et al., 2016) despite its effects vary depending on the intensity and 
duration of N deposition. Despite all the information generated by scientific community about N 
deposition there are still some answers to reach as well as how this N deposition is combined 
with other climate change factors and how this affects intraspecific competition.


The combustion of fossil fuel, besides the increase of atmospheric CO2 and N also 
contributes to the increase of S emissions to atmosphere. This S compounds and some N 
compounds causes the acid rain. This wet deposition with a very acid pH causes tissue damage 
by direct contact, soils acidification, availability of toxic compounds such as some trace elements, 
which negative impact on vegetal growth and negative impact in productivity (Singh and Agrawal, 
2008). Consequently, big efforts were done to decrease the S and N emissions which were related 
to a decrease of S and N deposition in the last decades. Despite of this, N and S deposition are 
still an ecological concern (Schmitz et al., 2019).


The greening effect caused by atmospheric CO2 increase generates an increase of vegetal 
biomass which is higher or lower depending on other elements availability. As seen before, the N 
deposition is also a factor that increases N availability in some regions which can also contribute 
to increase this greening effect. In contrast, while the availability of C and N increase, P availability 
and supply remains stable on soil. This factor can generate regional P limitation as well as high 
N:P imbalances. Consequently, P can become the limiting factor of vegetal development and 
restrict the C retention capacity (Peñuelas et al., 2013; Carnicer et al., 2015). Furthermore, the 
changes in N:P ratio can affect species composition, food webs structure and terrestrial 
ecosystems diversity and functioning (Sterner and Elser, 2002; Paseka and Grunberg, 2019; 
Peñuelas et al., 2019;2020b; Sardans et al., 2021). Thus, how to identify and mitigate this N:P 
imbalances and P limitation all over the world is another topic concerning scientific community 
these days.
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1.3 Biogeochemical niche theory 
Between this deep sea of ecological pressures and climate change alterations it would be useful 
to keep in mind the bases of ecology. One of the main objectives in ecology is to understand 
diversity. Why this species is in this particular site? How do the species interact? What does it 
drive its presence? And all these questions, of course, are extremely related to environmental 
conditions and biotic interactions we discussed earlier. In 1957, Hutchinson proposed the 
ecological niche theory, which comprehends all conditions necessary for an organism to exist 
(Hardesty, 1972). To make it easy we should imagine a multi-space with endless variables which 
settle each specie into a specific range of each variable of temperature, species cohabitation, soil 
texture, predator pressure and all variables you can imagine. Hence, generalist species have a 
wider range in the variables than specialist species, which are more adapted into particular 
conditions. Following this theory, species tend to avoid niche overlap between coexisting species 
in order to avoid competition and be more ecologically successful.


Unfortunately, even supported for the scientific community, this multi-space of variables is 
almost impossible to sample, quantify and experiment with so, as an alternative, Peñuelas et al., 
2008 proposed the biogeochemical niche theory. This theory is based on the same principles than 
the classical niche theory but using only variables of elemental composition (the amount of each 
chemical compound), which are finite and quantifiable through chemical analysis. Following 
biogeochemical niche theory, species are considered as a product of a long-therm natural 
selection which generates a particular genetic pool. This genetic pool includes the response of 
each specie to the different conditions which through the different fundamental biological 
processes such as growth, metabolism, reproduction or storage it is translated to a particular 
range of chemical compounds. Hence, the chemical composition of each specie could be 
considered as a biological fingerprint. This approach suggests the study of elemental composition 
as an indicator of the ecological processes at specie, community and ecosystem level and it is 
postulated as a very powerful tool to understand plant performance drivers. For example, it aims 
to relate chemical composition with photosynthesis and growth, reproduction and at the end 
ecological success. Also, the study of elemental composition in plants allows to include biosphere 
into the same language as we study the other compartments of biogeochemical cycles and 
conceive its function as a whole matter flow of chemical elements, which are the smaller particle 
we can work with.


1.4 Aim of the thesis 
Arising from the exposed ecological knowledge and questions this thesis aim to offer new findings 
regarding:


• The additional effect of drought and N fertilization into foliar elemental composition of dominant 
species in a Mediterranean forest (Chapter 2)
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• How foliar elemental composition and environmental drivers are related with defoliation and 
forest health in Europe (Chapter 3)


• How the most abundant nutrients (N, P, K) are distributed into leaves of the woody vegetation all 
over the world and which are the main drivers (Chapter 4, Chapter 5)


• Empirical support for the biogeochemical niche theory (Chapter 2, Chapter 4, Chapter 5, 
Chapter 6)
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2 
Short-therm N fertilization differently affects the leaf and leaf litter 
chemistry of the dominant species in a Mediterranean forest under 
drought conditions 

Helena Vallicrosa, Jordi Sardans, Romà Ogaya, Pere Roc Fernández and Josep Peñuelas


Abstract 
Nitrogen (N) deposition is a key driver of global change with significant effects on carbon (C) 
cycling, species fitness, and diversity; however, its effects on Mediterranean ecosystems are 
unclear. Here, we simulated N deposition in an N-fertilization experiment with 15N-labeled 
fertilizer in a montane evergreen Mediterranean holm oak forest, in central Catalonia, to quantify 
short term impacts on leaf, leaf litter elemental composition, and resorption efficiency in three 
dominant species (Quercus ilex, Phillyrea latifolia, and Arbutus unedo). We found that even under 
drought conditions, 15N isotope analysis of leaf and leaf litter showed a rapid uptake of the added 
N, suggesting an N deficient ecosystem. Species responses to N fertilization varied, where A. 
unedo was unaffected and the responses in P. latifolia and Q. ilex were similar, albeit with 
contrasting magnitude. P. latifolia benefited the most from N fertilization under drought conditions 
of the experimental year. These differences in species response could indicate impacts on species 
fitness, competition, and abundance under increased N loads in Mediterranean forest 
ecosystems. Further research is needed to disentangle interactions between long-term N 
deposition and the drought predicted under future climate scenarios in Mediterranean 
ecosystems.


Keywords: elemental composition; isotopes; reabsorption; climate change; Arbutus unedo; 
Phillyrea latifolia; Quercus ilex


2.1 Introduction 

Nitrogen (N), which is an essential element for plant nutrition, is involved in complex cycling in 
terrestrial ecosystems that involves biotic and abiotic processes, such as N2-fixation, 
mineralization, nitrification, ammonification, and denitrification [1,2,3]. Anthropogenic activities 
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since the industrial and agricultural revolutions, particularly those associated with fossil fuel 
combustion, cultivation of N2-fixing crops, and production of N fertilizer using the Haber-Bosch 
process, increasingly influence the global N-cycle as they are often key sources of N in terrestrial 
ecosystems, driving fluxes of similar magnitudes to natural fluxes [4,5,6]. Inorganic N deposition in 
European forests increased on average from about 2.8 kg ha−1a−1 in 1900 to a peak of 10.3 Kg N 
ha−1a−1  in 1990, followed by a decline to 6.6 Kg N ha−1a−1 by 2018 [7,8]. However, 62% of 
Europe continues to remain at risk of eutrophication [9] through rises in organic N deposition due 
to increasing levels of N-fertilization of cropland [8].


In general, N addition to ecosystems alters the first N cycle, increasing N mineralization, 
nitrification, and nitrate leaching rates, and thereafter other ecosystem variables such as P-cycle 
[5], and finally is associated with a long-term plant community diversity decrease [10]. Also, in 
some Mediterranean regions in California with elevated N deposition, native plant species have 
been replaced by invasive species with higher N performance [11,12,13]. Vegetation responses to 
increases in N supply are complex and include increased inter-plant competition, modified plant-
soil feedbacks, and changes to plant-herbivore and plant-fungus relationships [14,15,16]. 
Typically, increases in N availability under N deposition are associated with greater plant growth 
[17,18], C-fixation [19], increased plant N concentrations [20,21], and reduced plant P 
concentrations [22,23] that contribute to increased plant N:P ratios [24,25,26,27]. While critical N 
loads have been described for a range of ecosystems and species, including 3–33 kg N 
ha−1 yr−1 for herbaceous species and shrublands and 4–39 kg N ha−1 yr−1 in forests in the US 
[10], there is a knowledge gap for Mediterranean Basin ecosystems.


Along with water availability, nutrient supply is a frequent limiting factor for Mediterranean 
ecosystems [28,29] and is an important factor in the growth, structure, and distribution of plant 
communities [30,31,32]. Consequently, Mediterranean forest communities tend to be dominated 
by woody plant species characterized by conservative traits related to tolerance of low water and 
nutrient conditions, such as slow growth and high levels of sclerophylly, high levels of investment 
in root biomass, and greater metabolic flexibility [28]. Responses of plant species to long-term N-
fertilization under high levels of N deposition vary with life history strategy, where ruderal species 
are likely to be favored over stress-tolerators [33]. The resulting changes in competitive 
relationships within plant communities lead to long-term changes in species community 
composition [10,12,34], which could culminate in the extinction of endemic species and reduce 
overall levels of species diversity [16].


High levels of N deposition are known to constitute a threat for global plant diversity; as 
long as Mediterranean ecosystem is considered a diversity hotspot, an increase of N deposition 
could endanger its species diversity [35,36,37]. Deposition of N has been related to reduced levels 
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of resilience in Mediterranean plant communities to disturbing climatic conditions [28]. However, 
few field studies have assessed the relationships between increases in N-availability and 
responses of dominant woody species and shifts in nutrient cycling in Mediterranean plant 
communities. In particular, even less field studies assessed the impacts of a sudden rise in N 
deposition on a semi-pristine Mediterranean ecosystem, in which current loads of N deposition 
are low and especially interacting with drought. Therefore, we aimed to study the short-term 
effects of N-fertilization to simulate rapid N deposition and availability on: (i) foliar and litter 
nutrient composition; (ii) foliar nutrient reabsorption; and (iii) foliar and litter carbon (C) and N 
isotope ratios in three dominant tree species of a semi-pristine, low-nutrient Mediterranean holm-
oak forest to increase the understanding of species community composition and dynamics under 
increased N deposition in the increasingly dry Mediterranean environment.


2.2 Materials and Methods 

2.2.1 Study Site 
The study was carried out on a south-facing slope (25% incline) of a semi-pristine (Quercus 
ilex L.) forest, where N deposition was 3.5 kg N ha−1 yr−1 between 1981 and 1994 [38], in the 
Prades Mountains, Catalonia, NE Spain (41°21′ N, 1°02′ E). The forest has not been disturbed for 
the last 70 years and the maximum height of the dominant species is about 6–10 m. Mean annual 
temperature and precipitation are 12 °C and 658 mm, respectively, with the warmest months 
occurring between June and August and the rainiest period between September and November 
(Figure 1). These conditions correspond to a mesic-Mediterranean climate, with a pronounced 
summer drought period that usually lasts for 3 months. During the study period, mean annual 
temperature and annual precipitation in 2014 were 12.65 °C and 661.38 mm respectively, and 
13.25 °C and 355.44 mm respectively in 2015 (Figure 2.1). Air temperature and rainfall were 
recorded by an automatic meteorological station in the studied area. The soil is a stony Dystric 
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Figure 2.1 Bagnouls-Gaussen ombrotermic diagram of mean climatic temperature (in red) and precipitation (in blue) 
by month in the study site. (a) Mean monthly data from 1975 to 2020. (b) Mean monthly data for 2014. (c) Mean 
monthly data for 2015.
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Cambisol, on a bedrock of metamorphic sandstone, and ranges between 35 and 100 cm in depth. 
The dense forest vegetation is dominated by Q. Ilex, with abundant Phillyrea latifolia L., Arbutus 
unedo  L. among other evergreen species that are well-adapted to drought conditions (Erica 
arborea  L.,  Juniperus oxycedrus  L., and  Cistus albidus  L.) and the occasional occurrence of 
deciduous species (Sorbus torminalis  L. Crantz and Acer monspessulanum  L.). The three tree 
species (Q. ilex, P. latifolia, and A. unedo) represent 97% of the total aboveground biomass of the 
forest [39] and they frequently co-occur in Mediterranean maquis  shrubland and evergreen Q. 
ilex  forests. Q. ilex  is widely distributed across the subhumid areas of the Mediterranean Basin, 
while P. latifolia occurs in warmer and drier Mediterranean areas [40,41] and A. unedo exploits 
forest gaps in which conditions are limiting for Q. ilex [42].


2.2.2 Experimental Design 
We established eight 15 m × 10 m plots at the same altitude (950 m) [43]; four plots received N-
fertilizer and the remainder were untreated controls. In 2015, a total fertilization of 60 kg of N 
ha−1  a−1  (at a rate of 15 kg N ha−1  in each annual season) was applied as a solution of 
ammonium nitrate (NH4NO3) with a sprayer. This fertilization was sprayed in 3 different days per 
season (5 kg N ha−1 each application), with at least 1 week between different applications. This 
solution was sprayed over the canopy level after climbing to the top of the uppermost tree in each 
plot. This solution was enriched with 15N as follows: 90% of “normal” ammonium nitrate, and 
10% of ammonium nitrate enriched with  15N (the 10% of this enriched ammonium nitrate 
was 15N) (Sigma-Aldrich, Co., St. Louis, MO, USA).


2.2.3 Sampling 
We sampled leaves of Q. ilex, P. latifolia, and A. unedo and foliar litter in mid-May (spring), end of 
July (summer), and mid-November (autumn) 2014, prior to treatment, and in 2015 during 
fertilization, sampling the same tree before and after treatment. On each sampling occasion, we 
randomly selected five trees of each species per plot and collected mature and healthy leaves at a 
height of 2–3 m from plants with a diameter of 2–12 cm at 5 cm above ground level; these plants 
represent about the 70% of the community biomass [44,45]. To reduce effects of tissue age and 
orientation to sunlight, we sampled leaves that were sun-lit and oriented southwards. Mean leaf 
life span is approximately 18 months [45], so most leaves sampled during 2015 under fertilization 
were also present during 2014 prior to treatment. Litterfall at the soil surface was collected in 20 
circular baskets (27 cm in diameter, with 1.5-mm diameter mesh) that were randomly distributed 
in each plot. Even though the baskets were permanently placed over the ground, the dense 
canopy cover almost totally avoided N fertilization reaching the soil or the baskets. The collected 
litter was not in direct contact with the soil so its conservation state was good and the 
decomposition process had hardly begun. Once collected, the leaf and litter samples were taken 
to the laboratory and stored at 4 °C prior to analysis.
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Foliar nutrient resorption was calculated as the difference in elemental compound 
concentration of leaves collected in 2014 and litter collected in 2015, using the equation 100 − 
(Xl × 100)/Xf, where Xl is litter element concentration in 2015 and Xf foliar element concentration in 
2014. The result is an inference of proportional (%) element resorption efficiency prior to leaf fall.


2.2.4 Chemical Analyses 
The leaf and foliar litter samples were washed with distilled water, as described by Porter (1986) 
[46], dried in an oven at 60 °C to a constant weight, and then ground using a mill (CYCLOTEC 
1093, Foss Tecator, Höganäs, Sweden) for measurement of biomass. Leaf and litter 
concentrations of carbon (C) and N were quantified by combustion coupled to gas 
chromatography, by placing 1.4 mg of the milled samples in a tin microcapsule in an elemental 
analyzer (CHNS-O EuroVector, Milan, Italy), while concentrations of phosphorus (P), potassium 
(K), and micro-elements were determined by digesting samples of leaf and litter in acid in a 
microwave (MARSXpress, CEM, Matthews, NC, USA) at high pressure and temperature. Then 250 
mg of each ground sample, 5 mL of nitric acid, and 2 mL of H2O2 were placed into Teflon tubes; 
digestate was placed in 50-mL flasks and diluted with Milli-Q water to a volume of 50 mL. 
Concentrations of P, K, and micro-elements were determined using optic emission spectrometry 
with inductively coupled plasma and the accuracy of the digestions and analytical biomass 
procedures was assessed using a certified standard biomass (NIST 1573a, tomato leaf; NIST, 
Gaitherburg, MD, USA) as a reference. Isotopic analyses of δ13C (13C/12C) and δ15N (15N/14N) 
of the leaf and litter samples were conducted at the Stable Isotope Facility at the University of 
California, Davis using a PDZ Europa ANCA-GSL elemental analyzer connected to a PDZ Europa 
20−20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK).


2.2.5 Statistical Analyses 
Between year treatment differences in plot, species, and season values were calculated based on 
proportional change in values between 2014 and 2015, and then linear mixed models were used 
to test for treatment differences in leaf and litter macro- (C, N, P, K) and micro-element 
concentrations (calcium, Ca; magnesium, Mg; chrome, Cr; iron, Fe; manganese, Mn; copper, Cu; 
zinc, Zn, strontium, Sr; nickel, Ni; and, lead, Pb) and reabsorption, and in foliar N and C isotopes 
by species, with plot and season as random factors. Models were defined using lme4 [47] and 
lmerTest [48] and r2 was calculated in MuMIn [49] R packages. Treatment differences in leaf and 
litter isotope content by species was tested using Student’s t-test.


Overall treatment differences in leaf and litter macro- (N, P, K) and micro-element (Ca, Mg, 
Fe, Mn, Cu, Zn) composition and isotope content (δ13C and δ15N) by species were tested using 
general discriminant analysis (GDA) in Statistica 8.0 (StatSoft, Inc., Tulsa, OK, USA) that identifies 
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variables most responsible for group differences, while controlling variance due to other 
categorical variables (here, season).


In order to detect the effect of 2015’s exceptional arid conditions, we calculated a  t-test 
between 2015 and 2014 for leaves and litter from only control plots (which have no treatment 
applied in 2015).


2.3 Results 

2.3.1 Fertilization Effects on Foliar Element Concentrations 
There were between-year differences in C:P ratios in P. latifolia, where there were increases of 
4.83 ± 3.36% and 3.05 ± 0.86% in untreated control and fertilized plots, respectively (difference 
between treatments: p < 0.05; ±standard error (SE) showed; Figure 2.2a, Table S1), and ratios of 
N:P differed for A. unedo, where there were 1.64 ± 1.65% decreases and 1.12 ± 1.38% increases 
in the untreated and treated plots from 2014 (pretreatment) to 2015 (post-treatment), respectively, 
(difference between treatments: p < 0.05; ±standard error (SE) showed; Figure 2.2b, Table S1). 
There were no treatment differences in leaf concentration of N, P, or K or in C:N ratios of the three 
species.


Among the micro-elements, there were differences in leaf concentrations of chromium (Cr) 
in Q. ilex, where there were decreases of 1.68 ± 1.83% and 3.56 ± 0.68% in the untreated and 
treated plots, respectively (difference between treatments:  p  < 0.05; ±standard error (SE) 
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Figure 2.2 Foliar elemental ratios and microelements statistically different between control and fertilized plots. (a) C:P 
% in dry weight in leaves. (b) N:P % in dry weight in leaves. (c) Cr mg/kg in dry weight in leaves. (d) Ni mg/kg in dry 
weight in leaves. Values are relatives to original values in 2014 expressed in % of change. * = Marginal significance (p 
= [0.05, 0.1]). *** = Significant differences (p < 0.05). Figures with standard errors.

https://www.mdpi.com/1999-4907/12/5/605/htm#app1-forests-12-00605


2. SHORT-THERM N FERTILIZATION DIFFERENTLY AFFECTS THE LEAF AND LEAF LITTER CHEMISTRY OF THE 
DOMINANT SPECIES IN A MEDITERRANEAN FOREST UNDER DROUGHT CONDITIONS

showed;  Figure 2.2c), while leaf concentration of nickel (Ni) in A. unedo  decreased by 0.76 ± 
0.41% and 1.49 ± 0.28%, respectively (difference between treatments: p < 0.05; ±standard error 
(SE) showed), and decreased in Q. ilex by 1.86 ± 1.79% and 4.67 ± 0.62% (difference between 
treatments:  p  < 0.05; ±standard error (SE) showed;  Figure 2.2d) (Table S1). There were no 
treatment differences in leaf concentrations of Ca, Mn, Fe, Cu, Zn, Sr, or Pb in the three species.


2.3.2 Fertilization Effects on Leaf Litter Element Concentrations 
Treatment affected leaf litter concentration of macro-elements only in  P. latifolia  (p  < 0.05; 
±standard error (SE) showed), where P concentration increased by 0.49 ± 0.59% in untreated 
plots and decreased by 1.80 ± 0.72% in fertilized plots (Figure 2.3a), while C:P ratios were 

decreased by 18.44 ± 3.21% and 7.12 ± 3.22% in untreated and fertilized plots, respectively 
(Figure 2.3b), and N:P ratios were 15.52 ± 3.85% and 4.11 ± 3.04% lower, respectively (Figure 
2.3c) (Table S2). There were no differences in leaf litter concentration of the remaining macro-
elements in the three species.
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Figure 2.3. Litter elemental composition, ratios, and microelements statistically different between control and fertilized 
plots. The showed elements are: (a) P % in litter. (b) C:P in litter. (c) N:P in litter (d) Ca mg/kg in litter. (e) Mn mg/kg in 
litter. (f) Fe mg/kg in litter. (g) Zn mg/kg in litter. (h) Sr mg/kg in litter. (i) Pb mg/kg in litter. Values are relatives to original

values in 2014 and are expressed in % of change. * = Marginal significance (p = [0.05, 0.1]). *** = Significant 
differences (p < 0.05). Figures with standard error.
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There were differences in litter concentration of micro-elements among the species (Figure 
2.3d–i, Table S2). A. unedo leaf litter of Mn, Zn, and Sr increased from −1.29 ± 0.82%, −12.25 ± 
3.57%, and −9.44 ± 2.7% in the untreated plots to 1.44 ± 1.22%, −4.16 ± 2.33%, and −1.86 ± 
2.33%, respectively, in the N fertilized plots (difference between treatments: p < 0.05; ±standard 
error (SE) showed), while  P. latifolia  leaf litter concentration of Ca, Zn, and Sr increased from 
−19.88 ± 5.35%, −18.73 ± 6.35%, and −21.44 ± 7.58% in untreated plots to −3.39 ± 4.53%, 
−6.64 ± 4.44%, and 3.19 ± 6.27%, respectively, in N fertilized plots and concentration of Mn and 
Pb decreased from 4.33 ± 10.88% and 4.04 ± 2.52% to −10.01 ± 6.04% and −3.24 ± 2.83%, in 
the untreated and treated plots, respectively (differences between treatments: p < 0.05; ±standard 
error (SE) showed). Q. ilex  leaf litter concentration of Ca, Fe, and Sr decreased from −2.89 ± 
7.32%, 16.58 ± 5.21%, and 1.02 ± 6.15% in control plots, respectively, to −15.77 ± 2.70%, −2.17 
± 6.95%, and −9.32 ± 2.91% in N fertilized plots, respectively (differences between 
treatments: p < 0.05; ±standard error (SE) showed).


2.3.3 Foliar Nutrient Resorption 
There were no effects of treatment on resorption of N, P, or K. While there were no differences in 
micro-element resorption in A. unedo, resorption of Mg and Ca in P. latifolia decreased from −2.91 
± 5.28%, and −90.2 ± 50.17% in untreated plots, respectively, to −19.71 ± 8.12% and −171.1 ± 
20.99%, respectively, in fertilized plots (differences between treatments: p < 0.05; ±standard error 
(SE) showed; Figure 2.4, Table S3).


2.3.4 Fertilizer N-Uptake 
While there were no differences between year treatment differences in leaf and litter δ13C in the 
three species, we found that leaf δ15N varied between the untreated and treated plots in  P. 
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Figure 2.4. Microelements resorption efficiency % statistically different between control and fertilized plots. (a) Mg 
resorption efficiency. (b) Ca resorption efficiency. * = Marginal significance (p = [0.05, 0.1]). *** = Significant differences 
(p <0.05). Figures with standard error.
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latifolia  (0.25 ± 8.28‰ and 34.2 ± 8.52‰, respectively) and Q. ilex  (1.42 ± 7.78‰ and 37.49 ± 
6.11‰, respectively) (differences between treatments:  p  < 0.05; ±standard error (SE) 
showed;  Figure 2.5a). No leaf differences in foliar δ15N in A. unedo. Fertilization with  15N-
enriched fertilizer increased leaf litter δ15N in  A. unedo  (from 0.072 ± 14.57‰ to 57.0 ± 
10.42‰), P. latifolia (from 9.01 ± 18.30‰ to 58.5 ± 13.68‰), and Q. ilex (from −0.34 ± 20.68‰ to 
81.1 ± 17.47‰) (differences between treatments: p < 0.05; ±standard error (SE) showed; Figure 
2.5b) (Table S4). Content of δ15N in A. unedo and Q. ilex was greater in leaf litter than in leaf 
material.


2.3.5. Species Differences in Leaf and Leaf Litter Element Concentrations 
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Figure 2.5 Isotopes statistically different between control and fertilized plots. a) Foliar tissue b) Foliar-litter tissue. *** = 
Significant differences ( P < 0.05). Figures with standard error. A. unedo and Q. ilex foliar δ15N is significantly different 
from litter δ15N. 

Figure 2.6 Generalized discriminant analysis (GDA) results representation of root 1 and root 2. Vectors representing 
variables, and ellipses representing control and N-fertilized plots measurements. (a) Leaves data. (b) Litter data.
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The GDA driven by variation in δ13C, δ15N, K, Ca, Mn, Fe, Cu, and Zn concentrations (Table 2.1a) 
clearly separated the foliar elemental concentrations by species within and between treatments 
(Table 2.1b, Figure 2.6a). Similarly, there was clear separation of species in foliar litter within and 
between treatments (Table 2b, Figure 6b), driven by variation in δ13C, δ15N, N, P, K, Ca, Mn, and 
Fe concentrations (Table 2a). The variable loading most strongly in fertilized plots, separating 
them from control plots in leaves, is clearly δ15N and with lower intensity δ13C, while Cu, Mg, 
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Table 2.1  (a) Foliar variables effect in GDA analysis in leaves. (b) Foliar variables effect in GDA analysis in litter. 
Significant effects (p < 0.05) are highlighted in bold type.
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and Ca load to control plots. In litter, δ15N is the strongest variable loading in fertilized plots with 
N in lower intensity. Contrarily, Fe and Mn load to control plots.


2.3.6 Drought Effects 
All species have differences in control plots elemental composition between 2014 and 2015 in 
foliar tissue and respond similarly to drought. In foliar tissue, all macro-nutrients decrease 
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Table 2.2.  (a) Squared Mahalanobis distances between species-treatment in leaves. (b) Squared Mahalanobis 
distances between species-treatment in litter. AC = A. unedo  control plot. PC = P. latifolia  control plot. QC = Q. 
ilex control plot. AN = A. unedo N-fertilized plot. PN = P. latifolia N-fertilized plot. QN = Q. ilex N-fertilized plot.
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significantly in 2015 in all three studied species except C in P. latifolia, which have no significant 
differences. In foliar micro-nutrients, Mg and Cu decrease significantly in 2015 in all three species, 
Ca increases significantly in P. latifolia and Q. ilex; Cr and Ni decreases in A. unedo and Q. ilex; 
Mn and Sr increase significantly in all three species; Fe decreases in A. unedo, increases in Q. 
ilex  and has no differences in  P. latifolia; Zn decreases in  Q. ilex; and Pb decreases in  A. 
unedo and P. latifolia and has no differences in Q. ilex (Figure 2.7).


2.4 Discussion 

2.4.1 Interannual Differences 
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Figure 2.7 Foliar elemental composition; ratios and microelements (green); and litter elemental composition, ratios, 
and microelements (brown) by specie control plots data. Bars show the effect of drought through the values 
difference between 2015 and 2014. Values are relative to original values in 2014 so are expressed in % of change. *** 
= Significant differences from 0 according to t-test (p < 0.05). Figures with standard deviation.
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The overall macro-elements reduction and micro-elements variation in control plots between 2014 
and 2015, as seen in Figure 2.7, are inherent effects of the exceptional drought in 2015. These 
year to year effects of drought are consistent with the drought experiments carried out in the 
same studied Mediterranean forest, where reduction of foliar N [50,51], P [52,53,54], and micro 
nutrients variation [55,56] were described to be associated to the drought treatment. This 
decrease of nutrient uptake associated to a decrease of soil water content gives evidence of the 
potential negative effects of drought by decreasing nutrient uptake capacity as well as the 
reinforced negative feedback of low nutrient concentration in leaves lowering the plant capacity to 
maintain an adequate water use efficiency [57]. Therefore, to correctly assess the effects of 
addition of N in this study, the exceptional 2015 arid conditions needs to be considered.


2.4.2 Macro-Elements 
In contrast to our results, fertilization with N would be expected to increase total concentration of 
foliar N; however, we found evidence of an increase in foliar 15N that indicates rapid plant uptake 
of the applied fertilizer. The contrasting effects of added N on total foliar N concentration and 
foliar 15N may be explained by two hypotheses. First, added N is highly available, so although 
plants in the fertilized plots may have taken up similar amounts of total N from soil, there may 
have been greater uptake of the more easily available rich 15N, and secondly, plants may have 
taken up greater amounts of N that was rapidly allocated to tissue other than leaf material, such 
as roots, to stimulate growth. Our results support these hypotheses, because we observed higher 
foliar concentrations of other elements following fertilization and higher leaf litter  15N 
concentrations that indicate decreases in leaf N resorption under increased N-availability.


2.4.3 Micro-Elements 
In previous studies, N addition was related with a massive incorporation of NO3− into the system, 
causing cation losses by leaching and soil acidification [58,59,60]. In our study, leaching could 
have been generated by direct NO3− contact to the leaves, as described for acid rain impacts 
[61]. The decrease of foliar Cr in Q. ilex (Figure 2.2d) and Ni in A.unedo and Q. ilex (Figure 2.2e) is 
consistent with foliar leaching theory. In contrast, litter micro-elemental concentrations were not 
conclusively responding to N addition. The most remarkable response of micro-elements to N 
addition was the decrease of foliar Cr and Ni, which do not have a known biological benefit to 
plants and are considered pollutants. In this case, the short-term effects of N addition may be 
considered beneficial for species fitness, even though the size of effect varied among the three 
species (greatest in Q. ilex, moderate in A. unedo, and null in P. latifolia).


2.4.4 Nutrient Uptake 
The isotope analysis showed rapid incorporation of N to the ecosystem following fertilization, 
where there were differences in foliar δ15N, but not of δ13C. Foliar uptake of N by A. unedo was 
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unaffected by treatment, whereas fertilization led to greater uptake in P. latifolia and Q. ilex (Figure 
2.6), indicating possible interspecific imbalances in nutrient uptake under drought conditions.


In contrast, leaf litter  15N was consistently greater among the three species under N-
fertilization, where the greater concentration in A. unedo and Q. ilex leaf litter than in leaf material 
highlights differences in resorption and indicates that, prior to the release of senescent leaves, A. 
unedo and Q. ilex reabsorbed smaller or negligible amounts of the applied N enriched with 15N. 
There were no differences between δ15N of  P. latifolia  leaf material and leaf litter, indicating 
unchanged levels of N resorption under N addition; this maintenance of greater nutrient use 
efficiency, even under drought conditions, than in A. unedo and Q. ilex, is consistent with previous 
studies that report its greater capacity for the maintenance of optimal function and growth under 
increasing drought than the other two species [44,62].


2.4.5 N limited Ecosystem 
Our analyses showed rapid leaf and leaf litter elemental composition responses to N addition, 
through the increases in leaf and leaf litter δ15N, allowing us to conclude that this Mediterranean 
forest ecosystem is N limited, which is consistent with previous studies that showed decreases in 
foliar N in Mediterranean ecosystems during the 20th century, and associated them to increases 
in photosynthetic rates and C fixation, as well as growth capacity because of increasing 
atmospheric CO2 concentrations [63] and with N limitation reported in the forests we studied [64]. 
Furthermore, the drought in 2015 also contributed to decreasing foliar N and increased even more 
the original plant N deficiency phenomenon already described in other studies [65].


These three dominant species of the holm oak forest ecosystem were characterized by 
smaller decreases in leaf and leaf litter concentrations of several elements under N-fertilization 
during the extreme high drought conditions of 2015. This rapid response of the mature ecosystem 
was remarkable and indicates that addition of N to an N-limited ecosystem improves nutrient 
retention and increases resilience of ecosystem function to drought stress.


Such drought recovery under N fertilization conditions could drive forest managers to 
consider generalized application of N-fertilization to stimulate C-uptake after droughts. However, 
N fertilization would be logistically complicated and would cause important N-cycle alterations, 
nutrient imbalances, decrease of diversity, and also can favor highly competitive invasive species 
replacing endemic ones. However, these impacts could be improved adding other nutrients such 
as P and K or even Fe, Mg, and sulfur. In this way, the fertilization probably would not generate 
important nutrient imbalances, and plants with better nutritional status could improve their water 
use efficiency. Our results can thus be useful for developing management strategies for 
Mediterranean forests under increasingly dry conditions projected for coming decades.
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Long-term continuous N-fertilization experiments are needed to confirm the wider effects 
of increased availability of N on growth and stocks and changes in plant-soil cycling of nutrient 
elements of this Mediterranean ecosystem, including its dominant species. It is likely that 
sustained N deposition would decrease N limitation and its associated effects, but elements that 
derive from the bedrock, such as P or K, will increasingly become leached and limiting [5,6].


2.4.6 Biogeochemical Niche Differentiation 
The GDA analysis showed a clear differentiation in element concentration among the three 
studied species and with treatment. This differentiation suggests a particular chemical identity per 
species as well as a particular species response to the same drivers. This chemical differentiation 
among species is supported by biogeochemical niche hypothesis [33,66,67]. Biogeochemical 
niche hypothesis is a derivation of the classic niche theory, which assigns to each species a 
specific position into a multidimensional space of traits, environmental requirements, and 
“needs”. Biogeochemical niche hypothesis aims to synthesize all these variables into an easily 
quantifiable multidimensional space of the elemental composition with the “n-dimensional” axes 
being the concentrations of the different bioelements. This chemical divergence responds to the 
necessity of avoiding niche overlap that has been driven through evolutive genetic selection and 
the environmental conditions where the species has been developed.


2.4.7 Species Differences in Response to N Fertilization 
A. unedo,  P. latifolia, and  Q. ilex  coexist at the same stage of ecological succession in the 
Mediterranean forest ecosystem [42,68], presenting different intraspecific tolerance to different 
extreme conditions. Despite P. latifolia and Q. ilex sharing the same strategy to avoid water loss 
during drought, P. latifolia has a higher tolerance, a more efficient recovery to drought [69], and 
high temperatures than Q. ilex [44]. At the same time, P. latifolia has lower tolerance to low winter 
temperatures than Q. ilex [69]. Also, previous studies of impacts of long-term drought have shown 
that  Q. ilex  and  A. unedo  are mostly affected through changes in C and nutrient storage, 
whereas  P. latifolia  tends to remain unaffected [44,62]. Despite all three species sharing a 
dimorphic root system, enabling them to access different water level sources [70], these 
differences seem to be explained through xylem vessels width. Q. ilex and A. unedo have wider 
xylem vessels, which allow them to transport greater amounts of sap under well-watered 
conditions, but makes them more susceptible to embolism under drought conditions [71]. Also, Q. 
ilex has higher capacity to exclude potential toxic ions than A. unedo [72].


The intraspecific different responses to N-fertilization observed in this study are 
consequent with the different species tolerance to drought conditions, where P. latifolia  is the 
most drought-resistant species and also the one best at assimilating better N addition. As long as 
the fertilizer is sprayed to the leaves, its absorption is directly related to stomatal opening. Thus, 
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better watered species can afford longer stomatal apertures and consequently, higher N 
absorption [73]. This different N absorption among species may lead to changes in species 
composition in a drier and N fertilized environment as projected for these Mediterranean 
ecosystems for the next decades [9,28,74]. Under extreme drought conditions, P. latifolia could 
overtake Q. ilex dominance [65].


2.5 Conclusions 

We found that added N was rapidly utilized in the three studied species, consistent with previous 
observations of N limitation in this area; this effect was remarkable, given the exceptional arid 
conditions during the study. Species responses to sudden increases in N availability varied, 
where A. unedo was unaffected and direction of responses in P. latifolia and Q. ilex were similar, 
albeit with contrasting magnitude. The macro-element concentrations were more sensitive in P. 
latifolia than in the other two species. P. latifolia was the species that took best advantage of the N 
fertilization and the species less affected by drought. The chemical composition of the three study 
species before and after N-fertilization follows the biogeochemical niche hypothesis, where 
differences in response may trigger changes in species coexistence and community composition.
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3 
Foliar elemental composition and weather as drivers of defoliation rate 
in European forests 

Helena Vallicrosa, Jordi Sardans, Joan Maspons, Jakub Černý and Josep Peñuelas


Abstract 
Defoliation is a standard, easily acquirable and widely used variable to assess forest health and 
vitality. However, its relationship with foliar elemental composition remains uncertain. Using  
inventory from the ICP Forests programme, we examined the relationships between trends in 
European defoliation, foliar elemental composition, and environmental factors in Europe as a 
whole and by latitudinal fringes. We observed a significant trend for increasing defoliation in South 
and Central Europe, but a slight decreasing tendency in the boreal fringe. Gymnosperms had 
higher defoliation trends than angiosperms. All studied species showed evidence of increased 
defoliation over the last decades, excepting Quercus ilex, which had decreased defoliation, and 
Abies alba, which was non-significant. Foliar elemental composition was associated with 
defoliation in European forests, with a clear inverse correlation with foliar N, and additional 
significant relationships found between defoliation and foliar P, foliar Ca, and foliar S. Climatic 
legacy, the  distribution of precipitation over time, and different environmental pressures also 
played a role in defoliation, depending on the studied latitudinal fringe.


3.1 Introduction 
Defoliation data are broadly used as an indicator of forest health and vitality (De Marco A. et al., 
2014; Vacek et al., 2015; Gea-Izquierdo et al., 2019; Gottardini et al. 2020), probably due to its 
long history of observations (Menzel and Dose, 2005) and effortless data collection (Vliet et al., 
2003). Defoliation is a generalist indicator (Ferretti, 1997, 1998) that is particularly related to 
temperature (Linkosalo, 1999; Peñuelas J. et al., 2004; Lebourgeois et al., 2010; De la Cruz et al., 
2014), but is also related to soil water content (Peñuelas et al., 2004; Carnicer et al., 2011), 
photoperiod (Vitasse and Basler, 2013), rainfall (Peñuelas et al., 2004) and air pollution (Ferretti 
and Fischer, 2013). Consequently, it has been shown to be efficient for assessing the biological 
responses of forests to climate change (Menzel et al., 2006; Lebourgeois et al., 2010).




3. FOLIAR ELEMENTAL COMPOSITION AND WEATHER AS DRIVERS OF DEFOLIATION RATE IN EUROPEAN 
FORESTS

Documentation of the effects of climate change effects in Europe is growing, with 
consequences that include defoliation and drought-induced mortality in the central and semi-arid 
areas (Allen et al., 2010; de Vries and Posch, 2011; De Marco et al., 2014), long-term changes in 
the species compositions of terrestrial ecosystems (Mueller et al., 2005; Andreu et al., 2007; van 
Mantgem et al., 2009; Allen et al., 2010; Carnicer et al., 2011; Hanewinkel et al., 2013) and 
increased plant growth associated with warming, especially in the central and northern areas 
(Bussotti et al., 2014; Kauppi et al., 2014). Also, N deposition in Europe  has increased from 2.8 kg 
ha-1a-1 in 1900 to 6.6 Kg N ha-1y-1 by 2018 through human activities (Engardt et al., 2017; Schmitz 
et al., 2019), with 62% of Europe considered to be at risk of eutrophication (Slootweg et al., 2015). 
This increase is associated with changes in soil condition at the European scale (Wallace et al., 
2007; Phoenix et al., 2012), leading to substantial impacts on forest tree growth (Thomas et al., 
2010) and nutrient imbalances (Blanes et al., 2013; de Vries et al., 2014). Even though N 
deposition intensity has decreased in the last 20 to 30 years in some areas of Europe, the long-
term accumulation of N in soils remains a concern (Schmitz et al., 2019).


Shifts in soil nutrient availability and its effects on the foliar elemental composition of trees 
is another important factors related to forest health and vitality. The availability of elements like 
nitrogen, phosphorus, and potassium in the plant-soil system can substantially modify the 
impacts of global climate change (Jiang et al., 2017; Sardans & Peñuelas, 2015; Peñuelas et al., 
2017, 2020; Sun et al., 2017; Wang et al., 2017; 2018; Terrer et al., 2019) and limit the global 
capacity for C fixation in the face of rising atmospheric CO2 concentrations (Vicca et al., 2012; 
Fernández-Martínez et al., 2014; Zhu et al., 2016; Wang et al 2020). Thus, we expect that soil 
nutrient concentrations should interact with the effects of warming and drought to affect the 
defoliation status of forests in some European regions (Eastaugh et al., 2011; Zhang et al., 2014; 
Castagneri et al., 2015; Zimmermann et al., 2015; Vallicrosa et al., 2021). In this regard, it has 
been reported that the amounts of foliar elements, including N, P, K, and S, have decreased 
between 5% and 11% over the last 30 years in European forests, likely because of the effects of 
increasing atmospheric CO2 concentrations and climate change (Peñuelas et al., 2020).


Given the above, our goal was to investigate the roles of foliar elemental composition and 
environmental factors on defoliation and assess tree vitality and drivers of health in (i) forest cover 
over the whole of Europe; (ii) angiosperms versus gymnosperms; (iii) the European forest cover, 
subdivided by boreal, temperate, and Mediterranean latitudes; and (iv) the most representative 
European forest species.


3.2 Methods 
3.2.1 Data acquisition 
We selected the dataset from International Co-operative Programme on Assessment and 
Monitoring of Air Pollution Effects on Forests (ICP Forests) (http://icp-forests.net/) that contained 
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both plot defoliation and plot foliar elemental composition data. The study dataset included data 
from 782 plots collected between 1992 and 2015. These data were collected for each plot 
repeatedly but irregularly over the sampled years, allowing for temporal analyses. Using 
geographical coordinates, we crossed the defoliation and elemental composition database with 
climatic gridded data from Climatic Research Unit (CRU) (Harris et al., 2020), the Standardized 
Precipitation-Evapotranspiration Index (SPEI), which is inverse to the aridity index and is used as 
a proxy of available water; soil data from the Land-Atmosphere Interaction Research Group at 
Sun Yat-sen University (Shangguan et al., 2014), and deposition data from CRU (Table S3.1). In 
addition to using the general database, we split the data on angiosperms and gymnosperms 
according to species, and by latitude, corresponding to the Mediterranean (latitude < 46°), 
temperate (from 46 to 58° latitude), and boreal fringes (latitude > 58°). Furthermore, the most 
commonly sampled species were selected for analysis (defined as > 40 individuals, and present in 
> 5 plots).


3.2.2 Maps generation and regressions 
Using repeated defoliation measurements in the general database that were collected over 
multiple years, we calculated the defoliation trend by plot and the corresponding significance. We 
plotted the values of the ICP plots containing defoliation and elemental composition  data onto a 
European map using the ggspatial package in R (Dunnington, 2021). We used the same procedure 
to similarly plot defoliation trends of angiosperms, gymnosperms, and for each focal species. The 
whole Europe, latitudinal, angiosperm, gymnosperm and by-species defoliation trends were 
calculated by Theil-Sen regression in the mblm package in R (Komsta, 2019) using the 
corresponding dataset following the Defoliation ~ year form. Comparison of the slopes for 
angiosperms and gymnosperms was carried out using a Chow test in the R package gap (Zhao, 
2021).


3.2.3 Data analysis and model creation 
To select the most meaningful variables, we built univariate models using the complete database, 
and for each latitudinal group, the division between gymnosperms and angiosperms, and a 
subset of individual species. The models were built using the lme function in the nlme R package 
(Pinheiro et al., 2020) with the form Defoliation ~ variable, and country, plot, and species included 
as random factors. We used the temporal autocorrelation corCAR1 in year, country, plot, and 
species with a velue of 0.2. The significant variables for each subset (P-value < 0.05) were 
reanalyzed with the lme function and the following form: Defoliation ~ significant variable 1 + 
significant variable 2…, with country, plot, and species included as random factors. A corCAR1 
temporal autocorrelation was employed following year, country, plot, and species forms. The 
models built with significant variables were subjected to the dredge function of MuMIn R package 
(Barton, 2020) for model selection using AIC optimization. 
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3.3 Results 
3.3.1 Description 
We found a temporal trend toward increasing defoliation in European forests, whith defoliation % 
increasing by 0.38% yearly over the study period (Figure 3.1). There was a slight but significant 
decrease in defoliation in the Northern latitudes (Figure 3.2a), with defoliation decreasing by 
-0.004% each year from 1995 to 2015 (Figure 3.2a). By contrast, increasing defoliation tendencies 
were observed in Central and Mediterranean latitudes (0.501% and 0.272%, respectively) with the 
central latitudes being most strongly affected by defoliation (Figure 3.2b and Figure 3.2c).


Comparing defoliation rates between angiosperms and gymnosperms overall, or by 
latitudinal groups, showed that in all cases, gymnosperms had higher rates of defoliation than  
angiosperms (Figure 3.3). The results of the Chow test showed that these differences between 
angiosperms and gymnosperms were statistically different in all cases (Table S3.2).


Species-specific descriptive analyses revealed significantly increased defoliation (p < 0.05) 
in Fagus sylvatica (0.28% by year), Picea abies (0.58% by year), Pinus pinaster (0.71% by year), 
Pinus sylvestris (0.18% by year), Quercus cerris (0.25% by year), Quercus petraea (0.47% by 
year), and Quercus robur (0.35 % by year). A significant decreasing trend in defoliation was found 
for Quercus ilex (-0.61% a year), and no significant trend was observed for Abies alba (Figure 3.3).
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Figure 3.1 Defoliation trend in % defoliation for European plots from 1992 to 2015. 
The data summarize the defoliation of 3,869 individual trees. P=0 means < 0.0009. 
Bars represent the point range for each year.
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3.3.2 Global and latitudinal models 
According to our model (Table 3.1), European defoliation was directly correlated with spring 
precipitation, spring temperature and nitrogen oxide deposition; it was also inversely correlated 
with sulphur oxide deposition and annual SPEI average. Based on our models, in   latitudes higher 
than 58° the main drivers of defoliation were spring precipitation and spring temperature in the 
previous year, which were directly correlated with defoliation, whereas foliar nitrogen 
concentration was inversely correlated with defoliation. At the central latitudes (from 46° to 58°), 
the best model showed that defoliation was directly correlated with spring temperature and 
summer SPEI, and inversely correlated with precipitation and temperature in the previous year 
and sulfur oxide deposition. At the Mediterranean latitudes (< 46°), the main driver of defoliation 
was the mean precipitation in spring, which, in contrast to the northern latitudes, was inversely 
correlated with defoliation.
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Figure 3.2. Relationship between defoliation % and year in a) the Northern fringe, b) the Central fringe, c) the 
Mediterranean fringe. d) Map shows each sampled plot coded according to whether defoliation during the study 
period showed a significantly increasing trend (orange), significantly decreasing trend (green), or non-significant trend 
(white). The dashed lines indicates the boundaries between the three latitudinal fringes P=0 means P<0.0009.
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Figure 3.3. Trends and distribution of data by species, for each study species with n > 40 and plots > 5. 
Equation and p-value provided for each regression. Bars represent the point range for each year. P=0 means 
P<0.0009
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3.3.3 Angiosperm and gymnosperm defoliation models 
We found substantial differences in the variables that explained defoliation in angiosperms versus 
gymnosperms (Table 3.2). Defoliation in angiosperms was directly related to mean spring 
temperature, and by annual SPEI with a window of 3 months, and it was inversely correlated with 
mean winter precipitation, mean annual temperature of the previous year, sulfur oxide deposition, 
and SPEI annual average with a window of 12 months. In gymnosperms, defoliation was directly 
related to thermal amplitude, mean spring precipitation, mean spring temperature of the previous 
year, and N oxide deposition. It was negatively related to foliar N and annual SPEI with a 12-
months window.


3.3.4 Defoliation trends by species 
In species-specific models we found that defoliation in Abies alba was inversely correlated with 
the mean temperature of the previous year. In Fagus sylvatica, defoliation was inversely correlated 
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Table 3.1. Summary of mixed model results for defoliation % across Europe, and separated by latitudinal fringe. 
Coefficients and p-values are shown for each variable.

Table 3.2. Summary of mixed model results for defoliation % for angiosperms and gymnosperms. Coefficients and p-
value are shown for each variable.
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with the mean precipitation in winter, mean temperature of the previous year, and foliar sulfur. 
Defoliation in Picea abies was directly correlated with the mean spring precipitation and mean 
spring temperature of the previous year, and was inversely correlated with foliar Ca, foliar N, and 
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Abies alba 
(n=122)

Intercept MAT ant.

Value 32.823 -1.669

p-value 0.000 0.029

Fagus sylvatica 
(n=723)

Intercept MAP 
winter

MAT ant Foliar S

Value 32.457 -0.037 -0.523 -2.615

p-value 0.000 0.011 0.049 0.021

Picea abies 
(n=1,162)

Intercept Foliar Ca MAP 
spring

MAT spring 
ant.

Foliar N SPEI 12 
annual avg.

Value 13.116 -0.335 0.054 0.546 -0.288 -0.755

p-value 0.000 0.050 0.000 0.008 0.045 0.001

Pinus pinaster 
(n=67)

Intercept MAT Soil Org. 
C

Value 72.990 -4.186 0.985

p-value 0.000 0.000 0.004

Pinus sylvestris 
(n=790)

Intercept MAP 
spring

MAT ant. MAT spring Foliar P pH 
difference

pH 
H2O

SPEI 12 
annual avg.

Value -6.060 0.054 -0.452 0.960 3.018 -3.535 3.375 -0.711

p-value 0.164 0.000 0.029 0.000 0.010 0.011 0.009 0.002

Quercus cerris 
(n=43)

Intercept pH 
difference

Foliar S SPEI 01 
annual avg.

Value 44.139 -0.519 5.224 1.541

p-value 0.011 0.063 0.021 0.030

Quercus ilex 
(n=85)

Intercept Foliar S

Value 10.600 10.783

p-value 0.029 0.007

Quercus petraea 
(n=275)

Intercept MAT 
spring

MAT 
winter 

ant.

Foliar N S ox.

Value 8.432 2.151 -1.321 -0.356 -0.005

p-value 0.433 0.000 0.002 0.072 0.003

Quercus robur 
(n=216)

Intercept MAT 
winter 

ant.

Value 31.848 -0.893

p-value 0.000 0.013

Table 3.3 Summary of mixed model results for defoliation % by species, where n > 40 individuals and the 
number of plots > 5. Variable coefficients and p-values are shown.
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yearly SPEI. In Pinus pinaster, defoliation was directly correlated with soil carbon and inversely 
correlated with mean annual temperature. Defoliation in Pinus sylvestris was directly correlated 
with mean spring precipitation, mean spring temperature, foliar P and soil pH, and inversely 
correlated with the mean annual temperature of previous year, the difference in pH calculated in 
water and in CaCl, which describes soil base saturation, and annual SPEI. Quercus cerris 
defoliation correlated directly with foliar sulfur and SPEI, and was inversely correlated with pH 
difference (pH in H2O - pH in CaCl). Quercus ilex correlated directly only with foliar S. Defoliation 
in Quercus petraea was directly correlated with the mean spring temperature, and was inversely 
correlated with the mean temperature of the previous winter, foliar N, and sulfur oxide deposition. 
Finally, Quercus robur defoliation was inversely correlated with the mean temperature of the 
previous winter (Table 3.3).


3.4 Discussion 
3.4.1 Effects of foliar elemental composition on defoliation 
Significant relationships between foliar elemental composition variables and defoliation in models 
for six from the nine analyzed species, and in the northern latitude fringe and in gymnosperms, 
highlight the importance of considering foliar elemental composition in attempts to understand 
and predict defoliation in European forests. According to our  results for gymnosperms, Picea 
abies and Quercus petraea models, higher levels of foliar N were associated with low defoliation 
and could be considered an indicator of forest health in relative terms. Nitrogen is a crucial 
element for protein biosynthesis, light capture, and water-use efficiency, and thus it is directly 
linked to photosynthesis and foliar biomass (Field et al., 1983; Poorter et al., 2012; Evans and 
Clarke, 2019). N deficiency or decrease could contribute to the defoliation process. Furthermore, 
the detection of an inverse relationship between foliar N concentration and defoliation in the 
northern fringe is consistent with other studies showing that nitrogen supply limits plant 
production and growth in boreal forests (Högberg et al., 2017). In this case, foliar nitrogen is again 
suggested as a good indicator of forest health. In a nitrogen-deficient environment, an increase of 
nitrogen prevents defoliation in the whole fringe. 


Another interesting finding was the relationship between defoliation and foliar S, which was 
surprising due to the different directions observed  (i.e., it was directly correlated with defoliation 
in Quercus ilex and Quercus cerris, but and inversely correlated with defoliation in Fagus 
sylvatica). S is an important basic protein constituent that is necessary for plant  growth and 
development. Over the last few decades it has grown in importance because of a high amount of 
SOx deposition in Europe, and associated plant toxicity (Pfanz and Beyschlag, 1993). However, 
due to environmental regulations, SOx deposition started decreasing in the 1970s (Engardt et al., 
2017). Our results suggest that defoliation increases with sulfur in the Quercus genera, which is 
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associated with sulfur toxicity by deposition that would have been absorbed. By contrast, Fagus 
appears to have a sulfur deficit, which causes a decrease in photosynthesis (Terry, 1976). This fact 
could be underlying the observed increase in defoliation in F. sylvatica over the study period.


P was present in the defoliation models for Pinus sylvestris. P is a basic requirement for 
plant growth because it is a component of genetic, metabolic, structural, and regulatory 
molecules, and frequently cannot be substituted by any other elements (White and Hammond, 
2008). We would expect an inverse relationship between P and defoliation, given that P. sylvestris 
a fast-growing species that requires a large amount of P to rapidly build its structure. However, in 
our model, the relationship between foliar P and defoliation was direct. One possible explanation 
for this finding is seasonality. In other studies, seasonality has been shown to be related to higher 
levels of foliar P (Vallicrosa et al., 2021), where high seasonality and changing environmental 
conditions impair different tissues, leading to defoliation and favoring morphological and 
physiological adaptations. Consequently, in such changing environments the repair and 
generation of plant tissue may require higher levels of P. However, further research is needed to 
test this hypothesis. This explanation would also correspond with the extensive distribution range 
of Pinus sylvestris (Durrant et al., 2016), throughout which the species is subjected to very 
different pressures.


Defoliation in Picea abies had a negative relationship with foliar Ca, an essential plant 
nutrient that plays several structural roles in the cell wall and membranes. It is also a counter‐
cation for inorganic and organic anions in the vacuole. In addition, the Ca2+ concentration is also 
an obligate intracellular messenger, coordinating responses to numerous developmental cues and 
environmental challenges (White and Broadley, 2003). On this basis, it is reasonable to expect 
higher rates defoliation in the presence of a Ca2+ deficit.


The increase of atmospheric CO2 has been related to a dilution process of foliar nutrients 
(Peñuelas et al., 2020). On this regard, if atmospheric CO2 levels keep increasing as is predicted, 
the dilution of foliar nutrients would probably keep increasing proportionally. Consequently, the 
decrease of foliar nutrients such as N, P, Ca and S associated to climate change would also 
contribute to the defoliation increase of European forests.


3.4.2 Environmental effects on defoliation 
Aside from foliar elemental composition, environmental conditions play a crucial role in 
understanding defoliation in European forests.  We found relationships between defoliation, water 
availability, and deposition in the general model for all Europe. Precipitation in the spring increases 
defoliation, presumably due to nutrient leaching or/and light limitation due to clouds (Reinhardt 
and Smith, 2008). Aridity or ‘less water availability’ during the year also increases defoliation, 
possibly through embolisms in extreme conditions or simply poorer plant functioning. Thus, 
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defoliation associated with aridity could increase in the following years if the frequency and 
severity of droughts events increases in the Northern hemisphere, as is predicted with climate 
change (Meehk & Tebaldi, 2004; IPCC 2007; Van Oijen et al., 2014; Spinoni et al., 2017).


Nitrogen and sulfur deposition are associated with anthropic atmosphere contamination 
and are responsible for many ecological effects (Bobbink et al., 2013). Despite the fact that N and 
S deposition decreased in the recent decades (Engardt et al., 2017), nitrogen deposition still 
affects European forests, which can be seen as increasing defoliation in the general defoliation 
model (Table 3.1) and the gymnosperms defoliation model (Table 3.2). With respect to S 
deposition, this general negative correlation with deposition results from the coincidence of 
decreasing S deposition over recent decades with an almost generalized increase in defoliation.


The temporal range and homogeneity of precipitation also appeared to influence 
defoliation. In some of the models, such as the all-Europe model, central Europe model, and 
angiosperm, gymnosperm, Picea abies, and Pinus sylvestris models, we observed that although 
precipitation is crucial to avoid defoliation, intense periods of precipitation or torrential rains can 
provoke defoliation. Thus, a proper water income for the prevention of defoliation would be one 
that is continuous and homogenized. This hypothesis contrasts with current predictions of future 
precipitation patterns in Europe; models such as REMO 5.1 and the Intergovernmental Panel on 
Climate Change (IPCC) report predict increases in torrential rains in Europe due to climate change 
(Semmler and Jacob, 2004; IPCC, 2021). If these predictions are accurate, we would expect an 
increase in defoliation in Europe due to the concentration of precipitation. Indeed, this is already 
occurring.


The latitudinal fringe models (Figure 3.1) are important for accurately elucidating European 
defoliation responses to various pressures, because different pressures dominate in each 
latitudinal fringe that in turn differently affect forest defoliation and health. The most flagrant 
example is precipitation. In the northern and central fringes, precipitation in the spring increases 
defoliation but it decreases defoliation in the Mediterranean fringe. We attribute this result to the 
difference in water availability between latitudes, with water being more limiting in the 
Mediterranean. Where water is abundant, an increase of precipitation can decrease 
photosynthetic active radiation and favor leaching of the available nutrients, which hinders vegetal 
development. However, if water is limiting an increase in water income can be crucial to sprout. 
This effect has become even more important over recent decades, where droughts and aridity in 
the Mediterranean fringe have increased, with consequences for vegetation (Carnicer et al., 2011; 
Peñuelas et al., 2017).


The influence of short-term climatic legacies on defoliation is also remarkable. As seen in 
the latitudinal, angiosperm and gymnosperm, and species-specific models, the amount of 
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precipitation and temperature in the previous year commonly explains defoliation. The importance 
of climatic legacy on growth has been detected in the United States (Peltier et al., 2018) and 
Spain (Marqués et al., 2021). In this study, we also detected an effect of climatic legacy on 
defoliation at the European scale, by species and by latitudinal European region. Related to this 
finding, some seasons were found to be more crucial than others in determining defoliation, 
based on recurrence in the models. The most common seasons that appeared in our defoliation 
models were spring, followed by winter. In a seasonally changing climate such as that in Europe, 
which experiences four seasons over most of the continent, spring is the growing and sprout 
season for most species, especially deciduous ones. It seems reasonable that climatic variation in 
this season would determine yearly production. 


3.4.3 Differences between defoliation rates 
Previous studies using European defoliation record data from 1990 to 2007 showed an increase in 
defoliation only in the Mediterranean fringe, with the boreal and central fringes showing stable 
defoliation rates of approximately 15% and 20% respectively (Carnicer et al., 2011). In this study 
that includes data collected until 2015, we found that central Europe experienced higher rates of 
defoliation, followed by Mediterranean forests. It is likely that the drought effects of climate 
change are better tolerated in the Mediterranean fringe, which has historically been resistant to 
hot and dry conditions due to its climatic characteristics. By contrast, forests at central European 
latitudes, which evolved under more humid conditions, would suffer more severely during periods 
of drought. This hypothesis is consistent with the results of our central European latitude model 
(Table 3.1), which showed that reduced precipitation and the temperature of the last year 
increased defoliation. 


The differences in defoliation between angiosperms and gymnosperms that we found were 
also remarkable. In all cases, defoliation levels in gymnosperms were higher. According to the 
presented models (Table 3.2), only water availability, expressed as SPEI12 annual Avg., affect both 
angiosperms and gymnosperms being more intense in angiosperms (-0.997) than in 
gymnosperms (-0.354). Despite the intensity of each factor affecting each group, differences 
between gymnosperms and angiosperms in defoliation reflect their physiology and internal 
functioning. The differences between gymnosperms and angiosperms have been of previous 
concern to the scientific community (Carnicer et al., 2013). Recently, it was concluded that 
angiosperms have a lower resistance to drought (low capacity to reduce the impact of initial 
drought) and gymnosperms show reduced recovery (to pre-drought level) (DeSoto et al., 2020). 
This difference is important because one extremely adverse year could have a serious effect on 
angiosperms defoliation, but only in that year. By contrast, the effects would last several years in 
gymnosperms, which could lead to the progressive accumulation of defoliation  effects.
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3.5 Final remarks 
Defoliation has increased overall in European forests over the last decades but has decreased 
slightly at the northern latitudes. Defoliation in Europe is expected to keep increasing due to the 
predicted climate change conditions. Comparing between groups, gymnosperms showed higher 
rates of defoliation than angiosperms. Foliar elemental composition was related to defoliation in 
most European forest species, and was shown to be an informative complement to environmental 
variables and useful for assessing forest health. Nitrogen was the nutrient with the clearest 
effects, with the concentration of foliar nitrogen being inversely correlated with defoliation. 
However, other elements such as calcium, sulfur, and phosphorus also played a role in the 
defoliation of some European species. We emphasize the necessity of considering the different 
pressures that affect each climatic fringe, which in this case was perfectly exemplified by water 
availability at the Mediterranean latitudes versus the rest of Europe. Homogeneity of precipitation 
also appeared to be very important to reduce defoliation. The climatic legacy of the previous year 
also plays an important role in defoliation, as well as climatic variations in the spring. These 
findings should prove useful in the development of tools for assessing and understanding 
European forest health through defoliation data, which are broadly used and easily collected.
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4 
Global maps and factors driving forest foliar elemental composition: the 
importance of evolutionary history 

Helena Vallicrosa, Jordi Sardans, Joan Maspons, Paolo Zuccarini, Marcos Fernández-Martínez, 
Marijn Bauters, Philippe Ciais, Michael Obersteiner, Ivan A. Janssens, Josep Peñuelas


Abstract 

Consistent information on the current elemental composition of vegetation at global scale and the 
variables that determine it is lacking. To fill this gap, we gathered a total of 30912 georeferenced 
records on tree foliar concentrations of N, P, and K from published databases, and produced 
global maps of foliar N, P and K concentrations for woody plants using neural networks at a 
resolution of 1 km2. We used data for climate, atmospheric deposition, soil, and morphoclimatic 
groups to train the neural networks. Foliar N, P and K do not follow clear global latitudinal 
patterns but are consistent with the hypothesis of soil substrate age. We additionally built 
generalized linear mixed models to investigate the evolutionary history effect together with the 
effects of environmental effects. In this comparison, evolutionary history effects explained most of 
the variability in all cases (mostly >60%). These results emphasize the determinant role of 
evolutionary history in foliar elemental composition, which should be incorporated in upcoming 
dynamic global vegetation models. 


Keywords: Climate change; neural networks; global map; leaf; nitrogen; phosphorus; potassium


4.1 Introduction 

In the Earth system, forests store close to 80% of all the biomass on earth, store 50 to 65% of 
terrestrial organic carbon and occupy a third of the terrestrial vegetated surface (Reichstein and 
Carvalhais, 2019). Despite its importance in carbon (C) cycles large uncertainties exist regarding 
stocks, turnover times and the carbon sink function in forest (Reichstein and Carvalhais, 2019). 
Recent studies show that accounting for stocks, fluxes, and availability of nitrogen (N), 
phosphorus (P) and potassium (K) in the plant-soil system can largely improve projections of 



4. GLOBAL MAPS AND FACTORS DRIVING FOREST FOLIAR ELEMENTAL COMPOSITION: THE IMPORTANCE 
OF EVOLUTIONARY HISTORY

carbon cycles, especially when simulating global change impacts (Jiang et al., 2017; Sardans & 
Peñuelas, 2015; Peñuelas et al., 2017, 2020; Sun et al., 2017; Wang et al., 2018; 2019; Terrer et 
al., 2019). In fact, empirical evidence suggests that the availability of N, P and K limits the 
capacity of globally increasing C fixation by the rising atmospheric CO2 concentrations (Vicca et 
al., 2012; Fernández-Martínez et al., 2014; Zhu et al., 2016; Bellassen et al., 2017, Wang et al 
2020), which was recently addressed in Earth-system models (Meyerholt and Zaehle, 2015; 
Walker et al., 2015; Goll et al., 2017). Several studies have reported improvements in accuracy of 
the projections of the Earth-system models when information on N and P has been coupled to 
that of the C-cycle (Zaehle et al., 2010;2011;2015; Piao et al., 2013; Huang et al., 2016; Wang et 
al., 2017; Fernández-Martínez et al., 2019). The content/concentration of these elements in 
photosynthetic tissues is thus key for the functioning of terrestrial ecosystems, C-cycling, and for 
their response to current global changes, and can be further improved by the inclusion of other 
vegetation types in future studies.


The latitude-temperature theory supports a monotonic variation in foliar N and P 
concentrations with latitude due to latitude-induced shifts in temperature and precipitation. 
Nevertheless, this relationship remains unclear and sometimes opposite patterns have been 
reported (Reich and Oleksyn 2004; McGroddy et al. 2004; Kerkhoff et al. 2005; Yuan and Chen 
2009; Ordoñez et al. 2009; Elser et al., 2010). The substrate age hypothesis, on the other hand, 
claims that older soils may be more N-abundant and P-limited than relatively younger soils 
(Walker and Syers 1976). Due to sustained P losses over geological timescales, P availability is 
expected to decrease with increasing soil age, implying a transition from N to P limitation when 
going from younger soils to older soils (Walker and Syers 1976; Chadwick et al. 1999; Vitousek et 
al., 2010). Although these global patterns might hold, foliar element concentrations can be highly 
heterogeneous on a regional scale. As such, foliar N and P concentrations have been shown to 
vary with mean annual precipitation within the tropics (Santiago et al., 2004) and within the 
temperate forest zone (Han et al., 2005). Additionally, soil type, temperature, water availability and 
even light intensity affect foliar nutrient concentrations (Ordoñez et al., 2009; Huxman et al., 2004; 
Voesenek and Pierik, 2008; Wang et al., 2012). This suggests that climatic and edaphic factors – 
should be included when trying to constrain variability in foliar nutrient concentrations. However, 
the consistency of these relations on a larger scale remains to be tested. 


Most studies quantifying foliar elemental composition focus predominantly on foliar N and 
P, leaving foliar K largely understudied. Contrastingly, K is the most abundant nutrient in leaves 
after N and is considerably more abundant than P (Sardans et al., 2006; Zheng and Shangguan, 
2007). Being a rock-derived nutrient, as P, its availability is mainly dependent on the parent 
material and weathering state (Catmak, 2005). Foliar K is important for water-use efficiency 
regulations in dry environments (Egilla et al., 2005; Graciano et al., 2005; Sardans et al., 2012a, 
2012b) via its effects on stomatal function, cellular osmotic equilibrium and water fluxes (Babita et 
al., 2010; Laus et al., 2011; Sardans and Peñuelas 2015;2021). Importantly, K-limitation has been 
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reported across forests from different biomes (Olde Venterink et al., 2001; Tripler et al., 2006; 
Wright et al., 2011; Sardans and Peñuelas 2015; 2021), which further stresses the importance of 
including foliar K when trying to constrain foliar nutrient concentrations globally. 


Evolutionary history effects are a long-term and complex product of the evolutionary 
processes resulting from a species’ natural selection. This species adaptation to biotic and abiotic 
interactions with soil, climate and other species coexistence play a key role in determining the 
elemental foliar composition at continental (Sardans et al., 2015; Peñuelas et al., 2019) and global 
(Sardans et al., 2021) scales. 


Bayesian models allow for the disentanglement of the species /taxonomical effects linked 
to long-term evolution (phylogeny) from those due to species/taxonomy linked to more recent 
convergent evolutionary processes, including strong selection within the phylogeny and recent 
epigenetic changes that are not directly due to and thus detected by strict use of phylogenetic 
distance matrix as covariable (Sardans et al., 2021). Apart from the evolutionary history effects, 
other abiotic (climate, soil type) and biotic (competition) factors play a significant role in explaining 
the foliar elemental composition variability found in large data sets of thousands of woody species 
growing in all continents (Sardans et al., 2015, 2021; Peñuelas et al., 2019). 


	 Despite the important role of N, P and K in terrestrial ecosystems and their contribution to 
the global C-cycle models precision, only few studies have provided a global map approach to 
predict foliar N and P concentrations (Butler et al., 2017 and Moreno-Martínez et al., 2018). In the 
case of K, no gridded global map is available (Sardans et al. 2012a; Sardans and Peñuelas, 2015). 
Furthermore, a good understanding of the links between foliar nutrient concentrations and soil, 
climate and atmospheric deposition remains elusive while that evolutionary history effects on tree 
foliar nutrient concentrations at spatial scale remain unexplored as a whole. 


Our first two aims were to (i) provide high resolution (1 km2) grid maps of woody plants 
foliar N, P and K concentrations in woody communities at a global scale and (ii) identify global N, 
P and K patterns. We built models for foliar nutrient concentrations based only on environmental 
variables, without including the likely dominant evolutionary history effects, to provide 
relationships with the climate variables and thus allow to project changes of foliar composition in 
response to climate change. Our third aim was (iii) to investigate the evolutionary history effects in 
interaction with the effects of soil, climate and atmospheric deposition.


4.2 Results 

4.2.1 High resolution (1 km2) global maps of foliar N, P and K concentrations in woody 
communities based on environmental variables  
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The estimations of foliar N, P and K concentrations by neural network models showed precisions 
of 0.337, 0.040 and 0.181 normalized root mean squared error (RMSE) respectively and 0.63, 0.31 

and 0.32 R2 respectively in predicted vs observed regressions (Figure 4.1).  

Foliar N concentrations were predicted to be lowest in northwestern Eurasia and the north 
of North America. Foliar N concentrations were notably high in eastern Russia, central Africa, 
some regions in the Rocky Mountains and the Andes (Figure 4.2a) so to follow a latitudinal pattern 
at a glance is difficult. The map showing the standard error of the mean (SEM) estimation among 
replicates indicated that the predicted uncertainties were highest in mountainous areas, some 
regions in Siberia, the Labrador Peninsula, the Somali Peninsula and some sparse points (Figure 
S4.1a). The coefficient of variation (CV) for N in the neural-network models by morphoclimatic 
group ranged from 9.97 % in temperate coniferous to 33.46 % in Temperate coniferous, with a 
mean of 18.94 % CV for all forest types (Table S4.1).


The latitudinal pattern of foliar P concentrations is not clear either at a glance but lower 
levels are common in the tropical fringe. Foliar P concentrations were lowest in Northern Latitudes 
of North America, Florida, central Amazonia, some zones in central Africa, some zones in East 
Siberia, south-east of Asia and some zones in southern Australia. There were high foliar P 
concentrations in the Rocky Mountains and North America, the south of the Andes, central 
Europe, central parts of southern Africa and some spots in Siberia (Figure 4.2b). The high foliar P 
concentration in Siberia match with an uncertainty spot into the standard error of the mean map 
and also Labrador’s Peninsula in an uncertain P zone. Other zones of uncertainty were in some 
parts of North America and in some isolated pixels in central Asia (Figure S4.1b). The CV for foliar 
P concentrations in the neural-network models ranged from 64.76% in temperate deciduous 
broadleaved to 109.30 % CV in tropical evergreen forests, with a mean of 98.26 % CV for all 
forest types (Table S4.1).


The predicted foliar K concentrations did not follow a global latitudinal pattern either. Some 
zones such as the Rocky Mountains, the southern Andes, the Somali Peninsula, and the North of 
Australia were predicted to have high foliar K concentrations. Foliar K concentrations were lowest 
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Figure 4.1 Observed versus predicted values for neural networks models predicting foliar N, P and K 
concentrations. Black line = fitted linear model between observed and predicted values. Red line = 1:1 line. RMSE 
= root mean squared error
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a )

b )

c )

Figure 4.2 Neural Network predicted maps of foliar a) N, b) P and c) K concentration for woody plants. White areas 
indicate no woody vegetation. 
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at the mouth of the Amazonian River, in the Labrador Peninsula and central and west of Russia 
(Figure 4.2c). The zones with higher SEM are the south-east of Siberia, the south of Africa and the 
Rocky Mountains. The CV for K in the neural-network models ranged from 3.81 % in Temperate 
evergreen broadleaved forests to 27.64 % in Tropical evergreen, with a mean of 15.42 % CV for all 
forest types (Table S4.1).


4.2.2 Soil types 

Spodosols and Histosols were the soil orders with lowest foliar N concentrations while Oxisols 
and Vertisols had the highest foliar N concentrations. The soil orders with the lowest foliar P 
concentrations were Oxisols and Ultisols, being Vertisols and Mollisols those with the highest 
foliar P concentrations. The lowest foliar K concentrations were found in Spodosols and Gelisols 
and the highest in Vertisols and Aridisols (Figure 4.3 and Table S4.2). 


4.2.3 The environmental (climate and soil) versus the evolutionary history (phylogeny and 
species) effects in the different morphoclimatic types. 

Nitrogen 

The generalized linear models (glm) only with environmental variables conducted for each biome 
only explained from 5.5 % of the variability for temperate broadleaved evergreen to 38.8 % of the 
variability in N for boreal forests (Table S4.3). Soil pH, aridity index and solar radiation and 
precipitation seasonality correlated positively with foliar N concentrations in tropical evergreen 
forests. Soil gravel and evapotranspiration seasonality were positively correlated with foliar N 
concentrations while soil base saturation was negatively correlated in tropical deciduous forests. 
For temperate coniferous forest, foliar N concentrations correlated positively with soil pH  and 
precipitation of the warmest quarter while soil base saturation evapotranspiration and soil pH 
were negatively correlated. In turn, foliar N concentrations in temperate broadleaved evergreens 
were correlated positively with aridity index, evapotranspiration and soil pH. In temperate 
broadleaved deciduous forests foliar N concentrations were correlated positively with annual 
precipitation and negatively with aridity index, soil pH and precipitation of the driest quarter. 
Finally, foliar N concentrations were positively correlated with minimum June, July and August 
precipitation and negatively correlated with maximum June, July and August precipitation and 
maximum temperature of the warmest month in boreal forests (Table S4.3).


The generalized mixed models (glmm), which besides environmental variables included the 
evolutionary history effects that comprise phylogeny and species, explained much more variance 
than glm. Evolutionary history effects (random variables in this case), also known as Pagel’s 
lambda, explained 42-81% of the variability in foliar N concentrations while the exclusively 
environmental fixed variables explained only 1-58% (Table S4.4b). Phylogeny explained most of 
the variance in tropical evergreen, temperate coniferous, temperate broadleaved evergreen and 
boreal forests. 
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Figure 4.3 Violin plots of predicted values of foliar N, P and K concentrations grouped by soil 
order (USDA soil taxonomy). The predicted values of foliar N, P and K concentrations differ 
significantly among soil types (P<0.05).
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Phosphorus 

The glm models built entirely with environmental variables only explained from 5% of the total 
variance for tropical deciduous to 18% in temperate coniferous forests (Table S4.3), including: a 
positive relation of foliar P concentrations with evapotranspiration seasonality and a negative 
relation with inorganic N deposition, soil pH, isothermality and mean temperature of the driest 
quarter, in tropical evergreen forests; a positive relation of foliar P with exchangeable soil Ca and a 
negative relation with soil base saturation, soil pH and isothermality in tropical deciduous forests. 
Foliar P concentrations were positively related with aridity index and exchangeable soil K and 
negatively related with soil pH in temperate coniferous forests. In temperate broadleaved 
evergreen forests foliar P concentrations were negatively correlated with annual 
evapotranspiration, daily mean solar radiation, precipitation of the driest month and mean diurnal 
range. In temperate broadleaved deciduous forests a positive relation between evapotranspiration 
seasonality, solar radiation and precipitation of the driest month and foliar P concentrations has 
been found with also a negative relation with precipitation of the coldest quarter. Moreover, there 

was a positive relation between foliar P concentrations and maximum June, July and August 
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Without species and phylogeny

With species and phylogeny

RMSE = 0.415 RMSE = 0.043 RMSE = 0.194 

RMSE = 0.305 RMSE = 0.035 RMSE = 0.179 

Figure 4.4 Observed versus predicted values for the generalized linear models (without legacy factors) and the generalized 
linear mixed models (with legacy factors) models predicting foliar N, P and K concentrations. Black line = fitted linear model 
between observed and predicted values. Red line = 1:1 line. Equation describing the black line. RMSE = root mean squared 
error.
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precipitation and mean annual temperature and a negative relation between foliar P 
concentrations and wet oxidate N deposition in boreal forest.


The glmm models, which besides environmental variables included the evolutionary history 
effects that comprise phylogeny and species, showed that these legacy effects explained most of 
the variance of foliar P concentrations, similar than in foliar N concentrations. The overall legacy 
effects thus explained 39-99% of total foliar P concentration variance in these biomes (Table 
S4.4b). Phylogeny explained most of the variance in tropical evergreen, temperate coniferous and 
boreal forests.


Potassium 

The glm models built entirely with environmental variables explained total foliar K concentrations 
variance only between 3% for temperate broadleaved evergreen and temperate broadleaved 
deciduous and 97% for boreal forest types (Table S4.3). There was a positive relation between 
foliar K concentrations and soil exchangeable acidity and mean annual precipitation and a 
negative relation with dry N deposition in tropical evergreen. There was a negative relation 
between foliar K concentrations and evapotranspiration and wet reduced N deposition in tropical 
deciduous forests. Positive relationships between foliar K concentrations and aridity index, 
evapotranspiration seasonality, maximum June, July and August precipitation and mean annual 
temperature were found  in temperate coniferous forest. There was a negative relation with solar 
radiation and precipitation of the driest quarter in temperate broadleaved evergreen forests. A 
positive relation between foliar K concentrations and soil pH and precipitation of the coldest 
quarter has been seen in temperate broadleaved deciduous. Finally, there was a positive relation 
between foliar K concentrations and mean temperature of coldest quarter, minimum temperature 
of the coldest month while there was a negative relation with dry N deposition and mean annual 
precipitation in boreal forests.


The glmm models, which besides environmental variables included the evolutionary history 
effects showed that these legacy effects explained most of the variance of the foliar K 
concentrations data, similar to foliar N and P concentrations. Legacy explained 22-98% of the 
variance, and the environmental fixed variables only explained from <1 to 8% of the variance 
(Table S4.4b). 


	 The predictive power of the models for the whole dataset considering all the 
morphoclimatic types together increased highly when including evolutionary history effects in 
comparison with the models without them. The R2 of the relationship between observed and 
predicted values increased from 46% to 68% for N, from 21% to 43% for P, and from 22% to 
33% for K comparing the glm models with environmental variables against the glmm models 
considering also the evolutionary history (Figure 4.4). 
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4.3 Discussion 

4.3.1 Global maps 

We have produced raster maps with predicted foliar N, P and K concentrations with 1 km spatial 
resolution, by only considering environmental factors and no ecophysiological traits. Avoiding 
ecophysiological traits will allow for models to be easily adapted to future climate change 
scenarios, applying only the predicted environmental abiotic conditions. The addition of functional 
traits obtained by satellite remote sensing may offer slightly better performance (Moreno-Martínez 
et al. 2018), but these traits are difficult to predict and map for future scenarios. Our maps thus 
constitute the most reliable current proxy of global forest foliar elemental composition and can be 
easily used for modeling studies by providing the amount of foliar N, P and K concentrations in 
dry weight for each terrestrial location just from environmental variables. 


The uncertainty of the predicted foliar concentrations was highest in zones with strong 
gradients of environmental variation and/or in zones with a low density of sampling points, such 
as the Rocky Mountains, the Himalayas and the Andes. Some of them also coincide with sparse 
vegetation points or big land extensions without experimental data available, like the Asian part of 
the boreal morphoclimatic type. The relationships between the observed foliar N, P and K 
concentrations and the expected concentrations in function of the neural network models used to 
build the maps have, however, proved to have reasonable goodness of fit and precision (Figure 
4.1).  

4.3.2 Environmental factors 

The environmental drivers of foliar elemental composition were different across the six 
morphoclimatic types. This lack of common and consistent environmental global drivers is 
coherent with the divergence in results of more regional studies on foliar nutrients (e.g. Sandel et 
al., 2010 and Santiago et al., 2004). These diverging responses to the selected predictors reveal 
that plant sensitivity and determinant factors are dependent on morphoclimatic type emphasizing 
the differential pressures between latitudes and foliar type. 


The correlations between foliar P concentrations and climatic variables seem to be partially 
ruled by instability of the system. In Tropical evergreen, Tropical deciduous and in Temperate 
broadleaved deciduous a higher seasonality or less isothermality is related with higher P levels. 
Foliar K concentrations were associated with water-dependent variables in Temperate coniferous, 
Temperate broadleaved evergreen and boreal, having higher K values in more arid  conditions. 
These results are consistent with the narrow link between plant water-use efficiency and K 
concentrations (Sardans and Peñuelas, 2015) which acknowledges the osmotic use of K in water 
retention.
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	 Foliar N and P concentrations under different soil types were consistent with the soil-age 
hypothesis at global scales, which describe young soils as N-limited and P-rich and old soils as 
N- rich and P -limited. Oxisols, which generally represent the oldest and more weathered surface 
soils, were sustaining woody plant communities with relatively more N and less P in their leaves, 
followed closely by Ultisoils which exhibited a similar pattern (Figure 4.4). This pattern, however, 
did not apply to forest communities on ‘younger’ soils, where more P and less N is to be 
expected. Our corresponding explanation is at the level of the order of soil taxonomy’s 
classification, and we must take into account that there is no family covering all the young soils. 
Vertisols is the soil order with simultaneously high levels of N, P and K . Those soils are 
characterized by high content of expansive clay and high cation exchange capacity (Soil Survey 
Staff. 1999).


4.3.3 Evolutionary history effects 

The evolutionary history effects were found to explain most of the variability in foliar N, P and K 
concentrations, thus complementing and extending the prediction capacity of environmental 
factors. Most of the variance explained by the environmental factors in glm, was explained by 
evolutionary history effects in glmm. Species are associated with particular soil and climatic traits, 
so phylogeny incorporates climatic and soil conditions to some extent. This strong evolutionary 
history signal in foliar elemental composition has recently been reported in studies at local, 
regional and global scales (Castellanos et al., 2018; Peñuelas et al 2009, 2010, 2019; de la Riva et 
al., 2017; Hu et al., 2018; Reimann et al., 2018; Sardans and Peñuelas, 2015, Sardans et al, 2015, 
2016b, 2020). For example, specific families with singular nutrient levels such as Fabaceae which 
are N-fixer have foliar N concentrations of 2.08 %, i.e. higher than the mean 1.62 % , whereas 
Proteaceae, which are typically from low-P environments (Hayes et al., 2021) have a mean of 
0.066 % P, i.e. lower than the mean 0.126 %. Consequently, this key role of evolutionary history is 
important in order to determine the foliar elemental composition and is the most consistent 
explanation behind the lack of strong effect of climatic variables in similar studies of this topic 
(Reich and Oleksyn 2004; McGroddy et al. 2004; Kerkhoff et al. 2005; Yuan and Chen 2009; 
Ordoñez et al. 2009; Elser et al., 2010) that did not take evolutionary history effects into account. 


	 Our results strongly resonate with the biogeochemical niche hypothesis (Peñuelas et al., 
2008,  2019; Sardans et al., 2021), which predicts that different species, as evolutionary products, 
would have different optimal elemental compositions (elementomes). Phylogeny and species, as 
proxies of overall evolutionary history, explained on average more than 2/3 of the variability of the 
foliar concentrations of N, P and K. Phylogeny represents long-term evolutionary information, 
while species represent more short-term evolution, which underlie more recent evolution and 
coevolution of different and distant taxonomical clades by coinciding under similar environmental 
(climate, soil, competition) conditions. Several recent evolutionary events such as climate 
warming, species migration, shifts in species interactions (e.g. with herbivorous or parasitic 
species) and climatic convergence can all increase the rate of evolutionary convergence among 
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species from different clades or the evolutionary divergence within the same clade, and thus can 
also differentially increase the rate of evolution as observed in several characters in different 
species (Wright et al., 2006; Gillman et al., 2010; Kellner et al., 2011; Puurtinen et al., 2016; Jwa et 
al., 2017; Molina-Montenegro et al., 2018). All these factors cannot be “detected” by phylogeny 
but can be detected by taxonomy, in this case by the current species factor inside the 
evolutionary history effects. 


The rate of species turnover in woody vegetation along spatial gradients, however, is 
expected to be outpaced by environmental change in short- and medium-term, as evidenced by 
projections of climatic, socio-economic and C-cycle models for the coming decades. The use of 
algorithms to predict foliar N, P and K concentrations in the near future has thus to be based on 
models including only climate, N deposition and soil traits that can effectively change in short time 
intervals of decades. Our study, though, identified the crucial explanatory role of evolutionary 
history effects as independent variables in global-scale models of foliar N, P and K 
concentrations. Evolutionary history effects were the main drivers controlling the foliar elemental 
composition under each environmental condition. Species is thus an important factor for plant 
functional traits present throughout the plant kingdom, for predicting the use of bioelements and 
thus for the biological control of biogeochemical cycles. The strong effects of evolutionary history 
suggest that the incorporation of dominant species into models, although difficult, would largely 
improve its predicting power. Species and their phylogeny, that represent long-term information 
stored in genes, together with more recent phenotypic/epigenetic shifts, determine the elemental 
composition of current plant cover.  


The coexistence of species is another factor determining elemental composition. 
Considering coexistence in addition to environmental conditions and genetic legacies will favor 
even more the identification of the whole pool of variability of foliar elemental composition 
(Peñuelas et al. 2019). A possible approach with this purpose could come from combining our 
maps with GBIF (Global Biodiversity Information Facility) occurrences or improving the 
classification capacity of satellite imagery.  

4.4 Final remarks and conclusions 

We generated global maps for foliar N, P and K concentrations at resolutions of 1 km using 
neural-network machine learning, with mean R2 values of 0.63, 0.32 and 0.32, and RMSE values 
of 0.34, 0.04 and 0.18 respectively, providing the best maps to date based only on environmental 
variables and without functional traits. The distribution of foliar N and P concentrations was 
consistent with the soil-age hypothesis. The pattern of foliar N, P and K concentrations and their 
relationships with environmental variables differed depending on the forest morphoclimatic type 
emphasizing different environmental pressures. Thus, the separation of global forest in the main 
morphoclimatic types is thus necessary to model forest canopy elemental composition. More than 
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that, adding evolutionary history effects through general linear mixed models to environmental 
variables largely increased the amount of explained variance emphasizing the role of evolutionary 
history in controlling foliar elemental composition, and encouraging the use of species in future 
models of foliar elemental composition.


4.5 Material and Methods 

The methods summary is in figure 4.5.


4.5.1 Database generation 

We combined 24631 inputs for N foliar concentrations in DW, 23726 for P foliar concentrations in 
DW and 18988 for K foliar concentrations in DW corresponding to woody plants around the world 
(Figure 4.6). The data were obtained from 257 published articles (Table S4.6), the TRY database 
(http://www.try-db.org/TryWeb/dp.php), the ICP Forest database (International Co-operative 
Programme on Assessment and Monitoring of Air Pollution Effects on Forests, http://icp-
forests.net/page/data-requests), the Tundra Trait Team and the Catalan Forest Inventory (Gracia et 
al., 2004). All foliar data were obtained using comparable analytical methods, mostly based on 
elemental analyzers for N, and on acid digestion coupled to optical spectrometry detection (in the 
majority of cases inductively coupled plasma to optical emission spectroscopy (ICP-OES) for P 
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Figure 4.5 Summary of the methodology followed in this paper
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and K). All foliar samples were mature leaves collected between 1990 and 2016. We only used 
data from georeferenced plots. The samples with values more than two times SD were considered 
outliers and removed in order to avoid analytical or transcription data errors. Final sample sizes 
(number of data points) and elements used in each model are shown in Table S4.5.


     Data for soil, climate and N and P deposition were added to foliar concentrations using the 
raster (Hijmans, 2019) and sf (Pebesma, 2018) packages in R. Thirty-four soil variables from the 
Land-Atmosphere Interaction Research Group at Sun Yat-sen University were initially considered, 
at resolutions of 1 km at the equator (Shangguan et al., 2014). We initially considered 26 climatic 
variables, which were the standard bioclimatic variables from the WorldClim version 2 database 
(Fick and Hijmans, 2017) (Table S4.7), an aridity index and data for evapotranspiration from the 
CGIAR-CSI v2 database (Trabucco & Zomer, 2019) also at a resolution of 1 km2 at the equator. 
These climatic data have been estimated from long-term meteorological time series (1970-2000), 
based on interpolated climatic data provided by meteorological stations around the globe and 
adjusted to topography. Twelve variables of N deposition were extracted from Ackerman et al. 
(2018) (Table S4.7), which provided data for organic, inorganic, oxidate and reduced forms of N 
deposition at a resolution of 25 km at the equator The downscaling to 1 km was done with res 
function in raster R package (Hijmans et al., 2019). Data for P deposition were from Wang et al. 
(2017) at a resolution of 1 km and as a mean for 1997-2013 (Table S4.7).


     This database of the foliar N, P and K concentrations and information for soil, climate and N 
and P deposition was classified in six morphoclimatic types of forest by geographical location and 
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Figure 4.6 Sampling points for N, P and K. Colors corresponding to different morphoclimatic groups and its 
combinations in mixed forests. TempC = Temperate coniferous. TempEB= Temperate evergreen broadleaved. 
TempBD=Temperate broadleaved deciduous. TropE= Tropical evergreen. TropD= Tropical deciduous. 
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species morphology. Those are tropical evergreen, tropical deciduous, temperate coniferous, 
temperate broadleaved evergreen, and temperate broadleaved deciduous and boreal. The 
tropical, temperate and boreal assignations were based on the WWF ecoregion map (Olson et al, 
2001), where “Tundra” and “Boreal Forest/Taiga” account for boreal forests; “Temperate Broadleaf 
and Mixed forests”, “Temperate grasslands, Savanas and Scrublands”, “Montane grasslands and 
Scrublands”, “Mediterranean Forests, woodlands and Scrub”, “Temperate Conifer Forests” and 
“Deserts and xeric scrublands” higher than 30º latitude account for the temperate forests and 
“Tropical and subtropical Moist Broadleaved Forest”, “Tropical and subtropical Dry Broadleaved 
Forest”, “Tropical and subtropical grasslands, Savanas and Scrublands”, “Tropical and 
subtropical Coniferous forests”, “Mangroves”, “Flooded Grasslands and Savannas” and “Deserts 
and xeric scrublands” lower than 30º latitude account for tropical forests. The evergreen, 
deciduous, coniferous and broadleaved designation was not assigned by map category but has 
been assigned by species characteristics according literature and specialist criterion in order to 
be more specific. In case some species could be deciduous or evergreen this species would be 
considered in both categories. Thus, the latitudinal designation is complemented by the foliar 
morphology in the different morphoclimatic type assignation. After, each morphoclimatic subset is 
the database used for each model training.


4.5.2 Neural networks and global maps of elemental composition 

We built a total of 18 models, i.e. 6 groups of morphoclimatic types × 3 foliar variables (N, P and K 
concentrations), using neural networks in R with the package keras (Allaire & Chollet, 2019). The 
Kaiser-Meyer-Olkin method was applied to each subset of data for the 73 variables of soil, climate 
and deposition to automatically exclude the most strongly autocorrelated variables and avoid 
coliniality. We set the correlation threshold between 0.6 and 0.9 to obtain a set of the 19 remaining 
variables (Table S4.8). The datasets with remaining variables were then randomly divided into 
training, test and validation subsets, at a ratio of 60%, 20% and 20% (Lever et al., 2016), 
respectively and standardizing the data. A ponderation system based on weighting the samples 
by Europe and the rest of the World has been included to level the data origin and smooth the 
possible unbalancing effect from massive sampling in Europe. A neural network was constructed 
with one input layer, two hidden layers of 128 densely connected neurons and one output layer 
with one neuron, so we built independent networks for each nutrient and morphoclimatic forest 
type. The models were trained by optimizing mean squared errors on the test set. The validation 
data were used to cross-validate the accuracy of the model following the k-fold methodology and 
the root mean squared error (RMSE), the mean, the standard deviation, the coefficient of variation 
and R2 was calculated for each model. Each model, was trained and calculated several times until 
stabilize the variation due to the random splitting of the data set. The mean of those values 
resulting of each repetition was calculated to obtain a final stable value with its corresponding 
standard error. 
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The variable importance function in the Dalex R package (Biececk, 2018) was used to 
identify the most influential predictor variables in the predicted outcome. This function calculates 
the loss function using the squared error of the model (_full_model_), randomizes each variable, 
calculates the loss in the absence of a predictive signal and calculates the loss with all variables 
randomized (_baseline_). We repeated this process 100 times per iteration in each model, for a 
mean total of 10 000 randomizations.


The land-cover map from ESA-CCI v2.0.7b at a resolution of 300 m was used to set up the 
model predictions for the six morphoclimatic forest types by element in three global raster maps. 
The resolution was modified to 1000 m using the aggregate function of the raster package with 
the mode as a gathering parameter. The land-cover map was then reclassified (Table S4.8) to our 
six morphoclimatic types to match the land-cover map with our prediction and use it to mask the 
vegetation for determining the distribution of each vegetation group. For mixed forests in the land 
cover map we calculated and plotted the corresponding mean values of each forests predictions 
for that region in order to better assess the reality. The neural network predictions were then 
plotted in three raster longitude/latitude WGS84 projection at a resolution of 1 km with the 
predicted percentages of foliar N, P and K concentrations in mature leaves of woody species. 
Uncertainty maps were also provided for each element using the mean standard error of the mean 
(SEM).


4.5.3 Generalized linear models 

We selected the 10 most important variables based on their importance in the neural-network 
model to identify significant correlations with N, P, K concentrations. We then created a subset of 
the six least strongly correlated variables and built saturated glm models using these six variables 
and their first-degree interactions following gamma family distribution with an inverse link. We 
then applied the dredge function in the MuMIn R package (Barton, 2019) to select the final model 
based on the lowest Akaike information criterion and a maximum of six variables and interactions 
per model. We also determined the proportion of deviance explained by the glm or a pseudo-R2 
value with the Dsquared function into modEvA (Barbosa et al., 2015) R package. 


4.5.4 Generalized linear mixed models 

We used Bayesian generalized linear mixed models in the MCMCglmm R package (Hadfield 2010) 
to understand the combined role of phylogeny and species compared to the predictors used for 
the neural network (variables for soil, climate and deposition). We again selected the 10 most 
important variables for each biome and element based on the importance of the neural-network 
variables and also created a subset of the six least strongly correlated fixed variables for running 
the models. We also used the phylogenetic tree provided by Qian and Jin, 2015 which matches 
with 1580 of our species. Those corresponding species conformed to the random part of the 
model as “phylogeny” and the species group as “species”. We ultimately built 6 × 3 models with 
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the form: element~var1+var2+var3+var4+var5+var6, random=phylogeny+species. The random 
variance explained by phylogeny and by species was thus also specified. 


4.5.5 Soil age 

We used the USDA classification of soil taxonomy when no map of soil age was available for 
determining whether and how the age of the substrate also influenced the foliar elemental 
compositions. The USDA classification partially and categorically considers soil age in their order 
divisions and allowed us to infer the effect of the soil age into elemental composition. We grouped 
our predicted N, P and K concentrations by their corresponding soil orders. Then we compared 
the orders using an ANOVA and a Tukey’s post hoc test with the HSD.test from agricolae 
(Mendiburu, 2020) R package. Finally, we represented the results in violin plots by soil order.
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5 
Global distribution and drivers of forest biome foliar N:P ratios 

Helena Vallicrosa, Jordi Sardans, Joan Maspons, Josep Peñuelas


Abstract


Detailed understanding of patterns and drivers of terrestrial N:P ratios is essential for the accurate 
prediction of impacts of global change on ecosystem biogeochemical cycling and function. 
However, confirmation of the global distribution and drivers of foliar N:P ratios across contrasting 
terrestrial ecosystems remains lacking. In this study, we used neural network predictions to create 
a global map of woody plant foliar N:P ratios for four contrasting forest biomes (boreal, 
temperature coniferous and broadleaf, and tropical) based on a database comprising 24347 
records. We then tested impacts on the N:P ratios of potential environmental drivers using 
generalized linear models and genetic drivers using generalized linear mixed models. We found 
that foliar N:P ratios are negatively associated with latitude, with higher N:P ratios occurring in 
tropical forests and lower N:P ratios occurring in boreal forests; globally, N:P ratios indicate 
greater levels of P limitation than N limitation. The influence of environmental factors varied 
among the four forest biomes, likely due to contrasting combined environmental conditions; this 
finding would have been obscured had we conducted a single “forest biome” analysis. Genetic 
legacy explained significant variation in woody plant foliar N:P ratios and we suggest its inclusion 
in future studies to improve N:P ratio predictions. Overall, our study will be useful to improve 
prediction of effects of global change on biogeochemical cycles and ecosystem functioning.


5.1 Introduction


In terrestrial systems, the ratio of nitrogen (N) to phosphorus (P) (N:P) content of plant foliar tissue 
is an indicator of spatio-temporal variations in plant physiological and ecosystem biogeochemical 
function, including N and/or P limitation or co-limitation (Schreeg et al., 2014), species niche 
occupation (Peñuelas et al., 2019), and vegetation carbon (C) retention capacity (Güsewell 2004; 
Ågren 2008; Tian et al., 2018). For example, in natural and agricultural ecosystems, biomass 
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growth is constrained by N:P leaf ratios (Vitousek & Howarth, 1991; Van Duren & Pegtel 2000; Das 
et al. 2006). 


The relationship between foliar N:P content and terrestrial ecosystem biogeochemical 
function may be described by the growth rate hypothesis (GRH) that states that fast growing 
species require rapid protein synthesis, which in turn, requires large amounts of P-rich RNA. 
When essential resources, such as N or light, are at high levels of availability, increased growth 
rate is dependent on increases in P-rich RNA, as indicated by research that shows N:P ratios, 
particularly of leaf tissue, is negatively correlated with plant growth rate (Peng et al., 2011a; Rivas-
Ubach et al., 2012; Yu et al., 2012; Yan et al., 2015; Jing et al., 2017). Under non-limiting 
conditions, balanced foliar N:P ratios of mature plants may be 14-16 on a mass basis (Elser et al., 
2000; Knecht & Göransson, 2004; Zhang & Elser, 2017), although further research is needed for 
confirmation (Sardans et al., 2021), because Güsewell (2004) and Greenwood et al. (2008) 
reported ratios of N:P on a mass basis of <10 indicate limited N and ratios >20 indicate limited P, 
in contrast to Koerselman & Meuleman (1996), who reported  ratios of <14 indicate limited N and 
ratios >16 indicate limited P. In terrestrial plants N:P increase relatively at low growth rates, given 
its relationship with amino acid limitation in protein synthesis and reaches a maximum. N:P 
decreases in high growth rate when the ensemble of amino acids rates is related to P-rich RNA 
(Ågren, 2004; Yu et al., 2012). In this relationships, though, N concentrations scales slower than P 
concentrations in leaves and its correlation is not linear (Ågren, 2004, 2008; Reich and Oleksyn, 
2004; Kerkhoff and Enquist, 2005; Niklas et al., 2005; Niklas and Cobb, 2005; Sardans et al., 
2012; Sardans et al., 2016, b; Tian et al., 2018).


These links between plant growth rate and overall N:P ratios also vary with ontogeny and 
climate conditions. At initial stages of development, N:P ratios are negatively correlated with plant 
growth, due to the allocation of the nutrients to biomass production (Zhang et al., 2019), whereas 
at the mature growth stage, when plants invest greater proportions of N and P to non-growth 
functions, this relation becomes weaker (Kerkhoff and Enquist, 2005; Peñuelas and Sardans, 
2009; Rivas-Ubach et al., 2012; Zhang et al., 2019). Temperature and water availability have been 
shown to increase community level N:P ratios (Fan et al., 2016), due to more favorable growth 
conditions (Sardans et al., 2011; Sun et al., 2017), while under drought conditions, N:P ratios may 
shift to improve water use efficiency (Rivas-Ubach et al., 2012; Qiao et al., 2018; Sun et al., 2019; 
Peñuelas et al., 2020; Sardans et al., 2021).


Quantification of plant N:P ratios may be used as a tool to understand plant community 
structure and function (Zhao et al., 2019), including across successional stages within biomes, 
where they are expected to be lower in rapidly growing pioneer plant species, such as grasses, 
than in slow growing, late-successional species, such as tree species (Peñuelas et al., 2013; 
Sardans and Peñuelas, 2013; Busch et al., 2018). For example, N:P ratios increase with 
successional stage in African savanna vegetation (grasses: 8.6; broad-leaf trees: 13.7; and, fine-
leaf trees: 18) (Ratnam et al., 2008) and in eastern China (grassland: 7.38; early successional 
mixed forest: 14-16; late successional mixed forest: 18-20) (Yan et al., 2008). These associations 
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are related to plant life history strategies that tend to vary across several stages of succession, as 
indicated by the associations between high N:P ratios and stress-tolerators, low N:P ratios and 
fast-growing, ruderal species, and intermediate N:P ratios and competitor species (Yan et al., 
2008; Busch et al., 2018; Peñuelas et al., 2019). Changes in N:P ratios are known to affect the 
structure of terrestrial food webs (Fanin et al., 2013; et al., 2014; Zechmeister-Boltenstern et al., 
2015; Paseka and Grunberg, 2019), while imbalances between N and P decrease  ecosystem C 
retention capacity (Carnicer et al., 2015; Peñuelas et al., 2013) and affect ecosystem species 
composition, structure, diversity, and function (Sterner and Elser, 2002; Peñuelas et al., 
2019;2020; Sardans et al., 2021). 


In addition to local and regional scale variations in terrestrial foliar N and P concentrations 
and ratios, global-scale studies of their patterns and drivers have revealed monotonic decreases 
in N:P ratios from tropical to polar latitudes (McGroddy et al., 2004, Reich and Oleksyn, 2004; 
Kerkhoff et al., 2005; Yuan and Chen, 2009; Zhang et al. 2018, 2019b) that are consistent with 
latitudinal increases in N:P ratios with mean annual precipitation and temperature and the soil-age 
hypothesis (Walker and Sayers, 1976) that states older tropical soils may be more N-abundant 
and P-limited than relatively younger soils. However, these patterns and drivers of N:P ratios are 
inconsistent with findings of regional scale studies that have reported latitudinal increases in N:P 
(De Frenne et al., 2013; Sardans et al., 2016a,b; Zhang et al., 2019b). Our objectives were to a) 
use three approaches to create global maps of foliar N:P ratios across ecosystems, based on 
modeled climate, soil, and N and P deposition data; b) identify global drivers of woody vegetation 
N:P ratios; and, c) explore the role of genetic legacy (phylogenetics) in foliar N:P ratios of woody 
plants.


5.2 Materials and Methods 

5.2.1 Database compilation 

We compiled 25761 and 23815 globally distributed georeferenced records of woody plant N and 
P foliar concentrations, respectively, from the TRY (http://www.try-db.org) and ICP Forests (http://
icp-forests.net) databases, the Catalan Forest Inventory (Gracia et al., 2004) and 230 published 
articles (Table S5.1). Data comprised comparable analytical methodologies, based on elemental 
analyses for N and sample acid digestion coupled to optical detection methods for P, for foliar 
samples collected between 1990 and 2016. Data with 2× standard deviation (SD) were considered 
outliers and removed to avoid mistakes in data collation or transcription; N:P ratios were then 
calculated from the remaining values, before data with 2× SD were again removed. Following 
outlier removal, our database comprised 20851 records.


 Soil, climate, and N and P deposition data for locations of the georeferenced foliar N:P 
ratio data were input to the database using raster (Hijmans, 2020) and sf (Pebesma, 2018) R 
packages. Initially, we considered 34 soil variables from the Land-Atmosphere Interaction 

82

http://www.try-db.org
http://icp-forests.net
http://icp-forests.net


5. GLOBAL DISTRIBUTION AND DRIVERS OF FOREST BIOME FOLIAR N:P RATIOS

Research Group at Sun Yat-sen University (Shangguan et al., 2014), 26 climate variables, 
comprising the standard bioclimate variables from the WorldClim version 2 database (Fick and 
Hijmans, 2017), and evapotranspiration and aridity index data from the CGIAR-CSI v2 database 
(Trabucco & Zomer, 2019) at 1-km resolution at the equator. The climate data comprise 
estimations interpolated from a globally distributed, meteorological time series (1970-2000) and 
adjusted for topography. Twelve N deposition variables, based on reduced, oxidized, inorganic, 
and organic forms of N deposition, at 25-km resolution at the equator from 1984 to 2016 were 
extracted from Ackerman et al. (2018); data were downscaled to 1-km using the res function in 
the R raster package (Hijmans, 2020). Mean P deposition data for the period 1997−2013 were 
derived from Wang et al. (2017) at a resolution of 1 km. Following exclusion of some variables, 
due to redundancy, the final database comprised 73 soil, climate, and N and P deposition 
variables as drivers of woody plant foliar N:P concentrations (Table S5.2).


 	 The database was divided into four types of forest biome, comprising tropical, temperate 
coniferous, temperate broadleaved and boreal, based on the WWF ecoregion map (Olson et al., 
2001) that classifies “tundra” and “boreal forest/taiga” as boreal forests, “temperate broadleaf and 
mixed forests”, “temperate grasslands, savannas and scrublands”, “montane grasslands and 
scrublands”, “Mediterranean forests, woodlands and scrub”, “temperate conifer forests” and 
“deserts and xeric scrublands” from >30° latitude as temperate forests, and “tropical and 
subtropical moist broadleaved forest”, “tropical and subtropical dry broadleaved forest”, “tropical 
and subtropical grasslands, savannas and scrublands”, “tropical and subtropical coniferous 
forests”, “mangroves”, “flooded grasslands and savannas”, and “deserts and xeric scrublands” 
<30° latitude as tropical forests (Figure S5.3). The distinction between temperate coniferous and 
broadleaf forests was based on species taxonomy.


5.2.2 Global models of woody plant foliar N:P ratios  

Neural Networks 

One model per forest biome was built based on neural networks (NN) using the keras package in 
R (Allaire & Chollet, 2019). The Kaiser-Meyer-Olkin method was applied to each of the four 
subsets of data for the 53 climate, soil, and deposition variables to exclude those that were most 
strongly autocorrelated and to avoid overparameterization; the correlation threshold was settled 
according to result in 19 remaining variables (Table S5.4). Then, the datasets with remaining 
variables were randomly divided into training (60%), test (20%), and validation (20%) subsets 
(Lever et al., 2016), and data were standardized using scale function in R (R core team, 2020). Due 
to the greater number of data records derived from Europe, data collected from outside the region 
were weighted to avoid any potential European bias. We built independent NNs for the four forest 
biomes, where they were constructed with one input layer, two hidden layers of 128 densely 
connected neurons and one output layer comprising one neuron. The validation data were used to 
cross-validate the accuracy of the model following the K-fold methodology and the root mean 
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squared error (RMSE), mean, SD, coefficient of variation, and R2 were calculated for each model; 
the mean of values (±SE) from each repetition was calculated to obtain a final stable value.


The model predictions were extrapolated to the ESA-CCI land cover map v2.0.7b (ESA, 
2017), at 300-m resolution, for the four forest biomes by element in three global raster maps; the 
resolution was modified to 1000-m using the aggregate function of the raster package in R 
(Hijmans, 2020), with mode as a gathering parameter. Then, the land-cover map was reclassified 
(Table S5.4) to the four forest biomes to match it with our predictions and use it to mask 
vegetation to determine the distribution of each forest type. The NN predictions were plotted at 1-
km resolution in three raster longitude/latitude WGS 84 (World Geodesic System, 1984) 
projections, with the predicted woody plant foliar N:P ratios for mature leaves. Uncertainty maps 
were also provided for each element using the mean SE.


Generalized linear models  

To test for associations between the soil, climate, and N and P deposition variables and N:P 
ratios, we selected the 10 most important variables, based on their NN variable importance, 
among which, a subset of the six least correlated variables was created and used to build 
generalized linear models (GLMs), with first-degree interactions following the gamma family 
distribution with inverse link. We then applied the dredge function in the MuMIn R package 
(Barton, 2019) to select the final models, based on the lowest Akaike information criterion, that 
comprised a maximum of six variables and interactions per model. The determined proportion of 
deviance explained by the GLM, or a pseudo-R2 value, was calculated using the Dsquared 
function in the modEvA (Barbosa et al., 2015) R package. 


Generalized linear mixed models 

We used Bayesian generalized linear mixed models (GLMMs) in the MCMCglmm R package to 
understand the combined role of phylogeny and species compared with the roles of the soil, 

climate, and deposition predictors used for the NN. For the NN predictors, we again selected the 
10 most important variables for each forest type and element, based on their importance in the 

Tropical Temperate 
coniferous

Temperate 
broadleaves

Boreal

RMSE (%) 7.077 3.622 5.619 1.918

MAE (%) 5.504 2.614 4.181 1.370

Mean (%) 20.698 14.442 18.827 12.346

SD (%) 1.972 1.453 1.677 1.730

CV (%) 0.095 0.101 0.089 0.140
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Table 5.1 Neural network performance for all morphoclimatic groups. RMSE = Root mean squared error. MAE = 
Mean absolute error. SD = Standard deviation. CV = Coefficient of variation
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NN, and created a subset of the six least strongly correlated fixed variables. For phylogeny, we 
used the phylogenetic tree provided by Qian and Jin (2015) that contained 744 of the species in 
our database; the species and their phylogenetic relations conformed to the random part of the 
models. The four models followed the form: element ~ var1+var2+var3+var4+var5+var6, 
random=phylogeny+species. The random variables, comprising species and phylogeny, describe 
the long-term evolutionary effects on genotypes, where phylogeny targets the response 
magnitude, due to phylogenetic distance, and species targets interspecific variability not directly 
related to phylogenetic distance.


5.2.3 Soil age 

We used the USDA classification (Soil survey staff, 2014) of soil taxonomy at the order level to 
determine the influence of substrate age on woody plant foliar N:P ratios in the four forest types. 
We grouped the predicted N:P ratios from the NNs by their corresponding soil order and then 
compared the orders using ANOVA and Tukey’s post hoc test with the HSD.test function in the 
agricolae (Mendiburu, 2020) R package; the results were visualized as violin plots by soil order, 
using ggplot2 (Wickham, 2016) by mean descending order.


5.3 Results 

5.3.1 Global distribution of woody plant foliar N:P ratios 

Of the three approaches used to predict woody plant foliar N:P ratios, greatest predictive power, 
based on predicted vs observed R2, was provided by NNs (R2 = 0.69; RMSE = 3.80) (Figure 5.1). 
The NNs predicted mean N:P ratios for the forest types were greatest in tropical forests 
(20.7±2.0), followed by temperate broadleaved forests (18.8±1.7), temperature coniferous forests 
(14.4±1.5), and boreal forests (12.4±1.7) (Table 5.1).


The global distribution of woody plant foliar N:P ratios, based on NN predictions (Figure 
5.2), confirmed lowest ratios are largely concentrated in boreal regions, particularly in northern 
Europe, as well as other regions, including India, northern Sub-Saharan Africa, and Patagonia. In 
contrast, regions with higher N:P ratios are generally located in the tropics and subtropics, 
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Figure 5.1 Predicted versus observed foliar N:P values across the four forest biomes estimated by generalized linear 
modelling (GLM), generalized linear mixed modelling (GLMM), and neural networks (NN). Black line is the fitted linear 
model between predicted and expected values; red line is line of unity. 
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including Amazonia, southeast Asia, southern Sub-Saharan Africa, northeast China, and north, 
south west Australia. 


Estimate Pr(>|t|)

Tropical

(Intercept) 0.050 0.000

Soil base saturation 0.000 0.002

Soil cation exchange capacity 0.001 0.000

Potential evapotranspiration seasonality -0.001 0.000

Maximum December, January, February precipitation -0.000 0.000

Soil base saturation:soil cation exchange capacity -0.000 0.000

Soil base saturation:Potential evapotranspiration seasonality 0.000 0.000

AIC / pR2 25536.497 0.230

Temperate 
coniferous

(Intercept) 0.045 0.000

Aridity index -0.000 0.000

Potential evapotranspiration seasonality 0.001 0.000

Maximum June, July, August precipitation 0.001 0.000

Mean temperature of the driest quarter -0.002 0.000

Aridity index:Mean temperature of the driest quarter 0.000 0.000

Potential evapotranspiration seasonality:Maximum June, July, August precipitation -0.000 0.000

AIC / pR2 61842.197 0.115

Temperate 
broadleaved

(Intercept) 0.087 0.000

Minimum June, July, August precipitation 0.001 0.000

Daily mean solar radiation -0.000 0.000

Precipitation of the driest month -0.001 0.000

Precipitation of the driest quarter -0.000 0.000

Minimum June, July, August precipitation:Daily mean solar radiation 0.000 0.000

Daily mean solar radiation:Precipitation of the driest quarter 0.000 0.000

AIC / pR2 35556.667 0.098

Boreal

(Intercept) 0.186 0.000

Maximum June, July, August precipitation -0.006 0.000

Mean temperature of warmest quarter -0.008 0.012

Precipitation of wettest quarter 0.002 0.000

Maximum June, July, August precipitation:Mean temperature of warmest quarter 0.000 0.000

Maximum June, July, August precipitation:Precipitation of wettest quarter -0.000 0.000

Mean temperature of warmest quarter:Precipitation of wettest quarter -0.000 0.000

AIC / pR2 8655.749 0.103
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Table 5.2 Summary of the generalized linear model per morphoclimatic group.



5. GLOBAL DISTRIBUTION AND DRIVERS OF FOREST BIOME FOLIAR N:P RATIOS

5.3.2 Environmental drivers of N:P ratios 

The GLM used to test impacts of potential environmental drivers on woody plant foliar N:P ratios  
(Table 5.2) (global R2 = 0.47 and RMSE =  4.85; Figure 5.1) showed positive relations with soil 
base saturation and soil cation exchange capacity in tropical forests and negative relations with 
potential evapotranspiration seasonality and maximum December, January and February 
precipitation (forest type R2 = 0.23). In temperate coniferous forests (forest type R2 = 0.11), there 
are positive relations with potential evapotranspiration seasonality and maximum June, July and 
August precipitation and negative relations with aridity index and mean temperature of the driest 
quarter, while in temperate broadleaf forests (forest type R2 = 0.10), minimum June, July and 
August precipitation is positively related to foliar N:P ratios and daily mean solar radiation, 
precipitation of the driest month and precipitation of the driest quarter are negatively related to 
foliar N:P ratios; in boreal forests (forest type R2 = 0.10), there is a positive relation with 
precipitation of the wettest quarter and negative relations with maximum June, July and August 
precipitation and mean temperature of the warmest quarter (Table 5.2).


5.3.3 Phylogenetic drivers of N:P ratios 

The GLMM used to test impacts of phylogenetic drivers on woody plant foliar N:P ratios (global R2 
= 0.6 and RMSE = 3.84; Figure 5.1) showed that random factor variability (phylogeny and species) 
in N:P ratios is greater than for that of the fixed environmental factors. The variability in N:P ratios 
explained by phylogeny + species ranges from 40.2% for tropical forests to 82.7% for boreal 
forests, while variability explained by phylogeny ranges from 6.8% for tropical forests to 50.0% for 
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Figure 5.2 Predicted woody plant foliar N:P ratios across global forest biomes; unshaded areas indicate lack of data.
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temperate coniferous and variability explained by species ranged from 29.9% for temperate 
broadleaf forests to 64.1% for boreal forests (Table 5.3). 





5.3.4 Soil age as a driver of N:P ratios 

Woody plant foliar N:P ratios vary among soil orders (Figure 5.3) and tend to be higher from 
Oxisols (mean = 19.1) that occur in tropical wet forests of south America and central Africa, 
followed by Ultisols (mean = 16.3) that occur in South-eastern Asia and in sparse spots in the 
tropical fringe. In contrast, lowest N:P ratios are found from Spodosols (mean = 11.4) that typically 
occur in cold and humid regions, such as Atlantic Europe, Scandinavia, and Canada, followed by 

Vertisols (mean = 11.6), known to be conformed by expansive clay with high nutrient retention that 
occur in isolated zones with exchanging floods and drought periods such as east Australia, south 
India, Sudan between others.


R2c R2m (fixed) R2 (random) Phylogeny Species Units

Tropical 0.527 0.125 0.402 0.068 0.392 0.540

Temperate 
coniferous

0.832 0.005 0.827 0.500 0.331 0.169

Temperate 
broadleaved

0.692 0.019 0.672 0.387 0.299 0.315

Boreal 0.851 0.022 0.829 0.206 0.641 0.153
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Table 5.3 Summary of generalized linear mixed model. Variability explained by for the whole model and by random 
and fixed part. Phylogeny, species and units belongs to random variability explained. R2c = R2m + R2

Figure 5.3 Variation in predicted global woody plant foliar N:P ratios among USDA soil taxonomy orders. Predicted 
values differ significantly among soil types (P< 0.05).
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5.4 Discussion 

5.4.1 Global distribution maps of foliar N:P ratios 

We constructed a high resolution global map of N:P ratios using NNs trained with environmental 
variables that identifies forest regions with N and P limitation, that play a role in the 
biogeochemical function of ecosystems. Although global foliar N and P maps are available (Butler 
et al., 2017; Moreno-Martínez et al., 2018; Vallicrosa et al., 2021), this is the first gridded N:P ratio 
map at the global scale constructed from an extensive N:P database using machine learning 
tools. We chose not to calculate global distribution of wood plant foliar N:P based on currently 
available N and P maps, because this approach would aggregate errors for each element and 
assume drivers of foliar N and P are the same as drivers of N:P ratios. Thus, we trained specific 
N:P ratio models to test for their drivers. 


We found that our model predictions follow the substrate age hypothesis (Walker and 
Syers 1976), where foliar N:P ratios are high in the tropics and low at boreal latitudes (Chadwick et 
al., 1999; Vitousek et al., 2010) (Table 5.1); indeed, our results showed that woody plant foliar N:P 
ratios range from 12.34 in boreal forests to 20.70 in tropical forests. Given limitations of N and P 
limitation occur when N:P ratios are <10 and >20, respectively (Güsewell, 2004; Greenwood et al. 
2008), our results indicate that woody vegetation tends to be more P limited than N limited, 
supporting our predictions and concurring with results reported by Du et al. (2020) that showed 
18% of the global terrestrial surface, excluding agricultural, urban, and glacial areas, was under N 
limitation while 43% was P limited, predominantly in the tropics. 


At the regional scale, our model predictions support the old, climatically buffered and 
infertile landscapes theory (Hopper, 2009), which states these types of landscape, such as the 
Cape floristic region in South Africa and the Southwest  Floristic  Region of Australia, are 
characterized by high levels of P limitation (Lambers et al., 2008, 2010; Oliveira et al., 2015), as 
indicated by the high N:P ratios for southern Africa and southwest Australia. We also found 
differences in N:P ratios between temperate coniferous (mean = 14.4) and broadleaf forests (mean 
= 18.8) (Table 5.1) that may indicate successional differences, as many coniferous  trees are 
typically fast-growing, early successional species, which require higher proportions of P than 
broadleaf species that tend to be slower-growing, late successional species, with lower 
requirements for P (Peñuelas et al., 2013; Sardans and Peñuelas, 2013; Busch et al., 2018).


5.4.2 Environmental drivers 

Our decision to model environmental drivers of woody plant foliar N:P ratio by forest biome at the 
global scale was justified, because impacts of the drivers varied among biomes and with latitude, 
with apparently contrasting effects. For example, potential evapotranspiration seasonality was 
negatively related to foliar N:P ratios in tropical forests and positively related to those in temperate 
coniferous forests, while in temperate coniferous and broadleaf forests, low water availability, 
expressed in aridity index or precipitation levels, was negatively related with foliar N:P ratios; 
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these results may indicate that foliar N decreases in temperate latitudes under low levels of water 
availability (Sardans et al., 2008). In contrast to at temperate latitudes, greater levels of 
precipitation in boreal forests lead to lower N:P ratios, indicating that mineral leaching, which 
tends to affect the more mobile N than P, may be more of a constraint than water availability, 
particularly at these high latitudes where N is frequently more limiting than P. Foliar N:P ratios 
were related to soil properties only in tropical forests, supporting previous studies that have 
shown key links between soil properties and tropical foliar elemental composition (Both et al., 
2018, Hernández-Vargas et al., 2019). 


5.4.3 Genetic drivers 

Phylogeny and species explained more variability in foliar N:P ratios than environmental factors 
for each of the forest biomes (Table 5.3), supporting previous studies in which genetic legacy 
effects were found to explain most of the variability in woody plant foliar N, P, and potassium 
concentrations at the global scale (Sardans et al., 2021; Vallicrosa et al., 2021). Genetic legacy 
effects are a product of long- and short-term evolutionary processes (represented by phylogeny 
and species, respectively), during which species adapt to shifts in abiotic and biotic stressors, 
caused by climate, soil, and interactions with other species. While phylogeny include ancient 
adaptation and differentiation from other clades, species include more epigenetic factors which, 
through evolutive convergence could generate similar N:P relations with different clades.


Most of the variance explained by the environmental factors in glm, was explained by 
genetic legacy effects in glmm. Genotypes are associated with particular soil and climatic traits, 
so phylogeny incorporates climatic and soil conditions to some extent. Indeed, strong genetic 
legacy signals for foliar elemental composition have recently been reported at local, regional, and 
global scales (Castellanos et al., 2018; de la Riva et al., 2017; Hu et al., 2018; Reimann et al., 
2018; Sardans and Peñuelas, 2015, Sardans et al, 2015, 2016a), supporting studies of the 
biogeochemical niche hypothesis in plants (Peñuelas et al., 2008,  2010, 2019; Sardans et al., 
2021) that have reported phylogeny and species, as proxies of overall genetic legacy, explain 
>75% of the variability in foliar elemental composition.


	 Disentangling single genetic legacy effects is problematic and highlights the large 
proportion of variability in boreal forest woody species N:P ratios that is explained by species 
(Table 5.3). Globally, boreal ecosystems contain some of the lowest levels of vascular plant 
diversity (Brummitt et al., 2020) and forests in these climate zones tend to be dominated by low 
numbers of coniferous species (Freedman, 1999). Thus, this high level of woody species 
homogeneity and associated low levels of species coexistence and interspecific competition are 
likely to lead to low levels of phenotypic plasticity and greater stability of foliar N:P ratios. In the 
other forest biomes, where levels of species diversity and heterogeneity are greater, it is likely that 
species foliar N:P ratios reflect levels of species coexistence (Peñuelas et al. 2019; Sardans et al., 
2021), thus limiting the predictive power of phylogeny and species, as supported by our results 
that showed tropical forest foliar N:P ratios were least explained by these random factors.
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Our study shows that forest species diversity and heterogeneity are key drivers of woody 
plant foliar N:P proportions, so we recommend their inclusion, along with environmental 
conditions in future studies of foliar N:P. To facilitate the inclusion of species in global-scale 
studies of N:P ratios, the Global Biodiversity Information Facility offers free, globally 
georeferenced species data that may be used in niche modeling of remotely sensed airborne 
imaging spectroscopy and laser imaging detection and ranging (LiDAR) data added to a clustering 
algorithm (Yi et al., 2020).


5.5 Conclusions 

Our study provides the first global distribution maps of woody plant foliar N:P ratios and 
confirmation of their negative relation with latitude as a principal driver. Globally, forest biomes are 
more P limited than N limited, as suggested by previous studies. We found variation in effects of 
environmental drivers on N:P ratios among forest biomes, due to contrasting associated 
environmental pressures; these variations would have been masked in a single global “forest 
biome” analysis. Genetic legacy was a key driver of N:P variability and its inclusion in future 
studies of N:P ratios will lead to improved prediction of effects of global change on 
biogeochemical cycles and ecosystem function, including forest primary production, respiration, 
and  C-cycling.
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Empirical support for the biogeochemical niche hypothesis in forest 
trees 
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Martínez, Guille Peguero, Albert Gargallo-Garriga, Philippe Ciais, Ivan A. Janssens, Michael 
Obersteiner, Andreas Richter and Josep Peñuelas.


Abstract 
The possibility of using the elemental compositions of species as a tool to identify species/
genotype niche remains to be tested at a global scale. We investigated relationships between the 
foliar elemental compositions (elementomes) of trees at a global scale with phylogeny, climate, N 
deposition and soil traits. We analysed foliar N, P, K, Ca, Mg and S concentrations in 23,962 trees 
of 227 species. Shared ancestry explained 60–94% of the total variance in foliar nutrient 
concentrations and ratios whereas current climate, atmospheric N deposition and soil type 
together explained 1–7%, consistent with the biogeochemical niche hypothesis which predicts 
that each species will have a specific need for and use of each bio-element. The remaining 
variance was explained by the avoidance of nutritional competition with other species and natural 
variability within species. The biogeochemical niche hypothesis is thus able to quantify species-
specific tree niches and their shifts in response to environmental changes.


6.1 Main 
The ‘niche’ theory is fundamental to ecology, because niches are both drivers and consequences 
of evolutionary processes1,2,3,4. The concept is easy to understand theoretically: each species 
tends to occupy a particular position along the gradients of all abiotic and biotic variables that 
define and determine fitness. This view is consistent with the niche concepts defined by Tracy and 
Christian1, Wright et al.5 and Swanson et al.6, among many others, where the niche is directly 
associated with a multivariate space. Accurate measurement of the exact parameters of a niche, 
however, is challenging due to the large number of variables that affect organisms within 
ecosystems. Several approaches have been developed in recent decades to more easily manage 
this complex and multivariate concept—for example, niche regeneration7  and functional 
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niche8,9,10. A more general and easier method to define and measure species niches using field 
data, however, is needed.


The recently proposed biogeochemical niche (BN) hypothesis11,12,13  incorporates most, 
if not all, niche parameters using species-specific elemental composition and stoichiometry. The 
assumptions underlying this hypothesis are based on the idea that each species is a unique 
genetic pool of individuals and a product of long-term evolutionary processes, so that each 
species should have a specific morphological structure and functionality (from gene expression to 
physiological processes). Fundamental biological processes (for example, growth, secondary 
metabolism, reproduction and storage of bio-elements) have distinct rates in different species 
depending on selection pressures, so different species must differentially allocate elements to 
various traits of tissues and organs. Each species should thus tend to have its own elemental 
composition and stoichiometry (homeostatic component of BN). The changing circumstances 
during the lives of organisms, however, should also determine a necessary phenotypical plasticity 
to allow the individuals of each species to adapt its functionality and morphology during their lives 
(plasticity component). This ability differs in extent and quality among species. BN plasticity 
depends on the current genotypic and thus genetic variability of a population, and also on the 
phenotypical plasticity of individuals to respond to environmental shifts throughout their lives. The 
BN hypothesis allows us to detect plasticity at two levels: (1) within populations due to the 
intraspecific variability in elemental composition of a set of individuals of the same species living 
under the same environmental conditions at a specific time (for example, due to individual 
genotypic differences or different ontogenetic stages), and (2) at the individual level (phenotypic 
plasticity), by indicating how each individual of a population varies its elemental composition 
when environmental conditions shift13.


The BN hypothesis is useful for representing the ecological niche of each species in a 
hyperdimensional volume generated by different bio-elemental concentrations and stoichiometric 
relationships, which could be simply and practically tested by a combined chemical and 
mathematical approach using multivariate and phylogenetic analyses13. The position of each 
species in the hyperdimensional volume can shift with time and changing environmental 
conditions, depending on the degree of species-specific stoichiometric plasticity (plasticity 
component), but the BN hypothesis should also tend to maintain its own identity relative to the 
BNs of other species (homeostatic component)13. BN space at a specific time should therefore 
be a consequence of historical and current trends toward maximization of fitness in response to 
abiotic and biotic circumstances such as trophic relationships and water, light or nutrient 
availabilities and fluxes13,14,15. The various levels of plasticity among species can be detected 
because homeostatic species will occupy a smaller volume in multidimensional space, and plastic 
species will occupy a larger volume13. For example, comparing the movement/expansion/
contraction of the BNs of two populations of different species or genotypes submitted to the 
same environmental shifts will thus provide information about their levels of BN plasticity13. The 
temporal shifts of the BN of a species or population can also be calculated, so we can follow the 
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signatures of evolution on the BN. BNs also allow us to describe and quantify the expansion, 
contraction and extinction of niches and the appearance of new niches (for example, when new 
species colonize an ecosystem)13. The BN hypothesis, however, has been experimentally tested 
only at small spatial and phylogenetic scales11,12,13,14,15,16,17.


We aimed to test the BN hypothesis in forest trees across all forest biomes and continents 
(Extended Data Fig. 1). Our study is based on the elementome of leaves, the plant organ where 
most compounds (from those allocated to growth or reproduction to those allocated to energy 
metabolism, defence or storage) are synthesized and where photosynthesis, the most crucial 
plant function, occurs. Leaves thus constitute a key organ in plant functioning, and we can define 
the ‘species biogeochemical niche’ for each species in its environmental circumstances by 
analysis of changes in foliar elemental composition. We built a global data set to test the extent to 
which (1) shared ancestry, (2) abiotic factors (for example, climate, N deposition and soil traits) 
and (3) biotic factors (for example, composition of the community inhabited by a tree) affect the 
BN. We hypothesized that each species would have a different need and use for each bio-element 
to optimize function, and thus that shared ancestry would account for a large part of the foliar 
elemental composition in a wide set of data from a broad spectrum of species. Species, however, 
also evolve to some degree during fluctuating environmental conditions, so some of the variability 
in elemental composition should be due to the phenotypic component and thus to current abiotic 
and biotic conditions such as climate, soil type, atmospheric N deposition and competition, which 
should account for another part of the variability of elemental composition. We thus expected to 
demonstrate the suitability of using the elemental compositions of organisms, the elementome13, 
to define species-specific ‘niche differences’ in a tangible and measurable way, providing a 
valuable tool for establishing and identifying species niches.


6.2 Results 
6.2.1 Phylogeny and BN size 

The analysis of Pagel’s λ identified significant phylogenetic signals in foliar N, P, K, S, Ca and Mg 
concentrations, N/Ca, N/Mg, P/Ca, P/Mg, P/S, K/Ca and K/S ratios and the scores of the first six 
principal component analysis (PCA) axes (Supplementary Table 1, Figures 6.1–6.4, Extended Data 
Figs. 2–5  and Supplementary Figs. 1–9), with Pagel’s  λ  values in several variables >0.5. These 
variables significantly tended to be more similar in the clades of more recently separated species 
than in those of more phylogenetically distant species, thus demonstrating that the divergence of 
the values of the variables among clades over time was largely and significantly driven by 
evolutionary processes. For example, foliar N concentrations were significantly more similar 
among Pinaceae species than between Pinaceae and Fagaceae species, with Pinaceae species 
generally having lower values than Fagaceae species (Figure 6.1). The phylogenetic signals using 
Pagel’s  λ  were generally more similar in the subset of the database that also contained 
information for foliar C concentrations (7,479  datapoints representing  138 species) than in the 
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general database without foliar C concentrations (Supplementary Tables  2  and  3  and 
Supplementary Figs. 10–14). Of the 33 variables studied, only the foliar C/K ratio did not have a 
significant  λ. Furthermore, these Pagel’s  λ  values were high (>0.6 for most of the nutrient 
variables) (Supplementary Table 2).





The range of values in a functional discriminant analysis (FDA) (mainly along root 1, which 
explained 90.8% of the total variance) that represented the sizes of species-specific BNs was 
significantly larger for the species subjected to lower climatic stress (Quercus robur and Quercus 
petraea) than for Mediterranean species adapted to drought (Pinus halepensis,  P. 
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Figure 6.1 Phylogenetic diagram of foliar N concentration (percentage of dry weight) (25,112  datapoints) in the 
phylogenetic tree.
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pinaster and Quercus ilex) (Figure 6.5 and Supplementary Tables 4 and 5). These five species were 
the most abundant in our survey and were clearly separated in the multivariate space by 
significant distances (squared Mahalanobis distances; Supplementary Table  4) and in all foliar 
variables that significantly contributed to the separation of all species (Supplementary Table 5). 
We also detected a strong phylogenetic effect in the distribution of scores along the first three 
root axes of the FDA (Supplementary Table 6).





6.2.2 Abiotic factors 

Climate, N deposition and soil type 
101

Figure 6.2 Phylogenetic diagram of foliar P concentration (percentage of dry weight) (25,112  datapoints) in the 
phylogenetic tree.
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Phylogeny explained significantly most of the variance in foliar elemental composition: 58.7–
91.7% (mean 80.9%) of the variance in foliar concentration of the six bio-elements, 39.0–94.1% 
(mean 68.8%) of the variance in their pairwise ratios and 43.2–89.6% (mean 74.0%) of the 
variance in the scores of the first three axes of a PCA (Supplementary Table  7). Species 
significantly explained 1.4–14.6% (mean 5.58%) of the variance in foliar concentrations of the six 
bio-elements, 0.4–28.1% (mean 8.1%) of the variance in pairwise ratios and 0.6–13.8% (mean 
5.07%) of the variance in the scores of the first three PC scores. Inheritance thus significantly 

explained 73.3–93.6% (mean 86.5%) of the variance in foliar concentration of the six bio-
elements, 67.1–94.5% (mean 81.7%) of the variance in their pairwise ratios and 57–90.2% (mean 
79.1%) of the variance in the scores of the first three PCs.
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Figure 6.3 Phylogenetic diagram of foliar N/P ratio (25,112 datapoints) in the phylogenetic tree.
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The climatic variables and N deposition, independently from their effect on current species 
distribution, significantly explained 0.43–4.2% (mean 2.26%) of the variance in foliar 
concentration of the six bio-elements, 0.27–7.4% (mean 5.05%) of the variance in their ratios and 
0.35–11.0% (mean 4.23%) of the variance in the scores of the first three PCs (Supplementary 
Table  7). Mean annual precipitation (MAP) and mean annual temperature (MAT) were the most 

important climatic variables explaining the variance in elemental concentrations, with some 
relevant exceptions. For example, the variability in foliar N concentration was partially due to 
positive correlations with MAP, MAT, N deposition and mean annual solar radiation 
(Supplementary Table 6). Interestingly, MAT and mean solar radiation had contrasting relationships 
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Figure 6.4 Phylogenetic diagram of PC1 scores (25,112 datapoints) in the phylogenetic tree.
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with MAP and N deposition on overall foliar elemental composition, as indicated by the PC1 
scores (Supplementary Table 7).


Higher precipitation was significantly associated with lower foliar concentrations of metal 
elements (K, Ca and Mg) and P and was significantly and positively correlated with foliar N and S 
concentrations (Supplementary Table 7). MAT was correlated significantly and positively with foliar 
N and metal (K, Ca and Mg) concentrations and N/P ratio, and negatively with foliar P 
concentrations. N deposition was correlated positively with foliar N, P and S concentrations and 
negatively with foliar Ca, Mg and K concentrations.


Soil type explained a low but significant percentage of the variance in elemental 
composition and ratios (Supplementary Table 8), ranging between 0.1% for the foliar P/S ratio to 
2.0% for foliar K concentrations. A PCA, however, indicated that trees growing in different soil 
types occupied significantly different areas of the two-dimensional plot of the first two PC axes 
(Figure 6.6) and that this distribution was mainly explained by phylogeny (R2 = 0.72, 0.84 and 0.87 
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Figure 6.5 Plot of the first two roots of functional discriminant analysis using P. pinaster, P. 
halepensis, Q. ilex, Q. petraea and Q. robur as dependent categorical grouping factors, and 
foliar N, P, K, S, Ca and Mg concentrations and pairwise ratios as continuous independent 
variables.
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for PC1, PC2 and PC3 scores, respectively) (Supplementary Table 8). Trees growing on Inceptisols 
and Alfisols, typical of temperate forests, occupied a central position in this space. Trees growing 
in Alfisols, typical of wet and mesic temperate forests, had intermediate foliar N and K 
concentrations and the second highest foliar P concentration (Extended Data Fig.  6), with 
intermediate foliar N/P, N/K and P/K ratios (Extended Data Fig. 7). Trees growing in Spodosols, 
very common in boreal and alpine coniferous forests, had the highest P and lowest K foliar 
concentrations (Extended Data Fig.  6) and thus the highest foliar P/K ratios (Extended Data 
Fig. 7). Trees growing in Oxisols, typical of wet tropical forests, had the second highest foliar N 
concentrations and the lowest foliar P concentrations (Extended Data Fig. 6), the highest foliar N/
P and N/K ratios and the lowest foliar P/K ratio (Extended Data Fig. 7).


6.2.3 Biotic factors 

Competition of foliar elementomes among coexisting species 

Foliar N and P concentrations, the N/P ratio and the scores for the first two PCA axes for species 
frequently shifted significantly when the distributions of two species overlapped. These 

105

Figure 6.6 Plot of PCA cases and variables superimposed, defined by the first two components 
of the PCA, with foliar N, P, K, Ca, Mg and S concentrations as variables and with soil orders as 
cases.


https://www.nature.com/articles/s41559-020-01348-1#MOESM1
https://www.nature.com/articles/s41559-020-01348-1#Fig12
https://www.nature.com/articles/s41559-020-01348-1#Fig13
https://www.nature.com/articles/s41559-020-01348-1#Fig12
https://www.nature.com/articles/s41559-020-01348-1#Fig13
https://www.nature.com/articles/s41559-020-01348-1#Fig12
https://www.nature.com/articles/s41559-020-01348-1#Fig13


6. EMPIRICAL SUPPORT FOR THE BIOGEOCHEMICAL NICHE HYPOTHESIS IN FOREST TREES

differences usually explained little of the variance in foliar variables, but they were statistically 
significant (Supplementary Tables 9–15). For example, foliar N and P concentrations, the N/P ratio 
and the scores for the first two PCA axes differed significantly when Pinus abies grew in areas 
with and without Q. robur (Extended Data Fig. 8a), although the percentage of explained variance 
was ≤3.5% (Supplementary Table 9). These shifts were reciprocal. Foliar P concentrations, N/P 
ratios and PC1 scores also differed significantly between subsets of Q. robur growing in areas 
with and without  P. abies  (Extended Data Fig.  8a  and Supplementary Table  10), explaining a 
maximum of only 5% of total variance. Foliar P concentrations, N/P ratios and PC1 scores 
differed significantly between  Abies alba  coexisting or not with  Q. petraea  (Extended Data 
Fig. 8b and Supplementary Table 11), explaining a maximum of 5% of total variance, and foliar N 
and P concentrations, N/P ratios and PC1 scores differed significantly between  Q. 
petraea coexisting or not with A. alba (Supplementary Table 12), explaining a maximum of 4% of 
total variance. Foliar N concentrations and PC1 scores differed significantly between  Fagus 
sylvatica  growing in areas with and without  Pinus sylvestris  (Extended Data Fig.  8c  and 
Supplementary Table  13), explaining a maximum of 2% of total variance. Foliar N and P 
concentrations, N/P ratios and PC1 scores differed significantly between P. sylvestris growing in 
areas with and without  F. sylvatica  (Extended Data Fig.  8c  and Supplementary Table  14), 
explaining a maximum of 1% of total variance. The percentage of variance explained for some 
variables was much higher in some cases—for example, 17% for the foliar N concentration of P. 
sylvestris growing with or without Q. robur  (Supplementary Table  14) and 35% for the foliar P 
concentration of Larix decidua growing with or without Q. robur (Supplementary Table 15).


6.3 Discussion 

6.3.1 BN size and phylogeny 

Use of the foliar concentrations of several bio-elements significantly separated the species in the 
hypervolume generated by the corresponding multivariate analyses, as previously reported only in 
smaller studies11,12,13,14,15,16,17,18. The FDA plot (showing 95.8% of total explained variance) 
clearly separated the BNs of species, with  Pinus  species having positive values on root  1 
and Quercus species having more negative values, also consistent with the positive link between 
phylogenetic distance and species-specific BN identity among species.


The elements N, P, K, S, Ca and Mg contribute differentially to plant metabolic and 
physiological functions and to cells, tissues and organs. We therefore expected that different 
species, as evolutionary products, would have different optimal elementomes11,12,13,14. The 
results of our analysis on the global set of 227 of the most representative tree species worldwide 
(163, 58 and 6 from tropical, temperate and boreal biomes, respectively) strongly support this 
hypothesis. The results also indicated that foliar BNs of the species became more similar as their 
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phylogenetic distance decreased. These results are fully consistent with Kerkhoff et al.19, who 
also found a consistent and significant phylogenetic signal in N and P concentrations in plant 
organs in a set of 1,287 plant species. A small number of published studies of BNs, all including 
fewer species, has also reported significant organ or body stoichiometric dependence on 
taxonomy and/or phylogeny of plant and animal species, although not all studies detected links 
between species phylogeny and N/P ratios13,14,15,20. The great majority of the studies 
nevertheless found significant relationships between species' elemental composition and 
taxonomic and phylogenetic distance13,14,15,20. Similar results have also been obtained in 
ionomic studies21.


Phylogeny and species, as proxies of overall genomic difference, however, did not explain 
100% of variability in the elementome. Some of the phylogenetic lines of distant clades may have 
been exposed to similar environmental conditions that would have driven parallel selection of the 
characteristics that determine elemental concentrations, consequently eliciting convergence to 
more similar elementomes than would be expected from their phylogenetic distance. In other 
words, species that are phylogenetically distant (for example, those that have developed on 
different continents but under current similar environmental conditions) may occupy a similar BN. 
For example, a change toward a warmer climate can increase the speed of evolution of several 
characters differently in different species5,22,23. Several other factors, such as species migration, 
changes in species interactions (for example, with herbivorous or parasitic species) and climatic 
convergence, can increase the speed of evolutionary convergence among species in different 
clades24,25,26. Distant clades could thus evolve under new, more similar, environmental 
conditions, favouring a trend toward convergence in functionality and thus in elementome. The 
results nevertheless indicated that evolutionary processes have significantly contributed to 
differences in foliar elementomes that originated during species diversification, directly explaining 
57–94.5% (average 85.7%) of the variance in foliar concentrations and ratios. Anacker and 
Strauss27  also reported that niche differences among species increased with phylogenetic 
distance, again consistent with our results. Part of the inheritability factor that differs from 
phylogeny explained an average of about 7% of variance in the variables studied, perhaps due to 
the recent divergent evolution of more proximal taxonomical species adapting to distinct and 
divergent environmental shifts in their respective distribution areas.


6.3.2 Climate and N deposition 

Several studies have reported trends in foliar N and P concentrations and N/P ratios in trees 
growing along climatic and latitudinal gradients28,29,30,31, but their results have not always fully 
agreed. Most studies have observed a general trend toward decreasing foliar and litter P 
concentrations and increasing N/P ratios as latitude decreased and MAT, MAP and length of 
growing season increased28,29,30,31,32,33,34. Not all studies, however, have detected clear 
patterns of N/P ratios among or within climatic areas33. Townsend et al.34 and Lovelock et al.35, 
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for example, found no relationship between N/P ratio and either latitude or MAP in tropical areas. 
Even when a significant relationship was detected in these studies, climatic variables explained 
only a small fraction of the variation in foliar elements—for example, 16–25 and 5–35% reported 
by Yuan and Chen31 and Reich and Oleksyn28, respectively, depending on the variable. These 
studies used linear models that considered only climatic variables and N deposition without 
phylogeny and species as random factors. The variance explained by climatic variables in our 
study decreased in our Bayesian analyses when we added species as a random factor (0.3–
11.0%, with a mean of 4.3% among all variables) (Supplementary Table 6).


Our results thus indicate significant relationships of foliar nutrient composition with N 
deposition and basic climatic traits such as MAP and MAT at a global scale. A decrease in foliar P 
concentrations and an increase in foliar N concentrations and N/P ratios with increasing MAT are 
consistent with the higher N and lower P concentrations in plants frequently observed toward 
equatorial latitudes. We also identified a general and significant relationship of foliar 
concentrations of the main macronutrients with N deposition. Lower foliar metal concentrations 
with higher levels of N deposition are totally consistent with the higher leaching of soil bases 
associated with N deposition and with competition among bases for plant absorption with 
ammonium36. Higher foliar N and S concentrations with increased N deposition are also due to 
the consequent higher availability of soil N and S37,38. Interestingly, we also identified a globally 
positive correlation between higher levels of N deposition and higher foliar P concentrations when 
local studies reported all types of results, from increases to decreases in foliar P concentrations. 
Increases in P concentrations have been associated with higher capacities of plants and microbes 
to mobilize and take up more P due to higher N availability39,40. Lower foliar P concentrations 
under higher N loads, however, have been associated with stronger P limitation41,42,43. Our 
results thus indicated that N deposition in forests at the global scale significantly tends to increase 
foliar P concentrations but also N/P ratios, thus generally trending toward more P-limited forests.


6.3.3 Soil type 

Soil type explained a modest but significant amount of variance (0.1–2%) in tree foliar 
composition and stoichiometry. In fact, soil type and its capacity to supply some of the most 
important bio-elements to plants is partially due to historic and current climatic conditions. 
Species foliar elementomes were consistent with the traits of the various soil types (Figure 6.6). 
Trees growing in Inceptisols and Alfisols, typical of temperate forests, occupied a central position 
in the PCA space, suggesting a more balanced elemental composition than trees growing in other 
soil types. Trees growing in Andisols and Vertisols, two soil types rich in readily weathered 
minerals such as Ca2+ and Mg2+ (refs. 44,45), typically had higher than average foliar Ca and Mg 
concentrations. Andisols are volcanic soils that are frequently rich in Fe-Mg silicates and in 
anorthite, a Ca feldspar. Ertisols are characterized by high concentrations of expandable clays 
such as vermiculite and montmorillonite that are also rich in Mg and Ca, respectively. Trees 
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growing in Spodosols (typical of sandy soils) had the lowest concentrations of Ca, Mg and K, 
which could be linked to the high leaching of basic cations in these acidic soils and, 
consequently, the low content of exchangeable complexes and slow mineralization. Trees growing 
in Spodosols also had the highest foliar P concentrations (Supplementary Fig. 10) and thus the 
highest foliar P/K ratios. Trees growing in Oxisols (wet tropical forests) had the second highest 
foliar N concentrations, the lowest foliar P concentrations, the highest foliar N/P and N/K ratios 
and the lowest foliar P/K ratio (Supplementary Fig. 11). These results for Oxisols are consistent 
with recent observations of low foliar P concentrations and high foliar N/P ratios in wet tropical 
forests28,32. Our global study thus associates high foliar N/K and low foliar P/K ratios with wet 
tropical forests. Relationships between foliar BN and soil type along natural gradients have 
recently been observed46, but these relationships may not be as strong as expected and may not 
necessarily be universal. Ordoñez et al.29 observed that the concentrations of some elements and 
ratios were correlated between soil type and photosynthetic tissues but that others were not.


6.3.4 Competition among coexisting species 

Foliar N and P concentrations, N/P ratio and scores for the first two PCA axes for species shifted 
significantly when the distributions of two species overlapped. These differences usually 
explained little of the variance in foliar elemental concentrations and ratios but were significant 
(Supplementary Tables 8–14). For example, foliar N and P concentrations, N/P ratio and scores for 
the first two PCA axes differed significantly when P. abies grew in areas with and without Q. robur, 
although the percentage of explained variance was ≤3.5% (Supplementary Table 8). These shifts 
were reciprocal and occurred for pairs of tree species that were the most dominant in Europe 
(Supplementary Tables 8–14). These results from field analyses are consistent with those of an 
experiment in seminatural grasslands where the target species shifted their elemental 
compositions depending on neighbouring species17.


6.3.5 Homeostasis versus plasticity 

Intraspecific variability explained a significant amount (2–20%) of the total random variability of all 
elemental concentrations and ratios (Supplementary Tables 6 and 7). Species that have evolved in 
highly fluctuating environments are expected to have a greater capacity of functional and/or 
morphological shifts and thus require a more plastic stoichiometry than species that have evolved 
in a more stable environment13,39. Our results confirmed these expectations: the range of values 
in the FDA that represented the sizes of species-specific BNs was higher (P < 0.001 along roots 1 
and 2) for species subjected to less climatic stress (Q. robur  and  Q. petraea) than for the 
Mediterranean species adapted to drought (P. halepensis, P. pinaster and Q. ilex) (Figure 6.5 and 
Supplementary Tables 5 and 6). These results indicated a trade-off between adaptation to being 
competitive in a stable environment versus being successful in a more fluctuating environment. 
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Different levels of environmental stress cause a continuum of strategies between homeostasis and 
plasticity. Species growing in more stressful environments and with poor resource availability have 
less BN plasticity than those growing in less stressful and richer environments47,48.


6.4 Conclusions 

The results of this study provide clear support for the BN hypothesis13. First, each species had a 
different BN, with a significant trend of larger differences in BNs as phylogenetic distance and 
evolutionary time increased. Recent evolutionary convergence due, for example, to recent 
adaptation of distant clades to similar soil or climatic environments, however, indicated that the 
differences in BN among species could not be fully resolved by phylogenetic analyses alone. 
Second, environmental factors such as climate and soil type also explained an important part of 
the intraspecific variance in BN. These effects were moderate but significant and independent of 
taxonomy. Each species could be represented by its specific space in the hypervolume generated 
by multivariate analysis of its foliar elemental composition and stoichiometry (elementome), so its 
specific plasticity was observed in the shift of its space in response to environmental changes. 
Third, coexisting, competing species tended to have distinct BNs to minimize competitive 
pressure. Fourth, a trade-off between adaptations to being competitive in a stable environment 
versus being successful in a more fluctuating environment generated a continuum of strategies 
between homeostasis and plasticity.


6.5 Methods 
6.5.1 Data acquisition 

Foliar data 

We gathered 23,962  datapoints of foliar N, P, K, Ca, Mg and S concentrations, expressed as 
percentage dry weight. These data corresponded to 227 tree species at a global scale, including 
all latitudes and ecosystems. We considered only those tree species with more than three 
locations. The data were obtained from 192 publications (Supplementary Table 1) and inventories 
such as the Catalan Forest Inventory49. We also gathered and used a subset of 7,479 datapoints 
with 138 species that included information on foliar C concentration, in addition to foliar N, P, K, 
Mg, Ca and S concentrations, for identification of possible differences in the analyses with or 
without C concentrations. All data were obtained from leaves using comparable and homologated 
analytical methods (see the ICP forests manual,  Sampling and Analysis of Needles and 
Leaves, http://icp-forests.net/page/icp-forests-manual). The N, P, K, S, Ca and Mg pairwise ratios 
were calculated on a mass basis. Nutrient concentrations for the same species from different 
databases were analysed using mixed models, with database as a fixed factor and country as a 
random factor; no significant differences were found. All foliar samples were collected between 
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1990 and 2015. We used data derived from georeferenced plots only; Supplementary 
Fig. 1 shows the distribution of those plots.


Data for climate, soil and N and P deposition 

Climatic and soil data were added to the foliar stoichiometric data using the raster package in R 
(v.2.6–7). These data were obtained from the WorldClim 2.0 database50, with a resolution of 1 
km2 at the equator: minimum average temperature, maximum average temperature, average solar 
radiation, maximum wind speed, average wind speed, mean water vapour pressure, MAT, mean 
diurnal range, isothermality, temperature seasonality, maximum temperature of the warmest 
month, minimum temperature of the coldest month, annual temperature range, mean temperature 
of the wettest quarter, mean temperature of the driest quarter, mean temperature of the coldest 
quarter, MAP, mean precipitation of the wettest month, mean precipitation of the driest month, 
mean precipitation seasonality, mean precipitation of the wettest quarter, mean precipitation of 
the driest quarter, precipitation of the warmest quarter and precipitation of the coldest quarter. 
This climatic model was calculated for a long meteorological time series (1970–2000) based on 
interpolated values of climatic data provided by meteorological stations throughout the territory 
and adjusted to the observed topography. Five aridity indices were calculated using the climatic 
data51,52,53,54.


The data for the deposition of atmospheric N and P were obtained from Global Threats to 
Human Water Security and River Biodiversity55, with a resolution of 1 km2 at the equator. Soil 
taxonomies (order and suborder) were obtained from the USDA Global Soils Region Map (https://
www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054013), which provides a 
resolution of 1 km2 at the equator.


6.5.2 Phylogenetic and statistical analyses 

Phylogenetic signal 

We prepared a phylogenetic tree containing the species in our database to test for phylogenetic 
signals using R  statistical software56. We thereby obtained a phylogenetic tree containing a 
selection of species from PhytoPhylo, an available megaphylogeny of vascular plants57. We used 
the read.tree and drop.tip functions from the R ape package58  to load the PhytoPhylo tree and 
removed all species that were not in our database.


We used the phylosig function from the R  phytools package59  to test for phylogenetic 
signals in the foliar elemental compositions of species and therefore to determine the extent to 
which foliar N, P, K, S, Ca and Mg concentrations, pairwise ratios and PCA scores had 
phylogenetic signals. The phylosig function calculates statistics of a phylogenetic signal 
(Pagel’s λ) and P values based on the variance in phylogenetically independent contrasts relative 
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to tip shuffling randomization60. We chose to analyse phylogenetic signals in the data using 
Pagel’s λ assumption, based on a study by Münkemüller et al.61 comparing the advantages and 
disadvantages of various methods for estimation of phylogenetic signals. Pagel’s λ method can 
provide reliable measurements of effect size and discriminate between more complex models of 
trait evolution (such as polygenic organismic traits)62. Mean λ in Pagel’s method does not change 
as the number of species in a phylogeny increases, and is recommended for large phylogenies 
with >50 species (or taxa)63, unlike other methods.


We also used the contMap function of the phytools package to graphically reconstruct the 
values of traits with a phylogenetic signal across our phylogeny. We used the ape package50 to 
load the phylogenetic tree and select the species included in it. The contMap function estimates 
the ancestral characters at internal nodes using maximum likelihood and assuming Brownian 
motion as a model for trait evolution55, and then interpolates the ancestral condition along the 
branches of the tree64


BN size 

Another interesting trait when comparing taxa is BN size. We thus conducted FDA to determine 
whether different but closely related species typical of different environments (from more to less 
climatic stress) tended to have different BN sizes. We compared five of the most important forest 
species in Europe: Q. petraea, Q. robur, Q. ilex, P. pinaster and P. halepensis. All five species were 
represented at 600–800  sites in our database across their distributions. FDA is a multivariate 
analysis that derives optimal separation between groups (in this case, the different sets of 
individuals of each species) by maximizing between-group variance and minimizing within-group 
variance of the set of independent continuous variables used in the analysis (in this case, foliar N, 
P, K, S, Ca and Mg concentrations and their pairwise ratios)65. We compared the range of scores 
in the first two roots of the FDA as a measure of the size of the ‘niche space’ of each species. The 
first two roots of the FDA explained 95.8% of variance in the foliar elemental composition of the 
various species. We then analysed the roles of phylogeny and species in the dispersion of 
canonical scores on the root axes of the FDA using Bayesian phylogenetic linear mixed models 
and the MCMCglmm package66  in R. Phylogeny and species were included as random factors: 
the phylogenetic term accounted for variability in the shared ancestry while the species term 
accounted for species-specific traits independent of shared ancestry.


Analysis of the relationships of foliar elemental composition with climatic variables and N 
deposition 

We tested the effects of climate and N deposition on the foliar concentrations of bio-elements, 
their ratios and PC scores (from the PCA of all elemental foliar concentrations and their pairwise 
ratios) using Bayesian phylogenetic linear mixed models and the MCMCglmm package66  in R. 
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We used MAT, MAP, annual radiation, mean annual vapour pressure deficit, range of diurnal 
temperatures and N deposition as fixed effects. Phylogeny and species were included as random 
factors: the phylogenetic term accounted for variability in shared ancestry while the species term 
accounted for species-specific traits independent of the shared ancestry. Both random factors 
together thus accounted for variance explained by heritability. We repeated these analyses using 
soil type rather than climate and N deposition as fixed effects.


Analysis of the relationships between foliar elemental composition and soil type 

We analysed differences in foliar variables among the various soil types (taxonomic orders). A soil 
map was generated using the R packages raster and rgdal to obtain soil classification for each 
sample location. We chose soil type (orders of soil taxonomy) as the most accurate taxon at the 
pixel scale in the USDA Global Soils Region Map. No data were found for Gelisols or Aridisols. We 
tested the effect of soil order on the foliar concentration of bio-elements, their ratios and PC 
scores (from the PCA of all elemental foliar concentrations and their pairwise ratios) using 
Bayesian phylogenetic linear mixed models and the MCMCglmm package66  in R. We used soil 
orders as fixed effects. Phylogeny and species were included as random factors: the phylogenetic 
and species terms were introduced as random factors accounting for variance explained by 
heritability, as described previously.


We performed PCAs for foliar N, P, K, Ca, Mg and S concentrations and N/P ratios to further 
explore the relationships between trees growing under different soil types and their overall 
elemental compositions. We then analysed the scores of the PC1 and PC2 axes to detect 
differences in overall foliar elemental composition depending on the order of the soil in which they 
grew, using Bayesian phylogenetic linear mixed models and the MCMCglmm package66  in R, in 
which the first three PCA axes were the response variables and soil order was the fixed predictor. 
Phylogeny and species were included as random factors, as in the previous analysis of FDA 
scores. Model parameters (soil types) with non-overlapping 95% credible intervals were 
considered to differ significantly.


Analysis of differences in species foliar elemental composition and stoichiometry between 
populations growing in different communities with different species compositions 

We used the map of species distribution in the European Information System on Forest Genetic 
database,  http://portal.eufgis.org/data/. We compared the foliar N, P and K concentrations of 
pairwise species with comparable co-occurring and non-co-occurring surfaces with an 
overlapping distribution of 25–75%. We established sets of individuals in the overlapping area 
between the compared species and both areas where only one of the species was present. The 
data were analysed in R using the packages raster (v.3.4.3), rgeos (v.3.4.4), maptools (v.3.4.3), 
maps (v.3.4.3), rworldmap (v.3.4.4), ggmap (v.3.4.3) and rworldxtra (v.3.4.4). We used these tools 
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to select species with large distributions and many datapoints in our database (600–800) and 
combined species in several possible pairs. We compared the two portions of global distributions 
for each species of each pair that overlapped or not with the distribution of the other species. We 
used analysis of variance to compare N, P and K concentrations and PC1 and PC2 scores (from 
the PCA of the six bio-elements and their pairwise ratios) for each species inside and outside the 
overlapping zone (with or without competition between the two species, respectively).
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All supplementary figures and tables are available online at: https://www.nature.com/articles/
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7 
General conclusions 

In this thesis I have worked around the elemental composition and stoichiometry in leaves of 
woody plants, and I have established and/or determined their relations with environmental drivers. 
I started exploring the effect of N deposition on foliar elemental composition and stoichiometry of 
dominant species in a Mediterranean forest under drought conditions through an experimental 
design. I obtained evidence of the capability of Mediterranean species to incorporate rapidly this 
N addition under drought conditions even though its magnitude differs between species. Thus, we 
observed that the addition of N can partially counteract the decrease of N as a response of 
drought. Despite of these results we cannot consider the addition of N as a good drought effect 
palliative because its addition could generate nutrient imbalances and modify the competition 
capacity of the species.


In a continental context of Europe, I wanted to describe the defoliation tendencies, 
determine the relationship of defoliation with environmental conditions and establish the relation 
between defoliation and foliar elemental composition, which is a new approach. All these relations 
intended to be useful in terms of determining the health of European forests relating higher 
defoliation rates with worse forest health state. According to the results, the defoliation is 
increasing in Europe the last decades and it is expected to keep increasing due to climate change 
conditions. Also, gymnosperms showed higher defoliation rates than angiosperms and most of 
the studied species showed an increasing defoliation. We emphasize the necessity of considering 
the different pressures that affect different latitudes. Homogeneity of precipitation, spring 
conditions and climatic legacy of the previous year also appeared to be very important in 
defoliation. Furthermore, I want to highlight the established relation of defoliation with foliar 
elemental composition where foliar N has shown to be strongly related with defoliation, with an 
inverse correlation. Foliar S, Ca and P were also important in some European species.


The increasing attention of foliar elemental composition in the scientific community 
generated a big amount of global data in the last years that, in conjunction with new 
computational resources and techniques allows to conduct an accurate analysis at global scale. 
In this thesis I used these resources to provide high resolution global maps of N, P, K and N:P 
foliar elemental composition which, from my point of view, are a promising tool to increase the 



7. GENERAL CONCLUSIONS

accuracy of global C-cycle modeling. In all the cases the foliar elemental composition responded 
differently to climatic pressures depending on its morphoclimatic group. The global distribution of 
N, P and K did not have a strong latitudinal component but N:P ratio clearly showed an inverse 
correlation with latitude. Furthermore, N, P and N:P generally followed the soil-age hypothesis.


Most of the chapters in this thesis discuss around the biogeochemical niche hypothesis 
and in all the cases the importance of species identity or the genetic pool is highlighted. The most 
specific chapter around this topic is the 6th, where a clear and specific empirical support 
confirming the biogeochemical niche theory is provided. According to the results, from 60% to 
94% of chemical variability depends on phylogenetic differences between species, from 1% to 
7% depends on environmental conditions and the rest vary depending on biotic competitions. In 
the global models of N, P, K and N:P also a big part of explained variability depended on the 
evolutionary history of the studied species and in the 2nd chapter the different studied species 
had an independent multi-space of chemical conditions and reacted differently to the different 
conditions. So, with all this evidence gathered, genetic legacy and species identity should be 
considered in future investigations regarding foliar elemental composition.
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Table S3.1. Studied variables summary including variable name, origin and brief description

Variable name Origin Description

SPEI 01 annual avg. https://spei.csic.es/ Annual average SPEI of 1 month window

SPEI 01 spring avg. https://spei.csic.es/ Spring average SPEI of 1 month window

SPEI 01 summer avg. https://spei.csic.es/ Summer average SPEI of 1 month window

SPEI 03 annual avg. https://spei.csic.es/ Annual average SPEI of 3 month window

SPEI 03 spring avg. https://spei.csic.es/ Spring average SPEI of 3 month window

SPEI 03 summer avg. https://spei.csic.es/ Summer average SPEI of 3 month window

SPEI 06 annual avg. https://spei.csic.es/ Annual average SPEI of 6 month window

SPEI 06 spring avg. https://spei.csic.es/ Spring average SPEI of 6 month window

SPEI 06 summer avg. https://spei.csic.es/ Summer average SPEI of 6 month window

SPEI 12 annual avg. https://spei.csic.es/ Annual average SPEI of 12 month window

SPEI 12 spring avg. https://spei.csic.es/ Spring average SPEI of 12 month window

SPEI 12 summer avg. https://spei.csic.es/ Summer average SPEI of 12 month window

MAP CRU (Harris et al., 2020) Mean annual precipitation

MAP spring CRU (Harris et al., 2020) Mean spring precipitation

MAP winter CRU (Harris et al., 2020) Mean winter precipitation

MAT CRU (Harris et al., 2020) Mean annual temperature

MAT spring CRU (Harris et al., 2020) Mean spring temperature

MAT winter CRU (Harris et al., 2020) Mean winter temperature

MAP ant. Transformation Mean annual precipitation of previous year

MAP spring ant. Transformation Mean annual precipitation of previous spring

MAP winter ant. Transformation Mean annual precipitation of previous winter

MAT ant. Transformation Mean annual temperature of previous year

MAT spring ant. Transformation Mean annual temperature of previous spring

MAT winter ant. Transformation Mean annual temperature of previous winter

Foliar N ICP forests In dry weight (mg/g)

Foliar S ICP forests In dry weight (mg/g)

Foliar P ICP forests In dry weight (mg/g)

https://spei.csic.es/
https://spei.csic.es/
https://spei.csic.es/
https://spei.csic.es/
https://spei.csic.es/
https://spei.csic.es/
https://spei.csic.es/
https://spei.csic.es/
https://spei.csic.es/
https://spei.csic.es/
https://spei.csic.es/
https://spei.csic.es/
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Table S3.1 Continuation

Foliar P ICP forests In dry weight (mg/g)

Foliar Ca ICP forests In dry weight (mg/g)

Foliar mg ICP forests In dry weight (mg/g)

Foliar K ICP forests In dry weight (mg/g)

Soil Org. C Sun Yat-sen Univ.  (Shangguan et al., 2014)

Soil pH H2O Sun Yat-sen Univ.  (Shangguan et al., 2014)

N dep. ox. Sun Yat-sen Univ.  (Shangguan et al., 2014)

N dep. red. Sun Yat-sen Univ.  (Shangguan et al., 2014)

S ox. Sun Yat-sen Univ.  (Shangguan et al., 2014)

Soil pH difference Transformation Soil pH H2O - Soil pH CaCl2

Thermal amplitude Transformation Annual maximum temperature - Annual 
minimum temperature

Table S3.2 Summary of Chow test results between angiosperms 
and gymnosperms in al-Europe and all three latitudinal fringes.

Angiosperms vs 
gymnosperms

F-value P-value

General 3476.237 0.000

North 704.863 0.000

Central 2821.822 0.000

Mediterranean 265.789 0.000
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Figure S4.1 Continue

Table S4.1
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Figure S4.1 Neural network standard error (SE) maps of a) N, b) P, and c) K for tree covered zones. White areas 
indicate no tree vegetation cover.

Nutrient Tropical 
evergreen

Tropical 
deciduous

Temperate 
coniferous

Temperate 
evergreen 

broadleaves

Temperate 
deciduous 

broadleaves
Boreal Mean

RMSE (%) N 0.483 0.548 0.251 0.335 0.446 0.310 0.395

MAE (%) 0.377 0.426 0.185 0.242 0.312 0.214 0.293

Mean (%) 1.793 1.916 1.264 1.660 2.187 1.528 1.725

SD (%) 0.333 0.191 0.423 0.257 0.254 0.375 0.306

CV (%) 18.572 9.969 33.465 15.482 11.614 24.542 18.941

RMSE (%) P 0.061 0.072 0.055 0.057 0.057 0.057 0.060

MAE (%) 0.047 0.058 0.042 0.044 0.043 0.042 0.046

Mean (%) 0.109 0.139 0.140 0.160 0.169 0.135 0.142

SD (%) 0.119 0.149 0.148 0.165 0.110 0.135 0.137

CV (%) 109.298 107.013 105.697 102.726 64.761 100.087 98.264

RMSE (%) K 0.266 0.268 0.161 0.268 0.224 0.161 0.225

MAE (%) 0.208 0.204 0.121 0.194 0.168 0.120 0.169

Mean (%) 0.738 0.825 0.641 0.814 0.918 0.678 0.769

SD (%) 0.204 0.184 0.089 0.031 0.078 0.111 0.116

CV (%) 27.642 22.303 13.885 3.808 8.497 16.372 15.418

Table S4.1 Root Mean Squared Error (RMSE), Mean Absolut Error (MAE), Mean, Standard Deviation of the predictions 
(SD) and Coefficient of Variation (CV) of neural network prediction for each forest morfoclimatic type.
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Element mean std r Q25 Q50 Q75

Oxisols

N

1.925 0.380 9747759 1.696 1.877 2.067

Vertisols 1.827 0.421 1474053 1.518 1.840 2.159

Aridisols 1.809 0.451 5965666 1.540 1.773 2.079

Entisols 1.792 0.442 10399889 1.491 1.761 2.062

Mollisols 1.745 0.456 3835740 1.440 1.732 2.042

Gelisols 1.708 0.423 12555849 1.355 1.668 2.024

Ultisols 1.695 0.377 9532959 1.465 1.689 1.924

Inceptisols 1.665 0.419 23939807 1.334 1.610 1.947

Andisols 1.656 0.437 992731 1.357 1.603 1.896

Alfisols 1.629 0.492 11362246 1.225 1.577 1.949

Histosols 1.349 0.531 2068271 1.072 1.181 1.387

Spodosols 1.305 0.360 8112938 1.077 1.199 1.449

Vertisols

P

0.154 0.063 1468477 0.106 0.152 0.196

Mollisols 0.153 0.066 3717903 0.110 0.146 0.185

Gelisols 0.153 0.087 12438420 0.092 0.140 0.192

Inceptisols 0.144 0.075 23093731 0.091 0.134 0.186

Aridisols 0.140 0.059 5861452 0.101 0.136 0.175

Alfisols 0.134 0.057 11325446 0.096 0.133 0.170

Andisols 0.132 0.063 961789 0.087 0.127 0.167

Entisols 0.127 0.068 10135525 0.082 0.118 0.163

Spodosols 0.127 0.051 7996245 0.093 0.128 0.157

Histosols 0.116 0.065 1839547 0.068 0.108 0.150

Ultisols 0.096 0.052 8855638 0.062 0.088 0.121

Oxisols 0.094 0.039 9510712 0.069 0.092 0.116

Vertisols

K

0.977 0.288 1478594 0.764 0.981 1.157

Aridisols 0.938 0.255 5844462 0.768 0.909 1.065

Entisols 0.875 0.255 11351275 0.707 0.844 1.004

Mollisols 0.843 0.216 4005397 0.690 0.824 0.974

Histosols 0.829 0.385 2101576 0.607 0.727 0.858

Andisols 0.804 0.255 990715 0.642 0.768 0.923

Ultisols 0.746 0.239 9789001 0.586 0.711 0.863

Alfisols 0.745 0.209 11510110 0.608 0.722 0.850

Table S4.2 Post-hoc results of predicted foliar N, P and K concentrations for the different soil orders. 
Q25, Q50 and Q75 are the quartiles.
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Oxisols

K

0.743 0.286 9777929 0.565 0.714 0.852

Inceptisols 0.697 0.240 24365193 0.530 0.679 0.827

Gelisols 0.608 0.218 12520339 0.444 0.587 0.737

Spodosols 0.575 0.193 8053901 0.457 0.540 0.665

N P K

Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

Tropical 
evergreen

(Intercept) -2.896 0.000 (Intercept) 44.934 0.000 (Intercept) 1.132 0.000

Ai_et0 0.000 0.000 Inorganic_Ndeptot -0.005 0.000 EXH 0.172 0.000

PHH2O 0.062 0.000 PETseasonality 0.085 0.000 Inorganic_Ndepdry -0.000 0.048

Var41 0.000 0.000 PHCA -0.188 0.000 Bio_12 0.000 0.000

Bio_15 0.000 0.010 Bio_3 -0.374 0.000 EXH:inorganic_Ndepdry -0.000 0.000

Ai_et0:PHH2O -0.000 0.000 Bio_9 -1.038 0.000 EXH:Bio_12 -0.000 0.000

PHH2O:var41 -0.000 0.000 Bio_3:Bio_9 0.016 0.000 Inorganic_Ndepdry:Bio_12 0.000 0.011

AIC / pR2 7264.805 0.101 AIC / pR2 -13489.126 0.116 AIC / pR2 658.477 0.054

Tropical 
deciduous

(Intercept) 0.455 0.000 (Intercept) 22.451 0.000 (Intercept) 2.189 0.000

BS -0.002 0.000 BS -0.118 0.000 Et0_yr -0.000 0.000

CEC -0.002 0.051 EXCA 0.091 0.021 Oxred_Ndepwetred -0.003 0.000

GRAV 0.005 0.001 PHH2O -0.199 0.000 Bio_7 -0.006 0.453

PETseasonality 0.005 0.000 Bio_3 -0.054 0.000 Oxred_Ndepwetred:Bio_7 0.000 0.001

BS:CEC 0.000 0.000 BS:PHH2O 0.002 0.000

CEC:GRAV -0.000 0.000

AIC / pR2 2844.228 0.060 AIC / pR2 -4219.656 0.049 AIC / pR2 170.243 0.044

Temperate 
coniferous

(Intercept) 0.668 0.000 (Intercept) 13.730 0.000 (Intercept) -0.086 0.495

BS -0.001 0.000 Ai_et0 0.000 0.000 Ai_et0 0.000 0.000

Et0_yr -0.000 0.000 EXK 9.917 0.000 PETseasonality 0.008 0.000

PHCA 0.005 0.000 PHH2O -0.144 0.000 Var29 0.006 0.000

PHK -0.109 0.000 PHK -2.859 0.000 Bio_1 0.109 0.000

Bio_18 0.000 0.000 Ai_et0:EXK -0.001 0.000 Ai_et0:var29 -0.000 0.000

Et0_yr:PHK 0.000 0.000 PHH2O:PHK 0.044 0.000 Ai_et0:Bio_1 -0.000 0.000

AIC / pR2 4056.611 0.249 AIC / pR2 -44732.147 0.184 AIC / pR2 -9733.303 0.043

Table S4.3 Generalized Mixed Model (GLM) results for foliar N, P and K concentrations. It includes variable slope and p 
value, model Akaike Information Criterion (AIC) and model R2. See Table S7 for description of variable abbreviations.

TS4.2 Continuation
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Temperate 
broadleaved 
evergreen

(Intercept) -0.442 0.020 (Intercept) 14.905 0.000 (Intercept) 3.552 0.000

Ai_et0 0.000 0.000 Ai_et0 -0.000 0.000 Et0_yr -0.000 0.404

Et0_yr 0.000 0.001 PETseasonality -0.065 0.000 Var41 -0.000 0.019

PHH2O 0.018 0.000 Bio_14 0.146 0.000 Bio_17 -0.014 0.000

Ai_et0:et0_yr 0.000 0.000 Bio_17 -0.096 0.000 Et0_yr:Bio_17 -0.000 0.081

Ai_et0:PHH2O -0.000 0.000 Ai_et0:Bio_17 0.000 0.000 Var41:Bio_17 0.000 0.000

Et0_yr:PHH2O -0.000 0.000 PETseasonality:Bio_17 0.001 0.000

AIC / pR2 2924.360 0.055 AIC / pR2 -7082.053 0.049 AIC / pR2 194.543 0.028

Temperate 
broadleaved 
deciduous

(Intercept) 0.505 0.000 (Intercept) 5.925 0.000 (Intercept) 0.999 0.000

Ai_et0 -0.000 0.000 Organic_Ndepdry 0.378 0.000 Ai_et01 -0.000 0.490

PHH2O -0.000 0.048 Oxred_Ndeptotox -0.004 0.002 PHCA 0.003 0.000

Bio_12 0.000 0.000 PNZ -0.001 0.000 Bio_14 0.001 0.256

Bio_17 -0.000 0.000 Var31 0.084 0.000 Bio_19 0.001 0.002

Ai_et0:Bio_17 0.000 0.000 Bio_1 0.604 0.000 Ai_et0:Bio_14 0.000 0.000

Var31:Bio_1 -0.007 0.000 Bio_14:Bio_19 -0.000 0.000

AIC / pR2 7441.211 0.076 AIC / pR2 -6455.099 0.098 AIC / pR2 -226.012 0.026

Boreal

(Intercept) 1.016 0.000 (Intercept) 6.326 0.000 (Intercept) 3.460 0.000

var28 0.086 0.000 Oxred_Ndepwetox -0.006 0.013 Inorganic_Ndepdry -0.002 0.000

var29 -0.060 0.000 Var29 0.019 0.000 Bio_11 0.124 0.001

Bio_5 -0.029 0.000 Bio_1 0.364 0.000 Bio_12 -0.001 0.000

var28:var29 -0.000 0.000 Bio_10 -0.039 0.191 Bio_6 0.060 0.021

var28:Bio_5 -0.004 0.000 Oxred_Ndepwetox:Bio_1 0.005 0.000 Bio_11:Bio_6 0.004 0.000

var29:Bio_5 0.003 0.000 Bio_1:Bio_10 -0.056 0.000 Bio_12:Bio_6 -0.000 0.000

AIC / pR2 3206.911 0.388 AIC / pR2 -9105.834 0.079 AIC / pR2 -1562.190 0.070

Table S4.3 Continuation



7. Appendix IV

127

Table S4.4 (a and b): Generalized linear mixed model (GLMM) fixed effects with significant variables in bold (<0.05). Description of 
abbreviations in Table S7 (a). Glmm performance and % of variance explained by each random factor: R2 (random) = R2c - R2m (b).

Nitrogen fixed effects Phosphorus fixed effects Potassium fixed effects

post 
mean

p 
MCMC

post 
mean

p 
MCM
C

post 
mean

p 
MCM
C

Tropical 
evergreen

(Intercept) 2.222 0.001 (Intercept) 0.062 0.012 (Intercept) 0.488 0.001

Bio_15 0.001 0.407 Bio_3 0.000 0.199 Bio_4 -0.000 0.464

Ai_et0 0.000 0.253 Bio_9 -0.001 0.088 Bio_6 0.003 0.563

Var41 -0.000 0.001 PETseasonality -0.001 0.003 Bio_7 0.010 0.047

BS -0.000 0.880 PHCA 0.001 0.001 Bio_12 0.000 0.484

PHH2O -0.003 0.199 Inorganic_Ndepdry 0.000 0.015 EXH -0.006 0.084

PHK 0.039 0.189 Inorganic_Ndeptot -0.000 0.764 Inorganic_Ndepdry 0.000 0.169

Tropical 
deciduous

(Intercept) 2.281 0.001 (Intercept) 0.010 0.853 (Intercept) 0.370 0.360

PETseasonality -0.012 0.001 Bio_3 0.000 0.024 Bio_1 -0.003 0.821

BS -0.002 0.483 Bio_17 0.000 0.061 Bio_7 0.000 0.993

CEC -0.002 0.676 BS -0.000 0.713 Et0_yr 0.000 0.032

EXH -0.007 0.547 EXCA -0.002 0.012 Var30 0.000 0.700

GRAV 0.002 0.433 PHCA 0.000 0.677 Oxred_Ndepdryred 0.000 0.617

PHH2O 0.003 0.631 PHH2O 0.001 0.089 Oxred_Ndepwetred 0.000 0.805

Temperate 
coniferous

(Intercept) 2.048 0.001 (Intercept) 0.350 0.891 (Intercept) 0.607 0.708

Bio_9 0.004 0.001 Ai_et0 -0.000 0.077 Bio_11 -0.001 0.492

Bio_18 0.000 0.080 BS 0.000 0.001 Bio_13 0.001 0.001

Et0_yr -0.001 0.001 EXK -0.002 0.929 Ai_et0 -0.000 0.001

BS 0.003 0.001 PHCA -0.000 0.924 PETseasonality 0.000 0.880

PHCA -0.010 0.001 PHH2O -0.001 0.001 Var28 0.000 0.132

PHK 0.032 0.001 PHK -0.007 0.204 Var29 0.000 0.717
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Temperate 
broadleave
d evergreen

(Intercept) 1.857 0.001 (Intercept) 0.129 0.001 (Intercept) 0.501 0.001

Et0_yr -0.000 0.004 Bio_1 -0.000 0.372 Bio_14 0.004 0.001

Ai_et0 -0.000 0.181 Var31 0.000 0.003 Bio_17 -0.001 0.059

BS -0.001 0.011 PNZ 0.000 0.424 Et0_yr 0.000 0.004

PHCA 0.007 0.001 Inorganic_Ndepwet 0.000 0.001 Var41 -0.000 0.311

PHH2O -0.002 0.056 Organic_Ndepdry -0.001 0.205 Inorganic_Ndeptot 0.000 0.001

PHK -0.067 0.001 Oxred_Ndeptotox -0.000 0.001 Oxred_Ndepwetox -0.002 0.001

Temperate 
broadleave
d 
deciduous

(Intercept) 1.939 0.001 (Intercept) 0.146 0.001 (Intercept) 0.877 0.001

Bio_12 -0.000 0.003 Bio_14 -0.001 0.001 Bio_12 0.000 0.380

Bio_17 0.000 0.057 Bio_17 0.000 0.001 Bio_13 -0.000 0.929

Bio_19 -0.000 0.149 Ai_et0 -0.000 0.713 Bio_14 -0.000 0.552

Ai_et0 0.000 0.001 PETseasonality -0.000 0.005 Bio_19 0.000 0.023

Var28 0.000 0.479 EXCA -0.000 0.017 Ai_et0 -0.000 0.001

PHH2O 0.001 0.300 Inorganic_Ndeptot -0.000 0.583 PHCA -0.001 0.001

Boreal

(Intercept) 1.529 0.001 (Intercept) 0.236 0.001 (Intercept) 0.643 0.001

Bio_1 0.001 0.887 Bio_1 0.002 0.003 Bio_6 0.017 0.025

Bio_5 0.009 0.032 Bio_10 0.004 0.001 Bio_11 -0.029 0.003

Bio_9 0.001 0.683 Et0_yr -0.000 0.001 Bio_12 0.000 0.753

Var28 -0.009 0.001 Var29 -0.000 0.001 Bio_13 0.000 0.939

Var29 0.007 0.001 Oxred_Ndeptotox 0.000 0.519 Var29 -0.000 0.948

Inorganic_Ndepwet-0.000 0.397 Oxred_Ndepwetox -0.000 0.124 Inorganic_Ndepdry 0.000 0.001

Table S4.4  a. Continuation
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R2c R2m (fixed) R2 (random) phylo species units

Nitrogen

Tropical evergreen  0.742 0.018 0.723 0.555 0.182 0.263

Tropical deciduous 0.551 0.036 0.515 0.406 0.128 0.466

Temperate coniferous 0.720 0.082 0.638 0.319 0.372 0.309

Temperate 
broadleaved 
evergreen

0.826 0.008 0.817 0.500 0.324 0.176

Temperate 
broadleaved  
deciduous

0.436 0.010 0.426 0.144 0.287 0.570

Boreal 0.769 0.012 0.758 0.548 0.218 0.234

Phosphoru
s

Tropical evergreen  0.662 0.024 0.639 0.435 0.219 0.346

Tropical deciduous 0.424 0.030 0.394 0.220 0.186 0.594

Temperate coniferous 0.988 0.000 0.988 0.552 0.435 0.012

Temperate 
broadleaved 
evergreen

0.802 0.009 0.793 0.296 0.505 0.200

Temperate 
broadleaved  
deciduous

0.795 0.006 0.789 0.247 0.546 0.206

Boreal 0.752 0.017 0.736 0.420 0.328 0.252

Potassium

Tropical evergreen  0.494 0.037 0.456 0.176 0.298 0.526

Tropical deciduous 0.337 0.082 0.254 0.194 0.082 0.724

Temperate coniferous 0.980 0.000 0.980 0.559 0.421 0.020

Temperate 
broadleaved 
evergreen

0.388 0.022 0.366 0.116 0.258 0.626

Temperate 
broadleaved  
deciduous

0.239 0.016 0.223 0.134 0.092 0.774

Boreal 0.816 0.011 0.805 0.603 0.210 0.187

Table S4.4  b.
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N P K

Tropical evergreen 3862 3761 1946

Tropical deciduous 1341 1368 366

Temperate coniferous 11152 11165 10720

Temperate broadleaved evergreen 2267 1799 1486

Temperate broadleaved deciduous 3813 3791 2825

Boreal 2196 1842 1645

sum 24631 23726 18988
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Nick Complete names Units Source

Var28 Minimum June July August precipitation mm Metzger et al., 2013

Var29 Maximum June July August precipitation mm Metzger et al., 2013

Var30 Minimum December January February 
precipitation

mm Metzger et al., 2013

Var31 Maximum December January February 
precipitation

mm Metzger et al., 2013

Var41 Daily mean solar radiation kJ m-2 day-1 Fick	and	Hijmans,	2017

Var42 Altitude m Fick	and	Hijmans,	2017

BD Bulk density g/cm3 Shangguan	et	al.,	2014

BS Base saturation % Shangguan	et	al.,	2014

CACO3 CaCo3 % of weight Shangguan	et	al.,	2014

CEC Cation exchange capacity cmol/kg Shangguan	et	al.,	2014

CLAY Clay content % of weight Shangguan	et	al.,	2014

ECE Electrical conductivity ds/m Shangguan	et	al.,	2014

ESP Exchangeable Na cmol/kg Shangguan	et	al.,	2014

EXAL Exchangeable Al cmol/kg Shangguan	et	al.,	2014

EXCA Exchangeable Ca cmol/kg Shangguan	et	al.,	2014

EXH Exchangeable acidity cmol/kg Shangguan	et	al.,	2014

EXK Exchangeable K cmol/kg Shangguan	et	al.,	2014

EXMG Exchangeable Mg cmol/kg Shangguan	et	al.,	2014

EXNA Exchangeable Na cmol/kg Shangguan	et	al.,	2014

GRAV Gravel content % of volume Shangguan	et	al.,	2014

GYP Gypsum % of weight Shangguan	et	al.,	2014

OC Organic carbon % of weight Shangguan	et	al.,	2014

Table S4.7 Abbreviations, complete names and units for the variables used to build the models.
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PBR P Bray1 method ppm of weight Shangguan	et	al.,	2014

PHCA Ph(CaCl2) Shangguan	et	al.,	2014

PHH2O Ph(H2o) Shangguan	et	al.,	2014

PHK Ph(KCl) Shangguan	et	al.,	2014

PNZ P retention New Zeland method % of weight Shangguan	et	al.,	2014

SAND Sand content % of weight Shangguan	et	al.,	2014

SILT Silt content % of weight Shangguan	et	al.,	2014

TC Total carbon % of weight Shangguan	et	al.,	2014

TK Total K % of weight Shangguan	et	al.,	2014

TN Total N % of weight Shangguan	et	al.,	2014

TP Total P % of weight Shangguan	et	al.,	2014

TS Total S % of weight Shangguan	et	al.,	2014

VMC1 Volumetric water content at -10 KPa % of volume Shangguan	et	al.,	2014

VMC2 Volumetric water content at -33 KPa % of volume Shangguan	et	al.,	2014

VMC3 Volumetric water content at -1500 KPa % of volume Shangguan	et	al.,	2014

Modelslat Latitude º -

Inorganic_
Ndepdry

Dry inorganic N deposition kgN·km−2·year−1 Ackerman	et	al.	(2018)	

Inorganic_
Ndeptot

Total inorganic N deposition kgN·km−2·year−1 Ackerman	et	al.	(2018)	

Inorganic_
Ndepwet

Wet inorganic N deposition kgN·km−2·year−1 Ackerman	et	al.	(2018)	

Organic_N
depdry

Dry organic N deposition kgN·km−2·year−1 Ackerman	et	al.	(2018)	

Organic_N
deptot

Total organic N deposition kgN·km−2·year−1 Ackerman	et	al.	(2018)	

Organic_N
depwet

Wet organic N deposition kgN·km−2·year−1 Ackerman	et	al.	(2018)	

Oxred_Nd
epdryox

Dry oxidate N deposition kgN·km−2·year−1 Ackerman	et	al.	(2018)	

Oxred_Nd
epdryred

Dry reduced N deposition kgN·km−2·year−1 Ackerman	et	al.	(2018)	

Oxred_Nd
eptotox

Total oxidate N deposition kgN·km−2·year−1 Ackerman	et	al.	(2018)	

Oxred_Nd
eptotred

Total reduced N deposition kgN·km−2·year−1 Ackerman	et	al.	(2018)	

Oxred_Nd
epwetox

Wet oxidate N deposition kgN·km−2·year−1 Ackerman	et	al.	(2018)	
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Oxred_Nd
epwetred

Wet reduced N deposition kgN·km−2·year−1 Ackerman	et	al.	(2018)	

Pdep P deposition mg m-2 year-1 Wang	et	al.	(2017)

Bio_1 Annual mean temperature ºC Fick	and	Hijmans,	2017

Bio_2 Mean diurnal range ºC Fick	and	Hijmans,	2017

Bio_3 Isothermality Fick	and	Hijmans,	2017

Bio_4 Temperature seasonality Fick	and	Hijmans,	2017

Bio_5 Maximum temperature of the warmest 
month

ºC Fick	and	Hijmans,	2017

Bio_6 Minimum temperature of the coldest month ºC Fick	and	Hijmans,	2017

Bio_7 Annual temperature range ºC Fick	and	Hijmans,	2017

Bio_8 Mean temperature of the wettest quarter ºC Fick	and	Hijmans,	2017

Bio_9 Mean temperature of the driest quarter ºC Fick	and	Hijmans,	2017

Bio_10 Mean temperature of the warmest quarter ºC Fick	and	Hijmans,	2017

Bio_11 Mean temperature of the coldest quarter ºC Fick	and	Hijmans,	2017

Bio_12 Annual precipitation mm Fick	and	Hijmans,	2017

Bio_13 Precipitation of the wettest month mm Fick	and	Hijmans,	2017

Bio_14 Precipitation of the driest month mm Fick	and	Hijmans,	2017

Bio_15 Precipitation seasonality Fick	and	Hijmans,	2017

Bio_16 Precipitation of wettest quarter mm Fick	and	Hijmans,	2017

Bio_17 Precipitation of driest quarter mm Fick	and	Hijmans,	2017

Bio_18 Precipitation of warmest quarter mm Fick	and	Hijmans,	2017

Bio_19 Precipitation of coldest quarter mm Fick	and	Hijmans,	2017

Et0_yr Annual evapotranspiration mm/day Trabucco	&	Zomer,	2019

Ai_et0 Aridity Index Trabucco	&	Zomer,	2019

PETseaso
nality

Evapotranspiration seasonality Trabucco	&	Zomer,	2019
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Vegetation group ESA-CCI-LC correspondence

Tropical evergreen 12,40,50,70,71,72,90,100,120,121,160,170 

Tropical deciduous 12,40,60,61,62,90,100,120,122,160,170 

Temperate coniferous 12,40,70,71,72,80,81,82,90,100 

Temperate broadleaved 
evergren

12,40,50,90,100,120,121,160,170 

Temperate broadleaved 
deciduous

12,40,60,61,62,90,100,120,122,160,170 

Boreal 40,60,61,62,70,71,72,80,81,82,90,100,120,121,122,160,170 

No data 10,11,20,30,110,130,140,150,151,152,153,180,190,200,201,202,210,22
0 

TS8. a) Reclassification table from the European Space Agency - Climate Change Iniciative - Land Cover (ESA-CCI-
LC) map (ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. 2017. Available at: maps.elie.ucl.ac.be/CCI/
viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf ) to our morphoclimatic types. b) Equivalent categories from ESA-
CCI-LC map
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TS8. b
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vars N_
Tr
op
E

N_
Tr
op
D

N_
Te
mp
C

N_T
em
pEB

N_T
em
pDB

N
_
B
or

P_
Tr
op
E

P_
Tr
op
D

P_T
em
pC

P_T
em
pEB

P_T
em
pD
B

P
_
B
or

K_
Tr
op
E

K_
Tr
op
D

K_
Te
mp
C

K_T
em
pEB

K_T
em
pD
B

K
_
B
or

var28   x  x x   x  x x   x    

var29   x   x   x   x   x  x x

var30         x     x     

var31 x             x    x

var41 x x x x x   x x x x     x x  

var42                   

BD                  x

BS x x x x x  x x x x     x  x  

CACO3   x      x      x    

CEC x x     x x  x   x x  x   

CLAY                   

ECE   x       x      x   

ESP             x      

EXAL  x   x   x        x   

EXCA   x x    x x x    x x x x  

EXH x x     x      x      

EXK x x x x x  x x x x  x x  x  x x

EXMG              x     

EXNA                   

GRAV  x      x           

GYP             x      

OC                   

PBR                   

PHCA x x x x x  x x x x x   x x  x  

PHH2O x x x x x  x x x  x  x  x x x  

PHK x x x x x   x x x x  x  x x x  

PNZ                   

SAND                   

SILT                   

Table S4.9 Final variables selected per each model using the Kaiser-Meyer-Olkin method. The 19 least correlated 
per model. TropE = Tropical evergreen, TropD = Tropical deciduous, TempC = Temperate coniferous,  TempBE = 
Temperate broadleaved evergreen, TempBD = Temperate broadleaved deciduous, Bor = Boreal. Complete variable 
names are shown in table S7.
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TC     x              

TK  x   x  x    x        

TN                   

TP                   

TS                   

VMC1           x        

VMC2                   

VMC3        x           

modelsl
at

      x            

inorgani
c_Ndep
dry

     x x     x x x  x  x

inorgani
c_Ndep
tot

     x x   x  x x x  x  x

inorgani
c_Ndep
wet

     x x   x  x x x  x  x

organic
_Ndepd
ry

                  

organic
_Ndept
ot

                  

organic
_Ndep
wet

                  

oxred_
Ndepdr
yox

x      x x           

oxred_
Ndepdr
yred

            x x     

oxred_
Ndepto
tox

     x      x      x

oxred_
Ndepto
tred

       x      x     

oxred_
Ndepw
etox

     x      x    x   
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oxred_
Ndepw
etred

       x      x     

Pdep x  x   x   x   x x  x   x

wc2.1_
30s_bio
_1

x  x x  x   x   x  x x   x

wc2.1_
30s_bio
_2

   x      x x        

wc2.1_
30s_bio
_3

x x  x   x x           

wc2.1_
30s_bio
_4

x      x     x x      

wc2.1_
30s_bio
_5

     x       x x  x   

wc2.1_
30s_bio
_6

     x x     x x x    x

wc2.1_
30s_bio
_7

x      x     x x x    x

wc2.1_
30s_bio
_8

  x x x    x x x    x x x x

wc2.1_
30s_bio
_9

x x x x x x x x x x x x   x x x x

wc2.1_
30s_bio
_10

           x       

wc2.1_
30s_bio
_11

     x x     x      x

wc2.1_
30s_bio
_12

   x x     x x  x    x x

wc2.1_
30s_bio
_13

   x  x     x x   x  x x

wc2.1_
30s_bio
_14

 x  x  x    x x   x  x x  
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wc2.1_
30s_bio
_15

x x   x   x     x x     

wc2.1_
30s_bio
_16

          x x     x x

wc2.1_
30s_bio
_17

 x  x x x  x  x x     x x x

wc2.1_
30s_bio
_18

  x   x   x      x x   

wc2.1_
30s_bio
_19

  x  x      x    x  x  

et0_yr  x x x x x  x x x x x  x x x x  

ai_et0 x x  x x    x x x    x  x  

PETsea
sonality

x x x x x x x  x x x  x  x x x  
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Table S5.1 See table S4.6

Table S5.2 See table S4.7

Table S5.3 See table S4.8a and S4.8b

Table S5.4 

vars Trop TempN TempB Bor

1 var28  x x  

2 var29  x  x

3 var30     

4 var31 x   x

5 var41 x x x  

6 var42     

7 BD     

8 BS x x x  

9 CACO3  x   

10 CEC x    

11 CLAY     

12 ECE     

13 ESP x    

14 EXAL     

15 EXCA  x x  

16 EXH x    

17 EXK x x x x

18 EXMG     

19 EXNA     

20 GRAV     

21 GYP     

22 OC     

23 PBR     

24 PHCA x x x  
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25 PHH2O x x x  

26 PHK  x x  

27 PNZ     

28 SAND     

29 SILT     

30 TC     

31 TK x    

32 TN     

33 TP     

34 TS     

35 VMC1     

36 VMC2     

37 VMC3    x

38 modelslat x    

39 inorganic_Ndepdry x   x

40 inorganic_Ndeptot x   x

41 inorganic_Ndepwet     

42 organic_Ndepdry     

43 organic_Ndeptot     

44 organic_Ndepwet     

45 oxred_Ndepdryox    x

46 oxred_Ndepdryred     

47 oxred_Ndeptotox    x

48 oxred_Ndeptotred     

49 oxred_Ndepwetox     

50 oxred_Ndepwetred     

51 Pdep  x  x

52 wc2.1_30s_bio_1     

53 wc2.1_30s_bio_2   x  

54 wc2.1_30s_bio_3     

55 wc2.1_30s_bio_4     

56 wc2.1_30s_bio_5     

57 wc2.1_30s_bio_6 x   x

58 wc2.1_30s_bio_7 x    

59 wc2.1_30s_bio_8  x x x
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60 wc2.1_30s_bio_9  x x x

61 wc2.1_30s_bio_10    x

62 wc2.1_30s_bio_11    x

63 wc2.1_30s_bio_12   x  

64 wc2.1_30s_bio_13  x  x

65 wc2.1_30s_bio_14   x  

66 wc2.1_30s_bio_15     

67 wc2.1_30s_bio_16    x

68 wc2.1_30s_bio_17   x x

69 wc2.1_30s_bio_18  x x  

70 wc2.1_30s_bio_19 x    

71 et0_yr x x x x

72 ai_et0  x x  

73 PETseasonality x x x  
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