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PREFACE 

A hundred years ago, D’Arcy Thomson already stated that the morphology of live beings 

depended greatly on physical and mathematical principles. In his book “On Growth and 

Form”1, he rejected the idea of randomness and chaos, prevalent among his contemporaries, 

and explained the size and shape of organisms in terms of mechanical phenomena, geometric 

transformations, and physical constraints. 

In the present day, and after more than a century of research, many of the ideas that he 

postulated still hold. D’Arcy Thompson proposed that principles such as force balance or 

energy minimisation can be applied to biological systems as they are to inorganic ones. For 

example, he discussed how force balance at tricellular junctions can lead to the emergence 

of hexagonal packing when each cell exerts a similar force. This emphasis on the importance 

of mechanics to study biology is the preface of the field of mechanobiology. 

In the past decades, the swift succession of technological advances has allowed us to 

transition from a qualitative description of biological processes and structures to a 

quantitative study. This ability to reliably measure magnitudes such as molecular 

concentrations, times and forces has been key for the advance of mechanobiology and has 

allowed us to pursue D’Arcy Thompson’s ambition: to develop a physical understanding of 

the processes that underlie biology. In this thesis, I present my modest contribution to this 
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endeavour: during my PhD, I have analysed how the size and shape of three-dimensional 

epithelia depend on luminal pressure and mechanical stress. 

This thesis has six chapters. In chapter 1, I introduce this work by reviewing the state-of-the-

art knowledge of epithelial mechanics, epithelial morphogenesis, and methods to measure 

mechanics in luminal epithelia. In chapter 2, I expose the aims of the thesis. In chapter 3, I 

detail the necessary methods to carry out this project. In chapter 4, I expose the results 

obtained during my PhD work under the supervision of Prof. Xavier Trepat, which has been 

carried out in close collaboration with the labs of Prof. Marino Arroyo (Universitat Politècnica 

de Catalunya) and Prof. Sohan Kale (Virginia Tech). In chapter 5, I discuss the implications of 

our findings, as well as possible future work. Finally, in chapter 6, I the summarize the main 

conclusions of this thesis.
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1 INTRODUCTION 
 

Epithelia are ubiquitous tissues that cover the internal and external surfaces of the body, and 

they carry out many functions such as transport of nutrients, protection against pathogens or 

compartmentalization2. To perform these functions, epithelia fold into three-dimensional 

structures that often enclose a fluid-filled cavity called lumen. Luminal epithelia can attain a 

great diversity of shapes, from nearly spherical structures like blastocysts3, to tubular ones 

like the lining of the nephrons4,5, or ellipsoidal ones such as the otic vesicle6,7. They can also 

present a broad range of sizes, from a few microns8,9 to millimetres5,10.  

The geometry of luminal epithelia is mainly determined by the balance between cellular 

surface tensions and luminal pressure. Undoubtedly, the research and technological advances 

of recent years have expanded our knowledge about lumen formation and coalescence 9,11, 

and the effect of fluid pressure on the surrounding tissues7,3. However, how this lumen-

epithelium balance is established as a function of shape and size remains an unanswered 

question. To address this question systematically, we present an experimental and 

computational approach to design epithelia of controlled size and shape and to map the stress 

tensor at any monolayer location without assumptions of mechanical properties. 

With this in mind, the introduction covers the key properties and mechanics of epithelial 

tissues, the processes that lead to their three-dimensional folding during morphogenesis and 

the principal methods to measure their mechanical properties. I first outline the structure of 

epithelia, including their subcellular cytoskeletal structure, and their ECM and intercellular 
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adhesions. I then describe their mechanical properties at the cell and tissue level, as well as 

modelling approaches at both scales. Afterwards, I discuss morphogenetic processes that lead 

to epithelial folding and growth, and lumenogenesis. Finally, I introduce some invasive and 

non-invasive methods to measure forces and pressures in luminal epithelial tissues. 

 

1.1    Properties and mechanical models of epithelia 

1.1.1 Structure of epithelia 

Epithelia are thin cellular sheets that derive from all three embryonic layers. The epithelia 

lining the skin, the mouth, the nose and the anus develop from the ectoderm. Those of the 

airways and most of the digestive system derive from the endoderm. Finally, the endothelia 

that cover vessels in the circulatory and lymphatic system develop from the mesoderm12. 

Since epithelia have very different origins, it should not be striking that they can present many 

different organizations and shapes. Epithelial sheets can present one or several layers, which 

classifies them into simple and stratified, respectively. Individual cells can be squamous (flat 

and thin) or columnar (tall and narrow) and generate different three-dimensional structures 

such as tubes or folds. All these morphologic characteristics are closely related with the 

functions they carry out. For example, the epithelium covering the small intestine presents 

small finger-like projections called villi that increase the surface of the organ, thus allowing 

more absorption of nutrients. Another example is the skin, which is a squamous stratified 

epithelium whose many layers act as a barrier to protect the organism from physical and 

chemical attrition. 

Despite these differences, epithelia present many common characteristics that arise from 

their main function: the separation of compartments. Epithelial cells are densely packed and 

are generally adhered on a basement membrane, which separates them from the underlying 

tissue. They usually exhibit a polarized distribution of the organelles and membrane-bound 

proteins, clearly differentiating the basal surface from the apical one. In the next subsections 

we will talk about some components that participate in this polarization and play a key role 

in the mechanical properties of epithelia, namely the cytoskeleton (specially the actomyosin 

cortex), cell-matrix adhesions and intercellular adhesions.  
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1.1.1.1 Cytoskeleton and actomyosin cortex 

The cytoskeleton is a network of cross-linked protein filaments that spans from the cell 

nucleus to the inner surface of the cell membrane. This network is constantly destroyed and 

reassembled, consuming a large part of the metabolic energy of the cell. It is this extremely 

dynamic remodeling that enables cells to change shape, contract and engulf other objects. 

The cytoskeleton also has a critical role in cell movement, division, cell-cell adhesion and 

signaling. 

In eukaryotic organisms, the cytoskeleton is formed by three main components: 

microtubules, intermediate filaments, and actin filaments (Figure 1). These components form 

different networks that interact with each other, as well as with hundreds of regulatory 

proteins that control filament assembly, link the filaments to other cell components, etc. The 

most important differences between these three main polymers are their stiffness (the extent 

to which they resist deformation in response to an applied force), their polarity, the dynamics 

of their assembly and the molecular motors with which they associate.  

Microtubules are composed by α- and β-tubulin monomers. They are long, hollow cylinders 

with an external diameter of about 25nm13. Microtubules are the most rigid filaments of the 

cytoskeleton and have the most complex assembly dynamics. They commonly originate from 

the MicroTubule-Organizing Center, MTOC (the centrosome, in animal cells), which acts as an 

anchor for one of their ends13. The two ends of the tubules have a distinct polarity, and they 

grow at different rates, giving rise to what is called treadmilling: one end grows in length while 

the other shrinks. The nucleation of α/β-tubulin dimers is accelerated by the presence of the 

γTuRC (γ-tubulin Ring Complex), that acts as a template14. Microtubules are involved in the 

movement of organelles and vesicles, and they guide and support appendages associated 

with cell movement (cilia and flagella), among other functions. 

Intermediate filaments (IFs) have a diameter of about 8-12nm13. They are the least stiff and 

the most stable components of the cytoskeleton and their contribution to the mechanical 

properties of the cell is thought to take place primarily at large deformations and long 

timescales15. IFs are also the most heterogeneous components of the cytoskeleton, and the 

proteins that form them are tissue specific. The most abundant IFs in epithelial cells are 

keratins, which span the cytoplasm from one intercellular junction to another. Unlike the 
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other two cytoskeletal components, they are not polarized and, thus, they cannot support 

directional movement of molecular motors16. 

Actin filaments have a diameter of about 7nm and they are formed by reversible 

polymerization of G-actin (globular) into F-actin (filamentous)13. Like microtubules, these 

filaments are polarized structures with two ends that grow at different rates, presenting 

treadmilling. Actin filaments are less rigid than microtubules, even though the abundance of 

crosslinkers that assemble them leads to the creation of highly organized and stiff networks 

with different architectures, such as bundles or branched networks (with tree-like 

structure)17. Also unlike microtubules, that extend from one or two central organizing 

complexes, the actin cytoskeleton is assembled and disassembled in response to local 

signaling cues. 

One of the most crucial features of actin filaments is their ability to contract due to its 

interaction with the myosin motor proteins that bind and unbind actin cyclically thanks to ATP 

hydrolysis; a macroscopic consequence of this actomyosin binding is that of muscle 

contraction. Non-muscle cells present a specific type of myosin, non-muscle myosin II, that 

associates with actin to form thick contractile bundles named stress fibers. These stress fibers 

provide mechanical support for cells by connecting with the extracellular matrix through cell-

matrix adhesions and with other cells through intercellular adhesions16.  

 

Figure 1: Main components of the cytoskeleton. Scheme showing the main components of the cytoskeleton (microtubules, 
actin filaments and intermediate filaments) and their structure in epithelial cells. Adapted from ref.18. 
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In most animal cells, the actin cytoskeleton is dispersed through the cell, but it is most 

concentrated in the actomyosin cortex (or cell cortex). The cell cortex is a thin (about 200 

nm) and dense layer of actin filaments, myosin and actin binding proteins that is bound to the 

cell membrane19. Myosin pulls on actin filaments and generates internal contractile forces in 

this network that give rise to cortical tension. Both the cortex and the cell membrane 

contribute to cellular surface tension, but cortical tension is more than one order of 

magnitude higher, thus dominating the mechanical properties of the cell20.  

One of the mechanisms known to control cortical tension is the regulation of the abundance 

and activity of myosins downstream of Rho-GTPase signalling. Rho-GTPases cycle between an 

active (GTP-bound) and an inactive (GDP-bound) state thanks to regulatory proteins. Among 

Rho-GTPases, RhoA stands out for its activity in the cell cortex. RhoA activates Rho-kinase 

(ROCK), that increases myosin activity by direct phosphorylation. Moreover, RhoA also 

modulates the organization of actin filaments by activating formins, a group of proteins 

involved in actin polymerization. Other proteins that play a key role in cortical organization 

and, consequently, in cortical tension, are the formin mDia, that polymerizes linear filament 

arrays, and the Arp2/3 complex, that drives branching of filaments19 (Figure 2).  

The main function of the cortex is controlling the shape of animal cells. This includes 

homeostatic situations, as well as processes that involve large remodelling, like facilitating 

cell migration through cytoplasmatic projections such as lamellipodia or filopodia. Local 

changes in cortical tension at the cell-cell interface influence the formation of intercellular 

adhesions, and the modulation of cortex contractility drives the shape changes underlying cell 

division. In summary, the architecture and composition of the cortex give rise to very 

 

Figure 2: Actin nucleation. Linear actin nucleation occurs by direct activation of formins by RhoA-GTP. Branched networks 
are nucleated by the Arp2/3 complex, which is indirectly activated by Rac1-GTP via the Wave complex. Nucleation can be 
further regulated by nucleation promoting factors (NPFs). From ref.21. 
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interesting mechanical properties that contribute to the versatility of cells (see Section 1.1.2 

for more information on mechanical properties). 

1.1.1.2 Cell-matrix adhesions 

Epithelia have little extracellular matrix (ECM) and cell-matrix adhesions occur only between 

the basal side of the cell and the basement membrane. This membrane is a very thin (40-120 

nm) and flexible matrix formed by glycoproteins (laminin, type IV collagen, fibronectin…) and 

proteoglycans13. It acts as a connection between the epithelial tissue and the underlying 

connective tissue, thus having an essential role in tissue architecture. It also determines cell 

polarity and promotes cell survival, proliferation, or migration. 

These influences on cell behaviour are exerted through transmembrane cell adhesion 

proteins. These proteins act as receptors that tie the extracellular matrix to the cellular 

cytoskeleton. In animal cells, the principal receptors are integrins, which form heterodimers 

that are able to transmit signals in both directions across the cell membrane. To transmit 

these signals, integrins need to change their structural conformation. This can occur through 

either inside-out activation (biochemical interactions) or outside-in activation (extracellular 

force)22. 

Inside-out activation occurs when the adaptor protein talin binds an integrin, thus facilitating 

the binding of other intracellular proteins. Outside-in activation occurs when a ligand binds 

an integrin and force is applied. Both processes lead to the assembly of a macromolecular 

complex that contains proteins such as kindlin, vinculin and paxillin, and links to the actin 

cytoskeleton23. These cell-matrix junctions can be small and transient or form large and 

durable structures; an example of the latter are focal adhesions, that are dense plaques of 

integrin clusters that associate with stress fibers24 (Figure 3). 

The assembly of mature cell-ECM adhesion complexes allows cells to sense and respond to 

their microenvironment. Moreover, cell-ECM adhesions can convert mechanical signals into 

molecular ones and the other way around, thus being a key element for 

mechanotransduction22.  
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1.1.1.3 Intercellular adhesions 

Epithelial cells present different types of intercellular adhesions with different morphologies 

and that carry out different functions. In the case of simple epithelia, cell polarization 

produces a distinct distribution of each type of junction along the lateral surfaces of the 

membrane. The most apical ones are tight junctions, that hold the cells closely together, 

sealing the gap between them and preventing leakage across the epithelium. Below them, 

there are two types of anchoring junctions that link the cytoskeletons of neighboring cells: 

adherens junctions (AJs) anchor actin filaments, while desmosomes (placed further below) 

anchor intermediate filaments. Together, these three types of adhesions form what is known 

as the junctional complex25. Near the basal end of the membrane, we find gap junctions, that 

Figure 3: Mechanical organization of epithelia. Scheme showing the interconnected networks of the cytoskeleton, 
intercellular adhesions and cell-matrix adhesions. Intercellular adhesions couple the cytoskeleton of adjacent cells, allowing 
a collective mechanical behaviour of the epithelium. The physical properties of the ECM also affect the cytoskeleton: (a) a soft 
ECM leads to immature integrin adhesions, while (b) a stiff ECM promotes the assembly of strong complexes (focal adhesions) 
that lead to the formation of actin stress fibres. Image from ref.24. 
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are channels linking the cytoplasm of two adjacent cells and allowing the passage of small 

water-soluble molecules12 (Figure 3).  

For the purpose of this thesis, we will only discuss in depth anchoring junctions. The main 

mechanical function of both types of anchoring junctions is resisting external forces that pull 

the cells apart, while being dynamic and responsive to rearrangements when the tissue is 

being remodeled or repaired. 

On the one hand, adherens junctions employ proteins of the cadherin family, which are 

dependent on Ca+2, to link the cytoskeleton between the cells. These cadherins have 

transmembrane domains that associate with the analogous cadherin domains in the adjacent 

cell. Meanwhile, the cadherin cytoplasmatic domains link to members of the armadillo family, 

a family of proteins sharing a central domain with a series of amino acid repeats, that act as 

a platform where cytoskeletal adaptors bind. In these junctions, the binding with actin is 

mediated by α- and β-catenin. β-catenin binds the intracellular tail of cadherin and recruits α 

-catenin. Many actin-binding proteins present interactions with α-catenin, which suggests 

that its interaction with actin may be indirect. The application of force promotes the 

recruitment of other proteins that form a macromolecular complex which increases the 

stability of the adhesions26.  

On the other hand, desmosomes emerged in vertebrates and use updated versions of 

cadherins and armadillo proteins with respect to AJs. As we mentioned before, desmosomes 

bind IFs, which present different mechanical properties than actin, therefore playing a 

different role in the cell27. In the next section, we will explain how the properties of the 

different components of the cytoskeleton, as well as the adhesions, integrate to give rise to 

the mechanical properties of epithelia. 

1.1.2 Mechanical properties and modelling of cells 

Normal tissue development requires that cells in different microenvironments differentiate 

and acquire specialized phenotypes to carry out their specific functions. This specialization 

occurs also in the mechanical properties of tissues; in fact, these mechanical properties are 

key for the correct development of cell function in many cell types. A very clear example is 
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that of leucocytes, that need to undergo large deformations to extravasate and reach the 

damaged tissue28. 

When we want to quantify the mechanical properties of cells, we speak about rheology, that 

is the branch of physics that studies the deformation and flow of materials, both liquids and 

solids. The mechanical behaviour of materials can be studied by applying a defined stress, a 

force per unit area, and measuring the resulting strain ( a relative deformation), or vice versa, 

by measuring the necessary stress to achieve a certain strain. We can measure the mechanical 

properties of cells using a wide variety of methods, each one with its advantages and 

limitations29. For example, atomic force microscopy offers high spatial resolution and a wide 

force range, but it is a low throughput method; on the contrary, optical tweezers 

measurements have a good throughput, but they have a narrower force range.  

As mentioned previously, the cell cortex is the main contributor to cellular surface tension, 

thus being responsible for most of the mechanical properties measured by rheological 

techniques. Depending on the timescales analysed, that can range between milliseconds and 

hours, the cortex presents different mechanical behaviours30. Furthermore, different 

measurement techniques study different aspects of cell rheology. Integration of all these 

different data into a model of cell mechanics is not an easy work and it requires a proper 

combination of elasticity and fluid mechanics. 

1.1.2.1 Viscoelasticity 

Solid and liquid (fluid) materials behave differently when a force is applied. Elasticity is the 

tendency of solid materials to resist deformation when a force is applied and to return to its 

original shape and size when the force is removed31. It can be quantified with the Young 

modulus: materials with large Young moduli are difficult to deform, like iron, while ones with 

low Young moduli are elastic, like rubber. Conversely, fluid materials tend to flow in response 

to force application. However, not all fluids flow in the same way, some fluids resist motion, 

such as honey, while others flow easily, like water. This resistance to flow is termed 

viscosity31. 

Materials that present elastic behaviour do not dissipate energy when a force is applied. They 

store it by increasing their internal stress and, once the force is removed, they return to their 

initial state. On the contrary, materials with viscous behaviour flow, thus dissipating the 
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applied force, and deform in an irreversible way. Cells show both elastic properties, 

resembling those of a solid, and viscous properties, like those of fluids. Therefore, to study 

the response of cells and living tissues to external forces and deformations, we need models 

that account for the elastic and viscous components; such models are called viscoelastic 

models32.  

In these models, viscoelastic materials are traditionally described by mechanical equivalent 

circuits of connected springs, representing the elastic components, and dashpots, 

representing the viscous ones. The simplest models are the Maxwell and the Kelvin-Voigt 

models (Figure 4). They are linear models and, therefore, they describe systems where the 

relationship between stress and strain is linear at any given time. These two models can then 

be combined into more complex models with any number of components. In the case of cells, 

each one of these components can reflect the contribution of a different structural element, 

such as the cell membrane or the cortex. By adding more components, we can create 

sophisticated models that better reproduce the mechanical response of cells to numerous 

rheological techniques. However, precise characterization of cells using techniques such as 

magnetic tweezers or micropipette aspiration has revealed that the basic assumptions of 

linearity and decoupling of the viscous and elastic properties into different components are 

not correct29. If the external stress or strain we apply are small, the assumption of linearity 

holds, but properties such as stress-stiffening and fluidization confer nonlinear mechanical 

properties to the cell. 

Figure 4: Basic rheological models. a, Left: Stress behaviour of the Maxwell model at constant strain. Right:  schematic of the 
model. b, Left: Strain behaviour of the Kelvin-Voigt model at constant stress. Right:  schematic of the model. Adapted from 
ref. 32. 
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Experiments with cytoskeletal networks generated in vitro show that these semi-flexible 

polymers often increase their Young modulus with increased strain, a phenomenon that is 

called strain-stiffening33. The strain-stiffening of these networks has important implications: 

their linear elastic modulus is orders of magnitude smaller than that of cells, but, when 

prestressed into the nonlinear regime, their modulus increases greatly and approaches that 

of cells34. These findings suggest that cells are always subject to an internal stress, or 

contractile prestress, that influences their mechanical response. Other experiments with 

fibroblasts also show that the elasticity of cells increases dramatically when they are 

stretched35, further supporting the hypothesis of strain-stiffening. It is important to mention 

that not all reconstituted cytoskeletal networks display stiffening: weakly connected 

networks, such as pure microtubule networks or weakly cross-linked actin networks, present 

reversible stress-softening 36,37.  

Another nonlinear phenomenon is fluidization, where the cell behaves in a more fluid-like 

fashion. This fluidization occurs both during stretch application and right after it, and is also 

dependent on prestress; stiff solid-like cells fluidize more during stretch than softer fluid-like 

ones38. 

1.1.2.2 Power-Law Rheology and Soft Glassy Materials 

Since the viscoelastic response of cells is not linear, it is very difficult to model using only 

dashpots and springs. However, it can surprisingly be described by a power law with a single 

exponent over many orders of magnitude of time or frequency29. This power-law behaviour 

can be represented using a component called “springpot” that has an intermediate response 

between a spring and a dashpot. When subjected to constant stress, the strain of the material 

represented by the springpot follows the equation strain(t) = t β, where β  has a value between 

0 and 1 (Figure 5a)21. It is important to note that β=0 would correspond to the behaviour of a 

spring and β=1 to that of a dashpot. This power-law rheology seems to be a universal property 

of adherent cells (Figure 5b) and holds even after treatment with a wide range of drugs that 

affect the cytoskeleton38, such as cytochalasin D (that disrupts actin filaments). This behaviour 

can be explained by the theory of soft glassy materials (SGMs)39. 
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Figure 5: Power-law rheology of biological materials. a, Strain response under constant stress of elastic, viscous, and 
viscoelastic materials following power-law rheology. Adapted from ref. 21. b, The response of cells (blue), tissues (purple) and 
cytoskeletal networks (red) to stress follows a power-law over many orders of magnitude of  frequency . The absolute values 
of the differential elastic modulus K’ measured at a fixed prestress vary according to specimen type and experimental 
technique and are difficult to compare between different studies. For clarity, the curves have been shifted in the y direction 
to emphasize the similarity of the frequency dependency. Abbreviations: AFM, atomic force microscopy; FLNa, filamin A; MPR, 
microplate rheometer; MT, magnetic tweezers; OMTC, optical magnetic twisting cytometry; OT, optical tweezers; PTM, 
particle tracking microrheology. Adapted from ref.29. 
 

SGMs are a diverse group of very soft materials with power-law exponents on the order of 

0.1. This group includes foams, emulsions, and colloids. Since SGMs are so heterogeneous, 

their rheological properties must be a consequence of their structural organization, instead 

of a reflection of specific molecular mechanisms. SGMs are formed by elements aggregated 

to one another through weak interactions, and their structure is inherently disordered and 

metastable, which means that the state of the system is not the state of least energy29. This 

metastability means that each element of the matrix or network exists in an energy landscape 

with many wells (low energy states). For an SGM to deform elastically, its elements must 

remain in the energy wells, in other words, its deformation energy must be stored as internal 

stress. Conversely, for an SGM to flow, its elements must escape these wells, thus dissipating 

the stored deformation energy. 

The actomyosin cortex satisfies all the criteria listed above and can be considered an SGM 

with a power-law exponent of about 0.2.21 The difference between inert SGMs and the cortex 

is that the source of the effective temperature are myosin molecular motors that transform 
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chemical energy (ATP) into forces exerted on the actin filaments. This model also accounts for 

cell fluidization, since mechanical stretch provides energy that contributes to augment the 

effective temperature, thus increasing the probability of escaping the energy wells. However, 

it does not predict strain-stiffening29. 

1.1.2.3 Front-rear polarization and Active Gel Models 

Another important property of cells is their intrinsic ability to establish front-rear polarization. 

In isolated cells on rigid extracellular matrices, the cytoskeleton and cell-ECM adhesions can 

spontaneously organize in an anisotropic manner even in the absence of external biochemical 

or mechanical cues32. This process can also be induced by external cues, like differential 

substrate adhesivity or anisotropies in substrate stiffness. Polarization requires cell 

contraction and proteins present on focal adhesions, such as talin40 and α-actinin41. 

By increasing substrate stiffness, we can see a transition in the ordering of the actin 

cytoskeleton akin to those observed in passive materials such as liquid crystals. Liquid crystals 

are materials with mechanical properties resembling those of liquids, but whose molecular 

units are sufficiently ordered to give rise to some anisotropy; an example of this is an LCD 

screen (standing for Liquid Crystal Display), where the anisotropy affects the optical 

properties of the material. These liquid crystals may be rod-shaped molecules, similar to 

cytoskeleton filaments, that can transition from an isotropic disordered state to an ordered 

one in response to various stimuli (temperature, electric fields, density changes…). The 

ordered state can be a polar phase, where the molecules have distinct heads and tails and are 

on average oriented in the same direction, or a nematic phase, where the molecules can 

either be apolar or be aligned but with random head-tail orientations32 (Figure 6). In the case 

of a cell, an example of a polar phase could be actin orientation in lamellipodia, while one of 

a nematic phase could be actin organization in stress fibres, where filaments are antiparallel. 

This phase transition can be understood in the framework of the active gel theory. From a 

polymer physics perspective, the actin cytoskeleton can be considered as a gel, meaning a 

dilute cross-linked system, that exhibits no flow when in equilibrium42. In vitro, the actin gel 

is a very soft material, with Young’s modulus of 0.1-1kPa43. After a mechanical perturbation, 

it presents an elastic response at short time scales and a viscous fluid-like response at time 

scales longer than the relaxation time, when actin starts to flow (about 100-1000s); this 
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behaviour is similar to the mentioned Maxwell model. However, it is important to remember 

that the actin cytoskeleton is not a passive gel; it is an active material where ATP is hydrolized 

to fuel both myosin motor activity and treadmilling, and, therefore, it is out of equilibrium. 

The active gel theory combines the properties of passive fluid-like materials in motion 

(hydrodynamics) with an active stress that reflects the forces and contractility generated by 

the actomyosin network. Therefore, it explains the short-time elastic behaviour and the long-

time active liquid crystal behaviour of the cytoskeleton20. 

A model of the actomyosin gel can be obtained by simplifying the molecular complexity of the 

cytoskeleton and writing equations to describe the system at the mesoscopic or macroscopic 

scale using continuous variables such as density, velocities, and the orientation field of the 

filaments. The global stress within the gel in the long-time scale (σ) has two tensorial 

components, σp is the passive contribution, a purely hydrodynamic term, and σa is the active 

part (Equation 1)32. The active part is in turn composed of two terms that describe the 

isotropic component of the stress, independent of filament orientation, and the nematic 

component, which increases with filament alignment (Equation 2)32.  

σ𝑖𝑗 = σ𝑖𝑗
𝑝

+ σ𝑖𝑗
𝑎                                                                        (1) 

σ𝑖𝑗
𝑎 = 𝜉δ𝑖𝑗 + 𝜉′Q𝑖𝑗                                                                  (2) 

The parameters ξ and ξ’ depend on motor and filament densities and vanish when the system 

is in equilibrium (there is no ATP hydrolysis). If ξ < 0, the system tends to contract 

spontaneously; if ξ > 0, the system tends to expand. Similarly, for ξ ’< 0 the system contracts 

and for ξ’ > 0 the system expands, but it does so according to the nematic order parameter 

Qij. In the case of actomyosin gels, the system is known to be contractile (ξ, ξ’< 0).  

Active gel models have proven useful to describe many cellular processes (Figure 6). A 

remarkable example is the emergence of actin retrograde flows that are required for 

lamellipodium motion44; in this case, actin flows from the lamellipodium to the back of the 

cell, pulling the cell body. These models can also describe the properties and behaviour of the 

actomyosin cortex. It is important to note that there is not a perfect model of the cell that 

can account for all its mechanical properties; however, efforts in modelling are providing an 

increasingly better understanding of the mechanical behaviour of cells. 
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Figure 6: Actin architecture in a migrating cell. Stress fibres present an antiparallel filament organization (nematic order). 
Lamellipodia present a rearward flow of branched actin filaments (polar order). Adapted from ref.32. 

 

1.1.3 Mechanical properties and modelling of epithelia 

The behaviour of epithelia is as closely related to the mechanical properties of the tissue as 

cell behaviour is linked to the properties of the cytoskeleton. In a similar manner to individual 

cells, epithelial monolayers also present viscoelastic behaviour. A clear example is 

morphogenesis, a process where cells must sort and flow like a liquid to organize themselves 

into tissues, and then stiffen and support mechanical stresses once the tissue is formed45. The 

change from a viscous behaviour to an elastic solid-like one can be achieved by a relatively 

small change in the mechanical parameters of the tissue. These parameters can be 

intercellular interactions, mediated by cadherins, or interactions between the cells and the 

extracellular matrix46,47. However, cells are not passive elements, and the internal activity of 

each cell affects the large-scale behaviour of the tissue. That is, the coupling of cells with their 

environment is affected by intracellular contractility and other properties of the cytoskeleton 
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and cell adhesions, which are in turn actively remodelled by the environment, creating a 

complex feedback loop.  

1.1.3.1 Tissue-scale models of epithelia 

Theoretical models of multicellular processes can be classified in two categories48. The first 

category comprises continuum models, which describe the cell sheet as a fluid or elastic 

continuum; some examples are phase field models and the previously mentioned active gel 

models. Unlike cellular active gel models, the elements of tissue-scale active gel models are 

cells instead of filaments, but the same generic equations can be applied due to the similarity 

of their properties. Cells can also be described as nematic or polar elements, and tissue 

dynamics are also governed by the viscoelastic properties of the material and active stresses 

(largely generated by the actomyosin system)20.   

The second category comprises mesoscale models, that incorporate some minimal 

characteristics of individual cells, like contractility, and examine how intercellular interactions 

and coupling to the environment determine mechanical properties at the tissue scale. Some 

examples are vertex models (that we will explain in the next Subsection 1.1.3.2) and Voronoi 

models. Both models capture the behaviour of confluent tissues and describe cells as irregular 

polygons that tend to adjust their area and perimeter to minimize an energy function. 

It is important to note that continuum and mesoscale models do not try to accurately 

incorporate intracellular processes. They aim to characterize the modes of organization and 

the mechanical properties of epithelial monolayers in terms of a few macroscopic 

parameters, like cell density, cell-cell adhesiveness, or contractility48. This approach attempts 

to provide experimentalists with predictions that may help to correlate families of signalling 

pathways to tissue organization. 

1.1.3.2 Two-dimensional vertex models of epithelial tissues 

In two-dimensional vertex models, each cell is represented as a polygon with edges shared 

between adjacent cells. These models present a set of rules that define the movement of each 

vertex based on location, connection between vertices and geometrical features, like volume 

of neighbouring cells49. These models were first applied to the study of inorganic structures, 

such as bubbles and foams, and they can be applied to epithelial tissues due to their 

resemblance to this kind of structures. To study epithelia, we need to incorporate 
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components describing the active properties of the material, like cell contractility and rules 

for neighbour exchange. 

Each vertex in a vertex model is subjected to equations that govern its movement; these 

equations can either be written as forces explicitly applied on the vertices or as the result of 

an energy minimization function. A simple two-dimensional example using the energy-based 

approach for a cell “𝑖” can be seen in Equation 3 (50): 

𝐸𝑖 =  𝛽𝑖(𝐴𝑖 − 𝐴0)2 + 𝜉𝑖𝑃𝑖
2 + 𝛾𝑖𝑃𝑖                                                (3) 

The first term refers to the resistance to height fluctuations in the monolayer; each cell has a 

preferred area, 𝐴0, which in this case is equal for all the cells. Deviations from this value imply 

a spring-like penalty defined by the parameter 𝛽. The second term refers to active 

contractility of the actomyosin cortex, which is proportional to the perimeter squared (𝑃2). 

Finally, the last term reflects the competition between cortical tension and cell-cell adhesion. 

𝛾 can be positive if cortical tension is greater, or negative if adhesion dominates. Depending 

on the process being modelled, additional rules can be added to the model to better 

reproduce the behaviour of the tissue. For example, in confluent homeostatic tissues we may 

add T1 transitions, that are cell rearrangements where an edge between two cells shrinks and 

a new edge arises between two neighbouring cells. If we are modelling a growing tissue, we 

should also incorporate cell division and cell growth into our model49.  

In the case of confluent monolayers, vertex models suggest that as cell-cell adhesion increases 

toward a critical value, cortical tension suddenly drops. This critical value marks what is called 

a jamming transition, where cells switch from a solid-like configuration (jammed state) to a 

liquid-like one (unjammed)50. This transition is consistent with the change in behaviour that 

has been observed in tissues that remain at constant density, such as the airway epithelium 

in asthma (Figure 7). Homeostatic tissues, where cells are quiescent and rarely change  

neighbours, experience a change in behaviour where cells start to migrate in a collective 

fashion and form packs and swirls51. Cell morphology also presents changes, with cells 

transitioning from a close-to-regular hexagonal grid to more elongated and diverse shapes. 

The ability of vertex models to capture these behavioural changes makes them a great tool 

to study morphogenesis. However, most morphogenetic processes involve three-dimensional 
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conformations of tissues; for this reason, researchers are increasingly developing 3D vertex 

models. 

 

Figure 7: Jamming transitions in 
asthma. a, Vertex model simulations 
of jammed and unjammed epithelia. 
There is a transition in epithelial 
behaviour when the shape 
parameter, p0, is equal to p0

*. p0 is 
computed as P/√A, where P is the 
perimeter and A is the area of each 
cell. p0

hex indicates the value of a 
regular hexagon. Adapted from 
ref.50. b, Cell shape parameter of 
HBECs from a non-asthmatic and an 
asthmatic donor over maturation in 
culture. Over time, and in both cases, 
𝑝̅ systematically approached the 
jamming threshold p0

*, but the 
approach was considerably delayed in 
the samples from the asthmatic 
donor. Inset: 𝑝̅ for representative non-
asthmatic and asthmatic donors 
plotted with the same axis of culture 
days to allow comparison of the 
jamming transition timing. Boxplot 
shows median and quartiles. 
Whiskers are maximum and minimum 
data points. Adapted from ref. 52. 

 

 

 

 

1.1.3.3 Three-dimensional vertex models of epithelial tissues 

In three-dimensional vertex models, cells are represented by polyhedrons, and the dynamics 

of the epithelia are described by the forces that act in the vertices of these polyhedrons (like 

in the two-dimensional case). The cells display the apicobasal polarity characteristic of 

epithelial cells, with adhesion to the substrate defining the basal side and a contractile 

actomyosin belt on the apical side. Thus, the equation describing the energy-based approach 

for a cell “𝑖” has some differences with respect to the 2D case (Equation 4)53: 

 

𝐸𝑖 =  𝛽𝑖(𝑉𝑖 − 𝑉0)2 + 𝛬𝑎𝑃𝑎𝑝𝑖𝑐𝑎𝑙,𝑖 + 𝛼𝑙,𝑖𝐴𝑙𝑎𝑡,𝑖 + 𝛾𝑖𝐴𝑏𝑎𝑠𝑎𝑙,𝑖                                 (4) 
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In this case, instead of assuming that the cell has a preferred area, we assume it has a 

preferential volume, 𝑉𝑖. The second term, that refers to active contractility of the cell, is 

associated with the apical perimeter, 𝑃𝑎𝑝𝑖𝑐𝑎𝑙,𝑖, due to the location of the actomyosin belt. The 

third term, that refers to the competition between cortical tension and adhesion, is 

proportional to the lateral area of the cell, 𝐴𝑙𝑎𝑡,𝑖, and αl can be either negative (adhesion 

dominates) or positive (tension dominates). Finally, a new term describing cell-substrate 

adhesion has been added; this term depends on the basal area of the cell, 𝐴𝑏𝑎𝑠𝑎𝑙,𝑖. 

Changing the parameters of this model allows us to explore many shape transitions and 

curvature generation processes that can be seen in vivo. By changing the adhesion and 

contractility parameters, we can model the transition between a squamous epithelium and a 

columnar one (Figure 8a,b). Since basal tension and apical belt tension are applied in different  

 

Figure 8: Epithelial cell shape and curvature in 3D vertex models. a, Cell aspect ratio as a function of cell base length, r, 
when apical belt tension Λa is increased. If contractile forces dominate αl, the system presents two energy minima and cells 
“jump” from squamous to columnar aspect ratios (top row). If adhesion dominates, the system presents only one minimum 
and there is a continuous transition from squamous to cuboidal to columnar aspect ratios (bottom row). b, Phase diagram of 
cell aspect ratio as a function of Λa and αl, for γ = −15, showing regions of continuous and discontinuous transitions. c-d, 
Comparison of the mechanical stability for cellular tubes, made of cells curved in one direction (c), and cellular spheres, curved 
in two directions (d). e, Stability diagram as a function of lateral adhesion, αl, and apical tension γa. Adapted from ref. 53.  
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locations, differential values will lead to bending of the epithelial sheet (if substrate 

deformation is allowed); a larger apical tension will produce negative curvatures 

(invaginations), and a larger basal tension, positive ones (evaginations). Furthermore, we can 

modify the parameters anisotropically through the tissue or change their contribution 

according to direction, and thus create non-spherical geometries, such as tubes53(Figure 8c-e). 

Depending on the modelled epithelia, we can also change the energy equation to better 

describe the properties of the tissue and its environment. For example, MDCK cells are known 

to present a uniform thin actin layer lining the lateral surfaces instead of an apical belt; 

therefore, we should substitute the term describing the apical belt with a term of active 

surface tensions along lateral cell faces. These models can also be used to model lumen 

formation or epithelia that surround lumens; in these cases, the basal adhesion term can be 

eliminated or modified depending on the conformation of the system54. 

 

1.2 Epithelial Morphogenesis and Growth 

The generation of shape in multicellular organisms, also known as morphogenesis, is 

frequently driven by the deformation of epithelial tissues55. This can be easily understood if 

we examine the distribution of epithelia in the human body. These tissues form the surfaces 

that separate the body from the external milieu, such as the skin, the gastrointestinal tract, 

or the interior of the lungs. A specialized type of epithelium, the endothelium, constitutes the 

inner surface of both blood and lymphatic vessels. Furthermore, the mesothelium, another 

type of epithelia, forms the pleura and the peritoneum, the membranes that line the thoracic 

and abdominal cavities, respectively. Briefly, they delimitate the different compartments in 

the organism, and changes in their shape result in changes in the underlying compartments. 

Another process that has great relevance in development is that of tissue growth. Growth and 

morphogenesis occur concomitantly during most of embryogenesis, from the blastula stage 

to organogenesis, and they are strongly related. Growth can generate asymmetries in the 

embryo that lead to changes in shape, and shape must be resilient to changes in the size of 

tissues. Developing tissues present many strategies that allow them to maintain this balance 

between shape and size and give rise to adult organs56,57. In all these strategies, changes in 
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mechanical properties of different system components play a key role, like contractility of 

individual cells, fluid accumulation or generation of in-plane stresses. 

In the next subsections we will describe some methods for inducing curvature changes and 

elongating tissues, as well as the formation of different types of lumens.  

1.2.1 Tissue folding 

Epithelial cells present a clear apicobasal polarity and form cohesive sheets where the 

actomyosin cytoskeleton of one cell is strongly connected to that of its neighbours through 

adherent junctions. These junctions allow force transmission between cells, thus permitting 

coordinated movement and rearrangement of cells, that can give rise to complex changes in 

tissue shape. Some examples of these processes are bending and buckling of epithelia. 

1.2.1.1  Apical constriction  

Apical constriction is defined by a shrinkage of the apical side of a cell and it is driven by the 

contraction of F-actin networks due to the action of myosin. Many cell types exhibit an 

actomyosin belt that exerts forces on the apical perimeter through adherens junctions, while 

others tend to accumulate actomyosin in the medioapical domain58 (Figure 9a). This process 

is facilitated by the action of RhoA (and other proteins of the Rho family, Figure 9b) and 

Shroom, which is an actin-binding protein that is localized at apical junctions. Shroom is both 

necessary and sufficient for apical constriction in vertebrates59. 

During shrinkage of the apical domain, actomyosin flows towards the centre of the apical cell 

cortex. These flows do not occur in a continuous manner, but as pulses caused by assembly 

and disassembly of F-actin with myosin60. It is interesting to note that these pulses occur 

during a wide variety of cell shape changes and, even though their function is not yet fully 

understood, evidence suggests that they contribute to maintain tissue integrity during 

contractile processes. 

Apical constriction is a key mechanism in many developmental processes, and it is conserved 

in many different organisms. A clear example is gastrulation, where it leads to inward folding 

of the blastula (made up of one layer) to generate the different germ layers; apical 

constriction is involved in this process in a variety of organisms as disparate as the sea urchin 
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Figure 9: Variations in the spatial localization of actomyosin during apical constriction. a, Schematic of circumferential 
actin-myosin networks and medioapical actin-myosin networks (both illustrated in red). b, A conserved pathway, involving 
PDZ-RhoGEF, RhoA, ROCK and Dia, regulates myosin activation and F-actin assembly in Drosophila mesoderm cells 
(medioapical networks) and the chicken neural tube (circumferential networks). c, Cross-section views (top) and apical surface 
views (bottom) of Drosophila mesoderm cells during gastrulation (left) and of the chick neural tube (right). Myosin (green) is 
preferentially in the medioapical region in the Drosophila mesoderm precursor cells, but it is preferentially circumferential 
during chick neurulation. Asterisk marks the site of invagination, where mesoderm precursor cells are undergoing apical 
constriction. Axes are also marked: apical-basal (ap-ba), medial-lateral (M-L) and anterior-posterior (A-P). From ref. 58. 

and Xenopus61. In individual cells, it can lead to cell ingression from the epithelium, sometimes 

as part of an epithelial-mesenchymal transition. This is the case of the mouse embryo, where 

this process leads to ingression of mesenchyme cells into the primitive streak62 (a structure 

that establishes bilateral symmetry and starts germ layer formation). Apical constriction of 

individual cells can also participate in cell extrusion of apoptotic cells, thus helping to regulate 

tissue growth and maintain tissue homeostasis. 

Bending of epithelial tissues can occur when cells retain intercellular adhesions while 

undergoing apical constriction, thus generating invaginations or tubes. In the Drosophila 

gastrula, cells located at the ventral midline constrict apically resulting in a wedge shape that 

helps move the ventral furrow beneath the epidermis; this creates a tube of mesoderm63. In 

vertebrates, apical constriction of cells retaining adhesions is involved in the formation of the 

neural tube, the precursor of the central nervous system, from the neuroepithelium64 (Figure 

9c). 

1.2.1.2 Tissue buckling 

Apical constriction involves the active generation of mechanical forces by the cells undergoing 

the morphogenetic event. However, passive forces that arise from mechanical instabilities 
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between the epithelia and their surroundings can also lead to folding and shaping of the 

embryo. This is the case of buckling, a process where in-plane compression of the tissue 

results in out-of-plane folding65. 

Buckling has been extensively studied in inert materials, particularly in thin elastic beams with 

compressive force applied at their two ends. As a response to the compression, the beam 

deforms with a characteristic curvature that depends on the applied force and the physical 

properties of the beam (length, thickness, Young modulus…), thus relaxing the in-plain strains. 

Buckling is also relevant in the context of thin films floating on liquids or soft elastic materials, 

where uniaxial compression generates parallel wrinkles or undulations on the film that are 

perpendicular to the direction of the forces66. It is important to keep in mind that compression 

does not need to be applied externally to produce buckling, it can be caused by non-uniform 

growth of the film or by growth under confinement67,68. Epithelial tissues are formed by very 

thin sheets, with a height on the order of 10 μm, that can nonetheless extend up to meters in 

width and length. In gastrulation, they are usually adhered to the mesenchyme, which later 

in embryogenesis differentiates into other tissues that line epithelia, such as connective tissue 

and smooth muscle. Therefore, due to the geometry and boundary conditions of epithelia, 

they are very susceptible to the same instabilities that lead to buckling in non-living materials. 

In epithelial tissues, buckling usually arises from inhomogeneous growth within a single layer 

or from different growth rates on adjacent cell layers. An example combining both 

approaches could be the cerebral cortex, where recent studies suggest that folding is driven 

by differential growth between various layers of the brain and regions of the cortex. 

Subcortical layers present slower growth and restrict cortical expansion, thus putting the 

cortex in a compressive state and causing it to buckle69.  Additionally, neuronal progenitors 

divide at higher rates in the regions that will become gyri (cortical ridges) than in those that 

will become sulci (depressions)70. 

Another remarkable example is the formation of intestinal villi. In the chick embryo, the gut 

is initially formed by an epithelium surrounded by a mesenchymal layer, and its luminal 

surface is smooth. In this case, the differentiation of a part of this mesenchyme into three 

subsequent layers of smooth muscle is sufficient to induce the different stages of villus 

formation71. Smooth  muscle presents  higher stiffness than the epithelium and,  therefore, it  
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Figure 10: Chick gut morphogenesis. a, Transverse slices of developing chick guts immunostained for nuclei (DAPI, blue) and 
smooth muscle actin (αSMA, green) at developmental stages E8, E10 and E12. Whole guts (left) are surgically separated along 
the junction between the mesenchyme and the smooth muscle (dashed line). Upon separation, the luminal ridges in the 
mesenchyme and the attached endoderm unfold and expand (middle), while the smooth muscle remains unchanged (right). 
The outer circumference of the mesenchyme (blue arrowhead) is larger than the inner circumference of the smooth muscle 
(green arrowhead). b, Inner circumference of the smooth muscle (green line) compared with outer circumference of the 
separated mesenchyme-endoderm (blue line) over time, along with the compression ratio (bar graph). Scale bar: 100 μm. 
Adapted from ref. 71. 

can direct morphogenesis by constraining epithelial tissues (Figure 10). Another useful 

property of smooth muscle in this context is its anisotropy; it forms fibres that tend to orient 

in one direction. Thus, the different fibre directions of the three smooth muscle layers lead 

to the sequential formation of ridges, zigzags and, finally, the villi71.  

1.2.2 Tissue growth and rearrangement 

Tissue growth is a necessary process by which multicellular organisms increase their size. In 

animals, this process occurs during embryonic development (concomitantly with tissue 

buckling and bending), as well as during post-natal growth and wound healing (maintaining 

organ shape). Separately, tissue rearrangement is a process of structural reorganization of 

the tissue. This rearrangement involves coordinated changes of cell shape and reorganization 

of cell-cell contacts, and it modifies tissue geometry72. During development, changes in size 

and shape are coordinated to give raise to the adult tissues and organs. In this context, 

isotropic growth leads to an increase in size, without altering the shape of tissues and organs. 

Conversely, anisotropic growth or rearrangements can lead to changes in the geometry, thus 

playing an active role in morphogenesis.  

In animal epithelial tissues, the direction of growth is influenced by planar cell polarity (PCP), 

which consists on the polarization of epithelia within the plane of the cell sheet. PCP implies 
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the establishing of molecular asymmetries that include cytoskeleton reorganization and 

junction composition, and it arises from tissue wide cues. Usually, we associate these cues 

with biochemical signals, such as Wnt gradients in the wing of D. melanogaster57. However, 

mechanical cues such as tissue stresses and fluid flows can also induce the creation of PCP 

patterns or change their orientation73. Therefore, the magnitude and direction of these 

mechanical stimuli can affect growth rate and lead to either isotropic or anisotropic growth. 

In this subsection, I will describe two main mechanisms of tissue growth in morphogenesis, 

that are related to PCP and mechanical cues: cell intercalation and cell division. 

1.2.2.1 Cell intercalation 

Cell intercalation is a process that allows cell rearrangement by changing the position of 

intercellular junctions in the tissue. Initially, junctions are removed, bringing four or more cells 

together at one vertex. These high-order vertices are transient and disappear when new 

junctions, orthogonal to the original ones, are formed. When only four cells are involved in 

this process, it is called a T1 transition74. When five or more cells share a vertex, these 

transient structures are called rosettes and their formation can involve a T2 transition (cell 

extrusion)75. 

Intercalation is an irreversible process that can be directed by the polarity of the epithelium 

(PCP). The polarity is imposed by the direction of the stresses transmitted across intercellular 

junctions: the set of junctions that is removed depends on its orientation relative to these 

stresses, leading to asymmetric tissue extension. In fact, cell intercalation is a driving force in 

a process called convergent extension (Figure 11). This process leads to tissue extension along 

the anteroposterior axis and narrowing (convergence) along the dorsal-ventral axis in the 

embryos of many organisms61.   

Remarkably, junctions do not passively respond to the forces in the tissue: they actively 

remodel cell-cell contacts and allow the dissipation of the tissue stresses on long time scales, 

conferring fluid properties to the cell sheet. This junction remodelling can be driven by either 

global or local cues74. One the one hand, it can be driven by external constraints acting on the 

epithelium, like hinge contraction causing rearrangement on the pupal wing in Drosophila76. 

On the other hand, there are systems where PCP allows cells to locally produce the energy 

needed to rearrange  by forming planar-polarized supracellular cables  of actomyosin, such is 
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Figure 11: Convergent extension in the Drosophila pupal wing. a, E-cad-GFP live imaging (top) and fixed imaging (bottom) 
of developing wings at 4 and 5 hr after pupa formation (APF). From 4 to 5 hr APF, the wing contracts along the anterior- 
posterior axis (blue arrows) and elongates along the proximal-distal axis (orange arrow), which is consistent with convergent 
extension. Scale bar: 50 μm. b, Quantification of the length-to-width ratio of fixed samples at 4 and 5hr APF, showing an 
increase in wing anisotropy. c, E-cad-GFP live imaging during convergent extension. Time is measured from 4h APF. Cell 
tracking (coloured cells) shows how the epithelia contract along the anterior-posterior axis by cell rearrangements (T1 
transitions, T2 transitions and rosettes) and cell shape changes. Scale bar: 10 μm. Adapted from ref.75. 

the case of the chick neural tube77. Defects on the establishment of PCP can lead to failure of 

convergent extension in the neural tube of animals and result in neural tube defects, which 

are a common birth defect in humans78. 

1.2.2.2 Cell division 

In contrast to cell intercalation, which leads to tissue remodelling through reorganization of 

the existing cells, cell division affects tissue shape and size by addition of new cells. In 

epithelia, cell division is tightly regulated in both time and space, because it must balance 

growth and morphogenesis in developing organisms, and homeostasis in adult ones. In 
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addition to sensing stress patterns in the tissue, proliferation also affects this force 

distribution, thus creating a mechanical feedback loop between orientation of cell divisions 

and tissue stress79. 

When cellular density is high, the compressive stresses generated by the cytoskeleton and 

transduced by cadherin-mediated intercellular junctions lead to suppression of cell division 

(and increase of cell extrusion) and, in turn, to a decrease in overall tissue stress. Conversely, 

at low cellular densities, tensile stresses lead to an increase in cell division rate and, 

consequently, of tissue stress. Cell division also affects the rheology of a tissue, “solidifying” 

it by increasing cell density, and fluidizing it through mitotic rounding (which causes a drop in 

viscosity due to a reduction of intercellular contacts)80. Differential rates of cell proliferation 

in a tissue can determine its stress distribution and orient tissue growth, as seen in the 

Drosophila wing imaginal disc81. Additionally, differential division rates across adjacent tissues 

also have an important impact on morphogenesis and can lead to the formation of 3D 

structures from 2D tissues (as previously explained in Subsection 1.2.1.2). 

The orientation of cell division is controlled by the mitotic spindle orientation, a microtubule 

structure that separates sister chromatids to each daughter cell. The first experiments on 

division orientation in single cells were carried out at the end of the XIXth century, when 

  

Figure 12: Actomyosin cable tension orients division of cells at the parasegmental boundary (PSB) in Drosophila. a,d, To 
impair tension locally, the actomyosin cable is illuminated with control low-intensity laser light (a) or cut (d) next to a mitotic 
cell in metaphase. b,e, Fluorescent images of myosin regulatory light chain (MRLC-GFP) following cell division during a loss of 
PSB tension experiment (e) and its control (b). The dotted line indicates the region of illumination (b). The small solid green 
line shows the laser cut and the arrowheads highlight cable recoil (e). Scale bar: 5 μm. c,f, Cell division angles relative to the 
antero-posterior axis for the control (c) and laser cut (f) experiments. Adapted from ref. 82. 
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Hertwig flattened amphibian eggs and observed that the first cleavage was perpendicular to 

the long axis of the cell83. From then onwards, the long axis of the cell was used as a predictor 

of spindle orientation; this criterion was named “Hertwig’s rule”. However, recent findings 

suggest that Hertwig’s rule only works in very anisotropic cells82. When the anisotropy is 

moderate, the mitotic spindle and cell division orient according to different parameters 

depending on the maturity of the epithelium.  

In mature epithelia, the best predictor for spindle orientation is tricellular junctions, which 

accumulate proteins that regulate cortical attachment of spindle microtubules and are 

aligned with the principal axis of local stress84 (Figure 12). In immature epithelia or epithelia 

where regulators of the orientation of cell division do not localize at tricellular junctions (like 

MDCK monolayers), division aligns with global tissue stress85. This orientation of cell division 

relative to global or local stress allows stress dissipation within the tissue and facilitates tissue 

expansion, as shown by experiments with MDCK cells and gastrulating zebrafish86,87.  

1.2.3 Intercellular fluid and lumenogenesis 

In addition to the mechanical properties of the tissue, there is another physical component 

that plays a key role in morphogenesis and shape maintenance: intercellular fluid. Tissues are 

immersed in fluid, whose composition, volume and movement are controlled by 

compartments such as lumens, organs and vessels88. Due to the incompressible nature of 

liquids, these fluids generate considerable hydrostatic pressure that can act both at a local 

level, affecting the surrounding tissue, and at great distances, thus affecting organs or even 

the whole organism89. The isotropic stress exerted by this pressure can change tissue 

geometry and lead to a build-up of supracellular tension, which can in turn modify cell 

behaviour or alter cell fate90. 

1.2.3.1 Fluid regulation and ionic pumps 

In order to control fluid transport and secretion, epithelial cells rely on osmotic gradients. One 

of the main proteins involved in the formation of these gradients is the Na+/K+-ATPase, also 

known as sodium-potassium pump. This pump creates sodium and potassium gradients 

across the plasma membrane that are used to facilitate the transport of molecules, such as 

sugars or neurotransmitters, and other ions. The subcellular localisation of the Na+/K+-
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ATPases is key for several physiological processes (Figure 13). It depends on the isoform of the 

different units that compose the pump, which vary according to organ and cell type91,92. The 

neuroepithelium that lines the brain ventricles sorts this pump to the apical membrane 

domain, which helps maintain a low potassium level while facilitating fluid secretion to the 

ventricular lumen93. Conversely, in the renal tubular system, this pump is expressed in the 

basolateral domain to minimize bodily loss of sodium through urine94. It has been found that 

this pump is necessary for the formation of lumens across many organisms. A remarkable 

example of this is blastocyst cavitation in mouse, rabbit and cow95,96. 

 

Figure 13: Function and location of sodium-potassium pumps in the early mouse embryo. a) The sodium-potassium pump 
is a transmembrane protein powered by ATP. The pump moves sodium and potassium ions in opposite directions, each against 
its concentration gradient. In a single cycle of the pump, three sodium ions are extruded from the cell and two potassium ions 
are imported into the cell. Adapted from ref.97. b-e, Distribution of Na/K-ATPase β1 subunit during murine preimplantation 
development of a control embryo. f-i, Distribution of Na/K-ATPase β1 subunit of an embryo after microinjection of β1 siRNAs. 
Green, red, and blue colors in (b-i) indicate positive staining for the respective primary antibody, F-actin (rhodamine 
phalloidin), and nuclei (4,6-diamidino-2-phenylindole), respectively. Adapted from ref.92. 
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The ion gradients generated by Na+/K+-ATPases drive chloride secretion into the luminal space 

through channels like CFTR98. The accumulation of chloride generated by CFTR leads to a 

luminal electrochemical gradient that favours the transport of water and sodium, and the 

consequent growth of the lumen. Fluid incorporation to the lumen is also dependent on tight 

junctions, mainly on proteins of the occludin and claudin families, that can form ion-selective 

pores that contribute to regulate fluid secretion89.  

The correct regulation of fluid secretion allows the formation and maintenance of the lumens 

that are present in almost all internal organs. Conversely, abnormalities in this regulation can 

lead to developmental defects91. Perhaps the clearest example of such a defect is the Kupffer 

vesicle in zebrafish, an organ transiently present in the embryo that controls left-right 

asymmetry; loss of CFTR function in the embryo impairs expansion of this organ, leading to 

loss of laterality in brain, heart and gut99. Deregulation of fluid secretion can also lead to 

disfunction in adult organisms; an example of this is polycystic kidney disease, where clusters 

of cysts develop and enlarge, eventually causing loss of kidney function100. 

1.2.3.2 Apical lumen formation and growth 

The correct formation and maintenance of lumens is critical to help shape the embryo and to 

maintain proper organ function in adults. Therefore, understanding the mechanical and 

biochemical cues that regulate cell behaviour in luminal tissues is of utmost importance. 

Lumen formation can be initiated by many different processes. An example is apical 

constriction, that can lead to invagination of a cellular sheet and ultimately to tube formation, 

as is the case of chick neurulation77. In the early mammalian embryo (blastocyst), sorting of 

different cell populations contributes to formation of the lumen or blastocoel, through a 

process involving cadherin and actomyosin tension101. Other processes driving lumen shaping 

and formation are intercalation and convergent extension, and collective cell migration. 

To start lumenogenesis, apicobasal polarity of the surrounding epithelia is required. Most 

lumens form on the apical side of cells and, therefore, apical and basal membranes are 

specialized into two distinct domains, where the apical surface responds to a fluid 

environment (either gaseous or aqueous) and the basolateral one is surrounded by cells or 

ECM. Initial fluid secretion and lumen opening require the transient assembly of polarity and 

trafficking machinery close to the apical membrane102. One of the proteins implicated in this 
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process is podocalyxin, a transmembrane glycoprotein with a large highly anionic 

extracellular domain with anti-adhesive properties; the localization of this protein to the 

apical membrane is necessary for renal tube formation and opening of vascular lumens in 

mice, and its knockout induces a lethal phenotype103. Podocalyxin is first localized at the 

membrane in contact with the ECM and requires internalization via Rab11a-positive vesicles, 

a type of vesicles regulated by a member of the small GTPase Rab family (which regulates 

membrane transport). Afterwards, vesicle transport to the apical surface is controlled by 

polarity regulators such as Cdc42 (a member of the Rho GTPase family). Cdc42 indirectly 

regulates both actin and microtubule cytoskeleton, thus linking cell polarization and 

lumenogenesis with cytoskeletal reorganization102. After acquiring the correct polarity, in 

vertebrates, epithelial cells drive lumen opening and expansion by liquid secretion. This 

process is permitted by the action of the Na+/K+-ATPase and CFTR channels, which generate 

ionic gradients that drive the secretion of fluid. 

Lumens can present an infinity of different shapes, among which tubes are probably the most 

common ones. We can find organs formed by long unramified tubes, like the gut, and others 

that exhibit very complex branching, as the lung. However, independently of their final form, 

tubulogenesis presents two basic elements: the opening of the lumen requires filling (as 

mentioned above for any lumen) and mature tubes have a single lumen. Typically, one or 

multiple lumens form through cell rearrangements and establish a restricted space, then they 

expand due to liquid accumulation89. A critical step in tube formation is the resolution of a 

single lumen, that requires coordinated remodelling of the tissue and changes in the 

apicobasal polarity of cells. A dramatic example of this is anastomosis, or blood vessel fusion, 

in zebrafish (Figure 14). In anastomosis, two neighbouring tip cells guiding tube sprouts 

contact each other and form an apically polarized junctional ring, that encloses a luminal 

compartment. Then, cell rearrangements can bring two junctional rings together, merging the 

luminal compartments, displacing the middle cell to one side and, finally, forming a single 

tube11.  

Many lumenogenesis processes, including anastomosis, are highly affected by fluid pressure 

and flow. Pressure drives lumen expansion by stretching the cells surrounding the lumen, and, 

typically, favouring trafficking of new membrane to the apical surface and/or inducing 

proliferation104. However, sometimes the contractile state of the epithelium needs to be 
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modified to allow this deformation, as is the case of the neuroepithelium surrounding the 

brain ventricle in zebrafish, where epithelial relaxation through myosin regulation allows 

lumen  growth105.  Another  example  that emphasizes  the  role  of  contractility  is  the  early  

Figure 14: Anastomosis and heterogeneity of endothelial tubes. a, Timelapse images showing steps during vessel 
anastomosis. Tip cells reach the dorsal side of the embryo and send filopodia in anterior and posterior directions (arrow in 
00:18). The tip cells contact each other (arrow in 00:48) and the lumen opens from the stalk and proceeds into the contact 
region (arrows in 4:12 and 7:08). b,c, Different vessel architectures. Single photoconverted cells (red) show a unicellular (b) 
and a multicellular (c) tube section. n = nucleus. d, Schematic of contact formation during vessel fusion (left) and 
corresponding sagittal sections (right). At the contact site of two cells (green and purple), junctional proteins are deposited 
(yellow spot in i). Cells increase their mutual surface, the spot becomes a ring (ii, iii) and the enclosed membrane compartment 
becomes apically polarized (dark green and dark purple areas). Subsequently, two different cellular mechanisms can complete 
the fusion process (e and f). e, Schematic of the cord hollowing mechanism (results in a multicellular tube). Cell 
rearrangements bring together two apical membrane compartments that then merge into one membrane compartment. This 
is achieved by the formation of a new junction (orange) between the green and blue cell, which leads to the detachment of 
the middle cell (purple). f, Schematic of the cell membrane invagination mechanism (formation of a unicellular tube). The 
apical membrane of the green cell invaginates into the green cell. It then fuses with its own apical membrane at the previously 
formed contact side between the green and purple cells (see d). From here the apical membrane of the neighbouring cell 
(dark purple), begins to invaginate. Adapted from ref.11. 
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development of the inner ear, where mitotic rounding leads to axis-specific lumen expansion 

and contributes to lumen anisotropy6. The geometry of lumens is also affected by contraction-

generated flows (or more specifically, the shear stress they cause)106; this mechanical cue also 

plays a role in establishing left-right symmetry in many species99,107. 

1.2.3.3 Basal lumen formation and growth 

Even though most lumens form on the apical side of epithelia, where the interface is more 

favourable due to a lower concentration of adhesion molecules, there are several examples 

of basolateral lumens. In fact, the cardiovascular system of most invertebrates is formed on 

the basal side of cells108. Another relevant basolateral lumen is the blastocoele in the early 

embryos of echinoderms, amphibians or mammals88. There are also examples of tumours that 

exhibit cysts with inverted polarity109. Additionally, MDCK cells, a canonical model for apical 

lumen formation, can also form cysts with a lumen on the basolateral side110,111. Therefore, 

basal lumens may not be such an uncommon occurrence in physiological and pathological 

settings. 

The most studied occurrence of a basal lumen is the blastocoel in the mammalian blastocyst, 

an early developmental structure consisting of two groups of cells: the inner cell mass (ICM), 

consisting of the cells that will form the embryo, and an outer layer of cells called the 

trophoectoderm, that gives rise to the placenta. During the initial phase of the blastocoel 

formation, pressurized fluid is injected into the intercellular space due to an osmotic gradient 

(partially generated by Na+/K+-ATPases); the liquid is probably injected through a combination 

of vesicle release and paracellular transport via tight junctions88. 

At first, hundreds of micrometre-sized lumens form through the embryo due to hydraulic 

fracturing of cadherin cell-cell contacts9. The pressure inside of these small lumens is related 

to the tension and curvature of the enclosing membranes by the Young-Laplace equation. 

This equation, that will be explained further on Section 1.3.3, states that pressure is higher in 

smaller lumens if the enclosing membranes present the same tension, thus leading to small 

lumens discharging into larger ones. This process is similar to that occurring in foams, where 

big bubbles grow at the expense of smaller ones, thus increasing mean size and decreasing 

boundary surface in a process called coarsening. Coarsening leads to the resolution of a single 

lumen   that  becomes  the   blastocoel9  (Figure 15). The   final  position  of  the  blastocoel  is  
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Figure 15: Lumen coarsening can be directed by cell adhesion. a, Timelapse images of blastocoel formation. Microlumens 
form transiently at cell-cell contacts (red arrowheads) and multicellular junctions (blue arrowheads). They first swell and then 
shrink as the blastocoel (purple star) expands. The lower panels are 3x magnifications of the green squares. b, Growth 
dynamics of the blastocoel (purple), and microlumens at bicellular (red) and multicellular (blue) cell junctions. c, Coefficient 
of variation of cadherin1-GFP intensity along cell-cell contacts at –90 and +90 min compared to the time of microlumen 
appearance. d, Diagram of chimera experiments. Chimeric embryos were formed with two differently labelled WT embryos 
(control), and a WT and a mCdh1 embryo. WT, wild type. mCdh1, maternally knocked-out Cdh1. e, Chimeric control embryos 
composed of WT and WT cells, and experiment embryos with WT and mCdh1 cells. In the mCdh1 chimeras, the blastocoel 
formed preferentially on the mCdh1 half. Scale bars: 10 μm. Adapted from ref.9.Figure 15 

determined by the different contractility levels of the two cell types forming the blastocyst. 

Since cells from the ICM have higher surface tension, the lumen is located between these cells 

and the surrounding layer of trophoectoderm cells (instead of at the ICM-ICM interface)112. 

This combination of hydraulic fracturing of intercellular adhesions, coarsening, and 

differences in contractility observed in the blastocoel could be a general process explaining 

the formation and positioning of many lumens, both basolateral and apical ones. 
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1.2.3.4 MDCK basal lumens 

As previously mentioned, Madin-Darby Canine Kidney cells (MDCK) can also form basolateral 

cysts, meaning that the lumen is in contact with the basal cell membrane. This occurs when 

the cells are cultured in suspension, with no matrix cues for polarity110. Within 24 hours, the 

initial single cell suspension gives raise to cell aggregates with a diameter of about 50 µm. 

These aggregates can be maintained in culture for more than a week and their size plateaus 

at around 90 µm-diameter. The apicobasal polarity of these cysts has been checked using 

antibodies for several proteins, including podocalyxin (a known apical marker) and Na+/K+-

ATPase (which is expressed basolaterally in MDCK cells94). In contrast to apical lumens, 

podocalyxin was localized at the outer cell-free membrane and, after 5 days, Na+/K+-ATPase 

was localized at the luminal membrane (and at the membrane between adjacent cells)113. 

In this thesis, we have worked with a specific type of MDCK basal lumens commonly called 

domes. Domes were first described in 1969 by Leighton and colleagues111. After seeding  

 

Figure 16: First images of MDCK domes. (1) Culture of MDCK growing on the surface of a microscope slide. The slide is 
completely covered with a sheet of epithelium interspersed with Irregular, oval multicellular structures (domes). That these 
are vesicles is evident from the pattern of growth seen on the edge of the slide, where hemispherical blisters appear on profile. 
(2). Electron micrograph of a vesicle wall. The convex surface on the right (the outer surface of a blister) is covered with 
microvilli. A tight junction (arrow) joins 2 cell borders. From ref. 110. 
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MDCK cells on glass slides and growing them to confluency, they observed the formation of 

lesions that they initially described as “ulcers”. Upon closer examination, they realised that 

the supposed lesions were in fact hemispherical vesicles or blisters composed of many cells. 

When they studied the morphology of the cells enclosing the lumen, they found clear markers 

of apical polarity (microvilli and tight junctions) in the outward facing membrane of the dome. 

This demonstrated that the apical surface of the cells was not facing the lumen, as happens 

in renal tubules, but the outer cell media 111 (Figure 16). 

Domes are dynamic structures that can inflate, deflate, or even collapse abruptly (Figure 17a). 

Upon collapse, the monolayer is then repaired, and the inflation process is resumed. Domes 

are formed by fluid accumulation between the cellular membrane and the impermeable 

substrate. Leighton and colleagues also showed that this accumulation of fluid is associated 

with the function of the sodium-potassium ion pump (Na+/K+-ATPase), as indicated by the 

reduction of the number of domes after an overnight treatment with its inhibitor, ouabain110. 

In 1983, Tanner and colleagues observed that spontaneous domes not only present mostly 

circular bases, but their shape closely matches that of a spherical section (spherical cap)114. 

They then reasoned that, since domes are pressurized structures with a spherical cap 

morphology, the tension along the enclosing cell monolayer should be uniform and it can be 

computed using Laplace law (for more information, refer to Subsection 1.3.3). They made the 

first measurements of luminal pressure in domes, whose diameters spanned between 80 and 

200 μm, and inferred a monolayer tension of around 25 mN/m.114Recently, Latorre et al 

performed new measurements of dome luminal pressure in a controlled set-up (possible 

thanks to three decades of technological advances)54. These new measurements gave 

pressure values around 1-3 mN/m (one tenth of the values estimated by Tanner et al.). 

Moreover, these experiments, that were carried out in domes with a radius of 100 μm (200 

μm diameter) led to the discovery that the strain-stress relationship in domes was not trivial: 

they exhibited an active superelastic behaviour54 (Figure 17b,c).  

Superelasticity is a feature observed in some inert materials, such as nickel-titanium alloys. 

These alloys undergo large reversible deformations at nearly constant stress by means of a 

phase transformation that occurs heterogeneously through the material, giving raise to 

regions with high strain. In domes, superelasticity is an active process, achieved by 

progressive switching of individual cells from an unstretched to a super-stretched state (Figure 
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17d). This phase transition is caused by strain-induced cell softening, that occurs due to a 

limited availability of cytoskeletal components that results in cortical dilution (Figure 17e-g). 

This softening is combined with re-stiffening at extreme strains to confine the high-strain 

phase and allow the stabilization of super-stretched cells. This re-stiffening is prompted by 

the intermediate filament network54.  

 

Figure 17: Superelasticity in MDCK domes. a, Time evolution of MDCK domes and tractions (y-z section). b, Evolution of the 
luminal pressure of dome shown in (a). c, Surface tension in the free-standing sheet as a function of the dome areal strain 
(inflation level). d, Deflating MDCK dome with membrane marked (CAAX-GFP). Cells with different cellular areal strain are 
coloured. e, Sum-of-intensity projection and confocal section of a dome stained with phalloidin for F-actin. f, Zoom of 
representative cells. g, F-actin intensity along the bands marked in (f). AU, arbitrary units. Scale bar: 50 μm (a,d,e), 10 μm (f). 
Adapted from ref.54. 

1.2.3.5 Luminal size control 

Vesicular tissues containing lumens of different sizes and shapes are present in many organs 

from very diverse species, including hearts, brains and guts. Since the acquisition of proper 

size is crucial for the healthy function of many organs, the existence of control mechanisms 

that ensure homeostasis is necessary. Although chemical signalling is known to play a role in 

this control, it is becoming increasingly clear that mechanical forces are also important at 

tissue and organ scales. The mechanical factors that have an impact can include cell 

proliferation, cell shape, material properties, or transepithelial transport. In the context of 
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luminal tissues, we need to underline the role of fluid accumulation. As mentioned in 

Subsection 1.2.3.2 (“Apical lumen formation and growth”), fluid accumulation can lead to 

lumen formation and expansion. Moreover, it can change the rate of luminal growth or even 

limit it7. 

Even though the ion transporters necessary for fluid accumulation have already been 

identified, many aspects of how they regulate fluid flow and their role in size control are only 

beginning to be unravelled. The main consequence of fluid accumulation is an increase of 

hydrostatic pressure that is applied on the surrounding tissues, leading to changes in cell 

shape and behaviour. The idea that pressure can drive the growth of luminal organs and even 

control their size is not new, as exemplified by the papers of AJ Coulombre on the 

development of the chick eye published in the 50s115,116. However, the lack of tools to 

measure pressure and forces non-invasively (see Section 1.3) has delayed the acquisition of 

quantitative data and the elucidation of specific mechanisms. 

One of the most studied structures in terms of the effects of hydrostatic pressure is the 

blastocyst, partially thanks to its simple morphology and the accessibility to its lumen. During 

the development of mouse blastocysts, luminal pressure increases two-fold, leading to 

increased  cortical  tension  in  the  enclosing   trophectoderm cells112.  This tension induces 

mechanosensing via vinculin, that accumulates at tight junctions (suggesting that they are 

responsible for stress-bearing in the blastocyst, instead of adherens junctions). Since reduced 

tension results in defective tight-junction seals, this hints at a positive feedback loop linking 

tension and maturation of these junctions and aimed at withstanding pressure growth. 

However, there is a critical cortical tension above which cell-cell adhesion cannot be 

maintained during mitotic rounding, thus resulting in junctional leakage and, ultimately, a 

collapse of the blastocyst cavity. Furthermore, stiffening the trophectoderm by increasing 

cortical contractility causes a reduction on growth rate and size of the lumen. Conversely, 

softening produces increased lumen growth. Therefore, this process of luminal growth and 

collapse is dependent on tissue stiffness, and it generates oscillations that control blastocyst 

size112 (Figure 18a,b). 

Another structure whose size is controlled via a hydraulic feedback loop is the zebrafish inner 

ear7. At early developmental stages, the inner ear originates from an ectodermal thickening 

that cavitates to form the otic vesicle, which is filled with a fluid liquid called endolymph. In 
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this vesicle, pressure increases with luminal growth and it negatively regulates fluid transport. 

After puncturing of an otic vesicle (and the consequent pressure loss) luminal growth rate is 

increased, as demonstrated by regeneration of the luminal volume relative to the untouched 

otic vesicle of the same embryo, thus restoring bilateral symmetry. Later in development, the 

inner ear is connected through a duct to the endolymphatic sac. This sac helps to maintain 

pressure homeostasis by acting as a relief valve117. When pressure in the ear increases, it 

slowly inflates with endolymph and then rapidly deflates, causing inflation-deflation cycles. 

 

Figure 18: Blastocyst oscillations and size control. a, Top, Timelapse images of a blastocyst. Dotted circle denotes cavity. 
Time is shown as h:min after E3.5. Bottom, plot of cavity diameter with time of (a). b, Immunostaining of late blastocyst stage 
(E4.25) untreated and ECCD1-treated embryos, showing trophectoderm (CDX2, magenta) and epiblast (SOX2, green) fate. 
ECCD1 is an E-cadherin-blocking antibody that weakens cellular adhesion (tissue softening). ECCD1-treated embryos show 
enlarged blastocoel in comparison to untreated control. c, Schematic showing how multi-scale feedback mechanisms between 
luminal pressure and tissue mechanics control the size of blastocysts. Luminal pressure stretches cells and generates 
mechanical stress at the tissue scale, which reinforces junctional maturation through mechano-sensing at the cellular scale. 
As tissue stress reaches a critical threshold, cell–cell adhesion cannot be sustained during mitosis, triggering junctional 
rupture and the collapse of the cavity. Tight junctions then re-seal and the blastocyst expands again, and the whole process 
repeats itself to generate size oscillations. Scale bars, 20 μm. Adapted from ref.3. 
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Both in the blastocyst and the inner ear, and in many other systems such as organoids or the 

whole organism of the cnidarian H. vulgaris118, we find that size is controlled by periodic 

hydraulic oscillations. These oscillations consist of growth of a hollow tissue through liquid 

permeation and cell division, followed by tissue rupture (Figure 18c). The repetition of this 

pattern among different structures and organisms suggests that hydraulic oscillations are a 

robust mechanism for size control in multicellular tissue cysts119. However, this mechanism 

alone cannot explain size control in lumens of different geometries and with different 

structures. Therefore, many processes involved in lumen homeostasis and size control remain 

yet unknown. 

 

1.3 Measuring mechanics in epithelia surrounding a lumen 

As previously mentioned, cells present internal stresses generated by subcellular 

components, and are subjected to external stresses caused by the environment, such as 

neighbouring cells or the ECM. At a tissue level, the generation and transmission of stresses 

can drive collective phenomena ranging from simple tissue contraction to complicated 

morphogenetic events. Even though the clearest examples of the effect of mechanical 

stresses occur during morphogenesis, they are important throughout the life of every 

individual. Mechanical functions such as compression, stretching or division are common in 

homeostasis, and abnormal stresses mediate diseases, like asthma or cancer51,120. Therefore, 

the study of tissue stresses can provide meaningful information on the mechanical processes 

involved in development, homeostasis, and disease. 

The great diversity of existing stress-measuring techniques allows us to measure mechanics 

in many different contexts, ranging from 2D in vitro culture to in vivo settings. In 2D in vitro 

set-ups, we can find techniques such as 2D traction force microscopy, micropillar arrays or 

monolayer stress microscopy. In a 3D in vitro or ex vivo context, commonly used techniques 

include 2.5 and 3D traction force microscopy, and the micro-bulge test. Finally, in vivo 

methods comprise servo-null methods, FRET tension sensors, inclusions, laser ablation and 

force-inference methods. Each one of these techniques presents strengths and limitations, 

meaning that there is not an absolute technique valid for all settings. Generally, 2D in vitro 

methods have higher spatial resolution, but the system does not capture essential attributes 
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of the in vivo tissue. The other way round, in vivo data is more physiologically relevant, but 

the techniques do not provide absolute stress values. 

Due to the great number of stress-measuring techniques, in this section I will discuss only 

some techniques used to measure mechanics in epithelia surrounding lumens. These 

techniques are servo-null methods, traction force microscopy, the micro-bulge test and force- 

inference methods (see   for an overview of 3D stress-measuring techniques). 

Table 1: Techniques to measure mechanical stresses in 3D living tissues (from reference 121). 

  

1.3.1 Servo-null methods for measuring luminal pressure 

Servo-null methods are techniques used to measure luminal pressure. They are based on the 

insertion into the lumen of a glass micropipette filled with a saline solution that has very low 

electrical impedance (resistance to the movement of electrons), much lower than the fluid of 
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the studied lumen. When the tip is introduced in the lumen, the higher pressure will drive 

luminal fluid into the tip, thus increasing the impedance of the solution. This difference in 

impedance is sensed by a servo system, that sends the signal to a transducer. This transducer 

then generates a counter-pressure that equilibrates luminal pressure and restores the initial 

impedance. The counter-pressure applied is assumed to be equivalent to the luminal 

pressure121.  

The development of these servo-null devices dates to the 1960s, and they were first used to 

measure pressure in microcirculation vessels122. Currently, the improvements in these devices 

allow us to measure pressures in many in vivo systems and at different length scales, ranging 

from the cytoplasm of a cell to a whole organ. Servo-null devices are broadly used to study 

embryonic development and they have led to many discoveries, such as the hydraulic 

feedback mechanisms described in Subsection 1.2.3.4.  

Despite their clear applications and potential to measure pressure in microscopic structures, 

these systems have several disadvantages. They are invasive techniques with a complex 

experimental set-up that can lead to measurement errors, like leakage at the puncture site or 

the presence of bubbles inside of the tip. Additionally, the tip resistance is usually dismissed, 

possibly overlooking measurement biases.  

1.3.2 Traction Force Microscopy 

Traction Force Microscopy (TFM) is a technique that allows the measurement of the tractions 

exerted by cells and tissues on soft elastic substrates. The first attempt to quantify 2D cellular 

forces was carried out by Harris and co-workers in 1980 123. They seeded fibroblasts on silicon 

rubber substrates and measured the forces they exerted by mimicking the deformations on 

the membrane with calibrated glass microneedles.  

Currently, 2D TFM is usually performed on polyacrylamide or soft polydimethylsiloxane gels, 

which are transparent and present tuneable stiffness. Traction forces generated by cells are 

transmitted to the substrate and measured by imaging the displacement of fluorescent 

markers embedded in the gel or attached to its surface. Usually, computing these 

displacements involves detaching the cells from the substrate to obtain a reference image of 
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the relaxed configuration. However, recent studies bypass this limitation by distributing the 

markers in a regular array124.  

To obtain cellular tractions, mechanical equilibrium is imposed for the substrate, meaning 

that there are no external forces acting on the tissue and, thus, the internal stresses balance 

themselves. Additionally, a constitutive behaviour is chosen for the substrate. Commonly this 

behaviour is assumed to be linear elastic: substrate deformations are assumed to be small 

and the relationship between stress and strain is linear. If these assumptions do not hold, the 

tractions have to be calculated using finite element methods121. 

TFM has been a crucial tool for the mechanical study of single-cells and tissues in vitro. It has 

shed light on the tractions that cells exert when they interact with their environment, migrate 

or divide. It has also enabled the in vitro study of collective processes such as wound healing 

Figure 19: 2.5D TFM and 3D TFM. a, Schematic of a 2.5D TFM setup. Cells are seeded on top of a 2D elastic substrate, and 
the changes in position of fluorescent particles embedded in the substrate (blue dots) are measured in 3D. From these 
displacements, the 3D traction field can be calculated. For spherical cap geometries, tissue stresses can be computed using 
the microbulge test. b, Representative 2.5D TFM experiment compatible with the microbulge test. 3D traction field (red 
arrows) generated by an epithelial dome (side view) on a flat substrate. c, Schematic of 3D TFM. The full 3D displacement 
field (red arrows) for tissues grown inside a deformable ECM gel can be measured by detecting changes in the position of 
embedded particle tracers by confocal microscopy. From this field, the full 3D traction field can be inferred. d, Representative 
3D TFM experiment. Breast-cancer spheroid embedded in a 3D collagen I matrix. Bright- field microscopy image (left) with 
superimposed ECM displacements (arrows) and fluorescent-microscopy  image (right) of the spheroid (green) and matrix (red)    
From ref.121. 
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or jamming transitions51,125. However, even though this technique is very versatile and its 

application is straightforward, it presents some drawbacks. Firstly, sing the displacements to 

retrieve the tractions is an ill-posed problem, and therefore very sensitive to experimental 

noise. Secondly, as implied by its name, 2D TFM can only measure in-plane tractions and not 

out-of-plane components. This second limitation can be overcome with the implementation 

of 2.5D or 3D TFM techniques.  

2.5D TFM measures a 3D displacement field on the surface of the gel and uses it to obtain the 

3D traction vector field (Figure 19a,b). The mathematical and computational approaches used 

in 2.5D are the same ones as in 2D TFM. In addition to the previous assumptions about the 

substrate (isotropic, linear elastic), it is usually considered as incompressible, thus uncoupling 

the tractions parallel to the gel (in-plane) and the perpendicular ones (vertical)126.  

If we want to study cells or tissues in a physiological environment, we may want to measure 

the tractions exerted on 3D ECM. This calculation of a 3D traction field from 3D displacements 

is what is called 3D TFM (Figure 19c,d). The biggest challenges of this technique are the 

differentiation of displacements due to cellular tractions from those generated by ECM 

remodelling, and the nonlinear behaviour of ECM. To deal with these problems, some 

experiments are carried out using materials with well-characterized viscoelastic properties or 

synthetized artificial matrices that have a linearly elastic behaviour127,128. Furthermore, some 

research groups have started to characterize the elastic properties of ECM components, such 

as collagen gels129. 

1.3.3 Micro-bulge test 

The micro-bulge test consists on the formation of domes on a soft, impermeable and elastic 

substrate, such as polydimethylsiloxane gels. As explained in Section 1.2.3.4, domes are cell 

monolayers confining pressurized basal lumens. The enclosing monolayer is described as an 

infinitely thin membrane supporting stresses tangential to its surface and a uniform 

transepithelial pressure exerted by the luminal fluid. Due to the sharp contact angle between 

the domes and the gel, bending moments and out-of-plane stresses can be neglected54. 

As previously mentioned, these domes present a geometry very similar to a spherical cap114. 

This symmetry implies that the tangential stress is uniform, isotropic and can be described 
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using only a scalar value. Therefore, the stress state can be computed by imposing mechanical 

equilibrium. This equilibrium is described by Laplace’s Law130, which states that the surface 

stress (σ) is directly proportional to the hydrostatic luminal pressure (ΔP) and the radius of 

curvature of the dome (R). 

𝜎 =
𝛥𝑃𝑅

2
                                                                           (5) 

Luminal pressure can be easily measured using 2.5D TFM and the radius of the dome can be 

estimated from confocal z-stacks of the cells. The micro-bulge test is a very robust technique 

for stress measurement because it is based solely on mechanical equilibrium. In other words, 

we do not need to assume any constitutive behaviour for the monolayer. However, this 

technique can be used only with cell types that form hemilumens. 

1.3.4 Force-inference methods 

Force-inference methods compute the internal mechanical balance of the tissue from images 

of cell geometry (Figure 20a). The forces involved in this balance include cell cortical tensions, 

internal pressures generated by the cytoplasm, the elastic and viscous responses of cellular 

components, and frictional responses to deformation131.  In most experiments, inertia is 

negligible, and the forces equilibrate each other adding up to zero. Moreover, experiments 

often extend over timescales long enough that the contribution of viscous dissipation and 

elastic components is irrelevant. Therefore, force-inference models often consider only two 

sources of force: surface tensions and internal pressure121.  

These models assume that the tensions and pressures equilibrate at the vertices of cellular 

junctions  and cell-cell interfaces, where  Laplace’s  law is invoked  (Figure 20b). The  previous  

Figure 20: Force inference example in the Drosophila pupal wing. a, Cell geometry and vertex positions are extracted from 
a fluorescence image of cell membrane from the Drosophila pupal wing at 23 h after pupa formation (APF). b, The force 
balance equations are defined for every vertex. The equations present a contribution from cell-cell interface tensions (T) and 
another from differences in cellular pressures (P). c, Solving these equations yields a map of cell-cell interface tensions, relative 
to an unknown constant, which is the average tissue tension. The inferred cell pressure map has another unknown, an additive 
constant, which is the average pressure. Adapted from ref.132. 
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assumptions allow the calculation of relative pressures and tensions without assumptions of 

material properties of cells and tissues (Figure 20c). The scaling constant factor that relates 

the model calculations and the tissue pressure and tension can be obtained by measurements 

with another technique, such as TFM or servo-null methods. The methodology consists on 

measuring the contact angle between cells at intercellular junctions. Subsequently, forces are 

inferred from the deviation of these angles from the equilibrium configuration. This 

methodology can be formalized using vertex models. 

Mechanical equilibrium requires that the sum of forces is equal to zero at each vertex and, 

therefore, it requires one equation per vertex. This equilibrium depends on the unknown 

pressure and tension of adjacent cells, making it possible to generate an algebraic system of 

equations from the geometrical information of the tissue131. However, at the vertices where 

multiple cells meet, the system is underdetermined. To solve this issue, different approaches 

have been applied, such as making the system overdetermined. An option to accomplish this 

is to assume that tension is uniform (reducing the unknowns to only cell pressures), like has 

been done in the retina of Drosophila133. Conversely, we can assume that all cells present the 

same pressure and consider the tensions as the only unknowns. 

The main advantages of inference methods are that they are non-invasive and require only 

imaging of the tissue, they make minimal assumptions about the origin of tissue forces, and 

they can be easily combined with other methods. However, these methods also present 

several limitations. They assume that tensions along cell edges are positive and constant 

(which does not necessarily apply to wiggly junctions134), the measurements obtained are 

relative unless they are combined with another measuring technique, and results are highly 

dependent on the accuracy of the cellular segmentation. Furthermore, the underlying model 

may require modifications in the presence of actin belts, cell polarization, lamellipodia or 

other cellular processes that are not considered in the conceptual framework of force-

inference methods.  

It is interesting to mention that, although force-inference methods are usually applied to 

compute stresses at a cellular level, they can also be applied to estimate local stress on 

luminal epithelia. If the thickness of the epithelium is sufficiently small, we can model it as an 

inflated membrane. In membrane theory, stresses are assumed to be tangential to the 

surface; in other words, the bending stresses are assumed to be negligible. In this situation, 
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the system of equations is statically determinate, and we can infer stresses from tissue shape 

and pressure difference across the membrane. This kind of model has been applied to the 

estimation of stresses in brain aneurysms135,136. 
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2 AIMS 
 

2.1 General aim 

The general aim of this thesis is to understand how mechanical stress depends on pressure, 

size and shape in fluid-filled curved epithelial sheets. 

2.2 Specific aims 

This general aim can be divided in the following specific objectives: 

1. To develop a TFM-compatible protocol to generate curved epithelial monolayers with 

any desired size and shape. 

2. To study the effect of size on the mechanical properties of spherical-cap epithelial 

monolayers. 

3. To validate an inference method to map the stress tensor anywhere in the monolayer 

without assumptions of mechanical properties. 

4. To study the effect of anisotropy on the mechanical properties of curved epithelial 

monolayers with rectangular and ellipsoidal footprints. 

5. To study the relationship between stress anisotropy and cellular geometry and 

alignment in curved epithelial monolayers.  

6. To study the relationship between stress anisotropy and nuclear geometry and 

alignment in curved epithelial monolayers. 
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3 METHODS 
 

3.1 Cell lines and culture 

All experiments described in this thesis were performed with Madin-Darby Canine Kidney 

cells type II (MDCK II). More specifically, we used a stable cell line containing the CIBN-GFP-

CAAX construct137. This cell line presents a green fluorescent protein (GFP) anchored at the 

membrane using the CAAX motif, thus allowing visualization of the cell membrane. The 

construct also presents an optogenetic receptor (CIBN) that has not been used in this study. 

MDCK cells are the most suitable ones for this study because they spontaneously form 

pressurized hemi-lumens in 2D culture111.  

Cells were cultured in standard flasks for culture of adherent cells (Nunc EasyFlasks, Life 

Technologies) with MEM (31095052, Life Technologies) supplemented with 10% fetal bovine 

serum (10270-106, Life Technologies) and 1% penicillin-streptomycin-Glutamine (10378-016, 

Life Technologies). The same medium composition was used to carry out the experiments. 

The cell line tested negative for mycoplasma contamination. 

 

3.2 Preparation of soft polydimethylsiloxane substrates 

3.2.1 Fabrication of soft polydimethylsiloxane gels 
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The experiments were carried out on soft silicone gels synthesized by mixing A and B 

polydimethylsiloxane (PDMS) components in a 1:1 weight ratio in ice (DOWSIL™ CY 52-276). 

The proportion of A and B components was critical to achieve the desired stiffness, which was 

3 kPa. The mix was then degassed for 30 minutes and, afterwards, 100 µl were placed on each 

glass bottom dish (P35G-0-20 Mattek) and spun for 90 seconds at 400 rpm. The gels were 

curated overnight at 65°C in an oven. 

3.2.2 Coating the PDMS gels with fluorescent beads 

To reduce the amount of reagents used, a thin PDMS stencil with annular shape (internal 

diameter 7 mm, external diameter 10 mm) was placed on top of the gels. 

The soft PDMS substrates were treated with (3-aminopropyl)triethoxysilane (APTES, Sigma-

Aldrich, cat. no. A3648) diluted at 5% in volume in absolute ethanol for 3 minutes and then 

rinsed three times with absolute ethanol. 

Red fluorescent carboxylate-modified beads (FluoSpheres™ F8801, Invitrogen) were diluted 

in a 1:60 ratio (for imaging with a 40x objective) or a 1:40 ratio (for a 60x objective) in a buffer 

consisting of sodium tetraborate (3.8 mg/ml, Sigma-Aldrich) and boric acid (5 mg/ml, Sigma-

Aldrich). The suspension was then sonicated for 5 minutes and filtered with a 0.22 µm syringe 

filter (SLGV004SL, Millipore) to avoid clusters of beads. The gels were incubated with the 

beads’ suspension for an hour, then rinsed with type I water four times.  

The addition of fluorescent beads is necessary to perform Traction Force Microscopy. More 

details about TFM 2.5 methodology can be found in Subection 3.6.1. 

3.2.3 Stiffness measurements 

The stiffness of the gels was measured as described in ref.54. Briefly, a large 1 mm-diameter 

metal sphere of known mass was used to generate an indentation on the gels. Then, the depth 

of the indentation was quantified using confocal microscopy. Using the indentation depth and 

the sphere mass, we computed the Young modulus by applying Hertz theory and correcting 

for the finite thickness of the gel138 (Figure 21). The resulting Young modulus was 2.9±0.7 kPa 
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(mean±s.d.). Repeating the same 

measurements on photopatterned gels 

shows that stiffness was not affected by 

photoillumination (3.1±0.8 kPa). 

 

 

3.3 Micropatterning of soft polydimethylsiloxane substrates 

3.3.1 Substrate passivation  

The gels were incubated for 30 minutes with 1% poly-L-lysine (P8920, Sigma Aldrich) and then 

rinsed four times with 10 mM Hepes (H7523, Sigma Aldrich). Both reagents were diluted in 

type I water. This process ensured that the gels were covered with a layer of positive charges.  

Afterwards, the gels were incubated with mPEG-Succinimidyl valerate (mPEG-SVA, Laysan 

Bio) at a concentration of 50 mg/ml in 10 mM Hepes for an hour. For a successful passivation, 

the Hepes solution must be adjusted to pH 8.2-8.4 to avoid fast decay of mPEG-SVA. mPEG-

SVA forms amide bonds with PLL, thus leading to a good passivation of the substrate.  

The gels were then rinsed four times (without letting them dry), covered with type I water 

and stored in the fridge until patterning (1-2 days).  

3.3.2 Photopatterning using PRIMO 

Micropatterning of the substrates was carried out using a device called PRIMO, developed by 

the company Alvéole. This system is based on LIMAP (Light Induced Molecular Adsorption of 

Proteins)139 and uses a UV laser (λ=375nm) to locally activate a compound, 4-benzoylbenzyl-

trimethylammonium chloride (custom synthesis by Sigma-Aldrich outsourced to SinoChem, 

Figure 21: Stiffness quantification of 
photopatterned and non-patterned soft PDMS 
gels.  Solid line indicates the mean. n=15 
(photopatterned), n=16 (non-patterned). Samples 
from 3 independent batches. 
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China), that cuts the PEG chains that cover the substrate (Figure 22). To generate the desired 

patterns, this system needs to be mounted on a microscope with a motorized stage.  

The system is controlled by a MicroManager plugin called Leonardo. This software enables 

the selection of the jpg/pdf pattern that will be reproduced, the energy dosage used per mm², 

and the power of the laser. The pattern templates must be in greyscale and the brightness 

indicates the amount of light they will receive, from white (maximum) to black (no light). 

Therefore, a brighter shade will correspond with a higher amount of protein than a darker 

one.  

To generate our samples, we loaded our patterns onto the Leonardo software and then 

selected a dosage of 900 mJ/mm2 with maximal laser power. Afterwards, the samples were 

rinsed four times with PBS (D8662, Sigma Aldrich) incubated for 5 minutes with a 0.02% 

solution of fibronectin (F0895, Sigma-Aldrich) and 0.03 mg/ml fibrinogen (Alexa Fluor™ 647 

Conjugate, F35200, Life Technologies) in PBS. The adhesion proteins attached to the 

illuminated regions, where the PEG chains were cut. Finally, the samples were rinsed four 

more times and left with PBS in the fridge until cell seeding (less than one week). 

 

Figure 22: Photo-
patterning protocol with 
PRIMO. First, (1,2) the 
soft substrate is 
incubated with a 
passivating PEG agent 
and then rinsed. (3) The 
photoinitiator is then 
added to the sample and 
the sample is placed in 
the microscope. (4) The 
desired pattern image is 
loaded into the Leonardo 
software and (5) the 
program starts 
illumination with a UV 
laser. (6) Afterwards, the 
sample is rinsed, 
incubated with 
fibronectin and rinsed 
again. (7) The sample is 
then ready for cell 
seeding. Adapted from 
ref.140. 
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3.3.3 Pattern design 

The patterns were designed using the Inkscape software. To examine the effects of size, we 

generated circles with diameters of 25, 50, 100 and 200 µm. To study the effect of shape, we 

generated ellipses (65x98 µm and 46x138 µm) and rectangles (71x71 µm, 50x100 µm, 35x141 

µm) with the same area (5000 µm2), but different degrees of anisotropy. 

Different patterns were arranged using hexagonal ordering and with a separation of 200 µm 

between them into arrays of approximately 3x3 mm. The rectangular array was white, which 

corresponds to the maximum amount of protein attached using photopatterning. In patterns 

with big motifs (an area larger than 5000 µm2), the low-adhesion area was designed a 

medium-dark grey color (1/5 of the maximum brightness) to allow some protein attachment 

and cell adhesion on the patterns (Figure 23). In patterns with smaller motifs, the low-

adhesion area was a darker grey (1/8 of the 

maximum brightness).  

 

 

3.4 Cell seeding and density 

Firstly, MDCK cells grown on culture flasks were rinsed with PBS (D8662, Sigma Aldrich) and 

incubated with 1.5 ml of 1X trypsin (T3924, sigma Aldrich) for 15 minutes at 37°C. When the 

cells detached from the substrate, they were resuspended in 10 ml of media and 10 µl of the 

suspension were placed on a Neubauer chamber to count the number of cells. The remaining 

cell suspension was centrifuged at 1000 rpm for 5 minutes. The supernatant was aspirated, 

and then the pellet was resuspended in media to achieve a concentration of 3·106 cells/ml. 

Before cell seeding, the soft PDMS gels had been sterilized with UV light for 15 minutes inside 

of the culture hood. The PBS in the samples was aspirated and the region delimited by the 

stencil was rinsed once with 50µ l of media. Afterwards, 50 µl of the cell suspension were 

carefully placed inside the stencil. The samples were incubated at 37°C for approximately 50 

Figure 23: Circular dome pattern. Left: Fluorescence 
image of a fibronectin and fluorescent fibrinogen 
pattern. Scale bar= 100 μm. Right: Section of a 100 μm-
diameter input pattern. 
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minutes to allow the cells to attach to the gel. The samples were then thoroughly rinsed with 

PBS to remove cells that were not completely attached to the pattern. Then, 2 ml of media 

were added to each sample, and the samples were placed in the incubator at 37°C for 16-48 

hours.  

The incubation time depended on the size of the desired structures, with larger structures 

needing more time to form a cohesive monolayer on the low-adhesion areas and to inflate. 

Curved monolayers presented similar cell densities across sizes (refer to Section 4.2 for the 

data). Cell density was assessed using the following formula:  

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
(𝑐𝑖 + 𝑐𝑏 2⁄ )

𝐴
                                                           (6) 

, where 𝑐𝑖 is the number of cells completely on the dome, 𝑐𝑏 is the number of cells at the 

dome boundary (partially on the dome, partially outside of it) and 𝐴 is the patterned substrate 

area. 

 

3.5 Image acquisition 

3.5.1 Multidimensional acquisition for traction force measurements 

Live imaging was performed using an inverted Nikon microscope with a spinning disk confocal 

unit (CSU-W1, Yokogawa), Zyla sCMOS camera (Andor, image size 2048x2048 pixels). The 

microscope was equipped with temperature and CO2 control. For imaging of big structures, 

with a diameter of at least 100 µm, we used a Nikon 40X 0.75 NA air objective (CFI Plan Fluor 

40x/0.75 DIC WD 0.66). For imaging of smaller structures, a Nikon 60X 1.2NA Water objective 

was used (Plan Apo VC 60X/1.2w WD 0.31-0.28). 

The microscope was controlled using the MicroManager software. The acquisitions consisted 

of two stacks for each position and timepoint. The green stacks corresponded to the cell 

membrane (GFP) and consisted of a variable number of planes and a step between 0.8 and 3 

µm. The red stacks consisted of images of the fluorescent beads necessary for TFM. All red 

stacks had 60 planes and a step of 0.2 µm. These stacks were acquired for every position every 

30 minutes. Due to the complexity of the acquisition routine, we wrote a home-made script 

to perform it.  
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After the experiment, the cells were detached from the gel using 10X trypsin (15400-054, Life 

Technologies) and a stack of the beads was taken. The settings of the acquisition, such as laser 

power and exposure time, were the same as those used during live imaging. These images 

served as a reference for the computation of traction forces (see Subsection 3.6.1). 

3.5.2 Multidimensional acquisition for nuclei and cell segmentation 

Live imaging was performed using the same microscopy set-up from the previous subsection, 

and a Nikon 60X 1.2NA Water objective (Plan Apo VC 60X/1.2w WD 0.31-0.28). The 

microscope was controlled using the MicroManager software.  

Fifteen minutes before image acquisition, the samples were placed in the microscope and 

Hoescht was added to the medium at a final concentration of 1:1000. The acquisitions 

consisted of only one timepoint with stacks of three different colors for each dome. The green 

stacks corresponded to the cell membrane (GFP) and consisted of a variable number of planes 

and a step of 0.5 µm. The blue stacks corresponded to the nuclei and had the same step and 

number of planes as the green ones. The red stacks consisted of images of the fluorescent 

beads necessary for TFM. All red stacks had 60 planes and a step of 0.2 µm. Due to the 

complexity of the acquisition routine, we wrote a home-made script to perform it.  

After the experiment, the cells were detached from the gel using 10X trypsin (15400-054, Life 

Technologies) and a stack of the beads was taken as explained in the previous subsection. 

 

3.6  Calculation of experimental tractions, pressure and 

stresses 

3.6.1  2.5D Traction Force Microscopy 

2.5D traction forces were computed using traction microscopy with finite gel thickness141,142. 

The 3D displacement field of the top layer of the gel at any given timepoint was obtained by 

using as a reference the image of the beads after cell trypsinization. The displacement field 

was computed using a home-made particle imaging velocimetry software based on an 

iterative algorithm with a dynamic interrogation window size and implementing criteria for 
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convergence based on image intensity as described in previous publications54,143. The 

different software and scripts used for calculation of traction forces were written for Matlab. 

3.6.2 Luminal pressure and tractions of domes 

Results from TFM calculations showed an indentation on the gel in the region below the 

lumen of the domes. This indentation corresponded to the pressure the luminal fluid exerted 

on the surface of the gel. Since the pressure is constant through the lumen, we could compute 

luminal pressure by averaging the traction values on the central region of the dome. By 

computing the tangential component of the tractions at the dome boundary, 𝑇||, we can 

estimate the contribution of the free-standing cell sheet to the measured tractions. This 

contribution is computed as described in Equation 7, where 𝑇𝑧 is the vertical component of 

the measured tractions and 𝛽 is the contact angle between the dome and the substrate 

(Figure 24a). 

𝑇|| = 𝑇𝑧/𝑠𝑖𝑛𝛽                                                                   (7) 

For cases where 𝛽 was very small, the resulting 𝑇|| skyrocketed due to the inherent noise level 

of TFM (𝑇𝑧~10 Pa). In these cases, 𝑇𝑧 was used in the study of ellipsoidal domes. 

3.6.3 Luminal pressure and surface stress of spherical domes 

To represent the pressure and traction profile of spherical domes, we can take advantage of 

the symmetry of the system. First, we expressed the traction results in cylindrical coordinates 

(radial, tangential and Z components), instead of cartesian coordinates (x, y and z). Then, we 

divided the dome in concentrical regions and averaged the tractions radially according to the  

Figure 24: Pressure, traction and 
tension in domes. a, Schematic 
showing vertical and tangential 
traction components at the boundary 
of a dome. Tangential tractions follow 
the direction of the contact angle, β. b, 
Schematic of the relevant components 
in Laplace’s Law for spherical domes. 
The radius of curvature, R, and the 
luminal pressure, ΔP, are measured to 
infer the stress in the monolayer, σ. 
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Figure 25: Schematic of area calculation. Area calculation of (a) a flat monolayer on a circular footprint and (b) a spherical 
cap dome. 

distance from a point to the center of the dome. This allows us to plot the traction/pressure 

profile for each spherical dome. 

For the specific case of spherical domes, we can compute analytically the surface stress in the 

monolayer enclosing the lumen. In the absence of bending stresses, we can define the stress 

as a 2x2 tensor 𝜎̿. For structures with spherical symmetry such as cysts, blastocysts, or domes 

with circular footprints, the stress is uniform and isotropic, implying that 𝜎̿ is diagonal and has 

equal diagonal elements σ. Thus, we can use Laplace’s law (𝜎 = 𝛥𝑃𝑅/2) to compute σ from 

measurements of the luminal pressure and radius of curvature of the dome (Figure 24b, for 

more information see Subsection 1.3.3). To compare domes with a similar inflation level, we 

defined the areal strain, 𝜀𝑎, as the normalized difference between the actual dome area and 

the area of the footprint:  

𝜀𝑎 =
𝜋(ℎ2 + 𝑎2) − 𝜋𝑎2

𝜋𝑎2
= (

ℎ

𝑎
)

2

                                               (8) 

, where ℎ is the height of the dome and 𝑎 is the radius of the footprint (Figure 25). 

 

3.7 3D vertex model 

To study the contribution of bending moments to balance luminal pressure, we used a 3D 

vertex model developed by Adam Ouzeri and Prof. Marino Arroyo based on a previous 

publication54. This model combines the constraints imposed by contractility of the actomyosin 

cortex, volume conservation of each cell, and an increase in dome lumen volume to simulate 

a 3D epithelial monolayer with curved surfaces. 
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The epithelial cells within a monolayer are assumed to be polyhedra composed of polygonal 

apical and basal faces, and rectangular lateral faces. To allow for curved surfaces, each face is 

further discretized using linear triangular elements (Figure 26a). Following our observations, 

we further assumed that throughout dome inflation, no topological rearrangements occurred 

within the tissue. Cells retain their original connectivity and tissue deformation is only 

accommodated through cell shape changes. 

3.7.1 Virtual work function 

We assumed that the actomyosin cortex, which lines the interior of each cell face, is the main 

subcellular element determining the mechanics of the epithelium. Due to the longer 

timescale of dome inflation compared to actomyosin dynamics144, we assumed that all 

cortical dynamics are at steady-state throughout the dome inflation process and that the 

cortex generates a constant and isotropic active surface tension, which can be different on 

each cell face. Therefore, we expressed the mechanics of the actomyosin cortex on a face 𝑓 

of cell 𝑐 using a conventional virtual work function: 

𝛿𝑊𝑓,𝑐(𝑥1, . . . , 𝑥𝑁𝑓,𝑐
) = 𝛾𝑓,𝑐𝛿𝐴𝑓,𝑐(𝑥1, . . . , 𝑥𝑁𝑓,𝑐

)                                   (9)  

where 𝑥𝑖 denotes the position of node 𝑖 in the triangulation of the face, 𝛾𝑓,𝑐 is the active 

tension generated by the cortex, and 𝐴𝑓,𝑐 the corresponding face surface area. We assumed 

that apical and basal tension are contractile, and that contractility on the lateral faces 

dominates over adhesion, meaning that 𝛾𝑓 > 0 for all faces (Figure 26a). To account for 

observed differences between apical and basal cell-cell contact angles, the apical-to-basal 

surface tension ratio was set to 1:9 for the simulations (higher tension in the basal faces). 

3.7.2 System constraints 

To avoid cell collapse due to contraction of all faces, we assume that each cell volume 𝛺𝑐 is 

conserved. Volume conservation is imposed through a Lagrange multiplier requiring that the 

change in cell volume remains zero 

𝛺𝑐(𝑥1, . . . , 𝑥𝑁𝑐
) − 𝛺𝑐

0 = 0                                                  (10) 

where 𝛺𝑐
0 is the initial volume of cell 𝑐 and 𝑁𝑐 is the number of nodes on cell 𝑐. 



 METHODS 

71 
 

To simulate dome inflation, we define a region of the basal surface as adhered to the 

substrate (movement of nodes is restricted) and allow for nodes in a non-adherent region to 

move freely (Figure 26b). The volume of the lumen enclosed between the non-adherent region 

and the substrate is then increased through a Lagrange multiplier requiring the lumen volume 

at each step of the dome inflation 𝛺𝑙 to be equal to the imposed volume 𝛺 ∗. 

𝛺𝑙(𝑥1, . . . , 𝑥𝑁𝑐
) = 𝛺 ∗                                                        (11) 

where 𝑁𝑙  is the number of nodes in the lumen. 

3.7.3 Lagrangian expression 

After defining the virtual work function and the constraints of the system at each cell face, 

we can summarize the dynamics of the system using a Lagrangian function. 

𝛿ℒ𝑡 = ∑ ( ∑ 𝛾𝑓,𝑐𝛿𝐴𝑓,𝑐 − 𝛥𝑃𝑐

𝑓∈〈𝑐〉

(𝛿𝛺𝑐 − 𝛿𝛺𝑐
0)) + 𝛥𝑃 𝑙(𝛿𝛺𝑙 − 𝛿𝛺 ∗)

𝑐∈〈𝑡〉

                (12) 

where the summation is done over all faces 𝑓 forming the cell 𝑐 and all cells forming the 

tissue. The Lagrange multiplier 𝛥𝑃𝑐 is the pressure difference across the cell interior and the 

exterior medium. The Lagrange multiplier 𝛥𝑃 𝑙 gives a direct readout of the pressure inside 

the lumen of the dome. 

3.7.4 Stress calculation in spherical dome simulation 

For spherical domes, we again used Laplace’s law to estimate tension in the monolayer as a 

function of dome radius 𝑅 and luminal pressure 𝛥𝑃 𝑙 (Figure 26c,d). In a scenario where we 

have an idealised tissue made of identical hexagonal cells subjected to equibiaxial stretch, eq. 

(12) can be greatly simplified and the problem can be treated analytically. In this condition, 

the surface stress is defined by the following cellular constitutive equation54: 

𝜎 = 𝛾𝑎 + 𝛾𝑏 − 𝛾𝑙

𝑘

(𝜀𝑐 + 1)3/2
                                                   (13) 
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where 𝛾𝑎 is the apical surface tension, 𝛾𝑏 the basal surface tension, 𝛾𝑙  the lateral surface 

tension, 𝜀𝑐 is the cellular areal strain and 𝑘 is a non-dimensional geometrical constant 

accounting for cell volume conservation. Equation (13) describes the local stress-strain 

(constitutive) relation of a tissue made of identical cells deforming identically. As the tissue 

stretches, contribution to tissue tension from the lateral faces decreases, therefore tissue 

tension would saturate to 𝛾𝑎 + 𝛾𝑏. 

 

3.8 Stress inference in anisotropic domes 

In anisotropic shapes, such as tubes or ellipsoids, the surface stress of the free-standing sheet 

cannot be calculated analytically using the micro-bulge test. For this reason, we applied and 

validated a computational approach developed by Prof. Sohan Kale, to infer surface stresses 

from geometrical data of our domes. 

3.8.1 Fit of a smooth surface to experimental data 

To compute surface stresses, we needed to generate a smooth surface that captured the 

geometry of our domes. For this purpose, we used confocal stacks to segment the luminal 

Figure 26: Dome vertex model. a, Constant and isotropic surface tension on each face 𝛾𝑖,𝑐 along with cell volume conservation 

generate a cellular pressure that bulges non-adhered surfaces outwards. b, We defined a non-adherent region of radius Rb 
on the basal footprint, outside which nodes are fixed. c, We imposed an incremental volume increase in the non-adherent 
region through a Lagrangian multiplier, leading to a direct readout of lumen pressure 𝛥𝑃 𝑙. d, Inflated domes can be closely 
approximated as spherical caps. Figure by Adam Ouzeri. 
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surface of the domes in Fiji (ref. 145). The surface was defined in 3D by manually adding points 

in the x-z or y-z views and interpolating the in-between surface with the “Volume Manager” 

plugin (R. Haase, MPI-CBG). Then, we triangulated the 3D point cloud. We next mapped the 

generated open surface on a unit disc using a disc conformal map (which preserves the angle 

of intersection of any lines or curves unchanged). We re-meshed the part of the disc 

corresponding to the dome surface to improve mesh quality. Finally, we obtained a fitted 

smooth surface by minimizing the difference between our mesh and the point cloud, while 

penalizing sharp changes in the surface gradient (Figure 27). At the footprint boundary there 

is no penalization because the dome must present a sharp interface with the substrate. 

3.8.2 Balance equations for inflated membranes 

Our dome is represented by a thin membrane Γ embedded in ℝ3. We parametrized this 

surface by mapping 𝒙 = 𝜑(𝜉), where ξ belongs to ℝ2 and has cartesian coordinates {ξ1, ξ2 }.  

The basis vectors for this surface are defined as:  

𝒆𝑎 =
𝜕𝒙

𝜕𝜉𝑎
                                                               (14) 

, where a ∈ {1,2}. Therefore, we can define a unit vector normal to the surface as the cross-

product of these basis vectors normalized by the modulus:  

𝒏 =
𝑒1 × 𝑒2

|𝑒1 × 𝑒2|
                                                                   (15) 

We can also define the first fundamental form of the surface: 

𝑔𝑎𝑏 = 𝑒𝑎 · 𝑒𝑏                                                                   (16) 

which provides a way of measuring lengths and angles of vectors in the tangent space and 

will appear in the next section (Section 3.7.2).  

As mentioned previously, the thinness of the membrane allows us to assume that tissue 

stresses are tangential to Γ. Consequently, its stress state is described by the surface tensor 

𝝈 = 𝜎𝑎𝑏𝑒𝑎 ⊗ 𝑒𝑏. Since Γ is an open surface, the edge tension is given by  

𝒕 = 𝝈𝒏𝒍 , where 𝑛𝑙 is the normal to the edge. For the membrane to be in static equilibrium, 

the angular momentum must be balanced, meaning that 𝝈 has to be symmetric. The linear 

momentum also needs to be balanced in both the tangential and normal directions.  In the  

absence of tangential body forces, the balance in the tangential direction is expressed as146,147   

𝛁𝑠 · 𝝈 = 0                                                                   (17) 
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, where 𝛁𝒔 · () is the surface divergence operator. The balance of linear momentum in the 

normal direction is given by the Young-Laplace relation: 

𝝈: 𝜿 = ∆𝑃                                                                   (18) 

, where κ is the second fundamental form of Γ, which indicates at which rate Γ curves away 

from its tangent plane at a given point, and ΔP is the pressure difference across the interface. 

If we know the deformed shape of our membrane in static equilibrium, we can compute κ. 

With κ and the ΔP obtained by a micro-bulge test, we could solve Eqs. (17) and (18) for 𝝈, 

because we have a system of 3 equations and 3 unknowns (3 components of a symmetric 

rank-2 tensor 𝜎). Therefore, the system is statically determinate and we do not need to 

assume any constitutive relation to infer surface stresses.  

 

  

Figure 27: Steps in fitting a smooth surface to the point cloud of epithelial dome basal lumen. a, A triangulation is generated 
from the point cloud (red points) to represent the dome surface. This mesh is supplemented by a substrate triangular mesh 
in the surrounding region. b, The open surface in (a) is mapped on a unit disk using a disc conformal map. The basal footprint 
of the dome is shown as a red line. c, Re-meshed dome surface in the parametric domain. d, The mesh shown in (c) is fitted 
to the point cloud (red points) while penalizing the surface gradients to generate a smooth surface fit to the point cloud. This 
mesh is then used for surface stress estimation. Figure by Sohan Kale. 
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3.8.3 Inverse problem formulation for surface stress recovery 

The balance Eqs. (12) and (13) can be combined and expressed in vectorial form as146,147 

1

√𝑔
(√𝑔𝜎𝑎𝑏𝑒𝑎)

,𝑏
+ ∆𝑃 · 𝒏 = 0                                                  (19) 

, where 𝑔 = 𝑑𝑒𝑡(𝑔𝑎𝑏).  

 

To obtain the linear equation system necessary for our finite element model, we first need to 

obtain the weak form of these equations. In weak form, the equations or conditions are not 

required to hold absolutely and they give a set of trial solutions that are actually closer to the 

underlying physics. For our system, the weak form can be expressed as: 

∫ [(√𝑔𝜎𝑎𝑏𝑒𝑎)
,𝑏

+ √𝑔∆𝑃 · 𝑛] · 𝒘 𝑑𝑆
 

Γ

= 0                                      (20) 

In this equation we have introduced a weight function, 𝑤. This 𝑤 is an arbitrary function that 

must be sufficiently smooth to ensure convergence of the finite element method. To obtain 

the discrete form of Equation (20), we must triangulate the surface Γ to obtain finite 

elemental domains. For this, we can use a global parametrization to define two vectors 

√𝑔(𝜎11𝑒1 + 𝜎21𝑒2) and √𝑔(𝜎12𝑒1 + 𝜎22𝑒2) at every node of the mesh. Note that the 

components 𝜎11, 𝜎22 and 𝜎12 (or 𝜎21, since 𝜎 is symmetric) are the 3 unknowns of our 

system.  

 

First, we use the global parametrization and eqns. (14), (15) and (16) to define 𝑒𝐼1, 𝑒𝐼2, 𝑛𝐼 and 

𝑔𝐼  at a node 𝐼. The surface stresses at this node are denoted as {𝜎𝐼
11, 𝜎𝐼

22, 𝜎𝐼
12}. Then, the 

terms in Eq. (20) can be interpolated as 

√𝑔𝜎𝑎𝑏𝑒𝑎(𝒙) = ∑(√𝑔𝜎𝑎𝑏𝑒𝑎)
𝐼 

𝑁𝐼 ∘ 𝜓−1(𝒙)                                       (21)

𝐼∈𝐸

 

𝒏(𝒙) = ∑ 𝑛𝐼 𝑁𝐼 ∘ 𝜓−1(𝒙)

𝐼∈𝐸

                                                    (22) 

, where 𝑥 = 𝜓(𝝌) is the isoparametric mapping for the triangular element and 𝑁𝐼(𝝌) are the 

shape functions for the node 𝐼 of element 𝐸 (ref. 148). These shape functions are used to 

interpolate the stresses within each element.  
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In this case (and due to oscillations in the solutions given by the Galerkin approach), we chose 

a weight function 𝑤 is constant over each element 𝐸 as 𝑤 = 𝑤𝑒 (ref. 135). We can re-write Eq. 

(18) for every 𝐸 as  

∫ [(√𝑔𝜎𝑎𝑏𝑒𝑎)
,𝑏

+ √𝑔∆𝑃 · 𝒏] 𝑑𝑆
 

Γ𝑒

= 0                                             (23) 

, where the integration is performed over the element area Γ𝑒. Using Eqns. (15), (16) and (17) 

together with the uniform weight function 𝑤𝑒, we obtain a system with 3 equations per 

element, while every triangular element has 3 nodes. This results in an overdetermined 

system, which is generally beneficial for ill-conditioned inverse problems, that are sensitive 

to experimental noise135.    

 

We perform the integration over each Γ𝑒numerically using Gaussian quadrature (using 

isoparametric mapping of every 𝐸). Therefore, the first term of eq. (18) is evaluated as  

(√𝑔𝜎𝑎𝑏𝑒𝑎)
,𝑏

(𝒙) = ∑(√𝑔𝜎𝑎𝑏𝑒𝑎)
𝐼 

𝜕𝑁𝐼

𝜕𝝌

𝜕𝝌

𝜕𝜉𝑏
∘ 𝜓−1(𝒙)                          (24)

𝐼∈𝐸

 

We combine the unknown stress components into nodal arrays of unknowns 𝑢𝐼 =

[𝜎𝐼
11, 𝜎𝐼

22, 𝜎𝐼
12]𝑇, which are then collected in an array 𝑢 = [𝑢1, 𝑢2, . . . , 𝑢𝑁]𝑇, where 𝑁 is the 

total number of nodes. We express the overdetermined system of linear equations as 𝐴𝑢 =

𝑏, where 𝑏 is a column vector of size 3𝑁𝑒 × 1 (with 𝑁𝑒as the total number of triangular 

elements) and 𝐴 is a rectangular matrix of size 3𝑁𝑒 × 3𝑁. 

3.8.4 Regularization 

In the membrane tension inference problem, the out-of-plane balance relation in Equation 

(18) renders the system statically determinate and allows one to directly solve for surface 

stresses. However, the inverse problem can become ill-posed if the given surface shape 

cannot support a pressure through a membrane stress (if it is locally planar, for example). 

Additionally, the solution can be very sensitive to small shape variations, which are inherent 

to the shape acquisition method. Indeed, we observe that 𝐴𝑢 = 𝑏 is ill-conditioned even for 

simple axisymmetric shapes such as a spherical cap (Figure 28a). Regularization is therefore 

necessary to solve this inverse problem. This amounts to minimizing the following function 

with respect to u:  
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𝐸(𝑢) =
1

2
‖𝐴𝑢 = 𝑏‖2 + 𝐿(𝑢)                                                           (25) 

where 𝐿(𝑢) is the discretized regularization contribution that penalizes any undesirable 

characteristics in the unknown tension field. We considered a first-order regularization of the 

form: 

𝐿1𝑡(𝝈) =
𝜆𝑡

2

2
∫ 𝜵𝑡𝑟𝑎𝑐𝑒(𝝈) · 𝜵𝑡𝑟𝑎𝑐𝑒(𝝈)

 

𝛤

𝑑𝑆 =  
𝜆𝑡

2

2
∫ 𝜎𝑎|𝑒

𝑎 𝜎𝑏|𝑓
𝑏 𝑔𝑒𝑓

 

𝛤

𝑑𝑆                            (26) 

where the regularization parameter λt provides a length scale to penalize tension gradients. 

Here 𝑔𝑒𝑓are the components of the inverse of the metric tensor and 𝜎𝑎|𝑒
𝑎 , 𝜎𝑏|𝑓

𝑏  denote the 

components of covariant derivative of trace(𝝈) 147. This regularization penalizes gradients in 

the mean surface tension, but it does not necessarily restrain sharp rotations (swirl) in the 

surface tension field. To regularize such features the following term penalizing the curl of 

surface tension is introduced: 

𝐿1𝑐(𝝈) =
𝜆𝑐

2

2
∫ 𝑐𝑢𝑟𝑙 𝝈 ∶ 𝑐𝑢𝑟𝑙 𝝈

 

𝛤

𝑑𝑆 =  
𝜆𝑐

2

2
∫ 𝜖𝑔𝑒𝜎|𝑒

𝑎𝑏𝜖ℎ𝑓𝜎|𝑓
𝑐𝑑𝑔𝑎𝑐𝑔𝑏𝑑𝑔𝑔ℎ

 

𝛤

𝑑𝑆                        (27) 

where ϵ is the Levi-Civita tensor149. We obtained the discrete version of the regularization 

terms by using linear elements to interpolate nodal values of surface tension 𝜎𝐼
𝑎𝑏 and 

covariant basis vectors 𝒆𝐼1 and 𝒆𝐼2:  

𝐿(𝑢) =
1

2
𝑢𝑇(𝜆𝑡

2𝑄𝑡 + 𝜆𝑐
2𝑄𝑐)𝑢 =

𝜆𝑡
2

𝜆𝑐
2 𝑄𝑢                                                    (28)  

where Qt and Qc are the regularization matrices resulting from discretizing 𝐿1𝑡(𝝈) and 𝐿1𝑐(𝝈), 

and 𝑄 = 𝑄𝑡 +
𝜆𝑡

2

𝜆𝑐
2 𝑄𝑐. 

The surfaces fit to the experimental point clouds may have regions that are flat (zero Gaussian 

curvature) or concave (negative Gaussian curvature). Such regions exhibit negative principal 

tensions that are not compatible with a stable membrane state of stress. The regularization 

terms considered above do not restrict negative principal tensions. Therefore, to analyse 

experimental data we additionally impose the following inequality constraint:  

𝑑𝑒𝑡𝝈𝐽 = 𝜎𝐽
11𝜎𝐽

22 − (𝜎𝑱
𝟏𝟐)𝟐 > 𝟎 
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for each node J when minimizing Equation (25). The minimization problem becomes nonlinear 

after introducing the inequality constraint and we solved it using the constrained 

minimization function (fmincon) in Matlab. 

3.8.5 Validation of the approach with axisymmetric shapes 

We tested our method by reconstructing surface stresses on axisymmetric shapes (ellipsoidal 

caps with a circular boundary). The governing balance equations of these shapes consist of a 

single ordinary differential equation and, thus, we can compare the results from our model 

to closed-form solutions. For axisymmetric surfaces, the balance equations (12) and (13) are 

expressed in the cylindrical coordinate system 𝑟 − 𝑧 as: 

𝑑𝜎1
1

𝑑𝑟
=

1

𝑟
(𝜎2

2 −  𝜎1
1)                                                         (29) 

𝜅1
1𝜎1

1 + 𝜅2
2𝜎2

2 = ∆𝑃                                                         (30) 

, where 𝜎1
1 and 𝜎2

2 are the principal stress components in the meridian and azimuthal 

directions, and 𝜅1
1 and 𝜅2

2 are principal curvatures in the meridian and azimuthal directions. 

We quantified the difference between the inferred tension σ and the closed-form solution σCF at all 

nodes using the relative error given as 
||σ−σCF||

||σCF||
. We analysed ellipsoidal caps with an aspect ratio 

given as α =  r𝑎/r𝑏, where ra and rb are the principal radii. For each case, the inverse problem 

is solved for a wide range of the parameter λt, controlling the gradients in tension. 

Regularisation in the curl of surface tension is also introduced and controlled by the 

parameter λc. This analysis provides guidance to choose the regularization parameters when 

analysing the membrane shapes obtained in the experiments.  

Surface tension recovery for a spherical cap (α = 1) with and without regularisation is shown 

in (Figure 28a,d). The symmetric stress tensor is represented graphically in terms of its 

mutually orthogonal principal directions of stress (eigenvectors) and principal stresses along 

these directions (eigenvalues), orthogonal pairs of arrows whose length is proportional to the 

magnitude of the corresponding principal tensions. In this representation, an isotropic state 

of stress is represented by two mutually orthogonal pairs of arrows of the same length. The 

inverse problem is solved for fixed λc values and a range of λt values. The tension obtained at 

every node is compared with the expected closed-form solution to quantify the error (Figure 
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28b). With λc = 0, the relative error is within 1% for λt roughly between 0.002 and 0.1. For λt 

below this range, the problem is under-regularised and, for λt above this range, the problem 

is over-regularized; both cases lead to larger errors. Introducing the curl-based regularization 

with λc is observed to further improve the overall recovery of surface tensions (Figure 28b). 

For each λc, the λt value corresponding to the minimum error can be associated with the 

corner in the L-curve, where the regularization term is plotted against the residual forces 

(Figure 28c).  

In spherical caps, the curvature is constant. However, other axisymmetric shapes, such as 

ellipsoidal caps, present significant curvature gradients. This curvature gradients imply the 

Figure 28: Effect of regularization on surface tension inference on a spherical cap. a, Membrane stress inference on a 
spherical cap without any regularization. The black arrows represent the inferred membrane stresses and green arrows 
represent the expected solution for a spherical cap. b, The inverse problem solution is analysed as a function of the 
regularization parameter λt for λc = {0.0,0.01,0.05,0.1}. The relative error between the inferred tension and the closed-form 
solution is sufficiently low (<1%) for a wide range of λt values that depend on the choice of λc. c, Regularization functional 
plotted against the residual, in the so-called L-curve. The corner in the L-curve corresponds to the optimal regularization 
parameter λt for a given λc. d, Representation of the surface stress obtained for λc = 0.1, where the stress tensor is represented 
in terms of its mutually orthogonal principal directions of stress and principal stresses as discussed in the text. The colour 
map represents the trace of the surface stress. Figure by Sohan Kale. 
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existence of tension gradients. Using a high value of λc in such a case might overly-penalize 

the tension gradients leading to larger errors. Therefore, the choice of λc is dependent on the 

surface, and a smaller value should be used when significant tension gradients are expected 

in the solution. This is also the case of our experimental data, where we estimate the optimal 

λc parameter based on curves such as the one depicted in (Figure 28c). 

 

3.9 Dome segmentation  

3.9.1 Nuclei segmentation and analysis 

The segmentation of nuclei was performed using Imaris 9.7 (Oxford Instruments). We 

imported the z-stacks containing the nuclei fluorescence into Imaris and we obtained the 

nuclei surfaces by using the “Surfaces” algorithm "with “Surface Grain Size” = 0.5 μm and 

“Region Growing Estimated Diameter” = 5.8 μm. The resulting 3D point clouds were exported 

in “.wrl” format and read in Matlab. Then, we fitted an ellipsoid to each nucleus point cloud 

using the function “ellipsoid_fit”(ref. 150). Using Matlab home-made analysis software, we 

extracted the relevant geometrical information from each ellipsoid: centroid coordinates and 

length and direction of the 3 radii.  

To analyze the effect of stress on nuclear shape, we plotted the ellipsoids on top of the stress 

field computed using the theoretical model. We compared the main direction of the stress 

field with that of the longest radii of the nuclei. 

3.9.2 Cell segmentation and analysis 

Cellular segmentation was carried out with Cellpose, a Python-based cell segmentation 

plugin151. For each dome, the z-resolution was downsampled to 1.5 μm and the cells in each 

2D confocal slice were automatically segmented using an estimated diameter of 100 pixels 

(Figure 29a). We then corrected the segmentation manually. Corrections were essentially 

needed in the middle planes of the dome, due to the cells being very elongated and thin, 

making detection by the algorithm very difficult. 

Afterwards, we stored the 2D segmentations as “.png” images and we processed them in 

Matlab using home-made analysis software. We re-labelled the cells in each plane to create 
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a 3D reconstruction. For this purpose, we created an algorithm that computed the 

intersection over union (iou) of cells in consecutive z planes and labelled them as the same 

cell if the iou was greater than a given threshold (0.5 in the lower planes and 0.3 in the upper 

ones, Figure 29b). We then fitted an ellipsoid to the resulting cell masks and extracted the radii 

lengths and directions. To analyze the effect of stress on cellular shape, we projected the 

ellipsoids on top of the stress field computed using the theoretical model (Figure 29c). We 

compared the main direction of the stress field with that of the longest cell radius.  

 

Figure 29: Cell segmentation. a, Confocal images from elliptical domes with 1.5 μm vertical spacing were independently 
segmented using Cellpose (ref.151). Segmentations were manually curated. b, All segmentation planes were stitched using a 
custom intersection-over-union (iou) algorithm to obtain 3D cell segmentations. c, We fitted ellipsoids to the cells and 
projected them on the dome surface (grey ellipses). We compared the longest cell axis with the maximal stress direction in 
the free-standing monolayer (red arrows).  

 

3.10 Statistical analysis 

For rectangular domes (results in Section 4.3), comparisons between each group of unpaired 

samples were computed using the unpaired two-sided Wilcoxon rank sum test in R 

(“wilcox.test” function). Comparisons between groups of paired samples (long vs short sides 

in rectangular domes) were computed using the paired two-sided Wilcoxon rank sum test. 

For cell and nuclei orientation data (results in Section 4.4), the median of α distributions was 

compared to that of 10000 uniform MATLAB-generated distributions with the same size as 

the data. P-value was calculated as the number of times the median of a random uniform 

distribution was below that of our distribution. Eccentricity data was compared using the 

unpaired two-sided Wilcoxon rank sum test in R. 

95% confidence intervals of the median were computed using bootstrap (package boot in R). 
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4 RESULTS 
 

4.1 New protocol to generate curved epithelia of controlled 

size and shape 

In this project, we aimed to measure the mechanical properties of curved MDCK epithelia of 

controlled shape, and sizes ranging between 25 and 200 μm diameter. These curved epithelia, 

that I will hereafter refer to as domes, form after seeding of MDCK cells on a 3 kPa PDMS 

impermeable substrate, which is compatible with TFM experiments. In our previous protocol, 

the cells attached to the substrate, that was coated with fibronectin except for 

micropatterned non-adhesive areas with our desired geometry, and invaded the non-

adherent areas a few hours after seeding54. However, this invasion was limited to small 

regions with a diameter smaller than 150 μm and specific geometries (we could not generate 

tubes or toroids, for example). Therefore, we decided to create a new method to generate 

domes with a broader range of sizes and shapes. 

The protocol is detailed in the Methods chapter (Sections 3.2 and 3.3). Briefly, after coating 

our soft PDMS with fluorescent beads that allow TFM, we incubated the substrates with PLL 

and mPEG-SVA, successively. These incubations led to a layer of PEG chains that avoided cell 

attachment to the substrate. Next, we photopatterned the substrate to create low fibronectin 

motifs surrounded by high fibronectin areas. This process was performed by adding the 
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photoinitiator molecule, which cut the PEG chains upon UV stimulation with the PRIMO 

system (Alvéole)139, and subsequently incubating the samples with fibronectin. MDCK cells 

attached to low and high fibronectin areas and formed a flat monolayer. After several hours, 

the monolayer started to delaminate on the low-adhesion areas and formed pressurized fluid-

filled lumens, due to MDCK cells pumping osmolytes in the apicobasal direction (Figure 30).  

We optimized the protocol to increase the number of successful domes. To do so, we 

identified two key parameters that greatly influenced dome formation: photopatterning 

illumination level and incubation time after seeding. This illumination level (represented by 

the brightness of the input “.pdf” patterns) affects dome formation, because too much 

illumination leads to indiscriminate delamination through the sample, and too little 

illumination leads to no invasion of the low-adhesion areas. The incubation time of the cells 

after seeding affects the state of the domes we image. For the smallest domes (25 μm-

diameter), 16 hours of incubation sufficed to generate the structures, and, after 24 hours, 

domes already started to delaminate outside of the pattern. However, the largest domes (200 

µm-diameter) required around 48 hours to form a cohesive monolayer on the low-adhesion 

area and start inflating.  

Figure 30: Protocol to generate curved epithelia of controlled size and shape. Passivated soft PDMS gels are 
photopatterned using the PRIMO system in the presence of a photoinitiator molecule. The gel is differentially illuminated to 
create low adhesion motifs with diameter d (light blue circles) surrounded by high adhesion areas (dark blue). Cells are then 
seeded on the substrate, and they attach to both low- and high-adhesion areas. After 12-24h, the cells form a confluent 
monolayer. Between 20 and 60h post-seeding, domes form in the low-adhesion regions. The incubation time needed for cell 
confluence and dome formation depends on d. 
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4.2 Size effect on mechanics of pressurized spherical domes 

Upon optimization of the 

protocol, we first studied the 

effect of size on the mechanics 

of domes with circular 

footprints (micropatterned 

motifs) of 25, 50, 100 and 200 

μm-diameters. We would like 

to remark that, except a few 25 

μm domes, all other domes 

presented a perfectly circular 

basal area and a spherical cap 

morphology. The 25 μm domes 

that presented irregular 

geometry were excluded from 

the analysis. Domes displayed a similar cell density across all sizes (Figure 31), which remained 

constant through the experiment (division rarely occurs in inflated domes). 

Figure 32: Scaling of tension and pressure in spherical domes. a, 3D traction maps overlaid on top views of representative 
MDCK domes of 200 μm, 100 μm, 50 μm and 25 μm pattern diameters (from left to right). Yellow vectors represent in-plane 
horizontal components Tx and Ty and the colour map represents the vertical component Tz. b, Tractions overlaid on lateral 

Figure 31: Cell density in domes of different sizes. Density of cells in MDCK 
domes with 200, 100, 50 and 25 μm pattern diameter. Data are shown as 
median ± std of n=8 (for all cases). 
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views of the domes shown in (a). Tractions were averaged circumferentially for plotting. Scale bars: 50 μm. Scale vectors: 100 
Pa. 

Using traction force microscopy (TFM), we mapped the 3D forces exerted by the dome on the 

substrate, both below the lumen and at the dome-substrate boundary. Below the lumen, the 

traction vectors pointed uniformly downwards, indicating that the lumen was pressurized. 

The magnitude of these vectors is a direct measure of luminal pressure (ΔP). This pressure 

was balanced at the dome-substrate boundary, below the first row of cells adhered to the 

gel, where the vectors pointed upwards. The direction of the vectors was not tangential to 

the dome, as we would expect if the dome was the only structure exerting forces, thus 

suggesting that the surrounding adhered monolayer contributes to the mechanical 

equilibrium at this point (Figure 32). 

Domes are dynamic structures, and they inflate and deflate spontaneously (Figure 33). These 

processes are usually progressive, and noticeable changes in volume may take a few hours, 

but deflation can also occur swiftly due to loss of local cell-cell adhesion (for example, when 

a cell enters mitosis). This dynamic nature of domes allowed us to measure luminal pressure 

for epithelial curvatures encompassing more than one order of magnitude (Figure 34a). For 

lower curvatures (that correspond to the bigger domes), pressure increased linearly with 

curvature. However, it tended to plateau at high curvatures, suggesting a limit to the pressure 

that MDCK can spontaneously build up. 

Figure 33: Time evolution of domes of different sizes. Time evolution of radially-averaged tractions on lateral views of 
domes of 200, 100, 50 and 25 μm diameter patterns. Blue arrows represent the radial and vertical components of the 
tractions. Scale bar: 50 μm. Scale arrows: 100 Pa. 
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Afterwards, we inferred the stress on the 

dome. To do so, we used the Young-Laplace 

equation 𝜎 = ∆𝑃 · 𝑅 2⁄ , where 𝑅 is the radius 

of the dome at half-thickness of the 

monolayer. We then studied how 𝜎 changes 

with the inflation level of the dome, which we 

quantified using the areal strain, 𝜀𝑎. We first 

observed the behaviour of domes with a 100 

μm-diameter footprint, and we found that the 

results were consistent with the superelastic 

behaviour previously observed in Latorre et 

al54.  𝜎 increased with 𝜀𝑎 at low strains and 

plateaud at high strains (Figure 34b). Due to 

limitations in the inflation of the largest 

domes, we focused the study of size effects on 

the range 𝜀𝑎 < 100% (Figure 34c). The data was 

highly scattered, with values for median and 

standard deviation on the same order of 

magnitude. Upon averaging of the data, we 

observed that the stress-strain curve 

presented a behaviour consistent with superelasticity at low 𝜀𝑎  independently of footprint 

size. This suggests that, within the range studied here, curvature does not trigger 

mechanosensing feedback loops that affect the magnitude of epithelial tension. 

Figure 34: Pressure and tension in spherical domes. a, Dome 
pressure as a function of dome curvature. Data shown as 
mean ± std of n=12 domes (25 μm), 11 domes (50 μm), 17 
domes (100 μm) and 13 domes (200 μm) at different levels of 
inflation. Colour coding indicates the footprint diameter. b, 
Surface tension in the free-standing sheet as a function of 
nominal areal strain of 100 μm-diameter footprint domes. c, 
Surface tension in the free-standing sheet as a function of 
nominal areal strain of the dome. Number of domes is the 
same as in (a). The line and shaded area indicate median and 
std by binning the data (equally spaced bins with n ≥ 3 points 
per bin). 
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Upon close examination of dome fluorescence images, we noticed that the apical cell-cell 

contact angles were substantially smaller than the basal ones, indicating higher basal than 

apical surface tension (Figure 35a). This difference could generate a bending moment that 

could contribute to the mechanical balance of luminal pressure and lead to inapplicability of 

Figure 35: Surface tension measured in computational vertex model simulations shows negligible differences between 
different dome sizes. a, Confocal slices of 200 and 25 μm footprint domes showing the apical and basal contact angles 
between cells. b-g, Cross-sections of domes with different basal footprint sizes at 100% areal strain εa and 1:9 apical-to-basal 
surface tension ratio. h, Surface tension as function of εa for the different dome basal footprint diameters. The black curve 
shows the cellular constitutive equation in Eq. (13). i, Surface tension as a function of strain at different apical-to-basal surface 
tension ratios for the dome shown in (g).γl = 0.1 mN/m for all curves. Scale bar: 20 μm. Panels (b-i) courtesy of A. Ouzeri. 
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Laplace’s law. To discard this possibility, our collaborators Adam Ouzeri and Prof. Marino 

Arroyo simulated domes with different sizes and apical-to-basal tension ratios using a 3D 

vertex model (see Section 3.7). For domes with footprint diameters ranging between 25 and 

235 μm, and an apical-to-basal surface tension ratio of 1:9, all domes presented very similar 

surface stresses regardless of size (Figure 35b-h). To further confirm that the differential apico-

basal tension did not affect tissue stress significantly, we simulated large domes with different 

apical-to-basal tension ratios, ranging between 1:9 and 1:1 (Figure 35i). The results showed 

that the contribution of this tension ratio was negligible, with the stress curve collapsing to 

the cellular constitutive equation for the symmetric (1:1) case. These computations highly 

resembled the experimental results, thus supporting that the stress of the free-standing 

monolayer was mostly unaffected by size and bending moments.  

 

4.3 Stress in anisotropic domes 

Even though there are remarkable examples of spherical lumens, such as the blastocyst, most 

physiologically relevant lumens present an asymmetric geometry. Consequently, after 

examining the effect of size on the mechanics of luminal epithelia, we wanted to assess the 

effect of shape. Given that the Young-Laplace’s equation cannot be applied to non-

axisymmetric structures, we sought to develop a method to map the stress tensor in a 

monolayer of arbitrary geometry. 

For this purpose, our collaborator Prof. Sohan Kale developed a surface stress recovery 

method based on membrane theory that infers stresses from dome shape and luminal 

pressure, without assumptions of material properties. For this model, we profited from one 

of the main characteristics of our domes: the thickness of the cell layer is more than one order 

of magnitude smaller than the width and length of the dome. Since the thickness of the sheet 

is sufficiently small in comparison with the other dimensions, it can be modelled as an inflated 

membrane and stresses can be inferred from monolayer shape and luminal pressure 

measurements (see Section 3.8 for detailed information).  

Afterwards, we applied this inference method to domes with anisotropic geometries, 

specifically domes with rectangular and elliptical footprints.  
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4.3.1 Stress in domes with rectangular cross-sections 

First, we photopatterned substrates with rectangular footprints of the same area, but 

different aspect ratios: 1:1 (square), 1:2 and 1:4. These epithelia delaminated from the 

substrate in the same way as spherical domes, and formed tubes and caps with fluctuating 

inflation levels (Figure 36a). We then inferred the principal stresses in the dome. For square 

footprints, the stress was isotropic and uniform at the upper part of the dome (that resembled 

a spherical cap) and became anisotropic close to the dome-substrate interface, particularly at 

the corners. For rectangular footprints, the principal stresses were anisotropic. Their 

directions generally coincided with the axes of the rectangle, and the component parallel to 

the short axis was larger than the one parallel to the long axis (Figure 36b). 

To validate the computational predictions, we compared them to the experimental tractions 

at the dome-substrate contact. We reasoned that the component tangential to the 

monolayer, T|| (Figure 36c), should match the predicted stresses at this point. We examined 

the experimental values of T|| as a function of footprint aspect ratio and dome inflation. As 

anticipated, the tractions were similar in all sides of a square, and they increased with 

inflation. For rectangles, T|| still increased with inflation, but it was higher at the long sides 

with respect to the short ones (Figure 36d). To compare the experimental results with the 

predicted stresses, we converted stresses to tractions using a length-scale of 17 µm. This 

length-scale was approximated by choosing the factor that minimized the difference between 

experimental and theoretical data. Inferred data from squares was again symmetrical, and 

rectangles presented higher T|| along the long sides (Figure 36e). These data show a close 

agreement between the inferred and measured stresses at the boundary between the dome 

and the flat monolayer, thus supporting the validity of this stress inference method. 

Figure 36: Stress in domes with squared and rectangular cross-section. a, Traction maps of rectangular domes with different 
aspect ratios (from left to right, 1:1, 1:2 and 1:4 aspect ratios) and inflation levels (low inflation, top row; high inflation, 
bottom row). Each one of the six panels comprises a top view (left) and two lateral views (right and bottom). The top view 
shows a 3D traction map, where yellow vectors represent the in plane (Tx, Ty) components and the colour map represents 
the vertical component Tz. The lateral views show the tractions averaged over the central segment of the vertical and 
horizontal sections of the dome. Scale bar: 50 μm. Scale vectors: 100 Pa. b, Inferred stress tensor across the free-standing cell 
layer of the domes shown in (a). c, Scheme illustrating the definition and calculation of the tangential component to the dome, 
T||. d, Experimental tangential tractions at the short and long sides of domes with low and high inflation levels. The tractions 
have been averaged along the central 50% of the dome sides. Data are shown as median ± std of n=53 (square low), 35 
(square high), 50 (rect. 1:2 low), 30 (rect. 1:2 high), 69 (rect. 1:4 low), 29 (rect. 1:4 high). e, Predicted tangential tractions at 
the short and long sides of domes with low and high inflation levels obtained with our stress inference method. The tractions 
have been averaged along the central 50% of the dome sides. Data are shown as median ± std of n=11 (square low), 12 
(square high), 14 (rect. 1:2 low), 12 (rect. 1:2 high), 9 (rect. 1:4 low), 15 (rect. 1:4 high). Statistical significance was determined 
using the Wilcoxon rank sum test for paired and unpaired samples. Only statistically different pairwise comparisons are 
indicated. d, Left: P = 0.003 (vertical) and P = 0.014 (horizontal). Middle: P = 0.011 (low-short vs high-short), P = 1.5e-08 (low-
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short vs low-long), P = 4.7e-08 (high-short vs high-long) and P = 0.002 (low-long vs high-long). Right:  P = 5.9e-07 (low-short 
vs high-short), P = 4.7e-10 (low-short vs low-long), P = 2.6e-07 (high-short vs high-long) and P = 1.4e-04 (low-long vs high-
long). e, Left: P = 0.032 (vertical). Middle: P = 2.4e-04 (low-short vs low-long) and P = 4.9e-04 (low-long vs high-long). Right: 
P = 3.9e-03 (low-short vs low-long) and P = 5.4e-03 (low-long vs high-long). *P < 0.05, **P < 0.01 and ***P < 0.001. 
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4.3.2 Stress in ellipsoidal domes 

We then sought to study the effect of curvature on stress. For this purpose, we generated 

domes with an elliptical footprint and two different aspect ratios (1:2 and 1:3) and inferred 

the surface stresses with our model (Figure 37a,b). Again, we observed that the principal 



RESULTS 

92 
 

stresses were anisotropic, and their directions coincided with the axes of the ellipse, with the 

component parallel to the short axis being larger. We then studied the values of the tractions 

at the dome-substrate contact as a function of the polar angle along the ellipse. Since the 

calculation of T|| for very small angles (<10 degrees) was inaccurate due to the noise inherent 

to TFM (a), we analyzed Tz, the component vertical to the substrate. 

For domes with low inflation level, Tz   was low and mildly anisotropic, with higher tractions 

at the low curvature regions. With increasing inflation levels, the tractions increased and 

became more anisotropic. This behavior was more pronounced in more eccentric domes 

(Figure 37c). Next, we compared the experimental tractions with the predictions of our model 

(using again a length-scale of 17 µm). The inferred Tz   matched qualitatively the experimental 

results, with more pronounced anisotropy in high inflation levels and high eccentricity (Figure 

37d). 

 

4.4 Effect of stress on geometry and orientation of cells and 

nuclei 

Finally, we asked whether the inferred local stress was predictive of the shape and orientation 

of cells and nuclei.  

4.4.1 Cellular orientation and shape 

We started with the analysis of cellular orientation. We first created three-dimensional masks 

of the cells in ellipsoidal domes with the aforementioned aspect ratios (Figure 38a). We then 

 
a Tangential traction data, T||, for ellipsoidal domes is available on 8.1Appendix 1. 

Figure 37: Stress in ellipsoidal domes. a, Traction maps of ellipsoidal domes with different aspect ratio (2:3 top and 1:3 
bottom) and inflation levels (from left to right). Each one of the six panels comprises a top view (center) and two lateral views 
(right and bottom). The top view shows a 3D traction map, where yellow vectors represent the in plane (Tx, Ty) components 
and the color map represents the vertical component Tz. The lateral views show the tractions averaged over the central 
segment of the vertical and horizontal sections of the dome. Scale bar: 50 μm. Scale arrows: 100 Pa. b, Inferred stresses 
across the free-standing cell layer of domes shown in (a). c, Experimental vertical tractions at the dome-substrate interface 
for low, medium and high inflation levels.  Left: low eccentricity. n=15 (low), 30 (medium), 16 (high). Right: high eccentricity. 
n=11 (low), 16 (medium), 23 (high). The tractions have been averaged in the four quadrants using the symmetry of the 
system (methods). d, Predicted vertical tractions at the dome-substrate interface for low, medium and high inflation levels 
obtained with our surface stress inference method. Left: low eccentricity. n=7 (low), 9 (medium), 8 (high). Right: high 
eccentricity. n=7 (low), 8 (medium), 8 (high). The tractions have been averaged using the symmetry of the system. The line 
and shaded area indicate median and 95% CI of the median by bootstrapping the data.  
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Figure 38: Relationship between stress and cell geometry in anisotropic domes. a, Segmented cells on top of high inflation 
ellipsoidal domes with 2:3 (left) and 1:3 (right) aspect ratio. The red arrows represent the principal components of the inferred 
stress. b, Schematic showing the calculation of angle ɑ between the longest cell axis (R1) and the direction of the maximum 
principal stress (σmax). c, Distribution of angles ɑ for the different regions of highly inflated domes. Statistical significance was 
determined by comparing the median between each distribution and 10000 randomly generated uniform distributions with 
the same n. d, Schematic indicating the different dome regions in which cells were classified. e, Cell eccentricity computed as 
the ratio between the second longest axis (R2) and the longest axis (R1) of the cells shown in (c). Data are shown as median ± 
sd. f, Relationship between cell eccentricity and tension anisotropy of the cells shown in (c). Lines represent a linear fit of the 
data. n=28 (major side, left), 19 (major top, left), 23 (minor side, left), 20 (minor top, left), 51 (major side, right), 45 (major 
top, right), 42 (minor side, right), 33 (minor top, right). c, Left: P = 0.011. Right: P = 6.2e-03 (top-major axis), 0.034 (side-minor 
axis), 0.022 (top-major axis). e, Statistical significance was determined using the Wilcoxon rank sum test for unpaired 
samples. Only statistically different pairwise comparisons are indicated. P = 0.04. *P < 0.05 and **P < 0.01. 
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fitted the shape of each cell to an ellipsoid and projected it on the surface of the segmented 

dome. We computed the angle α between the longest cell axis and the direction of the local 

principal maximum stress (Figure 38b). We plotted the distribution of α for low and high 

eccentricity domes with high inflation level. Data was binned according to the position of the 

cell in the dome (top vs side, and major vs minor regions, Figure 38c,d). Analysis of these 

distributions showed that cell alignment increased with dome eccentricity. Cells located on 

the side-minor axis and the top regions were strongly aligned with the maximum principal 

stress in more eccentric domes, while only cells on the top-minor region were aligned in the 

less eccentric cases. Higher dome eccentricity resulted in higher anisotropy of the stress field, 

so we hypothesized that there may be a dependence between cell alignment and local stress 

anisotropy. However, the results did not show any correlation (b). In less inflated domes, the 

alignment was not significant in any of the regions (c). 

We next analyzed cellular shape. To do so, we computed the ratio of the shorter and longer 

diameters of the projected ellipses (R2/R1) for the four previously mentioned regions (Figure 

38e). We found that this ratio oscillated between 0.3 and 0.85, which indicated a coexistence 

of very elongated cells with regular-shaped ones. Generally, cells were more elongated (lower 

ratio value) at the side regions of the dome than at the top regions. However, these 

differences were mostly not significant. To check whether local anisotropies on the stress field 

could explain this diversity of cell shapes, we plotted the cell shape ratio R2/R1 with respect 

to the local stress anisotropy, computed as the ratio between the second and first largest 

components of the maximum principal stress (σ2/σmax). These differences in cell morphology, 

did not correlate with a higher anisotropy of the stress field (Figure 38f).  

4.4.2 Nuclei orientation and shape 

Finally, we analyzed the orientation and morphology of cellular nuclei. We first generated 

three-dimensional masks of nuclei in elliptical domes (Figure 39a). We projected the masks 

onto 2D ellipses on top of the dome segmentation to estimate the local principal stresses at 

the position of the nuclei. We then computed the angle α between the longest nucleus axis 

 
b Data on “Cell alignment versus local stress anisotropy” can be found on Appendix 2. 
c  Data on “Relationship between stress and cell geometry” for low inflation domes can be found on Appendix 
3. 
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and the direction of the local principal maximum stress for highly inflated domes (Figure 

39b,c). As we did for cellular analysis, we binned this data according to position in the dome 

(top vs side, and major vs minor regions, Figure 39d). In contrast with cells, nuclei did not 

present a clear alignment with the stress field. The only region that presented significant 

alignment is the side-minor axis region of the more eccentric domes. This may suggest that 

alignment increases with dome eccentricity, but the results are not conclusive. 

Figure 39: Nuclear alignment and geometry in anisotropic domes. a, 3D nuclear masks plotted on top of high inflation 
ellipsoidal domes with 2:3 (left) and 1:3 (right) aspect ratio. The black arrows represent the principal components of the 
inferred stress. b, Schematic showing the calculation of angle ɑ between the longest nuclear axis (R1) and the direction of the 
maximum principal stress (σmax). c, Distribution of angles ɑ for the different regions of highly inflated domes. Statistical 
significance was determined by comparing the median between each distribution and 10000 randomly generated uniform 
distributions with the same n. d, Schematic indicating the different dome regions in which nuclei were classified. e, Nuclear 
eccentricity computed as the ratio between the second longest axis (R2) and the longest axis (R1) of the nuclei shown in (c). 
Data are shown as median ± std of n=25 (major side, left), 43 (major top, left), 18 (minor side, left), 33 (minor top, left), 32 
(major side, right), 40 (major top, right), 29 (minor side, right), 42 (minor top, right). c, P = 0.019. *P < 0.05. 
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We also tested the eccentricity of the nuclei. To do so, we computed the ratio between the 

shortest and longest axes of the projected ellipses (R2/R1). Nuclei presented aspect ratios 

ranging from 0.5 to 1. We observed no significant differences in shape between nuclei in 

different regions (Figure 39e). Closer inspection of local anisotropy of the stress field did not 

reveal any relationship with nuclear alignment or nuclei eccentricity (d).  

 

  

 
d Data on the relationship between the stress field anisotropy, and nuclei alignment and eccentricity can be 
found on Appendix 4. 
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5 DISCUSSION 
 

In this thesis, we examined systematically the interplay between stress and geometry in 

epithelia. We combined experimental and theoretical approaches to design MDCK luminal 

epithelia of arbitrary size and shape, and to map their luminal pressure and stress tensor.  

 

5.1 Size effect on mechanics of domes 

We showed that the stress - strain relationship of spherical domes is independent of curvature 

and differences between apical and basal surface tension. These results suggest that, for the 

range of sizes studied, curvature is not mechanotransduced into changes in stress. This 

suggestion is supported by the literature. Even though it is widely known that curvature 

triggers mechanotransduction at the nanoscale through BAR proteins and amphipatic helix 

domains152,153, and at the microscale through proteins such as septins, our experimental 

results lay beyond this range. Septins can detect curvatures down to 0.7 μm-1 (radii smaller 

than 3 μm)154 whereas our domes present curvatures between 0.008 and 0.1 μm-1. Our results 

also indicate that the contribution of bending moments to balance luminal pressure is 

negligible. Rather, epithelial tension appears to be well captured by a 2D membrane 

approximation in which stress arises from surface tensions at the actomyosin cortex.  

Most circular-footprint domes presented a morphology that closely resembled a spherical 

cap. However, some of the smallest domes (25 μm-diameter) presented morphologies that 



DISCUSSION 

98 
 

deviated from this ideal shape (Figure 40a). We found that luminal pressure tended to plateau 

for the largest curvatures, which correspond to 25 μm domes (refer to Figure 34a). This 

tendency to plateau and the deviation from a spherical morphology suggest a change in the 

behaviour of domes at this scale. We could relate this phenomenon to the recent results from 

Vasquez et al 8. They showed that small MDCK lumens can expand via a pressure-independent 

method, where lumen growth occurs by maintaining a constant amount of lumen-facing 

membrane per cell and sufficient fluid transport to allow luminal growth (Figure 40b-d). In 

Vasquez et al, MDCK form spheroids with apical lumens, whose sphericity increases with 

lumen radius. For large spheroids (around 20 μm-diameter), the lumen becomes more 

spherical, indicating a transition to pressure-driven inflation. Despite the differences between 

this system and our domes (notably, the difference in polarity), this transition could explain 

the heterogeneity of shapes and the low pressures observed in 25 μm domes. 

 

Figure 40: Geometry of 25 
μm domes and small 
MDCK spheroids. a, 
Confocal slices of a dome 
at different heights. Blue 
indicates the outline of the 
lumen in each slice. Green 
indicates the basal lumen 
outline. b, Single-plane 
images of MDCK spheroids 
expressing Lifeact-RFP 
(gray). The mean lumen 
curvature is superimposed 
as a red-blue outline, 
where red is concave, and 
blue is convex. c, Lumen 
sphericities as a function of 
estimated lumen radius. 
Values for representative 
spheroids from (b) labelled 
by number of cells. d, 
Percent of lumen surface 
that is concave (negative 
curvature) as a function of 
estimated lumen radius. 
(b-d) Adapted from ref. 8 
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5.2 Anisotropy effect on mechanics of domes 

When monolayer shape deviates from a spherical cap, the stresses become anisotropic. To 

map these stresses, we applied a force inference method based exclusively on epithelium 

geometry and luminal pressure measurements, without assuming any constitutive behaviour 

for the membrane material. This property of the method constitutes a great advantage with 

respect to many models that require the estimation of parameters, because these parameters 

represent some mechanical characteristics of the materials, and have to be computed from 

experimental data155,156. 

In elliptical caps and tubes, we found higher stresses along the regions with lower local 

curvature, consistent with the finding of higher tractions at these points. It is interesting to 

note that the examination of actin in basal regions of highly anisotropic domes (1:3 ellipses 

and 1:4 rectangles) reveals the formation of lamellipodia at the regions of low curvature, and 

Figure 41: Actin distribution at the dome-substrate interface. Representative confocal images of the cellular membrane 
(GFP-CAAX) and actin distribution (phalloidin staining) at the base of ellipsoidal domes with 1:3 aspect ratio. Scale bar: 50 
μm. Below: Magnification images of marked regions (a-d). Scale bar: 10 μm. 
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the presence of actin cables (Figure 41). These features are not contemplated by the model 

and, therefore, the lowest dome regions are excluded from the analysis.  

The shape of epithelia in vivo is often influenced by the presence of a basement membrane 

and by adjacent mesenchymal cells and smooth muscle. This surrounding ECM and tissues 

drive the emergence of bending moments and buckling instabilities61,65,71. In this project, we 

designed an approach that purposely ignores these confounding factors to be able to study 

the behaviour of isolated free-standing monolayers under tight mechanical control. However, 

to explore the contribution of these phenomena in our system, we can modify the geometry 

of the curved monolayer through optogenetic approaches, such as local modification of 

contractility137 or apical constriction157, or controlled deposition of extracellular matrix158. 

 

5.3 Cellular and nuclear shape 

In anisotropic domes, cells tend to align with the direction of maximal local stress. This 

alignment is not global, but it increases with dome eccentricity. Cells present a diversity of 

geometries, ranging from fairly regular cells to very elongated ones. We found no correlation 

between cell elongation and local stress anisotropy. 

Through the approach presented in this thesis, fundamental questions of how epithelial 

geometry and stress anisotropies influence cellular processes like division84,159–161, 

extrusion162,163 and intercalation164 can be approached quantitatively. Although these 

processes are not abundant in the free-standing monolayer, they often occur when the lumen 

deflates between inflation cycles. This system could therefore be a useful tool to study how 

the past geometry and mechanical state of the monolayer affect these processes. 

It is also interesting to study how inflation-deflation cycles modify density, shape and 

orientation of cells within the dome. The methodology used in this thesis does not take into 

account the number of stretch – de-stretch cycles that the domes have been subjected to. 

This number of cycles may have an impact on the final shape and orientation of cells and, 

consequently, controlling it may give us an insight into the stress dissipation process carried 

out by cells. To approach this question (and other questions derived from the study of domes), 

colleagues in the lab are creating a device to artificially inflate and deflate MDCK monolayers. 
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This device, coupled with the inference method developed by our collaborators, will allow us 

to establish a tighter control of the length and magnitude of these stretch – de-stretch cycles 

and to study the effect of different loading configurations on dome tension and cellular 

conformation. 

Oppositely to cells, nuclei do not seem to align with the direction of the local principal stress. 

Additionally, they do not appear to deform in the monolayer plane in response to dome 

inflation and stretching. These results hint to the absence of mechanotransduction linked to 

nuclear deformation in our experiments165. However, we need to carry out further 

experiments to rule out this hypothesis, such as imaging the location of mechanosensitive 

transcription activators165, such as YAP, or studying the conformation of chromatin166. 

 

5.4 Future Perspectives 

The experimental and computational approach developed in this thesis can be applied to the 

study of the interplay between size, shape, pressure and stress in dome-forming cell types. 

Dome formation has been reported in many epithelial cell lines in culture, including 

pulmonary cells, mammary cells, stomach cells, and many types of carcinomas167. The 

geometry and alignment patterns resulting from dome formation in these cells can provide 

information on their mechanical properties in a controlled lumen formation process. 

The relations between the geometry of epithelia, luminal pressure and stress distribution 

identified in this work can be used for the rational design of organoids and biohybrid devices 

based on epithelial layers168. 
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6 CONCLUSIONS 
 

The main conclusions of this thesis are: 

1. We developed a new TFM-compatible protocol to generate curved epithelial 

monolayers with any desired size and shape. 

2. The relationship between stress and strain in epithelial monolayers is largely 

independent of size and curvature, and insensitive to differences between apical and 

basal surface tensions. 

3. We validated an inference method to map the stress tensor anywhere in a monolayer 

without assumptions of mechanical properties.  

4. In anisotropic luminal epithelia, the stresses are anisotropic, and the maximum 

principal stress follows the direction of the minor axis of the dome. Tractions and 

stresses are higher along the regions of less curvature.  

5. In ellipsoidal epithelia, cells tend to align with the direction of maximum principal 

stress. This alignment is non-universal and increases with anisotropy of the 

epithelium. There is no correlation between alignment or cell eccentricity, and local 

stress anisotropy. 

6. In ellipsoidal epithelia, nuclei are not aligned with the direction of maximum principal 

stress. There is no correlation between alignment or nuclei eccentricity, and local 

stress anisotropy.  
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8 APPENDICES 
 

8.1 Appendix 1 

 

  

Figure 42: Tangential tractions in ellipsoidal domes with low inflation. a, Experimental tangential tractions at the 
dome-substrate interface for low, medium and high inflation levels.  Left: low eccentricity. n=13 (low), 27 (medium), 
16 (high). Right: high eccentricity. n=10 (low), 15 (medium), 21 (high). The tractions have been averaged in the four 
quadrants using the symmetry of the system (methods). b, Predicted tangential tractions at the dome-substrate 
interface for low, medium and high inflation levels obtained with our surface stress inference method. Left: low 
eccentricity. n=7 (low), 9 (medium), 8 (high). Right: high eccentricity. n=7 (low), 8 (medium), 8 (high). The tractions 
have been averaged using the symmetry of the system. The line and shaded area indicate median and 95%CI of the 
median by bootstrapping the data. 
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8.2 Appendix 2 

 

 

 

Figure 43: Cell alignment vs Tension anisotropy. Value of α with respect to local tension anisotropy for cells in highly inflated 
domes with low eccentricity (left) and high eccentricity (right). Tension anisotropy is computed as the ratio of the second 
largest component (σ2) and the largest component (σ1) of the local principal stress. Data for every dome region (side vs top, 
minor axis vs major axis) is shown in a different colour. Lines indicate a linear fit of the data. Shaded areas are SE. n=28 (major 
side, left), 19 (major top, left), 23 (minor side, left), 20 (minor top, left), 51 (major side, right), 45 (major top, right), 42 (minor 
side, right), 33 (minor top, right).  
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8.3 Appendix 3 

 

 

  

Figure 44: Relationship between stress and cell shape in low inflation anisotropic domes. a, Segmented cells on top of   
low inflation ellipsoidal domes with 2:3 (left) and 1:3 (right) aspect ratio. The red arrows represent the principal components 
of the inferred stress. b, Schematic showing the calculation of angle ɑ between the longest cell axis (R1) and the direction 
of the maximum principal stress (σmax). c, Distribution of angles ɑ for the different regions of highly inflated domes. 
Statistical significance was determined by comparing the median between each distribution and 10000 randomly generated 
uniform distributions with the same n. d, Schematic indicating the different dome regions in which cells were classified. e, 
Cell eccentricity computed as the ratio between the second longest axis (R2) and the longest axis (R1) of the cells shown in 
(c). Data are shown as median ± sd of n=30 (major side, left), 38 (major top, left), 21 (minor side, left), 38 (minor top, left), 
66 (major side, right), 45 (major top, right), 34 (minor side, right), 33 (minor top, right). c, P = 0.019. e, Statistical significance 
was determined using the Wilcoxon rank sum test for unpaired samples. Only statistically different pairwise comparisons 
are indicated.  Left: P = 5.3e-04 (major side vs major top), 5.5e-03 (major top vs minor side). Right: P = 0.033 (major side vs 
minor top), 7.7e-03 (minor side vs minor top). *P < 0.05, **P < 0.01 and ***P < 0.001. 
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8.4 Appendix 4 

 

 

 

 

 

 

Figure 45: Effect of tension anisotropy on nuclei geometry and alignment. a, Value of nuclei eccentricity computed as the 
ratio between the two radii of the projected ellipse with respect to local tension anisotropy in highly inflated domes with low 
eccentricity (left) and high eccentricity (right). Tension anisotropy is computed as the ratio of the second largest component 
(σ2) and the largest component (σ1) of the local principal stress. b, Values of α with respect to local tension anisotropy in 
highly inflated domes with low eccentricity (left) and high eccentricity (right). α is computed as the angle between the longest 
nuclei axis and the direction of maximal principal stress. Data for every dome region (side vs top, minor axis vs major axis) is 
shown in a different colour. Lines indicate a linear fit of the data. Shaded areas are SE. n=25 (major side, left), 43 (major top, 
left), 18 (minor side, left), 33 (minor top, left), 32 (major side, right), 40 (major top, right), 29 (minor side, right), 42 (minor 
top, right).  

 




