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Abstract
Pretrained Transformer-based language models have quickly replaced tra-
ditional approaches to model NLP tasks, pushing the state of the art to
new levels, and will certainly continue to be very influential in the years
to come. In this thesis, we offer an extensive empirical comparison of the
morpho-syntactic capabilities of pretrained Transformer-based autoencod-
ing models. We analyse the syntactic generalisation abilities of different
widely-used pretrained models, comparing them along two dimensions:
1– language: monolingual (English and Spanish) and multilingual mod-
els; and 2– pretraining objectives: masked language modeling and next
sentence prediction. We complement the analysis with a study of the im-
pact of the pretraining data size on the syntactic generalisation abilities
of the models and their performance on different downstream tasks. Fi-
nally, we investigate how the syntactic knowledge encoded in the models
evolves along the fine-tuning process on different morpho-syntactic and
semantics-related downstream tasks.
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Resum
Els models de llenguatge preentrenats basats en Transformer han reempla-
çat ràpidament els models tradicionals de Processat del Llenguatge Natu-
ral, fent avançar l’estat de l’art a nous nivells, i de ben segur continuaran
sent molt influents durant els propers anys. En aquesta tesi presentem
una extensa comparativa empı́rica de les capacitats morfosintàctiques de
models de llenguatge preentrenats basats en Transformer de tipus autoen-
coding. Analitzem les capacitats de generalització sintàctica de diferents
models que es fan servir habitualment, comparant-los en base a: 1– llen-
guatge: models monolingües (anglès i castellà) i multilingües; i 2– objec-
tius d’entrenament: modelat del llenguatge amb màscares i predicció de
la següent frase. Per complementar la comparativa, estudiem l’impacte
del volum de les dades d’entrenament en les habilitats de generalització
sintàctica dels models i el seu rendiment en diverses tasques. Finalment,
investiguem com el coneixement sintàctic codificat als models evoluciona
durant el seu entrenament en diverses tasques sintàctiques i semàntiques.
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Chapter 1

INTRODUCTION

1.1 Motivation

Language is considered to be one of the key components of human in-
telligence, the source of creativity, cultural enrichment, and complex so-
cial structure. Central to human thought, language shapes how social
and emotional relations are formed, how we identify ourselves socially
and personally, and how we record knowledge and develop societal in-
telligence (Bommasani et al., 2021). It is estimated that there are more
than 7,000 human languages in the world, and they are both incredibly
diverse in the ways that they express and structure the information they
convey, while also exhibiting surprising concordance in the richness of
what makes a language (Comrie, 1989). On the quest towards general ar-
tificial intelligence, developing systems that can understand and generate
human language has become a milestone that drives research in computa-
tional linguistics (Nilsson, 2009).
Natural Language Processing (NLP) is a field of research concerned with
building computational tools for the automatic analysis, representation
and generation of human language. NLP addresses a wide range of tasks,
including, e.g., dependency parsing (Kübler et al., 2009; Nivre et al.,
2007; Buchholz and Marsi, 2006), entity linking (Shen et al., 2021, 2014;
Rao et al., 2013) or named entity recognition (Lample et al., 2016; Nadeau
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and Sekine, 2007), and has multiple practical applications, from chatbots
(Adamopoulou and Moussiades, 2020; Shum et al., 2018) and virtual as-
sistants (Rawassizadeh et al., 2019; Siebra et al., 2018) to recommen-
dation systems (Naumov et al., 2019; Isinkaye et al., 2015) and auto-
correctors (Hládek et al., 2020). As we will see in detail in Section 2.3,
which reviews the recent history of NLP, many of the most recent ad-
vances in the field, which draw upon neural models, are reduced to a
form of language modeling (Bengio et al., 2000; Mikolov et al., 2010;
Graves, 2013; Vaswani et al., 2017; Devlin et al., 2019a), i.e., to systems
that determine the probability of a given sequence of words occurring in
a sentence. One of the reasons behind their success is grounded in the
fact that to predict the next word (or a set of missing words), language
models are forced to encode complex syntactic and semantic information
(Goldberg, 2019; Jawahar et al., 2019). Consequently, language models
are excellent information encoders (Devlin et al., 2019a), well suited to
generate representations of words and sentences. These representations,
generally known as embeddings, are a central piece of NLP, as they al-
low us to encode information into low-dimensional vector representation
spaces and are easily integrable into machine learning algorithms.

The widespread adoption of neural network approaches over the last years
has boosted the evolution of language models, and traditional approaches
based on N-Gram models (Shannon, 1948) were replaced first by feed-
forward neural networks (Bengio et al., 2000) and later by specialised ar-
chitectures for sequential data –recurrent neural networks (RNNs; Mikolov
et al., 2010) and Long-Short Term Memory networks (LSTMs; Graves,
2013). In 2017, Vaswani et al. (2017) presented the Transformer, a new
architecture that would become the seed of the NLP revolution the fol-
lowing year. Indeed, in 2018, the publication of the first contextual em-
beddings (Peters et al., 2018b), which relied on a bidirectional LSTM
architecture, was almost immediately shadowed by the development of
BERT (Devlin et al., 2019a), the first pretrained Transformer-based lan-
guage model. BERT quickly became the new state of the art in a wide
range of tasks and benchmarks, clearly outperforming all previous ap-
proaches. At the same time, the need for methods relevant to explaining

2
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the decisions and analyzing the inner workings of NLP models became
more urgent, giving birth to the new emergent subfield of Explainable
NLP, that became an independent track at the Association for Computa-
tional Linguistics’s main conference in 2020; cf. eg. Søgaard (2021).
The publication of BERT inspired the development of many new pre-
trained Transformer-based language models (cf. Section 2.5), coining the
research of the entire field of NLP, and will certainly continue to be very
influential in the years to come. While traditional approaches are quickly
replaced with these new, powerful models, two main questions emerge:
what do these models learn, and how do they use this knowledge? To
shed light on these and more questions, this thesis is devoted to the study
of the syntactic capabilities of modern language models, and their impact
on downstream applications.

1.2 Research objectives

Pretrained Transformer-based autoencoding language models –e.g. BERT
(Devlin et al., 2019a) and RoBERTa (Liu et al., 2019b); Section 2.5.3–
, are trained in an unsupervised manner from raw text using different
tasks such as Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP). Even though the models are never exposed to explicit
linguistic structures, it has been shown that they learn major aspects of
these structures (Manning et al., 2020; Rogers et al., 2020; Jawahar et al.,
2019). This thesis aims at unveiling what kind of syntactic knowledge do
pretrained Transformer-based autoencoding language models learn, and
how do they use it. We focus on the morpho-syntactic layer of the lin-
guistic structure, studying the syntactic capabilities of the models, from
their development to their application to downstream tasks:

Syntactic generalisation abilities of pretrained models (Chapter 4).
Multilingual Transformer-based language models, usually pretrained on
more than 100 languages, have been shown to achieve outstanding re-
sults in a wide range of cross-lingual transfer tasks. However, it remains
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unknown whether the optimisation for different languages conditions the
capacity of the models to generalise over syntactic structures, and how
languages with syntactic phenomena of different complexity are affected.
Specifically, we address the following aspects:

• Do multilingual models generalise equally well across languages?

• How well do monolingual models generalise over syntactic phe-
nomena compared to multilingual models?

• Does the presence of modifiers affect the generalisation capabilities
of the models?

• Does the nature of the training procedures employed to train the
models affect the generalisation capabilities of the models?

Impact of the pretraining data size on the syntactic abilities of the
models (Chapter 5). While pretraining methods are very convenient,
they are expensive in terms of time and resources. This calls for a study
of the impact of pretraining data size on the knowledge of the models.
Specifically, we investigate:

• Do models pretrained with more data encode more syntactic infor-
mation?

• Do models pretrained with more data generalise better over syntac-
tic phenomena?

• Are models pretrained with more data more robust to the presence
of modifiers?

• Do models pretrained with more data offer a better performance
on downstream tasks such as dependency parsing and paraphrase
identification?

• Is there a correlation between the language modeling abilities of the
models and their syntactic generalisation abilities?

4
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Evolution of syntactic knowledge during fine-tuning (Chapter 6). Pre-
trained models are often fine-tuned on downstream tasks, and therefore it
becomes increasingly important to understand how the encoded knowl-
edge evolves along the fine-tuning process.

• Is the syntactic information initially encoded in the models forgot-
ten, preserved, or reinforced along the fine-tuning process?

• Does this evolution depend on the task in which the models are
fine-tuned?

1.3 Contributions
The main contribution of this dissertation is an extensive empirical com-
parison of the morpho-syntactic capabilities of pretrained Transformer-
based autoencoding language models, from their generalisation abilities
over syntactic phenomena to their performance on downstream tasks. We
thoroughly explore the syntactic generalisation abilities of different widely
used pretrained models, comparing them along two dimensions: 1– lan-
guage: monolingual (English and Spanish) and multilingual models (pre-
trained with more than 100 languages); and 2– pretraining objectives:
masked language modeling and next sentence prediction. First, we study
the ability of the models to generalise over different syntactic phenomena.
Then, we focus on the impact of pretraining data size on the syntactic
knowledge of the models. Finally, we study the evolution of the encoded
syntactic knowledge along the fine-tuning process in different tasks.

1.4 Thesis outline
In Chapter 2, we offer a review of background information that is rel-
evant to understand the contents of this thesis. First, we contextualise
the research field and review important concepts related to the training of
neural networks. Then, we present the evolution of computational neural
methods for NLP. Next, we describe the language modeling task and the
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traditional approaches to solve it, along with their limitations, followed
by the current neural-based approaches. Last, we introduce pretrained
language models, which are the central object of the thesis, reviewing the
different dimensions that play a key part in their undeniable success, from
architectures and pretraining objectives to information representation.
In Chapter 3, we present the current state of the art on the different top-
ics covered in this thesis, from the linguistic knowledge encoded in pre-
trained language models and how to assess it to the evolution of syntactic
knowledge during the fine-tuning process.
In Chapter 4, we explore the syntactic generalisation abilities of mono-
lingual and multilingual pretrained models, analysing whether the opti-
misation for different languages conditions the capacity of the models
to generalise over syntactic structures, and how languages with syntactic
phenomena of different complexity are affected. Furthermore, we present
SyntaxGymES, a novel ensemble of targeted syntactic tests in Spanish.
In Chapter 5, we study the impact of pretraining data size on the knowl-
edge of pretrained language models, analysing models trained on incre-
mental sizes of raw text data by means of structural probes, a targeted
syntactic evaluation and a comparison of the performance of the models
on different downstream applications. We complement our study with an
analysis of the cost-benefit trade-off of training such models.
In Chapter 6, we study how the knowledge encoded in pretrained lan-
guage models evolves along fine-tuning. Specifically, we analyse the
evolution of the syntactic information embedded in the models along the
fine-tuning process in six different tasks, covering all levels of the lin-
guistic structure, to show whether it is forgotten, reinforced or preserved
along the process.
Finally, in Chapter 7 we present a summary of our findings and we draw
conclusions on the syntactic abilities of modern language models. More-
over, we offer a brief overview of the main concerns raised by the de-
velopment of ever larger pretrained models, and we present and discus
interesting leads to follow in the future.
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Chapter 2

BACKGROUND

This chapter offers a review of background information that is relevant
for understanding the contents of subsequent chapters. We start with
an overview of the Artificial Intelligence scientific field and its subfields
(Section 2.1). Then, we review the neural history of NLP (Section 2.3),
from N-Gram models to modern Transformer-based architectures. Next,
we formally describe the task of language modeling (Section 2.4), review-
ing both the traditional and neural approaches to solve it. Last, we deepen
the discussion of the different types of pretrained Transformer-based lan-
guage models (Section 2.5).

2.1 Contextualising the research field
This thesis is devoted to the study of Deep Learning language models,
and thus we start by offering a clear picture of how Deep Learning is sub-
sumed into the Neural Networks family of Machine Learning techniques,
a subfield of the Artificial Intelligence field (Figure 2.1).
Artificial Intelligence (AI) is a scientific field that aims to develop ma-
chines able to match human intelligence, and includes goals like rea-
soning, knowledge representation, planning, learning, natural language
processing, perception and robotics. Machine Learning (ML) is a sub-
field of AI, comprised by computer algorithms that learn to make predic-
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Figure 2.1: Deep Learning is subsumed into the Neural Networks family of Machine
Learning techniques, a subfield of the Artificial Intelligence field.

tions based on past observations. Neural Networks (NNs) is a family of
ML techniques inspired by the human brain that can be characterised as
learning of parameterised differentiable mathematical functions. Neural
Networks make up the backbone of Deep Learning (DL) algorithms, a
subfamily of Neural Networks characterised by having at least three, but
usually more, Neural Networks chained together, commonly referred to
as layers. They aim not only to predict but also to correctly represent
the data such that it is suitable for prediction: given a set of input-output
examples, Deep Learning methods work by feeding the input data into
the network, which successively transforms it while it traverses through
each layer until a final transformation predicts the output (Figure 2.2).
The transformations that take place in each layer are also learned in the
process, and thus the learning of the correct representation of the data is
performed automatically by the network.

8
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Figure 2.2: Deep neural network. Given a set of input-output examples, deep Learning
methods work by feeding the input data into the network, which successively transforms
it while it traverses through each layer until a final transformation predicts the output.

2.2 Training Neural Networks

In this section, we describe the training procedure of a simple fully-
connected neural network to illustrate some concepts that will become
useful later on, when we present the different approaches to building lan-
guage models with neural networks. For a more complete review of train-
ing neural networks for NLP, see (Goldberg, 2017).
Neural Networks are differentiable parameterised functions. The network
illustrated in fig. 2.3 has 5 neurons, arranged in 3 fully-connected layers,
that is, each neuron from one layer is connected to each neuron from the
following layer. The neurons at the input layer represent the input of the
network, x1 and x2, and they do not perform any computation. The rest
of the neurons are in fact mathematical functions: they take two numbers
as input, e.g. x1 and x2, combine them with a weights vector w and apply
a non-linear function on top, know as the activation function, to output a
single number, its activation.1 Two common activation functions are the

1Notice that, as the neurons are chained, if we do not add a non-linearity their com-
bination would be also a linear function, not more powerful than a single neuron.

9
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Figure 2.3: Fully-connected neural network.

Rectified Linear Unit (ReLU): ReLU(x) = max(x, 0), and the Sigmoid,
that outputs a number between 0 and 1 that we can treat as a probability,
very useful for the output layer. Equation 2.1 shows the formula for the
network depicted in fig. 2.3 when using ReLU activation functions for the
hidden layer, and Sigmoid for the output layer, where superscripts of w
denote the index of the neuron, and subscripts the index of the input.

f(x1, x2) = Sigmoid(w3
1ReLU(w

1
1x1+w

1
2x2)+w

3
2ReLU(w

2
1x1+w

2
2x2))
(2.1)

Thus, a neural network is a complex non-linear function parameterised
by some weights. These weights are randomly initialised, and they are
changed during training in such a manner that the network outputs match
as closely as possible the expected outputs. Neural networks are trained
with examples, using a loss function, that is, a function stating the loss of
predicting ŷ when the true output is y. There exists a wide range of loss
functions that can be used in the context of neural networks, and while
deepening into them is out of the scope of this work, we will use here the
Mean Squared Error (MSE) as an example.2 Having a training set with
m examples, we could take each training example, pass it through the
network to get the final prediction (ŷ), subtract it from the actual number
we expected (y) and square it, as depicted in Equation 2.2. This phase is

2Further information on loss functions in the context of neural networks can be found
in (LeCun and Huang, 2005; LeCun et al., 2006; Goodfellow et al., 2016).
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the forward pass.

LMSE(y, ŷ) =
1

m

m∑
i=1

(yi − ŷi)2 (2.2)

We want the loss to be as small as possible, because it will mean that
the predictions are really close to the expected values. Thus, the problem
or training is equivalent to the problem of minimising the loss function.
There exist different algorithms to minimise the loss, many of them re-
lying not only on the information provided by the loss function but also
on its gradient. To update the weights, we compute the gradient of the
loss function w.r.t the weights and take small steps, whose size is con-
trolled by a hyperparameter called learning rate, in the opposite direction
of the gradient. This phase is called the backward pass or backpropa-
gation. By adjusting the weights in this manner, the loss will gradually
decrease until it converges to some (local) minima. A commonly used
optimisation method is the Stochastic Gradient Descent (Bottou and GO,
1998; Bottou, 2012), a stochastic approximation of gradient descent opti-
mization that replaces the actual gradient (calculated from the entire data
set) by an estimate calculated from a randomly selected subset of the data.

To conclude this section, let us now review some practicalities of the train-
ing procedure of deep neural networks that will become useful in follow-
ing chapters:

Training, testing and development sets. In practice, we often train
several models, compare their quality, and select the best one. The usual
approach is to use a three-way split of the data into train, validation (also
called development), and test sets. While the training set is used for the
training phase, all the experiments, tweaks, error analysis, and model se-
lection should be performed based on the validation set. Then, a single
run of the final model over the test set will give a good estimate of its
generalisation over unseen examples.

11
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Shuffling. During training, it is usual to go several times over the train-
ing data, feeding it to the network. Each such pass is called an epoch. The
order in which the training examples are fed into the network is impor-
tant, and therefore it is a common practice to perform random sampling
without replacement, shuffling the training examples before each epoch.

Initialization. The non-convexity of the objective function means that
the optimization procedure may get stuck in a local minima, and that start-
ing from different initial points (e.g., different random values for the pa-
rameters) may result in different results. Thus, it is advised to run several
restarts of the training, starting at different random initialisations, and
choosing the best one based on a development set.

Random restarts. When training complex networks, different random
initialisations are likely to end up with different final solutions, exhibiting
different accuracies. Thus, it is advisable to run the training process sev-
eral times, each with a different random initialization, and choose the best
one based on the development set. Moreover, the average model accuracy
across random seeds gives a hint as to the stability of the process.

Vanishing and exploding gradients. It is common for the error gradi-
ents to either vanish (become exceedingly close to 0) or explode (become
exceedingly high) as they propagate back through the network. Dealing
with exploding gradients can be solved by simply clipping the gradients
if their norm exceeds a given threshold. However, dealing with vanishing
gradients is still an open research question, and solutions include making
networks shallower or using specialized architectures that are designed to
assist in gradient flow (e.g., LSTMs).

2.3 The neural history of NLP
In this section, we review the evolution of computational neural meth-
ods for NLP, depicted in Figure 2.4. First, we present the early neu-
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Figure 2.4: Evolution of NLP methods: from high-dimensional features to pretrained
Transformer-based language models.

ral approaches to NLP (Section 2.3.1), from N-Gram models to RNN
architectures and sequence-to-sequence models. Then, we describe the
first approaches based on pretrained word representations (Section 2.3.2).
Last, we analyse in depth the revolution of contextual word representa-
tions (Section 2.3.3).

2.3.1 Neural models for NLP

Many of the most important advances in NLP reduce to a form of lan-
guage modeling, and thus the history of NLP is closely tied to the history
of language models. Classic approaches to language modeling are based
on N-Grams (Shannon, 1948), probabilistic models that assumed that the
next word in a sequence depends only on the last N words (Markov as-
sumption). However, they suffer from what is known as the curse of di-
mensionality (Section 2.4.1), and in the early 2000s the first nonlinear
neural models were proposed to alleviate some of the related limitations.
The first neural language model was proposed in (Bengio et al., 2000),
and consisted of a single hidden layer feed-forward network used to pre-
dict the next word of a sequence (Section 2.4.2.1). The model uses a
look-up table from which to extract word representations as vectors, and
although feature vectors already existed by this time (Rumelhart et al.,
1985; McClelland et al., 1986), Bengio et al.’s work greatly contributed to
popularise the concept. Currently, these vector representations are known
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as word embeddings, and constitute a major component of modern NLP
systems.
More recently (2010-2013), specialised models for sequential data were
developed, and feed-forward neural networks (FFNNs) were replaced by
recurrent neural networks (RNNs; Mikolov et al., 2010) and Long-Short
Term Memory networks (LSTMs; Graves, 2013), allowing to abandon
the Markov assumption. RNNs take as input a sequence of items, and
produce a fixed size vector that summarises that sequence. They allow
us to condition on entire sentences while taking word order into account,
and alleviate the statistical estimation problems derived from data spar-
sity. Rarely used as standalone components, these networks are usually
employed as input-transformers trained to produce informative represen-
tations for feed-forward networks that will operate on top of them.
In 2014, Sutskever et al. (2014) proposed sequence-to-sequence models, a
new framework for mapping one sequence to another relying on two neu-
ral components: an encoder NN that processes the input sentence symbol
by symbol and compresses it into a vector representation, and a decoder
NN that predicts the output symbol by symbol based on the encoder state,
taking as input at every step the previously predicted symbol. Naturally,
this framework was specially suited for machine translation tasks, and
was further popularised by Google in (Wu et al., 2016). The framework
is very flexible, and has been widely adopted for natural language gener-
ation tasks, with different models taking on the role of the encoder and
the decoder. For example, it has been used to generate captions based on
images (Vinyals et al., 2015) or to generate a description based on source
code changes (Loyola et al., 2017).
The main problem with sequence-to-sequence models is that they require
to compress the entire content of the source sequence into a fixed-size
vector. In 2014, Bahdanau et al. (2015) presented Attention, a mechanism
that allows the decoder to look back at the source sequence hidden states,
which are then provided as a weighted average as additional input to the
decoder. Thus, it is potentially useful for any task that requires making
decisions based on certain parts of the input, and has a wide range of
applications. This technique, which we will describe in Section 2.4.2.3,
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grew to be the backbone of all current NLP approaches, as we will see all
along this work.

2.3.2 Popularisation of pretrained word representations

The popularisation of the use of pretrained word representations is closely
tied to the introduction of multi-task learning (MTL) in NLP, a subfield of
machine learning in which multiple learning tasks are solved at the same
time. MTL improves generalization by leveraging the domain-specific
information contained in the training signals of related tasks.
The first applications of multi-task learning to NLP were presented in
(Collobert and Weston, 2008; Collobert et al., 2011), were the word-
embedding matrices are shared between two models trained on differ-
ent tasks (including part-of-speech tagging, semantic role labeling and
named entity recognition, among others), enabling the models to share
general low-level information (Figure 2.5). This idea became the seed of
pretraining word embeddings, and in recent years leveraging existing or
artificial tasks to pretrain embeddings has become the backbone of many
NLP methods.
In 2013, Mikolov et al. (2013a,b) introduced Word2Vec, a novel tech-
nique to efficiently learn high-quality word embeddings from huge cor-
pora, transferable across NLP applications. Word2Vec is based on a sim-
ple but efficient feed-forward neural architecture trained with a language
modeling objective. They proposed two different techniques: continu-
ous bag-of-words (CBOW) predicts the centre word based based on the
surrounding words, and skip-gram does the opposite. Importantly, train-
ing on very large corpora enables the embeddings to approximate certain
morpho-syntactic, semantic and ontological properties between words,
such as gender, verb tense, and country-capital relations, as shown in
Figure 2.6, and many studies were devoted to investigate these relations
(Handler, 2014; Arora et al., 2016; Mimno and Thompson, 2017; An-
toniak and Mimno, 2018; Wendlandt et al., 2018; Jatnika et al., 2019;
Miaschi and Dell’Orletta, 2020).
Using pretrained embeddings as initialisation was shown to improve per-
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Figure 2.5: Example of multi-task learning with NN. The first layer (Convolution) ex-
tracts features for each word. The second layer (Max) extracts features from the sen-
tence, and the following layers are FFNN layers. One lookup-table (in black) is shared,
and the others are task specific. The principle is the same with more than two tasks.
Source: Collobert and Weston (2008).

formance across a wide range of downstream tasks (Kim, 2014), and con-
sequently the use of pretrained word embeddings was quickly popularised
and has become an integral part of current NLP models. In 2014, a year
after Word2Vec was published, Pennington et al. (2014) presented GloVe,
a set of pretrained word embeddings leveraging statistical information by
training only on the nonzero elements in a word-word co-occurrence ma-
trix, rather than on the entire sparse matrix or on individual context win-
dows in a large corpus. GloVe outperformed Word2Vec on word similar-
ity3 tasks and Named Entity Recognition (NER), proving that word em-
beddings can also be learned via matrix factorisation (Pennington et al.,
2014; Levy and Goldberg, 2014). However, in 2015 Levy et al. (2015)
revealed that much of the performance gains of word embeddings were

3With the exception of Contextual Word Similarities (SCWS; Huang et al., 2012),
where Word2Vec outperformed GloVe.
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Figure 2.6: Word embeddings allow us to approximate certain morpho-syntactic, seman-
tic and ontological properties between words, such as gender, verb tense, and country-
capital relations.
Image source: https://towardsdatascience.com/evolution-of-word
-representations-in-nlp-d4483fe23e93

due to certain system design choices and hyperparameter optimisations,
rather than the embedding algorithms themselves, and that classic ma-
trix factorisation methods like Singular Value Decomposition (SVD) and
Latent Semantic Analysis (LSA) attained similar results to Word2Vec or
GloVe.
Importantly, it was shown that the learnt relations are heavily biased. For
instance, they exhibit female/male gender stereotypes to a disturbing ex-
tent, raising concerns because their widespread use tends to amplify these
biases (Bolukbasi et al., 2016). Understanding what other biases they cap-
ture and finding ways to remove them will be key to developing fair NLP
algorithms.

2.3.3 The revolution of contextual word representations

High quality representations should model not only complex word char-
acteristics, such as its syntactic and semantic features, but also polysemy,
that is, the capacity of a word or phrase to have multiple (often related)
meanings. However, pretrained word representations (Mikolov et al.,
2013b; Pennington et al., 2014) are context-agnostic and are only used
to initialise the first layer in the models.
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In 2018, Peters et al. (2018b) presented ELMo (Embeddings from Lan-
guage Models), a new type of deep contextualised word representation
that directly addresses both challenges and can be easily integrated into
existing models. While Word2Vec and GloVe require supervised tasks
to be trained, ELMo relies on language modeling to train a bidirectional
LSTM, so that the model does not only have access to the next word,
but also to the previous word. Given that language modeling is an un-
supervised task and requires only unlabelled text, the training can scale
to billions of tokens, new domains, and new languages, and is particu-
larly beneficial for low-resource languages where labelled data is scarce.
ELMo significantly improved the state of the art in every considered case
across a range of challenging Natural Language Understanding (NLU)
tasks. We explore this model further in Section 2.4.2.2.

While in ELMo, contextual embeddings are used as frozen features fed to
a target model, pretrained language models can alternatively be fine-tuned
on a target task data, as was proposed in (Ramachandran et al., 2017;
Howard and Ruder, 2018). This second method became widely used in
the following years with the introduction of the Transformer (Vaswani
et al., 2017) and Transformer-based language models.

A few months after the publication of ELMo, a new pretrained language
model was published by Google Brain in an event described as marking
the beginning of a new era in NLP4: BERT (Devlin et al., 2019a), Bidi-
rectional Encoder Representations from Transformers. The model, which
we will describe in depth in Section 2.5.3.1, is built on several ideas and
methods that had been developed by the NLP community in recent years,
such as semi-supervised sequence learning (Dai and Le, 2015) and the
Transformer. BERT quickly became the new state-of-the-art, clearly out-
performing ELMo, and has inspired the development of many new models
ever since (Section 2.5.3).

4https://twitter.com/lmthang/status/1050543868041555969
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2.4 Language modeling
A language model is a statistical model that assigns probabilities to words
and sentences. Formally, language modeling consists on assigning a prob-
ability P (w1:n) to a given sequence of words w1:n.
Traditional language models (Section 2.4.1) rely on the Markov assump-
tion to approximate P (w1:n), assuming that the next word in a sequence
depends only on the last k words. However, these models do not scale
well to larger ngrams, failing to capture long-range dependencies. Non-
linear neural language models (Section 2.4.2) solve some of the limita-
tions of traditional models. First, FFNNs allowed to condition on in-
creasingly large context sizes (Section 2.4.2.1); later, RNNs and LSTMs
allowed to represent arbitrarily sized sequential inputs in fixed-size vec-
tors, while paying attention to the structure of the inputs (Section 2.4.2.2);
and finally, the popularisation of the Transformer (Vaswani et al., 2017)
allowed for language models with better parallelization and better suited
to capture long-term dependencies (Section 2.4.2.3), with models such as
BERT that allow conditioning on both the preceding and following words
by relying on masked language modeling objectives (Section 2.5.3.1).

2.4.1 Traditional approaches and their limitations
Using the chain rule of probability, language modeling can be formulated
as a sequence of word-prediction tasks whee each word is predicted con-
ditioned on the preceding words:

P (w1:n) = P (w1)P (w2|w1)P (w3|w1:2)...P (wn|w1:n−1) (2.3)

While modeling the probability of a single word based on its left context
seems easier than assigning a probability to an entire sequence, notice that
the last term in the equation requires conditioning on almost the entire
sequence. To approximate P (w1:n), N-Gram models make use of the
Markov assumption, and condition the probability of the next word in
a sequence only on the last k words (usually 1, 2 or 3):

P (wi+1|w1:i) ≈ P (wi+1|wi−k:i) (2.4)
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Relying on this assumption, traditional language models aim at accurately
estimating P (wi+1|wi−k:i) given large amounts of text.
N-Gram models assume that the next word in a sequence depends only on
the last k words: P (wi+1 = m|w1:i) ≈ P (wi+1 = m|wi−k:i). For exam-
ple, a Unigram model estimates p(w1, w2, ..., wn) as p(w1)p(w2), ..., p(wn),
while a Trigram model estimates it as:
p(w1)p(w2|w1)p(w3|w2, w1), ..., p(wn|wn−1, wn−2).
To estimate p(wn|wn−1, wn−2, ..., wn−N), we can use the Maximum Like-
lihood Estimation (MLE), simply counting the occurrence of word pat-
terns in the corpus:

p̂MLE(wi+1 = m|wi−k:i) =
#(wi−k:i+1)

#(wi−k:i)
) (2.5)

However, if wi−k:i+1 was never observed in the corpus, p̂MLE(wi+1 =
m|wi−k:i) = 0, which would result in a 0-probability assignment to the
entire corpus because of the multiplicative nature of the sentence proba-
bility calculation, and an infinite perplexity. Given that zero-probability
events are quite common,5 two different techniques have been used to
avoid them: smoothing and back-off.
Smoothing ensures an allocation of a small probability mass to every pos-
sible event. For example, additive smoothing (Lidstone, 1920), also called
Laplace smoothing or add − α smoothing, assumes each event occurred
at least α times in addition to its observations in the corpus:

p̂add−α(wi+1 = m|wi−k:i) =
#(wi−k:i+1 + α)

#(wi−k:i) + α|V |
) (2.6)

where |V | is the vocabulary size and 0 < α < 1.
Back-off computes an estimate based on a (k − 1)gram if the kgram was
not observed. For example, the Jelinek Mercer interpolated smoothing:

p̂int(wi+1 = m|wi−k:i) = λwi−k:i

#(wi−k:i+1)

#(wi−k:i)
) + (1− λwi−k:i )p̂int(wi+1 = m|wi−(k−1):i)

(2.7)

5E.g. in a trigram language model with a vocabulary of 10,000 words there are
10, 0003 = 1012 possible triplets, so it is clear that many of them will not be observed
in training corpora of, for example, 1010 words.

20



“output” — 2022/4/21 — 13:11 — page 21 — #43

Correctly setting the λ values has a big impact in the performance: λwi−k:i

should depend on the content of the conditioning context wi−k:i, differen-
tiating rare contexts from frequent ones.
While language modeling approaches based on smoothed MLE estimates
are easy to train, scale to large corpora, and work well in practice, they
present important limitations. First, they suffer from the curse of dimen-
sionality: a word sequence on which the model will be tested is likely to
be different from all the word sequences seen during training. Therefore,
they do not scale well to larger ngrams, both due to the sparsity of larger
ngrams in the corpus and the memory required to work with larger condi-
tioning contexts. Moreover, back-off techniques need to be designed by
hand, making it hard to scale toward larger ngrams to capture long-range
dependencies: e.g., to condition on the last 10 words the model needs to
see a relevant 11-gram in the corpus, which is quite rare, and therefore
the model backs off from the long history. Lastly, they do not generalise
across contexts, and previous observations of similar events (red bike,
black bike) do not condition the probability of observing a similar but not
previously observed event (green bike).

2.4.2 Neural language models

Nonlinear neural language models solve some of the limitations of tradi-
tional language models presented in the previous section: they allow con-
ditioning on increasingly large context sizes with only a linear increase in
the number of parameters, they do not require manually designing back-
off orders, and they generalise well across different contexts.

2.4.2.1 FFNNs for language modeling

To fight the curse of dimensionality, Bengio et al. (2000) proposed the first
neural language model, a FFNN able to learn a distributed representation
for words which allows each training sentence to inform the model about
an exponential number of semantically neighboring sentences. The model
learns simultaneously a distributed representation for each word along
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with the probability function for word sequences, expressed in terms of
these representations.
This kind of model takes a kgram of words w1:k as input, represents each
word with an embedding vector v(w) ∈ Rdw , and creates the input vector
x as concatenation of the k words: x = [v(w1); v(w2); ...; v(wk)]. The
input x is then fed into a hidden layer, whose output is then provided to a
softmax layer that outputs a probability distribution over the next word:

ŷ = P (wi|w1:k) = softmax(hW2 + b2)

h = g(xW1 + b1)

x = [v(w1); v(w2); ...; v(wk)]

v(w) = E[w]

(2.8)

wi ∈ V E ∈ R|V |×dw W1 ∈ Rk·dW×dhid b1 ∈ Rdhid W2 ∈ Rdhid×|V | b2 ∈ R|V |

V is a finite vocabulary of size |V |, and includes unique symbols to rep-
resent unknown words and to mark the beginning and ending of sentences.

To train this kind of model, the examples are kgrams from the corpus,
using k − 1 words as features and the last word as the target label for
classification. The hidden layers of the models are responsible for find-
ing informative word combinations. As traditional language models, they
are able to back-up to smaller kgrams and to skip words if needed, in a
context-dependent way. The model is trained with cross-entropy loss or
approximations of it,6 as it requires the use of a softmax operation that is
costly if |V | is large: the softmax at the output layer requires an expensive
matrix-vector multiplication with the matrix W2 ∈ Rdhid×|V |, followed
by |V | exponentiations.
Compared to traditional language models, this model achieves better per-
plexities and can scale to much larger orders, because parameters are as-
sociated with individual words, and not with kgrams. Also, it is able
to generalise because unseen sequences can get high probability if they

6A comparison of techniques for dealing with large output vocabularies can be found
in (Chen et al., 2016).

22



“output” — 2022/4/21 — 13:11 — page 23 — #45

are composed of words that are similar to words composing already seen
sentences (in terms of having a nearby representation). On the other side,
prediction becomes more expensive, and using large vocabularies can be-
come prohibitive due to the use of the softmax function.

2.4.2.2 RNNs and LSTMs for language modeling

Recurrent Neural Networks (RNN) allow representing arbitrarily sized
sequential inputs in fixed-size vectors, while paying attention to the struc-
ture of the inputs. Aligning the positions of input symbols to steps in com-
putation time, they generate a sequence of hidden states ht, as a function
of the previous hidden state ht1 and the input for position t. In particu-
lar, RNNs with gated architectures such as the Long-Short Term Memory
network (LSTM; Hochreiter and Schmidhuber, 1997) excel at capturing
statistical regularities in sequential inputs, are capable of learning long-
term dependencies and are more resilient to the vanishing and exploding
gradient problem.
All RNNs are composed of a chain of NN modules. In standard RNNs,
the modules have a very simple structure, such as a single tanh layer
(Figure 2.7a). In LSTMs, the module is composed of four interconnected
NN layers instead of only one (Figure 2.7b). The cell state, depicted in
the figure as a horizontal line at the top, is propagated through the entire
chain with only some minor linear interactions. The LSTM can remove or
add information to the cell state, a mechanism that is carefully regulated
by structures called “gates”, which optionally let information through.
There are three different gates in an LSTM cell: a forget gate, an input
gate, and an output gate, each one composed of a sigmoid neural net layer
determining how much of each component should be let through and of a
pointwise multiplication operation. The forget gate decides which infor-
mation needs attention and which can be ignored. The input gate deter-
mines what new information will be stored in the cell state. And finally,
the output gate determines the value of the next hidden state.
The first language model based on RNNs and LSTMs were presented in
(Mikolov et al., 2010) and (Graves, 2013)), respectively, but arguably the
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(a) RNN (b) LSTM

Figure 2.7: Modeling language with RNNs and LSTMs. Each line carries an entire
vector, from the output of one node to the inputs of others. The pink circles represent
pointwise operations, like vector addition, while the yellow boxes are learned NN layers.
Lines merging denote concatenation, while a line forking denote its content being copied
and the copies going to different locations.
Images source: https://colah.github.io/posts/2015-08-Understa
nding-LSTMs

most well-known LSTM-based language model is ELMo (Peters et al.,
2018b), illustrated in Figure 2.8. ELMo is mainly a bidirectional LSTM
pretrained with a language modeling task, and therefore the training can
be easily scaled and applied to new domains and languages. The model
leverages the representations from a forward and a backward LSTM net-
works to generate contextualised word embeddings, concatenating the
hidden layers and multiplying each resulting vector by a task-specific
weight, generating the final contextualised embedding by summing the
resulting vectors. Thus, when generating the embedding of each word,
the model does not only have a sense of the next word, but also of the
previous word. ELMo can be easily integrated into existing models by
directly using the contextual embeddings as frozen features fed to a target
model. It significantly improved the state of the art across a wide range
of challenging NLU tasks.

2.4.2.3 The Transformer

Until the publication of the Transformer (Vaswani et al., 2017), the domi-
nant language models were based on complex recurrent networks. While
these models offered a better performance than their predecessors, they
had parallelisation issues and were costly to train. Also, the main issue
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(a) Step 1. Feeding the input into the bidirectional LSTM network.

(b) Step 2. Generating the contextualised embedding by concatenating the hid-
den states and initial embedding, and then performing a weighted summation.

Figure 2.8: ELMo embeddings. Example: embedding of “stick” in “Let’s stick to”.
Images source: https://jalammar.github.io/illustrated-bert
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(a) Original architecture: stack of six en-
coders and a stack of six decoders.

(b) Encoder and decoder components.

(c) Words flow through the encoders.

Figure 2.9: Overview of the Transformer architecture.
Images source:

https://jalammar.github.io/illustrated-transformer

with RNNs and LSTMs remained: they do not capture well long-term de-
pendencies because they tend to forget what was learnt if the sentences get
too long. To alleviate these limitations, the Transformer relies exclusively
on attention mechanisms, getting rid of recurrence entirely.
The Transformer is at the core of the vast majority of current state-of-
the-art NLU systems. In what follows we will detail its architecture and
training procedure through an example application to machine transla-
tion.7 The Transformer is composed of a stack of encoders and a stack
of decoders8, as depicted in Figure 2.9a. All the encoders are composed
of two sublayers. First, the encoder’s input flows through a self-attention
layer that helps the encoder look at other words in the input sentence as

7Source: https://jalammar.github.io/illustrated-transformer
8The original model is composed by a stack of 6 encoders and a stack of six decoders.
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it encodes a specific word. The outputs of this layer are then fed to an
FFNN. Similarly, the decoder also has these two layers, but uses a self-
attention layer between them to focus on relevant parts of the input sen-
tence (see Figure 2.9b). First, each word is embedded into a vector of size
512, and each vector flows through each of the two layers of the encoder,
so all the encoders receive a list of vectors each of the size 512: the word
embeddings in the bottom encoder, and the output of the encoder that is
directly below for the rest. As depicted in Figure 2.9c, the word vector
in each position flows through its own path in the encoder, first through
the self-attention layer that captures the dependencies between the flows,
then into a FFNN that sends out the output upwards to the next encoder.
Self-attention allows the model to look at other positions in the input se-
quence for clues that can help lead to a better encoding for each word.
For example, let us assume we want to translate the sentence “The ani-
mal didn’t cross the street because it was too tired”. What does “it” refer
to, the animal or the street? When the model is processing the word “it”,
self-attention allows the model to associate “it” with “animal”, as shown
in Figure 2.10a. The calculation of the self-attention is comprised of six
steps, illustrated in Figure 2.10b:

1. Create three vectors from each of the encoder’s input vectors by
multiplying the embeddings by three matrices that are trained dur-
ing the training process, generating a Query vector q, a Key vector
k, and a Value vector v, all of them of size 64.

2. Calculate a score that determines how much focus to place on other
parts of the input sentence as we encode a word at a certain position.
The score is calculated by taking the dot product of the Query vector
with the Key vector of the respective word that we are scoring: for
the word in position 1, the first score would be the dot product of
q1 and k1, the second score would be the dot product of q1 and
k2, and so on.

3. Divide the scores by 8 (the square root of the dimension of the key
vectors – 64).
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(a) When the model is processing the
word “it”, self-attention allows the
model to associate “it” with “animal”.

(b) Self-attention calculation for the ex-
ample Thinking Machines.

Figure 2.10: Self-attention example (a) and calculation (b).
Images source:

https://jalammar.github.io/illustrated-transformer

4. Pass the result through a softmax operation that normalises the
scores so they are all positive and add up to 1, determining how
much each word will be expressed at this position.

5. Multiply each Value vector by the softmax score, to keep intact the
values of the word(s) we want to focus on, and drown-out irrelevant
words.

6. Sum up the weighted Value vectors to generate the output of the
self-attention layer at this position (for the first word). The resulting
vector is finally fed to the FFNN.

Notice that in the actual implementation this calculation is done in matrix
form for faster processing.

Instead of a single self-attention head, the Transformer uses a mechanism
called multi-headed attention, which expands the model’s ability to focus
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Figure 2.11: Multi-head self-attention calculation.
Image source:

https://jalammar.github.io/illustrated-transformer

on different positions in a sentence and gives the attention layer multi-
ple representation subspaces. Thus, the calculation procedure takes place
eight different times with different weight matrices, generating eight dif-
ferent Z matrices that are condensed into a single matrix by multiplying
them by an additional weights matrix WO. The complete multi-headed
self-attention calculation is shown in Figure 2.11.
Finally, to account for the order of the words in the input sequence, the
Transformer adds a positional vector to each input embedding. These
positional vectors follow a specific pattern learnt by the model. Adding
them to the embeddings provides meaningful distances between the em-
bedding vectors once they are projected into Query/Key/Value vectors and
during dot-product attention. Also, each sub-layer in each encoder and
each decoder has a residual connection around it, followed by a layer-
normalisation step. The complete architecture is shown in Figure 2.12.
As shown in Figure 2.13a, to generate the output, the encoder starts by
processing the input sequence. The output of the top encoder is then
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Figure 2.12: Detailed Transformer architecture, with positional embeddings and residual
connections around encoders and decoders.
Image source: https://jalammar.github.io/illustrated-transform
er

transformed into a set of attention vectors k and v that are used by each
decoder in its encoder-decoder attention layer, helping the decoder focus
on appropriate places in the input sequence. The process is repeated until
a special symbol is reached indicating that the transformer decoder has
completed its output. Importantly, the output of each step is fed to the
bottom decoder in the next time step, adding a positional encoding to
indicate the position of each word. Future positions are set to−inf before
the softmax step in the self-attention calculation, so that the self-attention
layer is only allowed to attend to earlier positions in the output sequence.
The encoder-decoder attention layer works just like multi-headed self-
attention, except that it creates its Queries matrix from the layer below
it, and takes the Keys and Values matrix from the output of the encoder
stack. To generate the next word, the output of the decoder stack is fed to
a linear layer of the size of the vocabulary, which is followed by a softmax
layer to choose the final word (Figure 2.13b).
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(a) (b)

Figure 2.13: Transformer output generation. a) after processing the input sequence, the
output of the top encoder is transformed into a set of attention vectors K and V that are
used by each decoder in its encoder-decoder attention layer, repeating the process and
feeding the output of each step to the bottom decoder in the next time step, until a special
symbol is reached; b) to generate the next word, the output of the decoder stack is fed
to a linear layer of the size of the vocabulary, followed by a softmax layer to choose the
final word.
Images source: https://jalammar.github.io/illustrated-transfo
rmer

The output of the softmax layer is in fact a probability distribution over
the vocabulary, and thus to train the network we can use cross-entropy to
compare this distribution with the perfect expected distribution, in which
the following word will have a probability of 1, and all other words a
probability of 0. The training procedure just described, selecting the word
with the highest probability from that probability distribution and throw-
ing away the rest, is called greedy decoding.9

2.4.3 Evaluation of language models
Two different approaches are used to evaluate and compare language
models: extrinsic evaluation and intrinsic evaluation. Extrinsic evalua-

9Alternatively, we could use beam search, keeping at all times N partial solutions in
memory. For example, we could hold on to the top 2 words, and then in the next step
run the model 2 times, each time assuming that the previous position corresponds to one
of the words, keeping the version that generates the lower error.
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tion evaluates the models by applying them in an higher-level task, such
as machine translation, and looking at their final loss or performance. It
allows us to compare different models, as we can directly observe how
they affect the task that we are interested in, but can be computationally
expensive as it requires training the complete system.
On the other hand, intrinsic evaluation aims at finding a metric to evaluate
the language model itself. A commonly used intrinsic evaluation metric
is perplexity, an information theoretic metric that measures how well a
probability model predicts a sample. Perplexity is defined as the inverse
probability of the test set, normalised by the number of words in the test
set (N ):

PP (W ) =
1

P (w1, w2, ..., wN)
1
N

= N

√
1

P (w1, w2, ..., wN)

(2.9)

Since we are taking the inverse probability, a model with lower perplexity
is better because it assigns a higher probability to the unseen test corpus.
Intuitively, we can interpret perplexity as the weighted branching factor:
a perplexity of 100 means that whenever the model is trying to guess the
next word it is as confused as if it had to pick a word between 100 words.
While the perplexity is a good indicator of the quality of a language
model, it is important to notice that improvements in perplexity do not
necessarily imply improvements in higher-level tasks when embedding
the model. Therefore, perplexity is a good metric for comparing different
models in their ability to pick-up regularities in sequences of words, not
for assessing progress in NLU tasks (Goldberg, 2017).

2.5 Pretrained Transformer-based Language
Models

As claimed by its developers, the publication of BERT did indeed mark
the beginning of a new era in NLP, inducing a paradigm shift in the way
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NLP models were built. In a short period of time, pretrained word embed-
dings, such as Word2Vec and Glove, evolved to pretrained language mod-
els able to provide contextualised embeddings (e.g., ELMo), and shortly
after the field shifted from initialising the input layer of a model with pre-
trained word embeddings to initialise an entire model architecture with
pretrained weights, to be further fine-tuned in specific NLP tasks. The
new approach to building NLP systems proved to be highly effective and
quickly became the state of the art in many tasks. Since then, many new
models have been developed and made publicly available, all of them
with the Transformer at their core. In what follows, we review the differ-
ent families of pretrained Transformer-based language models according
to their architectures and pretraining objectives.

2.5.1 Sequence-to-sequence models

Sequence-to-sequence models are language models that rely on encoder-
decoder architectures, that is, they are composed of an encoder and a
decoder that are trained together. These models aim at transducing a se-
quence into another sequence. The encoder takes input sequences, e.g.
sentences written in Spanish, and maps them to a high-dimensional rep-
resentation. The decoder converts the high-dimensional representations
into other sequences, e.g. sentences written in English.
Their most natural applications are language translation, summarisation
and question answering, but they are often applied to other tasks by trans-
forming them into sequence-to-sequence tasks. The original Transformer
(Section 2.4.2.3; Vaswani et al. 2017), BART (Lewis et al., 2020) and T5
(Raffel et al., 2020) are the most well-known examples.

2.5.2 Autoregressive models

Autoregressive models are language models that rely on the decoder of
the original Transformer and aim at generating predictions by utilising
its previous predictions. These models are pretrained on the original lan-
guage modeling task: predicting the next token based on all the previous
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ones. A mask is used on top of the full sentence to prevent the attention
heads from seeing what is after the current position. Even though they can
be used on many tasks, they are typically used for text generation. The
most well-known example of autoregressive model is the Generative Pre-
trained Transformer series: GPT (Radford et al., 2018), GPT-2 (Radford
et al., 2019) and GPT-3 (Brown et al., 2020), but there are many others,
such as CTRL (Keskar et al., 2019), Transformer-XL (Dai et al., 2019),
Reformer (Kitaev et al., 2020) and XLNet (Yang et al., 2019).

2.5.2.1 GPT-3

GPT-3 (Brown et al., 2020) is an autoregressive language model with
175 billion parameters (10x more than any previous non-sparse language
model), trained on a mixture of datasets containing a total of 499 billion
tokens: an improved version of the Common Crawl dataset (Raffel et al.,
2020), WebText2 (Radford et al., 2019), two internet-based books corpora
(Books1 and Books2) and English-language Wikipedia. GPT-3 is namely
the most powerful language model in the market, and is currently being
successfully applied to search, conversation, text completion, and many
other advanced AI tasks.10

OpenAI conversion to a for-profit institution. GPT-3’s builder, Ope-
nAI, was initially founded as a non-profit initiative in 2015. In 2019, the
company refused to release GPT-2 claiming that the model would help
perpetuating fake news, and ended up releasing a version of the model that
was 8% of the original size. That same year the company has been restruc-
tured to become for-profit, and in 2020, Microsoft announced that they
had exclusive licensing of GPT-3 for Microsoft’s products and services
following a multi-billion dollar investment in OpenAI. The agreement
permits OpenAI to offer a public-facing API (Application Programming
Interface) such that users can send text to GPT-3 to receive the model’s
output, but only Microsoft has access to GPT-3’s underlying model.

10See, for example, https://gpt3demo.com
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2.5.3 Autoencoding models

Autoencoding models are language models that rely on the encoder of
the original Transformer and aim at learning a representation (encoding)
for the input data. These models are pretrained by corrupting the input
tokens in some way and training the model to reconstruct the original
sequence. They get access to the full input sequence, and usually build a
bidirectional representation of the whole sequence.
Autoencoding models can be used in many applications, but they are most
naturally used in sentence and token classification. The most well-known
example of autoencoding model is BERT (Devlin et al., 2019a), from
which many other models have been derived, such as ALBERT (Lan et al.,
2020), RoBERTa (Liu et al., 2019b), XLM-R (Conneau et al., 2020), Dis-
tilBERT (Sanh et al., 2019) and FlauBERT (Le et al., 2020a). Other ex-
amples are XLM (Conneau and Lample, 2019), ELECTRA (Clark et al.,
2020) and Longformer (Beltagy et al., 2020).
A combination of factors, ranging from their outstanding performance
to their availability and facility of use, has made BERT and RoBERTa-
based pretrained models extremely popular, with millions of downloads
per month.11 Indeed all the experiments comprised in this thesis will have
one or more of these models at the core, and in what follows we will
review them, along with other widely-used models derived from them.

2.5.3.1 BERT

BERT (Devlin et al., 2019a) stands for Bidirectional Encoder Representa-
tions from Transformers, and it is basically a trained Transformer Encoder
stack. There are two versions of the model: the base version has 12 lay-
ers, 768 hidden units and 12 attention heads, while the large version has
24 layers, 1024 hidden units and 16 attention heads.

11E.g. BERT-base had 19,657,859 downloads in October 2021 from HuggingFace.
Source: https://huggingface.co/bert-base-uncased
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Pretraining procedure. BERT is trained on the BooksCorpus (800M
words, Zhu et al. 2015) and English Wikipedia (2,500M words). In con-
trast to OpenAI GPT (Section 2.5.2.1), which uses a left-to-right Trans-
former, and ELMo (Section 2.4.2.2), which uses the concatenation of in-
dependently trained left-to-right and right-to-left LSTMs, BERT uses a
bidirectional Transformer, as shown in Figure 2.14. To be able to condi-
tion BERT’s representation on both left and right context, without allow-
ing each word to indirectly see itself in a multi-layered context, BERT
uses a MLM objective, traditionally known as Cloze task (Taylor, 1953),
consisting on masking 15% of the input tokens at random, and then asking
the model to predict the masked tokens (see Figure 2.15a). To make the
prediction, the final hidden vectors corresponding to the masked tokens
are fed into a softmax layer over the vocabulary, as in a standard language
model. However, when applied to downstream tasks the model will not
encounter [MASK] tokens, and to mitigate this mismatch between training
and fine-tuning, the masking procedure is actually a bit more complex: if
the i-th token is chosen, 80% of the time it is replaced by the [MASK],
10% of the time by a random token, and 10% of the time it is left un-
changed. Additionally, to make the model better at handling relationships
between multiple sentences, as required for tasks such as Question An-
swering (QA), BERT is also pretrained with a NSP objective: given two
sentences, the model must predict whether the second sentence is likely
to follow the first sentence or not (see Figure 2.15b).

Input representation. BERT is able to represent both a single sentence
and a pair of sentences. The first token of every sequence is a special
classification token [CLS], whose final hidden state is used as the ag-
gregate sequence representation for classification tasks. Sequence pairs
are packed together into a single sequence, separated with a special to-
ken [SEP]. It is important to notice that encoding a concatenated text
pair with self-attention effectively includes bidirectional cross attention
between the two sentences. As depicted in Section 2.5.3.1, the input em-
beddings are the sum of three different learned embeddings: 1) the to-
ken embeddings, WordPiece embeddings (Wu et al., 2016) with a 30k
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Figure 2.14: Differences in pre-training model architectures. BERT uses a bidirectional
Transformer. OpenAI GPT uses a left-to-right Transformer. ELMo uses the concatena-
tion of independently trained left-to-right and right-to- left LSTMs to generate features
for downstream tasks.
Source: Devlin et al. (2019a).

(a) Masked Language Model (b) Next Sentence Prediction

Figure 2.15: BERT pretrainig procedure.
Source: https://jalammar.github.io/illustrated-bert
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Figure 2.16: BERT input representation.
Image source: Devlin et al. (2019a).

token vocabulary; 2) the segmentation embeddings, indicating whether
it belongs to sentence A or sentence B; and 3) the position embeddings,
accounting for the token position in the input sequence.

Output representation. BERT output includes two representations: 1)
the hidden states, that is, the outputs from each layer; and 2) the pooler
output. The pooler is a component that applies a linear transformation
to the last hidden state of the [CLS] token, and it is trained while us-
ing the Next Sentence Prediction (NSP) strategy. The pooler transforms
the output shape from [batch size, seq length, hidden size] to [batch size,
hidden size], and the resulting representation is considered a representa-
tion of the complete sentence.

Domain-specific pretraining. Optionally, in order to improve the per-
formance of the model on new, specific domains, a second pretraining is
used before fine-tuning for an specific task (Li et al., 2020; Gururangan
et al., 2020; Kang et al., 2020; Gu et al., 2020).

Fine-tuning. The Transformer self-attention mechanism allows BERT
to easily model many downstream tasks involving single sentences and
sentence pairs, as depicted in Section 2.5.3.1. For each task, the task-
specific inputs and outputs are fed into BERT, and all of its parameters
are then fine-tuned in an end-to-end manner.
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(a) Sentence pair classification taks:
MNLI, QQPT, QNLI, STS-B, MRPC,
RTE, SWAG

(b) Single sentence classification tasks:
SST-2, CoLA

(c) Question answering tasks: SQuAD
v1.1

(d) Single sentence tagging tasks:
CoNLL-2003 NER

Figure 2.17: Illustrations of fine-tuning BERT on different tasks.
Images source: Devlin et al. (2019a).
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(a) The output of each encoder layer
along each token’s path can be used as
a feature representation of that token.

(b) Which embeddings combination is
best is task-dependant. E.g. different
embedding combinations for the word
‘Help’ in ‘Help prince Mayuko’, in
CoNLL-2003 NER task.

Figure 2.18: BERT for feature extraction.
Images source: https://jalammar.github.io/illustrated-bert

BERT for feature extraction. Just like ELMo, BERT can also be used
to extract contextualised word embeddings to be fed into existing mod-
els. Indeed, the output of each encoder layer along each token’s path
can be used as a feature representation of that token, and therefore differ-
ent layers or combination of layers can be used to represent each token.
Which combination is best is a task-dependant decision, as shown in Sec-
tion 2.5.3.1.

2.5.3.2 RoBERTa

Liu et al. (2019b) present a replication study of the pretraining procedure
of BERT, measuring the impact of many key hyper parameters and train-
ing data size. They show that BERT was significantly undertrained, and
present RoBERTa (Robustly optimised BERT approach), a new model
that counts with several design and training improvements with respect to
BERT. Specifically, they 1) train the model longer than BERT (4-5 times
more training time), with bigger batches over more data (16 GB BERT
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data + 144 GB additional data); 2) remove the next sentence prediction
objective; 3) train on longer sequences; and 4) dynamically change the
masking pattern applied to the training data.
RoBERTa achieves state-of-the-art results on GLUE (Wang et al., 2018),
RACE (Lai et al., 2017) and SQuAD (Rajpurkar et al., 2018a), without
multi-task fine-tuning for GLUE or additional data for SQuAD.

2.5.3.3 Multilingual models

The outstanding performance of pretrained Transformer-based language
models for English has sparkled the development of models for other lan-
guages, such as FlauBERT (Le et al., 2020b) and CamemBERT (Martin
et al., 2020) for French, BERTje (Delobelle et al., 2020) for Dutch, Fin-
BERT (Rönnqvist et al., 2019) for Finnish, BERTeus (Agerri et al., 2020)
for Basque, BETO (Cañete et al., 2020) for Spanish, AfriBERT (Ralethe,
2020) for Afrikaans, IndicBERT (Kakwani et al., 2020) for Indian, etc.
However, training language-specific models requires a large amount of
data and computational resources that may not be available for all lan-
guage and researchers, and this barrier limits recent advances in NLP to
only a few high resource languages (Joshi et al., 2020b). In this scenario,
multilingual language models (MLLMs) aim at bringing the benefit of
pretrained language models to many low resource languages. A MLLM
is a model pretrained using large amounts of unlabeled data from multiple
languages at the same time, relying on a shared vocabulary. The intuition
behind this idea is that low resource languages may benefit from high re-
source languages due to shared vocabulary, genetic relatedness (Nguyen
and Chiang, 2017) or contact relatedness (Goyal et al., 2020). However,
these models face the risk of running into what Conneau et al. (2020) refer
to as “curse of multilinguality”: adding languages to the model increases
the performance on low-resource languages up to a point, after which the
overall performance on monolingual and cross-lingual benchmarks de-
grades.
In recent years, several MLLMs have been proposed, such as mBERT
(Devlin et al., 2019a)), XLM (Conneau and Lample, 2019) and XLM-R
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(Conneau et al., 2020). A comprehensive study of MLLMs, including a
thorough analysis of their cross-lingual and zero-shot scenarios effective-
ness, can be found in (Doddapaneni et al., 2021).

2.5.3.4 Model distillations

Knowledge distillation (Buciluǎ et al., 2006; Hinton et al., 2015) is a com-
pression technique in which a small model (the student) is trained to re-
produce the behaviour of a larger model (the teacher) or an ensemble of
models. The student is trained with a distillation loss over the soft tar-
get probabilities of the teacher, and the final training objective is a linear
combination of the distillation loss with the supervised training loss of the
teacher model.
One such model is DistilBERT (Sanh et al., 2019), a BERT distillation
that has the same general architecture as BERT. The number of layers
is reduced by a factor of 2, initialised from the teacher by taking one
layer out of two. The token-type embeddings and the pooler are removed,
and most of the operations are highly optimised in modern linear algebra
frameworks. The NSP objective is not used to train the student.
Many other distilled models have been recently developed for a wide
range of models, such as multilingual BERT12 and GPT-213, available
through commonly used libraries such as HuggingFace Transformers (Wolf
et al., 2020b).

12https://huggingface.co/distilbert-base-multilingual-ca
sed

13https://huggingface.co/distilgpt2
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Chapter 3

STATE OF THE ART

In this chapter, we offer a review of relevant works related to the con-
tents of this dissertation. First, we focus on the syntactic capabilities of
pretrained language models, reviewing current methods to assess their
syntactic knowledge (Section 3.1). Then, we present works analysing the
relation between the syntactic knowledge of language models and the size
of the data used to pretrain them (Section 3.2). Finally, we present works
analysing whether the syntactic knowledge encoded in the models is af-
fected when fine-tuning them for downstream tasks (Section 3.3).

A note on generalisation. The vast majority of the works analysing
the syntactic capabilities of pretrained Transformer-based autoencoding
language models focus exclusively on the original BERT, as it was the first
published model, widely available in different deep learning frameworks
such as PyTorch (Paszke et al., 2019), Tensorflow (Abadi et al., 2016) or
MXNet (Chen et al., 2015). While it has been commonly assumed that the
conclusions extracted from analysing BERT generalise to other similar
models such as RoBERTa or mBERT, it is not clear whether this is, in fact,
the case. Moreover, little is known about the differences between different
BERT models, pretrained with the same data but different random seed
(e.g. the models available through different libraries).
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3.1 Assessing the syntactic capabilities of lan-
guage models

BERT has become a default baseline in NLP, and consequently, numerous
studies analyse its linguistic capabilities in general (Rogers et al., 2020;
Henderson, 2020), and its syntactic capabilities in particular (Linzen and
Baroni, 2020). While syntactic information is distributed across all lay-
ers (Durrani et al., 2020), it has been shown that BERT captures most
phrase-level information in the lower layers, followed by surface features,
syntactic features and semantic features in the intermediate and top layers
(Jawahar et al., 2019; Tenney et al., 2019a; Hewitt and Manning, 2019).
The syntactic structure captured by BERT adheres to that of the Universal
Dependencies (Kulmizev et al., 2020); different syntactic and semantic
relations are captured by self-attention patterns (Kovaleva et al., 2019;
Limisiewicz et al., 2020; Ravishankar et al., 2021), and it has been shown
that full dependency trees can be decoded from single attention heads
(Ravishankar et al., 2021). BERT performs remarkably well on subject-
verb agreement (Goldberg, 2019), and is able to do full parsing relying
only on pretraining architectures and no decoding (Vilares et al., 2020),
outperforming existing sequence labeling parsers on the Penn Treebank
dataset (de Marneffe et al., 2006) and on the end-to-end Universal Depen-
dencies Corpus for English (Silveira et al., 2014a). It can generally also
distinguish correct from incorrect completions and robustly retrieves noun
hypernyms, but shows insensitivity to the contextual impacts of negation
(Ettinger, 2020). Additionally, Sachan et al. (2021a) showed that incorpo-
rating syntax information from dependency trees into pretrained models
can improve task-specific transformer models.
A commonly used method to test models for the presence of a wide range
of linguistic phenomena is supervised probing (Conneau et al., 2018; Liu
et al., 2019a; Tenney et al., 2019b; Voita and Titov, 2020; Elazar et al.,
2020; Lepori and McCoy, 2020), that is, training supervised models to
predict properties from representations extracted from a model. Hewitt
and Manning (2019)’s structural probe shows that entire syntax trees are
embedded implicitly in BERT’s vector geometry. Extending their work,
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Chi et al. (2020) show that multilingual BERT recovers syntactic tree
distances in languages other than English and learns representations of
syntactic dependency labels. However, other works have criticised su-
pervised probing methods, claiming that classifier probes can learn the
linguistic task from training data (Hewitt and Liang, 2019), and can fail
to determine whether the detected features are actually used (Voita and
Titov, 2020; Pimentel et al., 2020a; Elazar et al., 2020). Drawing from
neuroscience, Ivanova et al. (2021) argue that specific research goals play
a paramount role when designing a probe and encourage future probing
studies to be explicit in stating these goals.

Another commonly used method to test the knowledge of the models
is the targeted syntactic evaluation, which incorporates methods from
psycholinguistic experiments and focuses on highly specific measures
of language modeling performance, allowing to distinguish models with
human-like representations of syntactic structure (Linzen et al., 2016a;
Lau et al., 2017; Gulordava et al., 2018; Marvin and Linzen, 2018; Futrell
et al., 2019). To evaluate modern language models, Warstadt et al. (2020a)
present a challenge set that isolates specific phenomena in syntax, mor-
phology, and semantics, finding that state-of-the-art models struggle with
some subtle semantic and syntactic phenomena, such as negative polarity
items and extraction islands. Hu et al. (2020a) assembled a set of 34 En-
glish syntactic tests in order to assess the syntactic generalisation poten-
tial of a number of different neural LMs (LSTM, ON-LSTM, RNNG and
GPT-2), finding substantial differences in syntactic generalisation perfor-
mance by model architecture. The tests are accessible through the Syn-
taxGym toolkit (Gauthier et al., 2020a); cf. also Section 4.1.1.

A number of works also address the cross-language assessment of mod-
els. Hu et al. (2020b) introduces XTREME, a multi-task benchmark
for evaluating the cross-lingual generalisation capabilities of multilingual
representations across 40 languages and 9 tasks. They show that while
XLM-R reduces the difference between the performance on the English
test set and all other languages compared to mBERT for tasks such as
XQuAD and MLQA, it does not have the same impact on structured pre-
diction tasks such as PoS and NER. Mueller et al. (2020) introduces a
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set of subject-verb agreement tests, showing that mBERT performs better
than English BERT on Sentential Complements, Short VP Coordination,
and Across a Prepositional Phrase, but worse on Within-an-Object Rela-
tive Clause, Across-an-Object Relative Clause and in Reflexive Anaphora
Across a Relative Clause, and offers high syntactic accuracy on English,
but noticeable deficiencies on other languages, most notably on those that
do not use Latin script, as also noted by Hu et al. (2020b). Along the
same lines, Rönnqvist et al. (2019) concludes that mBERT is not able to
substitute a well-trained monolingual model in challenging tasks.

3.2 Relation between pretraining data size and
linguistic knowledge

Several studies investigate the relation between pretraining data size and
linguistic knowledge in language models. van Schijndel et al. (2019);
Hu et al. (2020a); Micheli et al. (2020) find out that, given a relatively
large data size (e.g., 10M words), models with less pretraining perform
similarly to models with much more pretraining, concluding that model
architecture plays a more important role than training data scale in yield-
ing correct syntactic generalisations (Hu et al., 2020a). Complementary,
Raffel et al. (2020) shows that performance can degrade when an unla-
beled data set is small enough that it is repeated many times over the
course of pretraining. In contrast, Zhang et al. (2021) argue that while
relatively small datasets suffice to reliably encode most syntactic and se-
mantic features, a much larger quantity of data is needed to master con-
ventional NLU tasks. This discrepancy may be due to the difference in
model architectures, pretraining techniques and the scaling and nature of
the difference datasets.
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3.3 Impact of fine-tuning on the knowledge of
the models

The adaptation of pretrained language models to solve supervised tasks
has become a base-line in NLP, and many recent works have focused on
studying how linguistic information is encoded in the pretrained sentence
representations (cf. Section 3.1). Among other information, it has been
shown that entire syntax trees are implicitly embedded in the geometry
of such models (Hewitt and Manning, 2019). However, even though pre-
trained models can be used frozen as feature extractors, they are often
fine-tuned on downstream tasks, and therefore it becomes increasingly
important to understand how the encoded knowledge evolves along the
fine-tuning.
Few works have studied how fine-tuning affects the representations of
BERT. Gauthier and Levy (2019) found a significant divergence between
the final representations of models fine-tuned on different tasks when us-
ing the structural probe of Hewitt and Manning (2019), while Merchant
et al. (2020) concluded that fine-tuning is conservative and does not lead
to catastrophic forgetting of linguistic phenomena – which our experi-
ments (Chapter 6) do not confirm.
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Chapter 4

SYNTACTIC ABILITIES OF
MONOLINGUAL AND
MULTILINGUAL LANGUAGE
MODELS

Transformer-based neural models such as BERT (Devlin et al., 2019a),
RoBERTa (Liu et al., 2019b), DistilBERT (Sanh et al., 2019), XLNet
(Yang et al., 2019), etc. are excellent learners. They have been shown to
capture a range of different types of linguistic information, from morpho-
logical (Edmiston, 2020) over syntactic (Hewitt and Manning, 2019) to
lexico-semantic (Joshi et al., 2020a). A particularly significant number of
works study the degree to which these models capture and generalise over
(i.e., learn to instantiate correctly in different contexts) syntactic phenom-
ena, including, e.g., subject-verb agreement, long distance dependencies,
garden path constructions, etc. (Linzen et al., 2016b; Marvin and Linzen,
2018; Futrell et al., 2019; Wilcox et al., 2019a). However, most of these
works focus on monolingual models, and, if the coverage of syntactic
phenomena is considered systematically and in detail, it is mainly for En-
glish, as, e.g., (Hu et al., 2020a). Here, we aim to extend the attention
to multilingual models and to emphasize the importance to also consider
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the syntactic phenomena of languages other than English when assessing
the generalisation potential of a model, specially those that present syn-
tactic phenomena that are not prominent or do not exist in English, such
as determiner and adjective agreement within the noun phrase, subject
pro-drop, or flexible word order.

Multilingual Transformer-based language models such as mBERT (mul-
tilingual BERT, Devlin et al., 2019a), XLM (Conneau and Lample, 2019)
and XLM-R (Conneau et al., 2020), usually pretrained on more than 100
languages, proved to achieve outstanding performance on cross-lingual
language understanding tasks, including on low-resource languages for
which only little training data is available. However, it remains unknown
whether the optimisation for multiple languages conditions the capacity
of the models to generalise over syntactic structures, and how languages
with syntactic phenomena of different complexity are affected. In this
Chapter, we systematically assesses the syntactic generalisation potential
of the monolingual and multilingual versions of BERT and RoBERTa on
English and Spanish, comparing the syntactic abilities of monolingual
and multilingual models on the same language (English), and of multi-
lingual models on two different languages (English and Spanish). For
English, we draw upon the SyntaxGym English targeted syntactic tests
in (Hu et al., 2020a), available through the SyntaxGym toolkit (Gauthier
et al., 2020a), which offers 34 English syntactic test suites designed to
evaluate the syntactic generalisation capabilities of language models; for
Spanish, we introduce SyntaxGymES, a novel ensemble of targeted syn-
tactic tests in Spanish.

The remainder of the chapter is structured as follows. Section 4.1 de-
scribes the English test suites, and presents the novel Spanish SyntaxGym
test suites. Section 4.2 details the models that we tested, outlines how we
use them to evaluate the probability of a text sequence, and presents the
results of the tests suits evaluation. Section 4.3 offers a detailed analysis
of the syntactic generalisation abilities of the monolingual and multilin-
gual versions of BERT and RoBERTa, and Section 4.4 summarises our
findings.
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4.1 Syntactic test suites
For English, we draw upon the syntactic tests assembled by Hu et al.
(2020a), accessible through the SyntaxGym toolkit (Gauthier et al., 2020b),
designed to assess the syntactic coverage of language models. It contains
34 suites, grouped into 6 different so-called circuits, a classification based
on what is required from the models to process the targeted constructions.
For Spanish, we created SyntaxGymEs1, adapting 11 of the existing suites
for English and building 15 new ones, including a whole new circuit. In
what follows, we first introduce the original English SyntaxGym and then
present in detail the novel SyntaxGymEs.

4.1.1 SyntaxGym for English
The tests in the SyntaxGym designed by Hu et al. (2020a) (henceforth
also referred to as “English SyntaxGym”) are based on the notion of sur-
prisal. A sequence of words is given to a language model, which assigns
a probability to each of the following candidate words. Given the syntac-
tic properties of the considered language, some candidate words are less
surprising than others, and so should be predicted by a language model.
For instance, after the sequence The cat, the inflected word sleeps should
be less surprising than sleep.
Each test consists of a list of ITEMS that vary in a controlled way ac-
cording to a set of CONDITIONS determined by the experimental design.
The other main component is a series of PREDICTIONS comparing sur-
prisal values in specific regions of the items across conditions. If the
relevant syntactic generalisation has been learned by the model, the pre-
dictions should hold. For example, Table 4.1 shows a single item from the
Agreement test suite, composed of eight regions, for which the following
conditions should hold:

match plural.matrix v < mismatch plural.matrix v

match sing.matrix v < mismatch sing.matrix v
(4.1)

1SyntaxGymES has been developed in collaboration with Alba Táboas Garcı́a.
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Condition intro np subject that the embed np embed vp matrix v cont.
match sing The author that the senators hurt is good
mismatch sing The author that the senators hurt are good
match plural The authors that the senator hurt are good
mismatch plural The authors that the senator hurt is good

Table 4.1: Single test from SyntaxGym Agreement test suite. Conditions in Equation
4.1 must hold.

Moreover, some tests have versions with MODIFIERS, in which additional
clauses or phrases have been embedded inside each item. These modifiers
increase the linear distance between two co-varying items, making the
task harder. Sometimes they also include a distractor word in the middle
of a syntactic dependency, which can lead the models to misinterpret the
dependency.

Notation . To exemplify the test suites, we follow the usual notations
in linguistic literature. An asterisk ‘*’ preceding an example signals
that the sentence is ungrammatical, it violates some principle or con-
straint. A question mark ‘?’ is used to indicate a marginal sentence,
i.e., a sentence that is grammatical but very uncommon or that requires a
non-straightforward interpretation. The exclamation mark ‘!’ indicates a
highly difficult sentence to process for the human mind.

The test suites are arranged in terms of the following circuits:

Agreement. Morphosyntactic phenomena that occur when the features
of an item constrain another item to adopt a specific form. This is a
marginal phenomenon in English, so the original circuit only includes 3
test suites on Subject-verb number agreement, all of them with modifiers
(Marvin and Linzen, 2018). Example:

(1) The author that the senators hurt is good.

(2) * The author that the senators hurt are good.

(3) The authors that the senators hurt are good.

(4) * The authors that the senators hurt is good.
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Center embedding. Subordinate clauses that sit in the middle of their
superordinate clause, creating nested dependencies. This circuit contains
2 test suites: Center embedding and Center embedding with modifier,
from Wilcox et al. (2019a). Example:

(5) The painting that the artist painted deteriorated.

(6) * The painting that the artist deteriorated painted.

Garden path effects. Effects that emerge when an incorrect but locally
likely parse needs to be abandoned in favor of the correct one, once a
specific word appears in the sentence. Two such effects are considered
in this circuit: Main verb/reduced relative clause (MVRR) and NP/Z gar-
den paths, with respectively 2 and 4 suites, all from Futrell et al. (2018).
Example:

(7) ! As the ship crossed the waters remained blue and calm.

(8) ! As the ship crossed the sea the waters remained blue and calm.

(9) As the ship crossed, the waters remained blue and calm.

(10) As the ship crossed the sea, the waters remained blue and calm.

Gross syntactic expectation. Expectation for a large syntactic structure
usually induced by subordinating adverbs or conjunctions. 4 test suites
on Subordination (from Futrell et al. (2018), 3 of them with modifiers)
constitute the circuit.

(11) * As the doctor studied the book.

(12) The doctor studied the book.

(13) As the doctor studied the book, the nurse walked into the room.

(14) ? The doctor studied the book, the nurse walked into the room.
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Licensing. A construction’s need for the presence of a licensor to allow
its occurrence in a sentence. The circuit consists of 4 suites on Negative
polarity items (2 of them with modifiers) and 6 on Reflexive pronouns (all
of them with modifiers), also from Marvin and Linzen (2018).

(15) No teacher that the ministers hated has failed any student.

(16) ? No teacher that no ministers hated has failed any student.

(17) * The teacher that the ministers hated has failed any student.

(18) * The teacher that no ministers hated has failed any student.

Long-distance dependencies (LDDs). LDDs occur when two constituents
that are syntactically related do not appear adjacent to one another, but at
a longer distance from one another. The circuit includes 6 suites on Filler-
gap dependencies (2 with modifiers and 4 addressing extraction and hier-
archy) from Wilcox et al. (2018) and Wilcox et al. (2019c), and 2 suites
on Cleft structure that were first introduced in (Hu et al., 2020a).

(19) * My neighbor told me what the dog caught the mouse in full
view of the neighbors yesterday.

(20) My neighbor told me that the dog caught the mouse in full view
of the neighbors yesterday.

(21) My neighbor told me what the dog caught in full view of the
neighbors yesterday.

(22) * My neighbor told me that the dog caught in full view of the
neighbors yesterday.

4.1.2 SyntaxGymES: SyntaxGym for Spanish
For Spanish, we expand the tests in (Hu et al., 2020a) so as to cover
language-specific phenomena2. In this section, we detail which of the
original tests we retained, which ones we modified, and which ones we

2SyntaxGymES has been developed in collaboration with Alba Táboas Garcı́a.

54



“output” — 2022/4/21 — 13:11 — page 55 — #77

added within each original circuit. A whole new circuit regarding the lin-
ear order of a sentence’s basic constituents was also added, since flexibil-
ity in this respect is a characteristic that distinguishes Spanish (and other
Romance languages) from English. SyntaxGymES will be published in
the SyntaxGym platform http://syntaxgym.org.
Each test consists of a list of ITEMS that vary in a controlled way ac-
cording to a set of CONDITIONS determined by the experimental design.
A series of PREDICTIONS compare surprisal values at specific regions of
the items across conditions. Some tests have versions with MODIFIERS

that increase the linear distance between two co-varying items, making
the task more demanding.
The test suites are arranged in terms of circuits of related syntactic phe-
nomena. Each of the following sections corresponds to one of these cir-
cuits.

4.1.2.1 Agreement

Agreement is a morpho-syntactic phenomenon that occurs when the fea-
tures of an item constrain another item to adopt a specific form. Un-
like English, Spanish is a morphologically rich language, and as such it
presents many morpho-syntactic phenomena related to agreement. For
this reason, out of the six original circuits, Agreement was the one that
underwent the most changes.
Regarding verbal agreement (constraints imposed on the verb by the sub-
ject), we adapted two existing test suites, Subject-Verb Agreement with
Object Relative Clause and Subject-Verb Agreement with Subject Rel-
ative Clause, and created a new one, Basic Subject-Verb Agreement, in
which both person and number features were taken into consideration.

Basic Subject-Verb Agreement. New suite. Spanish finite verbs in any
tense/mood have six inflected forms according to person and number fea-
tures. The verb’s features the subject’s, otherwise the result is ungram-
matical.

55

http://syntaxgym.org


“output” — 2022/4/21 — 13:11 — page 56 — #78

(23) Tú
you.2SG

cocinas
cook.2SG

(24) * Tú
you.2SG

cocinais/cocino/cocinan
cook.2PL/1SG/3PL

Predictions: The surprisal at the verb region is expected to be lower when
it matches the subject than in any other condition. It is also expected to
be lower when at least one of the features (person or number) agrees than
when both disagree.

Subject-Verb Agreement with Subject Relative Clause. Adapted from
English. This test focuses on number agreement. The subject relative
clause includes a distractor NP differing in number with the subject.

(25) El
the.SG

fontanero
plumber

que
that

ayudó
helped.3SG

a
to

los
thePL

albañiles
bricklayers

trabaja/*trabajan
work.3SG/3PL

los
the

sábados.
saturdays.

’The plumber who helped the bricklayers works/*work on satur-
days.’

(26) Los
the.PL

fontaneros
plumbers

que
that

ayudaron
helped.3SG

al
to.thePL

albañil
bricklayer

*trabaja/trabajan
work.3PL/3SG

los
the

sábados.
saturdays.

’The plumbers who helped the bricklayer *works/work on satur-
days.’

Predictions: A successful model should place higher probability to the
verb agreeing with the subject (instead of the distractor) both in singular
and in plural.

Subject-Verb Agreement with Object Relative Clause. Adapted from
English. Equal to the previous one, but with an object relative clause.

Nominal agreement was the basis for the following 6 new test suites. All
of them share the same predictions: the surprisals should be lower when
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both gender and number features in the second word of the agreement
relation match those in the first word. They should also be lower when
only one of the features agrees than when both disagree.
As for nominal agreement (constraints that a noun’s gender and number
features can impose on the form of other words in the sentence), we also
created several new test suites: Determinant-Noun Agreement simply
pairs a noun with the four possible forms of the definite article (el, la,
los, las), while Adjective-Noun Agreement pairs a noun with the four
possible forms of an adjective that modifies it (we excluded articles to
avoid providing extra information).

Determiner-Noun Agreement. New suite. The four possible forms of
the definite article are paired with different nouns.

(27) El/*La/*Los/*Las
the.M.SG/*F.SG/*M.PL/*F.PL

gato
cat

Adjective-Noun Agreement. New suite. The test pairs a noun with the
four possible forms of an adjective that modifies it (we used constructions
without determiner to avoid providing the models with extra information).

(28) La
the

tienda
store

vende
sells

discos
discs

usados/*usado/*usadas/*usada
used.M.PL/M.SG/F.PL/F.SG

’The store sells second-hand discs.’

In addition to these two suites, we built similar ones for Attribute Agree-
ment in copulative constructions, to which we added two versions with
object or subject relative clauses as modifiers, and also for Predicative
Agreement in constructions with subject or object predicative comple-
ment. The only difference here is that the two words that must agree
are not adjacent anymore. In terms of predictions, the verb/noun with
matching features should have a lower surprisal than the others, and the
verb/noun that matches only one feature should have a lower surprisal that
the one that doesn’t match any.
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Attribute Agreement. New suite. Here, a noun is paired with and ad-
jective through a copulative construction. This suite has 2 versions with
object or subject relative clauses as modifiers.

(29) El
the

piso
flat

está
is

vacı́o/*vacı́a/*vacı́os/*vacı́as
empty.M.SG/*F.SG/*M.PL/*F.PL

Predicative Agreement. New suite. The subject or the object is paired
with an adjective functioning as a predicative complement.

(30) Los
the

niños
children

llegaron
arrived

cansados/*cansado/*cansadas/*cansada
tired.M.PL/*M.SG/*F.PL/*F.SG

’The children arrived tired.’

4.1.2.2 Center Embedding

A center embedded clause is a subordinate clause that sits in the middle of
its superordinate clause, creating nested dependencies that may be chal-
lenging for the models. For this circuit, we adapted to Spanish the two
existing test suites in English, creating Center Embedding and Center
Embedding with PP modifier.

Center Embedding. Adapted from English. A relative clause is cen-
ter embedded after the subject of the main clause. Verb transitivity and
subject-verb plausibility are used to test if the models are capable of re-
taining the relevant information and predicting the verbs in the correct
order.

(31) La tormenta que el capitán [capeó amainó]/?[amainó capeó].

’The storm the captain [weathered abated]/?[abated weathered].’

Prediction: The surprisal of the combination of verbs should be smaller
when their relative order creates a plausible sentence than when it creates
an implausible one.
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Center Embedding with modifier. In the version with modifier, a prepo-
sitional phrase is inserted after the subject of the subordinate clause.

4.1.2.3 Gross Syntactic State

From the four original suites in this circuit, we adapted three of them:
Subordination, and two of its versions with modifiers, Subordination
with Object Relative Clause and Subordination with Subject Relative
Clause. Given a sentence that starts with a typically subordinating adverb
or conjunction, these suites test the models’ ability to maintain the expec-
tation for the onset of a matrix clause for as long as the subordinate one
lasts.

Subordination. Adapted from English. A sentence starting with a sub-
ordinate clause creates the expectation for the onset of a matrix clause for
as long as the subordinate one lasts.

(32) ?(Mientras) ella miraba los resultados, el doctor entró en la habitación.

’While she looked at the results, the doctor entered the room.’

(33) (*Mientras) ella miraba los resultados.

’(*While) she looked at the results.’

Predictions: The surprisal for the lack of a second clause should be higher
when there is a subordinating conjunction or adverb than where there is
not. But having two clauses joined by a conjunction/adverb should be less
surprising than their juxtaposition.

Subordination with Object Relative Clause. Adapted from English.
Version of the previous suite but with a modifier.

Subordination with Subject Relative Clause. Adapted from English.
Version of the previous suite but with a modifier.
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4.1.2.4 Long-distance Dependencies

LDDs occur when two syntactically related groups do not appear adjacent
to one another but at a longer distance from one another. Filler-gap depen-
dencies are an example of LDDs. They occur when a phrase (the filler)
is realised somewhere in the sentence, but is semantically interpreted at
some other point (the gap). For this circuit, we created a Basic Filler-
Gap Dependencies test and adapted from the original English circuit a
version that includes modifiers, Filler-Gap Dependencies with Three
Sentencial Embeddings. Embedding three sentences between filler and
gap makes the task more challenging. We also adapted to Spanish the
novel Pseudo-Cleft Structures suite introduced in (Hu et al., 2020a).

Basic Filler-Gap Dependencies. New suite, a simplified version of the
existing FGD tests for English. FGDs occur when a phrase (the filler)
is realised somewhere in the sentence but is semantically interpreted at
some other point (the gap).

(34) Yo sé [lo que]/*que tu amigo tiró al suelo.

’I know what/*that your friend threw .’

(35) Yo sé *[lo que]/que tu amigo tiró una colilla al suelo.

’I know *what/that your friend threw a cigarette butt.’

Predictions: The overt object should be more surprising when there is a
filler when there is not. We also expect lower surprisal when the sentence
has a filler later followed by gap than when it has a conjunction instead
but the gap remains.

Filler-Gap Dependencies with Three Sentencial Embeddings. Adapted
from English. It is a version of the previous test that includes a modifier
(three sentential embeddings) between filler and gap. This makes the task
more challenging. The predictions, though, remain the same.
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Pseudo-Cleft Structures. Adapted from English. A pseudo-cleft or
wh-cleft is formed by a wh-element extracting content from a relative
clause joined by a copula to a constituent that provides the content re-
quested by the wh-element. The extracted constituent can be a NP or a
VP. In the VP case, the verb in the relative clause must be an inflected
form of ‘hacer’ (‘to do’).

(36) Lo que tú difundiste/?hiciste fue un rumor.
’What you spread/*did was a rumor.’

(37) Lo que tú *difundiste/hiciste fue confirmar un rumor.
’What you *spread/did was confirm a rumor.’

Predictions: The surprisal should be lower for the extracted VP when the
verb in the relative clause is a light verb (hacer – ‘to do’) than when it
is not, but it should be higher for the extracted NP when the verb is light
than when it is semantically heavier and matches the NP. In addition, the
difference in the first case should be more important than in the second
one. This happens because the light verb admits a wider range of objects,
whereas in the first case, one of the options is syntactically incorrect.

4.1.2.5 Garden Path Effects

Garden-path effects emerge when an incorrect but locally likely parse
needs to be abandoned in favor of the correct one. In the NP/Z garden
path, an NP is initially interpreted as the object in a subordinate clause,
but when the main verb appears, this NP should be reinterpreted as its
subject. The effect can be prevented by adding a comma, but also by
placing an overt object in the subordinate clause, or by substituting its
verb with a purely intransitive one. These are the basis for the next two
suites.
The Garden Path effect can be created by several syntactic ambiguities
that differ cross-linguistically. The Main Verb/Reduced Relative garden
path effect was the subject of two suites in the original English circuit,
but it does not translate to Spanish, so those suites were not included in
Spanish SyntaxGym.
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On the other hand, the ambiguity responsible for NP/Z also holds for
Spanish. Here, an NP is initially interpreted as the object in a subordinate
clause when it actually is the subject of the main clause (the subordinate
clause having a Zero/null object). The ambiguity can be prevented with a
comma, but also by placing an overt object in the subordinate clause, as
is done in NP/Z Garden Path Effect (with Overt Object), or by substi-
tuting its verb with a pure intransitive verb, as is done in NP/Z Garden
Path Effect (with Intransitive Verb). Both suites correspond to Spanish
adaptations of the two original suites regarding this effect.

NP/Z Garden Path Effect (Overt Object). Adapted from English.

NP/Z Garden Path Effect (Intransitive Verb). Adapted from English.

(38) !Mientras ella leı́a sus manuscritos se volaron por la ventana.
!’While she read her manuscripts went out the window.’

(39) Mientras ella [dormı́a]/[leı́a un libro]/[leı́a,] sus manuscritos se
volaron por la ventana.
’While she [slept]/[read a book]/[read,] her manuscripts went out
the window.’

Predictions: The main verb should be more surprising in the garden path
condition than when the effect has been prevented either by the comma or
by interfering with the verb. Moreover, the difference in surprisal should
be bigger when the comma is essential to solve the garden path effect than
when it is not.

4.1.2.6 Licensing

In natural language, some words or constructions need the presence of a
licensor to allow their occurrence in a sentence. This happens with NPIs
(Negative polarity items) and subjunctive mood, for instance.
Negative polarity items (NPIs), like any or ever in English, are examples
of words that need to be licensed by negation. Since Spanish NPIs do not
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function exactly in the same way, we took the original NPI Licensing test
as inspiration and created two new suites: Negative Polarity Items and
NPIs and Polarity Agreement.
Constructions with verbs in subjunctive mood also require the presence
of a licensor. In Spanish, a verb expressing feelings (e.g. of joy, surprise,
pleasantness) in the main clause, creates the expectation for subjunctive
mood in the subordinate clause. This was the basis for a new test suite:
Subjunctive Mood and Verbs that Express Feeling.

Negative Polarity Items and Polarity Agreement. New suite. In Span-
ish, NPIs that follow the verb (such as nunca ’never’, nadie ’nobody’, and
nada ’nothing’) need to be licensed by negation. This ‘double negative’
does not result in an affirmative, it is a sort of polarity agreement.

(40) Yo
I

no
NEG

bebo
drink

nunca/?siempre.
never/always

’I never drink./I don’t drink always.’

(41) Yo bebo *nunca/siempre.
’I *ever/always drink.’

Predictions: We expect the surprisals in both agreeing conditions (negative-
NPI, positive-PPI) to be lower than in any of the non-agreeing conditions
(negative-PPI, positive-NPI).

Negative Polarity Items. New suite. NPIs also need to be in the scope
of the negation to be licensed by it. This suite compares between a nega-
tive particle that “commands” the NPI and one that doesn’t.

(42) Tú,
You,

como
as

no
NEG

mirabas
looked

por
by

la
the

ventana,
window,

*(no)
NEG

has
have

visto
seen

a
at

nadie.
nobody
’As you weren’t looking through the window, you have *(not)
seen anybody.’
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(43) Tú,
You,

como
as

mirabas
looked

por
by

la
the

ventana,
window,

*(no)
NEG

has
have

visto
seen

a
at

nadie.
nobody

’As you were looking through the window, you have *(not) seen
anybody.’

Predictions: The NPI should be more surprising when there isn’t a nega-
tive particle that commands it, independently of the presence of another
one that does not command it.

Subjunctive Mood and Verbs that Express Feeling. New suite. Feel-
ing verbs that introduce a subordinate clause serve as licensors for sub-
junctive mood, whereas other type of verbs do not.

(44) Espero
(I)hope

que
that

mañana
tomorrow

llueva/*lloverá.
rain.SUB/will.rain.IND

’I hope it rains/*[will rain] tomorrow.’

(45) Sé
(I)know

que
that

mañana
tomorrow

*llueva/lloverá.
rain.SUB/will.rain.IND

’I know it [will rain]/rains tomorrow.’

Predictions: Subjunctive mood should be less surprising than indicative
mood when the verb in the main clause expresses feelings. But when
it doesn’t, subjunctive should be more surprising than indicative mood.
Moreover, subjunctive mood should also be more surprising with a feeling
verb than with a non-feeling verb.
The other new suite in this circuit, Subjunctive Mood, Negation and Be-
lief Verbs, relies on the fact that belief verbs can also license subjunctive
mood, but only when combined with negation:

Subjunctive Mood, Negation and Belief Verbs. New suite. Belief
verbs can also license subjunctive mood, but only when combined with
negation.

(46) No
NEG

creo
believe

que
that

mañana
tomorrow

llueva/*lloverá.
rain.SUB/will.rain.IND
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’I don’t think it rains/[will rain] tomorrow.’

(47) Creo
(I)believe

que
that

mañana
tomorrow

no
NEG

*llueva/lloverá.
rain.SUB/will.rain.IND

’I think it rains/[won’t rain] tomorrow.’

Predictions: The subordinate verb should be less surprising in subjunctive
than in indicative mood when the main clause is negated. However, the
contrary should hold when the subordinate clause is negated but the main
one is not. In addition, subjunctive mood should be less surprising when
the negation is in the main clause than when it is in the subordinate clause.

4.1.2.7 Linearisation

One of the main syntactic distinctions between languages is constituent
order within the sentence. But, in addition to the canonical order in which
these elements appear, languages also differ in their flexibility to alter that
order. Spanish allows some flexibility, which was the basis for three new
test suites.
For Subject–Auxiliary Verb–Main Verb Linearisation, the possibility
to postpone the subject is compared with the rigidity of the relation be-
tween main and auxiliary verb, which must be adjacent and do not allow
inversion:

Subject – Auxiliary Verb – Main Verb Linearisation. New suite. Subject-
verb order admits inversion in Spanish but main and auxiliary verb do not
and they must be adjacent.

(48) Juan ha comido. / Ha comido Juan
’John has eaten. / Has eaten John.’

(49) *Juan comido ha. / *Ha Juan comido.
’John eaten has. / Has John eaten.’

Predictions: The postposed subject should be less surprising than any
of the alterations involving auxiliary and main verb. The canonical SV
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order, however, should be less surprising than postposing the subject, and
the difference in this case should be less important than the differences in
the first two cases.
In the Subject–Verb–Object Linearisation test, we compare the phe-
nomenon in affirmative versus interrogative sentences. In Spanish, word
order flexibility holds for affirmative sentences, but not for interrogative
ones, where subject-verb inversion is compulsory:

Subject – Verb – Object Linearisation. New test. In Spanish, word
order flexibility holds for affirmative sentences but not for interrogative
ones, where subject-verb inversion is compulsory.

(50) Ana compró un libro/Compró un libro Ana.
’Ann bought a book. / Bought a book Ann.’

(51) ¿Qué compró Ana? / ¿Qué Ana compró?
’What did Ana buy? / ’What Ana did buy?’

Predictions: A postposed subject in an affirmative sentence should be less
surprising than lack of SV inversion in an interrogative one. The canoni-
cal SV order in the affirmative sentence, however, should be less surpris-
ing than postposing the subject, and the difference in this case should be
less important than the difference in the first one.
Word order variations also appear within the NP, as captured by the Noun-
Adjective and Noun-PP Linearisation test. Contrary to English, Span-
ish adjectives usually come after the noun. But again, the language allows
for some flexibility and they can be swapped. This possibility, however,
does not apply to other noun modifiers like prepositional phrases:

Noun-Adjective and Noun-PP Linearisation. New suite. Spanish ad-
jectives usually come after the noun, but this order can be inverted. Other
noun modifiers like prepositional phrases cannot.

(52) Construyó una [mesa robusta]/[robusta mesa].
’He built a [sturdy table]/[table sturdy].’

66



“output” — 2022/4/21 — 13:11 — page 67 — #89

(53) Construyó una [mesa de madera]/*[de madera mesa].

’He built a [wooden table]/*[table wooden].’

Predictions: A PP preceding the noun should be more surprising than
one following it. An adjective preceding the noun should also be more
surprising than one following it, but the difference in this case should be
less important than in the first one.

4.2 Targeted syntactic evaluation

4.2.1 Experimental Setup

Drawing upon the models from the HuggingFace Transformers library
(Wolf et al., 2020b), we test the base cased versions of BERT and mBERT,
RoBERTa and XLM-R on the English SyntaxGym and BETO (Canete
et al., 2020), mBERT and XLM-R on the Spanish SyntaxGym. To run the
experiments, we use the SyntaxGym toolkit (Gauthier et al., 2020a).

• BERT (Devlin et al., 2019b). Bidirectional Transformer trained with
MLM and NSP. Monolingual (16 GB of English data from Book Corpus
and Wikipedia). 30k WordPiece vocabulary. 110M parameters.

• RoBERTa (Liu et al., 2019b). Bidirectional Transformer trained with
MLM. Monolingual (160 GB of English data). 50k BPE vocabulary.
125M parameters. Compared with BERT, RoBERTa is trained with dy-
namic masking (instead of static) on much more data and without NSP
loss.

• XLM-R (Conneau et al., 2020). Bidirectional Transformer trained with
MLM. Multilingual (2 TB filtered CommonCrawl data; 100 languages).
250k Sentence Piece vocabulary. 270M parameters.

• mBERT (Devlin et al., 2019b). Bidirectional Transformer trained with
MLM and NSP. Multilingual (top 104 languages with the largest Wikipedia).
110k WordPiece vocabulary. 177M parameters.
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• BETO (Canete et al., 2020). Bidirectional Transformer trained with
MLM and NSP. Monolingual (3B words). 31k BPE vocabulary. 110M
parameters.

4.2.2 Encoding unidirectional context with bidirectional
models

The SyntaxGym test suites are designed from the perspective of sentence
generation, i.e., with the hypothesis that if a model has correctly learned
some relevant syntactic generalisation, it should assign higher probabil-
ity to grammatical and natural continuations of sentences. This requires
asking the models to predict the next token given a context of previous
tokens, in a left-to-right generative fashion. However, BERT-based and
RoBERTa-based families of models (in our case, BERT and mBERT on
the one side, and RoBERTa and XLM-R on the other side) are bidirec-
tional, they are trained with a MLM objective to predict a word given its
left and right context. We follow Wang and Cho (2019)’s sequential sam-
pling procedure to evaluate the probability of a text sequence, encoding
unidirectional context in the forward direction. To compute the probabil-
ity distribution for a sentence with N tokens, we start with a sequence
of N + 2 tokens: a begin of sentence token plus N + 1 mask tokens,
where the last mask corresponds to the end of sentence token. For each
token position i in [1, N ], we compute the probability distribution over
the vocabulary given the left context of the original sequence, and select
the probability assigned by the model to the original word. Note that this
setup allows the models to know how many tokens there are in the sen-
tences, and therefore the results are not directly comparable with those
of unidirectional models, that do not have any information regarding the
length of the sequence.
For example, in an agreement test with the sentence ‘The girls run fast.’,
a model that has properly learned agreement should assign a higher prob-
ability to run than to runs for the third word. In order to test it, we feed
the tokens sequence [[bos] [The] [girls] [mask] [mask] [mask] [mask]]
to the model, and compare the probabilities assigned by the model to run
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Average SG performance
Model English Spanish
BERT 77.80 —
RoBERTa 82.04 —
mBERT 77.55 72.31
XLM-R 71.84 78.50
BETO — 67.92

Table 4.2: Average SG score by model class for the English and Spanish tests.

and runs for position 4.

4.2.3 Evaluation results

This section summarises the results of our experiments that aim to: 1–
contrast the performance of monolingual and multilingual models on En-
glish and Spanish; and 2– provide insights on the performance of the
multilingual models across languages.
Table 4.2 shows the average SyntaxGym (SG) performance of the eval-
uated monolingual and multilingual models on the English and Spanish
SyntaxGyms. Figures 4.1 and 4.2 zoom in on the performance of the
tested models with respect to specific circuits for English and Spanish
respectively.
Six of the English test suites (Center Embedding, Cleft structure, MVRR,
NPZ-Verb, NPZ-Object, Subordination) and five of the Spanish test suites
(Attribute Agreement, Basic Subject-Verb Agreement, Subordination, Cen-
ter Embedding, Basic Filler-Gap Dependencies) include tests with and
without modifiers, i.e,. intervening content inserted before the critical
region. Figures 4.3 and 4.4 show the models’ average scores in these
test suites, without modifiers (dark bars) and with modifiers (light bars),
evaluating how robust each model is with respect to the corresponding
content.
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Figure 4.1: Performance accuracy across English circuits

4.3 Results analysis
Let us assess in detail the results of the experiments from above. In
what follows, we compare the performance of monolingual with the per-
formance of multilingual models and analyse the cross-language perfor-
mance of multilingual models, as well as the stability of the individual
models with respect to modifiers.

4.3.1 Monolingual vs multilingual models

RoBERTa shows an overall higher performance than the other models for
English (Table 4.2). This is not surprising since it is trained on 10 times
more data than BERT, and it has been shown to improve over BERT in
many NLU tasks. However, while mBERT does not seem to lose perfor-
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Figure 4.2: Performance accuracy across Spanish circuits

mance compared to BERT, XLM-R loses around 10 points compared to
RoBERTa. As XLM-R is specifically designed to offer a more balanced
performance across languages, with a special focus on low-resource lan-
guages, it appears natural that it loses some performance on high-resource
languages such as English. For Spanish, the multilingual models clearly
outperform the monolingual model. This is likely due to the fact that
while BETO and mBERT are of comparable size and are trained with the
same amount of data (16GB), BETO is only trained with a MLM objec-
tive, and mBERT is trained on MLM and NSP. On the other hand, XLM-R
is also only trained on MLM, but it is trained on more than 2TB of data,
53 GB corresponding to Spanish data.
RoBERTa outperforms all other models in all the English circuits (cf. Fig-
ure 4.1), except in Gross Syntactic State, in which BERT-based models
clearly outperform RoBERTa-based models, and the multilingual model
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Figure 4.3: Models average English SG score in Center Embedding, Cleft structure,
MVRR, NPZ-Verb, NPZ-Object and Subordination, with and without modifiers.

outperforms the monolingual one in both families. Intuitively, we be-
lieve that the NSP training objective of BERT-based models helps them
to better understand the relation between two sentences, and this knowl-
edge can also be applied to the relation between two clauses (which is
the basis of the Gross Syntactic State circuit). Comparing the BERT and
RoBERTa model families, it is interesting to notice that while RoBERTa
outperforms XLM-R in all circuits except Gross Syntactic State, BERT
only outperforms mBERT in 3 of them.

Interestingly, all models seem to struggle with Agreement in English.
This observation is aligned with Mueller et al. (2020)’s hypothesis that
language models learn better hierarchical syntactic generalisations in mor-
phologically complex languages (such as, e.g., Spanish), which frequently
provide overt cues to syntactic structure, than in morphologically simpler
languages (such as, e.g., English). Indeed, the fact that XLM-R offers the
lowest performance may be related to the fact that the model has been
more exposed to more complex languages than the others. For Long Dis-
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Figure 4.4: Models average Spanish SG score in Attribute Agreement, Subject-Verb
Agreement, Subordination, Center Embedding and Filler-Gap Dependencies, with and
without modifiers.

tance Dependencies, BERT-based models show a low performance com-
pared to RoBERTa-based models. This might be due to the different train-
ing procedures adopted in both model families (i.e., that RoBERTa does
not include the NSP task (as BERT does) and introduces dynamic mask-
ing).
On the other hand, in specific circuits for Spanish (cf. Figure 4.2) XLM-
R outperforms the other two models in 5 out of 7 circuits. As observed
for English, the BERT-based models struggle with the Long Distance
Dependencies tests, and mBERT offers an outstanding performance in
Gross Syntactic State. The monolingual model, BETO, is outperformed
by mBERT in 4 out of 7 tests, and by XLM-R in all 6 out of 7 tests. As
mentioned before, these differences may be related to the fact that, unlike
BERT, BETO is not trained with the NSP objective; but also to the differ-
ence in training data size: 16GB for BETO vs. more than 2TB (of which
53GB of Spanish data) for XLM-R.
All models offer a low performance in the new Linearisation test for Span-
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ish. A more in-depth investigation is necessary to explain this. The test
has been designed with literary Peninsular Spanish in mind, and it is pos-
sible that the training data may not contain enough samples that show the
targeted word order varieties, or may contain data from American Span-
ish sources, which may show differences in canonical word order with
respect to Peninsular Spanish.

4.3.2 Cross-language multilingual models performance

As shown in Table 4.2, multilingual models do not syntactically gener-
alise equally well in both languages. While mBERT offers a better gener-
alisation in English, outperforming XLM-R by almost 6 points, XLM-R
generalises better in Spanish, outperforming mBERT by 6 points. This
observation corroborates our intuition that XLM-R sacrifices performance
in high-resource languages (e.g., English, with 300GB of training data)
to be able to offer a more balanced performance across languages (e.g.,
Spanish, with 53GB of training data).
Comparing Figures 4.1 and 4.2, we observe improvements in the Spanish
tests for XLM-R in 4 out of 6 circuits, particularly noticeable in Agree-
ment and Center Embedding, while it loses around 10 points in Long
Distance Dependencies. On the other hand, mBERT also shows a big im-
provement in the Spanish tests in Agreement, while it loses performance
in Garden Path Effects, Licensing and Long Distance Dependencies.

4.3.3 Model stability with respect to modifiers

Since modifiers increase the linear distance between the elements in a de-
pendency structure, thus making the task more demanding, stability in this
respect indicates that models have robustly learnt the appropriate syntac-
tic generalisation and do not depend that much on adjacency. Figures 4.3
and 4.4 show the models’ average scores in those test suites that have two
versions: without modifiers (dark bars) and with modifiers (light bars).
As was intuitively expected, all the models offer a higher performance in
the tests without modifiers. While for English the multilingual models
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are the less affected, for Spanish BETO seems to be more robust than the
multilingual models, even though it offers a lower performance.

4.4 Insights
We assessed the syntactic generalisation potential of selected transformer-
based language models on English and Spanish. We have shown that mul-
tilingual models do not generalise equally well across languages: mBERT
generalises better for phenomena in English, while XLM-R does it better
for phenomena in Spanish. We have also shown that the answer to the
question whether monolingual or multilingual models generalise better is
equally language-specific: the monolingual RoBERTa generalises better
on English, while the multilingual XLM-R generalises better on Spanish.
While it is possible that the multilingual abstractions captured by XLM-R
become useful for morphologically rich languages such as Spanish, this
difference may also be related to the difference in the amount of training
data used to train BETO and XLM-R, and therefore it is possible that a
monolingual model trained with a comparable amount of data could out-
perform the multilingual models.
The performance of all models is affected by the presence of modifiers,
which shows that the complexity of the syntactic structure is still a chal-
lenge. In general, each syntactic phenomenon deserves attention. For
instance, Agreement in English is hard to learn, given the scarcity of cues
(especially if compared to a morphologically rich language), and so is
Linearisation in Spanish.
As far as the nature of the training procedures of the models is concerned,
the lack of NSP objective in the RoBERTa model family seems to harm
BETO, but not XLM-R; this suggests that the performance of BETO may
be improved with (much) more training data. It also seems to harm in the
case of the Gross Syntactic State circuit, suggesting that RoBERTa-based
models may also benefit from complementary training objectives in their
pretraining procedure.
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Chapter 5

IMPACT OF PRETRAINING
DATA SIZE ON THE
SYNTACTIC ABILITIES OF
LANGUAGE MODELS

The use of unsupervised pretrained language models in the context of su-
pervised tasks has become a widely spread practice in NLP, with Trans-
former-based models such as BERT (Devlin et al., 2019b) and RoBERTa
(Liu et al., 2019b) achieving outstanding results in many well-known
NLU benchmarks such as GLUE (Wang et al., 2018) and SQuAD (Ra-
jpurkar et al., 2018a). Consequently, several studies investigate the types
of knowledge learned by BERT, how and where this knowledge is repre-
sented and what the best methods to improve it are; see, e.g., Rogers et al.
(2020). There is evidence that, among other information (e.g., part-of-
speech, syntactic chunks and roles (Tenney et al., 2019b; Lin et al., 2019;
Belinkov et al., 2017), morphology in general (Peters et al., 2018a), or
sentence length (Adi et al., 2017)), BERT representations implicitly em-
bed entire syntax trees (Hewitt and Manning, 2019).
Language models are traditionally assessed by information-theoretical
metrics such as perplexity, i.e., the probability of predicting a word in
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its context. The general wisdom is that the more pretraining data a model
is fed, the lower its perplexity gets. However, while pretraining methods
are very convenient, they are expensive in terms of time and resources,
and large volumes of pretraining data may not always be available. This
calls for a study of the impact of pretraining data size on the knowledge
of the models.
In this Chapter, we explore the relation between the size of the pretraining
data and the syntactic capabilities of RoBERTa by means of the MiniB-
ERTas models, a set of 12 RoBERTa models pretrained from scratch by
Warstadt et al. (2020b) on incremental sizes of raw text data ranging from
1M to 1B words. In particular:

• We draw upon the syntactic structural probes from Hewitt and Man-
ning (2019) to determine whether the models pretrained on more
data encode a higher amount of syntactic information;

• We analyse the generalisation performance of the different models
using SyntaxGym (Gauthier et al., 2020b) and the targeted syntactic
tests presented in (Hu et al., 2020a);

• We compare the performance of the different models on two morpho-
syntactic tasks (PoS tagging and dependency parsing), and a non-
syntactic task (paraphrase identification);

• We conduct a cost-benefit trade-off analysis (Strubell et al., 2019;
Bhattacharjee et al., 2020) of the models training.

The remainder of the chapter is structured as follows. Section 5.1 presents
the MiniBERTas models. The next three sections correspond to the dif-
ferent experiments: Section 5.2.2 presents the structural probing experi-
ments, Section 5.3 presents a targeted syntactic evaluation and Section 5.4
presents a downstream tasks evaluation. Section 5.5 offers a cost-benefit
analysis of the pretraining of the different models, and Section 5.6 sum-
marises our findings.
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Model Size L AH HS FFN P
BASE 12 12 768 3072 125M
MED-SMALL 6 8 512 2048 45M

Table 5.1: Hyperparameters per model sizes. AH = number of attention heads; HS =
hidden size; FFN = feedforward network dimension; P = number of parameters.

5.1 The MiniBERTas models

The MiniBERTas are a set of 12 RoBERTa models pretrained from scratch
by Warstadt et al. (2020b) on 4 datasets containing 1B, 100M, 10M and
1M tokens, available through HuggingFace Transformers.1 The datasets
are sampled from Wikipedia and Smashwords – the two datasets that
make up the original pretraining dataset of BERT and that are included
in the RoBERTa pretraining data. For each dataset size, pretraining is run
25 times (10 times for 1B) with varying hyperparameter values; the three
models with the lowest development set perplexity are released. For the
smallest dataset, a smaller model size is used to prevent over-fitting. We
refer to models trained on the same amount of data as a family of mod-
els, and models inside a family as intra-family members (e.g.,the roberta-
base-100M-1 model is a member of the roberta-base-100M family). Ta-
ble 5.1 offers an overview of the hyperparameters per model size.

5.2 Structural probing

As reviewed in Section 3.1, a commonly used method to test models for
the presence of a wide range of linguistic phenomena is supervised prob-
ing (Conneau et al., 2018; Liu et al., 2019a; Tenney et al., 2019b; Voita
and Titov, 2020; Elazar et al., 2020; Lepori and McCoy, 2020), that is,
training supervised models to predict properties from representations ex-
tracted from a model. Here, we draw upon the syntactic structural probes

1https://huggingface.co/nyu-mll
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from Hewitt and Manning (2019) to determine whether the models pre-
trained on more data encode a higher amount of syntactic information.

5.2.1 Hewitt and Manning structural probe
Hewitt and Manning (2019)’s structural probes assess how well syntax
trees are embedded in a linear transformation of the network representa-
tion space applying two different evaluations: Tree distance evaluation,
in which squared L2 distance encodes the distance between words in the
parse tree, and Tree depth evaluation, in which squared L2 norm encodes
the depth in the parse tree.
Tree distance evaluation. Evaluates how well the predicted distances be-
tween all pairs of words in a model reconstruct gold parse trees by com-
puting the Undirected Unlabeled Attachment Score (UUAS). It also com-
putes the Spearman correlation between true and predicted distances for
each word in each sentence, averaging across all sentences with lengths
between 5 and 50 (we refer to as DSpr.).
Tree depth evaluation. Evaluates the ability of models to recreate the
order of words specified by their depth in the parse tree, assessing their
ability to identify the root of the sentence as the least deep word (Root %)
and computing the Spearman correlation between the predicted and the
true depth ordering, averaging across all sentences with lengths between
5 and 50 (we refer to as NSpr).

5.2.2 Probing results
We use Hewitt and Manning’s syntactic structural probes to determine
whether the MiniBERTa models pretrained on more data encode a higher
amount of syntactic information than those trained on less data. Following
the original work, we probe layer 7 of all models, as it was shown to
encode most of the syntax. Results are shown in Table 5.2.
Tree distance evaluation results. The models trained with more data
encode better syntactic information (as measured by the probe metrics).
While DSpr. shows a less pronounced variability between family mem-
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Model
1b-1
1b-2
1b-3

100m-1
100m-2
100m-3
10m-1
10m-2
10m-3
1m-1
1m-2
1m-3

Tree distance eval.
UUAS Dspr.
70.75 78.82
72.93 79.86
77.23 82.66
68.46 76.95
70.02 78.11
69.35 78.73
61.48 73.19
62.01 73.78
60.12 72.58
56.96 71.70
55.78 71.33
55.84 71.33

Tree depth eval.
Root % Nspr.

83.92 85.38
83.53 85.92
85.13 86.87
81.21 84.06
81.25 84.53
79.88 84.59
70.88 81.65
70.07 81.89
67.14 80.62
57.12 74.16
56.56 74.74
57.41 74.46

Table 5.2: Structural probing with Hewitt and Manning’s syntactic structural probes.
‘1b-*’ corresponds to the family roberta-base-1B, ‘100M-*’ to roberta-base-100M,
‘10M-* to roberta-10M, and ‘1M-*’ to roberta-med-small-1M.

bers, and smaller differences across families, UUAS shows a higher intra-
family variability and bigger differences between families. Noticeably,
for the roberta-base-1B family, there is a 7 points difference in UUAS be-
tween model 1 and model 3, which have a difference of only 0.09 points
in perplexity, highlighting the importance of training hyperparameters for
the performance of the models.

Tree depth evaluation results. As for the distance metrics, the models
trained on more data show a better encoding of syntactic information.
Again, the correlation shows less variability between family members and
smaller differences between families, while Root % shows a higher intra-
family variability (especially noticeable for roberta-base-10M).
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5.3 Targeted syntactic evaluation

We test the MiniBERTas on the syntactic tests assembled by Hu et al.
(2020a), accessible through the SyntaxGym toolkit (Gauthier et al., 2020b).
The tests require asking the models to predict the next token given a
context of previous tokens, in a left-to-right generative fashion. In or-
der to test the bidirectional MiniBERTas models, we follow Wang and
Cho (2019)’s sequential sampling procedure, described in Section 4.2.2,
to encode unidirectional context in the forward direction.

5.3.1 Syntactic test suites

The tests are divided into 6 syntactic circuits, thoroughly detailed in Sec-
tion 4.1.1 and briefly summarised here:
•Agreement: Tests a language model for how well it predicts the number
marking on English finite present tense verbs. It is composed of 3 Subject-
Verb Number Agreement tests from Marvin and Linzen (2018),
• Center Embedding: Tests the ability to embed a phrase in the middle
of another phrase of the same type. The circuit is composed of 2 tests
from Wilcox et al. (2019b).
• Garden-Path Effects: Measures the syntactic phenomena that result
from tree structural ambiguities that give rise to locally coherent but glob-
ally implausible syntactic parses. The circuit is composed of 2 Main Verb
/ Reduced Relative Clause (MVRR) tests and 4 NP/Z Garden-paths (NPZ)
tests, all from Futrell et al. (2018).
• Gross Syntactic Expectation: Tests the ability of the models to distin-
guish between coordinate and subordinate clauses: introducing a subor-
dinator at the beginning of the sentence should make an ending without a
second clause less probable, and should make a second clause more prob-
able. The circuit is composed of 4 Subordination tests from Futrell et al.
(2018).
• Licensing: Measures when a particular token must exist within the
scope of an upstream licensor token. The circuit is composed of 4 Nega-
tive Polarity Item Licensing (NPI) tests and 6 Reflexive Pronoun Licens-
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ing tests, all from Marvin and Linzen (2018).
• Long-Distance Dependencies: Measures covariations between two
tokens that span long distances in tree depth. The circuit is composed
of 6 Filler-Gap Dependencies (FGD) tests from Wilcox et al. (2018) and
Wilcox et al. (2019c), and 2 Cleft tests from (Hu et al., 2020a).

5.3.2 Evaluation results
We assess the syntactic generalisation performance of the different MiniB-
ERTas models using Hu et al. (2020a)’s test suites (cf. Section 5.3) to
answer the following questions: Do models pretrained on more data gen-
eralise better? Do models with lower perplexity perform better in the
syntactic tests? Do models with more pretraining or better perplexity per-
form better in all circuits?

Average SG Score. Figure 5.1 shows the performance of each model
averaged across all 6 circuits. We observe a variability between fam-
ily members, especially for roberta-base-100M, with a difference of 15
points between models 1 and 2. As intuitively expected, the smallest
family of models, roberta-med-small-1M, performs clearly worse than
the other families. However, it is interesting to observe that more training
data does not always imply better syntactic generalisation: model roberta-
base-100M-1 performs worse than the whole roberta-base-10M family,
and model roberta-base-100M-2 performs better than the whole roberta-
base-1B family.

Stability with respect to modifiers. Five of the test suites (Center Em-
bedding, Cleft structure, MVRR, NPZ-Verb, NPZ-Object) include tests
with and without modifiers, i.e,. intervening content inserted before the
critical region. These additional clauses or phrases increase the linear dis-
tance between two co-varying items, making the task more difficult, and
sometimes they also include a distractor word in the middle of a syntactic
dependency, which can lead the models to misinterpret the dependency.
Figure 5.2 shows the models’ average scores on these test suites, without
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Figure 5.1: Syntactic generalisation evaluation. Average SyntaxGym score.
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Figure 5.2: Syntactic generalisation evaluation. SyntaxGym score on Center Embed-
ding, Cleft structure, MVRR, NPZ-Verb, and NPZ-Object, without (dark bars) and with
(light bars) modifiers.

modifiers (dark bars) and with modifiers (light bars), evaluating how ro-
bust each model is with respect to the intervening content. We observe
that all models are affected by the presence of modifiers, but the differ-
ence is narrower for roberta-base-1b, which offers the best stability.

Perplexity vs. SG Score. Figure 5.3 shows the relation between the
average score across all circuits (SG score) and the perplexity of the mod-
els. As previously observed in (Hu et al., 2020a), even though there is a
(not perfect) negative correlation between the two metrics when compar-
ing different families, when comparing points corresponding to the same
family of models (with equal architecture and training data size, points

85



“output” — 2022/4/21 — 13:11 — page 86 — #108

Figure 5.3: Relationship between average SyntaxGym score and model perplexity.

of the same color in Figure 5.3), there is no clear relation between them.
This suggests that both metrics capture different aspects of the knowledge
of the models.

Syntactic generalisation of the models. Figure 5.4 offers an overview
of the syntactic capabilities of all the models on the different syntactic
circuits. The family with more pretraining data, roberta-base-1B, out-
performs all other families in 3 out of 6 circuits, but offers a surpris-
ingly low performance in Gross Syntactic State, clearly outperformed by
roberta-base-100M and roberta-base-10M, and matched by the roberta-
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Figure 5.4: SyntaxGym evaluation across circuits.

med-small-1M. Again, the smallest family offers the lowest performance
across all circuits, with individual models outperforming isolated models
of other families in Center Embedding, Gross Syntactic State and Long
Distance Dependencies. There is a high variability between the scores
achieved by the models of the same family in the same circuit, with the
exception of roberta-base-1B in Licensing, where all models offer a sim-
ilar performance. Interestingly, there is not a single model for any family
that performs best (nor worst) across all tests.

5.4 Downstream tasks evaluation

To compare the performance of the models on downstream applications,
we analyse their learning curves along the fine-tuning process on two
morpho-syntactic tasks (PoS tagging and dependency parsing) and a non-
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syntactic task (paraphrase identification):
• PoS tagging. We fine-tune RoBERTa with a linear layer on top of the
hidden-states output for token classification.2 Dataset: Universal Depen-
dencies Corpus for English (UD 2.5 EN EWT Silveira et al. (2014a)).
• Dependency parsing. We fine-tune a Deep Biaffine neural dependency
parser (Dozat and Manning, 2017). Dataset: UD 2.5 English EWT (Sil-
veira et al., 2014b).
• Paraphrase identification. We fine-tune RoBERTa with a linear layer
on top of the pooled sentence representation.3 Dataset: Microsoft Re-
search Paraphrase Corpus (MRPC, Dolan and Brockett 2005a).

5.4.1 Experimental setup
Each task is fine-tuned for 3 epochs, with the default learning rate of 5e−5.
To mitigate the variance in performance induced by weight initialisation
and training data order (Dodge et al., 2020; Reimers and Gurevych, 2017),
we repeat this process 5 times per task with different random seeds and
average results.4

5.4.2 Evaluation results
We compare the performance of the different models on three different
downstream tasks: PoS tagging (Figure 5.5), dependency parsing (Fig-
ure 5.6) and paraphrase identification (Figure 5.7) to determine if mod-
els pretrained on more data perform better on downstream applications.
We observe the same tendency for all tasks: models with more training
data perform better, and the model with the smallest architecture (roberta-
med-small-1M) performs remarkably worse. Although note that while

2Source: https://github.com/Tarpelite/UniNLP/blob/master/
examples/runpos.py

3Source: https://github.com/huggingface/transformers/blob
/master/examples/text-classification/runglue.py.

4The implementation relies in the Transformers library (Wolf et al., 2020a) and Al-
lenNLP (Gardner et al., 2018a). For implementation details, pretrained weights and
hyperparameter values, cf. the documentation of the libraries.
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Figure 5.5: Downstream task evaluation. PoS tagging accuracy evolution.

the increase of training data between families is exponential (1M, 10M,
100M, 1B), the performance grows at a slower rate. This observation sug-
gests that there may be a limit to the amount of data that we can feed into
a RoBERTa model and the knowledge that the model can acquire.

5.5 Cost-benefit analysis

For the sake of a more holistic view on the quality of the models, we
perform a cost–benefit analysis of the performance gains in the different
tasks, with an estimate of the financial and environmental cost of devel-
oping the models. As the resources used to train the MiniBERTas are not
publicly available, we rely on the data provided in (Strubell et al., 2019) to
estimate the cost of developing each individual model based on the costs
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Figure 5.6: Downstream tasks evaluation. Dependency parsing UAS and LAS evolution.
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Figure 5.7: Downstream tasks evaluation. Paraphrase identification accuracy and F1
evolution.
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Model family Cost CO2e PoS Dep. parsing Paraphrase id.
roberta-base-1B $20320 2330 96.03 (+0.5%) 85.73 (+1.76%) 89.59 (+2.02%)
roberta-base-100M $5075 582.5 95.53 (+1.11%) 83.97 (+4.04%) 87.57 (+2.79%)
roberta-base-10M $500 58.25 94.42 (+2.73%) 79.93 (+14.48%) 84.78 (+5.34%)
rob-med-small-1M $50 5.825 91.69 (base) 65.45 (base) 79.44 (base)

Table 5.3: Comparison of the estimated cost of developing the different MiniBERTas
families in terms of cloud compute cost (USD) and CO2 emissions (lbs) and their aver-
aged performances on PoS tagging (acc), Dep. Parsing (LAS), and Paraphrase identifi-
cation (F1). In parentheses, we show the increment with respect to the previous smaller
model.

of RoBERTa, trained on 30B words, in proportion to the amount of words
used to train each family of models.

Financial cost. As RoBERTa base was trained on 1024 Nvidia V100
GPUs for 24 hours (i.e., 24,576 GPU hours), and the price per hour of
Nvidia V100 (on-demand) is $2.48 (Strubell et al., 2019), the cost of
training RoBERTa base amounts to $60,948, and the cost of training a
MiniBERTas model can be estimated to be $60,948 / 30B words * #Train-
ingWords. E.g., for the roberta-base-1b model: $60,948 / 30B words *
1B words = $2,032.

CO2 Emissions. Using Strubell et al. (2019), we extrapolate that Nvidia
V100 GPUs emit 0.28441456 lbs of CO2 per GPU per hour, which means
that the training of RoBERTa base emitted 6,990 lbs of CO2. We estimate
the emissions of the training of each MiniBERTas model as 6,990 lbs /
30B * #TrainingWords.

To develop each MiniBERTas models, Warstadt et al. run the pretrain-
ing 10 times for the bigger family (roberta-base-1B), and 25 times for the
other three families (roberta-base-100M, roberta-base-10M and roberta-
med-small-1M) with varying hyperparameters. Therefore, to compute the
cost of developing each family of models, we multiply the cost of train-
ing a single model by the number of pretraining runs needed to obtain
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it. Table 5.3 lists the estimated costs and CO2 emissions of the develop-
ment of each MiniBERTas family, along with their averaged performance
on the three studied downstream applications. We see that small perfor-
mance gains come at high financial and environmental costs. E.g., for
roberta-base-1B, a performance increase of 0.5%–2.02% on downstream
applications has a cost of $20K in computing resources and significant
carbon emissions, higher than the estimated 1984 lbs generated by a sin-
gle passenger flying between New York and San Francisco (Strubell et al.,
2019).

5.6 Insights

Our experiments shed light on the impact of pretraining data size on the
syntactic capabilities of RoBERTa. Our results indicate that models pre-
trained with more data encode better syntactic information (as measured
by Hewitt and Manning’s structural probes) and are more robust to the
presence of modifiers in the syntactic tests, i.e,. intervening content in-
serted before the critical region. However, they do not always generalise
better over the different syntactic phenomena covered by the tests assem-
bled in (Hu et al., 2020a). As was already observed in (Hu et al., 2020a),
there is no simple relationship between the perplexity of the models and
the SyntaxGym score: the variance in intra-family SG score is not ex-
plained by the perplexity differences. When zooming in on the differ-
ent test circuits, probing different linguistic phenomena, we observe that
there is a high variability between the scores achieved by the models of
the same family, with no single model for any family performing best
across all tests. While the family pretrained with more data outperforms
all the models of the other families on 3 out of 6 circuits, it offers a sur-
prisingly low performance in Gross Syntactic State, clearly outperformed
by the smaller models.
We also compare the performance of the different models fine-tuned on
PoS tagging, dependency parsing and paraphrase identification, observing
that models with more training data offer a better performance, and the
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model with the smallest architecture (roberta-med-small-1M) performs
remarkably worse. However, while the amount of training data between
families grows exponentially, we observe that the performance grows at a
much slower rate, suggesting that there may be a limit to the knowledge
that a RoBERTa model can acquire solely from raw pretraining data.
We complement our findings with a financial and environmental cost–
benefit analysis of pretraining models on different amounts of data. We
show that while models pretrained on more data encode more syntac-
tic information and perform generally better on downstream applications,
small performance gains come at a huge financial and environmental cost.
Thus, when developing and training new models we should weigh be-
tween the benefit of making models bigger and pretraining them on huge
datasets and the costs this implies, prioritising computationally efficient
hardware and algorithms.
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Chapter 6

IMPACT OF FINE-TUNING
ON THE SYNTACTIC
KNOWLEDGE ENCODED IN
LANGUAGE MODELS

As shown all along this thesis, adapting unsupervised pretrained language
models (LMs) to solve supervised tasks has become a widely spread prac-
tice in NLP, with with Transformer-based models such as BERT (Devlin
et al., 2019b) and RoBERTa (Liu et al., 2019b) achieving state-of-the-art
results in many well-known NLU benchmarks like GLUE (Wang et al.,
2019a) and SQuAD (Rajpurkar et al., 2018b).
Even though pretrained language models can be used as frozen feature
extractors, they are often fine-tuned to solve downstream tasks (Peters
et al., 2019), and therefore it is important to understand how the encoded
knowledge evolves along the fine-tuning process. In this Chapter, we aim
to understand how syntax trees implicitly embedded in the geometry of
deep models (Hewitt and Manning, 2019) evolve along the fine-tuning
process of BERT on different supervised tasks, and shed some light on
the importance of the syntactic information for those tasks. Intuitively,
we expect morpho-syntactic tasks to clearly reinforce the encoded syn-
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tactic information, while tasks that are not explicitly syntactic in nature
should maintain it in case they benefit from syntax (Kuncoro et al., 2020)
and lose it if they do not. In order to cover the three main levels of the
linguistic description (morphology, syntax and semantics), we select six
different tasks: PoS tagging, constituency parsing, syntactic dependency
parsing, semantic role labeling (SRL), QA and paraphrase identification.
The first three inherently deal with (morpho-)syntactic information while
the latter three, which traditionally draw upon the output of syntactic pars-
ing (Carreras and Màrquez, 2005; Björkelund et al., 2010; Strubell et al.,
2018; Wang et al., 2019b, inter-alia), deal with higher level, semantic in-
formation. Almost all of our experiments are on English corpora; one is
on multilingual dependency parsing.
The remainder of the chapter is structured as follows. Section 6.1 de-
scribes our experimental setup, presenting the tasks that we use to fine-
tune BERT on and the probe that we use to analyse the evolution of the
syntactic knowledge encode in the models. Section 6.2 presents our anal-
ysis on the evolution of syntactic knowledge along the fine-tuning of the
model on the different tasks, and Section 6.3 complements the results with
the performance curves of the target tasks for which the models are fine-
tuned, along with the performance curves of the Hewitt and Manning’s
structural probes metrics, facilitating the comparison of the evolution of
the encoded syntax trees information and the target tasks performances.
Finally, Section 6.4 summarises our findings.

6.1 Experimental setup

We study the evolution of the syntactic structures discovered during pre-
training along the fine-tuning of BERT-base (cased)1 on six different tasks,

1Our experiments are implemented in PyTorch, using two open-source libraries: the
Transformers library (Wolf et al., 2020b) and AllenNLP (Gardner et al., 2018b). Imple-
mentation details, pretrained weights and full hyperparameter values can be found in the
libraries documentation.
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drawing upon the structural probe of Hewitt and Manning (2019).2 We
fine-tune the whole model on each task outlined below for 3 epochs, with
a learning rate of 5e−5, saving 10 evenly-spaced checkpoints per epoch.
The output of the last layer is used as input representation for the clas-
sification components of each task. To mitigate the variance in perfor-
mance induced by weight initialisation and training data order (Dodge
et al., 2020), we repeat this process 5 times per task with different ran-
dom seeds and average results.

6.1.1 Hewitt and Manning structural probe.

Hewitt and Manning (2019)’s structural probe, thoroughly described in
Section 5.2.1, evaluates how well syntax trees are embedded in a lin-
ear transformation of the network representation space, performing two
different evaluations: 1– Tree distance evaluation, in which squared L2
distance encodes the distance between words in the parse tree; and 2–
Tree depth evaluation, in which squared L2 norm encodes the depth of
the parse tree. Using their probe, Hewitt and Manning show that the 7th
layer of BERT-base is the layer that encodes more syntactic information.
Therefore, to analyse the evolution of the encoded syntax trees, we train
the probes on the 7th layer of the different checkpoint models generated
along the fine-tuning process of each task.

6.1.2 Downstream tasks description

To analyse the impact of the fine-tuning process on the syntactic infor-
mation encoded by BERT, we analyse the evolution of the syntax trees
implicitly embedded in its geometry (Hewitt and Manning, 2019) along
the fine-tuning on six different supervised tasks:
• PoS tagging. We fine-tune BERT with a linear layer on top of the

2We use the same experimental setup used by the authors. Source: https://gi
thub.com/john-hewitt/structural-probes
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hidden-states output for token classification.3 Dataset: Universal Depen-
dencies Corpus for English (UD 2.5 EN EWT Silveira et al. (2014a)).

• Constituency parsing. Following Vilares et al. (2020), we cast con-
stituency parsing as a sequence labeling problem, and use a single feed-
forward layer on top of BERT to directly map word vectors to labels that
encode a linearised tree. Dataset: Penn Treebank (Marcus et al., 1993).

• Dependency parsing. We fine-tune a Deep Biaffine neural dependency
parser (Dozat and Manning, 2017) on three different datasets: 1– UD
2.5 English EWT (Silveira et al., 2014a); 2– a multilingual benchmark
generated by concatenating the UD 2.5 standard data splits for German,
English, Spanish, French, Italian, Portuguese, and Swedish (Nivre et al.,
2017), with gold PoS tags; 3– PTB SD 3.3.0 (de Marneffe et al., 2006).

• Semantic role labeling. Following Shi and Lin (2019), we decompose
the task into 1– predicate sense disambiguation and argument identifica-
tion; and 2– classification. Both subtasks are casted as sequence label-
ing, feeding the contextual representations into a one-hidden-layer Multi-
Layer Perceptron (MLP) for the first, and a one-layer BiLSTM followed
by a one-hidden-layer MLP for the latter. Dataset: OntoNotes corpus
(Weischedel et al., 2013).

• Question answering. We fine-tune BERT with a linear layer on top of
the hidden-states output to compute span start logits and span end logits.4

Dataset: SQuAD, Stanford Question Answering Dataset (Rajpurkar et al.,
2018b).

• Paraphrase identification. We fine-tune BERT with a linear layer on
top of the pooled sentence representation.5 Dataset: MRPC (Dolan and
Brockett, 2005b).

3Source: https://github.com/Tarpelite/UniNLP/blob/master/
examples/runpos.py

4Source: https://github.com/huggingface/transformers/tree
/master/examples/question-answering.

5Source: https://github.com/huggingface/transformers/blob
/master/examples/text-classification/runglue.py.
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Figure 6.1: Tree distance evaluation. UUAS evolution.

6.2 Evolution of the syntactic knowledge dur-
ing fine-tuning

6.2.0.1 Tree distance evaluation

The probe evaluates how well the predicted distances between all pairs
of words in a model reconstruct gold parse trees by computing the Undi-
rected Unlabeled Attachment Score (UUAS). It also computes the Spear-
man correlation between true and predicted distances for each word in
each sentence, averaging across all sentences with lengths between 5 and
50 (henceforth referred to as DSpr.).

Morpho-syntactic tasks. As shown in Figures 6.1 and 6.2, both met-
rics follow a similar behaviour (shades represent the variability across
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Figure 6.2: Tree distance evaluation. Dspr evolution.

the 5 model runs). PoS tagging shows an important loss of performance
all along the fine-tuning process, especially noticeable for UUAS (Fig-
ure 6.1), suggesting that distance-related syntactic information is of less
relevance to PoS tagging than could be intuitively assumed. As many
words have a clear preference towards a specific PoS, especially in En-
glish, and most of the ambiguous cases can be resolved using informa-
tion in the close vicinity (e.g., a simple 3-gram sequence tagger is able
to achieve a very high accuracy (Manning, 2011)), syntactic structure in-
formation may not be necessary and, therefore, the model does not pre-
serve it. This observation is aligned with Pimentel et al. (2020b), who
found that PoS-tagging is not an ideal task for contemplating the syntax
contained in contextual word embeddings. The loss is less pronounced
on depth-related metrics, maybe because the root of the sentence usually
corresponds to the verb, which may also help in identifying the PoS of
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surrounding words.
Constituency parsing and dependency parsing share a very similar ten-
dency, with a big improvement in the first fine-tuning steps preserved
along the rest of the process. As both tasks heavily rely on syntactic infor-
mation, this improvement intuitively makes sense. Dependency parsing
fine-tuned on the Penn Treebank (PTB) shows even higher results since
the probing is trained on the same dataset. Interestingly, the probe per-
forms similarly even if the parsing task is modeled as a sequence labeling
problem (as in constituency parsing), suggesting that the structure of syn-
tax trees emerges in such models even when no tree is explicitly involved
in the task. The initial drop observed for PoS tagging and monolingual
dependency parsing with UD, trained on UD EN EWT, may be related to
the size of the dataset, since UD EN EWT is significantly smaller than the
other datasets and therefore the models see less examples per checkpoint.

Semantics-related tasks. As shown in Figures 6.1 and 6.2, both metrics
follow different behaviours (again, shades represent the variability across
the 5 model runs). Paraphrase identification shows a small but constant
UUAS loss along the fine-tuning, while QA shows a slightly steeper loss
trend. Initially, SRL loses around 12 points, suggesting that it discards
some syntactic information right at the beginning, and follows a similar
downward trend afterwards. Those three tasks show a stable performance
along the fine-tuning for the DSpr metric, which implies that even if there
is a loss in UUAS information it does not impact the distance ordering.

6.2.0.2 Tree depth evaluation

The probe evaluates models with respect to their ability to recreate the
order of words specified by their depth in the parse tree, assessing their
ability to identify the root of the sentence as the least deep word (Root %)
and computing the Spearman correlation between the predicted and the
true depth ordering, averaging across all sentences with lengths between
5 and 50 (henceforth referred to as NSpr).
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Figure 6.3: Tree depth evaluation. Root % evolution.

Morpho-syntactic tasks Again, both metrics follow a similar behaviour,
as shown in Figures 6.3 and 6.4. PoS tagging shows a sustained loss of
performance, though softer than the loss observed for the distance met-
rics. This loss is slightly less pronounced for Root % than for Nspr, sug-
gesting that while depth-related syntactic information may be of less rele-
vance to PoS tagging than it is to the other morpho-syntactic tasks, identi-
fying the root of the sentence may be important, as the root of the sentence
is likely to become one of the ambiguous tags and therefore identifying
it may help to select the correct label. Constituency parsing and depen-
dency parsing share a similar tendency, with a big improvement in the first
steps preserved along the rest of the fine-tuning process, reinforcing the
intuition previously introduced in Section 6.2.0.1 about the structure of
syntax trees emerging in models even when no tree is explicitly involved
in the task. Again, an initial drop can be observed for PoS tagging and
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Figure 6.4: Tree depth evaluation. Nspr evolution.

monolingual dependency parsing with UD, most probably related to the
smaller size of the UD EN EWT dataset used in both tasks.

Semantics-related tasks Both metrics follow a similar behaviour, as
shown in Figures 6.3 and 6.4, with all tasks following a soft but sustained
loss of performance until the end of the fine-tuning process, specially
noticeable for Root %.

6.3 Target tasks performance evolution
To complement the results from the previous section, we include here
the performance curves of the target tasks for which the models are fine-
tuned, along with the performance curves of the structural probes metrics,
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facilitating the comparison of the evolution of the encoded syntax trees in-
formation and the target tasks performances. Along with the performance
curves of the four structural probes metrics (UUAS, Nspr, Root % and
Dspr), the following figures include the performance curves of the target
tasks.

PoS tagging. As shown in Figure 6.5, it reaches a 0.95 accuracy in
only two checkpoints, ending up with a 0.97 on the last checkpoint (Fig-
ure 6.5a). It shows a loss of accuracy for the four probing metrics all along
the fine-tuning process, especially noticeable for UUAS (Figure 6.5b) and
Root % (Figure 6.5d), suggesting that syntactic information is of less rel-
evance to PoS tagging than could be intuitively assumed. The loss is less
pronounced on depth-related metrics, maybe due to the fact that the root
of the sentence usually corresponds to the verb, which may also help in
identifying the PoS of surrounding words.

Dependency parsing with PTB SD. Figure 6.6 shows a steep learning
curve for the Labeled Attachment Score (LAS), as shown in Figure 6.6b,
reaching a performance of 0.90 LAS on the third checkpoint, up to a final
0.94. All four probing metrics show an important improvement in the first
fine-tuning step (Figures 6.6c to 6.6f), which is preserved along the rest
of the process. As the task heavily relies on syntactic information, this
improvement intuitively makes sense. Compared to the result of the other
dependency parsing experiments, this one show bigger improvements be-
cause the probing is trained on the same dataset.

Dependency parsing with EN UD EWT. As show in Figure 6.7, it
shows a shallower learning curve than other experiments (Figure 6.7b),
as the dataset is significantly smaller than the multilingual and PTB and
therefore the models see less examples per checkpoint, ending up with a
high performance of 0.9. After an initial drop (probably due to the dataset
size, as mentioned before), the probing metrics show a big improvement
in the first fine-tuning steps, preserved along the rest of the process (Fig-
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(a) Fine-tuning. Accuracy

(b) Structural probes tree distance
evaluation. UUAS

(c) Structural probes tree distance
evaluation. Dspr

(d) Structural probes tree depth evalu-
ation. Root %

(e) Structural probes tree depth evalu-
ation. Nspr.

Figure 6.5: POS Tagging. Fine-tuning & probing metrics evolution.
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(a) UAS (b) Fine-tuning. LAS

(c) Structural probes tree distance
evaluation. UUAS

(d) Structural probes tree distance
evaluation. Dspr.

(e) Structural probes tree depth evalu-
ation. Root %

(f) Structural probes tree depth evalua-
tion. Nspr

Figure 6.6: Dependency Parsing PTB SD. Fine-tuning & probing metrics evolution.
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ures 6.7c to 6.7f). As the task heavily relies on syntactic information, this
improvement intuitively makes sense.

Multilingual dependency parsing. As show in Figure 6.8, it shows a
steeper learning curve than dependency parsing with EN UD EWT, as it
is trained with a larger dataset (Figure 6.8b), reaching a performance of
0.87 in LAS. All four probing metrics show a big improvement in the
first fine-tuning step, preserved along the rest of the process (Figures 6.8c
to 6.8f). As the task heavily relies on syntactic information, this improve-
ment intuitively makes sense.

Constituency parsing. As shown in Figure 6.9, fine-tuning follows a
steep curve, quickly reaching an Accuracy of 0.87 that is further improved
to 0.9 in the last checkpoint (Figure 6.9a). All four probing metrics show
a big improvement in the first fine-tuning steps, preserved along the rest
of the process (Figures 6.9b to 6.9e). As the task heavily relies on syn-
tactic information, this improvement intuitively makes sense. Interest-
ingly, even though the task is modeled as a sequence labeling problem,
the probe performs similarly to the dependency parsing tasks, suggesting
that the structure of syntax trees emerges in such models even when no
tree is explicitly involved in the task.

Question answering. As shown in Figure 6.10, fine-tuning quickly hits
an F1 score of 0.73 on the first step, which is further improved to 0.88
in the last checkpoint (Figure 6.10a). All four probing metrics show a
clear loss trend (Figures 6.10b to 6.10e). The loss is specially noticeable
for UUAS and Root %, and more stable for the Spearman correlations,
suggesting that even if there is a loss of information it does not impact the
distance and depth orderings.

Paraphrase identification. As shown in Figure 6.11, fine-tuning starts
with an F1 score of 0.81 on the first step that is further improved to 0.90
in the last checkpoint (Figure 6.11a). Regarding accuracy, after reaching
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(a) UAS (b) Fine-tuning. LAS

(c) Structural probes tree distance
evaluation. UUAS

(d) Structural probes tree distance
evaluation. Dspr.

(e) Structural probes tree depth evalu-
ation. Root %

(f) Structural probes tree depth evalua-
tion. Nspr

Figure 6.7: Dependency Parsing EN UD EWT. Fine-tuning & probing metrics evolution.
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(a) UAS (b) Fine-tuning. LAS

(c) Structural probes tree distance
evaluation. UUAS

(d) Structural probes tree distance
evaluation. Dspr.

(e) Structural probes tree depth evalu-
ation. Root %

(f) Structural probes tree depth evalua-
tion. Nspr

Figure 6.8: Dependency Parsing UD Multilingual. Fine-tuning & probing metrics evo-
lution.
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(a) Fine-tuning. Accuracy

(b) Structural probes tree distance
evaluation. UUAS

(c) Structural probes tree distance
evaluation. Dspr.

(d) Structural probes tree depth evalu-
ation. Root %

(e) Structural probes tree depth evalu-
ation. Nspr

Figure 6.9: Constituent Parsing. Fine-tuning & probing metrics evolution.
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(a) Fine-tuning. F1

(b) Structural probes tree distance
evaluation. UUAS

(c) Structural probes tree distance
evaluation. Dspr.

(d) Structural probes tree depth evalu-
ation. Root %

(e) Structural probes tree depth evalu-
ation. Nspr

Figure 6.10: Question Answering. Fine-tuning & probing metrics evolution.
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0.69 on the first checkpoint it follows a shallower curve to a final 0.86
(Figure 6.11b). All four probing metrics follow a loss trend (Figures 6.11c
to 6.11f). The loss is specially noticeable for UUAS and Root %, and more
stable for the Spearman correlations, suggesting that even if there is a loss
of information it does not impact the distance and depth orderings.

Semantic Role Labeling. As shown in Figure 6.12, fine-tuning follows
a steep curve for F1, quickly reaching an F1 score of 0.71 on the first step
that is further improved to 0.82 in the last checkpoint (Figure 6.12a). All
four probing metrics follow a loss trend (Figures 6.12b to 6.12e). The loss
is specially noticeable for UUAS, which initially loses around 12 UUAS
points, and more stable for the Spearman correlations, suggesting that
even if there is a loss of information it does not impact the distance and
depth orderings.

6.4 Insights
We show that fine-tuning is not always a conservative process. Rather, the
syntactic information initially encoded in the models is forgotten (PoS
tagging), reinforced (parsing) or preserved (semantics-related tasks) in
different (sometimes unexpected) ways along the fine-tuning, depending
on the task. We expected that morpho-syntactic tasks clearly reinforce
syntactic information. However, PoS tagging forgets it, which, on the
other side, can also be justified linguistically (cf. Section 6.2.0.1). In
contrast, tasks closer to semantics mostly preserve the syntactic knowl-
edge initially encoded. This interesting observation reinforces recent find-
ings that models benefit from explicitly injecting syntactic information for
such tasks (Sachan et al., 2021b; Xu et al., 2021).
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(a) Fine-tuning. F1 (b) Accuracy

(c) Structural probes tree distance
evaluation. UUAS

(d) Structural probes tree distance
evaluation. Dspr.

(e) Structural probes tree depth evalu-
ation. Root %

(f) Structural probes tree depth evalua-
tion. Nspr

Figure 6.11: Paraphrase identification. Fine-tuning & probing metrics evolution.
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(a) Fine-tuning. F1

(b) Structural probes tree distance
evaluation. UUAS

(c) Structural probes tree distance
evaluation. Dspr.

(d) Structural probes tree depth evalu-
ation. Root %

(e) Structural probes tree depth evalu-
ation. Nspr

Figure 6.12: Semantic Role Labeling. Fine-tuning & probing metrics evolution.
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Chapter 7

CONCLUSIONS AND
FUTURE WORK

In this last chapter, we offer a summary of the findings and contributions
of this dissertation, answering the research questions stated in Section 1.2.
Next, we review relevant lines of future work related to the research topics
explored along this thesis. To conclude, we offer some final remarks about
the opportunities and dangers presented by big pretrained models, along
with new research directions given rise by them.

7.1 Summary of findings and contributions
Since the publication of the Transformer in 2017, the NLP field has expe-
rienced a total revolution. In particular, the publication of BERT marked
an inflection point, and traditional approaches to model NLP tasks were
quickly replaced by new architectures relying mainly on pretrained Trans-
former-based models able to generate powerful contextual embeddings.
The accessibility and usability of BERT-based pretrained models, avail-
able through many well-known libraries such as Tensorflow, PyTorch and
MXNet, contributed to the application of the models to many tasks, push-
ing the state of the art to new levels. Two main questions emerge: what do
these models learn, and how do they use this knowledge? This thesis aims
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at shedding light on these questions by offering an extensive empirical
comparison of the morpho-syntactic capabilities of different pretrained
Transformer-based autoencoding models. We thoroughly explored the
three main related dimensions of pretrained language models, namely:
1– language: monolingual (English and Spanish) and multilingual mod-
els; 2– pretraining objectives: (masked) language modeling and sentence-
based tasks such as next sentence prediction; and 3– amount of training
data. We now recapitulate how our methods addressed the research ob-
jectives and summarise our contributions and findings.

Syntactic generalisation abilities of pretrained models (Chapter 4).
While multilingual models achieve outstanding results in a wide range
of cross-lingual transfer tasks, it remained unknown whether the opti-
misation for different languages conditions the capacity of the models
to generalise over syntactic structures, and how languages with syntactic
phenomena of different complexity are affected.

• Do multilingual models generalise equally well across languages?
We show that multilingual models do not generalise equally well
across languages: while mBERT generalises better for phenomena
in English, XLM-R does it better for phenomena in Spanish.

• How well do monolingual models generalise over syntactic phe-
nomena compared to multilingual models? We show that there
is a substantial difference between the syntactic generalisation po-
tential of monolingual and multilingual models. But this difference
depends on the language: while for English monolingual models
(BERT and RoBERTa) offer a higher syntactic generalisation than
multilingual models (mBERT and XLM-R), this is not the case for
Spanish, for which multilingual models (XLM-R) generalise better.
While it is possible that the multilingual abstractions captured by
XLM-R become useful for morphologically rich languages such as
Spanish, this difference may also be related to the huge difference
in training data between the two models.
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• Does the presence of modifiers affect the generalisation capa-
bilities of the models? We show that performance of all models is
affected by the presence of modifiers, indicating that modeling the
complexity of the syntactic structure is still very challenging.

• Does the nature of the training procedures employed to train
the models affect the generalisation capabilities of the models?
The lack of NSP objective in RoBERTa-based models seems to
harm BETO but not XLM-R, reinforcing our intuition that BETO
may be improved with (much) more training data. Also, we show
that BERT-based models outperform all RoBERTa-based models in
the particular case of the Gross Syntactic State circuit, suggesting
that RoBERTa-based models may also benefit from complementary
training objectives in their pretraining procedure.

Impact of the pretraining data size on the syntactic abilities of the
models (Chapter 5). Training language models is expensive in terms
of time and resources, with two factors having a major impact in this
cost: the size of the model (in millions of parameters) and the amount
of data used to train it. We analysed the impact of pretraining data size
on the morpho-syntactic knowledge of the MiniBERTa models, a set of
RoBERTa models trained on incremental amounts of data.

• Do models pretrained with more data encode more syntactic
information and generalise better over syntactic phenomena?
Are they more robust to the presence of modifiers? We show
that models pretrained with more data encode better syntactic in-
formation (as measured by Hewitt and Manning’s structural probes)
and are more robust to the presence of modifiers. However, while
models pretrained with more data generalise better over syntactic
phenomena on average, they only offer a higher syntactic generali-
sation on half of the studied phenomena. Importantly, we show that
there is a high variability in the performance of models of equal size
and training data, initialised with different random seeds.
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• Do models pretrained with more data offer a better perfor-
mance on downstream tasks such as dependency parsing and
paraphrase identification? Indeed, we show that models with
more training data offer a better performance. However, while the
amount of training data between families grows exponentially, the
performance grows at a much slower rate, suggesting that there may
be a limit to the knowledge that a RoBERTa model can acquire
solely from raw training data.

• Is there a correlation between the language modeling abilities of
the models and their syntactic generalisation abilities? Corrobo-
rating findings in (Hu et al., 2020a), we show that there is no simple
relationship between the perplexity of the models and their average
syntactic generalisation capabilities, suggesting that it may be pos-
sible to complement information-theoretical metrics such as per-
plexity with metrics measuring specific types of knowledge, e.g.,
syntax, in order to develop and select NLU models that are poten-
tially more robust and efficient.

Evolution of syntactic knowledge during fine-tuning (Chapter 6). Al-
though pretrained models can be used frozen as feature extractors, they
are often fine-tuned on downstream tasks, and therefore it becomes in-
creasingly important to understand how the knowledge initially encoded
in the models evolves along the process. We studied how the encoded
syntactic knowledge (as measured by Hewitt and Manning’s structural
probes) evolves along the fine-tuning process of BERT on six different
tasks, covering all levels of the linguistic structure.

• Is the syntactic information initially encoded in the models for-
gotten, preserved, or reinforced along the fine-tuning process?
Does it depend on the task in which the models are fine-tuned?
We show that morpho-syntactic tasks experiment substantial changes
in the initial phases: while PoS tagging forgets a high amount of
syntactic information, dependency parsing clearly reinforces it. On
the other hand, semantics-related tasks maintain a more stable trend,
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mostly preserving the syntactic information. This finding highlights
the importance of syntactic information in tasks that are not explic-
itly syntactic in nature.

7.2 Future work
In what follows, we review relevant lines of future work related to the
research topics explored along this dissertation, and outline some inter-
esting subsequent research lines.

Testing the syntactic knowledge of models. In this thesis we have
studied the differences between monolingual and multilingual models,
and between the abilities of multilingual models across different languages.
Overall, we have shown the importance of testing models on a wider range
of languages, particularly morphologically rich ones. However, we lim-
ited our experiments to English and Spanish, covering a wide yet possibly
incomplete range of phenomena. As part of our future work, we plan to
assess the actual coverage of the test suites, extending them to ensure that
important phenomena are not left out. For example, we will extend the
Spanish tests to cover pronoun-dropping, a phenomena in which certain
classes of pronouns may be omitted when they can be pragmatically or
grammatically inferred. Moreover, we plan to develop SyntaxGyms for
a number of other selected languages, such as Portuguese, Russian and
Italian, extending the suites to cover language-specific phenomena, as we
already did for Spanish by expanding the agreement suite and adding a
whole new circuit regarding the linear order of a sentence’s basic con-
stituents.

Complementing stopping criteria during pretraining. Several works,
including this dissertation, have shown that the syntactic structure emerges
in pretrained language models, even though they are trained on raw text
without supervision and are never exposed to any type of syntactic signal.
The models are trained to maximize perplexity, a metric evaluating the
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language modeling capabilities of the models. However, we have shown
that there is no simple relationship between the perplexity of the mod-
els and their average syntactic generalisation capabilities: the variance
in intra-family SyntaxGym score is not explained by the perplexity dif-
ferences. Thus, an interesting question emerges: is it possible to com-
plement information-theoretical metrics such as perplexity with metrics
measuring specific types of knowledge, e.g., syntax? Can we find a spe-
cific set of probes covering different linguistic phenomena to be used as
a pretraining stopping criteria? We hypothesise that complementing per-
plexity with complementary metrics could lead to an improvement in the
encoding of the linguistic information on pretrained models, facilitating
the development of more robust and efficient models to solve NLU tasks.

Multi-task pretraining In this work, we have analysed the benefits of
MLM and NSP by comparing BERT-based and RoBERTa-based models
in several downstream tasks. Our findings suggest that larger and more
diverse training data can effectively compensate the lack of sentence-
based objectives, as proved by RoBERTa-based models outstanding per-
formance. However, our experiments also suggest that there may be a
limit to the amount of data that can be feed into a RoBERTa model and
the knowledge that the model can acquire. An alternative interesting work
line to improve the linguistic capabilities of Transformer-based models is
leveraging the knowledge form different pretraining objectives. For in-
stance, in (Aribandi et al., 2021), a study of the effect of multi-task pre-
training at the largest scale to date is presented. The authors argue that a
massive and diverse collection of pretraining tasks is generally preferable
to an expensive search for the best combination of pretraining tasks, be-
cause manually curating an ideal set of tasks for multi-task pretraining is
not straightforward. However, we wonder whether it is possible to find a
linguistically motivated combination of tasks that maximises the knowl-
edge of the models. While manually curating a selection of tasks is indeed
expensive, it may lead to the development of more robust models with a
stronger encoding of linguistic knowledge, while allowing us to escape
the bigger is better paradigm in which the field seems to be trapped.
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Adding a linguistic dimension to tokenizers Tokenizers are in charge
of splitting a text into words or subwords, which then are converted to
ids through a look-up table. Transformer-based models use a hybrid ap-
proach between word-level and character-level tokenization called “ sub-
word tokenization”, which allows them to have a reasonable vocabulary
size while being able to learn meaningful context-independent represen-
tations. It also allows the models to process words they have never seen
before, by decomposing them into known subwords. Subword tokenizers
are trained in an unsupervised manner along with the model, and rely on
two basic principles: 1) frequently used words should not be split into
smaller subwords; and 2) rare words should be decomposed into mean-
ingful subwords. However, even though it has been shown that tokenizers
play an important role in the downstream performance of pretrained mod-
els (Rust et al., 2020), little is known about the linguistic differences be-
tween the most commonly used tokenization techniques, namely, Word-
Piece, SentencePiece and BPE. We hypothesise that a linguistically moti-
vated tokenizer could help the models to better exploit the linguistic cues
of the text, e.g. by correctly splitting roots from prefixes and suffixes, dec-
lination, etc, leading to an improvement of the linguistic knowledge en-
coded in the models. In order to shed some light on this matter, we plan to
conduct a comparative study of current tokenization techniques to assess
whether there are linguistic differences between them, and whether dif-
ferent techniques may be more useful when applied to process some lan-
guages than others. In addition, we aim at developing language-specific
linguistically-motivated tokenizers and comparing them with current un-
supervised ones.

7.3 Final remarks on the opportunities, dan-
gers and limitations of pretrained models

The popularization of self-supervised learning with language models, in
particular with Transformer-based architectures, marked the beginning
of a revolution in the NLP field. This new successful transfer learning
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paradigm of training one model on a huge amount of data and adapting it
to many other applications is, of course, not exclusive of the NLP field,
and has been widely adopted by the AI community. In an attempt to
underscore their critically central yet incomplete character, such models
are generally referred to as foundation models. Indeed, their use is so
extended that the Stanford Institute for Human-Centered Artificial Intel-
ligence (HAI) has created the Center for Research on Foundation Models
(CRFM), an interdisciplinary initiative that aims to make fundamental ad-
vances in the study, development, and deployment of foundation models.
In an extensive report entitled On the opportunities and risks of founda-
tion models (Bommasani et al., 2021), the CRFM provides a thorough ac-
count of the opportunities and risks of such models, ranging from their ca-
pabilities (e.g., language, vision, robotics, reasoning, human interaction)
and technical principles (e.g., model architectures, training procedures,
data, systems, security, evaluation, theory) to their applications (e.g., law,
healthcare, education) and societal impact (e.g., inequity, misuse, eco-
nomic and environmental impact, legal and ethical considerations).

7.3.1 Dangers and limitations of big language models

As language models grow in terms of parameters and training data, so
does the body of research concerned with the possible risks associated
with this technology. A comprehensive study of the opportunities and
risks of big language models can be found in (Bommasani et al., 2021).
In particular, the authors warn about current lack of understanding of how
foundation models work, when do they fail, and what are they capable
of, warning about the dangers of homogenisation, as the defects of the
foundation model are inherited by all the adapted models downstream.
Along the same lines, Bender et al. (2021) offer a critical overview of
the risks of relying on ever-increasing size of LMs as the primary driver
of language technology, arguing for a reallocation of efforts towards ap-
proaches that avoid some of the associated risks while still benefiting of
improvements to language technology. They provide recommendations
including weighing the environmental and financial costs first, investing
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resources into curating and carefully documenting datasets, evaluating
how the planned approach fits into research and development goals and
supports stakeholder values, and encouraging research directions beyond
ever larger language models. In what follows, we offer a brief overview
of the main concerns raised, and provide some useful pointers to further
readings.

Misuse of language models. There are many harmful activities that rely
on text, such as misinformation, fake-news, spam, phishing and fraud-
ulent writing. Until not long ago, these applications relied on human
beings to write plausible and natural text. However, current language
models such as GPT-3 are already able to generate text that is difficult to
distinguish from human-written text, and could lower existing barriers to
perform these activities and increase their efficacy (Brown et al., 2020).

Economical and environmental cost. The computational costs of state-
of-the art AI research has increased 300,000x in recent years, leading to a
surprisingly large carbon footprint (Schwartz et al., 2019). Indeed, train-
ing and developing big language models requires large amounts of com-
putation. In the last years, different works have highlighted the need for
energy efficient model architectures and training paradigms to reduce neg-
ative environmental impact and inequitable access to resources, encourag-
ing authors to report the financial cost of developing, training, and running
models in order to provide baselines for the investigation of increasingly
efficient methods; cf., e.g., Strubell et al. (2019); Schwartz et al. (2019);
Bender et al. (2021). Since then, several recent works have embraced
these guidelines, including reports on their energy usage and cost/benefit
analysis (Brown et al., 2020; Pérez-Mayos et al., 2021; Austin et al., 2021;
Wei et al., 2021). Also, Strubell et al. (2019) proposes actionable rec-
ommendations to reduce costs and improve equity, namely 1) reporting
training time and sensitivity to hyperparameters; 2) a government-funded
academic compute cloud to provide equitable access to all researchers;
and 3) prioritising computationally efficient hardware and algorithms. To
facilitate the detection of energy bottlenecks and the evaluation of the en-
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ergy impact of different architectural choices, Cao et al. (2021) presents
IrEne, an interpretable and extensible energy prediction system that ac-
curately predicts the inference energy consumption of a wide range of
Transformer-based NLP models.

Diversity, social views and bias in training data. The recent success
of language models relies to a large extent in the huge amount of data
used to train them, mostly extracted from the Internet. For example, the
Common Crawl 1 consists of petabytes of data collected over 8 years of
web crawling, and a filtered version of it is included in the GPT-3 training
data. However, commonly used training data has been shown to have
problematic characteristics resulting in models that encode stereotypical
and derogatory associations along gender, race, ethnicity, and disability
status (Hutchinson et al., 2020; Lu et al., 2020; Brown et al., 2020; Bender
et al., 2021; Hovy and Prabhumoye, 2021). Bender et al. (2021) offers an
in-depth analysis on how large, uncurated, static datasets from the Internet
encode hegemonic views that are harmful to marginalised populations,
and recommend significant resource allocation towards dataset curation
and documentation practices. Several works analyse different sources of
bias and explore ways of recognizing and mitigating them (Sun et al.,
2019; Hovy and Prabhumoye, 2021; Bender et al., 2021).

Lack of accountability. Relying on ever larger datasets implies the
risk of incurring in documentation debt, that is, where the datasets are
both undocumented and too large to document, perpetuating the above-
mentioned harms without recourse and difficulting their mitigation (Ben-
der et al., 2021).

Are language models just stochastic parrots? As argued in (Bender
and Koller, 2020), it is important to understand the capabilities and lim-
itations of LMs. Although it may appear otherwise, LMs are not able to

1https://commoncrawl.org
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perform Natural Language Understanding (NLU), and their success is re-
stricted to tasks that can be approached by manipulating linguistic form
(Bender and Koller, 2020; Bender et al., 2021). Pushing the criticism fur-
ther, Noam Chomsky expressed his skepticism about GPT-3’s scientific
value: “It’s not a language model. It works just as well for impossible
languages as for actual languages. It is therefore refuted, if intended as a
language model, by normal scientific criteria. [...] Perhaps it’s useful for
some purpose, but it seems to tell us nothing about language or cognition
generally.”.2

7.3.2 New research directions
Foundation models have drastically changed the practice of NLP (Sec-
tion 2.5), and many tasks are now solved to an almost-human level using
mainly foundation models such as BERT and RoBERTa. At the same
time, foundation models have given rise to many new research directions:

Language variation. There are thousands of different languages in the
world, with important variations even within one language (cf. dialects) or
within one speaker (e.g., informal conversation compared to written lan-
guage). However, it is not clear how successfully current pretrained mod-
els handle language variation, and it remains an open question whether it
is possible to make foundation models that robustly and equitably repre-
sent language variations and their subtleties.

Multilinguality. A major challenge to modeling the more than 6.000
languages in the world is the lack of enough training data. Multilingual
models rely on the assumption that the shared structures and patterns be-
tween languages can lead to sharing and transfer from the high-resourced
languages (e.g., English) to the low-resources ones, making foundation
models possible for languages where it is not possible to train a mono-
lingual model. However, it remains unclear how much models trained

2https://www.youtube.com/watch?v=c6MU5zQwtT4
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on this data can represent aspects of other languages that are drastically
different from English, and it is not clear how much variation can fit in a
single model.

Grounded language acquisition. Compared to human language acqui-
sition, machine language acquisition is extremely inefficient, with current
models being trained on around three to four orders of magnitude more
data than most humans will ever hear or read. One of the main differences
is the fact that human language is grounded to the real world, e.g. we
learn the words to refer to common objects while pointing at them, and
we learn new languages with the support of images and sounds. Thus,
while ungrounded statistical learning from raw text is important, advanc-
ing grounded language learning for foundation models remains an impor-
tant direction to improve language acquisition efficiency.

Generalisation. As humans, we learn language in a way that allows us
to slot new knowledge into existing abstractions, and productively create
new grammatical sentences. In contrast, foundation models often do not
acquire such systematic abstractions. For example, when a model pro-
duces a linguistic construction accurately there is no guarantee that future
uses of that construction will be consistent, and this is aggravated when
applied to different domains. Making adaptable models able to mirror
human-like linguistic adaptation and language evolution without relying
on rigid linguistic rules is an open research area for the future of founda-
tion models.

Following the current trend, we anticipate that foundation models will
keep evolving and scaling over the next years, fueled by their huge com-
mercial incentives. However, as warned in (Bommasani et al., 2021; Ben-
der et al., 2021), this progress should be led not from industry alone, but
in collaboration with governments and academia, with the common goal
of establishing the norms that will enable the responsible research and
deployment of foundation models, promoting their social benefit and mit-
igating their social harms.
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7.4 Publications
The work in this dissertation primarily relates to the following peer-reviewed
articles (in order of publication):

• Pérez-Mayos, L.; Carlini, R.; Ballesteros, M.; Wanner, L. On the
evolution of syntactic information encoded by BERT’s contextu-
alised representations. In proceedings of the European Chapter of
the Association for Computational Linguistics (EACL 2021).

• Pérez-Mayos, L.; Táboas Garcı́a, A.; Mille, S.; Wanner, L. Assess-
ing the Syntactic Capabilities of Transformer-based Multilingual
Language Models. In findings of the Associ- ation for Computa-
tional Linguistics (ACL 2021).

• Pérez-Mayos, L.; Ballesteros, M.; Wanner, L. How much pretrain-
ing data do language models need to learn syntax?. In proceedings
of the 2021 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2021).

Additionally, while not directly related to the contents of this dissertation,
the following articles have also been published over the course of the
doctorate program:

• Fortuna, P.; Cortez, V.; Sozinho Ramalho, M.; Pérez-Mayos, L.
MIN PT: An European Portuguese Lexicon for Minorities Related
Terms. In proceedings of the 5th Workshop on Online Abuse and
Harms (WOAH 2021) on the ACL Anthology.

• Fortuna, P.; Pérez-Mayos, L.; AbuRa’ed, A.; Soler-Company, J.;
Wanner, L. Cartography of Natural Language Processing for Social
Good: Definitions, Statistics and White Spots. In proceedings of
the 1st Workshop on NLP for Positive Impact (2021) on the ACL
Anthology.
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Rodrı́guez. 2020. Parsing as pretraining. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
pages 9114–9121. AAAI Press.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan.
2015. Show and tell: A neural image caption generator. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 3156–3164. IEEE Computer
Society.

Elena Voita and Ivan Titov. 2020. Information-theoretic probing with
minimum description length. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages
183–196, Online. Association for Computational Linguistics.

Alex Wang and Kyunghyun Cho. 2019. BERT has a mouth, and it must
speak: BERT as a Markov random field language model. In Proceed-
ings of the Workshop on Methods for Optimizing and Evaluating Neu-
ral Language Generation, pages 30–36, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2018. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting

156

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aaai.org/ojs/index.php/AAAI/article/view/6446
https://doi.org/10.1109/CVPR.2015.7298935
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/W19-2304
https://doi.org/10.18653/v1/W19-2304
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446


“output” — 2022/4/21 — 13:11 — page 157 — #179

Neural Networks for NLP, pages 353–355, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. 2019a. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Yufei Wang, Mark Johnson, Stephen Wan, Yifang Sun, and Wei Wang.
2019b. How to best use syntax in semantic role labelling. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 5338–5343, Florence, Italy. Association for Compu-
tational Linguistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng,
Sheng-Fu Wang, and Samuel R. Bowman. 2020a. BLiMP: The bench-
mark of linguistic minimal pairs for English. Transactions of the Asso-
ciation for Computational Linguistics, 8:377–392.

Alex Warstadt, Yian Zhang, Xiaocheng Li, Haokun Liu, and Samuel R.
Bowman. 2020b. Learning which features matter: RoBERTa acquires
a preference for linguistic generalizations (eventually). In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 217–235, Online. Association for Com-
putational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei
Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2021.
Finetuned language models are zero-shot learners. ArXiv preprint,
abs/2109.01652.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy,
Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff
Kaufman, Michelle Franchini, et al. 2013. Ontonotes release 5.0
ldc2013t19. Linguistic Data Consortium, Philadelphia, PA, 23.

157

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/P19-1529
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://arxiv.org/abs/2109.01652


“output” — 2022/4/21 — 13:11 — page 158 — #180

Laura Wendlandt, Jonathan K. Kummerfeld, and Rada Mihalcea. 2018.
Factors influencing the surprising instability of word embeddings. In
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2092–2102, New Or-
leans, Louisiana. Association for Computational Linguistics.

Ethan Wilcox, Roger Levy, and Richard Futrell. 2019a. Hierarchical rep-
resentation in neural language models: Suppression and recovery of ex-
pectations. In Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pages 181–190,
Florence, Italy. Association for Computational Linguistics.

Ethan Wilcox, Roger Levy, and Richard Futrell. 2019b. Hierarchical rep-
resentation in neural language models: Suppression and recovery of ex-
pectations. In Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pages 181–190,
Florence, Italy. Association for Computational Linguistics.

Ethan Wilcox, Roger Levy, Takashi Morita, and Richard Futrell. 2018.
What do RNN language models learn about filler–gap dependencies?
In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages 211–221, Brus-
sels, Belgium. Association for Computational Linguistics.

Ethan Wilcox, Peng Qian, Richard Futrell, Miguel Ballesteros, and Roger
Levy. 2019c. Structural supervision improves learning of non-local
grammatical dependencies. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 3302–3312, Minneapolis, Minnesota. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,

158

https://doi.org/10.18653/v1/N18-1190
https://doi.org/10.18653/v1/W19-4819
https://doi.org/10.18653/v1/W19-4819
https://doi.org/10.18653/v1/W19-4819
https://doi.org/10.18653/v1/W19-4819
https://doi.org/10.18653/v1/W19-4819
https://doi.org/10.18653/v1/W19-4819
https://doi.org/10.18653/v1/W18-5423
https://doi.org/10.18653/v1/N19-1334
https://doi.org/10.18653/v1/N19-1334


“output” — 2022/4/21 — 13:11 — page 159 — #181

Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020a. Trans-
formers: State-of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Mor-
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