
“main” — 2022/4/21 — 14:41 — page i — #1

Lagrangian Duality for Efficient
Large-Scale Reinforcement Learning

Joan Bas Serrano

TESI DOCTORAL UPF / 2022

DIRECTOR DE LA TESI
Dr. Gergeley Neu

Departament de Tecnologies de la Informació i les Comunicacions

“main” — 2022/4/21 — 14:41 — page ii — #2

“main” — 2022/4/21 — 14:41 — page iii — #3

Acknowledgements

És difı́cil decidir per on començar a agraı̈r després de cinc anys acompanyat per
tanta gent fantàstica que han fet possible que aquest text fos possible.

I will first thank my supervisor Gergely Neu. Thank you for your effort and
dedication, for always finding time to help and guide me and for making me feel
that I was not alone in this project. I think I would have never finished this project
without the optimism, the hope and the energy that you always project. It has been
an honor to have such a brilliant and caring supervisor.

From the university, I also want to thank all the great people from the AI&ML
group. Especial thanks to Julia, Miquel, Lorenzo and Germano, who have ac-
companied me during the whole trip. I feel sad for leaving now that the group is
growing and becoming so active in both work and fun-wise. Gràcies també a la
gent del GTI i als respectius satèl·lits (Adri i Celi). Gràcies en especial a la Bea
per estar sempre preparada per ajudar-me en tot. I no puc acabar aquest paràgraf
sense donar gràcies a la Lydia, per salvar-me dels embolics administratius en els
que em poso cada dos per tres.

I also want to thank my coauthor and talented researcher Sebas for his contri-
butions in the “Logistic Q-learning” paper, to Yasin for giving me the opportunity
to spend some time doing research in Vietnam, and to my collegues from Social-
point for showing me how cool can it be doing applied research in a company.

De fora de la universitat, gràcies a la meva familia, en especial als meus pares,
David i Lluı̈sa, per, simplement, estar sempre al meu costat acompanyant-me.
Seguint amb la famı́lia, gràcies a tots els meus amics. Gracies per ajudar-me a de-
sconectar (massa i tot a vegades) i a relativitzar tots els problemes i preocupacions
derivats d’aquest projecte que trobareu a continuació. Especial gràcies a la Maria
i al Marçal per aguantar sempre les meves turres i fer-me costat en tot. També a
l’Anna, pel suport sobretot en la primera part del doctorat. I moltes gràcies Ari
pel teu afecte, per la teva sabiduria i per ser tant bona companyia; sense tu aquest
últim any de recta final hauria estat molt més dur.

No poso els noms de la resta de persones importantı́ssimes en la meva vida
perquè se’m desmadra el text (sı́, ho he provat). Moltes gràcies a tots per fer que
els moments difı́cils no ho fossin tant i que els bons ho fossin molt més.

iii

“main” — 2022/4/21 — 14:41 — page iv — #4

“main” — 2022/4/21 — 14:41 — page v — #5

Abstract
Reinforcement learning is an expanding field where very often there is a mismatch
between the high performance of the algorithms and their poor theoretical justi-
fication. For this reason, there is a need of algorithms that are well grounded in
theory, with strong mathematical guarantees and that are efficient in solving large-
scale problems. In this work we explore the linear programming approach for
optimal control in MDPs. In order to develop novel reinforcement learning algo-
rithms, we apply tools from constrained optimization to this linear programming
framework. In concrete, we propose a variety of new algorithms using techniques
like constraint relaxation, regularization or Lagrangian duality. We provide a for-
mal performance analysis for all of these algorithms, and evaluate them in a range
of benchmark tasks.

Keywords : Reinforcement learning, Lagrangian duality, linear programming,
constraint relaxation, convex optimization, entropy regularization.

Resum
L’aprenentatge per reforç (en anglès, reinforcement learning) és un camp en ex-
pansió on tot sovint la gran eficàcia dels algorismes no va de la mà d’una bona
justificació teòrica d’aquests. Per aquest motiu, hi ha la necessitat d’algorismes
ben fonamentats en la teoria, amb garanties matemàtiques robustes, i que a la ve-
gada siguin eficients a l’hora de resoldre problemes de gran escala. En aquest
treball explorem la formulació basada en programació lineal per al control òptim
en problemes de decisió de Markov. Per tal de desenvolupar nous algorismes
d’aprenentatge per reforç, apliquem eines del camp de l’optimització de fun-
cions convexes a la formulació basada en programació lineal. En concret, util-
itzem tècniques com la relaxació de condicions, la regularització, o la dualitat
Lagrangiana. També elaborem una anàlisi formal del rendiment d’aquests algo-
rismes i els avaluem en diferents tasques de referència.

Paraules clau : Aprenentatge per reforç, dualitat Lagrangiana, programació lin-
eal, relaxació de condicions, optimització convexa, regularització entròpica.

v

“main” — 2022/4/21 — 14:41 — page vi — #6

“main” — 2022/4/21 — 14:41 — page vii — #7

Table of contents

1 INTRODUCTION 1
1.1 An expanding field . 1
1.2 The RL problem . 2
1.3 A problem of RL . 3
1.4 Our approach . 5
1.5 Thesis structure . 6
1.6 Contributions . 7
1.7 Notation . 8

2 CONVEX OPTIMIZATION 9
2.1 Basic concepts . 9
2.2 Constrained optimization problems 10
2.3 Lagrangian duality . 11
2.4 Algorithms . 15

2.4.1 Mirror Descent . 17
2.4.2 Mirror prox . 19
2.4.3 Saddle-point optimization 23

3 REINFORCEMENT LEARNING 27
3.1 Markov Decision Process . 27
3.2 Average reward setting . 28
3.3 Normalized discounted reward setting 33
3.4 Approximate dynamic programming 35

3.4.1 Policy iteration . 35
3.4.2 Q-learning . 38

4 SADDLE-POINT OPTIMIZATION FOR SOLVING LARGE-SCALE
MARKOV DECISION PROCESSES 41
4.1 Introduction . 41
4.2 The linearly relaxed saddle-point problem 42

4.2.1 Effect of the relaxation 44

vii

“main” — 2022/4/21 — 14:41 — page viii — #8

4.3 Mirror prox for policy optimization 46
4.4 The proof of Theorem 4.3.1 . 49

4.4.1 Method 1: exploiting the duality gap 51
4.4.2 Method 2: exploiting mirror prox properties 52

4.5 Numerical illustration . 53
4.6 Conclusions . 55
4.7 Omitted proofs . 57

4.7.1 The proof of Lemma 4.4.2 57
4.7.2 The proof of Lemma 4.4.4 58
4.7.3 The proof of Lemma 4.4.5 59

5 LOGISTIC Q-LEARNING 61
5.1 Introduction . 61
5.2 REPS . 63
5.3 Q-REPS optimization problem 64

5.3.1 The primal problem . 65
5.3.2 The dual problem . 68

5.4 Approximate policy iteration: Q-REPS 72
5.4.1 Error propagation analysis 74

5.5 Policy evaluation via saddle-point optimization 78
5.5.1 The empirical LBE . 78
5.5.2 MinMax-Q-REPS . 81
5.5.3 SimMinMax-Q-REPS 85

5.6 Experiments . 89
5.7 Conclusions . 92
5.8 Omitted proofs . 93

5.8.1 Some useful tools . 93
5.8.2 The proof of Theorem 5.4.1 96
5.8.3 The proof of Theorem 5.4.2 98
5.8.4 The proof of Theorem 5.4.3 99
5.8.5 The proof of Theorem 5.5.1 110
5.8.6 The proof of Theorem 5.5.2 112

6 CONCLUSIONS AND FUTURE WORK 115

viii

“main” — 2022/4/21 — 14:41 — page 1 — #9

Chapter 1

INTRODUCTION

1.1 An expanding field

Not many areas have received so much excitement and hype during the last decade
as artificial intelligence (AI). It has attracted the attention of both industry and gen-
eral population, and anything related to AI has been linked in the collective imag-
inary to “future” and “progress” (not always in the good sense of these words).
AI is present in robotics, healthcare, finance, E-commerce, marketing or gaming
among others. It is there every time that a platform recommends us a movie, a
song or a product, when you get a fraud alarm from your bank, when an e-mail
goes to the spam folder or when you receive personalized advertisements as if
someone was reading your mind and knew your taste and interests.

AI is everywhere and, what is more important, it is still a young and grow-
ing field, which makes it very exciting and promising. From regular people to
world-leading companies, AI has gained everyone’s interest. Actually, as if it was
a modern version of the space race, some of the most important and popular com-
panies of the world like Google, Meta (Facebook), Amazon, Apple or Microsoft
invest every year insane amounts of resources in research in AI, and in most cases
it is not even for improving or developing products and services, but just for lead-
ing the AI race.

And why now? There are two main reasons that justify why the fast growth
of artificial intelligence has been possible this last decade and not before. The
first reason is that thanks to the Internet and Internet of things (IoT) devices, the
amount of generated data that can be used to train the AI models has grown ex-
ponentially. The second reason is that the increase in computational power makes
it possible to process large amounts of data, which was totally impossible before.
These two factors together with the huge increase in research, has made AI to
grow surprisingly fast, and bring groundbreaking news every year, in both funda-

1

“main” — 2022/4/21 — 14:41 — page 2 — #10

mental and applied AI.
It is a fact that AI is changing the world and the way how we interact with

it. Nevertheless, in this maelstrom of hype and promises, it is usually difficult to
distinguish between real progress and made up results that seem to have solved
artificial intelligence. As pointed out before, AI is still a very young field with
a lot of open questions and exciting challenges, and we are still very far from
anything with a flavor of a general AI.

Despite it is out of the scope of this work, we do not want to end this section
without pointing out that the usage of the powerful set of tools that AI brings is not
always aligned with the interests of the population, being sometimes harmful and
dangerous. During the last years we have seen how AI can be used to manipulate
large scale volumes of people based on their personal data, and even alter the
result of elections. This is allegedly the case of Trump’s or Brexit’s campaigns
among many others. Also, all the popular social networks use AI to maximize
the time spent in their platforms by creating dependence in their users. The used
methods are known to spread fake news and polarize opinion as a biproduct of
the final goal. These are just some examples to which we could add automatic
weapons, vigilance or super aggressive and personalized marketing campaigns.
We think it is of a vital importance to tackle these problems if we do not want
to end up in a dystopia where concepts as democracy, freedom or privacy start
losing their meaning. As a beloved uncle once said: ”with great power comes
great responsibility“.

While the present thesis does not aspire to address the possible misuses of AI
systems, it does aim to humbly contribute to the development of more reliable
and robust AI tools. Indeed, the goal of this thesis is to develop algorithms with a
solid theoretical backing and in particular to provide tools that are well-rooted in
theoretical foundations and come with verifyable guarantees on their performance.
This effort arguably addresses some of the most basic concerns associated with
learning systems: before we can make sure that our systems do not harm humans,
we need to make sure that they at least act according to their specifications and
achieve their intended goals efficiently.

1.2 The RL problem
The work of this thesis lies in a particular area of AI related to sequential decision-
making that is known as reinforcement learning (RL) [Szepesvári, 2010; Sutton
and Barto, 2018]. In concrete, the objective in RL is to learn how to behave in a
complex and unknown environment by interacting with it, in order to maximize
some measure of the reward collected in that environment.

RL is formalized mathematically using the Markov Decision Process (MDP)

2

“main” — 2022/4/21 — 14:41 — page 3 — #11

framework that will be described in detail later in this text. In the meanwhile, we
can understand it as a mathematical framework consisting of the following parts:

• States: A state is a configuration of the environment, and it should contain
all the important information of the problem that is modeled. For example,
in a chess game, the configuration of the board in a given moment is a state.

• Actions: The actions are used by the agent to modify the state. Every time
an agent is in a given state and applies an action, it moves to a next state.

• Transition probabilities: These are the probabilities of going from one state
to another when a given action is taken. They encode the dynamics of the
MDP.

• Rewards: Every time the agent picks an action in a given state, it receives a
reward.

In RL, an agent interacts with an environment defined as an MDP and tries to
select the best sequence of actions in order to maximize some notion of cumu-
lative rewards. The main challenge is that the reward function and the transition
probabilities are unknown. For this reason, it is important to explore the envi-
ronment to get some knowledge about the rewards and problem dynamics. The
balance between exploring the environment and exploiting those behaviors that we
have already seen to be useful is a very well known topic in RL: the exploration-
exploitation trade-off. Another feature that makes the RL problem particularly
challenging is the fact that the actions in the present have impact in the future.
Since different actions make the agent to move to different states, the sequence
of visited states depend on the actions taken by the agent. For this reason, it is
important to realize that maximizing the immediate reward is often not the best
strategy, and that the agent should learn strategies that collect large amounts of
reward in the long run.

1.3 A problem of RL
As it often happens in science and engineering, in RL (and AI in general), theory
and applications do not evolve at the same speed. RL is a very young field with
a lot of opportunities, where the cost of trying new ideas is very low and where
lot of new results appear every day. In such a field, it is easy to get lost in the
fight for beating benchmarks and forget about the foundations and mathematical
understanding. This produces a huge amount of literature based on improving the
performance of certain algorithms on particular datasets by tuning parameters or
introducing intuition-driven modifications.

3

“main” — 2022/4/21 — 14:41 — page 4 — #12

In many cases, this “trial and error” approach has worked very well and has
produced algorithms with impressive empirical performance, but with poor the-
oretical justification and analysis. This phenomena is increased by the usage of
deep neural networks (DNN), an incredibly powerful tool for which the theoretical
understanding is still very limited. As an example, we have the DQN algorithm
of Mnih et al. [2015], that is one of the most popular algorithms in RL due to
its simplicity and its great performance. Despite this, DQN is only partially jus-
tified by theory and has only extremely limited convergence guarantees. This is
not an isolated case; there are plenty of algorithms and tricks to “make things
work” that are present in the basic RL toolkit and that do not come from a very
well-founded theory. For example, the squared Bellman error is a broadly used
loss function in RL that is not directly motivated by theory and has a number of
undesirable properties. Furthermore, methods based on its recursive optimization
are known to be unstable. Despite this, the squared Bellman error appears in most
of the state-of-the-art algorithms like DQN [Mnih et al., 2015], TRPO [Schulman
et al., 2015], SAC [Haarnoja et al., 2018], A3C [Mnih et al., 2016], TD3 [Fuji-
moto et al., 2018], MPO [Abdolmaleki et al., 2018] or POLITEX [Abbasi-Yadkori
et al., 2019] among others.

On the other hand, algorithms that are well-grounded in theory are usually
not very practical, and their performance is not comparable to the ones mentioned
above, which makes them receive less attention in the performance-oriented world
described above.

Despite not being intrinsically bad, this situation has two major problems that
motivate the direction of our work. The first of these problems is related to the
heuristic used to push the progress of RL. While intuition and trial-and-error are
very useful for doing some exploratory work and motivating insightful questions,
a well developed theory is fundamental to keep progressing in promising direc-
tions. Furthermore, with the huge amount of applied research being published,
theory is crucially important to unify and explain the different and independent ex-
perimental results and methods. It is not until the theory and mathematical proofs
appear, that the beliefs, intuitions and observations become trustworthy knowl-
edge that can be used safely. Without a solid understanding of the algorithms and
the problems that we want to solve, it seems difficult to face the important chal-
lenges of RL. We need a solid and robust theoretical basis to build on top of if we
do not want to end up working in an alchemy-like discipline.

The second problem is that for some tasks, a perfect understanding of the algo-
rithm and its limitations is needed, in the form of a mathematical description and
characterization of its performance and convergence behaviour. This is the case
of tasks where safety is a must like applications in health, self-driving vehicles,
economy, or any other field where the cost of a mistake is very high.

For these reasons, the aim of this work is to develop algorithms that are well

4

“main” — 2022/4/21 — 14:41 — page 5 — #13

rooted in theory and provide a mathematical analysis of their performance.

1.4 Our approach
RL has its roots in the theory of control and sequential decision making, where it
is commonly assumed that the decision-maker has full access to a model of the
environment that governs the state dynamics. There, the most classical approach
to compute optimal policies in MDPs is through the method of dynamic program-
ming, understood in this context as computing fixed points of certain operators
[Bellman, 1957; Howard, 1960; Bertsekas, 2007].

The use and influence of dynamic-programming methods like value iteration
and policy iteration extend well beyond the world of decision and control the-
ory, as the underlying ideas serve as foundations for most algorithms for learning
optimal policies in unknown MDPs: the setting of RL.

While being hugely successful, DP-based methods have the downside of be-
ing somewhat incompatible with classical machine-learning tools that are rooted
in convex optimization. Indeed, most of the popular reductions of dynamic pro-
gramming to (non-)convex optimization are based on heuristics that are not di-
rectly motivated by theory, which is, in our opinion, one of the root causes of the
general lack of theoretical and mathematical understanding explained in the pre-
vious section. Examples include algorithms already mentioned like the celebrated
DQN that reduces value-function estimation to minimizing the “squared Bellman
error”, or the TRPO algorithm that reduces policy updates to minimizing a “reg-
ularized surrogate objective”. While these methods can be justified to a certain
extent, it is technically unknown if solving the resulting optimization problems
actually leads to a desirable solution to the original sequential decision-making
problem.

In this work we explore an alternative approach based on linear program-
ming (LP) that was first proposed roughly at the same time as the DP methods
of Bellman [1957]; Howard [1960]: the idea of LP-based methods for sequential
decision-making goes back to the works of de Ghellinck [1960]; Manne [1960];
Denardo [1970]. While LP-based methods seem to be more obscure in present
day than DP methods, they have the clear advantage that they lead to an objective
function directly amenable to modern large-scale optimization methods. Recent
reinforcement-learning methods inspired by the LP perspective include policy-
gradient and actor-critic methods [Sutton et al., 1999; Konda and Tsitsiklis, 1999]
and various “entropy-regularized” learning algorithms (e.g., Peters et al., 2010;
Zimin and Neu, 2013; Neu et al., 2017). While these methods promise to directly
tackle the policy-optimization problem through solving the underlying linear pro-
gram, most of them still require the computation of certain value functions through

5

“main” — 2022/4/21 — 14:41 — page 6 — #14

approximate dynamic programming, which is typically done through a minimiza-
tion of a heuristic objective like the squared Bellman error.

In our work, we argue for the viability of methods fully based on convex op-
timization, rooted in the LP approach. Such way of working allow us to develop
theoretically grounded practical algorithms for which it is possible to show per-
formance guarantees.

1.5 Thesis structure
The dissertation is structured in the following parts: the background (Chapters 2
and 3), the results regarding a linearly relaxed saddle-point problem for finding
optimal policies presented in [Bas-Serrano and Neu, 2020] (Chapter 4), the re-
sults regarding the new Q-REPS algorithmic scheme presented in [Bas-Serrano
et al., 2021] (Chapter 5), and a very brief conclusions chapter (Chapter 6). These
chapters are structured as follows:

• In Chapter 2 we cover the necessary background in convex optimization. In
the first part of this chapter we go through basic concepts and definitions,
present a formal framework for constrained optimization problems and in-
troduce Lagrangian duality and its implications. The second part of this
chapter is dedicated to convex optimization algorithms. There we present
two specific algorithms called “mirror descent” and “mirror prox”, and pro-
vide some theoretical guarantees regarding their convergence. We also show
how these algorithms can be used for saddle-point optimization.

• In Chapter 3 we cover the background regarding reinforcement learning.
We start by formulating the RL problem as a Markov decision process. We
then describe the two settings that are used in this work. We also provide
some tools for evaluating policies and finding the optimal policy in those
settings. Finally, we introduce some approximate dynamic programming
methods for finding optimal policies.

• In Chapter 4 we present our first set of contributions: an approach based
on a linearly relaxed version of a saddle-point problem that characterizes
the optimal solution in MDPs. We first introduce the bilinear saddle-point
formulation of the MDP optimization problem, and present a linearly pa-
rameterized version of this problem that enables to reduce the dimension-
ality of the problem. We characterize a set of assumptions that allow a
reduced-order saddle-point representation of the optimal policy, and pro-
pose an algorithm with convergence guarantees that shows the sufficiency
of the assumptions.

6

“main” — 2022/4/21 — 14:41 — page 7 — #15

• In Chapter 5 we present our second set of contributions: a new reinforce-
ment learning algorithm derived from a regularized linear-programming for-
mulation of optimal control in MDPs. We first present the constrained op-
timization problem that we aim to solve and from which we derive a new
loss function for policy evaluation that serves as an alternative to the widely
used squared Bellman error. We then use this new loss function that we call
logistic Bellman error to build the new algorithmic scheme called Q-REPS.
We also analyze the error propagation of Q-REPS. After that, we provide
a practical saddle-point algorithm (with two variants) and derive bounds on
their performance. Finally, we show the effectiveness of our method on a
range of benchmark problems.

• In Chapter 6 we extract some conclusions, point out the main directions for
future work and highlight the main takeaways of the work.

1.6 Contributions

The main contributions of this thesis are the results of the works published under
the names “Faster saddle-point optimization for solving large-scale Markov de-
cision processes” [Bas-Serrano and Neu, 2020] and “Logistic Q-Learning” [Bas-
Serrano et al., 2021], that are presented in Chapters 4 and 5 respectively.

In the first of these works we study the saddle-point formulation of MDPs
under linear approximation. The first main contribution of this work is the char-
acterization of a set of assumptions that allow a reduced-order saddle-point rep-
resentation of the optimal policy. These include a realizability assumption and a
newly identified coherence assumption about the subspaces used for approxima-
tion. The second main contribution is the design of a mirror-prox based optimiza-
tion algorithm with fast convergence rates that are independent of the size of the
state space. We show that the algorithm outputs an ε-optimal policy with runtime
guarantees of Õ (τ 2

mixm
2/ε), where m is the number of variables in the relaxed

optimization problem, and τmix is a notion of mixing time. The analysis of this
algorithm shows some useful tools for connecting the duality gap of the solution
output by our algorithm with the suboptimality gap of the extracted policy.

In the second work we develop and analyze a new reinforcement learning
algorithm called Q-REPS that is derived from a regularized linear programming
formulation of optimal control in MDPs. The algorithm is closely related to REPS
(Peters et al. [2010]) but significantly more practical due to (1) the introduction
of a Q-function that enables efficient model-free implementation and (2) a convex
loss function for policy evaluation that serves as a theoretically sound alternative
to the widely used squared Bellman error heuristic due to its favourable properties.

7

“main” — 2022/4/21 — 14:41 — page 8 — #16

We call this new loss function the logistic Bellman error (LBE), and we provide
an empirical version of the LBE that comes with a bound on its bias in terms of
the regularization parameters used in Q-REPS. Furthermore, we propose a semi-
empirical version of the LBE that is unbiased thanks to the usage of a simulator.
We also provide a practical implementation of the algorithm based on saddle-
point optimization, and an error propagation analysis that shows convergence of
the algorithm under some conditions. The analysis presented in this thesis differs
from the one in the original paper [Bas-Serrano et al., 2021] because some of the
results provided there were incorrect due to errors in the proofs. In this chapter we
develop a new analysis fixing those errors at the price of introducing some more
restrictive assumptions. The results are supported by a set of experiments testing
the performance of Q-REPS in different standard environments, and comparing
them with the performance of some state-of-the-art on-policy algorithms. The
experiments show great performance of Q-REPS that in all cases is comparable
or outperforms the competing algorithms.

1.7 Notation
We denote inner products over vector spaces by 〈·, ·〉. The set of probability dis-
tributions on the finite set S is denoted as PS =

{
p ∈ RS+ :

∑
s∈S p(s) = 1

}
, or

just P if the set ξ is clear by context. Sums spanning over the spaces x ∈ X and
a ∈ A are simply denoted by

∑
x or

∑
a, and we write p(x, a) ∝ q(x, a) to signify

that p(x, a) = q(x, a)/
∑

x′,a′ q(x
′, a′) for a nonnegative function q over X × A.

We denote by 1 N the N -dimensional vector with all the entries equal to 1, or just
1 when N is clear by the context.

8

“main” — 2022/4/21 — 14:41 — page 9 — #17

Chapter 2

CONVEX OPTIMIZATION

This chapter serves as an overview of the concepts about convex optimization that
are used in the rest of the work. The presented results are quite standard and we
make an informal presentation. For a more rigorous treatment one can check Boyd
et al., 2004, Chapters 1 to 6 for Sections 2.1 to 2.3 and Bubeck, 2014, Chapters 4
and 5 for Section 2.4.

2.1 Basic concepts
Let’s start from the beginning: presenting convex sets, convex functions, and some
useful definitions and properties regarding them. We say that a set S is convex if
for all x, y ∈ S and for all α ∈ (0, 1)

αx+ (1− α)y ∈ S.

We also introduce the following definitions regarding a set S:

• The affine hull of a set S, denoted as aff(S), is the set of all affine combina-
tions of points in S:

aff(S) = {θ1x1 + · · · θkxk|x1, .., xk ∈ S, θ1 + · · ·+ θ = 1}.

• The interior of a set S , denoted as int(S), is defined as follows: Let’s define
the ball of radious ε > 0 and centered in x ∈ S asBε(x) = {y : ‖x− y‖2 ≤
ε} ⊂ S . Then x ∈ S is an interior point of S if there exists an ε such that
Bε(x) ⊂ S, and int(S) = {x ∈ S : x is an interior point}.

• The relative interior of a set S, denoted as relint(S), is the interior of S
relative to aff(S):

relint(S) = {x ∈ S|Bε(x) ∩ aff(S) ⊆ S for some ε ≥ 0}.

9

“main” — 2022/4/21 — 14:41 — page 10 — #18

• The boundary of a set S denoted as ∂S is the set of points in Rd \ S such
that for all ε > 0 the set Bε(x) contains points from S and Sc = Rd \ S .

• Open and closed sets: A set S is open if int(S) = S, and is closed if its
complement Sc is open.

Regarding convex functions, we say that a function f : Rd → R is convex if
for all x, y ∈ dom(f) and for all α ∈ (0, 1)

f(αx+ (1− α)y) ≤ αf(x)− (1− α)f(y). (2.1)

If the above condition is satisfied with strict inequality whenever x 6= y, we then
say that the function is strictly convex. We say that f is concave if −f is convex,
and strictly concave if −f is strictly convex.

Let’s now define the dual norm of a norm ‖·‖ as

‖g‖∗ = sup
x∈Rd:‖x‖≤1

〈g, x〉 .

For example, if the norm is the `1 norm, then the dual norm is the `∞ norm and
vice-versa, and if the norm is the `2 norm, the dual norm is itself. For a convex
function f : X ⊂ Rd → R , we say that f is

• L-Lipschitz w.r.t. ‖·‖ if |f(x)− f(y)| ≤ L‖x− y‖.
• β-smooth w.r.t. ‖·‖ if ‖∇f(x)−∇f(y)‖∗ ≤ β‖x− y‖.
• σ-strongly convex w.r.t. ‖·‖ if f(x)− f(y) ≤ 〈∇f(x), x− y〉 − σ

2
‖x− y‖2

or equivalently 〈∇f(x)−∇f(y), x− y〉 ≥ σ‖x− y‖2.

2.2 Constrained optimization problems
Let’s write the problem of minimizing a function f(x) with x ∈ Rd subject to a set
of inequality constraints gi(x) ≤ 0 for i = 1, ...,m and a set of equality constrains
hj(x) = 0 for j = 1, ..., n as

minimizex∈D f(x)

s.t. gi(x) ≤ 0 i = 1, ...,m

hj(x) = 0 j = 1, ..., n,

(2.2)

where we assume thatD = dom(f)∩⋂i dom(gi)∩
⋂
j dom(hj) is nonempty. We

say that a point x ∈ D is feasible if it satisfies the set of constraints, and we say
that the optimization problem is feasible if there exists at least one feasible point.
The feasible set C is the set of all feasible points.

The optimization problem 2.2 is a convex optimization problem if the follow-
ing conditions hold:

10

“main” — 2022/4/21 — 14:41 — page 11 — #19

• The objective function f(x) is convex.

• The inequality constraints gi(x) ≤ 0 are convex.

• The equality constraints are affine hj(x) = aT
jx+ bj .

Furthermore, if all the objective function, the inequality constraints and the equal-
ity constraints are affine, then we call it a linear program (LP):

minimizex∈D 〈c, x〉+ d

s.t. Gx ≤ h

Ax = b.

(2.3)

In this work, we will mainly work with convex (sometimes also linear) problems,
which will allow us to use tools from convex optimization.

The following lemma presents an important result regarding the characteristics
of the solution of convex optimization problems :

Proposition 2.2.1. (First-order optimality condition, Bubeck, 2014, Proposition
1.3) Let f be convex and C a closed convex set on which f is differentiable. Then

x∗ ∈ arg min
x∈C

f(x)

if and only if
〈x∗ − x,∇f(x∗)〉 ≤ 0 ∀x ∈ C. (2.4)

2.3 Lagrangian duality
Lagrangian duality (or just duality) is a principle that says that optimization prob-
lems can be viewed from two different prespectives: the primal problem, which is
the original constrained optimization problem that we want to solve, and the dual
problem, a problem related to the primal in a very special way that we explain
below. The concept of duality and its implications are extremely important in op-
timization (specially in convex optimization), and as we will see in later chapters,
duality is one of the key tools of this work. There, in order to develop algorithms
and analyze them, we will navigating between the primal and the dual and take
advantage of both.

Consider an optimization problem (not necessarily convex) in the form of
(2.2). Its Lagrangian L : Rd × Rm × Rn → R is obtained by summing to

11

“main” — 2022/4/21 — 14:41 — page 12 — #20

the objective function a wheighted sum of the constraint functions g1,...,m(x) and
h1,...,n(x):

L(x, λ, ν) = f(x) +
m∑
i=1

λigi(x) +
n∑
j=1

νjhj(x), (2.5)

with dom(L) = D × Rm × Rn and where the weights λ1, ..., λm and ν1, ..., νn
are variables of the Lagrangian function called dual variables or Lagrange mul-
tipliers. To gain some intuition about this new function, let’s take a look at the
following min-max problem:

min
x∈Rd

max
λ∈(R+)m,ν∈Rn

L(x, λ, ν) = f(x) +
m∑
i=1

λigi(x) +
n∑
j=1

νjhj(x). (2.6)

where we have imposed the Lagrange multipliers of the inequality constraints to
be positive. Thinking about this problem as a min-max game, we can easily see
that if the constraints in (2.2) are not satisfied, then the max player can assign
values to λ and ν to make the Lagrangian arbitrarily large. It is obvious that the
min player does not want this to happen, and since he is the first one playing, the
best strategy for him will always be to satisfy the constraints. This observation
shows that the solution of problems (2.2) and (2.6) are the same. So far this is
not very helpful since solving (2.6) is a hard problem. Nevertheless, under some
conditions the order of the min an the max can be swapped, which opens very
interesting possibilities. Once we have given some intuition about the results that
we are going to present, we can move to a more formal explanation.

We start with the definition of the Lagrange dual function G : Rm ×Rn → R:

G(λ, ν) = inf
x∈D
L(x, λ, ν). (2.7)

Since the Lagrange dual function is the pointwise infimum of affine functions of
λ and ν, it is always a concave function.

Proposition 2.3.1. Let x∗ be an optimal point of the primal problem. Then, for
all (λ, ν) with λ ≥ 0, we have that G(λ, ν) is a lower bound on the optimal value
of the primal problem:

G(λ, ν) ≤ f(x∗).

Proof. This can be easily verified by realizing that for any feasible point x̃, we
have

L(x̃, λ, ν) = f(x̃) +
m∑
i=1

λigi(x̃) +
n∑
j=1

νjhj(x̃) ≤ f(x̃),

since the terms λigi(x̃) are negative for i = 1, ...,m and the terms νjhj(x̃) ≤ f(x̃)
are zero for j = 1, ..., n. Hence

12

“main” — 2022/4/21 — 14:41 — page 13 — #21

G(λ, ν) = inf
x∈D
L(x, λ, ν) ≤ L(x̃, λ, ν) ≤ f(x̃).

Since this last inequality holds for any feasible point x̃, it also holds for the optimal
x∗.

To find the values of λ and ν for which the bound is more tight (i.e. where
the dual G takes the maximum value), one has to solve the Lagrange dual problem
(usually called the dual):

maximize G(λ, ν)

s.t. λ ≥ 0.
(2.8)

The fact that the solution of the dual is a lower bound on the solution of the
primal is known as weak duality. In this work, we will actually use a stronger but
less general result called strong duality, that implies that the optimal value of the
primal equals the optimal value of the dual. The following proposition shows two
sufficient conditions for strong duality to hold.

Proposition 2.3.2. (Slater’s condition) When the primal is a convex problem and
there exists an x ∈ relint(D) such that

gi(x) < 0 i = 1, ...,m

hj(x) = 0 j = 1, ..., n

then strong duality holds.

If any of the inequality constraints gi is affine, the Slater’s condition can be
refined to only require non-strict feasibility for that constraint: gi(x) ≤ 0. There
are many other results that establish conditions on the problem beyond convex-
ity under which strong duality holds. Those conditions are known as constraint
qualifications.

Going back to the intuition that brought equation (2.6), strong duality is equiv-
alent to saying that the order of the min and the max players can be switched, i.e.,
that

min
x∈D

max
λ∈(R+)m,ν∈Rn

L(x, λ, ν) = max
λ∈(R+)m,ν∈Rn

min
x∈D
L(x, λ, ν).

This result is very closely connected to a more general result presented in Sion’s
minimax Theorem, that states that for (most) continuous functions f(x, y) that
are convex in the first argument x on a compact convex set X , and concave in the
second argument y on a convex set Y , it holds that

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).

The following proposition shows another very interesting result regarding the
relation between the dual variables λi and the equality constraints gi(x):

13

“main” — 2022/4/21 — 14:41 — page 14 — #22

Proposition 2.3.3. (Complementary slackness) Let x∗ be an optimal point of the
primal problem and (λ∗, ν∗) be optimal points of the dual problem. Then, for
i = 1, ...,m, whether λ∗i = 0 or gi(x∗) = 0.

Proof. Let x∗ be an optimal point of the primal problem and (λ∗, ν∗) the optimal
point of the dual problem. Let’s also assume that strong duality holds. Then, we
can write the following:

f(x∗) = G(λ∗, ν∗)

= inf
x

(
f(x) +

m∑
i=1

λ∗i gi(x) +
n∑
j=1

ν∗j hj(x)

)

≤ f(x∗) +
m∑
i=1

λ∗i gi(x
∗) +

n∑
j=1

ν∗j hj(x
∗)

≤ f(x∗).

Where the first equality is due to strong duality and the last inequality is because
the terms that disappear are all negative or zero. In the above derivation we can
see that both inequalities have to hold with equality. For the first inequality, this
implies that x∗ minimizes L(x, λ∗, ν∗) over x. For the second inequality, the im-
plication is that

m∑
i=1

λ∗i gi(x
∗) = 0.

Since all the terms of the above sum are nonpositive, this implies that λ∗i gi(x
∗) = 0

for i = 1, ...,m, which concludes the proof.

Another important result in Lagrangian duality theory is presented in the fol-
lowing proposition that establish necessary (and sufficient under some conditions)
optimality conditions:

Proposition 2.3.4. (Karush–Kuhn–Tucker (KKT) conditions, Boyd et al., 2004,
Section 5.5.3.) Let x∗ be an optimal point of the primal problem and (λ∗, ν∗) the
optimal point of the dual problem. Assume also that strong duality holds. Then,
for all i = 1, ...,m and j = 1, ..., n, the following conditions are satisfied:

14

“main” — 2022/4/21 — 14:41 — page 15 — #23

gi(x
∗) ≤ 0

hj(x
∗) = 0

λi ≥ 0

λigi(x
∗) = 0

∇xf(x∗) +
m∑
i=1

λ∗i∇xgi(x
∗) +

n∑
j=1

ν∗j∇xhj(x
∗) = 0

If the primal problem is convex, the KKT conditions become also suficient, mean-
ing that if a set of points x, λ, ν satisfy the KKT conditions, then x is primal
optimal and λ, ν are dual optimal.

It is interesting to see that the last condition comes from the fact that the gra-
dient of L(x, λ∗, ν∗) w.r.t. x must vanish at x = x∗.

2.4 Algorithms
The objective of this section is not to make an overview of existing convex opti-
mization algorithms nor a review of the state of the art. The aim is to introduce
the foundations to understand mirror descent and other algorithms based on the
same principles, since the algorithms presented in this work are closely related to
them.

Bregman divergence and Legendre functions

We start presenting a tool that will constitute a key part of the algorithms presented
in this chapter and the rest of this work: the Bregman divergence. For a convex
function Φ : Rd → R with D = dom(Φ), the Bregman divergence between
x ∈ Rd and y ∈ D is defined as

DΦ(x‖y) = Φ(x)− Φ(y)− 〈∇Φ(y), x− y〉 (2.9)

Intuitively, a Bregman divergence gives us a measure of difference between two
points x and y with respect to some function Φ. In this sense, Bregman diver-
gences are similar to distances where the function Φ acts as the distance generat-
ing norm. This analogy is useful from the intuitive point of view, but Bregman
divergences are not distances since they are not symmetric (in general) nor satisfy
the triangle inequality.

Geometrically, DΦ(x‖y) can be understood as the distance between Φ(x) and
the Taylor approximation of Φ(x) from y, and gives us a notion of how convex the

15

“main” — 2022/4/21 — 14:41 — page 16 — #24

function Φ is between the points x and y: if the function is very flat between the
two points, then the Taylor approximation at x will be “good” and the Bregman
divergence will be small, and if the function is very convex, the approximation
will be “bad” so we will have a large Bregman divergence. We will often denote
DΦ as D when Φ is clear by the context.

Here we show some useful properties of the Bergman divergence DΦ(x‖y):

• Is strictly convex in his first argument x.

• Is nonnegative, meaning that DΦ(x‖y) ≥ 0, and DΦ(x‖y) = 0 if an only if
x = y.

• Is linear in Φ: DΦ+aΦ′(x‖y) = DΦ(x‖y) + aDΦ′(x‖y).

• The gradient of DΦ(x‖y) w.r.t. x satisfies ∂D(x‖y)
∂x

= ∇Φ(x)−∇Φ(y).

We also present a very useful equality known as the three points identity:

D(x‖y) +D(z‖x)−D(z‖y) = 〈∇Φ(x)−∇Φ(y), x− z〉 . (2.10)

To gain some insight about it we can realize that D(z‖x) is the distance
between Φ(z) and the Taylor approximation of Φ(z) from x, and D(z‖y) −
D(x‖y) = Φ(z) − ∇Φ(y)(z − x) is the distance between Φ(z) and the Taylor
approximation of Φ(z) but from y instead of x. Therefore, the term in the right
hand side of (2.10), is exactly the difference between using the gradient in y in-
stead of x.

As a direct consequence of the three points identity together with Proposition
2.2.1, we have another useful result known as the generalized Pythagorean theo-
rem for Bregman divergences that says the following: let C be a convex set, y ∈ C,
and x = arg minx∈C D(x‖x′) be the projection of a point x′ in C. Then,

D(x‖x′) +D(y‖x)−D(y‖x′) ≤ 0. (2.11)

We say that the convex function Φ is a Legendre function if:

• int(D) is non-empty,

• Φ is differentiable and strictly convex in int(D), and

• limn→∞ ‖∇Φ(xn)‖ = ∞ for any sequence of {xn}n with xn ∈ C for all n
and limn→∞ xn is in the boundary of int(D).

Roughly speaking, a Legendre function is a strongly convex function whose
gradient blows up in the boundaries of its domain. Defining the Fenchel conjugate
of a function Φ as Φ∗(u) = supx 〈x, u〉−Φ(x), we have that if Φ is Legendre, the
following statements are true:

16

“main” — 2022/4/21 — 14:41 — page 17 — #25

• The Fenchel conjugate Φ∗ is Legendre.

• ∇Φ is a bijection between int(dom(Φ)) and int(dom(Φ∗)) with ∇Φ−1 =
∇Φ∗.

• DΦ(x, y) = DΦ∗(∇Φ(y),∇Φ(x)) for all x, y ∈ dom(Φ).

Theorem 2.4.1. (Lattimore and Szepesvári, 2020, Theorem 26.15). Let Φ : Rd →
R be Legendre, C ⊂ Rd a non-empty, closed, convex set with C ∩ dom(Φ) non-
empty, and assume that x̃ = arg minx∈Rd Φ(x) exists. Then,

1. x∗ = arg minx∈C Φ(x) exists and in unique.

2. x∗ = arg minx∈C DΦ(z, x̃).

Theorem 2.4.1 shows that minimizing a Legendre function Φ in a convex set C
is equivalent to finding the unconstrained minimum in dom(Φ) and projecting that
point to C. As we will see soon, this property is very useful in the implementation
of the algorithms presented below.

2.4.1 Mirror Descent
Consider the constrained optimization problem arg minx∈C f(x) with f : Rd →
R. Mirror descent (MD) needs two parameters which are a convex (and usually
Legendre) function Φ : Rd → R with domain D such that C is in its closure, and
a learning rate η ≥ 0. Then, at k = 0 MD proposes

x0 ∈ arg min
x∈C∩D

Φ(x),

and for k ≥ 1 it selects

xk = arg min
x∈C∩D

〈∇f(xk−1), x〉+
1

η
DΦ(x‖xk−1)

After K iterations, we define x̄K = 1
K

∑K
k=0 xk. With this procedure, mirror

descent creates a sequence of points x0, x1, x2... that (hopefully) converge to x∗ =
arg minx∈C f(x).

At each iteration k, MD looks for a trade-off between minimizing the lin-
earization of the function (go as far as possible in the direction of −∇f(x)), and
not going too far from the previous point xk in terms of the Bregman divergence
induced by Φ.

The update performed by mirror descent at each time step k for k ≥ 1 is
equivalent to the following two-step procedure:

∇Φ(yk) = ∇Φ(xk−1)− η∇f(xk−1)

17

“main” — 2022/4/21 — 14:41 — page 18 — #26

and

xk = arg min
x∈C∩D

DΦ(yk‖xk−1).

We find this alternative presentation of the algorithm less insightful but we add it
here because it is used in the proof of the following theorem that gives a bound on
the convergence rate of mirror descent:

Theorem 2.4.2. (Bubeck, 2014, Theorem 4.2) Let Φ be a mirror map σ-strongly
convex on C ∩ D w.r.t. ‖·‖. Let R2 = supx∈C∩D Φ(x) − Φ(x0), and f be a
convex and L-Lipschitz w.r.t. ‖·‖. Then, after K iterations, mirror descent with

η = R
L

√
2
σT

satisfies

f (x̄K)− f(x∗) ≤ RL

√
2

σK

Proof. Let x ∈ C ∩ D. Then, we have

f(xk)−f(x) ≤ ∇〈f(xk), (xk − x〉
(due to convexity of f)

=
1

η
(∇Φ(xk)−∇Φ(yk+1))>(xk − x)

(by definition of mirror descent)

=
1

η
(DΦ(x‖xk) +DΦ(xk‖yk+1)−DΦ(x‖yk+1))

(using the three points identity (2.10))

≤ 1

η
(DΦ(x‖xk) +DΦ(xk‖yk+1)−DΦ(x‖xk+1)−DΦ(xk+1‖yk+1))

(using the generalized Pythagorean theorem (2.11))

Summing over epochs some of the terms telescope and we get

K∑
k=0

f(xk)− f(x) ≤ 1

η

(
D(x‖x0) +

K∑
k=0

(DΦ(xk‖yk+1)−DΦ(xk+1‖yk+1))

)
.

(2.12)
It remains to bound the terms DΦ(xk‖yk+1) − DΦ(xk+1‖yk+1). To do so, we

use the σ-strong convexity of Φ and the inequality az − bz2 ≤ a2

4b
,∀z ∈ R :

18

“main” — 2022/4/21 — 14:41 — page 19 — #27

DΦ(xk, yk+1)−DΦ(xk+1, yk+1) = Φ(xk)− Φ(xk+1)−∇Φ(yk+1)>(xk − xk+1)

≤ (∇Φ(xk)−∇Φ(yk+1))>(xk − xk+1)− σ

2
‖xk − xk+1‖2

= ηg>k (xk − xk+1)− σ

2
‖xk − xk+1‖2

≤ ηL ‖xk − xk+1‖ −
σ

2
‖xk − xk+1‖2

≤ (ηL)2

2σ

Plugging this result into (2.12) we get

K∑
k=1

(f(xk)− f(x)) ≤ DΦ(x, x1)

η
+ η

L2K

2σ
.

Plugging the choice of η from the statement of the theorem concludes the proof.

2.4.2 Mirror prox
Mirror prox (MP) was first introduced by Nemirovski [2004] and can be seen like
a more sophisticated version of mirror descent. As in mirror descent, to solve an
optimization problem arg minx∈C∩D f(x), mirror prox is initialized with a mirror
map Φ with domain D such that C is in its closure and a learning rate η, and at
k = 0

x0 ∈ arg min
x∈C∩D

Φ(x).

For k ≥ 1 is when mirror prox differs from mirror descent, since it performs the
following two-step update:

x̂k = arg min
x∈C∩D

〈∇f(xk−1), x〉+
1

η
DΦ(x, xk−1),

xk = arg min
x∈C∩D

〈∇f(x̂k), x〉+
1

η
DΦ(x, xk−1).

AfterK iterations, we define x̄K = 1
K

∑K
k=0 x̂k+1. In the first step of this two-step

update, mirror prox performs a regular step as mirror descent would do. But after
this, mirror prox goes back to the previous point xk−1 and makes another step but
with the gradient of x̂k instead of xk−1. The first of these steps is often referred to
as an extrapolation step and it serves to enhance the stability of the algorithm.

19

“main” — 2022/4/21 — 14:41 — page 20 — #28

As in mirror descent, the update rule of mirror prox can also be rewritten in
the following alternative way:

∇Φ(x̂′k) = ∇Φ(xk−1)− η∇f(xk−1)

x̂k = arg min
x∈C∩D

DΦ(x‖x̂′k)

∇Φ(x′k) = ∇Φ(xk−1)− η∇f(x̂k)

xk = arg min
x∈C∩D

DΦ(x‖x′k)

We now present the following theorem and subsequent corollaries that show
interesting results regarding the convergence of mirror prox:

Theorem 2.4.3. (Rakhlin and Sridharan, 2013, Lemma 1) Let Φ be σ-strongly
convex and∇f be L-Lipschitz. Then, for all k, Mirror Prox guarantees

η 〈x̂k+1 − x,∇f(x̂k+1)〉 ≤ D(x‖xk)−D(x‖xk+1)− σ − ηL
4

‖xk+1 − xk‖2 .

holds for every x ∈ C ∩ D and k > 0.

Proof. The proof will rely on repeatedly using the three points identity (2.10). We
first use it to show

D(x‖xk+1) = D(x‖xk)−D(xk+1‖xk) + 〈xk+1 − x,∇Φ(xk+1)−∇Φ(xk)〉
≤ D(x‖xk)−D(xk+1‖xk) + η 〈x− xk+1,∇f(x̂k+1)〉 ,

where we also used the first-order optimality condition for xk+1 in the second step:

〈∇Φ(xk)−∇Φ(xk+1)− η∇f(x̂k+1), xk+1 − x〉 ≥ 0.

Furthermore, we have

〈x− xk+1,∇f(x̂k+1)〉 = 〈x− x̂k+1,∇f(x̂k+1)〉+ 〈x̂k+1 − xk+1,∇f(x̂k+1)〉 .

Using this bound together with the three-points identity

D(xk+1‖xk) =D(xk+1‖x̂k+1) +D(x̂k+1‖xk)
+ 〈∇Φ(xk)−∇Φ(x̂k+1), x̂k+1 − xk+1〉 ,

20

“main” — 2022/4/21 — 14:41 — page 21 — #29

we obtain

D(x‖xk+1) ≤ D(x‖xk)−D(xk+1‖xk) + η 〈x̂k+1 − xk+1,∇f(x̂k+1)〉
+ η 〈x− x̂k+1,∇f(x̂k+1)〉

=D(x‖xk)−D(xk+1‖x̂k+1)−D(x̂k+1‖xk) + η 〈x− x̂k+1,∇f(x̂k+1)〉
+ 〈∇Φ(xk)−∇Φ(x̂k+1)− η∇f(x̂k+1), xk+1 − x̂k+1〉

=D(x‖xk)−D(xk+1‖x̂k+1)−D(x̂k+1‖xk)
+ 〈∇Φ(xk)−∇Φ(x̂k+1)− η∇f(xk), xk+1 − x̂k+1〉
+ η 〈∇f(xk)−∇f(x̂k+1), xk+1 − x̂k+1〉+ η 〈x− x̂k+1,∇f(x̂k+1)〉
≤D(x‖xk)−D(xk+1‖x̂k+1)−D(x̂k+1‖xk)

+ η 〈∇f(xk)−∇f(x̂k+1), xk+1 − x̂k+1〉+ η 〈x− x̂k+1,∇f(x̂k+1)〉 ,
where the last step follows from the fact that x̂k+1 satisfies the first-order optimal-
ity condition

〈∇Φ(xk)−∇Φ(x̂k+1)− η∇f(xk), xk+1 − x̂k〉 ≤ 0.

Now, using the σ-strong convexity of Φ and the L-Lipschitz continuity of∇f , we
obtain

D(x‖xk+1) ≤ D(x‖xk)−D(xk+1‖x̂k+1)−D(x̂k+1‖xk)
+ η 〈∇f(xk)−∇f(x̂k+1), xk+1 − x̂k+1〉+ η 〈x− x̂k+1,∇f(x̂k+1)〉
≤D(x‖xk)−

σ

2
‖xk+1 − x̂k+1‖2

2 −
σ

2
‖x̂k+1 − xk‖2

2

+ ηL ‖xk − x̂k+1‖2 ‖xk+1 − x̂k+1‖2 + η 〈x− x̂k+1,∇f(x̂k+1)〉

≤D(x‖xk)−
σ − ηL

2

(
‖xk+1 − x̂k+1‖2

2 + ‖x̂k+1 − xk‖2
2

)
+ η 〈x− x̂k+1,∇f(x̂k+1)〉

≤D(x‖xk)−
σ − ηL

4
‖xk+1 − xk‖2

2 + η 〈x− x̂k+1,∇f(x̂k+1)〉 ,

where we also used the elementary inequalities 2ab ≤ a2 + b2 and (a + b)2 ≤
2a2 + 2b2 in the last two steps, respectively.

This theorem has two important corollaries that we will crucially use through-
out the analysis of the algorithm presented in Chapter 4. The first one shows that
the iterates remain bounded during the optimization procedure.

Corollary 2.4.1. Suppose that the conditions of Theorem 2.4.3 hold and that η ≤
σ
L

. Then, for all k, Mirror Prox guarantees

D(x∗‖xk+1) ≤ D(x∗‖xk).
In particular, D(x∗‖xk) ≤ D(x∗‖x0) for all k.

21

“main” — 2022/4/21 — 14:41 — page 22 — #30

Proof. Applying Theorem 2.4.3 with x∗ being an optimal solution to the mini-
mization problem, we get

η 〈x̂k+1 − x∗,∇f(x̂k+1)〉+D(x∗‖xk+1) ≤ D(x∗‖xk)−
σ − ηL

4
‖xk+1 − xk‖2 .

Since x∗ satisfies the variational inequality 〈x̂k+1 − x∗,∇f(x̂k+1)〉 ≥ 0 and that
the right-most term is positive, we get

D(x∗‖xk+1) ≤ D(x∗‖xk),

which trivailly concludes the proof.

The next corollary establishes a bound on the suboptimality gap evaluated at
x̄K :

Corollary 2.4.2. Let x ∈ C ∩ D be arbitrary and assume that the conditions of
Theorem 2.4.3 hold and that η ≤ σ

L
. Then, mirror prox guarantees the following

bound on the duality gap:

f(x̄K)− f(x) ≤D(x‖x0)

ηK
.

Proof.

f(x̄K)− f(x) = f

(
1

K

K∑
k=0

x̂k+1

)
− f(x)

≤
K∑
k=0

1

K
(f(x̂k+1)− f(x))

≤
K∑
k=0

1

K
〈∇f(x̂k+1), x̂k+1 − x〉

≤ 1

ηK

K∑
k=0

(
D(x‖xk)−D(x‖xk+1)− σ − ηL

4
‖xk+1 − xk‖2

)
≤ 1

ηK
D(x‖x0),

where in the first inequality we used Jensen’s inequality, in the second one we
used convexity and in the third one we used the bound in Theorem 2.4.3.

22

“main” — 2022/4/21 — 14:41 — page 23 — #31

2.4.3 Saddle-point optimization
Let X and Y be compact convex sets, and f : X × Y → R a function that is
convex in his first argument x and concave in his second argument y. Let’s now
consider the following min-max or saddle-point problem:

min
x∈X

max
y∈Y

f(x, y).

We are interested in finding the optimal (x∗, y∗). The quality of a candidate
solution (x, y) is measured through the duality gap defined as

max
y′∈Y

f(x, y′)− min
x′∈X

f(x′, y),

that by deffinition is equal to 0 at (x∗, y∗).
From now on, we use the notation z = (x, y) ∈ Z = X × Y . Furthermore,

we assume that X is equipped with a mirror map ΦX (with DX = dom(ΦX))
which is 1-strongly convex w.r.t. a norm ‖ · ‖X on X ∩DX , and we denote R2

X =
supx∈X Φ(x) − minx∈X Φ(x). We define similar quantities for the space Y . To
solve the saddle-point problem, we can apply the mirror descent (or mirror prox)
scheme in the space Z by using:

• The mirror map Φ(z) = aΦX (x) + bΦY(y) with a, b ∈ R+ and defined on
D = DX ×DY .

• The monotone operator g(z) = (∇xf(x, y),−∇yf(x, y)) instead of the real
gradient.

We can realize that using this operator, the duality gap can be controlled in a
similar way as the subobtimality gap in a convex optimization problem:

max
y′∈Y

f(x, y′)− min
x′∈X

f(x′, y) ≤ 〈g(z), z − z′〉 (2.13)

where z′ = (x′, y′). For the saddle-point mirror descent (SP-MD) algorithm, we
let z0 ∈ arg minz∈Z∩D Φ(z) and for k ≥ 1 we have

zk ∈ arg min
z∈Z∩D

η 〈g(zk−1), z〉+DΦ(z, zk−1).

We define z̄K = (x̄K , ȳK) = 1
K

(∑K
k=0 xk,

∑K
k=0 yk

)
. The following theorem

gives a bound on the duality gap of z̄K :

Theorem 2.4.4. (Bubeck, 2014, Theorem 5.1) Assume that f(·, y) is LX -Lipschitz
w.r.t. the norm ‖ · ‖X , that is ‖∇yf(x, y)‖∗X ≤ LX ,∀(x, y) ∈ X × Y . Similarly

23

“main” — 2022/4/21 — 14:41 — page 24 — #32

assume that f(x, ·) is LY-Lipschitz w.r.t. ‖ · ‖Y . Then SP-MD with a = LX
RX
, b =

LY
RY

, and η =
√

2
K

satisfies

max
y∈Y

f

(
1

K

K∑
k=1

xk, y

)
−min

x∈X
f

(
x,

1

K

K∑
k=1

yk

)
≤ (RXLX +RYLY)

√
2

K
.

Proof. The proof of this theorem follow the same lines as the one from Theorem
2.4.2. We give a sketch of how to make it work. We start defining the norm

‖z‖Z =
√
a ‖x‖2

X + b ‖y‖2
Y .

We can easily see that the mirror map Φ is 1-strongly convex w.r.t. ‖·‖Z . Further-
more, the dual norm of ‖·‖2

Z can be shown to be

‖z‖∗Z =

√
1

a
(‖x‖∗X) +

1

b
(‖y‖∗Y).

Thus, we have that

‖g‖∗Z ≤
√
L2
X
a

+
L2
Y

b
.

The theorem can now be proved in the same way as Theorem 2.4.2 by starting
from equation (2.13) and using the above observations .

Theorem 2.4.5 gives a similar result for the saddle-point mirror prox (SP-MP)
algorithm, that can be defined following the same ideas. The presented result is
regarding smooth functions. We say that a function f(x, y) is (β11, β12, β22, β21)-
smooth if for any x, x′ ∈ X , y, y′ ∈ Y ,

‖∇xf(x, y)−∇xf(x′, y)‖∗X ≤ β11 ‖x− x′‖X ,
‖∇xf(x, y)−∇xf(x, y′)‖∗X ≤ β12 ‖y − y′‖Y ,
‖∇yf(x, y)−∇yf(x, y′)‖∗Y ≤ β22 ‖y − y′‖Y ,
‖∇yf(x, y)−∇yf(x′, y)‖∗Y ≤ β21 ‖x− x′‖X .

Theorem 2.4.5. (Bubeck, 2014, Theorem 5.2) Assume that f is (β11, β12, β22, β21)-
smooth. Then, defining C = max(β11R

2
X , β22R

2
Y , β12RXRY , β21RXRY), SP-MP

with a = 1
R2
X
, b = 1

R2
Y
, and η = 1

2C
satisfies

max
y∈Y

f

(
1

K

K∑
k=1

xk+1, y

)
−min

x∈X
f

(
x,

1

K

K∑
k=1

yk+1

)
≤ 4C

K

24

“main” — 2022/4/21 — 14:41 — page 25 — #33

Proof. Similarly as done in the proof of Theorem 2.4.4, we only need to define
the norm

‖z‖Z =

√
1

RX
‖x‖2

X +
1

RY
‖y‖2

Y

and realize that g(z) is β-Lipschitz w.r.t. ‖·‖Z with β = 2C and we can then
follow the same procedure as in the proof of Theorem 2.4.3 and Corollary 2.4.2.

25

“main” — 2022/4/21 — 14:41 — page 26 — #34

“main” — 2022/4/21 — 14:41 — page 27 — #35

Chapter 3

REINFORCEMENT LEARNING

In this chapter we give an introduction of the reinforcement learning (RL) prob-
lem, introduce the different settings that we will consider during this work, and
show the main tools for evaluating and improving policies. The presented result
are standard and well known so we will make a fast overview. For a more detailed
description one can check Puterman, 1994, Chapters 6 and 8 for Sections 3.1, 3.2
and 3.3, and Bertsekas [2008] and Buşoniu et al. [2012] for Section 3.4.

3.1 Markov Decision Process
Mathematically, the RL problem is formalized using the Markov Decision Pro-
cess framework (MDP, Puterman [1990]). An MDP is defined by a tuple M =
(X ,A, P, r), where

• X is the state space or set of states.

• A is the action space or set of actions.

• P is the transition function with P (·|x, a) denoting the distribution of the
follow-up state x′ after taking action a ∈ A in state x ∈ X .

• r is the reward function that maps state-action pairs to rewards, with r(x, a)
denoting the reward of being in state x and taking action a.

In this work we assume that the rewards are deterministic and bounded in [0, 1],
and that the state space and the action space are finite (but potentially very large).

An MDP models a sequential interaction process between an agent and its
environment, where in each round t, the agent observes state xt ∈ X , selects
action at ∈ A, moves to the next state xt+1 ∼ P (·|xt, at), and obtains reward
r(xt, at). The goal of the agent is to select actions so as to maximize some notion

27

“main” — 2022/4/21 — 14:41 — page 28 — #36

of cumulative reward. The strategy that the agent follows for picking actions is
called policy and is denoted as π. In this work we consider stochastic policies,
which are a mapping from states to probability distributions over actions. For a
given policy π, we denote as π(a|x) the probability of taking action a in state x.
We say that a policy is optimal if it maximizes the chosen notion of cumulative
reward, and we denote it as π∗.

The way how this cumulative reward is defined determines the goal of the
optimization problem, and is key when developing algorithms and performing
their analysis. In this work, we focus on two different settings known as average
reward and normalized discounted reward, each of them corresponding to a dif-
ferent notion of cumulative reward. The next two sections are dedicated to this
two settings.

3.2 Average reward setting
As its name indicates, the goal in this setting is to maximize the expected average
reward defined as

lim inf
t→∞

E

[
1

T

T∑
t=1

rt(xt, at)

]
.

From now on, we will always make the following assumption when considering
the average reward setting:

Assumption 1 (Uniform ergodicity). Every policy π generates an ergodic Markov
chain. Specifically, letting Pπ be the transition operator of π defined as the matrix
with elements Pπ(x′|x) =

∑
a π(a|x)P (x′|x, a), and ν, ν ′ be any two distributions

over X , the following inequality is satisfied for some C, τ > 0 and for all k:∥∥(ν − ν ′)P k
π

∥∥
1
≤ Ce−k/τ ‖ν − ν ′‖1 .

We say that our MDP is uniformly ergodic if it satisfies Assumption 1. Notice
that this assumption is significantly weaker than the 1-step mixing assumption
often made in the related literature [Even-Dar et al., 2009; Neu et al., 2014]. It is
easily shown to hold when all policies induce aperiodic and irreducible Markov
chains—see Theorem 4.9 in Levin and Peres [2017] for a proof.

Under Assumption 1 stated above, each policy π generates a unique stationary
state distribution νπ ∈ ∆X over the state space satisfying

νπ(x) = lim
t→∞

P [xt = x]

for all x when the trajectory (x0, x1, ..., xt) is generated by following policy π.
Similarly, each policy π generates a stationary state-action distribution µπ ∈

28

“main” — 2022/4/21 — 14:41 — page 29 — #37

∆X×A satisfying

µπ(x, a) = lim
t→∞

P [xt = x, at = a] = νπ(x)π(a|x).

For a compact notation, we will represent the decision variables µ as vectors in
RX×A and introduce the linear operator P T : RX×A → RX defined for each µ
through (P Tµ)(x′) =

∑
x,a P (x′|x, a)µ(x, a) for all x′. Similarly, we define the

operator ET acting on µ through the assignment (ETµ)(x) =
∑

a µ(x, a) for all
x, so ETµπ = νπ.

Proposition 3.2.1. (Puterman, 1994, Theorem 8.8.6) A probability distribution
µ ∈ ∆X×A is a valid stationary distribution if and only if it satisfies the following
system of equations known as flow equations:

ETµ = P Tµ.

The system of equations of the above lemma shows that for a stationary dis-
tribution, the probability of being in a given state is the same after applying the
transition function. Also, we can see that the average reward of a policy π can be
written in terms of the stationary distribution as

ρπ = lim inf
t→∞

Eπ

[
1

T

T∑
t=1

rt(xt, at)

]
= 〈µπ, r〉 . (3.1)

This, together with Proposition 3.2.1 justifies the following proposition that sug-
gest an LP that can be used to find the optimal policy:

Proposition 3.2.2. Let µ∗ be the optimal solution of the following LP:

maximizeµ∈RX×A+
〈µ, r〉

s.t. ETµ = P Tµ

〈1 , µ〉 = 1

(3.2)

Then, µ∗ = µπ
∗

is the optimal state-action distribution induced by the optimal
policy π∗.

If we let x be a state such that
∑

a′ µ
π(x, a′) 6= 0, then for any policy π we can

easily see that

π(a|x) =
µπ(x, a)∑
a′ µ

π(x, a′)
.

Note that this can not be used for states where the visitation frequency is 0, since
then the denominator of the above expression is 0. This result can be used to

29

“main” — 2022/4/21 — 14:41 — page 30 — #38

extract the optimal policy π∗ from the optimal solution of the LP (3.2), µ∗. Never-
theless, the requirement of the visitation frequency being larger than 0 to be able
to extract the policy is clearly a limitation of this method. Despite this, in later
chapters we will present algorithms based on the LP (3.2) that do not suffer from
this problem due to the usage of regularization, that will prevent the output policy
from having zero visitation frequency in any state.

Let’s now present another concept of great importance in the RL literature: the
value function. Every policy π induces a value function V π : X → R defined in
the average reward setting as

V π(x) = Eπ
[∞∑
t=0

r(xt, at)− ρπ|x0 = x
]
,

which is the expected total difference between the stationary reward and the re-
ward starting in state x. In the literature, the value function for the average reward
setting that we just defined is often referred as the bias function. Value functions
have a key role in MDP optimization and reinforcement learning, since they give a
measure of how “good” a given state is in terms of the expected reward collected
in the future, which can be used for evaluating and improving policies. Nev-
ertheless, the exact definition of value function is different in different settings.
The following proposition presents a very well known result about the system of
equations known as Bellman equations (also known as Poisson equations in the
average reward setting):

Proposition 3.2.3. (Puterman, 1994, Corollary 8.2.7) Let ρ and V be a solution
of the Bellman equations defined as

V (x) =
∑
a

[
π(a|x)

(
r(x, a) +

∑
x′

P (x′|x, a)V (x′)− ρ
)]

∀x ∈ X .

(3.3)

(Bellman equations)

Then, ρ = ρπ and V = V π + k1 , being k an arbitrary scalar.

Closely related to the value function, we can define the Q-function associated
to a given policy π, Qπ : X ×A → R, as

Qπ(x, a) = Eπ
[∞∑
t=0

r(xt, at)− ρ∗|x0 = x, a0 = a
]
,

that can be understood as a value function where the first action is not drawn from
the policy π but is set as a0 = a. Similarly as with the value function, we can

30

“main” — 2022/4/21 — 14:41 — page 31 — #39

write the Bellman equations for Q-functions:

Q(x, a) =
∑
x′

(
r(x, a) + P (x′|x, a)

∑
a′

π(a′|x′)Q(x′, a′)− ρ
)

(3.4)

∀(x, a) ∈ X ×A.

Again, if ρ and Q are a solution of the above system of equations, then ρ = ρπ

and Q = Qπ + k1 , with k an arbitrary scalar.
Equations (3.3) and (3.4) give the value function and Q-function respectively

of a given policy π, but often we are interested in computing those values for
the optimal policy π∗ without knowing it. In this case, one can use the Bellman
optimality equations presented in the following proposition:

Proposition 3.2.4. (Puterman, 1994, Theorem 8.4.3.) Let ρ∗ and V ∗ be a solution
of the Bellman optimality equations defined as follows:

V (x) = max
a

(
r(x, a) +

∑
x′

P (x′|x, a)V (x′)− ρ
)

∀x ∈ X . (3.5)

(Bellman optimality equations)

Then, ρ∗ = ρπ
∗

and V ∗ = V π∗ + k1 , where k is an arbitrary scalar.

The optimal policy can then be easily extracted by picking the greedy action
with respect to V ∗, i.e. picking the actions that maximize the Bellman optimality
equations. As before, we can easily derive the Bellman optimality equations for
Q-function. Once the optimal Q-function Q∗ has been computed, the optimal
policy can be extracted by picking at each state x the greedy action that maximizes
Q∗(x, a).

We will now present another approach for finding the optimal policy π∗ that
like the LP (3.2) is based on linear programming but from a quite different per-
spective. Instead of computing the optimal state-action stationary distribution, the
LP that we will present computes optimal value functions. Before going to this
LP, let’s first present the following result:

Proposition 3.2.5. (Puterman, 1994, Theorem 8.4.1) Let (ρ, V) be such that

V (x) ≥ max
a

(
r(x, a) +

∑
x′

P (x′|x, a)V (x′)− ρ
)

∀x ∈ X . (3.6)

Then, ρ ≥ ρ∗.

31

“main” — 2022/4/21 — 14:41 — page 32 — #40

This result implies that ρ∗ and V ∗ can be found by finding the minimum ρ
such that for some V , the system of inequalities 3.6 is satisfied. Furthermore, we
can see that this latter condition is equivalent to the following set of constrains

V − r(·, a)− (PV)(·, a) + ρ1 ≥ 0 ∀a.
This justifies the following proposition that presents the LP for value functions:

Proposition 3.2.6. Let (ρ∗, V ∗) be a solution of the following LP:

minimizeρ∈R,V ∈RX ρ

s.t. EV ≥ r + PV − ρ. (3.7)

Then, ρ∗ = ρπ
∗

and V ∗ = V π∗ + k1 , where k is an arbitrary scalar.

So far we have seen two LPs that can be used to find the optimal policy of a
given MDP. The following proposition gives a very insightful connection between
these two LPs that will be exploited over and over during the rest of this work:

Proposition 3.2.7. The LP (3.2) is the dual of the LP (3.7).

The proof of the above proposition is a direct application of Lagrangian duality
for LPs. See for example Puterman, 1994, APPENDIX D.

Finally, we present the following proposition that gives an upper bound on the
value function of any policy π, since it is an important result for analyzing the
algorithms in later sections:

Proposition 3.2.8. Assume that r(x, a) ≤ 1 for all (x, a) ∈ X × A. Then, for
any policy π, we have ‖V π‖∞ ≤ τmix, where τmix = 2C(1 + τ). Similarly, it also
holds that ‖Qπ‖∞ ≤ τmix.

Proof. We denote as µx the state-action distribution such that µx(x′, a) = π(x′|a)
if x′ = x and 0 otherwise. Similarly, we denote as νx the state-action distribution
such that νx(x′) = 1 if x = x′ and 0 otherwise. Then, using the definition of value
function we can write

V π(x) =
∞∑
t=0

〈
P tµx − µπ, r

〉
≤

∞∑
t=0

∥∥P t(µx − µπ)
∥∥

1
=
∞∑
t=0

∥∥P t
π(νx − νπ)

∥∥
1

≤
∞∑
t=0

Ce−t/τ ‖νx − νπ‖1 ≤
∞∑
t=0

2Ce−t/τ ≤ 2C(1 + τ)

Where we have used Assumption 1 in the second inequality and
∑∞

t=0 e
− t
τ ≤

1

1−e−
1
τ
≤ (1 + τ) in the last one. The same arguments can be used for bounding

Qπ.

In what follows, we refer to the quantity τmix as the mixing time of the MDP.
Note that this is just one of many possible definitions of a mixing time, see, e.g.,
Seneta [2006]; Levin and Peres [2017].

32

“main” — 2022/4/21 — 14:41 — page 33 — #41

3.3 Normalized discounted reward setting
In the normalized discounted reward setting, the objective is to maximize the dis-
counted reward defined as

(1− γ)E

[
∞∑
t=0

γtr(xt, at)

]
,

where γ ∈ (0, 1) is the discount factor and the state x0 is drawn from a fixed initial-
state distribution ν0. Since the ideas presented in this chapter are very similar to
the ones in the previous one, we will go through them in a more informal and
superficial way, to avoid a repetitive lecture.

As in the average reward setting, in the discounted setting it is also useful to
work with some notion of occupancy measure. In this case though, instead of the
state-action probability distribution we will work with the normalized discounted
state-action occupancy measure (in short, occupancy measure), that is defined for
a given policy π as

µπ(x, a) = (1− γ)Eπ

[
∞∑
t=0

γtI{(xt,at)=(x,a)}

]

with x0 ∝ p0. Note that we use the same notation as with stationary state-action
probability distributions, assuming that their nature should be clear by the context.
The following proposition presents the flow equations for the discounted setting:

Proposition 3.3.1. (Puterman, 1994, Proposition 6.9.1) The vector µ is a valid
occupancy measure if and only if it satisfies the following system of equations:

ETµ = γP Tµ+ (1− γ)p0

Furthermore, the discounted reward associated to a policy π can be written as

ρπ = (1− γ)Eπ

[
∞∑
t=0

γtr(xt, at)

]
= 〈µπ, r〉 ,

As in the previous section, this justifies an LP for finding the optimal occupancy
measure. Before presenting it, let’s first show the definition of value function V π

and Q-function Qπ associated to a given policy π in the discounted setting:

V π(x) = Eπ

[
∞∑
t=0

γtr(xt, at)|x0 = x

]
, (3.8)

33

“main” — 2022/4/21 — 14:41 — page 34 — #42

Qπ(x, a) = Eπ

[
∞∑
t=0

γtr(xt, at)|x0 = x, a0 = a

]
(3.9)

We can now present the following proposition containing two LPs that can be used
to find optimal policies in the discounted setting:

Proposition 3.3.2. (Puterman, 1994, Section 6.9) The vector µ∗ is the solution of
the LP

maximizeµ∈RX×A+
〈µ, r〉

s.t. ETµ = γP Tµ+ (1− γ)p0.
(3.10)

if and only if µ∗ = µπ
∗

is the occupancy measure of the optimal policy π∗. Simi-
larly, V ∗ is the solution of the LP

minimizeV ∈RX (1− γ) 〈p0, V 〉
s.t. EV ≥ r + γPV,

(3.11)

if and only if V ∗ = V π∗ is the value function of the optimal policy π∗. Further-
more, the LP (3.10) is the dual of the LP (3.11).

We also show the following proposition that presents the Bellman equations
and Bellman optimality equations for the discounted setting:

Proposition 3.3.3. (Puterman, 1994, Propositions 6.1.1 and 6.2.2) Let V be the
solution of the Bellman equations for the discounted setting defined as

V (x) =
∑
a

π(a|x)

(
r(x, a) +

∑
x′

γP (x′|x, a)V (x′)

)
∀x ∈ X . (3.12)

(Bellman equations)

Then, V = V π is the value function of the policy π. Let now V ∗ be the solution of
the Bellman optimality equations for the discounted setting defined as

V (x) = max
a

(
r(x, a) +

∑
x′

γP (x′|x, a)V (x′)

)
∀x ∈ X . (3.13)

(Bellman optimality equations)

Then, V ∗ = V π∗ is the value function of the optimal policy π∗.

The following proposition presents the upper bound for the value function and
Q-function in the discounted setting:

34

“main” — 2022/4/21 — 14:41 — page 35 — #43

Proposition 3.3.4. Assume that r(x, a) ≤ 1 for all (x, a) ∈ X ×A. Then, for any
policy π, we have ‖V π‖∞ ≤ 1

1−γ . Similarly, it also holds that ‖Qπ‖∞ ≤ 1
1−γ .

Proof. The proof is a direct consequence of plugging the assumption r(x, a) ≤ 1
in the definition of the value function (3.8) and using the inequality

∑∞
t=0 γ

t ≤
1

1−γ for all γ ∈ (0, 1):

V π(x) ≤
∞∑
t=0

γt ≤ 1

1− γ
The same argument can be used for bounding Qπ.

3.4 Approximate dynamic programming
The tools shown in the previous section give the foundations of methods and al-
gorithms that allow us to find optimal policies in real world problems. In these
problems, we generally do not know the transition probabilities (i.e., we do not
know the model), so we need methods that work with sample trajectories. Fur-
thermore, in real-world problems, the state-action space can be huge, so working
with value functions, Q-functions, policies or distributions for every state or state-
action pair is infeasible. For this reason, we need to parameterize the quantity of
interest and work with methods that can learn the parameters of the model with
samples.

In this section we assume that we are in the discounted reward setting. We
chose this setting because it is where we can find most of the related literature.
Nevertheless, similar algorithms can be found for the average reward setting. Be-
low we present two different approaches for learning optimal policies: policy
iteration and Q-learning.

3.4.1 Policy iteration
One of the most well known schemes to find the optimal policy is policy itera-
tion. This scheme works by iteratively evaluating and improving policies with the
following two steps:

• Policy evaluation: an estimate of the value function V̂ π or the Q-function
Q̂π of the current policy π is computed.

• Policy improvement: A new policy is computed based on the value function
or Q-function found in the policy evaluation step. For Q-functions we can
use the greedy policy that at any state x takes the action

arg max
a
Q̂π(x, a).

35

“main” — 2022/4/21 — 14:41 — page 36 — #44

Similarly, for value functions we can use the greedy policy that at any state
x takes the action

arg max
a

Ex′∼P (x′|x,a)

[
r(x, a) + γV̂ π(x′)

]
.

Realize that in this latter case with value functions, it is needed some knowl-
edge about the dynamics of the MDP in order to compute the expectation
over next states. Other kind of non-greedy updates are also possible, as we
will see in later chapters.

In this section, we will focus on Q-functions, but most results extend trivially to
value functions. We will denote as Qθ the parameterized Q-functions.

Ideally, to obtain a good approximation of Qπ in the policy evaluation step,
we would like to minimize the following loss function

L(Qθ) =

E(x,a)∼µ

(r(x, a) + γ
∑
x′

P (x′|x, a)
∑
a′

π(a′|x′)Qθ(x
′, a′)−Qθ(x, a)

)2
 ,

(3.14)

where the quantity inside the parenthesis is called the Bellman error. For sim-
plicity, we will assume that µ = µπ is the stationary state-action distribution of
the policy π. Since we do not have access to the model, we need a sample-based
estimate of the above loss. The estimate can be written as follows:

L̂(Qθ) = E(x,a)∼µ̂,x′∼P (·|x,a)

(r(x, a) + γ
∑
a′

π(a′|x′)Qθ(x
′, a′)−Qθ(x, a)

)2


(3.15)

where the Bellman error has been changed by the empirical Bellman error (also
known as temporal difference (TD) error) and µ̂ is an empirical distribution com-
ing from µ. The problem of this estimator is that it is a biased estimate, which can
be easily seen if we compute its expectation:

E
[
L̂(Qθ)

]
= L(Qθ) + E(x,a)∼µ

[
Var

(
γ
∑
a′

π(a′|x′)Qθ(x
′, a′)

)]
.

This problem is known as the double sampling problem. Its name comes from the
fact that this bias can be eliminated as follows: For each state-action pair (x, a)

36

“main” — 2022/4/21 — 14:41 — page 37 — #45

in expression (3.15), draw two independent next-state samples x′ and x′′ from
P (·|x, a). Then, replacing the term(

γ
∑
a

π(a|x′)Qθ(x
′, a′)

)2

that appears when expanding expression (3.15) for(
γ
∑
a′

π(a′|x′)Qθ(x
′, a′)

)(
γ
∑
a′

π(a′|x′′)Qθ(x
′′, a′)

)

makes the estimate unbiased and solves the problem. Of course this is problematic
in practice since drawing an extra next state requires a simulator that can sample
next states from any state-action pair.

We will now present two projected policy evaluation methods that are another
option to perform the policy evaluation step without having this double sampling
problem.

Let’s start by rewriting the system of equations (3.12) as

Q = BπQ (3.16)

where the operator Bπ is defined as

(BπQ)(x, a) = r(x, a) + γ
∑
x′

P (x′|x, a)
∑
a′

π(a′|x)Q(x′, a′).

We also define the weighted quadratic norm ‖Q‖2
µ =

∑
x,a µ(x, a)(Q(x, a))2, and

the projection operator

Π(Q) ∈ arg min
Qθ∈Rm

‖Qθ − V ‖2
µ .

Projected policy evaluation methods aim to find the value function that is approx-
imately equal to the projection of Bπ(Qθ) on the space of linearly parameterized
value functions:

Qθ = ΠBπ(Qθ). (3.17)

We can see that this problem is equivalent to solving the following minimization
problem:

min
θ
‖Qθ − ΠBπ(Qθ)‖2

µ . (3.18)

Until the end of this section, we consider linearly parameterized Q-functions.
We introduce a state-action feature map ϕ : RX×A → Rm and consider a parame-
terization of the Q-function of the form Qθ(x, a) = 〈ϕ(x, a), θ〉 where θ ∈ Rm is

37

“main” — 2022/4/21 — 14:41 — page 38 — #46

the new optimization variable, and the corresponding linear operator Φ with rows
ϕ(x, a) such that Qθ = Φθ.

We now present the sample-based version of two projected policy evaluation
methods. Let’s first consider N sample transitions {xi, ai, x′i, a′i, ri}Nn=1 where x′i
is drawn from the distribution P (·|x, a), a′ from π(·|x′), and the state-action pairs
are drawn from µ. We now define the matrices A and B, and the vector b as

Ai = Ai−1 + ϕ(xi, ai)ϕ
T(xi, ai)

Bi = Bi−1 + ϕ(xi, ai)ϕ
T(x′i, a

′
i)

bi = bi−1 + ϕ(xi, ai)ri

(3.19)

with A0 = 0, B0 = 0 and b0 = 0.
The first method, called least squares temporal difference (LSTD), directly

aims to solve the optimization problem (3.18) in one shot. To do so, in its basic
sample-based version LSTD takes the N samples and solves the equation(

1

N
AN − γ

1

N
BN

)
θ =

1

N
bN

to find the parameter θ in a single shot.
The second method, called least squares policy evaluation (LSPE) aims to

solve the optimization problem (3.18) iteratively. To do so, in its basic sample-
based version LSPE starts with an arbitrary initial parameter vector θ0 and updates
it after every sample using:

θi = θi−1 + α(θ′i − θi−1)

where
1

i
Aiθ

′
i = γ

1

i
Biθi−1 +

1

i
bi

and α is a learning parameter. Under the condition that µ = µπ, the solution of
both LSTD and LSPE converge to the solution of problem (3.14) as N goes to
infinity, without suffering from the double sampling problem.

3.4.2 Q-learning
Another option for learning the optimal policy is the family of methods under the
name of Q-learning. Instead of approximating the value functions of a given pol-
icy to improve it, Q-learning methods directly aim to approximate the Q-function
of the optimal policy, Q∗.

The main idea behind Q-learning is very similar to what we have just seen for
policy iteration. Here we would like to minimize the following loss to find a good

38

“main” — 2022/4/21 — 14:41 — page 39 — #47

approximator of Q∗:

L(Qθ) = E(x,a)∼µ

[(
r(x, a) + γmax

a′
Qθ(x

′, a′)−Qθ(x, a)
)2
]
, (3.20)

that is, the expected squared Bellman error of the Bellman optimality equations
(or just Bellman error if it is clear by the context). As before, we need a sample-
based approach. Thus, Q-learning algorithms are based on sequentially comput-
ing the approximations of Q∗ by minimizing an empirical loss function based on
the empirical squared Bellman error:

L̂(Qθ) = E(x,a)∼µ̂,x′∼P (·|x,a)

[(
r(x, a) + γmax

a′
Qθ(x

′, a′)−Qθ(x, a)
)2
]

(3.21)

Where like before, µ̂ is an empirical distribution. As we saw for the loss func-
tion (3.15), the minimization of the above loss suffers from double sampling
problem. The popular work of Mnih et al. [2015] presents a useful technique
for alleviating this problem. There, a deep neural network is used to approxi-
mate the optimal Q-values, and the parameters of the network are trained through
stochastic gradient descent trying to minimize the following loss:

L̂(Qθ) = E(x,a)∼µ̂,x′∼P (·|x,a)

[(
r(x, a) + γmax

a′
Qθ̄(x

′, a′)−Qθ(x, a)
)2
]
,

(3.22)

where the θ̄ that parameterizes the Q-function inside the max (called the target
network) is held fixed and updated only every some iterations. This technique
is what mitigates the double sampling problem, which is key in the great perfor-
mance of the algorithm.

39

“main” — 2022/4/21 — 14:41 — page 40 — #48

“main” — 2022/4/21 — 14:41 — page 41 — #49

Chapter 4

SADDLE-POINT OPTIMIZATION
FOR SOLVING LARGE-SCALE
MARKOV DECISION
PROCESSES

4.1 Introduction

In this chapter we present an approach based on a bilinear saddle-point formu-
lation of the linear program 3.2, building on the well-known general Lagrangian
formulation of a constrained optimization problem (see Section 2.3). One partic-
ular advantage of this formulation is that it enables a straightforward form of di-
mensionality reduction of the original problem through a linear parameterization
of the optimization variables, which provides a natural framework for studying
effects of “function approximation” in the underlying policy optimization prob-
lem. Our main contribution regarding this setting lies in characterizing a set of
assumptions that allow a reduced-order saddle-point representation of the optimal
policy. These include a realizability assumption and a newly identified coherence
assumption about the subspaces used for approximation. Our main positive result
is showing that these conditions are sufficient for constructing an algorithm that
outputs an ε-optimal policy with runtime guarantees of Õ (τ 2

mixm
2/ε), where m

is the number of variables in the relaxed optimization problem, and τmix is the
mixing time defined in Proposition 3.2.8. Our approach is based on the celebrated
mirror prox algorithm of Nemirovski [2004]. We complement our positive results
by showing that our newly defined coherence assumption is necessary for the re-
laxed saddle-point approach to be viable: we construct a simple example violating
the assumption, where achieving full optimality on the relaxed problem leads to a

41

“main” — 2022/4/21 — 14:41 — page 42 — #50

suboptimal policy.
We are not the first ones to consider saddle-point methods for optimization in

Markov decision processes. Wang [2017] proposed variants of mirror descent to
solve the original saddle-point problem without relaxations and provide runtime
guarantees of Õ

(
(ατmix)

2 |X ||A|/ε2
)
, where X and A are the finite state and ac-

tion spaces, and α is a parameter that characterizes the uniformity of the stationary
distributions of every policy. Specifically, their assumption implies1 that for the
stationary distribution νπ of any policy π, one has maxx νπ(x)

minx′ ν
π(x′)

≤ α. In most cases
of practical interest, this ratio is at least as large as |X | (e.g., when there are states
that some policies visit with constant probability), and can easily be exponentially
large in |X |, or even infinite if the underlying MDP has transient states. When
specialized to this setting, our bounds replace α2 by the much more manageable
|X | and also improve the dependence on ε from 1/ε2 to 1/ε. One downside of
our method is that we need full access to the transition probabilities of the MDP,
whereas the algorithm of Wang [2017] only requires a generative model.

The linearly relaxed saddle-point problem we consider was first studied by
Lakshminarayanan et al. [2017] and Chen et al. [2018]. Our runtime guarantees
improve over the ones claimed by Chen et al. [2018] in a similar way as our first set
of results improve over those of Wang [2017]. Notably, their results still feature
a factor of α2, which generally depends on the size of the original state space
rather than the number of features, rendering these guarantees void of meaning in
very large state spaces. In contrast, our bounds replace this factor by the number
of features N . Notably, the results of Chen et al. [2018] does not require the
coherence assumption to hold, which raises some interesting questions regarding
the generality of both our results and theirs. One particular conclusion that one can
draw from the tension between these results is that in order to derive performance
bounds from the relaxed linear program formulation, one either needs to assume
that the coherence condition holds, or that the value of α is bounded by some
constant. Indeed, in our counterexample showing the necessity of the coherence
condition, the value of α is infinite, and thus the upper bounds of Chen et al.
[2018] do not apply.

4.2 The linearly relaxed saddle-point problem
We start this section by recalling the dual optimization problem 3.2, that we can
rewrite as

maximizeµ∈P 〈µ, r〉
s.t. ETµ = P Tµ

(4.1)

1The actual assumption made by Wang [2017] is even more restrictive.

42

“main” — 2022/4/21 — 14:41 — page 43 — #51

whereP = PX×A is the set of probability distributions over the state-action space,
so we have moved the constraint regarding µ being in the simplex to a restriction
in the optimization domain. Then, as shown in Section 2.3, we compute the La-
grangian of the problem above with V ∈ RX as the Lagrange multiplier

L(V, µ) = 〈µ, r〉+ 〈µ, (P − E)V 〉 . (4.2)

We can now propose the following saddle-point problem, that is equivalent to the
LP (4.1):

min
V ∈RX

max
µ∈P
L(V, µ) = 〈µ, r〉+ 〈µ, (P − E)V 〉 , (4.3)

While one can directly derive optimization algorithms to solve the saddle-point
problem (4.3), such a direct approach would suffer from serious scalability issues
due to the sheer number of variables involved in the problem: the size of the
objects of interest µ and V are linear in the size of the state space, which results in
prohibitive memory and computation costs for most algorithms. To address this
issue, we study a linearly relaxed version of the full saddle-point problem that
reduces the order of the original optimization problem by linearly parametrizing
the variables V and µ through two sets of feature maps. Formally, we consider
the matrices Ψ of size X × m and W of size n × X × A, and introduce the
new optimization variables y ∈ Rn and θ ∈ Rm, and use these to (hopefully)
approximate the solutions to (4.3) as µ∗ ≈ W Ty and V ∗ ≈ Ψθ. For a tractable
problem formulation, we will assume that the rows of W are non-negative and
sum to one: Wi,x ≥ 0 for all x, and

∑
xWi,x = 1 for all n. We will also assume

that all entries of Ψ are bounded by 1 in absolute value. These conditions enable us
to optimize y over the probability simplex P̃ = P[n] and to formulate our relaxed
saddle-point problem as

min
θ∈Rm

max
y∈P̃
L̃(θ, y) = min

θ∈Rm
max
y∈P̃
〈W Ty, (P − E)Ψθ〉+ 〈W Ty, r〉 . (4.4)

The relaxed optimization problem above has been studied before by Lakshmi-
narayanan and Bhatnagar [2015]; Lakshminarayanan et al. [2017], and Chen et al.
[2018]. Lakshminarayanan and Bhatnagar [2015]; Lakshminarayanan et al. [2017]
studied the relaxed linear program underlying (4.4) as a natural extension of the
classic relaxed LP analyzed by de Farias and Van Roy [2003], and have focused
on understanding the discrepancies between the optimal value function and the re-
laxed value function attaining the minimum in the above expression. On the other
hand, Chen et al. [2018] focused on proposing stochastic optimization algorithms
and analyzing the rate of convergence to the optimum, but provide little insight
about the quality of the optimal solution of the relaxed problem.

43

“main” — 2022/4/21 — 14:41 — page 44 — #52

4.2.1 Effect of the relaxation
The goal of this section is to obtain a better understanding of the effects of ap-
proximation on the policies that can be obtained through approximately solving
the relaxed saddle-point problem (4.4). One peculiar challenge associated with
our setting is that it is not enough to ensure that the values of L̃ and L are close at
their respective saddle points, but we rather need to understand the performance
of the policy extracted from the optimal solution y∗. Precisely, defining the policy
extracted from y as

πy(a|x) =
(W Ty)(x, a)∑
a′(W

Ty)(x, a′)

for all x, a, and the corresponding stationary distribution induced in the original
MDP as µy, we are interested in the suboptimality gap〈

µ∗ − µy∗ , r
〉
.

We focus on identifying assumptions on the feature maps that allow the compu-
tation of true optimal policies with (almost) zero suboptimality gap. Specifically,
we will show that the following two assumptions have a decisive role in making
this gap small:

Assumption 2 (Realizability). The optimal solution is realizable by the feature
maps: there exists (θ∗, y∗) such that V ∗ = Ψθ∗ and µ∗ = W Ty∗. Additionally,
‖θ∗‖∞ ≤ Uτmix holds for some U > 0.

Assumption 3 (Coherence). The image of the set P̃ under the map (P − E)TW T

is included in the column space of Ψ: for all y ∈ P̃ such that (P −E)TW Ty 6= 0,
there exists a θ ∈ Rm such that 〈(P − E)TW Ty,Ψθ〉 6= 0. Additionally, for all
V ∈ RX with ‖V ‖∞ ≤ 1, there exists a θ ∈ Rm with ‖θ‖∞ ≤ U such that
〈(P − E)TW Ty,Ψθ〉 = 〈(P − E)TW Ty, V 〉.

The second condition of each assumption is to ensure that the columns of Ψ
are well-conditioned and are satisfied if the columns form an orthonormal basis.
Assumption 2 is trivially necessary, and despite it may already seem sufficient for
the relaxed problem to be a good enough approximation of the original one, we
argue that Assumption 3 is also necessary for the relaxation scheme to be reliable.
Specifically, the following theorem shows that in the absence of the coherence
assumption, near-optimal solutions to the relaxed saddle-point problem (4.4) can
still lead to suboptimal policies in the original MDP.

Theorem 4.2.1. For any ε > 0, there exists an MDP with relaxations W,Ψ satis-
fying Assumption 2 and violating Assumption 3, and a solution (θ̂, ŷε) simultane-
ously satisfying

L(Ψθ̂, µ∗)− L(V ∗,W Tŷε) = ε

44

“main” — 2022/4/21 — 14:41 — page 45 — #53

and 〈
µ∗ − µŷε , r

〉
= 2/3.

x1 x2 x3

+0 +0

+1 +3

.5
.5
.5.5

Figure 4.1: Three-state MDP for illustrating the necessity of the coherence as-
sumption. The two actions from x2 have stochastic transitions with probability
1/2 of staying in x2 and 1/2 of moving to x1 or x3 depending on the action. All
other transitions are deterministic. Rewards are given as a function of the state as
r(x1) = 1, r(x2) = 0 and r(x3) = 3.

Proof. The proof is based on constructing an MDP with three states x1 (left), x2

(middle) and x3 (right) and two actions al and ar corresponding to moving “left”
or “right”, respectively. The transition probabilities and rewards are as shown on
Figure 4.1. It is easy to see that the optimal policy is to take action ar in state x2,
which yields the optimal stationary state-action distribution

µ∗ = (µ(x1, ar), µ(x2, al), µ(x2, ar), µ(x3, al))
T =

(
0, 0,

1

3
,
2

3

)T

and the optimal average reward 〈µ∗, r〉 = 1. The optimal value function can be
shown to be V ∗ = (−1,−1, 1)T. For the relaxation, define Ψ = V ∗ and W as the
identity map so that the realizability assumption is clearly fulfilled with y∗ = µ∗

and θ∗ = 1. Now, choosing ŷ = (1, 0, 0, 0)T results in

〈W Tŷ, (P − E)Ψθ〉 =
(
1 0 0 0

)
−1 1 0
1/2 −1/2 0
0 −1/2 1/2
0 1 −1


−1
−1
1

 θ

=
(
1 0 0 0

)
0
0
1
2

 θ = 0 · θ

for any θ. Observing that taking V = (−1, 1, 0)T gives 〈W Tŷ, (P − E)V 〉 = 2,
we see that the coherence assumption is violated since there exists no θ such that
the condition 〈W Tŷ, (P − E)V 〉 = 〈W Tŷ, (P − E)Ψθ〉 is satisfied. Furthermore,

45

“main” — 2022/4/21 — 14:41 — page 46 — #54

it is easy to see that for any θ, (ŷ, θ) is an optimal solution to the relaxed saddle-
point problem (4.4) with 〈W Tŷ, r〉 = 1 since

L̃(θ, ŷ) = ŷTW (P − E)Ψθ + ŷTWr =
(
1 0 0 0

)
1
0
0
3

 = 1.

The resulting optimal state-action distribution µ̂ = W Tŷ = ŷ is clearly not a
stationary distribution.

To conclude the proof, fix any ε and consider ŷε = (1− ε, ε, 0, 0)T and any θ̂.
Noticing that 〈W Tŷε, (P − E)Ψθ〉 = 0 holds for all θ, the duality gap associated
with (θ̂, ŷε) can be seen to be

L(Ψθ̂, µ∗)− L(V ∗,W Tŷε) =
(
0 0 2/3 1/3

)
1
0
0
3

− (1− ε ε 0 0
)

1
0
0
3


= 1− (1− ε) = ε.

The policy πŷε extracted from the state-action distribution ŷε takes action al in
state x2, which results in an average reward of 2/3. These two statements together
prove the theorem.

4.3 Mirror prox for policy optimization
In this section, we provide our main positive results: deriving strong performance
guarantees for policies derived from approximate solutions of (4.4) under As-
sumptions 2 and 3. Our algorithm attaining these guarantees is based on the mirror
prox algorithmic scheme presented in Section 2.4.2 and adapted to saddle-point
optimization in Section 2.4.3.

We instantiate the mirror prox method to address the relaxed saddle-point
problem as follows. Our optimization variables will be z = (θ, y) and the mono-
tone operator g will be chosen as

g(z) =

(
∇θL̃
−∇yL̃

)
=

(
ΨT(P − E)TW Ty

−Wr −W (P − E)Ψθ

)
. (4.5)

As a mirror map, we will use the function

Φ(z) =
1

2
‖θ‖2

2 +
M∑
j=1

y(j) log y(j),

46

“main” — 2022/4/21 — 14:41 — page 47 — #55

Algorithm 1: MPPO
Compute A = W (P − E)Ψ
for k = 0, 1, 2, . . . , K − 1 do

Extrapolation step:

θ̂k+1 = θk − ηATyk ŷk+1(i) ∝ yk(i)e
η((Wr)(i)+(Aθk)(i))

Gradient step:

θk+1 = θk − ηATŷk+1 yk+1(i) ∝ yk(i)e
η((Wr)(i)+(Aθ̂k+1)(i))

end
Compute θK = 1

K

∑K
k=1 θ̂k and yK = 1

K

∑K
k=1 ŷk :

Result: πK = πyK

that is, a linear combination of the squared 2-norm of the value-function pa-
rameters θ and the Shannon entropy of the distribution y. Since 1

2
‖θ‖2

2 and∑M
j=1 y(j) log y(j) are 1-strongly convex w.r.t. the l2 and l1 norms respectively,

Φ is 1-strongly convex on Z w.r.t. the norm ‖z‖2 = ‖θ‖2
2 + ‖y‖2

1. Notice that the
Bregman divergence associated to Φ between z = (θ, y) and z = (θ′, y′) is

D(z‖z′) =
1

2
‖θ − θ′‖2

2 +
∑
i

y(i) log
y(i)

y′(i)
.

Given the above specifications, the updates of our algorithm can be written as

θ̂k+1 = θk − ηΨT(P − E)TW Tyk,

ŷk+1(i) ∝ yk(i)e
η((Wr)(i)+(W (P−E)Ψθk)(i))

(4.6)

θk+1 = θk − ηΨT(P − E)TW Tŷk+1,

yk+1(i) ∝ yk(i)e
η((Wr)(i)+(W (P−E)Ψθ̂k+1)(i)),

(4.7)

where we used the notation “∝” to signify that ŷk+1 and yk+1 are normalized mul-
tiplicatively after each update so that

∑
i yk+1(i) = 1 is satisfied. Also introducing

the notations yK = 1
K

∑K
k=1 yk and θK = 1

K

∑K
k=1 θ̂k, the algorithm outputs the

policy extracted from the distribution yK : πK = πyK . Algorithm 1 contains the
pseudocode for the algorithm that we have just described, that we call MPPO (mir-
ror prox policy optimization).

47

“main” — 2022/4/21 — 14:41 — page 48 — #56

By recalling the average reward of the optimal state-action stationary distribu-
tion ρ∗ and defining ρK as the average reward of the policy output by our algo-
rithm ρK = 〈µyK , r〉, we can present the following theorem states one of our main
results regarding the suboptimality of πK :

Theorem 4.3.1. Suppose that Assumptions 1, 2 and 3 hold and η ≤ 1
2m

. Then, the
average reward ρK output by the algorithm satisfies

ρ∗ − ρK ≤
1
2
τ 2
mixU

2m+ log n

ηK
.

In particular, setting η = 1
2m

, the bound becomes ρ∗ − ρK = O
(
τ2
mixU

2m2

K

)
.

We leave the proof of the theorem for the next chapter, where the algorithm is
analyzed.

This result can be tightened by a factor ofm if we further assume that the rows
of Ψ are chosen as probability distributions. This can be seen in the proof of the
theorem realizing that in this case D(z∗‖z0) ≤ 1

2
U2τ 2

mix + log (n).
In the special case where Ψ and W are the identity maps, the relaxed saddle-

point problem becomes the original problem (4.3), our Assumptions 2 and 3 are
clearly satisfied with U = 1, and η can be set as η ≤ 1

2
(see Lemma 4.4.2 and the

paragraph below it). In this case, our algorithm satisfies the following bound:

Corollary 4.3.1. Suppose that Assumption 1 holds, W and Ψ are the identity
maps, and η ≤ 1/2. Then, the average reward ρK of the policy output by our
algorithm satisfies

ρ∗ − ρK ≤
τ 2
mix|X |+ log (|X ||A|)

ηK
.

In particular, setting η = 1/2, the bound becomes ρ∗ − ρK = Õ
(
τ2
mix|X |
K

)
.

A brief inspection of Equations (4.6)-(4.7) suggests that each update of our
algorithm can be computed in O (mn) time, the most expensive operation being
computing the matrix-vector products W (P − E)Ψθ and yTW (P − E)Ψ. While
this suggests that the algorithm may have runtime and memory complexity in-
dependent of the size of the state space, we note that exact computation of the
matrix W (P − E)Ψ can still take O (|X |2|A|) time in the worst case. This can
be improved toO (K) when assuming that only K entries of the transition matrix
P are nonzero, which can be of order |X ||A| in many interesting problems where
the support of P (·|x, a) is of size O (1) for all x, a. We stress however that the
matrix W (P − E)Ψ only needs to be computed once as an initialization step of

48

“main” — 2022/4/21 — 14:41 — page 49 — #57

our algorithm. In contrast, a general algorithm like value iteration needs at least
Θ (K) = Θ (|X ||A|) for computing each update, showing a clear computational
advantage of our method. Further discussion of computational issues is deferred
to Section 4.6.

4.4 The proof of Theorem 4.3.1
This section provides an outline of the analysis of our algorithm that will culmi-
nate with the proof of Theorem 4.3.1. At a high level, the analysis builds on some
well-known results regarding the performance of mirror prox, including a clas-
sical bound on the duality gap of the obtained solutions. The crucial challenge
posed by our setting is connecting the duality gap on the saddle-point problem to
a suboptimality gap of the extracted policies. To face this problem, we will show
two alternative approaches.

In what follows, we first provide some general tools regarding mirror prox
that will be helpful throughout the proofs, and then provide the two alternative
methods to connect the duality gap with the suboptimality gap of the extracted
policies. Missing proofs are provided in Section 4.7.

A central piece of our analysis are the results of Section 2.4.2 regarding the
iterates of mirror prox. We state here their analogous versions for our saddle-
point problem for clarity. The following lemma presents the result analogous to
Theorem 2.4.3 regarding our problem:

Lemma 4.4.1. Let Φ be σ-strongly convex and g be L-Lipschitz. Then, for all k,
mirror prox guarantees

η 〈ẑk+1 − z, g(ẑk+1)〉 ≤ D(z‖zk)−D(z‖zk+1)− σ − ηL
4

‖zk+1 − zk‖2 .

holds for every z ∈ Z and t > 0.

The proof is the same as for Theorem 2.4.3 since the only needed condition is
the monotonicity of g(x) that is clearly satisfied to use the first order optimality
equation. We can now state the corollaries analogous to 2.4.1 and 2.4.2. The first
one shows that the iterates remain bounded during the optimization procedure:

Corollary 4.4.1. Let z∗ = (θ∗, y∗) be any solution to maxy minθ L̃ (θ, y) and
suppose that the conditions of Lemma 4.4.1 hold and that η ≤ σ

L
. Then, for all k,

mirror prox guarantees

D(z∗‖zk) ≤ D(z∗‖z0).

The proof of this corollary is exactly the same as the one of 2.4.1. The second
corollary establishes a bound on the duality gap evaluated at (θK , yK):

49

“main” — 2022/4/21 — 14:41 — page 50 — #58

Corollary 4.4.2. Let z = (θ, y) ∈ Z be arbitrary and assume that η ≤ σ
L

. Then,
mirror prox guarantees the following bound on the duality gap:

L̃
(
θK , y

)
− L̃ (θ, yK) ≤D(z‖z0)

ηK
.

Proof. The proof of this corollary is slightly different since we have to take into
account that we are in a saddle-point problem. Since L̃(u, y) is bilinear,

〈ẑk+1 − z, g(ẑk+1)〉 = L̃ (ûk+1, y)− L̃ (θ, ŷk+1) .

Then,

L̃
(
θK , y

)
− L̃ (θ, yK)

=
K∑
k=0

1

K

(
L̃ (ûk+1, y)− L̃ (θ, ŷk+1)

)
≤ 1

ηK

K∑
k=0

(
D(z‖zk)−D(z‖zk+1)− σ − ηL

4
‖zk+1 − zk‖2

)
≤ 1

ηK
D(z‖z0),

where in the first inequality we used the bound in Lemma 4.4.1.

In order to apply these tools to our problem, we first need to confirm that our
objective is smooth (remember that we already saw that Φ is 1-strongly convex on
Z w.r.t. ‖z‖2), i.e., that g is Lipschitz, with respect to the norm ‖z‖2 = ‖θ‖2

2 +
‖y‖2

1. The following lemma establishes this property.

Lemma 4.4.2. Let C = maxx ‖Ψx,·‖1. Then, the function L̃ is 2C-smooth (and g
is 2C-Lipschitz) with respect to ‖·‖.

The proof is provided in Section 4.7.1. Notably, this lemma implies that L̃ is
2-smooth when the rows of Ψ form probability distributions. In the worst case,
however, when we only assume that the entries of Ψ are bounded in absolute value
by 1, the smoothness constant can be as large as 2m. In order to ensure that η ≤ σ

L
,

in what follows, we will assume that η ≤ 1/(2C).
At this point of the analysis, we present two alternative paths to show similar

results on the convergence rate of our algorithm. The first approach is based on
a smart choice for the comparator point involved in the definition of the duality
gap, which gives a direct connection with the suboptimality gap of the extracted
policies. This technique is inspired by the work of Cheng et al. [2020], that to the

50

“main” — 2022/4/21 — 14:41 — page 51 — #59

best of our knowledge, were the first ones to use this technique (along with Jin
and Sidford [2020] who rediscovered the same trick independently a few months
later). This approach gives the actual rate seen in Theorem 4.3.1. After this, we
will present the other approach that is based on exploiting further properties of
mirror prox. The second approach is the one used in the paper of Bas-Serrano and
Neu [2020] where most of the results of this chapter are presented. As we will see,
the first approach is more elegant, direct and gives a tighter bound, but we think
that the second one is still relevant since it presents useful tools for analyzing
similar algorithms.

4.4.1 Method 1: exploiting the duality gap
This approach is based on taking a carefully chosen comparator point for evaluat-
ing the duality gap, and then using the bound on this quantity achieved by mirror
prox to bound the policy suboptimality. In particular, we let V πK be the value
function of policy πK and θπK such that

〈(P − E)TW TȳK ,Ψθ
πK 〉 = 〈(P − E)TW TȳK , V

πK 〉 ,
where the existence of θπK is guaranteed by Assumption 3. Notably, the proof
does not need realizability of the value function V πK in a sense that is stricter
than the above condition, and in particular not even realizability of V ∗ is required.
However, realizability of µ∗ is still needed. Under these conditions, the following
lemma connects the duality gap at the point (θπK , y∗), with the suboptimality gap
of the policy πK :

Lemma 4.4.3. L̃(θ̄K , y
∗)− L̃(θπK , ȳK) = ρ∗ − ρ

Proof.

L̃(θ̄K , y
∗)− L̃(θπK , ȳK)

=
〈
W Ty∗, r + (P − E)Ψθ̄K

〉
− 〈W TȳK , r + (P − E)ΨθπK 〉

= 〈µ∗, r〉+
〈
µ∗, (P − E)Ψθ̄K

〉
− 〈W TȳK , r + (P − E)V πK 〉

= ρ∗ −
∑
x,a

νK(x)πK(a|x)

(
r(x, a) +

∑
x′

P (x′|x, a)V πK (x′)− V πK (x)

)
= ρ∗ − ρπK

where νK is defined as νK(x) =
∑

a(W
TyK)(x, a) and in the last step we have

used the Bellman equations for policy πK :

V πK (x) + ρπK =
∑
a

πK(a|x)

(
r(x, a) +

∑
x′

P (x′|x, a)V πK (x′)

)
.

51

“main” — 2022/4/21 — 14:41 — page 52 — #60

Then, putting together the results of Lemma 4.4.3 and Corollary 4.4.2, and
using that D(z∗‖z0) ≤ 1

2
U2τ 2

mixm+ log (n) we conclude the proof.

4.4.2 Method 2: exploiting mirror prox properties
We start appealing to the realizability assumption to choose z = (θ∗, y∗) such that
(V ∗, µ∗) = (Ψθ∗,W Ty∗), and observe that

L̃
(
θK , y

∗)− L̃ (θ∗, yK) =
〈
µ∗, (P − E)ΨθK + r

〉
− 〈W TyK , (P − E)V ∗ + r〉

≤ D(z∗‖z0)

ηK

holds by virtue of Corollary 4.4.2 and the choice of η ≤ 1/(4C). Observing that
(P − E)Tµ∗ = 0 holds due to the stationarity of µ∗ and reordering gives

〈µ∗ −W TyK , r〉 ≤
D(z∗‖z0)

ηK
+ 〈(P − E)TW TyK , V

∗〉 . (4.8)

The remaining key question is how to relate 〈W TyK , r〉 to the true average reward
ρK associated with the extracted policy. This is done with the help of the following
lemma, one of the key results of this second method:

Lemma 4.4.4. Suppose that Assumption 1 holds. Let µ be an arbitrary distribu-
tion over X × A and let πµ be the policy extracted from µ. Then, the average
reward ρµ induced by πµ satisfies 〈µ, r〉 − ρµ ≤ τmix ‖(P − E)Tµ‖1.

The proof is provided in Section 4.7.2. It is interesting to see that the above
lemma says that for a given probability distribution over states and actions, the
difference between 〈µ, r〉 and the actual average reward of the policy extracted
from µ is related to “how much stationary” the distribution µ is. Using this result
with the distribution W TyK gives

〈W TyK , r〉 − ρK ≤ τmix ‖(P − E)TW TyK‖1

Combining this result with the bound of Equation 4.8 and using that ‖V ∗‖∞ ≤
τmix, we obtain

ρ∗ − ρK ≤
D(z∗‖z0)

ηK
+ 2τmix ‖(P − E)TW TyK‖1 . (4.9)

Thus, it only remains to bound ‖(P − E)TW TyK‖1. In order to do this, we cru-
cially use Assumption 3 that guarantees the coherence of the feature maps to prove
the following result:

52

“main” — 2022/4/21 — 14:41 — page 53 — #61

Lemma 4.4.5. Suppose that Assumptions 2 and 3 hold. Then,

τmix ‖(P − E)TW TȳK‖1 ≤
5τ 2
mixU

2m+ 3 log n

ηK

The proof of this lemma is provided in Section 4.7.3. Combining the bound of
this lemma with Equation (4.9) and using D(z∗‖z0) ≤ U2τ 2

mixm+ log (n) we get

ρ∗ − ρK ≤
11τ 2

mixU
2m+ 7 log n

ηK
.

In particular, setting η to the maximum allowed in statement of Theorem 4.3.1,
η = 1

4m
, the bound becomes ρ∗ − ρK = O

(
τ2
mixm

2U2

K

)
.

4.5 Numerical illustration
In this section, we provide empirical results on two simple environment in order
to illustrate our theoretical results, and specifically compare the performance of
our algorithm with that of mirror descent and the classic value iteration algorithm.

In the first example, we consider a rectangular s × s grid with one nonzero
reward placed in state xr, so that r(x, a) = Ix=xr . Once the agent arrives to xr,
it is randomly teleported to any of the other states with equal probability. In any
other state, the agent can decide to move to a neighboring cell in any direction.
The attempt to move to the desired direction is successful with probability p, and
the agent moves to the opposite direction with probability 1− p. If the agent is in
an edge of the grid and makes an step in the direction of the edge, it appears in the
opposite edge.

Figure 4.2 shows some results on a grid of side s = 10, in the case when no
features are used, so we optimize over the whole state-action space. We observe
that the convergence of mirror prox is much faster than that of mirror descent,
and that the last iterate of mirror prox converges very quickly to the optimum,
achieving it after finitely many iterations. We also note that for higher values of
η than the ones found to be safe in our bounds (at most 1/4), the algorithm is still
stable and can lead to faster convergence to the optimum.

In our second example, we show how the usage of good features can make
mirror prox converge faster than value iteration. We consider a sequence of states
of length L (see Figure 4.3) with one nonzero reward placed in the first state so
that r(x,a) = Ix=x1L. In states x2 to xN−1 the available actions are to go left and
right, in state x1 the only available action is to go to the last state (xL), and in
state xL the only available action is to go left. Each action has a probability p of
success and 1− p of remaining in the same state.

53

“main” — 2022/4/21 — 14:41 — page 54 — #62

0 1000 2000 3000 4000 5000
t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
ρ
*
−

ρ t

MP-avg
MD-avg
MP-last
MD-last
Value Iteration

(a) p = 0.9, and η = 1
4 .

0 1000 2000 3000 4000 5000
t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ρ
*
−

ρ t

MP-avg
MD-avg
MP-last
MD-last
Value Iteration

(b) p = 0.9, and η = 3.

Figure 4.2: Regret as a function of the number of iterations of mirror prox (MP),
mirror descent (MD), and value iteration in a grid world example with side s = 10.
The suffix “-avg” refers to the average over iterations (policy πK) while “-last”
refers to last iteration (policy πyK).

x1 x2 x3 x
L− 1

x
L− 2

x
L

Figure 4.3: Example of MDP.

Let’s first realize that the optimal policy is to take always the left action, so
the optimal distribution is homogeneous and the optimal value function decreases
linearly with the distance to the leftmost state.

To test our algorithm in this environment, we built W and Ψ taking advantage
of the structure of the problem as follows:

Let’s start with W , that will be a matrix of 8 rows. We first randomly generate
a vector c of length L with entries being 1, 2 or 3. We make W>

(x=i,a=left),j=1 if
c(j) = i and 0 otherwise for i = 1, 2, 3. After that we normalize the three rows,
getting three homogeneous non-overlapping distributions. Doing this, we ensure
that the realizability assumption is fulfilled for the probability distribution µ. We
do the same for the “right” action to fill the next three rows i = 4, 5, 6, and we
fill the last two rows with random probability distributions over the whole set of
state-action pairs. This makes a total of 8 rows in W .

To build Ψ, we also randomly generate a vector c of length L with entries
being 1, 2 or 3 and we make Ψj,i = j/L if c(j) = j and 0 otherwise for i = 1, 2, 3.
With this we guarantee that the realizability assumption is fulfilled for the value
functions. We also add three random columns with random numbers between 0
and 1, in order to fulfill coherence with high probability. This results in a total of

54

“main” — 2022/4/21 — 14:41 — page 55 — #63

5 columns for Ψ.
In Figure 4.4 we show the results obtained with value iteration and the linearly

relaxed mirror prox, with p = 0.7 and different lengths (10 and 100). While for
value iteration the number of iterations needed to converge is of the order of the
number of states, it is independent of the size of the state space for our algorithm,
and rather scales with the number of columns of the matrices W and Ψ. This
simple example shows that with proper features, our algorithm can actually beat
value iteration, which by itself is not able to deal with features.

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

ρ
*
−

ρ t

MP-avg
MP-last
Value Iteration

(a) p = 0.7, η = 1
4 and L = 10.

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0

ρ
*
−

ρ t

MP-avg
MP-last
Value Iteration

(b) p = 0.7, η = 1
4 and L = 100.

Figure 4.4: Suboptimality gap as a function of the number of iterations of mirror
prox and value iteration for p = 0.7 and η = 0.25

4.6 Conclusions
Our most important contributions concern the relaxed saddle-point problem (4.4),
most notably including our discussion on the necessity and sufficience of the co-
herence assumption (Assumption 3). As we have mentioned earlier, several relax-
ation schemes similar to ours have been studied in the literature. In fact, relaxing
the linear program underlying (4.3) through the introduction of the feature map
Ψ for approximating the value function V ∗ is one of the oldest ideas in approxi-
mate dynamic programming, originally introduced by Schweitzer and Seidmann
[1985]. The effects of this approximation were studied by de Farias and Van
Roy [2003] in the context of discounted Markov decision processes. A relaxation
scheme involving both the feature maps Ψ and W was considered by Lakshmi-
narayanan and Bhatnagar [2015]; Lakshminarayanan et al. [2017]. Both sets of
authors carefully observed that introducing relaxations may make the linear pro-
gram unbounded, and proposed algorithmic steps and structural assumptions of Ψ
andW to fight this issue. The results of these works are incomparable to ours since
they focus on controlling the errors in approximating the optimal value function

55

“main” — 2022/4/21 — 14:41 — page 56 — #64

V ∗ rather than controlling the suboptimality of the policies output by the algo-
rithm. Interestingly, the widely popular REPS algorithm of Peters et al. [2010] is
also originally derived from the relaxed linear program analyzed by de Farias and
Van Roy [2003], even if this connection has not been pointed out by the authors.

The work of Chen et al. [2018] is very close to ours in spirit. Chen et al. con-
sider a variation of the relaxed saddle-point problem (4.4) with W being block-
diagonal with ΨT in each of its blocks, and claim convergence results for their
algorithm to the optimal policy under only a realizability assumption. Unfortu-
nately, their choice of W does not necessarily ensure that the coherence assump-
tion holds, which raises concerns regarding the generality of their guarantees. In-
deed, the results of Chen et al. require an additional assumption that implies that
maxx νπ(x)
minx′ νπ(x′)

remains bounded by a constant for any policy π, which is extremely
difficult to ensure in problems of practical interest. In fact, this ratio is already
exponentially large in |X | in very simple problems like the one we consider in
our experiments. Additionally, there is a subtle issue with the analysis of Chen
et al.: it is based on the claim that under the realizability assumption, the repre-
sentation (θ∗, y∗) of the original optimal solution (V ∗, µ∗) = (Ψθ∗,W Ty∗) always
remains an optimal solution to the relaxed saddle-point problem. We could not
confirm that this claim is indeed true, or to what extent their condition regarding
the boundedness of stationary distribution can be relaxed.

In any case, we believe that our coherence assumption is more fundamental
than the previously considered conditions, and it enables a much more trans-
parent analysis of optimization algorithms addressing the relaxed saddle-point
problem (4.4). Beyond this particular positive result, our work also cleans the
slate for further theoretical work on approximate optimization in Markov deci-
sion processes. Indeed, the form of our coherence assumption naturally invites
the question: can we compute good approximate solutions to the original problem
when our assumptions are only satisified approximately? Similar questions are
not without precedent in the reinforcement-learning literature. Translated to our
notation, classical results concerning the performance of (least-squares) temporal
difference learning algorithms imply that the approximation errors are controlled
by the projection error of (P − E)Ψθ∗ + r to the column space of Ψ [Tsitsiklis
and Van Roy, 1997; Bradtke and Barto, 1996; Lazaric et al., 2010]. When using
more general function classes to approximate V ∗, Munos and Szepesvári [2008]
show that the approximation errors are controlled by the inherent Bellman error
of the function class, which captures an approximation property related to our co-
herence condition. Whether or not we can generalize our techniques to construct
provably efficient algorithms under such milder assumptions remains an exciting
open problem that we leave open for future research.

56

“main” — 2022/4/21 — 14:41 — page 57 — #65

4.7 Omitted proofs
This section contains the proofs of those lemmas used in Section 4.4 to prove
Theorem 4.3.1.

4.7.1 The proof of Lemma 4.4.2
We start by noticing that the dual norm of ‖z‖2 = ‖θ‖2

2 + ‖y‖2
1 evaluated at

x = (w, q) is ‖x‖2
∗ = ‖w‖2

2 + ‖q‖2
∞. Recalling the definition of smoothness, and

the statement of the lemma that we aim to proof, we see that we need to show the
following:

‖g(z)− g(z′)‖∗ ≤ 2C ‖z − z′‖ =

√
4C2 ‖y − y′‖2

1 + 4C2 ‖θ − θ′‖2
2.

Using the definition of g(z) and the shorthand notation A = W (P −E)Ψ, for any
z = (θ, y) and z′ = (θ′, y′) we have

‖g(z)− g(z′)‖2
∗ = ‖AT (y − y′)‖2

2 + ‖A(θ − θ′)‖2
∞ .

We now have to bound the two terms of the right hand side of the above equation.
Let’s first see that the sum of any column j of ΨTW T is bounded by C:∑

i

|(ΨTW T)i,j| =
∑
i,x

|ΨT

i,xW
T

x,j| =
∑
x

|W T

x,j|
(∑

i

|ΨT

i,x|
)
≤ C. (4.10)

The same can be easily proven for the matrix ΨTP TW T. Now, the first term can
be bounded as follows

‖AT (y − y′)‖2 ≤ ‖AT (y − y′)‖1

=
∑
i

|
∑
j

AT

i,j (y(j)− y′(j)) |

≤
∑
i,j

|AT

i,j||y(j)− y′(j)|

≤
∑
j

(∑
i

|AT

i,j|
)
|y(j)− y′(j)|

≤
∑
j

(∑
i

|(ΨTP TW T)i,j|
)
|y(j)− y′(j)|

+
∑
j

(∑
i

|(ΨTW T)i,j|
)
|y(j)− y′(j)|

≤2C ‖y − y′‖1 .

57

“main” — 2022/4/21 — 14:41 — page 58 — #66

To bound the last term, we observe that

‖W (P − E)Ψ(θ − θ′)‖2
∞ = max

j

∣∣∣∣∣∑
i

(WΨ−WPΨ)j,i (θ(i)− θ′(i))
∣∣∣∣∣
2

≤ max
j

∣∣∣∣∣∑
i

(∣∣∣(WΨ)j,i

∣∣∣+
∣∣∣(WPΨ)j,i

∣∣∣) (θ(i)− θ′(i))
∣∣∣∣∣
2

≤ max
j

∣∣∣∣∣∑
i

(∣∣∣(WΨ)j,i

∣∣∣+
∣∣∣(WPΨ)j,i

∣∣∣) ‖θ − θ′‖∞
∣∣∣∣∣
2

≤ max
j

∣∣∣∣∣∑
i

(∣∣∣(ΨTW T)i,j

∣∣∣+
∣∣∣(ΨTP TW T)i,j

∣∣∣) ‖θ − θ′‖∞
∣∣∣∣∣
2

≤ |2C ‖θ − θ′‖∞|
2 ≤ 4C2 ‖θ − θ′‖2

∞ ≤ 4C2 ‖θ − θ′‖2
2 ,

where in the fourth inequality we have used the expression (4.10). Putting every-
thing together concludes the proof.

4.7.2 The proof of Lemma 4.4.4
Let ν be such that ν(x) =

∑
a µ(x, a) and νµ the stationary distribution induced

by πµ.

〈µ, r〉 − ρµ =
∑
x,a

(ν(x)− νµ(x))π(a|x)r(x, a) ≤ ‖ν − νµ‖1 ,

so all we are left with is bounding the total variation distance between νµ and ν.
To do this, we start by fixing an arbitrary k > 0 and observing that∥∥(ν − νµ)P k

π

∥∥
1
≤ Ce−k/τ ‖ν − νµ‖1

≤ Ce−k/τ
(∥∥ν − νP k

π

∥∥
1

+
∥∥νP k

π − νµ
∥∥

1

)
,

(4.11)

where we used Assumption 1 in the first step and the triangle inequality in the
second one. Regarding the first term in the parentheses, we repeatedly use the
triangle inequality to obtain∥∥ν − νP k

π

∥∥
1
≤ ‖ν − νPπ‖1 +

∥∥νPπ − νP 2
π

∥∥
1

+ · · ·+
∥∥νP k−1

π − νP k
π

∥∥
1

= ‖ν − νPπ‖1 + ‖(ν − νPπ)Pπ‖1 + · · ·+
∥∥(ν − νPπ)P k−1

π

∥∥
1

≤‖ν − νPπ‖1 + Ce−1/τ ‖ν − νPπ‖1 + · · ·+ Ce−(k−1)/τ ‖ν − νPπ‖1

≤C ‖ν − νPπ‖1

k−1∑
i=0

e−i/τ ≤ C

1− e−1/τ
‖ν − νPπ‖1 .

58

“main” — 2022/4/21 — 14:41 — page 59 — #67

Plugging this bound into Equation 4.11 and observing that νP k
π−νµ = (ν − νµ)P k

π

due to stationarity of νµ, we get∥∥(ν − νµ)P k
π

∥∥
1
≤ Ce−k/τ

(
C

1− e−1/τ
‖ν − νPπ‖1 +

∥∥(ν − νµ)P k
π

∥∥
1

)
.

Reordering gives∥∥(ν − νµ)P k
π

∥∥
1
≤ Ce−k/τ

1− Ce−k/τ ·
C

1− e−1/τ
‖ν − νPπ‖1 .

Thus, using the triangle inequality again yields

‖ν − νµ‖1 ≤
∥∥ν − νP k

π

∥∥
1

+
∥∥νP k

π − νµ
∥∥

1

≤
(

1 +
Ce−k/τ

1− Ce−k/τ
)

C

1− e−1/τ
‖ν − νPπ‖1 .

Now, choosing any k ≥ τ log(2C), using the elementary inequality 1/(1−e−1/τ) ≤
τ + 1 and recalling the definition of τmix = 2C(1 + τ) concludes the proof.

4.7.3 The proof of Lemma 4.4.5
The statement is obvious when (P − E)TW TyK = 0, so we will assume that the
contrary holds below. Let us define

w = τmix · arg max
V :‖V ‖∞=1

〈(P − E)TW TyK , V 〉 ,

noting that 〈(P − E)TW TyK , w〉 = τmix ‖(P − E)TW TyK‖1 > 0. By using
this fact and Assumption 3, we crucially observe that there exists a θ̃ such that
〈(P − E)TW TyK , w〉 =

〈
(P − E)TW TyK ,Ψθ̃

〉
and

∥∥∥θ̃∥∥∥
∞
≤ τmixU . This im-

plies that we can apply Corollary 4.4.2 with z = (θK − θ̃, yK) to obtain the bound

〈(P − E)TW TyK , w〉 =
〈
(P − E)TW TyK ,ΨθK

〉
+ 〈W TyK , r〉

−
〈

(P − E)TW TyK ,Ψ
(
θK − θ̃

)〉
− 〈W TyK , r〉

≤D(z‖z0)

ηK
.

Plugging in the definition of w and the Bregman divergence DΦ, we obtain

‖(P − E)TW TyK‖1 ≤
1
2

∥∥∥θ̃ − θK∥∥∥2

2
+ log n

ητmixK
.

59

“main” — 2022/4/21 — 14:41 — page 60 — #68

Due to Assumption 2 and our assumption on Ψ stated before Theorem 4.3.1, we
can choose an optimal solution θ∗ satisfying Ψθ∗ = V ∗ and ‖θ∗‖∞ ≤ τmixU and
write∥∥∥θ̃ − θK∥∥∥2

2
≤ 2

∥∥∥θ̃ − θ∗∥∥∥2

2
+ 2

∥∥θK − θ∗∥∥2

2
≤ 4

∥∥∥θ̃∥∥∥2

2
+ 4 ‖θ∗‖2

2 + 4D(z∗‖zK)

≤ 4m
∥∥∥θ̃∥∥∥2

∞
+ 4m ‖θ∗‖2

∞ + 4D(z∗‖z0)

≤ 10τ 2
mixU

2m+ 4 log n,

where in the second line we have used Corollary 4.4.1 that implies D(z∗‖zK) ≤
D(z∗‖z0). Putting everything together concludes the proof.

60

“main” — 2022/4/21 — 14:41 — page 61 — #69

Chapter 5

LOGISTIC Q-LEARNING

5.1 Introduction

Despite the enormous empirical successes of deep reinforcement learning, we un-
derstand little about the convergence of the algorithms that are commonly used.
The use of the empirical squared Bellman error (squared Bellman error for short)
for deep reinforcement learning has been popularized in the breakthrough paper
of Mnih et al. [2015] (see Section 3.4.2), and has been exclusively used for pol-
icy evaluation ever since. Despite its broad usage, it has a number of undesirable
properties: it is not directly motivated by standard Markov Decision Processes
(MDP) theory, not convex in the action-value function parameters, and RL algo-
rithms based on its recursive optimization are known to be unstable [Geist et al.,
2017; Mehta and Meyn, 2020]. While several algorithmic improvements have
been proposed for improving policy updates over the past few years, the squared
Bellman error remained a staple: among others, it is used for policy evaluation in
TRPO [Schulman et al., 2015], SAC [Haarnoja et al., 2018], A3C [Mnih et al.,
2016], TD3 [Fujimoto et al., 2018], MPO [Abdolmaleki et al., 2018] and POLI-
TEX [Abbasi-Yadkori et al., 2019]. Despite its extremely broad use, the squared
Bellman error suffers from a range of well-known issues pointed out by several
authors including Sutton and Barto [2018, Chapter 11.5], Geist et al. [2017], and
Mehta and Meyn [2020]. While some of these have been recently addressed by
Dai et al. [2018] and Feng et al. [2019], several concerns remain.

On the other hand, the RL community has been very productive in developing
novel policy-improvement rules: since the seminal work of Kakade and Langford
[2002] established the importance of soft policy updates for dealing with policy-
evaluation errors, several practical update rules have been proposed and applied
successfully in the context of deep RL—see the list we provided in the previous
paragraph. Many of these soft policy updates are based on the idea of entropy reg-

61

“main” — 2022/4/21 — 14:41 — page 62 — #70

ularization, first explored by Kakade [2001] and Ziebart et al. [2008] and inspiring
an impressive number of followup works eventually unified by Neu et al. [2017]
and Geist et al. [2019]. A particularly attractive feature of entropy-regularized
methods is that they often come with a closed-form “softmax” policy update rule
that is easily expressed in terms of an action-value function. A limitation of these
methods is that they typically do not come with a theoretically well-motivated
loss function for estimating the value functions and end up relying on the squared
Bellman error.

One notable exception is the Relative Entropy Policy Search (REPS) algo-
rithm of Peters et al. [2010] that comes with a natural loss function for policy
evaluation, but no tractable policy-update rule. REPS is elegantly derived from
the LP formulation of optimal control in MDPs, but it has the serious shortcoming
that its faithful implementation requires access to the true MDP for both the pol-
icy evaluation and improvement steps, even at deployment time. The usual way
to address this limitation is to use an empirical approximation to the policy eval-
uation step and to project the policy from the improvement step into a parametric
space [Deisenroth et al., 2013], losing all the theoretical guarantees of REPS in
the process.

In this chapter, we present a new algorithm called Q-REPS that eliminates
this limitation of REPS by introducing a simple softmax policy improvement step
expressed in terms of an action-value function that naturally arises from a regu-
larized LP formulation. The action-value functions are obtained by minimizing
a convex loss function that we call the logistic Bellman error (LBE) due to its
analogy with the classic notion of Bellman error and the logistic loss for logis-
tic regression. The LBE has numerous advantages over the most commonly used
notions of Bellman error: unlike the squared Bellman error, the logistic Bellman
error is convex in the action-value function parameters, smooth, and has bounded
gradients (see Figure 5.1). This latter property obviates the need for the heuristic
technique of gradient clipping (or using the Huber loss in place of the square loss),
a commonly used optimization trick to improve stability of training of deep RL
algorithms [Mnih et al., 2015].

We also present an empirical version of the LBE and provide a bound on
its bias in terms of the regularization parameters used in Q-REPS. Furthermore,
we propose a semi-empirical version of the LBE (using a simulator) that is an
unbiased estimate of the true LBE.

Our main theoretical contribution is an error-propagation analysis that relates
the quality of the optimization subroutine to the quality of the policy output by the
algorithm. For a version of the algorithm minimizing the semi-empirical LBE we
also provide rigorous theoretical guarantees that establish its convergence to the
optimal policy under appropriate conditions.

Our error propagation analysis is close in spirit to that of Scherrer et al. [2015],

62

“main” — 2022/4/21 — 14:41 — page 63 — #71

recently extended to entropy-regularized approximate dynamic programming al-
gorithms by Geist et al. [2019], Vieillard et al. [2020a], and Vieillard et al. [2020b].
One major difference between our approaches is that their guarantees depend on
the `p norms of the policy evaluation errors, but still optimize squared-Bellman-
error-like quantities that only serve as proxy for these errors. In contrast, our anal-
ysis studies the propagation of the optimization errors on the objective function
that is actually optimized by the algorithm.

Our main algorithmic contribution is a saddle-point optimization framework
for optimizing the empirical and semi-empirical versions of the LBE. It formulates
the minimization problem as a two-player game between a learner and a sampler.
The learner plays stochastic gradient descent (SGD) on the samples proposed by
the sampler, and the sampler updates its distribution over the sample transitions
in response to the observed Bellman errors. We evaluate the resulting algorithm
experimentally on a range of standard benchmarks, showing excellent empirical
performance of Q-REPS with minimization of the empirical LBE.

Furthermore, since our Q-REPS comes with both a natural loss function and
an explicit and tractable policy update rule, it is possible to implement Q-REPS
entirely faithfully to its theoretical specification in a deep reinforcement learn-
ing context, modulo the step of using a neural network for parameterizing the
Q-function. This implementation is justified by our error propagation analysis
accounting for the optimization and representation errors.

Some of the results of this chapter regarding the analysis of Q-REPS are dif-
ferent from the results of the original paper [Bas-Serrano et al., 2021]. This is
because several details in the original proofs were incorrect and the final result
does not hold in the form claimed in the paper. The new analysis presented here
amends the mistakes in the original work, albeit at the price of some more restric-
tive assumptions. It remains an open problem to relax these assumptions and in
particular prove a performance guarantee for the case of linear function approxi-
mation.

5.2 REPS

The results shown in this chapter are directly inspired by the seminal relative
entropy policy search (REPS) algorithm proposed by Peters et al. [2010]. The
core ideas underlying REPS are adding a strongly convex regularization function
to the objective of the LP (3.7) and relaxing the primal constraints through the use
of a feature map ψ : X → Rm. Introducing the operator ΨT acting on q ∈ RX
as ΨTq =

∑
x q(x)ψ(x), and letting µ0 be an arbitrary state-action distribution,

REPS is defined as an iterative optimization scheme that produces a sequence of
occupancy measures as follows:

63

“main” — 2022/4/21 — 14:41 — page 64 — #72

µk+1 = max
µ∈RX×A+

〈µ, r〉 − 1

η
D (µ‖µk)

s.t. ΨTETµ = ΨT (γP Tµ+ (1− γ)p0) .

(5.1)

Here, D (µ‖µ′) is the unnormalized relative entropy (or Kullback–Leibler diver-
gence) between the distributions µ and µ′ defined as

D (µ‖µ′) =
∑
x,a

(
µ(x, a)

(
log

µ(x, a)

µ′(x, a)
− 1
)

+ µ′(x, a)
)
.

Introducing the notation Vθ = Ψθ, the unique optimal solution to this optimization
problem can be written as

µk+1(x, a) = µk(x, a)eη(r(x,a)+γ(PVθ)(x,a)−Vθ(x)−ρk), (5.2)

where ρk is a normalization constant and θk is given as the minimizer of the dual
function given as

Gk(θ) =
∑
x,a

µk−1(x, a)eη(r(x,a)+γ(PVθ)(x,a)−Vθ(x)) + (1− γ) 〈p0, Vθ〉 , (5.3)

that is obtained from the primal optimization problem (5.1) through Lagrangian
duality.

As highlighted by Zimin and Neu [2013] and Neu et al. [2017], REPS can be
seen as a mirror descent algorithm [Martinet, 1970; Rockafellar, 1976; Beck and
Teboulle, 2003], and thus its iterates µk are guaranteed to converge to an optimal
occupancy measure µ∗.

Despite its exceptional elegance, the formulation above has a number of fea-
tures that limit its practical applicability. One very serious limitation of REPS
is that its output policy πK involves an expectation with respect to the transition
function, thus requiring knowledge of P to run the policy. Another issue is that
optimizing an empirical version of the loss (5.3) as originally proposed by Peters
et al. [2010] may be problematic due to the empirical loss being a biased estimator
of the true objective (5.3) caused by the conditional expectation appearing in the
exponent.

5.3 Q-REPS optimization problem
Inspired by REPS, in this section we derive the Q-REPS optimization problem.
In the first part of this section, we derive the primal problem: a constrained con-
vex optimization problem inspired in (5.1) but with some new ideas. After this,
Lagrangian duality is used to derive the dual problem, an unconstrained minimiza-
tion problem whose objective function is the novel logistic Bellman error.

64

“main” — 2022/4/21 — 14:41 — page 65 — #73

5.3.1 The primal problem
The primal optimization problem derived below build on the following three main
ideas:

(a) Lagrangian decomposition of constraints,

(b) linear relaxation of the resulting decomposed constraints, and

(c) proximal entropy regularization.

In what follows, we are going to use these ideas to build our final optimization
problem.

Lagrangian decomposition of constraints

As we have seen, one of the main limitations of REPS is that its output policy πK
involves an expectation with respect to the transition function P . This is directly
related to the fact that the algorithm works with value functions instead ofQ func-
tions. This observation motivates a reformulation of the dual LP (3.10) that can be
seen to be equivalent to having a primal withQ-functions. To our best knowledge,
this LP has been first proposed by Mehta and Meyn [2009] and has been recently
rediscovered by Lee and He [2019] and Neu and Pike-Burke [2020] and revisited
by Mehta and Meyn [2020]. Specifically, this approach is based on introducing
an additional set of primal variables d ∈ RX×A and split the constraints of the LP
as follows:

maximizeµ∈RX×A,d∈RX×A+
〈µ, r〉

s.t. ETd = γP Tµ+ (1− γ)p0

d = µ.

(5.4)

In the problem above, d can be thought of as a “mirror image” of µ. Furthermore,
we can see that by making the second constraint implicit (i.e., substituting d by
µ), the problem is left only with the variable µ and becomes the same problem
as LP(3.10). By straightforward calculations, the dual of this LP can be shown to
be

minimizeV ∈RX ,Q∈RX×A (1− γ) 〈p0, V 〉
s.t. Q = r + γPV

EV ≥ Q.

(5.5)

The optimal solution of the above LP correspond to the optimal value function
and Q-function, V ∗ and Q∗.

65

“main” — 2022/4/21 — 14:41 — page 66 — #74

Linear constraint decomposition

With a similar purpose as in REPS, we relax some of the constraints of our
optimization problem. Unlike in the original REPS formulation, we relax the
set of constraints d = µ instead of the flow constraints. The motivation of
this choice will become clear soon. We introduce a state-action feature map
ϕ : RX×A → Rm and the corresponding linear operator ΦT acting on µ as
ΦTµ =

∑
x,a µ(x, a)ϕ(x, a). We then propose the following relaxed optimiza-

tion problem:

maximizeµ∈RX×A,d∈RX×A+
〈µ, r〉

s.t. ETd = γP Tµ+ (1− γ)p0

ΦTd = ΦTµ.

(5.6)

By computing the dual of the above optimization problem, we get

minimizeV ∈RX ,θ∈Rm (1− γ) 〈p0, V 〉
s.t. Φθ = r + γPV

EV ≥ Φθ.

We can see that the constraint relaxation applied in LP (5.6) through the feature
map Φ gives parametrized Q-functions of the form Qθ = Φθ in the dual. It
is interesting to notice that a relaxation in the flow constraints would turn into
parametrized value functions, as it happens in REPS. Nevertheless, as we will see
soon, the value functions V will end up being a function of θ too, thanks to the
usage of a carefully selected regularization.

Let’s now denote asMΦ the set of (µ, d) pairs that satisfy the constraints of
the problem (5.7), so that the optimization problem can be rewritten as

maximize(µ,d)∈MΦ
〈µ, r〉 .

A reasonable question is whether the setMΦ matches the set of valid discounted
occupancy measures M∗ = {µ : ETµ = γP Tµ + (1 − γ)p0} in an appropri-
ate sense. We introduce the following assumption under which we will show an
interesting relation between the two setsMΦ andM∗:

Assumption 4 (Factored linear MDP). There exists a function ω : X → Rm

and a vector ϑ ∈ Rm such that for any x, a, x′, the transition function factorizes
as P (x′|x, a) = 〈ω(x′), ϕ(x, a)〉 and the reward function can be expressed as
r(x, a) = 〈ϑ, ϕ(x, a)〉.

The class of factored linear MDPs ensure that the feature space is expres-
sive enough to allow the representation of the optimal action-value function and

66

“main” — 2022/4/21 — 14:41 — page 67 — #75

thus the optimal policy (a property sometimes called realizability). This condi-
tion has been first proposed by Yang and Wang [2019] and has quickly become a
standard model for studying reinforcement learning algorithms under linear func-
tion approximation [Jin et al., 2020; Cai et al., 2020; Wang et al., 2020; Neu and
Pike-Burke, 2020; Agarwal et al., 2020a]. For this class of MDPs, the following
proposition establishes an interesting relation between the sets {d : (µ, d) ∈MΦ}
andM∗:

Proposition 5.3.1. Let M′
Φ = {d : (µ, d) ∈MΦ}. Then, under Assumption 4,

M∗ = M′
Φ holds. Furthermore, letting (µ∗, d∗) = arg max(µ,d)∈MΦ

〈µ, r〉, we
have 〈d∗, r〉 = maxµ∈M∗ 〈µ, r〉.
Proof. It is easy to see that M∗ ⊆ M′

Φ: for any µ ∈ M∗, we can choose d =
µ and directly verify that all constraints of (5.7) are satisfied. For proving the
other direction, it is helpful to define the operator M through its action Mv =∑

x ω(x)v(x) for any v ∈ RX , so that the condition of Assumption 4 can be
expressed as P = ΦM and r = Φϑ. Then, for any (µ, d) ∈MΦ, we write

ETd = γP Tµ+ (1− γ)p0 = γMTΦTµ+ (1− γ)p0

= γMTΦTd+ (1− γ)p0 = γP Td+ (1− γ)p0.

Combined with the fact that d is non-negative, this implies that d ∈ M∗ and thus
thatM′

Φ ⊆M∗. Together with the previous argument, this shows thatM∗ =M′
Φ

indeed holds. For proving the second statement, we use the assumption on r to
write 〈µ, r〉 = 〈ΦTµ,Φr〉 = 〈ΦTd,Φr〉 = 〈d, r〉 for any feasible (µ, d). Using this
fact for the maximizer d∗ implies 〈d∗, r〉 = maxd∈M′Φ 〈d, r〉 = maxµ∈M∗ 〈µ, r〉,
which concludes the proof.

This result is of particular interest since, as we will see in the following sec-
tion, our derivations provide an explicit expression for the policy associated with
d∗.

Entropy regularization

Finally, and once again inspired by REPS, we introduce a convex regularization
term in the objective. We augment the relative-entropy regularization used in
REPS by a conditional relative entropy term defined between two state-action
distributions d and d′ as

H(d‖d′) =
∑
x,a

d(x, a) log
πd(a|x)

πd′(a|x)
.

One minor change is that we will restrict d and µ to belong to the set of probability
distributions over X ×A, denoted as P .

67

“main” — 2022/4/21 — 14:41 — page 68 — #76

Letting µ0 and d0 be two arbitrary reference distributions, denoting the corre-
sponding policy as π0 = πd0 , and letting α and η be two positive parameters, we
define the primal Q-REPS optimization problem as follows:

maximizeµ,d∈P 〈µ, r〉 − 1

η
D(µ‖µ0)− 1

α
H(d‖d0)

s.t. ETd = γP Tµ+ (1− γ)p0

ΦTd = ΦTµ.

(5.7)

Or, equivalently:

maximize(µ,d)∈MΦ
〈µ, r〉 − 1

η
D(µ‖µ0)− 1

α
H(d‖d0).

In the next section we will see how the incorporation of the conditional relative
entropy term H(d‖d′) makes it possible to find a closed form solution for the
value function V as a function of Q. In consequence, both Q and V will be
parameterized by θ.

5.3.2 The dual problem
This section presents the dual problem of the optimization problem that we just
proposed. We will denote the optimal solution of problem (5.7) as (µ+, d+) and
save the notation µ∗ and d∗ to express other quantities that will appear later. Sim-
ilarly as in REPS, the following proposition based on Lagrangian duality shows
an equivalent problem to (5.7):

Proposition 5.3.2. Define the Q-function Qθ = Φθ taking values Qθ(x, a) =
〈θ, ϕ(x, a)〉, the value function

Vθ(x) =
1

α
log

(∑
a

π0(a|x)eαQθ(x,a)

)
(5.8)

and the Bellman error function ∆θ = r + γPVθ −Qθ. Then, the optimal solution
of the optimization problem (5.7) is given as

µ+(x, a) ∝ µ0(x, a)eη∆θ∗ (x,a)

πd+(a|x) = π0(a|x)eα
(
Qθ∗ (x,a)−Vθ∗ (x)

)
,

where θ∗ is the minimizer of the convex function

G(θ) =
1

η
log

(∑
x,a

µ0(x, a)eη∆θ(x,a)

)
+ (1− γ) 〈p0, Vθ〉 . (5.9)

68

“main” — 2022/4/21 — 14:41 — page 69 — #77

Proof. We start writing the Lagrangian of problem (5.7) with V ∈ RX , θ ∈ Rm

and ρ ∈ R as the Lagrange multipliers for the two sets of flow constraints and the
normalization constraint of µ respectively

L(µ, d;V, θ, ρ) = 〈µ, r〉+ 〈V, γP Tµ+ (1− γ)p0 − ETd〉+ 〈θ,ΦTd− ΦTµ〉

+ ρ (1− 〈µ,1〉)− 1

η
D(µ‖µ0)− 1

α
H(d‖d0)

= 〈µ, r + γPV − Φθ − ρ1〉+ 〈d,Φθ − EV 〉+ (1− γ) 〈p0, V 〉

+ ρ− 1

η
D(µ‖µ0)− 1

α
H(d‖d0)

= 〈µ,∆θ,V − ρ1〉+ 〈d,Qθ − EV 〉+ (1− γ) 〈p0, V 〉+ ρ

− 1

η
D(µ‖µ0)− 1

α
H(d‖d0), (5.10)

where we used the notation Qθ = Φθ taking values Qθ(x, a) = 〈θ, ϕ(x, a)〉 and
∆θ,V = r+γPV −Qθ in the last line. Notice that the above is a concave function
of d and µ, so its maximum can be found by setting the derivatives with respect to
these parameters to zero. In order to do this, we note that

∂D(µ‖µ0)

∂µ(x, a)
= log

µ(x, a)

µ0(x, a)
and

∂H(d‖d0)

∂d(x, a)
= log

πd(a|x)

πd0(a|x)
,

where πd(a|x) = d(x, a)/
∑

a′ d(x, a′) and the last expression can be derived by
straightforward calculations (see, e.g., Appendix A.4 in Neu et al., 2017). This
gives the following expressions for the optimal choices of µ and d:

µ+(x, a) = µ0(x, a)eη(∆θ,V (x,a)−ρ) and πd+(x, a) = π0(x, a)eα(Qθ(x,a)−V (x)).

From the constraint
∑

x,a µ
+(x, a) = 1, we can express the optimal choice of ρ as

ρ∗ = log

(∑
x,a

µ0(x, a)eη∆θ,V (x,a)

)
.

Similarly, from the constraint
∑

a πd+(a|x) = 1, we can express V as a function
of θ for all x:

Vθ(x) =
1

α
log

(∑
a

π0(x, a)eαQθ(x,a)

)
(5.11)

This implies that d+ has the form d+(x, a) = ν+(x)π+
d (a|x), where ν+ is some

non-negative function on the state space. Recalling the definition of ∆θ = r +

69

“main” — 2022/4/21 — 14:41 — page 70 — #78

γPVθ −Qθ and plugging the above parameters (µ+, d+, ρ∗, Vθ) back into the La-
grangian (5.10) gives the Lagrange dual function

G(θ) =L(µ+, d+;Vθ, θ, ρ
∗)

=
∑
x,a

µ0(x, a)eη(∆θ(x,a)−ρ∗)(∆θ(x, a)− ρ∗)

+
∑
x,a

ν+(x)π0(x, a)eα(Qθ(x,a)−Vθ(x)) (Qθ(x, a)− Vθ(x))

−
∑
x,a

1

η
µ0(x, a)eη(∆θ(x,a)−ρ∗) log

µ0(x, a)eη(∆θ(x,a)−ρ∗)

µ0(x, a)

−
∑
x,a

1

η

(
µ0(x, a)− µ0(x, a)eη(∆θ(x,a)−ρ∗))

−
∑
x,a

1

α
ν+(x)π0(x, a)eα(Qθ(x,a)−Vθ(x)) log

π0(x, a)eα(Qθ(x,a)−Vθ(x))

π0(x, a)

+ (1− γ) 〈p0, V 〉+ ρ∗

=(1− γ) 〈p0, V 〉+ ρ∗

=(1− γ) 〈p0, V 〉+
1

η
log

(∑
x,a

µ0(x, a)eη∆θ(x,a)

)
.

Furthermore, observe that since the parameters were chosen so that all constraints
are satisfied, we also have

G(θ) = L(µ+, d+;Vθ, θ, ρ
∗) =

〈
µ+, r

〉
− 1

η
D(µ+‖µ0)− 1

α
H(d+‖d0)

due to strong duality. Thus, the solution of the optimization problem (5.7) can
indeed be written as

max
µ,d≥0

min
θ,V,ρ
L(µ, d;V, θ, ρ) = min

θ,V,ρ
max
µ,d≥0

L(µ, d;V, θ, ρ)

= min
θ
L(µ+, d+;Vθ, θ, ρ

∗)

= min
θ
G(θ).

Thus, the constrained optimization problem (5.7) is equivalent to minθ G(θ), which
concludes the proof.

This result has several important implications. First, it shows that the con-
strained optimization problem (5.7) can be reduced to uncostrained minimization

70

“main” — 2022/4/21 — 14:41 — page 71 — #79

of the convex loss function G. By analogy with the classic logistic loss, we will
call this loss function the logistic Bellman error, and its solutions Qθ and Vθ the
logistic value functions. It is important to notice that, due to the use of regulariza-
tion, the logistic value functions have lost the original meaning of value functions
explained in Section 3.3. Despite this, they still conserve some of the flavour of
their original counterparts as an heuristic of the quality of a given state or state-
action pair, as seen in the closed form expression of µ+ and πd+ .

Another major implication of the above results is that it provides a simple ex-
plicit expression for the policy associated with d+ as a function of the logistic
action-value function Qθ∗ . This is remarkable since no such policy parameteriza-
tion is directly imposed in the primal optimization problem (5.7) as a constraint,
but it rather emerges naturally from the overall structure we propose.

Q(x0,a0)

B
el

lm
an

er
ro

r

Logistic
Squared
Huber

Figure 5.1: Squared Bellman error considered harmful: Loss functions plotted as
a function of the Q-value at a fixed state-action pair while keeping other values
fixed.

Besides convexity, the LBE has other favorable properties: when regarded as a
function of Q, its gradient satisfies ‖∇QG(Q)‖1 ≤ 2 and is thus 2-Lipschitz with
respect to the `∞ norm, and it is smooth with parameter α+η (due to being a com-
position of an α-smooth and an η-smooth function). These additional properties
make the LBE a desirable alternative to the squared Bellman error, which is non-
convex, non-smooth, and has unbounded gradients. Indeed, the Lipschitzness of
the LBE implies that optimizing the loss via stochastic gradient descent does not
require any gradient clipping tricks since the derivatives are bounded by default.
In this sense, the LBE can be seen as a theoretically well-motivated alternative to
the Huber loss commonly used instead of the squared loss for policy evaluation.

The Effect of α on the Action Gap

One interesting feature of the Q-REPS optimization problem (5.7) is that it be-
comes essentially identical to the REPS problem (5.1) when setting α = +∞.

71

“main” — 2022/4/21 — 14:41 — page 72 — #80

To see this, let Ψ and Φ be the identity maps. Then, the primal form of Q-REPS
becomes

maximizeµ,d∈P 〈µ, r〉 − 1

η
D(µ‖µ0)

s.t. ETd = γP Tµ+ (1− γ)p0

d = µ,

which is clearly seen to be a simple reparameterization of the convex program (5.1).
Furthermore, when α = +∞, the closed-form expression for V (5.11) is replaced
with the inequality constraint V (x) ≥ Q(x, a) required to hold for all x, a and the
dual function G ′(Q, V) becomes

1

η
log

(∑
x,a

µ0(x, a)eη(r(x,a)+γ
∑
x′ P (x′|x,a)V (x′)−Q(x,a))

)
+ (1− γ) 〈p0, V 〉 .

Since this function needs to be minimized in terms of Q and V and it is monotone
decreasing in Q, its minimum is achieved when the constraints are tight and thus
when Q(x, a) = V (x) for all x, a. Thus, in this case Q loses its intuitive interpre-
tation as an action-value function, highlighting the importance of the conditional-
entropy regularization in making Q-REPS practical.

From a practical perspective, this suggests that the choice of α impacts the
gap between the values of Q: as α goes to infinity, the gap between the values
vanish and they become harder to distinguish based on noisy observations. Fig-
ure 5.2 shows that the action gap indeed decreases as α is increased, roughly at
an asymptotic rate of 1/α, and that learning indeed becomes harder as the gaps
decrease.

5.4 Approximate policy iteration: Q-REPS
In this section we present the algorithmic framework Q-REPS that is based on
the minimization of the logistic Bellman error. We will consider a mirror-descent
algorithm that calculates a sequence of distributions iteratively as

(µk, dk) = arg max
(µ,d)∈MΦ

〈µ, r〉 − 1

η
D(µ‖dk−1)− 1

α
H(d‖dk−1).

for k = 1, 2, ..., K. We can realize that we have chosen the reference distribution
in the two regularization terms to be dk−1. We have made this choice because of
practical implementability, as we will see soon. By the results established in the

72

“main” — 2022/4/21 — 14:41 — page 73 — #81

10−1 100 101 102 103

U

10−3

10−2

10−1

100

101

&
(G

0,
sta

y)
−&
(G

0,
go
)

Effect of U on action gap

QREPS
QREPS∗

1/U

0 2 4 6 8
Episode

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

R
ew

ar
d

Effect of U on learning

U = 1000
U = 100
U = 10
U = 1
U = 0.1

Figure 5.2: Effect of conditional-entropy regularization parameter α on the per-
formance of Q-REPS. On this figure, Q-REPS∗ (dashed line) refers to the ideal
version of the algorithm that minimizes the exact LBE, whereas Q-REPS (solid
line) is the sample-based implementation minimizing the empirical LBE. On the
left plot, we see the effect of α on the action gap. For Q-REPS∗, the action gap
decreases at a rate slightly slower than 1/α. On the other hand, for Q-REPS, the
estimation noise dominates the action gap for smaller values of α. For larger val-
ues of α, Q-REPS fails to identify the optimal action which results in a negative
action gap. On the right plot, we show the performance of the iterative procedure
presented in Algorithm 2 for different values of α. For Q-REPS∗, α plays the role
of a learning rate: as α increases so does the learning speed For Q-REPS, this ef-
fect is only preserved for moderate values of α, as the small action gap in the ideal
Q-values makes identifying the optimal action harder. For α = 100 (green solid
line), the sign is identified correctly and it performs almost as if no regularization
was present. For α = 1000 (orange solid line), the sign is misidentified and the
wrong action is preferred, leading to poor performance.

previous section, implementing these updates requires finding the minimum θ∗k of
the logistic Bellman error function

Gk(θ) =
1

η
log

(∑
x,a

dk−1(x, a)eη∆θ(x,a)

)
+ (1− γ) 〈p0, Vθ〉 . (5.12)

We will denote the logistic value functions corresponding to θ∗k as Q∗k and V ∗k ,
and the induced policy as π∗k(a|x). In practice, exact minimization can be often
infeasible due to the lack of knowledge of the transition function P and limited
access to computation and data. Thus, practical implementations of Q-REPS will
inevitably have to work with approximate minimizers θk of the logistic Bellman
error Gk. We will denote the corresponding logistic value functions as Qk and
Vk and the policy as πk, and the distribution dk will be chosen as the occupancy

73

“main” — 2022/4/21 — 14:41 — page 74 — #82

measure induced by πk. By analogy with classical approximate policy iteration
schemes, we will refer to the minimization of the LBE Gk as a policy evaluation
step that is carried out by the subroutine Q-REPS-Eval. Using this language,
we present a pseudocode for Q-REPS as Algorithm 2.

Algorithm 2: Q-REPS
Initialize π0 arbitrarily;
for k = 1, 2, . . . , K do

Policy evaluation: θk = Q-REPS-Eval(πk−1);
Policy update: πk(a|x) ∝ πk−1(a|x)eαQk(x,a);

end
Result: πK

Boundedness of the logistic value functions

In the following sections, boundedness of the logistic value functions is required
in order to provide an analysis of the performance of the proposed algorithms.
Since logistic value functions are not the same as the real value funcitons, we can
not use the bounds from Proposition 3.3.4. We do not have any theoretical result
proving an upper bound on those quantities, but in the performed experiments (see
Section 5.6) we have observed that those values are bounded and behave well. As
an example, in Figure 5.3 we show the optimal logisticQ-function as a function of
the regularization parameter η (and α is set equal to η) for the different state-action
pairs in the two-states environment presented in Figure 5.4. There we can see how
the logistic Q-function is bounded for all the range of considered regularization,
and it converges to a fixed value for large enough regularization (small values of
η). In what follows, we will often use the following assumption regarding the
boundedness of the logistic Q-functions:

Assumption 5. Let Q = {Qθ : ‖Qθ‖∞ ≤ B′} for some B′ > 0 and Θ be the
corresponding set of parameter vectors. Furthermore, define B = 1 + (1 + γ)B′.
Then, for all k = 1, 2..., K it holds that Q∗k ∈ Q and θ∗k ∈ Θ.

5.4.1 Error propagation analysis
In this section we present an analysis of the propagation of optimization errors in
the Q-REPS scheme. Specifically, we will study how the suboptimality of each
policy evaluation step impacts the performance of the sequence of policies. We
first present two general results regarding the performance of the original Q-REPS

74

“main” — 2022/4/21 — 14:41 — page 75 — #83

10−3 10−2 10−1 100 101

η

−0.2

0.0

0.2

0.4

0.6

0.8

Q

Effect of the regularization on Q

Q(x0,ale f t)

Q(x0,ale f t)

Q(x1,aback)

Figure 5.3: Effect of the amount of regularization in the logistic Q-function in the
MDP described in Figure 5.4. We set α = η.

algorithm under almost no assumptions. Both results bound the same quantity
but are based on different analysis techniques and use different quantities in the
bound. The presented bounds are insightful but not very practical, since there are
some residual terms for which we have not been able to show sublinear growth
with the number of epochs K. After this, we will make some assumptions and
consider a slightly modified algorithm (σ-Q-REPS) in order to be able to show a
more practical result.

We let θ∗k = arg minθ Gk(θ) and define the suboptimality gap associated with
the parameter vector θk computed by Q-REPS-Eval as εk = Gk(θk) − Gk(θ∗k).
We also let d∗ = arg maxd∈M∗ 〈d, r〉, µ∗ be any state-action distribution satisfy-
ing (µ∗, d∗) ∈ MΦ, and µ̃k(x, a) = dk−1(x, a)eη(∆θk

(x,a)−ρk) for appropriately
defined normalization constant ρk. Furthermore, we denote the normalized dis-
counted return associated with policy πk as Rk = 〈dk, r〉 and the optimal return as
R∗ = 〈d∗, r〉. With these definitions, we can show the following theorem regard-
ing the performance of the sequence of policies output by Q-REPS:

Theorem 5.4.1. Suppose that Assumption 4 hold. Then, the policy sequence out-
put by Q-REPS satisfies

K∑
k=1

(R∗ −Rk) ≤
D(µ∗‖d0)

η
+
H(d∗‖d0)

α

+
K∑
k=1

(
D(µ∗‖dk)−D(µ∗‖µ̃k)

η
+

√
2αεk
1− γ + εk

)
As we have seen in the proof of Theorem 2.4.2, the analysis of algorithms

that follow a mirror-descent scheme is usually based on a telescopic sum of terms

75

“main” — 2022/4/21 — 14:41 — page 76 — #84

over epochs. In the proof of the above theorem, we can see that the terms do not
telescope nicely and there are some divergences left that do not vanish and accu-
mulate over epochs. These terms come from using dk instead of µ̃k as the baseline
term for the policy evaluation steps, which is the choice that makes practical im-
plementation of the algorithm possible.

The following theorem shows another bound on
∑K

k=1(R∗ − Rk) based on
a different analysis technique. This alternative technique will be useful in the
second part of this section for deriving a bound for a modified version of Q-REPS.

Theorem 5.4.2. Suppose that Assumption 4 hold and without loss of generality,
pick µ∗ to match d∗: µ∗ = d∗ = arg maxd∈M∗ 〈d, r〉. Then, the policy sequence
output by Q-REPS satisfies:

K∑
k=0

(R∗ −Rk) ≤
D(µ∗‖d0) +H(µ∗‖d0)

η
−

K∑
k=0

(
D(µ∗k‖dk−1)

η
− H(d∗k‖dk−1)

α

)

+
K∑
k=0

(
D(µ∗‖dk)−D(µ∗‖d∗k)

η
+
H(µ∗‖dk)−H(µ∗‖d∗k)

α

)

+
K∑
k=0

(
D(µ∗‖d∗k)−D(µ∗‖µ∗k)

η
+

√
2αεk
1− γ

)
As in Theorem 5.4.1, this bound again features a sum of terms that may not

telescope well enough in general. If we look at the terms from the second line of
the bound, we can see that those terms become 0 when dk = d∗k, which happens
when εk = 0. This suggests that it should be possible to bound those terms in
term of εk but so far we have not been able to do so without further assumptions.
In what follows, we present a modified version of the Q-REPS that together with
Assumption 6 (concentrability) makes it possible to bound these terms. Regarding
the first term of the last line, it is not clear how to bound it given the relaxation that
only ensures ΦTµ∗k = ΦTd∗k. Nevertheless, for the tabular case this term vanishes
since then there is no constraint relaxation so µ∗k = d∗k.

Analysis of σ-Q-REPS

In order to derive more meaningful bounds, we now present the analysis of a mod-
ified version of the Q-REPS algorithmic template, where some extra exploration
is imposed by mixing the policy πk at each iteration k with the policy π0 that we
set as the uniform policy. In concrete, at the end of each iteration we define

π̄k+1(a|x) = (1− σ)πk+1(a|x) + σπ0(a|x)

76

“main” — 2022/4/21 — 14:41 — page 77 — #85

with σ ∈ (0, 1), and use this policy in the policy evaluation step of the next iter-
ation. The pseudocode for this new algorithmic scheme that we call σ-Q-REPS
can be found in Algorithm 3.

Algorithm 3: σ-Q-REPS
Initialize π0;
for k = 1, 2, . . . , K do

Policy evaluation:
θk = Q-REPS-Eval(π̄k−1);

Policy update:
πk(a|x) ∝ πk−1(a|x)eαQk(x,a);
π̄k(a|x) = (1− σ)πk(a|x) + σπ0(a|x);

end
Result: πK

In addition to the extra exploration, in the analysis we will consider the tabular
case, that is, the case where indicator features are used, and we make the following
assumption that ensures that every policy explores the state space sufficiently well:

Assumption 6 (Concentrability). The likelihood ratio for any two valid occu-
pancy measures µ and µ′ is upper-bounded by some Cγ called the concentrability
coefficient: supx

∑
a µ(x,a)∑
a µ
′(x,a)

≤ Cγ .

Although the above assumption is a rather strong condition that is rarely veri-
fied in problems of practical interest, it is commonly assumed to ease theoretical
analysis of batch RL algorithms. For instance, similar conditions are required in
the classic works of Kakade and Langford [2002], Antos et al. [2006], and more
recently by Geist et al. [2017], Agarwal et al. [2020b] and Xie and Jiang [2020].

Before showing the main result for this setting, we want to remark that the
modification of the original algorithm to enforce exploration, the restriction to the
tabular case, and the concentrability condition have been introduced to make the
analysis manageable, but we strongly believe that similar results can be derived for
the original algorithm just under Assumption 4 (factored linear MDPs). We leave
as future work to derive similar results for Q-REPS in a more general setting.

With this in mind, we can present the following theorem regarding the error
propagation of σ-Q-REPS:

Theorem 5.4.3. Suppose that Assumptions 5 and 6 hold and that we are in the

77

“main” — 2022/4/21 — 14:41 — page 78 — #86

tabular setting. Then, the policy sequence output by σ-Q-REPS satisfies

K∑
k=1

(R∗ −Rk) ≤
D(µ∗‖d0)

η
+
H(µ∗‖d0)

α

+
K∑
k=1

(
1 +

α

η

)(
e3ηB

√
2Cγ|A|
ση

+
√

2αB

)
√
εk

+
K∑
k=1

(
1 +

Cγ
η

)√
2α

1− γ
√
εk

+
K∑
k=1

((
1 +

Cγ
η

)√
2σ

1− γ log |A|+ σ

α
log |A|

)

The proof can be found in Section 5.8. Looking at the terms of the right hand
side of the above bound, we can appreciate three different sources of regret. The
terms from the first line are the usual terms in mirror-descent algorithms optimiz-
ing a fixed linear loss. The terms from the second line correspond to the extra
loss coming from the errors in the evaluation steps, εk. The terms of the last line
are the price to pay to force exploration, since the extra exploration keep us away
from the optimal policy. In the next section we present two practical algorithms
and use the latter bound to derive more specific performance guarantees.

5.5 Policy evaluation via saddle-point optimization
In this section we provide two versions of an efficient batch reinforcement learn-
ing algorithm that implements the Q-REPS policy updates through saddle-point
optimization. The two versions minimize an empirical and a semi-empirical ver-
sion of the LBE respectively. For the second one, we show convergence under
some conditions by combining the results from the previous section with a con-
centration bounds regarding the estimate of the LBE.

In this section we will show the derivations for the version of the algorithm
with σ-exploration, but the equivalent algorithm without exploration can be triv-
ially built in the same way.

5.5.1 The empirical LBE
In order to use the ideas from the previous section in a reinforcement learn-
ing setting, we need to design a policy-evaluation subroutine that is able to di-

78

“main” — 2022/4/21 — 14:41 — page 79 — #87

rectly work with sample transitions obtained through interaction with the envi-
ronment. We will specifically consider a scheme where at each epoch k, we ex-
ecute policy π̄k−1 and obtain a batch of N sample transitions {ξk,n}Nn=1 , with
ξk,n = (Xk,n, Ak,n, X

′
k,n), drawn from the occupancy measure d̄k−1 induced by

π̄k−1. Furthermore, defining the empirical Bellman error for any (x, a, x′) as

∆̂θ(x, a, x
′) = r(x, a) + γVθ(x

′)−Qθ(x, a),

we define the empirical logistic Bellman error (ELBE):

Ĝk(θ) =
1

η
log

(
1

N

N∑
n=1

eη∆̂θ(ξk,n)

)
+ (1− γ) 〈p0, Vθ〉 . (5.13)

As in the case of the REPS objective function (5.3) and the squared Bellman
error (3.15), the empirical counterpart of the LBE is a biased estimator of the
true loss due to the conditional expectation taken over X ′ within the exponent.
As we show below, this bias can be directly controlled by the magnitude of the
regularization parameter η.

Concentration of the empirical LBE

We will now present some important properties of the empirical logistic Bellman
error (5.13). For simplicity, we will assume that the sample transitions are gener-
ated in an i.i.d. fashion: each (Xk,n, Ak,n) is drawn independently from d̄k−1 and
X ′k,n is drawn independently from P (·|Xk,n, Ak,n). Under this condition, the fol-
lowing theorem establishes the connection between the ELBE and the true LBE:

Theorem 5.5.1. Suppose that Assumption 5 hold and assume that ηB ≤ 1 holds.
Then, with probability at least 1− δ, the following holds:

sup
θ∈Θ

∣∣∣Ĝk(θ)− Gk(θ)∣∣∣ ≤ 8ηB2 + 56

√
m log

(
(1 + 4BN)/δ

)
N

.

In Section 5.8.5, we provide a more detailed statement of the theorem that
holds for general Q-function classes, as well as the proof. The main feature of
Theorem 5.5.1 is quantifying the bias of the empirical LBE, showing that it is
proportional to the regularization parameter η, making it possible to tune the pa-
rameters of Q-REPS to reduce it. Regarding the variance of the estimate, it can
be controlled with the number of sample transitions N as expected.

79

“main” — 2022/4/21 — 14:41 — page 80 — #88

The effect of η on the bias of the ELBE

We know from Jensen’s inequality that for a given random variable X ,

eE[X] ≤ E
[
eX
]
,

and in general, strict inequality holds. It is our case, where we find a “risk-
seeking” effect of the bias in estimating the LBE that favors policies that promise
higher extreme values of the return.

We illustrate the effect of this bias in a simple environment below. While
Theorem 5.5.1 establishes that the bias is of order η, one may naturally wonder if
larger values of η truly result in larger bias, and if the bias impacts the learning
procedure negatively. In this section, we show that there indeed exist MDPs where
this issue is real.

x0 x1

rstay = 1
rgo = 6

rstochastic = −3

Figure 5.4: Two-state MDP for illustrating the effect of biased estimation of the
logistic Bellman error through the empirical LBE. From x0 there are two actions
with deterministic effects: stay and go. The stay action stays in x0 and results in
a reward of rstay = 1, while the go action moves to x1 and results in a reward of
rgo = 6. From x1 there is one single stochastic action stochastic that goes to x0 or
remains in x1 with equal probability and has reward rstochastic = −3.

The MDP we consider has two states x0 and x1, with two actions available at
x0: stay and go, with the corresponding rewards being rstay and rgo, and the rest
of the dynamics are as explained in Figure 5.4. To simplify the reasoning, we set
γ = 1 and consider the case rstay = 0 first. In this case, the two policies that sys-
tematically pick stay and go respectively would both have zero average reward.
Despite this, it can be shown that minimizing the empirical LBE in Q-REPS con-
verges to a policy that consistently picks the go action for any choice of η. This
is due to the risk-seeking effect of the bias explained before, that favors policies
that promise higher extreme values of the return. This risk-seeking effect contin-
ues to impact the behavior of Q-REPS even when rstay = 1 and η is chosen to
be large enough—see the learning curves corresponding to various choices of η
in Figure 5.5. This suggests that the bias of the LBE can indeed be a concern in
practical implementations of Q-REPS, and that the guidance provided by Theo-
rem 5.5.1 is essential for tuning this hyperparameter.

80

“main” — 2022/4/21 — 14:41 — page 81 — #89

0 2 4 6 8
Episode

0.0

0.2

0.4

0.6

0.8

1.0
A

ve
ra

ge
R

ew
ar

d

Effect of [

QREPS
QREPS∗

[= 10
[= 1
[= .1

Figure 5.5: Effect of relative entropy regularization parameter η on the perfor-
mance of Q-REPS. On this figure, Q-REPS∗ (dashed line) refers to the ideal ver-
sion of the algorithm that minimizes the exact LBE, whereas Q-REPS (solid line)
is the sample-based implementation minimizing the empirical LBE. For large η,
Q-REPS suffers from bias and only converges to the optimal policy for smaller
values of η. This effect is independent of the sample size N used for the updates.
On the other hand, the ideal updates performed by Q-REPS∗ do not suffer from
such bias.

5.5.2 MinMax-Q-REPS

We now provide a practical algorithmic framework for optimizing the empirical
LBE (5.13) based on the following reparameterization of the loss function:

Proposition 5.5.1. Let DN be the set of all probability distributions over [N] and
define

Ŝk(θ, z) =
∑
n

z(n)

(
∆̂θ(ξk,n)− 1

η
log(Nz(n))

)
+ (1− γ) 〈p0, Vθ〉

for each z ∈ DN . Then, the problem of minimizing the ELBE can be rewritten as
minθ Ĝk(θ) = minθ maxz∈DN Ŝk(θ, z).

The proof is a straightforward aplication of the classic duality formula of the
Shannong entropy (see, e.g., Boucheron et al., 2013, Corollary 4.14). In particular,
this result establishes that if Z is a real-valued integrable random variable, and p

81

“main” — 2022/4/21 — 14:41 — page 82 — #90

and q two probability distributions with q absolutely continuous with respect to p,
then for every η ∈ R we have

logEp
[
eη(Z−Ep[Z])

]
= sup

q
[η(Eq [Z]− Ep [Z])−D(q‖p)] .

Motivated by the characterization above, we propose to formulate the opti-
mization of the ELBE as a two-player game between a sampler and a learner: in
each round τ = 1, 2, . . . , T , the sampler proposes a distribution zk,τ ∈ DN over
sample transitions and the learner updates the parameters θk,τ , together attempting
to approximate the saddle point of Ŝk. In particular, the learner will update the
parameters θ through online stochastic gradient descent on the sequence of loss
functions `τ = Ŝk(·, zk,τ). In order to estimate the gradients, we define the policy
πk,θ(a|x) = π̄k−1(a|x)eα(Qθ(x,a)−Vθ(x)) and propose the following procedure:

• Sample an index I from the distribution over sample transitions zk,τ and let
(X,A,X ′) = (Xk,I , Ak,I , X

′
k,I). Sample an action A′ ∼ πk,θ(·|X ′).

• Sample a state X ∼ p0 and an action A ∼ πk,θ(·|X).

• Define the gradient estimate as

ĝk,τ (θ) = γϕ(X ′, A′)− ϕ(X,A) + (1− γ)ϕ(X,A). (5.14)

The following proposition justifies the election of this gradient estimate:

Proposition 5.5.2. The vector ĝk,τ (θ) is an unbiased estimate of the gradient
∇θŜk(θk,τ , zk,τ).

Proof. For each i, the partial derivatives of S(θ, z) with respect to θi can be written
as

∂Ŝ(θ, z)

∂θi
=
∑
n

z(n)
∂∆̂(Xk,n, Ak,n, X

′
k,n)

∂θi

+
∑
x,y,a

(1− γ)p0(x)
∂Vθ(x)

∂Qθ(y, a)

∂Qθ(y, a)

∂θi
.

(5.15)

Computing the derivatives

∂Vθ(x)

∂Qθ(y, a)
= I{x=y}

π̄k−1(a|x)eαQθ(x,a)∑
a′ π̄k−1(a′|x)eαQθ(x,a′)

= I{x=y}πk,θ(a|x)

82

“main” — 2022/4/21 — 14:41 — page 83 — #91

and

∂∆̂(Xk,n, Ak,n, X
′
k,n)

∂θi
=γ
∑
x,a

∂Vθ(X
′
k,n)

∂Qθ(x, a)

∂Qθ(x, a)

∂θi
− ∂Qθ(Xk,n, Ak,n)

∂θi

=γ
∑
a

πk,θ(a|X ′k,n)ϕi(X
′
k,n, a)− ϕi(Xk,n, Ak,n)

and plugging them back in Equation (5.15), we get

∇θŜ(θ, z) =
N∑
n=1

z(n)

(
γ
∑
a

πk,θ(a|X ′k,n)ϕ(X ′k,n, a)− ϕ(Xk,n, Ak,n)

)
+
∑
x,a

(1− γ)p0(x)πk,θ(a|x)ϕ(x, a).

The statement of the proposition can now be directly verified using the definitions
of X,A,X ′ and X,A.

Using the gradient estimator ĝk,τ , the learner updates θk,τ as

θk,τ+1 = θk,τ − lĝk,τ (θk,τ),

where l > 0 is a stepsize parameter.
As for the sampler, one can consider several different algorithms for updating

the distributions zk,τ . A straightforward choice is simply using the best-response
strategy playing

zk,τ+1(n) ∝ exp
(
η∆̂θk,τ (ξk,n)

)
,

whence the overall algorithm becomes equivalent to optimizing the empirical LBE
via stochastic gradient descent. A slightly more sophisticated (and sometimes
empirically more stable) approach is updating the parameters incrementally by
first computing the gradient hk,τ = ∇zŜk(θk,τ , zk,τ) with components

hk,τ (n) = ∆̂θ(ξk,n)− 1

η
log (Nzk,τ (n)) ,

and then updating zk,τ through an exponentiated gradient step with a stepsize l′:

zk,τ+1(n) ∝ zk,τ (n)el
′hk,τ (n).

We refer to the above procedure as MinMax-Q-REPS and provide pseu-
docode as Algorithm 4. We note that for the case without σ-exploration, the
policy update step can be computed as πk(a|x) ∝ π0(a|x)eα

∑k
i=0Qθi (x,a), that

is very convenient in practical implementations when the Q-function is linearly

83

“main” — 2022/4/21 — 14:41 — page 84 — #92

Algorithm 4: MinMax-Q-REPS
Result: πI with I ∼ Unif(K)
Initialize π0;
for k = 0, 1, 2, . . . , K − 1 do

Run π̄k−1 and collect sample transitions {ξk,n}Nn=1;
Saddle-point optimization for Q-REPS-Eval:
for τ = 1, 2, . . . , T do

θk,τ ← θk,τ−1 − lĝk,τ−1(θ);

zk,τ (n)← zk,τ−1(n) exp(l′hk,τ−1(n))∑
m zk,τ−1(m) exp(l′hk,τ−1(m))

;

end
θk = 1

T

∑T
τ=0 θk,τ ;

Policy update:
πk(a|x) ∝ π̄k−1(a|x)eαQθk (x,a);
π̄k(a|x) = (1− σ)πk(a|x) + σπ0(a|x);

end

parameterized since then it is only required to store the sum of the parameters
from previous epochs.

Interestingly, this saddle-point optimization scheme can be seen as a prin-
cipled form of prioritized experience replay where the samples used for value-
function updates are drawn according to some priority criteria [Schaul et al.,
2015]. Indeed, our method maintains a probability distribution over sample tran-
sitions that governs the value updates, with the distribution being adjusted after
each update according to a rule that is determined by the TD error. Different rules
for the priority updates result in different learning dynamics with the best choice
potentially depending on the problem instance. In our own experiments (see Sec-
tion 4.5), we have observed that best-response updates tend to be overly aggres-
sive, and the incremental exponentiated gradient updates we describe above lead
to more stable behavior. We leave a formal study of these questions as an exciting
direction for future work.

Performance analysis

By observing Theorems 5.4.3 and 5.5.1 we can see the following: since the bias
of the error is controlled by η, in the term

e2ηB

√
σβη

√
εk

84

“main” — 2022/4/21 — 14:41 — page 85 — #93

from Theorem 5.4.3, the η from εk cancels with the one from the denominator.
This makes this term to grow linearly with K no matter how we tune the parame-
ters, which makes impossible to show any convergence guarantee. Despite this, in
Section 5.6 we test the algorithm in different scenarios without enforcing explo-
ration and its performance in remarkable. That is why we belief that our negative
result is an artifact of our analysis, and it should be possible to show convergence
in this setting. As we have seen, this problem is caused by the bias of our esti-
mator. In the next section we show an algorithm thet uses a simulator to draw
fresh next states to get rid of the bias, as we saw that can be done for the empirical
Bellman error in Section 3.4.

5.5.3 SimMinMax-Q-REPS

In this section we show how the bias issue of the ELBE can be eliminated if one
has access to a simulator of the environment that allows drawing states from the
transition distribution P (·|x, a) for any state-action pair in the replay buffer. Note
that this condition is relatively mild since it does not require sampling follow-
up states for any state-action pair, which may be difficult to provide in practical
applications where the set of valid states may not be known a priori.

In concrete, we present a modified version of algorithm MinMax-Q-REPS
that we call SimMinMax-Q-REPS, that uses a simulator to optimize an unbiased
estimate of the LBE, the semi-empirical LBE (SELBE):

G̃k(θ) =
1

η
log

(
1

N

N∑
n=1

eη∆θ(Xk,n,Ak,n)

)
+ (1− γ) 〈p0, Vθ〉 .

(5.16)

To motivate this choice, we can analyze the concentration of the SELBE. As in
Theorem 5.5.1, we will assume that the sample transitions are generated in an
i.i.d. fashion: each (Xk,n, Ak,n) is drawn independently from dk−1. Under this
condition, the following theorem establishes the connection between the SELBE
and the true LBE:

Theorem 5.5.2. Suppose that Assumption 5 hold and assume that ηB ≤ 1 holds.
Then, with probability at least 1− δ, the following holds:

sup
θ∈Θ

∣∣∣G̃k(θ)− Gk(θ)∣∣∣ ≤ 56

√
m log

(
(1 + 4BN)/δ

)
N

.

The above result shows that the SELBE is a unbiased estimate of the LBE,
which justifies its election. The proof of Theorem 5.5.2 can be found in Sec-
tion 5.8.6.

85

“main” — 2022/4/21 — 14:41 — page 86 — #94

The following proposition reflects that, like with the ELBE, the problem of
minimizing the SELBE is equivalent to solving a saddle-point problem:

Proposition 5.5.3. Let DN be the set of all probability distributions over [N] and
define

S̃k(θ, z) =
∑
n

z(n)

(
∆θ(Xk,n, Ak,n)− 1

η
log(Nz(n))

)
+ (1− γ) 〈p0, Vθ〉

for each z ∈ DN . Then, the problem of minimizing the SELBE can be rewritten
as minθ G̃k(θ) = minθ maxz∈DN S̃k(θ, z).

This result motivates a modification of the MinMax-Q-REPS algorithm to
perform the saddle-point optimization of S̃k instead of Ŝk, which will allow us to
proof convergence to the minimizer of the semi-empirical LBE. To do so, we only
need to take advantage of the simulator and change the way how the gradients and
gradient estimates were computed in MinMax-Q-REPS.

To compute the estimate of the gradient ∇θS̃k(θk,τ , zk,τ) we define the policy
πk,θ(a|x) = π̄k−1(a|x)eα(Qθ(x,a)−Vθ(x)) as before and we propose the following
procedure:

• Sample an index I from the distribution zk,τ and let (X,A) = (Xk,I , Ak,I).

• SampleX ′ ∼ P (·|X,A) (with the simulator) and an actionA′ ∼ πk,θ(·|X ′).

• Sample a state X ∼ p0 and an action A ∼ πk,θ(·|X).

Then, the gradient estimate w.r.t. θ can be computed as follows:

g̃k,τ (θ) = γϕ(X ′, A′)− ϕ(X,A) + (1− γ)ϕ(X,A). (5.17)

The following proposition justifies the new procedure to estimate the gradient:

Proposition 5.5.4. The vector g̃k,τ (θ) is an unbiased estimate of the gradient
∇θS̃k(θk,τ , zk,τ).

Proof. For each i, the partial derivatives of S̃(θ, z) with respect to θi can be written
as

∂S̃(θ, z)

∂θi
=
∑
n

z(n)
∂∆(Xk,n, Ak,n)

∂θi

+
∑
x,y,a

(1− γ)p0(x)
∂Vθ(x)

∂Qθ(y, a)

∂Qθ(y, a)

∂θi
.

(5.18)

86

“main” — 2022/4/21 — 14:41 — page 87 — #95

Recalling that

∆(x, a) = r + γP (x′|x, a)V (x′)−Q(x, a),

we start computing the derivatives

∂Vθ(x)

∂Qθ(y, a)
= I{x=y}

π̄k−1(a|x)eαQθ(x,a)∑
a′ π̄k−1(a′|x)eαQθ(x,a′)

= I{x=y}πk,θ(a|x)

and

∂∆(Xk,n, Ak,n)

∂θi
=γ
∑
x′

P (x′|Xk,n, Ak,n)
∑
x,a′

∂Vθ(x
′)

∂Qθ(x, a′)

∂Qθ(x, a
′)

∂θi

− ∂Qθ(Xk,n, Ak,n)

∂θi

=γ
∑
x′

P (x′|Xk,n, Ak,n)
∑
a′

πk,θ(a
′|x′)ϕi(x′, a′)

− ϕi(Xk,n, Ak,n),

and plugging them back in Equation (5.18), we get

∇θS̃(θ, z) =
N∑
n=1

z(n)

(
γ
∑
x′

P (x′|Xk,n, Ak,n)
∑
a′

πk,θ(a
′|x′)ϕ(x′, a′)

)

−
N∑
n=1

z(n)ϕ(Xk,n, Ak,n)

+
∑
x,a

(1− γ)p0(x)πk,θ(a|x)ϕ(x, a).

The statement of the proposition can now be directly verified using the definitions
of X,A,X ′, X and A.

As in the previous algorithm, we can consider different procedures to update
the weights of the sampler. One option is to note that(

∇zS̃k(θk,τ , zk,τ)
)

(n) = ∆θ(ξk,n)− 1

η
log (Nzk,τ (n)) ,

so an unbiased estimate of this gradient can be easily computed by sampling an
X ′k,n ∼ P (·|Xk,n, Ak,n) for each n and defining the gradient estimate h̃k,τ with
components

h̃k,τ (n) = r(Xk,n, Ak,n) + γVk(X
′
K,n)−Qk(Xk,n, Ak,n)− 1

η
log (Nzk,τ (n)) .

87

“main” — 2022/4/21 — 14:41 — page 88 — #96

An alternative choice for the gradient estimate to minimize the number of times
that we call the simulator would be to sample an index I uniformly from [N] and
an X ′k,I ∼ P (·|Xk,I , Ak,I) and let the gradient estimate h̃k,τ to have components

h̃k,τ (n) =I{n=I}
(
r(Xk,I , Ak,I) + γVk(X

′
k,I)−Qk(Xk,I , Ak,I)

)
− I{n=I}

(
1

η
log (Nzk,τ (I))

)
.

Once we have computed the gradient estimate with one of these methods, zk,τ can
be updated through an exponentiated gradient step with stepsize l′:

zk,τ+1(n) ∝ zk,τ (n)el
′h̃k,τ (n).

As in MinMax-Q-REPS, another option to update the weights of the sampler is
to use best-response:

zk,τ+1(n) ∝ exp
(
η∆̃θk,τ (ξk,n)

)
,

where ∆̃ would be an unbiased estimate of ∆ that can be trivially computed by
using the same ideas as for h̃k,τ .

Performance analysis

Let’s consider any algorithm following the σ-Q-REPS scheme and minimizing the
semi-empirical LBE (5.16) at each epoch (e.g., SimMinMax-Q-REPS). Then,
putting together Theorems 5.4.3 and 5.5.2 we can derive the following perfor-
mance guarantee :

Corollary 5.5.1. Suppose that we are in the tabular case (so m = |X × A|), that
Assumptions 6 and 5 hold, and that at each update σ-Q-REPS is implemented by
minimizing the semi-empirical LBE evaluated on N independent sample transi-
tions. Furthermore, suppose that ηB ≤ 1 and let

E =

(
56

√
|X × A| log

1 + 4BN

δ

) 1
2

, R =
D(µ∗‖d0)

η
+
H(µ∗‖d0)

α
,

A = 2e3ηB

√
2Cγ|A|
η

, C =

(
1 +

Cγ
η

)√
2

1− γ log |A|, and

S =
√
ACE

=2
5
2 e

3
2
ηB

(
1 +

Cγ
η

) 1
2
(
Cγ|A| log |A|

(1− γ)η

) 1
4
(
|X × A| log

(1 + 4BN)

δ

) 1
8

.

88

“main” — 2022/4/21 — 14:41 — page 89 — #97

Then, setting

σ =
AE

C
N−

1
4 , and N =

(
S

R

)8

K8,

and letting the value of η = α fixed, we have that after observing T = KN
transitions our algorithm is guaranteed to output an ε-optimal policy with

ε = Õ

(
C

20
27
γ

(|A| log |A|
1− γ

) 8
27
(
|X × A| log

1

δ

D(µ∗‖d0) +H(µ∗‖d0)

η8

) 1
9

T−
1
9

)
,

with probability at least (1−Kδ).

Recall that in the above corollary we do not have a closed form solution for
N since there is a log(N) term inside S. Nevertheless, the equation for N is
guaranteed to have a solution.

The theorem shows that under appropriate conditions, the policies output by
SimMinMax-Q-REPS do converge to the optimal policy π∗. In concrete, we
can appreciate that after observing T transitions, SimMinMax-Q-REPS outputs
a ε-optimal policy with ε of the order of T−

1
9 .

5.6 Experiments
In this section we evaluate Q-REPS empirically. For the implementation we con-
sider the original Q-REPS algorithmic scheme (Algorithm 2) where the poli-
cies πk are not mixed with π0 at each iteration to enforce exploration. This
decision has been made because we consider that the extra exploration intro-
duced in σ-Q-REPS (Algorithm 3) is an artifact for the analysis, and it has been
shown not to be necessary in practice. For the exact implementation, we use the
MinMax-Q-REPS scheme (version without simulator) with two different update
rules (exponentiated gradient and best response) for the sampler depending on
the environment. The exact details are explained below in the hyperparameters
paragraph. We run the experiments without simulator because we have not found
problems controlling the bias.

As the algorithm is essentially on-policy, we compare it with:

• DQN using Polyak averaging and getting new samples at every episode
[Mnih et al., 2015],

• PPO as a surrogate of TRPO [Schulman et al., 2017],

• VMPO as the on-policy version of MPO [Song et al., 2019],

• and REPS with parametric policies [Deisenroth et al., 2013].

89

“main” — 2022/4/21 — 14:41 — page 90 — #98

We evaluate these algorithms in different standard environments. The used envi-
ronments and all the relevant information about the algorithm specification and
training are the following:

Environment description. We use Double-chain and Single-Chain from Furm-
ston and Barber [2010], River Swim from Strehl and Littman [2008], WideTree
from Ayoub et al. [2020], CartPole from Brockman et al. [2016], Two-State Deter-
ministic from Bagnell and Schneider [2003], windy-grid world from Sutton and
Barto [2018], and a new Two-State Stochastic that we present in Figure 5.4.

Code environment. We use the open-source implementation of these algorithms
from Curi [2020] which is based on PyTorch [Paszke et al., 2017].

Features For all environments we use indicator features, except for Cart-Pole.
For the later we initialize a two-layer neural network with a hidden layer of 200
units and ReLU activations, and use the default initialization from PyTorch. We
freeze the first layer and use the outputs of the activations as state features φ′ :
X → R200. To account for early termination, we multiply each of the features
with an indicator feature δ(x) that takes the value 1 if the transition is valid and 0
if the next transition terminates. The final state features are given by the product
φ(x) = φ′(x)δ(x) ∈ R200

≥0 . Finally, we define state-action features ϕ : X × A →
R200×2 by letting ϕi,b(x, a) = φi(x)I{a=b} for all i and both actions b ∈ A.

Training For all environments but CartPole we run episodes of length 200 and
update the policy at the end of each episode. Due to the early-termination of
CartPole, we run episodes until termination or length 200 and update the policy
after 4 episodes.

Hyperparameters. In Table 5.1 we show the hyperparameters we use for each
environment. We fix the regularization parameters as η = α and set them so that
1/η matches the average optimal returns in each game. As optimizers for the
player controlling the θ parameters in MinMax-Q-REPS (the learner), we use
SGD [Robbins and Monro, 1951] and in CartPole we use Adam [Kingma and
Ba, 2014]. For the player controlling the distributions z (the sampler), we use
the exponentiated gradient (EG) update explained in the main text as the default
choice, and use the best response (BR) for CartPole:

zk,τ+1(n) ∝ eη∆̂k,τ (ξk,n).

The learning rates l and l′ were picked as the largest values that resulted in stable
optimization performance.

90

“main” — 2022/4/21 — 14:41 — page 91 — #99

η, α l l′ γ T Learner Sampler Features

Default .5 .1 .1 1.0 200 SGD EG Tabular
Cart Pole .01 .08 x .99 - Adam BR Linear
Double Chain - .01 - - - - - -
River Swim 2.5 .01 - - - - - -
Single Chain 5.0 .05 - - - - - -
Two State D - .05 - - - - - -
Two State S - - - - - - - -
Wide Tree - - .05 - - - - -
Grid World - - .03 - - - - -

Table 5.1: Experiment hyperparameters. The “-” symbol indicates that the de-
fault values were used, whereas “x” symbol indicates that the algorithm does not
require such hyperparameter.

Once the experimental setup is clear, we show the obtained results. In Fig. 5.6
we plot the sample mean and one standard deviation of 50 independent runs of
the algorithms (random seeds 0 to 49). In all cases, Q-REPS outperforms or
is comparable to the competing algorithms. It is remarkable the case of Cart
Pole, that is the most challenging environment and we clearly see a much faster
convergence of Q-REPS in contrast to the other algorithms. Nevertheless, all
the used environments are relatively simple and we have not done an exhaustive
comparison so we can not generalize these results.

0 10 20

Cart Pole

0 5

Double Chain

0 5

River Swim

0 5

Single Chain

0 5

Two State D

0 5

Two State S

0 5

Wide Tree

0 5

Grid World

Episode

N
or

m
al

iz
ed

R
et

ur
n Q-REPS

DQN
PPO
REPS
VMPO

Figure 5.6: Empirical performance Q-REPS on different benchmarks. The returns
are scaled to [0, 1] by dividing by the maximum achievable return, with the mean
plotted in solid lines and and the shaded area representing one standard deviation.

91

“main” — 2022/4/21 — 14:41 — page 92 — #100

5.7 Conclusions

Due to its many favorable properties, we believe that Q-REPS has significant po-
tential to become a state-of-the-art method for reinforcement learning. That said,
there is still a lot of room for improvement on both fronts of theoretical guaran-
tees and practical applicability. We outline some challenges for future research
and discuss some implications of our results below.

Limitations of our theory. While our theoretical guarantees have several desir-
able properties, they also have a number of shortcomings. First, most of our analy-
sis requires the condition that the logistic Q-functions have to be bounded. While
we were not able to prove an explicit upper bound on the logistic Q-functions,
our extensive supplementary experiments indicate that they are bounded by a con-
stant independent of η (see Section 5.4), and we believe that a more sophisticated
analysis could formally establish this property. Second, Theorem 5.4.3 requires
enforcing extra exploration, restricting the analysis to the tabular case, and the
concentrability assumption to hold. Out of this specific scenario, we have not
been able to bound the divergence terms that appear in Theorem 5.4.1. Neverthe-
less, we believe that these shortcomings are an artifact of our analysis and expect
that they can be removed by a more careful proof technique. In light of these lim-
itations, we prefer to think of the guarantees of Theorems 5.4.3, 5.5.1 and 5.5.2 as
promising initial results, and we leave the important challenge of tightening these
guarantees open for future work.

Limitations of our algorithm. The most important merit of Q-REPS is that it
can be implemented without any significant deviation from its theoretical speci-
fications. The most serious implementation issue is that Q-REPS requires sam-
pling from the discounted occupancy measure, which can only be done efficiently
when having access to a reset action. This is a common issue of many rein-
forcement learning algorithms that is often addressed by using samples from
the undiscounted state-action distribution. This heuristic often leads to well-
performing practical algorithms, but has been long known to suffer from bias
issues, as pointed out by Thomas [2014] and Nota and Thomas [2019]. We ex-
pect that this heuristic could help practical implementations of Q-REPS, although
it should be applied with caution. Another practical limitation of our algorithm
(without σ-exploration) is that it requires storing the cumulative sum of all past
logistic Q-functions, which is not feasible without approximations in a deep RL
implementation. It is straightforward to address this limitation by adjusting the
regularization terms, but it is currently unclear if it is still possible to meaning-
fully control the error propagation of the resulting variant.

92

“main” — 2022/4/21 — 14:41 — page 93 — #101

The relaxed LP formulation. Our method is based on a subtle variation on the
classic LP formulation of optimal control in MDPs due to Manne [1960]. One
key element in our formulation is a linear relaxation of some of the constraints in
this LP, which is a technique looking back to a long history: a similar relaxation
has been first proposed by Schweitzer and Seidmann [1985], whose approach was
later popularized by the influential work of de Farias and Van Roy [2003]. This
latter paper initiated a long line of work studying the properties of solutions to var-
ious linearly relaxed versions of the LP, mostly focusing on the quality of value
functions extracted from the solutions (see, e.g., Petrik and Zilberstein, 2009; De-
sai et al., 2012; Lakshminarayanan et al., 2017). Another complementary line of
work was initiated by Peters et al. [2010], whose main goal was deriving prac-
tical RL algorithms from a relaxed LP formulation. Our own work is heavily
influenced by this latter line of research, in that our main focus is also on algorith-
mic aspects. That said, one important result in our paper is providing a sufficient
condition for the LP relaxation to yield exact solutions to the original LP: our
analysis shows that for factored linear MDPs, the relaxation we propose suffers
from no approximation error (cf. Proposition 5.3.1). Understanding the approxi-
mation errors without this structural assumption is a very exciting question that we
plan to address in future work, building on the approximate linear programming
literature initiated by de Farias and Van Roy [2003]. Similarly, we expect that
our algorithmic techniques can be combined with other, more sophisticated relax-
ation methods. In light of this discussion, we view our work as a promising step
toward bridging the gap between LP-based approximate dynamic-programming
approaches and mainstream reinforcement learning.

5.8 Omitted proofs
This section collects the proofs of Theorems seen during the chapter that due to
their lengths have been allocated here.

5.8.1 Some useful tools
Here we present some results that will be used in the subsequent sections for
proving Theorems 5.4.1, 5.4.2 and 5.4.3. We first introduce some useful notation
and outline the main challenges faced in the analysis. We start by defining the
action-value functions Qk = Φθk and Q∗k = Φθ∗k, the policies

πk(a|x) = πk−1(a|x)eα(Qθk (x,a)−Vθk (x))

and
π∗k(a|x) = πk−1(a|x)e

α
(
Qθ∗

k
(x,a)−Vθ∗

k
(x)
)
,

93

“main” — 2022/4/21 — 14:41 — page 94 — #102

and the state-action distributions

µ̃k(x, a) = dk−1(x, a)eη(∆θk
(x,a)−ρk)

and

µ∗k(x, a) = dk−1(x, a)e
η
(

∆θ∗
k

(x,a)−ρ∗k
)
,

for appropriately defined normalization constants ρk and ρ∗k and where dk is the
state-action distribution induced by policy πk.

A crucial challenge we have to address in the analysis is that, since θk is not
the exact minimizer of Gk, the state-action distribution µ̃k is not a valid occupancy
measure. In order to prove meaningful guarantees about the performance of the
algorithm, we need to consider the actual occupancy measure dk induced by policy
πk. We define it for all x, a as

dk(x, a) = (1− γ)Eπk

[
∞∑
t=0

γtI{(xt,at)=(x,a)}

]
,

where the notation emphasizes that the actions are generated by policy πk. During
the proof, we will often factorize occupancy measures as d(x, a) = ν(x)π(a|x),
where ν is the discounted state-occupancy measure induced by π. In particular,
we will use the notations

dk(x, a) = νk(x)πk(a|x) and d∗k(x, a) = ν∗k(x)π∗k(a|x),

to refer to the state-action occupancy measures respectively induced by πk and π∗k.
Our first lemma presents an important technical result that relates the subopti-

mality gap εk to the divergence between the ideal and realized updates.

Lemma 5.8.1. εk =
D(µ∗k‖µ̃k)

η
+

H(d∗k‖dk)

α
.

Notably, this result does not require any assumption, as its proof only uses the
properties of the optimization problem (5.7).

Proof. The proof uses the feasibility of (µ∗k, d
∗
k) that follows from their definition.

94

“main” — 2022/4/21 — 14:41 — page 95 — #103

We start by observing that

D(µ∗k‖µ̃k) =
∑
x,a

µ∗k(x, a) log
µ∗k(x, a)

µ̃k(x, a)

=η
〈
µ∗k, r + γPV ∗k −Q∗k − ρ∗k1− r − γPVk +Qk + ρk1

〉
=η
〈
d∗k, EV

∗
k − EVk

〉
+ η 〈ΦTµ∗k, θk − θ∗k〉

+ η(ρk + (1− γ) 〈p0, Vk〉 − ρ∗k − (1− γ) 〈p0, V
∗
k 〉)

(using d∗k = γP Tµ∗k + (1− γ)p0 and Qk −Q∗k = Φ(θk − θ∗k))

=η
〈
d∗k, EV

∗
k − EVk

〉
+ η 〈ΦTd∗k, θk − θ∗k〉+ η(Gk(θk)− Gk(θ∗k))

(using ΦTd∗k = ΦTµ∗k and the form of Gk)

=η
〈
d∗k, EV

∗
k −Q∗k − EVk +Qk

〉
+ η(Gk(θk)− Gk(θ∗k)).

On the other hand, we have

H(d∗k‖dk) =
∑
x,a

d∗k(x, a) log
π∗k(a|x)

πk(a|x)
= α 〈d∗k, Q∗k − EV ∗k −Qk + EVk〉 .

Putting the two equalities together, we get

D(µ∗k‖µ̃k)
η

+
H(d∗k‖dk)

α
= Gk(Vk)− Gk(V ∗k)

as required.

The next result shows that, as a consequence of the above property, the realized
occupancy measure dk will be close to the ideal one, d∗k. The proof only uses
Assumption 4 to make sure that d∗k is a valid occupancy measure.

Lemma 5.8.2. For any two valid occupancy measures d and d′, we have that

D (d‖d′) ≤ H (d‖d′)
1− γ .

In particular, if Assumption 4 holds then D (d∗k‖dk) ≤
H(d∗k‖dk)

1−γ .

Proof. The proof follows from direct calculations and exploiting several proper-
ties of the relative entropy. We proof it for d∗k and dk but the reader can see that

95

“main” — 2022/4/21 — 14:41 — page 96 — #104

the same proof works for any two valid occupancy measures.

D (d∗k‖dk) = D (ν∗k‖νk) +H (d∗k‖dk)
(by the chain rule of the relative entropy)

= D ((1− γ)p0 + γP Td∗k‖(1− γ)p0 + γP Tµk) +H (d∗k‖dk)
(using that d∗k and dk are valid occupancy measures)

≤ (1− γ)D (p0‖p0) + γD (P Td∗k‖P Tdk) +H (d∗k‖dk)
(using the joint convexity of the relative entropy)

≤ γD (d∗k‖dk) +H (d∗k‖dk) ,

where the final step follows from the using information-processing inequality for
the relative entropy. Reordering the terms concludes the proof.

Armed with the above definitions and lemmas we are ready to proof Theo-
rems 5.4.2, 5.4.1 and 5.4.3.

5.8.2 The proof of Theorem 5.4.1

The proof is based on direct calculations inspired by the classical mirror descent
analysis. We first express the divergence between the comparator µ∗ and the un-
projected iterate µ̃k:

D(µ∗‖µ̃k) =
∑
x,a

µ∗(x, a) log
µ∗(x, a)

µ̃k(x, a)

=
∑
x,a

µ∗(x, a) log
µ∗(x, a)

dk−1(x, a)
−
∑
x,a

µ∗(x, a) log
µ̃k(x, a)

dk−1(x, a)

=D(µ∗‖dk−1)− η 〈µ∗, r + γPVk −Qk〉+ ηρk

=D(µ∗‖dk−1)− η 〈µ∗, r − Φθk〉 − η 〈d∗, EVk〉
+ η
(
ρk + (1− γ) 〈p0, Vk〉

)
Where in the last equality we used that d∗ = γP Tµ∗ + (1− γ)p0 and Qk = Φθk).
Now, by using that

ρk + (1− γ) 〈p0, Vk〉 = Gk(θk) ≤ Gk(θ∗k) + εk,

we can write

96

“main” — 2022/4/21 — 14:41 — page 97 — #105

D(µ∗‖µ̃k) ≤D(µ∗‖dk−1)− η 〈µ∗, r〉+ η 〈d∗,Φθk − EVk〉+ ηGk(θ∗k) + ηεk

(using the suboptimality guarantee of θk)
≤D(µ∗‖dk−1)− η 〈µ∗, r〉+ η 〈d∗,Φθk − EVk〉+ η 〈µ∗k, r〉

−D(µ∗k‖dk−1)− ηH(d∗k‖dk−1)

α
+ ηεk

(using the dual form (5.3.2) of Gk(θk))
≤D(µ∗‖dk−1)− η 〈µ∗, r〉+ η 〈d∗,Φθk − EVk〉+ η 〈dk, r〉

+ η 〈d∗k − dk, r〉+ ηεk

(using that 〈d∗k, r〉 = 〈µ∗k, r〉 by Proposition 5.3.1)
≤D(µ∗‖dk−1)− η 〈µ∗, r〉+ η 〈d∗,Φθk − EVk〉+ η 〈dk, r〉

+ η ‖d∗k − dk‖1 + ηεk,

where we used ‖r‖∞ ≤ 1 in the last step. After reordering and noticing that
〈µ∗, r〉 = 〈d∗, r〉, we obtain

〈d∗ − dk, r〉 ≤
D(µ∗‖dk−1)−D(µ∗‖µ̃k)

η
+ 〈d∗, Qk − EVk〉+ η ‖d∗k − dk‖1 + εk.

Furthermore, we have

H(d∗‖dk) =
∑
x,a

d∗(x, a) log
π∗(a|x)

πk(a|x)

=
∑
x,a

d∗(x, a) log
π∗(a|x)

πk−1(a|x)
−
∑
x,a

µ(x, a) log
πk(a|x)

πk−1(a|x)

= H(d∗‖dk−1)− α 〈d∗, Qk − EVk〉 .

Plugging this equality back into the previous bound, we finally obtain

〈d∗ − dk, r〉 ≤
D(µ∗‖dk−1)−D(µ∗‖µ̃k)

η
+
H(d∗‖dk−1)−H(d∗‖dk)

α

+ ‖d∗k − dk‖1 + εk

=
D(µ∗‖dk)−D(µ∗‖µ̃k)

η
+
D(µ∗‖dk−1)−D(µ∗‖dk)

η

+
H(d∗‖dk−1)−H(d∗‖dk)

α
+ ‖d∗k − dk‖1 + εk.

97

“main” — 2022/4/21 — 14:41 — page 98 — #106

Summing up for all k and omitting some non-positive terms, we obtain

K∑
k=1

〈d∗ − dk, r〉 ≤
D(µ∗‖d0)

η
+
H(d∗‖d0)

α

+
K∑
k=1

(
D(µ∗‖dk)−D(µ∗‖µ̃k)

η
+ ‖d∗k − dk‖1 + εk

) (5.19)

Combining Lemma 5.8.2 with Pinsker’s inequality, we can bound

‖d∗k − dk‖1 ≤
√

2D(d∗k‖dk) ≤
√

2H(d∗k‖dk)
1− γ ≤

√
2αεk
1− γ ,

where in the last step we also used Lemma 5.8.1 that implies H(d∗k‖d̃k) ≤ αεk.
Putting this into expression (5.19) concludes the proof.

5.8.3 The proof of Theorem 5.4.2
This proof also relies on the lemmas and notation introduced in Section 5.8.1. The
proof is based on using different properties of the optimization problem to express
the quantity 〈µ∗ − µ∗k, r〉 in terms of different divergences:

D(µ∗‖µ∗k) =D(µ∗‖dk−1)−
∑
x,a

µ∗(x, a) log
µ∗k(x, a)

dk−1(x, a)

=D(µ∗‖dk−1)− η 〈µ∗, r + γPV ∗k −Q∗k − ρ∗k〉

Now, by using that

ρ∗k + (1− γ) 〈p0, V
∗
k 〉 = 〈µ∗k, r〉 −

1

η
D(µ∗k‖dk−1)− 1

α
H(d∗k‖dk−1)

and that
ETµ∗ = γP Tµ∗ + (1− γ)p0,

we can write

D(µ∗‖µ∗k) =D(µ∗‖dk−1)− η 〈µ∗ − µ∗k, r〉+ η 〈µ∗, Q∗k − EV ∗k 〉
−D(µ∗k‖dk−1)− η

α
H(d∗k‖dk−1)

=D(µ∗‖dk−1)− η 〈µ∗ − µ∗k, r〉 −D(µ∗k‖dk−1)− η

α
H(d∗k‖dk−1)

+ η
H(µ∗‖dk−1)−H(µ∗‖d∗k)

α
,

98

“main” — 2022/4/21 — 14:41 — page 99 — #107

where in the last equality we have used that

H(µ∗‖d∗k) =
∑
x,a

µ∗(x, a) log
π∗(x, a)

πk−1

−
∑
x,a

µ∗(x, a) log
π∗k(x, a)

πk−1

= H(µ∗||dk−1)− α 〈µ∗, Q∗k − EV ∗k 〉 .

Furthermore, we have

〈d∗ − dk, r〉 ≤ 〈d∗ − d∗k, r〉+ ‖d∗k − dk‖1

≤ 〈d∗ − d∗k, r〉+
√

2D(d∗k‖dk)

≤ 〈d∗ − d∗k, r〉+

√
2

1

1− γH(d∗k‖dk)

≤ 〈µ∗ − µ∗k, r〉+

√
2α

1− γ εk,

where in the second inequality we used Pinsker’s inequality, in the third one we
used Lemma 5.8.2, and in the last one we used Lemma 5.8.1 and that 〈d∗k, r〉 =
〈µ∗k, r〉 by Proposition 5.3.1.

Putting together the above results we get

〈d∗ − dk, r〉 ≤
D(µ∗‖dk−1)−D(µ∗‖µ∗k)

η
+
H(µ∗‖dk−1)−H(µ∗‖d∗k)

α

− D(µ∗k‖dk−1)

η
− H(d∗k‖dk−1)

α
+

√
2α

1− γ εk.

Summing over epochs and rearranging terms concludes with the proof.

5.8.4 The proof of Theorem 5.4.3
The proof of this result is somewhat lengthy and is broken down into several
lemmas that will be combined with the lemmas from Section 5.8.1 to proof the
main result. We start recalling the definition of π̄k,

π̄k(a|x) = (1− σ)πk(a|x) + σπ0(a|x)

where π0 is the uniform policy so π0(a|x) ≥ 1
|A| . Then, we can define the occu-

pancy measure induced by π̄k as

d̄k(x, a) = (1− γ)Eπ̄k

[
∞∑
t=0

γtI{(xt,at)=(x,a)}

]
.

99

“main” — 2022/4/21 — 14:41 — page 100 — #108

We now overwrite the following definitions from the previous section:

πk(a|x) = π̄k−1(a|x)eα(Qθk (x,a)−Vθk (x)),

π∗k(a|x) = π̄k−1(a|x)e
α
(
Qθ∗

k
(x,a)−Vθ∗

k
(x)
)
,

µ̃k(x, a) = d̄k−1(x, a)eη(∆θk
(x,a)−ρk),

and
µ∗k(x, a) = d̄k−1(x, a)e

η
(

∆θ∗
k

(x,a)−ρ∗k
)
,

where we have changed πk−1 and dk−1 by π̄k−1 and d̄k−1 respectively to account
for the σ-exploration. We also factorize the state-action occupancy measure in-
duced by π̄k as

d̄k(x, a) = ν̄k(x)π̄k(a|x),

where ν̄k(x) is the state-occupancy measure induced by π̄k(a|x). We can realize
that all the lemmas stated in Section 5.8.1 still hold with these new definitions,
since we have only modified the reference policy and its corresponding reference
state-action occupancy measure. Also, recall that since we are considering the
tabular setting, µ∗k = d∗k and µ∗ = d∗.

We define δθ = r + PVθ − Qθ + (1 − γ) 〈p0, Vθ〉 1 and denote δk = δθk and
δ∗k = δθ∗k .With some abuse of notation we will denote

Gk(δ) =
1

η
log

(∑
x,a

d̄k(x, a)eηδ(x,a)

)
,

with δ ∈ RX×A. The difference between the function G(δ) and the function G(θ)
with θ ∈ Rm should be clear by the context. Realizing that Gk(δθ) = Gk(θ) for any
θ justifies the abuse of notation. Also, realize that since the term (1 − γ) 〈p0, Vk〉
is a scalar, in the definitions of the state-action distributions µ̃k and µ∗k , the terms
∆θk and ∆θ∗k

can be substituted by δθk and δθ∗k with no effect.
The following lemma relates the suboptimality gap εk with the quantities δk

and δ∗k:

Lemma 5.8.3. Define the state-action distribution

µ′k =
d̄k−1(x, a)eηδ

′
k(x,a)∑

x′,a′ d̄k−1(x′, a′)eηδ
′
k(x′,a′)

where δ′k = λδk + (1 − λ)δ∗k for some λ ∈ (0, 1) to be determined. Then,
defining Xk = δk − δ∗k, there exists a λ ∈ (0, 1) such that the error εk is equal to
the variance of Xk under the distribution µ′k multiplied by η

2
:

εk =
η

2

∑
x,a

µ′k(x, a)

(
Xk(x, a)−

∑
x′,a′

µ′k(x
′, a′)Xk(x

′, a′)

)2

100

“main” — 2022/4/21 — 14:41 — page 101 — #109

Proof. Using a second order tailor expansion of Gk(δk), we have

Gk(δk) = Gk(δ∗k) + 〈δk − δ∗k,∇Gk(δ∗k)〉+
1

2

〈
δk − δ∗k, Hδ′k

(δk − δ∗k)
〉

where Hδ′k
is the Hessian of Gk evaluated at δ′k = λδk + (1 − λ)δ∗k for some

λ ∈ (0, 1). Rearranging terms and realizing that the gradient of Gk vanishes at δ∗k
we get

εk = Gk(δk)− Gk(δ∗k) =
1

2

〈
δk − δ∗k, Hδ′k

(δk − δ∗k).
〉

(5.20)

Now, defining µk,δ as

µk,δ(x, a) =
d̄k−1(x, a)eηδ(x,a)∑

x′,a′ d̄k−1(x′, a′)eηδ(x′,a′)
,

the first and second derivative of Gk(δ) w.r.t. δ can be written as

∂Gk
∂δ(x, a)

= µk,δ(x, a)

and

∂2Gk
∂δ(x, a)∂δ(x′, a′)

=


η(µk,δ(x, a)− µ2

k,δ(x, a)) if (x, a) = (x′, a′)

−ηµk,δ(x, a)µk,δ(x
′, a′) if (x, a) 6= (x′, a′).

By denoting µ′k = µk,δ′ , the right hand side of equation (5.20) can now be written
as〈
δk − δ∗k, Hδ′k

(δk − δ∗k)
〉

= η
∑
x,a

(δk(x, a)− δ∗k(x, a))2µ′k(x, a)

− η
∑
x,a

∑
x′,a′

(δk(x, a)− δ∗k(x, a))µ′k(x, a)(δk(x
′, a′)− δ∗k(x′, a′))µ′k(x′, a′)

= η
∑
x,a

(δk(x, a)− δ∗k(x, a))2µ′k(x, a)− η 〈δk − δ∗k, µ′k〉 〈δk − δ∗k, µ′k〉

= η
∑
x,a

(δk(x, a)− δ∗k(x, a))2µ′k(x, a)

− η
(∑

x,a

(δk(x, a)− δ∗k(x, a))µ′k(x, a)

)2

Which concludes the proof.

101

“main” — 2022/4/21 — 14:41 — page 102 — #110

The following Lemma presents a bound on the quantityH(µ∗‖dk)−H(µ∗‖d∗k),
which is one of the main parts of the proof:

Lemma 5.8.4.

H(µ∗‖dk)−H(µ∗‖d∗k) ≤ αe3ηB

√
Cγ
|A|
ση

εk + 2α
√

2εkB +H(d∗k||d̄k−1).

Proof.

H(µ∗‖dk)−H(µ∗‖d∗k) =
∑
x,a

µ∗(x, a)

(
log

π∗(x, a)

πk(x, a)
− log

π∗(x, a)

π∗k(x, a)

)
=
∑
x,a

µ∗(x, a)

(
log

π∗k(x, a)

πk(x, a)

)
=α 〈µ∗, Q∗k −Qk − EV ∗k + EVk〉
=α 〈µ∗, Q∗k − γPV ∗k − (1− γ) 〈p0, V

∗
k 〉 1 〉

− α 〈µ∗, Qk − γPVk − (1− γ) 〈p0, Vk〉 1 〉
=α 〈µ∗, δk − δ∗k〉
=α 〈µ∗, δk − δ∗k − 〈µ∗k, δk − δ∗k〉 1 〉+ α 〈µ∗k, δk − δ∗k〉

We start bounding the first term of the last line. For this, we will use the notation
a = δk − δ∗k − 〈µ∗k, δk − δ∗k〉 1 so that the term that we want to bound becomes
α 〈µ∗, a〉. Then, we have

〈µ∗, a〉 =
∑
x,a

µ∗(x, a)a(x, a)

=
∑
x,a

µ∗(x, a)

(µ∗k(x, a))
1
2

(µ∗k(x, a))
1
2a(x, a)

≤
(∑

x,a

(µ∗(x, a))2

µ∗k(x, a)

) 1
2
(∑

x,a

µ∗k(x, a)a2(x, a)

) 1
2

,

where in the last inequality we used Cauchy-Schwarz inequality. Using that
µ∗k(x, a) ≥ d̄k−1(x,a)e−ηB∑

x′,a′ d̄k−1(x′,a′)eηB
≥ d̄k−1(x, a)e−2ηB and Assumption 6, we can see

102

“main” — 2022/4/21 — 14:41 — page 103 — #111

that(∑
x,a

(µ∗(x, a))2

µ∗k(x, a)

) 1
2

≤
(∑

x,a

µ∗(x, a)
µ∗(x, a)e2ηB

d̄k−1(x, a)

) 1
2

≤
(∑

x,a

µ∗(x, a)
ν∗(x)π∗(a|x)

ν̄k−1(x)π̄k−1(a|x)
e2ηB

) 1
2

≤
(∑

x,a

µ∗(x, a)Cγe
2ηB |A|

σ

) 1
2

=

(
Cγe

2ηB |A|
σ

) 1
2

Now, recalling the definitions of µ′ and Xk from the proof of Lemma 5.8.3, we
can bound the term

∑
x,a µ

∗
k(x, a)a2(x, a) as follows:

∑
x,a

µ∗k(x, a)a2(x, a) =
∑
x,a

µ∗k(x, a)

(
X(x, a)−

∑
x′,a′

µ∗k(x
′, a′)X(x′, a′)

)2

≤
∑
x,a

µ∗k(x, a)

(
X(x, a)−

∑
x′,a′

µ′k(x
′, a′)X(x′, a′)

)2

≤
∑
x,a

e4ηBµ′k(x, a)

(
X(x, a)−

∑
x′,a′

µ′k(x
′, a′)X(x′, a′)

)2

=
2e4ηB

η
εk

Where in the first inequality we have used that if ν and ν ′ are two probability dis-
tributions, for a fixed ν, the expression

∑
i νi(Xi−

∑
j ν
′
jXj)

2 takes its minimum
value when ν ′ = ν, in the second inequality we have used that

µ∗k(x, a) =
d̄k−1(x, a)eηδ

∗
k(x,a)∑

x′,a′ d̄k−1(x′, a′)eηδ
∗
k(x′,a′)

=
µ′k(x, a)eη(δ∗k(x,a)−δ′(x,a))∑

x′,a′ µ
′
k(x
′, a′)eη(δ∗k(x′,a′)−δ′(x′,a′))

≤ µ′k(x, a)e4ηB,

and in the last equality we have used Lemma 5.8.3. Putting everything together
we get

α 〈µ∗, δk − δ∗k − 〈µ∗k, δk − δ∗k〉 1 〉 ≤ αe3ηB

√
2Cγ|A|
ση

εk.

103

“main” — 2022/4/21 — 14:41 — page 104 — #112

Thus, the main bound becomes

H(µ∗‖dk)−H(µ∗‖µ∗k) ≤ αe3ηB

√
2Cγ|A|
ση

εk + α 〈µ∗k, δk − δ∗k〉

For the term 〈µ∗k, δk − δ∗k〉, we can do the following:

〈µ∗k, δk − δ∗k〉 = 〈µ∗k, γPVk + (1− γ) 〈p0, Vk〉 1 −Qk〉
− 〈µ∗k, γPV ∗k + (1− γ) 〈p0, V

∗
k 〉 1 −Q∗k〉

= 〈µ∗k, EVk −Qk〉 − 〈µ∗k, EV ∗k −Q∗k〉
Now, for the second term of the last line, we have

−〈µ∗k, EV ∗k −Q∗k〉 =−
∑
x,a

µ∗k(x, a)(V ∗k (x)−Q∗k(x, a))

=
∑
x

ν∗k(x)

(∑
a

π∗k(a|x)Q∗k(x, a)− V ∗k (x)

)

=
∑
x

ν∗k(x)

(∑
a

π∗k(a|x)Q∗k(x, a)−
∑
a

π∗k(a|x)Q∗k(x, a)

)

+
∑
x

ν∗k(x)

(
1

α
D(π∗k(·|x)||π̄k−1(·|x))

)
=
∑
x

ν∗k(x)

(
1

α
D(π∗k(·|x)||π̄k−1(·|x))

)
=

1

α
H(d∗k||d̄k−1),

where we have used that Vk(x) =
∑

a πk(a|x)Qk(x, a)− 1
α
D(πk(·|x)||π̄k−1(·|x)).

Similarly, for the first term we have

〈µ∗k, EVk −Qk〉 =
∑
x

ν∗k(x)

(∑
a

πk(a|x)Qk(x, a)−
∑
a

π∗k(a|x)Qk(x, a)

)

−
∑
x

ν∗k(x)

(
1

α
D(πk(·|x)||π̄k−1(·|x))

)
≤
∑
x,a

ν∗k(x)|πk(a|x)− π∗k(a|x)|B

−
∑
x

ν∗k(x)

(
1

α
D(πk(·|x)||π̄k−1(·|x))

)
≤
∑
x,a

ν∗k(x)|πk(a|x)− π∗k(a|x)|B

104

“main” — 2022/4/21 — 14:41 — page 105 — #113

where we have used that Vk(x) =
∑

a πk(a|x)Qk(x, a)− 1
α
D(πk(·|x)||π̄k−1(·|x))

and Assumption 5. Now, by using Pinsker’s inequality and Lemma 5.8.1, we get

〈µ∗k, EVk −Qk〉 ≤
∑
x,a

ν∗k(x)|πk(a|x)− π∗k(a|x)|B

=
∑
x

ν∗k(x) ‖πk(·|x)− π∗k(·|x)‖1B

=
∑
x

√
2(ν∗k(x))2D (π∗k(·|x)‖πk(·|x))B

≤
√

2H (d∗k‖dk)B ≤
√

2αεkB

Thus, we have

α 〈µ∗k, δk − δ∗k〉 ≤ α
√

2αεkB +H(d∗k||d̄k−1)

Putting everything together gives

H(µ∗‖dk)−H(µ∗‖d∗k) ≤ αe3ηB

√
2Cγ|A|
ση

εk + α
√

2αεkB +H(d∗k||d̄k−1),

which concludes the proof.

The following three lemmas will be used to take care of the effect of introduc-
ing the extra exploration, that is related to the difference between dk and d̄k

Lemma 5.8.5. H(µ∗‖d̄k)−H(µ∗‖dk) ≤ σ log |A|
Proof.

H(µ∗‖d̄k)−H(µ∗‖dk) =
∑
x,a

µ∗(x, a) log
πk(a|x)

π̄k(a|x)
= −

∑
x,a

µ∗(x, a) log
π̄k(a|x)

πk(a|x)

=−
∑
x,a

µ∗(x, a) log
(1− σ)πk(a|x) + σπ0(a|x)

πk(a|x)

≤− (1− σ)
∑
x,a

µ∗(x, a) log
πk(a|x)

πk(a|x)

− σ
∑
x,a

µ∗(x, a) log
π0(a|x)

πk(a|x)

=σ
∑
x,a

µ∗(x, a) (log πk(a|x)− log π0(a|x))

≤σ log |A|
Where in the first inequality we have used Jensen’s inequality.

105

“main” — 2022/4/21 — 14:41 — page 106 — #114

Lemma 5.8.6. D(dk‖d̄k) ≤ 1
1−γσ log |A|

Proof.

D(dk‖d̄k) ≤
1

1− γH(dk‖d̄k)

=
1

1− γ
∑
x,a

dk(x, a) log
πk(a|x)

π̄k(a|x)

=− 1

1− γ
∑
x,a

dk(x, a) log
(1− σ)πk(a|x) + σπ0(a|x)

πk(a|x)

≤ 1

1− γσ
∑
x,a

dk(x, a) log
πk(a|x)

π0(a|x)

≤ 1

1− γσ
∑
x,a

dk(x, a) (log πk(a|x)− log π0(a|x))

≤ 1

1− γσ log |A|.

Where in the first inequality we used Lemma 5.8.2 and in the third one we have
used Jensen’s inequality similarly as in the previous proof.

Lemma 5.8.7. D(µ∗‖d̄k)−D(µ∗‖dk) ≤ Cγ
√

2
1−γσ log |A|

Proof.

D(µ∗‖d̄k)−D(µ∗‖dk) =
∑
x,a

µ∗(x, a) log
dk(x, a)

d̄k(x, a)

≤
∑
x,a

µ∗(x, a)

(
dk(x, a)

d̄k(x, a)
− 1

)
=
∑
x

µ∗(x, a)

d̄k(x, a)

(
dk(x, a)− d̄k(x, a)

)
≤ Cγ

∥∥dk − d̄k∥∥1

≤Cγ
√

2D(dk‖d̄k) ≤ Cγ

√
2

1− γσ log |A|

Where in the first inequality we have used that log(x) ≤ x− 1 for x ≥ −1 and in
the last inequality we have used Lemma 5.8.6.

Lemma 5.8.8. D(ν∗‖νk)−D(ν∗‖ν∗k) ≤ Cγ
√

2α
1−γ εk

106

“main” — 2022/4/21 — 14:41 — page 107 — #115

Proof. This lemma can be proved by using again the inequality log(x) ≤ x − 1
for x ≥ −1 and Lemma 5.8.2:

D(ν∗‖νk)−D(ν∗‖ν∗k) =
∑
x

ν∗(x) log
ν∗k(x)

νk(x)
≤
∑
x

ν∗(x)

(
ν∗k(x)

νk(x)
− 1

)
≤
∑
x

ν∗(x)

νk(x)
|ν∗k(x)− νk(x)| ≤ Cγ ‖ν∗k − νk‖1

≤ Cγ

√
2D(ν∗k ||νk) ≤ Cγ

√
2D(d∗k||dk)

≤ Cγ

√
2

1− γH(d∗k||dk) ≤ Cγ

√
2α

1− γ εk

Finally, we are ready to proof Theorem 5.4.3 with the help of the above lem-
mas.

Proof of Theorem 5.4.3.

D(µ∗‖µ∗k) =D(µ∗‖d̄k−1)−
∑
x,a

µ∗(x, a) log
µ∗k(x, a)

d̄k−1(x, a)

=D(µ∗‖d̄k−1)− η 〈µ∗, r + γPV ∗k −Q∗k − ρ∗k〉
=D(µ∗‖d̄k−1)− η 〈µ∗ − µ∗k, r〉 −D(µ∗k‖d̄k−1) + η 〈µ∗, Q∗k − EV ∗k 〉
=D(µ∗‖d̄k−1)− η 〈µ∗ − µ∗k, r〉 −D(µ∗k‖d̄k−1)− η

α
H(d∗k‖d̄k−1)

+ η
H(µ∗‖d̄k−1)−H(µ∗‖d∗k)

α
,

where in the third equality we have used that

ρ∗k + (1− γ) 〈p0, V
∗
k 〉 = 〈µ∗k, r〉 −

1

η
D(µ∗k‖d̄k−1)− 1

α
H(d∗k‖d̄k−1)

and in the last equality we have used that

H(µ∗‖d∗k) =
∑
x,a

µ∗(x, a) log
π∗(x, a)

π̄k−1

−
∑
x,a

µ∗(x, a) log
π∗k(x, a)

π̄k−1

= H(µ∗||d̄k−1)− α 〈µ∗, Q∗k − EV ∗k 〉 .

107

“main” — 2022/4/21 — 14:41 — page 108 — #116

Rearranging and summing and subtracting D(µ∗‖d∗k)

η
, we have

〈µ∗ − µ∗k, r〉 =
D(µ∗‖d̄k−1)−D(µ∗‖d∗k)−D(µ∗k‖d̄k−1)

η

+
H(µ∗‖d̄k−1)−H(µ∗‖d∗k)−H(µ∗k‖d̄k−1)

α

+
D(µ∗‖d∗k)−D(µ∗‖µ∗k)

η
,

where the terms from the last line cancel since we are in the tabular setting.
Summing and subtracting D(µ∗‖d̄k)+D(µ∗‖dk)

η
+ H(µ∗‖dk)+H(µ∗‖d̄k)

α
in the right

hand side of the above expression and rearranging we get

〈µ∗ − µ∗k, r〉 =
D(µ∗‖d̄k−1)−D(µ∗‖d̄k)

η
− D(µ∗k‖d̄k−1)

η
− H(µ∗k‖d̄k−1)

α

+
D(ν∗‖νk)−D(ν∗‖ν∗k) +H(µ∗‖dk)−H(µ∗‖d∗k)

η

+
H(µ∗‖d̄k−1)−H(µ∗‖d̄k) +H(µ∗‖dk)−H(µ∗‖d∗k)

α

+
D(µ∗‖d̄k)−D(µ∗‖dk)

η
+
H(µ∗‖d̄k)−H(µ∗‖dk)

α
,

where we also used the chain rule of relative entropy saying that if µ and µ′ are
state-action occupancy measures, and ν and ν ′ are their corresponding state occu-
pancy measure, then D(µ‖µ′) = D(ν‖ν ′) +H(µ‖µ′). Summing over epochs, we
get

K∑
k=1

〈µ∗ − µ∗k, r〉 ≤
D(µ∗‖d0)

η
+
H(µ∗‖d0)

α

−
K∑
k=1

(
D(µ∗k‖d̄k−1)

η
+
H(µ∗k‖d̄k−1)

α

)

+
K∑
k=1

D(ν∗‖νk)−D(ν∗‖ν∗k)

η

+
K∑
k=1

(
1

η
+

1

α

)
(H(µ∗‖dk)−H(µ∗‖d∗k))

+
K∑
k=1

D(µ∗‖d̄k)−D(µ∗‖dk)
η

+
H(µ∗‖d̄k)−H(µ∗‖dk)

α
.

(5.21)

108

“main” — 2022/4/21 — 14:41 — page 109 — #117

Using this last bound and Lemmas 5.8.4, 5.8.5, 5.8.7 and 5.8.8, the above
bound becomes

K∑
k=1

〈µ∗ − µ∗k, r〉 ≤
D(µ∗‖d0)

η
+
H(µ∗‖d0)

α

−
K∑
k=1

(
D(µ∗k‖d̄k−1)

η
+
H(µ∗k‖d̄k−1)

α

)

+
K∑
k=1

Cγ
η

√
2α

1− γ εk

+
K∑
k=1

(
1 +

α

η

)(
e3ηB

√
2Cγ|A|
ση

+B
√

2α

)
√
εk

+
K∑
k=1

(
1 +

α

η

)(
H(µ∗k‖d̄k−1)

α

)

+
K∑
k=1

(
Cγ
η

√
2σ

1− γ log |A|+ σ

α
log |A|

)
.

We can see that
(

1 + α
η

)
H(µ∗k‖d̄k−1)

α
is smaller than

(
D(µ∗k‖d̄k−1)

η
+

H(µ∗k‖d̄k−1)

α

)
so

we can eliminate them from the bound. Rearranging we get

K∑
k=1

〈µ∗ − µ∗k, r〉 ≤
D(µ∗‖d0)

η
+
H(µ∗‖d0)

α

+
K∑
k=1

Cγ
η

√
2α

1− γ εk

+
K∑
k=1

(
1 +

α

η

)(
e3ηB

√
2Cγ|A|
ση

+B
√

2α

)
√
εk

+
K∑
k=1

(
Cγ
η

√
2σ

1− γ log |A|+ σ

α
log |A|

)
.

We now need to connect 〈µ∗ − µ∗k, r〉 with
〈
d∗ − d̄k, r

〉
. Using Pinsker’s inequal-

109

“main” — 2022/4/21 — 14:41 — page 110 — #118

ity and Lemmas 5.8.1, 5.8.2 and 5.8.6 we can write the following:〈
d∗ − d̄k, r

〉
= 〈d∗ − d∗k, r〉+ 〈d∗k − dk, r〉+

〈
dk − d̄k, r

〉
≤ 〈d∗ − d∗k, r〉+ ‖d∗k − dk‖1 +

∥∥dk − d̄k∥∥1

≤ 〈d∗ − d∗k, r〉+
√

2D(d∗k‖dk) +
√

2D(dk‖d̄k)

≤ 〈d∗ − d∗k, r〉+

√
2

1

1− γH(d∗k‖dk) +
√

2D(dk‖d̄k)

= 〈µ∗ − µ∗k, r〉+

√
2α

1− γ εk +

√
2σ

1− γ log |A|

Putting this result into equation (5.8.4) concludes the proof.

5.8.5 The proof of Theorem 5.5.1
We will prove the following, more general version of the theorem below:

Theorem 5.8.2. (General statement) Let Q = {Qθ : ‖Qθ‖∞ ≤ B′} for some
B′ > 0 and Θ be the corresponding set of parameter vectors, and let NQ,ε be
the ε-covering number of Q with respect to the `∞ norm. Furthermore, define
B = 1 + (1 + γ)B′, and assume that ηB ≤ 1 holds. Then, with probability at
least 1− δ, the following holds:

sup
θ∈Θ

∣∣∣Ĝk(θ)− Gk(θ)∣∣∣ ≤ 8ηB2 + 56

√
log(2NQ,1/√N/δ)

2N
.

The proof of the version stated in Theorem 5.5.1 follows from bounding the
covering number of our linear logistic Q-function class as NQ,ε ≤ (1 + 4B/ε)m.

Proof. We first prove a concentration bound for a fixed θ and then provide a uni-
form guarantee through a covering argument.

For the first part, let us fix a confidence level δ′ > 0 and an arbitrary θ, and de-
fine the shorthand notation Ŝn = ∆̂θ(Xk,n, Ak,n, X

′
k,n) and Sn = ∆θ(Xk,n, Ak,n).

Note that, by definition, these random variables are bounded in the interval [−(γ+
1)B′, 1 + (γ + 1)B′] ⊂ [−B,B]. Furthermore, let us define the notation EX′ [·] =

E
[
·
∣∣∣{Xk,n, Ak,n}Nn=1

]
and let

W =
1

N

N∑
n=1

eηŜn and W =
1

N

N∑
n=1

eηSn .

110

“main” — 2022/4/21 — 14:41 — page 111 — #119

We start by observing that, by Jensen’s inequality, we obviously have EX′ [W] ≤
W . Furthermore, by using the inequality eu ≤ 1 +u+u2 that holds for all u ≤ 1,
we can further write

W ≤ 1

N

N∑
n=1

(
1 + ηSn + η2S2

n

)
≤ EX′

[
1

N

N∑
n=1

(
1 + ηŜn

)]
+ η2S2

n

≤ EX′
[

1

N

N∑
n=1

eηŜn

]
+ η2S2

n = EX′ [W] + η2B2,

where in the last line we used the inequality 1 + u ≤ eu that holds for all u and
our upper bound on Ŝn. Thus, taking expectations with respect to X ′, we get

E [W] ≤ E
[
W
]
≤ E [W] + η2B2. (5.22)

To proceed, we define the function

f(s1, s2, . . . , sN) =
1

N

N∑
n=1

eηsn

and notice that it satisfies the bounded-differences property

f(s1, s2, . . . , sn, . . . , sN)− f(s1, s2, . . . , s
′
n, . . . , sN) =

1

N

(
eηsn − eηs′n

)
≤ ηe2ηB

N
.

Here, the last step follows from Taylor’s theorem that implies that there exists a
χ ∈ (0, 1) such that

eηs
′
n = eηsn + ηeηχ(s′n−sn)

holds, so that eηs′n − eηsn = ηeηχ(s′n−sn) ≤ ηe2ηB, where we used the assumption
that |sn − s′n| ≤ 2B in the last step. Notice that our assumption ηB ≤ 1 further
implies that e2ηB ≤ e2. Thus, also noticing that W = f(S1, . . . , SN), we can ap-
ply McDiarmid’s inequality that to show that the following holds with probability
at least 1− δ′:

|W − E [W] | ≤ ηe2

√
log(2/δ′)

2N
. (5.23)

Now, let us observe that the difference between the LBE and its empirical coun-
terpart can be written as

Ĝk(θ)− Gk(θ) =
1

η
log (W)− 1

η
log
(
E
[
W
])

=
1

η
log

(
W

E
[
W
]) .

111

“main” — 2022/4/21 — 14:41 — page 112 — #120

Thus, by combining Equations (5.22) and (5.23), we obtain that

Ĝk(θ)− Gk(θ) =
1

η
log

(
1 +

W − E
[
W
]

E
[
W
])

≤ 1

η
log

(
1 +

W − E [W]

E
[
W
])

≤ W − E [W]

ηE
[
W
] ≤ e4

√
log(2/δ′)

2N
,

where we used the inequality log(1 + u) ≤ u that holds for u > −1 and our
assumption on η that implies W ≥ e−2. Similarly, we can show

Gk(θ)− Ĝk(θ) =
1

η
log

(
1 +

E
[
W
]
−W

W

)

≤ 1

η
log

(
1 +

E [W]−W + η2B2

W

)
≤ E [W]−W + η2B2

ηW
≤ e4

√
log(2/δ′)

2N
+ ηe2B2,

This concludes the proof of the concentration result for a fixed θ.
In order to prove a bound that holds uniformly for all values of θ, we will con-

sider a covering of the space of Q functionsQθ bounded in terms of the supremum
norm Q = {Qθ : θ ∈ Rm, ‖Qθ‖∞ ≤ B}. The corresponding set of parameters
will be denoted as Θ. To define the covering, we fix an ε > 0 and consider a set
CQ,ε ⊂ Q of minimum cardinality, such that for allQθ ∈ Q, there exists a θ′ ∈ CQ,ε
satisfying |Gk(θ)− Gk(θ′)| ≤ ε. Defining the covering number NQ,ε = |CQ,ε| and
ε = 1/

√
N , we can combine the above concentration result with a union bound

over the covering CQ,ε to get that

sup
θ∈Θ

∣∣∣Gk(θ)− Ĝk(θ)∣∣∣ ≤ (e4 + 1
)√ log(2NQ,ε/δ)

2N
+ ηe2B2

holds with probability at least 1 − δ. Upper-bounding the constants e2 < 8 and
e4 + 1 < 56 concludes the proof.

5.8.6 The proof of Theorem 5.5.2
The proof of this Theorem follows the same reasoning as the previous one. We
proof the following general version of the Theorem:

Theorem 5.8.2. (General statement) Let Q = {Qθ : ‖Qθ‖∞ ≤ B′} for some
B′ > 0 and Θ be the corresponding set of parameter vectors, and let NQ,ε be

112

“main” — 2022/4/21 — 14:41 — page 113 — #121

the ε-covering number of Q with respect to the `∞ norm. Furthermore, define
B = 1 + (1 + γ)B′, and assume that ηB ≤ 1 holds. Then, with probability at
least 1− δ, the following holds:

sup
θ∈Θ

∣∣∣G̃k(θ)− Gk(θ)∣∣∣ ≤ 56

√
log(2NQ,1/√N/δ)

2N
.

By bounding the covering number of our linear logistic Q-function class as
NQ,ε ≤ (1 + 4B/ε)m we proof the version of the Theorem stated in Theorem
5.5.2.

Proof. As in the previous proof, we start fixing a confidence level δ′ > 0 and an
arbitrary θ. We also reuse the notation

W =
1

N

N∑
n=1

eηSn .

Then, using that W = f(S1, . . . , SN) for f(s1, s2, . . . , sN) defined in the same
way as in the previous proof, together with McDiarmid’s inequality, we get that
the following holds with probability at least 1− δ′:

|W − E
[
W
]
| ≤ ηe2

√
log(2/δ′)

2N
. (5.24)

Now, we can do the following:

G̃k(θ)− Gk(θ) =
1

η
log
(
W
)
− 1

η
log
(
E
[
W
])

=
1

η
log

(
W

E
[
W
]) .

Thus, by combining Equations (5.22) and (5.24), we obtain that

G̃k(θ)− Gk(θ) =
1

η
log
(
W
)
− 1

η
log
(
E
[
W
])

=
1

η
log

(
W

E
[
W
])

=
1

η
log

(
1 +

W − E
[
W
]

E
[
W
])

≤ W − E
[
W
]

ηE
[
W
] ≤ e4

√
log(2/δ′)

2N
,

where we used the inequality log(1 + u) ≤ u that holds for u > −1 and our
assumption on η that implies W ≥ e−2. Similarly, we can show

Gk(θ)− G̃k(θ) =
1

η
log

(
1 +

E
[
W
]
−W

W

)
≤ E

[
W
]
−W

ηW
≤ e4

√
log(2/δ′)

2N
,

113

“main” — 2022/4/21 — 14:41 — page 114 — #122

This concludes the proof of the concentration result for a fixed θ. By following
the same reasoning as in the previous Theorem, we get that

sup
θ∈Θ

∣∣∣Gk(θ)− G̃k(θ)∣∣∣ ≤ (56)

√
log(2NQ,ε/δ)

2N
.

114

“main” — 2022/4/21 — 14:41 — page 115 — #123

Chapter 6

CONCLUSIONS AND FUTURE
WORK

In this work we explored some of the possibilities that the linear programming
approach for optimal control in MDPs can bring to reinforcement learning. We
saw how different convex optimization tools and techniques can be used to derive
efficient large-scale reinforcement-learning algorithms from this LP formulation.

One of the main ideas that this work tries to highlight is how building al-
gorithms based on the LP approach has the clear benefit of giving an objective
function that can be optimized with modern large-scale optimization methods.
Furthermore, since those algorithms are fully based on convex optimization, the
analysis become simple and transparent, and we can derive theoretical guarantees
regarding their behaviour and performance. This is in part thanks to the extensive
literature in convex optimization that, apart from providing a handful of tools and
theory to develop efficient algorithms, allows us to analyze those algorithms in a
straightforward manner. In concrete, in Chapters 4 and 5 we showed how these
tools can be used successfully to derive algorithms that can work in large-scale
problems, and we believe that it is a really promising direction to keep bringing
theoretically sound algorithms.

One of the central lines of this work has been the study of the implications of
relaxing the constraints and adding different kinds of regularization to the original
LPs. Understanding the effect of both the relaxations and the regularization in the
resulting optimization problems is crucial to derive meaningful algorithms. A key
tool during the whole work has been to move between the primal and the dual
to take advantage of both. When doing so, it is not clear at all (a priori) what
will be the repercussion of using the different kinds of constraint relaxation and
regularization. Indeed, our results are proved under rather restrictive assumptions
and it remains unclear if our methods continue to perform well beyond these well-
controlled scenarios. Understanding the subtle impact of these choices is of vital

115

“main” — 2022/4/21 — 14:41 — page 116 — #124

importance when trying to derive algorithms with desirable properties. In this
sense, we believe that our work has generated some new knowledge that may
be valuable for guiding future work on designing more efficient large-scale RL
algorithms.

In Chapter 4, we studied a relaxed saddle-point linear problem for finding
optimal policies. There, one of the main results was the characterization of a
set of assumptions that allow a reduced-order saddle-point representation of the
optimal policy. In particular, we showed that realizability is not enough to ensure
the relaxed problem to be a good enough approximation of the original one and
argued that a the newly identified coherence assumption is also necessary. This
coherence assumption concerns the subspaces used for approximation and ensures
that the value functions that appear as dual variables are able to penalize non-
stationary probability distributions, making sure that the solution of the primal
problem is stationary. This characterization is very transparent and gives insight
about the problems that can appear when dealing with relaxations of this kind.
Furthermore, it allows a clear analysis of optimization algorithms in this setting.
These results open the door to asking what happens when the two assumptions
are relaxed, which is a very interesting question that we leave as an open problem
for future work. In the rest of this chapter we used the literature regarding the
mirror prox algorithm to derive an efficient algorithm for policy optimization, and
we explored different analysis techniques to study the performance of the output
policy. Of special interest are the techniques used for connecting the duality gap
of the solution output by our algorithm with the actual performance of the policy
extracted from that solution, and we believe that these tools can be used to analyze
similar algorithms. One of the main limitations of our model is that it requires
full knowledge of the transition function, which is quite restrictive if we consider
the reinforcement learning setting. We leave as future work the exploration of
adaptations of our algorithm that make it possible to work with sample transitions.

In Chapter 5, we presented Q-REPS, a new RL algorithm with very desirable
properties. The main features of Q-REPS that make it particularly interesting are
the usage of Q-functions (in contrast to its predecessor REPS) that enable effi-
cient model-free implementation, and a convex loss function for policy evaluation
that due to its favourable properties could serve as an alternative to the widely
used squared Bellman error. In this chapter we saw how this algorithm is derived
entirely from a regularized and linearly relaxed version of a particular LP formu-
lation of optimal control in MDPs. Again, this shows how a smart usage of convex
optimization techniques such as constraint relaxation, Lagrangian decomposition
of constraints, regularization and Lagrangian duality can be used to derive practi-
cal algorithms entirely rooted in theory, and how the convex analysis techniques
can be then used to analyze these algorithms in a very transparent way.

Nevertheless, we also saw that our analysis have some shortcomings that

116

“main” — 2022/4/21 — 14:41 — page 117 — #125

should be addressed in future work. First, it would be of particular interest to
be able to bound the Q-functions coming from the regularized problem, since it is
a requisite for the analysis to work. Second, we strongly believe that the restric-
tive assumptions that we needed to derive the convergence guarantee are artifacts
of our analysis. For this reason, we find it important as a next step to remove
these restrictive assumptions and derive similar bounds for the original version of
Q-REPS in more general setting than the tabular one. The factored linear MDP
setting is a good candidate for which we think that it should be possible to derive
such guarantees. This is because, as we showed, in this setting the relaxation that
we proposed suffers from no approximation error. We also leave as future work to
understand approximation errors without such structural assumption, and to study
other more sophisticated relaxation methods.

Other important directions for future work are related to dealing with imple-
mentation aspects of Q-REPS that can be challenging in practical problems. Here,
the first serious issue is the requirement of sampling from the discounted occu-
pancy measure, that can not be done efficiently without having access to a reset
action. The second issue regarding implemantability of Q-REPS is the necessity
of storing the cumulative sum of all past logistic Q-functions that we find in the
current algorithm specification, that is the one for which we have theoretical guar-
antees. Future works and algorithms following the same principles as Q-REPS
should take into account these implementation issues and try to address them.

In conclusion, we think that the main takeaway of this project is that by work-
ing with the linear programming approach of optimal control in MDPs, we can
derive algorithms based on convex optimization that are fully rooted to theory
and with very desirable properties. Furthemore the convex optimization analy-
sis allows us to understand these algorithms and derive performance bounds. We
believe that this is a promising direction of research that will bring efficient large-
scale algorithms with strong theoretical guarantees.

117

“main” — 2022/4/21 — 14:41 — page 118 — #126

“main” — 2022/4/21 — 14:41 — page 119 — #127

Bibliography

Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N., Szepesvári, Cs., and Weisz,
G. (2019). Politex: Regret bounds for policy iteration using expert prediction.
In International Conference on Machine Learning, pages 3692–3702.

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., and Ried-
miller, M. (2018). Maximum a posteriori policy optimisation. In International
Conference on Learning Representations.

Agarwal, A., Kakade, S., Krishnamurthy, A., and Sun, W. (2020a). Flambe: Struc-
tural complexity and representation learning of low rank mdps. Advances in
neural information processing systems, 33:20095–20107.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G. (2020b). Optimality and
approximation with policy gradient methods in Markov decision processes. In
Conference on Learning Theory, pages 64–66.

Antos, A., Szepesvári, Cs., and Munos, R. (2006). Learning near-optimal policies
with Bellman-residual minimization based fitted policy iteration and a single
sample path. In COLT 2006, pages 574–588.

Ayoub, A., Jia, Z., Szepesvári, Cs., Wang, M., and Yang, L. F. (2020). Model-
based reinforcement learning with value-targeted regression. arXiv preprint
arXiv:2006.01107.

Bagnell, J. A. and Schneider, J. (2003). Covariant policy search.

Bas-Serrano, J., Curi, S., Krause, A., and Neu, G. (2021). Logistic q-learning. In
International Conference on Artificial Intelligence and Statistics, pages 3610–
3618. PMLR.

Bas-Serrano, J. and Neu, G. (2020). Faster saddle-point optimization for solving
large-scale markov decision processes. In Learning for Dynamics and Control,
pages 413–423. PMLR.

119

“main” — 2022/4/21 — 14:41 — page 120 — #128

Beck, A. and Teboulle, M. (2003). Mirror descent and nonlinear projected
subgradient methods for convex optimization. Operations Research Letters,
31(3):167–175.

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Prince-
ton, New Jersey.

Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control, volume 2.
Athena Scientific, Belmont, MA, 3 edition.

Bertsekas, D. P. (2008). Approximate dynamic programming.

Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities:A
Nonasymptotic Theory of Independence. Oxford University Press.

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cam-
bridge university press.

Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for tem-
poral difference learning. Machine Learning, 22:33–57.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
and Zaremba, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

Bubeck, S. (2014). Convex Optimization: Algorithms and Complexity. 8(3):231–
357.

Buşoniu, L., Lazaric, A., Ghavamzadeh, M., Munos, R., Babuška, R., and Schut-
ter, B. D. (2012). Least-squares methods for policy iteration. Reinforcement
learning, pages 75–109.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. (2020). Provably efficient exploration in
policy optimization. In International Conference on Machine Learning, pages
1283–1294. PMLR.

Chen, Y., Li, L., and Wang, M. (2018). Scalable bilinear π learning using state
and action features. In International Conference on Machine Learning, pages
833–842.

Cheng, C.-A., Combes, R. T., Boots, B., and Gordon, G. (2020). A reduction
from reinforcement learning to no-regret online learning. In International Con-
ference on Artificial Intelligence and Statistics, pages 3514–3524. PMLR.

Curi, S. (2020). Rl-lib - a pytorch-based library for reinforcement learning re-
search. Github.

120

“main” — 2022/4/21 — 14:41 — page 121 — #129

Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J., and Song, L. (2018).
SBEED: Convergent reinforcement learning with nonlinear function approxi-
mation. In International Conference on Machine Learning, pages 1125–1134.
PMLR.

de Farias, D. P. and Van Roy, B. (2003). The linear programming approach to
approximate dynamic programming. Operations Research, 51(6):850–865.

de Ghellinck, G. (1960). Les problèmes de décisions séquentielles. Cahiers du
Centre d’Études de Recherche Opérationnelle, 2:161–179.

Deisenroth, M., Neumann, G., and Peters, J. (2013). A survey on policy search
for robotics. Foundations and Trends in Robotics, 2(1-2):1–142.

Denardo, E. V. (1970). On linear programming in a Markov decision problem.
Management Science, 16(5):281–288.

Desai, V. V., Farias, V. F., and Moallemi, C. C. (2012). Approximate dynamic
programming via a smoothed linear program. Operations Research, 60(3):655–
674.

Even-Dar, E., Kakade, S. M., and Mansour, Y. (2009). Online Markov decision
processes. Mathematics of Operations Research, 34(3):726–736.

Feng, Y., Li, L., and Liu, Q. (2019). A kernel loss for solving the Bellman equa-
tion. In Advances in Neural Information Processing Systems, pages 15456–
15467.

Fujimoto, S., van Hoof, H., Meger, D., et al. (2018). Addressing function ap-
proximation error in actor-critic methods. Proceedings of Machine Learning
Research, 80.

Furmston, T. and Barber, D. (2010). Variational methods for reinforcement learn-
ing. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pages 241–248.

Geist, M., Piot, B., and Pietquin, O. (2017). Is the Bellman residual a bad proxy?
In Advances in Neural Information Processing Systems, pages 3205–3214.

Geist, M., Scherrer, B., and Pietquin, O. (2019). A theory of regularized markov
decision processes. In International Conference on Machine Learning, pages
2160–2169. PMLR.

121

“main” — 2022/4/21 — 14:41 — page 122 — #130

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor.
In International Conference on Machine Learning, pages 1861–1870.

Howard, R. A. (1960). Dynamic Programming and Markov Processes. The MIT
Press, Cambridge, MA.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2020). Provably efficient reinforce-
ment learning with linear function approximation. In Conference on Learning
Theory, pages 2137–2143.

Jin, Y. and Sidford, A. (2020). Efficiently solving MDPs with stochastic mirror
descent. In ICML, volume 119 of Proceedings of Machine Learning Research,
pages 4890–4900. PMLR.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate rein-
forcement learning. In ICML, volume 2, pages 267–274.

Kakade, S. M. (2001). A natural policy gradient. Advances in neural information
processing systems, 14:1531–1538.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Konda, V. and Tsitsiklis, J. (1999). Actor-critic algorithms. Advances in neural
information processing systems, 12:1008–1014.

Lakshminarayanan, C. and Bhatnagar, S. (2015). A generalized reduced linear
program for Markov decision processes. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, volume 15 of AAAI, pages 2722–
2728.

Lakshminarayanan, C., Bhatnagar, S., and Szepesvári, C. (2017). A linearly re-
laxed approximate linear program for markov decision processes. IEEE Trans-
actions on Automatic control, 63(4):1185–1191.

Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms. Cambridge Univer-
sity Press.

Lazaric, A., Ghavamzadeh, M., and Munos, R. (2010). Finite-sample analysis of
LSTD. In ICML 2010, pages 615–622.

Lee, D. and He, N. (2019). Stochastic primal-dual Q-learning algorithm for dis-
counted MDPs. In 2019 American Control Conference (ACC), pages 4897–
4902. IEEE.

122

“main” — 2022/4/21 — 14:41 — page 123 — #131

Levin, D. A. and Peres, Y. (2017). Markov chains and mixing times, volume 107.
American Mathematical Soc.

Manne, A. S. (1960). Linear programming and sequential decisions. Management
Science, 6(3):259–267.

Martinet, B. (1970). Régularisation d’inéquations variationnelles par approxima-
tions successives. ESAIM: Mathematical Modelling and Numerical Analysis -
Modélisation Mathématique et Analyse Numérique, 4(R3):154–158.

Mehta, P. and Meyn, S. (2009). Q-learning and Pontryagin’s minimum principle.
In Proceedings of the 48h IEEE Conference on Decision and Control (CDC)
held jointly with 2009 28th Chinese Control Conference, pages 3598–3605.
IEEE.

Mehta, P. G. and Meyn, S. P. (2020). Convex q-learning, part 1: Deterministic
optimal control. arXiv preprint arXiv:2008.03559.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D.,
and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pages 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al.
(2015). Human-level control through deep reinforcement learning. nature,
518(7540):529–533.

Munos, R. and Szepesvári, C. (2008). Finite-time bounds for fitted value iteration.
Journal of Machine Learning Research, 9(May):815–857.

Nemirovski, A. (2004). Prox-method with rate of convergence O(1/t) for
variational inequalities with Lipschitz continuous monotone operators and
smooth convex-concave saddle point problems. SIAM Journal on Optimiza-
tion, 15(1):229–251.

Neu, G., György, A., Szepesvári, Cs., and Antos, A. (2014). Online Markov
decision processes under bandit feedback. IEEE Transactions on Automatic
Control, 59:676–691.

Neu, G., Jonsson, A., and Gómez, V. (2017). A unified view of entropy-
regularized Markov decision processes. arXiv preprint arXiv:1705.07798.

Neu, G. and Pike-Burke, C. (2020). A unifying view of optimism in episodic
reinforcement learning. arXiv preprint arXiv:2007.01891.

123

“main” — 2022/4/21 — 14:41 — page 124 — #132

Nota, C. and Thomas, P. S. (2019). Is the policy gradient a gradient? arXiv
preprint arXiv:1906.07073.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in
pytorch.

Peters, J., Mulling, K., and Altun, Y. (2010). Relative entropy policy search. In
Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 1607–1612.

Petrik, M. and Zilberstein, S. (2009). Constraint relaxation in approximate lin-
ear programs. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 809–816.

Puterman, M. L. (1990). Markov decision processes. Handbooks in operations
research and management science, 2:331–434.

Puterman, M. L. (1994). Appendix D: Linear Programming. Markov Decision
Processes Discrete Stochastic Dynamic Programming, pages 610–612.

Rakhlin, A. and Sridharan, K. (2013). Optimization, learning, and games with
predictable sequences. In Advances in Neural Information Processing Systems,
pages 3066–3074.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. Annals
of Mathematical Statistics, 22:400–407.

Rockafellar, R. T. (1976). Monotone Operators and the Proximal Point Algorithm.
SIAM Journal on Control and Optimization, 14(5):877–898.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience
replay. arXiv preprint arXiv:1511.05952.

Scherrer, B., Ghavamzadeh, M., Gabillon, V., Lesner, B., and Geist, M. (2015).
Approximate modified policy iteration and its application to the game of tetris.
Journal of Machine Learning Research, 16:1629–1676.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust
region policy optimization. In International conference on machine learning,
pages 1889–1897. PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

124

“main” — 2022/4/21 — 14:41 — page 125 — #133

Schweitzer, P. J. and Seidmann, A. (1985). Generalized polynomial approxima-
tions in markovian decision processes. Journal of mathematical analysis and
applications, 110(2):568–582.

Seneta, E. (2006). Non-negative matrices and Markov chains. Springer Science
& Business Media.

Song, H. F., Abdolmaleki, A., Springenberg, J. T., Clark, A., Soyer, H., Rae,
J. W., Noury, S., Ahuja, A., Liu, S., Tirumala, D., et al. (2019). V-mpo: on-
policy maximum a posteriori policy optimization for discrete and continuous
control. arXiv preprint arXiv:1909.12238.

Strehl, A. L. and Littman, M. L. (2008). An analysis of model-based interval
estimation for markov decision processes. Journal of Computer and System
Sciences, 74(8):1309–1331.

Sutton, R. and Barto, A. (2018). Reinforcement Learning: An Introduction (sec-
ond edition). online draft.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient
methods for reinforcement learning with function approximation. Advances in
neural information processing systems, 12:1057–1063.

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis lectures
on artificial intelligence and machine learning, 4(1):1–103.

Thomas, P. (2014). Bias in natural actor-critic algorithms. In International con-
ference on machine learning, pages 441–448. PMLR.

Tsitsiklis, J. N. and Van Roy, B. (1997). An analysis of temporal difference learn-
ing with function approximation. IEEE Transactions on Automatic Control,
42:674–690.

Vieillard, N., Kozuno, T., Scherrer, B., Pietquin, O., Munos, R., and Geist, M.
(2020a). Leverage the average: an analysis of regularization in rl. arXiv preprint
arXiv:2003.14089.

Vieillard, N., Pietquin, O., and Geist, M. (2020b). Munchausen reinforcement
learning. Advances in Neural Information Processing Systems, 33:4235–4246.

Wang, M. (2017). Primal-dual π learning: Sample complexity and sublinear run
time for ergodic Markov decision problems. arXiv preprint arXiv:1710.06100.

125

“main” — 2022/4/21 — 14:41 — page 126 — #134

Wang, R., Du, S. S., Yang, L., and Salakhutdinov, R. R. (2020). On reward-free
reinforcement learning with linear function approximation. Advances in neural
information processing systems, 33:17816–17826.

Xie, T. and Jiang, N. (2020). Q* approximation schemes for batch reinforcement
learning: A theoretical comparison. In Uncertainty in Artificial Intelligence,
pages 550–559.

Yang, L. F. and Wang, M. (2019). Sample-optimal parametric Q-learning using
linearly additive features. In 36th International Conference on Machine Learn-
ing, ICML 2019, pages 12095–12114.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al. (2008). Maximum
entropy inverse reinforcement learning. In AAAI, volume 8, pages 1433–1438.
Chicago, IL, USA.

Zimin, A. and Neu, G. (2013). Online learning in episodic markovian decision
processes by relative entropy policy search. Advances in neural information
processing systems, 26:1583–1591.

126

