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Well, maybe it started that way. As a dream, but doesn’t everything?
Those buildings. These lights. This whole city. Somebody had to dream

about it first. And maybe that is what I did. I dreamed about coming
here, but then I did it.

— James and the Giant Peach

Dedicated to my loved ones, living by my side, living in me.





And above all, watch with glittering eyes the whole world around you because
the greatest secrets are always hidden in the most unlikely places.

Those who don’t believe in magic will never find it.

– Billy and The Minpins.

A B S T R A C T

To advance time series forecasting we need to progress on multiple
fronts. In this thesis, we develop algorithms to identify causal relations
which allow to identify the driving processes containing useful informa-
tion for the prediction of the process of interest. Complementing this,
machine learning algorithms allow to exploit such information to build
data-driven forecast models, and to correct dynamical models.

The identification from time series analysis of reliable indicators of causal
relationships, is essential for many disciplines. Main challenges are dis-
tinguishing correlation from causality and discriminating between direct
and indirect interactions. Over the years, many methods for data-driven
causal inference have been proposed; however, their success largely de-
pends on the characteristics of the system under investigation. Often,
their data requirements, computational cost or number of parameters,
limit their applicability. In this thesis, we propose a computationally ef-
ficient measure for causality testing, with the goal of overcoming the ap-
plicability limitations of information-theoretic measures, due their high
computational cost. The proposed metric is very valuable when causal-
ity networks need to be inferred from the analysis of a large number of
relatively short time series. It can also be very useful for the inputs selec-
tion of machine learning algorithms; in fact, it allows to identify those
processes which contain useful information for the prediction of a given
process. This feature is particularly useful for systems composed of a
large number of processes, whose interactions are poorly understood.
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The socioeconomic impact of weather extremes draws the attention of
researchers to the development of novel methodologies to make more ac-
curate weather predictions. The Madden-Julian Oscillation (MJO) is the
dominant mode of variability in the tropical atmosphere on sub-seasonal
time scales, and can promote or enhance extreme events in both, the
tropics and the extratropics. Currently, the estimated MJO predictability
is far from being reached, leaving a large room for the improvement of
forecast models. To improve its prediction skill, in this thesis we take two
different machine learning approaches; first we use machine learning
as a stand-alone technique, showing that two artificial neural networks,
a feed-forward neural network and a recurrent neural network, allow
a competitive prediction, yet not exceeding the skill of the state-of-art
dynamical models. Then, we combine dynamical models with machine
learning, which allows to improve the predictions of the best dynamical
model. In particular, machine learning allows to improve the prediction
of the events intensity and geographical localization.
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R E S U M E N

Para avanzar en el pronóstico de series temporales, es necesario avanzar
en múltiples frentes. En esta tesis, desarrollamos algoritmos para des-
cubrir relaciones causales que identifican los procesos que actúan como
fuentes potenciales de información y pueden ayudar a mejorar la predic-
ción del proceso de interés. En complementación a esto, los algoritmos
de aprendizaje automático, permiten explotar dicha información para
construir modelos de pronóstico basados en la observación de datos
para, de esta forma, corregir los modelos dinámicos. La identificación
de indicadores fiables de relaciones de causalidad a partir de series tem-
porales es esencial en muchas disciplinas. Los principales desafíos en
este ámbito se encuentran en distinguir la correlación de la causalidad,
así como diferenciar entre las interacciones directas e indirectas. A lo
largo de los años, se han propuesto numerosos métodos de inferencia
causal basados en la observación de datos. No obstante, su éxito de-
pende enormemente de las características del sistema a investigar. A
menudo, los requisitos de sus datos, el coste computacional o el número
de parámetros limitan su aplicabilidad. En esta tesis, se propone una me-
dida computacionalmente eficiente para el testeo de causalidad, con el
fin de solucionar las limitaciones de aplicabilidad de las medidas teóri-
cas de la información, debido a su alto coste computacional. La métrica
que se propone resulta ser muy valiosa cuando las redes neuronales de
causalidad necesitan inferirse a partir de análisis de un gran número
de series temporales relativamente cortas. También puede resultar muy
útil en la selección de entradas en los algoritmos de machine learning.
De hecho, permite identificar aquellos procesos que contengan informa-
ción útil en la predicción de cierto proceso dado. Esta característica es
particularmente útil para sistemas compuestos por un gran número de
procesos, cuyas interacciones son escasamente conocidas. El impacto so-
cioeconómico de los fenómenos meteorológicos extremos llama la aten-
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ción a los investigadores en el desarrollo de nuevas metodologías con
el objetivo de obtener predicciones meteorológicas más precisas. La Os-
cilación de Madden-Julian (MJO) es el modo dominante de variabilidad
en la atmósfera tropical en escalas temporales subestacionales, y puede
promover o aumentar eventos extremos tanto en el trópico como el extra-
trópico. Actualmente, la prediccion de la MJO está lejos de alcanzarse,
lo que deja un gran margen de mejora en los modelos de pronóstico.
Para mejorar su habilidad de predicción, en esta tesis, se escogerán dos
aproximaciones diferentes de aprendizaje automático. Primero, se usará
el machine learning como una técnica independiente, mostrando que
dos redes neuronales artificiales, una red neuronal feed-forward y una
red neuronal recurrente, permiten una predicción competitiva, pero sin
superar la habilidad de los modelos dinámicos actuales. Posteriormente,
se combinarán modelos dinámicos con machine learning, que permitirán
mejorar las predicciones del mejor modelo dinámico. En particular, el
aprendizaje automático permite mejorar la predicción de la intensidad
de los eventos y, así como su localización geográfica.
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One of the secrets of life is that
all that is really worth the doing

is what we do for others.

— Lewis Carroll.
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1I N T R O D U C T I O N

1.1 motivation

Humans started to physically store information through prehistoric wall
paintings between 43000 to 65000 years ago. As we evolved, emerging
languages and the invention of writing, culminating in the invention of
paper in China about 2000 years ago, gave humankind extremely pow-
erful tools to store information. Since the appearance of the first printed
book in 1377, and the Gutenberg movable type in 1453-1455, books have
been the most used support for information storage for centuries. The
invention of the transistor in 1947 has been a crucial turning point for
humankind also for storing information, and since 1996, digital storage
of data became more cost-effective than the paper one, making it the
largely preferred support. Over the last 30 years, technology allowed to
reduce the average cost per gigabyte, from hundreds of thousand dollars
of the first hard drives, to just fractions of a cent with the Cloud. From
occupying an entire room, to fit on a fingertip.

At present, thanks to such technical evolution and progress, humans are
collecting and storing an amount of data as never before, and the collec-
tion rate is exponentially increasing over the years. According to Social
Media Today, it is estimated that every day 2.5 exabytes (1018) are col-
lected, which are estimated to grow up to 463 exabytes in 2025 (Racon-
teur, 2019). The total amount of data collected up to the beginning of
2020, was estimated to be 44 zettabytes (1021), which is 40 times larger
than the number of stars in the observable universe.

With huge amounts of data to analyze, computationally efficient tools
are needed.
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4 introduction

A field largely benefiting from this evolution is climate. Every day across
the globe we are collecting data on temperature, pressure, wind, rain,
snow, and much more. These data allow us to improve our understand-
ing of climate, its phenomena and the interactions between them, to
reconstruct the past, and predict the future. From these data, we define
climate indices that characterize large-scale climate phenomena, validate
models, and forecast the weather.

Extreme weather events such as cyclones, hurricanes, droughts, floods,
wild fires, cold and warm spells, have huge socio-economic impact. The
World Health Organisation has estimated that worldwide, climate ex-
tremes cost around 150’000 lives every year (Patz et al., 2005), and hun-
dreds of billion dollars (Kramer and Ware, 2021). According to the lattest
IPCC report (IPCC, 2022), climate change is expected to increase the rate
and severity of extremes, suggesting a future increment of those, already
frightening, numbers. It is crucial then to progress in the forecasting of
such events, to be able to provide reliable early warnings that can save
lives.

1956 2019

1’048’576 MB 5 MB 

Figure 1: Left: 5MB IBM 305 RAMAC (Photo: IBM). Right: SanDisk Extreme
1TB microSD card (Credit: Raymond Wong / Mashable)
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1.2 objectives

In this thesis, part of the Climate Advanced Forecasting of sub-seasonal Ex-
tremes (CAFE) project, we aim at improving the sub-seasonal predictabil-
ity (from about 10 days to 3 months) of extreme weather events. Predict-
ing such events is very challenging due to the poor understanding of
the phenomena acting at this time scale, such as the Madden-Julian oscil-
lation (MJO) (Madden and Julian, 1994; Madden and Julian, 1971, 1972),
planetary waves and atmospheric blockings, to cite a few.

To improve sub-seasonal predictability, in this dissertation we have two
main goals: first, to develop a generic approach to infer causality from
data that is computationally cost-effective; second, to improve the pre-
diction of the MJO, which is a main source of predictability at the sub-
seasonal scale.

Identifying, from time series analysis, reliable indicators of causal rela-
tionships is important in all fields of science and technology. Main chal-
lenges are distinguishing correlation from causality and discriminating
between direct and indirect interactions. Over the years, many meth-
ods for data-driven causal inference have been proposed (Granger, 1969;
Paluš and Vejmelka, 2007; Schreiber, 2000; Sugihara et al., 2012); how-
ever, their success largely depends on the characteristics of the system
under investigation. Often, their data requirements, computational costs,
or number of parameters, limit their applicability. In this thesis we pro-
pose a computationally efficient measure for causality testing, which we
refer to as pseudo transfer entropy (pTE). We apply this metric on both
synthetic and real data, showing its strengths and weaknesses.

Regarding the second objective, the MJO is the dominant mode of vari-
ability in the tropical atmosphere on sub-seasonal time scales, and can
promote or enhance extreme events in both, the tropics and the extrat-
ropics (Ferranti et al., 2018; Lau and Waliser, 2011; Vitart, 2009; Zhang et
al., 2013). In this thesis, we show the MJO prediction skill achieved using
different machine learning models. Moreover, we build artificial neural
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networks to improve the best state-of-the-art climate model’s predictions
through post-processing.

1.3 outline

In the following chapters of Part I, we introduce the main concepts used
in the studies presented in Part II and III. In particular, in Chapter 2

we present metrics to compute correlation and causality, which will be
the starting point for the results obtained in Part II. Afterwards, we will
introduce the notions needed for Part III; in Chapter 3 we introduce the
MJO, its impact, its characterization, and the state-of-the-art of its fore-
cast; in Chapter 4 we introduce the basic concepts of machine learning,
some of its algorithms, and its applications on climate, with a particular
focus in the prediction of the MJO.

In Part II, we present our contribution to causal data analysis, with the
presentation of the pseudo transfer entropy and its applications.

In Chapter 5, we present the mathematical derivation of the pTE from
the TE, a concept that we presented in Chapter 2.

In Chapter 6, we apply pTE to synthetic data. We first introduce then
the data generating processes, and the inferred causality with statistical
significance. We compare our results with the literature, we showcase
an application on real data and we conclude the chapter with a gen-
eral discussion of the results. The results presented in this chapter were
published in Silini and Masoller (2021).

In Chapter 7, we adopt the pTE to unveil interactions between a selection
of climate indices, to build causality networks. We also explore how the
interactions between those indices changed across decades.

In Part III, we present our contribution to the prediction of the MJO.

In Chapter 8, we show the machine learning prediction of the MJO, its
prediction skill, the phase and amplitude errors, and how the seasons
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and initial MJO phases influence the predictions. The results presented
in this chapter were published in Silini, Barreiro, and Masoller (2021).

In Chapter 9, we correct the predictions of MJO obtained using the cur-
rent best weather model, using artificial neural networks. In particular,
we show how machine learning manages to improve the MJO ampli-
tude and phase error, better than a linear post-processing. We also show
how the improvement depends on the initial MJO phase, and that ma-
chine learning is helpful to overcome the Maritime continent barrier (pre-
sented in Chapter 3).

In Part IV we present the final conclusions of the thesis, and the future
perspectives.

Finally, Part V is devoted to the Appendix. In this last part we present
the autoregressive models, which are used to determine a parameter
of the pTE in Part II, and as baseline in Part III. Then, we cover the
significance testing, presenting the surrogates that are used to assess sig-
nificance of the causality, and the supplementary results of Silini and
Masoller (2021), where we apply the pTE on several data generating pro-
cesses. Finally, we include the architecture details of the artificial neural
networks employed in Part III.





2C O R R E L AT I O N A N D C A U S A L I T Y

2.1 correlation

Unveiling and quantifying the strength of interactions from the analysis
of observed data is a problem of capital importance for real-world com-
plex systems. Typically, the details of the system are not known, but only
observed time series are available, often short and noisy.

One way to evaluate the degree of association between time series is
to compute the correlation. There are different types of correlation mea-
sures, and in this chapter we will present the most commonly found in
literature: Pearson correlation, Spearman correlation, cross-correlation, and
mutual information.

2.1.1 Pearson correlation

To find a linear relationship between two data sets, a very common mea-
sure of correlation is the Pearson product moment correlation (PPMC), usu-
ally called Pearson correlation in short. This measure requires particular
attention when applied, since it does not distinguish between dependent
and independent variables. The Pearson correlation coefficient r between
two variables X and Y is given by

r =

∑
i (xi − x̄) (yi − ȳ)√∑

i (xi − x̄)2
∑

i (yi − ȳ)2
, (1)

where xi and yi are the values in the samples, while x̄ and ȳ are the
mean of the values of the X and Y variable, respectively. The coefficient

9



10 correlation and causality

r will be equal to 0 for independent variables, and takes a value of 1

for a perfect linear relationship. In some case, the relationship between
two variables does not change at a constant rate, although being mono-
tonic. This lead to a low Pearson coefficient, while the two variables are
actually correlated. To solve this issue, one may use the Spearman corre-
lation, described in the following section.

2.1.2 Spearman correlation

To find a monotonic relationship between two data sets, we can use the
Spearman correlation. Differently from the Pearson correlation, the re-
lationship between the two variables can also be nonlinear (but mono-
tonic), and it is a nonparametric statistic. To use the Spearman corre-
lation ρ we need first to rank the data, and then compute it using the
following formula:

ρ = 1−

∑
i d

2
i

n(n2 − 1)
, (2)

where n is the size of the samples, and di is the difference between the
ranks of each observation.

2.1.3 Cross-correlation

Let’s consider now X and Y as two time series. The relationship between
the processes generating these two time series, could not be instanta-
neous. One of the two process could be correlated with the other with
a lag. Here is where the cross-correlation comes in handy. The cross-
correlation measures the correlation between the two series X and Y

as a function of the displacement of one with respect to the other. By
normalizing the cross correlation we obtain a time-dependent Pearson
correlation coefficient r̂(τ), where τ here is the time lag, which can be
written as
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r̂(τ) =

∑
i(xi − x̄)(yi−τ − ȳ)√∑

i(xi − x̄)2
∑

i(yi−τ − ȳ)2
, (3)

where xi and yi are the values in the samples at time i, τ is the time lag,
x̄ and ȳ are the mean of the values of the X and Y variable, respectively.

2.1.4 Mutual information

The mutual information (MI) is a measure that captures nonlinear correla-
tions, and which has been used in many studies to quantify the overlap
of information contained in two processes.

Let’s suppose to have a process X following a probability distribution
pX(i) where i is a given process state, then the Shannon entropy (Shannon
and Weaver, 1949) is given by

HX = −
∑
i

pX(i) logpX(i), (4)

where the sum extend over all possible states. The relative Shannon en-
tropy, also called Kullback-Leibler divergence (Kullback, 1959) is a measure
of how one probability distribution diverges from another one. Let’s call
this second distribution q(i), then the Kullback-Leibler divergence KX,
is given by

KX =
∑
i

pX(i) log
[
pX(i)

qX(i)

]
. (5)

Given two processes X and Y, to quantify the impact of assuming the
independence between them, we would pose qXY(i, j) = pX(i)pY(j) ob-
taining as Kullback-Leibler divergence

MXY =
∑
i,j

pXY(i, j) log
[

pXY(i, j)
pX(i)pY(j)

]
, (6)
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which takes the name of mutual information. From this formula we can
notice the symmetry of MXY under the exchange of X and Y, thus not
containing any directional sense nor dynamics. In the case of indepen-
dence of processes X and Y the probabilities would be independent as
well, turning the argument of the logarithm to 1 and the mutual infor-
mation to 0. Practically, although the two processes X and Y can be fully
independent, due to the limited number of samples the joint probability
pXY(i, j) will not be equal to the product of the two independent prob-
abilities pX(i)pY(j). Therefore MXY will give a positive value (bias) also
in case of independence of the two processes.

2.2 causality

Correlation does not imply causation. Although two time series could be
very well correlated, that doesn’t mean that it exists causality between
them. A well known example is the correlation between the number of
storks and the number of births with a p-value of 0.008 (Matthews, 2000),
meaning that there is only one chance out of 125 that it is a spurious
correlation, therefore concluding with some certainty that storks deliver
babies. Other examples are the lack of pirates that causes global warm-
ing, and that the most firefighters are sent to a fire, the more damage is
done. For the interested reader, other hilarious spurious correlations can
be found in Vigen (2015b), which are part of an extended collection (Vi-
gen, 2015a). Clearly just by intuition we can understand that those are
not actual causalities, but when we cannot make use of our intuition,
things get more complicated. Moreover, while we can have a negative
correlation, causality measures are positively defined: if positive peaks
of a process are followed by negative dips of another, we have negative
correlation, but positive causality.

A first attempt to try to quantify causality from observations was done
in 1956 by Wiener (1956) and formalized in 1969 by Granger (1969). Ac-
cording to the Granger causality (GC), given two processes X and Y, it
is said that "Y G-causes X" if the information about the past of Y im-
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proves, in conjunction with the past of X, the prediction of the future of
X, than the latter’s past alone. Since then, several variations have been
proposed (Amblard and Michel, 2013; Baccala and Sameshima, 2001; Bar-
nett and Seth, 2014; Chen et al., 2004; Dhamala, Rangarajan, and Ding,
2008; Marinazzo, Pellicoro, and Stramaglia, 2008), and have been ap-
plied to a broad variety of fields, such as econometrics (Chiou-Wei, Chen,
and Zhu, 2008; Hiemstra and Jones, 1994; Salahuddin and Gow, 2016),
neurosciences (Seth, Barrett, and Barnett, 2015), physiology (Porta and
Faes, 2016) and Earth sciences (McGraw and Barnes, 2018; Mosedale et
al., 2006; Runge and al., 2019; Tirabassi, Masoller, and Barreiro, 2014;
Tirabassi, Sommerlade, and Masoller, 2017) to cite a few.

An information-theoretic measure, known as transfer entropy (TE), a form
of conditional mutual information (CMI) (Paluš and Vejmelka, 2007), ap-
proaches this problem from another point of view: instead of predict-
ing the future of X, it tests whether the information about the past of
Y is able to reduce the uncertainty on the future of X. Since its intro-
duction (Schreiber, 2000), TE has found applications in different fields
such as neurosciences (Bielczyk and al., 2019; Lizier et al., 2011; Pereda,
Quiroga, and Bhattacharya, 2005; Staniek and Lehnertz, 2008; Ursino,
Ricci, and Magosso, 2020; Vicente et al., 2011; Wibral et al., 2013), phys-
iology (Faes, Nollo, and Porta, 2011, 2013; Mueller et al., 2016), clima-
tology (Bhaskar et al., 2017; Delgado-Bonal et al., 2020; Deza, Barreiro,
and Masoller, 2015; Pompe and Runge, 2011; Pothapakula, Primo, and
Ahrens, 2019), financial (He and Shang, 2017; Korbel, Jiang, and Zheng,
2019; Sandoval, 2014; Yao and Li, 2020) and social sciences (Porfiri and
al., 2019).

For Gaussian processes the equivalence between GC and TE is well estab-
lished (Barnett, Barrett, and Seth, 2009). There are no clear links though
between GC and TE for non Gaussian processes. In practical terms, while
TE provides a model-free approach, the need of estimating several prob-
ability distributions (see Eq. 8) makes TE substantially more computa-
tionally demanding than GC.
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In the following sections we present the GC, the TE, and other ap-
proaches.

2.2.1 Granger causality

The first measure of causality quantification that we present in this work
is the GC.

The mathematical formulation of the GC is based on linear regression
modeling of stochastic processes. We write then process X and Y as au-
toregressive linear models of order p:

X(t) =

p∑
i=1

aiX(t− i) +

p∑
i=1

biY(t− i) + ϵX(t),

Y(t) =

p∑
i=1

ciX(t− i) +

p∑
i=1

diY(t− i) + ϵY(t),

(7)

where ai, bi, ci and di are the coefficients of the model, ϵX(t) and ϵY(t)

are the residuals for each time series. If in the equation of Y(t) the resid-
ual ϵY(t) is reduced by including the values of X, then it is said that X
G-causes Y. The limitations of the Granger causality are two assumptions
on the data: the processes must be stationary, and they can be properly
described by autoregressive linear models.

2.2.2 Transfer Entropy

The TE is an information-theoretic measure that quantifies the informa-
tion transfer between two stochastic processes. Suppose to have two pro-
cesses, namely X and Y: the TE TY→X is the amount of uncertainty re-
duction in future values of Y knowing the past values of X and Y. This
means that TE is a measure to quantify how well we can predict the
future values of a time series Y, given its past and the values of another
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time series X. A non negligible value of the TE indicates that process X

drives process Y.

We can write the TE TY→X as (Schreiber, 2000)

TY→X =
∑
i,j

p
(
in+1, i(k)n , j(l)n

)
log

p
(
in+1 | i

(k)
n , j(l)n

)
p
(
in+1 | i

(k)
n

)
 , (8)

where p
(
in+1, i(k)n , j(l)n

)
is the probability of process X to be in state

in+1 at time step n+ 1 and in states i(k)n in the previous k time steps, and
process Y to be in states j

(l)
n in the previous l time steps. The conditional

probabilities p
(
in+1 | i

(k)
n

)
and p

(
in+1 | i

(k)
n , j(l)n

)
, are the probabilities

for process X to be in state in+1 at time step n+ 1, given the past states
of X alone, and the past states of both X and Y, respectively.

2.2.3 Other approaches

For the sake of completeness, we mention here the convergent cross map-
ping (CCM) (Sugihara et al., 2012), that enriches the field of causality
analysis in pairwise dynamical systems, and it is based on the nonlin-
ear state space reconstruction. While GC and TE are suited for purely
stochastic systems where causal influences are independent, the CCM
can be applied in systems where causal influences have synergistic ef-
fects (Ye et al., 2015).

The success of the mentioned approaches strongly depends on the char-
acteristics of the system under study (its dimensionality, the strength of
the coupling, the length and the temporal resolution of the data, the level
of noise contamination, etc.). Those approaches can fail in distinguishing
genuine causal interactions from correlations that arise due to similar
governing equations, or correlations that are induced by the presence of
common external forcings. In addition, when the system under study is
composed by more than two interacting processes, the mentioned met-
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rics can return fake causalities, i.e., fail to discriminate between direct
and indirect causal interactions. Many methods have been proposed to
address these problems (Harnack et al., 2017; Hirata et al., 2016; Jiang et
al., 2016; Korenek and Hlinka, 2020; Kugiumtzis, 2013; Leng et al., 2020;
Ma, Aihara, and Chen, 2014; Ma et al., 2017; Nowack et al., 2020; Runge
et al., 2019; Sun, Taylor, and Bollt, 2015; Vannitsem and Ekelmans, 2018;
Zhao et al., 2016); however, their performance depends on the character-
istics of the data, and their data requirements, computational cost, and
number of parameters that need to be estimated may limit their applica-
bility. Moreover, in order to discriminate between real and fake causality,
it is required a complete knowledge of the system and the processes
involved, which is often not the case in real complex systems.



3T H E M A D D E N - J U L I A N O S C I L L AT I O N

3.1 the phenomenon

The MJO, Fig 2, is the major fluctuation in tropical weather on subsea-
sonal time scale (Ferranti et al., 2018; Lau and Waliser, 2011; Vitart, 2009;
Zhang et al., 2013), with a typical 30- to 60-days oscillation. Discovered
in 1971 by Dr. Madden and Dr. Julian, the MJO is characterized by an
eastward progression along the equator of large regions of enhanced and
suppressed rainfall, from Western Africa to the Pacific Ocean, as shown
in Fig 3.

3.2 mjo impact

The MJO has a considerable worldwide socioeconomic impact. The rea-
son lies in its influence on the tropical and extratropical climate. The
MJO has a strong influence on the tropical weather, for example mod-
ulating cyclogenesis (Camargo, Wheeler, and Sobel, 2009; Fowler and
Pritchard, 2020; Klotzbach, 2010). It is also a main source of intrasea-
sonal variability for the different monsoon systems (Díaz, Barreiro, and
Rubido, 2020; Taraphdar et al., 2018; Wheeler et al., 2009), and interacts
with El Niño-Southern Oscillation (ENSO) (Bergman, Hendon, and Weick-
mann, 2001). Moreover, it impacts rainfall and temperature in the extrat-
ropics through atmospheric teleconnections (Alvarez, Vera, and Kiladis,
2017; Fauchereau, Pohl, and Lorrey, 2016; Ungerovich, Barreiro, and Ma-
soller, 2021; Vecchi and Bond, 2004), affects the boreal winter extratropi-
cal circulation (Garfinkel, Benedict, and Maloney, 2014), and modulates
the extratropical cyclone activity (Kunkel et al., 2012; Ma et al., 2017).

17
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Figure 2: Structure of the MJO when the enhanced rainfall region is above the
Indian ocean, and the dry region is over the Pacific Ocean. The green
and brown arrows indicates air flows, while the blue one the whole
system’s movement. Climate.gov drawing by Fiona Martin.
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Figure 3: Difference from average rainfall for all MJO events from 1979-2012 for
November-March for the eight phases described in the text. The green
shading denotes above-average rainfall, and the brown shading shows
below-average rainfall. To first order, the green shading areas corre-
spond to the extent of the enhanced convective phase of the MJO and
the brown shading areas correspond to the extent of the suppressed
convective phase of the MJO. Note eastward shifting of shaded areas
with each successive numbered phase as you view the figure from top
to bottom. Image taken from https://www.climate.gov.
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For example (Yoo, Feldstein, and Lee, 2011), MJO phases 4–6 are fol-
lowed by Arctic warming with a lag of 1–2 weeks, and similarly, MJO
phases 1–2 are followed by Arctic cooling. Thus, prediction of the MJO
provides a source of climate predictability to many regions of the world
on intraseasonal time scales.

3.3 mjo indices

In 2004, Wheeler and Hendon developed an index to characterize the
MJO: the daily Real-time Multivariate MJO (RMM) index (Wheeler and
Hendon, 2004). The RMM index is calculated as the first two principal
components (RMM1 and RMM2) of the combined empirical orthogonal
functions (EOFs) of outgoing longwave radiation (OLR), zonal wind at
200 and 850 hPa averaged between 15

◦N and 15
◦S. Applying a polar

transformation to these two variables, it is possible to obtain the MJO
phase and amplitude. The phase is classified in one of eight sectors of
the phase diagram, Fig. 4, defining the observed MJO life cycle, shown
in Figure 3, while the amplitude, characterizing the events’ intensity,
when smaller than 1 it corresponds to a non-active MJO. While other
MJO indices exist, such as the OLR MJO index OMI (Liebmann and
Smith, 1996), the real-time OLR MJO index ROMI (Kikuchi, Wang, and
Kajikawa, 2012), the filtered OLR MJO index FMO (Kiladis et al., 2014),
and the velocity potential MJO index VPM (Ventrice et al., 2013), the
RMM index is the most frequently consideed.

3.4 mjo forecast

Until about a decade ago, empirical techniques exhibited a higher predic-
tion skill compared to the numerical models, reaching up to 2 weeks (Kim,
Vitart, and Waliser, 2018; Lau and Waliser, 2011; Neena et al., 2014).
Significant advances in the understanding of the physics involved in
the MJO and better dynamical forecasting systems, have allowed to im-
prove the skill of MJO prediction. For the climate models the prediction
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Figure 4: Wheeler-Hendon phase diagram. The two axes correspond to RMM1
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divide the phase space into eight sectors defining the MJO phases
(MJO geographical location). The unitary circle corresponds to a MJO
amplitude of 1, dividing the space into active (> 1) and non-active
(< 1) MJO.
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skill of MJO is sensitive to the physics of the model and the quality of
the initial conditions. Of the dynamical models considered in 2014 by
Neena and coworkers (Neena et al., 2014), shown in Fig. 5, the ensemble-
mean prediction skill is highest for the model of the European Centre for
Medium-Range Weather Forecast (ECMWF, 28 days) and for the model
of the Australian Bureau of Meteorology (ABOM2, 24 days), and it is in
the range of 15–20 days for most other models. More recently, the pre-
diction skill of ECMWF has improved to exceeded 4 weeks, while most
models have improved their skill to the range of 20–25 days (Kim, Vi-
tart, and Waliser, 2018). The MJO prediction skill has also been shown
to depend on the initial amplitude and phase, the season of the year, the
background mean state and the extratropical influence (Kim, Vitart, and
Waliser, 2018). Boreal winter leads, for most models, to a higher predic-
tion skill that reaches up to 25–26 days, except for the ECMWF model
that approaches 5 weeks (Jiang et al., 2020). Recently, also machine learn-
ing approaches have been used to predict the MJO (Martin, Barnes, and
Maloney, 2021; Silini, Barreiro, and Masoller, 2021), yet not exceeding the
prediction skill of the best dynamical models. Nevertheless, a combina-
tion of machine learning and dynamical models exceeded the prediction
skill of the latter alone (Kim et al., 2021; Silini et al., 2022a), suggesting a
promising route to follow in the future to improve the prediction of the
MJO.

To have a phenomenological interpretation of the prediction error, it can
be helpful to focus on the amplitude and phase. As shown in Figure 6,
most models tend to underestimate the amplitude for all lead times,
suggesting a faster decay of the predicted MJO with respect to the ob-
servations. Most models also predict a slower propagation of the MJO,
accumulating about 2 days of delay in a 30 days prediction.

The Maritime Continent (MC) is the Southeast Asia archipelago com-
prising, among others, Philippines, Indonesia, and Papua New Guinea.
It is the largest archipelago on Earth, and its orography, strong diurnal
convection, as well as other factors, make it a complex land-atmosphere
system. The MJO travelling from the Indian Ocean often weakens, or is
disrupted, across the MC (Hendon and Salby, 1994; Rui and Wang, 1990).



3.4 mjo forecast 23

Figure 5: RMM bivariate correlation between the model ensemble means and
ERA-Interim for 10 S2S models [Fig. 1 from Vitart, 2017].

Nevertheless, climate models tend to exaggerate this MC barrier due to
poor modelling, and not due to a barrier on the predictability (Kim et al.,
2014; Neena et al., 2014), leaving a margin for improvement.



24 the madden-julian oscillation

Figure 6: Evolution of the MJO (a) amplitude error and (b) phase error relative
to ERA-Interim as a function of lead time. In (a), a positive (negative)
value indicates a too strong (weak) MJO. In (b), a positive (negative)
value indicates a too fast (slow) MJO propagation [Fig. 3 from Vitart,
2017].
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Machine learning (ML) algorithms aim to make a computer learn to per-
form particular tasks. ML algorithms are nowadays widely used in sci-
ence and technology. There are many different ML algorithms that can
be employed for different problems. We can find algorithms to extract
information from texts, to predict values, to find anomalies, to discover
structures, generate recommendations, or to perform classifications. We
can make a computer recognize objects in an image, transcript texts from
audios, mimic artists, do translations, recognize people emotions from
their expressions, and much more. In this chapter we introduce the main
types of ML algorithms and explain their use in this Thesis.

4.1 supervised, unsupervised, and reinforcement learning

Currently, there are three main categories of machine learning: super-
vised learning, unsupervised learning, and reinforcement learning.

In supervised learning we have access to the target (label), and the com-
puter learns to perform a task trying to reduce the error between its
guess and the target. Let’s consider the example of a program that tries
to attribute a sentiment to a given text input provided by an user. We
present to the computer a list of users’ texts with the associated senti-
ment provided by humans. We train then the computer to learn which
features of the text are associated to a given sentiment. After the training,
the test step consists of presenting to the computer unlabeled text (not
seen before), and evaluate if its output (sentiment) is correct or not.

In unsupervised learning, we don’t have access to the labels, and the
computer tries to find patterns and information from the data without

25



26 machine learning

human intervention. The aim is to somehow organize the data or to
describe its structure. For example, we want the computer to regroup
users’ texts that are similar between each other, according to some inter-
nal rules.

In reinforcement learning, we adopt a reward system, were we let the
computer perform some actions and reward or punish it depending on
the action taken. It is used to learn an optimal policy maximizing the
reward. Like our pets, the computer will understand which actions to
perform in order to get a reward with minimal effort. It is often used
in robotics (Gullapalli, Franklin, and Benbrahim, 1994; Ibarz et al., 2021;
Mahadevan and Connell, 1991), where each data point is given by a set
of information retrieved by the sensors, and the robot has to choose its
next action, and is also often used to create gaming bots (OpenAI et al.,
2019; Silver et al., 2016).

In this thesis, all ML algorithms used are part of supervised learning,
since the labels are known.

4.2 artificial neural networks

A widely used family of ML algorithms are known as the Artificial Neu-
ral Networks (ANN).

ANNs are biologically-inspired algorithms, which are built to mimic the
neural networks in the brain. They are composed of artificial neurons, a
simplification of their biological counterparts, which are interconnected
through links, that model axons, dendrites and synapses. Artificial neu-
rons lay in layers that can be linked through different connective struc-
tures. ANNs are characterized by an input layer, one or more hidden
layers, and an output layer, as shown in Fig. 7.

ANNs that contain more than one hidden layer, or that keep the memory
of previous network states are known as Deep Learning (DL) algorithms.

The details of the ANNs used in this thesis and their training procedures
are presented in the Appendix.
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Figure 7: Example of an ANN, composed of an input layer with M neurons, two
hidden layers with K and L neurons respectively, and an output layer
with N neurons. The layers are interconnected through the matrices
WMK, WKL, and WLN.

4.3 applications in climate

In climate science, ML algorithms are increasingly being employed due
to their success.

In the case of ENSO, ML has allowed to improve the forecast lead time
by several months with respect to the previous state-of-the-art dynamical
forecast systems networks (Ham, Kim, and Luo, 2019). ML techniques
have also been used to reconstruct the historical MJO index (Tseng, Barnes,
and Maloney, 2020), to compete or outperform dynamical models in fore-
casting large/scale spatial patterns of precipitation (Gibson et al., 2021),
and to reduce the costs of climate change scenarios computations (Mans-
field et al., 2020), to cite a few.

A complete review of applications is out of the scope of this thesis, and
we steer the interested reader to an extensive analysis of ML applications
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in weather prediction and climate analysis, that can be found in Boch-
enek and Ustrnul (2022).

4.3.1 Prediction of the MJO

Many efforts have been made for the prediction of the MJO in the last
decades (Jiang et al., 2020), with dynamical models leading to the cur-
rent best forecasts, but despite the continuous progress of the dynami-
cal models, there is still room for improvement in the prediction of the
MJO (Jiang et al., 2020; Zhang et al., 2013). In particular, an improvement
of the prediction skill when MJO crosses the Maritime Continent (MC)
barrier (Barrett et al., 2021; Kim et al., 2016; Wu and Hsu, 2009) will be
of practical importance due to the influence of MJO on ENSO, as an im-
proved MJO prediction may contribute to improving the prediction of
ENSO.

However, to the best of our knowledge, ML algorithms were not yet
been used to predict MJO before Silini and Masoller (2021), except for
DL algorithms that had been used in post-processing to correct the bias
of MJO dynamical multi-models means (Kim et al., 2021).

Although MJO predictions obtained using ML models do not outper-
form dynamical models (Martin, Barnes, and Maloney, 2021; Silini and
Masoller, 2021) yet, a hybrid approach (Silini et al., 2022a), combining
dynamical models and ML techniques, manages to improve the dynam-
ical models results. In this way, it is possible to use dynamical models
that have been developed across decades, based on physical phenomena,
in combination with data-driven ML techniques, an approach that has
shown its ability to reduce the gap between observations and dynamical
models’ forecasts (Haupt et al., 2021; McGovern et al., 2019; Rasp and
Lerch, 2018; Scheuerer et al., 2020; Vannitsem et al., 2021).



Part II

P S E U D O T R A N S F E R E N T R O P Y

In this second part, we introduce our implementation of a
fast and effective metric, to compute the G-causality called
pseudo transfer entropy (pTE), we test it using synthetic data,
and apply it to real data. Afterwards, we employ pTE to un-
veil information flow between climate indices, which func-
tions as feature selection tool for the prediction of the consid-
ered climate indices.
The results we present in Chapter 6, have been published
in Silini and Masoller (2021), and those presented in Chap-
ter 7 have been submitted for publication (Silini et al., 2022b).
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5.1 definition

In this chapter we present the derivation of the pTE from the TE, which
in its turn is derived from the MI.

With the TE, Schreiber purpose was to find a statistic measure, sharing
some of the desired properties of the MI, albeit keeping into account the
dynamics and directionality of information.

It is possible to give a directional sense to MI ad hoc by introducing a
time lag τ like follows

MXY(τ) =
∑
i,j

pXY(in, jn−τ) log
[

pXY(in, jn−τ)

pX(in)pY(jn−τ)

]
. (9)

If we consider a system approximated by a Markov process of order
k, then the probability to be in the state in+1 of the process X at time
n+ 1 is independent of the state in−k. For what follows we will use the
notation i

(k)
n = (in, . . . , in−k+1).

The entropy of an additional state knowing all the previous state can be
written as

hX = −
∑
i

pX

(
in+1, i(k)n

)
log

[
pX

(
in+1 | i

(k)
n

)]
. (10)

Since by the definition of conditional probability

pX

(
in+1 | i

(k)
n

)
=

pX

(
i
(k+1)
n+1

)
pX

(
i
(k)
n

) , (11)

31



32 pseudo transfer entropy

then

hX = −
∑
i

pX

(
in+1, i(k)n

){
log

[
pX

(
i
(k+1)
n+1

)]
− log

[
pX

(
i
(k)
n+1

)]}
,

(12)

also called entropy rate. In a Markov process of order k, the conditional
probability to find X in state in+1 at time n+ 1 is independent of the
state in−k, therefore we can write the equality

pX

(
in+1 | i

(k)
n

)
= pX

(
in+1 | i

(k+1)
n

)
, (13)

which leads to

hX = HX(k+1) −HX(k) . (14)

In order to find the MI rate by generalizing hX to two processes, the
best way to go is to measure the deviation from the generalized Markov
property. This choice is taken since by using the Kullback-Leibler diver-
gence we would end up with a symmetric quantity under exchange of
the two processes. We can write this independence as

pX

(
in+1 | i

(k)
n

)
= pXY

(
in+1 | i

(k)
n , j(l)n

)
, (15)

which implies the absence of information flow from Y to X. The diver-
gence from this independence assumption is yet again quantified by the
Kullback-Leibler divergence, obtaining

TEY→X =
∑
i,j

p
(
in+1, i(k)n , j(l)n

)
log

p
(
in+1 | i

(k)
n , j(l)n

)
p
(
in+1 | i

(k)
n

)
 , (16)

which was named transfer entropy by Schreiber (2000).

The TE from process Y to process X can be re-written as

TEY→X =
∑
i,j

p
(
in+1, i(k)n , j(l)n

) {
log

[
p
(
in+1 | i

(k)
n , j(l)n

)]

− log
[
p
(
in+1 | i

(k)
n

)] }
,

(17)
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where, just like in Eq. 8, p
(
in+1, i(k)n , j(l)n

)
is the probability of process X

to be in state in+1 at time step n+ 1 and in states i
(k)
n in the previous k

time steps, and process Y to be in states j
(l)
n in the previous l time steps.

The conditional probabilities p
(
in+1 | i

(k)
n

)
and p

(
in+1 | i

(k)
n , j(l)n

)
, are

the probabilities for process X to be in state in+1 at time step n+ 1, given
the k past states of X alone, and the k past states of X combined with the
l past states of Y, respectively.

By using the definition of conditional probabilities, Eq. 17 can be re-
written as sum of four Shannon entropies (Shannon and Weaver, 1949)
as

TEY→X = H
(
i
(k)
n , j(l)n

)
−H

(
in+1, i(k)n , j(l)n

)
+H

(
in+1, i(k)n

)
−H

(
i
(k)
n

)
,

(18)

where H is given by

H = −
∑
i

p(i) logp(i), (19)

and the sum extends over all possible states i.

The computation of the TE with Eq. 8 is challenging because a good esti-
mation of the probability distributions is often not available. Considering
the processes X and Y to follow normal distributions i.e. X ∼ N(x | µx,Σx)

and Y ∼ N(y | µy,Σy), where µx,y are the mean values, and Σx,y are the
covariances, it substantially simplifies the computation using in fact that
the entropy of a p-variate normal variable x, is given by

Hp (x) =

∫+∞
−∞ N(x | µx,Σx) log [N (x | µx,Σx)]dx

= −E [log (N(x | µx,Σx))] ,
(20)

where E[·] is the expected value.
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By definition of the multivariate Gaussian, we can rewrite Eq. 20 as

Hp (x) = −E
[
log

(
(2π)−

p
2 | Σ |−

1
2 e−

1
2 (x−µx)

TΣ−1
x (x−µx)

)]
, (21)

which, by the property of the logarithm of products becomes

Hp (x) =
p

2
log(2π) +

1

2
log(| Σx |) +

1

2
E
[
(x− µx)

TΣ−1(x− µx)
]

. (22)

By noticing that E
[
(x− µx)

TΣ−1
x (x− µx)

]
= tr(Σ−1

x Σx) = p, we obtain

Hp(x) =
1

2
(p+ p log(2π) + log |Σx|) , (23)

where |Σ| is the determinant of the p× p positive definite covariance ma-
trix. By substituting Eq. 23 in Eq. 18, we can estimate the TE as follows:

TEY→X =
1

2

[
k+ l+ (k+ l) log(2π) + log

(∣∣∣Σ(
I(k)n ⊕ J(l)n

)∣∣∣)]
−

1

2

[
k+ l+ 1+ (k+ l+ 1) log(2π) + log

(∣∣∣Σ(
in+1 ⊕ I(k)n ⊕ J(l)n

)∣∣∣)]
+

1

2

[
k+ 1+ (k+ 1) log(2π) + log

(∣∣∣Σ(
in+1 ⊕ I(k)n

)∣∣∣)]
−

1

2

[
k+ k log(2π) + log

(∣∣∣Σ(
I(k)n

)∣∣∣)] ,

(24)

which finally can be written as

TEY→X =
1

2
log


∣∣∣Σ(

I(k)n ⊕ J(l)n

)∣∣∣ · ∣∣∣Σ(
in+1 ⊕ I(k)n

)∣∣∣∣∣∣Σ(
in+1 ⊕ I(k)n ⊕ J(l)n

)∣∣∣ · ∣∣∣Σ(
I(k)n

)∣∣∣
 , (25)
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where Σ(A ⊕ B) is the covariance of the concatenation of matrices A

and B, in+1 is the vector of the future values of X, I(k)n and J(l)n are the
matrices containing the previous k and l values of processes X and Y

respectively.

Whenever X and Y are not Gaussian processes, we call the quantity in
Eq. 25 pseudo Transfer entropy (pTE). For Gaussian variables pTE coincides
with the TE and is equivalent to GC (Barnett, Barrett, and Seth, 2009).
The Gaussian form for CMI/TE for causality inference was also used
by Cliff et al. (2021), Molini, Katul, and Porporato (2010), Paluš (2014a),
and Paluš (2014b).

In the following chapter we evaluate the performance of pTE with sev-
eral known models, comparing it with the implementation of GC and
TE of well-known Python libraries. We will cover its strengths and weak-
nesses, and show an example of application for real climatological data.
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6.1 models

Three data generating processes (DGPs) were analyzed. For these DGPs
the null hypothesis of non-causality is not satisfied for process Y to pro-
cess X. Results obtained with other DGPs are presented in the Appendix.

The first DGP is a linear model (Diks and DeGoede, 2001) given by:

Xt = 0.6Xt−1 +C · Yt−1 + ϵ1t, Yt = 0.6Yt−1 + ϵ2t, (26)

where ϵ1t and ϵ2t are white noises with zero mean and unit variance,
and C is the coupling strength.

The second DGP is a nonlinear model (Taamouti, Bouezmarni, and Ghouch,
2014) that reads:

Xt = 0.5Xt−1 +C · Y2
t−1 + ϵ1t, Yt = 0.5Yt−1 + ϵ2t. (27)

The third DGP consists of two Lorenz chaotic systems, coupled on the
first variable:

Ẋ1 = 10(−X1 +X2) +C · (Y1 −X1) Ẏ1 = 10(−Y1 + Y2)

Ẋ2 = 21.5X1 −X2 −X1X3 Ẏ2 = 20.5Y1 − Y2 − Y1Y3

Ẋ3 = X1X2 −
8
3Y3 Ẏ3 = Y1Y2 −

8
3Y3

(28)

Examples of time series of these three DGPs, normalized to zero mean
and unit variance, are displayed in Fig. 8.

37
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Figure 8: Examples of time series of the three data generating processes (DGPs)
analyzed in the main text. In the three cases there is causality from Y

to X; the coupling strength is (a), (b) C = 0.5, (c) C = 8.

6.2 statistical significance

We used surrogate data to test the significance of the pTE, TE and GC
values. The number of surrogates needed depends on the characteristics
of the data, the available computational resources and time limitations:
given enough resources and time, one should use a large number of
surrogates and select a confidence interval (Paluš and Vejmelka, 2007);
however, with limited time or computational resources, when the spread
of surrogates data is not too large one can use an alternative strategy: an-
alyze a small number of surrogates and, in the case of a one sided test, se-
lect as significance threshold the maximum or minimum value obtained
with the surrogates. In this case, M = K/α−1 surrogates should be gen-
erated, where K is a positive integer number and α is the probability
of false rejection (Lancaster et al., 2018). Therefore, a minimum of 19

surrogates (K = 1) are required for a significance level of 95%. For this
study we used the iterative amplitude adjusted Fourier transform (IAAFT)
algorithm the time-shifted (T-S) surrogates.
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6.3 implementation

To calculate pTE we developed an algorithm in python (available on
GitHub (Silini, 2020)), while we used the statsmodels implementation of
GC (Fulton, 2020) and the pyunicorn implementation of TE (Donges et
al., 2015). The code has been thought to be as user friendly as possible
to be used to build networks. It takes as arguments all the time series of
the studied system, the embedding parameter and the statistical signifi-
cance test that the user decides to apply. As result it returns the matrix
of pTE values computed from the original data, and the matrix of the
maximum values obtained from the surrogates (i.e., the statistically sig-
nificant thresholds).

In the analysis of synthetic data generated with the DGPs the causality
measures were run over 1000 realizations with different initial condi-
tions and noise seeds. For each realization the first 100 data points were
discarded. For the computation of GC and pTE we chose a lag equal to
1, which implies considering the models as auto-regressive processes of
order 1, AR(1), since by the considered models construction, the depen-
dent variable is influenced by the previous step of the independent one;
for the computation of TE the k-nearest neighbors method is used, and
we chose k =

√
N, where N is the number of data points in the time

series (Lall and Sharma, 1996).

To calculate the causality between two time series, the time series were
first linearly detrended and L2-normalized. The significance of the pTE,
GC and TE values obtained were then tested against the values obtained
from 19 couples of surrogates (as explained in the previous section, 19

surrogates is the minimum for achieving a significance level of 95%). Un-
less otherwise specifically stated, the results presented in the text were
obtained by using IAAFT surrogates.
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6.4 results

First, we use the three DGPs described in section 6.1 to compare the
performance of pTE, GC and TE in terms of the power and size. If by
construction there is no causality from X to Y, the percentage of times
the causality is higher than the significance threshold returned by the
surrogate analysis will be called "size" of the test, i.e., is the probability
that a causality is detected when there is no causality by construction. On
the other hand, if by construction X causes Y, the percentage of times the
method finds causality from X to Y is called "power" of the test. With the
surrogate analysis adopted, the causality between the original data will
be compared to the maximum one found within 19 surrogates (Lancaster
et al., 2018), and the probability that the original data displays by chance
the highest causality is 5%.

We analyze the power and size for the two possible causal directions
(X → Y and Y → X ), as a function of the coupling strength and of the
length of the time series. Fig. 9 displays the power and size of the three
methods, pTE, GC and TE, for the linear model, when the coupling is
such that there is causality from Y to X (the size is shown in the top row,
and the power, in the bottom row). The similarity between pTE and GC
in finding the true causality is evident. With a coupling strength C < 0.1
the three methods fail to detect causality, while for C > 0.4, for both
pTE and GC, the number of data points in the time series needed to find
causality is quite small, in fact 100 data points are sufficient to achieve a
power of 100. In Fig. 10 we plot the cross sections of the highest values
of the time series length and coupling strength of Fig. 9. From the left
panel it is possible to notice that for a coupling strength of 0.5, a time
series of 200 data points is needed to retrieve the correct causality for all
three methods with a power above 95. From the information contained in
the right panel, for time series composed of 500 data points, a coupling
strength of about 0.25 is necessary to find a power larger than 95 for all
three methods.
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Figure 9: Power and size [the percentage of times that causality is detected
when there is causality (power) and when there is no causality (size)]
obtained using pTE (first column), GC (second column) and TE (third
column) on the linear model, as a function of the length of the time se-
ries and of the strength of the coupling, for the two possible causality
directions (top row: X → Y, bottom row: Y → X). By construction the
model has causality from Y to X; therefore, the top row displays the
size, and the bottom row, the power. The performance of pTE and GC
is very similar, as both find the correct causality with moderate cou-
pling strength even for short time series. TE finds the correct causality,
but for stronger coupling.

Fig. 11 displays the results obtained for the nonlinear model, and we no-
tice that they are very similar to the ones obtained with the linear model,
probably due to the weak nonlinearity considered. We note that, in com-
parison with the linear model, in this model, with short time series the
power and size returned by the three methods are more similar.

Regarding the two chaotic Lorenz oscillators, which are coupled in the
first variable, the situation is very different, as shown in Fig. 12. When
looking at the causality between the coupled variables, for both pTE
and GC the causality is detected for a moderate coupling strength and
a rather long time series. Causality X → Y is not detected for any (cou-
pling strength, time series length), which is correct by construction. TE
instead finds causality also for X → Y, which is wrong by construction.
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Figure 10: Cross sections of Fig. 9. In the left panel we fix the coupling strength
to 0.5 and we plot the power and size of the linear model as a func-
tion of the time series length for pTE, GC and TE. In the right panel
we fix the number of data points to 500 and plot the power and size
as a function of the coupling strength.

This observation for TE can be attributed to insufficient conditioning
treated by Paluš (Palus et al., 2001; Paluš and Vejmelka, 2007), in fact the
directionality of the coupling cannot be inferred when the systems are
fully synchronized.

Next, we compare the computational cost of using pTE, GC and TE.
Fig. 13 displays the time required to calculate X → Y and Y → X causal-
ities, as a function of the length, N, of the time series. The figure shows
the time required when the codes are run on Google colab CPUs (Intel®

Xeon® CPU @ 2.20GHz), and includes preprocessing the time-series (de-
trending and normalizing) and performing the statistical significance
test.

For short time series we see a large advantage of using pTE instead
of GC. TE sits back as the slowest of the three methods. The reason
is attributed to the scaling of parameter k in the k-nearest neighbors
method used to compute TE, which scales as

√
N.

Table 1 displays the computational time required to calculate X → Y and
Y → X causalities, and the corresponding power and size obtained us-
ing the linear model. While in Fig. 13 we showed the total computational
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Figure 11: As Fig. 9, but using the nonlinear model. We again see that pTE
and GC both find the correct causality, and their performance is very
similar. TE finds the correct causality, but for stronger coupling.

time, in Table 1 we show only the time required for the calculation of the
pTE, GC and TE values (without signal preprocessing and without per-
forming statistical significance analysis). We see that, for time series of
25 data points, the time required for pTE calculation (averaged over 1000

runs) is 200% faster than GC; however, this porcentage reduces to 12%
for time series of 500 data points. From these results, we argue on the
value of using pTE to analyze a large number of short time series, which
is often the case when causality methods are used to build complex net-
works from observed data. We remark that all the codes used to generate
the results shown in this article are publicly available at GitHub (Silini,
2020).

The use of T-S surrogates (Lancaster et al., 2018; Quian Quiroga et al.,
2002) results in a substantial reduction of the computational time, in
comparison to the widely used IAAFT surrogates, as seen in Fig. 13

and Table 2. The computational cost is reduced by approximately 98%,
albeit displaying very similar results in terms of power and size. Clearly,
T-S surrogates give a major boost in causality testing. As an example,
for time series of length N = 100, using pTE with T-S surrogates will
reduce the computational cost by approximately 82% with respect to
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Figure 12: As Fig. 9, but using the chaotic model composed by two coupled
Lorenz systems. The performance of pTE and GC is very similar, as
both find the correct causality when the time series is long enough,
and the coupling strength is moderate. TE finds Y → X causality, but
it also finds X → Y causality, which is wrong by construction.

GC with IAAFT surrogates, while a reduction of approximately 77%
is found with respect to GC with T-S surrogates. However, for causal
inference T-S surrogates should be used with caution, because when
there are time-delayed interactions, it can lead to fake conclusions.

To study the resilience to observational noise, we add, to the time series
generated with the DGPs, X and Y, a Gaussian noise ξ1,2 of zero mean
and unit variance, tuning its contribution with a parameter D ∈ [0, 1].
In this way we generate and analyze the signals X

′
and Y

′
given by

X
′
t = (1−D)Xt +Dξ1t, Y

′
t = (1−D)Yt +Dξ2t.

Fig. 14 shows that pTE and GC perform very similarly (they are almost
indistinguishable) and are quite resilient to noise. For the linear DGP, up
to 40% of noise contribution can be present without a significant effect
on the results, while for the nonlinear DGP, the methods start failing
for a lower noise level. For the chaotic DGP the three methods are very
resilient to noise. As previously noticed in Fig. 12, TE detects causality
in both directions.
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Figure 13: Computational times required to infer causal interactions in the two
directions, X → Y and Y → X, using pTE, GC or TE, as a function of
the length of the time series, N. The times, calculated with the linear
model after averaging over 1000 realizations, include preprocessing
the time series and performing the statistical significance analysis.
In the left panel IAAFT surrogates are used, while in the right panel
time shifted surrogates are used.

Finally, moving beyond synthetic data, we apply the pTE measure to
two well-known climatic indices, and compare the results with GC and
TE. The time series analysed, the NINO3.4 index and All India Rainfall
(AIR) index, shown in Fig. 15, represent the dynamics of two large-scale
climatic phenomena, the El Niño–Southern Oscillation (ENSO) and the
Indian Summer Monsoon (ISM), whose causal inter-relationship is rep-
resented by long-range links (teleconnections) between the Central Pa-
cific and the Indian Ocean (Dijkstra et al., 2019). The time series were
downloaded from Explorer (2020) and Tropical Meteorology (2020). The
NINO3.4 index begins in 1854 while AIR index begins in 1813. Monthly-
mean values are available, and their shared period is from 1854 to 2006

(153 years, 1836 months),

Table 3 displays the results of the analysis of monthly-sampled data, and
of yearly-sampled data. In the latter case we used the average of Decem-
ber, January and February (DJF) values, where the ENSO phenomenon
peaks, and the average of June, July and August (JJA), where the mon-
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Table 1: Average computational time of pTE, GC and TE per realization for
four time series lengths, N. The mean and standard deviation are com-
puted over 1000 realizations and the values in the table are expressed
in milliseconds. pTE is the fastest up to N = 500 data points, with the
difference with GC diminishing as N increases. TE time increases expo-
nentially as the k parameter of the k-nearest neighbors scales with

√
N.

The power and size are computed for the linear model. We note that for
N = 100, pTE and GC give very similar results, even though pTE takes
half the time. The last column displays the average computational cost
reduction of pTE with respect to GC.

Data points Time [ms] Power/Size

N pTE GC TE pTE GC TE

25 1.3± 0.3 3.7± 0.6 3.0± 0.5 49.0/4.8 56.6/4.1 24.8/3.5

100 1.9± 0.4 4.0± 0.6 8.6± 0.8 99.8/3.9 99.8/3.3 87.6/3.0

250 3.0± 0.6 4.6± 0.8 34± 2 100/3.2 100/3.6 99.3/3.4

500 4.1± 0.3 4.6± 0.3 112± 2 100/2.9 100/2.6 100/3.3

Data points Computational time

N reduction (%)

25 64.9

100 52.5

250 34.8

500 10.9

soon peaks. Therefore, the length of the yearly-sample time series is 152

data points because for the last year the last data point, DJF, is not avail-
able. We used, for the yearly-sampled data, an autoregressive integrated
moving average (ARIMA) model of order 4 (consistent with Tirabassi,
Sommerlade, and Masoller (2017)) and, for the monthly-sampled data,
of order 3. The order of the model was selected by using the Akaike
information criterion (AIC).
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Table 2: Average computational time to generate time shifted (T-S) and IAAFT
surrogates, for four time series lengths, N. The mean and standard de-
viation are computed over 1000 realizations and the values in the table
are expressed in milliseconds. T-S surrogates are substantially faster
than IAAFT, allowing to reduce the average computational time re-
quired to create surrogates by approximately 98%. The causality testing
using pTE with the two surrogate methods gives very similar results
in terms of power and size for the linear model.

Data points Time [ms] Power/Size Computational time

N T-S IAAFT T-S IAAFT reduction (%)

25 0.020± 0.004 0.6± 0.1 48.9/3.2 51.5/4.9 96.7

100 0.035± 0.005 1.5± 0.3 97.5/0.0 99.2/3.0 97.7

250 0.07± 0.01 3.2± 0.6 100/0.0 100/2.9 97.8

500 0.13± 0.02 6± 1 100/0.0 100/2.6 97.8

Figure 14: Resilience to noise of pTE, GC and TE, using the linear, nonlinear
and chaotic models. pTE and GC perform very similarly (they are
almost indistinguishable). The three measures are quite resilient to
noise: for the linear model, up to 40% of noise can be present without
significantly affecting the results, while for the nonlinear model, the
three methods start failing at a lower noise strength. For the chaotic
model, as previously noticed in Fig. 12, TE detects causality in both
directions. The length of the time series is N = 300 and the coupling
strength is C = 0.5 for the linear and nonlinear models, C = 4 for
the chaotic model (for this value of the coupling TE has the largest
difference between the two directions).
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a b

Figure 15: L2-normalized and linearly detrended time series of NINO3.4 and
All India Rainfall (AIR) indices from 1854 to 2006. In panel (a) it is
shown the average value of DJF for NINO3.4 index and JJA for AIR
index, while in panel (b), the monthly sampled time series.
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In Table 3 we see that for the yearly-sampled data, pTE and GC only
detect the dominant causality (ENSO→AIR), while TE detects both (in
good agreement with Tirabassi, Sommerlade, and Masoller (2017)). We
note similarities with the results presented in Fig. 12: while unidirec-
tional causality is found with pTE and GC, TE causality is found in both
directions. The computational times clearly show that pTE is faster than
GC (and of course also faster than TE, which is the slowest method).
In the monthly-sampled data we see an opposite direction of causality,
a result that we interpret as due to different time scales in the mutual
influence between ENSO and ISM: while ENSO effects on the Indian
monsoon precipitations are pronounced on an annual time scale, the
influence of the Indian monsoon on ENSO acts on a shorter, monthly
time scale. To exclude the fact that this change in directionality is an
artifact due to the different time series lengths, we analyzed the monthly-
sampled time series using segments of 152 consecutive data points (which
is the length of the annually-sampled data). In this case we did not find
any significant causality, which suggests that the change in directional-
ity when considering annually-sampled or monthly-sampled data is not
an artifact but has a physical origin, that we interpret as due to different
time scales in the mutual interaction and that 152 data points are not
sufficient to find causality in the monthly-sampled data.

Finally, we note that the computational times shown in Table 3 are higher
than those that can be estimated from Fig. 13. In Fig. 13 we see that, for
150 datapoints, the time required for the GC calculation with T-S sur-
rogate analysis is about 0.11 s while in Table 3 we see that the time
required for GC and T-S calculation (two directions) is 0.36 s. The differ-
ence is due to the fact that in Fig. 13 a model of order 1 was used, while
in Table 3, for the yearly-sampled data, a model of order 4 is used. The
computational time increases with the order of the model, especially for
GC, because the algorithm used (statsmodels grangercausalitytest)
computes causality for all model orders up to the chosen one. For the
NINO3.4 and AIR indices we also analysed the effect of varying the
order of the model (from 1 to 10) and found either the same significant
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causal directionality (with stronger or weaker values), or we did not find
any significant causality.

The linear DGP was used by Diks and DeGoede (Diks and DeGoede,
2001) to test nonlinear Granger causality. With a coupling strength of
C = 0.5 and a time series length of 100 points with a lag of 1, they
obtained a power of 95.6 and a size of 3.0. Using pTE under the same
conditions, we obtain a power of 99.8 and a size of 3.9.

The nonlinear DGP was used by Taamouti, Bouezmarni, and Ghouch
(2014) to quantify linear and nonlinear Granger causalities. With a cou-
pling strength of C = 0.5, 200 data points, a pvalue of 5% and a resam-
pling bandwidth k for the bootstrap as the integer part of 2 · 2001/2, they
obtained a power of 100 and a size of 4.4. Using pTE we obtained a
power of 100 and a size of 3.3.

The Krakovská, Jakubík, and Chvostekova (2018) coupled Lorenz sys-
tems, are very similar to those studied here. By using three state-space
based methods, including cross-mapping, they noticed that the highest
directionality in the causality is for a coupling C ≈ 4. From C > 4 syn-
chronization is obtained, finding causality in both directions, using time
series of 50000 data points. This observation is very similar to our re-
sults with TE, while for pTE and GC, once synchronization has been
achieved, no causality is found. This supports their conclusion, warn-
ing the reader that the blind application of causality test can easily lead
to incorrect conclusions. While GC and pTE can successfully be used
to analyze AR processes and weakly nonlinear Gaussian-like processes,
for more complex processes (high dimensional and/or highly nonlinear)
advanced information-theoretic methods such as TE are needed.

6.5 discussion

We have proposed a new measure, pseudo transfer entropy (pTE), to infer
causality in systems composed by two interacting processes. Using syn-
thetic time series generated with processes where the underlying causal-
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ity is known, and also, a real-world example of two well-known climatic
indices, we have found a remarkable similarity between the results of
pTE and Granger causality (GC), in terms of the power and size, and the
robustness to noise, but pTE can be significantly faster, particularly for
short time series. For example, for time series of 100 datapoints, while
giving extremely similar results, pTE with time-shifted (T-S) surrogate
testing reduces the computational time by approximatelly 92% with re-
spect to GC with IAAFT surrogate testing, and by 48% with respect to
GC with T-S surrogate testing (on Google colab CPU, the total computa-
tional time for pTE and T-S is 2.5 ms, while for GC and IAAFT is 32.5
ms, and for GC and T-S, 4.7 ms).

Since the computational cost is of capital importance for the analysis
of large datasets, the causality testing methodology proposed here will
be extremely valuable for the analysis of short and noisy time series
whose probability distributions are approximately Gaussian. We remark
that many real-world signals follow distributions that are nearly nor-
mal. Although we do not claim that our method can be applied to any
pair of signals, the information presented in the Appendix supports the
method’s generic applicability. The algorithms are freely downloadable
from GitHub (Silini, 2020).

In the next chapter we apply the pTE on thirteen well-known climate
indices to disentangle the interactions among the phenomena that they
represent, which we represent as a causality network.
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7.1 monthly atmospheric and ocean time series

We focus this study in the climatic indices described below. They are
monthly sampled timeseries and are freely accessible at the NOAA web-
site (https://psl.noaa.gov/data/climateindices/list/), with the exception
of the All Indian Rainfall index, which is available via the Indian Insti-
tute of Tropical Meteorology (https://www.tropmet.res.in/).

AIR: All Indian Rainfall. The area-weighted integral of the rainfall mea-
sured by the Indian national network of rain gauges.

AMO: Atlantic Multidecadal Oscillation. The detrended area-weighted
average over the North Atlantic, from the equator up to 70N, of the sea
surface temperature (SST) anomalies from the Kaplan SST dataset (Ka-
plan et al., 1998; Reynolds and Smith, 1994).

GMT: The Global Mean Temperature anomaly as computed by NASA/GISS.
The anomaly is computed with respect to the period 1951-1980.

HURR: The total number of hurricanes or named tropical storms in a
given month in the Atlantic region.

NAO: The North Atlantic Oscillation. The north-south dipole of pressure
anomalies over the North Atlantic, with one center over Greenland and
the other center of opposite sign between 35N and 40N.

NINO34: The East Central Tropical Pacific SST anomaly. It integrates the
NOAA ERSST V5 anomalies in the region (5N-5S)×(170W-120W).

NP: North Pacific pattern. The area-weighted sea level pressure over the
region (30N-65N)×(160E-140W).

53
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NTA: North Tropical Atlantic index. The SST anomalies averaged over
the two regions (60W-20W)×(6N-18N) and (20W-10W)×(6N-10N) map.
Anomalies are obtained from the ERSST V3b dataset relative to the 1981-
2010 climatology, smoothed by three months running mean and pro-
jected onto 20 leading EOFs.

PDO: Pacific Decadal Oscillation. The leading principal component of
monthly SST anomalies in the North Pacific Ocean.

QBO: Quasi-Biennial Oscillation. The zonal average of the 30mb zonal
wind at the equator as computed from the NCEP/NCAR Reanalysis.

Sahel: Sahel Standardized Rainfall. Average rainfall recorded by 14 weather
stations in the region (8N-20N)×(20W-10E).

SOI: Southern Oscillation Index. The standardized difference in surface
air pressure between Tahiti and Darwin. The SOI is a proxy of the
strength of the Walker circulation and it’s strictly related to ENSO.

TSA: Tropical Southern Atlantic Index. The SST anomaly with respect
to the 1971-2000 period in the region (0-20S)×(10E-30W). HadISST and
NOAA OI 1◦ × 1◦ datasets are used to create this index.

The various indices span different regions and focus on different vari-
ables. variability of the ocean and the atmosphere on different spatio-
temporal scales, with particular attention to the tropical belt.

The majority of the timeseries span six decades, overlapping in the pe-
riod 1951-2016 (i.e., in 792 data points). In this period, the timeseries are
depicted in Fig. 16.

The various indices display different spectral properties. Several have a
defined periodic component, either seasonal, as in the case of rainfall
and storm indices, or longer, like the case of the QBO. Some display
trends (GMT), others slow non-linear oscillations (NINO34). The high
frequencies as well are very heterogeneous.

All these complex spectral properties influence the indices’ distributions.
Generally, we observe skewed distributions and hints of multimodality.
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Figure 16: Raw time series of the thirteen climatic indices under study.
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AIR, HURR, Sahel and NP indices display a strong seasonal component
(Fig. 16). To avoid spurious signals, we removed the seasonality subtract-
ing the mean of every different month from these four indices. The other
indices have already been constructed after removing the seasonal cycle
of the variables used.

Since the indices under consideration span a broad range of values, we
standardized their distribution by removing a linear trend and rescaling
the series to have unitary variance. Even if information-related quantities
such as pTE, transfer entropy, or mutual information in principle do
not depend on the variables gauges, the rescaling to unitary variance is
considered good practice for their numerical computation. The resulting
post-processed time series and their values distributions are depicted in
Fig. 17.

7.2 methodology

We analyze the causality structure of the set of indices indices using
bivariate analysis, i.e., we address the problem of determining whether
one index influences another without considering the possible influence
of a third index that could mediate the interaction.

For consistency, we focused on the period 1950–2016, which is the time
span for which all the time series have continuous records.

To measure the bivariate causality between two indices, we use the pseudo
transfer entropy (pTE) (Silini and Masoller, 2021), a method that has
recently proven to be a computationally fast alternative to traditional
transfer (TE) entropy (Schreiber, 2000). Analogously to the TE, the pTE
measures the transfer of information from Y at time t to X at time t+ τ

conditional to the information flowing from X at time t to X at time t+ τ,
providing a mean to assess causal relationships between two processes.

The pTE from series Y to X is calculated from the analysis of a vector
containing the future elements of X at t ⩾ τ, and the matrices containing
the k past values of X and Y (see Silini and Masoller (2021) for details).
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Index k

AIR 1

AMO 2

GMT 2

HURR 1

NAO 1

NINO34 2

NP 1

NTA 8

PDO 1

QBO 2

Sahel 1

SOI 3

TSA 1

Table 4: Summary of index model orders, k, used in this study.

The embedding dimension of time series X, hereafter k, has to be selected
before carrying on the calculation (Silini and Masoller, 2021). There are
different possibilities to determine its optimal value. Here we model X
as an autoregressive process and fix the model order, k, minimizing the
Bayesian information criterion (BIC) score.

7.2.1 Statistical significance analysis

Once the pTE between two indices is computed, we have to address
whether it is significant or not. Unlike the case of cross-correlation, the
null model of X being independent of the past of Y doesn’t allow the an-
alytical calculation of p-values for the pTE distribution. For this reason,
we have to rely on surrogate analysis to understand if a pTE value is
significantly different from zero.
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Surrogate timeseries can be obtained from real-world data through dif-
ferent kinds of manipulation (Lancaster et al., 2018). Surrogate time se-
ries should retain all the properties of the original timeseries with the
exception of the one we are interested in. In the case of causal relation-
ships, we want surrogates that are independent from each other while
preserving the autocorrelation function of the original time series. In fact,
preserving the autocorrelation ensures that we preserve the dependence
of the timeseries on itself. To achieve this we employed an algorithm
known as iterative amplitude adjusted Fourier transform (IAAFT) (Schreiber
and Schmitz, 1996, 2000), which preserves both the amplitude distribu-
tion and the power spectrum of the original series.

From the original dataset, we generated N = 1000 independent surro-
gate datasets using IAAFT. From the surrogate datasets we obtain N

surrogate measures of pTE between each pair of timeseries. Thus, the
quantiles of the surrogate pTEs can be viewed as significance threshold
for the measured pTE values. In the following, we considered a pTE
value significant if it falls within the highest 1% of its surrogates distri-
bution.

7.2.2 Long-term causality variation

Measuring the variation of pTE between the first and second half of the
dataset allows us to explore possible long-term variation in the index
interactions. To address the significance of such variations we rely again
on surrogate analysis. Once we split the dataset into two halves, ranging
respectively from 1950 to 1983 and from 1984 to 2016, we create N = 1000

surrogates for each half, and from the surrogates, we compute N pTE
values for each pair of variables on each half. For each surrogate pTE
value of the second half, we randomly sample 100 surrogate pTEs from
the first half and we compute the average difference. This way, we end
up with N surrogate differences for each pair of indices. A difference is
considered significant if the empirical p-value is either below 1% for a
negative difference or above 99% for a positive difference.
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7.2.3 Results

In Fig. 18(a) we report an example of pTE calculation focusing on NINO34

as “forcing” node, considering significant pTEs for different values of τ.
Most of the results match with the current knowledge regarding ENSO
dynamics. We can observe a 5-months cutoff in the NINO34 → SOI in-
teraction, which is in line with the ENSO build-up time scale when the
ocean and the atmosphere are coupled. Moreover, a maximum of around
4 months in the NINO34 → NTA is expected too, given that their inter-
action is mediated by heat fluxes: because of its thermal inertia, the SST
of the ocean boundary layer changes in a time scale of roughly three
months, producing the pTE delayed maximum. From this perspective,
the behavior of the AMO is analogous. The AIR and HURR have a 1-
month impact, which is reasonable given that the interaction is mediated
directly by the atmosphere. It is interesting to note that the HURR index
has a small but significant pTE tail up to τ = 3, which may result from
indirect interactions mediated by the NTA.

Results of some indices are, however, unexpected to a degree. For the
PDO and the NP, we would have expected a behavior more similar to
the NTA one. Instead, we observe in Fig. 18(a) relatively high pTEs up to
4 months. We interpret this as due to the fact that the local air-sea inter-
action increases the persistence of the remotely forced ENSO signal. In
contrast, the pTE values for NAO (Fig. 18(b)) show a very rapid decrease
with τ, indicating interactions on a much shorter time scale.

In the following, for every pair of indices, we calculated the pTE and its
significance for τ = 1, 3 and 6, that is one month, one season and half
a year into the future. In Fig. 19, we report the significant connections
between the various indices. For better clarity, results are displayed both
as a network and an adjacency matrix. In the network representation,
directed connections are represented by arrows. In particular, we draw
a link only if the value of the pTE between two indices is significant for
at least one value of τ.
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Figure 18: Influence of NINO34 (a) and NAO (b) to a subset of indices for var-
ious lags τ. The vertical axis shows the relative pTE value, which
is the relative difference between the measured pTE and the signif-
icance threshold determined by using the surrogate analysis (see
Sec. 7.2 for details). For clarity, pTE values that are not significant
are not shown.

We investigate the role of τ in the pTE values in Fig. 20, again repre-
senting connections by directed arrows. The arrows’ colors represent the
value of τ for which the pTE is the highest, while the arrows’ width
represents this maximum value. We can observe that, in general, connec-
tions have relatively low τ. Also, the values of pTE for τ = 6 seems to be
lower than for other lags.

The full network picture allows to visualize the global structure; how-
ever, the different links can not be clearly distinguished. For the sake
of clarity, we select a subset of key indices (AMO, NTA, PDO, and the
NINO34/SOI pair), and report in Fig. 21 the forward and inward links
separately. The pivotal role of ENSO in the climate network is evident,
with numerous forward connections tying NINO34 and SOI to the vast
majority of the studied indices.

Finally, we report in Fig. 22 the significant variations of pTE values be-
tween pre-1984 and post-1984. We observe that the variations are het-
erogeneous, with main changes being an increase in the strength of the
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Figure 19: a) Network representation of causal dependencies. The arrows go
from the driving to the driven indices. The size of the nodes is
proportional to their degree. b) Binary matrix representation of the
causal dependencies. The nodes (the columns and rows) represent
climate indices, while the links (the black squares) indicate signifi-
cant causality between indices. Row labels represent the forcing in-
dices, while the columns stand for the forced ones. All significant
connection are shown, regardless of the lag, τ.

NP-PDO link and the decrease of the strength of the PDO-GMT link,
and of several links that affect AMO. The discussion of the uncovered
links, and their variations, is presented the next section.

7.3 discussion

While some of the uncovered connections are well-known, others are
either previously unknown or are possible false positives. In the latter
case, a common driver of two indices could produce a significant amount
of shared information, inducing an apparent connection.

Let’s start with the connection between ENSO and the north Pacific in-
dices (NP and PDO). It is well known that ENSO induces an atmospheric
teleconnection that modulates the Aleutian low over the North Pacific
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Figure 20: As Fig. 19, here the width of the represents the strength of the causal
dependency (the relative value of pTE, with respect to the signifi-
cance threshold found with a p-value of 0.01) and the color repre-
sents the lag, τ, for which maximum causality is found. The size of
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Figure 21: Connections between selected indices and the rest of the network. a)
AMO, b) NTA, c) PDO, d) NINO34 and SOI.
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Figure 22: Significant differences in the causality networks between two time
windows, represented both as network and adjacency matrix. The
first time window contains the years 1950-1983, while the second
correspond to the window 1984-2016. Green (red) links correspond
to an increment (reduction) in the causality from the first to the sec-
ond window. For each connection, we report the largest significant
difference across the three studied values of τ. The value of tau for
which the difference is the largest is reported in adjacency matrix.
The width and color of the links are proportional to the relative incre-
ments (reductions), with respect to the significance threshold found
with IAAFT surrogates (p-value = 0.01).
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Wang et al., 2012. As the Aleutian low is characterized by the NP index,
the ENSO → NP causality is well understood. Changes in the surface
winds associated with the Aleutian low in turn induce SST anomalies
in the north Pacific thus affecting the PDO (NP → PDO). Finally, air-
sea interaction in the north Pacific generates the causality PDO → NP
Newman et al., 2016.

On the other hand, it is unlikely that the number of tropical storms
in the north Atlantic (HURR) can drive NAO, TSA, ENSO and NP, as
suggested by the results. Instead, these causalities likely result as con-
sequence of complex interactions among the different atmospheric and
oceanic phenomena characterized by these indices. For example, it is
well known that during El Niño the number of hurricanes in the north
Atlantic decreases because of enhanced vertical shear Klotzbach, 2011 as
found by pTE. At the same time a warm NTA, which is also influenced
by ENSO Chang, Saravanan, and Ji, 2003, favours the development of
tropical storms Pérez-Alarcón et al., 2021. Similar complex interactions
explain the links of the AIR index.

The lag is a crucial parameter that has a large impact on the analysis.
The global surface air temperature warms up by about 0.1◦C during
an El Niño event, with a lag of about 6 months Trenberth et al., 2002.
This causality is detected in the analysis, although ENSO → GMT is
maximum at lag 1. At longer lags we find the opposite causality (GMT
→ SOI at lag 3 and NINO34 at lag 1), which may be understood as
consequence of the persistence of the ENSO events that last between 6

and 9 months.

The causality identified QBO→ NAO in our analysis has been reported
in the literature to occur during boreal winter Andrews et al., 2019; Mar-
shall and Scaife, 2009, although the link had been assessed as relatively
weak. We found the largest causality for a lag of 6 months, suggesting
that the mechanism through which the QBO affects the NAO may last
more than one season.

It is well known that the NAO is the main driver of the sea surface
temperature anomalies over the tropical north Atlantic mainly through
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changes in surface heat fluxes Visbeck et al., 2001. However, we don’t
find this causality, probably due to the index used to describe the At-
lantic SST. As mentioned above the NTA index uses SST anomalies that
have been smoothed thus filtering out the response to NAO. On the
other hand, the analysis detected the NTA → NAO connection at lag 1,
which is consistent with the literature that shows that SSTa in the trop-
ical north Atlantic can induce atmospheric teleconnections that project
onto NAO Okumura et al., 2001.

Another index that presents links with several other phenomena is the
TSA. As in the case of the tropical north Atlantic, it is likely that the
TSA → NAO link is direct, as the SSTa in the south Atlantic can con-
trol the position of the Intertropical Convergence Zone which could
promote the development of a teleconnection to the north Atlantic Oku-
mura et al., 2001. Interestingly, connections with other indices occur with
lags of 3 or 6 months, suggesting that some of these links are indirect.
The tropical south Atlantic is known to influence the equatorial Pacific
through changes in the Walker circulation with a lag of several months
Rodríguez-Fonseca et al., 2009, consistent with our results. Thus, we hy-
pothesize that the connections of the TSA with the PDO and HURR
indices occurr via the ENSO influence.

Our analysis also shows that the impact of TSA on ENSO has grown in
recent decades (see Fig. 22), in agreement with the literature Rodríguez-
Fonseca et al., 2009.

Looking at Fig. 22, the strongest and most consistent signal is the change
in causality between SOI (and Nino34) and AMO. That AMO variability
influences the ENSO variability is already documented Levine, McPhaden,
and Frierson, 2017. While the literature on the link between AMO and
ENSO is extensive, to our knowledge, there is no report that this in-
fluence is getting stronger, which could have implications for the ENSO
predictions. As already mentioned, El Niño warms up the NTA, which is
part of the AMO index, therefore it’s not surprising that ENSO appears
driving AMO. On the other hand, the Atlantic can influence ENSO vari-
ability by changing the mean state in the equatorial Pacific, altering the
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Walker circulation and trades, as pointed out above. From Fig. 22, we
infer that the AMO impact on ENSO is increasing while the ENSO im-
pact on AMO is becoming weaker. For longer lags (e.g., τ = 9) only the
link AMO → ENSO remains (not shown). The link ENSO → AMO is
weak for long leads, while AMO → ENSO can still be strong, due to the
different time scales of the phenomena.

Figure 22 also shows an increase in the NP → PDO link in the last
decades, which may be related to the fact that the ENSO teleconnec-
tion to the north Pacific has also increased (NINO34 → NP, SOI → NP).
On the other hand the link PDO → NP does not seem to have changed.
Combined these results suggest that the SST anomalies in the north Pa-
cific have become more dependent on the equatorial Pacific conditions
compared to local air-sea interactions.

7.4 conclusions

We have used the pseudo transfer entropy (pTE), which is a simplified
expression of the transfer entropy, to evaluate causal dependencies be-
tween thirteen indices that represent large-scale climate pattern. Taken
together, our results have unveiled the well-known complexity of the
network of interactions and feedback loops, and their interdecadal varia-
tions. The majority of the links recovered by our analysis have been doc-
umented in the literature and can be explained through known physical
mechanisms; however, we have also found undocumented or likely spu-
rious interactions. While it is important for advancing the understanding
of our climate to identify the links that represent genuine connections,
from a practical standpoint, to improve the forecast of an index variabil-
ity, the pTE analysis yields useful knowledge because it tells us which
signals contain information relevant for the future of another signal. In
this way, the pTE represents a useful tool of time series analysis, to iden-
tify features that can potentially improve the forecast of the evolution of
a climate index. As an example, we have found that the link between
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AMO and ENSO is becoming stronger, which may be important for
ENSO predictability.

Another application of the pTE algorithm is for performing model inter-
comparisons, e.g., for contrasting the causal links found in model data
with those found in observed data, in order to determine the skill of
different climate models in representing the interactions and lags in our
climate.



Part III

P R E D I C T I O N O F T H E M A D D E N - J U L I A N
O S C I L L AT I O N

In the following part, we present our contribution to the pre-
diction of the MJO. We show the machine learning prediction
of the MJO, its prediction skill, the phase and amplitude er-
rors, and how the seasons and initial MJO phases influence
the predictions. We apply then machine learning as a post-
processing technique to improve the current best numerical
model’s predictions.
The results we present in Chapter 8 have been published
in Silini, Barreiro, and Masoller (2021), and those presented
in Chapter 9 have been submitted for publication (Silini et al.,
2022a).
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8.1 data set

In this study, we use the daily RMM indices. RMM1 and RMM2, as
well as the phase and amplitude since June 1, 1974 were downloaded
from RMM data (2021). The same tools used in this study could also
be applied to other MJO indices, such as the OLR MJO index (OMI),
the original OLR MJO index (OOMI), the real-time OLR MJO index
(ROMI) and the filtered OLR MJO index (FMO), which can be down-
loaded from MJO indices data (2021).

Due to missing data in the first years we limit the study to the period be-
tween January 1, 1979 and December 31, 2020, which is L2-normalized.

8.2 prediction skill metrics

In order to assess the quality of the MJO predictions for a given model,
we focus on its prediction skill, and its MJO amplitude and phase er-
rors. To do so, we adopt the same quantifiers as in Kim, Vitart, and
Waliser (2018), which are adapted from Lin, Brunet, and Derome (2008)
and Rashid et al. (2011).

The bivariate correlation coefficient (COR) and the root-mean-squared
error (RMSE) are defined as:

COR(τ) =
∑N

t=1[a1(t)b1(t, τ) + a2(t)b2(t, τ)]√∑N
t=1[a

2
1(t) + a2

2(t)]
√∑N

t=1[b
2
1(t, τ) + b2

2(t, τ)]
, (29)
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RMSE(τ) =

√√√√ 1

N

N∑
t=1

[|a1(t) − b1(t, τ)|2 + |a2(t) − b2(t, τ)|2], (30)

where a1(t) and a2(t) are the observed RMM1 and RMM2 at time t,
and b1(t, τ) and b2(t, τ) are the respective forecasts for time t with a
lead time of τ days, and N is the number of predictions. COR expresses
the strength of co-occurrence between the forecast and the observations,
while RMSE does a term-by-term comparison of the actual difference
between the forecast and the observations. The values COR=0.5 and
RMSE=1.4 are usually used as skill thresholds (Rashid et al., 2011): the
prediction skill refers to the time when the COR falls below 0.5 and
RMSE grows above 1.4.

Through a change of coordinates from Cartesian to polar, we calculate
the amplitude and phase, (RMM1, RMM2)→(A, φ) (Rashid et al., 2011)
as follows

A(t) =

√
RMM1

2(t) + RMM2
2(t), (31)

and

φ(t) = tan−1

(
RMM2(t)

RMM1(t)

)
, (32)

and we define their errors as

EA(τ) =
1

N

N∑
t=1

[Apred(t, τ) −Aobs(t)], (33)

Eφ(t, τ) =
1

N

N∑
t=1

tan−1

(
a1(t)b2(t, τ) − a2(t)b1(t, τ)

a1(t)b1(t, τ)

)
, (34)
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where Aobs(t) is the observed amplitude at time t and Apred(t, τ) is the
predicted amplitude at time t with a lead time of τ days. a1, a2, b1 and
b2 are the same used for Eqs. 29, 30.

8.3 results

8.3.1 Prediction skill

We begin by computing RMM COR and RMSE as a function of the fore-
cast lead time, τ, for the two ANNs (see Methods). Averaging over all
seasons we obtain the results shown in Fig. 23, where we display COR
and RMSE as a function of τ = 5, 10, . . . , 60 days, for an initial RMM am-
plitude larger than 1. In this figure we see that both ANNs perform very
similarly. The AR-RNN seems to perform slightly better than FFNN up
to 10 days prediction, after which, the two curves overlap up to 50 days,
when the latter starts providing a better prediction. Using the standard
value COR=0.5 to define the prediction skill, we find a prediction skill
of about 26–27 days for both ANNs, which is comparable to the best
known prediction skills obtained from most models (Kim, Vitart, and
Waliser, 2018), except ECMWF. Regarding the RMSE, using the standard
value RMSE=1.4 to define the prediction skill, we see that the prediction
skill is longer than 60 days, as for both ANNs, RMSE never crosses this
value for τ values up to 60 days. A video (Silini, 2021b) showing the real
and the predicted MJO evolution in the Wheeler-Hendon phase diagram
clearly visualizes the very good prediction ability.

We then compute the error of the predictions for the MJO amplitude and
phase (see Methods). The results are presented in Fig. 24, where we notice
that, for both ANNs, the phase is well predicted but the amplitude is
underestimated, and its absolute error grows as the lead time increases.
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Figure 23: Bivariate correlation coefficient (COR) (solid) and root-mean-
squared error RMSE (dashed) averaged over all seasons in the test
set, as a function of the forecast lead time τ. The color indicates the
artificial neural network (FFNN: feed-forward neural network; AR-
RNN: autoregressive recurrent neural network) and the dotted line
indicates the threshold that defines the prediction skill. While the
RMSE threshold (1.4) is never crossed, the COR value falls below 0.5
around 26–27 days.
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(a) (b)

Figure 24: MJO amplitude (a) and phase (b) error averaged over all seasons in
the test set, as a function of the lead time.

8.3.2 Seasonally resolved prediction skill

We now perform the same analysis for the dataset restricted to each
season using the FFNN, which is the fastest and simplest of the two
ANNs. The results are presented in Figs. 25 and 26.

In Fig. 25, we see a large difference in the prediction skill in different sea-
sons. Boreal spring (March–May, MAM) and fall (September–November,
SON), the transition seasons, are the least predictable with COR predic-
tion skills of 23–24 days and 16–17 days, respectively. In boreal summer
(June–August, JJA) the prediction skill is around 31 days, while in bo-
real winter December-February (DJF) it is around 45 days. We also note
that DJF has the largest RMSE, which means that the prediction corre-
lates well with the observations, but the predicted and actual values are
quite different. On the contrary, JJA has a very low RMSE, which means
that even if JJA has a lower COR than DJF, the prediction is more accu-
rate. The transition seasons are in the middle, with SON showing larger
RMSE than MAM, as found for COR. The highest COR and RMSE are
for DJF, which is likely due to the fact that MJO is most active during
the extended boreal winter (DJFM), which would also partially explain
the large (yet smaller than DJF), RMSE of MAM.
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Fig. 26 displays the amplitude and phase errors as a function of the lead
time (as in Fig. 24, but here for the individual seasons). We notice that
boreal winter (DJF) has the largest amplitude error, while boreal summer
(JJA) has the lowest one. Regarding the phase error, we note that in JJA
the predicted MJO propagation is faster than the real one, while in the
other three seasons, the predicted propagation is slower.

(a) (b)

Figure 25: COR (a) and RMSE (b) as a function of the leading time in days, ob-
tained with the feed-forward neural network (FFNN). The different
colors represent different seasons.

Finally, we study the dependence of the COR and RMSE prediction skill
as a function of the MJO initial phase and the season. The results are
presented in Figs. 27 (COR) and 28 (RMSE). In boreal winter (DJF in
blue), we can notice that starting from phase 1, 2, 5 and 8 the prediction
skill using COR is very high, in fact, it has skill for up to 60 days or
longer, while it falls below 20 days for phase 7. Nevertheless, Fig. 28

shows that for phases 5 and 8 the threshold is crossed below 30 days. By
combining the information presented in the two figures, we can infer a
prediction skill of about 60 days for phases 1 and 2.

For boreal fall (SON, orange) we also see a strong dependence of the
skill on the initial phase: it is around 50 days for phases 4 and 7, while all
other initial phases lead to prediction skills lower than 20 days. The skill
in boreal spring (MAM, green) and summer (JJA, red) is more uniform
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(a) (b)

Figure 26: Amplitude (a) and phase (b) errors for the different seasons (repre-
sented with different colors), obtained with the FFNN.

across different initial phases, but the highest prediction skill achieved
(given by COR) is around 40 days, and the lowest (below 20 days) are
in phases 1, 3, 8 and 1, 5, 8, respectively. Overall, we can notice that
the initial phase 1 provides a very high prediction skill in boreal winter,
while it is low in all other seasons. Starting from phase 2, the prediction
skill is larger than 35 days from December to May, while for initial phase
3 the highest prediction skill (around 40 days) is found in winter and
summer. The initial phase 4 provides high skill (more than 40 days) in
the transition seasons. Starting from initial phase 6, provides high skill
from March to August, while starting from phase 7 gives a prediction
skill above 40 days from June to November. Lastly, starting from phase
8 the prediction skill is always below 20 days.

In Fig. 28 we also notice that the RMSE for MAM and JJA never crosses
the 1.4 threshold, for up to 100 days.

8.4 discussion

We have used two types of ANNs to predict the MJO. We have used
a feed-forward neural network (FFNN) and an autoregressive recurrent
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(a) (b)

(c) (d)

Figure 27: COR as a function of the initial MJO phase and forecast lead time τ.
Each plot corresponds to a different season: boreal winter (a; blue),
spring (b; green), summer (c; red) and fall (d; orange).
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(a) (b)

(c) (d)

Figure 28: RMSE as a function of the initial MJO phase and forecast lead time τ.
Each plot corresponds to a different season: boreal winter (a; blue),
spring (b; green), summer (c; red) and fall (d; orange).
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neural network (AR-RNN) to predict the daily Real-time Multivariate
MJO indices, RMM1 and RMM2, analyzing the period between January
1, 1979 and December 31, 2020. First we considered the whole dataset,
and in a second step, we considered individual seasons (boreal winter,
DJF, spring, MAM, summer, JJA and fall, SON). We have quantified the
prediction skill as a function of the leading time, τ, using standard mag-
nitudes and thresholds (COR and RMSE with thresholds 0.5 and 1.4,
respectively (Rashid et al., 2011)).

For the full dataset, using COR we have found a prediction skill of 26–27

days, which is comparable to most dynamical models. Using the RMSE,
the prediction skill we have obtained is up to 60 days.

We have obtained a very good prediction of the RMM phase, but a
poorer prediction of the RMM amplitude, which was systematically un-
derestimated. Comparing these results with those reported in Vitart
(2017), we notice that the two ANNs used here lead to a worse pre-
diction of the amplitude, but to a better prediction of the phase, in com-
parison with the predictions obtained from most dynamical models. The
larger amplitude error is due to the systematic underestimation, as the
error adds up. In contrast, dynamical models sometimes overestimate
and sometimes underestimate, which leads to a lower amplitude error,
due to a partial compensation of positive and negative errors.

Consistent with previous studies (Lin et al., 2006; Rashid et al., 2011; Seo,
2009; Wheeler and Weickmann, 2001; Wu et al., 2016) we have found
significant differences among seasons.

We found that boreal fall and spring have the lowest prediction skill,
being 16–17 and 23–24 days, respectively. In accordance with Lin et al.
(2006), Rashid et al. (2011), Seo (2009), and Wheeler and Weickmann
(2001), we found the highest prediction skill in boreal winter, which in
our case is of around 45 days. Another study (Wu et al., 2016) found the
highest prediction skill in boreal fall. In boreal summer we have found
a prediction skill of about 31 days.

We have also studied the dependence of the prediction skill as a function
of the initial MJO phase. We have found a large variability in prediction



8.4 discussion 81

skill in boreal winter and fall. In the best conditions, in boreal winter
with an initial MJO phase of 1 and 2, the ANN has a prediction skill
for up to 60 days or more. Our results indicate that the most difficult
conditions to predict MJO is in boreal fall when the initial MJO phase is
phase 1.

A major advantage of the ANNs considered is that they are compu-
tationally low-cost, and they do not have the limitations of dynamical
models, where the MJO prediction skill depends strongly of the model’s
physics, initialization and ocean-atmosphere coupling processes. On the
other hand, the very own nature of ANNs preclude understanding of
the physical processes involved and thus they represent a complemen-
tary approach that, according to our results, is worth pursuing.

For future work, the MJO prediction skill could potentially be improved
by training the ANNs independently for each season (for simplicity, here
we have trained them on all seasons and test them on individual sea-
sons). A study of the predictability barrier of the RMM index from dif-
ferent seasons and phases could also shed light on the results obtained
with machine learning methods (Liu, Jin, and Rong, 2019).

Summarizing, in this chapter we presented a data-driven method to pre-
dict the MJO which, although computationally efficient, does not im-
prove the prediction skill of (computationally demanding) state-of-the-
art dynamical models. In the next chapter, we present an alternative
approach which allows to exceed the current MJO best prediction skill.
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M O D E L D ATA B Y P O S T- P R O C E S S I N G

9.1 rmm data

For this study, we use the Real-time Multivariate MJO (RMM) index (Wheeler
and Hendon, 2004) as labels for the supervised learning method, which
is used to characterize the MJO geographical position and intensity. The
first two principal components of the combined empirical orthogonal
functions (EOFs) of outgoing longwave radiation (OLR), zonal wind at
200 and 850 hPa averaged between 15

◦N and 15
◦S are labeled RMM1

and RMM2. With a polar transformation, it is possible to define the
MJO phase and amplitude. The phase is divided into 8 classes, each
corresponding to a different sector of the phase diagram defining the
observed MJO life cycle. The amplitude, describing the MJO intensity,
when smaller than 1 defines a non-active MJO. The ERA5 RMM1 and
RMM2 from 13th June 1999 to 29th June 2019 were downloaded from
ECMWF RMM reforecasts data 2021. This time window is selected to
match the ECMWF reforecasts, presented in the previous section.

9.2 ecmwf rmm reforecasts

The samples used as input for the ANN and to assess the model per-
formance, are the ECMWF reforecasts with Cyrcle 46r1 freely available
from ECMWF RMM reforecasts data 2021. This dataset is composed of
110 initial dates per year for 20 years, between the 13th June 1999 and
the 29th June 2019. In total there are 2200 starting dates, from which a
46-lead-days prediction is available. The dataset provides the prediction
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of four variables: the first two principal components of the RMM in-
dex, and their polar transformation. For each starting day and variable
there are 12 time series of 46 points. One is the controlled forecast (cf)
corresponding to a forecast without any perturbations, then there are
10 perturbed forecasts members (pf) which have slightly different initial
conditions from the cf to take into consideration errors in observations
and the chaotic nature of weather. Finally there is the ensemble mean
(em), which corresponds to the mean of the 11 members (cf + 10 pf). In
this particular study, we made use solely of the em data.

9.3 results

The first part of this section will be devoted to the results obtained for the
MJO amplitude and phase. In the second part we present the prediction
skill assessment using the COR 0.5 level, and RMSE 1.4 level as metrics,
while in the last part of the section we show how the different forecast
methods perform for different MJO initial phases.

The results are obtained training the ANN from 13th of June 1999 using
a walk-forward validation, and averaging the error obtained by testing
over different unseen time windows from 5th December 2014 to 29th
June 2019. The size of the windows is defined by the selected number of
initial days from which the ECMWF forecast starts. Due to the bi-weekly
acquisition of ECMWF, this means that each window of 200 points cor-
responds to 2 years approximately. Each member of the ensemble over
which the average is performed, corresponds to a test set used for the
walk-forward validation. Different sizes of the test set between 100 and
500 samples have been tested, leading to prediction skills that vary sensi-
bly. For this reason, it is important to take into account that results may
vary depending on the test set and its size, albeit preserving the same
general result: the post-processing corrections improve the ECMWF fore-
casts.

In Fig. 29, we show the error on the MJO amplitude for events starting
with an amplitude larger than 1. We can notice an underestimation of
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the amplitude as expected (Jiang et al., 2020). Nevertheless, the post-
processed amplitudes are closer to the observed ones, with respect to
the raw ECMWF forecast. The maximum improvement occurs for a lead
time of 28 days when the ECMWF-ANN model has a RMSE similar to
the RMSE of the uncorrected ECMWF at a lead time of 20 days.

By the definition of the amplitude error, errors of opposite sign could
potentially cancel out resulting in misleading conclusions. For this rea-
son in Fig. 29 we also provide the RMSE of the amplitude error, which
shows a similar behavior as before. Both post-processing techniques im-
prove the results, with the ANN bringing the highest benefits in terms
of the magnitude of error reduction, and the forecasting horizon of the
improvement.

21st Nov 2018 5th Dec 2018

(a) (b)

Figure 29: (a) MJO amplitude error and (b) amplitude RMSE (b) as a function of
the lead time for events starting with an amplitude larger than 1. The
color indicates the forecast model, the black line corresponds to the
ECMWF forecast, the blue line corresponds to the MLR correction of
the ECMWF forecast, while the orange line corresponds to the post-
processed ECMWF forecast with an ANN.

In Fig. 30, we present the MJO phase error. The post-processing tech-
niques provide an improved prediction, during which all three models
predict a negative phase. A positive phase error indicates a faster propa-
gating MJO, while a negative error represents a slower propagation. The
ECMWF forecast shows an overall slower propagation of the MJO with
respect to the observations, and both post-processing corrections pro-
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vides an increment of the MJO speed prediction. In particular, at the 18

days lead time we can notice an increment of the ECMWF phase error,
which MLR and ML tend to correct.

21st Nov 2018 5th Dec 2018

Figure 30: MJO phase error for events starting with an amplitude larger than
1. The color indicates the forecast model, the black line corresponds
to the ECMWF forecast, the blue line corresponds to the MLR cor-
rection of the ECMWF forecast, while the orange line corresponds to
the post-processed ECMWF forecast with an ANN.

Figure 31, shows the COR and RMSE of the ECMWF ensemble mean
forecasts, the MLR, and ANN post-processing. A COR of 0.5 is taken
here as baseline for useful prediction skill. We see an improvement of
the a prediction skill at the COR=0.5 level of about 1 day. However, in
terms of RMSE, up to a lead time of 4 weeks, neither post-processing
technique crosses the RMSE-threshold of 1.4, and therefore, they both
improve the prediction skill with respect to the raw, unprocessed output
of the ECMWF model.

In Fig. 32, we display the comparison between the observations, the
ECMWF forecast, and its corrections, in a Wheeler-Hendon phase dia-
gram for two different starting dates of the same MJO event. The dots
are marked every 7 days to identify the weeks. In the left panel, the
3 weeks prediction starts on the 21st November 2018 and displays its
progression from the Western Hemisphere over the Indian Ocean. It is
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21st Nov 2018 5th Dec 2018

(a) (b)

Figure 31: (a) COR and (b) RMSE as a function of the forecast lead time for
events starting with an amplitude larger than 1. The color indicates
the forecast model and the red dashed line indicates the predic-
tion skill threshold of COR=0.5 and RMSE=1.4. The black line corre-
sponds to the ECMWF forecast, the blue line corresponds to the post-
processed ECMWF forecast with MLR, while in orange it is shown
the post-processed ECMWF forecast with an ANN.

possible to notice that both post-processing techniques display very sim-
ilar prediction, with a slightly larger amplitude than ECMWF, closer to
the observations for all lead times. In the right panel, the 3 weeks pre-
diction starts on the 5th December 2018 in the Indian Ocean. We can
see a drop of accuracy in the ECMWF prediction, and the MLR post-
processing, approaching the MC. The ML correction instead preserves a
larger amplitude, closer to the observations.

It is also possible to notice that while the speed of the MJO event is well
predicted in the left panel, in the right one there is a drop of the MJO
speed forecast over the Indian Ocean and MC.

Here we presented an example of a strongly active MJO event, where
the corrections clearly improve the ECMWF prediction and it is among
the best found. All predictions from the 12th of December 2014 to the
18th of June 2019, can be found in Silini, 2021a. Looking at these results
it is possible to appreciate the general improvement provided by the
post-processing corrections.
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Figure 32: Wheeler-Hendon phase diagram for two different starting dates of
the same MJO event, and a 3 weeks prediction. Panel (a) starting
date is the 21st November 2018. The MJO enhanced rainfall region
travels across the western Hemisphere and Indian Ocean. Panel (b)
starting date is the 5th of December 2018, and represents a 3 weeks
prediction approaching and traveling over the MC. The rotation of
the event in the phase diagram is counter-clockwise, and the dots
are included every 7 days, marking the different weeks.
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Finally we study the amplitude error, the phase error, the COR, and
RMSE, as a function of the different initial phases of MJO. As displayed
in Fig. 33, applying post-processing methods improves the amplitude
error for all initial phases. The MLR provides an improvement with re-
spect to the ECMWF model, but the ML correction leads to the lowest
error. Concerning the initial phases, we find the lowest amplitude error
when an MJO event starts over the MC, while the largest is found in
phase 2, over the Indian Ocean. With the MJO propagating at an aver-
age speed of 5 ms−1, events starting in phase 2 will cross the MC in 2-3
weeks time (Kim et al., 2014). The phase error displays a large worsen-
ing of the MJO localization prediction, when the forecast starts between
the MC and Western Pacific (phase 6-8). This observation is consistent
with Fig. 32, where we noticed a drop in the accuracy of the MJO speed
prediction over the Indian Ocean and MC. The COR finds its maximum
when starting over the MC continent, consistently with the amplitude
error. The ML correction has the highest COR except for phase 8, where
MLR leads to the highest one. The RMSE is very consistent with the
COR, in which we find the the minimum in phase 4, and the ML correc-
tion having the lowest error, except for phase 8. Overall, we can conclude
that the ML post-processing is worth applying especially to reduce the
error on the amplitude prediction, while MLR could be useful for a bet-
ter prediction of the MJO location.

9.4 discussion

It is interesting to compare the results presented in Fig. 31 with those
reported in Fig. 7 of the Supplementary Information in Kim et al., 2021,
keeping in mind that Kim et al. show the mean BCOR for the 8 dynami-
cal models considered. While it can be seen in Fig. 7 that for short lead
times (up to 2 weeks) a clear improvement with DL-post-processing is
obtained, the average BCOR for short lead times is quite low compared
to the ECMWF prediction. We can also notice that the improvement ob-
tained by Kim et al. (2021) fades away by the 4th week. In contrast, in
our case, for short lead times there is no significant improvement (as it
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Figure 33: (a) Amplitude error, (b) phase error, (c) COR, and (d) RMSE, for the
different MJO initial phases, for events starting with an amplitude
larger than 1. The plots show the mean for lead times up to 5 weeks.
The different colors represent the different prediction methods.
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could be expected, due to the fact that ECMWF model provides the best
MJO forecast), but our improvement lasts for longer lead times.

It is also interesting to compare the different post-processing approaches
used. While we use a feedforward neural network (FFNN) architecture,
Kim et al., 2021 used a Deep Learning (DL) network, specifically, a Long
Short-Term Memory (LSTM) network. Having a simpler architecture,
FFNNs are usually faster to train and to use than LSTMs. While LSTMs
have been proven to be powerful for time sequence modeling, as shown
in Kim et al., 2021, in our case we are not trying to predict the future of
a time series using its past, but we are trying to improve the predictions.

There are other differences in the architecture of the networks used: we
found that to improve the prediction of the RMMs for a day t, the infor-
mation in the past and future predictions can both help the correction,
while in Kim et al., 2021, the future model’s predictions (which are avail-
able) are not used for the correction. Another difference is that while the
algorithm used by Kim et al., 2021 performs an expansion of the system
dimensionality (hidden nodes > input nodes), we found good results
performing a compression (hidden nodes < input nodes).

Comparing our results to those of post-processing ensemble weather
predictions on medium-range time-scales (Vannitsem et al., 2021), we
find that the general magnitude of improvements over the predictions
of the dynamical model is lower. This indicates the increasingly diffi-
cult challenge to obtain accurate MJO predictions for longer lead times,
likely due to a generally lower predictability and a lower level of useful
information that can be learned from the raw ensemble predictions com-
pared to those of many other weather variables on shorter time scales.
That said, our results indicating the potential of modern DL methods
to improve over classical statistical approaches are well in line with the
findings for medium-range post-processing (Haupt et al., 2021; Rasp and
Lerch, 2018; Vannitsem et al., 2021).

We employed a MLR and a ML algorithm to perform a post-processing
correction of the prediction of the dynamical model that currently holds
the highest MJO prediction skill (Jiang et al., 2020), developed by ECMWF.
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The largest improvement is found in the MJO amplitude and phase in-
dividually, which decreases the underestimation of the amplitude, pro-
viding a more accurate predicted geographical location of the MJO. The
amplitude and phase estimation are improved for all lead times up to 5

weeks.

We obtained an improved prediction skill of about 1 day for a COR of
0.5.

Plotting the forecasts in a Wheeler-Hendon phase diagram we found an
improvement predicting the MJO propagation, notably across the MC,
which helps overcome the MC barrier.

Considering the results obtained for each initial MJO phase, we found
that both post-processing tools improve the prediction, with the ML cor-
rection being the best.

The ML technique provides an improvement over MLR for all initial
phases except phase 8. In the case of phase forecast it might be also
sufficient to use MLR instead of ML. This suggests a predominance of
linear corrections to improve the MJO phase forecast.

This study confirms the potential of post-processing techniques to re-
duce the knowledge and bias gap between dynamical models forecasts
and observations, providing advancement in MJO prediction.

Although the improvement provided by the MLR and ML techniques,
a post-processing method will always strongly rely on the accuracy of
the dynamical model’s forecasts. For this reason, it is crucial to work on
both dynamical models and machine learning methods to progress.
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The work presented in this thesis was aimed at two main goals (as ex-
plained in Chapter 1). As previously mentioned, technological advances
allow to have an increasingly finer resolution for data acquisition in
many fields. While this improvement drives new discoveries and finer
analysis, the amount of data to analyze increases exponentially, and
sometimes, supercomputing is not the most cost-efficient solution. For
this reason, the development of computationally cost-effective metrics is
crucial.

We are often facing complex systems composed of a very large number
of subsystems interacting between each other. Finding and quantifying
the interactions among the subsystems from the observed data, is of
capital importance to unveil the dynamics and structure of the system.
Once the driving and driven processes are established, it is possible to
predict the future of a driven process, knowing the past, and current
state, of itself and its driving counterparts.

In Part II, we proposed a cost-effective metric for this purpose. We
showed in Chapter 6 that with the pTE we significantly reduce the
computational time with respect to conventional causality metrics, such
as GC and TE, of well reputed Python libraries. For time series of 100

points, pTE reduces the computational time of statsmodels GC by ∼50%,
and by ∼80% the time to compute the pyunicorn TE, albeit leading to
very similar results. The proposed metric can be very valuable in a large
variety of fields, where dynamical systems are composed of relatively
short time series (<500 data points).

In Chapter 7, we showed an application of pTE to evaluate causal de-
pendencies between thirteen indices that represent large-scale climate
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pattern. Aside from the conclusions we can infer on the interpretation of
the interactions between specific climate indices, pTE showed its poten-
tial to identify those indices containing useful information to improve
the prediction of a specific index. Without the complete knowledge of
the system under study and the processes involved, it is not possible to
identify which are actual causalities that are not due to indirect connec-
tions. For example, if two processes appear to be connected only because
of a common driver, and the latter is not known or not considered for the
analysis, there is no way to assess from the observed data whether there
is a direct or indirect causality. For real complex systems that are not
completely understood, it is quite common to miss information about
all the processes that are actually involved. Nevertheless, while the com-
plete knowledge of the system is crucial to build dynamical models, it is
not the case for data-driven models, where both causal and indirect links
provide helpful information to improve the forecast of a given index.

The pTE has also been successfully applied on the analysis of the influ-
ence of the major fire danger indices to the observed burned area, for
each ecoregion in the world (Perez et al., 2022). The pTE is a metric that
unveils the information transfer among processes. Since it computes the
bivariate causality, it is very well suited for time series forecasting as pre-
liminary tool for inputs selection of artificial neural networks, due to the
latter suitability for problems with nonindependent inputs. In particular,
it is very useful when dealing with complex systems which connections
are poorly understood. It is important to notice that it is a metric that
can be used on time series generated by a wide range of processes and
fields. From climate to physiology, from finance to neurosciences, when-
ever we want to unveil causal interactions among variables evolving in
time, pTE could provide a solution. Moreover, pTE could also be applied
for performing model inter-comparisons and model validation, to check
that the models under study preserve the same interactions as the obser-
vations. For this reason, we are positive about its applicability in future.
On GitHub the metric has been forked and extended to include multiple
user-friendly features, leading to the AdapTE function, whose core is the
pTE, and it is in continuous development. Moreover, we implemented a
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generalization of the pTE on trivariate problems, which removes indirect
links, and as future direction, it would be interesting to generalize the
metric for multivariate systems.

In Part III, we put our effort in improving the state-of-the-art predic-
tion of the MJO. In Chapter 8, we presented a pure machine learning
approach for the forecast of the MJO, which back then was not yet ex-
plored in the literature. We showed its strengths and weaknesses, how
it is resilient to the MC barrier, albeit not reaching the prediction skill
of dynamical models. Counter to expectations, we found out that feed-
forward neural networks performs very similarly to recurrent neural
networks in this problem. Without any prior knowledge of the system,
nor the physics of the MJO, a very small and simple ANN allows to
outperform some dynamical models developed about a decade ago, in
a matter of minutes. For this reason, and due to the success of ML in
similar problems, we are confident that in the coming years ANNs will
close the gap with the dynamical models. Moreover, the success of inter-
pretable and explainable ANNs, brings forward another quality of ML,
that gives insights, and improves the understanding of the underlying
physical processes.

In Chapter 9, we explored another possible application of ML to the pre-
diction of the MJO. This time, we don’t stress the ANNs making it learn
all MJO underlying structures from the observed data, and in particular,
to learn what we already know thanks to years of research. In this chap-
ter, we showed how ANNs can be used as post-processing technique, to
correct and improve the predictions of the best dynamical model. We
managed to improve both MJO intensity, and localization prediction; in
particular, we did a step forward in overcoming the dynamical models’
issue with the MC barrier. A future work that would be very interesting
to explore, is to apply ML as post-processing for probabilistic forecasts,
following the idea of Rasp and Lerch (2018). We are positive about the
fact that the combination of two continuously progressing worlds will
outperform models of both worlds, if taken individually.
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A natural follow up to this work, is to combine the two Parts presented,
by using ML as post-processing not only using the dynamical model’s
predictions, but also include further inputs selected with the pTE. This
could potentially not only improve the prediction of the MJO, but also
suggest which variables could be considered to refine the dynamical
model.



Part V

A P P E N D I X





AA U T O R E G R E S S I V E M O D E L S

In order to compute the pTE, it is needed an estimation of the embed-
ding parameters k and l, which correspond to the order of the Markov
processes of the two time series that are considered to compute the pTE.
This can be done by building autoregressive models of different degrees
and by using a model selection criterion to estimate the best model de-
gree that unveils the structure of the real data.

a.1 autoregressive model ar

Stationary stochastic time series can be modeled by the use of an autore-
gressive AR(p) process Z of a given order p as

z(t) = a0 + ϵ(t) +

p∑
i=1

aiz(t− i), (35)

where ϵ(t) is a white noise process, a1, . . . ,ap are the autoregressive
parameters and a0 a constant. Once the AR estimates are built for a
range of degrees, it is possible to apply a model selection criterion, from
which it is extracted the degree of the AR model that fits the real data
the best. When applied to the processes X and Y, the best models will be
given by

x(t) = ax,0 +

k∑
i=1

ax,ix(t− i) + ϵx(t), and

y(t) = ay,0 +

l∑
i=1

ay,iy(t− i) + ϵy(t).

(36)
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Due to the independence of pTE from the chosen model, the parameters
that are used are k and l, which will play the role of the embedding size.

a.2 moving average model ma

With the AR model, we have seen how the value at time t of stationary
stochastic time series can be computed using the values at the previous
time steps. With the moving average MA(q) model we consider unex-
pected external factors, known as Errors or Residuals, that affect the
time series. The effect of these residuals ϵi, is modulated by a set of
parameters αi, and we can write the value of process Z at time t, z(t),
as:

z(t) =

q∑
i=1

αiϵ(t− i) + ϵ(t). (37)

a.3 autoregressive moving average model arma

In order to consider both the past values and the associated error, we
can build a combination of the AR and MA models, obtaining an autore-
gressive moving average ARMA(p,q) model. In this case, for a process
Z, we can write the model as

z(t) = a0 + ϵ(t) +

p∑
i=1

aiz(t− i) +

q∑
i=1

αiϵ(t− i). (38)

a.4 autoregressive integrated moving average model arima

Until now we considered process Z to be stationary. In case of non-
stationarity, we can differentiate d times the time series, until reaching
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stationarity. In this case, we are modeling process Z as an autoregressive
integrated moving average ARIMA(p,d,q), and we can write z(t) as

z(d)(t) = a0 + ϵ(t) +

p∑
i=1

aiz
(d)(t− i) +

q∑
i=1

αiϵ(t− i), (39)

where we denoted the d-th differentiation of z(t) as z(d)(t).

a.5 akaike and bayesian information criteria

In supervised learning problems there are many model selections crite-
ria. From the very accurate but very expensive cross validation (Mosteller
and Tukey, 1968) to global fit likelihood based criteria like Akaike infor-
mation criterion (AIC) (Akaike, Petrov, and Csáki, 1973), Bayesian infor-
mation criterion (BIC) (Schwarz, 1978), Deviance information criterion
(DIC) (Spiegelhalter et al., 2002) and their shades, to criteria using partic-
ularly selected model parameters like the Focused information criterion
(FIC) (Claeskens and Hjort, 2003).

The penalized-likelihood criteria like AIC and BIC find a balance be-
tween a good fit and a low computational cost. The precision on the
choice of the embedding value for the pTE is not crucial, in fact it is
sufficient to have a large enough embedding to not lose a causality com-
ing from an higher order, and small enough to keep the computational
cost low. For this reason, even if both the AIC and BIC have been criti-
cized for having unrealistic asymptotic assumptions, they will provide a
good estimate for the pTE embedding. Nevertheless, using both criteria
ensure to not pick too big models, which is a tendency of AIC, nor too
small models, that can happen using BIC.

The two criteria differs in how they penalize the number of parameters.
The general information criterion (IC) can be written as

IC = P(p) − 2ln
(
L̂
)

, (40)
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where L̂ is the maximum value of the likelihood function for the model
and P(p) is the penalty function which corresponds to 2p for AIC and
ln(n)p for BIC, where p is the number of parameters of the model and
n the number of data points.



BS I G N I F I C A N C E T E S T S

The causality tests’ results could lead to inaccurate, or even erroneous
conclusions, if not analyzed correctly. Let’s take an example: consider
two time series representing how many people are awake at a given time.
The first one for people living in New York, and the second one in San
Francisco. Due to the different time zones, we will find a strong causality
from the first to the second one, which would suggest that the people
awaking in New York would cause people in San Francisco to wake up.
This is clearly a spurious causality, caused by a lagged external common
forcing on the two processes. A meticulous preprocessing of the time
series can avoid incurring in this kind of problems, but sometimes it is
difficult to do so, due to lack of a complete knowledge of the system.

b.1 f test

Similar to a Z and T statistic for testing the statistical significance of
a single variable, the F statistics gives a value to test if the variance
between two populations means are significantly different. The F test
will tell if a group of variables are jointly significant. The F value for
each correlation is given by

F =
s21
s22

, (41)

where s1 and s2 are the samples variances of the two populations. Using
the size of the samples, it is possible to obtain the degrees of freedom
(DoF) of the numerator and denominator of Eq. 41 by subtracting 1 to the
populations sample sizes n1 and n2 respectively. The DoFs will define
the shape of the F distribution, which is positive and asymmetric right-

105



106 significance tests

tailed. Once the F distribution is obtained, using a confidence interval it
is possible to discriminate the significant correlations arising by defining
a critical value of F, i.e. when the F value is larger than the critical value
it is possible to reject the null hypothesis. In the framework of this study,
an F value will be calculated for every value of the pTE. Using as sample
sizes the embedding size k used to compute the pTE, and the difference
between the length of the time series N and two times the embedding
size, i.e.

n1 = k and n2 = N− 2k, (42)

the DoFs are easily obtained, defining the F distribution’s shape The
critical value is then computed using a p value of 0.05 with a Bonferroni
corrected inverse cumulative distribution function.

b.2 surrogates

Another way to account for significance in the values of pTE is to create
surrogates. There are multiple ways to create surrogates that allows to
test against different null hypothesis. It is possible to test against noise,
for nonlinearity or for independence. The testing against noise is done
by creating white noise surrogates, or with random permutation (RP)
surrogates (Theiler et al., 1992) to destroy a possible temporal structure
in the real data. The surrogates for nonlinearity testing spans from au-
toregressive methods like the autoregressive moving average (ARMA)
and the autoregressive integrated moving average (ARIMA), to Fourier
transform surrogates which preserves the power spectrum such as the
amplitude adjusted Fourier transform (AAFT), the iterative amplitude
adjusted Fourier transform (IAAFT) and the iterative digitally filtered
shuffled (IDFS) surrogates. They allow to avoid fitting of model parame-
ters and it is not necessary to assume any model equation, by generating
instead resamples that have a certain set of properties in common with
the real data set. Finally for what concerns independence testing, the
most used surrogates are the intersubject surrogates, cyclic phase permu-
tations (CPP), the twin surrogates (TS) and the time-shifted surrogates.
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b.2.1 Independent Gaussian processes

Arguably the simplest surrogate method is the white Gaussian noise
surrogates to test against noise. To do that, two independent Gaussian
processes with same length, mean and standard deviation as the real
data are created.

b.2.2 Iterative amplitude adjusted Fourier transform (IAAFT) surrogates

Among the most commonly used surrogates to test for nonlinearity in
data we find the amplitude adjusted Fourier transform (AAFT) and the
iterative amplitude adjusted Fourier transform (IAAFT) surrogates. They
have been extensively studied as well as their limits, and been used in a
wide range of applications. Both AAFT and IAAFT are based on Fourier
transform (FT) surrogates, which null hypothesis is to consider the data
as generated by a stationary linear Gaussian process. The algorithmic
procedure of FT surrogates is known as phase randomization, which
preserves the power spectrum/autocorrelation, but destroys any non-
linear behavior. The considered data used here don’t follow Gaussian
distributions of values, and they could lead to false rejections of the
null hypothesis of FT surrogates purely based on differences in ampli-
tude distribution. To overcome this issue, the AAFT surrogates allows
to preserve both power spectrum and amplitude distribution. The null
hypothesis is that the data represent a rescaled linear Gaussian process.
For finite data sets, the power spectrum of the AAFT surrogates appears
flattened, and that’s where IAAFT surrogates come into play. In fact
IAAFT surrogates manage to reduce the whitening effect using an iter-
ative approach which asymptotically leads to the same estimate of the
spectral density and amplitude distribution as the original data. The
null hypothesis in this case is that the data represent a stationary linear
Gaussian process, measured through an invertible, time-independent in-
stantaneous measurement function. It must be noted that the iteration
involved in the IAAFT algorithm can’t preserve both the power spec-
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trum and amplitude distribution perfectly. The problem with FT and
IAAFT surrogates is their strength as well, they can exactly preserve the
power spectrum of the original time series. Therefore, the digitally fil-
tered shuffled surrogates (DFS), as well as their iterative version (IDFS),
introduces a controlled variation into the power spectrum, to account for
possible real systems where the power spectrum of repeated processes
varies.

In this work, it is used the IAAFT-1, which preserves the amplitude dis-
tribution exactly (while IAAFT-2 preserves the power spectrum exactly),
since it has been observed that for mutual information the IAAFT-1 is
the most successful between IAAFT-1, IAAFT-2 and DFS (Nichols and
Murphy, 2016).

In Fig. 34, it is shown one example of a time series IAAFT surrogate,
the Fast Fourier Transform (FFT) which represent the power spectrum,
and the amplitude distribution. It is possible to notice the preservation
of both power spectrum and amplitude distribution of the IAAFT algo-
rithm, and the shape similarity between the actual time series with their
surrogates.

The required number of surrogates heavily depends on the characteris-
tics of the time series. In order to have an idea of how many are needed
for the considered time series, 100 surrogates are created and tested to
see how much the spread of values of the pTE varies as the number
of surrogates increases. Since the computational cost is a limiting factor,
and since the spread of the surrogate data is not large, for a one-sided
test, M = K/α − 1 surrogates can be generated, where K is a positive
integer and α is the probability of false rejection, or p-value. Therefore,
if K = 1 and for a pvalue α of 0.05, the number of needed surrogates
would be 19 (Lancaster et al., 2018).
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Figure 34: Comparison of a time series, its power spectrum, and its amplitude
distribution, with an IAAFT surrogate.

b.2.3 Time-shifted surrogates

First proposed in Quian Quiroga et al. (2002) and further developed
in Andrzejak et al. (2003), the time-shifted surrogates with periodic bound-
ary conditions fully preserve all of the properties of the original time se-
ries. The algorithm to create time-shifted surrogates is computationally
efficient: to generate a realization, it only requires the selection of a time
shift and to wrap the time series end to its beginning. This analysis tests
the hypothesis of having two linear or nonlinear processes without any
significant cross-correlation and nonlinear interdependence (Lancaster
et al., 2018). Due to the fact that the surrogates cannot be fully random-
ized, realizations consistent with the null hypothesis may occur with
higher probability than for surrogates like IAAFT. For this reason, a
larger number of surrogates should be used for testing.





CP T E O N S Y N T H E T I C D ATA : S U P P L E M E N TA RY
R E S U LT S

Table 5: List of DGPs studied for the comparison between pTE, GC and TE (the
results are reported in Table 6). Models M0-M2 have no causality by
construction. Models M3-M11 have causality from Y to X, while M12-
M14 have bidirectional causality. M0 is Gaussian white noise, M1 is
a bivariate process with a linear dependence, M2 corresponds to spu-
rious causality and M3 corresponds to a nonlinear model (Taamouti,
Bouezmarni, and Ghouch, 2014). M4 is a nonlinear model where the t-
th point of process X is built using the an autoregressive model of order
2, and it’s influenced by the t− 3 value of process Y (Péguin-Feissolle
and Teräsvirta, 2001). M5 is a heteroskedasticity mean causality, M6 a
heteroskedasticity variance, while M7 is an homoskedasticity (Vilasuso,
2001). M8 and M9 have instantaneous causalities (Tjostheim, 1981), and
M10 is a nonlinear ARX model (He et al., 2014). M11 are two Rössler
systems (Rössler, 1976) coupled by the first variable. M12 and M13 are
the circle map (Aragoneses et al., 2014) with unidirectional and bidirec-
tional causality respectively. M14 has bidirectional causality (Taamouti,
Bouezmarni, and Ghouch, 2014).

Model X Y Causality

M0 ϵ1t white noise ϵ2t white noise Y ̸→ X

M1 xt ∼ N(0,1,γxy), γxy = 0.5 yt ∼ N(0,1,γxy), γxy = 0.5 Y ̸→ X

M2 xt = (0.01+ 0.5x2
t−1)0.5ϵ1t yt = 0.5yt−1 +ϵ2t Y ̸→ X

M3 xt = 0.5xt−1yt−1 +ϵ1t yt = 0.5yt−1 +ϵ2t Y → X

M4 xt = 0.1+ 0.4xt−2 +
2.4−0.9yt−3

1+e
−4yt−3

+ϵ1t yt = 0.7yt−1 +ϵ2t Y → X
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Model X Y Causality

M5-M7 xt = 0.25xt−1 + 0.5yt−1 +σ1t yt = 0.2+ 0.1yt−1 +σ2t Y → X

σit = ηit

√
Hiit , ηit ∼ N(0,1)

H =

1 1

1 1

+A

σ1t

σ2t

σ1t

σ2t

T

AT

M5 : A =

0.2 0.0

0.0 0.9

 M6 : A =

0.2 0.7

0.0 0.9

 M7 : A =

0.0 0.0

0.0 0.0


M8 xt = 0.65xt−1 + 0.38yt−1 + 0.01xt−2

− 0.21yt−2 +ϵ1t

yt = 1.29yt−1 + 0.18xt−1 − 0.35yt−2

− 0.16xt−2 +ϵ2t

Y → X

M9 xt = 0.06xt−1 − 1.14yt−1 + 0.48xt−2

+ 0.51yt−2 − 0.23xt−3 − 0.51yt−3 +ϵ1t

yt = 1.1yt−1 − 0.09xt−1 − 0.36yt−2

− 0.29xt−2 + 0.09yt−3 − 0.15xt−3ϵ2t

Y → X

M10 xt = 0.5xt−1 − 0.3xt−2 + 0.1yt−2 + 0.1x2
t−2+

+ 0.4yt−1yt−2 +ϵ1t

yt = sin(4πt)+ sin(6πt)+ϵ2t Y → X

M11 ẋ1 = −(1+ 0.015)x2 −x3 + 0.1(y1 −x1)

ẋ2 = (1+ 0.015)x1 + 0.15x2

ẋ3 = 0.2+x3(x1 − 10)

ẏ1 = −(1− 0.015)y2 −y3

ẏ2 = (1− 0.015)y1 + 0.15y2

ẏ3 = 0.2+y3(y1 − 10)

Y → X

M12-M13 xt =

(
xt−1 +ρ+

K

2π
sin(2πxt−1) +

+βϵ1t

)
mod 1+C1(xt−1 −yt−1)

yt =

(
yt−1 +ρ+

K

2π
sin(2πyt−1) +

+βϵ2t

)
mod 1+C2(yt−1 −xt−1)

Y ↔ X

ρ = 0.23, K = 0.04, β = 0.002

M12: C1 = 0.5,C2 = 0, M13: C1 = C2 = 0.5

M14 xt = 0.3+ 0.15xt−1 + 0.7yt−1 +ϵ1t yt = 0.2+ 0.1yt−1 + 0.8xt−1 +ϵ2t Y ↔ Xϵ1t

ϵ2t

 ∼ N

0.0

0.0

 ,

 1 0.2

0.2 1
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Table 6: Power and size obtained with the DGPs listed in Table 5 using pTE, GC
and TE. We can notice that there are no significant differences between
pTE and GC. The results were obtained using time series of length 1000,
where the first 100 are discarded and they are averaged over 1000 real-
izations. The last three columns correspond to the directionality index
DI, eg. (pTEY→X −pTEX→Y)/(pTEY→X +pTEX→Y), which shows that
pTE performs better in most of the models in assessing the direction-
ality. The pTE has been calculated with an embedding parameter of 1

for all models except for M10, where an embedding parameter of 2 has
been used to match the causality lag imposed by construction.

Model pTE GC TE DI

Y → X X → Y Y → X X → Y Y → X X → Y pTE GC TE

M0 3.8 3.9 5.1 5.0 4.4 4.4 −0.01 0.01 0.00

M1 2.3 2.6 3.3 3.1 100 100 −0.06 0.03 0.00

M2 4.2 4.7 5.5 5.9 4.7 4.9 −0.06 −0.04 −0.02

M3 100 4.5 100 4.8 70.2 5.6 0.91 0.91 0.85

M4 80.7 3.8 84.2 4.9 96.0 4.7 0.91 0.89 0.91

M5 100 2.2 100 3.1 100 3.8 0.96 0.94 0.93

M6 100 1.8 100 2.8 100 4.3 0.96 0.95 0.92

M7 100 2.8 100 3.4 100 4.0 0.95 0.93 0.92

M8 100 4.5 100 5.6 100 100 0.91 0.89 0.00

M9 100 0.1 100 0.1 100 100 1.00 1.00 0.00

M10 62.6 3.1 67.3 4.3 12.2 4.5 0.91 0.88 0.46

M11 46.1 43.1 53.1 49.8 37.8 45.0 0.03 0.03 −0.09

M12 99.9 1.0 100 0.9 100 0 1.0 1.0 1.0

M13 100 100 100 100 100 100 0.00 0.00 0.00

M14 100 100 100 100 100 100 0.00 0.00 0.00
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Figure 35: Diagram of the ANNs employed in this study. Panel (a) represents
the FFNN, while panel (b) the AR-RNN.

In this study we use two well-known ANNs, schematically shown in
Fig. 35 a feed-forward neural network (FFNN) and an autoregressive
recurrent neural network (AR-RNN), both having an input layer of 300

units.

The FFNN uses the last point of the input layer and links it to one hidden
layer composed of 64 units, itself linked to an output layer of τ units fully
connected, where τ = 5, 10, . . . , 100 is the forecast lead time. Each input
and output is composed by two values, corresponding to RMM1 and
RMM2, as shown in Fig. 7 panel a.

The AR-RNN is a single Gated Recurrent Unit (GRU) (Cho et al., 2014)
layer composed of 64 units, displayed in Fig. 35 panel b. Instead of pre-
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dicting the entire output sequence in a single step, with this recurrent
neural network we decompose the prediction into individual time steps
that are fed back into the network after a warm-up, which updates the
internal state of the network and discards the outputs considering them
poor predictions. GRU is chosen over a classical RNN to prevent the van-
ishing gradient problem, which corresponds to the potential tendency of
the loss function gradients to approach zero, making the backpropaga-
tion of the error to not affect the first layers neurons of a multi-layer
network. It is also preferred over a long short-term memory ANN due
to the lower computational time required. Since we don’t have several
hidden layers, the vanishing gradient problem is not an issue, and in this
way we leave open the possibility of increasing the number of layers for
achieving a better prediction skill.

For the FFNN the activation function is a rectified linear activation func-
tion (ReLU), which is responsible for transforming the summed weighted
input from the node into the activation of the node or output for that in-
put. Sigmoid functions generally work better in the case of classifiers,
and just like tanh functions might be avoided due to the vanishing gra-
dient problem. If by increasing the number of hidden neurons one might
encounter multiple dead neurons, i.e. non active neurons, we suggest us-
ing the leaky version of ReLU, or its parameterized version.

The Mean Squared Error (MSE) is used as loss function, which is the
default loss used for regression problems and the RMM values are not
widely spread and do not have outliers, which motivates this choice
instead of using Mean Squared Logarithmic Error (MSLE) or Mean Ab-
solute Error (MAE).

Finally, the Adam optimizer is used for training, with a maximum of 10

epochs. We selected a patience of 1, used for the early stopping of the
training to avoid overtraining, which corresponds to the delay in stop-
ping. Adam optimizer is chosen being the best common method among
adaptive optimizers, which doesn’t require a tuning of the learning rate
value. The maximum number of epochs is never reached as the learn-
ing is stopped if the validation error starts growing. We could increase
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the patience to account for possible local minima of the validation error,
but that would require more computational time, and we preferred to
use fast and simple ANNs for a demonstration of their ability for MJO
prediction.

To perform the backtesting, or hindcast, we selected a train-validation-
test splitting that preserves the temporal order of observations. Other
methods like multiple train-test splits or the walk-forward validation
could be applied and would result in a more robust estimation of the
model performance on out of sample data. The drawback of such meth-
ods is the cost of creating multiple models, which would sensibly slow
down the training.

The dataset is divided in three sets: the train set contains data from
1.1.1979 to 30.11.2006, the validation set, from 1.12.2006 to 30.11.2015, and
the test set, from 1.12.2015 to 31.12.2020.

The ANNs are trained on the train set, and the model’s internal param-
eters are updated every 16 (batch size) exposure of different training
samples. After the training, the ANN is evaluated using the validation set
to fine-tune the hyperparameters. This training and validation process is
repeated a maximum of 10 times. Then, a single evaluation is performed
using the test set, which was not previously seen by the ANNs.

d.2 mjo forecast post-processing

The post-processing machine learning tool built for this study is a fully
connected feedforward neural network (FFNN) composed of an input
layer containing Nin neurons, a single hidden layer with Nh neurons,
and an output layer with Nout neurons, as shown in Fig 36. The acti-
vation function used is the Rectified Linear Unit (ReLU), which trans-
forms the weighted sum of the input values by returning 0 in case of a
negative-sum, and the result of the sum otherwise. Dealing with a super-
vised regression problem, the mean-squared error (MSE) is extensively
employed as loss function, and it is used in the framework of this study
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Figure 36: ANN architecture employed for this study.

to compare the neural network output with the observations (labels).
An adaptive optimizer (Adam) is selected to automatically manage the
learning rate during the training phase.

We use an adaptive number of neurons depending on the number of
days we want to forecast. The ECMWF reforecasts provide predictions
up to a lead time of 46 days for both RMM1 and RMM2, and we build
a different network for each lead time. This means that the number of
output neurons Nout can fall between 2 and 92 because we use both
RMM1 and RMM2.

After selecting the number of output neurons (which is even and in fact
defines our lead time, τ = Nout/2), we adapt the number of input Nin

and hidden neurons Nh as follows. As input, the networks receive the
ECMWF reforecasts, which also limit the number of input neurons Nin

in the range between 2 and 92. After training the networks with dif-
ferent Nin, we found the best result is obtained with Nin = Nout + 6

with an upper limit of 92. This means that for all lead times τ > 44,
Nin = Nout = 92. For lead times larger than 30-35 days, the prediction
skill of the models falls below the thresholds of 0.5 and 1.4 imposed by
the COR and RMSE, respectively, and thus, the lead times τ > 44 are
not crucial. Using all 92 inputs, the prediction skill for short lead times
slightly decreases. For simplicity, a fixed number of 92 inputs could also
be used. An interpretation of the reason behind this result is that to cor-
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rect the prediction values for a given day, the future predicted values
can help up to some extent. To correct the prediction of a given day,
for each RMM we use the predicted values of up to 3 days after that
particular day. To avoid overfitting, we want the number of hidden neu-
rons to be relatively small, for this reason after some tests, we select
Nh = Nin/2. The training has been performed over 100 epochs which
allows to not overfit the model. The model performance is tested using
a walk-forward validation. The procedure is as follows. First, we train
the network on an expanding train set, and then test its performance on
a validation set that contains the N samples that follow the train set. In
our case, we found the best minimum number of samples for the train
set, out of 2200 available, to be 1700. Then, the train set is extended by
100 samples (∼1 year) for each run, and validated on the subsequent 200

samples (∼2 years). This method of walk-forward validation ensures that
no information coming from the future of the test set is used to train the
model. Other methods to avoid overfitting could also be used, such as
early stopping or drop-out.

MLR in the ordinary least squares (OLS) linear regression where the ob-
served RMMs are a linear combination of the ECMWF-predicted RMMs.
To compute the MLR we adopt the Python library scikit-learn (Pe-
dregosa et al., 2011). With MLR we correct the RMMs separately, and
apply the same walk-forward validation used for the ANNs.
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