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Abstract
The interactions among people on social media are a form of distributed in-

telligence, as they allow people to make sense of a developing event collectively.
Social media users can contribute to creating a ’sensor’ for user-generated data
that modeling or monitoring systems can assimilate during a crisis. However,
social media platforms may not provide the functionality of summarizing useful
information for crisis responders. We developed a platform to streamline the pro-
cessing of text and images extracted from Twitter in near real-time during floods
to solve this problem. Social media analysis can improve situational awareness
in the form of a map or a report. When combined with risk analysis and socio-
economic data, it could shorten the time needed to fill the time gap between
the definition of the risk and the actual impact of a flood. Emergency managers
could aggregate annotated data to confirm a forecast or monitor an event’s de-
velopment. Crisis responders can filter social media messages to distill specific
needs when they must act quickly. Finally, we explore a quantitative integration
of social media information into geospatial information systems to compute the
flood extent in urban areas.
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Resumen
Las interacciones entre las personas a través de las redes sociales son una

forma de inteligencia distribuida, ya que permiten dar sentido a un evento en de-
sarrollo de manera colectiva. Los usuarios de redes sociales pueden contribuir a
crear un "sensor"para que datos generados por los ciudadanos puedan ser asimi-
lados durante una crisis por sistemas de modelado o monitoreo. Sin embargo, las
plataformas de redes sociales no ofrecen una funcionalidad para resumir la infor-
mación útil para la gestión de una crisis. Para resolver este problema, desarrolla-
mos una plataforma para agilizar el procesamiento de texto e imágenes extraídos
de Twitter en tiempo casi-real durante inundacione. El análisis de redes sociales
puede mejorar la conciencia situacional a través de mapas o informes. Cuando
se combina con el análisis de riesgos y datos socioeconómicos, podría acortar el
tiempo entre la definición del riesgo y el impacto real de una inundación. Los ad-
ministradores de emergencias podrían utilizar datos anotados automáticamente
para confirmar un pronóstico o monitorear el desarrollo de un evento. Las per-
sonas encargadas de la gestión de una crisis pueden filtrar los mensajes de redes
sociales para destilar aquellos que atienden necesidades específicas, en particu-
larmente en los casos en que deben actuar rápidamente. Finalmente, exploramos
una integración cuantitativa de la información de las redes sociales en sistemas
de información geoespacial para calcular la extensión las inundaciones en áreas
urbanas.
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Chapter 1

INTRODUCTION

1.1. Motivation
Over millennia humans have developed villages and cities near water bod-

ies, mainly for two reasons: (i) improvements in agricultural yields due to yearly
floods in fertile floodplains leaving nutrient-rich silt deposits behind; and (ii)
people’s desire to live near coastlines and river valleys, often on wetlands and
back-filling otherwise natural flood buffers. Due to the closeness of human set-
tlements to rivers and coasts, floods are the natural disasters with the greatest
damage potential and the ones that affect the greatest number of people [98]

Under the Paris climate agreement signed on the 4th November 2016, many
countries have committed to keeping global average temperature rise well below
2°C and aim to limit the increase to 1.5°C, while increasing the ability to adapt
to the adverse impacts of climate change.

Riverine floods
Considerable increases in riverine floods impacts are predicted even under the
most optimistic scenario of 1.5°C warming as compared to pre-industrial levels.
The Asian continent and Sub-Saharan Africa are the most affected region, and
will have rising shares of the global direct and indirect impacts at all analysed
warming levels. In Europe, Central and Western regions will be affected even if
the temperature increases remain close to the lower estimates. For instance, flood
peaks with magnitude as it happens once in 100 years, called ’return period’1, are

1The return period of an event is the time span it would take to observe one such event on

5
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projected to double in frequency within the next three decades [3]. Long term
losses could even exceed direct damages, due to the increased persistent effects
on the economy.

Coastal floods
Global warming is also expected to drive increasing extreme sea levels (ESLs)
and storm-surge flood risk along the worlds coastlines. Projections of ESLs for
the period between 2000 and 2100 show a very likely increase of 34–76 cm un-
der a moderate-emission-mitigation-policy scenario and of 58–172 cm under a
business as usual scenario. By the end of this century this applies to most coast-
lines around the world, implying unprecedented flood risk levels unless timely
adaptation measures are taken. Areas like the North Sea on the German coast, as
well as parts of East Japan, China, North Vietnam and many of the South Pacific
Small Island Developing States are projected to experience the highest increase
in the median ESL100 exceeding 1 m under the highest greenhouse gas emission
toward the end of the century. The increase in ESLs is weaker along the coasts of
the Baltic Sea, where glacial isostatic adjustment2 results in a relative sea-level
fall that counter-balances and in some cases reverses the rise in mean sea level
and climate extremes [101].

Flash floods and urban floods
Climate change is expected to increase the regime of extreme precipitation. Fre-
quency changes reveal a coherent spatial pattern with increasing trends being
detected in large parts of Eurasia, North Australia, and the Midwestern United
States. Globally, over the last decade of the studied period have shown a 7%
increment in extreme events than the expected number, although findings report
that changes in magnitude are not in general correlated with changes in frequency
[70]. More rain will increase likelihood of flash floods of short duration but high
intensity along with urban floods due to high density populated areas unable to
cope with heavy rainfall.

expectation.
2Glacial isostatic adjustment (GIA) describes the adjustment process of the earth to an equi-

librium state when loaded by ice sheets

6
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1.2. Flood Risk Management in Europe
The Emergency Response and Coordination Centre (ERCC), operating within

the European Commission’s Civil Protection and Humanitarian Aid Operations
department, was set up to support a fast and coordinated response to disasters
both inside and outside Europe using resources from the countries participating
in the EU Civil Protection Mechanism.3 This centre monitors hazards and risks,
collects and analyzes real-time information on disasters, prepares plans for the
deployment of experts, teams and equipment. ERCC in general coordinates the
EU’s disaster response efforts when a single member state cannot cope with a
crisis with its own capacities.

Situational awareness: the European Flood Awareness System (EFAS)4 and
The Global Flood Awareness System (GloFAS)5 provide real-time information
and forecasts about floods to the ERCC as well as to a series of partners in-
cluding national and regional hydrological services. EFAS and GloFAS are part
of the Copernicus Emergency Management System (CEMS), and holds regu-
larly updated flood-related information such as probabilistic medium-range flood
forecasts (including short-range flash floods), seasonal forecasts, and impact as-
sessments and early warnings.

Current flood hazard mapping methodologies, such as the one implemented
in EFAS, have high scale spatial resolution capacity: 1km × 1km resolution
globally and 100m × 100m resolution in Europe [17]. This combined with
state-of-the-art forecasting models provide detailed information about the risk
associated with a flood in terms of likelihood, magnitude, timing, and impact
[16].

Due to nature of floods phenomena and its dynamics, it is important that the
flood extent can be monitored during the flood peak, therefore early warnings are
important to allow sufficient lead time for requesting satellite mappings of the
area at risk and collecting information about impact and risk as the event devel-
ops [18]. However the forecasting systems have limitations. Due to lack of data,
computational cost and uncertainty in model meteo input, many of the global
flood models use parameters that are not properly calibrated against streamflow

3https://ec.europa.eu/echo/what/civil-protection/
eu-civil-protection-mechanism_en

4http://www.efas.eu/
5http://www.globalfloods.eu/

7
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observations. The mentioned systems cannot forecast events for small rivers
(mostly flash floods) because the data used for calibrating the model are aggre-
gated as grids of data at a low-resolution. Again, urban floods or coastal floods
are not due to river flows but because of sewage system clogged and storm surges,
therefore the model simulating the flow of water in rivers is not bringing high
precision flood forecasts.

Impact assessment: emergency managers use flood maps based on either hy-
draulic models or remote sensing data. Hydraulic models require detailed digital
information of the impacted area and forecasts that may not be available readily
or at the desired spatial granularity. The CEMS On-Demand Mapping, which has
operated since February 2015, consists of a set of information services funded
by the European Commission.

On average, the minimum time needed by Copernicus Rapid Mapping (RM)
service to provide crisis information after an activation request by an authorized
user6 is 24 h [103]. Due to the technical issues discussed in Chapter 6, remote
sensing analysis is of limited use in urban areas to the point that these areas are
commonly not analyzed and left out of the product map.

1.3. Goals
Over the past decade, social media has emerged as a relevant data source

about disasters, prompting researchers from diverse areas to converge on this do-
main [10, 69]. Social media analysis has demonstrated the potential to provide
timely, precious information about the spatial [8, 79] and temporal [100] devel-
opment of a crisis, as well as supporting the identification of key disaster-related
events [65].

This research work aims at studying how well and how far information elicited
from social media can be used to improve operational systems for Disaster Risk
Management (DRM), reducing uncertainty and providing tools for catching not-
yet monitored events, as well as establishing references data-sets for future works.

The research work has been planned for answering the following research
questions:

RQ1: Is it possible to integrate effectively social media signals with au-
6EU Member States, the Participating States in the European Civil Protection Mechanism,

the Commission’s Directorates-General (DGs) and EU Agencies, the European External Action
Service (EEAS), as well as international Humanitarian Aid organizations
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thoritative data at a pan-european level where riverine flood likelihood is
estimated?

The answer to this question should be a first set of experiments confirming
the possibility to listening to social media based on geographical and tem-
poral forecast likelihood. Such forecasts are available at a pan-european
scale at a regional resolution. A model for the classification of tweets
needs to be trained in several available languages.

RQ2: Is it possible to classify reliably the relevance of social media infor-
mation to floods using a ’zero-shot’ transfer learning ?

When a classifier for few spoken languages is available, multilingual em-
beddings are used for adding semantic context aimed at building a classi-
fier for a new language without training data. The experiments should aim
at identifying the best set of embeddings.

RQ3: Is it possible to identify floods worldwide independently from fore-
casts using knowledge from past events independently from hydrological
forecasts?

This question aims at extending the coverage of floods not detectable from
flood monitoring systems such as flash floods in small rivers , urban floods
or coastal floods due to storm surge.

RQ4: Is it possible to dynamically define the risk and the impact of a flood
in a densely inhabited area at high resolution?

The main purpose of this question is to research the possibility to extract
valuable information for local crisis responders. While others questions
could be answered confirming the events and defining its extent and sever-
ity aggregating the classified signals from social media, RQ4 purpose is
to conduct experiments using classifiers to detect categories of infrastruc-
tures (educational, transportation, energy, etc) and aggregating signals at a
high resolution.

1.4. Challenges
Although the value of social media analysis in providing timely data and

methods for the analysis of natural hazards has been recognized in previous
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Figure 1.1: SMDRM architecture

work, comparatively much less attention has been given to how to integrate so-
cial media in a seamless, reliable way with tools for disaster risk management.

Analysis of data will be performed using machine learning models trained
with data manually annotated and databases of previous events. The need of col-
lecting data and running classification models in near-real-time lead to the devel-
opment of a software framework named Social Media for Flood Risk (SMFR)
which provides information from social media about flood risks and impacts as-
sociated to an event, including examples of tweets about it.

The platform could however be improved to cope with a wider geographical
extent and to cope with all the type of floods. That is why, after some SMFR pos-
itive results, we created a platform with a series of containerized microservices.
In the framework of the experiments for RQ4, we built a platform independent
of the type of hazards, more focused on modularity and scalability. In the Chap-
ter 7 we describe the creation of the platform Social Media for Disaster Risk
Management (SMDRM), whose architecture is shown in Figure 1.1

Its architecture and modules are described in Chapter 7.
Since the geographical domain of EFAS and GloFAS products covers an area

where population speaks more than a hundred different languages, data analysis
must focus on a multilingual system.

This work aims at filling this gap by describing the integration of social
media monitoring into a flood monitoring and forecasting platform, enriching
hydro-meteorological information with reports from the public with a multilin-
gual approach.

1.5. Contributions
The main contributions of this Ph.D are:

a system that integrates social media analysis into EFAS. This integration
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allows the collection of social media data to be automatically triggered by
flood risk warnings determined by a hydro-meteorological model. We also
describe a method for selecting relevant and representative messages and
displaying them back in the interface of EFAS.

Lorini et al. - 2019 - «Integrating Social Media into a Pan-European Flood
Awareness System:A Multilingual Approach».

The article has been accepted and presented at the 16th International Con-
ference on Information Systems for Crisis Response and Management IS-
CRAM19 in 2019 where it has been awarded as the ’Best Paper’

a study about how the usage of non-authoritative data for disaster manage-
ment provides timely information that might not be available through other
means. Wikipedia, a collaboratively-produced encyclopedia, includes in-
depth information about many natural disasters, and its editors are partic-
ularly good at adding information in real-time as a crisis unfolds. In this
study, we focus on the most comprehensive version of Wikipedia, the En-
glish one. Wikipedia offers good coverage of disasters, particularly those
having a large number of fatalities. However, by performing automatic
content analysis at a global scale, we also show how the coverage of floods
in Wikipedia is skewed towards rich, English-speaking countries, in partic-
ular the US and Canada. We also note how coverage of floods in countries
with the lowest income is substantially lower than the coverage of floods
in middle-income countries. These results have implications for analysts
and systems using Wikipedia as an information source about disasters.

Lorini et al. - 2020 - «Uneven Coverage of Natural Disasters in Wikipedia:
The Case of Floods».

The article has been accepted and presented at the 17th International Con-
ference on Information Systems for Crisis Response and Management IS-
CRAM20 in 2020.

we explore the possibility of having an entirely independent flood mon-
itoring system which is based completely on social media, and which is
completely self-activated. Social media can be used for disaster risk re-
duction as a complement to traditional information sources, and the liter-
ature has suggested numerous ways to achieve this. In the case of floods,

11



i
i

“output” — 2022/5/24 — 9:23 — page 12 — #26 i
i

i
i

i
i

for instance, data collection from social media can be triggered by a se-
vere weather forecast and/or a flood prediction. This independence and
self-activation would bring increased robustness, as the system would not
depend on other mechanisms for forecasting. We observe that social me-
dia can indeed help in the early detection of some flood events that would
otherwise not be detected until later, albeit at the cost of many false pos-
itives. Overall, our experiments suggest that social media signals should
only be used to complement existing monitoring systems, and we provide
various explanations to support this argument.

Lorini et al. - 2020 - «Social Media Alerts can Improve, but not Replace
Hydrological Models for Forecasting Floods».

The article has been accepted and presented at the 2020 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent
Technology WI-IAT’20.

a paper that summarizes key opportunities and challenges identified during
the workshop ’Social Media for Disaster Risk Management: Researchers
Meet Practitioners’ which took place online in November 2020. It consti-
tutes a work-in-progress towards identifying new directions for research
and development of systems that can better serve the information needs of
emergency managers.

Practitioners widely recognize the potential of accessing timely informa-
tion from social media. Nevertheless, the discussion outlined some critical
challenges for improving its adoption during crises. In particular, vali-
dating such information and integrating it with authoritative information
and into more traditional information systems for emergency managers
requires further work, and the negative impacts of misinformation and dis-
information need to be prevented.

Lorini et al. - 2021 - «Social Media for Emergency Management: Oppor-
tunities and Challenges at the Intersection of Research and Practice».

The article has been accepted and presented at the 18th International Con-
ference on Information Systems for Crisis Response and Management IS-
CRAM21 in 2021.

a study aiming to determine how social media information can reduce the
inherent uncertainty of the information in the immediate aftermath of an
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urban flood event. Before urban flooding actually happens, weather fore-
casts with varying degrees of precision are available to emergency man-
agers. In the aftermath of the event, authoritative information including
Earth Observation (EO) data can be used to estimate precisely the flood
extent, possibly after several hours. Specifically, the study investigates
how to collect relevant social media images and to interpolate such data in
order to create a map.

The premise of the study is that social media platforms, when combined
with digital surface models, can provide control points for creating a re-
liable near real-time estimate of the flood extent. In the study, we com-
pared a flood extent map derived from social media with that derived from
authoritative altimetry data during one of the worst floods to hit Venice,
which occurred in November 2019.

The results of the experiments show a good overall accuracy using sev-
eral digital surface models. Given the global coverage of such models
and the low resources required, we think the methodology proposed could
be beneficial for emergency managers. Specifically, we describe how a
flood extent map can be made available within 24 h, or even less, after
urban flooding strikes a densely inhabited area, where data generated by
the public are available.

Lorini et al. - 2022 - «Venice Was Flooding... One Tweet at a Time.»

The article has been accepted at the 25th ACM Conference On Computer-
Supported Cooperative Work And Social Computing CSCW22 in 2022.

the platform SMDRM, which is a software platform that streamlines the
processing of text and images extracted from Twitter in near real-time dur-
ing a specific event. Social media has been described as a mechanism for
understanding a situation using information spread across many minds,
i.e., a form of distributed cognition [34]. Gaining situational awareness
in a disaster is critical and time-sensitive. Social media provides a vast
data source that might help improve response in the early hours and days
of a crisis. Our article depicts the structure of the platform for the op-
erationalisation of the data processing in the specific domain of disaster
management.

Lorini et al. - 2022 - «SMDRM: A Platform to Analyze Social Media for
Disaster Risk Management in Near Real Time».
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The article has been accepted and presented at the Workshop on Social
Media for Emergency Response SOMMER22 during the 16th International
Conference on Web and Social Media ICWSM in 2022.

1.6. Thesis Outline
The thesis is organized in four parts as follows. In the first part we define the

background information in which we introduce the goals of the research (Chapter
1) , we describe the state-of-the-art on social media analysis for crisis response
(Chapter 2), and we try to gather flood information from Wikipedia (Chapter 3).

In the second part we explain how social media can be used as a mean for
improving situational awareness during a flood event. We describe the imple-
mentation of a framework for the extraction, filtering and aggregation of flood
related messages at a pan-european during floods response (Chapter 4). We then
study the possibility of using such methodology to identify floods event without
support of hydrological simulations.

In the third part of the work we describe our experiments towards impact
assessment in terms of mapping (Chapter 6) and impacts on infrastructures/ser-
vices/population (Chapter 7).

In part four, we conclude the thesis suggesting a path forward for a practi-
cal application of the methodologies implemented and described in the previous
chapters from practitioners’ perspective (Chapter 8). Finally we draw conclu-
sions and suggest future line of research.
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Chapter 2

RELATED WORK

At the beginning of our research work we gathered information about the
relevant research work done on the two main topics we want to integrate; flood
monitoring and social media analysis during crisis. We propose to study an in-
tegration at a continental and global scale, therefore we focused on large scale
flood monitoring tools and multilingual analysis of social media messages.

2.1. Flood Detection and Flood Forecasting at the Pan-
European Scale: the European Flood Awareness Sys-
tem

EFAS is part of the Copernicus Emergency Management Services, and serves
the ERCC and EU member states’ Civil Protection agencies with forecasts of
flood risks. It covers the European Union as well as several neighbouring areas
that are relevant from the perspective of flood risk and EU policies (e.g., all coun-
tries of the Danube river basin). EFAS provides information based on weather
forecasts1 and hydrological ensemble predictions obtained by an hydrological
model simulations, therefore subjected to uncertainty. For being exploited at its
maximum potential it should offer additional supporting information that could
be used for prioritizing resources and interventions. EFAS already includes prod-
ucts that go in that direction. For instance pre-tasking satellite mappings is trig-
gered in advance integrating socio-economic data (population, infrastructures,

1EFAS inputs are based on the Ensemble Prediction System from the European Center for
Medium Range Weather Forecast (ECMWF) which consists of 51 ensemble member.
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economic losses fused as impact indicators) with flood magnitude and probabil-
ity (likelihood)[18].

EFAS forecasts have good accuracy level which is constantly monitored2, but
Crisis are only declared, formalised and managed by the local authorities and it’s
up to them to decide what to do with the data provided. The research presented
here helps in the near-real-time confirmation of floods for areas where a high
flood risk was forecasted. The study of social media during floods has unique
challenges compared with its use for other types of disasters such as earthquakes.
For the latter, there are records from seismographic monitoring networks using
widely accepted standards, and therefore reliable lists of georeferenced events
are available [82, 74]. For flood events, however, there is no such international
standard for recording and reporting information, let alone any unique identifi-
cation number of these events. Instead, emergency managers report information
according to their own interpretation and local guidelines. Despite these limita-
tions, previous work has demonstrated how social media can be used to detect
floods [8], with the aim of augmenting situational awareness [84].

2.2. Flood Detection and Flood Forecasting at the Global
Scale

While there are many works describing tools and methodologies for flood
detection at a sub-national and national scale using high-resolution models and
local sensors, few systems try to monitor floods at a global scale covering ar-
eas where authoritative data are lacking. The real-time Global Flood Monitoring
System (GFMS) described in Wu et al. (2014), uses the Tropical Rainfall Mea-
suring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) rainfall
for detecting floods through satellite images. It has been developed and imple-
mented using a physically based hydrologic model with temporal and spatial
resolution respectively 3-hours and 0.125 degrees, which translate in, more or
less, 10km× 10km per cell in a gridded representation of the globe.

GloFAS, together with EFAS, is part of the Copernicus Emergency Manage-
ment Systems, and serves the ERCC and EU member states’ Civil Protection
agencies with forecasts of flood risks. GloFAS covers , with a spatial resolu-
tion (25km × 25km) lower than EFAS (5km × 5km), the whole globe . They
provide information based on weather forecasts3 and hydrological ensemble pre-

2publicly available at https://www.efas.eu/validation-and-skill-scores
3Inputs are based on the Ensemble Prediction System from the European Center for Medium
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dictions obtained by an hydrological model simulations, therefore subjected to
uncertainty. Both the global monitoring systems though, are based on models
with such resolution enabling to forecast and detect only floods in big rivers and
not at all small flash floods or urban floods or coastal floods yet. The aim of this
research is to extend the detection of events using social media information.

Copernicus offers information services that draw from both satellite EO and
in-situ (non-space) data. The CEMS support local authorities and communi-
ties needing information to develop environmental legislation and policies or to
take critical decisions in the event of an emergency, such as a natural disaster
or humanitarian crisis. The Early Warning Systems (EWS) and On-Demand
Mapping components of the CEMS produce flood hazard maps that have been
developed using hydrological and hydrodynamic models, driven by the climato-
logical data of the European and Global Flood Awareness Systems (EFAS [93]
and GloFAS [4]). All maps are in raster format with a grid resolution of 100 m
(European-scale maps) and 30 arcseconds (global-scale maps). These maps can
be used to assess the exposure of population and economic assets to river floods,
and to perform flood risk assessments. Our research evaluates the integration of
such maps tih signals from social media for the the confirmation of floods.

2.3. Urban Flooding
Research on hyper-resolution definition of urban flooding are rare due to

their complexity and the limited numbers of models fit for that purpose. Pre-
vious works try to detail flooding risk analysis, urban flooding control, and the
validation of hyper-resolution numerical models [102, 79].

In Wang et al. (2018) social media information is filtered and aggregated
using Natural Language Processing (NLP)) and images are gathered through
crowdsourcing before being processed by a computer vision system. Tweets
are aggregated (summed) at sub-metropolitan area.

Restrepo-Estrada et al. (2018) use aggregation of tweets related to rain as
proxy variable indicators of the intensity of rainfall, then the variable is fed into
a model for computing discharge values. The city area is divided in sub-zones.

The research proposed here wants to study if social media could be useful to
detect high resolution extent and impacts of urban floods in densely populated
cities where social media and socio-economic data are expected to be abundant
as more users are actively connected.

Range Weather Forecast (ECMWF) which consists of 51 ensemble member.
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Multi-class classification is nowadays widely know and applied especially
in NLP in tasks like Named Entity Recognition (NER) or sentiment classifica-
tion [50, 48]. Some work has been done trying to define multiple classes in de-
tailing urban flooding, but their work applies classification to images rather than
text, relying on fewer data than the ones available in the immediate aftermath of
an event [25, 88]. The research proposed contributions go into the direction of
joining the two different efforts, applying multi-class classification to text from
social media in order to define the impacts of an event in near-real-time.

Urban areas offer the possibility to research if and how social media could be
used also to detect inhabitants mobility, which combined with hazard static maps
and maps of critical infrastructures, could be used to define a near-real-time risk
assessment to crisis responders. In Park et al. (2018) information from several
platforms are used in combination with mobile data to identify the dynamics of
residents of a city, while Botta et al. (2019) use Instagram posts to measure the
size of crowds in specific places. The proposal would like also to try to geocode
social media posts with the goal of identifying crowd at risk during an event.

2.4. Combining Authoritative and Non-Authoritative Data
A recent trend in research on social media on disaster has been to study

methodologies for combining non-authoritative and authoritative data in risk as-
sessment. The non-authoritative data are reports generated by the public, typi-
cally posts in social media platforms. The authoritative data comes from various
sensors including meteorological and hydrological ones as well as physical mod-
els for creating forecasts with this data. In previous work, these data have been
combined in various ways.

Musaev et al. (2015) describe the LITMUS platform, which collects and
filters messages about landslides from various social media platforms and geo-
locates them to merge reported events with data from physical sensors referring
to the same location.

Restrepo-Estrada et al. (2018) use a transformation function for creating a
proxy variable for rainfall by analyzing keywords-filtered geo-located social me-
dia messages and rainfall measurements from authoritative sources. The proxy
variable is incorporated in a hydrological model for stream-flow estimation.

Our work differs from the previous ones in important ways. First, we do not
filter social media posts by flood-related keywords, but rather according to the
location of a possible flood based on forecasts from the EFAS system. Second,
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we aggregate data using a geocode standard for referencing the subdivisions of
countries for statistical purposes, known as Nomenclature of territorial units for
statistics (NUTS) [20]. Its granularity is identified by levels, the higher the level,
the higher the granularity. In our work we used level 2 (NUTS-2) as the main
subdivision. Third, we cover a large area by automatically processing content in
several languages. The goal of our system is to confirm and bring more detail to
the outcomes of an hydrological model.

The potential of social media for situational awareness during emergencies
has been studied by several researchers [10] [86]. Research has also been car-
ried out on how emergency managers could use the information shared by wit-
nesses to plan relief operations [76] assessing impacts at an early stage. Text
and images shared on Twitter have been recognized as containing important in-
formation pertinent to humanitarian response [1]. Recent studies have shown
encouraging research results related to the use of social media sensors to map
flood extent. Brouwer et al. (2017) presented a methodology for detecting river-
ine flood extent using locations derived from Twitter and a normalized digital
terrain model. Hydrologically connected tweets are interpolated according to a
drainage-normalized representation of the topography. This approach applies to
floods driven by an overflow of water from riverbeds, and the focus is on di-
rections of flow in nearby areas rather than on urban floods. Around the same
time, Rosser et al. (2017) presented a work to estimate flood extent based on
a Bayesian model fusing remote sensing, social media and topographic data
sources. The method uses geocoded photographs sourced from social media
Flickr, optical remote sensing and high-resolution terrain mapping to estimate
the probability of flooding through weights-of-evidence analysis. The results
demonstrate that the incorporation of multiple sources of data can aid the predic-
tion of flood extents. Their work does not consider temporal aspects of the data
within the modelling process, as the case study involved a prolonged flooding
event. Heavy rainfall is often the main driver for urban floods, which can happen
where there are no rivers, or the flood can be a combination of events such as
blockage of the sewage system or coastal floods. Our work aims to map flood
extent regardless of the driver of the event.

2.5. Multilingual classification of social media postings
The framework upon which the projects run is designed to work across mul-

tiple languages. The main processing done to messages is to determine whether
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they are relevant to flood risks/impacts or not. This is done through supervised
classification, which requires labeled data. However, to work across multiple
languages in practice requires to be able to classify messages in languages for
which there may not be labeled data yet. Implementations applied to natural
disasters have been explored in the past [63, 46, 45, 57, 73, 13].

Previous works, such as Li et al. (2018) has shown how an approach based
on embeddings works better than a simpler method based on bag-of-words when
generalization is critical, including the case relevant to this study, which requires
generalizing across languages.

Our research aims at evaluating and demonstrating how the classification task
can be transferred across multiple languages for which no semantic resources are
available, leveraging on embeddings for multilingual modelling.

Recently, considerable steps have been made towards the possibility of knowl-
edge transferring without parallel data, also known as ’zero-shot’ transfer learn-
ing, in fields such as machine translation [41, 28] but also in multilingual classi-
fication [6, 15].

Our research compares several different ways in which embeddings can be
used to perform multilingual classification: using language-agnostic word em-
beddings learnt from a multilingual corpus [73], using multilingual word embed-
dings that are aligned across languages [13], using pre-trained encoders trained
with sentence-embeddings as described in Artetxe and Schwenk (2018) or fine-
tuning pre-trained encoders [15]. Previous research also proposed to go beyond
the mere use of text. Imran et al. (2020 use both text and image modalities of
social media data and fuse them to learn a joint representation using deep learn-
ing techniques. Specifically, they utilize convolutional neural networks to define
a multimodal deep learning architecture with a modality-agnostic shared repre-
sentation with good results.
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Chapter 3

FLOODS AND
USER-GENERATED DATA

We wanted to study Wikipedia as we can see it as a permanent social net-
work. Information extracted can be used to carry out experiments with past
recorded events from authoritative data sources. In this chapter, we estimate the
coverage of floods in Wikipedia along many variables, including Gross Domes-
tic Product (GDP), Gross National Income (GNI), geographic location, number
of English speakers, fatalities, and various indices describing the level of vulner-
ability of a country. Addressing flaws and exposing biases can help the research
community think about possible countermeasures that can lead to a set of best
practices for Wikipedia or publishing research leveraging Wikipedia data, or oth-
ers social networks.

3.1. Introduction
During the past decade, water-related disasters, such as floods, droughts,

storm surges, cyclones, convective storms and tsunamis, accounted for 90% of
all disasters in terms of the number of people affected and among them, 50%
were flood events [31].

Unaddressed vulnerabilities, rising population, intertwined natural events,
continue to be the main critical factors for loss of life, disrupting livelihoods and
fueling new displacement. A previous analysis estimated that people in the least
developed countries are, on average, six times more likely to be injured, lose their
home, be displaced or evacuated, or require emergency assistance, than those in
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high-income countries [99].
Death tolls and economic losses from natural hazards are expected to rise

in many parts of the world. Countries with higher income levels show lower
human vulnerability and the high number of people exposed translates into lower
mortality compared to developing countries [19]. An analysis of vulnerability
at a global scale, integrating population and economic dynamics with one of
the most comprehensive natural disaster loss databases, show that there is still
a considerable climate hazard vulnerability gap between poorer and wealthier
countries [23].

Wikipedia, founded in 2001, has come a long way, becoming over the years
one of the primary sources of encyclopedic information worldwide. In fact, dur-
ing 2018 alone, the English Wikipedia had over 108 billions article views. It
accounts for approximately 45% of all page views on Wikimedia projects in this
period (237 billions).1

One of Wikimedia’s goal is sharing knowledge, and an extensive interna-
tional base of editors is a crucial element in providing information in several
languages. Even if a useful, ethical code for Wikipedians can guide editing to-
wards styles of practice that best support the Wikipedia mission2, when editors
mix personal interests with the goals of the Wikipedia community as a whole,
they make choices that can affect the articles they create and edit [33]. Although
collaborative editing fulfils the objective of sharing information, it can introduce
biases that are apparent when Wikipedia is used as a reference data set for a
specific topic, such as natural science research.

In recent years, researchers have placed much effort into studying how to
extract meaningful information for crisis management from social media and
collaborative sources [51, 37, 68], but biases in these sources are rarely evalu-
ated.

In a seminal paper, Galtung and Ruge (1965) showed that pieces of news
from ’elite’ nations were more likely to be covered in foreign news reports. We
find evidence of the same for the coverage of floods in the English Wikipedia,
noting that floods in the wealthiest countries, particularly floods in the US, are
more likely to appear in Wikipedia than floods in the poorest countries.

We think that Wikipedia is a valuable source of free data, and it could be ben-

1https://stats.wikimedia.org/v2
2https://en.wikipedia.org/wiki/Wikipedia:Ethical_Code_for_

Wikipedians
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eficial to researchers in the Disaster Risk Reduction field if biases are identified,
measured, and mitigated. Our main contributions are:

We establish a validated reference set of events tracked by several indepen-
dent organizations, with support from hydrologists. Some organizations
collect data about floods for different purposes, from insurance to sustain-
able development goals set by the United Nations (UN). Their effort is to
collect floods data on a global scale. We compare and collate the different
data sources.

We match verified events with Wikipedia entries. We analyze three method-
ologies for matching verified events with Wikipedia’s text in terms of lo-
cation and temporal references. In our work, a particular effort has been
made to geo-locate Wikipedia entry candidates since we wanted to identify
news reporting information about an event and to exclude generic collec-
tions of unspecified events.

The remainder of this chapter is organized as follows: the next section presents
related work; then, the third section describes the methods for establishing veri-
fied ground truth information, for matching Wikipedia data with verified events
and how to geo-locate them. Finally, we present experimental results, including
a case study, followed by our conclusions and future work.

3.2. Related Work
Wikipedia has been used as a data source to study sustainable development

and for Disaster Risk Reduction. For instance, it has been recently used as a
source of data to estimate indicators at very high spatial resolution leveraging
recent advances in NLP by extracting information from free-text articles [92]. In
their work, the spatial distribution of the articles and meta-data extracted from
its text, combined with other data such as night-light satellite images, are used to
improve the prediction of socio-economic indicators of poverty, as measured by
ground truth survey data collected by the World Bank.

In previous work, researchers used Wikipedia for detecting and monitoring
natural disasters [94] leveraging interlinks between versions of the same article in
different languages and inbound/outbound redirects to other similar articles. The
methodology proposed in their paper consists in creating and maintaining a list of
articles related to natural disasters, scanning Wikipedia entries and subsequently
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checking if edits happen on an article in the list, assuming a new event reported
would impact the monitoring-list.

Considering that Wikipedia is being used as a source for data analysis, our
work aims at identifying potential biases in Wikipedia coverage of natural events,
specifically floods.

Wikipedia exhibits a substantial amount of self-focus, in the sense that ed-
itors in each language-specific Wikipedia tend to write about topics that are of
interest to their community and not others [30]. A country-based analysis of
Wikipedia shows that geotagged articles (i.e., articles referring to specific lo-
cations) concentrate in only a few countries, and this concentration can be ex-
plained in no small extent with variables such as population, number of broad-
band Internet connections, and number of edits emanating from each country
[26].

A comparison of Wikipedia with the Global Terrorism Database3 in 2015
shows that Wikipedia covered about 78% of attacks and almost all of the terrorism-
related deaths in Western countries, but only 28% of those in other countries [85].

Also, Wikipedia suffers from a cultural gap that favours entries written in
English and especially, those referring to the United States of America (USA)
which are the longest and best-referenced ones [9]. Tobler’s law for geography
claims that similarity decreases with distance [96]. According to this law, those
events happening close to English speaking countries should be considered more
familiar to Wikipedia editors and therefore, better covered than those happening
in distant places. There are also urban/rural biases, with Wikipedia coverage of
rural areas being systematically inferior in quality [40].

Becoming a source on current news events was not part of the original mis-
sion of Wikipedia, but currently, the most visited and edited articles are about
current events [44]. Wikipedia has transitioned into a source that incorporates
significant news work [42].

When it comes to history, Wikipedia narratives are biased towards recent
events and those happening in Western Europe [89]. Partially because of this,
there is an explicit Wikipedia policy against ’recentism’.4

Regarding coverage of natural disasters, a study on the Tōhoku catastrophes
showed that activity on Wikipedia concentrated on the day of the earthquake,
but there was intense editing activity for several days [43]. A similar pattern of

3https://www.start.umd.edu/data-tools/global-terrorism-database-gtd
4https://en.wikipedia.org/wiki/Wikipedia:Recentism
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intense activity close to the events was observed in the 2011 Arab spring [22].
Most of these event-centric articles are written as the event unfolds [64] and
indeed, spikes in editing activity can be used for detecting new crisis events [94].

Our work is focused on natural disasters at a global scale for events happen-
ing over more than three years. Therefore, our experiments widen the previous
analysis of biases, including a set of socio-economic risk indicators concerning
natural hazards.

3.3. Methods
This work aims to analyze the coverage of floods in Wikipedia. Develop-

ment and relief agencies have long recognized the crucial role played by data
and information from previous events in mitigating the impacts of disasters on
vulnerable populations. Due to the complexity of collecting reliable informa-
tion, there is still no international consensus regarding best practices for defining
critical aspects of an event such as starting date, duration or number of fatalities.

To carry out our experiments, we selected data source which included vali-
dated information from international relief agencies or local governments world-
wide to cover all the events that could have been detected on the social networks
so Precision and Recall could be computed against a complete validated dataset.
That is why we consider three of the most comprehensive databases documenting
floods that are commonly used by the hydrology science for reference[104]:

Floodlist5, funded by the EU Space program Copernicus 6 program, it
reports on all the major flood events from around the world. Floodlist in-
cludes articles on flood-related issues such as warning systems, mitigation
and control, flood recovery, flood damage repair and restoration, as well
as flood insurance. The reports and articles also include information about
the extraordinary humanitarian, aid and relief efforts made in the aftermath
of many flood disasters.

The UN’s Emergency Events Database (EM-DAT)7 contains informa-
tion from various sources, including UN agencies, non-governmental or-
ganizations, insurance companies, research institutes and press agencies.
Data from UN agencies, governments, and the International Federation of

5https://floodlist.com/
6https://www.copernicus.eu/en
7https://www.emdat.be
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Red Cross and Red Crescent Societies have priority. This choice is not
only a reflection of the quality or value of the data, but it also reflects the
fact that most reporting sources do not cover all disasters or have political
limitations that could affect the figures. The entries are reviewed continu-
ously for inconsistencies, redundancy, and incompleteness.

The Dartmouth Flood Observatory (DFO)8, based at the University of
Colorado, maintains the Global Active Archive of Large Flood Events de-
rived from news, governmental, instrumental, and remote sensing sources.
The archive is ’active’ because current events are added immediately. Each
entry in the archive and related ’area affected’ map outline represents a
discrete flood event. The listing is comprehensive and global in scope.

We also looked at other reliable sources such as the Copernicus Emergency
Manamagent Services based on requests for satellite images acquisition for emer-
gency response and risk and recovery maps. We found that official requests were
issued only when the national authorities could not cope with the disaster on their
own, resulting in only one-tenth of events recorded by the other sources, most of
which were redundant.

As shown in Table 3.1, none of the three selected databases is complete, and
some events recorded in one database are not in the others. Hence, we merge
multiple databases into a single dataset. Our data begins on 2016-02-29 because
this is the earliest date for which the three datasets contain information.

Year Total floods Floodlist EM-DAT DFO

2016 261 191 169 99
2017 322 220 215 117
2018 394 306 191 157
2019 125 96 74 42

Total 1102 813 415 649

Table 3.1: Number of events recorded per year in chosen data sources between
2016-02-29 and 2019-05-20

8https://http://floodobservatory.colorado.edu/
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Criteria and definitions of events
It is essential to assess criteria for event recording and limitations of the several
data sources before homogeneously merging their data.

Floodlist includes articles on flood-related issues such as warning systems,
mitigation and control, flood recovery, flood damage repair and restora-
tion, as well as flood insurance. We decided to leave out news items with
’landslides’ as the only tag, while we ingested all the other news items as
we think they were mostly relevant to floods.

In EM-DAT, for a disaster to be entered into the database at least one of
the following criteria must be fulfilled: (i) ten (10) or more people re-
ported killed, (ii) one hundred (100) or more people reported affected, (iii)
a declaration of a state of emergency, and/or (iv) a call for international
assistance. EM-DAT provides geographical, temporal, human and eco-
nomic information on disasters at the country-aggregated level. When the
same disaster affects several countries, EM-DAT enters several country-
level disasters into the database with the same identifier. From all the EM-
DAT database, we consider only events labelled with ’flood’ or ’storm’ as
primary disaster type.

DFO derives from a wide variety of news and governmental sources. The
quality and quantity of information available about a particular flood are
not always in proportion to its actual magnitude, and the intensity of news
coverage varies from nation to nation. DFO creates a record for any flood
that appears to be ’large, with, for example, significant damage to struc-
tures or agriculture, long (decades) reported intervals since the last sim-
ilar event, and/or fatalities. Deaths and damage estimates for tropical
storms are totals from all causes, but tropical storms without significant
river flooding are not included. No filter is applied to information as we
assumed all the news items were relevant to floods.

Since our ground truth information’s main purpose is to support the analysis
of the coverage of events in Wikipedia, we opted for a rather inclusive definition
of flood and included events associated to heavy rainfall, which is the first driver
of an overflow of water in river channels but also in coastal and urban areas. The
merged database contains information from different sources, trying to avoid du-
plicates. We aggregated events at the national level, and when an event affected
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more than one country, we insert a record for each country with the same dates.
For those events for which a data source did not indicate the end date, we as-
sumed it was three days after the starting date of the event. We choose three
because it is the median value of the duration of the floods in our dataset. An
example record contains the following information:

start_date: year, month, day

end_date: year, month, day

country: name of the country

affected: string from the source about population affected

fatalities: number of deaths associated with the event

location_source1: location from location_source1

location_source2: location from location_source2

location_source3: location from location_source3

identifier: list of id from sources

disaster_type: i.e Storm, Flash Flood, Flood

in_emdat: True/False

in_dartmouth: True/False

in_floodlist: True/False

The resulting ground truth dataset contained 2295 floods. However, there
were still many duplicate items needing to be consolidated.

The criteria for describing an event vary according to the source. Starting and
ending dates are difficult to establish and there is no agreed methodology for re-
porting about duration and impacts of floods among the Disaster Risk Reduction
community.

For instance, a flood in Angola on March 2016 was reported by Floodlist
as spanning the period 2016-03-05 to 2016-03-07, by EM-DAT as happening
from 2016-03-01 to 2016-03-10, and by DFO as occurring from 2016-03-01 to
2016-03-10.
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To avoid duplicates, when two or more events from the data sources over-
lapped in time and country, the earliest starting date was selected as starting date
for the event and the latest ending date as the ending date. This choice also means
that two events happening at an overlapping time in two different locations of the
same country will be considered as duplicates and merged. The aggregation was
because the DFO dataset can locate an event only at the national level. We nor-
malized country names of each source to facilitate the merging process.

After the consolidation process, the dataset consisted of 1102 flood events.
Figure 3.1 shows a Venn diagram illustrating the intersection between and among
our three data sources. The intersecting areas are consistent and represent the
majority of events, meaning that more than one source identified such floods.
We asked experts in the field of DRR to analyze a sample of twenty records that

Figure 3.1: Venn diagram representing the intersection of floods coming from
the data sources

appeared only in one data source. They convened that:

Unique records from Floodlist were mostly due to the inclusion of land-
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(a) Floods per country - Floodlist (b) Floods per country - EM-DAT

(c) Floods per country - DFO (d) Floods per country - final merged ground
truth

Figure 3.2: Floods per country (heat maps) of the three data sources for ground
truth information and the final merged dataset

slide associated with storms and episodes of heavy rain which were ex-
cluded from the other two data sources because not defined by their criteria
as a flood.

Unique records from EM-DAT were due to the inclusion of convective
storms that lead to wind storms or sand storms which were excluded from
the other two data sources because not associated with a flood.

Unique records from DFO were mainly due to a country attribution differ-
ent than the other sources in case of transborder events.

In light of the analysis of the data sources, we decided to conduct the experiments
using the 458 events located in the intersecting areas, assuming that we can safely
consider floods recorded by two or three data sources.

Figure 3.2 shows the geographical distribution of events recorded in each
data source and the final merged result

To further evaluate potential biases in the distribution of events across data
sources we compared the ground truth information with data from Munich RE’s
NatCatSERVICE9, one of the most comprehensive natural disaster databases
available, which primary interest is to assess insured losses. While the number

9https://natcatservice.munichre.com/
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Figure 3.3: hydrological events listed in NatCatSERVICE for the period 2013-
2018

of events registered seems to confirm what described by our ground truth dataset
(385 hydrological events in 2018, 340 in 2017), the geographical distribution of
events over the globe shown in Figure 3.3 indicates a different distribution of
events. The discrepancies emerged can be explained in part by the fact that the
majority of events comes from Floodlist, which also records storms associated
with heavy rainfall. Such events fall into a different category of events (meteo-
rological) in the NatCatSERVICE data.

One might think that our ground truth information could be biased by the
coverage of events in wealthier countries where access to digital information is
extensive and where English is the predominant language spoken. Nevertheless,
the EM-DAT distribution shown in Figure 3.2b is similar to the one of NatCat-
SERVICE.

Finding floods in wikipedia

Initially, a keyword-based search was done on articles from the English
Wikipedia covering the period for which we collected ground truth informa-
tion. To do this we used a public snapshot10. We defined a set of keywords
(’flood’, ’floods’, ’flooding’, ’flooded’, ’inundation’) as representative for a po-
tential flood event identification in a sentence. Therefore, we scanned for text
containing any of the keywords within the sentences extracted from Wikipedia.
If we found any of them, the sentence was stored with its corresponding title and

10https://dumps.wikimedia.org of the full English Wikipedia (containing around 6M
articles), generated on May 20th, 2019.
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paragraph as a ’candidate’ sentence. In the case of articles whose title contained
any of the keywords, such as ’Floods in the United States: 2001–present’, all
sentences were considered as candidates since we assumed that the content was
about floods.

Of all the sentences filtered with the mentioned keywords, we selected only
the ones directly linked to flooding. To ensure that, we applied to candidates a
classifier (Lorini et al. 2019) expressing the probability of a text to be relevant to
a flood. We selected only the ones with a probability higher than 40%. The Pre-
cision of this step was 83%, computed over a sample of two hundred candidate
sentences extracted from Wikipedia.

Selected articles needed to satisfy further criteria before being checked against
ground truth information. Only the sentences containing information about Coun-
try and Time-span of the event(s) were considered potential candidates. For ex-
tracting a date or location mentions, we used a Named Entity Recognition (NER)
library named spaCy11 on every title and sentence of the candidates. Subse-
quently, all the potential candidates were parsed to extract timestamps and coun-
tries. We created multiple candidates sentences in case spaCy returned multiple
placenames.

For parsing string identified as dates, we used the datefinder12 library which
can convert strings into structured objects. It can also extract part of a date, such
as ’early June’. Since sometimes a specific year was not explicitly mentioned
in a sentence but could be guessed from the context, we defined the following
heuristics for extrapolating the year found elsewhere in a text:

If there was only one year within a sentence, we could assume that the
same year applies to every incomplete date entity in that sentence.

If there was no year in the sentence and only one year in its whole para-
graph, we could assume that the same year applies to that sentence.

If there was no year in the sentence and only one year in the title of the
article containing the sentence, it could be assumed that the same year
applies to that sentence.

The heuristics used for associating place names to their respective country was a
cascade of the following heuristics:

11https://spacy.io
12https://datefinder.readthedocs.io
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1. Wikidata: we searched for the placename identified by spaCy in Wikidata.
If the entity returned has a corresponding page in the English Wikipedia,
the country returned by the query is associated with the candidate sentence.

2. Nominatim: we searched on Nominatim13 the place names that were not
associated to a country after the first step. The query used the public Nom-
inatim API and the country associated with the place name was the most
’important’14 result returned.

3. Mordecai:15 the sentences and titles not associated with any country in the
previous steps were then processed using Mordecai for inferring a country
from the text.

Tables 3.2 shows the results of the application of our methodology on a set of
sentences. In some cases, the NER library could not find any placename; some-
times, the placename did not lead to the identification of the related country and
in other cases, we could extract a country name. Finally, we discarded candidate
sentences for which we could not find a country and a time reference.

Matching wikipedia candidates and ground truth information
The last part of the matching process was determining if the selected Wikipedia
sentences were identifying an entry in the ground truth database. We defined
three methods for identifying matching records. Here they are listed from the
most strict to the laxest:

Country and Year-Month-Days matching
A Wikipedia candidate matches an event in the ground truth database if
they link to the same country name and the date in the title or sentence of
the candidate is within the time range[start_date, end_date+5 days] of the
ground truth entry.

For instance, the sentence ’On April 13, reportedly 12 people counted were
killed by Rainstorm and Flash flooding in KPK and Balochistan.’ matches
the flood happening in Pakistan between 2019-04-13 and 2019-04-18.

13https://nominatim.openstreetmap.org/
14The results have a value that represents the importance of the location according to the number

of citations in Wikipedia.
15https://github.com/openeventdata/mordecai
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Sentence Location entities Countries

’The 2009 West Africa floods are a natural disaster that began in June 2009
as a consequence of exceptionally heavy seasonal rainfall in large areas
of West Africa’

West Africa None

’In the Tiquicheo Municipality, 10 houses flooded after a river near the city
overflowed its banks’

the Tiquicheo Municipality None

’The town of Poldokhtar in Lorestan Province was engulfed by flood water.’ Poldokhtar, Lorestan Province None

’2015 Southeast Africa floods’ None None

’New Orleans Outfall Canals’ None None

’Serious flooding was also reported in Greenwich, Woolwich and other
locations further downriver, causing major property damage.’

Greenwich, Woolwich United Kingdom

’In July 2012, heavy torrential rains caused floods in Kyushu, Japan, leaving
32 people dead or missing.’

Kyushu, Japan Japan

’In Antu County, 70 homes in one village were destroyed by flooding, a mountain
valley was submerged by floods 20 m deep, forcing 570 families to evacuate.’

Antu County China

Table 3.2: Examples of successful and unsuccessful attempts at location infer-
ence from text

Country and Month-Year matching
A Wikipedia candidate matches an event in the ground truth database if
they link to the same country name and the month in the candidate sen-
tence or title is overlapping with the time range[start_date, end_date] of
the ground truth entry.

For instance, the sentence ’In August 2018, the region yet again experi-
enced record-breaking flooding in valley towns such as Coon Valley, Wis-
consin, La Farge, Wisconsin and Viola, Wisconsin.’ matches the flood
happening between 2018-08-20 and 2019-08-22 in the USA.

After performing the matching for each of these pairing methods, we evaluated
the hits manually for events covering three different months.

We define the Precision of our methodology as the fraction of matched can-
didates that are describing an event enlisted in the ground truth dataset. We can
think about Precision as the answer to the question How many Wikipedia matched
candidates are a flood recorded in the ground truth dataset?

We define the Recall of our methodology as the fraction of ground truth
events that are identified by the matched candidates. We can think about Recall
as the answer to the question How many floods in the ground truth dataset are
matched by Wikipedia candidates?

Results of Precision and Recall evaluated manually over a sample of three
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Period Floods in ground truth Precision(%) Recall (%)

November 2016 18 66.67 16.67
September 2017 20 66.67 15.00
June 2018 26 88.89 34.62

Table 3.3: Metrics for country and year-month-days matching

Period Floods in ground truth Precision(%) Recall (%)

November 2016 18 66.67 16.67
September 2017 20 50.00 20.00
June 2018 26 53.33 57.68

Table 3.4: Metrics for country and year-month matching

months from our consolidated dataset are shown in Tables 3.3 and 3.4. For
the identification of a correlation between socio-economic indicators and flood
coverage in Wikipedia, we opted for the matching method using Country and
Year-Month-Days because a higher Precision implies that more matches are rel-
evant, thus better support our analysis.

3.4. Results
We will use the term Hit Rate to refer to the percentage of matches be-

tween the Wikipedia articles and events in the ground truth. A Hit Rate of 100
means that all the floods representing a set of events in the ground truth database
matched some Wikipedia candidates. A Hit Rate equal to 0 represents no cover-
age in the English Wikipedia for any flood of the set of events analyzed.

Our research analyzed how articles in English Wikipedia covered the floods
reported worldwide in our ground truth database. We analyzed several socio-
economic variables to see whether they correlate with floods coverage. These
variables are GDP per capita, GNI per capita, country, continent, date, fatalities,
number of English speakers and vulnerability index.

Figure 3.4 shows the top twenty countries ordered by the number of floods in
the ground truth dataset and their respective hit rate. Among the countries with
the highest number of floods, the United States shows a hit-rate two times higher
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Figure 3.4: Top 20 countries ordered by number of floods in ground truth

than the ones of all the others.
Figure 3.5 shows the top twenty countries sorted by the hit-rate and their

coverage in the ground truth database. Floods events in the USA and Canada are
reported most frequently on Wikipedia English than anywhere else in the world.
The language can be only a partial explanation because for floods in Australia
the hit-rate is half and lower than other non-English-speaking countries.

Table 3.5 and Figure 3.6 show the ratio between floods recorded in the ground
truth database and the floods detected in Wikipedia aggregated by continent.
Since floods are geophysical event, this aggregation offer a comparison between
similar Areas’ extension.

Although most events happened in Asia, floods in North America have been
reported more frequently.

In order to deepen our analysis, we divided the countries into six groups
according to their Gross Domestic Product per capita in US Dollars, following
the classification set by the World Bank for this indicator16:

Low income: GDP per capita < $812

Low middle income: $812 ≤ GDP per capita < $2,218

Middle income: $2,218 ≤ GDP per capita < $5,484

Upper middle income: $5,484 ≤ GDP per capita < $9,200

16urlhttps://data.worldbank.org/indicator/ny.gdp.pcap.cd
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Figure 3.5: Top 20 countries with at least five floods in ground truth dataset
ordered by hit rate

Floods in ground truth Floods in Wikipedia Hit rate (%)

Asia 194 73 37.63
North America 106 52 49.06
Africa 96 21 21.88
Europe 85 18 21.18
South America 57 6 10.53
Oceania 27 8 29.63

Table 3.5: Percentage of ground truth floods matched by Wikipedia: per Conti-
nent

High income: $9,200 ≤ GDP per capita < $44,714

Very high income: GDP per capita ≥ $44,714

Table 3.6 and Figure 3.7 show the results for each of these groups. Within the
ground truth database, floods recorded for countries in the high-income group are
more than in any other group. The hit-rate of most countries from lower-middle-
income to high-income varies between 30% and 40%. Hit-rate is considerably
different between the lowest and the highest bracket, close to 19% for the former
and 65% for the latter.

We also grouped the countries into four different groups following the clas-
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Figure 3.6: Floods for each continent and their corresponding hit rate ordered by
number of floods in the ground truth

Countries Floods in ground truth Floods in Wikipedia Hit rate (%)

Low income 21 46 9 19.57
Lower middle income 37 87 29 33.33
Middle income 39 113 32 28.32
Upper middle income 27 69 14 20.29
High income 67 165 45 27.27
Very high income 28 69 47 68.12

Table 3.6: Number of floods matched per Country according to GDP per capita

sification set by the World Bank for this indicator.17 The difference in coverage
(hit rate) between high-income and low-income countries is even more evident,
as shown in Figure 3.8.

INFORM Global Risk Indicators (GRI) is an open-source risk assessment
tool for humanitarian crises. It can support decisions about prevention, pre-
paredness and response [58]. We combined two socio-economic indicators that
complement our previous analysis from their 2018 report:

The Vulnerability indicator addresses the intrinsic predispositions of an ex-

17https://data.worldbank.org/indicator/NY.GNP.PCAP.CD?view=
chart
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Figure 3.7: Floods for each level of GDP per capita and its corresponding hit rate

posed population to be affected or to be susceptible to the damaging effects
of a hazard. So, the Vulnerability dimension represents the economic, po-
litical and social characteristics of the community that can be destabilized
in case of a hazardous event. Physical vulnerability is a different matter; it
is embedded into the hazard and exposure indicators.

The Lack of coping capacity indicator measures the ability of a country to
cope with disasters in terms of formal, organized activities and the effort
of the country’s government as well as the existing infrastructure, which
contribute to the reduction of disaster risk.

They are both expressed on a scale of zero to ten. We combine the indicators
as the square root of the product between them. We grouped the events in the
ground truth database into four categories sorted by ascending value of the com-
bined indicator. The higher is the indicator, the more vulnerable is the country.
Events where the capacity to cope with a disaster is the lowest, therefore where
the impact could be the highest, are less likely to be described in Wikipedia.

Our analysis also considered the percentage of English speakers18 in a coun-
try. In Table 3.8 and Figure 3.9, we see an increase in the coverage for countries

18https://en.wikipedia.org/wiki/List_of_countries_by_
English-speaking_population
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Figure 3.8: Floods for each level of GNI per capita and its corresponding hit rate

Vulnerability Floods in ground truth Floods in Wikipedia Hit rate (%)

0-2 (least vulnerable) 66 21 31.82
2-4 157 60 38.22
4-6 130 43 33.08
6-8 101 31 30.69
8-10 (most vulnerable) 90 20 22.22

Table 3.7: Percentage of ground truth floods matched by Wikipedia: per IN-
FORM indicators

with 60% or more English speakers, and then another increase for countries with
80% or more English speakers. The percentage of the English-speaking popula-
tion is an indicator of the probability that an event would be described in English
Wikipedia. Nevertheless, the population of a country could be related to the
event coverage by English-speaking editors. We sorted the countries by ascend-
ing population and divide them into four groups containing the same number of
countries each.

Group 1: population < 754,394

Group 2: 754,394 ≤ population < 6,465,513
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English speakers (%) Floods in ground truth Floods in Wikipedia Hit rate (%)

<20 131 36 27.48
20-40 67 19 28.36
40-60 37 14 37.84
60-80 24 9 37.50
80+ 92 53 57.61

Table 3.8: Percentage of ground truth floods matched by Wikipedia: per percent-
age of English speakers

Figure 3.9: Probability of hit given the percentage of English speakers

Group 3: 6,465,513 ≤ population < 24,992,369

Group 4: 24,992,369 ≤ population

Indeed, as shown in Table 3.9, the hit rate is more significant for the most pop-
ulated countries. In order to determine if the time of events affects the coverage
of floods in Wikipedia, we analyzed the temporal distribution of the events. The
method applied for evaluating hit rates showed that the relation between ground
truth events and matches follow similar proportions across time, as shown in Fig-
ure 3.10. Table3.10 and Figure 3.11 shows a significant increase in the number
of events that are matched by Wikipedia articles for floods in the ground truth
database leading to hundred of fatalities or more. Combined with the other in-
dicators, this could mean that only events with high impacts echoed to countries
with higher English-speaking population rate and high-income to mid-income.
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Country population Floods in ground truth Floods in Wikipedia Hit rate (%)

G1 (smallest) 14 2 14.29
G2 60 8 13.33
G3 133 29 21.80
G4 (largest) 342 137 40.06

Table 3.9: Percentage of ground truth floods matched by Wikipedia: per popula-
tion

Figure 3.10: Floods for each month between 2016-03 and 2019-04

Figure 3.11: Probability of hit given the number of fatalities

3.5. A Tale of two Floods
North and central america, September 2017.
Hurricane Irma made landfall on northeast Caribbean islands during the early
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Num. of fatalities Floods in ground truth Floods in Wikipedia Hit rate (%)

0 164 31 18.90
1-9 184 57 30.98
10-99 173 68 39.31
100-1999 27 20 74.07

Table 3.10: Percentage of ground truth floods matched by Wikipedia:per number
of fatalities

hours of 6 September, affecting Antigua and Barbuda, Anguilla, British Virgin
Islands, St Barthélemy, St. Martin, the Virgin Islands and other islands in the
eastern Caribbean Sea. After causing devastating damage across the Caribbean,
Hurricane Irma made landfall in the Florida Keys on 10 September and worked
its way north, bringing with it strong winds, storm surge and flooding rain.

Although national news agencies covered only partially the event, we can say
that Irma caused between fifty and one-hundred fatalities, affecting millions of
people. In our datasets, the Hurricane Irma is linked to several countries, and it
produced the highest number of matches (43 total, 40 only USA), meaning many
sentences on Wikipedia reported about it. Find some examples of sentences re-
porting Hurricane Irma in Table 3.11.

Sentence Date Countries

’In September 2017, Hurricane Irma storm surge caused major
flooding in the downtown area of Jacksonville.’

2017-09-12 United
States of
America

’Moyer, Crystal (September 8, 2017). Hyatt Regency in down-
town Jacksonville being evacuated.’

2017-09-08 United
States of
America

’People stand in a flooded street that usually serves as a farmers
market, in Ouanaminthe, northeast Haiti, September 8, 2017.’

2017-09-08 Haiti

’Hurricane Irma: 10 dead in Cuba as record flooding hits northern
Florida [...] September 11, 2017.’

2017-09-11 Cuba

Table 3.11: Examples of sentences reporting Hurricane Irma
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Sudan, August 2018.
By August 2018 heavy rains in Sudan that had started in mid-July had caused
severe flooding. As of 16 of August the floods and rain had left at least 23
people dead, over 60 injured and affected more than 70,000 people. Although the
event appears in all three data sources, we could not find any match in Wikipedia
applying our methodology. Either the event was not the subject of any Wikipedia
article, or it was not described as accurately as other events.

Even if both events had a high number of fatalities and affected people, while
the former event was widely identifiable on Wikipedia, the latter case was less
(or poorly) described.

3.6. Conclusions
According to the United Nations Office for Disaster Risk Reduction, the im-

pact of natural hazards is highest on the most marginalized populations, exac-
erbating inequality and further entrenching poverty. Beyond focused attribution
to single events, impacts are often found to be a function of a series of associ-
ated shocks such as famine, disease and displacement that prompt disruption in
multiple dimensions (e.g. livelihoods, education or labour-market) [99].

For instance, it is estimated that 35.6% of the population affected by floods
in Pakistan in 2010 consequently slipped under the poverty line as a result.

The results of our analysis are consistent along several dimensions, and paint
a picture in which Wikipedia’s coverage is biased towards some countries, par-
ticularly those that are more industrialized and have large English-speaking pop-
ulations, and against some countries, particularly low-income countries which
also happen to be among the most vulnerable. This means that tools using data
from social media or collaborative platforms should be carefully evaluated for
biases.

Limitations
We considered only one type of event that is very prevalent globally: floods, but
other types of events should be considered. We had chosen to focus on one
type of event because this work is a first attempt to bring Wikipedia and its
crowdsourced information into the scope of Disaster Management. Therefore
the experiments and the results must be solid, reproducible and clear.

We relied on methodologies demonstrated and developed in previous work
such as automated classification of text using ML models and we used consistent
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exhaustive data sources.
Automated content analysis cannot replace expert annotation, but consider-

ing that the English Wikipedia contains over five million articles, it is impractical
to perform this analysis manually. Some biases introduced by automated con-
tent analysis may include the usage of libraries for parsing geographical entities,
which may have been trained using more data from some countries than from
others; these biases need to be studied.

It would be necessary to perform this study considering other (language) ver-
sions of Wikipedia in order to understand how an editor’s language affects the
coverage bias.

Reproducibility
Code implementing our methods, the merged list of floods, and the raw and
processed datasets of Wikipedia matches are available: https://github.
com/javirandor/disasters-wikipedia-floods.

In this chapter we noted how user-generated data can carry biases. As we expect
the same from other social networks, we can’t draw conclusions on the severity
of a phenomenon based ’solely’ on the intensity of its activity on social media.
The next chapter confirms that this is also the case for Twitter.
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Part II

Social Media Analysis for
Situational Awareness
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Chapter 4

SOCIAL MEDIA AS A
SOURCE OF
FLOOD-RELATED
INFORMATION

In the current chapter, we describe how to integrate social media into EFAS
to provide valuable signals augmenting flood risk information provided by this
platform, by finding potentially relevant and representative messages from flood-
affected areas in the languages spoken in those areas.

4.1. Introduction
Although the value of social media analysis in providing timely data and

methods for the analysis of natural hazards has been recognized in previous
work, comparatively much less attention has been given to how to integrate so-
cial media in a seamless, reliable way with tools for disaster forecasting and
monitoring.

Since the geographical domain of EFAS products covers an area where pop-
ulation speaks more than 27 languages, we focused on a multilingual system. We
therefore use representation of words as vectors in order to exploit probabilistic
functions to infer similarities between words, know as word embeddings[73].

Our research fills this gap by describing the integration of social media moni-
toring into a flood monitoring and forecasting platform, enriching hydro-meteorological
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information with reports from the public.
We developed software for EFAS named Social Media for Flood Risk (SMFR)

which provides near-real-time information collected from social media about
flood risks and impacts, including examples of messages in social media about
it. Figure 4.1 represents the conceptual schema of SMFR’s components, part of
which is described in this chapter, and their integration.

Our main contributions are:

We integrate social media data collection into EFAS based on its fore-
casts. Whenever EFAS rapid risk assessment identifies heightened risk of
floods in a certain area, we trigger data collection from social media (in
our case, Twitter) respecting API limitations while dealing with the possi-
bility of various events happening at the same time. A similar mechanism
is already in use for triggering pre-tasking of satellite image acquisition in
Copernicus EMS

We describe a methodology that requires a minimal amount of manual
intervention for each additional language, and demonstrate it with four
languages being used to bootstrap a classifier for a fifth language. This
methodology is based on Convolutional Neural Networks and its multilin-
gual capabilities stem from using either language-agnostic word embed-
dings, where vectors representing sentences are not dependent on a single
language, or multilingual word embeddings [13].

We describe an aggregation and selection module that can select represen-
tative messages for an area in which flood risk has been predicted.

We integrate SMFR into EFAS and demonstrate it during the recent floods
affecting Calabria, Italy, in early October 2018. Note that we decided to
present only one case for the sake of clarity and conciseness, however
SMFR has been tested with additional real cases.

The goal of our system is twofold: while bringing more detail to the out-
comes of an hydrological model seems to answer to our RQ1: Is it possible to in-
tegrate effectively social media signals with authoritative data at a pan-european
level where riverine flood likelihood is estimated? expressed in Chapter 1, Our
methodology offers an answer also to the second question RQ2: Is it possible
to classify reliably the relevance of social media information to floods using a
’zero-shot’ transfer learning ?.
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Figure 4.1: Schema of SMFR components

The remainder of this chapter is organized as follows: the next section presents
related work; then, three technical sections describe the methods for on-demand
data collection, multilingual classification, and aggregation and selection. Fi-
nally, we present experimental results, including a case study, followed by our
conclusions and future work.

4.2. Related Work
In previous work, authoritative and nonauthoritative data have been com-

bined in various ways.

Multilingual classification of social media postings
SMFR is designed to work across multiple languages. The main processing that
we do to messages is to determine whether they are relevant to flood risks/im-
pacts or not. This is done through supervised classification, which requires la-
beled data. However, to work across multiple languages in practice requires to
be able to classify messages in languages for which we may not have labeled
data yet.

Past research addressed cross-lingual bootstrapping of classifiers for natural
disasters detection on twitter [63] relying on automatic translation to use avail-
able models. Khare et al. (2018) built a statistical-semantic classification model
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with semantics extracted from BabelNet and DBpedia and compared relevancy
classifiers with datasets translated into a single language, as well as with cross-
lingual datasets. It was shown how adding semantics increases cross-lingual
classification accuracy. increases cross-lingual classification accuracy.

Our work, in contrast, does not require semantic resources, we only leverage
on word embeddings for multilingual modelling as demonstrated by Luong et al.
Indeed, we present and demonstrate two different ways in which word embed-
dings can be used to perform multilingual classification: using language-agnostic
word embeddings learnt from a multilingual corpus [73], and using multilingual
word embeddings that are aligned across languages [13]. In both cases, we can
use labeled data in a set of known languages to bootstrap a classifier for a new
language for which no labels are available.
On-Demand data collection
The data collection should ideally achieve high recall, capturing a large fraction
of the relevant information, while at the same time having high precision, avoid-
ing irrelevant information. Both goals usually enter into conflict and trade-offs
are necessary. Previous research has described extensively how data collection
from Twitter is done [35]), in this section we focus on the specific aspects of our
system, which performs on-demand data collection.

The key element of our data collection is its triggering mechanism which
is done dynamically according to flood forecasts. EFAS runs two simulations
per day, identifying NUTS-2 areas (typically regions or provinces) where there
is a high probability of floods impacts in the following 48 hours as shown in
figure 4.2. Once the list of NUTS-2 areas is received, the system extracts their
coordinates and the names of all cities in the area that have more than a cer-
tain number of inhabitants. The coordinates are used for filtering the Tweets by
location while the names of cities, in english and local language, translate into
a series of ’OR’ filters by keywords. In our current configuration, we set this
threshold empirically to 80,000 inhabitants, which tends to capture a handful of
cities for each event. A lower threshold is possible as long as it does not generate
a large number of city names that exceeds Twitter’s API limitations.

Given the limitations in Twitter’s API, we use a single connection against
Twitter’s public streamer at any given time. Additionally, the public streamer
limits queries to up to 400 keywords (each of less than 60 bytes) and up to 25
location rectangles.1 A query builder component groups several active events

1https://developer.twitter.com/en/docs/tweets/filter-realtime/
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Figure 4.2: Screenshot of EFAS web interface with the layers identifying areas
where there is high probability of floods in the following 48 hours and rapid
impact assessment

in order to update a single request respecting these limitations, while keeping
information about the single possible event identified by EFAS. Each collection
is kept active for two days after the expected peak time. If the peak time esti-
mation is updated by a new EFAS simulation, the collection’s expiration time is
extended. Given that we have a single query, SMFR has to separate the incoming
stream into different events according to locations and keywords. If a message
belongs to overlapping regions or contains names of cities in different events, the
message is copied to all the matching events.

Figure 4.3 depicts how rapid risk assessment leads to the definition of a series
of keywords (city names) and locations (rectangles containing NUTS-2 areas)
for filtering information from Twitter’s public streamer. The areas in yellow and
red in the figure are identified as having high risk of flood by EFAS. Then, the

overview accessed November 2018.
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system determines names of cities in each area and bounding boxes surround-
ing each area. We have heuristics that merge neighboring areas and de-prioritize
smaller cities if their quantity exceeds Twitter’s limitations, but in practice these
are rarely triggered.

Figure 4.3: Example depicting areas in which EFAS forecasts high risk, which
appear in yellow and red color. Each area defines a set of keywords, which are
names of cities, and locations, which are bounding boxes (rectangles). These
keywords and locations are used to gather information from Twitter.

Multilingual classification
The setting used was supervised binary classification. The positive class com-
prised all messages indicating that "a flood has just happened or is about to hap-
pen" while the negative class included all other messages.

Training data was labeled using crowdsourcing platform GetHybrid (https:
//gethybrid.io/). The amount of labeled data comprises over 7,000 an-
notated messages, each one annotated by three annotators independently. Four
training datasets were created, containing labeled tweets in German, English,
Spanish, and French. Each language includes between 1,200 and 2,300 anno-
tated messages, as shown in Table 4.1 (column "TL" for Total Labeled) in the
section describing the experiments. This amount of data is typical in automatic
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classification tasks [35].

Convolutional neural networks
We tested a number of learning algorithms, including Support Vector Machines
[39], which have been shown to be effective for a number of general text clas-
sification tasks, and Random Forests, which have been shown to be effective
specifically for classifying crisis-related Twitter messages [36]. In both cases,
we represented messages as bag of word unigrams and bigrams, and the per-
formance was better than simpler methods such as a naïve Bayes classifier or a
decision tree.

A comparatively newer approach for text classification that has proven to be
quite effective is the use of Convolutional Neural Networks (CNN). These have
been employed for a number of tasks including sentiment analysis [91].

There are four main operations in every Convolutional Neural Network:(i)
Convolution; (ii) Non Linearity, Rectified Linear Unit (ReLU); (iii) Pooling or
Sub Sampling;(iv) Classification (Fully Connected Layer). The primary purpose
of (i) Convolution is to extract features from the input using a filter smaller in
size than the original input. The second (ii) operation ReLU replaces all negative
values in the feature map by zero. The (iii) Pooling operation , max pooling in
our case, reduces dimensionality by taking the largest element from the rectified
feature map within a neighborhood. The (iv) Classification operations, after a
series of iteration of the (ii) and (iii) then uses the higher-level features identified
to deter a class using several fully connected perceptrons layers.

A Support Vector Machine (SVM) is a classifier defined by a separation hy-
perplane. Input of the algorithm is the labeled training data, while its output is
an optimal hyperplane which places new data into distinct classes.

Random forest classifiers infer a series of decision trees from randomly se-
lected subset of the labeled data. The results are then passed through different
decision trees to finally classify the test data.

The specific architecture we used is described in the next section; using it,
we performed various experiments using 10-20 epochs of training (passes over
the entire training set in randomised order).

The results were similar in performance to the SVM and Random Forests.
However, manual error analysis showed that qualitatively these errors were dif-
ferent. While in the case of SVM and Random Forests a misclassification, such
as a false positive, is usually the result of a word marking flood relevance (e.g.,
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"flood") used in a completely different context (e.g., "my timeline is flooded with
messages"), in the case of the neural network we used a misclassification was of-
ten semantically related to floods, such as a message referring to the effects of
other natural disasters. The lesson learned from these experiments was that neu-
ral networks are better in this problem at capturing semantic characteristics that
are relevant for our task of distinguishing flood-related messages.

Neural network architecture
Current implementations of convolutional neural networks for text processing
tasks tend to have a similar architecture. They consist of an input layer, a word
embedding layer, a series of convolutional and max pooling layers, a dense layer,
and an output layer [47].

The input layer holds a padded sequence of words with a maximum length
S = 100 words, which is more than sufficient for tweets considering their maxi-
mum length is 280 characters.

The word embedding layer converts every word into a low-dimensional vec-
tor, typically in the order of a few hundred dimensions (e.g., D = 200 or
D = 300). We used two sources of pre-trained word embeddings, as described
in the next section. For each pre-trained word embedding, we considered two
configurations-ups: one in which the parameters of the pre-trained word embed-
ding were fixed, i.e., not modifiable while training the neural network, and one in
which they were part of the optimization process, i.e., modifiable while training.
In our experiments, best results were obtained when these parameters were fixed,
probably because the amount of flood-specific data that we are using for training
is small in comparison with the corpora used to create these word embeddings.
The results we report on this chapter use fixed word embeddings.

The convolution layers collect several word embeddings representing adja-
cent words and "summarize" them into a single vector. The main parameter for
the convolutions is the width C, which is how many adjacent words to take into
account. In the text "flood warning due to heavy rain" using C = 5, there are
two possible convolutions: "flood warning due to heavy" and "warning due to
heavy rain." The parameter C is determined considering what is the effect of the
context on the meaning of a word, and C = 5 is a typical value. We did not
observe any increase in performance with a larger value of C, while a smaller
value of C may lose contextual information.

The max pooling layer collect a series of m disjoint convolutions as input,
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and generate a vector of dimension d < D as output. The max pooling step
operates differently from the convolution layers in the sense that the windows
it uses are disjoint, i.e., non-overlapping. The purpose of this layer is to reduce
the dimensionality of the network for computational purposes and to reduce the
chances of overfitting. In our case we used m = 5 and d = 128, which are
typical parameters used in text classification.

The final layer is a densely-connected (complete) layer. All the neurons in
the last max pooling layer are connected to all the neurons in this dense layer,
and all the neurons in this dense layer are connected to the two output neurons.
One of the two output neurons should activate when the example is positive (i.e.,
a message indicating that a flood has just happened or is about to happen), and
the other output neuron should activate when the example is negative (i.e., the
message does not indicate that a flood has just happened or is about to happen).

Word embeddings for ultilingual classification
The usage of word embeddings allows to incorporate multilingual capabilities in
two ways: by using language-agnostic word embeddings and by using language-
aligned word embeddings.

Our source of language-agnostic word embeddings is GloVe [73], which are
vectors of dimensionality 200 obtained from a large corpus of tweets containing
27 × 109 tokens (1.2 million of them unique). While these word embeddings
were not developed for multilingual tasks, they do incorporate any word present
on a tweet in a language-agnostic manner.

Our source of language-aligned word embeddings is MUSE [13], which are
vectors of dimensionality 300 obtained from various snapshots of Wikipedia in
various languages. For each language, vectors for the 200,000 most frequent
tokens are provided, and these vectors have been aligned across languages us-
ing parallel lists of tens of thousands of words. In the resulting embeddings,
two words with the same meaning in different languages are mapped to similar
vectors.

In our experiments, presented on the next section, both pre-trained sets of
vectors allow to transfer an automatic classifier learnt with labeled data from one
language (or a set of languages) into another language with no new labeled data
("cold start") or with a limited amount of labeled data ("warm start").
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4.3. Methods
In our integration with EFAS, flood risk is established by an hydro-meteorological

model and our task is to add complementary information that brings a better un-
derstanding of the situation on the ground. Relevant messages are mapped to
NUTS-2 areas (Nomenclature of Territorial Units for Statistics, Level 2) either
by using explicit coordinates which are rarely present in tweets, or more often,
via a text-based geocoder. Geocoding deals with messages that do not include
explicit geographical coordinates, but mention a place name such as landmark or
city. Geocoding uses a Named Entity Recognition tagger to obtain possible loca-
tions in a text considering the syntax of the message. It uses a gazetteer in a large
database of place names with their corresponding geographical coordinates, and
finally it uses a neural networks to infer the correct country and correct gazetteer
entry for those places. We used a library named Mordecai [29] which extracts
place names from a piece of text, resolve them to the correct place, and return
their coordinates and structured geographic information.

Messages are aggregated at the level of an event, but also at the level of each
NUTS-2 area. In both cases, one key operation is to select a representative sub-
set of messages. We do this operation by using the following efficient heuristic
based on de-duplication and text centrality:

1. Select up to 5,000 tweets having at least a 90% probability of being flood-
related; if there are more than 5,000 tweets, select the ones with the highest
probability

2. Compute similarities between these tweets

a) Consider only pairs having probabilities of being flood-related that
differ at most by 0.0001, exploiting the fact that near-duplicate tweets
will be given the same probability by the neural network

b) Compute edit distance and use it to compute normalized similarity:
1 − ℓ(m1,m2)/(|m1| + |m2|) where ℓ(m1,m2) is the edit distance
between the two messages and |m1|+ |m2| the sum of their lengths.

c) If the normalized similarity is greater than 0.8, use the timestamps of
the tweets to mark the newer tweet as a duplicate of the older tweet

3. Sort all unique tweets by their multiplicity, i.e., by the number of dupli-
cates they have, and keep the top 100
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4. For these tweets, compute all pair-wise similarities using the same formula
as above, and add the similarities for every tweet; this is the centrality of
the tweet.

Step 1 of the heuristic has the goal of removing messages that are irrelevant.
Step 2 removes near-duplicates which are redundant, but keeps track of how
many near-duplicates a tweet has, for the purposes of using redundancy as a
signal of importance. Step 3 applies a well-known lexical centrality heuristic
[21], in which a salient message is one that has content in common with many
other messages.

Figure 4.4 shows a first deployment of SMFR on EFAS web interface, it
describes how the areas and their most relevant tweets are presented to EFAS
users. The NUTS-2 area can be grey (low activity), orange (medium activity) or
red (high activity) according to the ratio between numbers of annotated tweets.
The triggering that lead to the creation of the collection depicted can be seen in
Figure 4.2

Experimental results
We describe two types of experimental results. First, we perform experiments to
test the performance of the multilingual-classifier, comparing it with a monolin-
gual classifier. Second, we show a real example of an actual flood event, describ-
ing the performance of the on-demand collector, of a multilingual classifier that
does not use labeled data from the target language, and of the aggregation and
selection method.

Multilingual classifier
The multilingual classifier provides a solution for bootstrapping classifiers in
new languages based on labeled data for other languages. The aim of the exper-
iments is to compare the classifiers trained with and without labeled data for a
specific target language. Performing this evaluation, nevertheless, requires hav-
ing labeled data to measure effectiveness parameters.

For these experiments we use four labeled sets of flood-related tweets in
German (DE), English (EN), Spanish (ES) and French (FR). These were labeled
by crowdsourcing workers via crowdsourcing as previously described; the ques-
tion the annotators had to answer was "is this message indicating that a flood is
happening or about to happen?" Hence, positive examples are the ones that are
related to flood risk and impact, and negative examples are the ones that are not.
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Figure 4.4: Screenshot of EFAS web interface with the layer identifying areas
where there is high tweet activity and their most representative tweets on the
right side. The basemap has been darkened for better visualization

For each language and word-embedding source we performed three exper-
iments: monolingual, cold-start, and warm-start. We used two thirds of the la-
beled data for training the classifiers and the remaining third for testing. We keep
the testing portion fixed across experiments.

In the monolingual experiment we simply use labeled data in one language
to predict the label for messages in the same language. In the cold-start exper-
iment we train a classifier for a new language using only labeled data for other
languages; for instance for automatically labeling tweets in Spanish, we use a
classifier trained on labeled data for English, German, and French. In the warm-
start experiment we use a set-up similar to the one of the cold-start experiment,
but we add a limited number of messages (300) labeled in the target language.
Each experiment is done once using GloVe embeddings and once using MUSE
embeddings. We report precision, recall, and F-measure for each experimental
setup in Table 4.1.
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Table 4.1: Classification results for four languages (German, English, Spanish,
and French). TL indicates the total number of labeled messages, while Pos. in-
dicates the percentage of those who were labeled as flood-related. P, R, and F
indicate Precision, Recall, and F-Measure respectively. We report the perfor-
mance of a monolingual classifier, of a cross-language classifier with "cold start"
(uses no training data in the target language), and of a cross-language classifier
with "warm start" (uses 300 labeled items in the target language).

Glove embeddings MUSE embeddings
monolingual cold-start warm-start monolingual cold-start warm-start

TL Pos. P R F P R F P R F P R F P R F P R F

DE 2356 46% 0.95 0.82 0.87 0.59 0.85 0.70 0.93 0.8 0.86 0.88 0.85 0.87 0.54 0.82 0.65 0.89 0.80 0.84
EN 1999 20% 0.79 0.63 0.70 0.59 0.49 0.54 0.67 0.51 0.58 0.64 0.68 0.66 0.33 0.50 0.40 0.58 0.28 0.38
ES 1592 48% 0.80 0.78 0.79 0.61 0.75 0.67 0.71 0.83 0.77 0.70 0.84 0.77 0.62 0.69 0.65 0.68 0.89 0.77
FR 1248 40% 0.74 0.72 0.73 0.50 0.46 0.48 0.62 0.77 0.69 0.69 0.75 0.72 0.44 0.86 0.58 0.59 0.72 0.65

Table 4.1 reports values for Precision (P) , Recall (R) and F-measure. We also
include the total number of tweets manually labeled by crowdsourcing workers
(TL) and its percentage of positive (Pos.) tweets. Collections for German, En-
glish, Spanish, and French consider tweets posted during floods happening in the
last two years in Germany, the UK, Spain and Mexico, and France respectively.
Hence, the number of labeled tweets and the percentage of positive examples
differ across languages.

All the results show the same pattern: the monolingual classifier performs
best, as expected; the cold-start classifier (which does not use any labeled data in
the target language) suffers from a loss mostly of precision, but also of recall; and
the warm-start classifier (which involves annotating a small number of tweets in
the target language) has better performance than the cold-start classifier both in
terms of precision and recall. Indeed, the warm-start classifier often achieves an
F-measure that is comparable to the one of the monolingual classifier. Regarding
the choice of word embeddings, results suggest that the performance using GloVe
or MUSE embeddings are comparable.

In general, considering the combination of the information from the clas-
sification with the known locations from the EFAS forecasts, the classification
performance is sufficient to extract representative tweets from an event and to
map approximately the affected locations, as we demonstrate next.
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4.4. Case Study: Calabria Floods in October 2018
In early October 2018, floods affected the region of Calabria in southern

Italy. At least 2 people died in flash flooding after severe weather which peaked
on October 5th. A mother and her seven year old son, who were swept away by
flood waters in their car, were found in a river near Lamezia Terme, between the
towns of San Pietro a Maida and San Pietro Lametino in Calabria. Other areas
of Calabria were also hit by flooding and landslides.

Several families were forced to evacuate their homes and people were res-
cued after they climbed onto the rooftops of houses to escape the flooding.2 Ital-
ian news agency ANSA, stated that the Ponte delle Grazie bridge on provincial
highway 19 in the area collapsed during the storms [78]. Vigili del Fuoco, Italy’s
National Firefighters Corps, reported major flooding in Ciro Marina, Petilia de
Policastro, Strongoli, Cotronei and Isola di Capo Rizzuto. As shown in Fig-
ure 4.5 (a) more than 300 mm of rain fell in 3 days [90].

EFAS forecasted a potential flood in the Calabria NUTS-2 area on the 4th
of October with a predicted peak time of the event for the following day. As
planned, SMFR triggered a collection with a duration of 2 days that was later
extended for an additional day due to persistence of the signal from EFAS fore-
casts. We analyzed the collection once it was stopped, at midnight on the 7th of
October, after collecting 14,347 tweets.

In order to confirm what emerged from experiments in the previous section,
we trained two classifiers for messages in Italian, the first (cold-start) using only
labeled data in German, English, Spanish, and French, and the second (warm-
start) adding 300 manually labeled tweets in Italian from the collected dataset.
For brevity we present results obtained using the GloVe embeddings (results
using MUSE embeddings are similar).

In Figures 4.5 (b) and (c) we depict the position of geo-located tweets anno-
tated by the cold-start and warm-start classifier respectively. Tweets have been
filtered using a relevance to flood (label predicted) greater or equal to 0.8. We
include the tweets geolocated within the bounding box used for triggering the
collection, resulting in 2,847 tweets for the cold-start scenario against 3,857 for
the warm-start scenario. For visualization purposes, tweets geo-located to the
exact same location are randomly scattered by a small amount in the map.

Figure 4.5 confirms the results from the experiments, in the sense that both

2Data provided by https://floodlist.com, which is a EU-supported project providing
reports on past floods.
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cold-start and warm-start classifiers are able to classify relevant tweets, with an
advantage for the warm-start classifier in the sense that it identifies more relevant
tweets and has better coverage of the areas affected by heavy rainfall. This sug-
gests that the cold-start method can provide a first approximation for identifying
an ongoing event, while the warm-start method yields more precise and relevant
tweets.

(a) Rainfall (b) Tweets, cold start (c) Tweets, warm start

Figure 4.5: Comparison of (a) rainfall, (b) tweets located by cold-start model,
and (c) tweets located by warm-start model. Data from floods in Calabria, Italy,
2-5 October 2018. Tweets falling in the same location are randomly scattered for
visualization purposes.

Finally, Table 4.2 shows samples of tweets that have been selected as the
most representative for this event, following the heuristic described previously,
and taking as input the tweets found relevant using the cold-start and warm-start
methods. We can see that in the cold-start scenario the most representative tweets
are relevant to the event considered. However, the warm-start scenario gives
more informative messages. While tweets selected by the cold-start classifier are
relevant, they mostly just confirm the event as reported in the news; in constrast,
the tweets selected in the warm-start case identify a message from the Italian
Prime minister as the most representative ("I follow with concern the evolution
of events ...") and include information about damages and casualties due to the
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flood.

Table 4.2: Representative tweets selected by cold-start and warm-start. Conf. is
the confidence of the classifier. Mult. the multiplicity (number of near-duplicates
of the tweet). Cent. is the centrality (number of closely related but not duplicate
tweets).

Cold-start

Conf. Mult. Cent. Text (first ∼10 words)

1.0 87 89 Second flood in Calabria in 40 days. Devastation and 2 casualties ...
(Seconda inondazione in Calabria in soli 40 giorni. Devastazione e 2 vittime ...)

1.0 11 93 Bad weather in Calabria, the kennel is flooded ...
(Maltempo in Calabria, il canile e 'sommerso dall' acqua ...)

1.0 7 94 Bad weather: Red alert in Calabria today and in Puglia tomorrow ...
(Maltempo: oggi allerta rossa in Calabria e domani in Puglia ...)

1.0 5 97 Meteo, panic in Calabria: streams flooding roads. Rescuers using rubber boats ...
(Meteo, caos in Calabria: torrenti esondati e strade allagate. Soccorsi in gommone
...)

1.0 5 87 Bad weather in Calabria, missing mother and her two sons found dead ...
(Maltempo Calabria, trovati morti mamma e due bimbi dispersi ...)

Warm-start

Conf. Mult. Cent. Text (first ∼10 words)

1.0 194 76 I follow with concern the evolution of events in #Calabria ...
(Seguo con apprensione l ' evolversi degli eventi in #Calabria ...)

1.0 194 88 Water bomb in Calabria, among the upset in the population ...
(Bomba d ' acqua in Calabria, tra la popolazione sconvolta ...)

1.0 14 46 # breakingnews Bad weather Calabria: a woman and one of her son found dead. ...
(#ultimora Maltempo Calabria: morta una donna e suo figlio, disperso il fratello ...)

1.0 23 98 Bad weather in Calabria, mom and son found dead, missing 2yrs old brother ...
(Maltempo in Calabria, morti mamma e figlio: si cerca il fratellino di 2 anni ...)

1.0 8 94 Bad weather, nigthmarish night in Calabria, Civil Protection: "High risk" ...
(Maltempo, notte da incubo in Calabria, Protezione civile: "rischio vittime" ...)

4.5. Conclusions
Our work provides a solution and methodology for integrating flood model-

ing and evidence from the ground in real-time for several countries, potentially
providing information from local witnesses or local media to first responders.
This unique combination of hydrological simulation forecasting and an auto-
matic, immediate monitoring of the extent of the event through social media
without necessity to manually translating information, allows to shorten the re-
sponse time, which is extremely precious in the very early stages of a flood.
Moreover, during the development of an event, collected messages could be
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valuable to international rescue coordinators such as ERCC because they pro-
vide insights about the local response, about whether alerts that have been issued
by authorities, and about some of the concerns that those affected by a flood or
a flood alert may have. The research also highlighted the need for high-recall
data collection in which data in multiple languages is captured, and provided
a methodology for dealing with a new language, by bootstrapping a classifier
with similar languages for which labeled data is available, using either language-
agnostic or language-aligned word embeddings. Additionally, it was clear during
the development of the project that naturally occurring data (i.e., actual messages
posted during a flood in a particular country) are necessary to build an accurate
classifier and aggregator.

Limitations
Due to the nature of EFAS and its geographical domain (pan-European) we fo-
cused on language spoken in the region, therefore we only tested the method-
ology proposed for indoeuropean languages. The performance with other lan-
guages remains to be studied.

At the time of writing, the described system is still in testing phase. After a
period of internal evaluation, SMFR will become operational and its results will
be disseminated among EFAS Partners.

We can envision a global system comprising dozens of languages used to
augment GloFAS coverage. One can also envision further steps in the direction
of using social media as a data source that can feed into a predictive model, us-
ing it not only for confirming known flood risks, but also for detecting new ones,
particularly in areas where digital devices are prevalent but meteorological sta-
tions and other physical sensors are scarce in comparison.

Reproducibility
Datasets and code for the experiments described on this chapter will be available
for research purposes at https://bitbucket.org/lorinivalerio/
iscram\_2019/.

After having described how our research can help detecting floods, our work
continue to study the possibility of assessing impacts during the development of
a flood.
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Chapter 5

SOCIAL MEDIA AS AN
ALERT SYSTEM

Given the importance of making well-informed decisions, our research pro-
ceeded to answer our RQ3 (i.e., the possibility to detect floods worldwide from
social media reports). We run experiments to indicate that a model can indeed
spot impactful events where damages are clearly related to water.

5.1. Introduction
Even if the Paris Climate Agreement, which came into force in 2016, suc-

ceeds in keeping the global average temperature rise well below 2°C compared to
pre-industrial levels, ’global warming’ is still expected to cause severe impacts.
Under the most optimistic scenario of a 1.5°C warming, flood damage is never-
theless set to increase by between 160% and 240% [19]. Regional crisis man-
agement organizations in wealthy countries can afford the cost of high-resolution
flood-monitoring systems. On the other hand, international relief organizations
with a global scope rely on global hydrometeorological models. Different socio-
economic realities combined with heterogeneous data availability (the so-called
’data divide’ [27]) translate into various degrees of uncertainty, with reliable
flood forecasts often possible only for big events.

Figure 5.1 shows maps taken from GloFAS, illustrating the probability of the
daily streamflow forecast to exceed the local ’1 in 20-year’ discharge (i.e., the 20-
year threshold, considered a severe event). GloFAS works by running multiple
perturbed simulations, and the probability of a peak discharge exceeding the 20-
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Figure 5.1: Examples of low-uncertainty (Megaruma River in Mozambique)
streamflow forecasts

year threshold is the fraction of such simulations above this threshold. Larger
values, or darker color in Figure 5.1, indicate a reduced uncertainty, as most
simulations agree on forecasting a severe flood event for the day.

For instance, in the low-uncertainty forecast used as an example in Figure 5.1
(top), for a few river branches almost all the simulations converge (100% proba-
bility)

The uncertainty is reduced when the flow peak is predicted to occur within
few days when the forecast is mostly driven by hydrological rather than meteo-
rological conditions, and it is therefore more reliable. High uncertainty is often
associated with a large lead-time of the prediction, and the absence of a clear
flood signal in meteorological forecasts.

Previous research has sought to integrate social media information into flood
monitoring systems. This research, at the intersection of crisis informatics and
disaster risk reduction, has been based largely on the extraction of public-generated
discussions about flood risk in situations where weather alerts have been issued
by relevant authorities, and reporting of the concerns of those impacted [51, 14].
Such systems are affected by the same limitations and uncertainties as the hy-
drometeorological forecasts themselves.

Against this background, the central question addressed by our research was:
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’Is it possible to identify floods worldwide from social media reports, using
knowledge from past events and independently from hydrological forecasts?’
expressed in Chapter 1 as RQ3. Using machine learning, we created a model
that takes as input the volume, trends, and characteristics of discussions about
floods in social media. The output of our model is the probability that an actual
flood happens, computed by supervised learning based on past events. Because
the data source of social media which we use (i.e. Twitter), despite its large
coverage and volume, produces a noisy signal that does not yield high-accuracy
alerts, we cannot positively and conclusively answer the posed research question.
However, our work suggests that the question may be partially answered in the
affirmative, in that we can complement a flood forecasting system reducing the
uncertainty of hydrological forecasts. Social Media information could be seen
in this case as additional support for the Crisis Managers in the decision-making
process.

In the following sections, an overview of related work is first provided, and
the methods for creating a training dataset and building the model for event de-
tection are described. Finally, the experimental results of our work are presented,
followed by conclusions and priorities for future work.

5.2. Related Work
This section provides an overview of some flood detection systems based on

hydrometeorological models, social media or both.

Flood detection with hydrometeorological information
NASA’s real-time Global Flood Monitoring System (GFMS) is driven by precip-
itation information from the joint NASA - Japan Aerospace Exploration Agency
(JAXA) satellite missions - the Tropical Rainfall Measuring Mission (TRMM)
and its successor, the Global Precipitation Measurement (GPM) mission [108].
GFMS performs rainfall analysis using a physically based hydrological model,
and has a detection performance that is highest for floods of long duration and
affecting a large area.

The previously mentioned GloFAS, developed jointly by the European Com-
mission and the European Centre for Medium-Range Weather Forecasts (ECMWF),
is a global hydrological forecast and monitoring system independent of adminis-
trative and political boundaries, that is fully operational within the EU’s Coper-
nicus Emergency Management Service. GloFAS couples weather forecasts with
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a hydrological model to produce daily flood forecasts. Due to its meteorological
forcing (i.e., rainfall map, wind speed map, temperature map, etc.) and spatial
resolution of 0.1 degrees, GloFAS performs well for large rivers. The lack of
finely distributed meteorological observations at a global scale limit the resolu-
tion of the calibration for the forecasting for smaller rivers [32].

Flood detection from social media
Geospatial information relevant to an event are usually available after the events
have ended, and are generally provided by satellites images or field surveys. Re-
cent studies have focused on whether combining social media and geo-information
can speed up early warnings [105].

Geospatial information relevant to an event are usually available after the
events have ended and provided by satellites images or field surveys. In contrast
with our research, we analyze how information derived from social media can
be used independently from physically based models in detecting several flood-
types (e.g., riverine, flash floods, hurricane floods). The novelty of our approach
is that, unlike the works mentioned above, it does not rely on any leading factor
and does not restrict the nature of events analyzed. We use a validated reference
set of events tracked by independent organizations, covering a wide range of
events in terms of geographical region, duration, extent and magnitude.

Based on this we have built a supervised model for catching signals from
social media on heterogeneous types of flood (riverine floods, coastal floods,
flash floods, hurricane floods, etc.) at a sub-national scale. We then analyzed our
results in the light of forecast information available at the time, just before the
event, in order to understand if social media information can represent an added
value to those systems.

5.3. Methods
The ground truth data that we used is constructed at the level of days and

countries, with each record indicating if there was a confirmed flood on that day
in that country. We collected social media data and then processed it to the same
level of granularity by extracting various features. Further details on the dataset
preparation are presented below.

Ground truth
Because no single comprehensive database exists that containing all worldwide
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Figure 5.2: Spatial distribution of the flood events used as ground truth. Darker
color indicates multiple events in the same administrative area

floods, we used a list of flood events from previous research that aggregates data
from different sources. For details on this list of events, the interested reader
can consult the original source [52]. Briefly, the list of flood events is collected
from three different databases: Europe’s Floodlist; the UN’s Emergency Events
Database (EM-DAT), and the Dartmouth Flood Observatory (DFO) of the Uni-
versity of California.

We selected all events that could be geocoded to a sub-national level. This
led to 349 events spread over 1,318 administrative areas, as shown in Figure 5.2.

Data collection
We collected tweets relying on the public Twitter streamer.1 We opted to col-
lect posts on floods using a set of flood-related keywords in several languages
(i.e., English, Spanish, Italian, German, French, Portuguese, Arabic) for a nine-
month period, covering flood-seasons worldwide. The complete list of keywords
is available in our data release. Our data collection period was April to Decem-
ber 2019, but was interrupted frequently. We experienced network, software, and
hardware failures, together with limitations applied by the streamer provider. We
worked around the multiple interruptions during the 274 days of observation, by
applying the following heuristic method: if for any given day there were more

1https://developer.twitter.com/en/docs/tweets/sample-realtime/
overview/get_statuses_sample
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than six hours without any tweet, we would mark that entire day as ’invalid’. In
our observations, this was always an indication of some kind of failure. The days
for which we have data were 74% of the total observation days.

Features
Each collected tweet was automatically annotated as either flood-related or not
flood-related by a multilingual classifier [51]. The flood-related tweets were
then geocoded using their available geographical metadata, and when this was
not present (i.e. in the majority of cases), using place-names mentioned in the
text[29]. Next, we aggregated individual tweets in space (i.e. the affected area)
using the Database of Global Administrative Areas (GADM) spatial database of
the location of the world’s administrative areas.2

We aggregated tweets according to days, to match the granularity of our
ground truth data.

For each day and region, we measured the features listed in Table 5.1.
In order to enable comparisons between regions with different population

sizes and different degrees of Twitter adoption, we produced normalized features
by considering the average number of postings originating from each region dur-
ing a period of one month. We calculated such values by analyzing one month
of geolocated data extracted from the Public Streamer available on the Internet
Archive digital library.3 All of the 72 features in Table 5.1 were divided by the
expected number of postings for the same region, with the exception of features
P00-10 . . . P90-100 and T3P00-10 . . . T3P90-100, which reflect proportions,
and the ’language’ feature. In addition, the expected number of postings for the
region was added to the feature list, for a total of 73 features.

Data labeling
In order to create the training data, it is not sufficient merely to associate each
row in the dataset table (corresponding to a date and a region), with a label of
flood (True) or no-flood (False). The main reasons for this are that flood events
and the related discussion on social media generally last more than one day, and
they build up over time. Furthermore, there is no common, widely accepted
definition of when a flood starts or ends. Indeed, in the original data sources
used as ground truth, when two or more sources have the same event, the dates

2https://gadm.org
3https://archive.org/
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Table 5.1: Features extracted; pi is the probability that tweet i is related to floods,
as computed by an automated classifier.

Keys

Name Description

Date d Day number
Region Administrative region in GADM

Daily features (22 feat)

Lang 0: English not an official lang, 1 or 2: English is 1st or 2nd lang
TOT Tot number of Tweets on this day and this region
T00 In bucket Ta-b, number of postings having a < pi ≤ b
P00 In bucket Pa-b, fraction of postings having a < pi ≤ b

Lagged features (50 feat) computed over a moving window of 3 days

T3P00 In bucket T3Pa-b, total number of postings having a < pi ≤ b on
days {d, d− 1, d− 2}

M3P00 In bucket M3Pa-b, fraction of postings having a < pi ≤ b on days
{d, d− 1, d− 2}; these add up to 1.0

A3P00 In bucket A3Pa-b, average fraction of postings having a < pi ≤ b
computed over the three days

D1T00 In bucket D1Ta-b, change in the number of postings having a <
pi ≤ b between day d and day d− 1

I3T00 In bucket I3Ta-b, maximum increase in the number of postings
having a < pi ≤ b between day d and day d− 1, or day d− 1 and
day d− 2; this is always non-negative

are not necessarily the same. Some ambiguity is inevitable at testing time, but in
the training data, we would like to learn only from unambiguous cases.

Our methodology associates the floods in our ground truth with specific time-
spans (days) and regions. Then, we consider the dynamics of the discussion
following the evolution of an event i, spanning between dates dstart

i and dend
i in

the ground truth. Figure 5.3 shows sample data for one such flood event. In
Figure 5.3, the overall number of social media postings in the same region is
represented by bars. To associate labels with days and regions in the training
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Figure 5.3: Overall volume of flood-related postings per days overlapping with
a flood event i lasting eight days from ’Event Start’ (dstart

i ) to ’Event End’ (dend
i ).

The range that is labeled as True in the training data goes from dbi to dei and
reaches its peak at dmi (shaded area)

.

data, we consider a range of days within the series corresponding to the same
region in which a flood was recorded in the ground truth. This range is created
as follows:

1. We locate the day with the local maximum or peak d
(m)
i ∈ [dstart

i , dend
i ] of

social media activity within the days of the flood according to the ground
truth.

2. We locate the beginning of that increase in activity, i.e d
(b)
i .

3. We set the end of the range to be the day after the maximum, d(e)i = d
(m)
i +

1, because in our observations there is almost invariably some conversation
about the flood that remains in social media after the peak.

Then, we set all days within that region lying in the range [d(b)i , d
(e)
i ] to True.

A period of 10 days before and 10 days after the ground truth for the flood in
the same administrative region is a grey area, due to the fact that increases social
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media in activity may or may not be present. Hence, we set all days within
[dstart

i − 10, dstart
i − 1] and [dend

i + 1, dend
i + 10] to Undefined. The remainder of

the days in this region are set to False.
We also have to account for ambiguities in geocoding, which may asso-

ciate floods in one administrative region with another administrative region in
the same country. To preclude these from occurring in our training data, we re-
move labels from all other regions of a country where no floods are recorded in
this period, in the period [dstart

i − 5, dend
i + 20]. For regions where no floods are

recorded within the entire observation period, we set all labels for all days to
Undefined.

Finally, we considered only regions where English was an official language,
and only days in which the total number of collected tweets was above 100. Our
final training data contains 930 True or False rows corresponding to (day, region)
pairs, of which 73 (or 7.9%) have the label True.

Building the model
We posed our research question as a binary classification problem, in other words
detecting from the features extracted from postings whether these corresponded
to a day and region with floods or without floods. We experimented with vari-
ous classification schemes including Support Vector Machines, Multi-Layer Per-
ceptron, and Random Forests. Random Forest (RF) classifiers yielded the best
results.

We performed a grid search to optimize the learning parameters. For feature
selection, we used an ANOVA F-Test, with the best performance obtained by
selecting 40 out of the 73 features. The selected features using univariate feature
selection with a classification function score covers most of the features classes
in Table 5.1. They describe a combination of aggregated classes and average
probability: ’T00-10’, ’T10-20’, ’T20-30’, ’T30-40’, ’T40-50’, ’T60-70’, ’T70-
80’, ’T80-90’, ’T90-100’, ’P00-10’, ’M3P00-10’, ’M3P90-100’, ’A3P00-10’,
’A3P60-70’, ’A3P90-100’, ’T3P00-10’, ’T3P10-20’, ’T3P20-30’, ’T3P30-40’,
’T3P40-50’, ’T3P50-60’, ’T3P60-70’, ’T3P70-80’, ’T3P80-90’, ’T3P90-100’,
’D1T10-20’, ’D1T20-30’, ’D1T30-40’, ’D1T40-50’, ’D1T70-80’, ’D1T80-90’,
’D1T90-100’, ’I3T00-10’, ’I3T10-20’, ’I3T20-30’, ’I3T30-40’, ’I3T40-50’, ’I3T70-
80’, ’I3T90-100’, ’TOT’

For the RF parameters, we obtained the best results with 1,000 decision trees
and a maximum depth of two levels for each tree, although we observed that
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similar numbers of trees and depths did not yield a substantively different per-
formance. We used three-fold cross-validation using two-thirds of the data for
training and the remaining one-third for testing in each iteration.

Figure 5.4: ROC curve of the obtained classifier.

Figure 5.4 shows the Receiver Operating Characteristic (ROC) curve repre-
senting the tradeoff between sensitivity (i.e. the true positive rate, or how good
the model is at detecting real floods) and specificity (i.e. the true negative rate,
or the model’s ability of avoiding false alarms). An increase in sensitivity is ac-
companied by a decrease in specificity. We observed that the best model does not
offer a high-sensitivity high-specificity classification. By setting a threshold for
a positive (i.e. ’flood’) classification of 0.2, which yield a good balance of preci-
sion and recall, we obtain an average combination of precision of 34% and recall
of 41%. This implies that this model cannot be used independently of hydrolog-
ical flood monitoring systems for detecting floods. However, as we will show
in the following section, the GloFAS forecasting performance analyzed during
the ground truth events would benefit from our classifier in terms of reducing
uncertainty.

Leave-One-Out experiment
In the previous sections we calculated the accuracy of our model using statistic.
The model presented, as described in Section 5.1, aims at an operational use to-
gether with global forecasting systems. In order to measure the accuracy of our
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model in an hypothetical operational system, we need to define the hit-rate as
the percentage of real events that our model could predict. We simulated such
methodology using a Test/Train split supported by group definition. In our pre-
vious experiments we considered the rows labeled as ’1’ uncorrelated from each
other. Although this is true, relying solely on random split could lead to bias test
data towards a specific event (multiple rows). In other words, for this experiment
we assigned an ’event_id’ to each of the rows of the dataset and we grouped and
isolated each time an event to define the Test dataset as this would be the case
for future events. Hence, we consider how this model would perform in a ’leave-
one-out’ cross-validation scenario, and particularly, whether it can complement
the forecasts of GloFAS.

Overall results
We first observed that the rows (days and regions) labeled True are correlated
with each other, if they occur in the same region around the same time, as in the
case that they represent the same flood. Hence, we cannot leave out one row, but
instead must leave out an entire event.

Since we wish to perform a side-by-side comparison against an operational
system for disaster risk reduction, we consider two possible outcomes: ’Hit’ or
’Miss’. The former is when we trigger an alert for at least one of the days of a
flood, while the latter is when we do not.

Table 5.2: Output of the leave-one-out classifier and GloFAS for 23 flood events.

Place Country Days Result GloFAS 20yr Type of event

Suffolk USA 5 miss no river Storm surge
Herkimer USA 2 miss 10-20% Heavy rain, flash floods
Maury Cty. USA 2 miss 00-10% Heavy rain, flash floods

The hit rate of the experiment for the 23 simulations done (i.e. one per each
event in our training data) is 52%, which means that we capture about half of the
flood events. Table 5.2 shows three cases from October and December 2019.

On a cautionary note, it is important to bear in mind that the main purpose
of GloFAS is to forecast riverine floods, and therefore those events that are a
combination of riverine, coastal and / or flash floods can only be compared to
GloFAS forecasts to a limited extent.
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Our methodology offer the obvious advantage to capture all types of flooding
(coastal, flash flood, pluvial, etc.) with the same ML-trained model. We observed
that in many of the cases our model indicates flood activity, although this must
be considered in light of the computed average precision of 34% (described in
the previous section), meaning that about one in three of the alarms generated by
the model based on social media alone will correspond to a flood.

5.4. Case Studies
In order to better understand the hit-rate performances of the leave-one-out

model, we analyzed some of the cases in detail.
Firstly, the floods of October 2019 in Suffolk county in the US were missed by

our model:4 ’Minor flooding was reported in parts of Suffolk County, New York.
Roads were swamped and some buildings flooded’. In this case, the flooding can
be considered minor, as neither fatalities nor injured persons were recorded in
the ground-truth dataset. Our system would have missed this flood, and GloFAS
indicated no signal.

Secondly, the floods of October 2019 near Herkimer (Mohawk Valley) in
the US were also missed by our model:5 ’According to a statement by New
York Governor Andrew Cuomo’s office on 01 November, over 240,000 homes
were without electricity and nearly 60 roads were closed’. Although this event
affected more people, the main impact was an electricity blackout. Our system
would have also missed this flood, and GloFAS indicated a 10-20% chance of
exceeding the 1 in 20-year discharge. At the peak of the storm, we found that
75% of the total postings were classified as not relevant to floods resulting in low
values for features used by our model.

In both of these cases, the reason for which the GloFAS model had little or
no signal was that the main driver of the flood was water from the storm and
from storm surge (coastal flood), rather than water overflowing from a river.

Thirdly, the floods of December 2019 in Gauteng and North West Provinces
(near Hartbeespoort Dam) in South Africa were captured by our model:6 ’Hun-
dreds or people have evacuated their homes. News 24 reported that one person
died on 9 December when flash floods swept a vehicle from a low-lying bridge

4https://bit.ly/2UoOxg9
5http://floodlist.com/america/usa/

halloween-storm-flood-october-2019-new-york
6http:

//floodlist.com/africa/south-africa-floods-gauteng-december-2019
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close to Hartbeespoort Dam in North West Province, about 35 km west of Preto-
ria.’. In this case, GloFAS forecasted a probability of an extreme (1 in 20-year)
event in the area, of 30-40%. Our test data features indicate more than 2,500 so-
cial media postings in one day, 40% of which were classified as highly relevant.

5.5. Conclusions
While the forecasting of floods using hydrometeorological models is possible

within certain limits, many floods are not forecasted or are forecasted with only a
low probability. Although comparing forecasts from a hydrological model would
be fairer if only purely riverine floods were considered, only in one case of the
flood events taken into consideration the computed probability of exceeding a ’1
in 20-year’ threshold forecast by GloFAS, was more than 50%. This is largely
because forecasting systems are based on model simulations, meaning that they
are affected by noisy signals due to many factors (e.g., noise in meteorological
forecasts, missing data, and incomplete reference data).

Figure 5.5: GloFAS map for April 2020, highlighting in purple portions of river
basins that have a heightened probability of floods according to darkness: this
happens in many areas in the US at the same time. (Better seen in color)

Both forecasters and emergency managers require tools that can help them
to narrow down uncertainty. For example, Figure 5.5 shows the ensemble prob-
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ability of exceeding the 1 in 20-year flood threshold in the US for April 2020, as
forecast by GloFAS. As can be seen, GloFAS forecasts low to medium probabil-
ity of a flood in many administrative areas.

The methodology proposed for leveraging our model in real-time is to keep
the collection of tweets as described in section 5.3 running in the background
and tasking the model classification on a daily basis. Since the model uses fea-
tures with data from the previous two days, we think it can ’detect’ a change
in the conversation on social media as shown in Figure 5.3. The slope of the
peak can be smoother or steeper according to the type of event, the classifier
could be able to detect the event before its peak, which is associated with the
highest impact. Our work provides an added value to the GloFAS hydrometeo-
rological forecasts since it helps to reduce uncertainty and broadens the range of
flood-types that can be detected

In particular, we are confident that the precision of our classifier in determin-
ing whether a flood is occurring in a specific area, could be improved by: (a)
using our model as a trigger for a more focused real-time data collection, where
city names are used instead of flood-related keywords, and (b) setting threshold
levels for the ratio between tweets classified as ’most likely flood-related’ and
those classified as ’likely flood-related’, for a real-time aggregation of data. In
the latter case, the ratio can act as an indicator to filter out noise caused by trend-
ing topics in the specific area (i.e., sport events, celebrities, politics, etc.), where
we expect to have more tweets unlikely to be about floods.

Another potential improvement to be addressed in future work, concerns the
normalization of features. In our study, we normalized the features of the training
dataset using the number of expected data at the national level. However the
adoption of a particular social media platform may vary between regions within
the same country. Another practical issue that merits further investigation is how
to handle multiple crisis events (not necessarily all natural hazards) happening
in the same country. When there is a strong trending topic, we observed that
floods might receive less attention from mass media and from those members of
the public who are not directly affected, which reduces the strength of the social
media signal.

Our research has demonstrated that the methodology proposed can comple-
ment a global flood forecasting system. One aspect which we have not yet ad-
dressed is the potential link and research related to the concept of lead time of
the forecast. In other words, so far we have analyzed the additional value of
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the model on the day of the event, while there is still potential improvement in
considering the forecast of an event, specifically when it builds over several days.

Reproducibility
All of our code, as well as data to reproduce the results on this chapter, are
available for research.7

In the next chapters we are going to explore the potential of social media mes-
sages as a source for detailed information that could result in quantitative infor-
mation or in actionable information. This step introduces additional challenges
such as trustfulness and validation of data that we address in Chapter 6 and Chap-
ter 7.

7https://zenodo.org/record/4274495
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Part III

Social Media Analysis for
Impact Assessment
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Chapter 6

SOCIAL MEDIA AS A WAY
TO COMPUTE FLOOD
EXTENT MAP

In this chapter we proceed in the pursuit of an answer for RQ4, specifically
we experiment if it is possible to leverage real-time information from social me-
dia, fusing it with digital surface models derived from EO data to provide a fast
estimate of the flood extent.

6.1. Introduction
Citizens constantly use social media, including for broadcasting content dur-

ing disasters and emergencies. The vast amount of such data originating from
the public can be used to provide access to timely and relevant information, of-
fering additional decision-making support to emergency managers. Images ex-
tracted from social media can be vital in the immediate aftermath of an event
when authoritative data and products based on Earth Observation (EO) are not
yet available. Mapping ground truth information is crucial for the early assess-
ment of impacts, in terms of their intensity and spatial distribution. As part of
the On-Demand Mapping component of the CEMS, satellite imagery and other
geospatial data are used to provide mapping service free of charge for natural dis-
asters, human-made emergencies and humanitarian crises throughout the world.
Only authorized users such as civil protection, entitled emergency response or-
ganizations or international charters can activate the service. The maps are avail-
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able in two temporal modes: RM, and Copernicus Risk and Recovery Mapping
(RRM). The former provides geospatial information within hours or days of the
activation following a disaster, while the latter provides geospatial information
supporting disaster management activities not related to immediate response.1

Floods represent 36% of activations of the CEMS RM service.2 Flood ex-
tent is normally delineated using both Synthetic Aperture Radars (SAR) satel-
lite images (especially those from the Sentinel-1 satellite) – useful for detecting
water-covered areas even at night or in the presence of clouds - and image data
from optical EO sensors, which allow the identification of damages for impact
assessment. Unfortunately, the effectiveness of such satellite image analysis is
of limited use in urban areas, at the point that these are commonly masked and
not analyzed. For optical sensors, the limitations are due to shadows cast by
buildings, trees or narrow streets. For SAR sensors, the side-looking viewing
geometry and the multiple scattering in built-up areas do not allow the presence
of water to be properly distinguished.

On 13th November 2019, the mayor of the Italian city of Venice declared a
state of emergency after an exceptionally high tide, recorded as the worst in 50
years, flooded the city.3 A deep cyclonic circulation had affected the Mediter-
ranean area the previous day, resulting in severe weather over the Italian penin-
sula. One of the most affected areas was North-Eastern Italy, particularly the
Friuli Venezia Giulia and Veneto regions. A full moon (+26 cm surge), com-
bined with the exceptionally high level of the Mediterranean sea in November
2019, and a deep small-scale atmospheric pressure moving rapidly northward
and passing over the Venice lagoon just west of the city (+30/35 cm surge), led
to a high tide with a maximum recorded value of 189 cm on 12th November at
10:50 p.m. (hereafter we refer to local time) - the highest recorded since a sim-
ilar event in 1966 [11]. According to the altimetry available to the municipality
of Venice, as a result of an ’Acqua Alta’ (high tide) of 189 cm, about 82% of the
public pedestrian traffic areas were flooded. The impact on the city was dramatic,
with two fatalities in the Pallestrina neighbourhood, severe damage to the crypt
of the San Marco basilica, three ferries sunk4 and 2,494 claims for economic loss

1https://emergency.copernicus.eu/mapping/ems/service-overview
2https://emergency.copernicus.eu/mapping/ems/

rapid-mapping-portfolio
3https://www.nytimes.com/2019/11/13/world/europe/venice-flood.

html
4https://www.ilgazzettino.it/nordest/venezia/acqua_alta_
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of totalling 9 million euros in damages by residents and businesses, in the initial
weeks following the event.5

The RM service of the CEMS was activated by the Italian National Civil
Protection Department on 14th November at 01:15 p.m.6 as other exceptional
high tides were forecasted for the following day. Among the set of available
images from space satellites, the closest to the time and area of the event was
acquired by the GeoEye optical satellite sensor on 14th November at 11:13 a.m.
Flooded areas were not adequately visible due to the narrow streets of the city
and the high off-nadir acquisition angle of the image (not vertical). Thus the
optical imagery was complemented by ancillary data: tide-levels combined with
contour lines. The flood extent delineation that was delivered on 15th November
at 09:18 p.m. shows the detected situation when the tide recorded had fallen
to about 115 cm, with an estimated flooded area below 30%. This significantly
failed to capture the maximum extent flood later reported by the municipality.7

What we learn from this is that, the use of remote sensing to delineate flood
extent in a city can be incomplete or inaccurate, especially for fast-developing
events such as urban floods.

Between 12th and 14th November 2019, we collected posts on Twitter using
specific filters related to the Venice flood event. In order to fill the gap in in-
formation between the immediate aftermath of the event and the moment when
authoritative data were available, we delineated a potential flood extent based on
images that were classified as relevant to the event and data available for free to
the public. In this way we were able to estimate a maximum flood extent sim-
ilar to that recorded and validated by authorities. This work presents a scalable
methodology for combining deep learning models for image classification with
global or local Digital Elevation Model (DEM)s and other geospatial informa-
tion, for a near real-time delineation of the flooded area. The results show how
the use of social media information for urban floods can complement EO data
and can help to improve situational awareness. We present a fast methodology
complementing both approaches. It offers an additional source of in-situ data
that can serve as input for hydraulic models and provides a reference layer for
filling spatial and temporal gaps in EO-based products not available during urban

allarme_notte_venezia-4858433.html
5hhttps://live.comune.venezia.it/it/

dati-richieste-danni-acqua-alta-12-novembre-2019-venezia
6https://bit.ly/3AzHJA4
7https://bit.ly/3dMpzkX
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floods.
The experiments presented demonstrate how such a layer could estimate a

flood extent map within the first 24 h of an urban flood. In addition to the benefits
mentioned above, the proposed approach uses data that is free of charge except
for the geocoding step, therefore having a low economic impact compared to the
cost of EO imagery acquisition and analysis.

In the the remainder of this chapter, related research work is presented in
Section 6.2, technical details of the data collection, the methodology and the
experimental results are presented in Section 6.3, and finally, a general discussion
of the potential of social media analysis for assessing floods extents and future
developments is presented in Section 6.4.

6.2. Related Work
Recently, Pastor-Escuredo et al. (2018) suggested integrating social media

data into a framework consisting of authoritative and non-authoritative data for
assessing impacts of a disaster. In their work, the function of social sensors re-
garding mapping the extent is limited to mobile phone use for mobility detection,
which is a valuable source of data but makes the methodology hard to scale for
cases where such information is not accessible.

Last year Xiaoyan et al. (2021 introduced an innovative approach to estimat-
ing flood-affected populations, providing high-resolution impact information.
The described case study shows that considering mobility patterns during as-
sessment can improve the precision of disaster estimation. Inundation locations
and roads blockage are detected by combining flood hazard maps with social
media data, thus applying historical statistical data and real-time user-generated
data. Social media data regarding inundations were obtained from the official
Weibo account of the Wuhan Traffic Management Bureau.

Our methodology can be applied in near real-time, overcoming the timeliness
limitation of post-event analysis. Our work also provides a methodology that can
be reproduced in different cities, as it uses open and globally available data.

Several research studies have shown the potential, opportunity and limita-
tions of satellite images and radars for natural disaster analysis. Over the years,
increasingly powerful methods and sensors have been launched on satellites, to
avoid weather-related signal attenuation. Commonly used technologies include
LIght Detection And Ranging (LIDAR), which can detect the altitude of objects
from a long distance, and SAR, which creates two-dimensional images using a
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signal frequency unaffected by light conditions (day or night) or cloudy weather.
Mason et al. (2018) studied a method to detect floodwater in urban areas with
a SAR simulator in conjunction with LIDAR data. The method allows predict-
ing areas of radar shadow and layover in the image caused by buildings and
taller vegetation. The results indicate that flooding can be detected in an ur-
ban area with reasonable accuracy. However, the algorithm design assumes that
high-resolution LIDAR data are available for the area under analysis. In 2021
the same authors use open-access Sentinel-1 SAR data, the World-DEM digi-
tal surface model (DSM), and open-access World Settlement Footprint data to
identify estimates of flood levels in urban areas locally. Their method searches
for increased SAR back-scatter in the post-flood image due to double scattering
between water (rather than non flooded ground) and adjacent buildings and re-
duced SAR back-scatter in areas away from high slopes. The method reports
high accuracy in moderately dense housing areas, while the accuracy decreased
in dense housing areas when street widths are comparable to the DSM reso-
lution. Lin et al. (2019) employ SAR intensity time-series statistics to create
a flood probability map. The resulting extent is selected by applying a global
cutoff probability of 0.5. However, smooth surfaces like asphalt roads, SAR
shadow, aquatic plants, and soil moisture changes introduce inaccuracies in the
prediction. Furthermore, the long time for processing images to build the SAR
intensity time-series statistics makes the methodology unsuitable for real-time
deployment. The methodology proposed in this research uses social media in-
formation fused with digital surface models as sensors for detecting ground truth
in near real-time to reduce uncertainty and contribute to solving the issues re-
lated to EO technologies.
The so-called ’digital divide’, and a lack of resources especially in vulnerable
area more impacted by global warming [101] [19], have focused the attention of
scientists and crisis responders on research tools and methodologies for flood risk
management at a global scale. Flood risk assessments for cities produced using
Global Digital Elevation Models (GDEMs) are likely to over-predict risks. Past
studies found variability in the accuracy of models using different GDEMs, and
all substantially estimated higher impacts than the DEM produced from aerial
LIDAR [61]. As the world’s cities grow, the importance of accurately under-
standing flood risk has become a high priority. GDEMs enable flood risk as-
sessments to be undertaken globally, defining standard methodologies allowing
data integration. Uncertainties in flood risk assessment using GDEMs need to
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be addressed and reduced in near real-time by local and national authorities and
communities, to prevent misinformed decision-making.
International organizations have put in place emergency management services
with the aim of providing support to crisis responders who are in need of re-
sources. The European Union’s Earth observation programme, called Coper-
nicus, offers information services that draw from both satellite EO and in-situ
(non-space) data. As part of Copernicus, the CEMS supports local authorities
and communities needing information to develop environmental legislation and
policies or to take critical decisions in the event of an emergency, such as a natu-
ral disaster or humanitarian crisis. The Early Warning systems and On-Demand
mapping components of the CEMS produce flood hazard maps that have been
developed using hydrological and hydrodynamic models, driven by the climato-
logical data of the European and Global Flood Awareness Systems (EFAS [93]
and GloFAS [4]). All maps are in raster format with a grid resolution of 100 m
(European-scale maps) and 30 arcseconds (global-scale maps). These maps can
be used to assess the exposure of population and economic assets to river floods,
and to perform flood risk assessments.
Our research is aligned with and complementary to the previous research on pro-
viding near real-time information during floods, particularly in densely inhabited
areas. A key advantage of our contribution lies in the advantage of the real-time
aspect of social media data, together with physical model and EO data. Our
research can answer the following important topical question: Is it possible to
leverage real-time information from social media, fusing it with digital surface
models derived from earth observation data to provide a fast estimate of a flood
extent?
The answer to this question partially responds also to RQ4 presented in Chap-
ter 1. The proposed workflow uses social media information to find flooded
points (latitude and longitude). It then infers the spatial extent of the flooded
area operating a vertical data interpolation based on digital surface grid-based
information. Assuming that the same amount of rainfall fell on the city, if point
A is flooded and point A is in a higher grid-cell than point B, and their grid-
cells are close, we assume that both grid-cells are flooded. The tool’s accuracy
is determined based on the grid-cells estimated as flooded against the flooded
grid-cells provided as reference.

90



i
i

“output” — 2022/5/24 — 9:23 — page 91 — #105 i
i

i
i

i
i

6.3. Methods
In order to analyze the quality of flood extent mapping based on social media

information during urban flooding, we have carried out two experiments, both in
the context of the flood that hit Venice in 2019, as was described earlier in Sec-
tion 6.1. In this section, we describe in detail the data collection, the applied
methodology, and the results that were obtained from both experiments.

Weather forecasts
On 12th November 2019, a deep cyclonic circulation affected the Mediterranean
area, which resulted in severe weather over the Italian peninsula. In Venice,
the extreme weather condition produced a high tide whose maximum recorded
value was 189 cm at 10:50 p.m.. At the start of the event, on the morning of 12th
November, the municipality emergency managers expected a high tide peak of
170 cm at 11:00 p.m. and another peak of 160 cm for the following morning
at 10:30 a.m. Several warnings were issued, schools were closed and travel re-
stricted, and plans for emergency response were activated.

Social media
One of the key elements of the methodology proposed here is the consideration
of social media as valid ground truth information. We searched for messages
posted on Twitter from 12th November at 01:00 a.m. to 14th November at 01:00
a.m., either geocoded inside Venice island or mentioning the keywords ’Venice’
or ’AcquaAlta’. We collected roughly 75,000 tweets, 14,000 of which contained
pictures.

Digital models
Collected Social Media data are then combined with digital models representing
the surface of the city. In order to study the quality and the scalability of the
methodology proposed we used several DEMs:

1. SRTM (Shuttle Radar Topography Mission) is a global research endeavor
that yielded nearly- global DEM with a 30 m resolution. SRTM data cov-
ers the globe and is free of charge (though registration is required).

2. The Copernicus DEM EEA-10 instance (hereafter referred to as Coper-
nicus DEM), available free of charge from the European Environmental
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Agency8, is a Digital Surface Model (DSM) which represents the surface
of the Earth including buildings, infrastructure and vegetation with a res-
olution of 10m. Since the Copernicus DEM includes building, to reduce
as much as possible the error in the elevation of the control points, we ad-
justed the values of height extracted. Let PBUILT (lat, long) represent
the 0 to 1 share of buildings in a 10 m cell at (lat, long) according to the
GHSL built-up-area product9.
ELEV (lat, long) is the original elevation value from the Copernicus DEM
model Then the adjustment formula that provide the corrected elevation
value ELEV ′(lat, long) can be described as:

ELEV ′(lat, long) = ELEV (lat, long)− PBUILT (lat, long) · ELEV (lat, long)

(6.1)

While the formula works as it is for cities at sea level, to reproduce such ad-
justment in higher urban areas, we should lower the elevation ELEV (lat, long)
values by subtracting the average altitude of the site or the height of the
nearest cell with a near-zero share of buildings before applying the for-
mula.

3. TINITALY [95] is a seamless DEM of the whole Italian territory. This
DEM, which was produced starting from separate DEMs of single admin-
istrative regions of Italy, is freely available with a 10 m grid-cells. TINI-
TALY is published with a CC BY 4.0 license and can be used freely, even
partly, but it must be cited.

Methodology
The production of a near real-time flood extent map is carried out in four separate
steps: collection of tweets; extraction of social media flood points; interpolation
of social media flood points; production of flood extent. Figure 6.1 depicts the
four steps while their details are provided in the remainder of the section.

Firstly, we collected tweets as described above. For conducting the experi-
ments we relied on the so-called historical search available only to Twitter Pow-
erTrack API users. Nonetheless the collection of tweets in real-time for replicat-
ing the experiment does not require any special data access, since tweets can be

8https://www.eea.europa.eu/
9https://ghsl.jrc.ec.europa.eu/ghs_bu2019.php
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Figure 6.1: (best seen in color) The flood extent production consists of 4 steps:
Indigo - Tweets Collection; Teal - Extraction of social media Flood points; Blue
- Interpolation of social media Flood Points; Green - Flood extent production.

filtered from the publicly available Twitter streamer.10

The work aims to map the flood extent in a city, and therefore it is of the
utmost importance that we geocode information as precisely as possible. Al-
though Twitter enables users to post tweets with their current locations (longi-
tude and latitude), only an average rate of 0.85%–3% tweets are being geocoded
per day [109] in the USA, where Twitter is most used. Thus, we need to com-
plement the geocoded dataset using other techniques to ensure scalable global
products. Past works proved that location mentions were useful to geocode in-
formation [97]. However, after a first test using several hundred tweets, we un-
derstood that we could not rely solely on automated NLP for a precise geocoding.
Figure 6.2 shows one of the many examples of how a location mentioned in a text
does not correctly represent the location of the information. Previous works [2]
found that tweet images contained more damage-related information than their
corresponding text. Thus, we opted to extract social media images rather than
text as they could be better inspected for geocoding within the city and for the
extraction of crisis information about the event. During the two days we col-
lected 14,000 images, resulting in 10,000 images after duplicates were removed
using a tool for checking and deleting near-duplicate images based on perceptual
hash.11

The second step of the methodology is the identification of social media flood

10https://developer.twitter.com/en/docs/tutorials/
stream-tweets-in-real-time

11https://github.com/knjcode/imgdupes
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Figure 6.2: Example of the wrong facility identified by NLP, as it was mentioned
in the tweet text ’flood reached the maximum peak cm at Punta della Salute’. The
correct location is derived from the tweet picture

points to be considered as a control point for the flood mapping activity. Once the
tweets were collected, we used a Convolutional Neural Network (CNN) model
for disaster image classification [86] to classify the images of a flooded location.
The model assigns a probability of an image to belong to one of five classes
(Flood, Wildfire, Storm, Earthquake, Other). In particular we set a threshold
of flood probability equal to 0.9 for identifying those relevant to the event. We
found 2,302 images depicting flooded areas, some examples of which are shown
in Figure 6.3. The vast majority of the relevant images were then geocoded man-
ually. The location of the images was based on the identification of recognizable
Points of Interest (POIs) like shops, monuments, street names, bridges, public
transport stops, and their comparison with Google Street View. When the image
showed a wide area, such as a square photographed from a building, the loca-
tion of the image was placed in the flooded area, i.e. the center of the square.
When, in a flooded street, a shop could be identified, the location was placed in
front of it. The annotation was verified by a contractor of CEMS, who found that
97% of images were properly geocoded.12 Since this work proposes a scalable

12the report, written by Trabajos Catastrales S.A., is available upon request.
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Figure 6.3: Examples of images classified as relevant and manually geocoded.

methodology for detecting a potential flood extent map, manual geocoding has
been performed considering the time component. As already described earlier
in Section 6.3, only an average rate of 0.85% to 3% of the tweets are originally
geocoded. To speed up the geocoding of images, we used an NLP tool13 to ex-
tract mentions of place names from text and leveraged such information to locate
the flooded point. However, we have not monitored the time consumed for the
single geocoding for the experiments. Thus we cannot estimate how much such
automated pre-processing contributed to speeding up the geocoding. Images that
could not be geocoded or that were clearly referring to weather conditions in ar-
eas outside Venice, were excluded. Finally, after the manual geocoding we could
identify almost 800 social media flood points, and 265 unique points. The focus
of our research is to support the development of a new product that could be
made available within the first 24 h after an urban flood happened when neither
EO-based nor authoritative maps are available due to technical challenges. The
feasibility of such a product is confirmed if we consider that the manual geocod-
ing process, done by non-local personnel using Google Street View, took 6 h (one
person). If needed, we can assume that a service provider could allocate more
resources to this task during an actual case. Furthermore, manual geocoding can
be quickly done during a real crisis using crowdsourcing to leverage the help
of local digital volunteers, coordinated by practitioners and emergency-oriented
volunteers, such as Virtual Operations Support Teams. (VOSTs)14

Figure 6.4 shows a comparison between tweets originally geocoded on a no-
flood day and the tweets identified as social media flood points. We divided the
city of Venice into a grid of 50x50 m cells and counted the tweets in each cell.

13https://github.com/deepmipt/DeepPavlov
14http://vosteurope.org

95



i
i

“output” — 2022/5/24 — 9:23 — page 96 — #110 i
i

i
i

i
i

We carried out the comparison in order to ensure that the experiment could be
scaled to other less-visited cities. The random scattered distribution of geocoded
tweets on a no-flood day clearly demonstrates that the image classification step
leads to an unbiased distribution. In effect we demonstrated that more pictures
taken does not correlate with more flood points.

Filtered tweets on a flood day Unfiltered tweets on a no-flood day

Number of filtered tweets on a flood day
per 50x50 m cell

Number of unfiltered tweets on a no-flood
day per 50x50 m cell

Figure 6.4: Geographical distributions of filtered and unfiltered tweets. (Note
that the darker the cell, the higher the number of tweets in the cell)

The social media flood points, defined by latitude and longitude coordinates,
were given a vertical attribute by sampling the available DEM. We created three
datasets of points, one per DEM as defined in at the beginning of the chapter. A
default water depth (DWD) of 80 cm was added to the ground vertical component
based on visual inspection of the images (i.e. water above knees of passengers,
doors). We considered such approximation done in other works [8] acceptable
to contain the time of processing. A better estimate of the water levels in each
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image would undoubtedly lead to more accurate results, but it would not apply
to a semi operational process. This aspect is further discussed in Section 6.4.
In riverine flood hydrology, flood simulation models are used in combination
with terrain analysis to detect the flow of water towards lower or unprotected
areas. Control points can be used to detect water-levels in statistically generated
flood hazard maps. The main driver in the case of urban floods is the amount
of rain falling on an area combined with malfunctioning man-made artifacts (i.e.
sewage, buildings, roads). Thus, instead of focusing on the water flow, the third
step of our methodology is to create a virtual water surface interpolating the so-
cial media flood points prepared in the second step to estimate values at other un-
known points. We favored an Inverse Distance Weighted (IDW) method, where
the sample points are weighted during interpolation such that the influence of
one point relative to another declines with distance.

The fourth and last step of our methodology is the identification of the flooded
area. This is obtained comparing for each point of our map the DEM and the vir-
tual water surface generated at the previous step. When the water surface is
higher we assume the cell is flooded.

Experiments
During the interpolation, we tested different values of the coefficient IDW-P, to
create a few different surfaces and adjust this parameter to suit our analysis. A
larger coefficient means it takes a larger distance for the values of the surface to
become dissimilar from nearby points. A small coefficient means the values of
the surface will quickly change as distance increases.

Experiment 1: we interpolated the social media flood points with several weight-
ing values to determine the best accuracy for the maximum extent of the flood.
We created an elevation reference layer (altimetry) using the contour lines rela-
tive to the elevation of the pavement of the historic centre of Venice with respect
to the median sea level, whose accuracy is 1 cm vertical and 2 cm horizontal.15

According to authoritative sources (as mentioned in Section 6.3), a maximum
level of 189 cm was recorded at 10:50 p.m. on 12th November 2019. Thus, by
selecting only the points of the elevation reference layer below that value, we
were able to define the maximum flood extent to use as reference map. All the

15http://smu.insula.it/index.php@option=com\_content\&view=
article\&id=15\&Itemid=111.html
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layers were transformed to grid-based maps (rasters) during the experiments, and
statistics were done on such grid cells. In order to compute Precision and Re-
call for the experiment, we considered four types of result (True Positives, False
Positives, True Negatives, and False Negatives), as described below:

1. True Positive values of the cells that are detected under water from both
our methodology and authoritative data (altimetry).

2. False Positive values of the cells that are detected under water from our
methodology but not according to authoritative data (altimetry).

3. True Negative values of the cells that are not detected under water from
both our methodology and authoritative data (altimetry).

4. False Negative values of the cells that are not detected under water from
our methodology but they are, according to authoritative data (altimetry).

Table 6.1 displays the results of the methodology proposed using several values
of the weighting coefficient IDW-P for the interpolation of the social media flood
points. We ran the majority of simulations with the Copernicus DEM, because
we are convinced that the CEMS could benefit from this work. All the simula-
tions were compared against the maximum extent identified by reference contour
lines, as we used the social media flood points collected over the whole period
of the event. The first row of Table 1 outlines a trivial experiment where we
assumed the entire city was flooded. Given the magnitude of the event, it seems
that such an assumption brings good results. Thus, for clarity, Table 6.1 reports
also the Matthews Correlation Coefficient (MCC), that ranges in the interval [-
1,+1], with extreme values -1 and +1 reached in case of perfect misclassification
and perfect classification, respectively, while MCC=0 is the expected value for
the coin-tossing classifier. According to [12], this coefficient shows more reli-
able evaluations versus overall accuracy (OA) and the F1 score, particularly on
imbalanced data-sets, such as in our case where the majority of the pixels were
flooded. The values in bold represent the best score for each column, maxi-
mized in case of true values and minimized in case of false values. We notice
that among the runs with the Copernicus DEM, the IDW-P coefficient carrying
the best results is 10. Specifically, it detects the highest number of true negative
cells, which is valuable information given that almost all the city was flooded.
The last two rows of Table 6.1 represent the methodology’s simulation using the
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best IDW-P (10) but with the other DEMs. The local DEM, TINITALY, gives by
far the best results, especially in detecting the true positive values. An interesting
feature to emerge was how the SRTM DEM offers an excellent alternative to the
Copernicus DEM, although with a lower spatial resolution (30 m against 10 m).

DEM IDW-P TN (%) FN (%) FP (%) TP (%) OA (%) MCC

AllFlooded No 0 0 8.91 91.09 91.09 0
COP 2 4.45 38.03 4.46 53.06 57.51 .047
COP 4 5.65 36.85 3.26 54.24 59.90 .132
COP 10 5.97 36.58 2.94 54.51 60.48 .154
COP 15 5.82 36.14 3.10 54.94 60.76 .147
COP 20 5.80 35.80 3.11 55.28 61.09 .149
COP 25 5.78 35.57 3.13 55.52 61.30 .149
COP 30 5.78 35.53 3.14 55.55 61.33 .149
SRTM 10 5.78 31.04 3.13 60.04 65.82 .182
TINItaly 10 3.37 7.56 5.54 83.53 86.89 .269

Table 6.1: Accuracy comparison between interpolations made with different
weighting coefficient IDW-P. (Note: DEM = digital elevation model; IDW-
P=weighting parameter; TN = True Negative; FN = False Negative; FP = False
Positive; TP = True Positive; OA = Overall Accuracy; MCC = Matthews Corre-
lation Coefficient

The thematic validation was performed by calculating pixel-based confusion
matrices from which we can extract the overall accuracy (OA) for the different
IDW-P values and DEMs. Figure 6.5 shows an overview of the validation for
IDW-P=10 coupled with the Copernicus DEM.

Areas highlighted in green represent the pixels where there is agreement be-
tween the estimated flood and the reference layer (TP or TN). In purple we rep-
resented the omission errors (FN) and in orange the commission errors (FP). The
dots in yellow represent the control points. It can be seen how the main omis-
sions are in the areas where there are no control points. This can be explained as
in these areas, due to the weighting parameter, the interpolation layer does not
report the presence of water. Indeed its value, despite being higher than zero,
does not reach optimal values like the other coefficients (that range between 0
and 1), demonstrating the difficulty of our method to detect the non-flooded ar-
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Figure 6.5: Overview of the validation for IDW-P=10 and Copernicus DEM
(best seen in color).Areas in green show agreement between estimated flood and
reference layer (TP or TN). Areas in purple show the omissions (FN) and in
orange commissions (FP). Dots in yellow represent the control points.

DEM Copernicus 10m DEM SRTM 30m DEM TINITALY 10m

Figure 6.6: Overview of the for IDW-P=10 and Copernicus, SRTM, and TINI-
TALY DEMs

eas (high value of FN) simply because we use control points only where images
show an inundation.

Experiment 2: we performed a second experiment simulating a real-time sce-
nario where only forecasts but no authoritative data about the high-tide were
available. Assuming our methodology with an IDW-P value of 10 gives the
best approximation, we produced a flooded surface map using only social me-
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dia available the first day until 13th November at 01:00 a.m., and compared it
with the reference altimetry below 140 cm forecasted by meteorologists for 12th
November. We computed the true and false values comparing simulations with
two different contour lines. The first with flood expected for altimetry data be-
low 140 cm and the second with the reported (after the event) value of 189 cm.
Table 6.2 shows the best results in terms of true values, overall accuracy and
MCC.

DEM CL IDW-P TN (%) FN (%) FP (%) TP (%) TN+TP OA (%) MCC

COP 189 10 5.42 17.16 3.49 73.92 79.35 .793 .286
COP 140 10 11.90 10.69 23.54 53.87 65.77 .658 .194

Table 6.2: Accuracy comparison between interpolations made with best IDW-
P. with forecasts and 24 h social media for the day November 12 2019. DEM
= DEM; IDW-P=weighting parameter; TN = True Neg; FN = False Neg; FP =
False Pos; TP = True Pos; OA = Overall Accuracy; MCC = Matthews Correlation
Coefficient

We can see from Table 6.2, based on the values obtained from the social
media flood points after 24 h, we could already assume that the forecasted values
of 140 cm were exceeded by far. The flood extent map produced after 24 h was
closer to the one created by the municipality with a reference water level of 189
cm as reported afterwards.

6.4. Conclusions
The accuracy we obtain when determining whether a cell is flooded or not,

using maps that are freely available for the entire world, is 61.3% at the 10 m
resolution and 65.8% at the 30 m resolution. Using a more detailed, country-
specific map, we arrive to 86.9% resolution (Table 6.1). We can say that our
experiment answers part of our research question (’Is it possible to leverage real-
time information from social media, fusing it with digital surface models derived
from earth observation data to provide a fast estimate of a flood extent?’) in
the affirmative, using both local DEM data and the freely available Coperni-
cus DEM. The experiments demonstrate that it is possible to estimate quickly
urban flooding extent using freely available resources at a fraction of the cost
usually needed for satellite image processing. Such a methodology can help to
resolve the issues presented in Section 6.2 of this chapter, particularly regarding
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the problem of EO-based products in an urban context and the difficulty of cap-
turing the development of the flood events. The target accuracy for a mapping
service like Copernicus Rapid Mapping is higher than 80%.16 Accuracy in Ur-
ban areas appears to be usually lower, therefore most of the times urban floods
are not analyzed. Furthermore, during a recent CEMS workshop17, practitioners
expressed interest in having rapid exposure assessment while waiting for the first
RM product. It appears that while with a high-resolution DEM our tests show
a high level of accuracy, even the worst-case accuracy achieved during our ex-
periments could be valuable information for situational awareness in the event’s
immediate aftermath. For instance, local emergency responders might use the
flood extent map as a starting product and refine the map by gathering comple-
mentary in-situ data based on their expertise and knowledge of the distribution
of the city’s critical infrastructures.
While the accuracy may vary depending on the resolution of the DEM, we are
aware of the challenges presented by the geographical scalability of the method-
ology. Ranging in (i) the availability of tweets, (ii) the availability of local expert
volunteers, (iii) the availability of technological tools for geocoding of the social
media control points, affect the feasibility of the mapping product. Our future
work will aim at defining classes of cases and experimenting the timeliness and
applicability of the methodology. The classes should range between the two
ends:

Flood extent map feasible: high number of tweets, high presence of local
volunteers, google street view, or other similar tools available (i.e. mapil-
lary18), and a high-resolution DEM. The time needed for the products is
less than 24h and the accuracy is high.

Flood extent map impossible: few messages, low presence of local volun-
teers, no digital images to support geocoding.

An operational service could then estimate the applicability of the methodol-
ogy within the first 24h and decide whether to add it or not to the data available

16https://etendering.ted.europa.eu/document/
document-old-versions.html?docId=44850

17https://emergency.copernicus.eu/mapping/ems/
cems-week-2021-conclusions-community-insights-and-service-evolutions

18https://www.mapillary.com/
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to the crisis responders. If we consider the case of the CEMS activations for ur-
ban floods in European cities, with the support of EU-wide local experts (either
volunteers such as VOST EU or contractors that provide the services for a fee),
where google Streetview is almost overall available, we suggest the systematic
use of the methodology as a product to complement disaster risk management
services such as CEMS. At the same time, the tool needs further analysis for
scalability and future applicability to more cases.

The accuracy of CEMS maps is routinely verified and validated; a contractor
of the CEMS repeated this experiment with a more accurate elevation layer and
used just a subset of 77 (out of 265) images. They achieved 76% accuracy,
higher than our experiments, suggesting that as long as the elevation layer is
accurate the number of required labeled images does not need to be very large.19

Therefore, we can safely assume that it is possible to provide an estimation of
the flood extent map since Twitter streamer filtering can collect tens of tweets
within the first hours after an event. A possible solution for scalability could
be that a set of maps is automatically produced every 6 h with data available.
The geocoding could be contracted to a service provider to allocate resources
case by case. CEMS Service Providers could inspect such products before being
released, as currently done for other EO-based products.

Although much social media information is textual, it is challenging to geocode
precisely (within a few meters) information, using the locations mentioned in the
text. These often refer generically to a road or a place such as a square or a large
facility. The use of relevant images from social media is crucial as it offers a bet-
ter possibility of placing social media flood points. The methodology proposed
relies on the automated classification of images to facilitate the identification of
informational data. One limitation which we are already planning to address, is
the possible combined effects of rain-driven and riverine floods in cities with a
mix of built-up areas and river catchments. In this specific context, the method-
ology described could integrate an additional parameter for the interpolation of
control points, namely the Height-Above-Nearest-Drainage (HAND) [67] terrain
model, that takes into account groundwater dynamics.

The experiments described here for the case of Venice show very high pre-
cision, because almost all of the city was flooded. For this reason we also inves-
tigated other measures, and we aimed to derive results as real positive and real
negative numbers. We also analyzed results using the mapping validation tech-

19This report, written by Trabajos Catastrales S.A., is available upon request.
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nique. Our methodology searches for and utilizes social media flood points, thus
maximising agreement in terms of true positive values, rather than minimising
omission errors, as specified in Section 6.3. Future work could also focus on
optimizing the search for non-flooded areas through the inspection of images.

Finally, it is worth mentioning that the social media flood points presented in
this chapter can also be evaluated as a potential input layer for hydraulic mod-
els to reduce uncertainty introduced by weather forecasts. All the data and code
used in this chapter will be available in a public repository with camera-ready
article describing it (at the moment of writing it is accepted but the conference
will be later in 2022).

Further research should focus on improving the automation of data filtering
and reducing the overall time and resources used for geocoding data. One solu-
tion would be combining textual and visual information to support the manual
geocoding of information. The following chapter describes a platform that works
in this direction.
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Chapter 7

IMPACT ASSESSMENT IN
URBAN FLOODS

As demonstrated in the previous chapters, in the immediate aftermath of a
crisis, particularly in the first 12-24 hours, mining for ground information is of
the utmost importance. For this reason, we developed a scalable, multimodal,
and multilingual platform to streamline the automated processing of messages
and images in near real-time. We named it the Social Media for Disaster Risk
Management (SMDRM) platform.

In this chapter, we discuss the structure of the platform, we describe how
we developed a model for impact assessment annotation of text, and finally, we
explain how we intend to use it to improve performances of the software imple-
mented for EFAS described in Chapter 4

The data are collected using keywords and locations based on daily fore-
casts from the early warnings systems or triggered manually in case of earth-
quakes or not-forecasted events. Then, the text is automatically annotated with
multilingual classifiers trained in 12 languages and extended with multilingual
embeddings. Simultaneously, a multi-class convolutional neural network labels
relevant images for floods, storms, earthquakes, and fires [86]. Finally, messages
are geocoded with a two-step algorithm; location candidates are selected us-
ing a multilingual named-entity recognition tool and then searched on available
gazetteers. After the platform processing, relevant information can be aggregated
in spatial (administrative areas) and temporal (daily) units.

SMDRM could offer timely, valuable information to reduce uncertainty and
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provide added-value information such as reports or descriptions of the situation
on the ground. The platform can help researchers to access data to complement
those extracted from traditional sensors or EO. The platform can adapt to cope
with surges in workload as it uses scalable software containers. Suppose the
number of messages to be processed increases suddenly during a high-impact
event. In that case, the platform can use more containers to annotate them. SM-
DRM code is released as an open-source platform.1 Its modules can be easily
extended and adapted.

In the remainder of the chapter, we describe the motivations for the platform
development and the platform’s architecture. We then describe the models that
can be used within SMDRM, and one operational implementation.

7.1. Introduction
The usage of information from social media during emergencies has been

one of the driving applications for research on the real-time processing of social
media messages. Over a decade, research has sought to extract, categorize, and
visualize relevant information for emergency management.

Floods have attracted significant attention for researchers, who have, for in-
stance, attempted to determine flood extents using social media information, with
some success. The uncertainty in the geolocation of messages has been reported
as the main contributor to inaccuracies [8].

On average, the minimum time needed by emergency services such as the
Copernicus CEMS Rapid Mapping (RM) service to provide crisis information
after an activation request by an authorized user2 is 24 hours [103]. Furthermore,
due to the technical issues with densely built-up areas, remote sensing analysis
is of limited use in urban areas. These areas are commonly not analyzed and left
out of the produced maps.

Previous research [86] shows that social media can provide a good overview
of impacted infrastructures and provide situational awareness within a few hours.
Social media postings immediately after the event have a higher probability of
being relevant to the event’s detection and damage assessment process, and may
contain less noise than later messages. This, according to practitioners, is helpful

1https://github.com/ec-jrc/smdrm
2EU Member States, EU Civil Protection Mechanism, the EC’s Directorates-General and EU

Agencies, the European External Action Service , as well as international Humanitarian Aid orga-
nizations
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to crisis managers while waiting for EO products such as the ones by Copernicus
Mapping.3

7.2. Platform Description
Concepts

A data point is a dictionary, typically represented in JSON format, composed
of a specific set of fields described in Table 7.1.

Field Description

id Unique identifier
created_at The date and time at which the data point is

created
text The textual information to be annotated and/or

geo located

Table 7.1: Mandatory fields for processing data points

To annotate is assigning a probability score to a data point’s ’text’ field. This
is a float number between 0 and 1, representing the likelihood that the textual
information in the ’text’ field is of a specified category.

A Directed Acyclic Graph (DAG) represents a workflow of coded instruc-
tions, which we represent within the Airflow framework.4 A DAG specifies the
workflow as a set of repeatable coded rules, including dependencies between
tasks, the order to execute them, and other instructions required to run a data
pipeline.

A task is the smallest component of a pipeline. Each task must produce the
same result every time it is executed on a defined dataset. It executes a specific
logic, be it fetching data, running analysis, triggering other systems, or more.

SMDRM is a Python-based data pipeline application for processing social
media data points. The goal of SMDRM is to provide an enriched version of the
input data shown in Table 7.2 that can be further analyzed and visualized.

3https://emergency.copernicus.eu/mapping/ems/
cems-week-2021-conclusions-community-insights-and-service-evolutions

4https://airflow.apache.org/
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Scalability Requirements

SMDRM application is Docker Compose5 based. A running Docker daemon
and docker-compose software are required. Considering a minimal configuration
intended to run on a single machine, the workstation minimum requirements are:

8 CPUs
12 GB free memory
10 GB free disk storage
access to public docker registry

Suppose multiple servers are available, or SMDRM is deployed in a produc-
tion environment. In that case, we recommend setting up an orchestrated solution
that runs on several machines. In that case, Docker Swarm6 may be the easiest
way, as it is configurable via settings files.

Architecture
The main components of SMDRM are:

Docker - ensures consistency, reproducibility, and portability across Oper-
ating Systems.
Annotators - annotate disaster types and impacts, and writes information
in datapoints.
Geocoder - extract place names from text, looks for candidates in gazetteer
and and writes information in datapoints.
Apache Airflow - authors, schedules, and monitors workflows as Directed
Acyclic Graphs (DAGs) of tasks in an automated, and distributed manner.

The expected format of the input data is a zipfile archive. The zipfile should
contain at least one Newline Delimited JSON (NDJSON) file. The NDJSON
files must be located in the root of the zipfile archive. There must be a datapoint
for each new line in the files compressed in the zipfile archive. The datapoint,
including all required fields, can also be wrapped inside a ’tweet’ field. This is a
template typically applied to keep the original record when data is transformed.

5https://www.docker.com/
6https://docs.docker.com/engine/swarm/
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Figure 7.1: SMDRM architecture
.

7.3. Filtering, Impact Assessment, and Geocoding
Filtering (e.g., floods)

We use a supervised binary classification setup. The positive class comprised
all messages indicating that a specific type of event (e.g., flood, wildfire, earth-
quake) is happening or is about to happen. Our work does not require semantic
resources. We only leverage pre-trained encoders for multilingual modeling.
They can be used to perform multilingual classification using embeddings that
are aligned across languages[13]. We can use labeled data in a set of available
languages to bootstrap a binary classifier for a new language for which no labels
are available. In our case, we labeled data as relevant (label=1) or not(label=0) to
floods or to water-related events (tropical cyclones). After several tests[51], we
decided to use LASER (Language-Agnostic Sentence Representations), released
by Facebook7, as a pre-trained language representation in multiple languages.
LASER acts as the encoder in our model, as it provides the embeddings for the
input sentences. So, we built a classifier network for our decoder in the model to
classify the sentence as relevant or not to a specific event. Specifically, we trained
a sequential model with two dense layers to minimize binary cross-entropy mea-
sure as loss function using the Adam algorithm as optimizer.

Categorization (impact assessment)
We aim to make the mining of social media messages useful for practical moni-
toring of urban events, building upon previous work in the Joint Research Centre
(JRC) Unit around Social Media Flood Monitoring.8 We noticed soon in our

7shorturl.at/dwRXZ
8shorturl.at/bnNVX
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Field Description

annotation Annotation scores placeholder.
place Geographic attribures place-

holder.
place.candidates place candidates returned by

NER.
place.meta Metadata of place candidates

matched against gazetteer.
place.meta.city Name of the city.
place.meta.country Name of the Country.
place.meta.countrycode Alpha-3 code ISO for Country.
place.meta.latitude Latitude of the place candidate

matched against gazetteer.
place.meta.longitude Longitude of the place candi-

date matched against gazetteer.
place.meta.region_id The region identifier.
place.meta.region The region name.
text_clean Normalized textual information

Table 7.2: Fields added during data points processing

tests how the impacts generated from a water-related event are not different than
any other disaster (i.e. injuries, evacuation, damages, services disruption) To
obtain a high-quality training dataset, we performed a two-level annotation of
impacts-related messages. The input to this annotation were tweets obtained
during several flood or storm periods in the two cities for the pilot study. The
annotators were the European VOST (Virtual Operations Support Team)9 volun-
teers that process digital data for emergencies, usually composed of former or
current members of various emergency response services.

Level 1: Impact / No impact The first level of annotation includes deter-
mining if a message describes an impact. In the instructions, we use the phrase
’negative impact’ to avoid ambiguities in this regard and mention different types
of impacts that can happen. However, We do not ask, for annotators to categorize
messages based on those other types until the level 2 categorization is done.

Level 2: Type of impact The second level of annotation was focused on
messages for which the level 1 annotation indicated they have an impact. Ac-

9https://vosteurope.org/
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cording to our observations in the data, we considered various types of impacts
that are common in urban events. First, we consider effects on specific individ-
uals, such as people injured, missing, or displaced. Second, we split what is
commonly referred to as the ’infrastructure and utilities’ category into ’infras-
tructure damage’ and ’service disruption’.

Geocoding
Depending on the aim of the application, the platform can sustain two levels of
geocoding:

Regional level In our integration with EU-wide or Worldwide monitoring
systems, relevant messages are mapped to NUTS-2 areas (Nomenclature of Ter-
ritorial Units for Statistics, Level 2). Geocoding deals with messages that do
not include explicit geographical coordinates but mention a place name such as
a landmark or city. SMDRM uses a Named Entity Recognition tagger to obtain
possible locations in a text considering the syntax of the message. It then uses a
gazetteer in an extensive database of place names with their corresponding ge-
ographical coordinates. Finally, it uses a series of heuristics to infer the correct
country and correct gazetteer entry for those places. We use a library named
DeepPavlov10 for place names identification which extracts places candidates
from a piece of text. Their coordinates and structured geographic information
are then searched within a list of administrative areas and cities. Messages are
aggregated at the level of an event but also at the level of each administrative
area.

Urban level For the application of understanding urban flood impact, mes-
sages need to be geocoded at a level of granularity that is useful for emergency
responders, which in this case needs to go into an intra-urban scale, i.e., they
should refer to specific areas of a city which are affected by flooding events.
Only a tiny fraction of the social media messages are geotagged precisely. For
instance, only 1%-5% of the tweets are geotagged within urban areas[5]. We
used an innovative approach to achieve this goal. We focus on elements at risk
of the infrastructure (such as a hospital, a factory, a school, or a stadium, among
others), assuming that if a significant impact happens in such an infrastructure,
at least some messages will mention the infrastructure by its name. However,
this requires the creation of a customized gazetteer for infrastructure, which in
turn requires an extensive database containing infrastructure elements’ names.

10http://docs.deeppavlov.ai/en/master/features/models/ner.html
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The database of known locations of infrastructure elements used in the project
was built on data from OpenStreetMap (OSM).11 Infrastructure objects in OSM
are identified through ’tags’ that could relate to classes defined by the Sendai
Framework indicators for Disaster Risk Reduction.12

Figure 7.2 shows classified tweets aggregated by impact location and facili-
ties. A manual analysis of the contents of the tweets has proved that many of the
messages classified and geolocated seemed to indeed refer to impacts, some of
them containing spatial references to entities which could be located close to the
coordinates which were attributed to the tweets by the gazetteer.

Figure 7.2: Classified tweets aggregated by impact location and facilities.

7.4. SMFR, an Instance of SMDRM
Social Media Flood Risk (SMFR) is a platform to monitor specific flood

events on social media (currently, only Twitter). The system, built from the expe-
rience described in Chapter 4 is intended to work as a complementary monitoring
service for existing early risk alert systems. The first release of this experimental
project is tailored to work with EFAS, but in future releases, the ’topic’ (floods,
forest fires,etc) and the primary alert system will be configurable. For the de-
ployment of SMFR we created a distinct DAG, and tasks tailored to the Twitter

11https://openstreetmap.org
12https://bit.ly/3OFtnFt
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data structure. Each task iterates over batches of datapoints and applies a certain
logic. The tasks are:

Extract: enforces the SMDRM data structure onto each datapoint in a given
dataset.

Transform: applies text normalization for the annotate task, and place can-
didate extraction via DeepPavlov NER model for the geocode task.

Annotate: annotate data through a multilingual model for two binary classi-
fication of tweets: (i) flood relevance, expressed by a float value ranging from 0
to 1, and (ii) impact relevance, expressed by a float value ranging from 0 to 1.

Geocode: matches the place candidates extracted at transform task against
the Global Places gazetteer in the case of flood-relevance , and against local
gazetteers in the case of urban floods.13

Cache: saves processed datapoints from previous tasks into an Elastic Stack
instance (Elasticsearch+Kibana) to enable data exploration/visualization in dash-
board style.

Finally, we created an additional DAG, and tasks specific to the creation
of products sourcing EFAS interfaces. The DAG produces GeoJSON products
representing areas and risk grade, most relevant tweets per reported area, and
trends per day. These files are disseminated to a list of map servers. If an area
presents less than ten highly-relevant tweets (relevance > 0.8), the associated
region is Gray. A region is Orange if the ratio between medium-relevant tweets
(0.2<relevance<0.8) and highly-relevant tweets is between 5 to 1 and 9 to 1.
Region is Red if the ratio exceeds 1 to 9. After deduplication, the 5 most relevant
tweets are selected and presented for each area. A product is visible in Figure 7.3.
Currently the tweets annotated for "impact assessment" are not made visible as a
selection of the most representative messages are analyzed by an analytical team
of crisis responders.

7.5. Conclusions
Together with the image-classification model, the platform tackles RQ1 about

complementing flood risk information. The impact annotator extends the tool-
box in our provision to answer RQ5 "Is it possible to dynamically define the risk
and the impact of a flood in a densely inhabited area at high resolution?".

One ongoing development is the implementation of a Representational State
Transfer (REST) Application Programming Interface (API). This represents the

13https://nominatim.openstreetmap.org
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Figure 7.3: Screenshot from SMFR.

entry point where the end-user can leverage the functionalities of the SMDRM
platform via HTTP requests. Components such as classification models for an-
notation or DAG runs can be executed through dedicated API resources. Another
challenge that we are tackling is improving geocoding of messages collected dur-
ing urban events. We are trying to detect partial matches between facilities and
mentions in the text. As mentioned in Section 7.1 we trained a neural network for
images classification for 5 types of disaster using the EfficientNet model struc-
ture. Image classification is currently performed by interacting with the platform
asynchronously, not supervised by the Airflow component but by running of-
fline scripts. One work in progress is to develop a module for handling media
processing.

The platform presented allows to process thousands of messages at the same
time, overcoming the issue of data collection and data filtering. We think that an
important step forward would be to engage specific users that could evaluate our
research findings and help steering our work direction. We will details our ideas
in the following chapter.
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Part IV

Moving Forward
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Chapter 8

PRACTITIONERS’ VIEW

While social media has radically reshaped many industries, how to make this
abundant source of information and online behavior more accessible and usable
for crisis management has remained a subject of debate – as remarked upon in
a recent retrospective on crisis informatics trends and technology [80]. Part of
this debate stems from possible disconnects between practitioners’ needs and
researchers’ agendas, as practitioners believe social media has value for their do-
mains, but key concerns that have inhibited these benefits remain unaddressed.
The E1 Unit operating within the ’Space, Security and Migration’ directorate
of the JRC, has sought to bridge these two perspectives by organizing a work-
shop on ’Social Media for Disaster Risk Management: Researchers Meet Prac-
titioners’. The workshop consisted of five panel sessions conducted online on
November 30th and December 1st, 2020, and attended by 70 people.1 Grounding
this workshop in a set of emergency-related case studies, replete with numerous
datasets of various sources and modalities, the workshop encouraged practition-
ers to share their perspectives with researchers about key aspects in which social
media may provide utility in these events. Researchers shared their ideas on key
technical and scientific challenges. Following this cross-disciplinary exchange,
this chapter summarizes and highlights some of the main areas identified by prac-
titioners, recognizes the perceived barriers within them, and describes the gaps
between practitioner requirements and the research that need to be conducted to
overcome these barriers. In making this summary available, we work towards

1https://publications.jrc.ec.europa.eu/repository/handle/
JRC124963
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establishing a common ground between practitioners and researchers for dis-
cussing methods for channeling social media information in the most fruitful
way. This approach could ultimately move the field ahead by orienting the sig-
nificant research effort in this space toward solving fundamental issues that have
inhibited practitioners in their use of social media in crisis management.

To organize this summary, we first layout the benefits and values practitioners
perceive in using social media for crisis management. We then describe the
main concerns practitioners indicate that have possibly inhibited realization of
these benefits and the research related to them. These issues are not new to
researchers and to a large extent they have been mentioned elsewhere (e.g. [80]).
Key concerns we highlight include:

preventing negative consequences from misinformation and disinforma-
tion;

validating social media information; and

presenting crisis-relevant information from social media in a useful man-
ner.

8.1. Practitioners’ Perceptions of the Value of Social Me-
dia

Over the workshop, practitioners identified four areas in which they saw so-
cial media providing significant value for crisis management:

Real-time and ongoing situational awareness;

rapid insights in the immediate aftermath of disaster;

integration with heterogeneous, multimodal data; and

flexible value across the crisis management cycle.

Real-time and ongoing situational awareness. Social media’s increasingly
ubiquitous and global presence, particularly during disasters and emergencies,
has the potential to empower decision-makers in crisis management by providing
access to timely and relevant information. While, for instance, earth observation
data may be delayed while satellites wait for necessary orbital positioning, or
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forecasts may be inaccurate in time and space due to lack of sufficient observa-
tional data, user-generated information in social media is available 24/7/365 in
real-time, all over the globe. This data can supplement risk assessment improv-
ing timeliness and efficiency of satellite based emergency mapping [16]. Recent
advances in computational approaches to the massive scales of data made avail-
able through social media provide an opportunity to improve situational aware-
ness for management and response teams.

Rapid insights in the immediate aftermath of disaster. In general, as time
passes the conversation of social media tends to become more saturated with
noise (e.g., jokes, political blaming, general negative sentiment, etc.) causing it
to depreciate in value for practitioners. In past studies, the volume of relevant
or actionable information was often considered as an indicator of an event, as it
was assumed in general, that there is a spike of crisis-related messages around
a particular location or topic. Recent studies [51, 14]) take a more conservative
approach and integrate authoritative forecasts as well as incorporate crisis re-
sponders’ feedback [77] in defining the information filtering frameworks, which
can better extract and organize actionable information to inform decision makers
while overcoming noise and misinformation.

An interesting case study presented during the workshop (the explosions in
Beirut from August 4th, 2020) highlighted how images and videos posted by
witnesses early after a disaster, can be valuable sources when no other visual
depictions of a disaster exist, for instance before satellite or aerial images can
become available.

The Beirut explosion is of particular note as the first image reporting the
event appeared only 1 minute after the official time of the explosions (18:07 lo-
cal time). This post was followed after 13 minutes by a second one showing
damages at 1.5 km distance, and a third one 19 minutes later, showing the first
rescuers operating in the field. In a short time, more and more images and videos
appeared, providing a good understanding of the situation in the surrounding of
the blast location. The images published after the first posts related to the occur-
rence of the event, carry the highest potential for impact assessment in terms of
magnitude and location. Indeed, the average probability of images of being clas-
sified as not-relevant to the event confirms the timeline of social media activity
when users, during the first hours, are mostly posting visual reports (witnesses)
while later, they are joined by messages of solidarity [81, 86]

According to practitioners, beyond contributing to situational awareness, so-
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cial media could be helpful in detecting sub-events within a crisis and monitoring
how a crisis unfolds. Other use-cases range from performing damage assessment
[8], to gathering insights about the compliance with measures and recommenda-
tions issued by authorities, and feedback about the impacts of these actions.

Integration with heterogeneous, multimodal data. As evidenced by, among
others, the Beirut explosion in August 2020, the analysis of crisis-related im-
ages and videos – in addition to the standard text-analysis processes – can help
humanitarian response organizations to improve decision-making and prioritize
tasks. Annotated imagery and the ability to extract and unify semantic and vi-
sual features respectively from a social media post’s text and images can facili-
tate detection and damage assessment of a crisis in new ways [38]. For example,
leveraging the growing popularity of visual media from disparate sources like In-
stagram, YouTube and TikTok, can support detecting and assessing severity and
damage from natural crises like floods, fires, landslides, earthquakes; man-made
crises like industrial accident, fallout from conflict; as well as severity assess-
ment of the damage to infrastructure and the impact on the population.

While multimodal data such as images and video are becoming more popu-
lar, so too are the needs to integrate these various kind of data into unified pre-
sentation layers. Crisis management could be improved, for example, through
careful integration of this social data with other technology-based data including
geospatial analytics and sensor technologies. It would require software system
designed for decision support that can handle heterogeneous data from an ar-
ray of platforms for social networking, media sharing, and community-driven
navigation, among others, with authoritative information from radars, satellites,
sensors, and other sources. This would require technical advancement to en-
able the capability of representing and integrating these sources in a way that is
relevant for decision models of the information systems to support emergency
managers.

Flexible value across the crisis management cycle. The value of social
media information varies with each phase of the crisis management cycle. For
example, during the preparedness phase, static social media messages from past
crises can be studied to learn what type of relevant user-generated content could
be anticipated in future events with similar crisis types. During the response
phase, social media messages can be used to identify the extent of an event [66]
or for immediate damage assessment. Social media could also be used as part of
an iterative procedure for assessing efforts made by practitioners in the recovery
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phase. During the mitigation phase, agencies can perform corrective measures
responding to and recovering from future crises based upon lessons learned from
the public social media messages communicated during past crises. For exam-
ple, if evacuation orders were reported by the public through social media as
’confusing’, agencies can develop clearer evacuation communication strategies
in anticipation of a similar crisis in the future [87].

8.2. Barriers to Leveraging Social Media in Crisis Man-
agement.

Despite its perceived value, several key concerns have reduced trust in – and
therefore adoption of – social media analysis and related technology for crisis
management.

Information overload and uncertainty in automated filtering. Informa-
tion overload is a critical concern when dealing with social media data. Practi-
tioners accustomed to one-directional dissemination of information to the public
are now exposed to vast amounts of data originating from the public, which pre-
cedes formal communications and exposes practitioners to overwhelming vol-
umes of information. Of the many social media messages available during a
crisis, only a very small portion of it are valuable for emergency management
[68, 75, 62].

Beneficial messages have some actionable qualities, for instance, such as a
clear location, as well as understandable and detailed information about a sit-
uation. Most social media messages do not fulfill this criterion. For instance,
a large volume of COVID-19 tweets contain political discussions that are only
tangentially valuable for crisis risk management. Therefore, it becomes essential
to use reliable implementations of well-designed technologies to filter, priori-
tize, and organize relevant data from social media sources for decision makers.
Further, these technologies need to perform in such a way that decision-making
processes can be improved within a timeframe that is expected for each crisis
management phase, especially during the time-sensitive response phase.

Technologies for processing social media messages, including artificial in-
telligence, machine learning and NLP methods, have been deployed to try to
filter out irrelevant messages from social media streams. These technologies are
valuable but are limited in what they can achieve. For example, it is not always
clear for a person whether a message is useful or not for someone, or whether
it may be useful in the future or for whom; if these assessments are difficult for
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humans, automatic methods trained on these human judgement are likely to en-
counter difficulty. Moreover, to obtain accurate models, many algorithms need
event-specific human-labelled data that may not be available in the early hours of
an emergency or disaster. In addition, such filtering or categorization processes
need to be clarified to overcome the concerns related to the explainability and
interpretability of the automated process.

Different people and communities that must respond to disasters can be
served differently by social media information, depending on its source, the type
of disaster, and the timing of the information. In general, the less time passes
from the moment in which a social media message is posted to the moment in
which it arrives to an officer or responder, the better.

Misinformation and its consequences. Misinformation (unintentional) and
disinformation (intentional) may have huge consequences with social media, in-
cluding loss of life or property. There is a great differential in responsibility be-
tween users of social media platforms posting this information, and officials who
may disseminate a wrong or misleading message. There are always questions
of authenticity around messages posted by users of social media platforms. The
public is aware of these questions, but at the same time, expects that social media
channels are monitored by authorities. Sometimes the actual harm from misin-
formation or disinformation can be small or clearly avoidable, such as fabricated
images showing sharks swimming in a flooded highway,2 but in other cases the
consequences can be large, such as false accusations to individuals.3 Although
the misleading or malicious content can be a small fraction of messages, if not
removed or somehow flagged, their impact can be larger; also the fact that ’bad’
content is a small fraction of the total does not mean that ’good’ information
abounds. Eventually, social media has some capacity for self-correction, espe-
cially in the immediate aftermath of an event, but misinformation can be ex-
tremely persistent and mislead the public as time goes by. For instance, vaccine
hesitation has been, to some extent, a persistent message partially amplified by
social media. Making matters worse for practitioners, traditional media outlets
sometimes share the misinformation and disinformation. When stories are not
thoroughly fact-checked but instead are prematurely disseminated to the pub-
lic, the consequences of amplifying false or misleading information may harm a

2McKenzie Sadeghi: ’Fact check: Photo of shark on a flooded highway is faked’. USA Today,
August 2020.

3’Reddit apologises for online Boston witch hunt.’ BBC News, April 2013.
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crisis management agency’s response and recovery efforts. Time and resources
need to be diverted from crisis response tasks to address false or misleading in-
formation.

Validation and verification. Practitioners want to avoid the risk of credi-
bility loss resulting from communicating false information. To avoid this, it is
imperative they check information for accuracy prior to dissemination. Also, if
practitioners are to make decisions based on social media messages, the selected
content must be clear, accurate and trustworthy. Validating and verifying infor-
mation prior to taking action also reduces the risk of inaccurate or sub-optimal
allocation of resources. False alarms and misleading or outdated information
are an everyday challenge for emergency management professionals. For in-
stance, fire fighters might mobilize to attend alerts that end up being false alarms.
Practitioners are trained to validate and verify the information they receive, and
one main component of this validation is the consultation with a succession of
entities, and the integration of independent sources of information. In this re-
gard, technologies that can collect and integrate heterogeneous data from vari-
ous sources would be extremely valuable, particularly if they can integrate social
media as a massive and dynamic source, with authoritative data. The processing
of social media could be substantially improved if developed workflows can pro-
vide both timely and validated information. Efficient workflows often involve
collaboration between human and automated elements. In this collaboration, the
automated part would require transparency and understandable mechanisms that
make them more trustworthy and easy to use by their human counterparts. As
photos and videos become more prominent elements within messages, they can
become more valuable as a means to aid in verifying crisis information. Recent
work is making headway in this area, with new datasets of crisis-related images
from social media are now available for researchers (crisisMMD).4) As a conse-
quence, automated techniques to detect old, edited, or fabricated images are as
important as methods for validating and verifying textual content.

Formatting information. A social media messages stream must be prop-
erly formatted before being provided to practitioners, to increase the potential
for its use in decision-making. A key element of this formatting is the inclusion
of geospatial information. Messages must be associated with places, regions,
sites, or roads/routes/paths. In many cases, this association needs to offer high-
accuracy and high-resolution, which is challenging due to the lack of an exact

4https://crisisnlp.qcri.org/crisismmd
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geographical reference in many social media messages. Locations mentions in
the text of social media posts can be extracted as a place name candidates us-
ing part-of-speech taggers and searched against gazetteers [29]. However, this
approach depends on availability of data and gazetteers, and is often biased to-
wards messages in English, limiting its applicability at a global scale. Experi-
ences from humanitarian and collaborative mapping among other crowdsourced
data collection initiatives may contribute to adding the geographical reference
to social media. At the same time, more precise geolocation of messages may
involve additional privacy issues when releasing fine-grained microdata. Practi-
tioners may need data in various modalities. The first preference expressed is in
a format that can be integrated within Geographical Information Systems (GIS)
for visual display on a map. Secondly, in ’raw’ universal textual formats such
as Comma-Separated Values (CSV) or simple text files. Thirdly, in other kinds
of structured or tabular form. Practitioners may also need other kinds of data
according to the type of crisis. Different crisis events may require different types
of reporting from social media, data formats, and levels of summarization. This
highlights a need for technologies that have aspects or features that depend on
the type of disaster. Finally, in many cases, multilingual data is available and
need to be handled. There is, hence, also a requirement for methods that can
process and collect data in multiple languages to create summaries that can be of
use to the needs of different communities inhabiting a city or region.

8.3. Technical Challenges and Future Steps
Many technical challenges were named during the workshop, including the

development of research, methods, and systems, to:

Extract, transfer, and load heterogeneous data from various sources, par-
ticularly authoritative ones, and reliably integrating them into the real-time
workflows, systems and tools used by practitioners for decision support.

Automatically appraise the quality or an information source, or assist in
the validation of a piece of information, be it a text message or an image
or video.

Recognizing and categorizing messages where human annotators disagree
on the usefulness of the message, to generate a signal of ambiguity that
can be further studied or used.
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Automatically place social media messages in time and space in an accu-
rate manner: geocode them precisely and with high-resolution, and deter-
mine if they are timely or refer to some past or future event.

Summarize social media messages authored in multiple languages.

As future steps, we plan to deepen our study of the gap between research and
practice in this space by surveying a number of experiences of usage of social
media during emergencies, and then preparing, based on that outcome, a manual
of best practices that can be useful for researchers and practitioners.
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Chapter 9

CONCLUSIONS AND
FUTURE WORK

9.1. Summary
We collected substantial evidence to broadly assert that social media can be

seen as complementary data helpful to crisis response frameworks.
Here we summarize our answers to the four research questions introduced in

Chapter 1.

RQ1: Is it possible to integrate effectively social media signals with au-
thoritative data at a pan-european level where riverine flood likelihood is
estimated?
Yes, in Chapter 4, we demonstrate that using a monolingual classifier for flood
relevance carried the best results in terms of accuracy. We also described a
methodology to combine hydrological forecasts and automatic, immediate an-
notation of social media messages without translation. Such a procedure could
reduce the response time extremely precious in the early stages of a flood.

RQ2: Is it possible to reliably classify social media information’s relevance
to floods using a ’zero-shot’ transfer learning?
Yes, we demonstrated how the methodologies presented in Chapter 4 are suitable
for extracting representative tweets from an event. We were able to map approx-
imately the affected locations as demonstrated in the real event case presented.
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When most messages are in a language with no labeled data, we showed how to
combine the information from the classification with the known locations from
the EFAS forecasts. The warm-start classifier, which involves annotating a small
number of tweets in the target language, performs better than the cold-start clas-
sifier in terms of precision and recall. It often achieves an F-measure comparable
to the one of the monolingual classifier. Regarding the choice of word embed-
dings, results suggest that the performance using GloVe or MUSE embeddings
are comparable.

RQ3: Is it possible to independently identify floods from forecasts using
knowledge from past events independently from hydrological forecasts?
Partially, the methodology presented in Chapter 5 can capture all types of flood-
ing (e.g., coastal, flash flood, pluvial) with the same trained model. We observed
that our model indicates flood activity (high recall) in many cases but with low
precision. About one in three of the alarms generated by the model based on
social media alone will correspond to a flood.

RQ4: Is it possible to dynamically define the risk and the impact of a flood
in a densely inhabited area at high resolution?
In Chapter 6, we demonstrated how the accuracy of a flood extent we obtain de-
termining whether a cell is flooded or not, using a detailed, country-specific map,
arrives at 86.9%. In contrast, using maps that are freely available for the entire
world grants an accuracy of 61.3% at the 10 m resolution and 65.8% at the 30
m resolution. Our experiment answers part of our research question in the affir-
mative, using both local DEM data and the freely available Copernicus DEM. In
Chapter 7, we described a model for impact annotation. When combined with
an image classifier within a scalable platform, we have a set of toolboxes for
determining the development of impacts in regional and urban areas.

9.2. Future Directions
More impacts assessment
As described in Chapter 6 and Chapter 7, providing timely risk assessment at the
highest possible resolution is essential. Future research should assess the fea-
sibility of integrating information derived from social media, authoritative data
(numerical models, sensors, and remote sensing), and socio-economic data. This
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fusion could improve disaster risk management capacity, especially in urban ar-
eas, and study the correlation between social media activity and flood impacts.
The research can explore the latest technologies to classify the information de-
rived from, but not limited to, multilingual social media, news, traffic data, and
publicly available data in real-time. An additional research effort could analyze
the information derived from events that are reported in the ground truth database
but are not found in Wikipedia.

Mapping
Limited human resources compound the issues mentioned above within emer-
gency services with pre-assigned responsibilities. The volume of social media
data generated during disasters risks cognitive overload for the human resources
who perform multiple tasks. Since the content from social media platforms can
be multimodal, this requires specific techniques to collect, store, integrate, and
analyze the information. We think future research should improve the timing
and precision of identifying locations impacted by a natural hazard. Leveraging
the methodology described in Chapter 6 and Chapter 7, images could be filtered
automatically based on the hypothesis that some images’ features could facili-
tate their geocoding for a specific disaster. Such a line of research should also
focus on the multimodal information because, as presented in Chapter 3, text and
images combined could help improve human geocoding and machine annotation.

Engaging practitioners
In Chapter 8, we described the barriers to adopting social media analysis in
crisis response. They include a variety of information quality and processing
issues. Social media data’s reliability can sometimes lead to negative conse-
quences, such as emergency services officers exerting time and energy to sift
through misinformation and disinformation; careful pre-processing of validated
and relevant data is necessary. Social media data resolution can be inconsistent;
sometimes, information comes with the geolocation metadata at the fine-grained
level if users enable it. Others come at an aggregated, coarse-grained level.
Furthermore, there are multiple social media platforms. Thus, these data sources
have the characteristics of heterogeneity in terms of format, metadata, and struc-
ture. Lastly, the content from social media platforms can be multimodal, requir-
ing specific techniques to collect, store, integrate, and analyze the information.
We think that a future line of research is identifying a common framework for
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exchanging information between researchers and practitioners. It should study
data formats, software modules, and procedures to make information processable
by tools deployed across emergency centers without disrupting emergency oper-
ations. This novel approach should facilitate an agile exchange of tasks/products
between data analysts and crisis responders, providing a non-invasive capability
to distill the essential information without overtime or overloading crisis rooms
with too much data. Given the focus on making a tangible impact on the practice,
we think a co-designing approach is needed to ensure practitioners’ participation.

Ultimately, We think we can say that the scope of the research must be ex-
tended to other types of events. To scale the current methodology, researchers
need to identify adequate global ground truth information for the specific type of
event and a classifier for it.
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