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ABSTRACT 

Spontaneous oscillations in the alpha band (α, 8–12 Hz) reflect 
ongoing fluctuations in cortical excitability. Several theoretical 
frameworks and empirical studies have supported the notion that 
distinct features of α-oscillations (e.g., power, phase, phase-coupling) 
influence sensory processing and subsequent behavioural performance 
in visual perception and spatial attention. While the evidence for the 
role of α-power in perception seems well-established, the roles of the 
α-phase in perception and the long-range α-phase coupling in spatial 
attention are still not clearly settled. This dissertation presents EEG-
based brain-computer interface systems as a test bench for the 
predictions of brain-behavioural theories and to understand the 
connection between brain oscillations and behaviour. Our findings 
garner mixed support for the roles of features of α-oscillations in 
visual perception and spatial attention and shed additional light on the 
use of BCI systems as a promising research tool in cognitive 
neuroscience. 

 

 

 

 

 

 

 

 

 

 

 

 

Key words: brain-computer interface, brain oscillations, brain-state 
dependent stimulation, behaviour, reaction time, alpha rhythm, visual 
perception, spatial attention, human cognition augmentation. 



viii 

RESUMEN 

Las oscilaciones espontáneas en la banda alfa (α, 8 a 12 Hz) reflejan 
fluctuaciones continuas en la excitabilidad cortical. Varios marcos 
teóricos y estudios empíricos han respaldado la noción de que las 
distintas características de las oscilaciones α (p. ej., potencia, fase, 
acoplamiento de fase) influyen en el procesamiento sensorial y el 
desempeño conductual posterior en la percepción visual y la atención 
espacial. Si bien la evidencia del papel del poder α en la percepción 
parece estar bien establecida, los roles de la fase α en la percepción y el 
acoplamiento de la fase α de largo alcance en la atención espacial aún 
no están claramente establecidos. Esta disertación presenta sistemas de 
interfaz cerebro-computadora basados en EEG como un banco de 
pruebas para las predicciones de las teorías del comportamiento del 
cerebro y para comprender la conexión entre las oscilaciones 
cerebrales y el comportamiento. Nuestros hallazgos obtienen un 
apoyo mixto para los roles de las características de las oscilaciones α en 
la percepción visual y la atención espacial y arrojan luz adicional sobre 
el uso de los sistemas BCI como una herramienta de investigación 
prometedora en neurociencia cognitiva. 

 

 

 

 

 

 

 

 

 

 

Palabras clave: interfaz cerebro-ordenador, oscilaciones cerebrales, 
estimulación dependiente del estado cerebral, comportamiento, 
tiempo de reacción, ritmo alfa, percepción visual, atención espacial, 
aumento de la cognición humana. 



RESUM 

Les oscil·lacions espontànies a la banda d’alfa (α, 8–12 Hz) 
reflecteixen les fluctuacions en curs en l'excitabilitat cortical. Diversos 
marcs teòrics i estudis empírics han donat suport a la idea que les 
característiques diferents de les oscil·lacions α (per exemple, potència, 
fase, acoblament de fases) influeixen en el processament sensorial i el 
comportament comportamental posterior en la percepció visual i 
l'atenció espacial. Tot i que l'evidència del paper del poder α en la 
percepció sembla ben establerta, els papers de la fase α en la percepció 
i l'acoblament de la fase α de llarg abast en l'atenció espacial encara no 
estan clarament resolts. Aquesta tesi presenta sistemes d'interfície 
cervell-ordinador basats en EEG com a banc de proves per a les 
prediccions de teories del comportament cerebral i per entendre la 
connexió entre les oscil·lacions cerebrals i el comportament. Els 
nostres resultats obtenen un suport mixt pels rols de les 
característiques de les oscil·lacions α en la percepció visual i l'atenció 
espacial i aporten llum addicional sobre l'ús de sistemes BCI com a 
eina de recerca prometedora en neurociència cognitiva. 
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cognició humana. 
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CHAPTER 1    

General Introduction 

"Our tendency to examine a problem from one point of view tends to reduce the 
likelihood of viewing an issue from another viewpoint." 

MICHEAL I. POSNER 

 

 

Psychology is a discipline that can be approached from many points of 
view: self-awareness (introspection), neural activity (brain processes), 
and behaviour (performance) (Posner 1986). Although each point of 
view is characterised by its unique techniques, a key aspect of this 
thesis is to combine behavioural and neural activity measurement 
techniques to study how they relate to each other in particular 
cognitive processes. 

Almost half a century ago, Mountcastle (1976) wrote: 

"... It has been clear or a long time – at least since the time of Lashley- that the 
quantitative study of behavior, traditionally the domain of the Psychologist, and the 
neural events in the brain, called 'Neurophysiology,' are conceptually different 
approaches to what are generically the same set of problems, and identity long 
emphasised by Jung (1972). What is new is that it is now possible to combine in 
one experiment the methods and concepts of each to yield a deeper insight into the 
brain mechanisms that govern behaviour than is possible with either alone. In this 
'combined experiment,' one controls and measures behaviour and records 
simultaneously the signs of cerebral events thought relevant [p.1]." 

Many researchers have followed this research line and have built the 
current framework of modern cognitive neuroscience. Cognitive 
neuroscience is a scientific field concerned with studying the 
physiological processes underlying cognition (Gazzaniga et al. 2002), 
focusing on the neural activity and connections across the brain 
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involved in cognitive processes (e.g., perception, attention, behaviour 
monitoring/control).  

This dissertation aims to combine measurements of neural activity and 
behavioural outcomes to understand the cognitive components of 
behaviour better and address whether behaviour can be modulated 
using real-time estimations of ‘'brain states' to augment human 
cognition and boost performance. The standard procedure of research 
in cognitive neuroscience studies is to relate different outcomes of 
behavioural response to distinct features of the brain activity (e.g., 
power, phase, frequency). Here, we will apply this logic in reverse to 
address the brain-behaviour relationship: we try to modulate the 
behavioural outcome by monitoring the brain activity and sending 
stimuli when a particular brain activity pattern previously related to the 
given outcome is detected in real-time.  

In order to achieve this, we designed a brain-computer interface (BCI) 
system based on electroencephalography (EEG) to capture the 
electrical activity produced by populations of neurons from the human 
scalp in real-time. The EEG-based BCI system is a closed-loop that 
allows the presentation of stimuli in real-time depending on an 
individual's brain-state (i.e., for brain-state dependent stimulation; 
BSDS) while performing a cognitive task that requires a behavioural 
response. The target brain state will capitalise on different features of 
the ongoing oscillatory activity (e.g., amplitude or power, phase) in the 

alpha-band (α, 8 – 12 Hz), with a hypothesis-driven approach based 
on the insights of brain-behavioural theories on the functional role of 

α-oscillations in visual perception and attention.   

In the first section of this introduction, I will explain how oscillations 
are present in our daily lives and how our brain's spontaneous neural 
activity takes the form of brain oscillations when captured at the 
human scalp by EEG sensors. Then, I will focus on the specific role 

of α- oscillations in visual perceptual and attentional processes and 
their relation to behavioural performance, according to the current 
brain-behavioural theories. I will then explain the approach of using 
EEG-based BCI systems as a tool for BSDS and cognitive 
augmentation in humans, together with the importance of using 
robust control signals for BCI based on insights from brain-
behavioural theories. Further, I will account for single-trial dynamics 
and individualisation in BCI studies. Finally, I will explain the main 
aims, the hypotheses, and the scope of this thesis with a brief 
overview of the studies presented in later chapters.  
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How oscillations shape the world around us, including 
our brains 

Oscillations in our daily lives 

Cyclic changes unfold everywhere around us. We live surrounded by 
oscillations even if we do not know what they are or where we should 
look for them. The Earth spins on its axis every day, turning day into 
night and night into day, and it rotates around the sun once per year. 
The position of the hands of the clock indicates the pass of time, and 
it changes every second, minute, and hour. The moon waxes and 
wines around the Earth, and we can observe the different moon 
phases completing an entire cycle of changes approximately every 
month. These are all examples of oscillations (Figure 1). However, 
oscillations not only surround us but are also within us. The well-
known circadian rhythms are part of our body’s internal clock (Glass 
2001) and exemplify how different physical, mental, and behavioural 
changes follow a day cycle (Czeisler et al. 1999), such as the sleep-
wake cycle. Since our sleep-wake cycle is tied to the day-night cycle of 
where we live, a change in the environment (e.g., the light) can 
influence our internal clock (Blume et al. 2019). Thus, if we travel to 
another time zone for a brief time (e.g., taking an international flight), 
we might probably deal with jet lag until our circadian rhythms re-
adapt to the new environment (Sack 2009). 

 

FIGURE 1. An illustrative example of how cycles become oscillations in the 
world around us. The positions of the hands of an analogic clock (left; 12h), day-
night cycles (middle; 24h), and the moon phases (right; almost a month) can be 
perceived as cycles (top), but they can also be seen as oscillatory cycles that generate 
oscillations over time (bottom). 
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Although we can perceive, for example, the day-night changes as a 
repetitive cycle that goes over and over, there is also another way to 
see the cycle if we add the variable of 'time': a cycle represented by a 
circle can turn into a fluctuation of states that evolve generating a 
repetitive signal called oscillation (Figure 1 bottom). 

What is an oscillation? 

An oscillation is a rhythmic fluctuation between states of a system 
that can be characterised using three features: frequency, amplitude (or 
power), and phase (Figure 2). The frequency refers to the oscillation 
speed and reflects how long a cycle takes to complete per unit of time. 
For example, our body holds a broad range of oscillations at different 
frequencies: our lungs take a breath about every four seconds, our 
heart beats around once per second, and groups of neurons can 
oscillate together between high and how excitability states of tens or 
even hundreds of times per second (Cohen 2014). The amplitude 
(directly related to power) denotes the difference between the peak 
and the valley of the oscillation and refers to the amount of energy in 
the oscillation, which varies and fluctuates over time. For example, 
when we breathe, we go through rhythmic sequences of inhalations 
and exhalations, and we can either in/exhale unforced or let the air 
in/out with much intensity. In an oscillation, the phase refers to a 
moment in time (i.e., when) and reflects the position (i.e., where) of 
the oscillation along its cycle (e.g., the peak); it measures the 'state' of 
the oscillation at a given instant. For example, we can know at which 
point of the breathing cycle we are in each moment: inhaling, holding 
our breath, exhaling, or between these moments. These features of 
oscillations can either change over time or remain stable, in which case 
they can be used to predict when a specific state will reoccur in the 
future (Cohen 2014). 

Brain oscillations captured by EEG from the human scalp 

Oscillations shape not only our world and our bodies but also our 
brains. Neuroscientists use the terms brain rhythms, brain 
oscillations, or neural oscillations when referring to patterns of 
brain electrical activity that reflect rhythmic fluctuations. Oscillatory 
brain rhythms occur in various frequency bands (e.g., theta, alpha, 
beta, or gamma bands), at different temporal scales (e.g., from seconds 
to milliseconds), and at multiple spatial scales, from the single-cell to 
whole-brain areas, as measured with neuroimaging techniques (e.g., 
magneto- or electroencephalography (M/EEG). In this dissertation, 
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the primary focus will be on human brain oscillatory activity measured 
with the non-invasive neuroimaging method of EEG.  

 

FIGURE 2. An illustrative example of the characterising features of 
oscillations: frequency, amplitude (or power), and phase are illustrated in each 
column, respectively. Frequency (left column). Oscillations are arranged from 
slow frequency (top) to fast frequency (bottom). Amplitude (middle column). 
Oscillations go from low amplitude (top) to high amplitude (bottom). Phase (right 
column). Oscillations are arranged accordingly to the moment (phase) at which the 
drawing ends. The top oscillation ends almost at the peak of a cycle, the middle 
oscillation ends at the through of the same cycle, and the bottom oscillation ends at 
the peak of the next oscillation cycle. 

The EEG signal is recorded non-invasively by electrodes placed on 
the human scalp and primarily samples electrical fluctuations produced 
by post-synaptic activity in the superficial layers of the cortex (i.e., 
cortical excitability; Buzsáki and Draguhn 2004). The captured 
fluctuations receive the name of cortical oscillations, and the ones 
picked up with EEG are generated mainly by changes in the 
membrane potential of several thousands of (pyramidal) neurons that 
create an extracellular current that can be measured from the brain or 
scalp (Lopes da Silva et al. 1980; Buzsáki 2006). The amplitude of 
cortical oscillations denotes the strength of the signal, which depends 
on the number of firing neurons, how often they fire, and to what 
extent they fire together. When behaving synchronously, the overall 
activity of thousands of neurons captured by EEG follows a quasi-
sinusoidal pattern, alternating with high- and low-level brain activity. 
The phase of cortical oscillations is where the signal finds itself on this 
activity cycle at a specific point in time, and the signal frequency 
denotes how often the sinusoidal activity goes up and down in a 
certain amount of time (Gallotto et al. 2017).  

Brain activity can be detected and recorded throughout the brain's 
cortical regions and is reflected in cortical oscillations. It is important 
to notice that the human brain exhibits neural activity that includes 
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both spontaneous activity (also called endogenous, intrinsic, pre-
stimulus, ongoing, or resting-state activity) and stimulus-induced 
activity (exogenous, event-based, or task-evoked activity; Northoff 
2018; Raichle 2015). Although the brain’s stimulus-induced or task-
evoked activity has been considered and related to sensory and 
cognitive functions since early EEG research, the functional role of 
the brain's spontaneous activity has been more disputed and has 
recently gained momentum (Buzsáki 2006).  

The intrinsic view of the spontaneous brain 

The existence of the brain's spontaneous activity has been known 
since Hans Berger observed for the first-time spontaneous activity in 
the brain independently of an explicit task (Berger 1929). By that time, 
the brain's ongoing activity was considered noise. Only recent 
advances in neuroscience have been able to clarify the nature of such 
activity (Braeutigam et al. 2019) and accept that the brain's ongoing 
activity is not merely noise but instead reflects specific patterns of 
neuronal processing in the local and global neuroanatomy (Arieli et al. 
1996; Damoiseaux et al. 2006; Fox et al. 2006). 

 

FIGURE 3. An illustrative example of the intrinsic view of the brain. Idealised 
EEG traces from three electrodes in posterior brain regions, with pre- and post-
stimulus periods indicated by different shading. The stimulus-evoked signal interacts 
with the brain's spontaneous activity (shaded area) and generates a neural response 
that functions in the brain's activity.  

Early work by Sherrington (1906) investigated the link between 
sensory-motor (input-output) functions, relating it to behaviourism. 
This input-output view of the brain sees behaviour as a conditioned 
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reaction of the brain. Sherrington's research, for which he was 
awarded a Nobel prize, underpinned most of the current 
neuroscientific work that has led to considerable advances in our 
understanding of the brain's structure, processes, and functional 
organisation (Braeutigam et al. 2019). Many studies with stimulus- or 
event-based approaches, including neuroimaging techniques, have 
dominated the field of cognitive neuroscience under the assumption 
of seeing the brain as a reactive system. According to this view, 
sensory input would cause some brain activity, resulting in significant 
motor activity responses or higher-level cognitive processes (Bechtel 
and Abrahamsen 2010; Raichle and Snyder 2007). Thus, the brain 
would be mainly driven by the environment, and activity generated not 
associated with a response of some input would be regarded as noise. 

However, this reactive view has been challenged by empirical research 
demonstrating that behavioural responses can exhibit high intra-
individual variability given a constant set of stimuli, even controlling 
for other factors (e.g., trial history and fatigue). This variability is often 
considered noise, and it is smoothed out by averaging the data or 
other kinds of statistical treatment. It has been assumed that this 
variability is critical to unlocking the system from predictable 
behavioural patterns and better adapting to environmental changes. 
This idea is reflected in models of sensorimotor processes linking 
reaction time variability to choice/decision variability (see Bompas et 
al. 2015 for further details). In addition, the reactive view of the brain 
ignores the possibility that fluctuations in behaviour are related to (and 
can be predicted by) the ongoing activity in the brain. This possibility 
is known as the intrinsic (endogenous) view (Braeutigam et al. 
2019), and it is based on Hebbian reasoning: "It is, therefore, impossible 
that the consequence of a sensory event should often be uninfluenced by the existing 
activity" (Hebb 1949; Sporns 2011, p. 149). 

It is generally agreed that the brain's ongoing activity accounts for the 
inter-trial variability of event-related or stimuli-induced neuronal 
responses at the individual level in a given task with constant 
conditions (Squires et al. 1976; Truccolo et al. 2002; Eichele et al. 
2010; Ratcliff et al. 2009). The interaction between spontaneous and 
stimulus-related activity is a complex and non-linear process showing 
particular reproducible patterns (Huang et al. 2017). Indeed, it has 
been suggested that neither the brain's spontaneous activity alone nor 
the external stimuli themselves determine event-related activity in the 
brain (Northoff 2018). Instead, the event-related activity determines 
how they stand to each other and their dynamic interaction. Since 
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there is a vast continuum of possible relations between spontaneous 
activity and external stimuli, Northoff has proposed a 'spectrum 
model of the brain' (Northoff 2018). Such a spectrum model entails a 
continuum between different degrees of activity and passivity in the 
brain's neural activity. Some EEG studies have accumulated evidence 
towards a wide range of possible interrelated mechanisms. For 
instance, Chaumon and Busch (2014) found that the brain's ongoing 
activity may reflect rhythmic variations in cortical excitability, allowing 
for control of incoming brain responses. Alternatively, Lou et al. 
(2011) reasoned that stimulation spontaneously improves the pre-
existing causal interaction between brain regions at stimulus onset. 
However, from a neuroscience perspective, the nature of the 
interaction between spontaneous and stimulus-related activity is yet 
unresolved (Uddin and Menon 2010; Braeutigam et al. 2019).  

Understanding how spontaneous brain activity might impact cognitive 
processes has gained momentum (Northoff 2018). The idea behind 
this research line is to relate pre-stimulus brain activity with the 
subsequent behavioural performance in response to a stimulus and 
quantify the correlation between them (Linkenkaer-Hansen et al. 2004; 
van Dijk et al. 2008; Hanslmayr et al. 2005a; Ergenoglu et al. 2004; 
Romei et al. 2012; Samaha and Postle 2015). In particular, ongoing 
cortical oscillations have been hypothesised to play a role in 
perception (van Dijk et al. 2008; Samaha and Postle 2015), attention 
(Worden et al. 2000; Thut et al. 2006), and memory (Bonnefond and 
Jensen 2012; Cruzat et al. 2021), among other cognitive processes. 
This thesis will focus exclusively on how brain oscillations in the 

alpha-band (α, 8–14 Hz), recorded over posterior brain regions, play a 
role in visual perception and spatial attention. From this point 

onwards, the term ‘α-oscillations’ will refer to this cortical rhythm in 

the posterior visual areas, and the ‘α-theories’ will generalise the 
theoretical proposals covering this rhythm. 

The brain-behaviour α-theories: the role of oscillatory 

α-activity in visual perception and spatial attention 

α-amplitude and the inhibition hypotheses 

The α-rhythm was first described by Hans Berger in the late 1920s 
(Berger 1929) when he found that high amplitude oscillations around 
10 Hz dominated human EEG recording. The α-rhythm is the 
strongest electrophysiological signal with a high signal-to-noise ratio 
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that can be recorded from the human scalp, and it is usually 
prominent in the occipito-parietal regions. During relaxed 

wakefulness, the amplitude of α-activity increases (i.e., α-
synchronization), especially with eyes closed (Grandy et al. 2013). The 

α-amplitude decreases when the eyes are opened and/or while 

performing tasks under mental effort (i.e., α-desynchronization; see 
Klimesch et al. 2007 for a detailed review). In the early days of EEG 

research, this finding inspired the idea that the α-rhythm might be an 
idling rhythm (Pfurtscheller et al. 1996) that reflected a brain state of 
reduced information processing.  

Recent evidence, however, has challenged the idling hypothesis and 

has suggested instead that α-activity increases do not reflect simple 
idling of cortical regions but possibly active inhibition of task-
irrelevant regions during mental operations (Palva and Palva 2007; 
Klimesch et al. 2007; Thut and Miniussi 2009; Jensen and Mazaheri 
2010). Some studies have directly manipulated the engagement and 
disengagement of some brain areas during cognitive tasks (Rihs et al. 
2007; Haegens et al. 2010; Sauseng et al. 2009; Romei et al. 2010; van 
Gerven and Jensen 2009). For instance, in the case of spatial attention, 

it is well-established that posterior α-activity decreases when covert 
attention is directed toward visual stimuli, for instance, when using the 
classical Posner cueing paradigm (Posner 1980). Illustrating this, 
studies in which attention is covertly directed toward the left or right 

visual field have found α-activity decreases in the hemisphere 
contralateral to the attended location and, in some cases, increases 
ipsilaterally (Sauseng et al. 2005; Worden et al. 2000; van Gerven and 
Jensen 2009; Yamagishi et al. 2003; Rihs et al. 2007; Kelly et al. 2006; 
Gould et al. 2011; Thut et al. 2006; Foster and Awh 2019). 
Importantly, at the behavioural level, it is usually expected that visual 
targets appearing at the attended location led to higher detection rates, 
quicker reaction times, and higher performance compared to those 
appearing in unattended locations (Posner 1980; Posner et al. 1980; 
Petersen and Posner 2012). Together, these findings support the view 

that α-activity reflects the inhibition of irrelevant brain areas that must 
be suppressed to optimize the performance of a given task (Klimesch 
et al. 2007). This inhibition acts as a selective tool to narrow the 
relevant information and allocate brain resources to the relevant areas 
for processing (Carrasco 2018). Indeed, it has been proposed that 

oscillatory brain activity supports a gating function reflected in the α-
activity fluctuations (Lopes da Silva 1991). This view is the foundation 
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of the gating-by-inhibition hypothesis (Jensen and Mazaheri 2010), 
according to which the α-activity reflects an inhibitory, top-down 
mechanism that suppresses information in task-irrelevant areas while 
actively gating it to task-relevant areas. Under this framework, in 

spatial attention, decreases in α-activity could be interpreted to reflect 
higher cortical excitability to facilitate visual processing at the 

attended, likely target position. In contrast, α-increases potentially 
could reflect an active inhibitory process protecting against distraction 
input from task-irrelevant positions. By this principle, performance is 
poor when α-activity is low in the task-irrelevant areas (Figure 4; 
Jensen et al. 2011). Indeed, Klimesch proposed the inhibition-timing 

hypothesis (Klimesch et al. 2007), in which oscillatory α-activity plays 
a key role in the brain’s ability to process information and represents a 
mechanism of top-down inhibitory control. They postulated that low 

α-amplitudes in the EEG signal reflect a state of comparatively high 

excitability, whereas high α-amplitudes reflect a state of inhibition (i.e., 
low excitability). Both hypotheses (Klimesch et al. 2007; Jensen and 

Mazaheri 2010) suggest that parieto-occipital α-amplitude reflects the 
excitatory/inhibitory state of visual processing, thereby enhancing or 
diminishing, respectively, the likelihood of stimulus perception. 
Several findings have provided evidence that strong pre-stimulus 

occipital α-activity leads to a negative impact on visual perception 
(Ergenoglu et al. 2004; Hanslmayr et al. 2005b; Hanslmayr et al. 2007; 
van Dijk et al. 2008; Mazaheri et al. 2009; Mathewson et al. 2009). For 
instance, Mathewson et al. (2009) found that errors in button-press 

responses were preceded by higher pre-stimulus α-activity in a go/no-
go task. In the case of visual perception, Hanslmayr et al. (2005b) 
showed that lower performance in a visual perception task was linked 

to higher α-amplitudes in parieto-occipital regions. Also, the higher 
the pre-stimulus α-power activity within participants, the less likely the 
stimulus's detection was. For example, Ergenoglu et al. (2004) found 
that the probability of detection can be predicted by the amount of 

pre-stimulus α-power (in the ~ 10 Hz range) on a trial-by-trial b from 

α-activity originating in the parieto-occipital regions. This link between 

trial-by-trial variability in the posterior α-power and visual 
performance has been replicated by other studies using other 
experimental paradigms (van Dijk et al. 2008; Busch et al. 2009; 
Mathewson et al. 2011). Comparable results at the between-subjects 
level showed that participants exhibiting poor performance were 

characterised by high α-amplitudes (Hanslmayr et al. 2005b; Klimesch 

et al. 2007). One potential interpretation of these results is that α-
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power can index an inverse state of cortical excitability (Klimesch et al. 

2007), and another would be that a reduction of α-power may increase 
visual excitability (Lange et al. 2013). 

 

FIGURE 4. According to α-theories, an illustrative schema of the brain-

behavioural relationship between oscillatory α-power and α-phase and 
reaction time (RT) in visual perception. Power (top). Higher α-amplitudes 
(power) in parieto-occipital regions during stimuli presentation would lower the 
probability of stimulus detection and, thus, slower reaction times (RTs). On the 
other side, low α-power at stimulus onset would increase the probability of detection 
and, thus, lead to faster RTs. Phase (bottom). Stimuli delivered at the more optimal 

phase of the α-cycle (e.g., peak) of the α-oscillation would lead to faster RTs (better 
performance) compared to stimuli presented at the less optimal phase of the α-cycle 
(e.g., through), which would lead to slower RTs (poorer performance). Here, the 
relationship between the selected parts of the α-cycle (peak/through) and the 
most/less optimal phases is arbitrary and only meant for illustrative purposes.  

α-phase and the pulsed inhibition hypotheses 

Inherently, the phase of low-frequency oscillations fluctuates more 
quickly than power, and some authors have proposed that inhibition 
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by α-oscillations, at the finer grain, acts as a pulsed inhibitory 
mechanism. This phasic inhibition has been proposed to control 
incoming information from sensation to perception in a pulsed 
manner under the pulsed inhibition hypothesis by Mathewson et al. 
(2011). In particular, the peak and the trough of a fluctuation would 
correspond to moments of low and high levels of cortical excitability, 
respectively. When it comes to the visual system, oscillations would 
therefore lead to a cyclic alternation between favourable and 
unfavourable states of information processing, or perceptual cycles, 
effectively chunking the inflow of sensory information into perceptual 

events depending on the phase of the α-cycle (Figure 4; Klimesch et 
al. 2007; VanRullen 2016b; Jensen et al. 2014). Consistent with this 
view, the rhythmic pulsing hypothesis (Mazaheri and Jensen 2010) 

proposed that spontaneous α-activity along with asymmetric 
amplitude properties can be viewed as rhythmic pulses producing 
bouts of inhibition every 100 ms. Stimulus processing can only occur 

between α-pulses (i.e., discrete processing; VanRullen 2016b), and 
importantly, this rhythmic inhibition only occurs when the pulses of 

α-activity are at a sufficiently high amplitude. Evidence of such a 
precise phase-dependent mechanism, through which sensory 
information is organized into perceptual moments depending on 
cycles of cortical excitability (Lindsley 1952), could be correlated with 

fluctuations in behaviour. Indeed, the phase of α-oscillations at the 
moment of target presentation has been related, among others, to 
trial-by-trial fluctuations in threshold-level visual detection (Nunn and 
Osselton 1974; van Dijk et al. 2008; Mathewson et al. 2009; Busch et 
al. 2009; Busch and VanRullen 2010; Hanslmayr et al. 2007; 
Hanslmayr et al. 2013); to supra-threshold visual perception as 
measured by reaction times (Lansing 1957; Dustman and Beck 1965; 
Callaway and Yeager 1960); to attention sampling and visual search 
(Busch and VanRullen 2010; Fiebelkorn et al. 2013; Buschman and 
Miller 2009; Dugué et al. 2015), among others. In particular, Busch et 
al. (2009) found that the threshold to detect visual flashes covaries 

over time with pre-stimulus α-phase measured with EEG. Similarly, 
Mathewson et al. (2009) showed that the detection rate of visual 

targets differed between opposite phases of α-oscillations, and the 

prediction of detection performance by means of α-phase was only 

possible with high α-power. These findings suggest that oscillations of 

α-activity (described by phase) directly relate to oscillations in cortical 
excitability (Lindsley 1952). Although these studies provide evidence 

of a link between the phase of α-oscillations and behavioural 
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performance in various cognitive domains, these findings have been 
primarily based on exploratory approaches and inferential group 
statistics. 

α-phase coupling and the ‘communication trough coherence’ 
hypothesis 

Beyond investigating the role of the oscillatory α-power and α-phase, 
which relate to neural dynamics at the local level, some studies have 
gone one step further and employed different methods to explore 
phase-coupling between distant brain areas (Friston 2002; 
Hanslmayr et al. 2013). Some oscillatory interaction mechanisms have 
been highlighted in brain function using phase-amplitude coupling 
(PAC), in which, typically, the amplitude of fast frequencies is nested 
into the phase of slow oscillations (Lakatos et al. 2005). Other 
oscillatory mechanisms involve phase-phase or cross-frequency 
coupling (CFS), which reflects the synchrony between the phase of 
distinct frequencies (Palva et al. 2005; Palva and Palva 2018). 
However, this thesis will focus on the phase coupling method to 
assess the functional connectivity between two distinct brain regions 

over time and at the same frequency (α) at the single-trial level. 

In visual perception, Hanslmayr et al. (2013) suggested that a low-
frequency oscillatory signal at ~7 Hz dynamically gates time windows 
for sensory information transfer between occipital and parietal 
regions. Remarkably, the frequency in which they found these effects 
matches the behavioural time constant of visual sampling (VanRullen 
et al. 2007; Landau and Fries 2012), suggesting that the propagation of 
oscillatory activity between cortical regions underlies the rhythmic 
nature of our visual system. This finding supports the notion that 
oscillations route cortical information flow (Bressler 1996; Varela et al. 
2001; Saalmann et al. 2012; Baldauf and Desimone 2014) and aligns 
with the communication-through-coherence (CTC) hypothesis 
(Fries 2005, 2015). The idea behind the CTC hypothesis is that 
oscillations could facilitate the communication of information (i.e., 
propagation of activity) by synchronising cycles of excitability between 
a distant population of neurons, thereby increasing the likelihood that 
spikes from neurons in one brain region will discharge post-synaptic 
potentials during the excitable phase of neurons in the other (Fries 
2005). Crucially, however, Hanslmayr et al. (2013) demonstrated that 
even if two task-relevant brain regions are synchronised, they will only 
transmit information during the optimal, not the non-optimal phase. 
Long-range phase-connectivity between distant neural populations 
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(Varela et al. 2001; Fries 2005, 2015) and phase at the local level are 
essential for transmitting information within cortical oscillations across 
different brain regions. 

Various complex cognitive functions, such as attention orienting, are 
dependent on synchrony between neural populations over a network 
of distant neural populations, often called the frontoparietal network 
(FPN) (Petersen and Posner 2012; Buschman and Miller 2009). 

Although the increases in ipsilateral ⍺-power have been attributed to 

local ⍺-synchronisation reflecting inhibitory processing, other studies 
have also related this ipsilateral power increase to long-range 

synchronisation of ⍺-oscillations between cortical regions (Sauseng et 
al. 2005; Freunberger et al. 2009; Freunberger et al. 2008; Doesburg et 
al. 2009; Palva and Palva 2011). Indeed, Palva and Palva (2007) 
proposed the active-processing hypothesis, in which the oscillatory 

long-range ⍺-phase dynamics play a role in coordinating neural 
processing in active task-relevant cortical structures. Such long-range 

⍺-synchronisation is a potential mechanism to increase the fidelity and 
effectiveness of communication throughout the brain (Clayton et al. 
2018), especially among front-posterior regions (Sadaghiani and 

Kleinschmidt 2016). This long-range ⍺-synchronisation co-occurs with 

local ⍺-synchronisation in the ipsilateral visual cortex, suggesting the 

involvement of ⍺ sensory inhibition and integration of top-down 
control networks dedicated to the deployment of visual attention 
(Doesburg et al. 2009; Clayton et al. 2015, 2018). These findings align 
with the premotor theory of attention (Rizzolatti et al. 1987), which 
postulates that the same neural circuits in frontoparietal areas control 
attention orientation.  

Overall, the idea that EEG captures significant fluctuations in neural 
excitability is at the core of evidence for various hypotheses about the 
neural mechanisms of cognitive processes and their relation to 
behaviour (e.g., perceptual cycles, see VanRullen 2016b). This putative 
brain-behaviour connection raises the possibility of measuring, 
anticipating, and even manipulating cognitive processing by using 
measurements of brain activity online to parse sensory, electrical, or 
magnetic stimulation to the user (e.g., to boost the effectiveness of 
brain stimulation, see Zrenner et al. 2018). One way to explore this 
possibility is by using brain-computer interfaces (BCIs) as a research 
tool for providing new knowledge of cognitive neuroscience and 
augmenting human behaviour. 
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Using EEG-based BCI systems as a research tool for 
brain-state dependent stimulation (BSDS)  

Why brain-computer interfaces (BCIs)? 

In recent years there has been a substantial increase in the interest in 
characterising online brain activity using non-invasive brain imaging 
techniques (e.g., EEG) to address cognitive questions, particularly in 
the context of brain-computer interfaces (BCIs) (Jensen et al. 
2011). A BCI is a hardware and software communication system 
designed to recognise specific patterns in the ongoing brain 
oscillations and allow interaction between the brain and the outside 
world (Nicolas-Alonso and Gomez-Gil 2012). Although BCI has its 
roots in applications for communication and control by patients who 
suffer from severe motor impairments (Wolpaw et al. 2002), diverse 
applications have emerged trough out the years as new forms of 
human-computer interaction (Abiri et al. 2019) and augmenting 
human performance and novel methods of data analysis in cognitive 
neuroscience (van Gerven and Jensen 2009). Indeed, a review paper 
by Jensen et al. (2011) has shown the utility of and the need for BCIs 
in brain research. For instance, BCIs represent a new, potentially 
powerful tool for studying the brain at work (Bahramisharif 2012).  

Moreover, it can also be used for assessing brain states in real-time, 
such as intentions, attention, and accuracy capabilities (Blankertz et al. 
2010; Zander and Kothe 2011; Martel et al. 2014). From a pure 
engineering perspective, the objective of a BCI system is to decode 
signatures of brain activity associated with an individual's brain state as 
reliably and as fast as possible to determine an outcome. Many studies 
have demonstrated the feasibility of monitoring brain states in real-
time and adapting BCI accordingly (Chavarriaga and Del Millan 2010; 
Freeman et al. 2004; Papadelis et al. 2007; Gangadhar et al. 2009; 
Aricò et al. 2018; Kuc et al. 2021; Mora-Sánchez et al. 2020).  

Challenges of EEG-based BCIs systems 

Most non-invasive BCI research relies on recordings of MEG or 
EEG, which are optimal for real-time measures of brain processes 
(Enriquez-Geppert et al. 2017; Saha et al. 2021). The significant 
advantage of MEG over EEG is the high spatial resolution and the 
opportunity of recording data beyond the surface of brain regions. 
However, MEG devices are extremely costly and unfeasible to move 
about (Bahramisharif 2012), making them less suited for practical BCI 
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applications outside research. Indeed, EEG represents the most 
dominant measurement modality and holds the most potential to 
enable true wearable BCIs promptly. EEG offers high temporal 
precision and directly measures human population-level neural activity. 
The downsides of EEG are the limitation to capturing brain activity 
mainly from cortical structures, the low signal-to-noise ratio, and the 
high susceptibility to artefacts generated by eye or muscle movements 
(Muthukumaraswamy 2013). Overall, the EEG equipment is low-cost, 
easy to use, and accessible (Cohen 2017b), making it an efficient 
acquisition method for real-time BCI. 

To build a robust EEG-based BCI, it is essential to use signatures of 
the ongoing brain activity that can be analysed using short chunks of 
data (e.g., data buffer). These data segments should be continuously 
updated and detected with a reasonable signal-to-noise ratio (SNR). 
Nonetheless, performing EEG-based BCI studies is highly 
challenging, given that data needs to be streamed and processed online 
and that BCI researchers need to be able to suppress environmental 
noise in real-time to perform online artefact removal (mostly muscular 
activity unrelated to brain signals) to prevent confounding the signals 
of interest (Jensen et al. 2011). A real-time framework holds 
advantages over the more conventional offline analysis approach in 
theoretical advance despite the caveats. Proof of functioning real-time 
tools based on current cognitive neuroscience knowledge could 
further consolidate the theoretical frameworks and pave the way to 
further research and applications. Thus, BCI could be a research tool 
using hypothesis-driven approaches as a test bench for brain-
behavioural theories. In finding a solid link between prestimulus α-
oscillations and behaviour, the hypothesis-driven framework could be 
further used in BCI applications to augment human cognition 
(Horschig et al. 2014).  

Using EEG-BCI for brain-state dependent stimulation (BSDS)  

One of the potential uses of BCI as a research tool for cognitive 
neuroscience and as a practical tool for augmenting human behaviour 
is the brain-state dependent stimulation (BSDS). The principle 
behind BSDS is the following: If brain-state fluctuations are reflected 
in ongoing oscillatory activity, and these fluctuations impact cognitive 
processing, then delivering stimuli in real-time to subjects contingent 
on certain identified brain states makes it possible to investigate the 
functional role of the brain state (Sergeeva et al. 2014). A substantial 
amount of empirical knowledge and theoretical basis about the 
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relationship between brain states and behaviour must exist to use this 
approach. 

For example, it would be interesting to investigate whether 
behavioural performance can be modulated online on a single-trial 

basis using α-activity from posterior brain regions (Figure 5). Current 
theoretical and empirical knowledge indicates that visual perception is 

reduced when the amplitude of posterior α-activity is high (e.g., van 
Dijk et al. 2008), and therefore ground an online BCI setup where 

difficult-to-detect visual stimuli are only presented when the α-activity 

is low. According to the brain-behavioural α-theories, we should 
expect an increase in visual performance (i.e., detection rate) 

compared to when stimuli are presented at high α-activity, for 
example. Hence, a potential BCI application could use this strategy to 

send information only when detecting low α-activity in a given 
individual's brain to enhance cognitive and behavioural performance. 
The possibility of augmenting performance using BCI for BSDS could 
have many practical applications. Note that a valuable side product 
might be new insight gained in cognitive neuroscience when 
developing these BCI applications.  
 

 

FIGURE 5. An illustrative example of the design of an EEG-based BCI for 
brain-state-dependent stimulation (BSDS). The BCI system recognises particular 
patterns of ongoing brain oscillations following the serialised stages of data 
acquisition, data pre-processing, feature extraction, stimulus presentation, and 
behavioural response. For instance, according to the α-theories, when looking for 

high α-power patterns in the ongoing brain activity and triggering stimuli, we should 
expect slower reaction times (RTs) than when stimuli are delivered when α-power is 
low. 
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The design of an EEG-based BCI using a BSDS approach consists of 
a processing analysis pipeline with serialised stages (Figure 5). In 
short, the data acquisition (1) stage captures the brain activity from 
the human scalp using EEG, either from one or many channels. Then, 
in the data pre-processing (2) stage, the data is processed to detect 
and reject eye and muscle artefacts. The feature-extraction (3) stage 
concerns selecting and extracting features computed from the EEG 
and using them for later stimulus presentation. This stage mainly 
selects the features of brain oscillations relevant to the study's 
intended purpose and applies filtering and time-frequency (TF) 
analysis to the data (e.g., low- and high-power). Note that this stage is 
a critical part of the BCI implementation and design (Shahid and 
Prasad 2011), and noise from the brain recording can be reduced by 
adequately selecting the features representing a brain function of 
interest. When the patterns of the feature of interest match the 
patterns detected in the ongoing brain activity, the BCI uses this 
match as the control signal to trigger the stimulus to the user in the 
stimulus presentation (4) stage. Finally, the behavioural response 
(5) stage registers the individual's behavioural response (e.g., response 
time). The BCI goes back to the beginning of the pipeline, ready to 
start another loop iteration. Depending on the study's design, the 
feature-extraction pattern in the subsequent trial can be the same as 
the initial trial (e.g.., low/low power) or different from another study 
condition (e.g.., low/high power). 

Innovative approaches such as BSDS, based on the online 
characterisation of the ongoing brain activity (Hartmann et al. 2011), 
are currently in rapid development and hold the promise of providing 
new ways for investigating the working brain and complementing new 
insights gained from offline M/EEG studies in cognitive neuroscience 
(Jensen et al. 2011). For instance, the core idea of studying sensory 
perception using online stimulus triggering based on the phase of 
ongoing brain oscillations has attracted interest since the 1950s (e.g., 
Callaway and Yeager 1960; Gho and Varela 1988). Similar approaches 
are currently used in research (e.g., BSDS using auditory attentional 
modulation: Andermann et al. 2012; BSDS-TMS: Zrenner et al. 2018). 
Nonetheless, the number of studies that have previously used online 
stimulus triggering contingent on the ongoing brain activity is low.  

Manifold potentiality of analysis in hypothesis-driven studies 

Given that studies using BSDS use real-time monitoring of ongoing 
brain activity to trigger the stimulus to specific features of oscillations, 
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it is essential to determine a priori some parameter choices of the BCI 
analytical pipeline. Those choices can be based on previous literature 
showing the brain-behavioural effect of interest (see Chapters 2 & 3) 
and/or on previous offline analyses addressing the brain-behavioural 
effect as a putative control signal for the BCI before enrolling on the 
real-time experiment (see Chapter 4). Usually, the BSDS approach 
relies on limiting the parameters of the oscillatory frequency of interest 
(e.g., the α-band), the time point of interest (e.g., stimulus onset), and 
the brain regions of interest (e.g., posterior visual areas). Importantly, 
selecting the parameters and coding the analysis pipeline of the BCI 
before the study facilitates the pre-registration of such studies (as 
we did in both real-time studies; Chapters 2 & 3). We need 
replications in cognitive neuroscience so results can be observed 
repeatedly in different situations, especially in the context of BSDS 
research. We need brain-behavioural effects that can be replicated 
many times and constitute a robust control signal for the BCI setting. 

Note that the potentialities of BSDS studies not only rely on the real-
time analysis but also on the wide range of potential reality checks and 
exploratory analyses that can be performed afterwards. On the one 
hand, real-time analysis can optimise the number of trials recorded at 
each of the selected features of oscillations (in comparison to offline 
studies presenting stimuli at random times). Also, obtaining the 
expected results would implicitly corroborate and ground the brain-
behaviour theory behind the decisions for the BCI. In this sense, real-
time BSDS can be considered a test bench for brain-behaviour 
theories. On the other hand, after data collection from the real-time 
study, the dataset can be further explored by performing offline 
analysis. Depending on whether the results of the real-time study were 
positive or negative, the analysis can be performed with different aims. 
For example, in the case of null results (as in Chapter 2), the post-hoc 
analysis can be focused on performing some reality checks to ensure 
that the choices in the real-time setting were appropriately chosen and 
did not influence the findings. In case of positive results (as in 
Chapter 3), offline analysis can further explore the possibility that the 
brain-behavioural effect can also be found beyond the selected 
parameters (time windows, frequencies, electrodes). To this end, 
offline analysis can complement the real-time analysis and allow for 
finding possible effects that would have gone missing using only the 
real-time approach.  

One of the significant challenges is that BCI must work at the single-
trial level. Therefore, previous knowledge of the group and multi-trial 
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offline approaches is valid but insufficient. A vital aspect of a 
successful BCI using BSDS, thus, is to rely on the most robust task-
dependent modulations of brain activity on a trial-by-trial basis as a 
control signal, ensuring a hypothesis-driven approach based on 
research evidence relating to brain oscillations and cognition or 
behaviour (Jensen et al. 2011; Horschig et al. 2014). 

Modulations of α-oscillations in visual attention and 
perception as control signals for BSDS  

Studies using α-modulations in visuospatial attention  

Previous attempts at finding BCI control signals for applications have 
gained insight into which signals are potentially robust given a specific 
task. For example, it is becoming clear that the amplitude of oscillatory 
brain activity in the low frequencies is modulated in various cognitive 
tasks (Hari 1997; Klimesch et al. 2007; Jensen and Mazaheri 2010; 
Jensen et al. 2011). In the case of covert visuospatial attention 
(CVSA), it has been found that the direction of attention is reflected 

in the inter-hemispheric distribution of α-activity in parieto-occipital 
regions (Rihs et al. 2007; Bahramisharif 2012; van Gerven and Jensen 

2009). The differential changes of α-activity across hemispheres, and 

ideally the direction of visuospatial attention, can be indexed by an α-
power imbalance over posterior regions. This imbalance can be 
computed using different methods, such as the logarithm of the left 

hemisphere α-power divided by the right hemisphere α-power used by 
Kelly et al. (2005a) or the lateralisation index by Thut et al. (2006). 
Indeed, several offline studies showed that modulations of posterior 

α-power due to the direction of covert attention had the potential to 
be used as a control signal for continuous control in an online BCI 
setting (Kelly et al. 2005a; Kelly et al. 2005b; Kelly et al. 2005c; Rihs et 
al. 2007; van Gerven and Jensen 2009; Treder et al. 2011; Tonin et al. 
2012). In addition, Belyusar et al. (2013) showed that it was possible to 

decode α-power lateralisation in a few hundred milliseconds in EEG. 
Shortly after, Tonin et al. (2013) developed the first online BCIs using 

the modulation of α-power in CVSA, and other studies came 
afterwards (Tonin et al. 2017; Trachel et al. 2018).  

Importantly, this collection of offline and online studies demonstrates 

that these attention-related modulations of α-power are robust enough 
to be used in a BCI setup and decoded on a single trial basis (van 
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Gerven and Jensen 2009; Treder et al. 2011; Bahramisharif 2012) with 
up to 90% accuracy for protocols in which targets are presented to a 
left/right location (Treder et al. 2011; Tonin et al. 2013). A detailed 
review covering visual attention based BCIs can be found in Astrand 

et al. (2014b). Note that the spatial distribution of α-power is linked to 

behavioural performance (Posner 1980). To this end, α-power 
modulations should allow for fast and reliable classification of the 
locus of attention and, thus, it should be possible to manipulate 
subsequent behaviour (e.g., reaction time or visual discrimination 
performance). Hence, α-power modulations by CVSA as control 
signals for BCI seem to be a good fit for BSDS.  

Moreover, despite the evidence from offline group-based studies that 

local α-modulations coincide with long-range ⍺-modulations in the 
ipsilateral visual cortex in the deployment of visual attention (Sauseng 
et al. 2005; Doesburg et al. 2009), online EEG-based phase 
synchronisation between brain regions has not yet been 
systematically addressed in the context of CVSA. Thus, it would be 
interesting to go one step further in the current use of BCI systems for 

CVSA and transform the concept of using α-power modulations in 
real-time as a local phenomenon to framing it as a network of task-

relevant connected brain regions through α-phase synchronisation, 
corroborating the proposed communication-through-coherence 
hypothesis (Fries 2005, 2015) in a visual attention task. This step is 
undertaken and addressed in Chapter 4 of this dissertation.  

Studies using spontaneous α-modulations in visual perception 

Regarding visual perception, as discussed earlier, high prestimulus α-
power in task-relevant regions has negatively impacted stimuli 
processingHanslmayr et al. 2005b; van Dijk et al. 2008; Mazaheri et al. 
2009; Ergenoglu et al. 2004; Hanslmayr et al. 2007). With this brain-
behaviour link in mind, in a BCI-BSDS design, the stimulus could be 

triggered only when α-power is low, optimizing the stimulus 
processing. On the contrary, if the purpose is to inhibit the stimulus 
information, then the reverse rationale applies, and the stimulus 

presentation can be triggered during high α-power. Despite the insight 
gained from the various offline studies pointing in this direction (e.g., 
Jensen et al. 2011; Horschig et al. 2014), to the best of our knowledge, 
an online study following this strategy using EEG-based BCI-BSDS 
has not yet been attempted. I address this in this dissertation in 
Chapter 3. 
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Even when using lateralized α during attention as a control signal, 
most studies have resorted to the power of brain oscillations for BCI. 
These applications have advantages concerning phase (e.g., more 
robust estimate, higher signal-to-noise ratio) but clear limitations (e.g., 
lower temporal precision, blind to neural communication). Therefore, 
an attempt to use temporal-precise, phase-related BCI would provide a 
definite advance in the field. Considering a BCI based on the phase of 
neural oscillations, for example, forces the developer to use a clear 
hypothesis-based distinction between optimal and non-optimal phases 
that facilitate a better difference between brain states and their 
associated impact on behavioural performance (e.g., a particular phase 
latency will yield faster detection reaction times). Because of the phasic 

component of α-theories (in modern times, the gating-by-inhibition 
hypothesis), this core idea has attracted interest since the 1950s 
(Lansing 1957; Callaway and Yeager 1960; Dustman and Beck 1965; 
Varela et al. 2001; Gho and Varela 1988) and has received renewed 
support from human neuroimaging studies using M/EEG recordings 
at low frequencies roughly covering from 5 to 15 Hz (Landau and 
Fries 2012; VanRullen 2016a, 2016b), as well as at higher frequencies 
in the gamma range (30 - 90 Hz; Fries 2005, 2015; Fries et al. 2008). A 
typical experimental approach to relating the ongoing oscillatory phase 
with the outcome of a particular cognitive process consists of 
repeating the same trial multiple times, leading to various behavioural 
responses. For example, in a supra-threshold visual perception task, 
successive trials with presentations of the same stimulus would 
eventually fall at different phases over the critical oscillatory frequency 
of interest. By analysing offline, the phase at which the stimulus was 
presented may reveal consistent behavioural results (e.g., reaction 
times) over different phases (VanRullen 2016b).  

However, such an offline procedure can reveal these relationships 
after the fact since there is no precise a priori control about which 
phase will be stimulated at each trial. In order to do so, one would 
have to anticipate in real-time, from the EEG, the distinct phase in the 
relevant frequency with sufficient time and precision to trigger a 
stimulus. Callaway and Yeager (1960) performed this procedure. They 
showed that faster responses to visual stimuli occurred if the stimulus 

was presented at the positive phase of an α-cycle (see Dustman and 
Beck 1965; for similar results). Similarly, Varela et al. (1981) presented 
two stimuli successively, with a very short interval, and showed that 
the subjects perceived the two stimuli as one if they were presented at 

the positive peak of the α-cycle. In addition, Gho and Varela (1988) 
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used a similar protocol to deliver rapid pairs of visual stimuli 

depending on the phase of the ongoing α-activity. They found that 
perception (two flashes versus one) could be somewhat manipulated 

depending on α-phase at stimulus onset. These studies were promising 
but only partially successful. Hence, we argue that given the current 
state of the art, the confidence in the theory and the reliability of the 
measurements make it possible to validate the proposed framework 
and explore the role of phase in cognitive processes. Interestingly, it is 
remarkable that this research line has not been followed up by new 
research after all this time until recently (see Chapter 2 of this 
dissertation for further details).  

Recent studies using α-modulations in cognitive neuroscience 

Some recent studies have continued exploring in real-time the 
relationship between the phase of the pre-stimulus oscillatory activity 

(going beyond the α-band) and the upcoming perceptual performance 
in other cognitive and motor processes (Ngo et al. 2013; Zrenner et al. 
2018; Helfrich et al. 2014). For example, Ngo et al. (2013) performed 
auditory stimulation in phase with the ongoing rhythmic occurrence of 
up states of slow-wave oscillations during sleep (SO) to enhance 
memory consolidation. Moreover, Mansouri et al. (2017) developed a 
novel approach for delivering electrical stimulation (transcranial 
alternating current stimulation; tACS) phase-locked to the activity of 
the underlying brain region in real-time. Similarly, Zrenner et al. (2018) 
used, for the first time, real-time EEG-triggered BSDS for magnetic 
stimulation (transcranial magnetic stimulation; TMS) in the human 
motor cortex to demonstrate that the phase of the ongoing µ-

oscillations modulates corticospinal excitability in the α-band from the 
sensorimotor cortex. Note that most of this modern research uses 
EEG-based BSDS for electrical or magnetic stimulation (e.g., TMS, 
tACS; see Bergmann 2018 for a review), which is beyond the scope of 
the sensory stimulation approach presented in this thesis.  

Note that the goal of a BSDS system based on the insight gained in 
brain-behavioural theories is to extract information from the EEG 
signal without the possibility of averaging over trials and identify the 
brain state of interest for the controlled delivery of a given event or 
stimulus. Brain activity modifications should be present on a trial-by-
trial basis for a given individual to identify the brain state successfully. 
Therefore, it is essential when doing research with BCI for BSDS to 
capitalise on single-trial dynamics and account for the individualisation 
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of the brain activity features of interest. This single-trial approach 
brings challenges and opportunities, which we discuss below. 

Practical considerations for EEG-based BCI in 
cognitive neuroscience 

Within-subject vs group-level analysis 

Most cognitive neuroscience studies looking at pre-stimulus activity 
have used neuroimaging techniques to address differences in brain 
activity by estimating means from many trials calculated across 
conditions and/or groups of individuals (Figure 6 illustrates this 
offline approach at the group-level in a visual perception task based on 
the level of α-power; Pernet et al. 2011). In these studies, stimuli that 
demand a fast behavioural response are presented at random (or 
pseudo-random) intervals while EEG is recorded. There is a brain-
behaviour pair of data points in each trial: an EEG signal (e.g., level of 
α-power within a pre-stimulus window the stimuli happened to fall) 
and behavioural response (e.g., RT). Trials are sorted post-hoc for 
each individual based on the behavioural outcome (e.g., fast vs slow 
reaction times; RTs), and averaged responses across conditions are 
then statistically compared (e.g., t-test) across fast and slow RTs to 
conclude a power-behavioural relationship. A significant relationship 
between α-power and behaviour (here, RT), when found at group-
level, provides support for the α-theories (VanRullen et al. 2011). 
However, finding a brain-behaviour effect in a trial-averaged study 
across individuals does not imply that the same effect can be found 
for each individual and not even on a trial-by-trial basis (Horschig et 
al. 2014).  

Statistical analysis can be done at two levels: at the individual level (i.e., 
within-subject analysis), in which the trial is the unit for analysis, and 
at the group level, in which the averaged data of each individual is the 
unit for analysis (Cohen 2017a). These analyses have different 
purposes, and they complement each other to see a bigger picture of 
the data (see Cohen 2017a for further explanation). Group-level 
analyses provide the consistency of the effect direction across 
individuals and deeper insights into how likely the findings will 
generalise to individuals. However, they do not provide information 
about the variability across trials within an individual. 
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FIGURE 6. An illustrative example of the average offline approach to study 
changes in visual perception as a function of the level of α-power (e.g., low vs 
high power) at group-level. Stimuli demanding a behavioural response are 
presented at random intervals while EEG is recorded (here, the trials are aligned to 
the moment of stimulus presentation for convenience). Trials are then separated 
based on behavioural outcomes (e.g., fast vs slow RTs). Average responses are then 
statistically compared across fast and slow RTs to conclude a power-behavioural 
relationship at group-level than can provide support for the theory if it turns out to 
be significant. Figure inspired by VanRullen et al. (2011). 
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FIGURE 7. An illustrative example of the online approach to study changes 
in visual perception as a function of the level of α-power (e.g., low vs high 
power) at the individual level. Stimuli demanding a behavioural response are 
presented at specific moments (e.g., low vs high power) contingent upon the 
ongoing EEG (here, the trials are aligned to the moment of stimulus presentation 
for convenience). Trials are then post-hoc separated based on behavioural outcomes 
(e.g., fast vs slow RTs). Responses are then statistically compared across fast and 
slow RTs conditions within an individual. Figure inspired by VanRullen et al. (2011). 
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On the other hand, within-subject analyses provide information on 
the variability across trials of an effect relative to the magnitude of the 
effect within the same individual. This information cannot be 
generalised to other individuals, but they provide insight into the 
robustness of the effects and a brain-behaviour link for each 
individual. This dissertation includes both types of analysis.  

For BCI-BSDS research, one should gather offline brain-behavioural 
evidence at the group level to be found at the individual level and, 
finally, at the single-trial level. It is essential to realise that the brain 
does not operate according to the ‘average response’ (Stokes and 
Spaak 2016). Real-world interaction requires real-time perception, 
encoding, and decision making on a single-trial level. To understand 
the neural basis of behaviour, we need to understand the neural 
dynamics as they unfold on a single trial.  

Tackling brain-behaviour relationships on a trial-by-trial basis 

Single-trial analyses allow us to provide, in some situations, 
additional information that is unnoticeable if we average over repeated 
observations (Cohen and Cavanagh 2011; Pernet et al. 2011). For 
example, analyses at the single-trial trial can help us systematically map 
brain activity with the subject's behavioural variability (Ratcliff et al. 
2009). However, exploring these dynamics is not trivial, and any 
measure of brain activity at a single trial (especially with EEG) is 
subject to much more noise than when dealing with averages (Stokes 
and Spaak 2016). Although averaging information over trials tends to 
cancel noise and increase the signal-to-noise ratio, capturing highly 
consistent patterns and increasing statistical power in the analysis, in 
many cases, it can also smooth important behaviorally relevant 
information embedded in the signal (Stokes and Spaak 2016).  

Taking back the offline approach at group-level in a visual perception 
task based on the level of α-power (Figure 6), one could use BCI-
BSDS to capitalise on the real-time brain-behavioural relationship 
trial-by-trial basis for a given individual (Figure 7). The BCI pipeline 

could trigger visual stimuli contingent upon the level of α-power (e.g., 

low vs high power) of ongoing α-oscillations in order to predict and 
modulate behaviour (e.g., fast vs slow RTs) in real-time. The EEG 
recording and the behavioural outcomes could then be used offline to 
perform within-subject and group-level analysis. Trials could be sorted 
post-hoc based on the behavioural outcome (e.g., fast vs slow RTs). 
Responses and averaged responses across conditions could be 



 

34 

statistically compared (e.g., t-test) to conclude a power-behavioural 
relationship at individual and group levels. The α-power and RT 
relationship could provide (or not) support for the α-theories 
(VanRullen et al. 2011; Drewes and VanRullen 2011). 

A key aspect favouring single-trial analysis is that trial averaging can 
misrepresent neural dynamics in many ways. For example, studies 

have shown that stimulus-evoked activity in the gamma-band (γ, 25-80 

Hz) comprises intermittent γ-bursts in single trials, despite the robust, 
sustained profile apparent in the trial-average representation 
(Lundqvist et al. 2016; Lowet et al. 2016). Thus, a step forward in 
cognitive neuroscience would be to harness real-time single-trial 
dynamics since this approach can allow increasingly detailed 
characterisation of fine-grained information, not only for our 
understanding of cognition but also for the potential development of 
BCIs (Stokes and Spaak 2016). Indeed, relying on offline studies 
relating to brain-behavioural effects at the single-trial level can be the 
most-suited option when selecting task and feature extraction as the 
control signal of a potential BCI. One way to better harness the α-
theories on a single-trial basis and develop robust BCI systems is to 
adapt the processing pipeline to each individual and better fit the 
brain-behaviour modulation. 

Accounting for individualisation of feature extraction 

If the goal of a BCI-BSDS is to detect specific patterns in the brain 
activity reflecting a ‘brain-state’, then the BCI processing pipeline 
would be more effective when relying on individualised features rather 
than generalized features for a group of individuals (Dias et al. 2009). 
Thus, the BCI system should accommodate specific features that may 
vary among individuals, such as age, neurological diseases, brain 
volume, task demands, and memory capacity (Klimesch 1999; Uhlhaas 
and Singer 2006; Klimesch et al. 2007). One illustrative example is 
using frequency intervals optimal for each individual (e.g., a band 
centred around the individual alpha frequency; IAF) instead of 

using a fixed one-fits-all frequency band (e.g., standard α-band range 
of 8 – 12 Hz). Indeed, some studies have used the IAF as an anchor 
point to adjust the frequency bands individually (Klimesch et al. 1998; 
Klimesch 1999; Thut et al. 2006; Horschig et al. 2014; Limbach and 
Corballis 2016; Ruzzoli et al. 2019; Kosciessa et al. 2020) to prevent 
interaction from other frequency bands (Klimesch 1999). The IAF can 
be obtained from few-minute resting-state EEG recordings and is 
defined as the frequency corresponding to the strongest peak 
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observed by EEG within the alpha range of 8-12 Hz (Klimesch et al. 
1998). As shown in Figure 8, the peak can often be easily discerned 
by visualising the power spectral density (Corcoran et al. 2018), and a 
basic approach is to look for the local maxima within the background 
spectral activity (e.g., 1 – 40 Hz). The IAF has been proved to vary 
interpersonally (Haegens et al. 2014), although it has high stability 
within each person (Grandy et al. 2013). It has also been correlated 
with performance in perceptual-cognitive tasks (Klimesch et al. 1998; 
Samaha et al. 2015; Cecere et al. 2015; Samaha and Postle 2015; 
Mierau et al. 2017; Torralba Cuello et al. 2022) and has been used as a 
stable individual biomarker for BCI applications (Horschig et al. 
2014). Thus, the IAF can be used as an anchor point to adjust 
frequency bands individually, predict BCI performance, and pre-
screen participants in a practical setting.  

 

FIGURE 8. An illustrative example of the power spectrum. The shaded area 

denotes the standard α-band (8 - 12 Hz), and the dashed line denotes the IAF as the 

strongest peak (e.g., 10 Hz) within the α-band. 

A balance between replications and novel findings 

We need replications in cognitive neuroscience so results can be 
regarded in a positive light and repeatedly observed in different 
situations (e.g., from different research groups, using different datasets 
or analysis techniques). Particularly in the light of BCI-BSDS research, 
we need brain-behavioural effects that can be replicated repeatedly and 
can constitute a robust control signal for the BCI setting. As 
previously pointed out by Cohen (2017a), whenever possible, we 
should try to combine replications of existing findings and novel 
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results into new experiments and in the same publications. Cognitive 
neuroscience needs to balance replicating existing findings and to 
produce new findings. This balance can be built naturally into research 
by ensuring that new experiments allow for replications and novel 
findings. Replications themselves can be one part of the results 
section, and additional analyses can then be performed to help 
contextualize the original findings and perform novel analyses not 
previously reported. If the original findings are not replicated, 
exploratory analyses can be performed to investigate why the original 
findings were not replicated. Note that it is inevitable that some 
evidence in the literature are statistical false alarms or are limited to a 
narrow population or specific experiment design. The progress in the 
field needs to determine which findings are overinterpreted and which 
are more stable. 

Note that replication of experiments, analysis and results opens the 
door for sharing the data and the code used for the experiment and 
analysis. Many websites and repositories are currently available to 
share the data and the code, such as the Open Science Foundation 
(OSF; https://osf.io/), GitHub (https://github.com/), and personal 
or lab websites. Sharing code is much easier than sharing datasets code 
files since code files are smaller than datasets. 

BCI pipeline with toolboxes vs custom-build code 

Several initiatives working toward a standardised approach for data 
streaming and analysis have appeared in the last decade, including 
BCI2000, OpenVIBE, FieldTrip, EEGLAB, and more (Schalk et al. 
2004; Renard et al. 2010; Hartmann et al. 2011; Oostenveld et al. 2011; 
Delorme et al. 2010 for a review of MATLAB-based tools for BCI 
research). Several toolboxes have been built over the past years under 
this line of research to analyse ongoing EEG/MEG in real-time. For 
example, the ConSole toolbox (Hartmann et al. 2011) can be used to 
present auditory and visual stimuli contingent on the brain state. The 
BEST toolbox (Hassan et al. 2020) allows for magnetic stimulation 
using EEG-TMS, whereas the TORTE toolbox (Schatza et al. 2022) 
offers real-time detection of oscillatory phase and amplitude closed-
loop studies. Indeed, real-time studies linking brain activity and 
behaviour based on ongoing oscillations are among the most active 
and trendy areas of development in cognitive neuroscience. 

Using toolboxes for BCI research has the advantage that they are 
standardized, easy to use (usually include documentation and/or a 

https://osf.io/
https://github.com/
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graphical user interface; GUI) and facilitate replications (different 
researchers can use the same functions). However, performing analysis 
only using toolboxes can be limiting, and some functions that one 
might need may not be available. Thus, depending on the research 
purpose and the coding abilities of the researchers involved in a given 
study, toolboxes can be substituted/combined with custom-built code. 

In this dissertation, the preference was towards creating a custom-
build BCI setting from scratch. In this way, it allows us to have all the 
degrees of freedom of the BCI setting to monitor the EEG data in 
real-time and full access to the entire analysis pipeline of the EEG 
data to tag the relevant feature of ongoing oscillatory activity. Also, it 
gives us complete control of the course of the user's visual 
environment dependent on specific oscillatory features defined in 
advance and a privileged position toward IPR claims for future 
transfer, given the potential BCI applications. 

Aims and scope of the thesis 

Supported by the literature in brain-behavioural α-theories, both the 
power (Foxe and Snyder 2011; Palva and Palva 2007; Klimesch et al. 
2007; van Dijk et al. 2008) and the phase (Klimesch 2012; Palva and 
Palva 2007; Klimesch et al. 2007; Mathewson et al. 2009; Mathewson 

et al. 2011; Busch et al. 2009) of cortical α-oscillations appear to play a 
crucial role for visual perception and attention. Oscillatory power is 
taken as an index of local synchrony in neural populations, and its role 
in cognition has received reliable confirmation (see, for example, 
Jensen et al. 2011). Nevertheless, the role of oscillatory phase and 
long-range phase-synchrony in visual attention and perception is still 
under debate, at least when observing humans. The general hypothesis 
underlying this thesis project is: If our perception of the world 
depends on fluctuations in the ongoing activity of our brains, then by 
presenting stimuli time-locked to known brain states (through brain-
state dependent stimulation), it should be possible to manipulate 
behavioural performance in cognitive processes (here, visual 
perception and attention). 

Aims 

The main aims of the present dissertation are: (i) to create a custom-
built EEG-based BCI setting that allows brain-state dependent 
stimulation (BSDS), (ii) to provide evidence of the role of oscillations 
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in visual perception and visual-spatial attention according to the brain-

behavioural α-theories, at the single-trial level and (iii) to seek for 
proof-of-concept cases of EEG-based BCI applications in real-time 
harnessing on α-fluctuations, adopting insights from a hypothesis-
driven framework. 

Scope 

The first step in the present thesis was to create an EEG-based BCI 
for BSDS, which capitalises on distinctive features (e.g., amplitude, 
phase) of brain oscillations in real-time. This tool will help study the 
relevance of brain oscillations' dynamics in cognitive processes and 
create potential BCI applications. The ideal scenario would be that 
targeting stimulation at optimal brain states would lead to human 
cognitive augmentation. Such an approach should be complemented 
by exploratory studies to allow for more robust ex-post-facto 
inferences regarding the functional relevance of certain brain states. 

The present thesis will provide evidence of the potential of oscillatory 
amplitude, phase, and phase coherence during spatial attention as a 
control signal using EEG-based BCI. The studies illustrate an 
approach to the potential role of these features for testing cognitive 
neuroscience theory and for augmented human behaviour. In Chapter 
2, the closed-loop EEG-based BCI setting for BSDS will be used to 
deliver targets (i.e., visual stimuli) in real-time at distinct phases along 

the α-cycle in a visual detection task. The aim will be to harness the 

putative link between the α-phase and visual perception through 
reaction time. The experimental study adapted an approach used by 
Callaway and Yeager (1960) and was pre-registered in the Open 
Science Framework (OSF) with the design, the analysis pipeline, and 
the statistical analyses (https://osf.io/nfdsv/). In Chapter 3, visual 
targets will be presented contingent upon the occurrence (or the 

absence) of bursts of high α-power in the ongoing EEG in a visual 

go/no-go task. The oscillatory α-activity will be related to behaviour 
using reaction time measures. The study was also pre-registered in 
OSF (https://osf.io/z98ms/). Further, Chapter 4 presents a proof-
of-concept for an EEG-based BCI based on the phase-coherence 
across distant brain regions. This proof-of-concept is intended to 
estimate the direction of attention of a person in a visual cueing 
attentional task at the single-trial level. Moreover, Chapter 5 
summarises the findings of the thesis, highlighting their contribution 
to the research field, discussing the findings, and including 

https://osf.io/nfdsv/
https://osf.io/z98ms/
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assumptions and limitations of the thesis. Finally, Chapter 6 ends the 
thesis with some conclusions and ideas to expand the presented 
research in the future. 
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CHAPTER 2 

Using α-phase to speed up visual detection 

“Resilience to failure, humiliation, and rejection 
are the most important ingredients of a scientific career”. 

GYÖRG BUZSÁKI  

 

 

 

 

 

 

 

 

 

In this chapter I closely follow our study (Vigué-Guix et al. 2020): 
I. Vigué-Guix, L. Morís, M. Torralba & S. Soto-Faraco. Can the 
occipital α-phase speed up visual detection through real-time EEG-based BCI? 
EJoN, 2020.  
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Background 

Alpha oscillations (α, 8-12 Hz) in the occipito-parietal cortex reflect 
ongoing fluctuations in cortical excitability (Bishop 1932; Adrian and 
Matthews 1934; Worden et al. 2000; Kelly et al. 2006). It follows that 
the perceptual fate of a visual stimulus would depend upon the instant 
it evokes neural activity within the ongoing α-cycle, leading to cyclic 
alternations between more and less favourable phases for perceptual 
processing (Klimesch et al. 2007; Jensen and Mazaheri 2010; Klimesch 
2012; Jensen et al. 2014; VanRullen 2016b). This hypothesis has been 
entertained for nearly a hundred years (since Bishop 1932), and it has 
been revived recently (see VanRullen 2016b). The fact that α-
fluctuations can be picked up extra-cranially via magnetic- or electrical 
encephalography (M/EEG) makes α an optimal candidate to study 
human perception non-invasively. Specifically, both the power 
(Worden et al. 2000; Ergenoglu et al. 2004; Babiloni et al. 2006; Thut 
et al. 2006; Klimesch et al. 2007; Palva and Palva 2007; Foxe and 
Snyder 2011) and the phase of the occipito-parietal α (Klimesch et al. 
2007; Palva and Palva 2007; Mathewson et al. 2009; Klimesch 2012; 
Jensen et al. 2014; VanRullen 2016a) have been linked to performance 
in visual perception (van Dijk et al. 2008; Jensen and Mazaheri 2010; 
Jensen et al. 2011; Samaha and Postle 2015; VanRullen 2016b). 
However, while the evidence for the role of α-power in perceptual 
judgments seems well-established (Walsh 1952; Lansing et al. 1959; 
Jensen et al. 2011; Bompas et al. 2015; Benwell et al. 2017), the role of 
the α-phase is still not clearly settled (Walsh 1952; O’Hare 1954; 
Benwell et al. 2017; Ruzzoli et al. 2019). 

So far, most studies have used an offline approach to study changes in 
perception based on the α-phase. In these studies, stimuli that demand 
a behavioural response are presented at random (or pseudo-random) 
intervals while EEG is recorded and, at a later time, trials are separated 
in terms of the behavioural outcome (hit vs miss; fast vs slow reaction 
times -RTs) and sorted post-hoc based on which phase within the pre-
target α-cycle, the stimuli happened to fall. Average responses are then 
statistically compared across phase bins to conclude a phase-
behavioural relationship (e.g., Busch et al. 2009). A significant 
correlation between phase and behaviour, when found, provides 
support for the theory. 

However, the possibility of linking α-fluctuations to behaviour via 
non-invasive methods, such as EEG, is also attractive given the 
potential applications in Brain-Computer Interfaces (BCI) (Jensen et 
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al. 2011; Zrenner et al. 2016). For example, one could design closed-
loop BCI systems that deliver information at favourable brain states 
for perceptual encoding to improve alerting, learning or memory 
(Brunner et al. 2015; Zrenner et al. 2016). To harness on the α-
theories to develop BCI systems, one must use an online approach, 
which should be efficient even at the single-subject level. Real-time 
EEG analysis allows BCI settings to trigger stimuli at precise phase 
angles during the ongoing fluctuations in the individual α-rhythm that 
are thought to be associated with specific outcomes (hit/miss, 
fast/slow RTs). This approach exploits a specific brain-behaviour 
relationship (e.g., α-phase and perception) to augment information 
encoding with millisecond precision. The efficiency of closed-loop 
BCI must rely on predictable brain-behaviour relationships, in which 
the relevant parameters at play must be known beforehand. Hence, in 
turn, the attempt at using a closed-loop BCI approach is a test bench 
of neuro-cognitive theories such as the α-theories. 

Interestingly, a good number of studies in the sixties already 
capitalized on the idea of time-locking stimulus presentation to the α-
phase in real-time. Such attempts were popular enough by the middle 
of the decade to prompt Callaway and Layne to write: “The idea of 
presenting photic stimuli at various phases of the spontaneous alpha rhythm to alter 
degrees of photic driving has occurred to many investigators” (Callaway and 
Layne 1964, p. 421). In one preeminent study published in the journal 
Science in 1960, Callaway & Yeager (Callaway and Yeager 1960) 
endeavoured a closed-loop BCI addressing the relationship between 
the α-phase and RTs to visual events. They found that RTs were 
modulated as a function of the instant within the α-cycle the target 
flash was presented (see Lansing 1957; Dustman and Beck 1965 for 
similar results also in a real-time setting). Despite the substantial 
potential impact such closed-loop BCI on both theory and application, 
to the best of our knowledge, no modern study has implemented and 
reported a similar real-time protocol harnessing on occipital α-phase. 
The 60-year hiatus is remarkable, especially considering the α-theories 
are still entirely current up to this date.  

Here, we capitalized on the putative relationship between the phase of 
ongoing α-oscillations and visual perception, adopting a closed-loop 
BCI approach to provide new evidence for the α-theories, which 
opened enduring questions a long time ago. At the same time, the 
present study aimed to provide a proof of concept for the use of the 
phase of ongoing α-oscillations as a control signal in a closed-loop 
BCI system for practical applications. This experiment is a modern 
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replication of Callaway & Yeager’ study (1960). We employed a visual 
speeded detection task in which the visual target was triggered in real-
time as a function of the phase of the participant’s α-cycle. We 
expected that visual RTs would fluctuate along the α-cycle, or at least 
that it should be possible to find two distinct phases associated with 
fast and slow RTs, respectively. The hypothesis, procedure, and 
analysis pipeline were pre-registered before data collection 
(https://osf.io/nfdsv/). Deviations from the pre-registered procedure 
and exploratory analyses are clearly stated in this section. 

Methods  

Participants 

Sample size. We planned a maximum sample of 16 participants with a 
stopping rule set after a minimum of 8 participants (see details below). 
Participants were selected without previous history of neurological or 
psychiatric diseases, with normal or corrected to normal vision, within 
18-35 years old. The minimum/maximum sample size was decided a 
priori based on a Monte Carlo simulation on Callaway & Yeager’ data 
(1960) (See Supplementary Figure 1 in Annex I). We estimated that if 
less than 3 participants out of 8 showed a significant difference 
between fast and slow phase bins, then the size of the effect in this 
experiment would be null or negligible compared to the original study 
(Callaway & Yeager, 1960), assuming an error of 5%.  

Exclusion criteria. A participant was excluded if any of the following 
criteria were met: (i) No peak within the α-band: This criterion applied to 
the screening stage and ensured that the individual’s endogenous α-
oscillation could be registered with a sufficiently high signal-to-noise 
ratio (SNR) to enable the BCI system to estimate instantaneous phases 
from the EEG signal reliably. This decision was based on two sub-
criteria: strength and uniqueness (see Screening and estimation of the 
Individual Frequency of Interest section for more details). (ii) Experiment 
duration: Given that we had a block stopping rule based on the number 
of trials per phase bin, the length of the experiment could vary as a 
function of how frequently the EEG phase could be reliably estimated 
for stimulus presentation. Hence, we had to establish an experiment 
duration limit. We decided to stop the experiment if a participant 
spent more than 10 minutes in the training block or two consecutive 
blocks within the real-time experimental stages. This criterion was 

https://osf.io/nfdsv/
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added after we had run the first 2 participants, which required an 
update of the pre-registered protocol1. 

We recruited 27 participants, 6 of which were discarded for not 
satisfying the required α-peak criterion in the screening stage, and 13 
because of the duration criterion. The remaining 8 participants (aged 
19-30 years, average 24 years, three females; all right-handed) 
completed the experiment. Data from excluded participants were not 
analysed. All the participants took part in the study voluntarily after 
giving informed consent, and they were compensated for their time 
with 10€ per hour. The duration of the experiment varied between 70 
and 120 min. The study was designed in accordance with the 
Declaration of Helsinki and approved by the local ethics committee 
CEIC Parc de Mar (University Pompeu Fabra, Barcelona, Spain) 
before starting the recruitment.  

Experimental procedure 

The experimental protocol started with a screening, followed by a 
training and two consecutive experimental stages (explained below). In 
the training and experimental stages, participants performed a speeded 
visual detection task in which stimuli were presented according to the 
phase of the spontaneous α-activity in real-time (see Figure 9).  

Task. Participants sat on a comfortable chair wearing an EEG cap, and 
a pair of opaque sunglasses, with two LEDs, mounted on each lens. 
The LEDs were controlled through the parallel port (both LEDs 
switched on and off simultaneously; luminance 0.076 cd/m2 at an 
approximate distance to participants’ eye of 1 cm)2. Participants were 
asked to keep their eyes closed throughout the experiment to maintain 
α-activity high and to limit eye movements (a strategy first suggested 

 

 

 

1 We considered that a duration of > 10 min x block (leading to more than 160 
minutes approximately of total experimental time + EEG cap montage + debriefing) 
was unacceptable due to fatigue effects (or sleepiness, easy to happen with eyes 
closed). These factors can have an impact on the α-activity and, therefore, on our 
phase estimation in the BCI setting. 

2 Please note that it is not possible to infer the proper stimulus intensity from 
Callaway & Yeager’ (1960) experiment; therefore, we chose a fixed arbitrary value 
that was comfortable for the participants and ensure that response latencies were 
comparable to those in the original study. 
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by Callaway & Yeager, 1960). We instructed the participants to remain 
attentive and to respond to the visual flashes as fast as possible by 
pressing a button in a response box using their right index finger. 
After the response (or after 1 second time out), the LEDs were 
switched off. An inter-trial interval (ITI), randomly chosen between 
1500 and 2500 ms, was introduced between the button response (or 1 
s time out) and the beginning of the next trial. RTs were measured 
from the onset of the visual target until a button press was detected. 

 

FIGURE 9. The protocol included four stages: Screening, Training, Stage 1 
and Stage 2 of testing. During the Screening, we looked for the individual 
frequency of interest (IFoI) over the occipito-parietal area in a 5 min EEG recording 
at rest (eyes closed). Participants who did not display a single peak in the EEG 
within the range of interest (5-15 Hz) did not proceed to the following parts of the 
protocol. Included participants performed a Training and entered Stage 1 of the real-
time experimental sessions. In Stage 1, visual stimuli were triggered phase-locked to 
10 equally spaced phase bins along the IFoI-cycle. For illustration purposes of an 
ideal theoretical outcome, stimulus onset (circles) is represented as a function of the 
EEG alpha cycle through a cosine wave. From Stage 1, the specific phase bins 
associated with the faster (green dot) and slower (red dot) RTs were selected for 
each participant and used for Stage 2. In Stage 2, visual stimuli were triggered only at 
the two-phase bins (fast/slow) individually selected from Stage 1. As illustrated, we 
predicted that fast and slow phase bins would lead to fast and slow RTs, respectively. 

Training stage. Before the real-time experimental stages, participants 
were familiarised with the task in a training block (50 trials), identical 
to Stage 1 (see below).  

Experimental stages. After training, participants went on to Stage 1, 
where visual targets were aimed at 10 equally-spaced phase bins 
covering the whole α-cycle (see Real-time stimulus presentation). This 
experimental stage was divided into 10 blocks, each ending after the 
acquisition of at least 5 valid RTs per phase bin, for a total of 50 RTs 
per phase bin across blocks. Once Stage 1 had been completed, the 
phase-bins corresponding to the fastest and slowest mean RTs were 
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selected and used for Stage 2 (at the individual level). No statistical test 
was performed at Stage 1. Stage 2 started right after Stage 1. In Stage 
2, visual targets were aimed only at the “fast” and the “slow” phase 
bins, estimated from Stage 1. Participants ran 4 blocks, each block 
ended after the collection of at least 25 valid trials for each of the two-
phase bins, for a minimum total of 100 trials per bin. 

EEG recording. Continuous EEG data were recorded at 500 Hz using 
the ENOBIO 20 5G system (Neuroelectrics, Barcelona, Spain) from 
14-channels (F3, Fz, F4, C3, Cz, C4, P7, P3, Pz, P4, P8, O1, Oz, O2) 
with Cl-Ag electrodes placed according to the 10-20 international 
system. Impedance was kept below 10 kΩ, according to the Enobio 
coded system. Additional external electrodes were used to record 
vertical and horizontal eye movements. Electrode AFz was used as 
online reference and the right mastoid as ground. Activity from the 
left mastoid was recorded for offline re-referencing.  

Screening and estimation of the Individual Frequency of Interest (IFoI). We 
recorded 5 minutes of resting EEG with the eyes closed, which we 
used to determine the specific frequency of interest within the α-band 
for the real-time stages of the experiment. We estimated the power 
spectrum density (PSD) within the α-band (5-15 Hz) over occipito-
parietal electrodes (OP-cluster: P7, P3, Pz, P4, P8, O1, Oz, O2) using 
the Welch method (window = 500 ms; overlap = 10%; resolution = 
0.25 Hz). For each participant, the power spectrum was averaged 
across the electrodes of interest and normalized by the mean power 
spectrum from 1 to 40 Hz. We verified the strength of the peak - 
power at the local maximum within the 5-15 Hz window is greater 
than average power in the 1-40 Hz window - and its uniqueness - the 
peak is a single local maximum within a ± 5 Hz band. If a single 
frequency peak existed, it was considered as the IFoI3 and used later as 
a parameter for real-time analyses (Figure 9). If a unique frequency 
peak could not be detected, the participant was excluded from the 
study (see Exclusion Criterion 1). 

 

 

 

3 We prefer to use the term Individual Frequency of Interest (IFoI), instead of 
Individual Alpha Frequency (IAF), often used in the literature, because we focused 
on a frequency range between 5-15 Hz, which spreads out a finer range in the 
conventional α-band (8-12 Hz).  
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Real-time stimulus presentation. We developed a BCI setting to trigger 
flashes (LEDs) at a specific α-phase based on real-time data from 
electrode O1 (as in Callaway & Yeager, 1960) through custom-built 
code in MATLAB (MathWorks, R2015.b). We used the Lab Streaming 
Layer (LSL) library (Swartz Center for Computational Neuroscience, 
UCSD, January 2018) to acquire EEG data with the ENOBIO 
acquisition software (NIC V2.0). Given that synchronization between 
the EEG time acquisition and local PC time is not supported for 
online streams by ENOBIO, we used an external signal (a parallel port 
pin connected to one of the ENOBIO electrodes) as time reference. 
In each iteration, we randomly pre-selected, among the bins available 
(10 bins in Stage 1, or 2 bins in Stage 2), a phase bin when to send the 
stimulus trigger. Ten-seconds of EEG data from the O1-electrode 
were continuously buffered, demeaned, and band-pass filtered 
(Butterworth forward filter, order 2, IFoI ± 5 Hz). Amplitude and 
phase were estimated at each time point using the Hilbert-transform. 
When the average amplitude in the last second of the buffer was 
above 30% of the median value of the buffered data, a reference time 
point was set at the peak (90°) of the last α-cycle. Then, the moment 
at which the phase of interest in a given trial would occur was 
forecasted by extending a sine wave (frequency = IFoI) from the 
reference point. We targeted one of the 10 phase bins (36º each) 
within the next α-cycle starting after a safety buffer of 72° (~20 ms) 
for computation time. The stimulus trigger switched on the LEDs at 
the latency corresponding to the centre of the targeted phase bin 
(error ≤ 2 ms).   

Responses and trial selection. Responses were collected from a button 
press via a response box connected to the parallel port. There was a 
response time out of 1 second after the stimulus, following which the 
next trial iteration began. If a response was registered before time out, 
we stored the RT and checked the accuracy of the real-time phase 
estimation by calculating the difference between the empirical phase at 
which the stimulus was delivered (according to the recorded EEG) 
and the intended one, using the Circular Statistics Toolbox in 
MATLAB (Berens 2009). In Stage 1, if the stimulus had been triggered 
in an unintended phase, the trial was relocated to the actual 
(empirically measured) phase bin. In Stage 2, we only targeted two 
phases and set a tolerance of ± 1 phase bin to reduce the testing time, 
and we did not relocate trials. A trial was excluded if the empirical 
phase did not fall within the tolerance zone, or it fell in an overlapping 
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bin between the slow and the fast bin (this could happen if the 
fast/slow bins were less than 72º apart).  

Only trials that satisfied all the following criteria were accepted as 
valid: (1) Reaction time criterion: RTs within 50 and 300 ms (as in 
Callaway & Yeager, 1960). (2) Amplitude criterion: the amplitude of the 
IFoI-cycle window centred at stimulus onset had to be above the 30% 
of the median amplitude in the last 10s (this threshold criterion 
facilitated reliable phase estimation at stimulus presentation).  

A block stopped when the intended number of trials per phase bin 
was reached (N=5 in Stage 1 or N=25 in Stage 2). In between blocks, 
participants took a break before starting a new one. Excess trials 
(which could happen due to trial relocation) were discarded.  

Statistical analyses 

Stage 1 was designed to estimate the phase bins corresponding to 
faster and slower RTs throughout the α-phase, whereas Stage 2 
provided data for the validation of the hypothesis. In Stage 1, we only 
ran descriptive statistics to calculate average RTs per phase bin, and to 
select the phase bins of interest. If the fast and slow phase bins 
selected in Stage 1 would indeed be representative of neural 
excitability states related to visual perception, then sending targets to 
these phase bins in Stage 2 should induce faster and slower responses, 
respectively. To test this prediction, in Stage 2, we performed 
individual and group-level analyses. For the individual analysis, we 
assessed the difference between the RTs collected in the predicted 
slow and predicted fast phase bins by a one-tailed t-test (independent 
samples) with α-level = 0.05. Note that in Stage 2, if slow/fast bins (± 
1 phase bin) shared a common bin, then trials in that bin were post-
hoc excluded and not used for the analysis. For the group analysis, we 
evaluated the difference between the mean RTs collected in the slow 
vs fast phase bins across participants by a one-tailed paired t-test with 
α-level = 0.05. 

Results 

Here, we present the results obtained from the pre-registered analyses 
as explained above, which replicated the conditions of the seminal 
study by Callaway & Yeager (1960), followed by reality checks and a 
set of exploratory analyses. 



 

50 

Results of pre-registered analysis 

Stage 1: Selection of the fast/slow phase bins along α-cycle 

We collected an average of 1034 (SD = 219) responses per participant. 
An average of 77 (SD = 53; 7.41%) trials were excluded because the 
RTs fell out of the 50 – 300 ms range and 341 (SD = 190; 33%) trials 
were excluded because the amplitude threshold criterion was not met, 
leaving an average of 617 (SD = 36; 60%) valid trials per participant. 
Among the valid trials, 280 (SD = 35; 45.33%) trials hit the target 
phase bin of interest whereas 337 (SD = 61; 54.67%) trials had to be 
relocated to the intended phase bin offline (most of them fell on 
neighbouring bins, see Reality check 1: Accuracy of phase estimation 
during the real-time experiment, below). Therefore, we reached the 
intended 50 valid trials per bin for each participant (following the 
elimination of excess trials). RTs for valid trials were on average 206 
ms (SD=9 ms). We calculated the mean RT for each phase bin along 
the α-cycle for each participant (see Figure 10 and Supplementary 
Table 1 in Annex I; see Supplementary Table 2 in Annex I for 
information about the number of trials at the individual level) and 
selected the phase bins associated with the slowest and fastest mean 
RTs, to be used in Stage 2. Overall, the mean RT difference between 
slow and fast phase bins in Stage 1 was 12 ms (SD = 4; Max = 17 ms; 
Min = 8 ms). At this point, if the distribution of slow and fast RTs 
meets the expectations of the α-theory, the corresponding slow and 
fast phase bins should fall on roughly opposite angles (approximately 
180°). However, what we observed is that for most of the participants, 
slow and fast phase bins were closer than 180°, being the mean 
difference 90° (SD = 51°). 

Stage 2: Validation of the α-phase relation to RT speed 

In Stage 2, we collected an average of 408 (SD = 103) trials per 
participant. Among these, 31 (SD = 14; 7.65%) trials were excluded 
because they fell outside the RT criterion, 144 (SD = 84; 35.30%) 
trials were excluded for not satisfying the amplitude threshold 
criterion, and 33 (SD = 24; 8.09%) trials for not falling in the bin 
acceptance zone. After trial exclusion, we were left with a total of 200 
valid trials each participant (100 trials per bin), as intended. Among 
these, an average of 107 (SD = 24; 54%) trials hit the target phase bin 
of interest (± 1 bin), whereas 93 (SD = 24; 46%) trials were relocated. 
Note that from the valid trials, we discarded those trials that shared a 
common phase bin in the phase bin acceptance zone, leaving 79 (SD 
= 15) and 86 (SD = 13) trials on average for predicted slow and 
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predicted fast trials, respectively. For information on the number of 
trials in Stage 2 at individual-level (see Supplementary Table 3 in 
Annex I). 

 

FIGURE 10. Individual mean RT (in ms, y-axis) plotted against the 10 phase 
bins (in degrees, x-axis) tested in Stage 1. The horizontal dashed line indicates 
the individual mean RT across all bins. For each participant, the graphs report the 
angular difference and the RT difference between the fast (green dot) and slow (red 
dot) phase bins. IFoI= Individual Frequency of Interest; Error bars = Standard 
Error of the Mean (SEM). 
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TABLE 1. Individual data for fast/slow phase bins including phase bin 
acceptance zone in Stage 2. For each participant, the number of trials (max=100), 
the tested angular points (degrees), and the mean RTs (ms) are reported for the fast 
and slow phase bins tested in Stage 2. Statistics indicate the results (t value, degrees 
of freedom, p-value, Cohen’s dz and 95%-confidence intervals CI) of an unpaired t-
test (right-tailed, p<0.05) comparing slow vs. fast RTs individually. Group level data 
and statistics are also reported. 

Part. 

Slow phase bin Fast phase bin 

RT diff. 
phases 
[in ms] 

Statistics 
No. 
of 

trials 

Phase 
bin 

Mean 
(SD) 
RTs 

[in ms] 

No. 
of 

trials 

Phase 
bin 

Mean 
(SD) 
RTs 

[in ms] t dof p dz 
RT diff. 
95% CI 

1 88 162° 198 (34) 85 234° 200 (37) -3 -0.30 171 .62 
-

.05 
[-10.43 
7.24] 

2 100 162° 196 (39) 100 18° 202 (30) -9 -1.26 198 .90 
-

.18 
[-14.24 
1.90] 

3 74 90° 203 (32) 59 126° 206 (39) -3 -0.54 131 .71 
-

.10 
[-11.70 
5.88] 

4 66 306° 202 (36) 86 234° 195 (39) 10 1.24 150 .11 .20 
[-2.53 
17.83] 

5 100 54° 194 (29) 100 306° 191 (33) -3 0.69 198 .24 .10 
[-4.18 
10.27] 

6 62 54° 207 (34) 87 18° 207 (32) 8 -0.02 147 .51 
-

.00 
[-9.05 
8.85] 

7 75 306° 200 (32) 78 270° 201 (40) 1 -0.21 151 .58 
-

.03 
[-10.97 
8.50] 

8 68 306° 191 (39) 90 54° 193 (37) -6 -0.36 156 .64 
-

.06 
[-12.07 
7.68] 

Mean 
(SD) 

79 
(15) 

-- 199 (5) 
86 

(13) 
-- 199 (6) -1 (7) -- -- -- -- -- 

Group 
level 

633 -- 199 (5) 685 -- 199 (6) -1 -0.30 7 .61 -.11 
[-5.66 
4.78] 

 
The mean RT difference across participants between slow and fast 
phase bins in Stage 2 was -0.439 ms (SD = 4), which was not 
significant according to a group t-test (t(7) = -0.2977, p = 0.6127, dz = 
-0.1052). Individually, none of the participants presented a significant 
difference in RTs between the visual targets presented in the predicted 
slow and fast phase bins of the α-cycle (all ps > 0.1; see Table 1). 

Interim discussion and reality checks 

The analyses according to the pre-registered pipeline adapted from 
Callaway & Yeager (1960) did not return a consistent relation between 
the phase of individual ongoing α-oscillations and the speed of 
responses to visual targets at the individual or group level. Compared 
to offline experimental approaches, where analyses can be adjusted 
retrospectively, real-time settings imply a priori parameter choices that 
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can affect the outcome. Therefore, we proceeded to exclude the 
possibility that the null results from the main analyses may have 
originated from a priori choices in the real-time setting. We focused 
on three aspects: First, we checked the accuracy of the closed-loop 
BCI system in sending the stimulus trigger at the intended phases 
along the α-cycle. Second, we questioned whether the choice of the 
IFoI based on resting EEG data was representative of the dominant 
α-frequency during the task. Finally, we checked that the electrode 
choice (O1) for the real-time α-phase estimation was representative of 
α-activity of interest in the occipito-parietal cluster of electrodes.  

Reality check 1: Accuracy of phase estimation during the real-time experiment 

The question here was how precisely the closed-loop BCI triggered 
visual stimuli at the desired phases along the α-cycle. We, therefore, 
selected all valid trials for each stage and extracted the phase at which 
the stimulus was presented from the empirical EEG offline, and 
computed the absolute difference between the desired and the actual 
phase using the Circular Statistics Toolbox (Berens, 2009). On 
average, across phase bins and participants, our BCI system hit +1.21° 
(SD = 33.70°) off the intended phase in Stage 1, and +3.79° (SD = 
25.43°) in Stage 2 (see Figure 11 and Supplementary Figure 2 and 
Supplementary Figure 3 in Annex I for individual results on phase 
accuracy in Stage 1 and Stage 2, respectively). The phase estimation 
accuracy of our real-time BCI setting seems comparable to previous 
attempts at phase-triggered events, like for example targeting the α-
frequency in the motor cortex (Zrenner et al. 2018; Madsen et al. 
2019) which typically achieved an accuracy within -12º to 5º off of the 
desired phase, with SDs between 48º and 55º.  

We also decided to check the reasonable expectation of whether the 
accuracy of the phase estimation depended on the latencies from the 
reference point of the EEG signal (i.e., phase bins) and whether it was 
worse at increasing latencies. We rearranged phase accuracy values 
based on the phase bins and found, as expected, that both the mean 
and standard deviation of phase accuracy are worse at increasing 
latencies (see Supplementary Figure 4 and Supplementary Table 4 
in Annex I for individual and group data). When subtracting the 
accuracy of the last-first latencies, the average mean varies -5.42º (SD 
= 9.38º) and the variability increases 32.20º (SD = 10.64º). Finally, we 
calculated the cumulative percentage of trials as a function of the 
phase bin difference between target and hit phases. Supplementary 
Table 5 in Annex I shows the results at the individual and group level. 
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Overall, 45% of trials felt in the target phase bin, 88% of trials within 
±1 bin, and nearly all trials within ±2 bins. 

These overall results show a reliable alignment at each of the targeted 
phases of the α-cycle. Although extrapolating approximately over one 
α-cycle has led to more unreliable phase accuracy at increasing 
latencies, the accuracies are still within safe limits in terms of our 
purposes. Note that accuracy of phase estimation was checked against 
real data as part of the BCI setting, so that trials with erroneous 
estimations that satisfied the trial validity criteria (i.e., RT and 
amplitude) were eventually relocated if necessary to the hit phase bin 
in Stage 1 or discarded if did not fall within the acceptance zone in 
Stage 2. We, therefore, think that the possibility that null results in the 
α-phase – RTs relationship might be explained by an inaccurate 
triggering of targets is minimal. 

 

FIGURE 11. Rose plot of phase accuracy for valid trials across participants in 
Stage 1 (total No. of trials = 4933) and in Stage 2 (total No. of trials = 1600). For 

convenience, all phases have been realigned to 0⁰. Dotted lines denote boundaries 
between phase bins. 

Reality check 2: Frequency of interest during the real-time experiment 

The real-time stages of the experiment used the IFoI, which was 
estimated in a 5-min pre-experiment screening session from a cluster 
of occipito-parietal electrodes (see Screening and estimation of the 
IFoI for more details). This pre-screening is a common practice in 
order to customize the EEG analysis in terms of individual frequency, 
especially in the α-band. One potential problem, however, is that the 
frequency measured in the screening session was not representative of 
the relevant frequency during the task. Small deviations between the 
relevant α-frequency during task execution and the one actually used 
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might be mitigated in our protocol because we used a relatively large 
spectral window (IFoI ± 5 Hz). However, large deviations might 
affect the subsequent steps of the online protocol, such as filtering and 
forward prediction. To estimate if such deviations took place, we 
compared the IFoI used in the real-time experiment stages (that is, the 
one estimated from the screening stage) against the actual dominant α 
frequency recorded during task execution. IFoI during task execution 
was computed following the same procedure as for the IFoI in the 
screening stage. To avoid potential contamination from visual and 
motor evoked responses, we used EEG epochs from +500 ms after 
button press to stimulus onset of the next trial (duration about 2 s, 
depending on inter-trial jitter). We computed the power spectrum 
density (PSD) within the α-band (5-15 Hz) for O1-electrode (the 
electrode in the BCI setting) and for the OP-cluster (the same as used 
in the screening session for the selection of the IFoI: P7, P3, Pz, P4, 
P8, O1, Oz, O2) using the Welch method (window = 500 ms; overlap 
= 10%; resolution = 0.25 Hz). For each participant, the power 
spectrum was normalized by the mean power in the 1 to 40 Hz 
window. Figure 12A illustrates the single frequency peak within the α-
band during task execution, plotted against the IFoI at rest used in the 
real-time experiment. Overall, the mean peak difference between rest 
(OP-cluster) and task (O1-electrode) IFoIs was 0.16 Hz (SD = 0.23), 
with a maximum absolute mean difference of 0.50 Hz in participant 8 
(see Supplementary Table 6 in Annex I for individual results). IFoI 
at rest in OP-cluster was very close to the dominant α-frequency 
during task execution from the same electrode, with deviations of the 
central frequency of less than 1 Hz. Moreover, we decided to check 
whether the instantaneous frequency differed from the IFoI on a trial-
by-trial basis. We calculated the instantaneous frequency for each trial 
using the Hilbert transform. We band-pass filtered the data from O1 
electrode within 5-15 Hz (Butterworth filter order 2, one-pass), 
epoched from –2 to 2 s (from stimulus onset), demeaned and 
detrended. We computed the instantaneous frequency using the 
MATLAB function ‘instfreq’. We selected the prestimulus window of 
interest of -1 to 0 s from stimulus onset (same time window as the 
one-second buffer in the real-time experiment) to average the 
instantaneous frequency within the selected window. Supplementary 
Figure 5 in Annex I shows a heatmap chart of the variation of the 
phase accuracy as a function of the frequency difference from IFoI for 
each participant, in which colour denotes the number of trials. All the 
participants show a mean frequency deviation from IFoI lower than 1 
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Hz. Participant P08 shows the smaller variability in frequency 
deviation (mean SD=0.32 Hz), whereas participants P03 and P05 
show the larger variability (mean SD = 0.73 Hz) (see Supplementary 
Table 5 in Annex I). At group-level, the average mean frequency 
across participants is 0.73 (SD = 0.24) Hz. Note that we were 
extrapolating approximately one α-cycle from a reference point at the 
peak of the EEG signal. Therefore, we would expect to see that if the 
error in the frequency estimation is negative (i.e., actual instantaneous 
frequency is slower than the estimated IFoI), then there will be a 
positive error in the phase estimation (i.e., the stimuli would reach an 
earlier hit phase and the target phase would happen afterwards in 
time). Hence, we expected the direction of the correlation to be 
negative. To check for this hypothesis, we decided to compute a linear 
correlation between the frequency difference from IFoI and the phase 
accuracy for each participant by adopting a directional one-tailed 
hypothesis testing. Supplementary Table 6 in Annex I shows the 
results, including Pearson’s coefficient with its p-value. Overall, we see 
that 5 out of 8 participants present a negative correlation, as expected, 
and only participants P01 (p = .04), P02 (p = .001) and P07 (p <.001) 
show a significant negative correlation.  

 

FIGURE 12. (A) IFoI [in Hz] at rest using OP-cluster (P7, P3, Pz, P4, P8, O1, 
Oz, O2) vs IFoI during the task [in Hz] for two different electrode set 
conditions: OP-cluster (circles) and O1-electrode (asterisks). Dashed lines denote 
±1 Hz and each colour denotes a participant. (B) Power spectrum of a 
representative participant (P08) showing the biggest mean difference (0.50 
Hz) between IFoI at rest computed at OP-cluster (solid black line) and IFoI 
at task computed with O1-electrode (dotted yellow line). Power spectrum 
computed at OP-cluster at task is also plotted (dotted black line). 

We can, therefore, conclude that the BCI setting employed here was 
successful in centring the spectral analysis around the desired relevant 
frequency of interest and variation in frequency from the IFoI at a 
single-trial level might have influenced the phase accuracy of the BCI 
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setting. However, as stated in the previous section, if there was a 
deviation in the frequency from the IFoI in a given trial, we took that 
into account by checking the empirical phase at stimulus presentation 
and reallocate it if necessary to the hit phase bin in Stage 1 or 
discarded if did not fall within the acceptance zone in Stage 2. 

Reality check 3: Electrode of interest used in the real-time experiment 

As for the frequency of interest, we had to a priori decide about the 
electrode of interest to be used in the BCI system. Following Callaway 
& Yeager (1960), we chose O1-electrode. This choice appeared 
convenient to limit real-time computational delays due to clustering 
over a larger set of electrodes. However, it is perhaps important to 
check that the signal picked up from O1-electrode in the real-time 
stages was representative of the α-frequency dominant in a wider 
occipito-parietal cluster. Therefore, we compared the activity in O1-
electrode to that of a cluster of occipito-parietal electrodes (OP 
cluster: P7, P3, Pz, P4, P8, O1, Oz, O2). The spectral comparison was 
analogous to the one described for the reality check 2 (IFoI rest vs 
IFoI task). The results, illustrated in Figure 12B (see Supplementary 
Figure 6 and Supplementary Table 6 in Annex I for individual data), 
show that the two α estimates were within 0.20 Hz. In five out of the 
eight participants, the relevant frequency peak using the occipito-
parietal cluster was the same as in O1-electrode. We can, therefore, 
confirm that the α-fluctuations picked up from O1-electrode as our 
IFoI during the real-time experiment were closely representative of the 
occipito-parietal activity. 

Exploratory analyses 

In the present study, we aimed at employing a closed-loop BCI 
approach to show that the phase of ongoing α-oscillations measured 
with EEG can be harnessed to expedite RTs. This proof-of-concept 
can not only open avenues for neuro-devices but also help to test the 
relevance of the α-theories. To do so, we sought to achieve a 
conceptual replication of a seminal study where such effects had been 
reported in the past (Callaway and Yeager 1960). Although our setting 
included some corrective measures and online checks, we ensured that 
the system successfully phase-locked visual stimulation to ongoing 
occipital α-oscillations, the pre-registered analyses returned null 
results. We decided to explore the data further to find out if phase 
effects on RTs could be found using other approaches. 
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FIGURE 13. Phase-RT modulation for each phase bin (centred on the target 
phases) in Stage 1 for all participants. P-value of the modulation comes from 
using a Monte Carlo randomization procedure (N = 10,000 randomizations). Error 
bars denote the 95%-confidence intervals (CI) of the randomizations. 
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Re-analysis of Stage 2 data including only trials for fast/slow phases 

In the main analysis of Stage 2, we decided to include trials in which 
our online phase estimation was ± 1 phase bins from the intended 
(fast/slow) phase. This decision was taken under the assumption that, 
by definition, phase effects fluctuate gradually, so that excitability in 
phase bins near the maximum peak (minimum peak) would still be 
relatively high (low). However, we decided to re-do the analysis in 
Stage 2 and select only those trials falling strictly in the slow and fast 
phase bins, while excluding those falling in ± 1 phase bin acceptance 
zone (as well as all the rest, as before). We re-calculated the mean RT 
between slow and fast phase bins and found a mean difference of -
0.625 ms (SD = 7), which was not significant neither at individual nor 
at the group level (t(7) = -0.2496, p = 0. 0.5950, dz = -0.0883). Note 
that the number of trials was much reduced, leaving 55 (SD=18) and 
52 (SD = 9) trials on average for predicted slow and predicted fast 
trials, respectively. For information on the number of trials and 
statistics at individual-level, see Supplementary Table 7 in Annex I. 
These findings are in line with those found in the pre-registered 
results. 

Smoothing the RT-phase modulation 

The main purpose of Stage 1 was to estimate the phase bins with 
fastest and slowest RTs for later use in Stage 2. However, given that 
we collected a minimum of 50 RTs for each of the 10 bins distributed 
throughout the α-cycle, one could search for a possible phase-ordered 
pattern in the RTs in that dataset. As described in the Results section, 
plotting the mean RTs for each phase bin (Figure 10) did not seem to 
highlight any discernible oscillatory pattern. However, we did not 
perform a formal statistical analysis at that stage. In this follow up 
analysis, we adapted an analytical approach used by Fiebelkorn et al. 
(2013) to test statistically for an oscillatory pattern in Stage 1 data. The 
logic behind this approach is that if a phase-dependent modulation of 
RTs exists, then RTs should vary significantly around opposite phases 
of α (as in the idealized example in Figure 9). 

Therefore, we looked for pairs of phases 180° apart that could result 
in a larger difference between RTs. We calculated the average RT over 
the trials lumped within -90° and +90° around each phase bin to 
obtain 10 phase-centred RT averages. Then, we normalized each 
phase-centred RT average by the average RT across all trials. If RTs 
were modulated by phase, the normalized phase-centred RTs would 
resemble a sine wave. To test the statistical significance of possible 
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phase modulation, we transformed these phase-centred RT averages 
to the frequency domain through a fast Fourier Transform (FFT). We 
tested the significance (α-level = 0.05) of the peak in the FFT for one 
cycle using a Monte Carlo randomization procedure (10,000 
randomizations). The statistical tests showed that none of the 
participants displayed a significant RT modulation (p-values ranged 
from 0.11 to 0.92; Figure 13). This outcome confirmed the results 
from the pre-registered analysis on phase effects, described above.  

Searching for phase opposition at stimulus onset   

If the response to a stimulus is related to the phase of the α-activity, 
we should expect a pattern of opposition within the α-frequency (the 
narrow band EEG) when comparing between slow and fast RT trials 
at stimulus onset (time = 0) (Mathewson et al. 2009). We checked for 
this possibility by offline band-pass filtering data from electrode O1 
using a Butterworth filter (order 2, two-pass) around the IFoI ± 5 Hz 
band. No re-referencing was applied. All valid trials from Stage 1 were 
used for the analysis. EEG data were epoched from – 200 ms to 300 
ms (t=0 being the stimulus onset time), and then demeaned and 
baseline corrected (- 200 ms to 0 ms). To average across subjects with 
different IFoI, the time dimension of the EEG was transformed into 
α-cycle units (the time vector multiplied by the IFoI; data resampled 
by linear interpolation). RTs were median-split into slow and fast 
categories. The inter-participants average RT was 231 ms (SD = 9) for 
slow trials and 182 ms (SD = 8) for fast trials. Figure 14 shows the 
narrow-band activity for the slow and fast RTs, and for all trials 
pooled together (see, Supplementary Figure 7 in Annex I, for 
individual plots). Although visual inspection suggests an opposition 
pattern in the narrow-band activity between slow and fast trials at 
stimulus onset, this pattern is not statistically significant. This can be 
appreciated by comparing the apparent difference with the large 
overlap in the confidence intervals (fast trials mean = -0.4454 µV, 
95% CI = [-1.5599, 0.6691] µV; slow trials mean = 0.3901 µV, 95% CI 
= [-0.6210, 1.4012] µV). However, to test for phase opposition 
beyond visual inspection, we used the Phase Opposition Sum (POS) 
method (VanRullen 2016a). We forward-filtered the data from 
electrode O1 using a Butterworth filter (order 2, one-pass) around the 
IFoI ± 5 Hz band and computed the phase by means of the Hilbert 
transform. We applied the POS on phase values at stimulus onset for 
fast vs slow trials, both at individual and group-level. The statistical 
significance was assessed using non-parametric permutations tests 
(10,000 iterations) using random shuffles of trial assignment to 
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slow/fast bins to compute the distributions of POS values to be 
expected by chance for each subject. For the group, the distribution of 
POS values to be expected by chance corresponded to the average of 
individual POS values to be expected by chance. The p-value 
associated to measured POS at individual (group) level corresponded 
to the proportion of times that individual (group averaged) POS 
obtained in the permutation exceeded measured individual (group 
averaged) POS.  

 

FIGURE 14. (A) Grand average of the narrow-band activity time-locked to 
visual stimulus presentation for fast (green), slow (red), and all (black) trials 
from O1-electrode in time of the α-cycles. Thin lines represent the standard error 
of the mean (SEM) interval. Vertical dashed lines denote the mean RTs for all slow 
(red), fast (green) and all trials (black). (B) Polar plot of the representation of the 
overall number of trials across participants for each phase bin (dots) for fast 
and slow trials. 

In line with the results of the pre-registered analyses, we did not 
observe a significant group-level effect of POS between slow and fast 
RTs (p = .932) nor at individual-level. 

Effect size equivalence test 

The present study was a replication of a previous one testing a 
relationship between the α-phase and RT (Callaway and Yeager 1960). 
The results were at variance with that original study: we did not find 
evidence for such a relationship. We decided to perform an 
equivalence testing (Lakens et al. 2018) to compare the effect size in 
the original study with that reached in the present, even if we had 
already looked at the data. Callaway and Yeager (1960) reported data 
from 8 participants and achieved a mean difference between slow and 
fast RT of 8.13 ms (SD = 5.11; dz = 1.59). In a new study, it would 
then be reasonable to expect a minimum effect size equal to 33% of 
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the original effect size, assuming the effect in the original study were 
true (Simonsohn 2015). This means that we would expect a minimum 
theoretical effect size of 2.681 ms (or dz = 0.53). Incidentally, our aim 
before the study was to achieve RT differences that would also be 
relevant in terms of BCI application in real life, and therefore possibly 
larger than the meagre 2.7 ms effect size derived from the present 
estimation (admittedly, performed a posteriori). Nevertheless, if not 
useful at the practical level, one would hope to gather some 
information at the theoretical level. In the present study, we tested 8 
participants and obtained a mean difference between slow and fast 
RTs of -0.439 ms (SD = 4.171 ms; dz = 0.105) (Stage 2). Given this 
sample size we cannot reject that the real difference between 
conditions is bigger than 0 (t(7) = -0.298, p = 0.775, α-level = 0.05, 
one-tailed) or that the effect size is between -.53 and .53 (t(7) = 1.521, 
p = 0.09, given equivalence bounds of – 2.68 and 2.68 ms and α-level 
= 0.05). The equivalence test was ran also at the individual level: None 
of the participants showed an RT difference in the expected direction 
over the 2.68 ms limit that it is a reasonable value to be anticipate 
based on Callaway and Yeager (1960). Note that the objective of this 
study was to find effects at participant level. Therefore, the group tests 
performed here and in previous sections are exploratory and must be 
interpreted with caution as they are very likely underpowered. 

Discussion 

The present study aimed at providing a proof of concept for 
harnessing on the phase of ongoing α-oscillations recorded non-
invasively with EEG for real-time BCI, and to garner support for the 
role of such occipito-parietal α-oscillations in visual perception. 
Evidence of this kind is valuable because it can help achieve a better 
understanding of the relation between the occipito-parietal α-phase 
and behavioural outcome (i.e., speed of reaction times to visual 
events), and lay the groundwork for possible BCI applications. Our 
study was a modern replication of Callaway and Yeager’s study (1960), 
where participants performed a speeded detection on visual targets 
triggered in real-time at different angles of a participant’s α-cycle. First, 
we sampled RTs to visual targets presented at 10 different phase bins 
throughout the α-cycle (Stage 1) to select the phases associated with 
slowest/fastest RTs. Second, we measured RTs to visual targets 
presented at these two pre-selected phase bins (Stage 2). If a 
consistent phase-RT relation exists in the expected direction, it follows 
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that, in Stage 2, stimuli presented at the slow phase would have led to 
slower RTs compared to stimuli presented at the fast phase. 

Contrary to what was expected, the analyses did not return a 
consistent relation between the phase of ongoing α-oscillations and 
RTs neither at the group nor at the individual level. Because this 
experiment was run in real-time, most analytical choices had been 
made a priori, based on previous literature (Callaway and Yeager 
1960). Please note that obtaining the expected results using a priori set 
analytical pipeline would implicitly corroborate the brain-behaviour 
theory behind the decisions for the closed-loop. In this sense, closed-
loop BCI can be considered a test bench for brain-behaviour theories. 
However, because some of the prior choices might have been decisive 
in producing a null result in the present study, we performed a few 
reality-checks a posteriori. First, we verified that the intended phase of 
visual stimulation and the actual one were in alignment by comparing 
the time of stimulus delivery with the empirical EEG measurements, 
offline. Real-time phase estimation was less than 5º off the intended 
phase (+1.21 ± 33.70° and +3.79 ± 25.43°, in Stages 1 and 2, 
respectively), which compares well with estimation accuracy in other 
modern phase-based closed-loop BCIs (Zrenner et al. 2018; Madsen et 
al. 2019). We also demonstrated that the accuracy of the phase 
estimation depended on the latencies along the α-cycle. We found an 
average mean variation of -5.42º (SD = 9.38º) and an increase of 
variability of 32.20º (SD = 10.64º) between the last and the first 
latencies. Second, we double-confirmed that the initial choice of the 
frequency of interest was representative of the predominant α-
frequency during task execution by analysing the data both at single-
trial and stage-dataset levels. Third, we validated our choice of the 
electrode (O1) for the real-time analysis as representative of the 
central frequency of interest in the occipito-parietal cluster, the most 
common for the α-rhythm in visual perception (Myers et al. 2014; 
Samaha et al. 2015; Benwell et al. 2017; Harris et al. 2018; Ruzzoli et 
al. 2019). Taking all the results together, we reckon that both the 
estimation over almost one α-cycle and the difference in frequency 
from IFoI on a trial-by-trials basis are probably the main reasons why 
phase accuracy varied over latencies along the α-cycle and why we had 
to reallocate trials in Stage 1 and enlarge Stage 2 acceptance zone to ± 
1 phase bin. However, we would like to highlight that, in practical 
terms, nearly an average of 88% of the trials felt within ±1 bin, which 
we do not consider to be a poor phase estimation for a BCI setting 
given the resolution of our EEG system and the method we 
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implemented to estimate the phase by extending a sinus using the IFoI 
from a reference point in the EEG signal. 

It is important to note that even if the data we obtained were variable 
across participants, the focus of our analysis was on the individual 
effects because one of the interests in this study was BCI application. 
The cross-validation protocol implemented in our design (selection 
and validation of phase bins from Stage 1 to Stage 2 within the same 
individual) also highlighted a substantial within-participant variability, 
in many cases leading to opposite trends from Stage 1 to Stage 2 (e.g., 
the expected fast phase bin returned, on average, the slowest RTs).  

As we mentioned in the introduction, the relation between the 
posterior prestimulus α-phase and behaviour has been (and it still is) 
based on a popular hypothesis, leading to several sister theories 
(Ellingson 1956). For example, the α-phase has been interpreted as a 
sensory gateway (Bartley and Bishop 1932); a sensory gateway with a 
functional inhibitory role (Jensen and Mazaheri 2010); as a scanning 
mechanism (Walter 1950); as evidence for excitability cycles (Bishop 
1932; Lindsley 1952; VanRullen 2016b). The main point in common 
between these theories is that reactions (accuracy or RTs) to visual 
stimuli correlate with (and can be predicted by) the oscillatory activity 
from the occipito-parietal cortex in the α-band. A critical analysis of 
the literature shows that this hypothesis has not been free of 
controversy: Early studies reported no (Walsh 1952; O’Hare 1954), or 
weakly significant effects (Lansing 1957; Callaway and Yeager 1960; 
Callaway 1961, 1962; Dustman and Beck 1965). Null evidence is also 
reported in modern times with respect to accuracy (Benwell et al. 
2017; Ruzzoli et al. 2019). The present study adds to the previous 
literature showing that the α-phase/RTs relationship is variable and 
not reliable when targeted in real-time, at least using extra-cranial 
EEG.  

Perhaps it is worth mentioning at this point that we focused on 
human non-invasive studies (i.e., EEG or MEG) on the role of the α-
phase on perception because one our goals was to provide evidence 
for the possibility to capitalize on this well-studied relationship for 
BCI settings. We acknowledge, indeed, that prior studies have 
frequently found a reliable relationship between α-power and spatial 
attention (e.g., Worden et al. 2000; Kelly et al. 2006; Thut et al. 2006) 
or visual memory (Palva and Palva 2007), however, the main focus 
here was narrowed to visual detection performance (Walsh 1952; 
Lansing et al. 1959; Bompas et al. 2015; Benwell et al. 2017; Ruzzoli et 
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al. 2019). In this specific case, despite the α-power/behaviour 
correlation has been more solidly established in the literature, the 
present study was not optimized to reveal power/behaviour 
relationships. Indeed, we introduced measures to achieve a 
consistently high α-power to facilitate reliable phase estimations for 
stimulus presentation, resulting in a small variability in α-power4. 

Returning to the focus of the present study, which relates to the 
putative effect of α-phase on RTs to visual events, we should consider 
three critical aspects of our design that might have influenced the 
negative outcome. First, we asked the participants to perform the task 
with their eyes closed. The eyes closed strategy, also implemented in 
Callaway and Yeager’s study (1960), induces higher α-power at 
occipito-parietal locations which is convenient for reliable phase 
estimation. However, whether and how performing a perceptual task 
with the eyes closed jeopardized the outcome is unknown. Excluding 
the possibility that an eyes-closed condition could also involve sub-
cortical generators of the α-activity (Lopes da Silva et al. 1973; 
Bollimunta et al. 2011; Sokoliuk et al. 2019), we did not find any 
theoretical caveat against the eyes-closed strategy, which was instead 
technically convenient. Please note that others have successfully used 
eyes-closed preparations in the past (Lansing et al. 1959; Callaway and 
Yeager 1960) and more recently (Lim et al. 2013; Hwang et al. 2015). 
Based on this, we doubt that the eyes-closed condition may have been 
critical to producing a null result. The second aspect of our design was 
to use speeded detection, therefore adopting RTs instead of accuracy 
as the measure of interest. Even if the α-theories have been related to 
both (RTs: Walsh 1952; Lansing 1957; Lansing et al. 1959; Callaway 
and Yeager 1960; Accuracy: van Dijk et al. 2008; Busch et al. 2009), no 
explicit claims have been made on possible differences between the 
two measures regarding their sensitivity to prestimulus oscillations. 
One would believe that if the temporal structure of α-oscillations is 
important to parse sensory information into perception, then it should 
be relevant for both RTs and accuracy. Furthermore, unlike accuracy, 

 

 

 

4 An exploratory analysis, presented in the Supplementary Materials (Annex I), confirms 
both the low power variability and the null power to RT correlation; see 
Supplementary Table 8, Supplementary Figure 8, and Supplementary Figure 
9. 
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RT is a continuous measure potentially more sensitive to moment-to-
moment variation in excitability than the dichotomic responses in a 
detection task. Another aspect of our design that merits discussion 
was that stimulus intensity was supra-threshold and fixed across 
participants. This is often the approach in experiments measuring RT. 
Yet, one could perhaps argue that the stimulus was so strong that 
possibly subtle phase-dependent variations in sensory responses were 
saturated, thereby having a negligible impact on behaviour. It is 
difficult to answer this question examining previous literature because 
luminance levels have been rarely reported in a precise fashion. 
Callaway (1962) published the results of a study examining the RT – α-
phase relationship with dim and bright visual stimuli (although the 
actual luminance was not reported) and stated that the depth of such 
modulation did not vary consistently as a function of brightness. To 
the best of our knowledge, the only study measuring the RT – α-phase 
relationship where stimulus intensity was reported clearly is Dustman 
and Beck (1965). The authors found a consistent effect of RT to α-
phase with stimuli of 0.7 lum/m2 (that is, 0.128 cd/m2) at 40 cm 
distance to the subject’s (closed) eyes. This is brighter than our 
stimulus intensity (0.076 cd/m2). In the absence of reliable 
information about the stimulus intensity in past studies, one can also 
look at the response latencies as a proxy. The average RT in our study 
was 206 ms (SD = 9) in Stage 1, and 199 ms (SD = 6) in Stage 2. Past 
studies where a significant RT – α-phase relationship was reported 
range from faster responses than ours (167 ± 22 ms, Dustman and 
Beck 1965) to slower (245 ± 15 ms and 236 ± 12 ms respectively for 
slow and fast RTs in Callaway and Yeager 1960; 295 ± 51ms and 348 
± 64ms for bright and dim stimuli, respectively in Callaway 1962). 
Therefore, even if one cannot be certain of a possible saturation in 
neural responses following our stimuli, the stimulus strength and the 
speed of ensuing latencies were within the range of past studies 
reporting positive effects. 

Finally, a fair question to ask is whether the occipito-parietal α-phase is 
a critical parameter for perception, but difficult to be extracted from 
EEG-based closed-loop BCI, or whether it is not critical at all. 
Fluctuations in neuronal excitability giving way to the oscillatory 
patterns observable with EEG (and MEG) are ubiquitous in the brain, 
and the relationship between these fluctuations and neural responses 
to stimuli is well established in physiology (Bishop 1932; Buzsáki and 
Draguhn 2004). This makes oscillations seen in the EEG appealing 
candidates to explain and predict behaviour. However, the outcomes 
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of tests regarding the role of occipito-parietal α-phase in the 
organization of the visual flow of information have been positive 
(Lansing 1957; Lansing et al. 1959; Callaway and Yeager 1960; 
Mathewson et al. 2009) as well as negative (Walsh 1952; O’Hare 1954; 
Benwell et al. 2017; Ruzzoli et al. 2019). One could argue that a 
relationship between phase and visual detectability (and hence, 
response latencies) may exist, but it was obscured by the signal-to-
noise variability when recoding from scalp electrodes in EEG. This is, 
in fact, likely given by the oscillatory patterns in neural excitability so 
frequently observed in intra-cranial recordings (Bishop 1932; Lopes da 
Silva and van Storm Leeuwen 1977; Lakatos et al. 2008) or animal 
studies (Haegens et al. 2011; Spaak et al. 2012; Fiebelkorn et al. 2018, 
2019). Based on this, one would have to conclude that despite the 
results from the present study are far from significant, they are also 
not conclusive as to disproof an effect and challenge the α-theories 
meaningfully.  

Apart from theoretical considerations, we also had a second main goal 
in mind running this experiment: To provide a proof-of-concept for 
the use of oscillatory phase as a real-time control signal in a BCI. We 
estimated that a minimum RT difference between slow/fast phases of 
2.681 ms could be expected (33% of the effects in Callaway and 
Yeager 1960). However, from a more practical perspective, we wonder 
whether such a small (and variable) effect can be efficiently picked up 
by scalp EEG and, if so, whether it can be considered meaningful in a 
BCI application. Saving less than 3 ms in, for example, the efficiency 
of warning signals would seem close to nothing in most applied 
contexts. 

Conclusions 

Taken together, we must infer that our data do not support a 
relationship between the phase of α-fluctuations measured extra-
cranially and response latencies to visual events. A prudent conclusion 
is that theoretical and empirical knowledge regarding this relationship 
may need to progress further to generate enough confidence to 
attempt the application of the α-theory to neuro-devices. Further 
research might investigate the influence of parameters such as the 
eyes-closed strategy, the different sensitivity of discrimination 
performance vs reaction times as the dependent variable, or the 
impact of stimulus intensity. We believe that, at present, the effort to 
implement a closed-loop BCI application based on the relationship of 
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occipito-parietal α-phase measured with EEG and reactions to visual 
events might not pay off. In addition, we encourage other scientists 
and BCI practitioners to use BCI settings for hypothesis-testing with a 
priori set methods in the cognitive neuroscience field as a test-bench 
for brain-behavioural theories and to explore the feasibility of EEG-
based BCI applications. 
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CHAPTER 3 

Using occipital α-bursts to modulate 
behaviour in real-time 

“If you can’t give me poetry, 
can’t you give me poetical science?”. 

ADA LOVELACE 

 

 

 

 

 

 

 

 

 

 

In this chapter I closely follow our study: I. Vigué-Guix & S. Soto-

Faraco. Using occipital ⍺-bursts to modulate behaviour in real-time. 
Submitted to Nature Communications, 2022.  

, 2020.  
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Background 

Fluctuations in neural excitability, reflected in ongoing brain 
oscillations, are thought to impact the visual processing of sensory 
inputs and behavioural outcomes (Iemi et al. 2022; Benwell et al. 2017; 
Benwell et al. 2019; Hanslmayr et al. 2007). Many studies have 
established a relationship between the amplitude of ongoing activity in 
the alpha band (α, 8-13 Hz) before stimulus presentation and 
perceptual performance (Ergenoglu et al. 2004; Hanslmayr et al. 
2005a; Hanslmayr et al. 2007; van Dijk et al. 2008). Some of these 
studies have specifically linked response variability in visual tasks to 
changes in the amplitude of pre-stimulus α-oscillations in the posterior 
brain regions prior to stimulus presentation (Bompas et al. 2015; 
Foster et al. 2017; Huang et al. 2019; Lin et al. 2013; Linkenkaer-
Hansen et al. 2004; Yang et al. 2014; van Dijk et al. 2008; Bays et al. 
2015).  

Although all of these findings are based on averaging pre-stimulus 
activity, a few recent studies have provided evidence that oscillatory 
activity may not only be sustained but also consists of burst-like events 
of high-power neural activity occurring stochastically at different rates, 
times, and durations (Jones 2016; Lundqvist et al. 2016; Feingold et al. 
2015; Shin et al. 2017; Tinkhauser et al. 2017; van Ede et al. 2018; Zich 
et al. 2020). An illustrative example is hippocampal theta. Many studies 
have observed overall increases in average theta power related to 
navigation in the human hippocampus (Ekstrom et al. 2005; Watrous 
et al. 2013). However, when looking at single trials in intracranial EEG 
studies, theta appears in distinct bouts of activity and not (only) 
consistent power changes in the spectrum (Goyal et al. 2020). 
Similarly, α-occipital, one of the most well-known oscillatory 
characteristics of the human EEG, appears to be expressed in burst-
like events (Kosciessa et al. 2020; van Ede et al. 2018; Sherman and 
Guillery 1998, 2001). Nevertheless, it is overwhelmingly studied by 
averaging many trials, perhaps overlooking important physiological 
relevant aspects of its temporal, spectral, and temporal structure (Zich 
et al. 2020). Sustained high power in the averaged spectrum can arise 
due to increased rates or durations of bursts, power changes of bursts, 
or an overall increase of power across the spectrum. Thus, with 
traditional trial-averaged analysis, bursts are challenging to capture, 
and a trial-by-trial approach can optimally help ascertain burst events 
(Stokes and Spaak 2016). 
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A promising investigation avenue is using new analysis strategies to 
study the functional role of bursts in dynamic aspects of cognition and 
behaviour. To this end, real-time analyses have the untapped potential 
to capture a more accurate representation of moment-to-moment 
variations of the cortical dynamics (Lundqvist and Wutz 2021) and 
brings the opportunity to trigger stimuli timed-locked to the 
occurrence or absence of bursts events in the ongoing signal. Thus, 
real-time analysis can provide a robust test of whether burst-like 
events are associated with particular behavioural outcomes and can 
naturally provide a crucial proof of concept for brain-computer 
interface (BCI) applications. However, to the best of our knowledge, 
real-time BCI targeting α-bursts from the human brain has not been 
addressed. The present study reports the outcome of such a novel test 

using scalp EEG measurements of an ongoing, posterior ⍺-activity-
based BCI system for real-time burst-triggered stimulus presentation 
in a visual perception task. So far, α-bursts in the EEG from the 
occipital cortex have been used as a physiological measure for 
assessing attentional state and related to errors in driving studies 
(Papadelis et al. 2007). In addition, EEG α-bursts have been 
demonstrated to be superior to the EEG α-band power measures in 
terms of sensitivity and specificity for assessing the driver fatigue 
under real traffic conditions (Simon et al. 2011; Borghini et al. 2014). 
Although these kinds of studies mainly use offline data analyses, 
findings like these have the potential to extrapolate to real-time 
monitoring/warning systems in real-world scenarios, for example, in 
activities in which sustained attention is crucial, such as driving 
vehicles, piloting aeroplanes, and operating heavy machinery. 

Supposing that the accumulation of ⍺-bursts over trials correlates with 

the behaviour observed in trial-averaged ⍺-power (Lundqvist and 

Wutz 2021), then, by specifically targeting the ⍺-burst events, we 
should see a similar behavioural performance as in trial-averaged 
studies, but on a much fine-grained scale of oscillatory dynamics of 
the EEG signal. Based on the empirical evidence and the well-known 

inhibitory hypothesis of ⍺-activity over sensory cortices (Klimesch et 
al. 2007; Jensen and Mazaheri 2010; Iemi et al. 2022), we hypothesised 

that target presentation during the presence of ⍺-bursts would impact 
subsequent reaction time (RT). In particular, targets presented during 

⍺-bursts would lead to slower RT (i.e., worst performance), whereas 

targets presented outside ⍺-bursts resulted in faster RT (i.e., better 
performance). This hypothesis, if confirmed, would not only help 
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corroborate and extend ⍺-theories currently based on findings from 
averaged trials (Klimesch et al. 1998; Makeig and Jung 1995; Wyart 
and Tallon-Baudry 2009; Kirschfeld 2008; Bompas et al. 2015; Yang et 
al. 2014; Lin et al. 2013; Makeig and Inlow 1993; Campagne et al. 
2004; Makeig and Jung 1996; Jung et al. 1997; Hanslmayr et al. 2013; 
Lal and Craig 2002; Horne and Baulk 2004), but also provide evidence 

of the putative role of dynamic ⍺-bursts in real-time perception and 
subsequent behaviour. 

Here, we implemented a go/no-go visual detection task in which 
target presentation was determined in real-time based on the 
occurrence or the absence of α-bursts in the ongoing occipital EEG 
signal (Figure 15). We estimated bursts by adapting the eBOSC 
method (Kosciessa et al. 2020) to the real-time analysis pipeline of the 
BCI setting and used the last 45 s as the background window, as 
similarly done in previous applications of the method (Whitten et al. 
2011). When a burst event (or its absence) for at least three cycles of 
the individual alpha frequency (here, Individual Frequency of Interest; 
IFoI) was detected, the visual stimulus was triggered. In go trials 
(80%), participants had to respond as fast as possible to the green 
light, whereas in no-go trials (20%), participants had to inhibit the 
response when seeing the red light. In both trials, stimuli were 
randomly and equally delivered during the occurrence/absence of α-
bursts at the target onset. Each participant collected 240 trials: 
go/burst (N = 96), go/no-burst (N = 96), no-go/burst (N = 24), and 
no-go/no-burst (N = 24). Note that our task’s stimulus intensity was 
weaker than regular go/no-go tasks since we wanted to induce a 
perceptual rather than decisional bias (Benwell et al. 2021) and 
increase false alarm rates (Chaumon and Busch 2014). To this end, our 
study aimed to provide (i) evidence for the functional relevance of 
oscillatory α-bursts in visual perception and (ii) a proof-of-concept for 
a real-time burst-triggered stimulus presentation BCI setting. The 
hypothesis, procedure, and analysis pipeline were pre-registered before 
data collection (https://osf.io/z98ms/). Deviations from the pre-
registered procedure are clearly stated in the manuscript. Data and 
code used in this experiment will be shared upon publication. 

To preview the results, stimulus presentation contingent upon the 
occurrence or absence of occipital α-bursts impacts behaviour. This 
study shows that it is possible to directly address the connection 
between oscillatory bursts and behaviour utilising an EEG-based BCI 
system, allowing for burst-triggered stimulus presentation in real-time.  

https://osf.io/z98ms/
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Methods 

Participants 

Sample size. We set to complete a dataset with N = 12 participants. As 
per the necessary exclusion requirements set a priori (see below), the 
attrition rate was high. Of the total 43 participants initially recruited, 
16 were discarded for not satisfying the required α-peak criterion in 
the screening stages (seven did not show a peak at rest, three had 
double-peak, and six did not show a peak during the task), one was 
discarded for low discrimination performance, and 14 because of the 
duration criterion. The final dataset contained EEG and behavioural 
data from the remaining 12 participants (mean age of 24 years, eight 
females, all right-handed) without previous history of neurological or 
psychiatric diseases, with normal or corrected to normal vision, within 
18-35 years of age. All participants took part in the study voluntarily 
after giving informed consent, and they were compensated for their 
time 10€ per hour. The duration of the experiment varied between 60 
and 120 minutes. The study was designed in accordance with the 
Declaration of Helsinki and was approved by the Institutional 
Committee for Ethical Review of Projects (CIREP-UPF) (University 
Pompeu Fabra, Barcelona, Spain) before starting the recruitment. Data 
from excluded participants were not analysed. 

Exclusion criteria. A participant was excluded if any of the following 
criteria were met: (i) No amplitude peak within the α-band: This criterion 
applied to both screening stages across the study and ensured that the 
individual’s endogenous α-oscillation was registered with a sufficiently 
high signal-to-noise ratio (SNR) to enable the algorithm to classify the 
(non)occurrence of α-bursts from the ongoing EEG signal. This 
decision was based on two sub-criteria: strength and uniqueness (see 
Screening and estimation of the individual frequency of interest (IFoI) 
section for more details). (ii) Time limit of total test duration: This criterion 
was applied during the Training block and the Experimental session. 
Given that the duration of the study depends on the estimation of 
occurrence or absence of bursts in the ongoing EEG signal, we 
decided to establish an objective limit. Thus, we stopped the 
experiment if a participant spent more than 20 minutes in the Training 
block or any blocks of the Experimental stage. (iii) False alarms in no-go 
trials: This criterion was applied after data collection if a participant 
had responded in 60% or more trials in the no-go condition. (iv) Low 
coefficient of variation (CV) in reaction time (RT): This criterion was also 
applied after data collection and ensured that participants had 
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sufficient RT-variability with a minimum CV of 15% (Terentjeviene et 
al. 2018). 

Experimental procedure and materials 

Participants sat on a comfortable chair wearing an EEG cap in front 
of a green-red bi-colour LED (Manufacturer: Kingbright, Reference: 
L-59SURKCGKW) at a distance of 90 cm at eye level in a dark and 
acoustically and electrically attenuated chamber. The LED was 
attached to a parallel port (forward voltage = 3.84 V, forward current 
= 0.5 µA) and mounted in a serial circuit with different value 
resistances depending on the LED colour (one green light resistance = 
217 kΩ, and two possible red-light resistances = 933 kΩ or 820 kΩ). 
The resistance of the green light was permanently fixed, whereas the 
resistance of the red light was adjusted for each participant to reach 
the most similar subjective brightness between colours. Note that 
using different red lights across participants for the no-go trials did 
not influence the RTs (see Supplementary Materials in Annex II for more 
details). 

During the go/no-go task, visual stimuli were presented to 
participants via the illumination of the LED either in green or red (10 
ms duration), at a time decided from the real-time analysis of the 
EEG-based BCI setting (see below; Figure 15). Participants were 
asked to respond with their right finger via a button press as fast as 
possible each time the LED was lit up in green (go condition) or 
withhold the response if the LED turned red (no-go condition). Once 
the response had been given or had reached the timeout with no 
response (of 1 second), an Inter-Trial-Interval of 2 seconds + 
exponential distribution (mean of 2 seconds) of time up to 20 seconds 
started to prevent fixed temporal expectation. Then, a new trial started 
with the search for a new (no-)burst event. RTs were measured from 
the onset of the visual target until a button press was detected. Trials 
were randomised across conditions in both the training and 
experimental blocks of the study. 

The experimental protocol followed four phases. In the (i) IFoI-rest 
screening test, a 5-minutes of resting EEG with closed eyes was recorded 
to determine the individual frequency of interest (i.e., IFoI-rest) within 
the α-band (see Screening and estimation of the individual frequency 
of interest (IFoI) for more details). This value was further used in the 
(ii) Training block of 40 trials (identical to the Experimental blocks, see 
below) introduced to familiarise participants with the task and to 
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acquire new data to estimate the IFoI during the task. This procedure 
considered the potential changes in the individual α-peak (both in 
amplitude and frequency) between eyes-closed vs eyes-open and 
between resting-state and in-task mode (Benwell et al. 2019; Samaha 
and Postle 2015). The updated value was used in the (iii) Experimental 
blocks, where visual targets were triggered depending on the (non-
)occurrence of bursts in the α-activity from the ongoing EEG signal 
(see Real-time stimulus presentation). The experimental session 
consisted of 6 blocks, each block ending after acquiring a total of 40 
valid trials (lasting 14 minutes on average). Each participant completed 
a total of 240 valid trials, 192 for go-trials (80%) and 48 for no-go 
trials (20%). Out of these trials, half of the trials were triggered during 
a burst and half during a no-burst event. The primary measures were 
reaction times (RT), commission errors (i.e., false alarm responses to 
no-go stimuli), and omission errors (i.e., misses to go stimuli). After 
the collection of data for each participant, the (iv) Post-hoc behavioural 
screening was applied for False alarms in no-go trials and Low 
coefficient of variation (CV) in reaction time (RT) (see details in 
Participants section). 

EEG recordings. Continuous EEG data was recorded from 16 passive 
electrodes (F3, Fz, F4, FC1, FC2, C3, Cz, C4, P7, P3, Pz, P4, P8, O1, 
Oz, O2) placed according to the 10-20 international system. 
Additional external electrodes were used for recording horizontal 
ocular movements (one electrode) and left and right mastoids (two 
electrodes), placed for offline re-referencing. The AFz electrode was 
used as the online reference and the right mastoid as the ground 
electrode. The data was recorded using an ENOBIO 20 5G system at 
a sampling rate of 500 Hz and a touch-proof medical adapter (all 
manufactured by Neuroelectrics, Barcelona, Spain). 

Screenings and estimation of the individual frequency of interest (IFoI). The 
EEG data was filtered by applying a Notch filter at 50 Hz, a high-pass 
filter using a second-order Butterworth at 0.5 Hz, and a low-pass filter 
using an eighth order Butterworth filter, and data was linearly 
demeaned. We estimated the power spectrum density within the α-
band (5-15 Hz) from the Oz-electrode using the Welch method 
(window = 500 ms; overlap = 10%; resolution = 0.25 Hz). Power 
spectrum was averaged across the electrodes of interest for each 
participant and normalised by the mean power spectrum from 0.5 to 
45 Hz. We verified that the strength of the peak (power at the local 
maximum within the 5 to 15 Hz window) was greater than average 
power in the 0.5 to 45 Hz window. If a single frequency peak existed 
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within a ±5 Hz band from the IFoI peak, it was considered the 
individual frequency of interest (IFoI) and used later as a parameter 
for the real-time analyses. Otherwise, participants were excluded (see 
Exclusion Criteria above). 

Real-time triggering of visual stimuli during α-bursts. We developed a real-
time EEG-based BCI setting using custom-written code in MATLAB 
(The MathWorks Inc., Natick, MA, USA) and the Lab Streaming 
Layer (LSL) library (Swartz Center for Computational Neuroscience, 
UCSD, USA). We adapted the BCI setting from Vigué-Guix et al. 
(2020) and designed a new setting to trigger visual stimuli at the 
occurrence/absence of α-bursts in real-time estimated from electrode 
Oz. We also built a GUI in MATLAB to keep track of the experiment 
on a trial-by-trial basis. To trigger a visual target, the BCI setting 
iterated through the following steps (see Supplementary Materials in 
Annex II for the detailed algorithm): (i) Data acquisition of a 45-second 
sliding window of the most up-to-date data (Whitten et al. 2011); (ii) 
Data reflection of the beginning and end of the window; (iii) Data filtering 
and demeaning with a band-pass forward filter of 4th-order Butterworth 
between 0.5 and 45-Hz; (iv) Time-frequency analysis using 6-cycle Morlet 
wavelets within 2 to 38 Hz; (v) Data trimming with reflected edges were 
removed; (vi) Log(frequency)-log(power) fitting of the wavelet-derived 
power spectrum using a robust regression; (vii) Threshold estimations of 
artifact, burst power, no-burst power, and duration threshold; (viii) 
Checking necessary conditions for triggering stimulus in terms of power and 
duration criteria (if conditions were not met, loop went back to step 
(i)); (iv) Stimulus presentation of visual targets (go or no-go, depending on 
condition); (x) Behavioural response collection or timeout of 1-second; 
(xi) Data acquisition update of the 45-second window with the most up-
to-date data, and repetition of the (i-v) steps. (xii) RT criterion check (RT 
within 50 and 1000 ms, only applied in the go condition), burst criterion 
check (90% of data points of the last three cycles had to be higher than 
the burst power threshold and lower than the artefact power threshold), or 
no-burst criterion check (90% of data points of the last three cycles had to 
be lower than the no-burst power threshold and lower than the artefact 
threshold); (xiii) Trial counter of the number of valid trials and continued 
with the next iteration until reaching the number of trials of a block 
(N = 40). Note that if a step/criterion was not satisfied at any point of 
the iteration, the BCI setting started a new iteration from step (i). 
Participants had a break between blocks, and a new block began with 
the BCI setting starting from step (i). 
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Statistical analyses 

Only valid go trials of each α-burst condition were included in the 
analyses and for all tests α-level was 0.05, unless otherwise indicated. 
Given that reaction time data do not follow a normal distribution but 
a positive right-skewed distribution, the statistical significance was 
assessed using nonparametric permutations tests (Ernst 2004; Morís 
Fernández and Vadillo 2020) both at individual and group levels. For 
the individual (single-participant) statistical tests, we tested the difference of 
the mean-RT distributions between burst and no-burst using a Monte 
Carlo randomisation procedure (100,000 randomisations) individually 
for each participant (i.e., one-tailed permutation test) to obtain a p-
value associated with the observed mean-RT difference. In the group-
level statistical tests, we performed the same procedure and estimated the 
p-value of the inter-individual mean burst/no-burst difference of RTs 
for all participants. 

Results 

Results of the pre-registered analysis 

According to the pre-registered pipeline, the analyses did return a 
consistent relation between the occurrence/absence of α-bursts in the 
ongoing occipital EEG signal and the speed of responses to visual 
targets, both at the individual and the group level. In all 12 participants 
but two, RTs for go stimuli were slower on average (486 ms; SD = 50 
ms) when presented during burst events (as predicted) and faster (486 
ms; SD = 50 ms) when presented in the absence of bursts (see 
Supplementary Figure 10 in Annex II for RT histograms). In five out 
of those 10 participants, the difference was significant at the individual 
level (p-values ranged from <.001 to .03; Supplementary Table 9 in 
Annex II). In line with the individual results shown in Figure 16, the 
group-level difference between burst and no-burst RTs was highly 
significant (p = <.001; Supplementary Table 9 in Annex II), reaching 
a mean difference of 19 ms (SD = 17; Max = 55 ms; Min = -6 ms). 

Interim discussion and reality checks 

Compared to offline experimental approaches where analysis 
parameters can be adjusted retrospectively, real-time settings imply a 
priori parameter choices to constrain the hypothesis and offer more 
explanatory power. As pre-registered, we performed some reality 
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checks offline to ensure that the a priori choices in the real-time 
setting conform to expectations. We focused on three critical aspects: 
first, we checked that we had triggered the stimuli during intended 
(no-)burst events in the real-time experiment, using the recorded data; 
second, we checked whether the choice of the IFoI based on training 

EEG data was representative of the dominant α-frequency during the 
task; and finally, we checked that the electrode choice (Oz) for the 

real-time α-burst estimation was representative of α-activity of interest 
in a larger occipito-parietal (OP) cluster of electrodes. 

 
FIGURE 16. Individual mean reaction times (RT) for burst (x-axis) and no-burst (y-
axis) trials for validated trials. Each circle denotes a participant. Horizontal error bars 
denote the SEM of burst trials, and vertical error bars denote the SEM of no-burst trials. 
Points below the diagonal line denote that no-burst mean RTs are faster than burst mean RTs. 
Symbol overlap is coded darker. 

Reality check 1: True detection of burst events 

We checked, retrospectively, whether real-time target presentation 
truly occurred during periods of occurrence or absence of α-burst 
events (see definition in Methods). We divided the estimated burst and 
no-burst trials from the dataset and epoched the data from -45 s to 2 s 
from stimulus onset (a larger window than the real-time analysis that 
included the post-stimulus interval). With these, we replicated offline 
the same analysis performed in real-time (see Supplementary Materials in 
Annex II for more details). Note that the analysis was applied at the 
single-trial level in the real-time study, whereas the offline analyses in 
this section also apply trial-averaged analysis (comparable with the 
existing traditional literature: e.g., van Dijk et al. 2008).  
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FIGURE 17. Reality checks of the study. (A) Group-level log-transform mean power at 
the time window of interest (TWoI) for burst (in red) and no-burst (in green) trials 
within -2 to 1s from stimulus onset. Solid lines denote the mean power of burst and no-
burst trials. Dark shaded areas represent the standard error of the mean interval. Each dot 
denotes a participant. (B) Individual mean power of burst (in red) and no-burst (in 
green) trials for participant (P09) within -2 to 1s from stimulus onset. Solid lines denote 
the mean power of burst and no-burst trials. Shaded areas represent the standard deviation 
(SD) interval. Solid vertical line denotes the stimulus onset, and dotted vertical lines denote 
the window of interest (i.e., the last three cycles of IFoI) from stimulus onset. (C) 
Comparison of individual IFoI during the task [in Hz] and IFoI during the training 
[in Hz] using Oz electrode. Dashed lines denote ±1 Hz, and each dot denotes a 
participant. Dot overlap is coded darker. (D) Comparison of individual IFoI during the 
task [in Hz] using Oz electrode and IFoI during the task [in Hz] using OP-cluster of 
electrodes. Dashed lines denote ±1 Hz, and each dot denotes a participant. Dot overlap is 

coded darker. 

For all participants, we calculated the mean power at the time-window 
of interest (i.e., three-cycles prior to stimulus; TWoI) for burst (Mean 
= 5.83 µV2; SD = 2.75 µV2) and no-burst (Mean = 0.18 µV2; SD = 0.08 
µV2) trials (Figure 17A, Supplementary Figure 11, and 
Supplementary Table 10 in Annex II). Overall, the mean power 
difference between burst and no-burst was 5.65 µV2 (SD = 2.69; Max 
= 12.58 µV2; Min = 2.73 µV2). We applied a one-tailed t-test 
(independent samples) with α-level = 0.05 to the mean power values at 
the TWoI between burst and no-burst trials and found that the two 
distributions were significantly different from each other (all 
participants p = <.001; Supplementary Table 10 in Annex II). 
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Although the statistical analysis was performed within the TWoI, we 
decided to plot the average of the trials on a wider time window 
around stimulus onset (-2 to 1 s) to visualise the difference in mean α-
power between conditions. In Figure 17C, the individual 
representative plot from one participant (P09) shows a clear difference 
between the mean (SD) power across conditions (see Supplementary 
Figure 12 in Annex II for all individual plots). As reflected by the 
shaded area, burst trials show larger variability (i.e., SD) than no-burst 
trials in power within the TWoI. In addition, we related the log-
transformed mean power at the TWoI with the RT for no-/burst trials 
at the individual level and found that log-power distributions of both 
conditions were separated (see Supplementary Figure 13 in Annex II 
for individual figures). Finally, we checked the amplitude thresholds 
and demonstrated that they were correctly adjudicated during the 
study according to the ongoing α-burst activity (see Supplementary 
Figure 14 in Annex II for individual figures). These results confirm 
that our approach successfully identified and separated trials with and 
without α-bursts in ongoing EEG.  

Reality check 2: Selection of the frequency of interest (IFoI) 

Here, we checked for any potential deviations between IFoI used to 
estimate bursts in real-time during the task extracted from the training 
and the actual IFoI during the task execution for each participant. 
During the training, the mean IFoI peak was 10.60 Hz (SD = 0.41 Hz) 
with a mean amplitude of 5.12 dB (SD = 3.11 dB), whereas, during 
task execution, the mean IFoI peak was 10.35 Hz (SD = 0.41 Hz) with 
an amplitude of 5.72 dB (SD = 2.73 dB) (Figure 17B, see 
Supplementary Table 11 in Annex II for individual results). Overall, 
the mean peak IFoI difference between task and training was -0.25 Hz 
(SD = 0.11; Max = -0.5 Hz; Min = 0 Hz), with a mean amplitude IFoI 
difference of 0.61 dB (SD = 1.63; Max = 3.47 dB; Min = 0.22 dB). 
The variation in frequency from the IFoI at the single-trial level seems 
negligible from a time-frequency analysis standpoint. Thus, we can 
conclude that the BCI setting employed in this study successfully 
centred the spectral analysis around the desired relevant frequency of 
interest.  

Reality check 3: Representativity of the electrode of interest 

Similarly, we had to decide a priori about the electrode/s of interest 
used in the BCI setting as for the frequency of interest. We chose the 
Oz electrode, which was convenient to curtail real-time computational 
delays. However, one potential concern is that the frequency estimated 
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by that single electrode could be unrepresentative of the α-frequency 
dominant in a wider cluster of occipito-parietal (OP) electrodes. 
Therefore, we compared the spectral peak activity in Oz-electrode to 
that of an OP-cluster of electrodes (P7, P3, Pz, P4, P8, O1, Oz, O2) 
retrospectively (Figure 17D). The comparison process was analogous 
to the one described for Reality check 2. For the OP-cluster, we 
computed the IFoI peak (Mean = 10.43 Hz; SD = 0.46 Hz) and IFoI 
amplitude (Mean = 4.65 dB; SD = 3.49 dB) during the task (see 
Supplementary Table 11 in Annex II for individual results). This 
yielded that the IFoI of the α-bursts estimated from Oz during the 
real-time experiment were closely representative of the OP-activity. 

Exploratory analyses 

RT fits using the ex-Gaussian function 

Here, we explored how the distributions differed between burst and 
no-burst to learn more about the origin of the RT differences seen in 
the main pre-registered analysis. We characterised the RT-distributions 
by fitting an ex-Gaussian function, a convolution of a Gaussian and an 
exponential distribution (Hockley 1984; Luce 1986; Ratcliff and 
Murdock 1976). Whereas the mean (μ) and standard deviation (σ) for 
the Gaussian part are thought to reflect, but not exclusively, stimulus- 
or response-related processes (Schmitz and Wilhelm 2016), the 
exponential component (τ, which reflects the skewness of the 
distribution) is sensitive to central attentional processes, especially 
those that require inhibitory control (McAuley et al. 2006; Shao et al. 
2012; Spieler et al. 1996). We used the exgauss toolbox in MATLAB 
(Bram Zandbelt 2014) to perform the RT fits. For each participant, we 
performed a one-tailed permutation test (100,000 randomisations) for 
the μ parameter (the same statistical tests applied in the main analysis 
of the study under the same hypothesis, see Statistical analysis) and a 
two-tailed permutation test (100,000 randomisations) for σ and τ 
parameters (since we did not have any hypothesis about them).  

Figure 18A illustrates the ex-Gaussian fit for a representative 
participant (P09), including the RT distribution fit and the 
psychometric curves for burst and no-burst trials (see Supplementary 
Figure 15 in Annex II for individual figures). The average μ for burst 
and no-burst trials was 400 ms (SD = 38 ms) and 393 ms (SD = 41 
ms), respectively. The mean RT difference between burst and no-burst 
was 7 ms (SD = 20 ms; Max = 32 ms; Min = -1 ms). Overall, 7 out of 
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twelve participants showed a difference in RTs in the expected 
direction (see Supplementary Table 12 in Annex II for individual 
results), with 2 out of these showing a significant p-value (p < .02) in 
the μ parameter. However, we did not observe a significant group-
level difference between burst and no-burst (p = .13). In terms of σ 
(burst was 39 ms, SD = 10 ms; no-burst was 37 ms, SD = 14 ms), the 
average difference was not significant at the group level, and only one 
participant (P07) showed a significant difference with more variability 
in burst trials compared to no-burst trials (p = .01). Finally, for 
parameter τ, burst was 86 ms (SD = 17 ms) and no-burst 74 ms (SD = 
22 ms), leading to a significant group difference of 12 ms (SD = 17; 
Max = 41 ms; Min = -1 ms; p = .01). Three participants (P01, P03, 
P07) showed a significant p-value (p < .05) for the difference in τ (p-
values ranged from .003 to .02), in the same direction as the group. 
Taking these results together seems that the difference we found in 
the main analysis between burst and no-burst RTs (p = <.001) was 
best captured by the skewness of the distribution reflected in the 
exponential component (τ). This finding could be related to the 
sensitivity to central attentional processes and the requirement of 
inhibitory control (McAuley et al. 2006; Shao et al. 2012; Spieler et al. 
1996) for the go/no-go task. However, given the exploratory nature of 
this analysis and the fact that overall robust RT differences seemed to 
diffuse across the various parameters, the interpretation of this 
analysis should be treated with caution. 

Omission and commission errors 

Many previous studies optimised to investigate accuracy have found a 
consistent relationship between high alpha-power and missed targets 
in detection tasks (Busch et al. 2009; Ergenoglu et al. 2004; 
Mathewson et al. 2009). Although our study was optimised for RT 
measurements, we explored the relationship between misses (omission 
errors in go trials) and burst occurrence. What is more, despite the low 
number of no-go trials, we think exploring false alarms (commission 
errors in no-go trials) during periods with and without burst activity 
would be informative. If α-bursts indicate periods of lowered 
sensitivity, one might expect a higher error rate during these episodes 
(higher α-power) than during no-burst episodes (lower α-power 
reflecting higher sensitivity). This hypothesis was considered only for 
go trials (Chaumon and Busch 2014; Hanslmayr et al. 2007; Klimesch 
et al. 2007) since we did not have any expectations with no-go trials.  
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FIGURE 18. Exploratory analyses of the study. (A) Individual ex-Gaussian fit for burst 
(in red) and no-burst (in green) trials. For participant P09, the probability density function 
(PDF) of burst and no-burst trials (on the left) and the cumulative distribution function 
(CDF) of each trial condition (on the right) are shown. (B) Comparison of error rates for 
burst and no-burst trials. Omission error rates (miss rate) in go trials (on the left) and false 
alarms or commission error rates in no-go trials (on the right) are shown. Each dot denotes a 
participant. Points below the diagonal line denote that burst trials contain higher error rates 
than no-burst trials. Dot overlap is coded darker. (C) An individual rose plot of the phase 
distribution at stimulus onset for valid-burst trials (in degrees). For participant P09, the 
rose plot of phases for all valid-burst trials (on the left) and the rose plot of fast/slow trials 
within valid-burst trials (on the right) are shown. Each bin corresponds to 30º. (D) Grand 
average ERP of the broad-band activity time-locked to visual stimulus presentation for 
burst (in red) and no-burst (in green) of go trials from Oz-electrode across time 
(within -0.2 s to 0.5 s from stimulus onset). Shaded areas represent the standard error of 
the mean (SEM) interval. Vertical solid line denotes stimulus onset presentation, and 
horizontal dashed line denotes zero amplitude. Solid dark line at the bottom of the x-axis 
denotes the significant cluster of p-values from a paired t-test (α-level = 0.05) for burst and 
no-burst ERPs over time (p-values were corrected for multiple comparisons via cluster-based 

permutation test; N = 100,000 randomisations). 

In order to increase the number of total trials and capture errors, we 
decided to use all trials in which stimuli were correctly triggered 
according to the occurrence of an oscillatory burst event (or its 
absence) and relax the RT criterion. The resulting trials were divided 
into burst and no-burst conditions for go and no-go trials 
(Supplementary Table 13 in Annex II). For these comparisons, we 
used a two-tailed paired t-test. The results revealed a significant 
difference in error rates between burst and no-burst conditions for 
both go (t (11) = 3.15, p = .01) and no-go trials (t (11) = -2.29, p = 
.04) at group-level. In particular, in go trials, omission errors (misses) 
were more prevalent during a burst episode than during a no-burst 
(Figure 18B, left). In no-go trials, commission errors (false alarms) 
were more prevalent during a no-burst episode than a burst episode 
(Figure 18B, right). As expected, bursts (high α-power) were related 
to higher miss rates in go trials; however, in no-go trials, false alarms 
were more prevalent during the absence of a burst (low α-power).  

A key aspect when interpreting these results relies on the differences 
in cognitive processes between go (i.e., answering to stimuli) and no-
go trials (i.e., inhibiting the response to stimuli) and on the assumption 
that the level of α-power reflects the sensory excitability needed to 
detect a stimulus (Hanslmayr et al. 2007; Klimesch et al. 2007). In go 
trials, lower oscillatory α-power (i.e., stronger excitability) may lead to 
higher detection accuracy and faster reaction times, whereas higher 
oscillatory α-power (i.e., lower excitability) would impair accuracy (e.g., 
slower RTs and more false alarms). However, the level of α-power is 
also thought to reflect the level of inhibition (Klimesch et al. 2007). To 
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this end, in no-go trials, where inhibition is needed to stop the 
response, higher oscillatory α-power (i.e., stronger inhibition) would 
help and lead to fewer false alarms. On the contrary, lower oscillatory 
α-power (i.e., weak inhibition) may lead to answering to visual stimuli 
producing thereby higher false alarms. We tentatively conclude that 
our results in the error rate difference are in line with the expected 
findings and those in the literature, using single-trial and group-
averaged pre-stimulus α-power offline. 

Phase-behaviour opposition 

Some past and recent studies have addressed the relationship between 
α-phase and behavioural responses to visual stimuli in humans. 
Although several studies have related the α-phase of occipito-parietal 
areas to performance in visual perception (Jensen et al. 2011; Jensen 
and Mazaheri 2010; Samaha and Postle 2015; van Dijk et al. 2008; 
VanRullen 2016b), other studies have also reported no (O’Hare 1954; 
Walsh 1952) or weakly significant effects (Callaway 1962; Callaway and 
Alexander 1960; Dustman and Beck 1965; Lansing 1957), and even 
null evidence for accuracy (Benwell et al. 2017; Ruzzoli et al. 2019) 
and RTs (Vigué-Guix et al. 2020). Although this analysis was not pre-
registered, we explored the potential α-phase/RT relationship at 
stimulus onset. If the response to a stimulus is related to the α-phase 
at its onset, we should expect a pattern of opposition within the α-
oscillations when comparing slow and fast RT trials at stimulus onset 
(time = 0; Mathewson et al. 2009). We checked for this opposition 
pattern using the phase opposition sum (POS) method (VanRullen 
2016a).  

We selected only valid-burst trials (which contain oscillatory activity 
and a valid response) for this analysis, leading to N = 96 trials for each 
participant. Trials were half-split into slow (50% RTs) and fast (50% 
RTs) categories, resulting in N = 48 trials for each condition and 
participant. EEG data were epoched from −45 to 2 s and then 
demeaned. No re-referencing was applied. We forward-filtered the 
signal (electrode Oz) using a Butterworth filter (order 4, one-pass) 
around the IFoI ± 5 Hz band and computed the phase at stimulus 
onset using the Hilbert transform.  

We plotted the distribution phases (Figure 18C; see Supplementary 
Figure 16 and 17 in Annex II for the individual phase distribution of 
all trials and fast/slow trials, respectively) and calculated the averaged 
phase between fast and slow RTs and their difference in phase using 
the Circular Statistics Toolbox in MATLAB (Berens 2009). We 
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applied the POS on phase values for fast/slow trials at individual and 
group levels. The statistical significance was assessed using 
nonparametric permutations tests (10,000 iterations/surrogates). 
Comparing the empirical POS value to surrogate POS distributions 
dispense with the assumption that the distribution of phases across 
trials is random and uniform (McLelland et al. 2016). We did not 
observe any significant group-level effect of POS between slow and 
fast RTs (p = .32) nor at an individual level for any participant (all ps > 
.1; see Supplementary Table 14 in Annex II for individual results). 
The average phase angle difference among participants between slow 
and fast trials was -43º (SD = 57º). Overall, the results did not return a 
consistent relationship between the phase of ongoing α at stimulus 
onset and the speed of responses. 

ERP analysis time-locked to visual stimulus 

Although the primary aim of this study was to investigate the influence 
of the ongoing pre-stimulus oscillatory activity on reaction time, we 
also analysed the event-related potentials (ERPs) to visual stimuli in go 
trials separately for the burst and no-burst conditions. Previous studies 
have linked pre-stimulus EEG α-power and the visual evoked 
potentials (Başar et al. 1998; Mazaheri and Jensen 2008) and produced 
mixed effects on different latencies (Başar et al. 1998; Brandt et al. 
1991; Ergenoglu et al. 2004; Fellinger et al. 2011; Roberts et al. 2014). 
Therefore, our assessment here was utterly exploratory. In addition, 
we did not expect to find identifiable ERP components, given that our 
stimulus intensity was made weak for the purposes of the task. We 
selected only go trials due to the low trial number of no-go events and 
potential differences in task relevance and motor preparation between 
the two types of trials. We band-pass filtered the recorded EEG data 
from electrode Oz using a Butterworth filter (order 4, two-pass, zero-
phase) between 0.5 and 40 Hz for each participant. EEG data were re-
referenced offline to the left and right mastoids’ average. EEG data 
were epoched from −200 to 400 ms and then demeaned. All epochs 
were baseline-corrected with respect to the mean voltage over the 200 
ms preceding the onset of stimuli, followed by averaging for burst and 
no-burst conditions. Since this was an exploratory analysis, we 
targeted a broad time window, between 200 and 500 ms. For statistical 
assessment, we performed sample by sample paired t-tests between 
the mean visual-evoked ERPs at the Oz electrode between burst and 
no-burst. We used a cluster-based permutation test procedure 
(100,000 randomisations) to correct p-values (Maris and Oostenveld 
2007; Meyer et al. 2021). 
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Figure 18D shows the (stimulus-locked) ERPs of valid-go trials for 
burst and no-burst conditions. We found a significant difference 
between burst and no-burst conditions (p < .05) in a 32 ms time 
window between 280–312 ms after stimulus presentation. Based on 
previous literature, this period would correspond to the putative N2 
(255–360 ms) component (Koivisto and Revonsuo 2003, 2010; 
Sheldon and Mathewson 2021). We reckon that this difference in the 
ERP might reflect the RT-effect found between burst and no-burst 
trials at group-level in the main analysis. As suggested in the ERP 
studies addressing go/no-go tasks mentioned above, the larger the 
peak of the N2 component (here, larger ERP for no-burst), the faster 
the responses (here, shorter RTs for no-burst events). 

Exclusion of trials due to power criterion 

Although the present study succeeded at detecting ⍺-bursts in the 
ongoing EEG activity through our custom-built BCI setting (see 
Reality check 1), the estimation accuracy of (no-)burst varied across 
participants and conditions, as reflected in the average number of trials 
of 344 (SD = 78; 52%) excluded for the power threshold criterion (see 
Supplementary Materials in Annex II and Supplementary Table 15 for 
more details). For the estimation of burst episodes and the subsequent 
triggering of the stimuli in real-time, we sought oscillatory activity 
above a certain power threshold with respect to the overall spectrum 
for at least three cycles (~300 ms) of the IFoI of the participant (more 
details in the Methods section). Note that there was an unavoidable 
time gap between the decision to trigger a stimulus (based on the most 
updated EEG data) and the actual stimulus presentation due to 
computational time (~72 ± 5 ms). For this reason, we sent the 
stimulus around three-quarters of a cycle ahead of time, and then trials 
were checked for burst criteria after sending the stimulus for online 
sorting. We consider this is probably the main reason why an average 
of 52% of trials were excluded for not satisfying the power criterion at 
the time of stimulus delivery. We looked for any differences between 
burst and no-burst trials, and we found that an average of 116 trials 
were excluded in burst compared to 220 trials excluded in no-burst 
conditions (see Supplementary Materials in Annex II and Supplementary 
Table 16 in Annex II). At the individual level, 10 out of twelve 
participants showed more trials excluded in no-burst trials than burst 
(see Supplementary Figure 18 in Annex II). Thus, our criteria made it 
more difficult to pass a non-burst event during the task execution than 
to detect a burst of oscillatory α-activity in the ongoing EEG signal. 
Please note that the criterion for no-burst was not simply the absence 
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of a burst event, but power in the IFoI had to be within the lowest 
5%. In addition, we found a significant correlation between the IFoI 
amplitude during task execution and the number of trials excluded for 
burst (ρ = -.62; p = .02) and no-burst (ρ = .51; p = <.05) trials at 
group-level (see Supplementary Materials in Annex II). During the task, 
participants with higher IFoI amplitude had fewer trials excluded for 
bursts than no-bursts. On a general note, we can say that we 
succeeded in achieving the second main goal of the study: detecting α-
bursts in the ongoing EEG activity using a BCI setting for burst-
triggered stimulus presentation in a go/no-go task. 

Discussion and Conclusions 

The present study aimed to provide supporting evidence that one can 
harness bursts in real-time to predictably modulate behavioural 
outcomes: the speed of reactions and the likelihood of omission and 

commission errors. We found that targets presented during ⍺-burst 
episodes led to slower RTs than those presented outside, leaving an 
RT difference of 19 ms found between conditions. Regrading errors, 
targets presented during bursts were more likely to be missed in go 
trials, whereas in no-go trials, those presented in the absence of bursts 
led to false alarms more often. Together, we suggest that the 
behavioural differences found between burst and no-burst conditions 
appear to unfold over the processing of the target, perhaps at different 
stages. For example, the fact that the most apparent difference in the 
ex-Gaussian fit analysis affected the skewness of the distribution, 
together with the relatively late difference in the ERPs, suggests that at 
least a part of this effect would involve late processing stages of 
decision or response selection. We consider that these effects can 
relate to the sensitivity of central attentional processes and the 
requirement of inhibitory control in a go/no-go task, as suggested in 
previous studies (McAuley et al. 2006; Shao et al. 2012; Spieler et al. 
1996). In addition, there is evidence that larger N2 peaks relate to 
faster RTs (Bahramali et al. 1998; Starr et al. 1995). In the same vein, 
we observed larger ERP amplitudes in the N2 time window for bursts 
condition than no-bursts, which relates to our main finding of burst 
generating faster responses. Overall, we reckon that burst episodes are 
periods of lowered sensitivity due to the high α-power, which inhibits 
the response to visual stimuli as reflected by slower RTs and more 
misses in go trials. On the other hand, no-burst episodes, as periods of 
higher sensitivity due to low α-power, may facilitate the answering and 
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produce more false alarms in no-go trials and faster RTs in go trials. In 
addition, when applying the phase opposition sum (POS) method to 
fast/slow RTs in burst trials, we did not see an effect of α-phase at 
stimulus onset, suggesting that the RT-effect (found in the primary 
analysis) is principally a result of the oscillatory power of α-bursts. 

It is worth mentioning that the first goal of this study was to provide 
evidence for the intrinsic function of oscillatory α-bursts on reactions 
to visual events for the possibility to capitalise on this brain-behaviour 
relationship for an EEG-based BCI application. Prior studies on the 

⍺-theories have frequently found a reliable relationship between the 
pre-stimulus α-power and the behavioural outcome in visual 
perception using single-trial and within-subject averages (Bompas et al. 
2015; Campagne et al. 2004; Horne and Baulk 2004; Jung et al. 1997; 
Kirschfeld 2008; Lal and Craig 2002; Lin et al. 2013; Makeig and Inlow 
1993; Makeig and Jung 1995; Wyart and Tallon-Baudry 2009; Yang et 
al. 2014). However, a fair question and a key challenge are to 
understand whether the behaviour and the sustained oscillatory 
activity observed in trial-averaged power (Lundqvist and Wutz 2021) is 
actually due to the accumulation of transient high-power burst events 
that happen at different rates, times, and durations from trial-to-trial 
(Lundqvist and Wutz 2021; van Ede et al. 2018; Zich et al. 2020). One 
way to address this challenge is by using a BCI to target the oscillatory 
dynamics of the EEG signal (reflected in the α-burst events) at the 
single-trial level. The oscillatory burst event analysis can serve as a 
sensitive tool to capture single-trial differences, which would go 
unnoticed with a standard approach of trial-averaged power. Such an 
approach can answer whether a similar neural-behavioural relationship 
applies to the much more fine-grained scale of moment-to-moment 
dynamics of the EEG signal and which form it may take (Pernet et al. 
2011). As far as we know, we are the first to use this novel approach 
in targeting, specifically, burst-like events of oscillatory α-activity from 
the occipito-parietal cortex of human brains in real-time using an 
EEG-based BCI setting in order to address its link, on a trial-by-trial 
basis, to reaction times in a go/no-go task. Similar findings are in line 
with recent studies of oscillatory burst-like events underlying cognitive 
and motor operations in other frequency bands (Feingold et al. 2015; 
Lundqvist et al. 2016; Sherman et al. 2016; Shin et al. 2017; Wutz et al. 
2020).  

Moreover, it would be ideal to make explicit in the current 
formulation of the α-theories whether and how transient events of 
rhythmic oscillatory activity (bursts) in the ongoing brain activity gate 
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sensory information and shape perception on a trial-by-trial basis. 
Although the functional inhibition account (e.g., Klimesch et al. 2007) 
is specific to the α-oscillatory activity, it does not distinguish between 
sustained oscillatory activity and burst events. On that note, Peterson 
and Voytek (2017) have recently proposed that α-oscillations control 
cortical gain by modulating the balance between excitatory and 
inhibitory background activity, and they make the novel prediction 
that α-activity plays two functional roles: a robust, sustained oscillation 
mode (>5-10 cycles) that suppresses cortical gain and a weak, bursting 
mode (of 1-3 cycles) for rapid, temporally-precise gain increases. This 
view would align with (Jensen and Mazaheri 2010) and (Mazaheri and 
Jensen 2010). Together, new models, theories, and analytical methods 
(see Lundqvist and Wutz 2021) are starting to consider different types 
of α-activity and assess their respective roles in cognitive processes.  

Apart from the theoretical implications, another goal of this study was 
to provide a proof of concept for using oscillatory α-bursts as a 
control signal for a BCI. We found that harnessing the detection of 
neural burst events achieved RT differences of up to 55 ms (Mean = 
19 ms; Max = 55 ms; Min = -6 ms). One should consider whether 
such a difference could be meaningful for an EEG-based BCI 
application from a practical perspective. Note that the potential 
relevance of such a system does not hinge so much on the average but 
single instances. One must consider that time savings can potentially 
be more considerable on some occasions (for example, looking at the 
most favourable case, participant P09, one could save as much as 250 
ms on roughly 10% of the trials). These are substantial results if one 
considers this is the first proof of concept where many of the 
parameters and protocol features have been necessarily arbitrary, given 
the lack of precedent. 

One of the major concerns of the study was the high exclusion rate of 
participants (31 out of 43). However, pre-screening is a common 
practice in hypothesis-driven real-time BCI studies (Callaway and 
Yeager 1960; Lansing 1957; Vigué-Guix et al. 2020). Note that 
oscillatory activity in the α-band should be present to establish the role 
of α-oscillations in subsequent perception. In our study, nearly half of 
the excluded participants were not either eligible because it was not 
possible to measure α-activity from their human scalp or because there 
was not a unique oscillatory activity within the α-band. The other half 
of the participants were excluded for not reaching enough α-activity 
variability to fully account for the two conditions of our study (i.e., 
low/high oscillatory α-activity). Note that this is also why nearly 50% 



 

92 

of trials in the real-time study were rejected because of α-power. 
Nonetheless, our exclusion rates are comparable with previous studies 
rejecting almost two-thirds of their participants (Callaway and Yeager 
1960; Vigué-Guix et al. 2020) and even 92 out of 100 participants 
(Lansing 1957) for similar reasons. On a general account, it has been 
thought that individual differences in the measurement of activity with 
EEG may be partially due to physiological differences (e.g., the 
thickness of the skull), technical and methodological factors (e.g., type 
of EEG montage), or specific factors such age, arousal, or cognitive 
demands (Klimesch 1999). 

Although our findings from the study are well in line with a host of 
older findings relating to α-power and behaviour, we went beyond 
those studies in two important ways. First, our study harnessed real-
time data analysis trial by trial using an EEG-based BCI system. 
Second, we focused on bursts of α-activity. Evidence of this kind 
demonstrates the putative functional role of bursts of oscillatory 
neural α-activity in occipital areas (Hughes and Crunelli 2005; Hughes 
et al. 2011; Wutz et al. 2020). Moreover, the real-time trial-to-trial 
nature of this approach provides a potential basis for control signals in 
EEG-based BCI applications supported by brain-behaviour theories 
(here, α-theories). For instance, a passive BCI using brain-state 
dependent stimulation (BSDS; Jensen et al. 2011) could benefit from 
our findings and build a BCI application in which stimuli are triggered 
only in the absence of neural α-burst events. Such BCI would help 
prevent slower reactions and omission errors. Therefore, this study 
has shown that it is possible to directly address the connection 
between oscillatory bursts and behaviour utilising an EEG-based BCI 
system, allowing for burst-triggered stimulus presentation in real-time. 
Real-time studies using EEG-based BCI systems are promising 
research tools than can be used as a test bench for brain-behavioural 
theories in cognitive neuroscience. 
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CHAPTER 4   

Using α-phase coupling to determine the 
locus of attention in space 

“Where attention goes, 
neural firing flows and neural connection grows.” 

DANIEL SIEGEL 

 

 

 

 

 

 

 

 

In this chapter, I closely follow our study: M. Esparza, I. Vigué-

Guix, M. Torralba, & S. Soto-Faraco. Long-range ⍺-synchronization as 
control signal for BCI: A feasibility study. Submitted to eNeuro, 2022.  
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Background 

A few decades ago, imagining an interface between the human brain 
and a computer was closer to science fiction than to scientific 
achievement. Nowadays, brain-computer interfaces (BCIs) can read 
out brain activity, extract features from that activity, and convert those 
features into outputs used for monitoring, controlling devices, or even 
modifying cognitive states (Blankertz et al. 2016). One significant 
challenge of BCIs is finding reliable control signals from brain activity 
with sufficiently high signal-to-noise ratio (SNR) at a trial-by-trial level 
to allow successful classification. Ideally, the appearance of the target 
brain activity should depend on endogenous mental/brain states that 
the user can control at will. The use of non-invasive, cost-effective, 
and light-weight neuroimaging devices can, in turn, facilitate transfer 
to real applications. For now, EEG is the most viable candidate to 
achieve this.  

Some EEG-based BCIs have used motor imagery as a control signal 
(e.g., imagined right/left-limb movement; Padfield et al. 2019), 
whereas others have used neural correlates of covert visuospatial 
attention (CVSA; van Gerven and Jensen 2009; Treder et al. 2011; 
Tonin et al. 2013). Here, we will concentrate on the latter. In human 
behaviour, CVSA is used to direct processing resources to relevant 
locations in the environment whilst disengaging from irrelevant 
locations (Pashler 1999; Foster and Awh 2019; Petersen and Posner 
2012). CVSA can be manipulated with the Posner cueing protocol 
(Posner 1980), which induces a robust effect on behavioural 
performance: higher accuracy and faster reaction times for targets 
appearing at the cued (attended) location compared to targets 
appearing in un-cued, putatively unattended locations (Posner 1980; 
Posner et al. 1980). 

Attention shifts in CVSA produce changes in oscillatory activity in the 

alpha-band (⍺, 8–14 Hz) at parieto-occipital regions (Klimesch 1999; 

Foster et al. 2017; van Diepen et al. 2019). Typically, ⍺-power presents 
a direction-specific imbalance when attention is covertly oriented to 
either the left or right visual field, revealing its potential as a control 
signal for BCI implementations (Rihs et al. 2007; Thut et al. 2006; 
Astrand et al. 2014b). This neural correlate is thought to correspond to 
a late stage in the brain processes involved in CSVA shifts. First, 
cueing information is integrated through sensory pathways in a 
bottom-up fashion, reaching higher visual areas in the parietal cortex 
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(e.g., intraparietal sulcus) and eventually frontal regions (e.g., frontal 
eye fields) (Petersen and Posner 2012). From there on, top-down 
modulation shifts attention to the corresponding hemifield, where it is 
maintained during target anticipation (Simpson et al. 2011). The 
mechanism involved in this top-down modulation is thought to 

involve long-range ⍺-synchronization between frontal and posterior 
cortex, which eventually leads to classical interhemispheric imbalances 

in ⍺-power observed in the visual cortex (Sauseng et al. 2005; 
Doesburg et al. 2009; Lobier et al. 2018). This long-range 
synchronization is a potential mechanism to increase the fidelity and 
effectiveness of communication throughout the brain (Clayton et al. 
2018) among occipital, parietal, and frontal regions (Sadaghiani and 
Kleinschmidt 2016). Synchronising excitability cycles between distant 
neural populations increases the likelihood of spikes from one region 
discharging post-synaptic potentials during a specific (excitable) phase 
of the other (Fries 2005, 2015). Despite the overwhelming evidence 
supporting these models of visual processing, there is still debate on 
their temporal dynamics, lateralisation patterns and individual-level 
variability. Further research on these aspects may provide deeper 

insight into the exact mechanisms of long-range ⍺-synchronization 
within the frontoparietal network (FPN).  

The present study addressed whether long-range ⍺-synchronisation in 
the FPN presents direction-specific lateralised patterns (i.e., 
contralateral to ipsilateral differences) regarding the attended location, 
and if such patterns emerge in single-trial dynamics with sufficient 
signal strength to make for a reliable control signal in BCI. To the best 

of our knowledge, BCIs based on attention have only used ⍺-power as 

a control signal, despite the evidence of links between long-range ⍺-
synchronisation and behavioural performance, using group-level 
analyses (Sauseng et al. 2005; Doesburg et al. 2009; Doesburg et al. 
2016). We addressed this by measuring EEG during CVSA using a 

Posner task and examining the time course of long-range ⍺-phase 
synchronisation between cue onset and target appearance. This time 
window is essential for BCI since it is the period during which 
participants lateralise their attention covertly. Our approach was to 
replicate the analysis pipeline of Sauseng et al. (2005), reproduce the 
group effect at the target-locked window, and extend our analysis to 
the cue-to-target window, more relevant for BCI. We finally assessed 
the classification of attentional loci at the single-trial level using long-

range ⍺-phase synchronisation as a proof of concept for BCI. 
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Methods  

Participants 

We used data from a previous, unrelated study (Torralba et al. 2016). 
The dataset consisted of 15 participants (mean age = 22; SD = 3; 7 
female). All participants provided informed consent and had a normal 
or corrected-to-normal vision. The study was run in accordance with 
the Declaration of Helsinki and the experimental protocol approved 
by the local ethics committee CEIC Parc de Salut Mar (Barcelona, 
Spain). Five participants who presented equivalent detection and 
discrimination rates for stimuli appearing at cued and un-cued 
locations were discarded from the analysis, leaving a total of 10 
participants. 

Task 

Before the experimental session, the participant's EEG activity was 
recorded during a five-minute recording at rest with eyes closed to 
extract the individual alpha frequency (IAF; see below) used in the 
analyses. In the experimental session, participants performed a 
modified version of the Posner cueing task (see Figure 19A). The trial 
started with the onset of a central fixation cross, placed between two 
placeholder squares located 20º of visual angle left and right off 
centre, vertically shifted 20º of visual angle below the fixation cross 
(see Figure 19A). After 200 ms fixation period, a central auditory cue 
(100 ms duration) indicated the likely target location through either 
high pitch (2000 Hz) or low pitch (500 Hz) tones, the mapping was 
randomized across subjects. Participants should covertly attend to the 
indicated side, without moving their eyes, during a jittered inter-
stimulus interval (ISI; 2000 ± 500 ms). The use of a jittered ISI was 
employed in order to avoid participants falling into a constant 
rhythmic pattern. Next, the target (a Gabor grating tilted 45º left or 
right, 50 ms duration) appeared briefly inside one of the placeholders, 
with 75% validity regarding the cued location. The grating contrast 
was adjusted individually, as described below. A noise pattern of equal 
overall luminance as the target was presented at the alternative 
placeholder, with the exact timings as the target. Participants were 
asked first to indicate if they had detected the target (yes/no detection) 
and subsequently the target's tilt (left/right discrimination). Both 
answers were made by keypress, in an un-speeded fashion, and with 
response mapping (top-bottom) orthogonal to the attention 
manipulation and varied from trial to trial. An inter-trial interval of 
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1000 ms followed the response, and a new trial began. Unless 
otherwise noted, the EEG analyses were done on validly cued trials 
that responded correctly. On average, 289.9 ± 11.3 trials from each 
participant were employed for the EEG analysis.  

 

FIGURE 19. Experimental design and response rates. (A) Schematic trial 
representation. A black fixation cross in the middle of the screen and two squares 
(to-be-attended locations) at the bottom left, and bottom right positions were 
displayed continuously. At the beginning of each trial, participants were instructed to 
gaze at the fixation cross. After 200ms (fixation period), an auditory cue appeared 
for 100ms (cue period) indicating which hemifields participants must attend (75% 
validity). After a jittered interstimulus interval of 2000 ± 500 ms, a target appeared at 
the targeted location during 50ms (target period). Participants had to report first if 
they had seen the target (detection task), and after 1000 ms, the location of the target 
(left/right discrimination task) during 1500ms. An intertrial interval (ITI) of 1000ms 
followed, and a new trial began (Adapted from Torralba et al. 2016). (B) Response 
rates for detected and discriminated trials (HITS) related to attended and unattended 
trials. Black lines over violin plots represent the mean value. Both overall 
performance (top) and right/left hemifields (bottom) are shown. White dots indicate 
individual values (Adapted from Torralba et al. 2016). 

The Gabor gratings used as stimuli were 0.002 cycles per degree, with 
a size of 3.35º, and were embedded in white noise. The contrast was 
adjusted individually using a preliminary threshold titration procedure 
in which thresholds for both sides (left and right) were independently 
adjusted to a 70% detection rate when cued (in the attended location). 
Stimuli were presented on a 21" CRT screen with a refresh rate of 100 
Hz and a resolution of 1024 x 768 pixels. The experiment was 
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implemented in MATLAB R2015b (MATLAB, RRID: SCR_001622) 
using the Psychophysics Toolbox (Psychophysics Toolbox, RRID: 
SCR_002881). 

EEG recording 

EEG recordings were obtained from 64 Ag/AgCl electrodes 
positioned according to the 10-10 system with AFz as ground and 
nose tip as reference. Impedances were kept below 10 kΩ. The 
employed system was an active actiCHAmp EEG amplifier from 
Brain Products (Munich, Germany). The signal was sampled at 500 Hz 
and processed in MATLAB 2020 and 2015 (MATLAB, RRID: 
SCR_001622) using custom functions and the FieldTrip toolbox 
(FieldTrip, RRID: SCR_004849). 

EEG pre-processing 

In order to remove eye movements, blinks, and muscle artefacts, 
Independent Component Analysis (ICA) was carried out (Makeig et al. 
1995). Additionally, manual artefact rejection was applied to discard 
trials where any EOG components had an amplitude higher than 50 
µV. Defective channels were repaired using neighbours calculated by 
triangulation and splines for interpolating channel data. Following 
these steps, the data was demeaned and notch filtered at 50 Hz to 
exclude line noise. Next, fifth-order high-pass and sixteenth-order 
low-pass IIR Butterworth filters were employed to limit the signal 
between 16 and 45 Hz (Sauseng et al. 2005). The filtering was done 
forward and backwards (two-pass), which resulted in zero phase lag. 

Determination of the individual alpha frequency (IAF) 

The frequency of interest used in analyses of this study was adjusted 
for each participant depending on the individual alpha frequency 
(IAF) extracted from the five-minute recording (eyes closed) previous 
to the experiment (see above). The IAF was determined based on the 
presence of a single peak (i.e., a local maximum) within the considered 
frequency band of interest (5-15 Hz) on the power spectrum density 
(PSD). A spectrogram was extracted for each parieto-occipital 
electrode (P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO3, PO4, POz, PO9, 
PO10, O1, Oz, O2) using the Welch method (segments of 1000 ms 
with a 10% overlap, a Hanning taper to avoid spectral leakage and 
0.25 Hz frequency resolution). The power spectrum was averaged 
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across electrodes for each participant and normalised by the mean 
power from 1 to 40 Hz. 

Time-frequency analysis 

We performed long-range synchronisation analyses in two time 
windows. The first was time-locked to the target onset (target-locked) 
to replicate Sauseng et al.’s (2005) methods and validate our analysis 
pipeline. The second was time-locked to the cue onset (cue-locked) to 

estimate long-range ⍺-phase synchronisation during covert 
visuospatial attention shifts.  

Following Sauseng et al. (2005), for the target-locked analysis we used 
two windows of 200 ms: a pre-target (-200 to 0 ms) and a post-target 
window (200 ms to 400 ms). The latter excludes the interval 0 to 200 
ms, most affected by the phase resetting effect of target presentation. 
For the cue-locked analysis, we used the cue-to-target time window 
between 500 ms and 1500 ms post-cue and divided it into five 
consecutive and non-overlapping 200 ms windows. By analysing from 
500 ms onwards5 we avoid the event related potential (ERP) caused by 
cue presentation and allow endogenous attention shift to build up, a 
process which takes a few hundreds of milliseconds (Foxe and Snyder 
2011). All epoched data was mirror-reflected to avoid edge artefacts 
(Cohen 2014) when performing the time-frequency analysis. 
Afterwards, data were trimmed, and reflected edges were removed. 

We computed the Fourier coefficients using 5-cycle Morlet wavelets 
(Grossmann and Morlet 1984) with 16 logarithmically spaced 
frequencies ranging from 2.6 to 42 Hz. For the analysis centred on the 
individual alpha frequency (IAF), we only used wavelets within the 

upper ⍺-band (9.54 – 14.31 Hz) (Sauseng et al. 2005), whereas, for the 
exploratory analysis, we used the whole frequency range. This 
difference allowed us to conduct a hypothesis-driven analysis using the 

upper ⍺-band to replicate Sauseng et al. (2005) and an exploratory 

analysis to explore further long-range ⍺-phase synchronisation in 
other frequency bands beyond the IAF. 

 

 

 

5 The cue-locked analysis period ends at 1500 ms, which was the minimum possible 
duration of the cue-to-target interval (duration of 2000 ± 500 ms, see Methods). 
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Connectivity measures 

Three regions of interest (ROI) were defined for the analyses: A 
fronto-medial (FM) ROI (Fz, FC1, FC2) and two symmetric posterior 
regions; the parietal left (PL) ROI (P5, P7, PO3, O1) and the parietal 
right (PR) ROI (P6, P8, PO4, O2). To infer connectivity between each 
of these parietal ROIs and the FM location, we used Phase Locking 
Value (Lachaux et al. 1999). This metric reports the consistency of 
phase differences between two locations across multiple trials and is 
not affected by power differences. Mathematically, the PLV is 
expressed as the absolute value of the average complex unit-length 
phase differences:  

 

𝑃𝐿𝑉(𝑥, 𝑦) = |
1

𝑛
∑ 𝑒𝑖(𝜑𝑥(𝑘)−𝜑𝑦(𝑘))𝑛

𝑘=1 |                (1) 

 

where n corresponds to the total number of trials indexed by k and 
φ_x, φ_y correspond to the phases at electrodes x and y, respectively. 
PLV was calculated according to equation (1) using the phases for 
every combination of individual electrode pairs of the FM-PR and 
FM-PL networks. Then, these values were averaged, resulting in a time 
series of PLV FM-PR and FM-PL networks for each of the 
frequencies of interest and condition (attended left and attended right) 
trials. Subsequently, the PLV time series were collapsed as either 
ipsilateral (FM-PL network and attend left; FM-PR and attend right) 
or contralateral (FM-PR network and attend left; FM-PL and attend 
right). Therefore, for each participant and frequency of interest, two 
time series of PLV were obtained (contra- and ipsilateral PLV). 

Classification 

The trial classification was performed using Support-Vector Machines 
(SVM). We selected the FM-PR and FM-PL connectivity for the 
metric used as input to the SVM. Attended right and attended left 
labels of each trial were provided as ground truth for the algorithm. 
The main goal of the classifier was to infer where the participant was 

attending on each trial based on the long-range ⍺-phase 
synchronisation in the left and right frontoparietal networks. Note that 
PLV is computed across trials, and SVM aims to classify on a single-
trial basis, so PLV was also calculated across time points (Cohen 
2015). As a validation step, we repeated the target-locked analysis 
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employing this metric (i.e., cross-time PLV) before proceeding with 
the cue-locked classification attempt.  

We divided the cue-locked interval ranging from 500 to 1500 ms in 
bins of 200 ms, yielding five values for FM-PR connectivity and five 
for FM-PL connectivity. The resulting ten values were used for the 
SVM input to perform the optimisation and classification of the trials. 
Note that for the classification, we only used the data from the 
participants that achieved a significant difference in PLV values 
between parietal left and right ROIs in the pre-target window of the 
target-locked analyses. For each participant, trials were split into a 
training (80%) and testing (20%) set of trials to avoid overfitting. 
Then, the training set was subdivided into sub-training (80%) and 
validation sets (20%). 

Our initial approach was to use a linear kernel for the classification. 
However, after evaluating the option through cross-validation of the 
validation set and obtaining a negative result (i.e., classification was not 
better than chance level), we decided to use instead of a Gaussian 
kernel (i.e., Radial Basis Function). In order to select the most suitable 
and efficient values for classifying attended left and attended right 
trials from the validation set, we optimised the parametric space of the 
SVM, comprised of margin and gamma (γ) parameters, and explored 
the parametric landscape ranging from 10-6 to 103 in steps of 10 for 
both constants. 

Inter-hemispheric power imbalance exploratory analysis  

Besides calculating the long-range ⍺-phase coupling, we also 

computed the inter-hemispheric ⍺-power imbalance at parietal regions 
both at the individual and at group-level as a reality check. To extract 

the ⍺-power during the task, we selected the epoch from -1.5 to 3 s in 
cue-locked trials by convolving the EEG signal with a set of complex 
Morlet wavelets (Grossmann and Morlet 1984) of 6-cycles. The 
frequencies of the wavelets ranged from IAF - 1 Hz to IAF + 1 Hz in 
1 Hz steps. For instance, an IAF peak of 10 Hz would have a 
bandwidth ranging from 8.33 to 11.67 Hz. The power in each of the 
two symmetric ROIs at posterior regions (PL and PR ROIs; same 
used in the connectivity analysis) was averaged, and the power 

imbalance was computed in terms of the lateralisation index of ⍺-
power, according to the formula proposed by Thut et al. (2006): 
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𝐿𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝐼𝑛𝑑𝑒𝑥 =
𝛼(𝑃𝑅 𝑅𝑂𝐼)− 𝛼(𝑃𝐿 𝑅𝑂𝐼)

𝑚𝑒𝑎𝑛 𝑜𝑓 𝛼(𝑃𝐿+𝑃𝑅 𝑅𝑂𝐼)
    (2) 

where ⍺(PL ROI) and ⍺(PR ROI) are the average of ⍺-power over left 
and right regions of interest, respectively. Equation (2) leads to 

smaller (negative) values in the case of ⍺-activity was more prominent 

over the left hemisphere than the right (⍺(PL ROI) > ⍺(PR ROI)) and 

to larger (positive) values for the opposite pattern (⍺(PL ROI) < ⍺(PR 
ROI)). According to theory and previous findings, values of LI 
reflecting attention directed to the right visual field should be larger 
than LI values reflecting leftward directed attention. 

Finally, we also checked whether there was any relationship between 

the ⍺-power imbalance and the contra-ipsi difference of PLV for each 

attended location. We explored the correlations between ⍺-
lateralization indexes and the effect in PLV contra-ipsi differences at 
the pre-target (-200 to 0 ms) and post-target (200 to 400 ms) windows 
using Pearson correlations. 

Statistical analyses 

A one-tailed nonparametric Monte Carlo permutation test was 
computed to determine significant differences in PLV between 
networks for each attended location (Mostame et al. 2019). For each 
participant, the attended right or left labels were randomly assigned to 
trials, and surrogate PLVs were calculated from the resulting dataset. 
This process was repeated 10,000 times (iterations) to create a null 
distribution of PLV values. The obtained p-value corresponded to the 
proportion of surrogate iterations with a contra-ipsi difference larger 
than the actual measured value (one-tailed test). This process was 
performed on every time window defined in the previous section. For 
the group analysis, the procedure was equivalent, but surrogate PLV 
distributions were averaged across participants before the statistical 

test. For the statistical assessment of the ⍺-power imbalance over time 
between attended left and attended right trials, we performed a 
cluster-based permutation test procedure (100,000 randomisations) for 
each participant and at the group-level (one-tailed permutation test; 
Maris and Oostenveld 2007; Meyer et al. 2021). We assessed that 
lateralisation indexes for attended-right and attended-left trials were 
significantly two different distributions by applying a one-tailed t-test 

(independent samples) with ⍺-level = 0.05 for each participant. At 
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group-level, we performed a one-tailed paired t-test with the mean 
lateralisation indexes for attended right and attended left trials for each 

participant with ⍺-level = 0.05. Correlations between ⍺-power 
imbalance and the contra-ipsi difference of PLV were corrected for 
multiple comparisons by applying the False Discovery Rate (FDR) of 
Benjamini and Hochberg (Benjamini and Hochberg 1995). 

Results 

Behavioural results 

As expected, behavioural results in see, Figure 19B show that the 
detection rate was superior for cued (attended) trials (mean = 0.68 ± 
SEM = 0.02) compared to un-cued (unattended) ones (0.46 ± 0.04). 
The pattern on each hemifield was equivalent to the overall pattern: 
on the left hemifield attended (0.68 ± 0.03) and unattended (0.47 ± 
0.03); for the right hemifield attended (0.67 ± 0.03), and unattended 
(0.44 ± 0.06). 

Target-locked long-range alpha synchrony 

As described in the analyses section, long-range synchrony was 
estimated using PLV between a frontal ROI and each of two 
lateralized parietal ROIs. Here, we describe the target-locked analysis, 
mainly carried out to reproduce Sauseng et al. (2005). Figure 20 

shows the group-level connectivity analysis of the upper ⍺-band (9.54 
- 14.31 Hz). Phase coupling is depicted as the mean across the pre-
target window (-200 to 0 s) and the post-target window (200 to 400 
ms), as well the temporal course (from to -500 to 500 ms). Regarding 
the left frontoparietal network (Figure 20A, left), PLV was 
consistently higher when attention was directed right (contralateral) 
than left (ipsilateral) in both pre-target and post-target windows, 
although the PLV difference did not reach significance in the pre-
target window. Regarding the right network (Figure 20A, right), PLV 
was stronger when attention was directed left (contralateral) than right 
(ipsilateral) in the post-target window, whereas the pre-target window 
does not show this difference. This pattern generally replicates 
Sauseng et al.’s (2005) results, as indicated by the dashed lines in 
Figure 20A representing the mean phase-coupling from their study. 
Lower panels in Figure 20A display the temporal course of phase 
coupling to provide a time resolved illustration of the phase-coupling 
effect.  
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FIGURE 20. Target-locked results. (A) Target-locked results of the phase-
coupling for attended left (light blue) and attended right (dark blue) in FM-
PL and FM-PR networks. The lower panels depict the cross-trial average time 
course (± shaded SEM) of PLV in both conditions (attended left and attended 
right). Upper panels present the binned violin plots (mean and median) of the pre-
target window (-200 to 0 ms) and the post-target window (200 to 400 ms); *p < 0.05. 
Dashed lines denote the results from Sauseng et al., (2005). (B) Target-locked 
results collapsed as either ipsilateral (FM-PL network and attended left; FM-
PR and attended right) or contralateral (FM-PR network and attended left; 
FM-PL and attended right). The lower panel shows the cross-trial average time 
course (± shaded SEM) of PLV in ipsilateral (light grey) and contralateral (dark grey) 
conditions. The upper panel exhibits the distribution of individual PLV with a violin 
plot, superimposed by the mean and the contra- to ipsilateral differences between 
individual PLV; ***p < 0.001.  
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For the attend right condition, PLV values in the left network should 
be higher than PLV values for the attended left. The inverse pattern 
should hold in the right network. Moreover, Figure 20B presents the 
PLV with side of attention collapsed as contra- and ipsilateral with 
respect to the corresponding network. Individual PLV values, marked 
as black dotted lines, exhibit a consistent contra- to ipsilateral increase 
in the post-target window. Group-level statistical analysis further 
showcased a significant difference limited to this time window (200 to 
400 ms, p < 0.001).  

In the single-subject analyses, 8 out of 10 participants showed 
contralateral PLV increases, in which 5 of them were significant (P04, 
p < 0.001; P05, p < 0.001; P06, p < 0.05; P07, p < 0.001; and P10, p < 
0.01; see Supplementary Figure 19 in Annex III). The lack of 
significant differences in the pre-target window is consistent with 
individual phase coupling, as no clear contra-ipsi trends emerged. Five 
participants had higher contralateral PLV values in this time window, 
3 of which exhibited a significant behaviour (P04, p < 0.05; P05, p < 
0.001; and P10, p < 0.05; see Supplementary Figure 19 in Annex III). 

Cue-locked long-range alpha synchrony 

The primary aim of this study was to explore the cue-to-target interval 
before target presentation (500 ms to 1500 ms after cue onset) to 
ascertain whether attention-based long-range connectivity during the 
orienting period could be a reliable signal for BCI control. Considering 
that the cue indicates the hemifield to which participants should 
voluntarily lateralise their attention, differences in contralateral and 
ipsilateral connectivity may potentially emerge in this time window. So 
far, we have seen that this attention shift had significant consequences 
on behaviour and target processing (post-target connectivity). At the 
group level, however, no significant difference between contralateral 

and ipsilateral connectivity in the upper ⍺-band was found in any of 
the five 200 ms time windows considered in the cue to target period 
(see Figure 21A). At the individual level, only one participant (P05) 
showed a significant increase in the contralateral PLV in four out of 
five-time windows (see Supplementary Figure 20 in Annex III). This 
participant also showed a significantly higher contralateral connectivity 
in both the pre-target and post-target time windows of the target-
locked analysis.  

We chose the upper ⍺-band a priori given prior findings of Sauseng et 
al. (2005) as well as the effects in the target-locked analyses of our own 
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data. However, we conducted additional analyses to explore other 
frequencies (between 2.4 and 42 Hz) in search of differences between 
contralateral and ipsilateral PLV (see, Figure 21B). Values were 
collapsed as the difference between both measures (contra-ipsi) and z-
scored. Over time, neither clear trends across frequencies nor apparent 
increases are observed in either contralateral or ipsilateral connectivity. 
Individual results of the exploratory analysis show the same results 
and do not present relevant PLV patterns in any participant aside from 

upper ⍺-band findings in P05 (see Supplementary Figure 21 in 
Annex III). 

 

FIGURE 21. Cue-locked results. (A) Group-level results of upper-alpha PLV. 
Upper panel shows phase coupling for ipsilateral (light grey) and contralateral (dark 
grey) sides in time-windows of 200 ms from the cue-locked interval (500 ms to 1500 
ms after cue presentation). Lower panel shows mean and standard error of the mean 
(SEM) of the PLV values. (B) Exploratory analysis of PLV differences. Group-
level temporal evolution of the z-scored difference between contralateral and 
ipsilateral PLV for each frequency band (2.4 - 42 Hz with 16 logarithmic steps). Z-
score values range from -0.03 to 0.03. 

Classification 

The results are hardly promising in generalising the use of long-range 
connectivity for BCI control. However, BCI protocols are often very 



 

107 

sensitive to individuals. Here, we intended to seek proof-of-concept 
evidence. With this goal in mind, we attempted single-trial 
classification from selected participants datasets, as either attended 
right or attended left, according to cue-locked connectivity patterns. 
To maintain statistical independence between dataset selection and 
test, participant selection was based on the target-locked data. We 
selected the 3 participants (P04, P05 and P10) for whom we found 
significant connectivity differences in the pre-target time window of 
the target-locked analysis, and their data were used for the 
classification. Please note that this participant selection of the pre-
target window, from -200 to 0 ms from target onset, is aligned 
differently than the cue-locked analysis window, which considers times 
up until -500 ms from target presentation. The total number of trials 
for each participant was 272 (P04), 310 (P05), and 338 (P10).  
 

 

FIGURE 22. Classification outcomes. (A) Cross-time PLV reality check. 
Replication of results from Figure 21 calculating PLV across time points rather than 
across trials. (B) Optimisation results of gamma and margin parameters of the 
Gaussian kernel SVM. Ten-fold validation accuracies with varying margin values 
(x-axis) and gamma values (y-axis). Inset shows a detailed view of the z-axis. (C) 
Confusion matrices of the classification outcomes for each participant. Y-axis 
represents ground truth labels (attended right or attended left) and x-axis represents 
the classifier's outcomes. Percentages represent the fraction of correctly classified 
trials of each condition (i.e., each row sums to 100%). Under the percentage is the 
gross number of classified 
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As described in the methods section, we carried out a validation of 
cross-time PLV in the target-locked window to understand whether 
this metric could replicate group-level differences between contra- and 
ipsilateral networks found through cross-trial PLV.  These results can 
be seen in Figure 22A. Statistical analysis showed no significant 
differences between contra- and ipsilateral scenarios in either time 
window. Individual values also remained non-significant (see 
Supplementary Figure 22 in Annex III). Considering the large 
parametric landscape of SVM implementations we optimized the 
gamma and margin parameters of a Gaussian kernel (see Figure 22B). 
From a qualitative perspective, no clear maximum validation accuracy 
values emerge from the landscape, although quantitative analysis 
identified a margin of 5.01x10-6 and a γ value of 2.51x10-2 to have the 
most optimal validation set of the outcome. The lack of a clear 
minimum suggests that the model may be unable to classify individual 
trials regardless of the parametric values.  

Ten-fold cross-validation was carried out independently on all 
participants' trials to reduce the inter-individual variability and 
improve the classification accuracy. Single trials predicted as either 
attended right or attended left were contrasted with the actual cue 
direction in each trial. Classification outcomes of each participant are 
shown in Figure 22C, which resulted in virtually chance level sorting 
(0.548, 0.565, and 0.467, respectively). Confusion matrices display the 
distribution of each class, revealing the skewed distribution of values 
towards attended left labels, which is far from the ideal clustering 
along the diagonal of the matrix. 

Inter-hemispheric power imbalance  

As a reality check on the dataset, we addressed whether there was a 

difference in the ⍺-power inter-hemispheric imbalance between 
attended left and attended right trials. We performed the cue-locked 
analysis at the group level, using the Lateralization Index (LI) 
described by Thut et al. (2006) (see Figure 23A). On average, the 
lateralisation index was significantly different between attended right 
and attended left in the expected direction (p = .01, Cohen's d = -
0.8356). At the individual level, 7 out of the 10 participants showed a 
significant difference in lateralization index between the two attention 
conditions (p = <.001; see Supplementary Figure 23 in Annex III). 
We also performed a time-resolved version of this analysis within the 
said window. The cluster-based permutation test (Figure 23B) 
showed significance within two time periods, from 0.66 to 0.82 s and 
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1.34 to 1.5 s. At the individual level, only for one participant (P01), the 
cluster-based permutation test revealed a significant cluster over time 
from 0.6 to 1 s (see Figure 23). Generally, these results are consistent 
with the results of previous studies (e.g., Tonin et al. 2012; Thut et al. 
2006), at least at the group level. It is more challenging to compare 
single-subject data with other studies, as it usually is not reported or 
statistically analysed. 

 

FIGURE 23. Lateralisation index reality check. (A) Averaged lateralization 
index for attended left (light blue) and attended right (dark blue; *p > 0.05). 
White dots denote individual scores, and horizontal line indicates the group mean. 
(B) Lateralisation index (mean ± SEM) over time. Solid lines and shaded areas 
represent mean and standard error of the mean (SEM) interval, respectively. Dots on 
in the x-axis denote the significant difference over time between attended left (light 
blue) and attended right (dark blue) via cluster-based permutation test. (C-D) 
Lateralisation indexes and the difference of contra- to ipsilateral PLV for 
attended left (light blue) and attended right (dark blue) at the pre-target 
window (C) and the post-target window (D). At the pre-target the correlations 
for attended right (r = -0.25, p > 0.05) and attended left (r = -0.13, p > 0.05) did not 
reach significance and neither did the correlations for attended right (r = -0.44, p > 
0.05) and attended left r = -0.42, p > 0.05) at the post-target window. Crosses 
denote participants with a significant effect in PLV contra-ipsi differences at the pre-
target window (-200 to 0 ms; P04, P05, and P10) and the post-target window (200 to 
400 ms; P04, P05, P06, P07, and P10). Dots represent the rest of the participants. 

Finally, we explored the potential correlation between ⍺-power inter-

hemispheric imbalance measured with the lateralization index and ⍺-
phase coupling for each attended location (see Figure 23 C-D). In the 
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pre-target window (Figure 23C), the correlations for attended-right (r 
= -0.25, p > 0.05) and attended-left r = -0.13, p > 0.05) did not reach 
significance. Neither did the correlations for attended-right (r = -0.44, 
p > 0.05) and attended-left r = -0.42, p > 0.05) at the post-target 
(Figure 23D) window. A visual inspection indicated that participants 
showing an effect in PLV contra-ipsi differences are below the 
correlation fit in pre-target and post-target windows, suggesting that 
those participants have a more negative effect in PLV contra-ipsi 
differences. 

Discussion 

The present study addressed the relationship between shifts in 

visuospatial attention and the lateralisation of ⍺-band coherence 
between frontal and parietal sites, intending to assess their feasibility as 
a control signal in BCI. Previous studies, using group-averaged multi-

trial analyses, found increased long-range ⍺-synchronization in the 
hemisphere contralateral to the attended side of space, and suggested 
that it reflects top-down mechanisms of visual attention (Sauseng et al. 
2005; Doesburg et al. 2009). We reasoned that if contra- to ipsilateral 
differences in synchronisation would emerge as a result of endogenous 
top-down mechanisms, they should be present following cue 
presentation as participants shift their attention. This hypothesis stems 
from instructing participants to shift their attention laterally in 
expectancy of target appearance engages frontoparietal visual 
processing pathways (Corbetta and Shulman 2002; Hopfinger et al. 
2000; Asplund et al. 2010). Here, we sought proof of concept that 
long-range neural synchronisation engaged in this network could be 
used for BCI control on a trial-by-trial basis.  

In attention orienting protocols, the cue-to-target period offers the 
possibility of implementing a BCI control harnessing covert 
attentional orienting in individual trials due to lateralisation of 
attention in anticipation of the target appearance. This would open the 
possibility of designing active BCI systems controlled by the user’s 
voluntary decision to attend left or right covertly. Therefore, our study 

employed long-range ⍺-synchronization in the frontoparietal network 
(FPN) to investigate whether this brain measure could potentially 
discriminate attended locations of the left/right visual field.  

We found significant group-level differences in contra- to ipsilateral 

long-range ⍺-synchronization around target onset time in direct 
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replication of Sauseng et al. (2005). These results help confirm the 

importance of lateralized long-range ⍺-synchrony along the FPN 
during orienting and especially reveal the potential of EEG to grasp 
these effects, at least during target processing at the group level. 
However, similar differences in synchrony were not observed during 
the post cue time window, which was the time of interest for BCI 
purposes. We extended the cue-locked analysis to other frequencies 

outside the ⍺-band, with equally negative results. Finally, given the 
high individual variability of single-trial analysis outcomes, we 
attempted to classify the individual trials of selected participants for 
whom significant synchronisation differences following cue 
presentation were found, a benchmarking process that nevertheless 
rendered chance-level classification. Below, we discuss how these 
results may be influenced by various methodological aspects (e.g., 
different time windows, classifier's input metric) and how they fit into 
state-of-the-art literature. Please note that because the focus of our 
study was on single-trial analysis, the sample size was relatively small 
for the group analyses (N = 10). Although this sample size was 
sufficient to confirm previous findings, the negative results of the 
group analyses should be interpreted with caution until a more 
extensive study is conducted.   

Frontoparietal network synchronisation characterises 
visuospatial attention 

A result to emerge from our study is that long-range ⍺-
synchronization within the FPN was associated with visuospatial 
attention orienting, in line with its putative role in this cognitive 
process (Jensen et al. 2015; Siegel et al. 2008; Doesburg et al. 2009; 
Sacchet et al. 2015). We observed a spatially distributed difference in 

upper ⍺-coherence, with increased synchrony in the FPN pathway 
contralateral to the attended hemifield. According to current attention 
theories, the mechanism underlying this finding may relate to an initial 
attentional modulation stemming from frontal areas such as the 
frontal eye fields (FEF) and the intraparietal sulcus (IPS) (Corbetta 
and Shulman 2002; Kastner and Ungerleider 2000; Helfrich et al. 

2018), leading to a state of ⍺-band desynchronization in the relevant 
area of the visual cortex (i.e., contralateral to attended hemifield) in 
anticipation of relevant information (Capotosto et al. 2009; Marshall et 
al. 2015). This explanation aligns with the well-established evidence 

that contralateral ⍺-power suppression (also reproduced in our results) 
enables visual stimuli processing in the attended location (Doesburg et 
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al. 2009; Thut et al. 2006; Yamagishi et al. 2003; Babiloni et al. 2006; 
Foxe and Snyder 2011; Klimesch et al. 2007; Lange et al. 2013), and 
that cyclic phase-dependent inhibition in low-level visual cortex 
dictates behavioural performance (i.e., reaction times; Haegens et al. 
2011; Klimesch 2012; Jensen et al. 2014; Samaha et al. 2015; 

VanRullen 2016b). Both accounts align with the idea that local ⍺-

power and long-range ⍺-synchronization may have separate roles in 
attention and perception (Bonnefond et al. 2017; Palva and Palva 
2007, 2011; Palva and Palva 2018; Sadaghiani and Kleinschmidt 2016). 

Our results of the increased contralateral synchronisation within the 
FPN replicate the work of Sauseng et al. (2005) and validate our 
methodology and analysis pipeline (e.g., time-frequency analysis, 
synchronisation metric), setting the ground for the intended proof of 
concept test regarding transference to BCI. However, lateralized 
frontoparietal connectivity patterns in attentional and perceptual 

disposition remain challenged in the literature and the role of ⍺-power 

and ⍺-phase algether (Ruzzoli et al. 2019; van Diepen et al. 2019; 

Antonov et al. 2020). Lobier et al. (2018) found ⍺-synchronization 
associated with visuospatial attention but revealed distinct patterns of 
lateralization regarding the visual system and top-down attentional 
networks. They showed stronger ipsilateral synchronization within the 
visual system (in line with Doesburg et al. 2009; Siegel et al. 2008) but 
no consistent lateralisation in long-range networks, suggesting their 
different involvement in visuospatial attention. D'Andrea et al. (2019) 
found a modulation of frontoparietal alpha-beta cross-frequency 
synchronization during attention orienting, but not in alpha-
synchronization alone. Further, this cross-frequency connectivity 
pattern was strongly associated with right hemisphere frontal 
dominance (in line with Heilman and van den Abell 1980; Zago et al. 
2017). This finding agrees with previous evidence of the crucial role of 
the right FEF in top-down attentional modulation (Esterman et al. 
2015; Hung et al. 2011; Silvanto et al. 2006), supported by evidence 
using TMS (e.g., Capotosto et al. 2009). In light of this evidence and 
our results, the exact relationship between contralateral frontoparietal 

⍺-synchronization and shifts in attention orienting is still unclear. 
Positive findings, however, such as the ones in the present study using 
a target-locked analysis, represent a basis for exploring earlier time 
windows capable of shedding light on the mechanism underlying FPN 

⍺-synchronization.  
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Correlations between long-range alpha-synchronisation and individual 
reaction times in visuospatial tasks suggest this neural correlate may be 
observable at a single-subject level (Lobier et al. 2018). Despite this, 
significant group-level target-locked dynamics of increased synchrony 
did not transfer to all individuals in our study. The observed variability 
may be partially explained by individual differences in anatomical 
tracts of attentional relevance (e.g., superior longitudinal fasciculus). 
Findings employing MRI suggest that volumetric differences in these 
structures impact local visual cortex oscillations, leading to variability 
in EEG traces (Marshall et al. 2015; D'Andrea et al. 2019). However, 
this variability of individual results is challenging to set in the 
perspective of previous research simply because published studies do 
not report single-subject statistics. Ultimately, the outcomes of this 
study leave an incomplete understanding as to whether there is a true 
group effect that does not extend to all individuals or, contrarily, 
whether individual effects of specific participants are large enough to 
induce a group-level finding in previous research. 

Lateralized patterns of ⍺-synchronization appear in target-
locked but not cue-locked time windows 

Long-range ⍺-synchronization presented contralateral increases at the 
post-target (200 to 400 ms, with t = 0 as target appearance) and the 
pre-target window (-200 to 0 ms). However, only the former time 
window resulted significantly. This result is slightly different from 
Sauseng et al. (2005), who observed significant contralateral 
synchronisation increases within the FPN network at both time 
windows. However, the numerical differences were in the same line in 
both studies, and the different outcomes of some statistical 
significance tests may be due to a lack of statistical power. Another 
potential explanation for the absence of significant findings at the pre-
target window may be the difference in experimental paradigms. The 
task employed here had a long post-cue interval ranging from 2000 to 
2500 ms (jittered between trials). Sauseng et al. (2005), on the other 
hand, had a shorter delay between cue and target appearance of 600-
800 ms, thereby perhaps leading to a more concentrated time window 
where the attention shift may have taken place. If participants shifted 
attention at varying times from cue onset up to target appearance, this 
might explain why we were unable to capture the effect in anticipatory 
visuospatial attention.  

In cueing paradigms, bottom-up integration of cue information 
through sensory pathways precedes top-down modulation of 
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visuospatial attention (Simpson et al. 2011). The temporal course of 
this cognitive operation is thought to begin only after 150 ms of visual 
cueing in voluntary attention and includes frontal regions 
approximately after 350 ms. Furthermore, from 400-500 ms onwards, 
frontal and parietal regions are thought to be solely involved in 
attentional shifting and target discrimination (Simpson et al. 2011). 
Thus, if the FPN does present direction-specific synchronisation, we 
anticipated this would appear from 500 ms after cue onset onwards. 
Contrary to what we expected, we did not observe any significant 
contra- to ipsilateral differences in the cue-locked time windows (500 
to 1500 ms after cue onset). Previous studies employing a similar time 
window showed lateralisation patterns in parietal regions in alpha and 
beta bands (Siegel et al. 2008; Pantazis et al. 2009) and frontoparietal 
lateralisation in the theta and gamma band (Green and McDonald 
2008; Gregoriou et al. 2009). Therefore, we extended our cue-locked 
analysis to other frequencies, achieving no significant contra- to 
ipsilateral differences. Note that PLV values were averaged across 200 
ms windows, and this excludes, to a certain extent, the confound of 
frontal and parietal regions having different activation over time. 
Altogether, despite the evidence across multiple frequencies of 
synchronisation in the cue-target time window, we did not find 
patterns of lateralised cue-locked connectivity within or outside the 
alpha-band.  

Our negative results in the cue-locked analysis may align with the 
notion that late periods after cue onset are associated with direction-
specific activity in parieto-occipital regions but not in frontal regions 

(e.g., FEF) (Doesburg et al. 2009; Simpson et al. 2011). Long-range ⍺-
synchronization may, therefore, initially shift attention (shortly after 
cue presentation) and later (close to target presentation) maintain it at 
the directed hemifield favouring perception and releasing lateralised 
patterns (Lobier et al. 2018; Kastner and Ungerleider 2000; Hopfinger 
et al. 2000; Grent-'t-Jong and Woldorff 2007). This idea resonates with 
the essential question formerly posed by Sauseng et al. (2005), 

debating whether frontal involvement in long-range ⍺-synchronization 
is a causative or consequential correlate of posterior activation. 
Furthermore, it motivated the exploration of cue-locked intervals 
where bottom-up and top-down processing may have elicited stronger 

effects on ⍺-band synchronisation.  

Finally, to ensure participants correctly lateralised their attention 
during the cue-target interval, we carried out a reality check by 
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calculating the ⍺-power imbalance using the lateralisation index during 
this period (Thut et al. 2006). There was a clear difference in the 
averaged lateralisation index during the time course between 500 and 
1500 ms at group-level. We further employed this metric (i.e., 
lateralisation index) to perform an exploratory analysis of its 
relationship with the difference in synchronization between contra- 
and ipsilateral networks. Considering lateralised local alpha activity and 
lateralised long-range alpha-synchronization are both relevant in 
successful attention orienting, we hypothesised that these two 
mechanisms would have a significant positive correlation. Therefore, 
individuals with high lateralisation index values should also present 
lateralised synchronization within the FPN. In contrast to our 
expectations, there was no significant correlation between these two 
metrics, neither at the pre-target nor the post-target time windows.   

Ultimately, we did not observe a significant increase in contralateral 

long-range ⍺-synchronization in the five 200 ms bins following cue 
onset. This time frame offered potential as it occurs much before 
target appearance and could be robustly employed in a covert 
visuospatial BCI decoder. By expanding our analysis to several 
frequencies and carrying out the aforementioned reality checks, we 
conclude that PLV measured from EEG may not serve as a reliable 
metric in capturing direction-specific synchronisation from frontal to 
posterior regions, despite this evidence being present in parietal to 
occipital synchrony (Doesburg et al. 2009). 

EEG estimates of long-range ⍺-synchronization may not serve 
as a reliable control signal for BCI 

The use of long-range ⍺-synchronization to decode attentional 
direction yielded chance level results. We employed 200 ms time bins 
of contralateral and ipsilateral FPN connectivity as input in an SVM 
classifier. Non-linear SVMs are widely employed in decoding cognitive 
neural correlates of behavioural states. Furthermore, they outperform 
other classifiers such as artificial neural networks, non-linear Bayesian 
estimators, and recurrent reservoir networks (Astrand et al. 2014a). 
Prior work using SVMs, mainly centred around primate models and 
invasive recordings, successfully decoded the attentional spotlight 
from frontal sites (Gaillard et al. 2020; Tremblay et al. 2015; Esghaei 
and Daliri 2014). Although these modalities (i.e., LFP, intracranial-
EEG) have a high signal-to-noise ratio (SNR), the objective of the 
present study is to perform a BCI proof of concept and, thus, a more 
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practical and suitable imaging method must be employed. This same 
principle can be utilized to discard other modalities such as fMRI, 
where the temporal resolution is too low for real-time 
implementations, or MEG, where the equipment is expensive and 
requires a magnetically shielded room limiting its potential transfer 
out-of-lab applications. Contrarily, EEG is an affordable imaging 
modality with a straightforward setup which provides high temporal 
resolution and portability. However, the inconvenience of using EEG 
is low spatial resolution and low SNR. Despite this, decoders have 
been commonly employed in BCI design, parieto-occipital changes in 

⍺-band activity to predict covert visuospatial attention tasks (Tonin et 
al. 2013; Treder et al. 2011). However, the integrated approach 
between frontal and parieto-occipital attentional decoding has not 
been attempted. Here, we found that cue-locked synchronisation 

enclosed in the FPN ⍺-band is insufficient to determine the 
attentional location. This may be due to an inherent lack of 
connectivity in the cue-target interval or more likely the inability of 
EEG to register synchronization patterns due to the limitations 
mentioned above.  

Another potential cause why cue-locked FPN connectivity was not 
sufficient for classifying single trials may be due to the change in PLV 
calculation from average to single-trial. Standard cognitive research 
employs multiple trials to estimate consistent findings on 
electrophysiological markers (M/EEG). BCIs, need by design to 
perform estimates robustly and accurately in a single-trial fashion and 
thus require a trade-off between spatial (i.e., single-channel decoding is 
preferred) and temporal resolution. PLV is a measure of consistency 
across multiple trials and cannot serve as a single-trial control signal. 
Therefore, we computed PLV across time points within the same 
realisation. This new measure is also referred to in the literature as the 
inter-site phase clustering (ISPC) and may represent a different 
underlying process than that captured by classic PLV (Cohen 2015). 

This prompts the question of whether long-range ⍺-synchronization is 
incapable of decoding the attended location, or rather the single-trial 
nature of IPSC over time is responsible for this.  

In sum, long-range ⍺-synchronization within the FPN estimated with 
EEG may not serve as a control signal for BCI. This limitation may be 
due to incomplete information on neural correlates due to the lack of 
cross-frequency analysis or the computational techniques surrounding 
ISPC over time. 



 

117 

Conclusions 

We found direction-specific contralateral patterns of upper ⍺-
synchronization (i.e., PLV) within the FPN following target 
appearance in a covert visuospatial task. This finding, however, did 
not extend to pre-target or cue-locked time windows. The modulatory 

role of ⍺-synchronization in anticipatory attention through frontal, 
parietal and occipital regions suggests that PLV may not constitute a 
reliable metric for this top-down visual processing. Furthermore, 
chance-level classification resulting from using this metric in an SVM 

indicates that long-range ⍺-synchronization may not be a suitable 
control signal for BCI. 
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CHAPTER 5   

General Discussion 

"The ability to perceive or think differently is 
more important than the knowledge gained." 

DAVID BOHM 

 

 

The main goals of the present dissertation were threefold: (i) to 
develop a custom-build EEG-based BCI system allowing for brain-
state dependent stimulation (BSDS), (ii) to provide evidence of the 
role of α-oscillations in visual perception and spatial attention, and (iii) 
to provide proof-of-concept of BCI applications linking α-oscillations 
to behavioural responses adopting insights from brain-behavioural 
theories in order to modulate behavioural performance.  

The general hypothesis was that if the fluctuations in the ongoing 
brain activity shape perception and subsequent behaviour, then, by 
identifying specific brain states beneficial or detrimental for processing 
(depending on the features of oscillations: phase, power, frequency), it 
should be possible to alter behavioural performance by presenting 
stimuli timed to those states. Although many previous studies have 
already addressed this question, the innovative approach here was to 
understand better the brain-behaviour relationship under the scope of 
an EEG-based BCI for brain-state dependent stimulation (BSDS). 

The two first studies presented in this dissertation (Chapters 2 & 3) 
provided evidence of the role of α-phase and bursts in α-power, 
respectively, in visual detection. Both studies were performed in real-
time using our custom-build EEG-based BCI for BSDS. The third 
study (Chapter 4) aimed at providing proof of concept for a potential 
control signal for a BCI using α-phase long-range synchronisation 
between frontoparietal areas to estimate the direction of the user’s 
attention in a visuospatial attention task.  
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In this chapter, I will summarise the findings of this thesis and discuss 
the implications of the results concerning the relevant literature 
published in parallel to our studies. Finally, I will discuss the 
limitations and possible avenues for future research. 

Summary of the results 

Study 1: Occipital α-phase was not predictive of the speed of 
visual detection 

The first study of the present dissertation (Chapter 2) was a modern 
replication of Callaway and Yeager’s (1960) study. Participants (n=8) 
performed a visual speeded detection task on stimuli triggered in real-
time at different latencies of a participant's α-cycle using an EEG-
based BCI system. First, RTs were sampled to visual targets triggered 
at ten phase bins along the estimated pre-stimulus α-cycle (Stage 1) in 
the ongoing EEG. Based on this, we selected two phase bins 
associated with the slowest and fastest RTs. Second, RTs to visual 
targets were presented only at these pre-selected bins (Stage 2). In the 
case of a phase-RT link existence grounded by the α-theories, stimuli 
presented at the slow phase would have slower RTs than stimuli 
triggered at the fast phase. However, contrary to what we expected, 
our results did not return a consistent relation between the phase of 
ongoing α-oscillations and RTs neither at the group level nor at the 
individual level. In addition, we explored alternative methods of 
analysing our data to find a potential phase-behaviour relationship. 
First, we re-did the analysis in Stage 2 by selecting only those trials 
falling strictly in the slow- and fast-phase bins. Second, we adopted an 
approach used by Fiebelkorn et al. (2013) to test statistically for an 
oscillatory pattern in Stage 1 data and check for the existence of a 
phase-dependent modulation of RTs. Third, we checked for a phase 
opposition pattern when comparing slow/fast RT trials at stimulus 
onset. None of these exploratory analyses revealed any significant 
phase-behaviour link. 

Study 2: The (non-)occurrence of α-bursts can be used to 
modulate behaviour in a go/no-go task 

Our second study (Chapter 3) used a go/no-go visual detection task 
in which target presentation was determined in real-time contingent 
upon the occurrence or absence of α-bursts in the ongoing occipital 
EEG signal. We estimated (no-)burst activity in real-time by adapting 
the eBOSC method (Kosciessa et al. 2020) through a custom-built 
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BCI setting and captured the subsequent reaction time to visual 
targets. Confirming the hypothesis that a consistent relationship 

between burst activity and RT exists, stimuli presented during ⍺-burst 
events led to slower RTs than those presented during the absence of 

⍺-bursts. This trend held for ten out of 12 participants, and five 
showed a statistically-significant difference. The average RT difference 
(19 ms) was overwhelmingly significant at the group level. In addition, 
we compared the differences in error rates in go trials (omission 
errors) and no-go trials (commission errors) for burst and no-burst 
trials. In general, omission errors in go trials were more prevalent 
during a burst episode, and commission errors in no-go trials were 
more prevalent during a no-burst episode.  

Study 3: α-phase synchrony between frontoparietal areas cannot 
be used to estimate the direction of spatial attention 

In our third and last study (Chapter 4) of this dissertation, we aimed 
to extend the current concept of BCI systems, which use real-time 
brain activity as a local phenomenon, to BCI systems that use long-
rage connectivity between brain regions. This idea is based on the 
proposed communication-through-coherence (CTC) hypothesis (Fries 
2005, 2015). With this aim in mind, we investigated the relationship 
between shifts in visuospatial attention and the lateralisation of long-
range α-coupling to assess its feasibility as a control signal in BCI 
applications. We used existing EEG data previously collected from a 
cohort of participants (N = 10) while performing a covert visuospatial 
attention (CVSA) task. We found lateralised patterns of phase 
coupling in the α-band between frontoparietal regions after target 
presentation, replicating Sauseng et al.’s (2005) previous findings. This 
pattern, however, did not transfer to the cue-target interval, the ideal 
time window for BCI in which participants covertly lateralised their 
attention according to cue presentation. Furthermore, using cue-
locked synchronisation measures as input for a support vector 
machine (SVM) decoder returned chance-level classification. The 
present findings suggest that long-range α-synchronization measured 
from EEG may not sufficiently reflect the direction-specific top-down 
attentional processing on a trial-by-trial basis and, thus, may not 
constitute a reliable signal for BCI control. 
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Evidence of the role of α-oscillations and their link to 
visual perception and spatial attention 

The elusive relationship between α-phase and behaviour in 
visual detection 

Our first study (Chapter 2) revealed no evidence that presenting 
visual stimuli to the phase of spontaneous α-oscillations bore any 
influence on subsequent reaction times. This link was also absent in 
offline exploratory data analyses at the group and the individual level. 
In our second study (Chapter 3), albeit it was mainly designed to 
measure bursts in alpha power, we also explored the potential 
relationship between the phase during α-bursts at stimulus onset. 
Consistent with the first study, we did not find a phase-behaviour 
relationship at the group or the individual level. However, because the 
second study was not optimised to address phase effects, it may have 
lacked statistical power (we only had N = 48 trials in each condition to 
assess the putative role of the α-phase and RTs in our go/no-go task).  

According to Mathewson et al. (2011), moments of high α-power 
should be the ideal scenario for the emergence of the phase-behaviour 
relationship. This is based on the evidence that α-phase over posterior 
regions predicted the detection of the visual target and performance 
only when α-power was high (Mathewson et al. 2011). It is worth 
noting that the level of α-power was high when measuring phase 
effects on behaviour in both of our studies. The first study (Chapter 
2) introduced measures, such as eyes closed, to achieve that α-power 
was consistently high to facilitate the phase estimation in real-time for 
stimulus presentation. In contrast, in the second study (Chapter 3), 
our protocol required variability in oscillatory α-activity (low and high 
α-power trials), and we chose to use only high-power trials for the 
exploratory tests of phase/behaviour correlation. Therefore, it would 
appear that using high power should enhance the perceptual 
fluctuations due to the oscillatory α-phase. However, we did not see it 
in any of the studies presented in this dissertation. 

Overall, our findings join a growing body of studies casting doubt on 
the effect of α-phase prior to stimulus arrival in visual perception 
(Walsh 1952; O’Hare 1954; van Diepen et al. 2019; Benwell et al. 
2017; Benwell et al. 2019; Ruzzoli et al. 2019; Michail et al. 2021). 
Although many other studies have found a positive phase/behaviour 
relationship (Lansing 1957; Lansing et al. 1959; Callaway and Yeager 
1960; Nunn and Osselton 1974; van Dijk et al. 2008; Busch et al. 2009; 
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Mathewson et al. 2009; Busch and VanRullen 2010; Dugué et al. 2011; 
Hanslmayr et al. 2013; Milton and Pleydell-Pearce 2016; Ronconi and 
Melcher 2017; Samaha et al. 2015; Zazio et al. 2021), the evidence 
appears mixed for the pre-stimulus phase-behaviour link and thus, the 
role of α-oscillations in visual perception. Given the wide range of 
degrees of freedom in experimental choices and analytical pipelines, it 
would seem logical to think that some of these factors may be crucial 
for explaining the mixed results (Ruzzoli et al. 2019), and perhaps 
essential for the design of effective BCI control based on alpha-phase. 

One aspect worth paying attention to is our choice of using a visual 
speeded detection task, thus adopting RTs instead of accuracy to 
designate behaviour performance. Even if the brain-behaviour α-
theories have related α -phase to both RTs (Walsh 1952; Lansing et al. 
1959; Callaway and Yeager 1960) and accuracy (van Dijk et al. 2008; 
Busch et al. 2009; Mathewson et al. 2009), no explicit claims have been 
made about possible differences between the two measures regarding 
their perceptual sensitivity to ongoing oscillations. Bringing back the 
points suggested in the discussion of Chapter 2, if fluctuations of α-
oscillations gate sensory information into perception, then (i) both 
measures (RTs and accuracy) should be relevant, and (ii) RTs may be 
suited to measure moment-to-moment variations in excitability 
compared to detection responses. Another aspect of interest that 
merits mention in this discussion is that our study used a supra-
threshold stimulus at fixed luminance levels across participants. 
Although this is often the standard approach in RT experiments, it is 
worth noting that some studies that found a positive phase-behaviour 
link used near-threshold stimuli (Mathewson et al. 2009; Busch et al. 
2009; van Dijk et al. 2008). Thus, it may be possible that the stimulus 
produces a strong neural response that subtle phase-dependent 
variations in responses were saturated, and its impact on behaviour 
was negligible.  

Finally, as suggested in the discussion of the first study (Chapter 2), a 
relationship between phase and visual detectability (and hence, 
response latencies) may exist, and perhaps it was obscured by the 
signal-to-noise variability when recoding from scalp electrodes in 
EEG. Based on this, we conclude that the results from our studies are 
not conclusive as to disproof an effect and challenge the α-theories 
meaningfully. However, we believe that they may pose a more serious 
limit to the usage of the posterior alpha phase for BCI control. 
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Oscillatory α-bursts influence behaviour in visual perception 

In our first study (Chapter 2), we also explored a potential 
power/behaviour relationship and failed to see it. This might be 
surprising at first sight because the previous literature is relatively 
consistent on the significant relationship between ongoing α-power 
and behaviour. However, please note that the study was not optimised 
to reveal this precise relationship, given the consistent high α-power 
induced by the eyes closed situation. Our second study (Chapter 3), 
which was designed to estimate power variations in mind, provided 
evidence of an existing link between oscillatory α-power at stimulus 
onset and subsequent responses to that stimulus. Visual stimuli 
presented during the occurrence of α-burst events (i.e., brief moments 
of high-oscillatory α-power) led to slower RTs compared to those 
presented during the absence of α-bursts (i.e., low-oscillatory α-
power). Our findings align with the inhibition hypothesis of α-activity 
(Klimesch et al. 2007; Jensen and Mazaheri 2010; Foxe and Snyder 
2011), suggesting that the state of α-power in posterior regions 
predicts visual cortical excitability and the likelihood of perceiving the 
stimulus input. In particular, high α-power leads to an inhibitory state 
of visual processing that lowers the likelihood of stimulus perception, 
whereas an excitatory state produced by low α-power increases such 
likelihood. In line with this, several studies have suggested that 
fluctuations in pre-stimulus oscillatory α-power may contribute to 
trial-to-trial behavioural variability (Makeig and Jung 1996; 
Linkenkaer-Hansen et al. 2004; Ergenoglu et al. 2004; Hanslmayr et al. 
2007; Lakatos et al. 2008; Bollimunta et al. 2008; Bompas et al. 2015). 
Other studies have further confirmed the link between pre-stimulus α-
power and detection performance (Busch et al. 2009; Chaumon and 
Busch 2014; Ergenoglu et al. 2004; Iemi and Busch 2018; Limbach 
and Corballis 2016; Ruzzoli et al. 2019; Iemi et al. 2022). It has been 
recently suggested that the α-power/performance link may be due to a 
more a question of the criterion in the response bias rather than an 
increased perceptual sensitivity (Limbach and Corballis 2016; Iemi et 
al. 2017). Regarding RTs, previous studies have reported a positive α-
power link (Min and Herrmann 2007; Bollimunta et al. 2008; Kelly 
and O'Connell 2013; Bompas et al. 2015; Michail et al. 2021), though 
not always (Gonzalez Andino et al. 2005; Del Percio et al. 2007; 
Bollimunta et al. 2008; van Dijk et al. 2008; Bays et al. 2015). Recent 
findings by Iemi et al. (2022) have shown that the relationship 
between pre-stimulus α-activity, behaviour (RT), and excitability is 
mediated by modulation of post-stimulus excitability (broadband high-
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frequency activity in 70-150 Hz). In line with the functional inhibition 
hypothesis (Klimesch et al. 2007), they proposed that, by modulating 
neuronal excitability, ongoing α-oscillations influence behaviour and 
the strength (but not the precision) of neural stimulus representations. 

Furthermore, in the second study (Chapter 3), we compared the 
differences in error rates in go trials (omission errors) and no-go trials 
(commission errors or false alarms) for burst and no-burst trials. We 
found higher error rates for no-go trials than go trials, as one would 
expect in this go/no-go task with 80% go and 20% no-go trials. More 
importantly, omission errors in go trials were more prevalent during a 
burst episode than during no-burst events; instead, commission errors 
in no-go trials were more prevalent during the absence of a burst 
episode than during a burst. As pointed out in Chapter 3, we consider 
it is important to disentangle the interpretation of the go/no-go results 
due to the cognitive differences in the processes between answering 
(i.e., go trials) and inhibiting the response (i.e., no-go trials) to a given 
stimulus. Our results align with the notion that the α-power level 
reflects the sensory excitability and the level of inhibition for stimulus 
detection (Hanslmayr et al. 2007; Klimesch et al. 2007).  

Comparable results beyond bursts in the α-band have been found in 
studies linking beta bursts (β, ~20Hz) with reaction time and 
movement onset, in which the presence of β-bursts delayed the 
response in humans and animals (Leventhal et al. 2012; Khanna and 
Carmena 2017; Little et al. 2019). Recent findings by Diesburg et al. 
(2021) in β-bursts using invasive human recordings found increases in 
subcortical β-bursts in successful stop trials, suggesting that bursts act 
as inhibitory signals for the motor system. Together, the response 

would vary depending on α-bursts and might help optimise 
performance in an excited state and protect against false positives in a 
relatively disengaged state. Thus, when pre-stimulus α-power is low (or 
during the absence of an α-burst episode), there is a greater propensity 
to answer, thus producing false alarming. In contrast, when pre-
stimulus α-power is high (or during the occurrence of α-bursts events), 
there is an inhibition towards answering visual stimuli, thus, producing 
more misses in go trials. Despite our putative interpretations of our 
findings, it would be of great interest to further investigate the 
relationship between α-bursts and errors, considering the detection 
and inhibition of responses towards a stimulus. 
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The implication of oscillatory α-bursts in the α-theories 

Although our findings from the second study (Chapter 3) align with a 
host of older findings (discussed above) relating to α-power and 
behaviour, we went beyond these past studies in two important ways. 
First, our study harnessed real-time stimulus-triggering and data 
analysis on a trial-by-trial basis (this aspect will be later discussed). 
Second, we focused on burst events rather than rhythmically sustained 
oscillations. Many approaches to estimating oscillatory dynamics of 
brain signals contain the underlying assumption that brain oscillations 
are sustained oscillatory states for convenience. However, it is clear 
from looking at traces of EEG that the signal is far from stationary 
(Vidaurre et al. 2011; Krauledat 2008), even in short time scales. 
Recent studies have provided evidence of burst events underlying 
cognitive and motor operations in different frequency bands (Feingold 
et al. 2015; Lundqvist et al. 2016; Lundqvist and Wutz 2021; 
Lundqvist et al. 2018; Lundqvist et al. 2022; Khanna and Carmena 
2017; Sherman et al. 2016; Shin et al. 2017; Little et al. 2019; Wutz et 
al. 2020). These findings started a debate about the roles of sustained 
oscillatory dynamics versus the transient nature of burst events (see 
van Ede et al. 2018 for discussion), and new methods for oscillatory 
analyses have recently emerged (Zich et al. 2020; Lundqvist and Wutz 
2021). As we mentioned in the Introduction, in many cases, the 
appearance of sustained oscillatory activity can come from averaging 
across many trials. Instead, it may be better captured by transient high-
signal burst events that happen at different rates, times, and durations 
from trial to trial.  

Moreover, typical approaches for quantifying oscillations do not check 
for the presence of a peak within the frequency range of interest of the 
power spectrum to ascertain clear, distinct oscillatory activity. These 
approaches can be confounded by the mixture of oscillatory and 
aperiodic activity in the power spectrum (1/f background noise; 
Haegens et al. 2014; Donoghue et al. 2020; Iemi et al. 2022). Some 
researchers have recently started applying methods to differentiate 
these two types of activity (Peterson et al. 2017; Peterson and Voytek 
2017; Donoghue et al. 2020; Iemi et al. 2022) since this distinction is 
critical for understanding the underlying dynamics of brain 
oscillations. Our study adopted a recent version of the eBOSC 
algorithm (Kosciessa et al. 2020) to systematically detect the 
occurrence or absence of oscillatory α-bursts in single-trial EEG 
activity. Thus, our BCI algorithm truly assessed oscillatory activity in 
the form of burst events. It is unclear, though, whether and how our 
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findings relate to the oscillatory burst events found with micro- (e.g., 
single-cell measurements) and mesoscale (e.g., local field potential, 
LFP) neural mechanisms since their contribution to M/EEG 
oscillatory activity and their link with behaviour are not well-
established (Musall et al. 2014; Cohen 2017b). Several interpretations 
of this account have been recently explored. For instance, van Ede et 
al. (2018) explored four conceptual interpretations of frequency-
specific burst patterns in LFP or M/EEG measurements and 
proposed that the generator of bursts may or may not be rhythmic 
(van Ede et al. 2018). 

Lastly, in the light of the previous discussion, it would be necessary for 
the current formulation of the α-theories explicitly incorporate bursts: 
whether and how transient events of rhythmic oscillatory activity in 
ongoing brain dynamics gate sensory information and shape 
perception on a trial-by-trial basis. It is worth noticing that the 
functional inhibition account (e.g., Klimesch et al. 2007) is specific to 
the α-oscillatory activity and, thus, does not distinguish between 
sustained oscillatory activity and burst events. On that note, Peterson 
and Voytek (2017) have recently proposed that α-oscillations control 
cortical gain by modulating the balance between excitatory and 
inhibitory background activity. In their model, they make the novel 
prediction that α-activity plays two functional roles: a robust, sustained 
oscillation mode (>5-10 cycles) that suppresses cortical gain and a 
weak, bursting mode (of 1-3 cycles) for rapid, temporally-precise gain 
increases. This model would align with Jensen and Mazaheri (2010) 
and Mazaheri and Jensen (2010).  

Moreover, the recent oscillation-based probability of response 
(OPR) model by Zazio et al. (2020), based on the functional 
inhibition hypothesis (Jensen and Mazaheri 2010; Klimesch et al. 2007; 
Schalk 2015), proposes that the probability of responding to incoming 
stimuli in visual perception can be associated with ongoing α-
oscillations and coupling mechanisms of alpha-gamma interaction. 
Since the OPR model does not assume stationarity, its predictions are 
based on the moment in time of the stimulation and can thus be 
extended to burst-like activity. Together, new models and theories are 
starting to consider different types of α-activity and their respective 
roles in cognitive processes, highlighting the notion that the cortex's 
status may better represent the effects of ongoing oscillations at the 
time of stimulation.  
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Long-range α-phase synchronisation characterises visuospatial 
attention but may not serve to estimate covert orienting  

In our third study (Chapter 4), we found significant group-level 
differences in contra- vs ipsilateral long-range α-coupling around 
target presentation as a function of attention direction. This result 
replicated the findings reported by Sauseng et al. (2005) and further 
supports the notion that attention shifts are reflected in the 
synchronisation between frontal and visual α-oscillations contralateral 
to the attended hemifield (Sauseng et al. 2005; Doesburg et al. 2009). 
In general lines, they are consistent with the communication-through-
coherence theory (Fries 2005, 2015). However, the main goal of that 
study was to address the feasibility of using long-range α-coupling 
patterns as a control signal for a BCI. We reasoned that if contra- to 
ipsilateral differences in α-coupling have been found at the target-
locked time window in a growing body of studies (Sauseng et al. 2005; 
Doesburg et al. 2009; Jensen et al. 2015; Siegel et al. 2008; Sacchet et 
al. 2015), they may also be present when the lateralisation of attention 
unfolds, after cue presentation. However, the results did not reveal any 
α-coupling differences in the cue-to-target period, and neither did our 
exploratory analysis of other frequencies outside the α-band. Note that 
the fundamental idea of this study relied on the use of fluctuations 
induced by the endogenous shifts in attention (instead of the use of 
mere consequence of exogenous activity evoked by the target). Hence, 
we thought that the Posner paradigm was an adequate task to elicit a 
robust brain-behavioural effect in α-coherence, given its substantial 
behavioural effect that has been extensively reviewed and replicated 
(Petersen and Posner 2012; Carrasco 2018). Nonetheless, group-level 
significant increases in contralateral frontoparietal connectivity in 
post-target time windows show the involvement of the frontoparietal 
network in visuospatial attention. Despite the exact mechanisms 
through which this occurs remains poorly understood, contralateral 
dominant synchronisation allows for differentiating attended locations 
within the visual field.  

Different electrophysiological α-features related to different 
cognitive functions 

Almost after a century of discovering the existence of α-oscillations, 
their specific roles in cognitive processes are still a matter of debate 
(Pavlov et al. 2021). In particular, it has been suggested that α-
oscillations reflect more than one role aspect in cognition (Sadaghiani 
and Kleinschmidt 2016), and some of these roles have been unified in 



 

129 

a recent opinion article by Clayton et al. (2018), assigning five roles to 
α-oscillations (inhibitor, perceiver, predictor, communicator, and 
stabiliser of information). One possible explanation of the mixture of 
roles is the variety of ways in which α-oscillations can vary 
independently (e.g., power, phase, long-range phase synchronisation). 
Specifically, different electrophysiological α-features may relate to 
various cognitive functions. For example, α-power in the visual cortex 
is negatively associated with visual attention (Chapter 3), whereas 
contra-lateral α-phase-coupling between frontoparietal areas is 
positively associated with visual attention (Chapter 4; van Diepen et 
al. 2019). On this note, Zazio et al. (2021) have recently stated that the 
brain-behavioural effects of pre-stimulus α-power and α-phase on 
visual perception might have different cortical generators and might 
reflect different mechanisms of perceptual modulation. As Clayton et 
al. (2018) outlined, further research in this area is clearly needed. 

A gap between α-theory and practice: mixed methods and results 
for brain-behaviour effects 

Despite the confidence placed on the α-theories by a good number of 
authors, there is a large mixture of findings on the role of α-features in 
visual perception and attention and their link to behaviour. Perhaps 
this inconsistency leads to differences in experimental factors and 
methodological approaches across studies (Benwell et al. 2017; 
Benwell et al. 2018; Ruzzoli et al. 2019; Zazio et al. 2021). For 
instance, at least a portion of the variability in the literature in 
detecting pre-stimulus α-phase effects could be due to the features 
used in the behavioural protocol, such as the stimulus eccentricity in 
the visual field, temporal expectation (Ruzzoli et al. 2019), or stimulus 
duration/intensity (Benwell et al. 2017; Benwell et al. 2018).  

Moreover, the mixed evidence regarding the detection of pre-stimulus 
α-power effects might be due to whether power is estimated in 
relevant or irrelevant brain areas for a given task (due to attention 
modulation, for example), which behavioural outcome is emphasised 
(accuracy or speed), or on spurious temporal dependencies and 
correlations in both α-power and RT estimates (Schaworonkow et al. 
2015). Another explanation for the mixed evidence in the literature 
might be due to differences in methodological approaches used for 
EEG analysis across studies. Recent evidence by Alam et al. (2020) 
found that the parameter choices in the spectral analysis (e.g., time-
frequency transformation, filtering) of EEG data and the time window 
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of interest can strongly affect the results in various ways, for example, 
by influencing phase estimation. 

These findings raise the need for a consistent EEG processing 
pipeline to assess brain-behavioural links. Standardising analyses 
(when possible) could help find a reliable link between pre-stimulus α-
oscillations and subsequent behaviour if it were to exist and help 
produce reproducible research. Finally, another possibility of the 
mixed positive and negative findings in the literature might be an 
overestimation of effect sizes of the α-features in visual perception 
and attention (Ruzzoli et al. 2019). For instance, the perceptual 
variability explained by pre-stimulus α-phase would be around 10-20% 
(VanRullen 2016b), whereas a modulation in hit rate and response 
variability explained by α-power would be ~12% (Busch et al. 2009; 
Bompas et al. 2015). These differences make it challenging to infer the 
precise variability explained by oscillatory α-features in visual 
perception and attention. One potential solution for this discrepancy 
might be to create multi-lab initiatives to replicate and reproduce the 
same experimental tasks, methodological approaches, and analysis 
pipelines across different research labs. One example of this is the 
ongoing project of #EEGManyLabs (Pavlov et al. 2021). Another 
potential solution might be to stop generalising the role of brain 
oscillations in distinct cognitive processes in broad terms based on 
unified studies with mixed procedures, analysis, and effects despite 
studying the same "cognitive process". Alternatively, we should 
unpack those studies by looking at the commonalities and differences 
across studies providing evidence (or lack thereof) about brain 
oscillations in a given cognitive process, using a given task with 
specific procedures, methods, and analyses. Those differences used in 
the studies can rely on the number of participants and trials, feature 
target of oscillations (e.g., power, phase, phase synchrony), task type 
(e.g., detection, discrimination), the stimulus eccentricity in the visual 
field (e.g., centred, lateralised), stimuli intensity (e.g., near-threshold, 
supra-threshold), differences across the data analysis pipeline in terms 
of preprocessing, filtering and time-frequency analysis, or behavioural 
outcome (e.g., reaction time, accuracy, subjective confidence of 
performance), among others. One example of this second approach is 
the public table (an online version of the table can be found here: 
https://osf.io/tyfwu/) provided by Ruzzoli et al. (2019), including the 
main parameters used in existing literature regarding phase-
behavioural correlation in human visual studies. In this way, we can 
compare across studies and find the features of the behavioural 

https://osf.io/tyfwu/
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paradigm, methodological approaches and parameters of the analysis 
pipeline used, leading to positive evidence.  

EEG-based BCI as a test bench for brain-behavioural 
theories 

Optimal target of brain states using an EEG-based BCI system 

The first two studies of this dissertation (Chapters 2 & 3) illustrated 
how BCI systems could be used for brain-state dependent stimulation 
targeting different features of oscillations to gain new insight into the 
functional role of ongoing brain activity and its link to behaviour. We 
built an EEG-based BCI system for BSDS, achieving one of the main 
aims of this dissertation. A critical methodological aspect of the brain-
behaviour relation using a BCI system is the optimal target of brain 
states (i.e., features of oscillations). In our first study (Chapter 2), the 
BCI system targeted specific phase latencies along the α-cycle and 
achieved an overall accuracy of phase estimation within less than 5° 
error. This performance compares well with estimation accuracy in 
other modern phase-based BCIs (Madsen et al. 2019; Zrenner et al. 
2018). Given the method used to estimate the phase (i.e., extending a 
sinus using the IFoI from a reference point in the EEG signal), the 
phase estimation accuracy varied along with the latencies of the α-
cycle, achieving an increase in variability of 32° between the last and 
the first latencies. Thus, the longer the time gap between the reference 
point and the latency of interest, the more variability the estimation 
performance. In addition, 88% of the trials, on average, felt within the 
phase of interest (phase ±1 bin), which is not a poor phase estimation 
for a BCI setting given our EEG system resolution. Moreover, in our 
second study (Chapter 3) targeting (no-)bursts, nearly 50% of trials 
were discarded for not satisfying the conservative power criterion 
when detecting (non-)oscillatory signals in the ongoing EEG due to 
the variability of α-activity in each individual.  

Outlook of EEG-based BCI systems for hypothesis-driven BSDS 
as research tools in cognitive neuroscience 

Almost a decade ago, Jensen et al. (2011) stated that BCI-BSDS was 
likely to become a more frequently used tool in cognitive neuroscience 
given the growing interest in brain states for cognition. As mentioned 
in the Introduction, a very limiting number of studies have specifically 
employed BSDS to study sensory perception focused on real-time 
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stimulus triggering on the features of ongoing α-oscillations and 
correlated feature-specific stimulus presentation with participant's 
performance (e.g., Callaway and Yeager 1960; Dustman and Beck 
1965). Note that this dissertation's research approach and literature 
focus were narrowed to sensory BSDS based on monitoring real-time 
EEG activity and stimulus triggered based on the feature of brain 
oscillations. However, beyond this scope, a few other studies have 
used a similar approach using non-invasive neuroimaging techniques 
for electrical and magnetic stimulation (e.g., tACS, TMS; see 
Bergmann 2018 for a review). For instance, some researchers have 
provided evidence of a brain-behavioural link using EEG-TMS 
between α-phase, neural excitability, and visual perception (Dugué et 
al. 2011), while others have recently used closed-loop BCI systems for 
EEG-TMS stimulation as a potential therapeutical tool in motor areas 
(Zrenner et al. 2016; Zrenner et al. 2018). The critical aspect of 
neuromodulation of brain oscillations (either sensory, electrical, or 
magnetic) relies on providing a more direct link between brain activity 
and behaviour, potentially on a single-trial basis. The capacity to 
decode brain states in real-time from an individual with the possibility 
of altering behaviour (given the ground on brain-behaviour theories) 
opens unprecedented opportunities in both BCI and cognitive 
neuroscience fields (see Horschig et al. 2014). The possibility of 
moving away from trial-averaged and group-level analysis toward 
single-trial and individual analysis opens the door to real-time BCI 
systems in different research labs worldwide and makes the quest to 
have EEG-based BCIs applied in real life more feasible than ever 
(Vansteensel et al. 2017). 

First-pass proofs-of-concept for EEG-based BCI applications 

Advances in the cognitive neuroscience field should go beyond 
research labs and have an impact in the real word, and BCI 
applications seem a robust candidate for this transition. That is why 
the final aim of this dissertation was to seek potential proof-of-
concept of EEG-based BCI applications while adopting insights from 
a hypothesis-driven brain-behavioural relationship. The prospects that 
we had at the beginning of this PhD were to find a solid brain-
behavioural link that could provide a proof of concept for using 
oscillatory features as a real-time control signal in a BCI. Based on the 
evidence, a potential BCI application could be used to predict, alter, or 
modulate behaviour (and augment human cognition) while engaging in 
visual perception or spatial attention tasks. For instance, we did not 
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find a phase-RT link in our first study (Chapter 2). However, we 
performed an effect size equivalence test based on 33% of the effects 
in Callaway and Yeager (1960) and estimated a minimum RT 
difference of almost 3 ms between slow and fast phases. We did not 
consider this difference meaningful in most applied contexts from a 
practical perspective toward a BCI application. However, the results in 
our second study (Chapter 3) could be further considered. We 
achieved an averaged RT difference of 19 ms between burst and no-
burst conditions. In a similar line, Bompas et al. (2015) reported that 
pre-stimulus α-amplitude of MEG oscillations accounted for a 
variance in RT to the same extent as any robust behaviour effect 
introducing a latency difference of 15-20 ms. However, as highlighted 
in the study discussed in Chapter 3, the potential relevance relies on 
the time that the BCI application could save on some occasions, 
which is variable from trial to trial. For example, our most favourable 
participant could save as much as 250 ms on roughly 10% of the trials. 
These results could be interpreted as the first pass of a proof-of-
concept that could be a starting point for prospective BCI 
applications. Lastly, our third study (Chapter 4) was the first attempt 
at synchrony-based BCI that, albeit unsuccessful, should help break 
new ground to map endogenous attention shifts to real-time control 
of brain-computer actuated systems via synchrony estimation. Further 
research could use new analysis and classification methods to provide 
such a proof of concept. Together, the studies presented in this 
dissertation account for the idea that developing proofs-of-concept 
under hypothesis-driven frameworks can lead to upcoming research 
lines involving BCI systems. 

General assumptions and limitations 

Reverse engineering and one-to-one mapping of the brain-
behaviour relationship  

This dissertation has used an EEG-based BCI system that capitalises 
on the ongoing brain oscillations to modulate behaviour. We have 
assumed a one-to-one mapping of a relationship between features of 
the pre-stimulus α-oscillations and subsequent responses (on a trial-
by-trial basis). As pointed out in the Introduction, offline studies 
studying a potential brain-behaviour relationship usually sort trials 
post-hoc based on the behavioural outcome (e.g., RTs), average 
responses, and statistically compare (e.g., t-test) across fast and slow 
RTs to conclude a brain-behavioural relationship. Here, the approach 
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was quite the inverse, and we assumed that the brain-behaviour link 
from previous research evidence was valid and supported by the α-
theories. In the same way, like many other previous studies (e.g., 
Walsh 1952; Lansing 1957; Callaway and Yeager 1960; Dustman and 
Beck 1965), we searched for specific features in the brain oscillations 
(phase angles in Chapter 2, and the occurrence/absence of oscillatory 
burst events in Chapter 3) systematically to induce the fastest or 
slowest RTs. Note that the post-hoc approach is challenging to 
determine whether α-oscillations are central to visual perception and 
attention engagement or if they are just typical by-products of 
unrelated neural processes. Thus, our reverse-engineering approach in 
real-time can address this issue using BSDS research since it is possible 
to target different features of α-oscillations (Thut et al. 2011; Helfrich 
et al. 2014). 

Accounting for the actual waveform shape of brain oscillations 

In this dissertation, we have assumed that brain oscillations can be 
fully characterised in a sinusoidal way to simplify the spectral analysis 
methods. However, there is evidence to support the view that brain 
oscillations are, for the most part, quasi sinusoidal (Bullock et al. 
2003). Furthermore, α-oscillations may also be asymmetric or biased 
(Jensen and Mazaheri 2010; Hyafil et al. 2015; Schalk 2015), meaning 
an asymmetric distribution of peak and trough amplitudes and α-
amplitudes are not zero-mean. Thus, limiting oscillations as perfect 
and symmetric sinusoids may partially constrain the rich information 
(Cole and Voytek 2017; Cole and Voytek 2019). Several recent studies 
have started to analyse brain oscillations according to their actual 
waveform shape (e.g., Cole and Voytek 2017; Jensen and Mazaheri 
2010; Jones 2016; Gips et al. 2017). Indeed, future studies could use 
standard analysis techniques (e.g., sine waves in wavelet analysis) as a 
first step to then apply more physiologically inspired analysis based on 
the actual waveform shape of oscillations  (Cohen 2017b). Further, the 
shape of an oscillation could be treated as another relevant feature of 
oscillations as its phase, frequency, and power (Mazaheri et al. 2018). 

The unavoidable time gap for real-time computational analysis 

A significant limitation of real-time BCI-BSDS studies is that there is 
always an unavoidable time gap between the last updated data 
fragment read-out from the sensors and the subsequent stimulus 
presentation contingent upon a particular brain state estimated from 
those data. The length of this time gap mainly depends on the 
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computational time of the BCI algorithm to analyse the data through 
the analysis pipeline to find a particular brain state (i.e., target feature 
of oscillations) in which to trigger stimuli. For instance, in our first 
and second studies (Chapters 2 & 3), the BCI system had a minimum 
computational time gap of 20 and 70 ms, respectively. This difference 
between studies reflects the variation in target features and the 
complexity of the analysis performed in each study. For instance, in 
Study 1 (Chapter 2), the analysis relied on estimating the phase (a very 
target feature since it targets an instant in time) using the Hilbert 
transform after filtering the signal. Whereas in Study 2 (Chapter 3), 
the BCI system iterated through a more complex pipeline of data 
analysis in order to detect (non-)oscillatory EEG α-activity. Power, by 
definition, needs to be integrated in time and, thus, cannot be so well 
pinpointed in time compared to phase. Note that due to the intrinsic 
tendency of non-linearity and non-stationarities in the EEG activity 
(Buzsáki and Draguhn 2004; Arvaneh et al. 2013), the estimated 
feature of oscillations might differ from the actual one. A potential 
solution to attenuate this unavoidable computational time gap in the 
future may rely on robustifying the BCI pipeline against changes in 
EEG signals (Vidaurre et al. 2011; Krauledat 2008) and writing cost-
efficient code when building the analysis pipeline of the BCI system 
for BSDS. Another potential practice that can help is to check the 
feature-target accuracy on a trial-by-trial basis after stimulus 
presentation, such as done here (Chapters 2 & 3). Note that the very 
last part of the EEG signal will always have to be anticipated in real-
time studies, and checking for the trials' validity can help achieve a 
total number of trials equal across individuals. 

High rate of participants' exclusion because of α-activity 

Our first two studies (Chapters 2 & 3) relied on an a priori selection 
of experimental participants as similarly done in previous real-time 
studies capitalising on α-oscillations (e.g., Callaway and Yeager 1960). 
We pre-screened participants from a five-minute recording with eyes 
closed at the beginning of each experimental session and included only 
participants showing a clear peak in the 5-15 Hz range at posterior 
electrodes at rest (individual frequency of interest, IFoI). This 
screening was done because an oscillation in the α-band should be 
present to facilitate the analysis of the real-time BCI system and 
establish the role of α-oscillations in subsequent perception. One of 
the major concerns in both studies was the high exclusion rate of 
participants. In our first study (Chapter 2), we discarded 19 out of 27 
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(70%) participants: six for not satisfying the required α-peak criterion 
in the screening stage and 13 because of the time duration criterion 
experiment. In our second study (Chapter 3), 31 out of 43 (72%) 
participants were excluded: almost half for the required α-peak 
criterion and a half for the duration criterion. 

Nonetheless, comparing our exclusion rates with previous studies 
shows that Callaway and Yeager (1960) rejected almost two-thirds of 
their participants for similar reasons. Lansing (1957) did the most 
restrictive pre-screening rejecting 92 out of 100 participants. One 
reason why it is possible only to measure an α-activity with EEG in 
some individuals may be partially due to anatomical differences, such 
as source depth and orientation, skull thickness, scalp tissues, and 
geometry of the variation in skull and scalp thickness (Cuffin 1993; 
Hagemann et al. 2008). A second reason may comprise individual 
variations in the properties of volume conduction between the brain 
cortex and the scalp surface (Myslobodsky et al. 1989; Myslobodsky et 
al. 1991; Hagemann et al. 2008). Thus, participants showing a reduced 
measure of EEG amplitudes may have a higher electrical resistance 
because of the layers' conductivity and thickness (Cuffin 1993; Nunez 
and Srinivasan 2006). Lastly, selecting only individuals with 
measurable strong α-activity from EEG may raise potential concerns 
that discovered effects in research doing pre-screening might not 
generalise to a broader experimental population.  

Future work 

In the future, experiments employing real-time BSDS could benefit 
from using conjunctions of predictive ongoing brain activity for 
triggering target stimuli, similarly as approached in this dissertation. 
The ideas presented below point toward using real-time studies to 
understand better the trial-to-trial dynamics of brain oscillations and 
their link to behaviour. Note that before attempting any of the 
following suggested studies in real-time, further research should be 
done to collect more evidence of such brain-behavioural links at the 
group, individual and trial-level. 

Real-time BSDS study relating frontal α-phase with subsequent 
performance in visual perception 

The α-phase effects on behaviour in visual perception have mainly 
been attributed to occipito-parietal areas (Varela et al. 1981; 
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Mathewson et al. 2009; Hanslmayr et al. 2013; Myers et al. 2014; 
Sherman et al. 2016; Milton and Pleydell-Pearce 2016; Harris et al. 
2018; Benwell et al. 2017). However, there is also evidence of such an 
effect in frontal areas (Busch et al. 2009; Dugué et al. 2011; Hanslmayr 
et al. 2013; Milton and Pleydell-Pearce 2016; VanRullen 2016b; 
VanRullen et al. 2011). Although the idea that the frontal α-phase may 
also play a role in visual perception was mainly based on EEG 
topographies (e.g., Busch et al. 2009; Zoefel and VanRullen 2017), 
recent findings by Zazio et al. (2021) have provided support to this 
hypothesis. Thus, one potential real-time study could be an adaption 
of our first (Chapter 2), in which visual presentation of stimuli is 
based on the α-phase of a frontal electrode for the subsequent link to 
behaviour. Positive findings would help corroborate the view of 
pulsed inhibition employed by α-band oscillations (Jensen and 
Mazaheri 2010; Mathewson et al. 2011).  

Real-time BSDS study relating the subjective confidence and 
objective performance to α-power in visual perception 

The view that low α-power improves performance in visual perception 
(e.g., Ergenoglu et al. 2004) has been recently challenged. It has 
recently been suggested that pre-stimulus α-power is linked to 
subjective measures (i.e., response bias; how likely the observer is to 
report a stimulus) rather than objective measures of task performance 
(i.e., perceptual sensitivity; the ability to detect/discriminate a 
stimulus). The foundations behind this idea rely on the notion that if 
the amount of α-power reflects enhancement levels in cortical 
excitability, then low α-power should lead to a more liberal decision 
criterion but not to a better sensitivity of the upcoming visual stimulus 
(Iemi et al. 2017). Recent evidence has supported this view (Iemi et al. 
2017; Iemi and Busch 2018; Lange et al. 2013; Chaumon and Busch 
2014; Limbach and Corballis 2016; Benwell et al. 2018; Samaha et al. 
2020). To this end, a real-time follow-up study could directly 
manipulate attention or detectability of the visual stimulus and 
measure participants' subjective confidence and objective performance 
to test how differences in pre-stimulus α-activity affect visual 
perception and subsequent task performance. 

Real-time BCI study relating β-bursts in sensorimotor areas to 
increase visual perception  

Several studies have supported the notion that transient, high-power 
event bursts in the beta-band (β, 13–30 Hz) in sensorimotor areas 
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influence behaviour (Jones et al. 2007; Jones et al. 2010; Shin et al. 
2017). In particular, spontaneous β-bursts have been attributed to play 
an inhibitory role (Jones et al. 2010; Engel and Fries 2010; Haegens et 
al. 2011; Linkenkaer-Hansen et al. 2004), making them potential 
predictors of perceptual success and shifts in attention (e.g., Jones et 
al. 2010). Little et al. (2019) related β-power and behaviour trial-by-
trial in a recent MEG study and found that β-activity emerged as brief 
high-power transient bursts. Interestingly, if a single β-burst event 
occurred within 200 ms before target presentation, the stimulus was 
less likely to be perceived. These findings have direct implications for 
BSDS studies to modulate behaviour causally. As a follow-up, the 
EEG-based BCI system used in our second study (Chapter 3) could 
be adapted for BSDS contingent upon the occurrence or absence of β-
bursts in sensorimotor areas. Based on the theory and the collection of 
evidence, we should expect to find that stimuli presented during 
oscillatory β-power impair perception, whereas during the absence of 
β-bursts may benefit perception.  

Real-time BCI study relating the coupling of γ-power and α-

phase in visual perception 

Existing evidence (Osipova et al. 2008; Voytek et al. 2010; 
Bahramisharif et al. 2013; Fiebelkorn and Kastner 2019; van Es et al. 
2020), current theories (Mazaheri and Jensen 2010; Bonnefond et al. 
2017), and models (Zazio et al. 2020) have related the coupling 
between gamma-power (γ, 30-100 Hz) and α-phase to visual 
perception. This notion assumes that the α-amplitude is asymmetric 
(Mazaheri and Jensen 2010) and that bursts of γ-power are integrated 
(or nested) within the α-phase (Spaak et al. 2012). To this end, a direct 
functional link between α-phase and γ-power could be empirically 
determined using a BSDS study. By detecting low/high α-power 
(associated with lower/higher number of nested γ-bursts, respectively) 
and triggering stimuli, one could provide evidence of such a brain-
behavioural effect in visual perception. Positive findings on the 
perceptual modulation using the α-phase/γ-power coupling would 
ground the rhythmic pulsing hypothesis (Mazaheri and Jensen 2010) 
and the oscillation-based probability of response model (Zazio et al. 
2020). 
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CHAPTER 6    

Conclusions 

"Nothing in life is to be feared; it is only to be understood. 
Now is the time to understand more so that we may fear less". 

MARIE CURIE 

 

 

The results of this dissertation extend our knowledge about the role of 
brain α-oscillations in visual perception and spatial attention and its 
link to behaviour (aim two in this thesis). Also, hopefully, they will 
help open new avenues, or understand old ones, to harness that 
knowledge to build efficient BCIs. Previous studies have provided 
evidence of the brain-behaviour link primarily from offline studies 
doing group-averaged analyses. In this dissertation, we went one step 
further and explored the brain-behavioural relationship from another 
perspective, capitalising on trial-by-trial fluctuations of individuals. We 
created an EEG-based BCI system from scratch (aim one in this 
thesis), allowing for brain-state dependent stimulation. 

Firstly, we demonstrated that we could target different features (e.g., 
phase, power, bursts) of α-oscillations in real-time, achieving a high 
target accuracy with our custom-built EEG-based BCI system. Our 
findings revealed that triggering stimuli contingent upon α-bursts 
episodes of high-oscillatory α-power (and not upon α-phase) leads to 
lower performance (i.e., slower RTs, higher omission errors). These 
findings ground the inhibitory role of ongoing α-oscillations in 
shaping visual processing (Klimesch et al. 2007; Jensen and Mazaheri 
2010) by modulation of neuronal excitability (Haegens et al. 2011; 
Haegens et al. 2015; Iemi et al. 2022). 

Moreover, we also corroborated the existence of direction-specific 
contralateral patterns of α-coupling between frontal and visual areas 
after target appearance in a covert visuospatial task. However, the α-
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coupling pattern was not present at the beginning of the attention 
lateralisation (after cue appearance), which led to a chance-level 
classification when attempting to determine the locus of attention in 
space based on the α-coupling pattern. With our study's paradigm, 
methods, and dataset, long-range α-coupling may not be a suitable 
control signal for a BCI for determining attention location. 

Taken together, the work behind this dissertation exemplifies how 
EEG-based BCI-BSDS can be used as research tools for hypothesis-
testing in visual perception to provide new insight into the role of the 
oscillatory brain activity. For instance, garnering evidence following a 
hypothesis-driven approach can help better understand the relation 
between brain oscillations and behavioural outcomes. However, in our 
case, we could not seek proof-of-concept cases of EEG-based BCI 
applications in real-time adopting insights from a hypothesis-driven 
framework (aim three in this thesis). 

Lastly, the EEG-based BCI-BSDS approach has the potential to 
become a more frequently used tool in cognitive neuroscience since it 
allows for the following advantageous aspects:  

• Targeting distinct features (e.g., power, phase, bursts, shape) of 
brain oscillations for feature-triggered stimulus presentation.   

• Allowing for hypothesis testing for brain-behavioural effects 
to ground the theories of brain oscillations and their link to 
behaviour. 

• Setting methods and analysis pipeline a priori can be easily 
preregistered before collecting any data. 

• Complementing group-averaged analysis with single-trial 
analysis at the individual level. 

• Exploring the feasibility of developing online EEG-based BCI 
applications in neurotechnology for modulating behaviour, 
thus augmenting human performance. 
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ANNEX I - 

Using α-phase to speed up visual detection 

 

SUPPLEMENTARY FIGURE 1. Sample size estimation. Based on the results 
from Callaway and Yeager’s (1960), we used a Monte Carlo simulation to estimate 
the probability to find a significant outcome (between RTs at fast and slow phase 
bins) in a given number of participants (x-axis), depending on the total sample size 
(y-axis) of our study. The question that our simulation wants to answer was: “If 
Callaway's study is representative of the effect in the general population, how probable is to find a 
significant effect (at participant level) in X participants (x-axis) out of a sample of N participants 
(y-axis)?”. Each of the cells in the graph estimates the probability of finding X 
participants with a significant effect when running N participants. According to this 
simulation, we decided that if less than 3 participants (X<3) out of N=8 showed a 
significant difference in RTs between fast and slow phase bins, then the size of the 
effect in this experiment would have to be considered null or negligible compared to 
the original study (Callaway and Yeager 1960), assuming an error of 5%. 
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SUPPLEMENTARY TABLE 1. Individual results from Stage 1, showing the 
mean (SD) RT for each phase bin [in ms]. Red and green text represent the 
slower and the faster RTs for each participant, respectively.  

Part. 

Phase bins along α-cycle  
[in degrees] 

Mean 
(SD) RT 

combined 
phases 

162° 198° 234° 270° 306° 342° 18° 54° 90° 126°  

1 
203 
(27) 

196 
(32) 

193 
(37) 

196 
(23) 

199 
(28) 

196 
(37) 

196 
(35) 

197 
(22) 

198 
(26) 

199 
(24) 

197 (3) 

2 
203 
(38) 

202 
(29) 

194 
(46) 

199 
(37) 

194 
(40) 

203 
(40) 

190 
(49) 

196 
(45) 

199 
(38) 

200 
(47) 

198 (4) 

3 
201 
(25) 

207 
(29) 

208 
(23) 

206 
(28) 

201 
(28) 

206 
(24) 

206 
(23) 

202 
(26) 

208 
(25) 

200 
(23) 

205 (3) 

4 
198 
(35) 

197 
(38) 

193 
(27) 

201 
(38) 

210 
(35) 

205 
(30) 

198 
(34) 

202 
(41) 

196 
(32) 

196 
(30) 

200 (5) 

5 
199 
(26) 

202 
(27) 

200 
(27) 

201 
(25) 

196 
(34) 

204 
(25) 

197 
(32) 

197 
(30) 

204 
(30) 

199 
(21) 

200 (3) 

6 
218 
(30) 

221 
(32) 

221 
(34) 

216 
(29) 

217 
(33) 

219 
(40) 

212 
(35) 

220 
(35) 

222 
(39) 

214 
(37) 

218 (3) 

7 
217 
(24) 

215 
(29) 

215 
(38) 

213 
(41) 

230 
(30) 

221 
(33) 

217 
(32) 

220 
(33) 

227 
(29) 

218 
(27) 

219 (5) 

8 
207 
(25) 

209 
(26) 

212 
(33) 

207 
(36) 

213 
(35) 

208 
(35) 

209 
(33) 

199 
(23) 

205 
(23) 

200 
(29) 

207 (5) 

Mean 
(SD) 

206 
(8) 

206 
(9) 

205 
(11) 

205 
(7) 

208 
(12) 

208 
(8) 

203 
(9) 

204 
(10) 

207 
(11) 

203 
(8) 

206 (9) 
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SUPPLEMENTARY TABLE 2. Number of trials in Stage 1. For each 
participant, it is reported the total number of trials delivered, the number of trials 
excluded for reaction time (RTs), the number of trials excluded for not satisfying the 
amplitude threshold criterion, the number of valid trials, the number of hit trials, and 
the number of trials relocated. 

Part. 
No. all 
trials 

No. trials 
excluded 
for RTs 

No. trials 
excluded 

for 
amplitude 

No. valid 
trials 

No. hit 
trials 

No. trials 
relocated 

1 929 
35 / 927 

4% 
306 / 927 

33% 
588 / 927 

63% 
346 / 588 

59% 
242 / 588 

41% 

2 1259 
174 / 1259 

14% 
527 / 1259 

42% 
558 / 1259 

44% 
257 / 558 

46% 
301 / 558  

54% 

3 827 
47 / 827   

6% 
151 / 827 

18% 
629 / 827 

76% 
256 / 629 

41% 
373 / 629 

59% 

4 911 
76 / 911   

8% 
183 / 911 

20% 
652 / 911 

72% 
244 / 652 

37% 
408 / 652 

63% 

5 1238 
36 / 1238  

3% 
542 / 1238 

44% 
660 / 1238 

53% 
253 / 660 

38% 
407 / 660 

62% 

6 1194 
101 / 1194 

8% 
503 / 1194 

42% 
590 / 1194 

50% 
313 / 590 

53% 
277 / 590 

47% 

7 1221 
122 / 1221 

10% 
453 / 1221 

37% 
646 / 1221 

53% 
277 / 646 

43% 
369 / 646 

57% 

8 695 
22 / 695   

3% 
63 / 695   

9% 
610 / 695 

88% 
290 / 610 

48% 
320 / 610  

52% 

Mean 
(SD) 

1034 
(219) 

77 (53) 
7% 

341 (190) 
33% 

617 (36) 
60% 

280 (35) 
45% 

337 (61) 
55% 
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SUPPLEMENTARY TABLE 3. Number of trials in Stage 2. For each 
participant, it is reported the total number of trials delivered, the number of trials 
excluded for reaction time (RTs), the number of trials excluded for not satisfying the 
amplitude threshold criterion, the number of trials excluded for not hitting the phase 
bin acceptance zone, the number of valid trials, the number of hit trials, and the 
number of trials relocated. 

Part. 
No. 
all 

trials 

No. 
trials 

excluded 
for RTs 

No. trials 
excluded 

for 
amplitude 

No. trials 
excluded 
for phase 
accuracy 

No. 
valid 
trials 

No. hit 
trials 

No. trials 
relocated 

No. trials 
post-hoc 
excluded 

1 317 
14 / 317 

4% 
96 / 317 

30% 
7 / 317 

2% 
200 / 317 

63% 
156 / 200 

78% 
44 / 200 

22% 
27 / 200 

14% 

2 476 
58 / 476 

12% 
196 / 476 

41% 
22 / 476 

5% 
200 / 476 

42% 
116 / 200 

58% 
84 / 200 

42% 
0 / 200    

0% 

3 440 
27 / 440 

6% 
166 / 440 

38% 
47 / 440 

11% 
200 / 440 

45% 
104 / 200 

52% 
96 / 200 

48% 
67 / 200 

34% 

4 328 
28 / 328 

9% 
60 / 328 

18% 
40 / 328 

12% 
200 / 328 

61% 
96 / 200 

48% 
104 / 200 

52% 
48 / 200 

24% 

5 571 
33 / 571 

6% 
267 / 571 

47% 
71 / 571 

12% 
200 / 571 

35% 
73 / 200 

37% 
127 / 200 

63% 
0 / 200     

0% 

6 494 
17 / 494 

3% 
223 / 494 

45% 
54 / 494 

11% 
200 / 494 

40% 
94 / 200 

47% 
106 / 200 

53% 
51 / 200 

26% 

7 368 
38 / 368 

10% 
123 / 368 

33% 
7 / 368  

2% 
200 / 368 

54% 
104 / 200 

52% 
96 / 200 

48% 
47 / 200 

24% 

8 272 
35 / 272 

13% 
22 / 272 

8% 
15 / 272 

6% 
200 / 272 

74% 
115 / 200 

57% 
85 / 200 

43% 
42 / 200 

21% 

Mean 
(SD) 

408 
(103) 

31 (14) 
8% 

144 (84) 
35% 

33 (24) 
8% 

200 (0) 
49% 

107 (24) 
54% 

93 (24) 
46% 

35 (24) 
18% 
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SUPPLEMENTARY FIGURE 2. Individual Rose plot of mean (SD) phase 
accuracy of hit phases for all validated trials in Stage 1 [in degrees]. Dotted 
lines denote boundaries between phase bins. 
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SUPPLEMENTARY FIGURE 3. Individual Rose plot of mean (SD) phase 
accuracy of hit phases for all validated trials in Stage 2 [in degrees]. Dotted 
lines denote boundaries between phase bins. 
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SUPPLEMENTARY FIGURE 4. Phase accuracy [in degrees] as a function 
of the phase bins at individual-level. The dark line corresponds to the mean 
phase accuracy and the shaded area denotes the standard deviation for each phase 
bin along the α-cycle. 

 

  



 

190 

SUPPLEMENTARY TABLE 4. Difference in mean and standard deviation 
accuracy computed between the last (i.e., phase bin 126º) and first (i.e., phase 
bin 162º) phase bins along the α-cycle at individual and group level in Stage 1. 

Part. 

Δ Mean 
last-first 

bins  
[in deg] 

Δ SD  
last-first 

bins 
[in deg] 

1 5.81 28.64 

2 2.51 33.51 

3 -5.25 28.57 

4 5.74 41.15 

5 10.91 -5.20 

6 -3.16 29.52 

7 4.54 29.43 

8 -29.10 8.71 

Mean 
(SD) 

-5.42 (9.38) 32.20 (10.64) 
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SUPPLEMENTARY FIGURE 5. Heatmap chart of phase difference [in 
bins] as a function of the frequency difference of valid trials compared to IFoI 
at individual-level. Vertical dashed lines denote the interval comprising 95% of the 
trials, and horizontal dotted lines correspond to phase bin boundaries. The colorbar 
counts the number of trials and black dots correspond to trials. 
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SUPPLEMENTARY TABLE 5. Comparison of the cumulative percentage of 
trials for phase bin difference between target and hit phase bins. Mean and 
standard deviation of the frequency difference between Individual Frequency of 
Interest (IFoI) peak [in Hz] and mean instantaneous frequency [in Hz] during task 
for Stage 1. Correlation (negative direction, one-tailed) between phase accuracy and 
frequency difference from IFoI peak and mean instantaneous frequency for Stage 1, 
including Pearson’s coefficient (r) and p-value (p). 

Part. 

Cumulative percentage of trials for phase bin 

difference (target/hit) 

Mean (SD) 
freq. diff. from 
IFoI [in Hz] 

Correlation 
between phase 
acc. and freq. 
diff. from IFoI 

0 ±1 ±2 ±3 ±4 ±5  r p 

1 59% 93% 98% 99% 100% 100% 0.07 (0.50) -0.07 .043 

2 47% 88% 97% 99% 100% 100% -0.11 (0.70) -0.13 .001 

3 40% 84% 95% 98% 99% 100% -0.19 (0.73) -0.01 .37 

4 37% 81% 94% 98% 100% 100% -0.31 (0.70) 0.00 .52 

5 35% 83% 96% 98% 100% 100% -0.13 (0.73) 0.09 .99 

6 53% 93% 99% 100% 100% 100% -0.14 (0.71) 0.03 .79 

7 44% 87% 98% 99% 100% 100% 0.03 (0.70) -0.24 <.001 

8 47% 92% 100% 100% 100% 100% 0.48 (0.32) -0.04 .15 

Mean 

(SD) 
45 (8) 88 (5) 97 (2) 99 (1) 100 (0) 100 (0) -0.04 (0.24) -- -- 
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SUPPLEMENTARY TABLE 6. Comparison among the Individual 
Frequency of Interest (IFoI) peak [in Hz] and amplitude [in dB] at rest and 
during task execution for each participant using the occipital-parietal cluster 
(OP-cluster) and O1-electrode. The IFoI difference is computed between rest 
(OP-cluster) and task (O1-electrode). 

Part. 

IFoI (rest) IFoI (task) 
ΔIFoI 
rest- 
task  

[in Hz] 

OP-cluster OP-cluster O1-electrode 

Peak  
[in Hz] 

Amplitude 
[in dB] 

Peak  
[in Hz] 

Amplitude 
[in dB] 

Peak  
[in Hz] 

Amplitude 
[in dB] 

1 10.50 10.50 10.75 5.19 10.75 10.93 -0.25 

2 11.75 6.54 11.75 -8.37 11.75 7.25 0 

3 9.75 8.00 10.25 5.28 10.00 8.24 -0.25 

4 9.00 9.99 9.00 1.19 9.25 9.12 -0.25 

5 9.75 8.06 9.75 0.80 9.75 3.02 0 

6 10.75 5.23 11.00 6.76 11.00 8.38 -0.25 

7 8.50 9.06 8.25 -2.16 8.50 8.78 0 

8 10.50 12.33 11.00 11.68 11.00 11.92 -0.50 

Mean 
(SD) 

10.06 
(1.03) 

8.71 (2.26) 
10.22 
(1.16) 

2.55 (6.12) 
10.25 
(1.07) 

8.46 (2.67) 
-0.19 
(0.18) 
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SUPPLEMENTARY FIGURE 6. Normalized power spectrum for each 
participant at rest (5-min eyes-closed recording) and during the task (Stage 1 
dataset) from 1 to 40 Hz computed with OP-cluster and O1-electrode. 
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SUPPLEMENTARY TABLE 7. Individual data for fast/slow phase bins in 
Stage 2 including only trials that hit the fast/slow phases. For each participant, 
the number of trials (max=100), the tested angular points (degrees), and the mean 
RTs (ms) are reported for the fast and slow phase bins tested in Stage 2. Statistics 
indicate the results (t value, degrees of freedom, p-value, Cohen’s dz and 95%-
confidence intervals CI) of an unpaired t-test (right-tailed, p<0.05) comparing slow 
vs. fast RTs individually. Group level data and statistics are also reported. 

Part. 

Slow phase bin Fast phase bin 

RT diff. 
phases 
[in ms] 

Statistics 
No. 
of 

trials 

Phase 
bin 

Mean 
(SD) 
RTs 

[in ms] 

No. 
of 

trials 

Phase 
bin 

Mean 
(SD) 
RTs 

[in ms] t dof p dz 
RT diff. 
95% CI 

1 85 162° 198 (34) 71 234° 201 (37) -3 -0.51 154 .69 
-

.08 
[-12.22 
6.44] 

2 68 162° 201 (39) 48 18° 210 (31) -9 -1.25 114 .89 
-

.24 
[-19.77 
2.75] 

3 60 90° 199 (31) 44 126° 203 (27) -3 -0.53 102 .70 
-

.11 
[-12.76 
6.54] 

4 47 306° 204 (37) 49 234° 194 (42) 10 1.28 94 .10 .26 
[-3.04 
23.68] 

5 29 54° 189 (35) 44 306° 201 (27) -3 -0.46 71 .68 
-

.11 
[-15.24 
8.53] 

6 40 54° 209 (36) 54 18° 201 (27) 8 1.30 92 .10 .26 
[-2.29 
19.07] 

7 48 306° 202 (30) 56 270° 201 (43) 1 0.07 102 .47 .01 
[-11.60 
12.66] 

8 64 306° 190 (39) 51 54° 196 (32) -6 -0.90 113 .81 
-

.17 
[-17.28 
5.07] 

Mean 
(SD) 

55 
(18) 

-- 199 (7) 
52 
(9) 

-- 200 (5) -1 (7) -- -- -- -- -- 

Group 
level 

441 -- 199 (7) 417 -- 200 (5) -1 -0.25 7 .60 
-

.09 
[-6.38 
5.20] 
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SUPPLEMENTARY FIGURE 7. Individual narrow-band ERPs for subjects 
from Stage 1 dataset time-locked to visual stimulus presentation denoting 
valid trials (black), fast trials (green), and slow trials (red). All plots include 
SEM interval shading. Dashed vertical lines are plotted to show the mean RT of the 
trials belonging to each subject (Table S1). 
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Correlation between RTs and prestimulus α-power  

According to α-theories, in addition to phase dependency, the power 
of spontaneous pre-stimulus oscillations in the α-band has relevance 
for perception (Lindsley 1952; Lansing et al. 1959; Klimesch et al. 
2007; Mathewson et al. 2011; Jensen et al. 2014). Despite the fact that 
our approach was not optimized to find behavioural differences as a 
function of power, we decided to explore a possible effect of pre-
stimulus α-power in relation to slow/fast RTs, as suggested by 
previous evidence (Walsh 1952; Lansing et al. 1959; Bompas et al. 
2015; Ruzzoli et al. 2019). Specifically, we anticipated that low pre-
stimulus α-power would be associated with faster RTs. To this aim, we 
selected trials from Stage 1 (excluding the RT criterion 50 - 300 ms, in 
order to increase RT variability). To maximize potential differences in 
RTs as a function of the α-power, for each participant, we calculated 
the pre-stimulus power associated with the lower and the higher 
terciles of the RTs distribution. Data were band-pass filtered 5-15 Hz 
(Butterworth filter order 2, two-pass), epoched from –1000 ms to 0 
ms (i.e., stimulus onset), demeaned and detrended. We computed 
power by means of the Hilbert transform and averaged within the 
epoch and across the occipito-parietal cluster used to calculate the 
IFoI. Please note that this cluster of electrodes has been previously 
associated to power-behavioural modulation (Myers et al. 2014; 
Bompas et al. 2015; Samaha et al. 2015; Benwell et al. 2017; Harris et 
al. 2018; Ruzzoli et al. 2019). Power was normalized with respect to 
the mean power of each participant and transformed to decibels. 
Group-level data (see Supplementary Figure 8 and Supplementary 
Table 8 for individual results, and Supplementary Figure 9 for 
group results) were analysed using a t-test (left-tailed, α = 0.05). No 
relationship was detected between pre-stimulus α-power and RTs at 
group (t(7)= -0.0059, p = 0.4977, dz = -0.0021) nor at the individual 
level (all ps > 0.1) for all but one single participant (t(584)= -4.1441, p 
= 0.00002, dz= -0.3424). 

We speculate that the null relation between α-power and RTs in these 
data is caused by a lack of variability. Please note that despite this 
relationship has been reliably established in the literature (Ruzzoli et al. 
2019; Lansing et al. 1959; Bompas et al. 2015; Walsh 1952), the 
present study was not optimized to reveal it. In particular, there was 
little variability in α-power during the experiment, because we 
introduced measures to achieve a consistently high α-power 
throughout the task (e.g., eyes closed) to facilitate reliable phase 
estimations. To ascertain this possibility, we compared the variability 
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in α-power in the present data with the data of another experiment 
where an effect of power has been found on a visual unspeeded 
detection task (Ruzzoli et al. 2019, data can be found here: 
https://osf.io/adrwv/). We found that α-power variability was about 
4.5 times lower in the present study compared to the previous one 
(SD = 2dB vs. SD = 9 dB, respectively).   

SUPPLEMENTARY TABLE 8. Number of trials, mean (SD) RT, and mean 
(SD) log-transformed and normalized pre-stimulus α-power (dB) for slow and 
fast trials. Individual t-tests assess statistical difference in the α-power (p<0.05). 
Only P01 showed a significance difference in the α-power between slow and fast 
trials. 

 Slow trials Fast trials 

Statistics 

Part. 
No. 
of 

trials 

Mean 
(SD) 
RTs 
[in 
ms] 

Mean 
(SD) 

ΔPower 
[in dB] 

No. 
of 

trials 

Mean 
(SD) 
RTs 
[in 
ms] 

Mean 
(SD) 

ΔPower 
[in dB] t p = 

1* 293 
226 
(20) 

0.04 
(0.94) 

293 
167 
(20) 

-0.35 
(1.30) 

-4.14 <.001 

2 336 
238 
(24) 

-0.16 
(1.25) 

336 
156 
(28) 

-0.16 
(1.27) 

-0.02 .49 

3 257 
234 
(20) 

-0.15 
(1.02) 

257 
179 
(11) 

-0.08 
(1.06) 

0.83 .80 

4 273 
239 
(25) 

-0.13 
(0.92) 

273 
167 
(16) 

-0.06 
(0.95) 

0.87 .81 

5 392 
228 
(21) 

-0.40 
(1.47) 

392 
170 
(17) 

-0.25 
(1.45) 

1.38 .92 

6 341 
256 
(19) 

-0.21 
(1.14) 

341 
182 
(16) 

-0.06 
(1.08) 

1.75 .96 

7 346 
251 
(19) 

-0.24 
(1.29) 

346 
181 
(28) 

-0.14 
(1.23) 

0.97 .83 

8 225 
238 
(20) 

-0.06 
(1.23) 

225 
175 
(21) 

-0.20 
(1.16) 

-1.28 .10 

Mean 
(SD) 

308 
(55) 

239 
(22) 

-0.12 
(1.16) 

308 
(55) 

172 
(20) 

-0.16 
(1.19) 

-- -- 

https://osf.io/adrwv/
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SUPPLEMENTARY FIGURE 8. Individual pre-stimulus α-power log-
transformed and normalized by the mean power [in dB] over all trials in Stage 
1 for fast (green) and slow (red) trials. Dots denote the power for each trial at 
individual level. Violin plots include the mean ± SEM power at individual level.  
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SUPPLEMENTARY FIGURE 9. Mean (dark line) ± SEM (shaded area) pre-
stimulus α-power at group-level. Dots denote normalized mean power at 
individual-level, y-axis represents normalized power [in dB] for the fast and slow 
trials (x-axis). P-value of the result of the paired-test of the mean power from 
fast/slow trials. 
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ANNEX II - 

Using occipital α-bursts to modulate 
behaviour in real-time 

METHODS: Algorithm for real-time burst-triggering of stimuli 

To trigger a visual flash (target), the BCI setting iterated through the 
following steps:  

1. Data acquisition. A 45-second sliding window (containing 22500 
data points) was used to update an EEG data buffer with the 
most recent available data from the Oz-electrode and used for 
the estimate of background power (as in Whitten et al. 2011).  

2. Data reflection. The first and last 2 s of data from the 45-s 
window were reversed in time and concatenated to the 
beginning and end (respectively) of the data buffer, leading to 
a 49-second window. This procedure attenuated edge artifacts 
from filtering and computing time-frequency analysis (Cohen 
2014). 

3. Data filtering. Data in the 49-second window was band-pass 
forward filtered between 0.5 and 45-Hz with a 4th-order 
Butterworth filter, and data was demeaned using MATLAB 
built-in functions. 

4. Time-frequency analysis. Time-frequency transformation of the 
49-second window was performed using 6-cycle Morlet 
wavelets (Grossmann and Morlet 1984) with 18 logarithmically 
spaced centre frequencies (as in Whitten et al. 2011), the IFoI 
was the 10th frequency and the approximate frequency-band 
ranged from 2 to 38 Hz. 

5. Data trimming. EEG data and wavelet-derived power from the 
49-second window was trimmed and reflected edges were 
removed, leading to the original 45-second window of the data 
buffer (Cohen 2014). 

6. Log(frequency)-log(power) fitting. The wavelet-derived power 
spectrum was linearly fit in log(frequency)-log(power) 
coordinates using a robust regression with bisquare weighting 
(Holland and Welsch 1977; Kosciessa et al. 2020) to improve 
the linear fit of the background spectrum (Donoghue et al. 
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2020), with the underlying assumption that the EEG 
background spectrum is characterized by coloured noise of the 
form A*f(-α) (Buzsáki and Mizuseki 2014; He et al. 2010; 
Linkenkaer-Hansen et al. 2001). To further improve the linear 
fit of the background spectrum with the robust regression 
(Donoghue et al. 2020), power estimates within a wavelet 
passband around the IFoI (i.e., IFoI ± 1) were removed prior 
to fitting. 

7. Threshold estimations. Power thresholds for rhythmicity (i.e., the 

occurrence of ⍺-bursts) and non-rhythmicity (i.e., non-
oscillatory signal) at each frequency was set at different 
percentiles of χ2(2)-distribution of power values, centred on 
the linearly fitted estimate of background power at the relevant 
frequency (for details see Whitten et al. 2011): 

○ Artifact threshold: The power value was set at the 95th 
percentile of a χ2(2)-distribution of power values 
centred at the slowest frequency (around ~2 Hz) to 

discern between the true ⍺-bursts and high-amplitude 
in the EEG signal due to eye blinks and muscle 
artifacts. 

○ Burst power threshold: The power value was set at the 
95th percentile of a χ2(2)-distribution of power values 
centred at the IFoI-task frequency. 

○ No-burst power threshold: The power value was set at the 
50th percentile of a χ2(2)-distribution of power values 
centred at the IFoI-task frequency. 

○ Duration threshold: A theoretical duration threshold of a 
minimum duration of 2.5 cycles (i.e., ~200 ms 
prestimulus threshold-window containing 100 data 
points) of the IFoI was used and set at the end of the 
49-second window. 

8. Checking necessary conditions for triggering stimulus. Both power and 
duration criteria had to satisfy the necessary conditions for 
triggering stimulus depending on the trial EEG activity-type 
(i.e., burst/no-burst): 

○ Burst trials: All data points from the prestimulus 
threshold-window had to be higher than Burst power 
threshold and lower than Artifact threshold. 

○ No-burst trials: All data points from the prestimulus 
threshold-window had to be lower than No-burst power 
threshold and lower than Artifact threshold. 
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If in a given trial these criteria were met, the BCI setting 
continued and triggered the corresponding visual stimuli for 
the trial-type; otherwise, the BCI setting algorithm returned to 
step (1) and updated the initial EEG data buffer.   

9. Stimulus presentation. Visual targets (go or no-go, depending on 
condition) were delivered after the validation depending on the 
trial-type. 

10. Button response. Reaction time was collected from a button press 
via a response box connected to the parallel port. If no 
response was given by the participant (because of a no-go trial 
or a missed go trial), then the time-out of 1-second was 
reached and the BCI setting iterated towards the next step.  

11. Data acquisition update. After the response, we updated the 45-
second window with the most recent available data, as in step 
(1), and re-did the following steps until reaching again step (5).  

12. Trial validity criterion. Check of trial validity with the updated 
data. This criterion was set in order to exclude trials in real-
time and ensure that (no-)burst activity conditions were met 
during the computational time of the pipeline (~72 ± 5 ms) 
between acquisition of data in step (1) and stimulus 
presentation in step (9). Only trials that satisfied the following 
criteria were accepted as valid: 

○ (No-)burst criterion: 
■ True detection of burst event: 90% of data points of 

the last 3 cycles (~300 ms) of the IFoI before 
stimulus onset had to be higher than the Burst 
power threshold and lower than the Artifact 
threshold, both thresholds determined at step 
(7). 

■ True-detection of no-burst event: 90% of data points 
of the last 3 cycles (~300 ms) of the IFoI 
before stimulus onset had to be lower than the 
No-burst power threshold and lower than the 
Artifact threshold, both thresholds determined at 
step (7). 
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○ Reaction time criterion: RT within 50 and 1000 ms (only 
applied in the go condition)6. 

13. Trial counter. If the intended number of trials was reached in a 
given block (N=40), the algorithm of the BCI setting stopped; 
otherwise, another iteration started until the desired number of 
trials per condition was collected. In between blocks, 
participants had a break and a new block begun with the BCI 
setting starting from step (1).  

 

Note that if at any point of the iteration a step/criterion was not 
satisfied, the BCI setting started a new iteration from step (1). 

 

 

 

6 Since the Reaction time criterion only applied to go trials, some no-go trials with actual 
responses were accepted as valid trials in this section (see Exploratory Analysis for 
further details). 
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METHODS: Different red lights in no-go trials across participants 

Given that participants had two types of red-lights to adjust the 
intensity similarly to the green-light, we wanted to assess whether 
there was any relationship between the red-light used for the 
participants and their average reaction time (RT) in the task 
(Supplementary Table 2). We computed a t-test (independent 
samples) with α-level = 0.05 to compare the mean RTs between the 
first six participants (P01-P06; red light with 933 kΩ) and from the last 
six participants (P07-P012; red light with 820 kΩ). The result was not 
significant (t (10) = 0.34, p = .74, dz = .20). Thus, we can conclude 
that using different red lights across participants for the no-go trials 
did not influence the RTs. 
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RESULTS: Individual RTs for burst and no-burst trials 

SUPPLEMENTARY TABLE 9. Individual data of reaction time (RT) for 
burst and no-burst trials. For each participant, the mean (SD) RT of all trials, the 
Coefficient of Variation (CV), the mean (SD) RT for burst trials, the mean (SD) RT 
for no-burst trials, and the difference in mean RT between burst and no-burst. 
Individuals assess of statistical difference in the RT from the one-tailed permutation 
test (p<0.05). P-values in bold denote the significance difference in the RT between 
burst and no-burst trials for 5 participants (P07, P09, P10, P11, P12). RT difference 
in bold highlight the results that go in line with our hypothesis.   

Part. 

Mean (SD) 

RT (all trials) 

[in ms] 

CV RT 

Mean (SD)  

RT burst 

[in ms] 

Mean (SD) 

RT no-burst 

[in ms] 

RT 

diff. 

[in ms] 

Statistics 

p d 

1 457 (74) 0.16 462 (84) 450 (59) 12 .12 0.17 

2 525 (104) 0.20 534 (107) 514 (101) 20 .09 0.19 

3 456 (73) 0.16 460 (80) 450 (64) 10 .18 0.13 

4 514 (99) 0.19 523 (104) 506 (95) 17 .12 0.17 

5 490 (97) 0.20 486 (99) 492 (91) -6 .67 -0.06 

6 458 (92) 0.20 461 (90) 450 (91) 12 .18 0.13 

7 592 (118) 0.20 606 (123) 576 (111) 31 .03 0.26 

8 453 (99) 0.22 451 (95) 454 (103) -2 .61 -0.04 

9 428 (69) 0.16 435 (70) 416 (66) 19 .03 0.28 

10 486 (101) 0.21 513 (115) 457 (79) 55 <.001 0.56 

11 450 (81) 0.18 462 (76) 422 (56) 40 <.001 0.60 

12 433 (84) 0.19 441 (82) 417 (75) 24 .02 0.30 

Mean 
(SD) 

479  

(91) 

0.19 

(0.02) 

486 

(94) 

467 

(83) 

19 

(17) 
<.001 

0.22 

(0.20) 
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SUPPLEMENTARY FIGURE 10. Individual histogram of reaction times 
(RT) for burst (in red) and no-burst (in green) for all validated trials [in ms]. 
Vertical solid lines denote the mean RT of burst (in red) and no-burst trials (in 
green). 
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REALITY CHECK: True detection of (no-)bursts 

SUPPLEMENTARY TABLE 10. Individual power at the time-window of 
interest (TWoI) and amplitude thresholds data for burst and no-burst trials. 
For each participant, the mean (SD) pre-stimulus α-power [in µV2] for burst and no-
burst trials. Individual t-tests assess statistical difference in the α-power and 
amplitude thresholds (p<.05) and the effect size (Cohen’s d; d) is also provided. All 
participants showed a significant difference (p<.001) in both the α-power and the 
amplitude thresholds between burst and no-burst. 

Part. 

POWER TWoI AMPLITUDE THRESHOLDS 

Mean (SD) 

burst 

[in µV2] 

Mean (SD) 

no-burst 

[in µV2] 

Diff. 

power 

[in µV2] 

d p 

Mean (SD) 

burst 

[in µV] 

Mean (SD) 

no-burst 

[in µV] 

Diff. 

amp. Th. 

[in µV] 

d p 

1 3.46 (1.77) 0.16 (0.09) 3.30 2.63 <.001 1.23 (0.23) 0.28 (0.05) 0.94 5.66 <.001 

2 6.14 (2.71) 0.28 (0.15) 5.86 3.05 <.001 2.75 (0.89) 0.64 (0.21) 2.11 3.27 <.001 

3 7.08 (5.02) 0.13 (0.07) 6.96 1.96 <.001 1.26 (0.42) 0.29 (0.10) 0.97 3.19 <.001 

4 4.93 (2.93) 0.09 (0.04) 4.84 2.34 <.001 0.80 (0.15) 0.20 (0.04) 0.68 6.02 <.001 

5 4.52 (1.91) 0.18 (0.11) 4.34 3.21 <.001 1.70 (0.25) 0.39 (0.06) 1.31 7.13 <.001 

6 6.45 (3.71) 0.20 (0.13) 6.25 2.38 <.001 2.13 (0.62) 0.49 (0.14) 1.64 3.66 <.001 

7 2.83 (1.33) 0.10 (0.07) 2.73 2.91 <.001 1.08 (0.36) 0.25 (0.08) 0.83 3.20 <.001 

8 4.21 (2.39) 0.16 (0.09) 4.05 2.40 <.001 1.36 (0.27) 0.32 (0.06) 1.05 5.29 <.001 

9 8.08 (5.55) 0.20 (0.14) 7.89 2.01 <.001 1.78 (0.22) 0.41 (0.05) 1.37 8.45 <.001 

10 3.45 (1.27) 0.17 (0.08) 3.27 3.63 <.001 1.86 (0.46) 0.43 (0.11) 1.43 4.23 <.001 

11 5.84 (2.65) 0.16 (0.10) 5.68 3.03 <.001 1.57 (0.37) 0.36 (0.09) 1.21 4.46 <.001 

12 12.96 (7.17) 0.38 (0.24) 12.58 2.48 <.001 3.13 (0.84) 0.72 (0.19) 2.41 3.97 <.001 

Mean 

(SD) 

5.83 

(2.75) 

0.18 

(0.08) 

5.65 

(2.69) 
2.10 - 

1.72 

(0.68) 

0.40 

(0.16) 

1.33 

(0.52) 
2.52 - 
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Supplementary Fig. 3 shows the violin plots of the overall mean of 
power within the time-window of interest (TWoI) for burst and no-
burst trials individually for each participant. We also plotted the 
average of the trials around stimulus onset (-2 to 1s) to visualize the 
difference in mean power between burst and no-burst conditions. In 
Supplementary Fig. 4, all the individual plots show a clearly a visual 
difference between the mean (SD) power across conditions. In 
particular, burst trials show a larger variability (i.e., SD) in power 
reflected in the shaded area compared to no-burst trials within the 
TWoI.  

Furthermore, we decided to see the relationship between the log-
transformed mean power of the TWoI and the reaction time (RT) for 
burst (in red) and no-burst (in green) trials at individual level. 
Supplementary Fig. 5 shows that there is a clear distinction between 
our independent variable (i.e., the log-transformed mean power) for 
burst and no-burst trials, whereas the difference between the 
dependent variable (i.e., RTs) varies across participants.  

Finally, we checked that amplitude thresholds were correctly 

adjudicated according to the ongoing α-burst activity. We calculated 
the amplitude thresholds across participants for burst (Mean = 1.72 
µV; SD = 0.68 µV) and no-burst (Mean = 0.40 µV; SD = 0.16 µV) trials 
and also for each participant (see Supplementary Table 4). Overall, 
the mean amplitude difference between burst and no-burst thresholds 
was 1.33 µV (SD = 0.52; Max = 2.41 µV; Min = 0.68 µV). We assessed 
the difference between burst and no-burst amplitude thresholds by 

applying a one-tailed t-test (independent samples) with α-level = .05. 
All participants showed a significant p-value (p = <.001; 
Supplementary Table 4, Supplementary Fig. 6). 
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SUPPLEMENTARY FIGURE 11. Individual violin plots of the mean power 
for burst (in red) and no-burst (in green) for validated trials. Violin plots 
include the mean ± SEM power at individual level. Dots denote the mean power at 
the time-window of interest (TWoI, i.e., the last 3 cycles of IFoI) for each trial. 
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SUPPLEMENTARY FIGURE 12. Individual mean power of burst (in red) 
and no-burst (in green) trials at individual level within -2 to 1s from stimulus 
onset. Solid lines denote the mean power of burst and no-burst trials. Shaded areas 
represent the standard error of the mean (SEM) interval. Solid vertical line denotes 
the stimulus onset and dotted vertical lines denotes the time-window of interest 
(TWoI). 
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SUPPLEMENTARY FIGURE 13. Individual relationship between the log-
transformed mean power at the time-window of interest (TWoI) and the 
reaction time (RT) for burst (in red) and no-burst (in green) for validated 
trials. Horizontal solid lines denote the mean power of burst (in red) and no-burst 
trials (in green), and vertical solid lines denote the mean RT of burst (in red) and no-
burst trials (in green). Dots denote the mean power at the TWoI for each trial at 
individual level. 
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SUPPLEMENTARY FIGURE 14. Individual power thresholds for burst (in 
red) and no-burst (in green) for validated trials. Dots denote the amplitude 
thresholds for each trial at individual level for burst (in red) and no-burst trials (in 
green). Horizontal solid lines denote the mean power threshold for the cloud of dots 
of burst (in red) and no-burst trials (in green). 
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REALITY CHECK: Selection of the frequency of interest (IFoI) 

SUPPLEMENTARY TABLE 11. Individual difference between amplitude [in 
dB] and frequency peak [in Hz] of the Individual Frequency of Interest 
(IFoI) during the task and during the training using Oz-electrode and OP-
cluster of electrodes. For each participant, the amplitude and frequency peak of the 
IFoI during the task and during the training for Oz-electrode and OP-cluster are 
provided, together with the difference in amplitude and frequency peak between task 
and training for Oz-electrode, and the difference in frequency peak between OP-
cluster and Oz-electrode during the task and the training. NaN denotes that a peak 
was not found in the power spectrum (P02). 

Part. 

Oz-electrode OP-cluster ΔIFoI Oz 

task –  

training 

ΔIFoI 

OP – Oz 

IFoI  

(training) 

IFoI  

(task) 

IFoI  

(training) 

IFoI 

(task) 
Training Task 

Peak 

[in Hz] 

Amp. 

[in dB] 

Peak 

[in Hz] 

Amp. 

[in dB] 

Peak 

[in Hz] 

Amp. 

[in dB] 

Peak 

[in Hz] 

Amp. 

[in dB] 

Peak 

[in Hz] 

Amp. 

[in dB] 

Peak 

[in Hz] 

Peak 

[in Hz] 

1 10.25 5.70 10.00 6.87 10.25 3.75 10.00 2.22 0.25 -1.17 0.00 0.00 

2 10.75 2.97 10.25 2.19 10.50 -10.50 NaN NaN -0.50 -0.78 -0.25 NaN 

3 10.50 9.91 10.50 9.11 10.50 8.55 10.50 7.91 0.00 -0.80 0.00 0.00 

4 10.50 11.26 10.25 10.85 10.50 11.24 10.50 10.82 -0.25 -0.41 0.00 0.25 

5 11.00 2.23 10.75 3.89 11.00 -0.25 10.75 -0.91 -0.25 1.65 0.00 0.00 

6 10.00 2.00 9.75 4.29 9.50 1.54 9.50 2.62 -0.25 2.29 -0.50 -0.25 

7 11.25 3.73 11.00 5.06 11.25 2.16 11.00 3.86 -0.25 1.33 0.00 0.00 

8 11.25 5.36 11.00 2.68 11.25 3.90 11.00 3.16 -0.25 -2.69 0.00 0.00 

9 10.50 6.72 10.25 6.94 10.50 5.01 10.50 6.20 -0.25 0.22 0.00 0.25 

10 10.25 2.18 10.00 2.79 10.25 0.55 10.00 1.11 -0.25 0.61 0.00 0.00 

11 10.75 2.57 10.50 6.04 10.75 0.25 10.75 6.00 -0.25 3.47 0.00 0.25 

12 10.25 6.78 10.00 7.97 10.25 6.90 10.25 8.21 -0.25 1.19 0.00 0.25 

Mean 

(SD) 

10.60 

(0.41) 

5.12 

(3.11) 

10.35 

(0.41) 

5.72 

(2.73) 

10.54 

(0.49) 

2.76 

(5.46) 

10.43 

(0.46) 

4.65 

(3.49) 

-0.25 

(0.11) 

0.61 

(1.63) 

-0.06 

(0.16) 

0.07 

(0.16) 
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EXPLORATORY ANALYSIS: RT fits using the ex-Gaussian function  

SUPPLEMENTARY TABLE 12. Individual ex-Gaussian fit parameters for 
burst and no-burst trials. The mean (μ), standard deviation (σ), the exponential 
parameters (τ), and the log-likelihood (fVal) are provided for burst and no-burst 
trials. Individuals assess of statistical difference in the RT from the one-tailed 
permutation test (p<.05). 2 participants (P11, P12) showed a significance difference 
in the μ RT between burst and no-burst trials, 1 participant (P11) showed a 
significant difference in σ RT between burst and no-bursts, and 2 other participants 
(P01, P03) showed a significance difference in the τ RT between burst and no-burst 
trials. 

Part. 

Burst No-burst Diff. 

μ RT 

[in 
ms] 

p 

Diff.  

σ RT 

[in 
ms] 

p 

Diff. 

τ RT 

[in 
ms] 

p μ RT 

[in 

ms] 

σ RT 

 [in 

ms] 

τ RT 

[in 

ms] 

μ RT 

[in 

ms] 

σ RT 

[in 

ms] 

τ RT 

[in 

ms] 

1 381 20 82 409 43 41 -28 .99 -23 .01 41 .007 

2 438 53 97 439 68 76 -1 .52 -15 .35 21 .40 

3 382 36 78 410 50 41 -28 .94 -15 .25 38 .02 

4 417 42 106 419 35 88 -1 .52 7 .68 18 .39 

5 399 36 87 407 28 85 -8 .73 7 .37 2 .93 

6 376 34 86 364 34 86 12 .24 0 .99 -1 .98 

7 496 61 110 474 48 101 22 .17 13 .01 9 .01 

8 355 37 96 344 19 110 11 .17 17 .80 -14 .32 

9 372 36 63 351 28 65 21 .08 8 .73 -2 .89 

10 409 34 103 384 37 73 25 .11 -3 .90 30 .22 

11 402 44 60 370 24 52 32 .02 20 .08 8 .63 

12 370 37 71 344 28 73 26 .01 10 .31 -2 .90 

Mean 

(SD) 

400 

(38) 

39 

(10) 

86 

(17) 

393 

(41) 

37 

(14) 

74 

(22) 

7 

(20) 
.13 

2 

(14) 
.27 

12 

(17) 
.01 
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SUPPLEMENTARY FIGURE 15. Individual ex-Gaussian fits for burst (in 
red) and no-burst (in green) trials. For each participant, the histogram of burst 
and no-burst trials (on the left) is shown together with the probability density 
function curve of each trial condition (on the right). 



 

217 

EXPLORATORY ANALYSIS: Commission and omission error rates for 
burst and no-burst trials 

SUPPLEMENTARY TABLE 13. Individual error rates for go and no-go 
trials. For each participant, the number of trials, the number of errors, and the error 
rate in each condition (go/burst, go/no-burst, no-go/burst, no-go/no-burst) are 
reported. Group-level t-tests assess statistical difference in error rates for burst and 
no-burst conditions for go and no-go trials.  

Part. 

Go No-go 

Burst No-burst Burst No-burst 

No. of 

trials 

Omission 

error rate 

No. of 

trials 

Omission 

error rate 

No. of 

trials 

Commission 

error rate 

No. of 

trials 

Commission 

error rate 

1 116 0.17 110 0.13 24 0.17 24 0.13 

2 121 0.21 111 0.14 24 0.04 24 0.13 

3 97 0.01 96 0.00 24 0.04 24 0.08 

4 116 0.17 115 0.17 24 0.08 24 0.04 

5 110 0.13 105 0.09 24 0.13 24 0.13 

6 99 0.03 99 0.03 24 0.04 24 0.08 

7 121 0.21 130 0.26 24 0.00 24 0.17 

8 104 0.08 97 0.01 24 0.08 24 0.17 

9 135 0.29 120 0.20 24 0.33 24 0.42 

10 117 0.18 109 0.12 24 0.13 24 0.08 

11 101 0.05 97 0.01 24 0.33 24 0.38 

12 108 0.11 101 0.05 24 0.04 24 0.13 

Mean 
(SD) 

112 

(11) 

0.14 

(0.08) 

108 

(10) 

0.10 

(0.08) 

24 

(0) 

0.12 

(0.11) 

24 

(0) 

0.16 

(0.12) 
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EXPLORATORY ANALYSIS: Phase-behaviour opposition  

SUPPLEMENTARY TABLE 14. Individual phase opposition sum (POS) at 
stimulus onset for valid-burst trials between fast and slow RT. For each 
participant, the mean (SD) RT [in ms] and phase [in degrees] of the overall trials, the 
number of trials, mean (SD) RT [in ms] and mean (SD) phases [in degrees] for fast 
and slow trials, the difference in RT [in ms] and in phases [in degrees] between fast 
and slow trials are provided. Individuals and group-level assess of statistical 
difference in phases from the phase opposition sum (POS) method. 

Part. 

FAST RT SLOW RT 
Diff. 
RT 
[in 
ms] 

Diff. 
phases 

[in º] 

POS 

No. 
trials 

Mean 
(SD) 

RT [in 

ms] 

Mean 
(SD) 
phase 

[in º] 

No. 

trials 

Mean 
(SD) 

RT [in 

ms] 

Mean 
(SD) 
phase 

[in º] 

POS 
value 

Mean 
(SD) 

surrogate 

POS value 

p 

1 48 
404 

(23) 

-180 

(79) 
48 

521 

(82) 

169 

(75) 
117 -11 <.001 

0.061 

(0.064) 
.94 

2 48 
454 

(43) 

-165 

(78) 
48 

615 

(91) 

176 

(75) 
161 -18 0.002 

0.052 

(0.059) 
.86 

3 48 
397 

(30) 

56 

(74) 
48 

522 

(63) 

128 

(75) 
125 72 0.056 

0.055 

(0.062) 
.36 

4 48 
442 

(39) 

-20 

(78) 
48 

604 

(82) 

16 

(77) 
162 35 0.007 

0.076 

(0.074) 
.85 

5 48 
420 

(33) 

-172 

(75) 
48 

552 

(99) 

25 

(77) 
133 -157 0.192 

0.125 

(0.092) 
.22 

6 48 
396 

(31) 

143 

(71) 
48 

527 

(80) 

-169 

(78) 
131 48 0.020 

0.035 

(0.043) 
.48 

7 48 
516 

(52) 

-147 

(71) 
48 

697 

(105) 

138 

(78) 
182 -75 0.042 

0.038 

(0.048) 
.32 

8 48 
408 

(34) 

-108 

(75) 
48 

536 

(74) 

-179 

(76) 
128 -71 0.047 

0.055 

(0.061) 
.41 

9 48 
382 

(28) 

172 

(72) 
48 

488 

(59) 

86 

(77) 
106 -86 0.066 

0.046 

(0.055) 
.26 

10 48 
435 

(34) 

-83 

(74) 
48 

589 

(116) 

17 

(71) 
154 -67 0.064 

0.035 

(0.046) 
.18 

11 48 406 -27 48 518 -122 112 -95 0.106 0.060 .20 
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(32) (74) (65) (74) (0.067) 

12 48 
384 

(32) 

-150 

(77) 
48 

499 

(76) 

163 

(72) 
115 -47 0.022 

0.031 

(0.041) 
.42 

Mean 
(SD) 

48 
420 

(38) 
- 48 

556 

(60) 
- 

135 

(24) 

-43 

(57) 
0.052 

0.056 

(0.066) 
.37 
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SUPPLEMENTARY FIGURE 16. Individual rose plot of the phase 
distribution at stimulus onset for valid-burst trials [in degrees]. Individual rose 
plot of phases for all trials for each participant. Each bin corresponds to 30º. 
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SUPPLEMENTARY FIGURE 17. Individual rose plot of the phase 
distribution at stimulus onset for valid-burst trials [in degrees]. Individual rose 
plot of phases for fast (in green) and slow (in red) trials for each participant. Each 
bin denotes 30º. 
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EXPLORATORY ANALYSIS: Exclusion of trials due to power criterion 

SUPPLEMENTARY TABLE 15. Individual number of excluded trials. For 
each participant, it is reported the total number of trials delivered, the sum of all the 
trials excluded for not satisfying the criteria of the stud (including the percentage; 
%), the number of trials excluded for reaction time (RTs), the number of trials 
excluded for not satisfying the power threshold criterion, and the number of trials 
excluded for not satisfying the artifact threshold criterion. The difference between 
the number of all trials and the number of excluded trials is the number of valid 
trials (N = 240). 

Part. 
No. all 
trials 

All RT Power Artifact 

No. excl. 
trials 

% excl. 
trials 

No.  

excl. 

trials 

% 
excl. 

trials 

No. excl. 
trials 

% 
excl. 

trials 

No. excl. 
trials 

% 
excl. 

trials 

1 760 520 68% 34 4% 462 61% 24 3% 

2 738 498 67% 40 5% 361 49% 97 13% 

3 580 340 59% 1 0% 308 53% 31 5% 

4 574 334 58% 39 7% 272 47% 23 4% 

5 616 376 61% 23 4% 318 52% 35 6% 

6 588 348 59% 6 1% 298 51% 44 7% 

7 571 331 58% 59 10% 227 40% 45 8% 

8 669 429 64% 9 1% 404 60% 16 2% 

9 725 485 67% 63 9% 372 51% 50 7% 

10 724 484 67% 34 5% 375 52% 75 10% 

11 565 325 58% 6 1% 259 46% 60 11% 

12 741 501 68% 17 2% 473 64% 11 1% 

Mean 

(SD) 
654 (79) 

414 

(79) 

63% 

(4%) 

28 

(21) 

4% 

(3%) 

344 

(78) 

52% 

(7%) 

43 

(25) 

7% 

(4%) 
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SUPPLEMENTARY TABLE 16. Individual IFoI amplitude, the number of 
excluded trials for burst and no-burst trials, and the mean (SD) percentage of 
data points above/below the threshold for burst and no-burst trials, 
respectively. For each participant, the amplitude [in dB] of the Individual 
Frequency of Interest (IFoI) at task using Oz-electrode is given with the number of 
trials excluded for power, and for burst and no-burst trials separately. 

Part. 

IFoI (task) 
amp. 

[in dB] 

No. excl. 
trials for 

power 

No.  

burst 

trials 

No.  

no-burst 

trials 

1 5.70 462 97 365 

2 2.97 361 204 157 

3 9.91 308 46 262 

4 11.26 272 61 211 

5 2.23 318 130 188 

6 2.00 298 140 158 

7 3.73 227 72 155 

8 5.36 404 155 249 

9 6.72 372 92 280 

10 2.18 375 251 124 

11 2.57 259 72 187 

12 6.78 473 69 404 

Mean 
(SD) 

5.12 

(3.11) 

344 

(78) 

116  

(63) 

220 

(77) 

 

In order to achieve the intended number of valid trials (n=240), we 
collected an average of 654 (SD = 79) responses per participant before 
filtering online according to preregistered values (see Methods section). 
On average per participant, 28 (SD = 21; 4%) trials were excluded for 
not satisfying the reaction time criterion, 344 (SD = 78; 52%) for not 
meeting the power threshold criterion, and 43 (SD = 25; 7%) because of 
the artefact criterion (see Supplementary Table 7 for more details). 
Note that the exclusion of trials proceeded in the sequential order 
artefact, then power, then RT criterion, and once a trial was dropped, 
no further checks were done on the remaining criteria.  
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We decided to pay a closer look to the average of 52% (SD = 7%) of 
trials (Supplementary Table 7) excluded for not satisfying the (no-
)burst power threshold criterion (see Trial validity criteria). To further 
explore the data, we selected the trials excluded for power criteria 
(which satisfied RT and artifact power criteria) and divided them into 
burst and no-burst categories. The mean number of trials excluded for 
power in burst trials was 116 (SD = 63; Max = 251; Min = 46), 
whereas in no-burst trials the mean number was 220 (SD = 77; Max = 
404; Min = 124) (Supplementary Table 8). Overall, 10 out of twelve 
participants excluded more trials in no-burst trials compared to burst 
trials. These results show that it was more difficult to detect non-
oscillatory activity during the task execution in comparison of 
detecting oscillatory burst activity in the EEG signal for most of the 
participants.  

We also checked for a putative relationship between the IFoI peak 
amplitude during task execution and the number of trials excluded for 
power in each condition. We thought that participants who had higher 
IFoI amplitude during the task would have a smaller number of trials 
excluded for finding bursts compared to no-bursts. On the other way 
around, participants who had lower IFoI amplitude would have less 
trials excluded for no-burst compared to burst trials. Supplementary 
Fig. 9 shows the individual IFoI amplitude during the task for burst 
(in red) and no-burst (in green) trials as a function of the number of 
trials excluded for power in each condition. With our hypothesis in 
mind, we performed a one-tailed Pearson correlation for burst (left-
tailed) and no-burst (right-tail) trials and found a significant correlation 
at group-level for both burst (ρ = -.62; p = .02) and no-burst (ρ = .51; 
p = <.05) trials. 

Overall, we can conclude that there was a difference in trial exclusion 
for power criteria depending on burst and no-burst trials for each 
participant, and the number of trials excluded for each condition was 
correlated with the IFoI amplitude during the task. 
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SUPPLEMENTARY FIGURE 18. Individual IFoI amplitude during the task 
for burst (in red) and no-burst (in green) trials as a function of the number of 
trials excluded for power in each condition. For each participant, the IFoI 
amplitude during the task (x-axis) presents two related values: number of excluded 
trials for not satisfying the burst-power condition (dots in red) and the no-burst 
condition (dots in green). Vertical lines between dots denote the pair of values for 
each participant. Solid lines denote the linear fit across participants for burst (in red) 
and no-burst (in green) trials. Group assess of Pearson correlation between IFoI 
amplitude and number of trials excluded for each participant for burst (left-tailed) 
and no-burst (right-tail). P-values denote significance in the Pearson correlation at 
group-level for burst (ρ = -.66; p = .01) and no-burst (ρ = .53; p = .04) trials. 
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ANNEX III - 

Using long-range α-phase coupling to 
determine the locus of spatial attention 

 

SUPPLEMENTARY FIGURE 19. Individual results of target-locked PLV 
index. Violin plots represent the phase-locking values (PLV) averaged over the pre-
target (-200 to 0 ms, t = 0 as target appearance) and post-target time window (200 to 
400 ms). Ipsilateral (FM-PL network and attended left; FM-PR and attended right) 
or contralateral (FM-PR network and attended left; FM-PL and attended right) 
scenarios are exhibited as either light grey or dark grey, respectively. *p < 0.05, **p 
< 0.01, ***p < 0.001.  
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SUPPLEMENTARY FIGURE 20. Individual results of upper-alpha cue-
locked PLV analysis. Violin plots represent the phase-locking values (PLV) 
averaged over the five time windows (500 to 700, 700 to 900, 1100 to 1300, and 
1300 to 1500 ms; t = 0 as cue appearance). Ipsilateral or contralateral scenarios are 
exhibited as either light grey or dark grey, respectively. *p < 0.05.  
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SUPPLEMENTARY FIGURE 21. Individual results of cue-locked 
exploratory PLV analysis. Differences in contra- to ipsilateral PLV are represented 
over frequencies (2.4 – 42 Hz in 16 logarithmic steps) as a percentage of change 
regarding the cross-frequency mean of each individual.   

  



 

230 

 

SUPPLEMENTARY FIGURE 22. Individual results of target-locked cross-
time PLV. Violin plots represent the phase-locking values (PLV) obtained by 
calculating PLV as consistency throughout the pre-target (-200 to 0 ms) and post-
target (200 to 400 ms) time windows. Ipsilateral or contralateral scenarios are 
exhibited as either light grey or dark grey, respectively.   
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SUPPLEMENTARY FIGURE 23. Individual results of lateralisation index. 
Violin plots represent the averaged lateralised index for attended left (light blue) and 
attended right trials (dark blue) over the cue-locked time window. Shaded plots 
represent lateralisation over time (mean ± SEM). Dots in the x-axis denoted the 
significant differences over time between attended left and right via a cluster-based 
permutation test. *p < 0.05, **p < 0.01, ***p < 0.001. 
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