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Abstract

Singing synthesis has seen a notable surge in popularity in the last decade and a half.
Music producers use this technology as an instrument, there is an audience for music
with synthetic vocals, and an entire range of cultural phenomena surrounding singing
synthesis has emerged. At the time of starting this work, the prevailing approaches for
singing synthesis were concatenative synthesis on the one hand, and hidden Markov
model synthesis on the other. Concatenative synthesis was state of the art in terms
of quality, but lacked flexibility due to being based on signal processing, heuristics
and carefully prepared data. By contrast, hidden Markov model synthesis is based on
data-drivenmachine learning, which brings a certain degree of flexibility, but was never
able to match the sound quality of concatenative synthesis. At the same time, the field
of text-to-speech started to shift towards powerful new deep learning models that have
shown to be able to combine high-quality results with a high degree of flexibility. In this
dissertation, we try to answer whether similar models can also live up to this potential
for singing synthesis. We also try to answer whether these approaches allow fast and
stable synthesis, qualities important for many real-world applications. Finally, we try to
answer whether the flexibility that the deep learning approaches offer allows creating
new voices with smaller amounts of data, and less effort (time, expert knowledge), which
is a notable bottleneck in older approaches. To this end, we propose a number of singing
synthesis models, and evaluate them, principally through listening tests. The first part of
this dissertation focuses onmodeling timbre, via autoregressive and non-autoregressive
models. The second part focuses on improving data efficiency through voice cloning,
reducing the voice creation effort by using a sequence-to-sequence mechanism that
requires fewer annotations, and a semi-supervised model which combines supervised
pre-trainingwith unsupervised training of a new target voice. Through our experiments,
we show deep learning methods can not only outperform the previous state of the art,
they can also allow for a significantly reduced voice creation effort. With our work
on these elemental problems in singing synthesis, we hope that future research can
advance the field further by focusing on topics such as expression, user control and
non-modal voice qualities.
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Resumen

La síntesis de canto ha visto un aumento notable en popularidad en la última déca-
da y media. Los productores de música utilizan esta tecnología como instrumento,
existe una audiencia para la música con voces sintéticas y ha surgido toda una gama
de fenómenos culturales en torno a la síntesis del canto. Al momento de comenzar
este trabajo, los enfoques principales para la síntesis de canto eran la síntesis conca-
tenativa por un lado y la síntesis basada en modelos ocultos de Márkov por el otro.
La síntesis concatenativa era estado del arte en términos de calidad, pero carecía de
flexibilidad debido a estar basado en el procesamiento de señales, heurísticas y datos
cuidadosamente preparados. Por el contrario, la síntesis basada en modelos ocultos de
Márkov se basa en el aprendizaje automático usando datos, lo que brinda cierto grado
de flexibilidad, pero nunca pudo igualar la calidad de sonido de la síntesis concatenativa.
Al mismo tiempo, el campo de «text-to-speech» comenzó a cambiar hacia nuevos y
poderosos modelos de «deep learning» que han demostrado ser capaces de combinar
resultados de alta calidad con un alto grado de flexibilidad. En esta tesis, tratamos
de responder si modelos similares también pueden estar a la altura de este potencial
para la síntesis de canto. También tratamos de responder si estos enfoques permiten
una síntesis rápida y estable, cualidades importantes para muchas aplicaciones del
mundo real. Finalmente, tratamos de responder si la flexibilidad que ofrece el «deep
learning» permite crear nuevas voces con cantidades más pequeñas de datos y menos
esfuerzo (tiempo, conocimiento experto), lo cual es un cuello de botella importante en
los enfoques previos. Para ello, proponemos una serie de modelos de síntesis de canto
y los evaluamos, principalmente a través de pruebas de escucha. La primera parte de
esta tesis se centra en el modelado del timbre, a través de modelos autorregresivos y
no autorregresivos. La segunda parte se centra en mejorar la eficiencia de los datos a
través de la clonación de voz, reduciendo el esfuerzo de creación de voz mediante el
uso de un mecanismo «sequence-to-sequence» que requiere menos anotaciones y un
modelo semisupervisado que combina un entrenamiento previo supervisado con un
entrenamiento no supervisado de la nueva voz deseada. A través de nuestros experimen-
tos, mostramos que los métodos de «deep learning» no solo pueden superar el estado
del arte anterior, sino que también pueden permitir un esfuerzo de creación de voz
significativamente reducido. Con nuestro trabajo sobre estos problemas elementales en
la síntesis del canto, esperamos que la investigación futura pueda avanzar más en el
campo centrándose en temas como la expresión, el control del usuario y las cualidades
de voz no modales.
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Resum

La síntesi del cant ha experimentat un notable augment de popularitat en l’última dècada
i mitja. Els productors musicals utilitzen aquesta tecnologia com a instrument, existeix
un públic interessat en la música amb veus sintètiques i ha sorgit tota una sèrie de
fenòmens culturals al voltant de la síntesi del cant. En el moment d’iniciar aquest treball,
els enfocaments predominants per a la síntesi del cant eren la síntesi concatenativa
d’una banda i la síntesi basada en els models ocults de Màrkov de l’altra. La síntesi
concatenativa era l’estat de l’art en termes de qualitat, peròmancada de flexibilitat perquè
es basa en el processament del senyal, l’heurística i les dades curosament preparades.
Per contra, la síntesi basada en models ocults deMàrkov es fonamenta en l’aprenentatge
automàtic a partir de dades, que aporta un cert grau de flexibilitat, però que mai no ha
igualat la qualitat de la síntesi concatenativa. Al mateix temps, el camp «text-to-speech»
va començar a canviar cap a nousmodels potents de «deep learning» que han demostrat
ser capaços de combinar resultats d’alta qualitat amb un alt grau de flexibilitat. En
aquesta tesi, intentem respondre si models similars també poden estar a l’altura d’aquest
potencial per a la síntesi del cant. També intentem respondre si aquests enfocaments
permeten una síntesi ràpida i estable, qualitats importants per a moltes aplicacions del
món real. Finalment, intentem respondre si la flexibilitat que ofereix el «deep learning»
permet crear noves veus emprant menors quantitats de dades i menys esforç (temps,
coneixement expert), que és un dels grans coll d’ampolla dels enfocaments anteriors. Per
a això, proposem una sèrie de models de síntesi de cant, i els avaluem, principalment
mitjançant proves auditives. La primera part d’aquesta tesi se centra en la modelització
del timbre, mitjançant models autoregressius i no autoregressius. La segona part se
centra amillorar l’eficiència de les dadesmitjançant la clonació de veu, reduint l’esforç de
creació de veu mitjançant l’ús d’un mecanisme «sequence-to-sequence» que requereix
menys anotacions, i un model semisupervisat que combina un entrenament previ
supervisat amb un entrenament no supervisat de la nova veu desitjada. A través dels
nostres experiments, mostrem que els mètodes de «deep learning» no només poden
superar l’estat de l’art anterior, sinó que alhora permeten un esforç de creació de veu
significativament reduït. Amb el nostre treball sobre aquests problemes elementals en
la síntesi del cant, esperem que properes investigacions puguin avançar encara més
centrant-se en temes com l’expressió, el control d’usuari i les qualitats de veu no modals.
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Introduction 1
SINGING SYNTHESIS, or singing voice synthesis, can be defined in general terms

as the task of artificially generating vocal sounds in the context of a musical
composition or performance. For this work, however, we will utilize a more

specific definition; here, we consider singing synthesis to be the task of modeling a
specific singer’s voice, in order to be able to generate a digital waveform corresponding
to any given symbolic score with lyrics. Ideally, the model would be able to render a
performance of the score that could pass as a recording of the original singer. This
task thus includes aspects of expressive interpretation of a musical score, as well as
the actual rendition of the acoustic signal. In this work, we will focus mostly on the
latter part, sometimes referred to as timbre modeling, although expression modeling
is also discussed to some extent, in order to present a full working system capable of
performing our task definition.

1.1 Motivation

As a musical instrument, the human singing voice is very interesting, complex and
challenging to model. Just from a signal perspective, its timbre includes linguistic
content corresponding to the lyrics, the singer’s identity, as well as dynamics and other
expressive aspects related to voice color. The voice signal is generally continuous, but
also includes obstruent phases, and can be voiced, unvoiced, have mixed voicing, or
be transient-like. Additionally, there are several non-modal phonation modes, which
include regular and irregular modulations, extremely low pitches, aspiration, and many
other phenomena. Additionally, from a more musical perspective, there is a myriad of
other factors at play, such as legatos, portamentos, ornaments, vibratos, and so on. Yet,
for all its complexity, nearly everyone has some degree of familiarity with the singing
voice. Even non-singers typically have a reasonable understanding of how the sounds
are produced and what expression the singer is trying to convey.

There is something almost magical about a machine convincingly performing a task
thought to be innately human, such as speaking emotionally or singing. While we

1



2 1 Introduction

are perhaps still quite a long way off from fully autonomous and indistinguishable-
from-real synthetic singing, this is a fascinating aspect of such technology for many
people.

One of the interesting things of research on singing synthesis is that it is a very multi-
disciplinary field. Singing synthesis lies on the intersection of many different scientific
and artistic areas; signal processing, speech processing, machine learning, music, and
also incorporating knowledge from fields such as phonology, physiology of the voice,
and studio engineering.

Advances in singing synthesis have the potential to have a notable cultural impact. In
the last decade or so, singing synthesis technology has seen a huge surge in popularity
with the advent of commercial software such as VOCALOID, and in particular the
virtual singer Hatsune Miku (depicted in Figure 1.1). These products have shown
that there is a demand from musicians to have access to such technology, as well as
an audience willing to consume music that includes synthetic singing, especially in
Japan and other East Asian countries. The cultural impact of such virtual singers has
extended well beyond just producing music with synthetic vocals. For instance, there
have been many highly popular “live” concerts, number one charted albums, many
videos with several tens of millions of views, video games, depictions of the characters
used in racing and spacecraft, and even a “marriage” to the virtual character. Arguably
more importantly, this technology and these characters have sparked countless artistic
endeavors and collaborations, for instance, people making music videos, writing lyrics,
producingmusic, “programming” vocals,making 3-dmodels, drawing novel art, writing
stories, and so on. We can speculate that any notable advancement of singing synthesis
technologies, will also have a positive effect on all of these surrounding cultural aspects.
Additionally, improvements in singing synthesis may also bring a more widespread
acceptance of synthetic vocals in music to the Western world.

One of the principal applications of singing synthesis is as a tool for music producers,
allowing them to create music with vocals using little more than a desktop computer.
This opens up using vocals with any lyrics to people who do not sing themselves, want
to use a voice with a timbre different from their own, or do not have access to other
singers. In cases where virtual singers becomewell known, it allows unknown producers
to have access to a famous (virtual) singer. In some cases it may even be possible to
create a model using recordings of a deceased singing, allowing new material to be
created. Using virtual singers allows for easier collaboration and remixing. For singers,
being able to “share” their voice with other musicians, or potentially “freeze” their voice
as they age, can be interesting possibilities.

Besides the application as a tool or instrument for musicians, there are many other
possible applications of this kind of technology. Some such applications include social
media apps, television and film, games, musical messaging, automatic sonification of
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Figure 1.1:Hatsune Miku is a Japanese voicebank
for Yamaha’s VOCALOID software. Since its re-
lease in 2007, it has grown to one of the most
famous virtual singers. Thanks to its incredible
success, it provides a clear example of the poten-
tial cultural impact that this kind of application
of singing synthesis technologies can have. De-
picted here is the official moe anthropomorphism
of HatsuneMiku. [By Crypton FutureMedia, Inc.,
licensed under CC BY-NC 3.0.]

score repositories, application in karaoke, automatic translation of songs into different
languages, marketing applications, application in singer training, choir rehearsal, and
so on. Of course, nearly all such applications will require additional research to adapt
the technology to the specific task at hand.

Lastly, on a personal note, I have been involved in singing synthesis for almost two
decades, including collaborating on some of the most prominent applications of this
technology, such as the VOCALOID software. I think this gives me a good understand-
ing of not only many of the technical aspects of this research area, but also some of the
cultural context of this technology. Moreover, I have witnessed a number of different
“generations” of technology, each opening up more possibilities and getting closer to
the goal of truly natural synthesis. I think therefore it only makes sense for me to focus
on this topic for a doctoral dissertation.

1.2 Opportunities and challenges

At the time of starting the work contained in this thesis, singing research had already
been researched for several decades. The technology had matured enough to be in-
tegrated into commercial software, and the sound quality was already mostly good
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enough to be included in professionally produced music. At the time, the two prevail-
ing approaches were concatenative synthesis (see §2.3.1) and hidden Markov model
(HMM)-based synthesis (see §2.3.2).

Exhaustively listing all remaining challenges in singing synthesis is difficult, as appli-
cations and user expectations are constantly shifting. However, at the time of starting
this work, there were a number of areas clearly lacking. Firstly, the sound quality of
singing synthesizers is something that seems to remain challenging. While techniques
such as concatenative synthesis are able to obtain results that are good enough for
many applications, there is still a notable gap in quality compared to natural singing.
This is especially true for languages that are more complicated in terms of phonetics,
such as English, where concatenating diphones tends to fall short. Another area that
nearly always leaves room for improvement is musical expression. For instance, pitch
generation based on heuristic rules tends to lack certain imperfections that make the
performance sound expressive and truly natural. Related to expression is the area of
controllability. It is often not enough to generate singing voice completely automatically,
but we typically require some amount of user control. Similarly, requiring so much
detailed control that creating good sounding results takes an excessive effort is also
not desirable, and a notable issue with some of the current commercially available
singing synthesizers. Some aspects of the singing voice are arguably not essential for
generating basic singing synthesis, but are still important and frequently used in real
singing. These include non-modal voice types, such as breathy voices, rough voices,
growls, vocal fry, and so on. Finally, one major challenge in singing synthesis is the
effort required to create a new voice. For instance, for concatenative synthesis, creating
a new voice may take an expert several months to complete.

Coinciding with the start of this work, text-to-speech (TTS) went through something of
a paradigm shift thanks to a new wave of powerful deep learning models. In a relatively
short time, these models have arguably advanced the field more than several decades of
research that came before them, and have now reached a point where some systems are
almost indistinguishable from human speech (see §2.4.2). Not only that, but this type of
model is much more flexible than previous approaches, allowing them to be extended
more easily. As, at the start of this work, these models had not yet been applied to
singing synthesis, this provided a clear opportunity to try to apply similar approaches
in order to advance the field of singing synthesis as well.

1.3 Scope and objectives

Working on all remaining challenges in singing synthesis within this thesis is not
feasible, and therefore we must limit its scope somewhat. The first major limitation
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is to mostly focus on modeling timbre. This means aspects such as pitch and timing
are not the principal focus of this work. One significant advantage of focusing only on
a single aspect of the voice is that this greatly simplifies evaluation, e.g., comparing
two examples where only timbre is different is much easier than two examples where
timbre, pitch and timing are all potentially different. That said, we do provide some
work on a “complete” model of the singing voice, which can synthesize vocals from a
score with lyrics. For modeling timbre, we propose a number of different deep learning
models, each with different weaknesses and strengths. Here, the main objective is to
obtain models able to beat the then state of the art in terms of synthesis quality, and at
the same time provide great flexibility. We also consider aspects important for practical
application, such as efficient and stable synthesis.

Besides principally focusing on modeling timbre, out of all the remaining challenges in
singing synthesis, we limit ourselves to researching ways to make voice creation require
less effort and be more data efficient. Coming from a background in concatenative
synthesis, these issues often formed a limiting factor for practical application. For
instance, to create a new voice segmenting recordings into diphones, selecting best
occurrences, editing audio, and so on, can take months of highly skilled work. Similarly,
exactly what to record in order to obtain the ideal set of diphones is very non-trivial,
especially for “phonetically complicated” languages that have a lot of coarticulation,
such as English. Thus, if we can create a system where we can create new voices from
(virtually) any kind of recording of natural singing and not have to do a lot of manual
annotations, this would radically reduce the voice creation effort. Similarly, for many
applications having to record several hours of a professional singer in order to create a
new voice is not feasible. Thus, methods which increase the data efficiency of models
are very welcome. Unlike older methods, such as concatenative synthesis, which have
very rigid data requirements, we feel that these are areas where deep learning methods
can potentially really shine.

1.4 Thesis outline

❧ Chapter 2 “Background”: Background information to contextualize the thesis
work, including some early history of singing synthesis (§2.1), a taxonomy of
different kinds of singing synthesizers (§2.2), an overview of traditional and
modern approaches to text-to-speech and singing synthesis (§2.3 and §2.4), and
a working model of the singing voice (§2.5). This chapter does not have to be
read to understand the main body of the dissertation, although it may be helpful
to introduce and contextualize the topic.
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❧ Chapter 3 “Methodology”: This chapter provides some basic building blocks on
which the main body of the dissertation is built. In §3.1, we discuss how we can
structure singing synthesizers, common signal processing blocks, and typical
acoustic and control features. Datasets for singing synthesis are discussed in §3.2,
including available public datasets, and how to record and annotate new ones.
Evaluation of singing synthesis models is discussed in §3.3. Especially readers
familiar with the subject may not need to read this chapter in its entirety. Instead,
they may follow references to this section from the main body of this dissertation
as is needed.

❧ Part I “Modeling timbre” (Chapters 4–6): This part of the thesis talks about dif-
ferent ways of modeling timbre. First, we discuss an autoregressive model with a
focus on comparing with more traditional methods that were the then state of the
art, in particular by using datasets that are suitable for all of these systems (§4.2).
As a second step, go beyond the constraints imposed by traditional methods,
and train a complete system on natural singing, which can generate singing voice
from a score with lyrics (§4.3). Next, we consider a non-autoregressive model,
which offers different strengths and weaknesses compared to the autoregressive
models, and employs self-attention to allow more coherent modeling of timbre
over time (Chapter 5). Finally, we discuss a fast, non-autoregressive method of
generating waveforms from the intermediate acoustic features generated by the
previously discussed timbre models (Chapter 6).

❧ Part II “Data-efficient and reduced effort voice creation” (Chapters 7–9): This
part of the thesis talks about creating new voices in ways that require a relatively
small amount of data and less effort, in particular in terms of manual or semi-
automatic annotations. First, we consider applying voice cloning techniques to
singing synthesis in order to create voices from small amounts of target data
(Chapter 7). Next, we adapt the previously described non-autoregressive model
based on self-attention to behave like a sequence-to-sequence model, where
phoneme timings are inferred from note onsets only, thus notably reducing the
annotation effort required to create a new voice (Chapter 8). Finally, we discuss
a semi-supervised system that first uses a supervised pre-training step, but then
allows us to create new voices in a completely unsupervised manner, that is, from
audio only (Chapter 9).

❧ Chapter 10 “Conclusions”: Here we summarize and conclude our work, provide
a list of the most important contributions of our work, and discuss some possible
future avenues of research.
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IN ORDER to contextualize the topic of singing synthesis, we will first provide some

background for this thesis. This background includes some early history of singing
synthesis (§2.1), a taxonomy of types of singing synthesizers (§2.2), an overview of

some traditional and modern approaches to singing synthesis (§2.3 and §2.4), and a
working model of the singing voice (§2.5).

When reviewing past and present approaches, we cannot consider singing synthesis in
isolation. In particular, the field of text-to-speech (TTS) is closely related, andmust also
be taken into account. In fact, one could argue that many of the advances in singing
synthesis have been driven by advances in TTS. Therefore, we will discuss relevant
works on TTS, as well as singing synthesis.

2.1 Early history of singing synthesis

Singing synthesis has a long history, much of which in parallel with the advances in
speech synthesis. Joseph Faber’s mechanical speech synthesizer, Euphonia (depicted
in Figure 2.1), was reported to have sung “God Save The Queen” at its 1846 exhibition
in The Egyptian Hall, London1. Anecdotally, this exhibition is said to have made a
great impression on Alexander Melville Bell, father of Alexander Graham Bell, inventor
of the telephone and founder of the American Telephone and Telegraph Company
(AT&T). Almost a century later, it is precisely AT&T’s Bell Labs, whowould demonstrate
their Voder (Voice Operating DEmonstratoR) based on Homer Dudley’s work on
the vocoder, at the 1939 and 1940 New York World’s Fair (depicted in Figure 2.2).
During these exhibitions, a skilled operator would make the electrical machine sing
“Auld Lang Syne”, recordings of which are still available2. A couple of decades later, at this
same Bell Labs, an IBM 704 mainframe became the first computer to sing. This earliest
known recording of digital singing synthesis was the song “Daisy Bell (Bicycle Built for

1Article “The Speaking Machine” in Punch, or the London Charivari, Volume 11 (July – December 1846),
published at The Office, London, 1846.

2Smithsonian Speech Synthesis History Project (SSSHP) 1986–2002, tape 51, “AT&T Bell Labs Voder
from world’s fair exhibits (New York, San Francisco) 1939–40 era”.

7
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Figure 2.1: An illustration of Joseph Faber’s Eupho-
nia talking machine. Adapted from a poster advertis-
ing an exhibition by B. P. Barnum during 1873 in his
museum. [Public domain.]

Two)”3, and was programmed by Max Mathews (musical accompaniment), John Kelly
and Carol Lochbaum (vocals). Science fiction author Arthur C. Clarke witnessed this
remarkable demonstration and was so impressed that he famously incorporated it a
climatic scene of the novel and screenplay for “2001: A Space Odyssey”, where the HAL
9000 computer sings “Daisy” during its gradual deactivation.

Up to this point in time, most of these early examples of singing synthesis have been in
the context of more lighthearted demonstrations of speech synthesis systems. However,
building on these works, soon also more rigorous research into synthesis of the singing
voice started. In particular, the work by Sundberg and colleagues at the KTH is an
important body of work in this direction (an overview of which is available in Sundberg,
2006). In the ’70s, Gunnar Fant’s OVE (Orator Vox Electrica) speech synthesizer
was modified by Jan Gauffin to feature continuous controls, which resulted in the
analogMusic and Singing Synthesis Equipment (MUSSE) singing synthesizer (Larsson,
1977). A later digital version of this system, MUSSE DIG (Carlsson-Berndtsson and
Sundberg, 1993), would include computer control which allowed precise studying
of voice parameters, using analysis by synthesis methods (Sundberg, 1989). These
studies resulted in a set of rules related to acoustic properties of the voice, but also the
performance of the singer. Such an approach obtained excellent results for the time; a
synthetic rendition of one of the Vocalise pieces by Panofka presented at a symposium4

in 1977 is said to have been the only piece to receive spontaneous applause from the
3Various artists – “Music From Mathematics”, Decca, DL 79103, USA, 1962. Track A3, Max Mathews –
“Bicycle Built for Two”.

4IRCAM symposium on the Psychoacoustics of Music, Paris, France, 11–13 July, 1977. The presented
piece was a Vocalise from Heinrich Panofka’s The Art Of Singing: 24 Vocalises, Opus 81, with live piano
accompaniment.
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Figure 2.2: Crowds gather at the 1940 New York World’s Fair to see Bell Labs’ Voder exhibit.
This exhibit of some of the earliest works in speech and singing synthesis is reported to have
received over 5,000,000 visitors. [Taken from Bell Telephone Quarterly Vol. XIX, January 1940,
p. 65. Public domain.]

audience. A notable limitation of these early works is the lack of consonants, although
this was later partially addressed (Zera et al., 1984).

Some other notable early performances and pieces involving singing synthesis include
“Speech Songs” (Dodge, 1989), a duet between Titze and his synthesizer embodied as
Pavarobotti singing Pucccini’s “Nessun Dorma” (Titze and Story, 1993), and the creation
of a virtual Castrato singer via morphing techniques for a musical film about Farinelli5
(Depalle et al., 1994).

2.2 Acoustic, articulatory and performative models

Defining a broad taxonomy of approaches in singing synthesis will help focus the
review of existing works on the approaches most relevant to this dissertation. To this
end, we classify models as either acoustic or articulatory, with an additional qualifier of
5The 1994 film “Farinelli”, about the celebrated 18th century Italian castrato singer Farinelli, by French

director Gérard Corbiau.
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whether they are performative. Roughly following Cook (1996), acoustic approaches
model the acoustic voice signal directly or in some perceptually relevant representation,
whereas articulatory approaches model the physical (physiological) voice production
system. Models that are considered performative focus on the real-time playability of
the synthesizer as a musical instrument. Such models are not directly comparable to
the non-performative models, because the focus on performative aspects generally has
negative consequences for other aspects of the model, such as sound quality or singing
lyrics exactly. In this work, we focus on non-performative, acoustic models, but will
discuss some of the relevant works in each group next for completeness.

Acoustic models can be seen as descendants of Dudley’s early work on the vocoder
(Dudley, 1940). This class of models is sometimes also called spectral models, but
this is a bit of a misnomer as these models may use any given acoustic representation
of the voice signal, including time-domain and other non-spectral representations.
As a rule of thumb, these models tend to model a specific speaker’s voice, and often
involve both an analysis and synthesis component. As with the articulatory models,
these models may contain some physiological motivation or correspondence, but this
is not the main focus of the model. Some early approaches of this kind include FM
synthesis (Chowning, 1989), FOF (from the french “Formes d’Ondes Formantiques”)
in the Chant synthesizer (Rodet, 1984), and other FOF-like voice pulse models (Kaegi
and Tempelaars, 1978). Modern approaches to acoustic models are discussed in §2.3.1,
§2.3.2 and §2.4.

Articulatory models, sometimes called physical models, can be seen as descendants of
Kelly and Lochbaum’s work on the acoustic tube (Kelly and Lochbaum, 1962). Some
works in this area include Kob (2002), Birkholz (2007), and Kröger and Birkholz (2009).
This more direct, physiological modeling of the voice production system, however,
has a number of drawbacks. The (physiological) controls of this kind of system are
generally not intuitive, and make generating realistic results difficult. Often there is a
greater focus on vowels than consonants. Often the model is a general voice model,
not modeling a specific singer’s voice. Ultimately, this kind of model has difficulty
competing with acoustic approaches in terms of sound quality and realism, and is
thus mainly interesting for studying the voice production system itself, or in certain
performative applications where sound quality is less of a concern.

Performative models, which can be either acoustic or articulatory, focus on real-time
playability as a musical instrument. Often the interfaces used resemble some of the
very earliest works on singing synthesis, prior to computer control, such as the Eu-
phonia and the Voder (depicted in Figure 2.3). A distinction has to be made between
performative systems and systems which are merely real-time, as these lack study of the
musical interaction with the system. Perhaps the most prominent performative singing
synthesizer is Cantor Digitalis by Christophe d’Alessandro’s group (e.g., Feugère et al.,
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Figure 2.3: A photograph of the
controls of Bell Labs’ Voder speech
and singing synthesizer. The operator
would manually form each syllable us-
ing complex button sequences. It is
reported that it takes about a year of
practice to be able to produce fluid
speech. [Public domain.]

2017). This system uses a two-handed, tablet-based interface. One hand controls a point
on a 2-d vowel space, the other hand controls pitch and other parameters. Being a
performative system, there have been many concerts involving this system, often with
groups of musicians all playing the instrument.

2.3 Traditional approaches

Wewill first review some traditional approaches to TTS and singing synthesis. Here, we
consider approaches “traditional” when they use methods predating the use of neural
networks, which is the current prevailing paradigm. At the time of starting this work,
traditional methods were still widely considered state of the art.

2.3.1 Concatenative synthesis

The basic idea behind concatenative synthesis is to take short samples of recorded sound
from an inventory, and then generating a new sequence by rearranging, transforming
and concatenating these samples. In TTS and singing synthesis there are two commonly
used forms; diphone synthesis and unit selection. In diphone synthesis, each sample
is a diphone, the combination of two halfphones, capturing the transition from one
sound to the next. Generally, the inventory will contain only a single entry for each
diphone of the language in this case. In unit selection, each sample typically is a variable-
length unit, and the inventory will generally be much larger with potentially many
variants of the same unit in different linguistic contexts. For TTS, unit selection quickly
surpassed diphone synthesis, as the units can contain part of prosody and a wider range
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of phonetic contexts (Hunt and Black, 1996; Black and Taylor, 1997). For a long time,
such systems have been state of the art. Especially in domain-specific applications where
the inventory of units can be recorded with a specific task in mind, these methods can
have excellent results. For singing synthesis, diphone synthesis has been traditionally
more popular, as recording large inventories with a high degree of coherence tends to
be more problematic for singing than for speech. However, some ideas of unit selection
have also been incorporated in some concatenative singing synthesis systems.

The basic steps involved in concatenative singing synthesis are as follows; (i) select
units from the inventory, often by scoring candidates and using Dynamic Program-
ming techniques to find the optimal sequence, (ii) transform units to match the target
(pitch shifting, time scaling, etc.), and (iii) concatenate units, by smoothing timbre
discontinuities and ensuring phases are continuous. An overview of this process is
depicted in Figure 2.4. In this simplified schema we assume a target, e.g., a sequence of
phonemes with durations and F0, to be given as input. However, there are typically also
generated from an input score with lyrics as part of the system. The performance of
this kind of system tends to be highly dependent on careful tuning of various heuristics
and meticulous design of the signal processing algorithms involved.

Another key element in the success of concatenative systems is the preparation of the
inventory, sometimes called the database or voicebank. Typically, specialized recording
scripts have to be prepared to ensure coverage of all required units, as the system has
no capacity to generalize. In single inventory systems, in particular, special care must
be taken from which phonetic contexts the units are extracted, as certain contexts can
introduce undesirable coarticulation effects, such as nasalization of vowels. Likewise,
recordings generally have to be done with great care. Once the material has been
recorded, it must be annotated with highly accurate phoneme or diphone boundaries,
typically requiringmanual correction. All samplesmust be carefully inspected for things
like noises or irregular pronunciations, finding replacements for those not suitable.
Overall, this tends to be a lengthy, tedious process. More information on this topic can
be found in §3.2.

In concatenative singing synthesis, using an inventory derived from natural singing (i.e.,
expressive songs) generally has poor results because the different samples will come
from different musical contexts and lack coherence. In such cases, there will be very
noticeable “patchwork” artifacts. One workaround for this issue is to record what we call
pseudo singing. Pseudo singing is short phrases sung in a consistent song-like timbre,
at a constant pitch, and often with a controlled cadence and relatively clear articulation
(see §3.2.2). Recording several constant pitches of pseudo singing allows covering
timbres corresponding to a wider pitch range. An important negative consequence of
this approach is that pseudo singing is essentially lacking any expression, and therefore
this data cannot be used to generate expressive pitch. This means that expression has
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Figure 2.4: A schematic view of concatenative synthesis. The top of the figure shows (part
of ) the diphone inventory of the voice, with different colors indicating different pitches. To
the left of the diphone inventory, a source utterance (recording with phoneme and diphone
segmentation) is shown. From this utterance, the C-4 [a-s] diphone is included in the inventory.
At synthesis, from the score (notes with lyrics) typically an F0 sequence is generated together
with a sequence of timed phonemes. The next step is to select a sequence of diphones from the
inventory following certain criteria, and to transform the samples to match target pitch and
durations. Finally, diphones are concatenated to produce a continuous output waveform.
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to come from another source, potentially causing a lack of coherence between timbre
and expression.

Some early works on diphone concatenative singing synthesis include Bonada et al.
(2001) and Uneson (2002), which were later built upon, resulting in more sophisticated
systems such as Bonada and Serra (2007), and more recently Ardaillon (2017) (chapter
3, pp. 63–84). The winner of the 2016 Singing Synthesis Challenge, used a concatena-
tive approach closer to unit selection (Bonada et al., 2016), albeit with a modest size
inventory. It is also worth noting that the to-date most widely used commercial singing
synthesizer, VOCALOID, is also based on concatenative synthesis (Kenmochi and
Ohshita, 2007; Bonada et al., 2006). All of the listed systems tend to use external models
for generating F0, for instance using unit selection (Umbert et al., 2013; Umbert et al.,
2015), or parametric models (Ardaillon et al., 2016).

The main advantage of concatenative methods for singing synthesis is that quality can
be very good. Thus, this approach was widely considered state of the art for almost
two decades, until recent modern methods surpassed it. Especially in cases where the
selected unit is close to the target in terms of pitch, duration and phonetic context,
only minor transformations have to be applied and thus the sound quality will be
close to that of a recording. In practice, this is mostly dependent on the quality of the
recordings and their annotations, which resulted in voice creation often taking several
months of work. The language of the voice also plays an important role in the quality
of the results. Languages with few, highly contrasted vowels and less frequent use of
consonant clusters tend to work better – for instance, Japanese or Spanish is notably
easier than English. Another advantage is that artifacts in the voice can often be easily
corrected, at least as far as allowed by the source material. While this can take time, it
can be important for productization and something that the more “black box” machine
learning approaches generally do not offer.

On the other hand, the main downside of such systems is that they are very inflexible
and significantly improving them takes a huge amount of effort and can quickly become
impractical. For instance, as these systems do not generalize, covering several voice
qualities (e.g., a “soft” or “powerful” voice type) requires recording the full inventory
of samples again, at several pitches. Even assuming that the required annotations could
be obtained automatically with sufficient accuracy, just the sheer volume of recordings
quickly becomes prohibitive. Some proposed approaches to widen the range of voice
qualities based on signal processing or morphing, e.g., Bonada and Blaauw (2013), do
allow to work around this problem to some degree, but often have difficulty delivering
very realistic, dynamic results. The practical requirement of using pseudo singing
recordings is also a very important limiting factor as it forces a disconnect between the
kind of voice used to build the system and the kind of voice we wish to generate. For
instance, capturing natural variations in timbre or coarticulation effects in their natural
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context becomes difficult. The single inventory diphone approach also has notable
difficulty reproducing natural pronunciation of phonetically more complex languages
such as English. This is largely a result of the rigidity of such systems – for instance,
obtaining highly accurate phonetic transcription for English recordings can already be
very difficult, but such discrepancies cause artifacts in diphone systems, while machine
learning approaches can handle such issues much more elegantly.

2.3.2 Hidden Markov model synthesis

A hidden Markov model (HMM) is a probabilistic generative model for modeling time
series, assuming there are a number of discrete, hidden states underlying the observed
data to be modeled. For an observed time series, 𝐱 = {𝑥1, 𝑥2, … , 𝑥𝑇}, there is a
corresponding state sequence, 𝐪 = {𝑞1, 𝑞2, … , 𝑞𝑇}, with each state index, 1 ≤ 𝑞 ≤ 𝑁,
and 𝑁 the number of discrete states. The model then defines the joint probability,

𝑝(𝐱, 𝐪) = 𝑝(𝑥1 | 𝑞1)𝑝(𝑞1)
𝑇

∏
𝑡=2

𝑝(𝑥𝑡 | 𝑞𝑡)𝑝(𝑞𝑡 | 𝑞𝑡−1). (2.1)

Here, 𝑝(𝑞𝑡 | 𝑞𝑡−1), is the state transition probabilitymatrix, which is speech applications
is often restricted to a left-to-right topology with self-loops, meaning only repeating
the current state or moving to the next state index is allowed. The output probability
for a given timestep, 𝑝(𝑥𝑡 | 𝑞𝑡), can be defined to be any given distribution, in speech
applications often a continuous distribution such as Gaussian or mixture of Gaussians
(MoG). The initial state probability, 𝑝(𝑞1), defines the probability of starting in a
specific state, in our case simply 𝑝(𝑞1 = 1) = 1. Learning the parameters of such a
model given observations is typically done using expectation-maximization. A more
formal and thorough derivation of this model is given in Rabiner (1989), instead we
will focus on a brief overview of the use of this kind of model in TTS and singing
synthesis.

In speech applications, each phoneme is modeled using an HMM, with a fixed number
of states, e.g., typically 5 states per phoneme. Conceptually, states thus correspond to
different time segments within a phoneme, e.g., its stationary part, transition parts
from previous and to next phoneme, etc. Phonemes are typically not modeled in
isolation, as they are heavily dependent on their phonetic context, thus we use so-
called context-dependent models. For instance, a model can correspond to the central
phoneme within a specific triphone or pentaphone context. For singing synthesis,
the context also includes musical information related to note pitch, duration, etc. As
these contexts become richer, the number of occurrences of each context within the
dataset will go towards one, making robust statistical parameter estimation difficult. To
mitigate this problem and to allow the model to generalize to unseen contexts, similar
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contexts are clustered using a decision tree. In this tree, the decisions correspond to a
set of “handcrafted” questions, e.g., “Is the previous phoneme voiced?”, “Is the central
phoneme a plosive?”, “Is the next phoneme an [s]?”, and so on. As the clustering is
typically done independently for each state, it is also referred to as state tying. An
overview of this model is depicted in Figure 2.5.

The observed time series 𝐱 to be modeled typically tends to be some acoustic features,
such as mel-generalized coefficient (MGC) or F0 (see §3.1.3). These are modeled using
an output probability distribution, typically a MoG, also known as Gaussian mixture
model (GMM). While in speech synthesis the usage of a single Gaussian is more
common, the term HMM-GMM is still often used as HMMs first became prominent
in speech recognition where multiple mixture components is an important aspect.
Multivariate output distributions typically use diagonal covariance, thus not modeling
the correlation between feature dimensions within a timestep. Likewise, the probability
distribution of a given timestep is assumed to be independent of previous timesteps.

In TTS and singing synthesis, the actual model used is a hidden semi-Markov model
(HSMM), where the duration of each state is explicitly modeled using a duration
model. In a standard HMM, the state duration probability is implicitly modeled using a
geometric distribution6, which is a very poor fit to the duration of phonemes in speech
or singing (and thus the same applies to states within a phoneme). Typically, a Gaussian
state durationmodel is used instead. A related issue is that the statistics within a state are
constant, while the acoustic features of speech are typically continuously and smoothly
varying. A common approach to mitigate this disconnect between the model and the
signal, is to model not only the static features, but also delta and delta-delta features.
During synthesis a maximum output probability parameter generation (MOPPG)
algorithm (Tokuda et al., 2000) then generates a (mostly locally) smoothed output
trajectory. As a typical problem of HMM-based synthesis is oversmoothing, often a
parameter generation algorithm considering global variance (GV) is used (Toda and
Tokuda, 2007). Such algorithms try to artificially recover the per-utterance variance of
the training set during synthesis.

The acoustic (vocoder) featuresmodeled generally consist ofmultiple components, such
as harmonic, aperiodic and F0 components (see §3.1.3). To model these components, a
multi-stream model is used, where each component is modeled using a separate model.
Typically, these models are completely independent. The F0 stream has a particular
issue as it has to model both voiced and unvoiced regions. One solution to this issue is
to use a so-called multi-space density that combines a Bernoulli distribution for the

6While the probability of a state transition is constant w.r.t. the timestep, the probability of a specific
state duration depends on the duration and thus timestep. E.g., in a coin flip, the probability of getting
heads twice in a row is higher than the probability of getting heads twelve times in a row, while the
probability of getting heads or tails is constant at each flip.
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Figure 2.5: Schematic overview of hidden semi-Markov model (HSMM)-based singing synthe-
sis. On the top is an input sequence of phonemes. Each phoneme is modeled by a fixed number
of states (here three), with a certain duration obtained from the Gaussian state duration model
(bottom-right). The parameters for each state, here Gaussian mean and variance (𝜇 and 𝜎2),
are obtained from a decision tree (top-right), which considers phonetic context, e.g., here it
may be the third state of the [a] phoneme in the triphone context [m-a-s]. Finally, from the
predicted per-state static and delta, delta-delta parameters, the output continuous parameter is
generated (bottom-left). [Adapted from HTS Slides 2.3 by the HTS Working Group, licensed
under CC BY 3.0.]

probability of a state being voiced or unvoiced, with a Gaussian distribution to model
the probability of the log F0 value within a state when voiced (Tokuda et al., 1999).

The training process of HMMs tends to be rather convoluted, as direct learning
of the model parameters with good results is generally not possible. Typically,
an iterative approach is used, briefly; (i) start with context-independent models,
initialized from scratch or using some initial phonetic segmentation, (ii) re-estimate
context-independent models embedded in the sequence of phoneme models,
(iii) clone context-independent models to context-dependent models, (iv) embedded
re-estimation of context-dependent models, (v) context clustering, (vi) embedded
re-estimation, (vii) untying context clusters, (viii) embedded re-estimation, (ix) second
context clustering, and finally (x) embedded re-estimation.

Using HMMs for singing synthesis was first proposed by Saino et al. (2006). The Sinsy
system (Oura et al., 2010) developed at the Nagoya Institute of Technology (Nitech), is
a complete and refined singing synthesis system, which includes data augmentation
using pitch shifting (Mase et al., 2010), and later pitch-adaptive training (Oura et al.,
2012). Initially designed for the Japanese language, it was later also extended to English
(Nakamura et al., 2014). Multi-speaker models have been also been explored (Shirota
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et al., 2014). Other groups also worked on similar systems, such as Pucher et al. (2016)
for German operatic singing, and Li and Wang (2016) for Mandarin Chinese singing.

The main advantage of this approach is that it can jointly model timbre and expression
from natural singing. Unlike concatenativemethods, which typically require specialized
pseudo singing recordings (see §2.3.1). It is a very flexible method, allowing things
such multi-speaker models and speaker adaptation. There is no requirement to use
diphones, but wider phonetic contexts are considered. In general, the HMM approach
is more tolerant w.r.t. small noises or irregularities in the training data, and annotations
such as phonetic segmentation is less critical. In fact, the model can be trained with
unaligned phonetic and acoustic sequences, although this generally does not achieve
the best results. As the model can generalize to unseen phonetic contexts, the design of
the recordings scripts to exhaustively cover all common diphones is less critical. Finally,
for productization, the synthesis is very fast and the models tend to be very compact.

The main disadvantage of the HMM approach is that the quality of its results has
always been a little sub-par compared to concatenative methods. This fundamentally is
the result of several of the many assumptions the model makes not holding true. The
principal symptom of this is excessively smooth predictions, so-called oversmoothing.
One issue is that phonemes do not consist of a small number of pseudo-static segments
(states). One example where this becomes apparent in rapidly varying phonemes such
as plosives or trills, that will lack definition. In general, the excessive averaging over time
within a state will cause overly flat spectra and result in what is often called “buzziness”.
For long vowels in singing, the small number of states can also cause audible state
transitions. Context clustering also tends to result in having to make a tradeoff between
a high degree of clustering, resulting in coherent but overly smooth synthesis, and a low
degree of clustering, resulting in less averaging, but also potentially more discontinuous
synthesis (see §2.4.1 for further discussion). Lack of dependence between streams,
particularly the lack of dependence of timbre on frame-wise F0, is also an issue in
singing. Finally, while very flexible in theory, in practice this kind of system can be
difficult to extend or improve. Changing the model typically involves deriving update
rules by hand and implementing modifications in many different points.

2.4 Modern approaches

We differentiate between two groups of neural network approaches, which we call
the first and second waves. The first wave of approaches coincided with the initial
boom in interests in deep learning around 2012. These approaches delivered promising
results, but were not clearly better than the state of the art at the time, unit selection
synthesis. The second wave, which is still ongoing at the time of writing, we consider
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to have started with the publication of WaveNet (van den Oord et al., 2016a). This
model not only catapulted neural networks for TTS as state of the art in terms of
quality and naturalness, but also really pushed the envelope as to the expectation of the
capability of neural networks. Prior to this work, direct modeling of the time domain
waveformwith good results was long thought to be nearly impossible. As a consequence,
a renewed interest in applying neural networks to speech synthesis resulted in many
recent publications, which as a whole can be considered the current state of the art.

As a historical note, there have been attempts to use neural networks for speech synthesis
prior to what we call the first wave, such as those by Tuerk and Robinson (1993) and
Karaali et al. (1996). However, these early approaches were heavily limited by the lack of
commodities associated with modern deep learning, such as graphics processing unit
(GPU) processing, large datasets and modern learning algorithms that allow deeper
networks.

2.4.1 First wave of neural network approaches

The early work on the application of neural networks was very much rooted in the
preceding work on HMMs. As discussed in §2.3.2, the approach based on HMM, has a
number of important inherent limitations. Arguably, the most important of these are
(i) general difficulties robustly estimating parameters of a GMM output distribution,
(ii) fragmentation of the input feature space due to using a decision tree to cluster
contexts, and (iii) modeling variations in time as a sequence of few discrete states per
phoneme.

Robustly estimating parameters of the GMM output distribution in the HMM-GMM
approach can be difficult. In particular when modeling high-dimensional, highly cor-
related acoustic features, and when using several mixture components. To alleviate
these issues, one early approach combines a decision tree-clustered HMM with deep
belief network (DBN) state-output distributions (Ling et al., 2013), essentially replacing
the GMM in HMM-GMM. While this mitigates the first issue with the HMM-GMM
approach, the latter two remain.

Using a decision tree means that its size is usually a hyperparameter to be tuned. A
small tree with few leaf nodes, may result in excessive averaging. A large tree with
many leaf nodes will reduce averaging, at the cost of less data per leaf node and poorer
generalization (Bengio et al., 2010). In general, such a fragmented representation is not
suited to model the complex dependencies between linguistic and acoustic features
efficiently. The idea of using a distributed representation offers an attractive alternative
and is closely tied to the theory behind restricted Boltzmann machines (RBMs) and
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DBNs, where each layer extracts an increasingly higher-level binary (Bernoulli) repre-
sentation of its input. In Kang et al. (2013) a DBN is used to model the joint distribution
of linguistic and acoustic features, thus replacing both decision trees and GMMs.

Similarly, in Zen et al. (2013) a deep neural network (DNN) (see Figure 2.6a) is used to
model the conditional distribution of acoustic features given linguistic features, replac-
ing both decision trees and GMMs. Here, the hidden units are deterministic and the
outputs can be deterministic or stochastic by predicting parameters of a probability
density function. When the output layer represents a mixture density, such as a GMM,
the network is often referred to as a mixture density network (MDN) (Zen and Senior,
2014) (see Figure 2.6b). This approach is the closest to the modern approaches; a simple
feed-forward network deterministically computes the hidden layers by connecting
many simple non-linear operations and is trained with backpropagation. This connec-
tionist approach has very few limitations, unlike the approaches based on undirected
probabilistic networks such as RBMs and DBNs, which are plagued with intractabilities
and have to be trained with approximate algorithms such as contrastive divergence.
The main reason why this simpler approach was not used earlier, was due to initial
difficulties in training networks with many hidden layers, which was later resolved with
the advent of bigger datasets, better initialization schemes, optimizers, non-linearities,
and so on. This approach was later also proposed for singing synthesis (Nishimura
et al., 2016), with results exceeding those of the baseline HMM-GMM approach.

In the above methods, the models generally learn a frame-wise mapping from linguistic
features that are constant throughout the duration of a phoneme, to acoustic features
produced by a vocoder. By appending information about the position of the frame
within the phoneme to the input features, avoid the issue of a small number of discrete
states over time present inHMMapproaches.However, theremay still be discontinuities
from frame to frame or a general lack of coherence over time. A common approach to
mitigate such issues, taken from HMM methods, is to also model delta features and
use an MOPPG algorithm during synthesis (see §2.3.2).

Amore principled approach to this problem is to use a neural network with connections
between timesteps (see Figure 2.6c). Recurrent neural networks (RNNs) are commonly
used for this kind of architecture. In this case, the activation of a hidden unit is not only
a function of its inputs, but also of its activation at the previous timestep. Occasionally,
recurrent connections are also used in the output layer (see Figure 2.6d). To mitigate
problems with vanishing or exploding gradients during training, often RNNs with
gated units, such as long short-term memory (LSTM), are used (Fan et al., 2014; Zen
and Sak, 2015). In a large-scale comparison between production-level LSTM-RNN
and unit selection systems, both systems are comparable overall, with the best method
depending on the language (Zen et al., 2016).
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Figure 2.6: An overview of different first wave neural network speech synthesis models. Here,
a simplified network is depicted with an input layer, two hidden layers, an output layer, and
is unrolled for three timesteps. The first column shows a deep neural network (DNN) (e.g.,
Zen et al., 2013; Nishimura et al., 2016). The second column shows a mixture density network
(MDN) (e.g., Zen and Senior, 2014). The third column shows a recurrent neural network
(RNN), here unidirectional, but may also be bidirectional (e.g., Fan et al., 2014). And finally,
the fourth column shows an RNN with recurrent output layer (e.g., Zen and Sak, 2015).

2.4.2 Second wave of neural network approaches

What we consider the second wave of approaches based on neural networks started
with the publication of WaveNet (van den Oord et al., 2016a) and is still ongoing at the
time of writing this dissertation. Since this publication, using powerful neural networks
has become the prevailing paradigm for TTS and singing synthesis, and the number of
publications on this topic has exploded. In this section, we will try to discuss some of
the most important developments, in chronological order, grouping works that share
a lot of similarities. That said, as the number of works is so great, it is not feasible
to exhaustively discuss all of them. Similarly, as the field developed organically, it is
sometimes impossible to simultaneously group similar approaches and follow a strict
chronological order.

WaveNet

What makes WaveNet (van den Oord et al., 2016a) remarkable is that it is the first
time a neural network clearly outperforms the then state of the art, concatenative
synthesis. In a mean opinion score (MOS) listening test, WaveNet was rated 4.21 (with
a 4.55 hidden reference), whereas a state of the art concatenative system was rated
3.86. The model is able to achieve this performance by modeling the speech waveform
directly, rather than predicting some intermediate acoustic features and using a vocoder
to produce the final waveform. One of the key aspects of the model that make this
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possible is that it is an autoregressive model, meaning that prediction of a timestep
depends on the predictions of previous timesteps as well. This is somewhat similar to the
recurrent output layers discussed in §2.4.1, but in this case the feedback is much deeper,
feeding back from the output to the input of the network, instead of being contained
to the output layer only. The model contains several other architectural innovations7
which undoubtedly also play an important role in its success; (i) the model is fully
convolutional, which allows very efficient, parallelized training compared to sequential
RNN training, (ii) using gated unit, gives the model similar capacity to RNN models
with gated units, such as LSTM or gated recurrent unit (GRU), (iii) using dilated
convolutions allows the model’s receptive field to grow exponentially with the number
of layers, and to extract multi-scale representations (Yu and Koltun, 2016), (iv) using
residual and skip connections facilitate optimization with deeper architectures (He
et al., 2016), (v) using a simple conditioning mechanism using per-layer additive linear
projections, and (vi) using a categorical output distribution tomodel the 𝜇-law encoded
8 bit quantized waveform, essentially changing the model’s task from regression to
classification. One notable downside of this model is that inference (generation) tends
to be several orders of magnitude slower than the models discussed in §2.4.1, due to the
sequential autoregressive sampling step at inference, needing many steps to produce
some duration of speech (due to the relatively high sampling rate), and each step
consisting of the forward pass through a high complexity model (i.e., many layers, many
channels per layer). Themodel is also still based on a traditional TTS pipeline, meaning
that for instance prosody is predicted by external models which can cause compounded
errors, and input to the model are “handcrafted” features. The original WaveNet is
conditioned on many linguistic features (similar to those of the handcrafted “questions”
of the decision tree in HMM-based synthesis, see §2.3.2). These features additionally
have to be time-aligned to the audio, prior to training, i.e., phonetic segmentation
needs to be available. The model is also conditioned on F0 predicted by an external,
more traditional (LSTM) model. Finally, while sound quality is very good it can be
considered somewhat “lo-fi”, that is, the output waveform has a 16 kHz sample rate, and
is 8 bit 𝜇-law, notably lower than e.g., the 44.1 kHz, 16 bit PCM of CD quality audio.

After the publication of WaveNet, interest in this type of model spiked, prompting
many other groups to work on similar topics. The Deep Voice model (Arik et al.,
2017a) is heavily based on WaveNet, but addresses some of its shortcomings. This work
still uses a traditional TTS pipeline structure, but all components are now entirely
based on neural networks. In particular, the model is trained without “handcrafted”
7Most of these innovations were first introduced in earlier models proposed for modeling images, such as

(in chronological order) PixelRNN and PixelCNN (van den Oord et al., 2016b), and Gated PixelCNN
(van den Oord et al., 2016c). Similar models were later also successfully applied to video (Video Pixel
Networks) (Kalchbrenner et al., 2016b) and text (ByteNet) (Kalchbrenner et al., 2016a). AfterWaveNet,
several improvements to the base image model have also been proposed, e.g., PixelCNN++ (Salimans
et al., 2017).
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linguistic input features, but rather text is converted to a sequence of phonemes (by
dictionary lookup), and then passed through a stack of bidirectional quasi-recurrent
neural network (QRNN) (Bradbury et al., 2017) to obtain context-dependent features
on which the waveform generator is conditioned. Similarly, the model can be trained on
<text, audio> pairs without alignment (i.e., phonetic segmentation), as this alignment is
first learned in an unsupervised manner using a network with connectionist temporal
classification (CTC) loss (Graves et al., 2006).While a pipeline with neural components
is potentially more powerful than its traditional counterpart, they are still trained
independently, hence the issue of compounding errors remains. By using a fast inference
algorithm based on caching computations (similar to Ramachandran et al., 2017) and a
deeper-but-narrower architecture, the authors obtain real-time inference speeds. The
successor to the Deep Voice model, Deep Voice 2 (Arik et al., 2017b), further improves
the components of the neural TTS pipeline, and applies additional optimizations to
the modified WaveNet architecture. This latter model also introduces so-called multi-
speaker models that are trained on data from multiple speakers and conditioned on a
learned embedding representing the speaker.

Models and architectures inspired by WaveNet have also been applied widely in singing
synthesis (e.g., Blaauw and Bonada, 2017b; Wada et al., 2018; Bous and Roebel, 2019; Yi
et al., 2019).

Sequence-to-sequence models with separate neural vocoders

One long-standing goal neural TTS research is to have a truly end-to-end8 system
that can generate the speech waveform from input text using a single model, rather
than multiple independently trained components. A principal problem with this is that
the alignment between input text and output audio has to be inferred during training
and synthesis. One possible solution to this problem is to use a so-called sequence-
to-sequence (Seq2Seq) architecture, which can learn mappings between unaligned
sequences. In the case of TTS, these typically do this using an attention mechanism. In
practice, it turns out to be very difficult to learn the alignment between a text sequence
and the corresponding high sample rate waveform. As a compromise, typically two
separate models are used; one Seq2Seq model learns the mapping from text to mel-
spectrogram, and a second model, called a neural vocoder, learns the mapping from
mel-spectrogram to waveform. This approach is fairly convenient, as the first model can
be learned from <text, audio> pairs with requiring alignment, and the neural vocoder
can be trained from audio only, which makes gathering big datasets easier. As a result,
this approach has become the de facto standard.

8Most current systems are what is considered in the strictest sense of the word nearly end-to-end, as
they often rely on external text normalization. Also, while using orthographic text input is possible,
current best results are generally obtained using phonetic text input.
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Two such systems were developed simultaneously and independently. The first system
is Char2Wav (Sotelo et al., 2017), which consists of a Seq2Seq model which converts
text to WORLD vocoder features, and a neural vocoder. The neural vocoder in this
case is based on a multi-scale RNN-based architecture called SampleRNN (Mehri
et al., 2017). The second system, Tacotron (Wang et al., 2017) consists of a recurrent
Seq2Seq model which predicts a mel-spectrogram from text or phonemes, a post-
processing step that converts the mel-spectrogram to a linear spectrogram, and finally
the Griffin-Lim algorithm (GLA) to produce the final output waveform. In this case,
all components can be trained jointly9. However, the use of the GLA notably degrades
performance compared to using a fully neural vocoder. For instance, Arik et al. (2017b)
use the Tacotron model together with a neural vocoder based on WaveNet as a baseline.
Especially the naturalness of prosody produced by the Tacotron system is significantly
higher compared to previous systems using a discrete TTS pipeline.

The next significant milestone in TTS came with the successor of the Tacotron model,
Tacotron 2 (Shen et al., 2018). This model is particularly significant as it is the first
model that achieved a MOS rating that’s almost identical to the ground truth hidden
reference, 4.53 and 4.58 respectively. This means that listeners have trouble telling real
and synthetic speech apart. Tacotron 2 uses a simplified and improved version of the
recurrent Seq2Seq model of Tacotron, combined with a neural vocoder. In this case,
the neural vocoder is based on WaveNet with a mixture of logistic distributions (MoL)
output layer similar to Salimans et al. (2017). This allows predicting a 24 kHz, 16 bit
PCM waveform, rather than the 16 kHz, 8 bit 𝜇-law output of the original WaveNet.
While nothing fundamentally new is proposed in this work, the execution and results
are remarkable. This model was later also adapted to singing synthesis (Angelini et al.,
2020).

Convolutional sequence-to-sequence models

One downside of recurrent Seq2Seq models is that training cannot be fully parallelized.
As models such as WaveNet are already fully convolutional, having a Seq2Seq mecha-
nism that is also convolutional is thus also desirable to speed up training. One such
mechanism is provided by Gehring et al. (2017) and applied in several TTS systems,
including Deep Voice 3 (Ping et al., 2018) (not a direct continuation of Deep Voice
2), DCTTS (Tachibana et al., 2018) and Fast DCTTS (Kang et al., 2021). Training is
reported to be an order of magnitude faster than the recurrent Seq2Seq-based Tacotron.
While no direct comparison between these models and state of the art Tacotron 2 has
been done in terms of MOS (except for the latter, all these models came before Tacotron

9TheGriffin-Lim algorithm (GLA) (Griffin and Lim, 1984) is a signal processing algorithm, and therefore
does not need to be trained.
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2), we generally understand them to perform slightly worse. This approach has also
been applied to singing synthesis (e.g., Lee et al., 2019, based on DCTTS).

Probability density distillation

Besides obtaining more end-to-end models, another important research goal is to
obtain models with efficient inference. While the issue of slow sequential inference of
autoregressive models, such as WaveNet, can be mitigated to some degree by clever
implementations and architectural optimizations, it can still be an issue for taking such
models into production. A more fundamental solution to this problem was proposed in
Parallel WaveNet (van den Oord et al., 2018). This approach uses a pre-trainedWaveNet
teacher network to distill knowledge into a non-autoregressive student network. In this
case, the student network is based on Inverse Autoregressive Flows (IAF) (Kingma
et al., 2016), which offers non-autoregressive inference, but slow, sequential traditional
maximum likelihood learning (hence the distillation). An extension of Deep Voice
3, called ClariNet (Ping et al., 2019) takes a similar approach, with some differences.
In general, these models are able to achieve relatively fast inference, e.g., 20 times
real-time on GPU for Parallel WaveNet, while obtaining good results, e.g., a MOS 4.40
against 4.54 ground truth hidden reference (just slightly below Tacotron 2) for ClariNet.
The main downsides of this approach are that a two-step training process is rather
cumbersome, and that getting the distillation process to converge is non-trivial, e.g.,
needing auxiliary losses and regularization.

Normalizing flows

To avoid this two-step process of probability density distillation, somewhat similar
normalizing flow-based models have been proposed that can be trained using maxi-
mum likelihood directly. Briefly, a normalizing flow is a series of invertible functions
(bijections). During training, the flow is used in one direction to transform the complex
data distribution into something simple, e.g., an isotropic Gaussian. Then using the
change of variables formula, we can then compute the negative log-likelihood used
to optimize the network parameters (via the determinant of the Jacobian of the flow).
During inference, we use the flow in the other direction, transforming a sample from
the simple distribution to the complex data distribution. In the case of a neural vocoder,
we can condition the flow on some input features, such as a mel-spectrogram. This
approach has been used in FloWaveNet (Kim et al., 2019) based on RealNVP (Dinh
et al., 2017), andWaveGlow (Prenger et al., 2019) based onGlow (Kingma andDhariwal,
2018). One of the major disadvantages of this approach is that because each layer that
implements a bijective function has a lot of requirements and constraints, it tends to
not be very powerful compared to a typical layer in a neural network. Thus, flow-based
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networks may require over 100 convolutional layers, resulting in important computa-
tional and memory requirements. Thus, while inference is done in a single step, it will
require very powerful hardware and training will be slow. Some work has been done
to mitigate these issues (e.g., Zhai et al., 2020; Wu and Ling, 2020; Ping et al., 2020;
Luong and Tran, 2021).

More recent works involving normalizing flows, include Glow-TTS (Kim et al., 2020),
Flow-TTS (Miao et al., 2020) and Wave-Tacotron (Weiss et al., 2021), which notable
learn alignment between text and audio in these non-autoregressive models.

Generative adversarial networks

One issuewith simple feed-forwardmodels, like a convolutional neural network (CNN),
is that defining a suitable loss function that considers all of the generated timesteps
jointly is not straightforward. In autoregressive models, this is done implicitly by condi-
tioning on past timesteps, and thus we can compute a loss between individual timesteps
and average the results for instance. If we do the same with a non-autoregressive model,
we get poor results, e.g., oversmoothing, lack of high-frequency details, etc. Approaches
based on generative adversarial networks (GANs) try to circumvent these issues by
using an adversarial loss by using a discriminator which determines whether a sequence
(or part of a sequence) is real or fake (generated). The generator network and the dis-
criminator network are trained jointly, one trying to get samples from the generator
to be classifier as real, the other samples from the dataset as real, and samples from
the generator as fake. The adversarial loss provides a kind of implicit, learned loss
between the generated samples and the target, considering multiple timesteps at once.
This approach is quite attractive as inference is a single feed-forward operation, there is
no need for a teacher network, and there are no real constraints on the generator and
discriminator networks. There have been many works using this approach for neural
vocoders (e.g., Yamamoto et al., 2020; Kumar et al., 2019; Yang et al., 2021; Wu et al.,
2021; Kong et al., 2020; Tian et al., 2020a; Yamamoto et al., 2021; Hono et al., 2021b;
Yoneyama et al., 2021), and also a few works that use this approach for complete TTS
systems (e.g., Bińkowski et al., 2020; Gritsenko et al., 2020).

For singing synthesis, using GANs has also been very popular. Some works use an
adversarial loss to reduce oversmoothing in intermediate acoustic features, typically
a mel-spectrogram (e.g., Chandna et al., 2019; Hono et al., 2019; Choi et al., 2020;
Sankaran et al., 2021). More recently, this is done in combination with Seq2Seq archi-
tectures (e.g., Wu and Luan, 2020; Chen et al., 2020; Lee et al., 2021). Some works also
use GAN-based neural vocoders (e.g., Chen et al., 2020; Chen et al., 2021a; Huang
et al., 2021; Liu et al., 2021b). In a few cases GANs are also applied in super-resolution
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networks that predict linear spectrograms from mel-spectrograms (e.g., Lee et al., 2019;
Lee et al., 2020).

Diffusion probabilistic models

A very recent group of works are based on a new type of generative model called
diffusion probabilistic models (e.g., Ho et al., 2020). Very briefly, this model defines
a Markov chain that, starting from some data, gradually adds Gaussian noise at each
step, until it becomes isotropic Gaussian noise. A neural network is trained to learn (a
variational lower bound) on the reverse step, the denoising process. Once this network
is trained, we can sample from an isotropic Gaussian, perform the denoising process
for a number of steps, until recovering a sample from the data distribution. This type of
model is very flexible and training is straightforward and efficient. In image modeling,
this type of model is state of the art in certainmetrics, and perceptually sample quality is
similar to that of the best GANmodels. A downside of this model is that inference is still
sequential, and although the number of steps does not depend on the sequence length
like with autoregressive models, the number of steps required for good quality samples
can still be relatively high. That said, much current research focuses on improving
quality further and reducing the number of steps required at inference.

In TTS, this approach has been applied to neural vocoders (e.g., Chen et al., 2021b;
Kong et al., 2021). It also has been used in Seq2Seq TTS models to improve mel-
spectrogram prediction which is then combined with a GAN-based neural vocoder to
produce the waveform (e.g., Popov et al., 2021; Jeong et al., 2021). Diffusion probabilistic
models can even be used to predict waveform directly in Seq2Seq models (e.g., Chen
et al., 2021c). In singing synthesis, diffusion probabilistic models have been applied to
improve mel-spectrogram generation, combined with a GAN-based neural vocoder
(Liu et al., 2021a).

Architecture-based models

Another group of works, which we call architecture-based models, are based mostly on
innovations in architecture, rather than the underlying model.

For instance, WaveRNN is a fairly widely used neural vocoder (Kalchbrenner et al.,
2018). This model is recurrent, thus inference is sequential, like with autoregressive
models. However, this model aims to reduce the number of operations per sequential
step, in order to achieve efficient inference. In this case, it uses a compact, single-layer
RNN, which is shallow-but-wide (e.g., 2048 hidden units). Then, weight pruning is
applied to reduce the size of the model with a sparsity of 96% or more. Additionally,
by using two 8 bit softmax outputs, it is able to generate high fidelity waveforms. The
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reduced model can then be run in real-time on a mobile central processing unit (CPU).
In singing synthesis, for instance Gu et al. (2020) use the WaveRNN vocoder.

One interesting, but unusual model is VoiceLoop (Taigman et al., 2018), which uses an
architecture that is neither recurrent nor convolutional, but instead uses a shifting buffer
working memory. It is an end-to-end model, using an attention-based Seq2Seq archi-
tecture, like many of its preceding models. In listening tests, a MOS of 3.69 compared
to a 4.60 ground truth is obtained. An interesting addition to the model is the ability to
fit a new speaker given a trained multi-speaker model, by optimizing a new speaker
embedding given few, possibly “in-the-wild” recordings of the target voice. This concept
was later expanded upon by combining by Nachmani et al. (2018) the VoiceLoop model
with a network that predicts a new speaker embedding from a few recordings, thus
avoiding the need for iterative optimization and orthographic or phonetic transcription
of the target voice.

Another widely used architecture is the Transformer network (Vaswani et al., 2017),
which uses self-attention rather than RNNs or CNNs to model interaction between
timesteps. For TTS, these models may be autoregressive (e.g., Li et al., 2019; Ihm et al.,
2020), but in particular non-autoregressive variants are popular (e.g., Peng et al., 2019;
Ren et al., 2019). In singing synthesis, this architecture is also used in several works for
mel-spectrogram generation (e.g., Lu et al., 2020; Shi et al., 2020; Chen et al., 2020).

A few works on singing synthesis also use more conventional architectures for mel-
spectrogram generation. These include the U-Net architecture, which uses downsam-
pling and upsampling operations tomodel time series at different scales (e.g., Nakamura
et al., 2019; Nakamura et al., 2020), or LSTM RNNs (e.g., Kim et al., 2018; Hono et al.,
2021a).

End-to-end sequence-to-sequence models

As mentioned, previously, simultaneously learning alignment between text and audio,
and directly output waveforms, was considered excessively difficult. However, recently,
thanks to advances in new alignment mechanisms and generative models, this is now
possible. Some are based on normalizing flows (e.g., Kim et al., 2020; Miao et al., 2020;
Weiss et al., 2021), and others are GAN-based (e.g., Donahue et al., 2021).

2.5 A working model of the singing voice

While machine learning models can mostly treat data “blindly”, having some under-
standing of the underlying properties of the data can often be beneficial. Here, we
try to provide a rough “working model” of the singing voice and its properties. This
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model is not intended to be a model for analyzing or synthesizing singing voice signals
directly, but rather provide some context. This contextual information can be used in
various ways, e.g., analyzing the system’s performance by ear, introducing some forms
of domain knowledge – which can be useful in practice as training data can be limited,
interacting with singers in recording sessions, and so on.

2.5.1 The source-filter model

As is standard in speech research, our working model is based on the source-filter
theory of speech production (Fant, 1960). The more traditional version of this model is
derived from studies of the phonological process of speech production for vowels: Air
from the lungs is forced through the glottis where the elastic muscular forces of the vocal
folds cause it the open and close in a cyclical manner, generating a so-called glottal
flow. This acoustic wave then travels up through the vocal tract where it is filtered by
the various resonating cavities, finally radiating from the mouth. Typically, models will
consider the glottal flow (glottal volume-velocity waveform) to generate a harmonic
series with a −12 dB/octave spectral slope, the vocal tract to be a time-varying all-pole
(i.e., minimum-phase) filter, and the mouth radiation to be a filter with a 6 dB/octave
spectral slope. Many models will combine the slopes of the mouth radiation filter and
the glottal flow, and instead model the voice source as the derivative glottal flow, with a
−6 dB/octave spectral slope.

While the above model works reasonably well for modal vowels, there are many simpli-
fications that make it difficult to apply this model to all types of vocal sounds that occur
in real speech or singing. For instance, the voice source is often not purely harmonic,
but also contains noisy components. The slope of the voice source is not fixed, but may
depend on whether phonation is tense or lax. The vocal tract does not only produce
resonances, but can also produce anti-resonances in nasals. Certain phonemes, such
as plosives, fricatives and affricates, have different production mechanisms altogether.
For these reasons and many others, we opt to use a more relaxed source-filter model,
depicted in Figure 2.7. In this model, the source signal is assumed to have a flat spectral
slope, but is allowed to be a non-trivial combination of harmonics, noisy components,
and other components such as transients. The filter is allowed to have the response
needed to transform the source into the final speech signal, including resonances and
anti-resonances. In this model, the key concept is that the source is responsible for pitch
and timbrical texture (e.g., a breathy voice or rough voice), while the filter is responsible
for the timbre itself, which we consider to include phonetic content, speaker identity,
voice color, intensity, and so on.
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Figure 2.7: Example of a voice signal decomposed in source and filter. Here, the source, (a),
is approximately flat, and consists of harmonics and an aperiodic component. The filter, (b)
includes formants from the vocal tract, and the spectral tilt corresponding to the glottal voice
source and lip radiation. The final output, (c), is produced by filtering the source signal with
the filter.

2.5.2 The timbre component

In our working model, we consider timbre to be determined by on the one hand the
spectral envelope, and other the other hand a timbrical texture that is provided by the
voice source. The spectral envelope generally follows the harmonic peaks in the voice
signal, and consists of a number of resonances, called formants. The lower formants
are the most significant in providing the phonetic content of the voice, e.g., all vowels
can generally be uniquely identified by looking at the first two formants only. There are
also anti-resonances, called anti-formants, which are typically produced by the nasal
tract. There is a glottal formant, which together with spectral slope (or spectral tilt), is
an important property of the voice source (in the traditional source-filter model). This
formant below the first vocal tract formant affects the tenseness of the voice (Doval and
d’Alessandro, 1997). There also is a singer’s formant, a prominent peak around 3 kHz,
that is associated with classical operatic singers (Sundberg, 1989; Sundberg, 2001).

We consider the spectral envelope to be the determining factor in several important
aspects of the voice, such as phonetic content and speaker identity. These two aspects of
the voice normally cannot be separated, as they are a product of complex interactions
between formant properties (i.e., formant positions, widths, and amplitudes), which all
vary over time. While principally determined by timbre, pitch also has some influence
on these aspects, speaker identity more so than phonetic content. Somewhat unique
to the singing voice is the concept of voice registers. While generally any change in
pitch affects the corresponding spectral envelope, we can often define a number of
discrete ranges of pitch, called registers, between which a bigger, abrupt change in
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timbre can occur. These registers typically include chest voice, middle voice, head voice,
and falsetto (sometimes included in the head register). Besides these more abrupt and
significant changes in timbre according to the pitch range, even relatively small changes
in pitch, such as a vibrato, can have a noticeable effect on the spectral envelope of the
signal. Many singers will also intentionally apply vowel modification (aggiustamento)
according to pitch in order to obtain the desired vocal tone. Another significant aspect
of timbre is the concept of tenseness (often described as a continuum between lax and
tense voice) which typically also is related to intensity, dynamics, or loudness.

Besides the spectral envelope, we also consider the timbre to contain some kind of
timbrical texture. Perhaps the most important aspect of this texture is the amount of
noisy components in the voice. Typically, the voice source will contain a mixture of
harmonic and noisy components. These noisy components can either be generated at
the glottis, e.g., as part of the glottal flow in breathy voice or aspirated phonation, or
produced in themouth when forcing air through a narrow channel made by placing two
articulators close together, e.g., in dental fricatives. In our working model, we consider
the voice source to be the sum of harmonics and filtered noise. This gives rise to the
concept of aperiodicity which for each frequency or band of frequencies determines
the degree to which it is harmonic or noisy. Noisy components generated at the glottis
are generally considered to consist of a combination of constant noise and so-called
pulsatile noise, which is noise with a cyclic amplitude modulation, synchronized to the
glottal flow (e.g., Mehta and Quatieri, 2005).

As a general rule of thumb, we consider the phase of the voice signal to be of lesser
perceptual importance. As the vocal tract can be approximated as a minimum-phase
all-pole filter, we generally consider aminimum-phase response of the spectral envelope
of the signal to be a good fit. However, many more sophisticated models of the voice
source include causal as well as anti-causal components [e.g., CALM model]. It should
also be noted that the perceptual importance of phase of the voice signal depends a lot
on the pitch of the signal. In particular for low pitch voices, phase becomes of much
greater perceptual relevance.

2.5.3 The pitch component

The pitch component of a singing voice signal contains the melodic content, as well
as expression. That is, any given melody can be sung in a large variety of different
ways. There will be some minimum constraints that ensure the pitch sequence can be
recognized as the melody in question, but there are many other expressive aspects of
the pitch sequence in which the singer is pretty much free to do as he or she wants.
Besides melodic content and expression, there typically also tends to be some natural
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variation in pitch as a function of the phonetic content, this is typically referred to as
microprosody (Taylor, 2009, Chap. 9.1.4, “Micro-prosody”, p. 229).

The expressive component of pitch, involves many different things, perhaps toomany to
list exhaustively here. Some basic aspects of pitch expression can be grouped into attacks
and releases of notes, transitions between notes, ornaments, and vibratos. Attacks and
releases may include things such as scooping attacks, creaky or vocal fry attacks, glottal
attacks and releases, the so-called “gospel” release, and so on. Note transitions include
staccato, legato, portamento, and so on.

There typically also is a natural correlation between pitch and dynamics or loudness.
That is, low pitches within a singer’s tessitura tend to have low dynamics, while high
pitches tend to have high dynamics. Most singers can vary dynamics to some degree at
high pitches, singing low pitches with high dynamics seems especially challenging.

2.5.4 The timing component

Besides timing, anothermajor component of expression is timing. In ourworkingmodel
we consider expressive timing to exist on two levels; note timing and phonetic timing.
Note timing is normally highly constrained by the score that is being sung. However,
there typically can be a significant deviation in the sung note timings compared to the
nominal note timings as written in the score. Once the note timings are established, the
phonetic timings within a note must be determined. We consider this to be generally
the lesser of the two when it comes to expression, as the phonetic timing is in part
determined by the natural duration of phonetics. That said, there can be some significant
variability in phoneme durations, especially in the case of certain phoneme types such
as fricatives and nasals. As a general rule of thumb, we assume that each note will
correspond to a single syllable, but there are exceptions, notably with melismatic
singing. The onset of the vowel (or syllabic consonant) in the syllable will typically
coincide with the note onset. The remainder of the note will be occupied by the syllable’s
coda consonants, as well as the onset consonants of the next adjacent note (if any).

2.5.5 Other components

There are other components of the singing voice that are not fully covered by the
above. Many of these are related to non-modal voice types, and are somewhat beyond
the scope of this work. That said, non-modal vocal resources are used frequently in
expressive singing. Some non-vocal voice types, such as growls or rough voice, are
produced by modulation of the voice pulses (e.g., Bonada and Blaauw, 2013). Growls
tend to have a clear macro period to the modulation, although this may vary over time,
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and be accompanied by changes in formants. In the spectral domain, these modulations
are often visible as sub-harmonics, with specific phase patterns. Rough voices, on the
other hand, are characterized by more irregular modulations. The breathiness of the
voice can also be used as an expressive resource, although partially covered by the
concepts of aperiodicity and tenseness of timbre. Vocal fry, typically as very low pitch
scoop attacks, is also a common expressive resource in singing. In this case, the voice
pulses are perceived more like a sequence of transient pulses, rather than an actual
pitch.





Methodology 3
BEFORE presenting the main contributions of this work, we should preface it with

some of the methodology typical of singing synthesis research. In particular, we
should know how singing synthesizers are typically constructed, what kind of

datasets are typically used, and how to evaluate such systems.

3.1 A framework for singing synthesizers

In the main body of this work we consider a number of different singing synthesis
models. All of these models, however, share the same basic framework. This framework
consists of how we approach the task, certain simplifications we employ to make the
task more manageable, how we structure the model, signal processing components we
utilize besides the principal machine learning models, and so on.

3.1.1 The task of singing synthesis

The most canonical way to define the task of singing synthesis is arguably “converting
a musical score with lyrics into a waveform of a corresponding sung vocal”. This means
that we effectively want to model what a singer does when presented with a score,
including interpreting the score and the actual act of producing the vocal sounds. Even
if we limit ourselves to modeling a specific singer singing in a specific style, any given
score may be rendered as one of many plausible waveforms. Thus, it makes sense to
define our model in probabilistic terms (as is commonly done in deep learning),

𝑝𝜃(𝐱 | 𝐜) ≔ … , (3.1)

that is, wemodel the (conditional joint) probability of a waveform, 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑇 ],
given a note sequence score, 𝐜 = [𝑛1, 𝑛2, … , 𝑛𝑁 ]. Without going into much detail, we
will assume that a note 𝑛 at least encodes information about note pitch, duration and
corresponding lyric (syllable). In the above definition, our model is parametrized by
𝜃.

35
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To train this model we can optimize 𝜃 to maximize likelihood on the training data,

𝜃∗ = argmax
𝜃

∑
𝑖

log 𝑝𝜃(𝐱(𝑖) | 𝐜(𝑖)), (3.2)

where 𝐱(𝑖), 𝐜(𝑖) are pairs of corresponding waveform and score examples that make up
the training set. In practice, we perform this optimization using minibatch gradient
ascent, computing the sum in Equation (3.2) at each step over a small number of
randomly sampled examples from the dataset, rather than over the whole dataset (e.g.,
Goodfellow et al., 2016, Chap. 8). Similarly, examples 𝐱(𝑖) in the dataset often have
varying lengths in practice, in which case we can weigh the sum in Equation (3.2) by
sequence length.

Once the model is trained, we may synthesize waveform 𝐱∗ given an unseen score 𝐜∗,
typically by drawing a sample from the model,

𝐱∗ ∼ 𝑝𝜃∗(𝐱 | 𝐜∗). (3.3)

Issues with the canonical task definition

While this seems fairly straightforward, there are several issues that make this a difficult
problem. Some of these issues include:

❧ The exact alignment between waveform and score is not given. While the scores
will contain some information on the nominal timing of notes, we cannot derive
the exact timing of the vocal performance from it directly. For instance, the timing
of phonemes1 will have a big influence on the waveform, but this timing cannot
be uniquely derived given only a musical score. Inferring this latent alignment
during training and synthesis, while possible, makes the learning problem more
difficult.

❧ Encoding score information, in particular lyrics, in a way that is easily processable
by a neural network is not straightforward. The lyrics corresponding to a note,
usually a syllable, tends to either be a sequence of a variable number of phonemes,
or an entry into a large syllable space.

❧ Waveform data is generally difficult to work with.While only 1-dimensional, it has
a very high temporal resolution (generally at least 32,000 samples per second for
high-quality singing voice). Unlike other acoustic representations, waveforms are
not smoothly varying over time, combining periodic and aperiodic components,

1For the sake of argument, we will assume the timing of phonemes, i.e., their begin and end times,
can be determined exactly. In reality, this tends to be somewhat ambiguous as many phonemes are
continuous in nature, with one phoneme smoothly transitioning into the next.
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transients, and so on. Big differences in waveform signals can have very small
perceptual effects. For instance phase inversion, small variations in timing, small
variations in pitch, and so on, can heavily affect the waveform signal, while being
perceptually unnoticeable. Somewhat paradoxically, relatively small errors in
waveform predictions, such as discontinuities, irregularities, oversmoothing, and
so on, can have big perceptual effects.

❧ For most existing machine learning models modeling the joint probability over
thousands of random variables, while also allowing efficient and exact evaluation
of log-likelihood (and corresponding gradients), and efficient and exact sampling
from this model, is a very challenging problem.

Simplified task definition

One way to obtain a more workable solution is to simplify the task by imposing ad-
ditional constraints on the conditioning data. Instead of conditioning the model on
a score with lyrics, where the note is the unit with which we work, we could condi-
tion on a sequence of timed phonemes to which note properties (such as pitch and
duration) are associated. This avoids the issue of having to infer the time-alignment
between input and output. Additionally, it avoids issues with encoding variable-length
syllables associated with notes; as the phoneme space is generally small, representing
each phoneme by an embedding is a practical solution.

In order to condition the model on a timed phonetic sequence, we need to phonetically
segment the training data. Typically, this is done by an automatic process, often with
manual corrections to reduce errors (see §3.2). For synthesis, we typically either use a
timingmodel (see §4.3.3) or a phonetically segmented reference recording (see §3.1.5).

It should be noted that this simplification is not strictly necessary, as so-called sequence-
to-sequence (Seq2Seq) models can infer the alignment between unaligned input and
output data during training and inference. While more challenging for the model,
alleviating the need for phonetic segmentation of the training data can greatly speed
up the creation of voices (see Chapter 5). That said, these models generally still tend to
be controlled by inputs on a phoneme-level, rather than note-level.

3.1.2 Splitting task up into smaller sub-tasks

Another way to simplify the model is to break the task up into smaller, easier-to-model
sub-tasks. A separate model can then be trained for each sub-task, and these models can
then be combined to form a complete synthesizer (e.g., as in §4.3). It should be noted,
that, at least in theory, having a single “end-to-end” model may have a performance
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advantage compared to combining multiple discrete models that are trained separately,
rather than jointly optimized. Prediction errors in upstreammodels may cause errors to
compound in predictions by downstream models relying on predictions of the former.
That said, at the time of writing, the approach of multiple discrete sub-models tends
to be at least competitive to or occasionally even outperforming end-to-end methods
(e.g., Weiss et al., 2021; Donahue et al., 2021).

As a rule of thumb, whenever the approach ofmultiplemodels is used, they are generally
trained using so-called “teacher forcing”. That is, say we have a cascade of two models,
rather than training the second model on predictions by the first model, we train it on
a separate ground truth obtained from the training data. The principal reason to do it
this way is to aid the models converging, especially early on in training. However, a
potential downside is the so-called “exposure bias” issue; there will be a discrepancy
between training, where teacher forcing is used, and inference, where only predictions
will be used (see “Regularization to mitigate exposure bias” in §4.1.3).

There are also some practical issues related to using multiple models. In general, this
approach complicates to some degree coding, training and evaluation. When using
teach forcing multiple models can be trained sequentially (one after the other), but
occasionally they can also be trained simultaneously, graphics processing unit (GPU)
memory permitting.

The generator-vocoder split

While there are many ways to break up the singing synthesis task into small sub-tasks,
the most common approach is to alleviate the issues associated with predicting the
waveform signal directly by instead predicting some higher-level intermediate acoustic
features that have been derived from the waveform. A separate second model can then
learn only the inversion of these acoustic features back to the final waveform(e.g., Shen
et al., 2018; Sotelo et al., 2017; Ping et al., 2018). The intermediate acoustic features are
typically the mel-spectrogram or parametric vocoder features, explained in depth in
§3.1.3. We will call the first model which converts the input score or timed phonetic
sequence to intermediate acoustic features the “generator”2, and the model which
converts these features to the output waveform the “vocoder”. This type of model is
depicted in Figure 3.1.

Important advantages of this approach are that the intermediate acoustic features tend
to have a much lower rate than the waveform, typically around 100 or 200Hz, and that
there is a much more direct relationship between such acoustic features and perception
of the sound. That is, generally, small perceptual differences will also correspond to
2There’s no standard term for what we call the “generator” model; other common names include the

“decoder”, “spectrogram prediction network”, “character to spectrogram model”, or “acoustic model”.
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Figure 3.1: Diagram depicting
a singing synthesizer with
generator-vocoder split. Here,
the “L” blocks indicate a loss
used to train the relevant module,
generator or vocoder. These
modules are trained separately.

small differences in intermediate acoustic features, but may potentially correspond
to big differences in the waveform domain. Another advantage is that as the acoustic
features are obtained directly from the waveform via signal processing analysis, there
are no issues related to time-alignment, and obtaining large datasets for training is
relatively easy, as no annotations are needed. The main disadvantage of this approach
is that there is no way to determine which intermediate acoustic features, or related
hyperparameters are optimal for a given problem (see §3.1.3), so we typically have to
resort to reasonable defaults or do time-consuming experiments.

It should also be noted that in cases where input and targets are not time-aligned
(i.e., the simplification of “Simplified task definition” in §3.1.1 is not applied), and
this issue is solved using a Seq2Seq model, predicting higher-level acoustic features
rather than waveform becomes even more important. Up until very recently, Seq2Seq
models generally would not converge when predicting waveform directly. With the
advent of non-autoregressive waveform generation models and alternative Seq2Seq
mechanisms, this seems to be slowly changing (e.g., Weiss et al., 2021; Donahue et al.,
2021). While this fully end-to-end approach may provide a pathway towards improved
results eventually, current models still seem to perform slightly below the generator-
vocoder split approach.

The pitch-timbre-vocoder split

A further simplification is to split the generator into two components, as depicted in
Figure 3.2; a pitch model which predicts F0 from a note score and a timbre model which
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Figure 3.2: Diagram depicting a
singing synthesizer with pitch-
timbre-vocoder split. Here, the “L”
blocks indicate a loss used to train
the relevant module, pitch model,
timbre model or vocoder. These
modules are trained separately.
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is conditioned on F0 and predicts the intermediate acoustic features. One reason we
may want to do this, is that pitch and timbre are notably different, and the possibility
to use different models to tackle each may be beneficial. Having an intermediate pitch
prediction, also allows some adjustments, such as tuning correction (see §4.3.2). Finally,
arguably the most important reason might be that it simplifies evaluation to some
degree. That is, we will be able to compare different timbre models while keeping pitch
identical, e.g., by using pitch extracted from a reference recording (see §3.1.5), and
vice-versa.

Other splits

We can, of course, take the idea of splitting the generator into different sub-models
even further. This works especially well when we do this for aspects that can be easily
extracted from the audio signal. For instance, we fairly easily extract features related to
loudness from the audio signal and then condition the timbre model on such features
(e.g., Bous and Roebel, 2019). We could then have an additional dynamics model that
predicts loudness features, e.g., considering long-term properties of the input musical
score and corresponding dynamics annotations. Similar approaches may be possible
for non-modal voice resources a singer may utilize, such as growls, vocal fry, and so on.
That said, in this work, we do not extend our models beyond the approach described
in “The pitch-timbre-vocoder split”.
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3.1.3 Intermediate acoustic features

Mel-spectrogram

Mel-spectrogram features are by far the commonly used intermediate acoustic features
in text-to-speech (TTS), and by extension, singing synthesis. The reason why this is,
is probably because they offer a fairly compact representation, with high perceptual
relevance. Additionally, they only involve a moderate amount of signal processing,
heuristics and hyperparameters.

While there are a few slight variations of the mel-spectrogram algorithm, we assume
that for our purposes all of these should perform similarly. We will discuss briefly how
we compute such features, which should provide a good default for most applications.

First, we use the short-time Fourier transform (STFT) to compute the magnitude
spectrum of the input waveform 𝐱,

𝐗 = |STFT(𝐱)|. (3.4)

It should be noted here that while the STFT is an invertible operation, the |⋅| operation
discards phase and is thus lossy. Relevant hyperparameters here include the window
function (e.g., Hann), the window time (e.g., 32ms), the hop time (e.g., 5ms), and
the fast Fourier transform (FFT) size (e.g., 2048, which determines zero-padding and
resulting dimensionality).

The second step is to apply a filterbank of half-overlapped triangular filters that are
equally spaced on themel scale. Themel scale is a frequency scale that has been inspired
by human perception. We use what is often referred to as the “Slaney” definition of
the mel scale. This definition linearly maps frequencies below 1000Hz so that 0Hz
corresponds to 0mel and 1000Hz corresponds to 15mel. Frequencies above 1000Hz
follow a logarithmic scale where 6400Hz corresponds to 42mel.

𝑚 = {
𝑓/66.67 if 𝑓 < 1000
1000/66.67 + 27 log(𝑓/1000)/ log(6.4) otherwise.

(3.5)

The filters are additionally normalized to have approximately constant energy per
channel. Relevant hyperparameters here include the edge frequencies of the lowest and
highest filters of the filterbank (e.g., 50–15,000Hz), and the number of filters (e.g., 80).
It should be clear that this step is also lossy, in particular losing details in the higher
end of the spectrum. An example of such a filterbank is shown in Figure 3.3.
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Finally, the mel-spectrogram is often converted to a decibel scale, often clipping below
a certain threshold (e.g., −140 dB), which also avoids numerical problems with the log
operation. An example of a mel-spectrogram is shown in Figure 3.4.

As the mel-spectrogram is a lossy representation of the underlying waveform, an exact
inversion is not possible when we want to synthesize. The traditional approach is to first
invert the mel filterbank, usually by simply performing the transposed operation, and
then reconstructing phase from the linear magnitude spectrogram using the Griffin-
Lim algorithm (GLA) (Griffin and Lim, 1984). The GLA iteratively tries to optimize the
missing phase component, ensuring that it is consistent with the magnitude spectrum.
The downsides of this approach include that it is rather computationally expensive,
due to requiring many steps, and that the resulting quality often is not acceptable.
While applying the GLA to a linear spectrogram with a high frame rate can result
in a fairly high-quality signal, when applied to a spectrogram reconstructed from a
mel-spectrogram, the results often include very heavy “modulation” artifacts.

To overcome these issues, recently much effort has gone into researching so-called
neural vocoders (e.g., Tamamori et al., 2017; Prenger et al., 2019; Wang et al., 2019;
Yamamoto et al., 2020). These vocoders are trained to invert the mel-spectrogram
to waveform using a neural network. The main advantage of this approach is that
unlike with purely signal processing methods, like the GLA, neural vocoders can
recover some approximation to the information lost during the lossy mel-spetrogram
calculation. While these often can generate very high-quality results, their main issue
is that this often comes at the cost of high computational complexity and/or lack of
parallelization. Much of the current research in this area is focused on improving
exactly these aspects.

Alternatively, some works employ so-called super-resolution networks that reconstruct
linear frequency spectrograms from lower resolution mel-spectrograms (e.g., Lee et al.,
2019). Once the full resolution spectrogram has been reconstructed, we can employ
the GLA to generate the output waveform. Currently, this approach is less popular
than using a neural vocoder, possibly because the iterative GLA is still relatively slow
compared to modern neural vocoders, and ultimately less powerful.

Parametric vocoder features

Themel-spectrogram can be seen as a lossy transformation of the input signal. Paramet-
ric vocoders on the other hand try to analyze a given signal to estimate its underlying
parameters, while simultaneously being able to reconstruct an approximation of the
original signal from these higher-level parameters. While there are a number of such
parametric vocoders, in this work we mainly focus on the WORLD vocoder (Morise
et al., 2016) (D4C edition, Morise, 2016). It should be noted that a highly related and
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Figure 3.3: Example of a
mel scale filterbank. In this
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Figure 3.4: Example of a mel-spectrogram. Shown here are; (a) the waveform, and (b) the log
mel-spectrogram (dB). This example uses 80 bands over a 50–15,000Hz frequency range, a
hop time of 5ms, and a 32ms Hann window.
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Figure 3.5: Example of WORLD features over time. Shown here are; (a) the waveform, (b) log
F0 (octaves), (c) spectral envelope (dB), without dimensionality reduction, and (d) (squared)
aperiodicity, interpolated to full dimensionality.

similar vocoder called STRAIGHT also exists (Kawahara et al., 1999; Kawahara, 2006).
Both WORLD and STRAIGHT decompose the signal into three basic components as
depicted in Figure 3.5; F0, a spectral envelope, and an aperiodicity feature. One key
goal of these algorithms is to have as little cross-interference between the components
as possible.

While WORLD includes several F0 estimators, in this work we usually rely on an
in-house estimator especially optimized for singing voice, called SAC (Villavicencio
et al., 2015). The main advantage of this estimator is that the default hyperparameters
are suitable for a wide range of singing voices, resulting in few occurrences of common
problems such as octave errors and voiced/unvoiced errors. Before modeling the F0
feature, we interpolate unvoiced regions, as modeling a continuous feature is easier
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than modeling a feature that combines continuous (voiced) properties and discrete
(unvoiced) properties (Tokuda et al., 1999). We use linear interpolation as it is simple
and avoids overshoot that can happen with higher-order interpolation, albeit being a
somewhat unnatural pitch behavior and not continuously differentiable.

In some experiments we have also used modern data-driven neural networks such
as that proposed by Gfeller et al. (2020) to perform F0 estimation. This approach is
especially interesting as it self-supervised, that is, no F0 annotations are required to
train the estimator, just audio. We have empirically found the performance of such
an estimator to be on par with that of SAC. Being data-driven, in theory, allows the
estimator to generalize to a wider range of voices, e.g., non-modal voices, without
having to manually derive suitable heuristics. In practice, we have found performance
on non-modal voices not to be particularly better than SAC, possibly due to data scarcity
in those domains. That said, there are some practical benefits to SPICE; e.g., it has a
continuous F0 output, as well as a continuous confidence output, which can be used as
a continuous measure of voicedness. It is also more easily integrable in deep learning
pipelines, whereas SAC generally needs to be pre-computed prior to training.

The spectral envelope is the “outline” of the spectrum, typically a smooth function that
passes through the harmonics at lower frequencies and noise at higher frequencies.
It corresponds to the vocal tract, as well as the spectral “shape” of the voice source.
In WORLD, the so-called CheapTrick algorithm (Morise et al., 2016) estimates the
spectral envelope. Without going into too much detail, it is based on spectral analysis
with a pitch-adaptive window, followed by different steps that stabilize and smooth
the spectral envelope, including cepstral liftering. The result is a kind of envelope
spectrogram, which has similar dimensionality to a normal spectrogram, but is much
smoother and does not contain any harmonic peaks.

The aperiodicity feature is a value between zero and one which determines how aperi-
odic (or harmonic) a given frequency is. This is an important feature of speech and
singing voice signals, as these signals naturally have varying amounts of aperiodicity.
For instance, there is a natural tendency for higher frequencies to be more aperiodic
than lower frequencies. This is speaker dependent, varies depending on phoneme, may
vary depending on the amount of breathiness of the voice, and so on. In WORLD, the
so-called D4C algorithm (Morise, 2016) estimates aperiodicity. The resulting aperiodic-
ity from this algorithm is a so-called band aperiodicity, which only predicts a relatively
small number of aperiodicity values to cover the whole frequency axis. In this case, the
range up to 15 kHz is split into 3 kHz intervals (e.g., for a 32 kHz sample rate there will
be 4 bands). Frequencies at DC and Nyquist are fixed to 0.001 (−60 dB) and 1 (0 dB)
respectively. Whenever a full bin-wise aperiodicity spectral envelope is required, the
bands are simply linearly interpolated (in the log domain). Whenever the F0 estimator
considers a frame to be unvoiced, aperiodicity is set to one for all bands.



46 3 Methodology

Figure 3.6: Comparing the fre-
quency warping of the mel scale
to the frequency warping of the
all-pass filter used in the computa-
tion of mel-generalized coefficients
(MGCs). In this case a sample rate
of 32 kHz is used and a warping fac-
tor 𝛼 = 0.45.
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It should be noted that while these algorithms include many heuristics involving certain
constants, there are no real user-facing hyperparameters, except for the hop time (e.g.,
5ms). Very small hop times (e.g., 1ms) generally improve quality, but this tends to
complicate modeling these features, so this is not commonly done.

Similar to the mel-spectrogram, the spectral envelope features in parametric vocoders
are often reduced in dimensionality to aidmodeling, following a perceptually motivated
frequency scale. While recent versions of WORLD include functionality to perform
this operation (Morise et al., 2017), in our work we use cepstral domain frequency
warping using an all-pass filter (Tokuda et al., 1994), followed by truncation to reduce
dimensionality. This operation essentially serves the same function as the filterbank and
discrete cosine transform (DCT) traditionally used inmel-frequency cepstral coefficient
(MFCC) computation (see Figure 3.6 for a comparison of the two frequency scales).
We then convert this cepstral representation back to the spectral domain by mirroring
the cepstrum and computing the discrete Fourier transform (DFT), which results in a
real spectrum. We refer to this representation as mel-frequency spectral coefficients
(MFSCs), which are equivalent to MFCCs (or mel-generalized coefficients (MGCs))
without the final transform. We omit this transform because it makes the features easier
to interpret, and the additional decorrelation effects of the transform, while potentially
useful for traditional models, offer few benefits to modern deep learning methods. To
take the inverse of this dimensionality reduction operation during synthesis, we simply
cubic spline interpolate the log MFSCs. This is a fairly accurate approximation of the
much slower cepstral inverse.
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Figure 3.7: Example of a single frame of WORLD features with dimensionality reduction.
Shown here are the spectrum (with a fixed 32ms window), spectral envelope, spectral envelope
reconstructed from reduced dimensionality mel-frequency spectral coefficient (MFSC) features,
low-dimensional aperiodicity (in dB), and aperiodic envelope (aperiodicity added to spectral
envelope).

Synthesis of WORLD features is quite close to traditional speech synthesis algorithms.
The harmonic component is generated using voice pulses given F0. The aperiodic
component is generated using a noise generator. Then, the two are mixed according
to the aperiodicity feature. Finally, this voice source signal is filtered by the spectral
envelope, ensuring a minimum-phase response (Smith, 2011, Chap. 4.9, “Minimum-
Phase andCausal Cepstra”, p. 147). Figure 3.7 shows theWORLD features corresponding
to a single frame, as well as the spectral envelope after reconstruction from its low-
dimensional representation.

Compared to mel-spectrogram features, parametric vocoder features have a number
of potential advantages. First, one goal of these vocoders is to produce features that
vary smoothly in time, thus modeling these should be easier than the mel-spectrogram
with all its irregularities and high-frequency detail. Also, especially for singing voice,
separating pitch and timbre is very interesting. Themodelmay generalize better, without
the need to apply data augmentation by pitch shifting for instance, thus speeding up
training. Similarly, the model should be able to synthesize any given pitch to some
degree, even if it was not seen in the training data. A synthesis algorithm based on
a heuristic vocoder will typically be faster than a neural vocoder, and will be easier
to get up and running. Evaluation of systems is also more straightforward compared
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to the mel-spectrogram and neural vocoder option, where determining whether an
artifact is produced by the mel-spectrogram predictor or the neural vocoder can often
be somewhat muddied.

It should be noted that copy synthesis (i.e., analysis-synthesis, without anymodifications
of the parameters) tends to be fairly transparent. The principal issues tend to be related
to the lack of resolution in the aperiodicity feature (e.g., in voiced fricatives and such)
and similarly voiced/unvoiced estimation errors. There may be some issues related to
time resolution in plosives and such. Whenever dimensionality reduction is applied,
the lack of resolution in high frequencies of the spectral envelope also results in some
degradation. Regardless, with a model that makes good enough predictions, we may
still obtain acceptable results with a parametric vocoder. In practice, often the spectral
envelope estimated by parametric vocoders has notable local variance over time, thus
encoding part of the vocal sound in these frame-to-frame variations. Evenwith powerful
models, there will be some oversmoothing in both time and frequency in the predicted
parameters. This in turn causes some of the most notable artifacts associated with
the use of parametric vocoders; a certain “buziness” and “lack of detail” in the output
sound.

One issue that arises with parametric vocoder features is that there can be multiple
feature “streams”, e.g., the spectral envelope and aperiodicity features. The simplest
approach to this issue would be to concatenate features and model them with a single
model. Alternatively, separate models could model each stream individually, allowing
the models to be optimized for their specific task. However, this approach has the
potential downside that the correlation between streams is lost in the predicted features.
A cascade of separate models can work around this, by conditioning each model on its
predecessor.

Finally, some of the concepts behind parametric vocoders, such as the separation of the
signal into source and filter components can also be applied in neural network models.
This is the case because much of these operations can be formulated in such a way that
they are differentiable and thus can be optimized using standard gradient descent. This
kind of approach has been successfully applied in several works (e.g., Lee et al., 2020;
Wang et al., 2019; Wang et al., 2020b; Wang and Yamagishi, 2019; Wang and Yamagishi,
2020).

3.1.4 Control input features

One issue of special importance in the general design of singing synthesizers is deciding
which features to condition the model on and how to present these to the network in
a suitable fashion. We could consider this part of the model or network design, but it
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deserves some special attention that can carry over between models and networks. In
particular, we may think of the network consisting of an encoder part, which takes the
control inputs and encodes them in a suitable way, and a decoder part, which takes
the encoded inputs and produces the final output. The encoder can be either a neural
network or some heuristic process. The former approach is arguably the most powerful,
as a data-driven neural networkmay be able to extract higher-level information, beyond
what is reasonably possible with a heuristic process designed by hand. On the other
hand, the latter approach offers a way of introducing some inductive bias, which may
be beneficial to improve generalization, or help the model converge during training for
instance.

Assuming we are using a system that predicts intermediate acoustic features (see §3.1.2)
and an input sequence based on timed phonemes (see “Simplified task definition” in
§3.1.1), we will have mainly phoneme-level input and frame-level output. There may be
some additional frame-level inputs as well, such as F0 or positional features. At some
point, phoneme-level features have to be converted to frame-level features, typically
by repeating phoneme-level feature vectors by the corresponding phoneme duration
in frames. We can either apply an encoder to the phoneme-level features and then
repeat the resulting vectors to frame-level features, or first repeat the phoneme-level
features to frame-level features and then apply the encoder. If the encoder integrates
information over several timesteps, e.g., using a convolutional neural network (CNN),
there are significant differences in both approaches. In particular in the latter approach,
the encoder may not be able to effectively integrate information across phonemes if
the durations are significant with respect to the encoder’s receptive field. In this case, it
can be beneficial to include information of consecutive phonemes within the feature
corresponding to a frame (e.g., a “window” of 5 phonemes around the phoneme of the
timestep in question).

Categorical features, such as phoneme identity, can be embedded into an 𝑛-dimensional
space, or one-hot encoded as a one-hot vector and then passed through a 1×1 convo-
lution, which generally will be equivalent.

Real-valued, continuous features can either be kept as is, or occasionally can be encoded
as a coarse vector. When kept as is, the values should generally have a suitable range,
such as zero mean and unit variance, although often a very exact normalization is
not necessary. Coarse coding of continuous features is mainly interesting under the
assumption that certain features have an effect on the data to be modeled, but that
this effect does not depend on the exact value of the feature. For instance, an octave
difference in F0 may affect timbre notably, but one or two semitones may not. A long
or very long duration phoneme may behave similarly, but notably different from a
short duration phoneme. Coarse coding typically involves mapping a scalar value to
a low-dimensional vector of values ranging between [0, 1]. One approach is a linear
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Figure 3.8: Example of a con-
trol encoding using equidis-
tant Gaussians. Shown here
are equivalent 1-d and 2-d
views of a Gaussian encod-
ing with 𝐾 = 4 and 𝜎 =
√1/(2𝜋).
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coarse coding, where we pick 𝐾 values for a 𝐾-dimensional coarse coding and linearly
interpolate between these values depending on the continuous input feature (see Fig-
ure 3.9 for an example). Another approach is Gaussian coarse coding, which typically
places 𝐾 uniformly spaced Gaussians along a normalized input range 𝑥 ∈ [0, 1],

𝑣𝑖,𝑘 = 𝒩(𝑥𝑖; 𝑘/(𝐾 − 1), 𝜎2), (3.6)

for 𝑘 ∈ {0, … , 𝐾 − 1} and 𝑖 ∈ {0, … , 𝑇 − 1}, with 𝐾 being the dimensionality of the
encoding, and 𝑇 are the number of timesteps. Here, we can use 𝜎2 = 1/(2𝜋) so the
response at the mean of the Gaussians is one, and 𝐾 is generally small (e.g., 3 or 4). An
example of this type of control encoding is depicted in Figure 3.8.

A set of ascending frequencies 𝑦 = [𝑦0, … , 𝑦𝐾−1 ],

𝑣𝑖,𝑘 =

⎧
{
{
{
⎨
{
{
{
⎩

1 if 𝑘 = 0 and 𝑥𝑖 < 𝑦𝑘

1 if 𝑘 = 𝐾 − 1 and 𝑥𝑖 ≤ 𝑦𝑘

max( 𝑥𝑖 − 𝑦𝑘−1
𝑦𝑘 − 𝑦𝑘−1

, 0) if 𝑥𝑖 < 𝑦𝑘

max(1 − 𝑥𝑖 − 𝑦𝑘
𝑦𝑘+1 − 𝑦𝑘

, 0) if 𝑥𝑖 ≥ 𝑦𝑘,

(3.7)

for 𝑘 ∈ {0, … , 𝐾 − 1} and 𝑖 ∈ {0, … , 𝑇 − 1}, with 𝐾 being the dimensionality of the
encoding, and 𝑇 are the number of timesteps.



3.1 A framework for singing synthesizers 51

One continuous feature of particular importance is F0. One approach to encoding it
is to use the linear coarse coding method above, using log F0 as input. We can define
some fixed frequency bands derived from the singer’s pitch range, e.g., by looking
at a histogram of the dataset’s log F0 and listening to changes in timbre, as depicted
in Figure 3.9. While this will introduce some inductive bias which may be beneficial
in terms of generalization and convergence of the model, it requires more manual
intervention when creating a voice. Additionally, when combining data from multiple
speakers, it becomes less clear what would be a good set of frequency bands. An
alternative, data-driven approach is to use a neural encoder, such as a small CNN. The
input to such as network could be log F0 in octaves relative to some central frequency
such as 440Hz, such that,

𝑣𝑖,⋅ = 𝐹𝜃(log2
𝑓𝑖

440
), (3.8)

where 𝐹𝜃(⋅) is the encoder CNN parametrized by 𝜃, producing a 𝐾-dimensional vector.
One advantage of using a CNN is that it is easy to integrate information over multiple
timesteps, thus hopefully making the encoder more robust to things like single-frame
outliers, being able to use information about the direction of pitch, and so on. Using a
CNN with a small number of layers (e.g., one 9×1 layer), a small number of output
channels (e.g., 5), and an output activate that limits the output range (e.g., sigm(⋅)
or tanh(⋅)), we should hopefully end up with something that also has most of the
benefits of the “handcrafted” heuristic encoder. At the same time, this approach does
not require specifying any frequency bands, and combining data frommultiple speakers
is straightforward.

When using frame-level control features, it can be beneficial to include information
about the frame’s timestep. Such positional features can be either relative scale, e.g.,
the normalized position within a phoneme or note, or absolute scale, i.e., the abso-
lute frame index relative to phoneme or note boundaries. Either or both of these can
be used, typically in combination with features derived from phoneme and/or note
durations. One encoding scheme is to use the Gaussian coarse coding, e.g., with 3
states corresponding to begin/middle/end, following Equation (3.6). Another scheme
is a 𝐾-dimensional cyclical encoding of the normalized relative scale frame position,
𝑝 ∈ [0, 1] ⊂ R,

𝑣𝑖,𝑘 = 1
2
cos(2𝜋𝑝𝑖 − 2𝜋 𝑘

𝐾
) + 1

2
, (3.9)

for 𝑘 ∈ {0, … , 𝐾 − 1} and 𝑖 ∈ {0, … , 𝑇 − 1}, with 𝐾 being the dimensionality of the
encoding, and 𝑇 are the number of timesteps. This approach can be argued to better
represents the continuous nature of phoneme boundaries compared to e.g., Gaussian
positional encoding. An example of this type of encoding is depicted in Figure 3.10.
Finally, sinusoidal encoding (Vaswani et al., 2017) is also frequently used for encoding
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Figure 3.9: Example of a linear coarse coding of log F0 (cents). We show the histogram of log
F0 for a given (male) singer and an example linear coarse coding with dimensionality 𝐾 = 4,
and approximately equidistant center frequencies 𝑦 = [−4000.0, −2100.0, −300.0, 1500.0].
At the top of the plot, each pitch range is denoted, with the activated dimensions in parenthesis.

position; often absolute scale position in models that include self-attention layers (see
Chapter 5),

𝑣𝑖,2𝑗 = sin(𝑖/100002𝑗/𝐾)
𝑣𝑖,2𝑗+1 = cos(𝑖/100002𝑗/𝐾),

(3.10)

for 𝑗 ∈ {0, … , 𝐾/2 − 1} and 𝑖 ∈ {0, … , 𝑇 − 1}, with 𝐾 being the dimensionality of
the encoding, and 𝑇 are the number of timesteps. An example of this type of encoding
is depicted in Figure 3.11.

The way in which conditioning is integrated into the network architecture is also
something that may have an effect on the design of the input control encoding. One
common approach is to have the encoded control inputs enter the network at the
bottom and work their way up the layers through a series of non-linear transformations.
Another approach, typically used in autoregressive models (e.g., van den Oord et al.,
2016a), is to integrate the conditioning signal directly (often only transformed by a
1×1 convolution) into each layer of the network. While the former can technically
be seen as a specific case of the latter (i.e., all but the first layer could ignore the
conditioning signal), in practice the latter case will probably favor a much more direct
use of the encoded conditioning signal. Thus, especially in the latter case, a more
powerful (neural) encoder may be warranted, whereas in the former case the decoder
itself may partially make up for a simpler encoder (e.g., relying more on heuristics).
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Figure 3.10: Example of a
cyclical control encoding.
Shown here are equivalent
1-d and 2-d views of a cyclical
encoding with 𝐾 = 4.
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Figure 3.11: Example of a si-
nusoidal positional encoding.
Shown here with 𝑇 = 200
timesteps and dimensionality
𝐾 = 128.
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Grapheme-to-phoneme conversion

Generally, this is done using either of two methods; rule based, or dictionary based.
This depends on the language. Some issues are out-of-dictionary words (typically rule-
based fallback), foreign words, names, heteronyms (words that are written the same,
but pronounced differently depending on context).

Issues specific to the singing voice, such as elongated schwas converting to other vowels
in English. Maybe melismas and elations, etc. (Ríos Mestre, 1999)

3.1.5 Performance-driven synthesis

A useful technique in singing synthesis research is so-called performance-driven syn-
thesis (Janer et al., 2006; Goto et al., 2012). In this approach, rather than synthesizing
from amusical score input, a reference recording is used to provide some of the features
needed to produce the output waveform. These features typically will always include
phonetic timings, as this ensures the timing of the synthesis will closely match that of
the reference recording. The other commonly used feature is F0, but could also include
other features such as loudness.

The main reason why we use performance-driven synthesis in some parts of this work
is to aid evaluation. This approach allows us to compare certain parts of the singing
synthesizer in isolation, by keeping some of the features used in the synthesis constant.
For instance, we can use realistic pitch and timing features extracted from a reference
recording and only focus on evaluating different timbre models. Other reasons why
performance-driven synthesis can be useful are typically more related to practical
applications: Sometimes it is simply the fastest way to obtain realistic sounding results.
Even in these cases, while the melody will be generally fixed, we can still change speaker
identity (perhaps with some octave pitch shifting). Lyrics can often also be changed
to some extent, even modified quite freely if care is taken while creating the reference
recording. For instance, if the reference recording is just alternating vowels, it will be
mostly free of microprosody (Taylor, 2009, Chap. 9.1.4, “Micro-prosody”, p. 229). In
this case, lyrics can be assigned freely, as long as the syllable structure fits well into the
note melody. Note that in this case we would typically use note timings extracted from
the reference recording, combined with a phoneme duration model (see §4.3.3).

In practice, obtaining F0 features from a reference recording can be done mostly auto-
matically using a suitable estimator. In some cases, results can be slightly improved by
some manual correction (mostly around voiced/unvoiced boundaries), or occasionally
bymoderate smoothing of the extracted features if they exhibit excessive frame-to-frame
variations. Like when training the model, we linearly interpolate unvoiced regions to
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have a continuous feature. This way we can rely on the predicted voiced/unvoiced
decision to ensure that timbre and voicing of the excitation match. If we do not ensure
this, synthesizing voiced timbres with unvoiced excitation can cause noise bursts, and
synthesizing unvoiced timbres with voiced excitation can cause a “buzzy” sound. Ob-
taining phonetic timings tends to be slightly more problematic: One approach is to use
forced alignment between the reference recording and a hiddenMarkovmodel (HMM)
corresponding to the phonetic sequence. The HMM will often either be a pre-trained
speaker-independent model designed for automatic speech recognition (ASR), or the
reference recording can be self-segmented as part of a larger set of recordings (see
“Self-segmentation using deterministic annealing expectation-maximization” in §3.2.7).
Depending on the language, the results of this approach are often not accurate enough,
and will need some manual correction.

3.2 Datasets

As is generally the case with data-driven machine learning approaches, datasets are
very important to the success of singing synthesis models. However, a standout aspect
compared to other domains is that singing datasets involve humans, musicality and
expressive performance. Even in the most closely related domain, TTS, datasets are
often recordings of neutral speech, often without too many requirements with respect
to the recorded speakers or text.

The research group within which this work was conducted has a fairly extensive ex-
perience creating singing datasets that was amassed over the years. This experience
does not only involve datasets that were specifically designed for the now ubiquitous
machine learning approaches around which this thesis is centered, but also datasets
that were intended for older approaches, in particular concatenative synthesis.

Up until recently, there have not been many publicly available datasets suitable for
singing synthesis. As such, much research on this topic uses proprietary datasets, where
many of the details of how the datasets were collected are not discussed in depth
in the associated publications. Therefore, we consider sharing some of our personal
experience, thoughts and practical know-how on the dataset creation process a valuable
contribution. That said, we have not conducted any rigorous scientific research on this
topic.
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3.2.1 Public datasets

To preface our own experience with singing dataset creation, we will discuss some of
the available public datasets. This is not an exhaustive listing, but rather to give an
overview for context.

While many public datasets include singing vocals, not all of them are suited for singing
synthesis research. Particular requirements of the dataset of course vary a little depend-
ing on the model that will be trained using it. However, most models will have the same
basic requirements. Recordings should generally cover a lot of phonetic contexts. This
may exclude some datasets that consist of vocal exercises, scales, single vowels, single
syllables, single words, and so on. Recordings should generally be high-quality studio
recordings. This excludes some datasets that include processed vocals (i.e., “stems”),
amateur “user” recordings (e.g., recordings collected from karaoke apps), low sample
rate recordings, and so on. The amount of material recorded of a singer should also
be sufficiently large. In some cases, a small number of recordings per singer can be
compensated by having a large number of singers in a dataset. The quality of the singing
itself is also of importance. In particular whether or not the singers are professional-
level singers, and whether or not they are native speakers of the language. Finally, for
many models, the annotations provided by the dataset are important. Of particular
interest are phonetic transcription, phonetic segmentation, note transcription, and
possibly other expressive annotations.

When we only consider datasets with at least some form of annotations, we are aware
of only a few publicly available datasets; one for English, three for Japanese, and very
recently two for Mandarin Chinese. That said, there does seem to be an uptick in
datasets especially designed for singing synthesis research being publicly released by
research groups.

For English there is NUS-48E (Duan et al., 2013), this is a multi-speaker dataset with
12 speakers and 4 songs per speaker. It should be noted that the singers recorded for
this dataset are amateur singers, and non-native English speakers (Malaysian).

For Japanese, there isNIT-SONG070-F001, JSUT-song and theTohokuKiritan Singing
Database. NIT-SONG070-F001 is part of the demo datasets and recipes included with
HMM Speech Synthesis System (HTS) (Zen et al., 2007). This is a professional female
Japanese singer singing nursery rhymes. Out of the 70 songs recorded, the public dataset
includes 31 songs, totaling 31min. JSUT-song is similar to NIT-SONG070-F001, also
a (different) female Japanese singer singing the same nursery rhymes. In this case 27
songs, totaling 25min. The Tohoku Kiritan Singing Database consists of recordings
of a female Japanese singer, singing pop songs (J-pop and anime songs). This dataset
includes 50 songs, totaling 3 h 31.



3.2 Datasets 57

For Mandarin Chinese, there is OpenSinger (Huang et al., 2021) and Opencpop (Wang
et al., 2022). OpenSinger is a multi-singer dataset of 93 professional singers, totaling
around 50 h, and sampled at 24 kHz. Opencpop on the other hand is a single-singer
dataset, of a professional female singer, singing 100 pop songs, sampled at 44.1 kHz,
and including phonetic and note annotations.

3.2.2 Types of datasets

When creating a vocal dataset, some different approaches can be taken. These mainly
affect what to record and how to instruct the singer. In particular, the amount of
expression that the singer utilizes may be controlled to reduce the variability of the
data. The idea behind this is that more coherent data may help improve the model’s
performance, given that in practice data is often limited. In this work, we focus mainly
on two types of data; what we call pseudo singing, and natural singing.

Pseudo singing

So-called pseudo singing is a constrained type of singing, that can be considered to be
in between natural speech and natural singing. This allows to reduce the variability in
the data, but comes at a cost of also reducing naturalness compared to natural singing.
These kinds of datasets were initially designed as a practical solution for recoding
diphone inventories for concatenative synthesis. In this case, we want to “cover” all
diphones in a certain pitch, and make sure phonetic context and timbre in general are
as coherent as possible. Additionally, using flat pitches tends to be beneficial to many
signal processing techniques applied in concatenative synthesis. Thus, pseudo singing
generally asks the singer to sing a sentence as a single pitch, with constant dynamics
and cadence, and a clear and coherent pronunciation. Once all sentences are recorded
at a given pitch, the whole process is repeated at different pitches (usually a total of 3 or
4), to cover a range of typically 1–2 octaves. In theory, different tempos and dynamics
can also be recorded, but this was not done often in practice.

This approach has a number of advantages compared to natural singing. It allows
for very controlled recordings, where we can ensure that certain criteria are met, e.g.,
covering a certain set of diphones in a certain set of pitches, ensuring (mostly) clear
pronunciation, etc. Also, the amount of recorded data tends to be less, as phonetic
contexts are coveredmore efficiently, there are no long notes, no long rests, no repetition,
etc. Finally, automatic annotation, such as phonetic segmentation, tends to work much
better on pseudo singing than themuchmore variable and expressive natural singing.

That said, there are also a number of very significant downsides to this approach.
Arguably, the biggest downside is that if our goal is to synthesize natural singing, the
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training data should not deviate significantly from that kind of data. That is, while in
practice in certain cases pseudo singing can outperform natural singing, ultimately
this should not be the case, e.g., given sufficient data, powerful models, and so on. The
second-largest downside of this approach is arguably that performing pseudo singing
tends to be significantly more difficult for singers than natural singing. Sentences can be
unfamiliar and occasionally constructed in unusual ways, and very monotone singing
for extended periods can be taxing. Especially when this technique is used for diphone
concatenative synthesis, the singer has to be very careful to perform the diphone in
question as required, e.g., avoiding pauses in diphones extracted from word boundaries.
All of this, often causes the recording times of pseudo singing to exceed that of natural
singing, even though the final dataset may be smaller. Additionally, singers may become
frustrated they cannot show off their abilities as skilled singers.

There are some ways to relax the constraints of pseudo singing a little. These especially
make sense when these kinds of datasets are used with modern synthesis techniques
that rely less heavily on manipulation by signal processing. For instance, we may allow
the singer to pick a free melody and rhythmic pattern, especially in the cases where
note transcription is not required. Another approach is to construct sentences with
certain properties, and then compose corresponding melodies. This latter approach
is used by Koguchi et al. (2020) for their PJS dataset, which in their case allows for
compact, phonetically balanced scripts, as well as avoid copyright-related issues which
can be especially important when making datasets public.

Natural singing

Natural singing as the name suggests is simply recording a singer naturally singing songs.
Themain issue here is that we have little control over what we “cover”, e.g., combinations
of phonetic contexts and pitches. The most straightforward strategy to combat this is to
record a lot of data, which depending on the model used, could lead to requiring a lot
of annotations such as note transcription or phonetic segmentation. These annotations
often have to be corrected manually for sufficient accuracy, thus making the voice
creating process costly in terms of time and skills required. Furthermore, using natural
singing can lead to cases where the singer produces excessive expressive variability
with respect to the annotations available. For instance, a singer may use a drastically
different timbre or style of singing within a song, while a model would not be able
to infer this by just looking at the score. Additionally, there can be a high variability
between different songs. In our experience, this can be mostly mitigated by a deliberate
song selection, as well as carefully instructing the singer.
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3.2.3 Creating recording scripts

Before recording, we need to establish a recording script that must be performed by the
singer. In the case of pseudo singing, this can be a set of sentences and a list of pitches,
and in the case of natural singing a set of songs.

In the case of pseudo singing, typically we can select sentences from a large corpus,
following some optimization criterion, e.g., the least amount of sentences that covers a
set of diphones. This will often involve additional constraints to make the recording as
easy as possible for the singer. For instance, using all sentences with a fixed number of
syllables can really help establish a rhythm while recording with a constant cadence.
There often also is some final manual revision and correction of sentences selected.
These techniques are very similar to those employed in TTS corpus generation (e.g.,
Bozkurt et al., 2003).

In the case of natural singing, ideally the singer we record can provide a unique reper-
toire of original songs in a coherent style, while also being sufficiently large. In practice,
this is often not the case. We could compose new songs especially for this purpose, but
this is typically not done due to the effort required (both to compose the songs, and for
the singers to learn these new songs). Thus, the most practical solution is typically to
select existing songs. Some criteria for these songs can include how familiar the singer
is with the songs, and how well they fit the target style. Especially when the dataset
is made public, copyright issues should be considered here. These issues are likely
to depend on the applicable jurisdiction and intended use of the data. One common
solution, although non-ideal, is to use public domain songs, such as nursery rhymes
(e.g., Takamichi et al., 2018). We expect laws regarding using copyrighted data for
training machine learning models to become better defined in the future and this seems
to already be changing in some jurisdictions (e.g., Ogawa and Morise, 2021).

3.2.4 Selecting singers

When it comes to selecting singers, there are no hard and fast rules. One of the things
we tend to look for is whether the singing style is what we want and whether the timbre
is attractive according to our subjective opinions. Typically, we favor singers with a
large tessitura as this results in a more versatile synthetic voice. Another important
issue is whether the singer is a native speaker of the target language (and dialect), as
singers may be able to sound convincingly in a non-native language, but pronunciation
tends to be more variable in our experience. Finally, one of the more important aspects
is availability and interest in collaborating in the project.
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In the case of pseudo singing, one additional requirement is that the singer has to be
able to follow scripts very accurately, which is a skill quite unrelated to being a good
singer. We find that singers who also work as voice actors tend to be a good fit in these
cases.

3.2.5 Recording datasets

Here we will discuss some practical know-how related to recording singing datasets.

Studio setup

Ideally, we will have a silent, low reverberation room for recording the singer, and
a separate “control room” where the studio engineer can be during the recording.
In practice, many compromises can be made, e.g., acoustically treating a room with
curtains, using a microphone isolation shield, simply being quiet during recordings
when a separate control room is not available, and so on.

We typically use a large-diaphragm condenser microphone such as the Neumann U87,
which performs well for male and female vocals, and can handle high sound pressure
levels without distortion. We typically use a mic stand with a pop shield at around
2.5–5 cm from the microphone to attenuate plosives, sibilants and affricates a little. We
use a closed headphone for playback of accompaniment and talkback from the control
room. When needed, we also use a large screen monitor at a distance to display lyrics,
or occasionally a stand to support paper scores and lyrics.

We initially place the singer at a distance of around 30 cm, then instruct the singer to
sing some phrases in lowest and highest dynamics, and adjust the distance from there
if needed to ensure proper recording levels and comfort for the singer. We consider
it important to keep the distance to the microphone as constant as possible, so we
instruct the singer to do so. Additionally, especially when the recording session is split
over several days, we may take photos and mark the positions on the floor.

Generally, we record without any dynamics processing, ensuring that we record at a
high bit depth (e.g., 24 bit) to avoid quantization noise and low enough level to avoid
clipping. While most of our models currently use a lower sample rate, we tend to “future
proof ” recordings by using a high sample rate such as 96 kHz.

Reference recordings

We may conduct some special recordings at the beginning of a session that are used as
a reference to keep timbre coherent (i.e., played back to the singer later). This can also
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be a good time to set levels, in particular singing high pitches at high dynamics, to get
a feel of the highest loudness, in order to avoid clipping. In some cases, recording some
duration of silence can also be a good idea, for possible future noise reduction, if the
recording environment is less than ideal.

Accompaniment

Accompaniment or background music is very important for the singer to keep in tune
to some master tuning (typically 440Hz), and not use a different tuning, drift over
time, or vary from song to song. Additionally, the accompaniment can ensure the singer
is on-time with respect to a score. Thus important things to consider when selecting
existing accompaniment audios is whether the tuning is actually what we expect, and
whether the timing is not variable. In some cases, we should also ensure accompaniment
does not bleed through from the singer’s headphones, and possibly apply some EQ to
attenuate high-hats and such.

For natural songs, karaoke tracks can be a practical solution, although the quality
may vary. For pseudo singing, some tools for automatic composition may be used. In
some cases, accompaniment can even be controlled live (e.g., playing chords on a fixed
tempo).

Managing singer fatigue

In our experience, typically it is best to keep sessions under 4 h per day to avoid the
singer becoming excessively fatigued. Obviously, this will depend on many factors,
such as the available time, the singer itself, and whether additional recording days are
acceptable.

In general, we have found that it is often beneficial to record more material rather than
getting the recordings “perfect”. In particular, a singer may be accustomed to redoing a
part many times in order to get the perfect take for an album recording, while in this
case a single take may do even if there are minor imperfections. In some cases, minor
imperfections in lyrics can be edited later. However, things such as singing out of tune
are not acceptable (nor expected from a professional singer).

3.2.6 Post-processing

What, if any, post-processing to apply to the recorded audios depends a lot on the
recording itself and the target voice. As a general rule, we apply as little processing as
possible to the voice, with the idea that any desired post-processing can also be applied
to the synthesis output.
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Typical post-processing includes loudness normalization, using standard loudness
measures like ITU-R BS.1771-3, ensuring that natural relative differences in loudness
due to varying dynamics and pitch are maintained. Occasionally, some light dynamics
compression, including de-essing, is also applied. In some cases, we apply some global
EQ correction. Very low frequencies, e.g., sub-sonic rumble well below the fundamental,
will also typically be cut.

3.2.7 Annotating datasets

To annotate datasets we generally use a semi-automatic process that we will briefly
describe here. In this case, we will describe just annotating data with a timed phonetic
sequence (phonetic segmentation), rather than e.g., a note score, because this is the
type of annotations most frequently used throughout this work.

1. Split the larger recordings, e.g., whole songs, into phrases. Here, we consider a
phrase a continuous utterance without significant pauses. That is, we split on
longer silences, which often coincide with a longer aspiration. This step can
generally be done automatically, but splitting manually also tends to not require
too much effort.

2. Split the lyrics according to the above audio split. At this point, we can also
correct gross errors in the lyrics, e.g., where the singer deviated from the lyrics.

3. We perform automatic phonetic transcription of lyrics. See “Grapheme-to-
phoneme conversion” in §3.1.4.

4. Do an initial automatic phonetic segmentation using the process described in
“Self-segmentation using deterministic annealing expectation-maximization”
below.

5. Refine phonetic segmentation by hand. At this point, we generally refrain to
correct phonetic segmentation as this tends to be hard to do consistently. That is,
we prefer to keep the automatic phonetic transcription which is always coherent,
even if this may not always be strictly correct, assuming that many models will
be able to compensate for these kinds of discrepancies.

Self-segmentation using deterministic annealing expectation-maximization

Perhaps the most common traditional method of performing phonetic segmentation
is taking a pre-trained speaker-independent HMM and performing forced alignment.
Generally, the pre-trained models are speech models designed for ASR, rather than
singingmodels.We found that this approach tends to perform rather poorly, resulting in
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many gross errors, e.g., where the left-to-right forced alignment at some point deviates
from the true segmentation and never recovers. Even in cases where there are no gross
errors, the accuracy of this approach can still be fairly low, i.e., due to systematic and
no systematic errors.

Instead, we prefer an approach where we segment data using forced alignment of an
HMM model trained from scratch on the same data. In order for this self-segmentation
approach to be effective, we train the HMM model using the deterministic annealing
expectation maximization (DAEM) algorithm (Ueda and Nakano, 1998) rather than
the more common expectation maximization (EM) algorithm. In this case, the model
will be speaker-dependent, and thus we need to have sufficient data to train a model.
That is, for multi-speaker models with a relatively small amount of data per speaker,
this method is less suited.

We basically follow the recipe included with HTS (Zen et al., 2007) to train the model,
but we will summarize the most important aspects below. We use 13-dimensional
MFCC features extracted from audios downsampled to 16 kHz, with a 10ms Hamming
windows, a 5ms hop, and delta and delta-delta features. We use 5 state left-to-right
monophone hidden semi-Markov models (HSMMs), that is, an HMM with each state
duration modeled with a Gaussian. The model is trained from random initialization
(flat-start), then the individual monophone models are re-estimated, and finally the
embedded monophone models are re-estimated (i.e., all models jointly).

We found that context-dependent, e.g., triphone, models are not beneficial for deter-
mining phoneme boundaries. Likewise, we generally use a single Gaussian component
in the HMMs.

In some cases, there may be some systematic errors in the phonetic boundaries. In such
cases, it can be beneficial to perform the above process, manually correct some of such
boundaries, and re-train a model, initializing the model from the manually corrected
segmentation.

3.3 Evaluation

The evaluation of singing synthesis systems is generally not straightforward as many
of the aspects of the output audio that we are interested in, such as sound quality,
naturalness, expressiveness, intelligibility, and so on, are perceptual quantities. We first
discuss some of the issues surrounding evaluation using objective metrics based on
signal processing or statistics. Given these issues, we then discuss what we consider
to be the current “gold standard” method of evaluating TTS or singing synthesis sys-
tems; qualitative evaluation using listening tests. While this method is not without its
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own share of difficulties, it is the method we use most widely in this work. That said,
quantitative metrics, particularly based on signal processing, can offer some insight
and is therefore discussed next. Finally, we briefly discuss non-intrusive speech quality
assessment, which does not require reference audios and, more importantly, are based
on powerful data-driven neural networks. While we do not use these approaches in this
work, they deserve special mention as they seem like a potential way forward beyond
the current issues related to evaluation and are very actively researched at the time of
writing.

3.3.1 Issues related to evaluation

First, we will discuss some of the issues related to the evaluation of singing synthesis
systems. These issues relate mostly to objective evaluation, and highlight the reasons
why subjective evaluation is generally preferred.

Metrics with reference

Arguably, one of the most straightforward methods of evaluating something like a TTS
or singing synthesis model is to use what is called intrusive evaluation, that is compare
a sample from the model to a reference, using some metric that can be easily computed.
For our task, this tends to be a feasible approach as we can condition the model in
such as way as to ensure that the output will be at least close to the reference, e.g., using
performance-driven synthesis (see §3.1.5). Even in such a case, one issue is that TTS
and singing synthesis tends to be a one-to-many mapping, i.e., one given input control
sequence may map to many possible output sequences. Thus, it is not reasonable to
expect the model’s output to be exactly identical to a given reference signal. At the same
time, there are many output sequences that we cannot consider correct; for instance, we
may synthesize a sequence that matches the target melody and lyrics, but sounds like a
different singer. This leads to a kind of catch-22 situation where in order to evaluate
whether a sample of a model is within the acceptable range of outputs, we would ideally
need a similar model to do so.

Another important issue is that the metrics used to compare signals should ideally be
highly correlated to how humans perceive signals to be close or not. A particular issue
is that signals may have significant differences, while still being perceived as identical.
This leads to many metrics being somewhat unreliable. Typical signal differences that
are less perceptually relevant include small differences in timing, differences in low
energy bands masked by higher energy bands, things like vibratos being out of phase,
differences in phase in general, and so on. As the metrics used tend to be designed by
hand, it is difficult to account for all such possible issues.
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Likelihood and sample quality

As many TTS and singing synthesis models use probabilistic formulations, using the
average log-likelihood on a test set may seem like a good way to evaluate and compare
models. However, Theis et al. (2016) has shown that a model may have a good average
log-likelihood, but produce low-quality samples, and vice-versa. Furthermore, this
approach is limited to models where computing log-likelihood is tractable, which is
not the case for many models. In those cases, approximations to log-likelihood may
be used, but these approximations, such as Parzen window estimates, can introduce
additional issues.

Issues with waveform models

While many models may produce some kind of intermediate acoustic features (see
§3.1.3), the final output we are interested in is a waveform. Unfortunately, evaluating
waveforms is especially difficult compared to many other kinds of signals. While only
one-dimensional, audio waveforms tend to have high sample rates (e.g., 32 kHz), result-
ing in a high total dimensionality. More importantly, the relation between a waveform
and how it is perceived by a human is very non-linear and indirect. To mitigate these
issues, most metrics for evaluating waveforms are based on spectral analysis. However,
such analysis tends to use windowing that trades off time resolution for frequency
resolution. Furthermore, such analysis tends to be lossy to some degree, e.g., phase
information is generally discarded, or a mel-frequency scale may be used for better
correlation to perception, at the cost of losing resolution at high frequencies. As a result,
many ways of objectively evaluating waveforms tend to miss many of the more subtle
aspects of sound quality.

3.3.2 Qualitative evaluation

Here we will discuss some of the qualitative, or subjective, evaluation metrics we use in
this work. We also mention some evaluation metrics that are not directly used in this
work, but are still common. That said, this list is far from exhaustive.

As said, listening tests are currently considered the “gold standard” for evaluating TTS
and singing synthesis models. That said, they are not without problems. One issue is
that obtaining coherent results across subjects can be difficult, e.g., one subject’s “good”
can be equivalent to another subject’s “above average”. Additionally, there are many
factors that may affect judgment, such as familiarity with a certain style of singing,
background music (if any), timbre of the voice, language, and so on. Finding suitable
subjects to participate in listening tests can also be difficult. Some may not be used
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to listening for subtle differences in sound quality. Or in the case of singing voice, we
may have to evaluate things such as the naturalness and quality of singing expression.
These issues can be mitigated by careful design of listening tests, e.g., ranking tends to
be easier than rating on an absolute scale, and by careful selection of subjects. Both of
these things tend to be limited by practical constraints, e.g., the duration of the test, or
whether “expert” subjects are available in sufficient quantity. That said, in this work, we
try to find a balance between these things. For instance, we generally try to find at least
somewhat “expert” subjects (music technology researchers, singing voice researchers,
singers, musicians), even if this comes at the cost of having fewer subjects.

When aggregating the results of listening tests, typically by some kind of averaging
operation, we may also apply some heuristics that try to filter out invalid ratings or
subjects. These tend to include things like spending a very short time on tests, i.e., much
shorter than the time needed to listen to all stimuli, or not moving any of the sliders
(which can happen when accidentally skipping a test for instance). In some cases, we
may even exclude some outlier ratings, but this requires a sufficient amount of ratings
and detecting outliers with a sufficiently large margin in order not to bias the results.
These techniques are especially important when using online listening tests, where we
cannot fully control which subjects participate.

Mean opinion score (MOS) By far the most common qualitative evaluation method
for TTS and singing synthesis is a mean opinion score (MOS) listening test
(e.g., Ribeiro et al., 2011). Here, several subjects are asked to listen to a series of
stimuli and rate each on a (discrete) 1–5 absolute category rating (ACR) scale
with respect to the quality of interest, such as sound quality or naturalness. Some
drawbacks of this method are that the interpretation of the rating scale may vary
from subject to subject, and that the coarse rating scale does not allow expressing
more subtle differences the subjects may perceive. The exact implementation of a
MOS listening test can vary depending on the exact requirements, although ITU-
R P.800 (ITU-R Recommendation P.800, 1996) gives some recommendations.
In its most canonical form, the MOS is calculated as the arithmetic mean over
single ratings for a given stimulus,

MOS =
∑𝑁

𝑛=1 𝑅𝑛

𝑁
, (3.11)

where 𝑅 are the individual ratings for a given stimulus by 𝑁 subjects. In practice,
a MOS test typically compares the output of multiple systems, and as such may
present these stimuli simultaneously to the subjects. Similarly, there may be a
reference audio to be considered in the rating, and typically there will be multiple
stimuli for each system to be compared. In these cases, the test is actually more
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similar to a multiple stimuli with hidden reference and anchor (MUSHRA) test
described below.

Multiple stimuli with hidden reference and anchor (MUSHRA) A variant of the
MOS listening tests, the MUSHRA test (ITU-R Recommendation BS.1534-3,
2015), asks the listener to rate multiple stimuli derived from a single reference at
once (e.g., outputs produced by different models to be compared, where the
reference is a recording of the speaker or singer). Additionally, a finer-grained
rating scale 0–100 is used, albeit typically still displayed with a 5 segment ACR
scale. Among these stimuli a hidden copy of the reference is included in order to
get an upper bound score (ideally close to 100). Similarly, one or more anchors,
distorted copies of the reference, are included to get a lower bound score (ideally
close to 0). While for things like evaluating lossy audio compression, how
such anchors can be created is reasonably well defined, this is not the case for
TTS or singing synthesis. The main problem is that it is difficult to artificially
generate artifacts that realistically simulate the kind of degradations that occur
in the voice modeling process. Another drawback of this method is that in
TTS research, results are typically presented as a MOS test (i.e., on a 1–5 scale),
although, as mentioned, the actual test may be implemented much more closely
to a MUSHRA test than a traditional MOS test. In our work, typically, we
loosely follow a MUSHRA test, with reference, hidden reference, but typically
no anchor. Similarly, we present stimuli corresponding to multiple systems at
once, and use a fine-grained 0–100 scale. For the final results, we first linearly
map ratings on a 0–100 scale, 𝑅̂, to ratings on a (continuous) 1–5 scale, 𝑅,

𝑅 = 1 + 4 𝑅̂
100

. (3.12)

Then, we compute the final score for a given system as the arithmetic mean over
the ratings of all stimuli corresponding to that system, by all subjects, following
Equation (3.11),

MOS𝑠 =
∑𝑁

𝑛=1 ∑𝐾
𝑘=1 𝑅𝑠,𝑛,𝑘

𝑁𝐾
, (3.13)

where 𝑠 corresponds to the system in question, 𝑁 the number of subjects and 𝐾
the number of stimuli per system. The mean opinion score (MOS) is typically
presented together with the 95% confidence interval, typically printed as the
confidence interval relative to the mean. This confidence interval is calculated
as,

CI𝑠 = MOS𝑠 ± 𝑡𝑁𝐾−1
𝜎(𝑅𝑠)√

𝑁𝐾
, (3.14)
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where 𝑡𝑁𝐾−1 is the 95-th percentile of a Student’s t-distribution with 𝑁𝐾 −
1 degrees of freedom, and variance 𝜎2(𝑅𝑠) = 1

𝑁𝐾−1 ∑𝑁
𝑛=1 ∑𝐾

𝑘=1(𝑅𝑠,𝑛,𝑘 −
MOS𝑠)2. One way to interpret this is that if the listening test were to be repeated
many times, and the 95% confidence intervals were calculated for each listening
test, the proportion of confidence intervals that would encompass the true MOS
would tend towards 95%. Another interpretation is that the 95% confidence
interval represents values that are not statistically significantly different from the
point estimate at the 0.05 level.

Comparison mean opinion score (CMOS) A comparison mean opinion score
(CMOS) test is similar to a MOS test, except that stimuli are rated with respect
to a reference. In this case, a (discrete) -3–+3 scale is used (much worse, worse,
slightly worse, about the same, slightly better better, much better). This approach
is most useful when we have a clear single reference, which could potentially
be better than the systems to be evaluated, e.g., in ablation studies, or when
evaluating an improved version of a synthesis model to its predecessor. However,
when comparing multiple systems to each other, other tests are arguably better
suited.

AB preference test A preference test, or AB preference test, is a type of paired test that
is also frequently used in the evaluation of TTS and singing synthesis. These tests
ask subjects to listen to two stimuli (“A” and “B”) and select the preferred stimuli,
or “no preference”. The main advantage of this type of test is that it tends to be a
relatively easy and unambiguous task for the subject. While the results of such a
test do not give ratings on an absolute scale, they are very easily interpretable.
The main other drawback is that when comparing many different systems, the
number of pairs may become impractical.

ABX test Another type of paired test, the ABX test, is less widely applicable in TTS,
but may also be used in some cases. In this type of test, the subjects are given
three stimuli, “A”, “B”, and “X” which is randomly chosen from “A” or “B”. The
task is then to select whether “X” is identical to “A” or to “B”. This type of test is
used to see if subjects can consistently identify detectable differences between the
stimuli. This kind of test makes the most sense in cases where compared systems
produce very subtle differences, such as lossy audio compression. However, in
TTS and singing synthesis, we can typically assume that differences between the
output of different systems tend to be detectable, even if how these differences
relate to the rating can be ambiguous.
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3.3.3 Quantitative evaluation

Here we will discuss the quantitative, or objective, evaluation metrics used in this work.
We use different metrics for different aspects of the synthesized sound, such as timbre,
pitch and timing.

Dealing with time mis-alignment

All of the metrics discussed here compare the output of a model to a reference audio.
In certain cases, such as when using performance-driven synthesis (see §3.1.5) using
phonetic timings corresponding to the reference, we assume the model output and
target to be approximately aligned in time. In certain other cases, such as using note
timings and a phoneme duration model, there may be some mis-alignments in time. In
the latter case, when both reference phonetic timings and synthesis phonetic timings
are available, we apply a simple linear mapping between (discrete) timestep indexes.
In other cases, we can apply dynamic time warping (DTW) as a more generalized
solution to time-aligning the signals3. In cases where we expect approximate alignment,
we can use DTW with certain constraints allowing only small deviations to further
improve alignment.

Even when we use performance-driven synthesis, small timing deviations with respect
to a reference can still quite commonly occur. For instance, wemay control a synthesizer
with a timed phonetic sequence extracted from a reference signal, and then compute
some metrics using that same reference signal. In this case, the overall timing of the
synthesis output and reference should match, but fine details such as the exact time
position of the burst of a plosive may deviate one or two frames. Besides applying
DTW to try to perfectly align the sequences, we can also use simpler approaches to
try to mitigate such small timing differences overly affecting the final metrics. For
instance, using simple heuristics (e.g., Iglewicz and Hoaglin, 1993) we can estimate
which timesteps correspond to outliers in the overall error distribution, and exclude
them when aggregating errors over all timesteps.

Frame-wise vs. sequence-wise metrics

Most metrics discussed here are frame-wise metrics that only consider a single timestep
in a sequence. The values can then be aggregated over the whole sequence by simple
operations such as averaging. An important drawback of this type of metric is that

3In a recent publication, Kang et al. (2021) describe in detail how to apply dynamic time warping (DTW)
prior to computing the mel-cepstral distortion (MCD) metric, calling it “Elastic-MCD”. However, this
approach has been used quite widely since much longer (including in this work). That said, many
publications do not mention this very explicitly or in much detail (exact hyperparameters and such).
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the issue of oversmoothing in time is not reflected well. Oversmoothing is a common
artifact of synthesis models and perceptually very relevant issue, where the predicted
parameters are overly averaged in time and frequency, producing static sounds that
often sound “buzzy” or “muffled”. While frame-wise metrics do reflect oversmoothing
in frequency to some degree, they do not consider the importance of natural frame-
to-frame variations. What is worse, such overly averaged predictions can actually
produce better averaged scores than perceptually more natural predictions with more
variations.

To mitigate these problems, we also employ some sequence-wise metrics. These metrics
take the whole sequence into account, and especially focus on variation over time. A
common metric of this type is the global variance (GV) (Toda and Tokuda, 2007).
Here, the variance over an entire utterance is computed, and the results are typically
presented as separate values for predicted and ground truth GV, averaged over all
utterances. The values can be averaged over all dimensions of some feature, e.g., the
coefficients of the timbre representation, or displayed as a plot for each dimension
separately. The downside of this metric is that it is sensitive to outliers, and not very
informative (i.e., two signals can be vastly different but have similar variance). The
underlying assumption that the signal is Gaussian, does also not hold typically.

Amore recentmetric is themodulation spectrum (MS) (Takamichi et al., 2016). TheMS
is equivalent to the magnitude spectrum of a speech parameter time series. Typically, a
long window is used, and results may be averaged between windows and utterances.
Typically, this metric is presented as a plot comparing predicted and ground truth
spectra. In particular, the MS gives insight into the frame-to-frame variations in the
signal. Oversmoothed predictions tend to lack high-frequency content, compared to
natural speech or singing. In the case of singing, the MS of F0 can even give insight
into vibrato frequencies. The main drawback of this method is that the results tend to
be quite noisy, and may require some additional heuristics for best results.

Timbre metrics

The metrics we use to evaluate timbre and timbre models depend to some degree on
the intermediate acoustic features used (see §3.1.3). For instance, if we have separate
harmonic and aperiodicity features, these can be evaluated separately.

Log-spectral distortion (LSD) Log-spectral distortion (LSD) is a commonly used
distance in dB between two spectra. While this metric thus essentially is frame-
wise, for time series, that is, spectrograms, we simply aggregate frame-wise errors
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using a simple mean. We can define the (mean) log-spectral distortion (LSD)
between two 𝑇 ×𝐾-dimensional spectrograms 𝑋 and 𝑋̂ as,

𝐷LSD = 1
𝑇

𝑇
∑
𝑡=1

√√√

⎷

1
𝐾

𝐾
∑
𝑘=1

[20 log10
𝑋(𝑡, 𝑘)
𝑋̂(𝑡, 𝑘)

]
2

. (3.15)

Mel-cepstral distortion (MCD) Mel-cepstral distortion (MCD) is the equivalent of
the LSD between two mel-frequency cepstra, rather than two (linear frequency)
spectra. The main difference is that it uses a mel frequency scale rather than
a linear frequency scale, which is arguably closer to human perception. Note
that the mel-frequency cepstrum is a linear transform of the mel-frequency
spectrum, thus this metric is equally valid between two mel-frequency spectra.
Traditionally, this metric derives low-dimensional mel-cepstra from the full
spectra. This reduces the interference of pitch on the spectra compared (i.e., we
are comparing something closer to the spectral envelope, rather than all spectral
details), which tends to be considered desirable as timbre is closely related to this
envelope. However, in our case, we tend to generally compute the mel-cepstral
distortion (MCD) on features that are already on a mel scale, e.g., a model which
outputs mel-spectrograms, or the features may inherently follow the spectral
envelope, e.g., when using harmonic vocoder features. We can define the (mean)
MCD between two 𝑇 ×𝐾-dimensional cepstrograms 𝐶 and ̂𝐶 as,

𝐷MCD = 10
log 10

√
2 1

𝑇

𝑇
∑
𝑡=1

√ 1
𝐾

𝐾
∑
𝑘=1

[𝐶(𝑡, 𝑘) − ̂𝐶(𝑡, 𝑘)]
2
. (3.16)

A more robust mel-cepstral distortion (MCD) In this work we use some additional
heuristics for computing MCD metrics, with the main to make the results more
reliable, especially when used in the context of singing voice. First, we extract
mel-cepstral parameters from WORLD spectra (Morise et al., 2016) rather than
STFT spectra, in order to better handle high pitches, where the distance between
harmonics is more pronounced. Additionally, to reduce the effect of pitch mis-
matches between reference and prediction, we filter pairs of frames with a pitch
difference exceeding ±200 cents. Similarly, to increase robustness to small mis-
alignments in time around rapidly changing phonemes such as plosives, frames
with a modified z-score exceeding 3.5 are not considered (Iglewicz and Hoaglin,
1993). In this case, the robust MCD is computed for harmonic components, using
33 (0–13.6 kHz) coefficients.

Band aperiodicity distortion (BAPD) Identical to MCD or LSD, except computed
over linearly spaced band aperiodicity coefficients. In the case of WORLD inter-
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mediate acoustic features, we compute band aperiodicity distortion (BAPD) over
the fixed number of bands the algorithm provides, e.g., 4 aperiodicity coefficients
(3–12 kHz) at a sampling rate of 32 kHz.

Modulation spectrum (MS) of harmonic features As discussed above, one issue with
frame-wise metrics, like MCD, is that these do not consider the behavior of the
predicted parameter sequences over time. In particular, predictions that are over-
smoothed in time are not penalized, and sometimes even favored over predictions
with natural frame-to-frame variation. As such, this aspect of these metrics does
not correlate well to perceptual qualities. In order to compliment the frame-wise
metrics, we propose to use the modulation spectrum (MS) (Takamichi et al.,
2016), which considers variations of parameters over time. In order to handle
variable-length sequences, we use a 1-d STFT with a window of 512 timesteps
(each timestep corresponding to 5ms) and a 16 timestep shift, for each dimen-
sion of the harmonic features. We use a Tukey window with shape parameter
𝛼 = 0.05. We then compute the magnitude spectra in dB and average across
all dimensions. The resulting (average) modulation spectrum (MS) can be vi-
sualized to get an idea of how the predicted parameters behave. For instance,
showing oversmoothing as a rolloff of higher modulation frequencies. We are
mainly interested in the lower band of the MS (e.g., <25Hz), because the higher
band of the reference (natural singing) can be overly affected by noise in the pa-
rameter estimation. We can also compare the MS of the predicted parameters to
that of a reference signal. To obtain a single scalar metric, we use the modulation
spectrum log-spectral distortion (MS-LSD), the log-spectral distortion (LSD)
between modulation spectra (MS) of a predicted parameter sequence and that
corresponding to a reference recording.

Pitch metrics

We separate pitch into metrics considering continuous pitch, and metrics considering
voiced/unvoiced (V/UV) decision separately. Alternatively, we can also consider V/UV
decision to be part of aperiodicity features (if any).

F0 root mean squared error (RMSE) A typical metric to evaluate F0 would be root
mean squared error (RMSE). While for TTS this metric is sometimes given in
Hz, for singing it is more appropriate to express it as a function of log F0, e.g.,
using cents. Thus, we can compute this metric as,

𝐷RMSE,¢ =
√√√

⎷

1
𝑁

𝑁
∑
𝑛=1

[1200 log2 (
̂𝑓𝑛

𝑓𝑛
)]

2

, (3.17)



3.3 Evaluation 73

where ̂𝑓 and 𝑓 are the 𝑁 predicted and target F0 values (in Hz) respectively. It
should be noted that these metrics are often not very correlated to perceptual
metrics in singing (Umbert et al., 2015). For instance, starting a vibrato slightly
early or late compared to the reference may be equally valid musically, but can
the cause the two F0 contours to become out of phase, resulting in high distances.

F0 correlation The Pearson correlation coefficient between the predicted (log) F0
and target (log) F0 can also give some indication of the performance of an F0
model. This metric is a real number in the range [−1, 1], where higher values
indicate a high degree of correlation. This metric can be calculated as,

𝑟 =
∑𝑁

𝑛=1(¢𝑛 − 𝑚¢)( ̂¢𝑛 − 𝑚 ̂¢)

√∑𝑁
𝑛=1(¢𝑛 − 𝑚¢)2 ∑𝑁

𝑛=1( ̂¢𝑛 − 𝑚 ̂¢)2
, (3.18)

where ̂¢ and ¢ are the 𝑁 predicted and target F0 values (in cents), i.e., ¢ =
1200 log2(𝑓/440). Again, it should be noted that this metric is not perceptually
motivated and generally should only be considered in conjunction with other
metrics and possibly qualitative evaluation.

Modulation spectrum (MS) of log F0 Similar to timbre, we use MS-based metrics to
get a sense of how close the generated F0 contours are in terms of variability over
time. The MS of F0 is computed by first segmenting the score into sequences of
continuous notes, without rests. Then, for each sequence, the remaining unvoiced
regions in the log F0 curve are filled using cubic spline interpolation. We apply a
Tukey window corresponding to a 50 frame fade in and fade out, and subtract
the per-sequence mean. Then, the modulation spectra are computed using a
DFT size 4096, and averaged over all sequences.

Voiced/unvoiced (V/UV) decision metrics In singing voice, there is a notable imbal-
ance between voiced and unvoiced frames due to having many long, sustained
vowels. As both false positives (unvoiced frames predicted as voiced) and false
negatives (voiced frames predicted as unvoiced) can result in highly noticeable
artifacts, we list both false positive rate (FPR) and false negative rate (FNR) for
this estimator. All silences are excluded. These metrics can be calculated as,

FPR = FP
FP + TN

(3.19)

FNR = FN
FN + TP

, (3.20)

where TP, FP, TN, and FN are the number of true positives, false positives, true
negatives and false negatives respectively.
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Timing metrics

In order to get more informative results, we split the timing metrics up into a few
components, rather than just “blindly” compute the error between predicted and target
phoneme durations. First, we compute note timing errors, split into note onset error and
note offset error. Here, we consider note onsets to be much more critical for perceived
timing, while note offsets allow for much more variation without affecting timing too
much. Note offsets, in general, tend to be more ambiguous and more difficult to pin-
point to a single time instance. Next, we compute error metrics between predicted and
target consonant durations. We explicitly exclude vowel durations as these essentially
are a function of note timings and consonant durations (i.e., vowels make up the
remainder of the duration), and as such, could possibly skew the phoneme duration
results due to errors in note timing.

Timing root mean squared error (RMSE) We calculate RMSE for durations, onsets
and offsets as,

𝐷RMSE = √ 1
𝑁

𝑁
∑
𝑛=1

[ ̂𝑑𝑛 − 𝑑𝑛]
2
, (3.21)

where ̂𝑑 and 𝑑 are the 𝑁 predicted and target durations respectively.

Timing mean absolute error (MAE) We calculate mean absolute error (MAE) for
durations, onsets and offsets as,

𝐷MAE = 1
𝑁

𝑁
∑
𝑛=1

| ̂𝑑𝑛 − 𝑑𝑛|, (3.22)

where ̂𝑑 and 𝑑 are the 𝑁 predicted and target durations respectively.

Timing correlation The Pearson correlation coefficient between the predicted and
target durations (or onsets, offsets) can also give some indication of the perfor-
mance of the timing model. This metric is a real number in the range [−1, 1],
where higher values indicate a high degree of correlation. This metric can be
calculated as,

𝑟 =
∑𝑁

𝑛=1(𝑑𝑛 − 𝑚𝑑)( ̂𝑑𝑛 − 𝑚 ̂𝑑)

√∑𝑁
𝑛=1(𝑑𝑛 − 𝑚𝑑)2 ∑𝑁

𝑛=1( ̂𝑑𝑛 − 𝑚 ̂𝑑)2
, (3.23)

where ̂𝑑 and 𝑑 are the 𝑁 predicted and target durations respectively.
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3.3.4 Non-intrusive speech quality assessment

There has been a clear trend in recent work on speech quality assessment to try to
leverage powerful data-driven neural networks to obtain evaluation metrics that are
highly correlated to human perception, robust to a wide range of inputs, and require
no human interaction. Depending on the case, such metrics can blur the line between
objective and subjective evaluation, e.g., they may be computed by a deterministic
calculation, but involve millions of weights trained on human ratings. In general, the
goal here is to have the best of both worlds.

Many of these methods are part of a class of methods called non-intrusive speech
quality assessment. In this case, unlike in all the previous metrics, no reference signal
is required. This makes these approaches more widely applicable and avoids issues
related to time mis-alignment and such.

Here we will briefly discuss some of these methods, although we do not use any in the
main body of our work. The main reason for this is that most of these methods are still
very new and many were not available when we did our research. Additionally, as far as
we are aware all current methods were developed for speech rather than singing, and
adaptation typically will require a non-trivial amount of work, in particular in terms of
preparing a suitable dataset.

Classifier-based metrics

One group of approaches is based on the idea that if we wish to evaluate the output
of our model according to some aspects which can be classified, we may leverage a
data-driven classifier to aid in the evaluation. This approach was first developed as the
Inception score (IS) (Salimans et al., 2016), a method for evaluating generative models
of images. In this case, a pre-trained image classifier (Szegedy et al., 2016) trained on a
dataset with 1000 classes is used to try to evaluate two aspects of a generative model.
The first aspect is the quality of the image; the idea is that if the generative model
produces samples that the classifier can classify as a single class with a high probability,
this should mean that the generated image at the very least contains certain attributes
that make its content recognizable. Thus, we require the conditional distribution of
classes given an image to have low entropy. The second aspect is the diversity of images
sampled from the generative model. That is, it is not enough for the model to be
able to just output the same image, albeit realistic. Thus, we require the marginal
distribution over all produced images (or over the random variable used to sample the
images) to have high entropy. The idea behind this approach is quite similar to that
of generative adversarial networks (GANs) (Goodfellow et al., 2014), although in this
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case the classifier (discriminator) is generally trained jointly with the generator and
without supervision.

One shortcoming of this method is that the ability to classify an image does not neces-
sarily mean this image is perceptually considered realistic or high quality, although it
does imply at least a threshold quality. For instance, as long as some basic properties
such as rough shape and colors match, the classifier may still be able to confidently
classify a generated image. To mitigate these issues, the Fréchet Inception distance
(FID) was proposed (Heusel et al., 2017). This metric adds an additional term that
compares statistics (moments) of hidden features of the classifier computed on both real
images and generated images. The term is computed using the Fréchet or Wasserstein-2
distance. This has been shown to provide a better correlation to human perception
compared to vanilla IS.

The approach of FID for images has been adapted to speech by using a powerful speech
recognizer, DeepSpeech (Amodei et al., 2016), as a classifier, and therefore is called
the Fréchet DeepSpeech distance (FDSD) (Bińkowski et al., 2020). The same authors
also propose several variations of this metric, such as the Kernel DeepSpeech Distance
(KDSD), and conditional versions cFDSD, and cKDSD. Note that some papers use
slightly different versions of this algorithm (e.g., Gritsenko et al., 2020), sometimes
noting that the original FDSD was unreliable (e.g., Donahue et al., 2021, Appendix I).
Unfortunately, there is no freely available equivalent of DeepSpeech for singing voice,
and developing one is non-trivial. That said, we have not evaluated the FDSD as-is on
singing voice.

Another property that can be classified and leveraged for evaluation is speaker identity.
For instance, a speaker classifier could be used to ensure a multi-speaker TTS model
properly reproduces the target speaker identity (e.g., Arik et al., 2018). This approach is
also fairly common in the task of voice conversion. This method could be applied more
easily to singing voice, although speaker identity tends to be a less desirable attribute to
evaluate compared to quality.

Mean opinion score prediction

Another class of approaches uses a neural network to map acoustic features to human
ratings (mean opinion scores). While several works explore this approach for TTS,
voice conversion and other speech tasks (e.g., Lo et al., 2019; Serrà et al., 2021), this
type of metric is currently not widely used in publications. For singing synthesis, the
main hurdle to applying this approach is the lack of large-scale training data of human
ratings, especially if we wish to consider aspects such as musical expression.
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Traditional speech quality assessment

Finally, there is a group of more traditional speech quality assessment methods that
share much of the same goals, namely to have a metric that is easily computable and
highly correlated to human rating. Typically, these methods are based on signal pro-
cessing and heuristics rather than a data-driven neural network, and often also are
intrusive, that is, they require a reference signal. The main issue with these metrics
is that they are designed by hand with a specific task or kind of signal in mind. For
instance, for evaluating speech quality of telephone networks, speech codecs, and such,
metrics like PESQ (ITU-T recommendation P.862, 2001) or the later POLQA (ITU-T
recommendation P.863, 2011) can be used. To evaluate the intelligibility of speech in the
context of noise reduction or speech separation, metrics like STOI (Taal et al., 2010)
can be used. Unfortunately, designing and implementing similar metrics for other tasks
and/or signals, such as the quality and naturalness of expression in singing voice, is
not trivial, and arguably more difficult than for modern neural network approaches,
where the principal difficulty is data collection.
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Autoregressive modeling of timbre 4
OUR INITIAL WORK on neural singing synthesis focuses on autoregressive mod-

els, in particular, adapting the influential WaveNet proposed by van den Oord
et al. (2016a) from speech to singing voice. Additionally, we adapt the model

from predicting waveform directly, to predicting intermediate acoustic features (in
particular parametric vocoder features), which has a number of practical advantages
(see §4.2).

While these days deep learning is by far the dominant approach in speech and singing
synthesis, when we first published our work (Blaauw and Bonada, 2017a) the landscape
of singing synthesis research was radically different. Concatenative synthesis (e.g.,
Bonada et al., 2016) was state of the art in terms of sound quality, especially for languages
where single diphone inventory synthesis was effective, such as Japanese. It was also
the most commercially successful (e.g., Kenmochi and Ohshita, 2007). However, it
was plagued by difficult recording sessions due to having many constraints rather than
allowing natural singing, a lot of manual labeling, segmentation and selection of data,
an inability to simultaneously model timbre and pitch (and other expression, and, in
general, a lack of flexibility. The obtained naturalness and ineligibility were also notably
poorer for languages such as English which lend themselves less to the single inventory
diphone synthesis paradigm. HiddenMarkovmodel (HMM) synthesis (e.g., Oura et al.,
2010) was also a highly researched topic, which offered much greater flexibility and
lower effort voice creation. However, despitemany advances, the resulting sound quality
never quite reached that of concatenative synthesis. Singing synthesis based on deep
learning was just starting to be explored (e.g., Nishimura et al., 2016). This approach
offered similar benefits to theHMMapproach, arguablywith amuch-simplified training
pipeline and requiring fewer heuristic decisions. However, at this point very simple
models were being used and the results were comparable to those of HMM-based
synthesis. See §2.3 and §2.4.1 for more details on this historical background.

In this context, our initial goal was to show that a powerful deep learning model and
architecture could match or outperform concatenative synthesis in terms of quality,
while offering a very high degree of flexibility. To this end, in order to allow comparing
systems, we first trained an autoregressive model on pseudo singing (see §3.2.2), which
is a requirement formany concatenative synthesis systems. Additionally, we only predict
timbre and use performance-driven synthesis (see §3.1.5), to allow better comparison
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of different models. This initial work is described in §4.2 and was originally published
as (Blaauw and Bonada, 2017a).

While not the main focus of this work, in a second step, we extended our initial work
to form a complete synthesizer. This is done by adding components that predict pitch
and timing. Additionally, the models are now trained on natural singing, which is an
important step towards modeling truly natural singing. This second work is described
in §4.3 and was originally published as Blaauw and Bonada (2017b).

4.1 Proposed system

4.1.1 Autoregressive models

The core idea behind autoregressive models for audio is to factorize the joint probability
over the to be modeled time series, 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑇 ], in Equations (3.1) and (3.2) as
a product of conditional probabilities,

𝑝𝜃(𝐱 | 𝐜) = 𝑝𝜃(𝑥1, 𝑥2, … , 𝑥𝑇 | 𝐜) ≔
𝑇

∏
𝑡=1

𝑝𝜃(𝑥𝑡 | 𝐱<𝑡, 𝐜). (4.1)

Here, 𝐱<𝑡 = [𝑥1, 𝑥2, … , 𝑥𝑡−1 ] are all past timesteps before timestep 𝑡, following the
natural causal ordering of time. Depending on the architecture used in these models,
𝐱<𝑡 is often a window of past timesteps in practice, e.g., the receptive field of a stack of
causal convolutions. The reason this model is so effective is that while modeling joint
probabilities over many timesteps is difficult, modeling a conditional probability over
a single timestep given past timesteps is relatively easy. Note that, for simplicity’s sake,
we will assume the control signal, 𝐜, on which the model is conditioned, is time-aligned
to the acoustic features, 𝐱, thus also consisting of 𝑇 timesteps.

Once the model is trained using Equation (4.1), we can synthesize new sequences given
(unseen) control inputs 𝐜 by sequentially sampling the conditional model,

̂𝑥𝑡 ∼ 𝑝𝜃(𝑥𝑡 | 𝐱̂<𝑡, 𝐜) for 𝑡 = 1, 2, … , 𝑇 , (4.2)

where 𝐱̂<𝑡 is the sequence of all previously sampled timesteps.

4.1.2 Network architecture

Besides simplifying the problem by the autoregressive factorization of Equation (4.1),
the network architecture used to model 𝑝𝜃(𝐱𝑡 | 𝐱<𝑡, 𝐜) also plays an important role in
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Figure 4.1: Overview of our autoregressive network architecture based on WaveNet. In this
case, the network depicted predicts harmonic spectral envelope features (bottom plot), given
control inputs (top plots, excluding F0 features for simplicity). Note that the “FC” modules are
fully connected layers, implemented as 1×1 convolutions. The “𝑧−1” block is a single timestep
delay. The network is depicted with a multi-step output stack, depending on 𝐾out, however, in
our experiments this is set to zero. The labels 𝑑in, 𝑑res, 𝑑hid, 𝑑skip, and 𝑑out are hyperparameters
that define the dimensionality of the signal at different parts of the networks.

the success of these models. The original WaveNet paper (van den Oord et al., 2016a)
proposed a carefully designed architecture derived from previous work on image
modeling (van den Oord et al., 2016b; van den Oord et al., 2016c). This model has now
proven to stand the test of time (at least in terms of the rapidly changing field of deep
learning research) and is still one of the most commonly used network architectures
for speech processing (e.g., Ping et al., 2018; Yamamoto et al., 2020).

Our autoregressive network architecture based on WaveNet is depicted in Figure 4.1.
One key aspect of this architecture is that it is fully convolutional rather than recur-
rent like many of its predecessors. This has the advantage of being parallelizable, thus
speeding up training, and allowing more direct paths between distant past timesteps
and the currently predicted timestep. To overcome the limited receptive field of con-
volutional neural networks (CNNs) compared to recurrent neural networks (RNNs),
dilated convolutions are used (Yu and Koltun, 2016). This could be thought of as a
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kind of downsampling of the convolution’s input. The dilation factor is doubled for
each layer, allowing exponentially growing the model’s receptive field, while linearly
increasing the number of required parameters. After a number of layers (often called a
cycle), the dilation factor is reset to one to increase the total non-linearity of the model
without excessively growing its receptive field. The dilated convolutions generally use a
small kernel size such as 2×1 and are ensured to be causal (by adjusting the padding
parameters). To ensure an expressive power comparable to gated recurrent units such
as long short-term memory (LSTM) or gated recurrent unit (GRU), a simple gating
mechanism is used.

In order to facilitate training deeper networks (e.g., 30 layers), residual connections
(parametrized by a 1×1 convolution) are used (He et al., 2016). Skip connections
provide a direct connection between each layer’s output and the network’s final output,
allowing to more efficiently integrate information at different time scales. Here skip
connections are also parametrized by a 1×1 convolution and summed (equivalent to
concatenating outputs followed by a single 1×1 convolution). The final output stack
typically consists of a few 1×1 convolutions, all but the last with some activation, such
as rectified linear unit (ReLU) or tanh(⋅). The final output distribution can vary, as
discussed in “Output distributions” of §4.1.3.

To condition the model on some external control inputs (in our case, e.g., notes and
lyrics). Control inputs are projected for each layer individually by a 1×1 convolu-
tion and added to the output of the layer’s dilated convolution, prior to the gated
non-linearity. That is, by default, only control inputs corresponding to the to be pre-
dicted timestep affect the prediction directly, while control inputs corresponding to
previous timesteps affect the prediction via lower hidden layers, and control inputs
corresponding to future timesteps do not affect the prediction at all. In the model used
in experiments of this section, we do the same thing at the output stack, similar to Reed
et al. (2016), as we informally found this to provide some minor improvements.

Alternative architectures

While in this work we do not consider alternative network architectures in depth, or
compare their results, many other network architectures could be used. In fact, the
only real requirement of the network architecture used in autoregressive models is
causality. Here we will only give a brief overview of some of the common differences,
without exhaustively discussing all of the different network architectures that have been
proposed for autoregressive text-to-speech (TTS) models. One common difference
is that other architectures may be structured differently, in particular when they are
so-called sequence-to-sequence (Seq2Seq) architectures similar to that discussed in
Chapter 8. These models generally follow an encoder-decoder architecture, often with
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multiple encoders (i.e., one for encoding the autoregressive audio path, one for encoding
control inputs), an attention mechanism, decoder, and occasionally a post-processing
network (typically non-causal). Another common difference is that some architectures
are recurrent rather than convolutional (e.g.,Wang et al., 2017; Shen et al., 2018). Inmost
cases, this will be the result of using an attentionmechanism that is inherently recurrent.
Highway networks (Srivastava et al., 2015) are also common building blocks. These are
basically convolutions (e.g., dilated, causal) with an alternative gating mechanism and
way of allowing deep networks (e.g., Tachibana et al., 2018; Wang et al., 2017).

4.1.3 Modified model and architecture

Modeling multivariate time series

While now amainstay of TTSmodels, using powerful autoregressivemodels for predict-
ing intermediate acoustic features rather than waveform directly was still a novel idea
when we first published our model. The main difference between waveform data and
intermediate acoustic features is that the first is a univariate time series, while the latter
is a multivariate time series. One way to define an autoregressive model for 2-d time-
frequency data would be to (arbitrarily) define some causal ordering of variables within
a timestep, e.g., from low to high frequencies, and model the probability conditioned
on all previous timesteps and all previous frequency bins. This approach is commonly
taken for image modeling (van den Oord et al., 2016b; van den Oord et al., 2016c). The
reason we opted not to take this approach in our work is twofold; it can make inference
several orders of magnitude slower than the model we describe below (see §4.1.4), and
because we consider the translation invariance that 2-d convolutions provide is actually
an undesirable property for the frequency dimension of time-frequency data, unlike
with images. Additionally, this approach requires a much more complicated network
architecture based on masked 2-d convolutions.

Instead, we choose to model all variables within a timestep at once, assuming they are
conditionally independent. In other words, we define the probability of any frequency
within a timestep to only depend on all frequencies in previous timesteps, but not on
other frequencies within that timestep. Thus, assuming a 𝐾-dimensional feature vector
per timestep,

𝑝𝜃(𝐱 | 𝐜) ≔
𝑇

∏
𝑡=1

𝐾
∏
𝑘=1

𝑝𝜃(𝑥𝑡,𝑘 | 𝐱<𝑡, 𝐜). (4.3)

Note that here 𝐱<𝑡 is a matrix rather than a vector. In practice, we tend to implement
this equation using a neural network that predicts 𝐾 values or sets of parameters for
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the output distribution at once. Thus this allows effective sequential sampling of one
timestep at a time during inference,

𝐱̂𝑡 ∼ 𝑝𝜃(𝐱𝑡 | 𝐱̂<𝑡, 𝐜) for 𝑡 = 1, 2, … , 𝑇 , (4.4)

where 𝐱𝑡 is a 𝐾-dimensional vector rather than a scalar.

An alternative view of this approach is modeling each timestep as a 𝐾-dimensional
isotropic distribution (i.e., with diagonal covariance). In this case, we can use an
alternative notation for Equation (4.3) that is almost identical to Equation (4.1),

𝑝𝜃(𝐱 | 𝐜) ≔
𝑇

∏
𝑡=1

𝑝𝜃(𝐱𝑡 | 𝐱<𝑡, 𝐜), (4.5)

where 𝐱𝑡 is a 𝐾-dimensional vector rather than a scalar (similar to Equation (4.4)).

We argue that in general, this approximation is reasonable, as 2-dimensional inter-
mediate acoustic features tend to be somewhat slowly varying over time. Thus, while
frequency bins within a timestep can be highly correlated, most of this correlation can
probably be inferred from considering all frequencies of a few of the preceding timesteps
(at e.g., 5msintervals. Note that this is very different from older approaches such as
HMMs where each frequency dimension is effectively modeled independently.

Some autoregressive models, in particular for image modeling, such as Salimans et al.
(2017), try to relax this independence assumption by predicting all three RGB channels
of a pixel at once, but additionally predicting linear dependencies between channel
means. We do not take this approach as the number of frequency channels in the
intermediate acoustic features may equal or exceed one hundred, thus requiring a very
large amount of additional outputs.

In terms of network architecture, this approach requires almost no changes compared
to the original WaveNet architecture. We can still use 1-d convolutions throughout the
architecture, only having to adjust the number of input and output channels to match
the number of frequency dimensions. In other words, we just have to consider the
time-frequency data as multi-channel 1-d data, rather than single-channel 2-d data.

Output distributions

The original WaveNet model uses a categorical (softmax) output distribution over
discretized (8 bit, 𝜇-law) waveform data. Advantages of this approach include allowing
multi-modal distributions, finite support (truncated) distributions (i.e., when values
are clipped), and generally arbitrary distributions due to being non-parametric. Some-
times framing the optimization as a classification rather than a regression is said to be
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Figure 4.2: Example distributions of the constrained Gaussian mixture (CGM). All subplots
use location 𝜉 = 0 and scale 𝜔 = 6 × 10−2, but varying skewness 𝛼 and shape 𝛽. The plots
show the resulting mixture distributions (solid) and the four underlying Gaussian components
(dashed).

beneficial, but this is difficult to prove as both approaches cannot be compared directly.
On the other hand, categorical outputs lack any kind of order or distance, which is
likely to be detrimental when training data is sparse. When modeling multivariate time
series, this approach quickly becomes impractical as the number of feature channels 𝐾
(or quantization resolution) grows, due to requiring excessive output channels.

One alternative approach is to use a mixture of discretized distributions, such as an
mixture of logistic distributions (MoL) (Salimans et al., 2017) or (less commonly) a
mixture of Gaussians (MoG). Such distributions can be multi-modal and have finite
support, like categorical distributions, while only requiring a small number of parame-
ters per mixture component (e.g., three for MoL and MoG). Additionally, these kinds
of output distributions allow discretization with an arbitrary quantization resolution,
thus reducing issues with quantization noise that the original WaveNet could exhibit.
However, compared to simpler distributions, optimization of mixture distributions
tends to be more problematic; requiring more training data, and possibly leading to
pathological distributions in some cases. Note that a MoL output distribution is par-
ticularly common in neural vocoders (e.g., Shen et al., 2018) and models that predict
waveform directly (e.g., van den Oord et al., 2018).

In the model proposed and evaluated in this section, we use what we call a constrained
Gaussian mixture (CGM) distribution, which is a special subset of a mixture of Gaus-
sians (MoG) distribution. This distribution is a mixture of four continuous Gaussian
components, constrained in such a way that there are only four free parameters (lo-
cation, scale, skewness and a shape parameter). Figure 4.2 shows some of the typical
distributions that the constraints imposed by this parameter mapping allow. We found
such constraints to be useful to avoid certain pathological distributions, and in our case
explicitly not allowing multi-modal distributions was helpful to improve results. We
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also found this approach speeds up convergence compared to using categorical output.
This decision was also partially motivated by observing predicted output distributions
to be generally close to Gaussian or skewed Gaussian in a very early 2-d version of our
model with softmax output (Blaauw and Bonada, 2016). See Appendix A.1 for technical
details on our CGM distribution.

One advantage of the CGM output distribution is that it has a temperature control,
much in the same vein as the temperature softmax used in similar models (e.g., Reed
et al., 2016). This temperature control allows reducing the variance when sampling the
distribution during sampling, thus resulting in less noisy output, which can improve
quality in some cases. In the case of modeling intermediate acoustic features, we can
further adjust this temperature control independently for each frequency bin, e.g.,
making the prediction of lower frequencies more deterministic, while maintaining
some stochasticity in higher frequencies.

Finally, using simple (mean) 𝐿1 or (mean squared) 𝐿2 losses (equivalent to fixed-scale
Gaussian or Laplace distributions respectively) also tend to be a good option in our
experience. These distributions require predicting only a single parameter (mean),
while at most resulting small reduction in quality compared when a heuristic vocoder
is used. Whenever a more powerful neural vocoder is used, this reduction generally
becomes negligible (e.g., Shen et al., 2018) (see also §3.1.3).

Note that in some of our experiments we modify the activation functions of the net-
work’s output stack in accordance with the output distribution used. For instance, the
original WaveNet uses ReLU activations in its output stack, which is a common choice
for networks with softmax output. As depicted in Figure 4.1, the model we used in our
experiments uses tanh activations in its output stack, which arguably is more coherent
with the rest of the network (which uses gated tanh activations), and is possibly better
suited for a continuous output distribution such as the CGM distribution. That said,
in later experiments, we have also used ReLU activations in the output stack, and
informally noted no real perceptual impact on the resulting synthesis quality.

Regularization to mitigate exposure bias

If we look closely, we can see an inconsistency between the model’s training objective,
Equation (3.2) using Equation (4.1) or Equation (4.3), and inference by sequential
sampling, Equation (4.2) or Equation (4.4). Namely, the first uses ground truth past
timesteps, 𝐱<𝑡, while the latter uses past timesteps sampled from the model itself, 𝐱̂<𝑡.
Even with a well-trained model, there will be some differences between the two.

The reason we do not use sequential sampling during training is twofold; first, training
would become prohibitively slow, and second, the model may have trouble converging
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properly. Especially at the start of training, the differences between 𝐱̂<𝑡 and 𝐱<𝑡 will
be very big, possibly causing the model to ignore past timesteps altogether.

The principal issue with training on ground truth past timesteps, is that contain a lot
of useful information for predicting the next timestep, thus it is likely that a powerful
deep learning model can become overfitted to these ground truth past timesteps. This
problem is usually referred to as exposure bias (Ranzato et al., 2016), as in the model
becoming biased to the ground truth data it is exposed to during training. Viewed
differently, the model becomes less robust to small prediction errors when these predic-
tions are used as past timesteps during inference. As this sampling is sequential, such
errors tend to accumulate over time. In the case of singing synthesis, these issues are
most noticeable during long sustained vowels, where control inputs will be relatively
constant. Here, typically unnatural resonances, similar to formants, will start to form
and gradually get worse.

Mitigating exposure bias can be done by regularizing the training process. In our model
we do this by adding Gaussian noise to the input of the model,

𝑝𝜃(𝐱 | 𝐜) ≔
𝑇

∏
𝑡=1

𝐾
∏
𝑘=1

𝑝𝜃(𝑥𝑡,𝑘 | 𝐱<𝑡 + 𝜆reg𝜖, 𝐜) 𝜖 ∼ 𝒩(0, 𝐼 ), (4.6)

where 𝜆reg ≥ 0 is the input noise level.

This additional hyperparameter, 𝜆reg, can be optimized on a validation set, like any
other hyperparameter. As a rule of thumb, we found that values of 0.2–0.4 give opti-
mal results when intermediate acoustic features 𝐱 are normalized in a range [−1, 1].
However, the exact value of 𝜆reg within this range does not significantly affect the
synthesis quality in our experiments. Very small values will result in a model which
is effectively unregularized, with all issues associated with exposure bias. Very large
values will result in a model which effectively ignores past timesteps, thus the model
will revert to a non-autoregressive model, similar to a frame-wise mapping of control
features to intermediate acoustic features.

Note that the original WaveNet does not include such regularization. We speculate that
this is due to the fundamental differences between waveform data and intermediate
acoustic features. Compared to waveform data, intermediate acoustic features tend to
vary slowly and smoothly over time, be less stochastic, and in general exhibit a higher
correlation between nearby timesteps. The complexity of waveform data may mitigate
overfitting to past timesteps, even in very powerful models such as WaveNet.

A common alternative to adding input noise is using dropout (Srivastava et al., 2014) on
the input of the network (e.g., Salimans et al., 2017; Shen et al., 2018; Ping et al., 2018).
This can be seen as multiplicative Bernoulli noise rather than additive Gaussian noise.
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Typically, there will be dropout at the network input (i.e., the autoregressive feedback
path) with a relatively low keep probability such as 0.5. Often there will also be dropout
at the input of each convolutional layer, with a higher keep probability such as 0.9, but
we found that this does contribute significantly to the regularizing effect. We choose
to use additive input noise rather than dropout, because in our experiments dropout
results in a slightly noisier output compared to additive input noise.

4.1.4 Training and inference speed

As the model objective uses ground truth past timesteps, sometimes referred to as
teacher forcing, and the network architecture is fully convolutional, training is highly
parallelizable. Thus, training is very fast on modern graphics processing unit (GPU)
hardware. Typical training times are in the order of hours rather than days.

One of the main drawbacks of the original WaveNet model was the very slow inference
speeds. In fact, most subsequent research focuses more on improving inference speed
while maintaining sound quality, rather than improving the sound quality itself. As our
approach predicts intermediate acoustic features rather than a waveform, most of this
problem is mitigated by the much lower frame rate of intermediate acoustic features
compared to the audio sample rate (e.g., 200Hz rather than 32 kHz). Additionally, often
modeling acoustic features requires smaller networks than modeling waveform directly
(see §4.2.1). In fact, on GPU hardware, a naive implementation of Equation (4.4),
tends to be fast enough for developing models. The sequential nature of autoregressive
inference actually makes it relatively well suited for deployment on central processing
units (CPUs). By caching calculations between timesteps, we were able to implement
a fast generation algorithm. While this algorithm was developed independently, it is
essentially identical to those proposed in other works (Ramachandran et al., 2017; Arik
et al., 2017a). Using this algorithm, our model can achieve generation speeds of 10–15 ×
real-time on CPU. Combined with low memory and disk footprints, these relatively
fast generation speeds make the system competitive with most existing systems in terms
of deployability.

4.2 Modeling timbre from pseudo singing

As mentioned above, the main goal of this initial work was to show that a powerful
deep learning model and architecture could match or outperform the then state of
the art in terms of sound quality, concatenative synthesis, and in terms of flexibility,
HMM synthesis. To allow this comparison, we train an autoregressive model on pseudo
singing (see §3.2.2), which is a requirement for many concatenative synthesis systems.
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Additionally, we only predict timbre and use performance-driven synthesis, meaning
pitch and phonetic timings are assumed to be given as inputs to the system (see §3.1.5).
The reason for this is to allow easier and better comparison of different models, which
otherwise are likely to use different ways of predicting pitch and timing from a score,
as this information cannot be obtained from pseudo singing and thus must come from
some external source.

The main contribution of this initial work is the adaptation of the WaveNet architec-
ture for singing voice. Unlike WaveNet, which model waveform, we opted for a more
traditional approach of modeling vocoder features. The main reason for this is that it
decouples the influence of pitch and timbre, thus allowing to easily and precisely synthe-
size any melody with any given lyric, even if not seen in the training data. Additionally,
this approach makes training the system notably easier, especially when the available
datasets are more modest in size compared to those used in speech synthesis.

While using a vocoder introduces some artifacts, we argue that the dominant factor of
degradation in many current systems is the generative model rather than the vocoder
itself, in particular due to excessive smoothing. A more powerful model, such as an
autoregressive model based on WaveNet, should be able to close the gap between
current results and the upper bound provided by the vocoder, i.e., round-trip vocoder
analysis-synthesis without modification. Conveniently, in singing, many of the artifacts
a vocoder introduces are often partially masked by background music, mixing and
effects.

4.2.1 Timbre model

As this initial synthesizer only predicts timbre in a performance-driven manner, the
synthesizer consists of only a single primary component, the timbre model. The only
other notable component is the vocoder, which does not contain any trainable weights.
An overview of this synthesizer is depicted in Figure 4.3.

Intermediate acoustic features

We use an acoustic frontend based on the WORLD vocoder (Morise et al., 2016) (D4C
edition Morise, 2016) with a 32 kHz sample rate and 5ms hop time. The dimensionality
of the harmonic component is reduced to 60 log mel-frequency spectral coefficients
(MFSCs) by truncated frequency warping in the cepstral domain (Tokuda et al., 1994)
with an all-pass filter with warping coefficient 𝛼 = 0.45. The dimensionality of the
aperiodic component is reduced to four coefficients by exploiting WORLD’s inherently
band-wise aperiodic analysis. All acoustic features are min/max normalized before
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Figure 4.3:Diagram depicting an
overview of the timbre-only syn-
thesizer with its different compo-
nents. Here, the “Fill UV” block
fills unvoiced segments by inter-
polation.

feeding them to the neural network. See “Parametric vocoder features” in §3.1.3 for
more details on this procedure.

Control input features

The control inputs of this model are the (timed) phonetic sequence and F0. As men-
tioned in §4.1.2, conditioning is mostly local to the currently predicted timestep, and
notably, there is no conditioning on future information. Thus, we condition our model
on triphone information, so at each timestep, we at least know the corresponding
previous, current and next phoneme. We experimented with longer phonetic contexts,
such as pentaphones, but did not find any notable advantages in doing so. Individual
phoneme identities are encoded using simple one-hot encoding, and stacked to form
triphones. This vector is repeated along the duration of each phoneme (at the same
frame rate as the output acoustic features). Additionally, the position of each timestep
within the corresponding phoneme is concatenated to triphone control features. We
use a position [0, 1] along the phoneme, which is then encoded as a 3-dimensional
vector per timestep using a Gaussian coarse coding (see §3.1.4). Finally, as pitch has a
very notable influence on timbre, we condition the model on F0. We encode log F0 as
a 4-dimensional feature by triangular responses along the singer’s pitch range (see also
§3.1.4).

We consider the above conditioning signal the minimal set of features required to
obtain a reasonable-quality synthesis. However, many other features could be added.
In particular, we experimented with adding phoneme duration information and the
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absolute position of the timestep (rather than the relative position already included
above). As we did not find these changes to have a significant influence on the output
result, we decided to opt for the more canonical set of conditioning features described
above.

We also do not condition our model on any kind of loudness or dynamics features,
which typically could be features we can derive from the acoustic signal, similar to
F0 (e.g., Bous and Roebel, 2019). In this case, the principal reason for this is that in
this initial work we use pseudo singing datasets, which were designed to have a single
constant loudness or dynamics value.

Hyperparameter differences compared to WaveNet

One notable change with respect to the original WaveNet architecture is that the recep-
tive field in terms of timesteps can be much smaller. The reason for this is that each
timestep of intermediate acoustic features corresponds to a much larger amount of time,
due to the time each spectral analysis window spans, as well as the interval between
timesteps. For instance, to determine a signal’s pitch at a certain point in time, generally
a single frame of intermediate acoustic features will suffice. However, in the case of
modeling waveform directly, at the very least one period consisting of many timesteps is
required. Assuming1 a WaveNet architecture with a 1×1 initial convolution, 30 layers,
10 layer dilation cycle and 2×1 causal convolutions, the receptive field of the network
would be 3070 timesteps, or approximately 192ms at a 16 kHz sample rate. In our case,
we found that a 10×1 initial convolution, 5 layers, 3 layer dilation cycle and 2×1 causal
convolutions are sufficient to model intermediate acoustic features at a rate of 200Hz.
This would thus correspond to a receptive field of 20 timesteps, or 100ms. Similarly, we
assume that predicting intermediate acoustic features is generally easier than predicting
waveform, even though the dimensionality per timestep is greater. Thus, we somewhat
reduce the number of channels our model uses compared to the original WaveNet. See
the “Timbre model” column of Table 4.2 of “Model hyperparameters” in §4.3.4 for
more details on the hyperparameters used in our experiments.

Multi-stream architecture

Most parametric vocoders separate the speech signal into several components. In our
case, we use three feature streams; F0 (typically including voiced/unvoiced decision), a
harmonic spectral envelope, an aperiodicity envelope (which also includes information

1While the original WaveNet publication does not explicitly list the hyperparameters used in the exper-
iments, we can make some assumptions based on subsequent publications and presentations. For
instance, Heiga Zen, “Generative Model-Based Text-to-Speech Synthesis”, Feb. 3rd, 2017, MIT Center
for Brains, Minds and Machines (https://www.youtube.com/watch?v=nsrSrYtKkT8).

https://www.youtube.com/watch?v=nsrSrYtKkT8
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regarding voicing). Assuming that predicting F0 is not part of the timbre model’s tasks,
this still leaves the other two streams to be predicted. These components are largely in-
dependent, but their coherence is important, e.g., synthesizing a harmonic component
corresponding to a voiced frame as unvoiced (highly aperiodic) will generally cause
artifacts, and vice versa.

As said, there is some overlap between F0 with voiced/unvoiced decision and aperiodic-
ity, where high values also indicate an unvoiced signal. To avoid any ambiguity due to a
potential mismatch between feature streams, we use a continuous F0 stream. Generally,
we fill unvoiced regions by simple linear interpolation, which also facilitates modeling
this kind of data, compared to combining continuous and discrete properties in a single
stream. To estimate voicing, we simply check whether the mean band aperiodicity
exceeds some threshold. This threshold can be tuned as a hyperparameter, as it may
depend on the voice to be modeled and the output distribution used, but typically will
be somewhere in the range 0.75–0.95.

Rather than jointly modeling all data streams with a single model, in our experiments
we model each component using an independent network. This approach gives us
more fine-grained control over each stream’s architecture and corresponding hyperpa-
rameters. This approach also avoids the possibility of streams with lower perceptual
importance interfering with streams of higher perceptual importance. For instance,
the harmonic component is by far the most important, therefore we would not want
any other jointly modeled stream potentially reducing model capacity dedicated to this
component.

To encourage predictions to be coherent, we concatenate the predictions of one net-
work to the input of another, as depicted in Figure 4.4. In this case, we decided to
let the aperiodic component depend on the harmonic component. The dependence
is achieved by simply concatenating the output of the first network to the input of
the second model, bypassing the unit delay applied to the autoregressive input. Both
the networks are similar, but have slightly different hyperparameters (see Table 4.2 of
“Model hyperparameters” in §4.3.4 for details). We found it beneficial for the aperiod-
icity stream to use an output distribution that allows limited support, such as MoL, as
some of the band aperiodicities tend to have a lot of timesteps either zero or one, with
few timesteps with in-between values.

While not used in the experiments of this section, themost obvious alternative approach
is to simply concatenate all feature streams and model them with a single model. In
this case, the output can optionally be split in order to allow applying different output
distributions, if needed. While in our initial experiments, we found the cascaded model
approach more suitable, later experiments with this single model approach resulted in
only a marginal difference in output sound quality. Thus in many cases, the simplicity
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Figure 4.4: Diagram depicting the cascaded multi-stream architecture for training and gen-
eration phases. The “𝑧−1” blocks represent unit delays. The upward inputs represent control
inputs, which in our case are identical for all streams. Autoregressive (feedback) connections in
the generation phase are not shown.

in terms of code and training steps that the single model approach offers may outweigh
any marginal quality benefits the cascaded model approach may offer.

Handling long notes

In most datasets, not all note durations will be exhaustively covered. In particular,
the case of synthesizing notes significantly longer than the notes in the dataset can be
problematic. This issue manifests itself mainly as a repetition in time of some of the
transitions predicted by the timbre model, causing a kind of stutter. To reduce such
artifacts, we compute the control feature corresponding to the frame position within
the phoneme (see §3.1.4) with a non-linear mapping depending on the length of the
phoneme. The idea behind this is that the edges of a phoneme, where the transitions
are likely to be, will maintain their original rate, while the more stable center parts will
be expanded more.

When the phoneme duration (in seconds), 𝑑, exceeds some threshold duration, 𝑑,
it is considered a long note. In this case, we apply a non-linear mapping to the nor-
malized position-in-phoneme, 𝑝 ∈ [0, 1], to result in a mapped normalized position-
in-phoneme, 𝑝mapped ∈ [0, 1]. This mapping is shown in Figure 4.5. The idea is that
the edges of the mapping are kept approximately linear, while the center portion is
“expanded” more. We obtain this mapping by a piecewise cubic Hermite interpolating
polynomial through four points, defined as: (0, 0), (𝜂𝑙𝑑/𝑑, 𝜂𝑙), (1 − (1 − 𝜂𝑟)𝑑/𝑑, 𝜂𝑟),
(1, 1). Here, 0 < 𝜂𝑙 < 𝜂𝑟 < 1 are two additional free parameters that control how
much of the edges are kept approximately linear. In our experiments we use 𝑑 = 1.0,
𝜂𝑙 = 0.25, and 𝜂𝑟 = 0.75.
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Figure 4.5: Examples of non-linear
position-in-phoneme mapping for long
notes. Here shown for 𝑑 = 1, 𝜂𝑙 = 0.25,
𝜂𝑟 = 0.75, and various values for 𝑑 > 𝑑.
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4.2.2 Experiments

Datasets

We use three proprietary datasets from training systems on pseudo singing; an English
male voice (EN-ZM-P), an English female voice (EN-ZF-P), and a Spanish female voice
(ES-VF-P). The studio quality recordings consist of short sentences which were sung
at a single pitch and an approximately constant cadence. The sentences were selected
to favor high diphone coverage. The Spanish dataset contains 123 sentences, while
the English datasets contain 524 sentences (approximately 16 and 35 min respectively,
including silences). A randomly selected 10% of sentences are used for testing.

Note that datasets EN-ZM-P and EN-ZF-P were segmented completely automatically,
without any manual correction other than correcting a few gross discrepancies between
the written lyrics and what was sung. On the other hand, dataset ES-VF-P was first
segmented automatically and then carefully corrected by hand, while also correcting
any transcription errors that may exist.

Note that these datasets are small compared to the datasets typically used to train TTS
systems. However, we argue that for pseudo singing, as only timbre is captured in a
very constrained setting, substantially larger datasets would likely yield diminishing
returns.
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Compared systems

In our experiments, we compare our proposed system to two other systems which
represent the twomain paradigms for singing synthesis at the time of initial publication.
One system is state of the art concatenative unit selection-based system. The other
system is representative of the approach using HMMs.

NPSS Our system implementing the autoregressive timbre model described above.
We call this model the neural parametric singing synthesizer (NPSS). Model
hyperparameters are listed in the “Timbre model” column of Table 4.2 in “Model
hyperparameters” of §4.3.4.

IS16 A concatenative unit selection-based system (Bonada et al., 2016), which was the
highest-rated system in the Interspeech 2016 Singing Synthesis Challenge. This
is an earlier work by our research group. While described in detail in the paper,
currently no implementation of this model is publicly available.

HTS An HMM-based system, similar to the system described in Oura et al. (2010), but
consisting of a timbre model only, and trained on pseudo singing. The standard
demo recipe from the HTS toolkit (version 2.3) (Zen et al., 2007) was followed,
except for a somewhat simplified context dependency (just the two previous and
two following phonemes).

Evaluation metrics

We evaluate our model with the following metrics: mel-cepstral distortion (MCD)
for harmonic features, modulation spectrum log-spectral distortion (MS-LSD) for
harmonic features over time, band aperiodicity distortion (BAPD) for aperiodicity
features and false positive rate (FPR) and false negative rate (FNR) for voiced/unvoiced
(V/UV) decision. These metrics are described in depth in §3.3.3.

For the listening tests, all stimuli were downsampled to 32 kHz, which is the lowest
common denominator between the different systems.

For the systems trained on pseudo singing, we conducted an A/B preference test. The 18
participants were asked for their preference between two different stimuli, or indicate
no preference. The stimuli consisted of two short excerpts (<10 s) of one song per
voice/language. Versions with and without background music were presented. We
perform pair-wise comparisons between our system and two other systems, resulting
in a total of 24 stimuli.
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Table 4.1:Quantitative results for the timbre models trained on pseudo singing, separated by
voice/language. The IS16 system is excluded from the quantitative metrics because removing
utterances from the dataset to use for testing would mean missing diphones would have to
be replaced. The listed metrics are mel-cepstral distortion (MCD) and modulation spectrum
log-spectral distortion (MS-LSD) for harmonic features, band aperiodicity distortion (BAPD)
for aperiodic features, and false positive rate (FPR) and false negative rate (FNR) for voiced/un-
voiced (V/UV) features.

Harmonic Aperiodic V/UV

Voice System MCD (dB) MS-LSD BAPD (dB) FPR (%) FNR (%)
(language) (<25 Hz/Full, dB)

M1 (Eng.)
HTS 4.95 11.09/22.44 2.72 16.10 2.46
NPSS 5.14 7.79/8.18 2.44 11.22 2.65

F1 (Eng.)
HTS 4.75 10.25/22.09 4.07 15.60 1.01
NPSS 4.95 5.68/9.04 3.83 15.79 0.56

F2 (Spa.)
HTS 4.88 11.07/22.28 3.62 1.85 2.21
NPSS 5.27 8.02/6.59 3.38 1.40 3.20

4.2.3 Results

Table 4.1 shows the results of the quantitative tests. Note that we did not include the IS16
system in these tests because removing utterances from the dataset to use for testing
would mean missing diphones would have to be replaced. For the prediction of har-
monic features, using frame-wise metrics, such as MCD, our system (NPSS) is slightly
behind HTS. However, using sequence-wise metrics, such as MS-LSD, NPSS shows an
improvement over HTS. We argue that this observation is due to systems that have a
tendency to predict averages perform well on metrics that are themselves essentially
averages (such as MCD), especially pseudo singing, which is much more constant than
natural singing. For other features, such as BAPD on aperiodicity features, our system
slightly outperforms HTS, even though this is a frame-wise metric. For metrics related
to the voiced/unvoiced decision, results vary depending on the dataset.

The results of the preference test as shown in Figure 4.6 show a strong preference for
NPSS over the HTS system, and a moderate preference over the IS16 system. It should
be noted that the IS16 system was specifically designed with this kind of data in mind,
unlike the other systems.

Some sound examples corresponding to this chapter are available online2.

2https://mtg.github.io/singing-synthesis-demos/

https://mtg.github.io/singing-synthesis-demos/
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NPSS/HTS
(acapella)
NPSS/HTS

(mix)
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(acapella)

NPSS/IS16
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80% 2%18%

67% 7%26%

53% 28%19%

56% 19%25%

NPSS HTS IS16 no pref.

Figure 4.6:Results of the preference test for systems trained onpseudo singing. The Sinsy-HMM
and Sinsy-DNN systems were excluded from this comparison, as the only available models are
trained on natural singing.
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Figure 4.7: Diagram depicting an overview of the complete synthesizer with its different
components. Here, the “Fill UV” block fills unvoiced segments by interpolation.

4.3 Modeling timbre, pitch and timing from natural singing

In this section, we introduce a complete singing synthesizer, able to synthesize audio
from a score with lyrics. This is done by combining our existing timbre model intro-
duced in §4.2 with necessary components that predict timing and pitch. Additionally,
in our experiments, we train this system on natural singing rather than the much more
constrained pseudo singing. We argue that this type of data, assuming we have a suffi-
cient amount, should ultimately lead to more natural sounding synthetic singing, as
our target output is also natural singing.
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4.3.1 Complete singing synthesizer overview

A diagram of our complete singing synthesizer is depicted in Figure 4.7. The system
is comprised of three main components; the phonetic timing model, the pitch model
and the timbre model. While all of these components are neural networks, they are not
trained jointly, in an end-to-end manner. Rather, each module is optimized indepen-
dently, using so-called teacher forcing during training; e.g., the timbre model has an F0
input coming from the pitch model during inference, but during training the ground
truth F0 is used. It should also be noted that the pipeline is not fully comprised of neural
components; in the following experiments, we use a vocoder based on signal process-
ing and heuristics, rather than a data-driven neural network. Additionally, while not
depicted in Figure 4.7, inference will typically take a score with orthographic lyrics as
input. In this case, an additional grapheme-to-phonememodule is needed, which in our
experiments is based on either a dictionary, rules, or both (see “Grapheme-to-phoneme
conversion” in §3.1.4).

The training data consists of time-aligned audio, musical scores and (timed) phonetic
sequences. The vocoder is used to analyze the audio, producing F0, harmonic and
aperiodicity features. The phonetic timing model takes the (quantized) notes and
phonetic sequence with exact times, to predict note timing deviations and phoneme
durations within each note. The pitch model takes notes as input to predict the frame-
wise F0. Note that we ensure that this target F0 is continuous in order to facilitate
modeling, by linearly interpolating unvoiced regions. The pitch model also takes the
(timed) phonetic sequence as input, in order to properlymodel the influence of phonetic
on pitch (microprosody, see below). Finally, the timbremodel takes the (timed) phonetic
sequence and frame-wise F0 sequence, to produce the harmonic and aperiodicity
features.

During inference, the input to the system is a musical score with lyrics (typically
orthographic). The lyrics are converted to a sequence of phonemes (without timing).
The timing model then produces the timed phonetic sequence from the given score and
phonetic sequence without timing. The pitchmodel generates a continuous, frame-wise
F0 sequence from the given score and timed phonetic sequence. The timbre model
then produces the harmonic and aperiodicity features from the F0 and timed phonetic
sequence. Finally, the output waveform is produced by the vocoder synthesis, taking
the predicted F0, harmonic and aperiodicity features.

4.3.2 Pitch model

Generating expressive F0 contours for singing voice is quite challenging. Not only is
this because of its importance to the overall results, but also because in singing voice
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there are many factors that simultaneously affect F0. There are a number of musical
factors, including melody, various types of attacks, releases and transitions, phrasing,
vibratos, and so on. Additionally, phonetics can also cause inflections in F0, so-called
microprosody (Taylor, 2009, Chap. 9.1.4, “Micro-prosody”, p. 229). Some approaches
try to decompose these factors to various degrees, for instance by separating vibratos
(Oura et al., 2010) or using source material without consonants (Umbert et al., 2013;
Bonada et al., 2016). In our approach, however, we model the F0 contour as-is, without
any decomposition. As such, F0 is predicted from both musical and phonetic control
inputs, using the same WaveNet-based architecture as used for the timbre model, with
different hyperparameters (see Table 4.2 of “Model hyperparameters” in §4.3.4 for
details).

Besides the phoneme-level linguistic control input features, similar to those used by the
timbre model, the pitch model also takes a number of note-level musical features. The
most important musical features are note pitch and duration, as one-hot and 4-state
coarse coded vectors respectively. Additionally, we include the normalized position of
the current frame within the current note as a sequence of 3-state coarse coded vectors,
roughly corresponding to the probability of being in the beginning, middle, or end of
the note.

Note that the model presented here is one of the most straightforward approaches to
F0 modeling given the surrounding context of modeling timbre with an autoregressive
model based on WaveNet (i.e., simply re-using the same model). However, we have also
presented some other F0 models in the past such as the model presented in Bonada
and Blaauw (2020). This model combines a data-driven, deep learning approach with
a parametric model based on heuristics. Some of the advantages of this model are in
particular that it does not require any post-processing heuristics to ensure F0 is always
in tune (such as the one in “Tuning post-processing”). Additionally, the inductive biases
that this model provides via the underlying parametric model, allow the model to be
trained from very small datasets, such as a single song. This last advantage of course is
closely related to the topics discussed in Part II.

Data augmentation

One issue with modeling pitch, is that obtaining a dataset that sufficiently covers all
notes in a singer’s register can be challenging. Assuming that pitch gestures are largely
independent of absolute pitch, we apply data augmentation by pitch shifting the training
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data, similar toMase et al. (2010).While training, we first draw a pitch shift in semitones,
Δ𝑝, from a discrete uniform random distribution, for each sample in the minibatch,

Δ𝑝 ∼ 𝒰 (Δ𝑝min, Δ𝑝max) (4.7)

Δ𝑝min = 𝑝singermin − 𝑝sample
max (4.8)

Δ𝑝max = 𝑝singermax − 𝑝sample
min , (4.9)

where Δ𝑝min and Δ𝑝max define the maximum range of pitch shift applied to each
sample. This range is computed from the singer’s register [𝑝singermin , 𝑝singermax ], and the
range of pitches the minibatch sample contains, [𝑝sample

min , 𝑝sample
max ], all in semitones. This

ensures that all notes of the melody within a sample can occur at any note within the
singer’s register. Finally, this pitch shift is applied to both the notes pitch used as a
control input, 𝑝notes, and the target output F0, 𝐹0tar,

̂𝑝notes = 𝑝notes + Δ𝑝 (4.10)
̂𝐹 0tar = 𝐹0tar 2 1

12 Δ𝑝. (4.11)

Tuning post-processing

For pitch in singing voice, one particular concern is ensuring that the predicted F0
contour is in tune. The model described above does not enforce this constraint, and in
fact we observed predicted pitch to sometimes be slightly out of tune. If we define “out
of tune” as simply deviating a certain amount from the note pitch, it is quite normal
for F0 to be out of tune for some notes in expressive singing, without perceptually
sounding out of tune. One reason why our model sometimes sounds slightly out of
tune may be that such notes are reproduced in different musical contexts where they
do sound out of tune. We speculate that one way to combat this is may be to use a more
extensive dataset.

We improve the tuning of our system by applyingmoderate post-processing of predicted
F0. For each note (or segment within a long note), the perceived pitch is estimated
using F0 and its derivative. The smoothed difference between this pitch and the score
note pitch is used to correct the final pitch used to generate the waveform. Appendix A.2
discusses the algorithm in detail.

4.3.3 Timing model

The timing model is used to predict the duration of each phoneme in the sequence to
synthesize. Unlike with TTS systems where phoneme durations are generally predicted
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in a freerunning manner, in singing synthesis, the phoneme durations are heavily
constrained by the musical score. In our proposed system we enforce this constraint
using a multi-step prediction. First, the note timing model predicts the deviations of
note (and rest) onsets with respect to nominal onsets in the musical score. At the same
time, phoneme durations are predicted by the phoneme duration model. Finally, a
simple fitting heuristic is used to ensure the predicted phoneme durations fit within
the available note duration, after adjusting timing. This approach is somewhat similar
to the approach taken by Nakamura et al. (2014).

Note timing model

Most singers will not follow the timing of a musical score exactly. Slightly advancing
or delaying notes is part of normal expressive singing, and is the result of the given
musical and linguistic context and the style of the singer. Additionally, there may be a
small truly random component, simply because most singers cannot sing with exact
timing.

Note onset deviations are computed from a musical score and phonetic segmentation
of the corresponding utterance by the singer. We define a note onset deviation as
the difference between the onset of the first syllabic nucleus in a note and that note’s
nominal onset as written in the musical score. These deviations are also computed for
rest notes, or equivalently, note offsets before a rest.

We use a neural network to predict these deviations from note-level musical and lin-
guistic input features. These input features are designed by hand, in part because using
note-level data means we have relatively few samples compared to phoneme or frame-
level data. We assume that these features contain most or all contextual information
relevant to computing note time deviations, therefore we can use a simple feed-forward
neural network, without the need for a recurrent or convolutional architecture. To
avoid making any assumptions about the (conditional) probability distribution of the
note onset deviations, we use a non-parametric approach by using a softmax output
and discretizing the deviations to multiples of the hop time. Details of the input features
and network architecture are available in Table 4.4 (§4.3.4).

Phoneme duration model

Phonemedurations are obtained in a similarway. They are first computed from the given
phonetic segmentation, and then discretized on a log scale, similar to Arik et al. (2017b).
A neural network is used to predict the phoneme durations from phoneme-level musical
and linguistic input features. Unlike the note timing model, in this case we do require
some local context information, so we use a convolutional architecture. Here we assume
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the range of context information affecting the duration of a phoneme to be limited
by the musical score and the linguistic constraints on the number of possible onset
and coda consonants. Therefore, the limited receptive field of a convolutional neural
net should not be a significant disadvantage over a recurrent neural net’s unbound
receptive field. See Table 4.4 of “Model hyperparameters” in §4.3.4 for details.

Fitting heuristic

The fitting heuristic is used to conform the total of predicted phoneme durations to
the available note duration predicted by the note timing model. The basic strategy is
to expand or shrink the (principal) vowel, ensuring it is always at least some given
percentage of the note duration, by also shrinking consonants if needed.

First, the sequence of phonemes to fit in the note duration is obtained by “shifting”
onset consonants to the preceding note. The sequences will thus always start with a
vowel (or silence for rests), followed by zero or more consonants formed by the note’s
coda consonants and the next note’s onset consonants. In cases where a note contains
multiple syllables, the secondary vowels are handled as if they were consonants. Then,
the sequence of 𝑁 predicted durations 𝑑0, 𝑑1, … , 𝑑𝑁−1 is fit into the available note
duration 𝑑𝑎,

𝑟 = min(1, 𝑑𝑎(1 − 𝑟0)
∑𝑁−1

𝑖=1 𝑑𝑖
) , (4.12)

where 𝑟0 is the minimum fraction of the note’s duration to be occupied by the primary
syllabic nucleus.

̂𝑑𝑖 =
⎧{
⎨{⎩

𝑑𝑎 − 𝑟
𝑁−1
∑
𝑗=1

𝑑𝑗 for 𝑖 = 0

𝑟𝑑𝑖 for 𝑖 = 1, 2, … , 𝑁 − 1.
(4.13)

4.3.4 Experiments

Datasets

For systems trained on natural singing, we use a public dataset published by the Nagoya
Institute of Technology (Nitech), identified as NIT-SONG070-F0013. This dataset
consists of studio-quality recordings of a female singer singing Japanese children’s
songs. The original dataset consists of 70 songs, but the public version consists of a 31

3Available from: http://hts.sp.nitech.ac.jp/archives/2.3/HTS-demo_NIT-SONG070-F001.tar.bz2

http://hts.sp.nitech.ac.jp/archives/2.3/HTS-demo_NIT-SONG070-F001.tar.bz2
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song subset (approximately 31min, including silences). Out of these 31 songs, we use
28 for training and 3 for testing (utterances 015, 029 and 040).

As we had no involvement in the preparation of NIT-SONG070-F001, and information
about it is limited, we cannot be sure how the labeling was performed. However, in our
observations while working with this dataset, we consider note and phonetic labels to
be generally correct and fairly precise.

Note that this dataset is small compared to the datasets typically used to train TTS
systems. However, comparable dataset sizes (e.g., 40 h) would likely exceed the reper-
toire of most singers. In our experience, small datasets, like the one above already yield
acceptable results, while slightly bigger datasets, e.g., 1–4 h, seems to be the sweet spot
where results can be very good and the recording session is still manageable.

Compared systems

In our experiments, we compare our proposed system to three other systems which rep-
resent the three main paradigms for singing synthesis at the time of initial publication.
One system is state of the art concatenative unit selection-based system. The second is
a publicly accessible system based on HMMs. The third is a publicly accessible system
based on early attempts at using deep neural networks (DNNs) for singing synthesis.

NPSS Our complete NPSS system, combining tjhe timbre model described in §4.2.1
with the pitch model described in §4.3.2 and the timingmodel described in §4.3.3.
Model hyperparameters are listed in Table 4.2 of “Model hyperparameters” in
§4.3.4.

IS16 A concatenative unit selection-based system (Bonada et al., 2016), which was the
highest-rated system in the Interspeech 2016 Singing Synthesis Challenge. This
is an earlier work by our research group. While described in detail in the paper,
currently no implementation of this model is publicly available.

Sinsy-HMM A publicly accessible implementation of the Sinsy HMM-based synthe-
sizer4. This system is described in Oura et al. (2010) and Oura et al. (2012),
although the implementation may differ to some degree from any single pub-
lication, according to one of the authors in private correspondence. While the
system was trained on the same NIT-SONG070-F001 dataset, it should be noted
that the full 70 song dataset was used, including the 3 songs we use for testing.

Sinsy-DNN A publicly accessible implementation of the Sinsy feed-forward
DNN-based synthesizer4 (Nishimura et al., 2016). The same caveats as with
Sinsy-HMM apply here. Additionally, the DNN voice is marked as “beta”, and

4http://www.sinsy.jp/

http://www.sinsy.jp/
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thus should be considered still experimental. The prediction of timing and
vibrato parameters in this system seems to be identical to Sinsy-HMM at the
time of writing. Thus, only timbre and “baseline” F0 are predicted by the DNN
system.

Model hyperparameters

Table 4.2 lists the hyperparameters for the timbre model and pitch model, which both
use the same modified WaveNet architecture. Table 4.4 list the hyperparameters for
timing models, which use a simpler architecture. All models are trained using the Adam
optimizer (Kingma and Ba, 2015) with standard parameters 𝛽1 = 0.9, 𝛽2 = 0.999,
𝜖 = 1 × 10−8. The learning rate schedule in an inverse time decay schedule, given as,

LR𝑡 = LRinit
1

1 + LRdecay ⋅ 𝑡/LRstep
, (4.14)

where 𝑡 is the training step (in updates), and LRinit, LRdecay, and LRstep are initial
learning rate, decay and decay interval (in updates) respectively, as listed in the table.
Training a complete system takes around 10 h on a single NVIDIA Titan X Pascal
GPU. While we found these settings to work well experimentally, they have not been
exhaustively optimized.
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Table 4.2:Hyperparameters for our proposed autoregressive (multi-stream) timbre and pitch
models. Symbols within parentheses refer to those in Figure 4.1 and the corresponding equations
in the text. Coarse coding of input control features is described in Table 4.3.

Timbre model Pitch model

Hyperparameter Harmonic Aperiodic F0

Feature dimensionality (𝑑out) 60 4 1

Additional inputs (dim.) - harmonic (60) -

Control inputs

prev. phn. identity (one-hot)
cur. phn. identity (one-hot)
next phn. identity (one-hot)

pos.-in-phn. (coarse)
F0 (coarse)

prev. phn. class (one-hot)
cur. phn. class (one-hot)
next phn. class (one-hot)
pos.-in-phn. (coarse)

prev. note pitch (one-hot)
cur. note pitch (one-hot)
next note pitch (one-hot)
prev. note dur. (coarse)
cur. note dur. (coarse)
next note dur. (coarse)
pos.-in-note (coarse)

Frame rate (Hz) 200 200 200

Input noise level (𝜆reg) 0.2 0.2 0.2

Initial causal convolution 10×1 10×1 20×1

Dilated convolutions 2×1 2×1 2×1

Num. layers (𝐾) 5 5 13

Dilation cycle (num. layers) 3 3 7

Dilation factors 1, 2, 4, 1, 2 1, 2, 4, 1, 2
1, 2, 4, 8, 16, 32, 64,
1, 2, 4, 8, 16, 32

Receptive field (ms, frames) 100 (20) 100 (20) 1050 (210)

Residual channels (𝑑res) 130 20 100

Hidden channels (𝑑hid) 130 20 100

Skip channels (𝑑skip) 240 16 100

Continued on next page.
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Table 4.2: (Cont.)

Timbre model Pitch model

Hyperparameter Harmonic Aperiodic F0

Output stage (𝐾out = 0) tanh→ 1×1
→ 60× CGM

tanh→ 1×1
→ 4× CGM

tanh→ 1×1
→ 1× MoL

Generation temperature (𝜏)
piecewise linear
(0,0.05; 3,0.05;
8,0.5; 60,0.5)

0.01 0.01

Batch size 32 32 64

Seq. len. (ms, valid timesteps) 210 (42) 210 (42) 105 (21)

Learning rate (schedule)
(LRinit , LRdecay, LRstep)

5 × 10−4 ,
1 × 10−5 , 1

5 × 10−4,
1 × 10−5, 1

1 × 10−3 ,
-

Num. epochs (updates) 1650 (82,500) 1650 (82,500) 235 (11,750)

Table 4.3: Encoding of control
features for our proposed autore-
gressive model. See §3.1.4 for
details. The exact dimensional-
ity and triangular encoding cen-
ter points for F0 and note dura-
tion will depend on the range of
pitches and note durations in the
dataset.

Feature Encoding kind Dimensionality

Position in phoneme (norm.) Gaussian 3

Position in note (norm.) Gaussian 3

Log F0 Triangular 3–4

Log abs. note durations Triangular 3–4

Evaluation metrics

We evaluate our timbre model with the following metrics: MCD for harmonic features,
MS-LSD for harmonic features over time, BAPD for aperiodicity features and FPR and
FNR for V/UV decision. These metrics are described in depth in §3.3.3.

For the listening tests, all stimuli were downsampled to 32 kHz, which is the lowest
common denominator between the different systems. We conducted a multiple stimuli
with hidden reference and anchor (MUSHRA) (ITU-R Recommendation BS.1534-3,
2015) style listening test. The 40 participants, of which 8 indicated native or good
knowledge of Japanese, were asked to rate different versions of the same audio excerpt
compared to a reference. The test consisted of 2 short excerpts (<10 s) for each of the 3
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Table 4.4:Hyperparameters for timing networks.

Hyperparameter Note timing Phoneme duration

Input features

note duration (one-hot)
prev. note duration (one-hot)
1st phoneme class (one-hot)

note position in bar (normalized)
note is rest

num. coda consonants prev. note
prev. note is rest

phoneme identity (one-hot)
phoneme class (one-hot)

phoneme is vowel
phoneme kind (onset/nucleus/coda/inner)

note duration (one-hot)
prev. note duration (one-hot)
next note duration (one-hot)

Target value range
(5ms frames)

[-15,14],
[-30,29] for rests

[5,538]

Target discretization 30 or 60 bins, linear 50 bins, log scale

Architecture

input→ dropout(0.81)
1×1→ 256× ReLU→ dropout(0.9)
1×1→ 64× ReLU→ dropout(0.9)
1×1→ 32× ReLU→ dropout(0.81)

1×1→ 30-way softmax

input→ dropout(0.8)
3×1→ 256× gated tanh→ dropout(0.8)
3×1 (dilation = 2)→ 64× gated tanh

→ dropout(0.8)
1×1→ 32× gated tanh→ dropout(0.64)

1×1→ 50-way softmax

Batch size 32 16

Seq. len. full (padded) full (padded)

Learning rate 2 × 10−4 2 × 10−4

Number of epochs 140 210
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Table 4.5:Quantitative results for the timbremodels trained on natural singing. Note that for the
IS16 system the modulation spectrum log-spectral distortion (MS-LSD) and voiced/unvoiced
metrics are omitted as it does not use predicted harmonic features (MS-LSD is computed from
predicted features, not analyzed features) or V/UV decision. The HTS system is only considered
when comparing systems trained on pseudo singing, but should be roughly equivalent to
Sinsy-HMM.

System
Harmonic Aperiodic V/UV

MCD (dB) MS-LSD (<25 Hz/Full, dB) BAPD (dB) FPR (%) FNR (%)

IS16 6.94 - 3.84 -
Sinsy-HMM 7.01 8.09/18.50 4.09 15.90 0.68
Sinsy-DNN 5.41 13.76/29.87 5.02 13.75 0.63
NPSS 5.54 7.60/11.65 3.44 16.32 0.64

validation set songs, in 7 versions (reference, hidden reference, anchor and 4 systems),
for a total of 42 stimuli. The scale used as 0–100, divided into 5 segments corresponding
to a 5-scale mean opinion score (MOS) test. The anchor consisted of a distorted version
of theNPSS synthesis, applying the following transformations: 2-d Gaussian smoothing
(with scale 𝜎 = 10) of harmonic, aperiodic and F0 parameters, linearly expanding the
spectral envelope by 5.2%, random pitch offset (±100 cents every 250ms, interpolated
by cubic spline), and randomly “flipping” 2% of the voiced/unvoiced decisions. We
excluded 59 of the total 240 tests performed, as these had a hidden reference rated
below 80 (ideally the rating should be 100). We speculate that these cases could be due
to the relative difficulty of the listening test for untrained listeners.

4.3.5 Results

For systems trained on natural singing, Tables 4.5–4.7 list quantitative metrics related to
timbre, timing and pitch models respectively. Examples of different modulation spectra
for timbre and pitch are shown in Figures 4.8–4.10. For systems trained on pseudo
singing, Table 4.1 lists quantitative metrics related to timbre models.

These metrics show that, for some of the frame-wise metrics, such as harmonic MCD,
our system is slightly behind. For some other metrics, such as the timing errors or
aperiodic BAPD, our system is slightly ahead. For systems trained on pseudo singing
the differences tend to be a little bigger, we argue that this is due that predicting averages
for this kind of data results in good results for these kinds of metrics. However, in all
metrics based on the modulation spectrum, which considers variations in time, NPSS
shows an improvement over the other systems.
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Table 4.6:Quantitative results for the timing models trained on natural singing. The table lists
mean absolute error (MAE) and root mean squared error (RMSE), both in 5ms frames, and
Pearson correlation coefficient 𝑟. Note that the Sinsy-DNN system uses the same HMM-based
duration model as the Sinsy-HMM system, so it is excluded from the comparison. The IS16
system used durations predicted by the NPSS system. The HTS system is only considered
when comparing systems trained on pseudo singing, but should be roughly equivalent to
Sinsy-HMM.

System
Note onset deviations Note offset deviations Consonant durations

MAE RMSE 𝑟 MAE RMSE 𝑟 MAE RMSE 𝑟

Sinsy-HMM 7.107 9.027 0.379 13.800 17.755 0.699 4.022 5.262 0.589
NPSS 6.128 8.383 0.419 12.100 18.645 0.713 3.719 4.979 0.632

System MS-LSD RSME (cents) 𝑟
(<25 Hz, dB)

Sinsy-HMM 5.052 81.795 0.977
Sinsy-DNN 2.858 83.706 0.976
NPSS 2.008 105.980 0.963

Table 4.7:Quantitative results of pitch mod-
els trained on natural singing. Table shows
log F0 modulation spectrum log-spectral dis-
tortion (MS-LSD) in dB. The F0 root mean
squared error (RMSE) in cents and Pearson
correlation coefficient 𝑟 are also given for ref-
erence. The IS16 and HTS systems are ex-
cluded from this comparison because they
are not suitable for modeling F0 from natural
singing.
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Figure 4.8: Comparing the average modulation spectrum (MS) of synthesized mel-generalized
coefficient (MGC) features.
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Figure 4.9: An example of synchronization between F0 and synthesized mel-generalized
coefficient (MGC) features. In the plotted excerpt, the relation between pitch and timbre
during vibratos can be observed.
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Figure 4.10: Comparing the average modulation spectrum (MS) of log F0 contours predicted
by various systems and natural singing.
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Table 4.8: Mean opinion score (MOS) for systems
trained on natural singing, displayed on a 1–5 scale
with their respective 95% confidence intervals. The
HTS system is only considered when comparing sys-
tems trained on pseudo singing, but should be roughly
equivalent to Sinsy-HMM.

System Mean opinion score

Hidden reference 4.76± 0.04
IS16 2.36± 0.11
Sinsy-HMM 2.98± 0.10
Sinsy-DNN 2.77± 0.10
NPSS 3.43± 0.11

When we compare an example of generated harmonic parameters during a vibrato
in Figure 4.9, we notice the features predicted by NPSS having more detail than
Sinsy-HMM and Sinsy-DNN. In particular, the frame-wise conditioning of harmonic
features on F0 in NPSS, causes the harmonic features to modulate along the vibrato,
similar to what happens in the reference recording. In the modulation spectrum analy-
sis of Figure 4.8, we can see that overall NPSS tends to follow the modulation spectrum
of the reference recording a little closer than Sinsy-HMM and Sinsy-DNN in lower
modulation frequencies. Compared to especially Sinsy-DNN, NPSS has less rolloff in
higher modulation frequencies, indicating less oversmoothing over time. However,
all systems have less high-frequency modulation spectrum content than the reference
recording, indicating none of the systems are able to reproduce all the details of the
original signal.

The analysis of the modulation spectrum of the log F0 predicted by different systems is
shown in Figure 4.10. We can see that overall NPSS matches the modulation spectrum
of the reference recording similarly or slightly better than Sinsy-HMM, but notably
better than Sinsy-DNN. When we focus our attention to the range of modulation
frequencies corresponding to vibratos in this voice, 5–7Hz, we see that Sinsy-HMM
and Sinsy-DNN have a sharp peak at 5Hz, whereas for NPSS this whole range has
increased energy, similar to the reference. This may indicate that NPSS produces a
wider range of vibrato rates, similar to a real singer. In Sinsy-HMM and Sinsy-DNN
vibrato parameters (rate and depth) are modeled separately from the base F0, which
may explain their tendency to produce very controlled, regular vibratos.

In the listening tests, listed in Table 4.8, NPSS is clearly ahead of competing systems. In
the MOS test for systems trained on natural singing, NPSS is around a third between
the second-best system (Sinsy-HMM) and the (hidden) reference. The correlation
between the qualitative results and the quantitative metrics based on the modulation
spectrum indicate that this may be a metric with higher perceptual relevance than the
frame-wise metrics such as MCD.

In our experience, the NPSS, Sinsy-HMM and Sinsy-DNN systems all produce quite
coherent timbres. The concatenative system, IS16, in contrast, tends to produce more
discontinuous timbres, which becomes especially apparent when using a dataset of
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natural singing. There are also other situations when such artifacts at concatenation
boundaries becomemore noticeable, e.g., in fast singing orwhen phonetic segmentation
is not perfect. We found NPSS to generally produce less static features over time,
and less coloring of timbre. Compared to the Sinsy-HMM and Sinsy-DNN systems,
the autoregressive generation of NPSS seems to help in reproducing rapidly varying
consonants, although these can occasionally sound better still in the concatenative
system. In terms of expression, Sinsy-HMM produces very coherent behavior, which,
while perhaps a little less human, tends to generally sound quite pleasant. NPSS on the
other hand, seems to be more varied, but this also means that results are sometimes
better than other times. One notable quality of NPSS is that the frame-wise conditioning
of timbre on pitch means that vibratos produce natural, synchronized modulations in
both pitch and timbre (see, e.g., Figure 4.9), unlike in the other systems which condition
on note pitch.

4.4 Conclusions

In this chapter, we presented a neural network capable of modeling singing voice timbre,
given pitch and a timed phonetic sequence as input. Additionally, we extended this
model to a complete singing voice synthesizer by adding models that model timing and
pitch. These separate, but interconnected models are able to generate synthetic singing
voice given a musical score with lyrics.

We first performed experiments with the timbremodel trained on pseudo singing, using
performance-driven synthesis, in order to allow easier comparison to the then state of
the art in terms of modeling flexibility and sound quality; HMM and concatenative syn-
thesis respectively. In listening tests, our autoregressive model with powerful network
architecture based on WaveNet has shown to be a notable improvement over statistical
parametric (HMM) systems, as well as simpler DNN and CNN neural networks, that
were common when our model was first published. In particular, it offers improved
reproduction of consonants and a more natural variation of predicted features over
time. Compared to concatenative approaches, our model shows a more moderate im-
provement in sound quality, but allows for much greater flexibility and is more robust
to small mis-alignments between phonetic and acoustic features in the training data.

In our second set of experiments, we trained a complete singing synthesizer, including
timing and pitch prediction, exploiting the fact that our system allows using datasets
consisting of natural singing (something that is problematic for concatenative synthe-
sizers for instance). In listening tests, our system was rated to reduce the gap between
the second-best system and the reference recording by about a third. While correlating
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this with quantitative metrics is challenging, metrics that take into account variations
over time, such as the modulation spectrum, do seem to corroborate this.

The moderate dataset size requirements, relatively fast training times, and a relatively
small CPU, memory and disk footprint allows for many practical applications of our
system.



Non-autoregressive modeling of timbre using
self-attention 5

THE AUTOREGRESSIVE MODEL introduced in Chapter 4 has many advantages
compared to a naive non-autoregressive model, but this kind of model indeed
also has some disadvantages. Firstly, due to its sequential nature, inference

cannot take advantage of highly parallel hardware such as graphics processing units
(GPUs). While this is a major disadvantage of autoregressive models in general, in our
specific case this is less of a concern in practice as we use a relatively low frame rate
and a smaller network architecture (see §4.1.4). Secondly, an arguably bigger concern
is the discrepancy between training objective and inference algorithm, resulting in
the so-called exposure bias issue (see “Regularization to mitigate exposure bias” in
§4.1.3). A typical symptom of this issue is that inference can become unstable due
to the feedback processes, e.g., resulting in unnatural resonances that increase over
time in long sustained vowels. While there are ways to mitigate these issues, these may
not be effective in all cases, or may themselves influence the final synthesis quality.
Thus, to provide an alternative to autoregressive models, our next work investigates
non-autoregressive models.

In our initial experiments, we found that a naive non-causal, non-autoregressive version
of the convolutional neural network (CNN)-based architecture in §4.1.2 results in a
step back in quality, compared to its original autoregressive formulation. In particular,
we empirically found that the resulting timbre tends to lack coherence over time. To
combat this issue, we turn to a model inspired by the Transformer network (Vaswani
et al., 2017), which notably includes self-attention as an alternative (or complement) to
convolutional or recurrent building blocks.

This chapter is derived fromwork originally published as Blaauw and Bonada (2020). In
this publication, we did not only try to obtain a non-autoregressive model comparable
to our original autoregressive model, but also tried to exploit the sequence-to-sequence
(Seq2Seq) aspect of the Transformer network1 to reduce the effort required to create
new voices. In particular, the proposed system avoids having to annotate all phoneme
onsets in the training data, with just vowel onsets sufficing. This topic is discussed in
depth in Chapter 8.

1The Transformer network was originally proposed in the context of neural machine translation (NMT),
which is a prevalent sequence-to-sequence (Seq2Seq) problem.
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5.1 Proposed system

5.1.1 Non-autoregressive models

Following the multivariate formulation of our autoregressive model as given in Equa-
tion (4.3) of §4.1.3, we can define a non-autoregressive equivalent,

𝑝𝜃(𝐱 | 𝐜) ≔
𝑇

∏
𝑡=1

𝐾
∏
𝑘=1

𝑝𝜃(𝑥𝑡,𝑘 | 𝐜), (5.1)

where 𝐱 is a sequence of 𝐾-dimensional intermediate acoustic features, 𝐜 is the time-
aligned sequence of control features, 𝑥𝑡,𝑘 is a scalar feature at timestep 𝑡 and frequency
bin 𝑘, and 𝑝𝜃(⋅ | ⋅) is a function implemented by a neural network parametrized by 𝜃.
Note that, while not shown here, the model, 𝑝𝜃(𝑥𝑡,𝑘 | 𝐜), is generally also conditioned
on output timestep, 𝑡. Often this happens implicitly due to the network architecture
used, such as the step in recurrent neural network (RNN) networks or the offset in 1-d
CNNs networks.

5.1.2 Attention and self-attention

We will first briefly describe the self-attention mechanism used in this work. To do so,
we must first have some understanding of attention mechanisms in general. Attention
mechanisms most frequently crop up in the context of Seq2Seq models. These Seq2Seq
models convert an input sequence into an output sequence, where the two do not
need to be aligned, i.e., have identical lengths, order and such. A typical task for such a
model is neural machine translation (NMT). In text-to-speech (TTS), a typical use
case would be converting an input sequence of orthographic characters or phonemes
to an output waveform or intermediate acoustic features. Seq2Seq models will typically
consist of an encoder that encodes the input sequence, a decoder that generates the
output sequence. Traditionally, the encoder would summarize the input sequence
into a fixed-length hidden vector, which is then taken by the decoder to produce the
target output (Sutskever et al., 2014; Cho et al., 2014). Later, attention mechanisms
were introduced in between encoder and decoder, to allow each output timestep to
attend to different input timesteps in a more flexible way. In the context of TTS, we
can think of this as learning the time-alignment between phonemes and the acoustic
features, possibly by constraining the alignment to be monotonic. The advantages of
such a Seq2Seq TTS system include allowing to train the system on <audio, text> pairs,
without time-alignment, and in general a more end-to-end system (see Chapter 8 for
more details).
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There are many kinds of attention mechanisms (e.g., Bahdanau et al., 2014; Luong et al.,
2015; Chorowski et al., 2015), however self-attention tends to be based on the scaled dot-
product attention mechanism as proposed by Vaswani et al. (2017). One key aspect of
this mechanism is that it is suitable for parallelized (feed-forward) computation, i.e., it
does not rely on recurrent connections and such. In this mechanism, the input sequence
is represented as a sequence of key-value pairs. These keys and values are typically
simply linear projections of the input “tokens” (or embeddings thereof ). Similarly, the
output sequence is represented as a sequence of queries, again, typically linear projection
of the output “tokens” (or embeddings thereof ). Note that here a “token” does not
necessarily need to be a categorical value, but can also be a vector of real values, such
as a frame of acoustic features. The (scaled) dot-product is used as a scoring function
to relate queries to keys. The “scaled” in scaled dot-product, simply refers to a scaling
factor used to avoid small gradients that can hinder training. The output sequence
is then obtained by a weighted average of the scored values, via softmax, typically
followed by a linear projection. Often, in particular in natural language processing
(NLP) applications, amulti-head variant of this mechanism is used. This means simply
that the mechanism is run multiple times in parallel, using different projections. The
intuition behind this is that each projection may focus on a different representation
subspace, and each head learns independent attention for that subspace.

More formally, the attention operation can be defined as,

Attention(𝑄, 𝐾, 𝑉 ) ≔ softmax( 𝑄𝐾⊺

√𝑑att
) 𝑉 , (5.2)

where 𝑄, 𝐾, and 𝑉 correspond to the (projected) query, key and value matrices respec-
tively. For simplicity, we will assume the single-head variant of the mechanism, with
𝑑att being the dimensionality (or number of channels) of the projected queries, keys,
and values.

Self-attention (Vaswani et al., 2017) is identical to the above attentionmechanism, except
that rather than deriving 𝑄 from the output sequence, and 𝐾 and 𝑉 from the input
sequence, all three matrices are derived from the same (input) sequence. Conceptually,
we can think about this as rather than finding relations between input and output
sequences, we find relations within the input sequence itself.

5.1.3 Self-attention as a building block

One key use for self-attention is as a building block that can replace or complement
CNN or RNN blocks to learn dependencies over time. In fact, the encoder and decoder
of the canonical version of the Transformer network (Vaswani et al., 2017), which is a
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very powerful model that excels at working with time series, only consists of point–
wise fully connected layers (essentially 1×1 convolutions, i.e., operating on a single
timestep) and self-attention.

We can think of RNN, CNN and self-attention as building blocks that combine infor-
mation from an input sequence to produce an output sequence (of the same length).
Self-attention has a number of advantages when compared to CNN or RNN operations.
Firstly, self-attention, like CNNs, requires a constant number of sequential operations,
regardless of the sequence length. RNNs on the other hand require a number of sequen-
tial operations that grows linearly with the sequence length. Secondly, self-attention, as
well as RNNs, can access any timestep in the input sequence, while CNNs have a fixed
receptive field. Thirdly, a single self-attention operation can connect any output to any
input. Such a short or direct path is important in learning long-term dependencies
between inputs (Hochreiter et al., 2001). CNN on the other hand will usually require a
longer path, due to consisting of a number of stacked convolutional layers, typically
each with a relatively small kernel size, and possibly using dilation. Similarly, in RNNs
this path is directly given by the distance between an output and an input, and thus in
the worst case is the sequence length. Finally, self-attention, like RNNs, tends to be a
single layer, which can be stacked to form a deep architecture. In particular, when using
a CNN with dilated convolutions, all layers contribute to a single big receptive field,
but there often are no repeated blocks where any output can interact with any input.
The principal downside of self-attention, compared to these other building blocks, is
that computational complexity and memory requirements tends to be quadratic with
respect to the sequence length.

Note that while models with recurrent building blocks may appear to be similar to au-
toregressive models andmay have similar end results, in this work we consider them dis-
tinct. We consider that a model definition can be autoregressive or non-autoregressive.
These models can then be implemented using network architectures using recurrent,
like RNNs, or feed-forward components, like CNNs or self-attention, or both. Here,
the only restriction is that autoregressive models require to be built using only causal
operations. A feed-forward architecture allows an autoregressive model to have non-
sequential training and sequential inference, whereas a non-autoregressive model will
have non-sequential training and non-sequential inference. A recurrent architecturewill
make all training and inference sequential in nature. Therefore, many autoregressive
models will use architectures with feed-forward building blocks.

5.1.4 Network architecture

Our proposed network architecture is depicted in Figure 5.1. Unlike the architecture
described in §4.1.2, this network is explicitly structured as an encoder-decoder. This type
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of architecture is popular in TTS, in particular for Seq2Seq models, where linguistic
input and acoustic output are not aligned. The encoder takes the linguistic input
sequence (i.e., phonemes or orthographic characters), and generates a sequence of
hidden features of the same length. The decoder can then take these hidden features to
generate the acoustic output. As these sequences will be of different lengths, typically
an attention mechanism connects the two, learning the (often monotonic) alignment
between outputs and inputs. While this Seq2Seq approach is discussed in depth in
Chapter 8, in this chapter we assume that the timing of phonemes is part of the training
data (and input for inference). Thus, in this case, we do not need to use an attention
mechanism, but instead, we use a much simpler alignment module. This alignment
module takes the sequence of hidden features derived from phonetic input sequence
by the encoder, together with a sequence of phoneme durations, and then repeats the
hidden feature timesteps to match the acoustic target sequence’s length.

Our model architecture is inspired by the architecture of FastSpeech proposed by Ren
et al. (2019), which is based on the influential Transformer network (Vaswani et al.,
2017). There are also similarities with the architecture proposed for ParaNet (Peng et al.,
2019), which is a continuation of their earlier work Deep Voice 3 (Ping et al., 2018),
which itself is based on a somewhat simplified version of the WaveNet architecture
(van den Oord et al., 2016a). Note that after our publication, other singing synthesizers
have been proposed that are also inspired by the FastSpeech architecture (e.g., Lu et al.,
2020; Chen et al., 2020).

Encoder

Our encoder is based on the encoder proposed in (Ping et al., 2018). First, we look
up a learned embedding for each phoneme in the input sequence. Then, a series of
convolutional blocks with gated linear units (GLUs)2 (Dauphin et al., 2017) allows
encoding information about the phonetic context of each phoneme, e.g., corresponding
to triphones or pentaphones, depending on the receptive field of this stack of convolu-
tional blocks. Finally, a residual shortcut connection from the monophone embeddings
is added to the local context output of the convolutional blocks.

This approach is quite different from the system proposed in Chapter 4, where the
control signal was provided at the same rate as the acoustic features, and the phonetic
context had to be “hardcoded” by including previous and next phoneme identities
in the control signal. While the end result does not tend to be radically different, the
approach of an explicit encoder operating on a phoneme-level control signal is more
2Note that the gated linear unit (GLU) activation is a popular choice for natural language processing

(NLP) models, in particular those based on the Transformer network. Compared to e.g., gated tanh
units (GTUs), it still provides gating and non-linear activation, but with less chance of vanishing
gradients.



122 5 Non-autoregressive modeling of timbre using self-attention

0.5

x 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
Decoder

Encoder

phn.
durs.

FC

FC

GLU block

FC

Phn. emb.

Aligner

Att. sub-layer

GLU sub-layer

x 𝐾𝐾𝑒𝑒𝑒𝑒c

FC

FC

Timed phn. seq.

0.5

Dropout

Att./GLU block

Layer norm

Conv. FC

⁄1 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎

Softmax

Dropout

FC

queries keys values

FC FC

𝜎𝜎

Q K V

GLU block

Sub-layer block

Attention block

F0 (coarse)

pos.-in-phn.

phns.
𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎

Figure 5.1: A diagram of the complete model architecture. On the left is the full system, com-
posed of encoder, aligner and decoder, which themselves are composed of different higher-level
blocks. On the right, these higher-level blocks (sub-layer, gated linear unit (GLU) and atten-
tion) are shown in detail. The “FC” modules are fully connected layers, implemented as 1×1
convolutions.
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elegant and flexible. For instance, in theory including duration information would allow
a learned phonetic context dependency based on the speed of singing (i.e., fast singing
is likely to include more significant coarticulation). However, in the experiments in this
work, we opted for a simpler encoder that only combines monophone and triphone
information, without considering durations.

Decoder

Our decoder is based on a feed-forward variant of the Transformer network (Vaswani
et al., 2017), similar to (Ren et al., 2019), which we will refer to as the feed-forward
Transformer (FFT). Each layer consists of a self-attention sub-layer block and a con-
volutional sub-layer block. Both sub-layer blocks have layer normalization (Ba et al.,
2016), dropout (Srivastava et al., 2014) and a residual shortcut connection (He et al.,
2016).

As described in §5.1.2, the self-attention mechanism we use is based on the scaled
dot-product. Additionally, similar to (Sperber et al., 2018), we bias the scores with a
Gaussian along the diagonal to favor a more localized self-attention. This is done by
adding a term to scaled dot-product of Equation (5.2), prior to the softmax operation,

Attention(𝑄, 𝐾, 𝑉 ) ≔ softmax( 𝑄𝐾⊺

√𝑑all
+ 𝑀 ) 𝑉 , (5.3)

where 𝑄, 𝐾, and 𝑉 correspond to the (projected) query, key and value matrices re-
spectively, and 𝑑att is their dimensionality. The diagonal Gaussian bias, 𝑀 ∈ R𝑇 ×𝑇, is
computed as,

𝑀𝑗,𝑘 = −(𝑗 − 𝑘)2

2𝜎2
bias

, (5.4)

where 𝜎bias is a learned scale parameter, and 𝑇 is the sequence length. While the use
of multi-head attention is typical for NLP applications, we did not find this improved
results in our case.

For the convolutional blocks, we use a non-causal convolution without dilation, fol-
lowed by a GLU activation, much like a very stripped-down version of the WaveNet
block (see e.g., Figure 4.1). We found that for our case this approach outperforms the
two-layer convolutional network with central rectified linear unit (ReLU) activation
and higher inner dimensionality that is typically used in Transformer architectures.

When using intermediate acoustic features with multiple streams, such as WORLD
vocoder features, we simply concatenate the different features in this model. Compared
to the approach described in “Multi-stream architecture” of §4.2.1, we found that this
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simplifies the model considerably, while only resulting in a marginal difference in
output sound quality.

F0 and position conditioning

As with our autoregressive timbre model (§4.2.1), continuous log F0 is encoded as a
low-dimensional vector between zero and one by evaluating several triangular basis
functions whose centers are placed at frequencies appropriate for the training data’s
pitch range. This triangular encoding is described in depth in §3.1.4.

Transformers typically use an additive trigonometric positional encoding to give the self-
attention blocks a sense of the position of their inputs, and provide a linear inductive bias
along early on in training. However, in our case, we found that a simple 𝐾-dimensional
cyclical encoding (see §3.1.4, Equation (3.9)) of the normalized frame position within
each phoneme gave slightly better results.

Reduction factor

As mentioned, one of the principal disadvantages of self-attention is that computation
complexity andmemory requirements are quadratic with respect to the sequence length.
This can cause issues whenever sequences can be very long, such as when modeling
intermediate acoustic features, which often are sampled at a rate of 200Hz. It should
be noted here, that this kind of model tends to use minibatches that consist of full
phrases, while purely convolutional architectures (e.g., the architecture in §4.2.1) can
use minibatches of arbitrary length slices without loss of generality.

One way to mitigate the issue of quadratic complexity is to reduce the number of
timesteps of the acoustic features by using an integer reduction factor 𝑟 ≥ 1, which
means 𝑟 frames are predicted per output timestep (Wang et al., 2017; Ping et al., 2018).
That is, if we have some acoustic features, 𝑥 ∈ R𝑇 ×𝑑feat , we can reshape this matrix
to become, R(𝑇 /𝑟)×(𝑑feat𝑟), where 𝑇 is the number of timesteps, and 𝑑feat is the feature
dimensionality.

Additionally, we found that using a slightly lower rate for the intermediate acoustic
features (e.g., 10ms rather than 5ms), still yields acceptable results. This is the case
in particular when the system is used in conjunction with a more powerful neural
vocoder, capable of “recovering” more waveform detail from lower resolution acoustic
features.

Note that a lot of the work on Transformer-based models after the publication of
our initial work on this model has been focused on making the model more scalable
to very long sequences (e.g., Kitaev et al., 2020; Wang et al., 2020a). While we have
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not experimented which such newer approaches, our intuition is that perhaps they
would not have a very big effect on the final result in our use case. In particular, we are
interested in global coherence, but at the same time, most effects are fairly localized.
That said, a more scalable network would greatly benefit practical deployment of this
model.

5.1.5 Training and inference speed

Training times for this kind of model are quite comparable, albeit slightly higher, than
our previously proposed autoregressive model (see §4.1.4), around 10–15 h. Inference
speeds are notably higher however, around 770 × real-time. All of these numbers are
for an NVIDIA GTX 1080Ti GPU. We did not benchmark performance on central
processing unit (CPU), as this model is much less suited for hardware with relatively
low parallelism.

5.2 Relation to prior work

Not considering Seq2Seq singing synthesizers, which are discussed in §8.2, a number
of other non-autoregressive and related singing synthesizers have been proposed. For
instance, Nakamura et al. (2019) propose a non-autoregressive CNN-based singing
synthesizer. Here, downsampling and upsampling operations are used for capturing
long-term dependencies in the singing voice (somewhat similar to the U-Net architec-
ture (Ronneberger et al., 2015)). Another group of approaches uses generative adversar-
ial network (GAN)-based approaches (e.g., Hono et al., 2019; Chandna et al., 2019).
Here, typically a CNN-based generator is combined with a discriminator to provide an
adversarial loss. A key point of such adversarial losses is that they do not operate on a
single timestep, as is common with most explicit losses, but rather take a full sequence
or window of timesteps, thus likely improving coherence over time. One downside of
this approach is that GAN-based networks generally take longer to train and may not
converge properly depending on many interacting factors.

One indirectly related, but nevertheless interesting work also uses (multi-head) self-
attention for singing synthesis. The model proposed by Yi et al. (2019) includes a timbre
model that is autoregressive, but the past timesteps are processed by a pre-net module
that includes multi-head self-attention. They argue that this pre-net module helps to
unify the distribution spaces of past timesteps of acoustic features on the one hand, and
control input features on the other.

After the publication of our work, one notable new approach for generative models in
general are based on diffusion probabilistic models (and denoising score matching),
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which has recently also been applied to singing synthesis (Liu et al., 2021a). A key aspect
of thismodel is that at inference it gradually denoises an initial random sequence toward
the target output, such as intermediate acoustic features. Thus, while this denoising
process is feed-forward, it is executed in an iterative manner. However, the number of
steps required is still much less than the number of steps required for autoregressive
inference, and work is being done to make inference even more efficient. At the same
time, this approach promises better temporal coherence, less oversmoothing, and
overall better synthesis quality, compared to naive non-autoregressive approaches.

5.3 Experiments

5.3.1 Datasets

For the experiments in this work, we train a model on a proprietary dataset of 41 pop
songs performed by a professional English male singer. From this dataset 35 songs were
used for training (1 h 26 total), 4 for validation and 2 for testing.

The labeling of the dataset was done by first correcting the orthographic lyrics with
respect to what was actually sung. Then a dictionary based transcription was used
to obtain the initial phonetic transcription. The dataset was then segmented by first
training a hidden semi-Markov model (HSMM) from scratch using the deterministic
annealing expectation maximization (DAEM) algorithm on the audio data and ini-
tial phonetic transcription. Using this trained model to perform a forced alignment
between transcription and audio results in initial phonetic segmentation. This segmen-
tation was then corrected by hand, mainly to avoid gross segmentation errors. In a
few cases the phonetic transcription was also corrected while correcting the phonetic
segmentation.

We use the same intermediate acoustic features as in Chapter 4, that isWORLD vocoder
features (see “Intermediate acoustic features” of §4.2.1). The only difference is that we use
a lower frame rate (100Hz rather than 200Hz), for reasons mentioned in “Reduction
factor” above.

5.3.2 Compared systems

In our experiments, we compare our proposed system to two baseline systems. The
first is a version of our proposed system without self-attention layers. The second is
an autoregressive model, similar to that proposed in §4.2, although also incorporating
some aspects from our proposed system to be a fairer comparison.
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FFT-NPSS-D This is our proposed non-autoregressivemodel. The identifier is derived
from it being a version of our neural parametric singing synthesizer (NPSS)
based on the FFT, and using phonetic durations as input (hence the “D”). Model
hyperparameters are listed in Table 5.1 of §5.3.3.

FFT-NPSS-D-NoSA This system is identical to the FFT-NPSS-D system, except that
it has no self-attention layers (hence the “NoSA” suffix). The idea is to have a
baseline non-autoregressive system without self-attention, essentially a CNN
(the FFT in the name is a bit of a misnomer, but used to indicate the architecture
is equivalent except for lacking self-attention). This ablation study allows us to
evaluate how much (or little) the self-attention mechanism contributes to the
resulting sound quality. Model hyperparameters are listed in Table 5.1 of §5.3.3.

AR-NPSS This is an autoregressive baseline model, similar to that proposed in §4.2
(NPSS).However, themodel and its hyperparameters have been slightlymodified
to be more similar to FFT-NPSS-D. Some notable changes include using more
residual channels (same number as FFT-NPSS-D) and using a simple (mean) 𝐿1
loss rather than the constrainedGaussianmixture (CGM) output distribution. To
keep the total number ofmodel parameters comparable toNPSS after the increase
in residual channels, we no longer use parametrized residual skip connections3.
Similarly, while FFT-NPSS-D uses a smaller kernel size for the initial causal
convolution compared to NPSS, 1×1 rather than 10×1, by also using a bigger
dilation cycle for the same total number of layers, the resulting receptive field is
still comparable (actually bigger).

5.3.3 Model hyperparameters

The hyperparameters that we use in our experiments for our proposed systems
(FFT-NPSS-D and FFT-NPSS-D-NoSA) are listed in Table 5.1. We use 64-dimensional
acoustic features similar to (Blaauw and Bonada, 2017b), extracted with a 10ms
hop time. A reduction factor, 𝑟 = 2, is used to further reduce the complexity of the
attention layers. We use 256-dimensional phoneme embeddings, and an encoder with
a single 3×1 GLU block with 64 channels. F0 is coarse coded to a 4-dimensional
vector, as is the position within the note, albeit with a cyclical encoding. The decoder
consists of six layers with (single-head) self-attention and 3×1 GLU blocks, all with
256 channels. The final output projection is to 64𝑟 channels. Dropout probability
is set to 0.1 throughout the model. The learned standard deviation of the Gaussian

3Not using parametrized residual skip connections simply means removing the left “FC” (1×1) module
after the gated activation in Figure 4.1, and ensuring 𝑑hid = 𝑑res. Especially when 𝑑res is big, this
notably reduces the number of model parameters, and is reported to result in no perceptual change in
quality (Arik et al., 2017b).
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bias of the self-attention blocks is initialized to 30. Initialization of convolutional
layers follows (Gehring et al., 2017). We use the Adam optimizer with 𝛽1 = 0.9,
𝛽2 = 0.98, 𝜖 = 1 × 10−9, and a batch size of 32. We follow the learning rate schedule
from (Vaswani et al., 2017), with a 4000-step linear warm-up, a base learning rate of
1 × 10−3, and an inverse square root decay. We train for a total of 50 k updates, and
use Polyak averaging, also known as exponential moving average (EMA) updates, with
a decay of 0.995 for validation and testing (Polyak and Juditsky, 1992). The objective
that we optimize is a simple (mean) 𝐿1 loss between output and target features.

The hyperparameters for our autoregressive baseline (AR-NPSS) are listed in Table 5.2.
Some of the principal differences between this model and NPSS from §4.2 are listed in
§5.3.2 above.

5.3.4 Listening test

We ran a mean opinion score (MOS) listening test that corresponds to the experiments
in this chapter, as well as those of Chapter 8, as these two chapters are based onwhat was
a single publication originally. The listening test had 20 participants, which each rated
a random subset of 11 out of 22 phases. For each phrase, the participant had to rate six
stimuli for overall quality and naturalness, in accordance to a presented reference. The
scale used as 0–-100, divided into 5 segments corresponding to a 5-scaleMOS test. Three
of the six stimuli to be rated correspond to systems described above, FFT-NPSS-D,
FFT-NPSS-D-NoSA and AR-NPSS. Two other stimuli correspond to two additional
systems (FFT-NPSS and FFT-NPSS-NoSA) that are relevant to the experiments of
Chapter 8, but not to the experiments of this chapter. The final stimulus corresponds to
a hidden reference. The visible and hidden references consist of a WORLD re-synthesis
of the target recording. All systems are presented and rated together to encourage a
comparison between them. In this listening test we did not use an anchor as a kind of
low scoring (hidden) reference, mainly because preparing such stimuli in a way that
are representative of bad quality TTS or singing synthesis, is not an easy task.

5.4 Results

The results of our listening test are shown in Table 5.3. We can see that our proposed
non-autoregressive model with self-attention, FFT-NPSS-D, is rated best, with the
autoregressive baseline, AR-NPSS, second by a significant margin. Rated worst
of the compared system is the non-autoregressive model without self-attention,
FFT-NPSS-D-NoSA, indicating that self-attention is a crucial component for the
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Hyperparameter

Feature dimensionality 60 + 4 (concat.)

Frame rate (Hz) 100

Reduction factor (𝑟) 2

Phoneme embedding

Dimensionality (𝑑emb) 256

Initialization 𝒩(0, 0.012)

Encoder

Num. layers (𝐾enc) 1

Kernel size 3×1

Num. channels (𝑑enc) 64

F0 encoding 4-dim. triangular

Pos.-in-phn. encoding 4-dim. cyclical

Decoder

Num. layers (𝐾dec) 6

Kernel size 3×1 (dilation = 1)

Num. channels (𝑑dec) 256

Output linear projection (𝑑out) 64𝑟

Dropout probability 0.1

Attention

Num. heads, 𝑑att 1, 256

Init. learned scale of diag. bias (𝜎bias) 30.0

Batch size 32

Seq. len. full

Learning rate schedule
Noam; 1 × 10−3 ;

4000 step warm-up

Num. epochs (updates) 1000 (50,000)

EMA decay 0.995

Loss L1

Receptive field (FFT-NPSS-D) full

Receptive field (FFT-NPSS-D-NoSA) 13 frames (260ms)

Table 5.1: Hyperparameters for
the proposed non-autoregressive
system (FFT-NPSS-D and
FFT-NPSS-D-NoSA). Symbols
within parentheses refer to those in
Figure 5.1 and the corresponding
equations in the text.
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Table 5.2: Hyperparameters for
the autoregressive baseline system
(AR-NPSS). Symbols within paren-
theses refer to those in Figure 4.1 and
the corresponding equations in the
text of Chapter 4. Coarse coding of
input control features is described in
Table 4.3 of the same chapter.

Hyperparameter

Feature dimensionality 60 + 4 (concat.)

Control inputs

prev. phn. identity (one-hot)
cur. phn. identity (one-hot)
next phn. identity (one-hot)

pos.-in-phn. (coarse)
F0 (coarse)

Frame rate (Hz) 200

Reduction factor (𝑟) 1

Input noise level (𝜆reg) 0.2

Initial causal convolution 1×1

Dilated convolutions 2×1

Num. layers (𝐾) 5

Dilation cycle (num. layers) 5

Dilation factors 1, 2, 4, 8, 16

Receptive field (ms, frames) 160 (32)

Residual channels (𝑑res) 256

Parametrized residual no

Hidden channels (𝑑hid) 256

Skip channels (𝑑skip) 256

Output stage (𝐾out = 1) ReLU→ 1×1 (256)→ ReLU→
1×1 (64)→ 64× L1

Generation temperature (𝜏) -

Batch size 32

Seq. len. full

Learning rate (schedule) 3 × 10−4 (fixed)

Num. epochs (updates) 1000 (85,000)

Table 5.3: Mean opinion score
(MOS) for evaluating the proposed
non-autoregressive timbre model.
Ratings on a 1–5 scale with their re-
spective 95% confidence intervals.

System Mean opinion score

Hidden reference 4.56± 0.07
AR-NPSS 2.63± 0.10
FFT-NPSS-D (proposed) 2.92± 0.10
FFT-NPSS-D-NoSA (w/o self-attention) 2.53± 0.11
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success of the model. When listening to the sound examples, we observe the non-
autoregressive model without self-attention exhibits notable variations in timbre over
time, often in a way that is not natural. For instance, there may be sudden differences
in timbre along a note, or a sudden increase in energy just before a release. In our
experience, we could not obtain the same result of self-attention by simply increasing
the receptive field of the purely CNN variant (e.g., by using dilated convolutions
or using more layers). One explanation for this may be that each of the multiple
self-attention operations has a large receptive field, while a CNN typically consists
of many smaller convolutions which together result in a potentially large receptive
field, combined with simply being different operations altogether. In Figure 5.2
we try to visualize these differences by plotting waveforms and mel-spectrograms
produced our CNN-based decoder without and with self-attention. While somewhat
difficult to appreciate without listening (although sound examples are available in the
supplemental material for this work4), just looking at the waveforms’ envelope gives
some indication of these issues.

It should be noted that these MOS scores can be considered relatively low. Both gener-
ally, in terms of state of the art in TTS, and compared to MOS scores from previous
experiments. In particular, our previous autoregressive model, NPSS, scored 3.43 in
§4.3.5, while the similar baseline system AR-NPSS only scored 2.63 here. It is difficult to
say why this happens exactly, but we argue there can be a few causes. Firstly, it is quite
possible that people’s expectations have grown in the time that expired between the two
listening tests (2017 to 2020). In particular, high-quality neural TTS has become much
more commonplace, than it was. The fact that we use a heuristic vocoder rather than
predicting mel-spectrogram features and using a neural vocoder, probably made this
aspect worse (even though this arguably makes the comparison “fairer” because the
vocoder component is more predictable). Secondly, results are obviously dependent on
the datasets used, and perhaps more importantly the language used. The test in §4.3.5
used a Japanese voice, with only 8 out of the 40 participants being native or having
a good understanding of the language. Here on the other hand, an English voice is
used, and all participants are assumed to have a good grasp of this language. Arguably,
Japanese is easier to model than English, and in our experience tends to be perceived
as higher quality, at least by people not so familiar with the language. Lastly, there are
some notable differences between the NPSS and AR-NPSS models. These may have
some influence on the resulting sound quality, and overall the latter model was perhaps
a little less aggressively optimized for sound quality, in order to have an autoregressive
baseline that is very comparable to our proposed non-autoregressive model.

While the results of this listening test seem to indicate that non-autoregressive models
with self-attention outperform autoregressive model, we should perhaps be careful to

4https://mtg.github.io/singing-synthesis-demos/supplemental/

https://mtg.github.io/singing-synthesis-demos/supplemental/
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Figure 5.2: (a) Shows an example of the result of the non-autoregressive model without self-
attention. (b) Shows the same example as a result of the non-autoregressive model with self-
attention. While from this visual representation of waveform and mel-spectrogram alone it
may be hard to appreciate the inconsistencies in timbre over time in the case self-attention
is not used, the red diamond-shaped markers indicate some places where there are sud-
den shifts in levels, brightness, and so on. Notice in particular, in (b) a more consistent
energy in the fundamental, and cleaner formant transitions compared to (a). These exam-
ples are available as sound files in the supplemental material of this work: https://mtg.github.
io/singing-synthesis-demos/supplemental/

https://mtg.github.io/singing-synthesis-demos/supplemental/
https://mtg.github.io/singing-synthesis-demos/supplemental/
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draw any generalized conclusions from these somewhat limited experiments. Notably,
the experiments here are quite limited in terms of the number of voices used, number of
participants, and even variations of autoregressive and non-autoregressive models com-
pared. In our opinion, a more reasonable conclusion would be that non-autoregressive
models, at least when using self-attention, can at least be competitive with autoregressive
models. In our experience, the differences between these two approaches are dimin-
ished even further when the models predict mel-spectrogram features and a neural
vocoder is used to produce the waveform. In particular, when a neural vocoder is used
(especially an autoregressive neural vocoder), many of the details that may be missing
from the predicted mel-spectrogram can be recovered in the produced waveform.

5.5 Conclusions

In this chapter, we have proposed a non-autoregressive model for generating singing
voice timbre. Compared to autoregressive models this formulation has a number of
advantages. Firstly, the inference no longer needs sequential operations, thus can be
faster on highly parallel hardware such as GPUs. Secondly, it avoids issues related to
exposure bias, such as unnaturally evolving resonances in long sustained vowels.

The network architecture we propose is based on a feed-forward version of the Trans-
former network. A key aspect of this network architecture is that it uses self-attention,
alongside convolutions, as its primary building blocks. Self-attention is a fundamen-
tally different operation compared to convolutional or recurrent operations, with the
principal difference being that it can attend to any timestep in a sequence in a single
operation. In our experiments, we found that this ability seems to help increase the
coherence of the generated timbre over time, whereas a convolutional architecture
without self-attention can produce unnatural variations in timbre over time. These
observations are corroborated by the results of our listening tests.

Compared to a baseline autoregressive model, our proposed non-autoregressive model
is rated better in listening tests, indicating that non-autoregressive models with care-
fully designed network architectures can at least be competitive with autoregressive
models. Issues related to exposure bias, such as unnaturally evolving resonances in long
sustained vowels are absent. Additionally, monitoring training progress is simplified.
Inference speed is also significantly faster on GPU compared to the baseline.





Non-autoregressive source-filter neural vocoder 6
ONE IMPORTANT DISADVANTAGE of autoregressive models is that inference

requires sequentially computing each timestep, thus not being able to take
advantage of modern highly parallel hardware, such as graphics processing

units (GPUs). This is one of the reasons why we proposed a non-autoregressive timbre
model in Chapter 5. However, for timbre models, lack of parallelization tends to be less
problematic, as the predicted intermediate acoustic features tend to have a relatively
low frame rate, and the networks themselves tend to be relatively small. Where au-
toregressive models tend to be truly problematic is when predicting waveform signals
directly. Here, the sample rate tends to be high (e.g., 32 kHz) and as the signal itself is
more complex, the networks used tend to have higher complexity (e.g., more layers,
more channels). Thus, when combining a timbre model with a neural vocoder, using a
non-autoregressive neural vocoder is often an attractive choice.

Another desirable property of neural vocoders is stability and interpretability. Al-
though possible to mitigate, autoregressive models are inherently less stable than non-
autoregressive models due to the recurrent feedback signal. In neural vocoders, this
may cause artifacts such as clicks or “explosions”. Similarly, if a model is interpretable,
any issues with sound quality can be investigated and more easily corrected, compared
to a more “black box” model. Unfortunately, interpretability often comes at the cost of
introducing constraints in the model, which may ultimately limit the accuracy of the
model.

The work in this chapter is as of yet unpublished.

6.1 Non-autoregressive neural vocoders

Research on non-autoregressive neural vocoders, also called parallel neural vocoders,
is currently a very active topic, with many competing types of models being proposed.
The most prominent of these are listed in §2.4.2 under “Probability density distillation”,
“Normalizing flows”, “Diffusion probabilistic models” and “Generative adversarial
networks”.

135
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All of these different types of models tend to obtain fairly good-quality results and
inference speeds, but also have some weaknesses. Probability density distillation model
(e.g., van denOord et al., 2018; Ping et al., 2019) tends to be cumbersome to train.Models
based on normalizing flows (e.g., Prenger et al., 2019; Kim et al., 2019) tend to require
huge networks in order to obtain good results, which limits practical applicability.
Diffusion probabilistic models (e.g., Chen et al., 2021b; Kong et al., 2021) still require
sequential inference, although the number of iterations is independent of the sequence
length. Arguably, the approach that has the most desirable properties is based on
generative adversarial networks (GANs) (e.g., Kumar et al., 2019; Yamamoto et al.,
2020; Bińkowski et al., 2020). This method allows single-pass training, places almost
no constraints on the network architectures used, and has single-step inference. That
said, some general drawbacks of adversarial models are that training can be unstable,
there are many interacting “moving parts”, and that training generally requires many
steps to converge.

6.1.1 Adversarial neural vocoders for singing

Neural vocoders based on GANs are generally close to state of the art in terms of sound
quality for speech. That is, the results obtained are generally very close to those of
autoregressivemodels in listening tests. However, applying thesemodels to singing voice
in our experience results in a number of artifacts that may not exist or go unnoticed
when modeling speech.

Some common artifacts include

Discontinuities One notable issue is that these models can produce discontinuities,
in particular in long, sustained vowels. Of course, the duration of vowels is one
of the key differences between speech and singing.

Phasiness The synthesized sound can exhibit what is generally referred to a “phasiness”
(e.g., Laroche and Dolson, 1997). This is especially noticeable in the lower end
of pitches, lower than most text-to-speech (TTS) voices.

Quasi-periodic pulses and “metallic” artifacts Unvoiced fricatives, affricates and as-
pirations may show quasi-periodic pulses. These pulses can be perceived as a
pitched, “buzzy” sound. In other cases, the same sounds can have a certain
“metallic” quality that sounds unnatural (i.e., something akin to inharmonic
partials within unvoiced noise).
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6.2 Proposed system

Finding exact causes of the above problems can be hard as neural networks tend to be
somewhat of a “black box”. We can certainly think of reasons why these things may
be happening, and try to address these issues. However, in our experience, it seems
that certain symptoms may be caused by a number of different underlying issues, and
whether these occur or not can depend on stochastic optimization processes involving
millions of weights, competing networks (a generator and one or more discriminators),
multiple losses, and so on. Thus, a common scenario with very flexible models is that
we address a certain symptom somehow, the symptom may go away entirely or occur
only very rarely, but some additional change in something seemingly unrelated may
cause the symptoms to re-appear.

Thus, in order to avoid the above issues in a more systematic way, we propose a much
more constrained, and in certain ways less powerful, model based on the source-filter
model of speech production (see §2.5.1). Our model is very similar to conventional
parametric vocoders, such as STRAIGHT (Kawahara et al., 1999; Kawahara, 2006) or
WORLD (Morise et al., 2016), with certain signal processing blocks replaced by neural
networks.

Besides viewing this approach as a way to avoid common artifacts of non-autoregressive
neural vocoders, we can also view it as a way to improve upon weaknesses of traditional
vocoders. In our experience, for instance WORLD is generally able to obtain high-
quality results, however it has the following weaknesses 1) poor frequency resolution of
the aperiodic component of the voice (especially below 3 kHz), 2) being very sensitive
to voiced/unvoiced errors of the F0 estimator used, and 3) the inability to recover
from oversmoothed predicted parameters when used in the context of TTS or singing
synthesis. By replacing certain components by neural networks, we should be able to
improve all of these aspects.

An overview of our model is depicted in Figure 6.1. The input to the model is a mel-
spectrogram and corresponding F0 sequence. While it should generally be possible to
infer F0 from the mel-spectrogram alone, we skip this step, as we assume that ultimately
our vocoder will be used together with a pitch model within a singing synthesizer. From
the input F0 a periodic excitation is generated. This periodic excitation is combined
with an aperiodic component to obtain a voice source signal. This signal is then filtered
by a vocal tract filter. The aperiodic envelope and the vocal tract filter are predicted
from the mel-spectrogram using a neural network.



138 6 Non-autoregressive source-filter neural vocoder

WN

range

range

interp.

interp.

lifter

lifter

exp(𝑥𝑥)

log(|𝑥𝑥|)

1 − 𝑥𝑥2

Φ(𝑥𝑥)

Φ(𝑥𝑥)

log(|𝑥𝑥|)

exp(𝑥𝑥)

mel-spectrogram

𝐿𝐿reg,SP

𝐿𝐿reg,AP

F0

F0

min-phase

min-phase

log 𝐻𝐻SP
0

log 𝐻𝐻AP
0

Φ(𝐻𝐻AP
0 𝐻𝐻SP

0 )

(a)

(b)

Φ 1 − (𝐻𝐻AP ))𝐻𝐻SP
00 2

F0

Φ(𝐻𝐻AP
0 𝐻𝐻SP

0 )

Φ 1 − (𝐻𝐻AP ))𝐻𝐻SP00 2

time-varying FIR filter

time-varying FIR filter

Source Filter

𝑒𝑒ℎ

𝑒𝑒𝑎𝑎

Discriminator𝐿𝐿spec

𝐿𝐿fm 𝐿𝐿adv,𝐺𝐺 𝐿𝐿adv,𝐷𝐷

output

target

Figure 6.1: A diagram of the proposed non-autoregressive source-filter neural vocoder. (a)
Shows the generator, consisting of a source and a filter module, and the discriminator. (b)
Shows the filter prediction module. Here, the “WN” block denotes a non-causal WaveNet. Note
that 𝐿reg in Equation (6.11) corresponds to the sum of 𝐿reg,SP and 𝐿reg,AP in this diagram.

6.2.1 Periodic and aperiodic excitation

We argue that one of the reasons for discontinuities in the output waveform is that in
certain cases the network has no reasonable way to predict the phase of the harmonics.
The input to most GAN-based neural vocoders for TTS is a mel-spectrogram, or a
mel-spectrogram and a noise sequence1. If we imagine a simplified voice signal as just a
fundamental sinusoid with constant amplitude, but varying frequency, determining the
phase of this sinusoid at the given output timestep would require the initial phase of the
sinusoid, as well as the entire trajectory of frequencies leading up to that timestep. In
speech or singing, such trajectories would start at every unvoiced to voiced boundary,
e.g., whenever there is a silence or unvoiced phoneme. Assuming that the generator
network is able to infer harmonic frequencies from the input spectrogram, and that the

1Typically, the noise input will have the same dimensionality as the output. This can be interpreted as the
generator network converting a sample from a simple, e.g., Gaussian, distribution to a sample from the
complex data distribution. In a neural vocoder, this will typically be the data distribution conditioned
on the input mel-spectrogram. Thus a different interpretation can be that the noise input helps to
generate stochastic components of the waveform from the less stochastic input mel-spectrogram. That
said, models that omit this noise input altogether tend to also be able to generate seemingly aperiodic
voice components.



6.2 Proposed system 139

initial phases are fixed to some values, the network should be able to produce coherent
phases.

For GAN-based neural vocoders applied to TTS discontinuities are generally not
considered an important issue. Thus, we can assume that given a powerful enough
network, and enough data, the network should be able to infer phases, even for unseen
input mel-spectrograms. As the same does not hold true for singing voice (e.g., Chen
et al., 2021a), we argue that the reason for this may be that the receptive field of the
typical generator networks is insufficient to capture the entire F0 trajectory from the
last unvoiced-voiced boundary in singing voice. This is due to a fundamental difference
between speech and singing voice, where voiced sections can be much longer, notably
due to long, sustained vowels. It is also not unlikely that these issues also occasionally
arise in TTS, but much less frequently, and possibly masked by the rapid succession of
phonemes in speech.

A common solution to this issue is to provide a periodic signal derived from F0 as an
input to the generator network (in addition, or instead of the noise input). This approach
was initially proposed for speech (Wang et al., 2019), albeit with the aim of providing a
fast feed-forward alternative for autoregressive neural vocoders. Later, neural vocoders
for singing also incorporated this approach (Liu et al., 2021a, in footnote) (Chen et al.,
2021a;Hono et al., 2021b; Roebel and Bous, 2021). The exact excitation signal used varies
a little, e.g., only the fundamental (Hono et al., 2021b), the eight first harmonics (e.g.,
Wang et al., 2019; Chen et al., 2021a), or cyclic decaying noise (Wang and Yamagishi,
2020).

In our model, we first upsample the input F0 sequence to the output sample rate by
repeating values, as a simple way to avoid interpolating F0 between voiced and unvoiced
frames. Then, given this upsampled input F0 sequence, 𝐟0 = [𝑓0,1, 𝑓0,2, … , 𝑓0,𝑇 ],
we generate a periodic excitation signal, 𝐞𝑝 = [𝑒𝑝,1, 𝑒𝑝,2, … , 𝑒𝑝,𝑇 ], by summing all
harmonics up to Nyquist for voiced timesteps, and silence for unvoiced timesteps,

𝑒𝑝,𝑡 =
⎧{
⎨{⎩

𝑔𝑝

𝐾
∑
𝑘=1

cos(2𝜋𝑘
𝑡

∑
𝑖=𝑖<𝑡

𝑓0,𝑖

𝑓𝑠
+ 𝜙) (𝑘𝑓0,𝑡 < 𝑓𝑠

2
) for 𝑓0,𝑡 > 0

0 otherwise.

(6.1)

Here, 𝐾 = 250 is the maximum number of harmonics, 𝑖<𝑡 is the timestep correspond-
ing to the first unvoiced-voiced boundary to the left of 𝑡 (or 𝑖<𝑡 = 1, if there is none),
𝜙 = 𝜋 is the initial phase (selected somewhat arbitrarily), and 𝑔𝑝 is a scaling factor.
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We also generate an aperiodic excitation signal, 𝐞𝑎 = [𝑒𝑎,1, 𝑒𝑎,2, … , 𝑒𝑎,𝑇 ], by simply
sampling a Gaussian distribution,

𝑒𝑎,𝑡 ∼ 𝑔𝑎 𝒩(0, 1), (6.2)

where 𝑔𝑎 is a scaling factor.

6.2.2 Minimum-phase vocal tract filter and aperiodicity

In our experience, concatenating 𝐞𝑎 and 𝐞𝑝, and feeding this excitation signal to a
generator network significantly reduces discontinuities, but does not fully solve the
issue. We argue, that while the losses used to train the generator should penalize
discontinuous output, this is still not enough to ensure that there never are sudden
changes in phase, especially for unseen mel-spectrogram inputs. On a fundamental
level, the issue is mainly that generating artifact-free waveform is still a difficult task for
feed-forward models.

To further aid the network, we decide to apply a vocal tract filter to the excitation signal,
following the source-filter model of speech production (see §2.5.1). While less powerful
than directly generating waveform, it should be considerably easier for a network to
produce a reasonable, smooth vocal tract filter. Once we predict a zero-phase filter (i.e.,
magnitude response), 𝐻0, we can obtain a corresponding minimum-phase filter, 𝐻, by
ensuring its cepstrum is causal (Smith, 2011, Chap. 4.9, “Minimum-Phase and Causal
Cepstra”, p. 147), i.e.,

𝐶0 = ℱ−1 (log𝐻0) , (6.3)

𝐶(𝑛) =
⎧{
⎨{⎩

0 for 𝑛 < 0
𝐶0(𝑛) for 𝑛 = 0
2𝐶0(𝑛) for 𝑛 > 0,

(6.4)

𝐻 = expℱ (𝐶) , (6.5)

where 𝐶0 is the cepstrum of the zero-phase filter, and 𝐶 is the cepstrum of the cor-
responding minimum-phase filter, obtained by “flipping” the anti-causal part onto
the causal part. Thus, if we assume our network predicts a vocal tract filter with a
magnitude response that is smooth over frequency and smoothly varies over time, the
corresponding minimum-phase response derived from this magnitude response will
also be smooth and smoothly varying over time, thus making discontinuities due to
rapid variations in phase response unlikely.
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Combining periodic and aperiodic components

Following traditional vocoders like WORLD (Morise et al., 2016), we model our target
signal as a combination of periodic and aperiodic components. The ratio between
(the power spectra of ) periodic and aperiodic components for any given frequency is
determined by an aperiodicity filter. Thus, we can describe our model in the frequency
domain as,

𝑋 = 𝐸𝑝Φ(√1 − (𝐻0
AP)2𝐻0

SP) + 𝐸𝑎Φ(𝐻0
AP𝐻0

SP), (6.6)

where 𝑋 is the output spectrum, 𝐸𝑝 the periodic excitation spectrum, 𝐸𝑎 the aperiodic
excitation spectrum, 𝐻0

SP and 𝐻0
AP the zero-phase vocal tract and aperiodicity filters,

andΦ(⋅) the process of turning a zero-phase filter into aminimum-phase filter following
Equations (6.3)–(6.5).

Note that the relative scaling factors used in the excitation signal 𝑔𝑝 and 𝑔𝑎, while not
affecting the output sound quality significantly, have some effect on the aperiodicity
filter predicted. In our model, we empirically set these to 𝑔𝑝 = 0.177 and 𝑔𝑎 = 1 so
the predicted aperiodicity is closer to that of the WORLD vocoder.

Network and filters

In order to predict 𝐻0
SP and 𝐻0

AP we use a network with a non-causal WaveNet architec-
ture (van denOord et al., 2016a), which takes as input the givenmel-spectrogram. In this
case, the network has a short receptive field, but a moderately high capacity in terms of
the number of layers and the dimensionality of the hidden layers (all hyperparameters
are listed in Table 6.1). While predicting these filters from given a mel-spectrogram
seems like a relatively easy task, we have to keep in mind that this is the only neural
network component in our entire model. Thus, any improvement over traditional
vocoders comes mainly from this network. Additionally, this network operates at the
frame rate of the input mel-spectrogram, not the output waveform. Therefore, we opted
for a moderately powerful network for this task.

The outputs of this network are the normalized log magnitude responses for the vocal
tract filter and the aperiodicity filter. These normalized responses are then scaled to
an appropriate range, e.g., −140 to 20 dB for the vocal tract filter, and −60 to 0 dB for
the aperiodicity filter. To reduce the number of values that have to be predicted and to
ensure some degree of smoothness, we predict these filters with a smaller dimensionality
(e.g., 257) and then linearly interpolate them to the target dimensionality (e.g., 1025).
An example of the vocal tract and aperiodicity filters predicted by our neural network
is shown in Figure 6.2.
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Figure 6.2: Example of the filters predicted by our source-filter neural vocoder. Shown here
are; (a) the waveform, (b) log mel-spectrogram, (c) vocal tract filter log𝐻0

SP, and (d) (squared)
aperiodicity filter (𝐻0

AP)2. For reference, the audio herematches that of the example ofWORLD
features obtained by signal processing algorithms, shown in Figure 3.5.
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It should be noted that we did experiment with some additional neural components
within ourmodel. For instance, transforming the excitation signal, transforming the out-
put, or predicting residual signals. In all these cases, either the improvement from such
components turned out to be rather lackluster, or performance was even degraded2.

To apply the time-varying finite impulse response (FIR) filters, we use the overlap-
save algorithm, implemented in the fast Fourier transform (FFT) domain (Wefers and
Vorländer, 2014). The cross-fading functions we used are sin2 and cos2 (equivalent to a
Hann window and a shifted Hann window).

Additional regularization by cepstral liftering

We apply some additional regularization to ensure the predicted filters are smooth by
applying two different ceptral domain lifters. The first, following Morise (2015), is a
F0-adaptive sinc lifter,

𝑙sinc,𝑡(𝑛) =

⎧{{
⎨{{⎩

0 for 𝑛 < 0
1 for 𝑛 = 0
sin(𝜋𝑓0,𝑡𝑛)

𝜋𝑓0,𝑡𝑛
for 𝑛 > 0.

(6.7)

The second lifter is a general low-time lifter with a cosine taper to reduce high quefrency
content,

𝑙taper,𝑛𝑐
(𝑛) =

⎧{{
⎨{{⎩

0 for 𝑛 < 0

cos( 1
2

𝜋𝑛/𝑛𝑐) for 𝑛 ≥ 0 and 𝑛 < 𝑛𝑐

0 for 𝑛 ≥ 𝑛𝑐,

(6.8)

where 𝑛𝑐 is the cut-off quefrency expressed as an integer index.

Using these two lifters, we generate smoothed versions of the vocal tract and aperiodicity
filters, 𝐻∗

SP and 𝐻∗
AP. Whenever F0 is voiced, the 𝑙sinc lifter is applied to both 𝐻SP and

𝐻AP. This has a smoothing effect, equivalent to convolving the filter’s (log) magnitude
response with a rectangular window, and additionally has zeros at the quefrencies
corresponding to the harmonics, thus avoiding the harmonic structure of the signal
being present in the vocal tract filter. At the same time, high quefrency content is cut

2For instance, transforming the excitation signal would often cause a notable phasiness at low pitches.
This may be because the transformation would result in an excitation signal that was no longer
zero-phase, most likely with a phase response that varied over time.
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beyond 10ms and 1.6ms for 𝐻SP and 𝐻AP respectively using 𝑙taper. For unvoiced frames,
we only apply 𝑙taper to cut content beyond 1.6ms for both 𝐻SP and 𝐻AP. That is,

𝑙SP,𝑡(𝑛) = {
𝑙sinc,𝑡(𝑛)𝑙taper,𝑛high

(𝑛) for 𝑓0,𝑡 > 0

𝑙taper,𝑛low
(𝑛) otherwise,

(6.9)

𝑙AP,𝑡(𝑛) = {
𝑙sinc,𝑡(𝑛)𝑙taper,𝑛low

(𝑛) for 𝑓0,𝑡 > 0
𝑙taper,𝑛low

(𝑛) otherwise,
(6.10)

where 𝑛high = ⌊10𝑓𝑠/1000⌋ and 𝑛low = ⌊1.6𝑓𝑠/1000⌋ are the cut-off quefrencies
used.

Rather than applying these lifters directly to the vocal tract and aperiodicity filters used
to generate the output waveform, we use them indirectly as part of a regularization loss.
If we apply the lifters directly, the predicted filters, 𝐻0

SP and 𝐻0
AP, tend to be noisy, which

we argue may result in poorer generalization compared to predicting smooth filters
directly. Additionally, the lifters would place certain “hard” constraints on the lifters,
i.e., forcing certain quefrencies to zero, which may not be beneficial. In particular, the
lifters were designed empirically, and it is hard to tell if these designs lead to results that
are close to optimal in all cases. Instead, we compute a regularization loss that tries to
ensure the difference between the predicted filters, log |𝐻0

SP| and log |𝐻0
AP|, and their

smoothed (liftered) counterparts, log |𝐻∗
SP| and log |𝐻∗

AP|, is small,

𝐿reg = 1
𝑁

[ ∥ log |𝐻0
SP| − log |𝐻∗

SP| ∥2
2 + ∥ log |𝐻0

AP| − log |𝐻∗
AP| ∥2

2 ], (6.11)

where𝑁 is the filter length.Here, we assume this error will go towards zero the smoother
the filters get. While this implies that the error reaches zero once the filter is maximally
smooth (i.e., just a constant), we observe that during training the regularization loss
tends to stay relatively constant at a non-zero value after a certain amount of updates.We
argue that this happens because predicting overly smooth filters is naturally penalized
by the other competing losses used to train the network.

Avoiding upsampling operators

One advantage of our approach is that it does not require any learned upsampling
operators, this contrary to most GAN-based neural vocoders, that typically bridge
the significant difference in sample rates between the input mel-spectrogram and the
output waveform through such operators. While very powerful and necessary for many
applications, these operators can easily be a source of artifacts, depending on many
different factors, and may not be sufficiently penalized by the loss functions used. In the
case of GAN-based neural vocoders, we argue that upsampling operators may be the
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culprit behind certain types of artifacts, especially those affecting unvoiced fricatives
(see Pons et al., 2021, for a general discussion of upsampling artifacts in audio synthesis).
While there are many ways to improve the performance of upsamplers, such as careful
selection of the kind of upsampler used and its hyperparameters (e.g., Odena et al.,
2016; Shi et al., 2016a; Shi et al., 2016b), special initialization of the learned kernel
(Aitken et al., 2017), ensuring smoothness of the learned kernel (Sugawara et al., 2019;
Kinoshita and Kiya, 2020), and so on, in our experience, it is very difficult to ensure no
artifacts will occur.

6.2.3 Spectral losses

As is common for GAN-based neural vocoders, besides the adversarial loss we use
several auxiliary losses to help the model converge and generally obtain better results.
The most important of these are multi-resolution short-time Fourier transform (STFT)
losses (e.g., Arik et al., 2019; Yamamoto et al., 2020). Because of the strong constraints
of our model, we can even obtain fairly good results training using these losses only (in
which case training is very fast).

The auxiliary multi-resolution STFT loss between target signal 𝐱 and predicted signal
𝐱̂ is defined as,

𝐿spec(𝐱, 𝐱̂) = 1
|𝑀|

∑
𝑚∈𝑀

[𝜆mag𝐿𝑚
mag(𝐱, 𝐱̂) + 𝜆sc𝐿𝑚

sc (𝐱, 𝐱̂)] , (6.12)

where 𝑀 is a set of spectral analysis parameters (window size, hop size, FFT size),
and 𝐿𝑚

mag(𝐱, 𝐱̂) and 𝐿𝑚
sc (𝐱, 𝐱̂) are log STFT magnitude and spectral convergence losses

respectively, combined using weights 𝜆mag and 𝜆sc. The log magnitude loss is defined
as,

𝐿𝑚
mag(𝐱, 𝐱̂) = 1

𝑇𝑚𝑁𝑚
∥ log | STFT𝑚(𝐱)| − log | STFT𝑚(𝐱̂)| ∥1, (6.13)

where ∥ ⋅ ∥1 denotes the 𝐿1 norm, and | STFT𝑚(⋅)| computes a 𝑇𝑚×𝑁𝑚 magni-
tude spectrogram, as a result of using spectral analysis parameters 𝑚. The spectral
convergence loss is defined as,

𝐿𝑚
sc (𝐱, 𝐱̂) = ∥ | STFT𝑚(𝐱)| − | STFT𝑚(𝐱̂)| ∥𝐹

∥ | STFT𝑚(𝐱)| ∥𝐹
, (6.14)

where ∥ ⋅ ∥𝐹 denotes the Frobenius norm. Note that the spectral convergence loss is
equivalent to a normalized root mean squared error (RMSE) between predicted and
target magnitude spectrograms, which, in our experience, helps both to converge faster
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and obtain slightly better end results. While in our case we average these losses over the
different samples in the minibatch during training, depending on the hyperparameters
used (e.g., short sequence lengths), it may be beneficial to compute the Frobenius
norm over all tensor dimensions (i.e., the 𝐿2 norm over the flattened tensor), including
the batch dimension, so that the normalizing factor is more constant and training
more stable. Similarly, we should clamp magnitude values under some small threshold.
We empirically set 𝜆sc = 0.5 and 𝜆mag = 1, as while the spectral convergence loss is
generally beneficial, in our experience, it does have a tendency to increase the likelihood
that a given model produces artifacts, in particular in unvoiced fricatives.

6.2.4 Adversarial training

We use mostly the same discriminators and adversarial losses from HiFi-GAN (Kong et
al., 2020). This model uses two types of discriminators, a multi-scale discriminator, and
a multi-period discriminator, each consisting of several sub-discriminators. The sub-
discriminator of the multi-scale discriminator follows MelGAN (Kumar et al., 2019), a
stack of 1-d strided convolutions, with relatively large kernel sizes, and an increasing
number of channels, with grouped connectivity to keep the number of parameters
reasonable. The output of this discriminator is scalar value indicating whether the
input is “real or fake” for a sequence of overlapping windows on the input waveform
(Isola et al., 2017). The original HiFi-GAN multi-scale discriminator uses three sub-
discriminators at the original sample rate, halve the sample rate and one forth the
sample rate, respectively. The sub-discriminator of the multi-period discriminator first
reshapes the input waveform to a 2-d signal, assuming some integer period 𝑃. That is,
the time dimension will be divided by 𝑃, the first row consisting of every 𝑃-th sample,
and subsequent rows the following offsets into the period. Then, a 2-d convolution with
𝑘×1 is applied to this signal, thus sharing weights between the different offsets into
the period, and steps over (decimated) time. Otherwise, the network design is similar
to that of the multi-scale sub-discriminator, except using smaller kernel sizes and not
using grouped connectivity. The original HiFi-GAN multi-period discriminator uses
periods 𝑃 ∈ [2, 3, 5, 7, 11].

The discriminators we use in our model only differ by removing some of the sub-
discriminators. We argue that because in our model things like periodicity are already
ensured by the excitation signal, the adversarial training will mainly be beneficial to
more time-localized detail. Thus, we use a multi-scale discriminator that operates
on the original sample rate and halve sample rate, and a multi-period discriminator
that uses periods 𝑃 ∈ [2, 3, 5]. In this case, the biggest receptive field among the sub-
discriminators will be around 250ms, which we argue should be sufficient. While the
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discriminators do not affect inference speed, they do have a significant effect on training
time and batch size.

The adversarial losses are based on the LS-GAN formulation (Mao et al., 2017),

𝐿adv,𝐺 = ∑
𝑘

1
𝑇𝑘

∑ (𝐷𝑘(𝐺(𝐜)) − 1)2 , (6.15)

for the generator, and,

𝐿adv,𝐷 = ∑
𝑘

1
𝑇𝑘

∑ [(𝐷𝑘(𝐱) − 1)2 + (𝐷𝑘(𝐺(𝐜)))2] , (6.16)

for the discriminators, where 𝐷𝑘 is the 𝑘-th sub-discriminator, 𝐺 is the generator, 𝐱 is
the target waveform, 𝐜 are the conditioning features (mel-spectrogram and F0), and 𝑇𝑘
is the number of output timesteps resulting from the 𝑘-th sub-discriminator.

Also following HiFi-GAN, we use a feature matching loss, which tries to make sure the
hidden features of the discriminators are similar between corresponding real and fake
inputs,

𝐿fm = ∑
𝑘

∑
𝑖

1
𝑁𝑘,𝑖

∥ 𝐷𝑖
𝑘(𝐱) − 𝐷𝑖

𝑘(𝐺(𝐜)) ∥1, (6.17)

where 𝑁𝑘,𝑖 is the dimensionality of the output feature map of the 𝑖-th hidden layer
within the 𝑘-th sub-discriminator.

The final losses can thus be computed as,

𝐿𝐺 = 𝐿adv,𝐺 + 𝜆spec𝐿spec + 𝜆fm𝐿fm + 𝜆reg𝐿reg, (6.18)

for the generator, and,
𝐿𝐷 = 𝐿adv,𝐷 (6.19)

for the discriminator. Considering the recommendations proposed in HiFi-GAN, and
adjusting for inclusion of the spectral convergence loss and smoothness regularization
loss, we empirically set the weights to 𝜆spec = 36, 𝜆fm = 2, and 𝜆reg = 36.

6.3 Relation to prior work

While developed independently, our model shares many similarities with the Multi-
Band Excited WaveNet (MBExWN) model (Roebel and Bous, 2021). The main differ-
ences being that this model transforms the periodic source with an efficient multi-band
variant of a non-causal WaveNet conditioned on the mel-spectrogram, while we do
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not. This transformation also provides the aperiodic component of the signal, thus
not requiring the prediction of an aperiodicity filter. The vocal tract filter is predicted
directly in the cepstral domain, with a reduced number of coefficients (equivalent to
a rectangular lifter). Additionally, this model predicts F0 from the mel-spectrogram
during inference (but does require F0 for training), as well as several other minor
differences.

The idea of using source-filter models in neural vocoders is not new. Some proposed
models use excitations generated by neural networks, e.g., in LPCNet (Valin and
Skoglund, 2019), iLPCNet (Hwang et al., 2020a), LP-WaveNet (Hwang et al., 2020b) or
GELP (Juvela et al., 2019), others use periodic excitations similar to our model, e.g.,
in NSF (Wang et al., 2019; Wang et al., 2020b; Wang and Yamagishi, 2019; Wang and
Yamagishi, 2020) or uSFGAN (Yoneyama et al., 2021), and for singing, e.g., in DiffSinger
(Liu et al., 2021a, in footnote), SingGAN (Chen et al., 2021a), or PeriodNet (Hono et al.,
2021b). Most of these models generate an aperiodic component through a neural net-
work that transforms the source excitation, whereas our model predicts an aperiodicity
filter, similar to traditional parametric vocoders such as WORLD (Morise et al., 2016).
As our aperiodicity filter is predicted by a neural network it is arguably more powerful
than signal processing approaches, that often lack adequate frequency resolution. Our
approach arguably also is more powerful than predicting a single voicing frequency
(e.g., Wang and Yamagishi, 2019), or band-wise aperiodicity (e.g., Hwang et al., 2021).
On the other hand, while one could argue using a neural network transformation is
ultimately the most powerful approach, we found that this can also be a source of
artifacts that can be difficult to mitigate.

Most, although not all, of these models also include adversarial training. In most GAN-
based neural vocoders, the generator will produce an audio rate signal from an input
mel-spectrogram at a much lower frame rate. Approaches tend to either first upsample
the mel-spectrogram and then use this to condition a network operating at the audio
rate (e.g., Yamamoto et al., 2020), or take a more multi-scale approach, where the
mel-spectrogram is gradually upsampled and transformed through different layers of
the generator network (Kumar et al., 2019; Bińkowski et al., 2020; Kong et al., 2020,
e.g., ). Multi-band approaches can be used to improve the efficiency of this process
(e.g., Okamoto et al., 2018; Yu et al., 2019; Yang et al., 2021; Tian et al., 2020b; Cui et al.,
2020). Our model is unique in that it does not require upsampling operators which
can introduce artifacts (see “Avoiding upsampling operators” in §6.2.2).
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6.4 Experiments

6.4.1 Datasets

We are mainly interested in a so-called “universal” vocoder (e.g., Lorenzo-Trueba et al.,
2019; Jang et al., 2020; Jiao et al., 2021; Huang et al., 2021; Roebel and Bous, 2021). In this
case, the model is trained on a multi-singer dataset and should be able to generalize to
unseen voices, possibly including unseen languages and singing styles. From a practical
point of view, this is a significant advantage over a singer-dependent model, as we do
not have to train a dedicated vocoder for each voice we want to use. Additionally, this
allows using a larger amount of total data, and also provides a solution for cases where
data is scarce, such as for voice cloning (see Chapter 7).

As neural vocoders can be trained from only audio, without any annotations, we train
our model on a relatively large, multi-singer dataset sourced from a variety of other,
proprietary datasets. The common denominator among these datasets is that recording
conditions are similar (studio recordings), and singers are professional level. In total the
dataset includes 75 singers, spanning 39 h 33, divided in 31,148 short phrases. Languages
include English, Japanese, Spanish, Catalan, and German. Singing styles include pop
and choir singing. Recording styles include both natural singing and pseudo singing
(see §3.2.2). Thus, this dataset is fairly varied. However, the data is not balanced among
the different categories, e.g., some singers will only contribute a single song, while
others over two hours.

The loudness of all songs in the dataset are normalized using an ITU-R BS.1770 meter
(ITU-R Recommendation BS.1770-4, 2015), prior to segmentation into phrases. In
order to be more robust to varying input levels, we also apply some random gain data
augmentation during training (see Table 6.1). We estimate F0 prior to training using
the SAC algorithm (Villavicencio et al., 2015). Mel-spectrograms are computed during
training, using the hyperparameters listed in Table 6.1. It should be noted that we use
fairly high resolution (in time and frequency) mel-spectrograms. In our experience,
such a high resolution can be especially beneficial to capture non-modal aspects of
singing voice, such as sub-harmonics. While our model is mainly focused on producing
model singing voice, we feel that for comparing different systems, these kinds of features
are most appropriate.

While left as future work, we expect a singer-dependent version of our model can be
successfully trained on a relatively small amount of data, due to the high degree of
domain knowledge included in the model itself.
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6.4.2 Compared systems

In our experiments, we compare our proposed system to several baseline systems,
including a traditional vocoder, an autoregressive neural vocoder, and another non-
autoregressive GAN-based neural vocoder. Additionally, we perform a small ablation
study to investigate the importance of adversarial training.

NeuralWORLD This system is our proposed non-autoregressive source-filter neural
vocoder, as described above.

NeuralWORLD-NoAdv This system is a variation of our proposed model that does
not use adversarial training. That is, no discriminator is used and 𝐿adv,𝐺, and 𝐿fm
are not used to train the generator. This is a kind of ablation study to see whether
adversarial training has a notable effect on sound quality. While using adversarial
training or not does not affect inference speed, in our model the discriminator is
by far the most demanding component in terms of computational complexity,
and thus discarding it significantly reduces training time (down to a few hours).

Excited-PWG This system is a baseline system consisting of a slightly modified version
of Parallel WaveGAN3 (Yamamoto et al., 2020), where the input is the excitation
signal of our proposed model (concatenating the pulse train and noise channels),
rather than simply noise. Furthermore, we try to use all applicable hyperparam-
eters from Table 6.1, such as multi-resolution STFT loss parameters. Notable
exceptions are that we use 𝜆spec = 1/4 and a minibatch consisting of 8 1.0 s
samples, following the original Parallel WaveGAN. We upsample the input mel-
spectrogram using upsample ratios [5, 4, 4, 2] to accommodate the modified
audio sample rate and mel-spectrogram hop time. This system serves as a base-
line GAN-based non-autoregressive neural vocoder. In particular, we would like
to know whether our system improves over this system by mitigating certain
artifacts (see §6.1.1). On the other hand, this system may also improve over our
proposed system, due to allowing for a more powerful neural transformation of
the excitation signal, rather than just a simple time-varying filter. This model
is trained to 500 k steps, with the first 100 k steps training just the generator,
without adversarial loss.

Note that while we only compare a single GAN-based baseline system, we empir-
ically found the same artifacts we discuss consistently across different generator
and discriminator architectures (e.g, Kumar et al., 2019; Bińkowski et al., 2020).

AR-WNV This system is a baseline autoregressive neural vocoder. We use an internal
implementation of a model derived from WaveNet (van den Oord et al., 2016a),

3Code adapted from: https://github.com/kan-bayashi/ParallelWaveGAN

https://github.com/kan-bayashi/ParallelWaveGAN
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which has been heavily tuned for good performance on a wide range of singing
voices. This model is trained to around 540 k steps.

WORLD This system is a baseline traditional parametric vocoder, based on signal
processing and heuristics. We use the version of WORLD (Morise et al., 2016)
that uses the D4C algorithm for aperiodicity estimation Morise, 2016, combined
with our own F0 estimator SAC (Villavicencio et al., 2015), which we also use in
all the other systems. This system serves as a kind of lowest baseline, upon which
we expect all neural vocoders to improve. Note that this is the vocoder used in
many of the other chapters, in part due to its predictable behavior making it
suitable for comparing different systems.

6.4.3 Model hyperparameters

While several model hyperparameters are already listed in the text, a more complete
listing is given in Table 6.1.

6.4.4 Listening test

We ran amean opinion score (MOS) listening test to compare the different systems. The
listening test had 12 participants, all active in the field of music and sound technology,
including several specializing in speech and singing. Each of the participants was
presented 14 excerpts. The participant were asked to rate stimuli corresponding to
each of the compared systems above, which were presented simultaneously, together
with a reference and hidden reference. Ratings were done on a 0–100 scale, asking
participants to rate for overall sound quality with respect to the reference. The (hidden)
references are recordings of professional singers resampled to the vocoder sample
rate. The input mel-spectrograms, F0 and WORLD features were extracted from these
reference recordings. The references included around 7 different singers, some seen
during training and some unseen, different languages, pitch ranges, genders, and singing
styles. Comparing systems on synthetic input features is left as future work, partially
because obtaining matching ground truth reference audio, synthetic mel-spectrogram
and synthetic WORLD features is somewhat problematic.

6.5 Results

The results of the listening test are summarized in Table 6.2. The best-performing
system is the autoregressive neural vocoder AR-WNV, which was to be expected as
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Table 6.1:Hyperparameters for the proposed neural vocoder.

Hyperparameter Hyperparameter

Sample rate (𝑓𝑠 ; Hz) 32,000 Source scaling factors

Input features 𝑔𝑝 0.177

Hop time (ms) 5 𝑔𝑎 1.0

Window time (ms) 45 Multi-res. STFT losses

Window Hann Hop times (ms) [2.5, 5, 40]

FFT length (samples) 1440 Window times (ms) [5, 20, 120]

Num. mel 100 FFT lengths (samples) [256, 1024, 4096]

Freq. range (Hz) 10–15,200 Window Hann

Gain data aug. [-3, 0] dB Clamp (dB) [-120, ∞]

Mel norm. range −140 to 0 dB Loss weights

F0 estimator SAC 𝜆mag 1.0

(Villavicencio et al., 2015) 𝜆sc 0.5

Filter prediction 𝜆spec 36.0

Filter size (𝑁) 1025 bins 𝜆fm 2.0

𝐻0
SP pred. size 257 bins 𝜆reg 36.0

𝐻0
AP pred. size 257 bins Optimization

𝐻0
SP pred. range −140 to 20 dB Batch size 16

𝐻0
AP pred. range −60 to 0 dB Seq. len. (s) 0.5

Kernel size 3×1 Optimizer Adam

Num. layers 8 Params. 𝛽1 = 0.9

Dilation 1 𝛽2 = 0.999

Num. ch. residual 256 𝜖 = 1 × 10−8

Num. ch. skip 256 Learning rate 1 × 10−4

Activation Gated tanh Schedule Const. for 100 k steps,

Re-parametrization Weight norm. then exp. decay

Output ReLU→ 1×1(256)→ (×0.5 per 100 k steps)

ReLU→ 1×1(257+257) Clip grad. norm 0.5

→ sigmoid Num. steps 500,000
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System Mean Opinion Score

Hidden reference 4.71± 0.03
NeuralWORLD (proposed) 4.13± 0.11
NeuralWORLD-NoAdv 3.21± 0.15
Excited-PWG 3.21± 0.09
AR-WNV 4.36± 0.08
WORLD 3.27± 0.15

Table 6.2: Mean opinion score (MOS)
ratings to evaluate our proposed non-
autoregressive source-filter neural vocoder.
MOS ratings on a 1–5 scale with their respec-
tive 95% confidence intervals.

it is a very strong baseline, rated fairly close to the hidden reference score. Our pro-
posed system, NeuralWORLD, is scored an (arguably) close second. The remaining
three systems are rated notably worse. The version of our system without adversarial
training, NeuralWORLD-NoAdv, the traditional vocoder, WORLD, and the baseline
GAN-based neural vocoder with fewer constraints, Excited-PWG, are all rated similarly.
We discuss some of the common artifacts we observe these systems produce in §6.5.1.
Some sound examples corresponding to this chapter are available online4.

6.5.1 Discussion of artifacts

Observing the results of the different systems, we can discuss some of the proper-
ties of the different artifacts they produce. Empirically, the traditional vocoder base-
line WORLD, and the version of our proposed system without adversarial training,
NeuralWORLD-NoAdv, produce perceptually similar artifacts. Although both systems
are based on a very similar source-filter model, this may just be a coincidence. This
artifact is best described as “buzziness”, and is characterized as unvoiced or mixed-
voicing regions (e.g., voiced fricatives), being “overly harmonics”. In the waveform
often periodic pulses can be observed where there should be none, e.g., see Figure 6.3.
Considering that our proposed system with adversarial training, NeuralWORLD, does
not produce such artifacts, we can conclude that training the model on just the multi-
resolution STFT loss is not enough to clearly distinguish whether the produced spectra
are sufficiently aperiodic in certain frequency bands. Related to this is also the model’s
ability to “recover” from voiced/unvoiced prediction errors by the F0 estimator.

We find that the Excited-PWG system, in addition to the occasional “buzziness” de-
scribed above, can also produce a kind of “phasiness”. This artifact can perhaps best be
described as a kind of “robotic” effect due to an unnatural alignment of phases, and
in the worst cases sounding like a kind of chorus effect. The degree of these artifacts
seems to vary a bit from excerpt to excerpt, but is especially noticeable at low pitches.

4https://mtg.github.io/singing-synthesis-demos/nar-vocoder/

https://mtg.github.io/singing-synthesis-demos/nar-vocoder/
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Figure 6.3: Example of an artifact when training our neural vocoder without adversarial loss.
(a) Shows the output of our proposed model. (b) Shows the output of our proposed model
without adversarial training. Notice here the voiced affricate [dʒ] has excessive harmonics in
the mel-spectrogram (bottom), and an excessively pulse-like waveform (top).
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Although WORLD uses a similar minimum-phase model to our own system, we found
that occasionally it can also produce notable phasiness. We observe that in this case the
phasiness tends to have a time-varying component, sometimes sounding like a kind of
flanging effect. These artifacts are most noticeable in longer unvoiced segments, such
as aspirations, unvoiced fricatives, unvoiced affricates, and so on.

Finally, our proposed system, NeuralWORLD, and the autoregressive baseline,
AR-WNV, are both generally of high quality. Where AR-WNV notably improves over
our non-autoregressive approach, is in non-modal voicing such as vocal fry or growls.
This is not surprising as our source-filter model is designed with modal speech or
singing in mind. A more subtle difference is that especially in very low pitch ranges,
NeuralWORLD can lack a certain “presence”, compared to AR-WNV or a reference
recording.

6.5.2 Inference speed

Inference is quite efficient, at around 213.6 × real-time on a single NVIDIA GeForce
RTX2080 Ti GPU, and 9.7 × real-time on single core of an i9-9960X central processing
unit (CPU). These numbers are computed using a single sample batch, and averaged
over a representative selection of phrases, as the speed varies somewhat depending on
the sequence length. While these are competitive numbers, there are some approaches
notably faster, e.g., HiFi-GAN’s v3 configuration (Kong et al., 2020) runs at over 1000 ×
on a GPU (albeit a V100 GPU and at 22 kHz). That said, we have not applied any
optimization to our code, beyond themost basic. In particular, the band-limited impulse
train generation could be implemented using a much more optimized algorithm (e.g.,
Stilson and Smith, 1996). It is also quite likely that the filter estimation network could
be further optimized in terms of computational complexity and memory requirements.
For certain applications where speed is of the utmost importance, we could even
optimize the FIR filtering.

6.6 Conclusions

We have proposed a non-autoregressive neural vocoder for singing, based on a quite
constrained source-filter model. Unlikemost competingmodels where either the source
excitation is (partially) predicted by a neural network, or the filter itself is a non-linear
neural network, our model predicts time-varying linear filters from the input mel-
spectrogram, and generates a source excitation signal from the input F0.

Compared to competing autoregressive neural vocoders, our proposed model is rated
fairly closely, albeit slightly lower. However, inference is much faster (and with much
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room for improvement still). Additionally, any potential instability due to relying on
autoregressive feedback is avoided. We feel that for many applications our approach
can be a practical solution. Especially for cases where significantly faster inference, and
a stable and easily interpretable model are desirable.

Compared to competing non-autoregressive neural vocoders, our much more con-
strained model provides a straightforward way to practically guarantee certain types of
artifacts will not be present. In particular, we avoid discontinuities and “phasiness” by
using a continuous excitation signal, combined with a smoothly varying minimum-
phase filter response.

In an ablation study, we found adversarial training to be especially useful to mitigate
issues of “buzziness”. From this we may conclude that these kind of artifacts are not
sufficiently penalized by a multi-resolution STFT loss alone.

One downside of our approach is that the underlying source-filter model only considers
modal speech or singing. Extending our model to cover other voice qualities, such as
growls, vocal fry, rough voices, etc., in a general and flexible way is interesting future
work.
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Data-efficient voice creation via voice cloning 7
MANY APPLICATIONS of singing synthesis require efficiently creating new

voices. For example, in many cases we want to reproduce a specific target
singer’s voice, not just any voice. Or, in some cases like music production,

where there may not be a specific target voice, the user will want to be able to select a
voice from a wide array of possibilities. A singer may want to model their own voice,
in order to let other musicians use it in their productions, or augment their own
performances. In other cases, such as reproducing a large choir, a wide range of timbres
is required. Thus, in singing synthesis there arguably is a greater need to model many
voices compared to text-to-speech (TTS), where for many applications the exact voice
is somewhat irrelevant.

With this demand for modeling many voices, data efficiency of the voice modeling
process becomes of increasing importance. In this work, we discuss both improving data
efficiency for creating new voices, and reducing the effort required, notably by reducing
the number of annotations needed in the training data. That said, one important
pathway to reducing the voice creation effort is improving data efficiency, as recording
and annotating a small amount of data obviously entails far less work than recording
and annotating a large amount of data. Similarly, even in the case of almost zero-effort
voice creation, data efficiency can still be of importance. For instance, in the case of
modeling a deceased singer’s voice, the amount of available datamay be quite limited. In
other cases, such as creating user voices or large choirs, recording very large amounts of
data may be impractical. For most applications, the ideal system would simultaneously
be data efficient, as well as allow low-effort voice creation.

Voice cloning, also known as voice fitting or speaker adaptation, is a technique that
leverages data from many speakers1 combined with a small amount of data from the
target speaker, e.g., 2min, to allow creating a voice model that outperforms a model
trained on just the adaptation target data from scratch. These kinds of ideas have been
around for a long time in TTS and singing synthesis, in particular for models based on
hidden Markov models (HMMs) (e.g., Shirota et al., 2014). With the advent of TTS and
singing synthesis models based on deep learning (e.g., van den Oord et al., 2016a; Shen

1Throughout this document, the term “speaker” is used regardless of whether the subject is speaking or
singing.

159



160 7 Data-efficient voice creation via voice cloning

et al., 2018), these techniques have become notably easier to implement and arguably
have better results.

In this chapter, we apply voice cloning techniques to an autoregressive singing synthe-
sizer, based on the work from Chapter 4. Here, we focus only on modeling timbre of
the voice, not other expressive features, such as F0 or timing. Instead, we consider pitch
and phonetic timings control inputs given by some external source, such as a record-
ing (e.g., Janer et al., 2006), or another model (e.g., Umbert et al., 2015; Hua, 2018).
While applying voicing cloning techniques to such expressive features is important
future work, we argue voice cloning for just timbre is still useful for many practical
applications.

While in this chapter we base our model on the autoregressive model from Chapter 4,
we have also applied these techniques to other models, such as the non-autoregressive
model from Chapter 5, as well as others. Although we do not report the results of these
(informal) experiments, we feel fairly confident that these techniques can be applied to
virtually any model with good results.

The content of this chapter was originally published as Blaauw et al. (2019). This work
investigates adapting modern voice cloning techniques proposed for TTS to singing
synthesis. More importantly, using a number of different listening tests, we evaluate
several practical aspects of singing voice cloning, such as what kind of data to use,
across datasets in English, Japanese and Spanish/Catalan.

7.1 Proposed method

As a reminder, the autoregressive timbre proposed inChapter 4, was defined as (copying
Equation (4.5)),

𝑝𝜃(𝐱 | 𝐜) ≔
𝑇

∏
𝑡=1

𝑝𝜃(𝐱𝑡 | 𝐱<𝑡, 𝐜), (7.1)

where 𝐱 is a sequence of multivariate intermediate acoustic features, 𝐱𝑡 is a single
timestep of that sequence, 𝐱<𝑡 are acoustic features corresponding to all timesteps
preceding timestep 𝑡, and 𝐜 is the time-aligned sequence of control features. In this
case, the model uses a network architecture based on WaveNet (van den Oord et al.,
2016a) which is parametrized by 𝜃.

7.1.1 Multi-speaker model

In order to leverage data from many speakers, we first extend this base model to a
multi-speaker variant. Such a model is a single network able to model all voices in
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the training data simultaneously, by conditioning it on an additional low-dimensional
vector representing the different speaker identities. We follow Arik et al. (2017b) and
use a learned speaker embedding which depends on the acoustic properties of each
speaker. We thus extend the model in Equation (7.1) to become,

𝑝𝜃,𝐬(𝐱 | 𝐜, 𝑖) ≔
𝑇

∏
𝑡=1

𝑝𝜃,𝐬(𝐱𝑡 | 𝐱<𝑡, 𝐜, 𝑖). (7.2)

The main difference here is that the model is conditioned on an additional speaker
index, 1 ≤ 𝑖 ≤ 𝑁, where 𝑁 is the total number of speakers in the dataset. Additionally,
the model now includes an additional table of speaker embeddings, 𝐬 ∈ R𝑁×𝑀, where
𝑀 is the dimensionality of the speaker embeddings. This table is initialized from a
uniform random distribution in the range [−0.1, 0.1], and then learned jointly with the
other model parameters, 𝜃. During training and inference, the speaker index, 𝑖, is used
to select a specific speaker embedding vector, 𝐬𝑖, selected from the table. Conditioning
of the model on the speaker embedding is done by simply concatenating the speaker
embedding, 𝐬𝑖, to the control vector for the current timestep, 𝐜𝑡, to form an augmented
control vector,

̂𝐜𝑡 = [𝐜𝑡; 𝐬𝑖 ]. (7.3)

This augmented control vector is then processed by the network architecture as normal
(see §4.1.2).

The underlying idea here is that if we train such a model on sufficiently many speakers,
the speaker embeddings should be learned to represent key characteristics of each
speaker’s voice. Consequently, it should be possible to generalize to new speakers by
simply finding the corresponding speaker embeddings, but keeping all the other weights
in the model fixed. As the dimensionality of the speaker embeddings tends to be tiny
(e.g., 𝑀 = 16 or 𝑀 = 32) compared to the total number of other model parameters,
we argue that it is plausible to learn these effectively from significantly less data.

7.1.2 Speaker adaptation

In order to adapt a multi-speaker model to a new unseen speaker, a randomly initialized
vector is added to the speaker embedding table, 𝐬, and the training of the model is
continued on data of the new speaker, using the corresponding speaker index and
generative loss as usual. In this case, the multi-speaker weights, 𝜃, are kept fixed and
only the new speaker embedding, 𝐬𝑖=𝑁+1, is updated. However, as previously reported
in e.g., Arik et al. (2018) and Chen et al. (2019), the generalization capabilities of a multi-
speaker model tend to be limited in practice, and better results in terms of synthesis



162 7 Data-efficient voice creation via voice cloning

quality and speaker similarity are obtained using so-called fine-tuning of all the model
weights.

When fine-tuning the whole model, both the speaker embedding, 𝐬𝑖, and the multi-
speaker model weights, 𝜃, are updated using the generative loss computed over data of
the new speaker. As the goal of voice cloning is to use very few material of the target
voice, this data tends to have a very small size. Thus, unlike learning only the new
speaker embedding, fine-tuning the whole model tends to overfit. A simple solution is
to use early stopping and only fine-tune the whole model for a small number of updates.
In contrast, learning a new speaker embedding tends to converge after many more
updates. Intuitively, it therefore makes sense to first optimize the speaker embedding
for many updates and then do a fine-tuning of the multi-speaker model weights for few
updates. However, we empirically found that this approach does not clearly benefit the
results compared to jointly learning all parameters for few updates, and thus we tend
to use this latter approach as it is much faster.

7.1.3 Singing voice specifics

Compared to speech, expressive singing tends to span a wider range of pitches and
timbres. As our proposed system uses a vocoder (Morise et al., 2016) which separates
pitch and timbre to a great extent, generalizing to a wide range of pitches can be
done efficiently. However, the high degree of variability in terms of timbre should be
considered, especially since datasets in singing synthesis tend to have less data for the
single-speaker case or fewer speakers for the multi-speaker case, compared to datasets
in TTS.

In order to keep the intra-speaker timbre variability manageable, we propose to use
what we call pseudo singing for the multi-speaker model. Pseudo singing are phrases
that are sung with approximately constant pitch, cadence and dynamics, forcing a
more clear and coherent pronunciation; see §3.2.2 for more details. Using this kind
of data thus provides a convenient way of ensuring a more homogeneous base voice.
Additionally, as we ideally want a large number of speakers for the multi-speaker model,
another important advantage of this kind of data is that phonetic transcription and
automatic segmentation tend to be more straightforward. The recordings used for the
target voice to clone can be either natural or pseudo singing.

7.1.4 Combination with a neural vocoder

The use of a traditional heuristics-based vocoder has some benefits in the case of
singing synthesis, but at the same time places an upper bound on the obtainable sound
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quality. Especially when the used generative model introduces some form of smoothing,
the synthesized waveform can often sound overly “buzzy”. One way to mitigate these
problems is to use a neural vocoder, e.g., a WaveNet model that predicts waveform
from vocoder features (Tamamori et al., 2017; Sotelo et al., 2017); see §3.1.3 for more
details. While the amount of data required to train such a neural vocoder may seem
contrary to the goals of voice cloning, we have obtained promising results by combining
data from different speakers in order to learn what is sometimes called a universal
mapping of intermediate acoustic features to waveform (Jia et al., 2018; Lorenzo-Trueba
et al., 2019). As training data in this case only consists of audio, without requiring
text, speaker identities or other annotations, the burden of collecting such a dataset is
notably reduced.

7.2 Relation to prior work

There have been several recent works on voice cloning. Following Arik et al. (2018),
the two main approaches can be classified as speaker adaptation and speaker encoding.
Speaker adaptation, which is used in this work, optimizes a speaker embedding for a
new speaker within a multi-speaker model using gradient descent. Speaker encoding
on the other hand uses a secondary network to predict a new speaker embedding
from acoustic features. The latter approach has the advantage that voice cloning only
requires a single forward pass rather than a costly iterative optimization, and that
no transcription of the acoustic adaptation target material is needed. However, both
approaches have been shown to benefit significantly from a fine-tuning of all model
weights (Arik et al., 2018; Chen et al., 2019), effectively negating these benefits from
the latter method. Furthermore, while the speaker encoding approach can be highly
data efficient, the secondary network needs to be trained with a lot of speakers to
be effective (e.g., Jia et al. (2018) mention that training the encoder on 18 k speakers
improves over 1.2 k speakers). The number of speakers in singing datasets tends to be
notably smaller.

Arik et al. (2018) compare speaker adaptation and encoding approaches for the Deep
Voice 3 model, which is a convolutional sequence-to-sequence (Seq2Seq) model that
predicts mel-spectrogram features combined with a Griffin-Lim vocoder (Griffin and
Lim, 1984). Jia et al. (2018) propose an encoding approach in the context of the Tacotron
2 synthesizer, using speaker vectors obtained using a network trained for speaker verifi-
cation using a discriminative loss rather than a generative loss. In this case, thewaveform
is generated from predicted mel-spectrogram features using a multi-speaker WaveNet
vocoder. Taigman et al. (2018) and Nachmani et al. (2018) discuss speaker adaptation
and encoding respectively, in the context of the novel shifting buffer VoiceLoop model,
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with the latter using a jointly optimized generator and encoder network using a combi-
nation of generative, contrastive and cycle constancy losses. Here, like in our work, the
model predicts vocoder features. Similarly, Chen et al. (2019) use speaker adaptation
and speaker encoding using d-vectors (as in (Jia et al., 2018)), but adapt these techniques
to the WaveNet model, notably using waveform directly rather than mel-spectrogram
or vocoder features. There are several small architectural differences between these
works, such as how conditioning on speaker embedding is implemented.

One notably different approach is to use unsupervised pre-training. For instance,
Chung et al. (2018) propose this method for a model based on the first Tacotron. Large,
independent text and audio corpora are used to pre-train word embeddings and an
unconditioned autoregressive (next-step frame prediction). Finally, the entire Seq2Seq
network is fine-tuned on the target data consisting of <audio, text> pairs. Data efficiency
is improved with this approach, e.g., good results are obtained using 1 shard (24min)
of data, but this is still notably more than some of the voice cloning approaches above.
However, at the same time, the adaptation target data does not need to be pre-aligned,
and no annotations are required for the pre-training audio data.

The approach proposed in this chapter has similarities to many of the above works.
However, we apply these techniques to the model proposed in Chapter 4, and evaluate
the model in a context relevant to singing rather than speech. Related prior works in
singing synthesis have been limited to speaker adaptive training of HMMs (Shirota
et al., 2014) to increase data efficiency.

After we published our work on voice cloning, several other proposed singing synthe-
sizers have also included multi-speaker models, fine-tuning and similar techniques (e.g.
Lee et al., 2020; Wu and Luan, 2020).

7.3 Experiments

7.3.1 Datasets

The datasets used in this work, consisting of audio with aligned phonetic transcription
and speaker identities, are listed in Table 7.1. The pseudo singing datasets generally
are optimized for phoneme or diphone coverage. The natural singing datasets mostly
consist of songs with a somewhat similar style from the repertoire of the singer. The
phonetic transcription and segmentation was done automatically for the pseudo singing
datasets, but somemanual correction was required in the case of natural singing. Except
for NUS-48E (Duan et al., 2013), all datasets are proprietary.
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Table 7.1: The different datasets used in the experiments and their properties.

Tag Speakers Kind Language Gender Style Size1 Pitches Avg. dur.2

JP-MULTI-P 35 Pseudo Japanese 8M/27F Mixed 80 3 0:14:48
EN-MULTI-P 13 Pseudo English, mixed native 8M/5F Mixed 524 12×1,1×2 0:32:28
NUS-48E (Duan et al., 2013) 12 Natural English, non-native 6M/6F Pop 4 - 0:10:35
ES-MULTI-A,B-P 2×83 Pseudo Spanish, Catalan 2×4M/4F Choir 219 3 0:51:47

JP-TAR-K-P 1 Pseudo Japanese Female Pop 9 3 0:01:49
EN-TAR-PS-N 1 Natural English Male Pop 2 - 0:03:31
EN-TAR-AM-N 1 Natural English Female Pop 6 (excerpts) - 0:02:14
EN-TAR-AM-P 1 Pseudo English Female Pop 10 3 0:02:23
ES-TAR-*-P 2×4×13 Pseudo Spanish, Catalan 2×2M/2F Choir 10 3 0:02:22

JP-FULL-K-P 1 Pseudo Japanese Female Pop 80 3 0:14:35
EN-FULL-PS-N 1 Natural English Male Pop 39 - 1:29:01

1Size in number of utterances per speaker per pitch for pseudo singing datasets, or number of songs per speaker for natural singing datasets.
2Average duration per speaker (combining all pitches) for multi-speaker datasets, or total duration of single-speaker datasets.
3In the experiments, from total of 12 speakers, we create two 8 speaker multi-speaker models with a different set of 4 held-out speakers. Each of these
models is then adapted to its 4 held-out speakers, for a total of 8 targets.
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7.3.2 Model hyperparameters

The hyperparameters used for the experiments generally follow “Model hyperparame-
ters” of §4.3.4, but were simplified slightly and the number of channels was increased to
increase capacity for the multi-speaker model. In particular, we use an initial 1×1 con-
volution, followed by 5 causal 2×1 convolutional layers with gated tanh non-linearity,
dilation factors {1, 2, 4, 8, 16}, and non-parameterized residual connections. These
layers use 384 or 256 channels, and 256 or 128 skip channels for multi-speaker and single-
speakermodels respectively. The output stack is comprised of a fully connected rectified
linear unit (ReLU) layer, a fully connected output layer and a simple (mean) 𝐿1 loss,
rather than a mixture density negative log-likelihood loss. We used a 16-dimensional
speaker embedding for all experiments. The multi-speaker models are trained for
around 800 k iterations, with an initial learning rate of 3 × 10−4. Adaptation fine-tuning
is done for 4 k additional iterations, applying Polyak averaging (Polyak and Juditsky,
1992). The baseline single-speaker models are trained for 30–90 k iterations with a
learning rate of 5 × 10−4.

7.3.3 Listening tests

We conducted a series of listening tests to evaluate the proposed system perceptually, in
lieu of reliable quantitativemetrics. The listening tests consisted of simple AB preference
tests, where participants were asked to select the preferred stimulus (“A”, “B” or “no
preference”), considering a reference recording of the target singer. In all tests, this
reference recording is also used to control pitch and phonetic timings. In total there
were 19 participants, each rating 20 pairs of acapella stimuli, divided over 5 tests. The
different tests and their results are described below.

7.4 Results

The first test tries to measure the effectiveness of voice cloning, in the case of a Japanese
pseudo singingmulti-speaker model, JP-MULTI-P (see Table 7.1), and a pseudo singing
adaptation target, JP-TAR-K-P. The test compares the adaptedmodel to amodel trained
on the full dataset, JP-FULL-K-P, and the adapted model to a model trained from
random initialization on the same small adaptation dataset. In Figure 7.1, we can see
that the adapted model actually outperforms the model trained on the full dataset.
One explanation could be that the relatively large amount of data used to train the
underlying multi-speaker model improves overall sound quality, while both models
capture the target speaker identity similarly well. As expected, the adapted model is
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45% 35% 20%

98% 2%

adapt full init no pref.

Figure 7.1: Results of the test comparing adapted voice (“adapt”, 1min 49) to a voice trained
on the full dataset (“full”, 14min 48) and a voice trained on adaptation data from random
initialization (“init”, 0% preference) respectively. In this case with Japanese pseudo singing
multi-speaker and target data.

36% 35% 29%

82% 18%

adapt full init no pref.

Figure 7.2: Results of the test comparing adapted voice (“adapt”, 3min 31) to a voice trained on
the full dataset (“full”, 1 h 29) and a voice trained on adaptation data from random initialization
(“init”, 0% preference) respectively. In this case with English pseudo singing multi-speaker data
and natural singing target data.

consistently preferred over the model trained on a small amount of data from random
initialization.

The second test is similar to the first test, but for the case of an English pseudo
singing multi-speaker model, EN-MULTI-P, a natural singing adaptation target,
EN-TAR-PS-N, and a full dataset of natural singing, EN-FULL-PS-N. In Figure 7.2, we
see that the adapted model and the full dataset model perform similarly. This shows
that in this case cloning is as effective as training on a larger dataset. Again, the adapted
model is consistently preferred over the model trained on a small amount of data from
random initialization.

The third test considers the use case of choir singing. In particular, using cloning to
create larger choirs, e.g., 8 full voices and 24 cloned voices adapted from the former

19% 56% 25%

adapt 2/3rds full no pref.

Figure 7.3: Results of the test comparing a synthetic choir consisting of 8 adapted voices and 4
full dataset voices (“adapt 2/3rds”, 8 × 2min 22, 4 × 51min 47) to a choir trained on full datasets
(“full”). In this case with Spanish/Catalan pseudo singing multi-speaker and target data.
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60% 16% 24%

natural target pseudo target no pref.

Figure 7.4: Results of a test comparing adaption of a pseudo singing multi-speaker model to
natural singing (2min 14) and pseudo singing (2min 23) respectively. In this case with English
data.

58% 19% 23%

pseudo multi natural multi no pref.

Figure 7.5: Results of a test comparing adaption of a multi-speaker model from pseudo singing
(13 × 32min 28) or from natural singing (12 × 10min 35) to natural singing. In this case with
English data.

set of full voices. As the available dataset consisted of just 12 voices, 3 per soprano, alto,
tenor and bass part, we performed a scaled-down experiment, generating a choir of
4 full voices and 2×4 cloned voices, adapted from two different 8 voice multi-speaker
models. First, a multi-speaker model is trained on 8 voices, ES-MULTI-A,B-P, holding
out one voice per part. Then, adapted models are created for each of the held-out voices,
ES-TAR-*-P, and the whole process is repeated for a different set of held-out voices.
Finally, we generate the choir synthesis by mixing 4 full voices and 8 cloned voices.
We compare this result with a result of a single multi-speaker model trained on the
full dataset of all 12 voices. In Figure 7.3, we can see that both models perform on par,
showing that in this case using cloned voices does not significantly degrade the result.

The fourth test compares using a natural singing adaptation target, EN-TAR-AM-N, to
using a pseudo singing adaptation target, EN-TAR-AM-P, in the case of English. Both
use a multi-speaker model trained on pseudo singing, EN-MULTI-P. In Figure 7.4, we
see that a natural singing target is preferred. One explanation for this is that pseudo
singing tends to be a little overpronounced compared to natural singing, thus producing
a timbre a little farther from the reference stimulus.

The fifth test compares using a multi-speaker model trained on pseudo singing,
EN-MULTI-P, to a multi-speaker model trained on natural singing, NUS-48E, in the
case of English. Both are then adapted to natural singing. In Figure 7.5, we see that a
multi-speaker model trained on pseudo singing is preferred. One possible explanation
for this could be that the more coherent pseudo singing provides a more homogeneous
base voice. However, as the two multi-speaker datasets have different sizes and consist
of different speakers, it is difficult to draw any definitive conclusions from this single
result.
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A number of sound examples are available online2.

7.5 Conclusions

We feel that voice cloning provides a simple yet effective and widely applicable tool
for improving data efficiency in deep learning-based singing synthesis. From small
amounts of data, the target speaker identity can be convincingly reproduced, while
maintaining a sound quality comparable to non-cloned voices. We have shown that
these techniques taken from TTS research are also applicable to singing synthesis,
with few modifications. One convenient approach is to combine a multi-speaker model
trained on pseudo singing, with a natural singing adaptation target. This provides a very
coherent multi-speaker base voice, that is relatively easy to annotate (i.e., automatically),
while at the same time resulting in a final target voice to sound natural and expressive.

While the proposed system, focused on cloning timbre only, this approach still has
many practical applications. Ultimately, want to clone both timbrical and expressive
aspects of the target voice. In this case, going away from a traditional TTS pipeline and
towards an end-to-end system would be a promising direction.

2https://mtg.github.io/singing-synthesis-demos/voice-cloning/

https://mtg.github.io/singing-synthesis-demos/voice-cloning/




Creating voices using annotated vowel onsets and
self-attention 8

IN RECENT YEARS, modern text-to-speech (TTS) systems have largely moved to
sequence-to-sequence (Seq2Seq) models, where the alignment between the pho-
netic or orthographic input sequence and the acoustic output sequence is learned

during training and inferred during synthesis (e.g., Wang et al., 2017; Shen et al., 2018;
Ping et al., 2018). One advantage of this approach is that it leads to a more end-to-end
system. This means that we can avoid the need for pre-aligned training data, avoid
the need for a separate phonetic duration model, and possibly allow integration of
grapheme-to-phoneme conversion in the system. For singing synthesis, not requiring
pre-aligned training data is particularly attractive, as many existing tools to do this
automatically (e.g., forced alignment with a hidden Markov model (HMM) model)
do not yield sufficiently accurate results on expressive singing, often requiring manual
correction. This manual correction forms the bottleneck in process of creating new
voices, in terms of effort (time and expertise) required compared to the other steps.

In addition to reducing the effort needed to create new voices, a Seq2Seq approach
may also improve the resulting sound quality of the synthesizer. In particular, when
correcting phonetic segmentation there often is some degree of ambiguity, and dis-
agreement between different annotators. As such, there often is some inconsistencies
in the annotations of a dataset of several hours. We argue that a learned alignment
may ultimately be better as the model can decide what alignment is most favorable for
obtaining the desired target output, likely showing greater coherence.

A common approach for Seq2Seq models in TTS is to use a content-based attention
mechanism (e.g., Gehring et al., 2017), sometimes additionally using location-based
information (e.g., Graves, 2013). As these mechanisms require access to acoustic in-
formation at inference, they are normally used in combination with an autoregressive
decoder. Recently, some systems have been proposed that use a feed-forward decoder
and an alternative attention mechanism that does not rely on access to acoustic infor-
mation (Peng et al., 2019; Ren et al., 2019). These notably provide faster, parallelizable
inference, and are reported to produce more robust alignments with fewer mispro-
nounced, repeated or skipped phonemes.

As discussed in Chapter 5, this non-autoregressive, feed-forward approach is also in-
teresting in the case of singing synthesis, as it avoids the exposure bias problem (see
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“Regularization tomitigate exposure bias” in §4.1.3), caused by the discrepancy between
teacher forced training and fully autoregressive inference. This problem can be espe-
cially noticeable in long sustained vowels where prediction errors tend to accumulate
over time. Additionally, in our experience for singing synthesis, learning clean align-
ments reliably with autoregressive, content-based attention mechanisms can be quite
challenging. As a result, reaching similar-quality results compared to non-Seq2Seq
systems can also be difficult.

Note that the issue of inconsistencies in manually corrected phonetic segmentations
used in non-Seq2Seq models mentioned above is exacerbated when combined with a
non-autoregressive model. As such models learn a mapping from time-aligned control
features to acoustic features, without any additional inputs, it is unlikely that they are
able to compensate for errors in this time-alignment. Autoregressive models on the
other hand do take additional inputs in the form of past timesteps, which may allow
for a greater degree of compensation.

This chapter is derived from work originally published as Blaauw and Bonada (2020).
This original publication also contained the topics discussed in Chapter 5. Whereas this
chapter deals with reducing the effort required for creating new voices by only using
note onset annotations, the almost identical model from Chapter 5 uses full phonetic
onset annotations and focuses on using self-attention to model time dependencies in a
non-autoregressive model.

8.1 Proposed system

In singing synthesis, the alignment between the input phonetic sequence and the output
acoustic sequence is strongly constrained by the given musical score. This is a notable
difference from TTS, which is generally only weakly constrained by the (average)
speech rate. Exploiting this fact, we propose to first generate an approximate initial
alignment using the given note onset timings and a phoneme duration model. Once
the input sequence is roughly aligned to the target output timesteps, we assume that the
network is able to gradually refine the alignment through a series of transformations,
notably using self-attention, until reaching something close to the target. Note that this
approach is quite different from the approach using content-based attention, as here
the initial alignment does not use any acoustic features at all.

An important point here is that we assume that the accuracy of the phoneme duration
model is not critical to the end results. We assume that the decoder is powerful enough
to be able to recover from errors in the initial alignment, to a certain degree. At the
same time, the initial alignment can never hugely deviate from the true alignment,
as it is heavily constrained by the note timings. To see if this assumption is correct,
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Figure 8.1:Adiagramof the completemodel architecture.On the left is the full system, composed
of encoder, aligner and decoder, which themselves are composed of different higher-level blocks.
On the right, these higher-level blocks (sub-layer, gated linear unit (GLU) and attention) are
shown in detail.

we purposely use a very simplistic, approximate phoneme duration model, based on
average phoneme durations computed on a different dataset whose segmentation was
corrected by hand. While language dependent, in this case the approximate phoneme
duration model is not singer dependent and the values could simply be copied from a
table, without the need for any data with phonetic timings.

8.1.1 Model architecture

The input to our system is a musical score, consisting of a sequence of notes. Each
note consists of an onset, duration, pitch, and a sequence of phonemes, typically
corresponding to a syllable. In this work, we define the note onset as the vowel onset,
and note end as the onset of the following vowel or silence. Additionally, we provide an
external F0 to our system, in order to capture the effect of pitch on timbre. The output
of our system is a sequence of harmonic and aperiodic vocoder features, which in this
case are simply concatenated.

The main components of our proposed system, as depicted in Figure 8.1, are the en-
coder, the aligner and the decoder. The encoder takes the input phonetic sequence
and computes a sequence of hidden states corresponding to each phoneme and their
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local context. The aligner provides a hard alignment by repeating these states according
to the predicted approximate phoneme durations, obtaining a sequence of the same
length as the output acoustic sequence. Next, some additional conditioning signals
derived from F0 and position are added. The decoder, based on the Transformer model
(Vaswani et al., 2017), finally transforms the sequence of encoder hidden states to the
target output sequence, through a series of self-attention and convolutional layers.

Given this encoder-decoder structure, it becomes clear that one of the tasks of the
decoder is to learn the differences between the initial approximate phonetic timing
and the true phonetic timing. That is, the decoder has to convert somewhat mis-
aligned control features (or some transformation thereof ) into the output acoustic
features, taking differences in timing into account. This ismainly achieved by operations
provided by the self-attentionmechanismof the feed-forwardTransformer (FFT) layers.
The joint action of the approximate duration model and decoder self-attention, thus
replaces the need for a traditional (accurate) duration model that may be used in a
typical TTS or singing synthesis pipeline.

8.1.2 Approximate phoneme duration model

As noted, we purposely choose to use a very simplistic approximate phoneme dura-
tion model in this work. It consists of a simple lookup table, populated with average
phoneme durations computed from a dataset of a different singer with manually cor-
rected phonetic segmentation. A simple heuristic is then used to ensure that the sum of
predicted phoneme durations matches the target note duration.

As we assume the note onset to correspond to the vowel onset, we first shift all onset
consonants of each note to the preceding note (or silence). Then, we look up the
sequence of average phoneme durations for each note, [𝑑1, 𝑑2, … , 𝑑𝑁 ], where 𝑁 is the
corresponding number of phonemes. Thus, 𝑑1 will correspond to the average duration
of the vowel (unused here), and 𝑑2, … , 𝑑𝑁 will correspond to the coda consonants of the
current note and the onset consonants of the following note. In order tomatch the target
note duration, 𝑑𝑛, we use the predicted consonant durations and fill the remaining
duration with the vowel. However, we also ensure at least half of the note’s duration is
occupied by the vowel by fixing 𝑟𝑣 = 0.5. The scaling factor for all consonants in the
note, 𝑟𝑐, then becomes,

𝑟𝑐 =
⎧
{
⎨
{
⎩

1 for 𝑁 = 1,

min(1,
𝑑𝑛 − ⌊𝑟𝑣𝑑𝑛⌉

∑𝑁
𝑖=2 𝑑𝑖

) otherwise.
(8.1)
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Figure 8.2: An example of the phoneme duration fitting heuristic. Here, the phonetic sequence
[aɪmst] is fitted into a short (top) and long (bottom) note. For the short note, the vowel
occupies half the note duration and the consonants are shrunk to fit. For the long note, the
vowel occupies more than half the note duration and the consonants are kept at their average
durations.

And, the final fitted phoneme durations, [𝑑1, 𝑑2, … , 𝑑𝑁 ], then becomes,

𝑑𝑖 =
⎧{
⎨{⎩

𝑑𝑛 −
𝑁

∑
𝑗=2

max (1, ⌊𝑟𝑐𝑑𝑗⌉) for 𝑖 = 1,

max (1, ⌊𝑟𝑐𝑑𝑖⌉) for 𝑖 = 2, 3, … , 𝑁.
(8.2)

Note that all durations here are in integer number of frames, and that ⌊⋅⌉ rounds to
the nearest integer. There are corrections for rounding errors and avoiding zero frame
durations. In the case of notes where the nucleus is a syllabic consonant, the syllabic
consonant is handled as a vowel. An example of this phoneme duration fitting heuristic
is illustrated in Figure 8.2.

One obvious shortcoming of this simplistic model is that it is based on globally aver-
aged phoneme durations. This do not consider context such as note duration or the
surrounding phonetic sequence. Furthermore, the distribution of phonetic durations
can easily have multiple modes. That said, a more powerful, data-driven duration
model, such as the one proposed in §4.3.3, needs a dataset with annotated phoneme
timings, defeating much of the purpose of our proposed approach to reducing the
dataset annotation effort.

8.2 Relation to prior work

Our work is most closely related to the recently proposed FastSpeech model for TTS
(Ren et al., 2019). This model is also based on the feed-forward Transformer (FFT) and
an initial alignment obtained from a durationmodel. However, in this case, the duration
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model is trained with the help of a teacher model based on an autoregressive Trans-
former (Li et al., 2019), which is also used for generating the target mel-spectrogram
features. We wanted to avoid the need to train an autoregressive teacher model, as we
found this generally challenging for the case of singing voice. Additionally, we apply
some modifications to the architecture, such as the use of gated linear unit (GLU)
convolutional blocks, alternative positional encoding and a Gaussian bias for the self-
attention layers.

The ParaNet model (Peng et al., 2019) proposes a different approach to feed-forward
TTS. Here, standard content-based encoder-decoder attention is used, but the model
is trained with the help of attention distillation with an autoregressive teacher model
based on (Ping et al., 2018). Besides the reasons mentioned above, we found that the
hard alignment used in our approach makes it easier to obtain a quality similar to
non-Seq2Seq models, compared to the soft alignment of encoder-decoder attention.

At the time of publication of our model, in singing synthesis, the only Seq2Seq sys-
tem we are aware of was (Lee et al., 2019). This model is based on the DCTTS model
(Tachibana et al., 2018), using content-based encoder-decoder attention, with autore-
gressive decoder. Similar to our approach, there is an initial alignment of the input states
to the output timesteps. However, relying on the fact that the Korean syllable structure
has at most one onset and one coda consonant, the first frame and the last frame of
the note are assigned to each consonant respectively, and the remaining frames are
assigned to the vowel. After which, learning the attention alignment can be facilitated
by using diagonally guided attention (Tachibana et al., 2018). It is not yet clear if this
approach can be extended to languages with more complex syllable structures, such as
English, which we focus on in our work.

After we published our model, several other singing synthesizers have been proposed.
While some of these have been Seq2Seq models, no radically different approaches have
been introduced so far. Some use a more traditional Seq2Seq approach derived from
TTS (e.g., Angelini et al., 2020). Others, like our model, use an aligner module that
repeats encoder timesteps to match decoder timesteps. In this case, phoneme durations
are either given by a ground truth (e.g., Wu and Luan, 2020; Shi et al., 2020), or are
obtained from a model that predicts phoneme durations (e.g., Lu et al., 2020; Chen
et al., 2020).

8.3 Experiments

The experiments performed to evaluate our proposed Seq2Seq model from this chapter
where combined with those to evaluate the non-autoregressive timbre model using
self-attention from Chapter 5. Or rather, the experiments Chapter 5 are a subset of
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the experiments described here, which contain two additional systems that include
the approximate phoneme duration module rather than using ground truth phoneme
durations. As such, the dataset used is the same, the design of the listening test is
the same, and the hyperparameters used are the same. Details of these aspects of the
experiments can be found in §5.3.

8.3.1 Compared systems

In our experiments, we aim to compare our proposed system that includes the approxi-
mate phoneme duration model to several other systems. Firstly, we want to see how
well it performs against the samemodel that instead of the duration model, uses ground
truth phoneme durations. This would correspond to a kind of upper bound of how
well the system would perform if the duration model was perfect, and at the same time
serves as a way to evaluate the importance of the accuracy of the duration model; i.e.,
if the difference between ground truth phoneme durations and approximate phoneme
durations from a very simple model is small, this means that the importance of the
accuracy of the duration model is low, probably because the self-attention layers can
effectively compensate for any errors. Secondly, we compare to identical models with
duration model and with ground truth durations, but without self-attention layers. This
ablation study will hopefully evaluate the effectiveness of self-attention, in the case of
accurate phoneme timings and in the case of inaccurate phoneme timings. Thirdly, we
compare to an autoregressive baseline, which uses ground truth phonetic durations,
just to get a sense of performance compared to state of the art alternative systems.

FFT-NPSS This is our proposed model, using phoneme timings predicted by the ap-
proximate phoneme duration model and given note onsets. All hyperparameters
are identical to those described in Table 5.1 of §5.3.3 for the network architecture,
and §8.1.2 for the heuristic approximate duration model.

FFT-NPSS-D This is the version of our proposed model which uses ground truth
phoneme timings. This could be seen as the upper bound quality achievable with
an ideal phoneme duration model. This system is identical to that described in
§5.3.

FFT-NPSS-NoSA This is a version of our proposed model, with an approximate
phoneme duration model, but without self-attention layers. This system is in-
cluded to perform an ablation study about the importance of self-attention in
correcting for mis-aligned control features.

FFT-NPSS-D-NoSA This is a version of our proposed model, with ground truth
phoneme durations, but without self-attention layers. This system is included to
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Table 8.1: Mean opinion score
(MOS) for evaluating the proposed
non-autoregressive timbre model us-
ing only note onsets, rather than on-
sets for all phonemes. Ratings on a
1–5 scale with their respective 95%
confidence intervals.

System Mean opinion score

Hidden reference 4.56± 0.07
AR-NPSS 2.63± 0.10
FFT-NPSS (proposed) 2.85± 0.11
FFT-NPSS-NoSA (w/o self-attention) 2.50± 0.10
FFT-NPSS-D (ground truth dur.) 2.92± 0.10
FFT-NPSS-D-NoSA (ground truth dur.,

w/o self-attention)
2.53± 0.11

have a reference of how well the system performs with ideal phoneme timings,
but no self-attention layers. This system is identical to that described in §5.3.

AR-NPSS An autoregressive baseline system, representative of state of the art singing
synthesis at the time. This system is identical to that described in §5.3.

8.3.2 Model hyperparameters

The model hyperparameters of the network architectures for FFT-NPSS and
FFT-NPSS-NoSA are identical to those of FFT-NPSS-D and FFT-NPSS-D-NoSA,
described in §5.3. These are listed in Table 5.1 of §5.3.3. A few additional hyperparame-
ters related to the approximate phoneme duration model are described in §8.1.2. The
system AR-NPSS is unchanged with respect to that described in Chapter 5, where its
hyperparameters are listed in Table 5.2.

8.4 Results

The results of our listening test are shown in Table 8.1. As expected, the model using
ground truth phoneme durations, FFT-NPSS-D, outperforms our proposed method
with a simplistic approximate phoneme duration model, FFT-NPSS. However, the
difference is arguably small, indicating that the accuracy of the phoneme duration
model is not very important. Viewed in a different way, by improving the phonetic
duration model, our proposed system, FFT-NPSS, may reach scores very close to that
of the reference using ground truth durations, FFT-NPSS-D.

When comparing the proposed system, FFT-NPSS, to its equivalent without self-
attention, FFT-NPSS-NoSA, and likewise the system using ground truth durations,
FFT-NPSS-D, to its equivalent without self-attention, FFT-NPSS-D-NoSA, we can see
that removing the self-attention layers from the model leads to a significant drop in
performance in both cases. However, the rating is quite similar for models without
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self-attention, regardless of whether ground truth phoneme durations or the approxi-
mate phoneme duration model is used. This seems to indicate that the performance
gap when removing self-attention is dominated by the lack of timbrical coherence over
time, rather than artifacts introduced by mis-aligned control features. That said, we did
observe that using self-attention does to some degree allow to correct errors in the initial
time-alignment provided by the approximate phoneme duration model. For instance,
the duration of phrase-final consonants tends to be systematically underpredicted by
the average phoneme durations. However, when using self-attention, these phonemes
have a duration much closer to the reference recording.

Our model also outperforms the baseline autoregressive model, AR-NPSS. Here we
should mention the same caveats apply as those mentioned in §5.4. That is, our model
can at least be competitive with autoregressive models, but we can probably not gener-
alize the conclusion that our model is always better than all autoregressive models.

8.5 Conclusions

We presented a singing synthesizer based on the Transformer model, with a practical
Seq2Seq mechanism allowing feed-forward operation. This approach allows training
models from just audio, phonetic transcriptions, and note (or vowel) onsets, rather
than the precise onset of each phoneme, which can be cumbersome to prepare for
singing data. Compared to a baseline autoregressive model, the proposed model allows
for faster inference, avoids issues related to exposure bias, and rates somewhat better in
listening tests. The use of self-attention resulted to be a key factor in obtaining good-
quality results, especially in terms of producing coherent timbre. As our model relies
on an initial alignment provided by a phoneme duration model, we compared using
a very simplistic duration model to using ground truth durations. In listening tests,
using ground truth durations was rated highest, but the difference was relatively small,
indicating that the accuracy of the phoneme duration model is not crucial for obtaining
good results.





Creating voices without any annotations using
semi-supervised timbre modeling 9

IN THE PREVIOUS CHAPTERS we have presented some techniques to reduce the
effort required to create new voices to use in singing synthesis. In Chapter 7,
voice cloning techniques are used to significantly reduce the amounts of training

data needed (e.g., to 3min), while producing results of comparable quality to models
trained on full datasets (e.g., 1 h). However, annotating all phonemes and their onsets in
even such a small set of recordings often still tends to be a non-trivial amount of work1.
Additionally, as singing synthesis systems improve, it is likely that the data requirements
for cloning will grow. For instance, when cloning not just timbre, but also pitch and
timing, or cloning a wider range of timbres and singing styles, etc.

Alternatively, in Chapter 8 we propose a system that can be trained from audio, phonetic
transcription and vowel onsets only. This implies a notable reduction in the voice
creation effort, compared to annotating the onsets of all phonemes. However, the
annotation effort is still non-zero, and generally has to be done by hand for good
accuracy. Additionally, while the underlying idea of using a sequence-to-sequence
(Seq2Seq) model is fairly universal, the implementation of this idea is fairly specific to
the model and architecture used. For instance, the non-autoregressive approach from
Chapter 8 cannot be directly applied to the autoregressive model from Chapter 4.

What the above approaches have in common is that they are still supervised approaches,
that is, we require audio and some form of annotations to train the model. Ideally, we
would have a system that is unsupervised, where we can train voices from audio only.
This would greatly reduce the effort required to create new voices, allowing us to easily
model a wide array of vocal timbres, which can be useful for many creative applications,
and in cases such as choir synthesis.While data efficiency is still an important aspect, i.e.,
for certain applications we may not have a lot of data, a big advantage of unsupervised
training is that also opens a pathway tomore easily creating bigger datasets, as recording
data is easy compared to annotating them.

While less straightforward than supervised training, unsupervised modeling of the
voice is definitely within the realm of possibilities (e.g., van den Oord et al., 2017).

1Typically, the target data used for voice cloning will exclude any silences, avoid repeated lyrics, and use
moderately high tempos. As such, the amount of phonemes that need to be annotated still tends to
be considerable. When using expressive natural singing voice cloning target data, these annotations
generally need to be done or corrected by hand in order to have sufficient accuracy.
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However, in our case we not only want to train our model on audio data without any
annotations such as timed phonemes, we also want to be able to control the synthesizer
using precisely those kinds of annotations at inference. Satisfying these two, seemingly
orthogonal goals simultaneously in a completely unsupervisedmanner seems very hard,
if not downright impossible. Therefore, we choose to use a semi-supervised approach,
which combines both supervised training on annotated data, required for allowing
controllable inference, and also unsupervised training on data without annotations, to
learn new timbres with very low effort. Before going into details of the method, the key
point is that the supervised training is independent of the unsupervised training, and
can be made speaker-independent when using training data of a wide range of speakers.
As a result, while the system as a whole is semi-supervised, once the supervised training
is completed, the system is able to learn new voices in a fully unsupervised way.

The content of this chapter was originally published as Bonada and Blaauw (2021).

9.1 Proposed system

Our proposed model follows an encoder-decoder structure, similar to that used in
e.g., §5.1.4 and many others. In a conventional encoder-decoder model, the encoder
takes linguistic input and produces some hidden features (or embeddings), which
are then taken by the decoder to produce the acoustic output. The key difference of
our model is that we have a secondary encoder that takes acoustic input. Thus, the
model now has two pathways; linguistic-to-acoustic (similar to conventional text-to-
speech (TTS)) and acoustic-to-acoustic (similar to an autoencoder), with a single,
shared decoder. The idea behind this approach is that we can now use supervised
training (i.e., on <acoustic, linguistic> pairs) to ensure that both encoders produce
similar hidden features for matching inputs. At the same time, these hidden features
should still be useful for generating acoustic features by the decoder, while at the same
time being speaker independent. In other words, we expect the acoustic encoder to
produce hidden features similar to those produced by the linguistic encoder (which are
inherently speaker independent). Once the encoders are trained in a supervised and
speaker independent manner, e.g., using an annotated multi-speaker dataset, we can
train a new decoder for an unseen target speaker in a fully unsupervised way (using
audio data only) using the pre-trained acoustic encoder. Similarly, to control this newly
trained decoder for the target speaker from linguistic inputs, we can use the pre-trained
linguistic encoder at inference.

The three main stages of operation of our model are summarized in Figure 9.1. In a first
step (Figure 9.1a), the system is trained in a supervised manner, using an annotated
multi-speaker dataset, i.e., consisting of <acoustic, linguistic> pairs. Both encoders are
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trained to produce similar embeddings, which should still produce good acoustic output
by the decoder (given a speaker embedding). Once this initial model is converged, the
decoder is discarded and the weights of the encoders are frozen (i.e., no longer updated
in subsequent steps). In a second step (Figure 9.1b), a new decoder for the target speaker
is trained in a fully unsupervised way, using the pre-trained acoustic encoder. That
is, the decoder is trained to reconstruct audio examples of the target speaker, from
the embeddings produced by the pre-trained acoustic encoder. Finally, at inference
(Figure 9.1c), the pre-trained linguistic encoder is combined with the newly trained
decoder for the target speaker. This allows controlling the synthesis using linguistic
features, similar to conventional TTS or singing synthesis.

Both encoders and the decoder are based on the same building block; a WaveNet
architecture (van den Oord et al., 2016a) consisting of a set of dilated 1-d convolutional
layers featuring gated units, residual shortcut connections and skips, and with the skip
sum feeding an output stack of two convolutional layers. Thus, the decoder alone is
very similar to our initial autoregressive model proposed in Chapter 4.
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Figure 9.1: A diagram of the model architecture in three different phases: (a) Training the encoder-decoder from annotated audio (supervised).
(b) Training the decoder from audio (unsupervised). (c) Inference from linguistic features. Gray-colored modules indicate their weights
are kept fixed. The shape of the triangles in the WaveNet blocks represents the size of the receptive field and whether it is causal. A dashed
autoregressive connection in the 𝐷2(⋅, ⋅) WaveNet block indicates teacher forced training with additive noise to avoid overfitting, while a solid
connection indicates true autoregressive inference.
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9.1.1 Encoder

Our system combines an acoustic and a linguistic encoder that are trained to produce
similar embeddings when computed from an annotated singing voice. Both encoders
are non-causal and share the same structure and hyperparameters. The acoustic encoder,
𝐸𝐴(⋅), takes as input a mel-spectrogram, while the linguistic encoder, 𝐸𝐿(⋅), takes
as input a timed phonetic sequence, as a frame-wise sequence of one-hot phoneme
encodings. The encoders have a rather short receptive field of few hundredmilliseconds.
The reason is that our aim is not to capture large-scale variations, but to focus on a
rather short scale, and get embeddings closer to what might be a phonetic transcription.
Modeling longer phonetic sequences or clusters is a task left for the decoder.

Bottleneck and stochastic switch

In order to favor the encoders producing similar embeddings from matching acoustic
and linguistic data, inspired by (Wan et al., 2017), we randomly switch between acoustic
and linguistic encoders during training. Additionally, we add noise to the encoder
output (after the non-linearity) as a bottleneck, with the idea that the encoder should
not encode mel-spectrogram details, also to encourage more stable embeddings along
phonemes. A similar bottleneck is used in (Salakhutdinov andHinton, 2009; Kaiser and
Bengio, 2018), where additive noise is added to the embeddings, however in this case
before the non-linearity for saturating it and producing more binary-like embeddings,
which is not our goal.

9.1.2 Decoder

The decoder is divided into a long-scope and a short-scope network. The first network,
𝐷1(⋅), focuses on capturing the encoded timbre variations at a large scale of a few
seconds, while the second network, 𝐷2(⋅, ⋅), focuses on producing a detailed timbre
output. Vowels can last for several seconds in singing, thus for capturing the phonetic
context, a large receptive field, like that of 𝐷1(⋅), is required. 𝐷1(⋅) is a non-causal, non-
autoregressive convolutional network and receives the encoder output concatenated
with F0 and speaker embedding. 𝐷2(⋅, ⋅) is a causal, autoregressive convolutional
network with a short receptive field (less than 200ms) that produces the final mel-
spectrogram. For the latter network, autoregressive and control inputs are combined as
in §4.1.2. In our case, the input is the previous mel-spectrogram, and the control input
is the output of 𝐷1(⋅) concatenated with F0 and speaker embeddings.
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9.1.3 Training loss

The training loss, 𝐿, is a weighted sum of two components,

𝐿 = 𝜆recon𝐿recon + 𝜆enc𝐿enc. (9.1)

Here, 𝐿enc is the (mean squared) 𝐿2 distance between acoustic and linguistic embed-
dings, produced by acoustic and linguistic encoders, 𝐸𝐴(⋅) and 𝐸𝐿(⋅), from aligned
acoustic and linguistic input features, 𝐱 and 𝐲 respectively,

𝐿enc = 1
𝑇 𝑁emb

‖𝐸𝐴(𝐱) − 𝐸𝐿(𝐲)‖2
2, (9.2)

where 𝑇 is the number of timesteps and 𝑁emb is the dimensionality of the embeddings.
We do this in order to constraint the system to produce similar embeddings from either
type of input feature. The reconstruction loss, 𝐿recon, is the (mean squared) 𝐿2 distance
between the output of the decoder, 𝐱̂, and the ground truth acoustic features, 𝐱,

𝐿recon = 1
𝑇 𝑁feat

‖𝐱 − 𝐱̂‖2
2, (9.3)

where 𝑇 is the number of timesteps and 𝑁feat is the dimensionality of the acoustic
features. To compute the decoder output, 𝐱̂, we first compute its input embedding as a
random switch between the acoustic and linguistic embeddings,

𝐞 = 𝑘𝐸𝐴(𝐱) + (1 − 𝑘)𝐸𝐿(𝐲), (9.4)

where 𝑘 ∼ Bern (i.e., randomly switch each sample in the minibatch). Then random
noise, 𝜖1 ∼ 𝒩(0, 𝜎2

1𝐼 ), is added to the selected embedding, we concatenatewith control
features, 𝐜, derived from speaker embedding and F0, and feed the result to the first
(non-causal) decoder network, 𝐷1(⋅). The output of this first decoder network is then
concatenated with 𝐜 and used as a control input on which the second, autoregressive
decoder network,𝐷2(⋅, ⋅), is conditioned.During the training of𝐷2(⋅, ⋅)weuse teacher
forcing, where past timesteps are ground truth acoustic features with added noise,
𝜖2 ∼ 𝒩(0, 𝜎2

2𝐼 ), to reduce overfitting. Thus, the resulting computation becomes,

̃𝐞 = [𝐞 + 𝜖1
𝐜 ] (9.5)

̃𝐜 = [𝐷1( ̃𝐞)
𝐜 ] (9.6)

𝐱̂𝑡 = 𝐷2(𝐱<𝑡 + 𝜖2, ̃𝐜). (9.7)
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The constants, 𝜆recon, 𝜆enc, 𝜎1, and 𝜎2, are defined in §9.3.3.

9.1.4 Data augmentation for improved invariance

When training our system, we randomly transpose the pitch of the acoustic input with-
out informing the acoustic encoder of the actual transposition factor. This transposition
is performed by combining resampling of the input audio signal with time-scaling of the
corresponding mel-spectrogram (repeating or dropping frames). This transformation
modifies the pitch of the signal but also linearly scales the timbre in frequency. Since
both acoustic and linguistic embeddings are constrained to be similar, and the linguis-
tic encoder does not depend on the pitch transposition factor, then transposing the
acoustic input helps to produce a more speaker and pitch independent embedding.

9.2 Relation to prior work

While semi-supervised singing synthesis has not been widely studied, the task of non-
parallel voice conversion is closely related. Most of these approaches try to extract the
linguistic content from a given audio signal, independently of factors such as speaker
identity, pitch, loudness, and so on. The majority of approaches are based on the
autoencoder, with several reoccurring themes that ensure only linguistic content is
encoded. One such theme is to use information-restrictive bottleneck, e.g., by temporal
downsampling (Qian et al., 2019), carefully selected dimensionality (Qian et al., 2019),
variational regularization (Luo et al., 2020), or vector quantization (van den Oord et al.,
2017). This is often combined with a decoder conditioned on non-linguistic factors,
such as speaker embedding (Qian et al., 2019), or F0 (Qian et al., 2020a; Polyak et al.,
2020). Data augmentation can be used to make the encoder more invariant to aspects
we do not wish to encode, e.g., using pitch shifting or time stretching (Qian et al.,
2020a; Qian et al., 2020b). The negative gradient of an auxiliary classifier can be used
to reduce undesirable information in the bottleneck, e.g., a speaker classifier to reduce
information related to speaker identity (Nachmani and Wolf, 2019). Cycle-consistency
is another common theme, which relies on the fact that conversion to another speaker
identity and back should result in a similar output (Kaneko and Kameoka, 2018;
Kaneko et al., 2019a; Kameoka et al., 2018; Kaneko et al., 2019b). This technique is
often combined with adversarial training, which is also applied in a number of other
approaches (Polyak et al., 2020). Backtranslation techniques can be used to generate
parallel training data (Nachmani and Wolf, 2019; Polyak et al., 2020). Finally, using a
phonetic recognizer trained on audio with transcription can aid in extracting content
features, albeit in a more supervised manner (Polyak et al., 2020; Sun et al., 2016).
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In singing synthesis, several works aim to go towards a reduction in the burden of
dataset annotation. As discussed in Chapter 8, Seq2Seqmodels generally avoid the need
for detailed phonetic segmentation, but do require a fairly well aligned musical score
with lyrics (e.g., Lee et al., 2019; Angelini et al., 2020; Gu et al., 2020; Wu and Luan,
2020; Lu et al., 2020; Chen et al., 2020). Similarly, voice cloning techniques, like those
discussed in Chapter 7, require only a small amount of training data with phonetic
segmentation for the target voice (e.g., 3min versus an hour or more). However, this
limited data regime may in some cases ultimately affect sound quality, and still requires
some annotation effort. Finally, some work has been done to generate voices from data
mined from the web (audio and lyrics) in a completely automatic manner by aligning
lyrics to audio (Ren et al., 2020).

9.3 Experiments

9.3.1 Datasets

For the experiments in this chapter, we use two proprietary datasets. For training
the encoders we use a dataset of 7 native English singers (5 h 47), which we label
EN-MULTI-Y7-N, with approximately 10 songs per singer (one used for validation, the
rest for training). The audio files were phonetically segmented with manual corrections.
For training the decoders we use a dataset of 41 pop songs performed by a professional
English male singer, labeled EN-FULL-PS-V2-N. From this dataset 38 songs were used
for training (2 h 7 total), 3 for validation (10min).

9.3.2 Compared systems

We compare our proposed semi-supervised model to a similar supervised model, being
the only difference between both systems is that the supervised model does not have an
acoustic encoder. Thus, it learns to predict acoustic features from the input linguistic
features using an annotated dataset of the target singer. For the semi-supervised case,
we first train the encoder-decoder with EN-MULTI-Y7-N (as in Figure 9.1a), and next
retrain the decoder with EN-FULL-PS-V2-N (as in Figure 9.1b). For the supervised
model, we train the encoder-decoder directly with EN-FULL-PS-V2-N, as in Figure 9.1a
but without the acoustic encoder.

Additionally, we also evaluate the case of using only a small dataset of training data for
the target voice (a 3min subset of EN-FULL-PS-V2-N), labeled EN-TAR-PS-V2-N. We
compare our proposed semi-supervised cloning approach to a supervised approach.
For the semi-supervised case, we first train the encoder-decoder with EN-MULTI-Y7-N,
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and next we fine-tune the model with EN-TAR-PS-V2-N for a few thousand updates
without using dataset annotations (as in Figure 9.1b). For the supervised cloning case,
we first train the supervised encoder-decoder with EN-MULTI-Y7-N, and then fine-
tune the model with annotated EN-TAR-PS-V2-N for a few thousand updates.

9.3.3 Model hyperparameters

Our proposed system uses 100-dimensional mel-spectrogram acoustic features, ex-
tracted with a 45ms window and a 5ms hop time, and computed between 10–15,200Hz.
Linguistic features are computed with 1-hot encodings using 43 phonetic symbols. The
encoder networks 𝐸𝐴(⋅) and 𝐸𝐿(⋅) have 9 non-causal 1-d convolutional layers (3×1),
with dilation factors [1, 2, 4, 1, 2, 4, 1, 2, 4], and 70 residual channels. A leaky rectified
linear unit (ReLU) activation follows the skip sum, and then the output stack has 2 con-
volutional layers with 120 channels, and leaky ReLU and tanh activations respectively.
The first block of the decoder 𝐷1(⋅) contains 10 non-causal 1-d convolutional layers
(3×1), dilation factors [1, 2, 4, 1, 2, 4, 1, 2, 4, 1], and 70 residual channels. The output
stack has the same configuration as for the encoders. Finally, the second block of the
decoder 𝐷2(⋅, ⋅) has 8 causal 1-d convolutional layers (2×1), 200 residual channels,
and dilation factors [1, 2, 4, 8, 16, 1, 2, 4]. The skip sum is followed by a leaky ReLU
activation. The first convolution in the output stack has 200 channels and leaky ReLU
activation, and the second one directly predicts the output mel-spectrogram. All leaky
ReLU activations use 𝛼 = 0.2. Speaker embeddings are computed as one-hot encodings
followed by a 1×1 convolution with 16 channels.

We use the Adam optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 1 × 10−8, and a batch
size of 12. We follow the learning rate schedule from (Vaswani et al., 2017), with a
700-step warm-up, a base learning rate of 5 × 10−4, a decay rate of 0.15 every 10,000
steps. The objective that we optimize is a (mean squared) 𝐿2 loss between output and
target features. When training encoders, we use an additional (mean squared) 𝐿2 loss
between acoustic and linguistic encoded features, with a weighting of 𝜆𝑒𝑛𝑐 = 0.2 and
𝜆𝑟𝑒𝑐𝑜𝑛 = 1. In addition, we add normal noise with 𝜎1 = 0.3 to the embeddings, and
with 𝜎2 = 0.2 to the 𝐷2(⋅, ⋅) input. Each sample in the minibatch produces a valid
output length of 1.5 s (i.e., excluding the receptive field number of outputs computed
using padding).

9.3.4 Listening test

We ran amean opinion score (MOS) listening test with 12 participants, which each rated
a random subset of 12 out of 24 phrases. Per test 6 stimuli were presented; the 4 systems
mentioned previously, and visible and hidden references consisting of a re-synthesis
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Table 9.1:Mean opinion score (MOS) ratings
on a 1–5 scale with their respective 95% confi-
dence intervals.

System Mean opinion score

Hidden reference 4.80± 0.05
Supervised 3.42± 0.12
Semi-supervised 3.37± 0.11
Supervised cloning 2.66± 0.12
Semi-supervised cloning 2.80± 0.11

of the target recording. All systems were presented and rated together to encourage a
comparison between them. THe final waveform was generated with a mel-spectrogram
driven neural vocoder (Tamamori et al., 2017) trained with EN-FULL-PS-V2-N. Sound
examples are available online2.

9.4 Results

The results of our listening tests are shown in Table 9.1. We can see that the semi-
supervised and the supervised systems perform similarly, without a very significance
difference. Both systems outperform the cloning approaches, probably due to the small
amount of target data available for those. Finally, the semi-supervised cloning system
is rated slightly better than the supervised one.

9.5 Conclusions

In this chapter, we have proposed a semi-supervised method for learning a new voice
timbre model from a singing dataset without any annotations. Our system produces a
synthetic acoustic rendition given F0 and a timed phonetic sequence as input. According
to our evaluation results, our proposed system performs similarly when compared to
an equivalent supervised system using manually corrected annotations. This means
that we can effectively reduce the effort to learn a new voice, by removing the dataset
annotation task, and without significantly degrading the synthesis quality. This method
could be very useful in the context of choir singing, allowing to model many singers
without the dataset annotation burden. Also, we showed that the proposed method
performs acceptably in low-resource scenarios, where we only have access to a small
amount of acapella audio material.

At inference, we can produce acoustic features from linguistic or acoustic inputs. In
some informal experiments, we observed that our approach can be effectively used as a

2https://mtg.github.io/singing-synthesis-demos/semisupervised/

https://mtg.github.io/singing-synthesis-demos/semisupervised/
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voice conversion system when controlled by acoustic inputs, performing promisingly
in cross-lingual scenarios.





Conclusions 10
10.1 Summary

One of the aims of our research was to answer whether deep learning approaches for
modeling timbre in singing synthesis could equal or exceedmore traditional approaches.
In particular, using concatenative synthesis and hidden Markov model synthesis as
baselines, which were the prevailing methods when starting this work. We first focus
on a modern deep learning approach based on autoregressive modeling and a powerful
dilated convolutional architecture. Through qualitative and quantitative evaluation,
we show that this approach can outperform the then state of the art in terms of sound
quality, concatenative synthesis, in particular for more “phonetically rich” languages
such as English. Combining a neural timbremodel with a neural vocoder to produce the
final waveform further increases the obtained results. At the same time, this approach
offers all of the flexibility of the competing machine learning approach, hidden Markov
model synthesis. Notably, we can train a model on natural singing rather than the
specialized recordings required for concatenative synthesis.

Closely related to the above aim, we also try to answer whether singing synthesis based
on deep learning can be fast and stable, which are important qualities in many appli-
cations. Notably, autoregressive models, while powerful, tend to have slow inference
due to the inherently sequential process which cannot be parallelized. Additionally,
the recurrent feedback connection of autoregressive models makes them inherently
less stable compared to feed-forward approaches. This is compounded by the fact that
there is a discrepancy between training, where past timesteps come from the ground
truth training data, and inference, where past timesteps are themselves predictions
made by the model. This can result in so-called exposure bias issues where a neural
network overfits to the training condition and cannot generalize well to the inference
condition. Non-autoregressive models solve both of these problems, but generally tend
to underperform compared to autoregressive timbre models and neural vocoders. In
our experiments, we combine a timbre model based on a feed-forward convolutional
neural network with self-attention, a way to integrate information across all timesteps
in a sequence. Through listening tests, we show that this approach improves the perfor-
mance of non-autoregressive models to be similar to their autoregressive counterparts.
In particular, this approach improves the coherence of timbre over time, which is one

193
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of the weak points of more vanilla feed-forward approaches. For waveform generation,
where parallelization can be especially beneficial, we propose a model based on a fairly
constrained source-filter model. In this model, neural networks are only used to predict
a minimum-phase vocal tract filter, and an aperiodicity filter, which determines the
mixture of periodic and aperiodic source signals for any given frequency. Through
listening tests, we show that this approach can outperform traditional vocoders based
on signal processing alone, as well as avoid many of the common artifacts of less
constrained non-autoregressive neural vocoders when applied to singing voice. Com-
pared to autoregressive neural vocoders, performance is close, albeit slightly lower,
in particular for very low pitches and non-model voice qualities. Combining these
non-autoregressive models, we end up with a system that can perform inference several
orders of magnitude faster than autoregressive models, as well as avoid being affected
by any issues related to exposure bias.

The second major aim of this work is to answer whether the additional flexibility that
deep learning approaches provide could be utilized to reduce the effort required to
create new voices, and possibly also reducing the amount of data required. The effort
required to create new voices in singing synthesis tends to form a bottleneck for many
applications, as well as research on the topic itself. Particularly problematic are the
annotations that are required such as phonetic segmentation, score transcription, and
so on. These not only can take a significant amount of time, they generally also require
expert knowledge. In our experiments, we have shown that voice cloning techniques
from text-to-speech are also effective in singing synthesis. At the cost of a small reduction
in fidelity, timbres can be modeled using datasets an order of magnitude smaller in
size, by leveraging not only data of the target voice, but also data from other singers.
Alternatively, or complementary, utilizing self-attention, we obtained a timbre model
that does not require precise phonetic segmentation to be trained. Instead, this approach
only requires vowel onsets and a rough initial segmentation in phonemes via a generic
phoneme durationmodel. Again, according to the results of our listening tests, while this
approach results in a small reduction in fidelity, this may be an acceptable compromise
in order to reduce the voice creation effort. Taking this line of research one step further,
we introduced a semi-supervised training approach. Unlike the previous approach, this
does require an initial multi-speaker dataset with full phonetic segmentation. However,
once this data is used to train some speaker-independent components, a new voice can
be trained in a completely unsupervised manner. That is, no annotations are required,
just audio. While also resulting in a very small degradation in quality, we feel that
the benefits of this approach significantly outweigh the potential drawbacks. Semi-
supervised training truly allows for creating new voices practically instantly. This not
only allows rapidly creating voices for artistic endeavors or productization, it also allows
singing synthesis research to be done at a much larger scale, e.g., evaluating systems on
a wider range of voices, singing styles and languages.
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10.2 Limitations of our research and future work

We feel that the main limitation of our research is its scope. We chose to limit our
research to modeling timbre, however, this is only one of several aspects of singing
synthesis. While we briefly discuss the additional components required to build a
complete singing synthesizer, such as pitch and timing models, this is still an area
that could be explored much more in-depth. Although many of the recent works on
singing synthesis do include such components to some degree, we feel some more
large-scale evaluation and comparison of different approaches is still somewhat lacking.
For instance, synthesizers are often evaluated on a single dataset, thus typically only
giving results for a single language and singing style.

This brings us to another limitation of our research, and singing synthesis research in
general; evaluation is very difficult. One of the reasons we limit our scope to modeling
timbre, is that evaluating for instance pitch or timing is notably more difficult. As a
rule of thumb, objective metrics are not very reliable for comparing singing synthesis
systems. Even subjective evaluation, which is the current “gold standard” method of
evaluation, can be somewhat problematic, as for instance the meaning of “poor” can
vary greatly between participants. We hope that ongoing work on objective evaluation
based on deep learning will alleviate these issues in the future.

Besides more elementary pitch and timing components, expressive singing of course
encompasses a much wider range of aspects that have not been investigated in much
detail. For instance, it is not clear to what degree current models can model more
long-term expressive aspects such as dynamics, phrasing, or for instance performing
a chorus and verse in contrasting manners. Singing voice models currently typically
only model a single timbre or singing style, while many singers may be able to perform
several, often combining these in a single song. In our case, we only focus on pop,
pop/rock, and classical or choir singing styles. Clearly, this is only a small fraction
of the total range of singing styles, some of which are significantly different, such as
rap. Another topic that lacks research is the synthesis of non-modal voice qualities.
These are fairly common in singing, but tend to be problematic for several reasons. In
datasets, such non-modal resources tend to be very sparse, which makes data-driven
modeling more difficult. Their waveform and spectral properties can be very different
compared to modal singing, e.g., including time-varying modulations, and non-trivial
modification of formants. Finally, when and how to apply such non-modal resources
given an input score is not obvious, and may for instance depend on the semantic
content of the lyrics.

In our view of a singing synthesizer, we consider it a model that outputs a waveform
given an input score with lyrics. This view is an analogy of the process a real singer
may perform; interpret a score and render the acoustic performance. However, this



196 10 Conclusions

view is not entirely accurate. A real singer is not a black box whose only input is the
musical score. In reality, a performance may be influenced by a wide range of things;
obviously the music, possibly other musicians in a live setting, cultural and social
context, the setting of the recording session, explicit instructions from a producer, and
so on. Similarly, in singing synthesis, we often do not just want a black box that outputs
a rendition of a score in a given singing style, we typically want additional user control.
Exactly what this user control should be, and how it should affect the model is also
important future work in our opinion.

10.3 Final thoughts

Deep learning in general and text-to-speech using deep learning are fields of research
that are progressing at a breakneck pace. During the course of this thesis singing
synthesis research has started moving at similar speeds, which is a stark contrast to the
decades prior. We can notice the field is growing, with a notable uptick in publications
on singing synthesis, and more and more institutions and companies starting lines
of research on the topic. In our opinion, this is one of the greatest contributions that
deep learning has made to the field. We could argue that deep learning has in a way
lowered the barrier of entry to singing synthesis research. That is, it no longer relies
on complicated signal processing algorithms that take years to develop, or require
painstaking amounts of detailed annotations of singing data. At the same time, public
source code and datasets are becoming more and more common. All of this makes has
led to an increase in expected baseline quality in singing synthesis.

In a way, this work sits in a kind of transitional phase of the field. When we started
our work, whether deep learning approaches could outperform, e.g., concatenative
synthesis for singing was still very much up for debate. The results from WaveNet had
just shown what was possible in text-to-speech. While closely related, singing synthesis
is not exactly the same as text-to-speech. Thus, for instance having to cover a much
wider pitch range, while simultaneously having to work withmuch smaller dataset sizes,
made the answer to this question not immediately obvious. While all the models we
describe in this work can still be considered “current”, questions like these are perhaps
not. In fact, deep learning has become so dominant, that previous approaches are no
longer considered or used as baselines.

As the technology matures, we expect “elementary” singing synthesis to become kind
of a solved problem on the one hand, and much more accessible on the other (i.e.,
not requiring a large amount of specialized knowledge). We feel that our work has
contributed towards such a future. However, at the same time, we are still a long way
off from truly natural, truly expressive singing synthesis. Thus, we expect the field to



10.4 List of contributions 197

move from more “elementary” topics to more specialized aspects of the singing voice.
For this, we consider one promising approach to be (re-)introducing more domain
knowledge in the models. Especially considering many practical issues, at some point
purely data-driven approaches may reach their limit. For instance, the amounts of data
required may be impractical, or the models required as so computationally complex
that certain applications would be no longer possible. We expect that in many such
cases, machine learning and domain knowledge can be complementary to each other;
perhaps we can think of using domain knowledge as a way to regularize powerful deep
learning models, allowing us to maintain most or all of the flexibility, while guiding the
model towards the results we want to obtain.

10.4 List of contributions

❧ We have proposed a neural singing synthesizer that predicts vocoder features
from linguistic and F0 features using an autoregressive model and a powerful
network architecture based on gated dilated convolutions (WaveNet). As this
was one of the first models based on modern neural networks, we performed a
detailed comparison to existing approaches. Our model was rated notably higher
in listening tests than the then state of the art in terms of quality, concatenative
synthesis, while providing similar or better flexibility than the prevalent machine
learning approach, hidden Markov model synthesis. Details of this model and
the experiments are given in §4.2.

❧ We have extended the above model for synthesizing timbre to a complete synthe-
sizer that can synthesize sung vocals from a score with lyrics, by including pitch
and timing models. Using listening tests we show that our autoregressive model
can outperform previous approaches based on hidden Markov model synthesis
and simpler feed-forward deep neural networks. The proposed synthesizer and
the comparison to baseline systems can be found in §4.3.

❧ We have proposed an alternative, non-autoregressive model, based on the feed-
forward Transformer, notably combining a convolutional neural network with
self-attention. Compared to the autoregressive model, this approach provides
comparable quality, but with faster inference and more stable results as it does
not rely on a recurrent feedback connection. We also show that the use of self-
attention is beneficial compared to a vanilla convolutional neural network, no-
tably for improving the coherence of timbre over time. Details of this model and
the experiments are given in Chapter 5.

❧ As non-autoregressive modeling is especially beneficial to waveform generation,
we have also proposed a non-autoregressive neural vocoder. Combining this
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model with the above non-autoregressive timbre model, we can generate the final
waveform output of a singing synthesizer in a completely non-autoregressive
manner. Compared to competitive approaches, this much more constrained
model avoidsmany of the potential artifacts that can occur with a less constrained
neural vocoder. The sound quality obtained using this approach is comparable
to a strong autoregressive baseline, while inference is several orders of magnitude
faster. Thanks to its fast inference and stable nature, this neural vocoder is an
attractive option for many practical applications. This model is described and
evaluated in Chapter 6.

❧ In order to reduce the amount of data required to create a new voice, we have
investigated applying voice cloning techniques initially introduced for text-to-
speech to singing synthesis. In particular, focusing on representing the singer
identity by an embedding, leveraging big multi-speaker datasets, and fine-tuning
pre-trained models. We have investigated how different kinds of singing record-
ings affect the results of voice cloning. We show that voice cloning can be used
to create voices with significantly smaller datasets, while only resulting in a small
degradation in performance. Voice cloning for singing synthesis is discussed in
Chapter 7.

❧ Besides reducing the amount of data required to create a new voice, we also try to
reduce the effort needed to prepare the training data. For our non-autoregressive
model, we proposed a sequence-to-sequence technique that allows training the
model note timings rather than phonetic timings. This approach is based on an
approximate phonetic duration model, and self-attention provided by the feed-
forward Transformer architecture. This approach is described and evaluated in
Chapter 8.

❧ Reducing the voice creation effort even further, we propose a semi-supervised
training approach. This method consists of a speaker-independent autoencoder
trained in a supervisedmanner, afterwhich a decoder for a new target voice can be
trained in a fully unsupervisedmanner. That is, once the initial supervisedmodel
is trained, we can use it to create a timbre model for a new target voice from just
audio recordings, without any form of annotations. The results obtained using
this approach are comparable to fully supervised models. The semi-supervised
training approach is described and evaluated in Chapter 9.



Technical detailsA
A.1 Details constrained Gaussian mixture

As discussed in “Output distributions” of §4.1.3, some of our models use a special-
ized output mixture density that we call constrained Gaussian mixture (CGM). This
distribution is a mixture of 𝐾 = 4 Gaussians,

𝑝(𝑥) =
𝐾−1
∑
𝑘=0

𝑤𝑘 𝒩(𝑥; 𝜇𝑘, 𝜎2
𝑘), (A.1)

with additional constraints applied on the mixture parameters to only allow a certain
subset of distributions that the underlying mixture of Gaussians (MoG) allows.

The 12 mixture parameters 𝑤𝑘, 𝜇𝑘, 𝜎𝑘 for 𝑘 = 0, 1, … , 𝐾 − 1 are computed from
four free parameters: location 𝜉, scale 𝜔, skewness 𝛼 and shape 𝛽 (see Figure 4.2 for
some example distributions). Assuming the network predicts four outputs with linear
activations, 𝑎0, 𝑎1, 𝑎2, 𝑎3, we apply some non-linearities to obtain the free parameters
in suitable ranges,

𝜉 = 2 sigm(𝑎0) − 1 𝜉 ∈ [−1, 1] (A.2)

𝜔 = 2
255

𝑒4 sigm(𝑎1) 𝜔 ∈ [ 2
255

, 2𝑒4

255
] (A.3)

𝛼 = 2 sigm(𝑎2) − 1 𝛼 ∈ [−1, 1] (A.4)
𝛽 = 2 sigm(𝑎3) 𝛽 ∈ [0, 2]. (A.5)

Then, we map predicted location 𝜉, scale 𝜔, skewness 𝛼 and shape 𝛽 to Gaussian
mixture parameters 𝜇𝑘, 𝜎𝑘, 𝑤𝑘 for 𝑘 = 0, 1, … , 𝐾 − 1,

𝜎𝑘 = 𝜔𝑒(|𝛼|𝛾𝑠−1)𝑘 (A.6)

𝜇𝑘 = 𝜉 +
𝑘−1
∑
𝑖=0

𝜎𝑘𝛾𝑢𝛼 (A.7)

𝑤𝑘 = 𝛼2𝑘𝛽𝑘𝛾𝑘
𝑤

∑𝐾−1
𝑖=0 𝛼2𝑖𝛽𝑖𝛾𝑖

𝑤
, (A.8)
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where 𝛾𝑢, 𝛾𝑠 and 𝛾𝑤 are constants tuned by hand,

𝛾𝑢 = 1.6 (A.9)
𝛾𝑠 = 1.1 (A.10)

𝛾𝑤 = 1
1.75

. (A.11)

A temperature control is achieved by first shifting component means towards their
global weighted average,

̄𝜇 =
𝐾−1
∑
𝑘=0

𝜇𝑘𝑤𝑘 (A.12)

̂𝜇𝑘 = 𝜇𝑘 + ( ̄𝜇 − 𝜇𝑘)(1 − 𝜏 ), (A.13)

where 0 < 𝜏 ≤ 1 is the temperature. Then, the component variances are scaled by the
temperature,

𝜎̂𝑘 = 𝜎𝑘
√

𝜏. (A.14)

A.2 Details tuning post-processing

In our complete autoregressive singing synthesizer (see §4.3), we mentioned that
the pitch model includes a tuning correction post-processing step (see “Tuning post-
processing” in §4.3.2). The principal idea behind this tuning correction post-processing
is simple; apply the difference between the perceived pitch of a note, given its predicted
F0 contour, and the pitch of the corresponding note in the score. However, robustly
estimating the perceived pitch of a note from the corresponding F0 contour is non-
trivial. In singing voice, there are many factors that affect F0, but may not influence
the perceived note pitch. These factors include vibratos, scoops, releases, transitions,
microprosody due to consonants and so on. Therefore, simple estimators, such as
directly taking the mean of the frame-wise F0 over the note duration, will typically
yield poor results.

To obtain a more robust estimate of the perceived note pitch, ¢, we compute a weighted
average of the predicted frame-wise pitch (log F0 in semitones), ¢ = 1200 log2(𝐟0/440),
over the note’s duration,

¢ =
∑𝑖 ¢𝑖𝑤𝑖

∑𝑖 𝑤𝑖
, (A.15)

where ¢𝑖 and 𝑤𝑖 correspond to the 𝑖-th frame within a given note of the predicted pitch
vector and weighting vector respectively. The weighting vector 𝐰 is composed of a
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number of different factors that correspond to different heuristics designed to make
the estimate more robust,

𝐰 = 𝐰𝑒𝐰𝑑𝐰𝑝𝐰𝑡. (A.16)

The first of these factors, 𝐰𝑒, is a weighting to reduce the influence of the edges of the
note, where most of the transition effects will typically be located. We compute 𝐰𝑒 as a
Tukey window with 𝛼 = 0.5. That is, we apply a cosine-taper weighting along the first
and last 25% of the note duration.

The second factor, 𝐰𝑑, is a weighting depending on the derivative of the pitch contour.
The idea is that the portion of the note where pitch is mostly flat will contribute
more to the perceived pitch than portions where pitch fluctuates due to transitions or
microprosody. We first estimate the derivative by convolving the signal with a 3rd order
1st derivative Savitzky-Golay finite impulse response (FIR) filter, 𝐬𝑑, with a length of 11
frames (55ms),

𝑑¢ ≔ ¢ ∗ 𝐬𝑑, (A.17)

where ∗ denotes the convolution operator. Then, we compute the weighting factor, 𝐰𝑑,
as follows,

𝑤𝑑,𝑖 = 1
min(1 + 27|𝑑¢𝑖|, 15)

, (A.18)

where the constants were obtained empirically.

The third factor, 𝐰𝑝, is a weighting depending on the phoneme corresponding to each
frame 𝑝𝑖,

𝑤𝑝,𝑖 =
⎧{
⎨{⎩

2 for 𝑝𝑖 ∈ {vowel, syllabic consonant}
0 for 𝑝𝑖 ∈ {silence, pause, breath}
1 otherwise.

(A.19)

The idea is that frames corresponding to vowels typically contribute more to the per-
ceived pitch than consonants, which often contain microprosody effects.

The last factor, 𝐰𝑡, is a weighting depending on the distance from the target pitch,
based on the assumption that detuning in the perceived pitch will typically be caused
by relatively small deviations. Other factors, such as scoops or microprosody, may cause
relatively big deviations, but these tend not to contribute to the perceived detuning. We
use a pitch deviation of ±1 semitone as a threshold,

𝑤𝑡,𝑖 = {
1 for |¢tar − ¢𝑖| ≤ 1
1/|¢tar − ¢𝑖| otherwise.

(A.20)
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Finally, the required amount of (frame-wise) pitch correction, Δ¢, is computed for
each frame in a note as follows,

Δ¢𝑖 = ¢tar − ¢, (A.21)

where ¢tar is the note’s target pitch, as is written in the score. For rests, we do not apply
any correction, Δ¢𝑖 = 0. These frame-wise correction vectors are then concatenated
for all notes and rests in the sequence. As the resulting vector may be discontinuous, we
smooth it by zero-phase filtering with a Gaussian window with a length of 30 frames
(150ms).

As the above method computes a note-wise correction, it is based on the assumption
that the detuning will be approximately constant along a note. However, this is not
always the case, especially for longer notes. There can for instance be a pitch trend along
a note’s duration, which may sound like the singer is slowly trying to reach the correct
pitch. To reduce this kind of detuning, we divide longer notes in smaller sub-note
segments, and compute the per-segment correction as described above. However, prior
to the final smoothing step, instead of a constant correction per segment, we obtain
the frame-wise correction by linearly interpolating each segment’s correction at its
center.
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Glossary

ACRThe Absolute Category Rating is a 1–5 rat-
ing scale commonly used in mean opin-
ion score (MOS) listening tests. Values
used in this case are: 5 excellent, 4 good,
3 fair, 2 poor, and 1 bad. ↑ 66, 67

aperiodicity Aperiodicity, aperiodicity enve-
lope or band aperiodicity is generally a
vector between of values between zero
and one, indicating whether a frequency
or frequency band is fully voiced (zero),
fully aperiodic (unvoiced, noisy; one), or
somewhere in between. It can be thought
of as a kind of frequency-wise continuous
voiced/unvoiced feature. ↑ 93, 94, 97, 98,
100, 108

ASR Automatic Speech Recognition systems
automatically transcribe speech from au-
dio. This is sometimes also referred to as
“speech-to-text” (especially in more mod-
ern deep learning contexts). ↑ 55, 62

BAPD Band Aperiodicity Distortion, also
known as band aperiodicity distance, is a
distance in dB between two band aperi-
odicity spectra. ↑ 71, 72, 97, 98, 108, 110

CGM A Constrained Gaussian Mixture (or
constrained mixture of Gaussian) is a
special case of MoG where the number
of free parameters and possible distribu-
tions are reduced by a set of heuristics.
These heuristics and the term itself are
fairly specific to this work and currently
not widely used in other works. ↑ 87, 88,
127, 199

CMOS A Comparison Mean Opinion Score
is the result of a kind of qualitative eval-
uation where participants are typically

asked to rate stimuli on a -3–+3 scale
(muchworse, worse, slightly worse, about
the same, slightly better better, much bet-
ter), compared to a reference. See also:
MOS. ↑ 68

CNNAConvolutional Neural Network is kind
of neural network that implements a con-
volution operation. Traditionally used for
image applications due to their transla-
tion invariance when used with 2-d spa-
tial data, they can also be an alternative
to RNNs for time series. In this case, the
main difference is that CNNs integrate a
fixed window of past and/or future in-
formation, while RNNs in theory inte-
grate any number of past and/or future
timesteps. ↑ 26, 28, 49, 51, 83, 115, 117–120,
125, 127, 131

CPU General processing hardware not suited
for very parallelized computations. ↑ 28,
90, 116, 125, 155

CTC Connectionist Temporal Classification
is a kind of loss between a continuous
(unsegmented) time series, e.g., audio fea-
tures, and a target sequence, e.g., text or
phonemes. By summing over the proba-
bility of all possible alignments of input
to target, it produces a loss value which
is differentiable with respect to each in-
put node. A CTC loss is typically used in
conjunction with RNNs. ↑ 23

DAEM A variant of the expectation maximiza-
tion (EM) algorithm which can be used
to optimize the parameters of an HMM
or HSMM (Ueda and Nakano, 1998). By
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using deterministic annealing, this ap-
proach tends to converge to better max-
ima, especially from a so-called flat start.
As this approach is iterative, one down-
side is that it does tend to take a longer
time compared to standard expectation
maximization. ↑ 63, 126

DBN A Deep Belief Network is an early form
of deep neural network, where each layer
is sequentially trained in an unsupervised
manner as an RBM. ↑ 19, 20

DCT The Discrete Cosine Transform ex-
presses a discrete time-domain signal as
a sum of cosine functions oscillating at
evenly spaced frequencies, with different
amplitudes. It is similar to the DFT, with
a notable difference that the DCT results
in a real sequence, whereas the DFT re-
sults in a complex sequence. ↑ 46

DFT The Discrete Fourier Transform ex-
presses a discrete time-domain signal as
a discrete frequency domain spectrum,
the sum of sinusoids oscillating at evenly
spaced frequencies, with different ampli-
tudes and phases. A complex spectrum
can also be represented as magnitude and
phase spectrum. The inverse of this trans-
form recovers the original signal without
loss. ↑ 46, 73

DNN A Deep Neural Network is a neural net-
work with many layers, at least more than
one hidden layer. Typically, this refers to
a feed-forward neural network. ↑ 20, 21,
105, 106, 115

DTW An efficient algorithm for aligning two
time series using Dynamic Programming.
↑ 69

dynamics Dynamics in music and singing is
related to the loudness of the signal, and
more importantly, the intended intensity
of the performer. In particular, dynam-
ics are related to the symbolic dynamic

markings in a musical score (discrete la-
bels such as piano, forte, etc.). In this
work, we may also use continuous val-
ues to indicate dynamics, typically in a
range [0, 1]. In thiswork, we use the terms
loudness, intensity and dynamics mostly
interchangeably. See also: . ↑ 93, 162

EM An iterative method to find (local) max-
imum likelihood or maximum a poste-
riori (MAP) estimates of parameters in
statistical models, where the model de-
pends on unobserved latent variables. In
this work, a special case of this algorithm,
Baum-Welch, is used to optimize the pa-
rameters of an HMM. ↑ 63

EMA An exponential moving average, is a
first-order infinite impulse response fil-
ter, for smoothing time series, by tak-
ing into account previous timesteps. It
is usually defined in the form of 𝑥𝑡 =
𝛼𝑥𝑡 + (1 − 𝛼)𝑥𝑡−1, where the decay 0 ≤
𝛼 ≤ 1 (higher values discount previous
timesteps faster), and 𝑥1 = 𝑥1. ↑ 128

FDSD A classifier-based learned metric for
speech, that also considers the distance
between statistics of higher-level features
of real and generated speech. The speech
equivalent of the Fréchet Inception dis-
tance (FID) metric for images. ↑ 76

FFT

1) The Fast Fourier Transform is an effi-
cient algorithm to compute the DFT.
↑ 41, 143, 145

2) Feed-Forward Transformer, a non-
autoregressive (feed-forward) ver-
sion of the Transformermodel. ↑ 123,
127, 174, 175

FID An improved version of the classifier-
based Inception score (IS) metric for im-
ages, which additionally considers the dis-
tance between statistics of higher-level
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features of real and generated images.
↑ 76

FIRA Finite Impulse Response filter is a digital
filter with a finite impulse response. This
is in contrast to Infinite Impulse Response
(IIR) filters whose impulse response con-
tinues indefinitely. FIR filters are formu-
lated as a weighted sum of different in-
puts, while IIR filters are formulated as a
weighted sum of inputs as well as previ-
ous outputs (hence a recurrence). ↑ 143,
155, 201

FNRThe FalseNegative Rate is an errormetric
for binary features, such as the voiced/un-
voiced decision. Computed as FNR =

FN
FN+TP , where FN and TP are false nega-
tives and true positives respectively. ↑ 73,
97, 98, 108

FPR The False Positive Rate is an error metric
for binary features, such as the voiced/un-
voiced decision. Computed as FPR =

FP
FP+TN , where FP and TN are false posi-
tives and true negatives respectively. ↑ 73,
97, 98, 108

GAN A Generative Adversarial Network
(Goodfellow et al., 2014) is a kind of
model that consists of a generator and
a discriminator. The generator is trained
to produce realistic samples of the data
distribution. The discriminator is trained
to distinguish between real samples taken
from the dataset distribution and fake
samples produced by the generator. Thus,
the generator can be improved using
the error signal from the discriminator,
providing a kind of implicitly learned
loss function. And, at the same time, the
discriminator itself is updated as well.
↑ 26–28, 75, 125, 136, 138, 139, 144, 145, 148,
150, 153

GLA The Griffin-Lim Algorithm (Griffin and
Lim, 1984) is amethod of reconstructing a
corresponding phase spectrogram given

amagnitude spectrogram. This algorithm
is iterative and the resulting waveform of-
ten has notable artifacts. ↑ 24, 42

GLU An activation function that combines a
linear activation with a gate. Computed
asGLU(𝑎, 𝑏) = 𝑎⊙sigm(𝑏), where⊙ de-
notes element-wise multiplication. This
activation function is popular in NLP ap-
plications, possibly due to the reduced
chance of vanishing gradients (compared
to e.g., gated tanh units allowing deeper
networks. See also: GTU. ↑ 121–123, 127,
173, 176

GMM Gaussian Mixture Model. See: MoG.
↑ 16, 19, 20

GPU Specialized hardware especially suited
for parallelized computations such as
training a deep learning model. ↑ 19, 25,
38, 90, 106, 117, 125, 133, 135, 155

GRUAGatedRecurrentUnit network is a kind
of RNN composed of memory cells with
gating operations. It was designed to be
a reduced computational complexity al-
ternative to the LSTM recurrent unit. See
also: LSTM. ↑ 22, 84

GTU An activation function that combines a
tanh activation with a gate. Computed as
GTU(𝑎, 𝑏) = tanh(𝑎) ⊙ sigm(𝑏), where
⊙ denotes element-wise multiplication.
This activation function is commonly
used to give CNN similar performance to
gated recurrent networks such as LSTMs.
See also: GLU. ↑ 121

GV Global Variance is a statistic used to de-
scribe speech parameters, computed as
the per-utterance variance of the given
parameter. As a statistic, it is used in the
evaluation of speech and singing synthe-
sis systems. Global Variance may also re-
fer to a parameter generation technique
that attempts to preserve the global vari-
ance of natural speech during synthesis.
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In particular, this is a way to combat the
oversmoothing problem some generative
models tend to have. ↑ 16, 70

HMM A Hidden Markov Model is a proba-
bilistic model in which the system being
modeled is assumed to be a Markov pro-
cess with unobserved (i.e., hidden) states.
↑ 4, 15–20, 22, 55, 62, 63, 81, 86, 90, 97, 105,
115, 159, 164, 171

HSMM A Hidden Semi-Markov Model has
the same structure as a hidden Markov
model, but the probability of a state
change depends on the time elapsed in
the state, rather than being constant. Typ-
ically, state durations may be modeled
using a Gaussian distribution. See also:
HMM. ↑ 16, 17, 63, 126

HTS The HMM Speech Synthesis System
(H Triple S) is a collection of tools
and scripts for building HMM (HSMM)
speech and singing synthesizers. It is de-
veloped by Nagoya Institute of Technol-
ogy (Nitech, Japan) and based on HTK
(Hidden Markov Model Toolkit). Later
versions of the toolkit also support DNN
and DNN/HMM hybrid models. ↑ 56,
63

hyperparameter A hyperparameter is a nu-
merical parameter of a machine learning
model that is not learned from data, but
set by hand. Typical examples include
learning rate, number of hidden units,
regularization weights, etc. ↑ 89, 94

IS A classifier-based data-driven evaluation
metric, commonly used to evaluate gen-
erative models of images. See also: FID.
↑ 75, 76

loudness Loudness is a feature of a speech and
music signals, related to the subjective
perception of sound pressure. In partic-
ular in broadcasting some standardized

definitions of loudness have been pro-
posed, such as ITU-R BS.1770 (e.g., im-
plemented in Steinmetz and Reiss, 2021).
This algorithm includes filtering, over-
lapping windows (or “blocks”), energy
calculation, converting to dB, and gating
low energy blocks. Within this work, we
use loudness and dynamics mostly inter-
changeably. In singing voice, the slope of
the spectrum is also an important feature
related to dynamics, rather than just the
fullband energy. See also: . ↑ 40, 93, 187

LSD Log-Spectral Distortion, also known as
Log-Spectral Distance, is a distance in
dB between two spectra or spectrograms.
In the case of two 𝑇 ×𝐾-dimensional
spectrograms 𝑋 and 𝑋̂, the (mean) log-
spectral distortion is defined as 𝐷LSD =
1
𝑇 ∑𝑇

𝑡=1
√ 1

𝐾 ∑𝐾
𝑘=1 [20 log10

𝑋(𝑡,𝑘)
𝑋̂(𝑡,𝑘)

]
2
.

↑ 70–72

LSTMALong Short-TermMemory network is
a kind of RNNcomposed ofmemory cells
with gating operations. The gates help
avoid the vanishing or exploding gradient
problem of the traditional RNN, where
gradients become every smaller or larger
with each recurrent timestep. Addition-
ally, this type of RNN allows modeling
longer time dependencies compared to
the classical RNN. ↑ 20, 22, 28, 84

MAE The Mean Absolute Error is a dis-
tance metric. Computed as 𝐷MAE =
1
𝑁 ∑𝑁

𝑖=1 |𝑥𝑖 − 𝑦𝑖|. ↑ 74, 111

MCD Mel-Cepstral Distortion, also known
as Mel-spectral Distance, is a distance in
dB between two mel scale cepstra or mel
scale cepstrograms. In the case of two
𝑇 ×𝐾-dimensional cepstrograms 𝐶 and

̂𝐶, the (mean) mel-cepstral distortion
in dB is defined as 𝐷MCD = 10

log10
√

2 1
𝑇

∑𝑇
𝑡=1

√ 1
𝐾 ∑𝐾

𝑘=1 [𝐶(𝑡, 𝑘) − ̂𝐶(𝑡, 𝑘)]
2
.

↑ 69, 71, 72, 97, 98, 108, 110, 114
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MDN A Mixture Density Network is a neural
network whose output is interpreted as a
mixture density, often anMoG. ↑ 20, 21

MFCCMel-Frequency Cepstral Coefficients
are a speech feature that consists of a vec-
tor of values that represent the transform
(e.g., DCT) of the log magnitude spec-
trum at frequencies on a mel scale. It is
typically used as a perceptually motivated
low-dimensional representation of tim-
bre. ↑ 46, 63

MFSC Mel-Frequency Spectral Coefficients
are a speech feature that consists of a vec-
tor of values that represent the log mag-
nitude spectrum at frequencies on a mel
scale. It is typically used as a perceptually
motivated low-dimensional representa-
tion of timbre. ↑ 46, 47, 91

MGC Mel-Generalized Coefficients are a gen-
eralized cepstral representation of tim-
bre. It has two hyperparameters; a fre-
quency warping factor, typically to some-
thing close to a mel scale, and a pole/zero
weighting factor, which controls the em-
phasis on peaks or valleys in the spectral
envelope. ↑ 16, 46, 112, 113

MoG A Mixture of Gaussians is a multi-modal
distribution consisting of the sum of mul-
tiple scaled Gaussian distributions. ↑ 15,
16, 87, 199

MoL A Mixture of Logistics is a multi-modal
distribution consisting of the sum of mul-
tiple scaled logistic distributions. In the
context of autoregressive models and
speech synthesis, MoL often refers to a
mixture of discretized logistic distribu-
tions (e.g., Salimans et al., 2017; Shen et
al., 2018). ↑ 24, 87, 94

MOPPG Maximum Output Probability Pa-
rameter Generation is a technique where

a model predicts static, delta and delta-
delta distributions, and using these pre-
dictions over the whole output sequence,
the most probable output trajectory is
computed. In particular, this method is
used to void discontinuities in the pre-
dicted output. Also known as: Maxi-
mum Likelihood Parameter Generation
(MLPG). ↑ 16, 20

MOS A Mean Opinion Score is the result of a
kind of qualitative evaluation where par-
ticipants are typically asked to rate stimuli
on a 1–5 scale. See also: ACR. ↑ 21, 24, 25,
28, 66–68, 76, 110, 114, 128, 130, 131, 151, 153,
178, 189, 190

MS The Modulation Spectrum is the mag-
nitude spectrum of a speech parameter
time series (e.g., F0 or mel-cepstral co-
efficients). It is used in the evaluation of
speech and singing synthesis systems. It
is also used in parameter generation algo-
rithms, where the goal is to preserve the
modulation spectrum of natural speech
at synthesis. ↑ 70, 72, 73, 112, 113

MS-LSD The Modulation Spectrum Log-
Spectral Distortion is the log-spectral dis-
tortion between two modulation spectra.
See also: MS, LSD. ↑ 72, 97, 98, 108, 110,
111

MUSHRA A MUltiple Stimuli with Hidden
Reference and Anchor test is a type of lis-
tening test where listeners compare mul-
tiple stimuli generated from a single ref-
erence. A hidden copy of the reference
is included to get an upper bound score.
Similarly, one or more anchors, distorted
versions of the reference, are included in
order to obtain a lower bound score. Typ-
ically, a fine-grained 0–100 rating is used.
See also: MOS. ↑ 67, 108

NLPNatural Language Processing is an area
of research concerned with how to pro-
gram computers to process and analyze
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large amounts of natural language data.
↑ 119, 121, 123

NMTNeural Machine Translation is a topic of
research that deals with translating text
data using neural networks. ↑ 117, 118

NPSS Neural Parametric Singing Synthesizer
is the singing synthesis system proposed
in this work. The name is derived from
the fact that it is based on a neural net-
work and predicts features of a paramet-
ric vocoder. ↑ 97, 105, 127

one-hot A one-hot representation or encoding
is a way to express a categorical variable
with 𝑁 possible values as a binary vector
of length 𝑁 with one position set to one
and the rest to zero. ↑ 92, 101, 185, 189

QRNNQuasi-Recurrent Neural Networks are
an approach to neural sequence model-
ing that alternates convolutional layers,
which apply in parallel across timesteps,
and a minimalist recurrent pooling func-
tion that applies in parallel across chan-
nels. Networks with this type of recurrent
unit reported has similar performance to
LSTM RNN units, while potentially an
order of magnitude faster. ↑ 23

RBM A Restricted Boltzmann Machine is an
undirected probabilistic model with bi-
nary (Bernoulli) latent variables. This
was a popular way to do unsupervised
feature learning in early deep learning ap-
proaches. See also: DBN. ↑ 19, 20

ReLU A Rectified Linear Unit is common (de
facto standard) activation function that
is linear for inputs greater than zero and
zero for inputs smaller than zero. In par-
ticular, it avoids the vanishing gradients
that other activation functions can ex-
hibit, thus allowing deeper networks and
faster training (e.g., Goodfellow et al.,
2016, Chapter 6.3.1). ↑ 84, 88, 123, 166,
189

RMSE The Root Mean Squared Error is a
distance metric. Computed as 𝐷RMSE =
√ 1

𝑁 ∑𝑁
𝑖=1(𝑥𝑖 − 𝑦𝑖)2. ↑ 72, 74, 111, 145

RNN A Recurrent Neural Network is a kind of
neural network typically used for work-
ing with time series. As there are connec-
tions from the previous timestep’s hid-
den state to the current timestep’s hidden
state, the network’s output can depend on
past information. ↑ 20–22, 24, 27, 28, 83,
118–120

Seq2Seq A sequence-to-sequence model, is a
model that can learn a mapping between
two unaligned sequences. An example
may be an input phonetic sequence to
output acoustic frames. ↑ 6, 23, 24, 26–28,
37, 39, 84, 117, 118, 121, 125, 163, 164, 171, 172,
176, 179, 181, 188

softmax The softmax function takes an input
vector of 𝐾 real numbers, called logits,
and normalizes them into a categorical
probability distribution, softmax(𝑥) =

𝑒𝑥

∑𝐾
𝑗=1 𝑒𝑥𝑗 . It is often used in neural net-

works as an activation function, and can
be seen as a smooth (differentiable) ap-
proximation of the arg max function.
A temperature softmax scales the logits
by some factor to make the distribution
more or less “peaky”, which is sometimes
used, in particular when sampling from
this distribution. ↑ 86, 88, 103, 119, 123

STFT The Short-Time Fourier Transform is a
variant of the DFT, used to analyze long,
non-stationary time-domain signals. The
signal is first windowed into shorter, over-
lapping segments that are considered to
be quasi-stationary. These windowed sig-
nals can then be analyzed using the DFT
to obtain meaningful time series of mag-
nitude and phase spectra, called spectro-
grams. Unlike the DFT, the inverse of this
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transform generally incurs some loss, es-
pecially if the magnitude and phase infor-
mation is modified somehow. ↑ 41, 71, 72,
145, 150, 153, 156

TTS Text-to-speech is another term for speech
synthesis, i.e., a system that converts writ-
ten text to a speech waveform. ↑ 4, 5, 7, 11,
15, 16, 19, 21–24, 26–28, 41, 55, 59, 63–68,
72, 76, 84, 85, 96, 102, 105, 118, 121, 128, 131,
136–139, 159, 160, 162, 169, 171, 172, 174–176,
182, 183

V/UV A voiced/unvoiced decision is typically
part of F0 estimation algorithms. It is a
binary feature that indicates whether a

frame has pitch (is voiced) or not (is un-
voiced). See also: aperiodicity. ↑ 72, 73, 97,
98, 108, 110

vocoder A vocoder (portmanteau of the words
voice and coder) consists of an analy-
sis (or encoder) and synthesis (or de-
coder) step. The analysis step takes the
input speech signal and converts it into a
typically low-dimensional representation,
e.g., F0 and spectral envelope bands. The
synthesis step attempts to reconstruct the
original signal from this low-dimensional
representation, often with some degree of
loss. ↑ 7, 10, 71, 81, 87, 88, 91, 93, 100, 123,
124, 126, 131, 133, 162–164, 173, 190
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