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Abstract  
 
Decision making requires coordinating motor actions that are 

necessary to report the choices and sample relevant information 

from the environment. For instance, when riding a bike on a busy 

road, rider must both pedal while deliberating over the upcoming 

sensory information in order to make subsequent decisions about 

when to make a turn. Embodied decision making is a recent 

framework that aims to investigate such situations and understand 

the links between our actions and decisions. This doctoral thesis 

takes embodied decision accounts as a central theoretical stance and 

studies various important aspects of decision making during motor 

action. The main locus of this research is to understand how actions 

that are needed for evidence accumulation influence and interact 

with the decision making process. To this end, we present here three 

experimental works and their results. In the first study, we found 

that sampling movements and response related movements are 

subject to online interaction during a categorical decision making 

task. In the second study, we delved into how physical effort of 

actions that are required to sustain stimuli influence the speed and 

accuracy of responses. The results showed that effort induced faster 

and less accurate decisions similar to strict time constraints. We 

concluded that effort induces urgency over decision making. In the 

final study, our goal was to test whether physical effort induce 

higher arousal levels which might have a role in updating speed and 

accuracy trade-off under effortful actions. The data showed that 

tonic pupil sizes (an index for arousal) was significantly modulated 

by effort and correlated with speed and accuracy of responses. 

Overall, these findings contributed novel evidences on the links 

between action and decision, especially in cases when evidence 

accumulation is bound to motor actions. 
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Resum 
 
La presa de decisions requereix coordinar les accions motrius 

necessàries per indicar implementar les decisions preses, i les que 

ajuden a adquirir informació de l'entorn. Per exemple, quan es va en 

bicicleta per un carrer transitat, el ciclista ha de pedalar alhora que 

delibera sobre la informació sensorial que rep per poder anar 

prenent decisions sobre els girs i frenades. La presa de decisions 

incorporada (embodied decision making) és un àmbit d’estudi recent 

que pretén investigar aquestes situacions i entendre els vincles entre 

les accions i les decisions del subjecte en el seu entorn. Aquesta tesi 

doctoral pren les teories de la presa de decisions incorporada 

(embodied decision accounts) com a posició teòrica primària, per 

adreçar diversos aspectes de la presa de decisions durant l'acció 

motriu. El focus principal d'aquesta investigació és entendre com les 

accions necessàries per a l'acumulació d'evidència influeixen i 

interactuen amb el procés de presa de decisions. Amb aquesta 

finalitat, es presenten tres treballs experimentals i els seus resultats. 

En el primer estudi, vàrem trobar que els moviments de mostreig 

d’informació  i els moviments relacionats amb la resposta 

interactuen sobre la marxa durant la tasca de presa de decisions 

categòrica. En el segon estudi, vàrem aprofundir en com l'esforç 

físic d’ accions que son necessàries per mantenir la visibilitat de la 

informació rellevant influeixen en la velocitat i la precisió de les 

respostes. Els resultats varen mostrar que l'esforç indueix decisions 

més ràpides i menys precises, de forma similar al que passa quan 

s’imposen limitacions de temps. Vàrem concloure que l'esforç 

indueix urgència en la presa de decisions. En l'estudi final, el nostre 

objectiu era provar si l'esforç físic indueix un increment dels nivells 

d'excitació (arousal), que podrien tenir un paper en la velocitat i la 

variació de la precisió durant les decisions amb esforç. Les dades 

varen reflectir que la resposta pupil·lar tònica (un índex d'excitació) 

estaven modulades significativament per l'esforç i correlacionades 

amb la velocitat i la precisió de les respostes. En general, aquests 

resultats aporten evidències innovadores sobre els vincles entre 

l'acció i la decisió, especialment en els casos en què l'acumulació 

d'evidència sensorial està lligada a accions motrius. 
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1. INTRODUCTION 
 

In real life, humans and other animals face countless situations in 

which they have to decide at the same time as there are acting upon 

their environments. From survival situations such as running away 

from a predator, to complex human behavior like driving and riding 

a bike, organisms must coordinate their movements while making 

the cognitive operations regarding choices to carry out the task at 

hand. In cognitive neuroscience and psychology, the notions of 

sensorimotor coupling and embodied interactions have started to 

gain interest in the last few decades. Before these trends in the field, 

the dominant theories about cognition focused mostly on abstract 

operations in isolation from the body and motor aspects (Piaget, 

1960, Skinner, 1965). Although these classic accounts have 

generated many insights about cognition, these approaches have 

been critiqued because, in ecological situations, the abstract 

cognitive processes coexist and interact with physical movement, 

planning, and execution of actions (Shapiro, 2011). Thus, it was 

inevitable to build a new research agenda which focuses on those 

interactions.  

 

Increased interest in bodily processes in relation to cognitive 

abilities became a scientific framework which can be summarized 

as Embodied Cognition (Clark, 1999). Embodied Cognition 

accounts have incorporated existing knowledge that had been 

somehow remained silent under the conventional accounts in 

psychology and cognitive science. For instance, decades before 
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Embodied Cognition have been utilized as a term, Carpenter (1874) 

had a ‘ideo-motor theory’ whose main premise was considering 

ideas and actions as a coupled and iterative processes. However, his 

approach had been criticized heavily and did not reach a 

mainstream acceptance under the behaviorist and Gestalt views of 

psychology which looked at cognition from manifest, observable 

behaviors or operations detached from the bodily realm (Prinz, 

1974). Another influential account was Gibson’s Ecological 

Psychology which brought about the concept of affordances; direct 

perception of actionable characteristics in objects and phenomena 

(Gibson, 1961, Gibson, 1977). Gibson’s view highlighted that 

cognition and perception are dynamics that can be traced back to 

motor actions which are realized, planned or merely perceived. 

Gibson’s view influenced linguists which brought the idea that 

linguistic concepts are grounded in the action-perception loops 

(Lakoff & Johnson, 1980), and also roboticists who positioned 

bodily interactions as a central piece in mental operations (Van 

Gelder, 1995, Thelen & Smith, 1996). Later in 2000s, Profitt (2006) 

coined the term Embodied Perception which emphasized the 

perception’s role in serving movements and Barsalou (2008) 

discussed ‘Grounded Cognition’ by postulating that bodily states 

and external states controlling what we call cognition. In the last 

years, embodied stances have been complemented with research 

that focuses on the links between physiological processes and 

cognition. For example, Azallini and colleauges (2021) found that 

cortical rhythm was modulated by heart beats and this influenced 

the decisions human make. Furthermore, there is also evidence 
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which suggest that gastric contractions influence the brain rhythms 

and therefore have implications for cognition (Rebollo et al., 2021). 

From this brief summary, it is evident that there have been 

numerous attempts to bridge the gap between bodily processes and 

cognitive processes.  

 

There are different manifestations of embodied views of cognition 

depending on specific questions and subfields at hand. Although 

embodied mind has gained popularity in linguistics, robotics and 

artificial intelligence (Clark, 1999), the study of decision making 

remained to be dominated by classic accounts for a very long time. 

The classic view of decision making posits that decision follows 

separate stages in a sequential order; namely deliberation, deciding 

and executing response (Ratcliff & McKoon, 2008). This serial 

understanding had influenced the majority of decision making 

models which were fruitful to explain mechanistic sub-dynamics 

such as evidence accumulation and response execution. However, 

scholars have realized that many ecological situations necessitate, 

or at least allow, acting and deciding at the same time (Cisek & 

Pastor-Bernier, 2014). Therefore, we have observed a similar trend 

in the decision making field as in cognitive science in general, about 

increased attempts to incorporate bodily action dynamics into the 

understanding of decisions (Gallivan et. al., 2018, Lepora & 

Pezzulo, 2015, Cisek, 2019). According to these embodied accounts 

of decision making, action and decisions interact continuously. This 

claim was also empirically supported by experimental setups which 

allowed to track continuous movement dynamics (Burk et. al., 
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2014, Carsten et. al., 2022). By using robotic handles (Figure 1A) or 

computer mouse (Figure 1C), these studies try to infer decision 

processes from the shape of movements (Stone et. al., 2022, 

Schoemann et. al., 2019). Hence, the experimental paradigms which 

involved continuous movements in a decision making setting have 

been crucial to bolster the central claim that decision and action can 

take place at the same time.  

 

Figure 1. Examples for continuous movement paradigms. (A) and 

(B) are from Stone et. al., (2022) and (C) is from Schoemann et. al., 

(2019). 

 

In this thesis, my goal was to delve into action-decision interactions 

and provide new understanding about some uncharted aspects of the 

embodied decision making framework. In Chapter 2.1. we present 

our experimental work which involved a novel continuous 

movement paradigm with an active sampling component. After 

settling down how sampling actions and response actions interact 

simultaneously, we moved on to studying whether effort of the 

actions can be a critical factor in decision making (Chapter 2.2.). 
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Finally, we took it one step further and investigated if effort of 

actions modulate arousal which in turn end up in modulating speed 

and accuracy of responses (Chapter 2.3.). In each of the sections of 

Chapter 2, we provide detailed literature review of the current 

knowledge about the related questions. In the following sections of 

this chapter we demonstrate the conceptual context of this thesis 

work and our hypothesis. Finally, in the last chapter (Chapter 3), we 

discuss the overall conclusions from this thesis and corroborate 

relevant contributions of our work into the field.  

  

 

1.1 Cost of actions in relation to decision-making  
 
 

Decision making has been highly influenced by optimality 

constraints. As the goal in a decision is to pick the best option 

among all the available alternatives, one needs to consider both the 

rewards and the costs of each option (Rigoux & Guigon, 2012). For 

the scope of this thesis, we focus on the costs of actions as an 

important factor in optimal decisions. According to economic 

decision making theories, the cost of a response action has to be 

incorporated into the deliberation process in order to avoid 

expending too much energy for a reward (Shadmehr, 2010). The 

experimental work under this approach has shown that when a 

decision maker has to choose between two actions with equal 

rewards, they choose the one with the least motor cost (Rosenbaum, 

2012, Cos, Medleg, Cisek, 2012). To allow for the consideration of 

action costs prior to choice, the brain has to come up with 

predictions about these costs during the deliberation stage. When a 
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single, ballistic movement is needed to respond, the estimation of 

predicted costs is relatively simple, compared to cases in which a 

dynamic, continuous movement is required. In fact, most of the 

ecological situations involve continuous actions which require an 

online cost tracking mechanism. Optimal Feedback Control (OFC) 

framework under motor control field focuses on the mechanisms of 

calculating and carrying out movement plans in an optimal way. 

Although OFC was initially thought to be a theory solely about 

motor control, many scholars have used the principles of OFC in 

decision making context (Krakauer, 2019) and this has helped to 

cast optimality principles an important role in choices 

(Trommershauser, J., Maloney, L. T., & Landy, M. S. 2003).  

 

Approaches which bridged the OFC theory and decision making 

involved experimental paradigms with continuous movement 

tracking (Todorov, 2004, McKinstry et. al., 2008, Chapman et. al., 

2010, Klaes et. al., 2011). Reporting response via moving a joystick 

or a robotic handle to a certain distal point, these type of paradigms 

allowed analyzing the movement trajectories. This thus enabled 

studying the simultaneous dynamics in online movement planning 

and decision making (Song & Nakayama, 2008, Wood et. al., 

2013). One central take away message from these approaches is that 

the decision process continues during the movement execution and, 

importantly, movement plans can also be updated during this 

deliberation stage (Michalski et. al., 2020). This was in accordance 

with the intuitions derived from OFC that action processing is not a 

mindless operation, but rather it exhibits all sorts of cost 
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calculations and updating mechanisms and strong communication 

with cognitive processes (Rigoux & Guigon, 2012).  

 

1.2 Cost of sampling actions in relation to 
decision-making  
 

Up until here, I have discussed the cost of actions which are 

necessary to report choices. On top of executing responses, actions 

are also needed to sample information from the environment, which 

in turn inform the decisions. In neuroscience, eye-movements have 

been studied with their role in sampling visual information under 

the sub-field of active vision (Yarbus, 1967, Goodale, 1983, Barnes, 

2008, Friston et. al., 2010). Thanks to research in active vision, we 

now know that action and perception operate with interactive 

feedforward and feedback loops (Goodale, 2011). Although eye 

movements are the fundamental information gathering actions in 

humans and primates, at least in vision, they are quite ‘cheap’ 

actions which do not expend too much energy. However, other 

actions which involve multiple and bigger muscle groups are also 

significant in extracting information from the environment. For 

instance, to find food sources in an environment, an animal must 

move its body around (through obstacles, up-hill, down-hill, etc.) or 

avoiding a predator requires moving and looking for routes or 

shelters. We can claim that navigation in general involves energy-

expensive movements which are aimed towards exploring and 

exploiting the environment. Reinforcement Learning has used 

methods and paradigms that posits the exploration-exploitation 

mechanism as its central component (Sutton & Barto, 1998, Kearns 
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& Singh, 2002). Despite the machine learning aims to implement 

systems with the notions of sampling cost of information, there is 

still a lot to understand about the behavioral dynamics of the cost of 

sampling actions (in terms of metabolic costs) and its interaction 

with decision processes. Especially, novel decision-making 

paradigms with active sampling components would be fruitful for 

the understanding of action-decision relationship. 

 

1.3 Effort as a currency in decision-making  
 

In the last two sections above, we briefly summarized the role of 

action costs in decision making, yet we did not specify the types of 

costs pertaining to actions. Action planning, action monitoring and 

action updating are all costly processes which are examples of 

action-related costs. However, one central component of action 

costs is the effort of the movement. Effort involves the metabolic 

cost of implementing an action which can trivially impact the 

economics of a decision making (Walton et. al., 2007, Croxson et. 

al., 2009, Hillman & Bilkey, 2010). De Froment et. al., (2014) have 

postulated that physical effort should be added into the common 

research agenda of decision-making which traditionally focus 

mostly on speed and accuracy trade-offs. Thus, they recommended 

adding effort as the third variable into the speed-accuracy trade-off 

and study the three-way trade-off between speed, accuracy and 

effort. Although theirs is only a theoretical claim, there are also 

empirical studies which tested and investigated the effort’s 

influence on decisions. For instance, Prevost et. al. (2010) have 

shown that humans in a delayed reward task showed a preference to 
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choose larger effort to wait shorter, which shows an example to 

trading off effort with time. Other researchers as well supported 

with their experimental work that decision making and motor 

control share a common principle of maximizing utility (Shadmehr 

et. al., 2016, Morel et. al., 2017). Similar to delay discounting 

(reduced reward value under long delays, i.e. Rachlin, 2006), effort-

discounting is an important mechanism which reduces the value of 

rewards as a function of the physical effort of obtaining those 

rewards (Sugiwaka & Okouchi, 2004, Hartmann et. al., 2013, 

Nishiyama, 2016).  

 

As empirical works have established the effort discounting as a 

utility factor in decision making, a critical question emerged about 

the potential neural underpinnings of this phenomena. Klein-Flugge 

et. al., (2016) have conducted an fMRI study in which human 

participants needed to make choices between options which had 

varying amounts of effort and rewards. They found that 

supplementary motor area and dorsal anterior cingulate cortex 

(ACC) were involved in calculating and comparing of the 

reward/cost of the options. Similar other studies also reported the 

activity of ACC as enabling the utility maximizations and effort 

discounting (Arulpragasam et. al., 2018, Chong et. al., 2017, 

Bernacer et. al., 2019). Under the light of these evidences, we can 

conclude that effort is a currency that needs to be processed for the 

service of achieving optimal decisions and this takes place within 

the brain networks which play a role in cost/value calculation. 
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1.4 Arousal modulations due to effortful actions  
 

It is plausible to expect that effortful motor actions would induce 

global changes into the brain due to heightened parasympathetic 

activity and hemodynamic changes in the body. Amongst them, 

arousal can be defined as a complex system that relates to a global 

brain state linked to wakefulness, attention and performance in 

various tasks (Aston-Jones & Cohen, 2005). It is believed that 

arousal is driven by norepinephrine (NE) and cholinergic (Ach) 

releases from Locus Coeruleus (LC) and basal forebrain, 

respectively (Berridge & Waterhouse, 2003). It is also known that 

pupil of the eye shows strong modulations correlated with the 

activations in LC and therefore correlated with arousal. Therefore, 

pupil-linked arousal is studied intensively in domains of 

neuroscience and psychology due to noninvasive measurement 

technique of pupillometry.  

 

Although arousal is known to be modulated by sleep cycles, 

emotions and mental effort (Berridge & Waterhouse, 2003, Howells 

et. al., 2012), there was not a direct test of how physical effort 

induces arousal changes until recently. Schmidt et. al., (2012) 

compared cognitive and physical effort in terms of their MRI 

activity patterns and reported that Ventral Striatum (VS) activity 

was showing significant modulation as a function of effort. 

Specifically, they reported a higher activity in caudate nucleus in 

high mental efforts and higher activity in putamen in high physical 

effort conditions. Since VS receives input from LC which has an 

important role in NE release and arousal, their result hinted the 
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potential arousal modulations under both cognitive and physical 

effort. However, even the study of Schmidt et. al. (2012) was not 

directly testing arousal. The first study we could find that looked at 

physical effort and arousal relationship is the work of Zenon et. al., 

(2014). The researchers have conducted an effort-production 

experiment in which they measured pupil size. They found that 

similar to cognitive effort, physical effort was inducing systematic 

changes to pupil size, namely increasing the arousal as a function of 

effort intensity. Similarly, Varazzani et. al., (2015) have conducted 

a neural recording study in which monkeys squeezed a bar with 

their hands in different force levels. They reported an increased LC 

activity with higher effort levels and this relationship was also 

correlated with the pupil sizes. Therefore, they concluded that 

noradrenergic arousal system has a unique relationship with 

physical effort, and extrapolated that this mechanism allows 

organisms to face physical challenges and energize their behavior. 

Taking the evidences for arousal and effort relationship, and 

remembering that arousal impacts the overall brain, it is a plausible 

claim that arousal due to physical effort can have indications for 

decision making. 

 

1.5 Scope and hypotheses  
 
The overarching hypothesis of this dissertation is that actions that 

are coupled with evidence accumulation influence and interact with 

the decision making process. Under this broad hypothesis, specific 

paradigms to answer more detailed questions were generated. In the 
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following sections, I will demonstrate the hypotheses of each study 

under this thesis work and explain the main goals. 

 

1.5.1. Active sampling and decision-making can 

happen simultaneously 

According to embodied views of decision making, rich connections 

between actions and decisions allow organisms to successfully 

incorporate movements that bring about sensory information 

necessary to reach a decision (e.g., Lepora & Pezzulo, 2015). 

However, there was not a direct empirical test of this theoretical 

preposition. In the first study under this thesis, we aimed to fill this 

gap by implementing a decision making experiment in which 

movements could bring new sensory information. We developed a 

novel experimental paradigm that involved moving a computer 

mouse in order to reveal information about the visual stimulus and 

also to report choice. The hypothesis of our work in Chapter 2.1. 

was that actions related to decision making and actions related to 

sampling of information are subject to online interaction. In the 

context of our work, we predicted to observe markers of sampling 

movements and response movements happening in the same time 

window. 

 

1.5.2. Physical effort influences speed and 
accuracy in decision-making 
 

In the second study (Chapter 2.2.), we moved into another 

important facet of action-decision interaction. As described in the 

previous sections, physical effort of actions influences the 
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optimality dynamics in decision making process. There is already a 

well-known mechanism in decision making that is proposed to 

implement time-related optimizations, which is ‘urgency’ (Thura et. 

al., 2012). In Chapter 2.2., we draw possible connections between 

urgency that time constraints induce and urgency that a costly 

action may introduce. Our hypothesis was that physical effort 

imposes urgency similar to time-constraints. In order to draw 

comparisons between time-based and effort-based urgency, we 

manipulated both the response deadline and the amount of physical 

effort in a perceptual discrimination task. Our prediction was that 

we would find changes in speed and accuracy of responses under 

increased effort, similar to that of under short deadlines.  

 

1.5.3. Arousal due to physical effort correlates 
with speed and accuracy trade-off  
 

In the final study (Chapter 2.3.), we built over the results we 

obtained from the second study (Chapter 2.2.) and tried to 

disentangle the dynamics behind speed and accuracy changes under 

physical effort. As arousal is inevitable when an organism is 

involved in a strenuous action, we corroborated that physical 

effort’s influence on SAT might be mediated by arousal 

modulations. We used the same experimental paradigm as in 

Chapter 2.2. with the addition of pupil recording during the 

sessions. The main hypothesis was that physical effort alters pupil-

linked arousal as well as modulating speed and accuracy trade-off. 

Thus, we predicted to see differences in tonic pupil sizes as a 

function of effort levels and to show a correlation between the pupil 

size modulations and SAT modulations due to effort. 
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ABSTRACT 

Embodied Cognition Theories (ECTs) of decision-making propose 

that the decision process pervades the execution of choice actions 

and manifests itself in these actions. Decision-making scenarios 

where actions not only express the choice but also help sample 

information can provide a valuable, ecologically relevant model for 

this framework. We present a study to address this paradigmatic 

situation in humans. Subjects categorized (2AFC task) a central 

object image, blurred to different extents, by moving a cursor 

toward the left or right of the display. Upward cursor movements 

reduced the image blur and could be used to sample information. 

Thus, actions for decision and actions for sampling were orthogonal 

to each other. We analyzed response trajectories to test whether 

information-sampling movements co-occurred with the ongoing 

decision process. Trajectories were bimodally distributed, with one 

kind being direct towards one response option (non-sampling), and 

the other kind containing an initial upward component before 

veering off towards an option (sampling). This implies that there 

was an initial decision at the early stage of a trial, whether to sample 

information or not. Importantly, in sampling trials trajectories were 

not purely upward, but rather had a significant horizontal deviation 

early on. This result suggests that movements to sample information 

exhibit an online interaction with the decision process, therefore 

supporting the prediction of the ECTs under ecologically relevant 

constrains. 
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1. Introduction 

The classical view of decision-making was founded on the idea that 

action is executed after a decision has been made, in a serial fashion 

(Newell & Simon, 1972, Pylyshyn, 1984). This idea assumes a 

temporal and functional separation between the decision-making 

processes and the ensuing motor processes that implement that 

decision. Recent behavioural studies have challenged this strictly 

serial view and proposed, instead, that the choice execution process 

may begin before the decision process has concluded, de facto 

introducing the parallel view of decision-making (Ghez, et. al., 

1997, McKinstry, et. al., 2008). This parallel view states that there 

is an ongoing information flow from decision to action systems well 

before the decision process has been fully completed. According to 

this view, not only decision and action may coexist, but choice 

movements may be updated online based on newly acquired 

evidence (Coles, et. al., 1985).  

To investigate the putative interaction between action and decision 

as it unfolds in time, some studies have used decision-making tasks 

which require continuous control of action. These tasks track 

responses executed on devices like joysticks, robotic handles, 

computer mice, or freely with hand reaching movements (Resulaj, 

et. la., 2009, Burk, et. al., 2014, Barca & Pezzulo, 2012, Song & 

Nakayama, 2008). Since these responses have a wide temporal and 

spatial span, they make it possible to study, and compare the 

movement dynamics during the decision-making process.  
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A typical finding that emerges from continuous movement 

paradigms when subjects must move toward one out of two 

alternative targets, is the prevalence of movement trajectories that 

are not perfectly direct to the chosen target (Song & Nakayama, 

2008). These findings have shown that the initial phase of the 

response movement weighs in the paths to the two possible targets, 

maintaining a compromise which is later resolved by diversion of 

the trajectory committing to one of the targets (Chapman, et. al., 

2010, Gallivan, et. al., 2011). Some scholars attributed these 

averaged movements to an error in movement planning or to 

uncertainty of the movement goals (Cisek, 2006, Haith, et. al., 

2015). However, in decision making literature these averaged 

movement trajectories are commonly interpreted as a case of 

movement being planned and executed online during the decision 

process and more importantly, that there is a continuous crosstalk 

between these two processes (Cisek, Pastor-Bernier, 2014, Marcos, 

et. al., 2014). An exacerbated expression of this online crosstalk are 

changes of mind, trials in which the subject’s response movement 

starts off toward one target but corrects on-the-fly toward the 

alternative target (Burk, et. al., 2014). In general, these findings 

motivated the parallel view of decision-making, which focuses on 

the ongoing one-way flow of information from decision to action. 

Although the parallel view of decision-making assumes a richer 

interaction between action and decision than the strictly sequential 

view, it only accounts for the forward influence from decision to 

action. However, there is evidence for backward influence from 

action on decision as well. For example, Burk, and colleagues 
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(2014) showed that when the spatial distance between two response 

options is large, subjects make less changes of mind than when the 

distance between targets is shorter. This means that action costs are 

considered and influence the outcome of the decision process. In a 

similar vein, Cos and colleagues (2011) found that the amount of 

effort required to perform the response action biased performance in 

a decision-making task. There is, still, another type of backward 

influence from motor to decision processes: when actions help 

accrue information relevant for the decision. The present study 

addresses precisely this case. 

We can frame the evidence mentioned above under Embodied 

Cognition Theories (ECT) of decision-making, whose common 

characteristic is the influence of action dynamics on decision as 

well as the influence of decision on action. Indeed, drawing 

connections between motor processes and decision-making has a 

conceptual grounding on the wider framework of sensorimotor and 

embodied views in cognitive sciences (Clark, 1999, O’Regan & 

Noe, 2001, Barsalou, 2008), a general conceptual shift that has 

pervaded recent views in decision-making. One clear example is 

Lepora & Pezzulo’s Embodied Choice Model (2015). The model 

proposes a two-way online interaction between motor actions and 

decision processes and that this interaction allows for a fast update 

of movement and decision processes. A typical argument by 

example often used to support this view is that, in nature, animals 

must move about (their body and/or sensory epithelia) to be able to 

gather information that is relevant to making subsequent choices 

and planning upcoming actions (Lepora & Pezzulo, 2015). To use 
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the information gained through movement though, there needs to be 

a backward flow of information from action-related motor processes 

to decision-making.  

 

Figure 1. Interactions between motor action and decision in tasks without 

(a) and with (b) active information sampling. a.  In majority of the 

decision-making tasks decision process feeds the response plan which gets 

executed with a motor action. While the action continues, the output of the 

action feeds back into the decision process. This is not a fully embodied 

scenario, since actions do not bring an information change. b. In a fully 

embodied scenario considered here, two different action plans, for 

sampling and for responding, are allowed to unfold in parallel. The 

decision process has a feedforward influence on motor output, whereas 

sampling influences decision via feedback from the motor action. In 

contrast to panel (a), the executed motor action implements both 

responding and sampling of information. 

 

Despite the logical emphasis that embodied views make on 

information sampling movements, this notion has not been 

implemented in experimental tasks to support the ECTs. In fact, in 

most of these decision-making tasks, the stimulus information is 
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available all at once and static, without any dependency upon the 

participant’s movement (Lepora & Pezzulo, 2015, Barca & Pezzulo, 

2012, Hudson, et. al., 2007, Marcos, et. al., 2013). The interactions 

which can be potentially at play in these types of tasks have been 

illustrated in Figure 1a. Because the actions performed to report a 

choice are inconsequential to the inflow of information used to 

reach that decision, these tasks cannot capture all possible 

interactions between action and decision proposed by ECTs. 

Therefore, there is a need for tasks that can reveal the two relevant 

aspects of actions to identify the potential interplay between motor 

and decision processes. This interplay, which has motivated the task 

used here to test decision-making under ECTs, is illustrated in 

Figure 1b. Here, we assume that there are two types of action plans 

which are critical in an embodied decision-making scenario, the 

ones necessary for response itself, and the ones necessary for 

information sampling. Both of them interact with the decision 

process, and mediate both feed-forward and feedback interactions.  

In conclusion, we believe that the generality of the interplay 

between decision and action, and by proxy, of the embodied 

decision framework, have not yet been tested in all its critical 

components. In the present study, we aim to testing the ECTs’ 

predictions with a task in which information accrual depends on the 

subject’s actions. Empirical evidence regarding such a scenario is 

still scarce. We have developed a novel mouse-tracking task in 

which action is necessary both to sample information and to 

indicate the decision. To be able to single out one from the other, 

movements directed at sampling information and movements to 
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execute the response have been made orthogonal. That is, it is 

possible for the subjects to accumulate all the information first and 

then make the choice, to make a choice at once without any 

accumulation of information, or to do anything in between. Since 

trials have a time limit, the orchestration among information 

sampling actions and choice actions becomes strategic. Although 

sampling and response actions have orthogonal axis, one critical 

aspect of the task is that both action plans are executed via the same 

effector, so that the final motor output must synthesise the two plans 

if they are to co-occur, as the theory predicts. Similar to other 

mouse-tracking studies, the main test of our hypothesis depended on 

the analysis of metrics obtained from the trajectories (Freeman, et. 

al., 2011).  

Our hypothesis, derived from the ECTs (Lepora & Pezzulo, 2015, 

Cisek, Pastor-Bernier, 2014), is that the actions related to the 

decision-making process and the actions related to information 

sampling used to reach that decision are subject to significant online 

interaction. We first show that, in our task, trajectories depend on 

the amount of available information such that participants move to 

sample information when needed. Second, we demonstrate that the 

decision-making process transpires even at the initial phases of the 

information sampling movements, so that trajectories are biased 

towards one (usually the chosen) target much before all the 

information has been gathered. These results do not only suggest 

that the decision-making process pervades information sampling 

actions, but also that decision, actions and information sampling 
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may be orchestrated in parallel, and not necessarily in a strictly 

sequential fashion.   

2. Methods 

2.1.  Participants 

Twenty-one voluntary participants joined the experiment (12 

women, 9 men, average age 23.5 years). Participants were recruited 

from the database of the Center for Brain & Cognition (University 

Pompeu Fabra) and were paid 10 euros per hour in exchange for 

their participation. They were all right-handed and had normal or 

corrected to normal vision with no reported history of motor 

problems related to the upper limbs. Before proceeding with the 

experiment, all subjects read and signed an informed consent form. 

The research was conducted in accordance with the Declaration of 

Helsinki, institutional guidelines and regulations. The experimental 

protocol was approved by the ethics committee CEIC Parc de Salut 

Mar, Universitat Pompeu Fabra. Before conducting the hypothesis-

driven data analyses, we excluded data from two subjects whose 

accuracy was below 75%. This ensured sufficient number of correct 

trials for obtaining reliable trajectory averages. 

 

2.2.  Experimental setup  

Participants were asked to perform a visual object categorization 

between “edible” vs “non-edible” in a two-alternative forced choice 

(2AFC) paradigm. We used 63 edible and 63 non-edible object 

images from the Amsterdam Library of Object Images 

(Geusebroek, et. al., 2005), and each of them was presented only 
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once to each participant, obtaining a total of 126 different trials per 

participant. To control for possible effects of colour cues, we used, 

achromatic versions of the images. Stimulus display and the task 

were programmed with MATLAB, PsychToolBox (Brainard, 

1997). Visual stimuli were presented on a Cambridge Research 

Systems, Display++ monitor (1920 × 1080 pixels, 32’’, 100 Hz 

refresh rate). Responses were recorded through a computer mouse 

(HP USB Optical Scroll Mouse), and the cursor location was 

recorded at 100 Hz (at every display refresh frame). The 

participant’s task involved moving the cursor from a home position 

at the bottom centre of the display to the right or left response areas, 

depending on the choice regarding the image presented at the top 

centre (locations and other details are described below).  

For each subject, the total of 126 trials were divided, randomly and 

equiprobably into three different movement-to-visibility conditions: 

No Blur (NB), Low Blur (LB) and High Blur (HB). In the NB 

condition, the images were fully visible (without any blur) from the 

beginning of the trial, and therefore visibility was not contingent on 

action. For the other two conditions, in order to implement 

movement-dependent updating of information, we manipulated the 

visibility of the object images as a function of mouse position. We 

used a dynamic filter mask over the image to blur the image. The 

filter convolved each pixel with the neighbouring pixels with a 

Gaussian kernel with standard deviation (sd) proportional to the 

vertical distance between current cursor position and the target 

image at the top centre of the display, denoted 𝑑𝑣 (measured in 

pixels). In the LB condition, the Gaussian mask had sd = 𝑑𝑣/120, 
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whereas in the HB condition the Gaussian mask had sd = 𝑑𝑣/60. 

This effectively made blur (hence, image visibility) depend on the 

participants’ movement, so that moving upward de-blurred the 

target image (i.e., the shorter the vertical distance to target, the 

smaller 𝑑𝑣, and hence the lower the sd and the higher the visibility). 

The difference between the two blur conditions was the gain in 

visibility as a function of distance. 

 

Figure 2. Schematic illustration of a trial sequence. Each trial was 

preceded by a 2000ms inter-trial interval displaying a fixation cross. Then, 

the stimulus and the choices were presented on the screen until response, 

with a deadline of 2000ms. Response areas, left and right of the display, 

are denoted by straight vertical lines. All trials were equated to the same 

duration, 2000ms by adding a waiting time if necessary. RT = reaction 

time.  

2.3.  Procedure 

Each subject completed the task in a darkened, sound-attenuated 

laboratory room. Subjects completed a training session prior to the 

experimental block. The training consisted of 18 trials (6 from each 

blur condition in a random order) in which we used novel images 

that did not appear in the experiment. Before each trial started, the 
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subject moved the mouse cursor to the bottom-centre home area 

(height = 10 x width = 15 pixels, centre x, y coordinates: 960,1075 

pixels). The trial began with the image (265 x192 pixels) appearing 

at the top-centre of the monitor (x- coordinates: 827 to 1092, y-

coordinates: 0 to 192 pixels). As soon as the image appeared, the 

subject was free to move the mouse to indicate her choice by 

reaching to, and clicking on, one of two response areas, left or right 

side of the display, within 2000 ms (Figure 2). The rectangular 

response areas, covering the leftmost and rightmost 23% of the 

display, were indicated by two vertical lines along the screen sides 

(x coordinates: 440 and 1480 pixels, respectively; see, Figure 2). 

For half of the participants, edible was attributed to the left response 

area and non-edible to the right. For the other half, it was reversed. 

Response deadline was 2000 ms, after which the subject missed the 

trial. The deadline was introduced to create time pressure. This and 

similar methodological practices to encourage early movement 

initiation are used commonly in mouse-tracking studies (Scherbaum 

& Kieslich, 2018, Fischer & Hartmann, 2014). In our particular 

protocol, this deadline had been established after previous pilots, 

and rendered average performance below ceiling but within the pre-

set subject inclusion criteria (<75 %). As it will become clear later, 

the trial time imposed could be (and was) used up in different ways 

depending on the available information at the beginning of the trial 

(see Movement onset latency analysis in the Results section). Each 

trial took the whole 2000 ms, independently of the response time, to 

ensure that the duration of the session was fixed. After a trial ended, 

the participant needed to move the cursor back to the bottom-centre 
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home location for the next trial to begin. The inter-trial interval was 

2000 ms, which also served as a fixation screen. Trials from all 

three conditions (NB, LB, HB) were interleaved randomly 

throughout the experiment. Hence, for efficient responding, 

participants could not fall back on a pre-defined strategy based on 

visibility prior to the start of the trial.  

Because the response areas covered both lateral sides of the display, 

the decision movement could vary in terms of the vertical extent of 

the trajectory, including direct horizontal movements from the 

home location to the response area. As said earlier, in the blurred 

image (LB and HB) conditions, the image blur decreased as the 

mouse moved upward. Therefore, when the image did not contain 

sufficient information, the participant needed to move in the vertical 

direction in order to gather evidence. Because of the response 

deadline (2000 ms), moving upward had a cost (i.e., took time off 

the available response time). Therefore, moving upward is not an 

optimal strategy if it is not necessary to sample evidence.  

2.4. Data Analysis 

In our task, characterizing information sampling and response 

components of the subjects’ action boils down to the analysis of 

heights and angles of the response trajectories (some example 

trajectories are shown in Figure 3). Firstly, we inspected the 

trajectory height, denoted h, which was calculated by measuring the 

vertical distance (in pixels) between the starting point and the 

highest point of the trajectory (Figure 3a). Second, we analysed the 

initial angle of trajectories, denoted α, which was defined as the 
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angle described by an imaginary straight line connecting the starting 

point with the point at one-third of the length of the trajectory (cyan 

dashed line in Figure 3a), with respect to the vertical midline (0º). It 

is important to note that, although correct targets were randomly 

assigned left or right sides during the task, for analyses we realigned 

the correct choice to positive angles. Henceforth, positive angles 

indicate the direction of the correct choice, and negative angles that 

of the incorrect choice. Despite we excluded incorrect trials from 

the analysis, negative angles are possible at initial stages in the 

trajectory of correct trials. 

 

Figure 3. a. An example of one mouse trajectory (red line) on the 

experimental display. Response areas are indicated to the participants by 

the solid vertical lines on the left and right sides. The white dashed line 

indicates the height h of the trajectory. The cyan dashed line that joints the 

origin with the point of the trajectory that lies at one third of its total 

length serves to calculate the initial angle α of the trajectory with respect 

to vertical. Positive angles are defined to be in the direction of the correct 

target, whose location could occur randomly on either side.  b. Examples 

of trajectories for several individual trials, with the same conventions 

described in a.  

We preregistered this study and we first report the analyses that 

were planned prior to data collection (see, https://osf.io/3ysah/). We 

also performed follow-up analyses that have been decided after the 
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pre-registration process, as these reveal important characteristics of 

the data. Throughout the results section we report statistical tests 

according to the frequentist approach (the analogous Bayesian 

analyses are reported in the Supplementary Table S1, as both 

analyses lead to the same conclusions). We excluded incorrect trials 

from the trajectory analyses, as is usual practice in order to extract 

decision-related effects from categorically similar responses (Barca 

& Pezzulo, 2015, Quinton, et. al., 2013, Flumini, et. al., 2015). On 

average, each participant had 110 correct trials (range103 – 123) out 

of 126 total (overall mean accuracy >87%). The mean number 

correct trials out of 42 per condition was 37.4 (sd = 3.6), 36.9 (sd = 

2.7) and 36.2 (sd = 2.8) for NB, LB and HB conditions, 

respectively. This indicates that the increase in blur ended up with 

slightly lower accuracy rates. The mean response time of correct 

trials was 1107 ms (sd = 117), 1266 ms (sd = 135) and 1374 ms (sd 

= 142) for NB, LB and HB conditions, respectively. The increase in 

blur resulted in longer response times in addition to lower accuracy. 

 

3. Results 

3.1.  Movement-dependent information sampling  

If participants gather information as is needed, their trajectories 

should reach higher when the image is blurred. We therefore tested 

whether trajectories in blur trials reached higher than trajectories in 

the no blur trials. As can be seen in Figure 4a, trajectories in the two 

blur conditions were higher than in the no blur condition, since 

information sampling was unnecessary in the latter (right tail 

paired-samples t-tests, t(17) = 6.53, p < 0.001, Cohen’s d = 1.54; 
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t(17) = 7.03, p < 0.001, Cohen’s d = 1.66, for the comparison of NB 

with LB and HB, respectively). This result rules out the option that 

participants used a good-for-all strategy, by just moving up as soon 

as the trial started and then deciding which side to go. However, 

even in the NB conditions trajectories had a non-zero vertical 

component (mean = 368.3 pixels, sd = 231.9), possibly due to 

biophysical motor constraints. Another potential reason for non-

zero height in NB condition is the random presentation of 

conditions in the experiment. Since in approximately two thirds of 

the trials gathering more information has an advantage, participants 

might have an anticipatory tendency to move upwards. To eliminate 

the height differences that are present in the trajectories but 

unrelated to information gathering, we subtracted the average height 

in NB condition from LB and HB trajectory heights in each 

individual’s data and continued the analysis with these normalized 

values. The results showed that trajectories in HB trials were about 

27% higher than in LB trials (mean = 315.7, sd = 190.4, vs 229.3, 

sd = 148.8, respectively; right tail paired-samples t-test, t(17) = 

5.39, p < 0.001, Cohen’s d = 1.27). 
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Figure 4.a. Height of trial trajectories for NB, LB and HB conditions. 

Each colored dot represents individual means for the corresponding 

condition. White dots represent the group median for the condition and the 

grey lines represent the inter-quartile range. b. Probability density of the 

initial angles of the trajectories across participants. The solid black line 

corresponds to the Gaussian mixture model (with 2 components) fit to the 

distribution (model with 2 components AIC = 19105 < model with 1 

component AIC = 19753). Angle 0º corresponds to straight vertical 

upwards movement, i.e., with no horizontal component. Positive angles 

correspond to correct target direction.  

 

3.2.  Interplay between decision and action  

Bimodality of trajectories. A central prediction of ECTs is that 

movements should reflect the decision-making process throughout, 

such that the trajectories should show early on a bias towards the 

finally chosen target. We tested this prediction by studying the 

initial angles of the trajectories (Figure 4b). However, for this 

analysis we decided to include only those trials for which sampling 

had occurred, instead of mixing in trials with and without sampling 

behaviour. This was motivated by the fact that the distribution of 

angles was clearly bimodal (Hartigan’s Dip Test (Hartigan & 

Hartigan, 1985), p-value < 0.001; Gaussian mixture model better fit 

with 2 components, Akaike Information Criterion (AIC) = 19105 
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than the model with 1 component, AIC = 19753). A central lobe of 

the distribution peaked at an angle 2.3º (that is, close to vertical, 

which was arbitrarily defined to be 0º), and a lateral lobe peaked at 

66.4º (positive angles correspond to directions to the correct target, 

with 90º being a perfectly straight trajectory). The separation 

between the two lobes of the bimodal distribution was therefore 

43.52 º. Detecting subtypes of trajectories is fundamental to avoid 

averaging trials that are different in terms of the underlying 

cognitive modes (Hehman, et. al., 2015, Wulff, et. al., 2019). 

Please, note that in our case averaging these two types of 

trajectories could end up rendering an average trajectory between 

sampling and non-sampling that is unrepresentative of the majority 

of the responses, which are of one or the other kind. Therefore, this 

bimodality and the cut-off point allowed us to classify trajectories 

as sampling or non-sampling, depending on whether the initial 

angle is closer to the central or the lateral peak of the bimodal 

distribution, respectively. Apart from the bimodality at group level, 

we confirmed significant bimodality in the distribution of trajectory 

angles for each subject individually (see Figure S1) for 9 out of 18 

subjects. This means that early on in a trial, there is a fast sub-

decision regarding the sampling or non-sampling strategy. This is 

further supported by the movement onset latency results, below.  

The presence of two types of trajectories can be observed in each 

blur condition separately (Figure S2). As one would expect, there is 

a large fraction of non-sampling trajectories in the NB condition 

(corresponding to the lateral lobe of the bimodal distribution; q = 

0.62, X2(1, N = 635) = 39.86, p < 0.001), though perhaps 
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surprisingly in the HB condition there was a fraction of non-

sampling trajectories (q = 0.14 binomial test p < .05). The presence 

of sampling and non-sampling trajectories across all blur conditions 

suggests that participants made an initial choice about whether or 

not to gather information. This is supported by an analysis that 

showed that trajectories classified as non-sampling had a much 

smaller height than sampling trajectories (right tail two-sample t-

test, t(17) = 11.9, p < .001). Thus, non-sampling trajectories simply 

reflect a direct movement towards the chosen target that emanates 

from an initial decision, with little information gathering or ongoing 

decision-process throughout.  

Movement onset latency analysis. We estimated the latency of 

movement onset as the time between trial onset and the initial 

movement of the mouse. The analysis showed that mean latency in 

non-sampling trials was longer (mean = 435 ms, sd = 125 ms) 

compared to sampling trials (mean = 329 ms, sd = 77 ms; right tail 

two-sample t-test, t(17) = -4.4 , p < .001, Cohen’s d = -1.04). This 

means that when the subjects exhibited a non-sampling strategy, 

they generally did so after waiting for longer at the initial location. 

This adds support to the interpretation that there is an initial sub-

decision about whether to sample information or not, happening 

early in the trial, based on the available information about the 

target. 

Speed of movement analysis. We estimated the average speed of 

trajectories in each condition. The mean speed was higher in HB 

(mean = 30.2 cm/s, sd = 6.9) and LB (mean = 28.8 cm/s, sd = 7.6) 
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compared to NB (mean = 23 .9 cm/s, sd = 7.5) condition. We 

conducted repeated measures ANOVA to see the effect of blur on 

movement speed. The results showed that movement speed was 

significantly modulated by blur (F(2,34) = 37.2, p < 0.001, η2 = .68) 

Angle analysis of sampling trajectories. Thus, given the initial sub-

decision and the ensuing existence of two different types of 

trajectories, a direct test of the prediction of ECT requires 

examining the sampling trajectories alone. These trajectories 

correspond to the central peak of the distribution in Fig. 4b. As the 

initial angles of these trials are close to zero (vertical), trajectories 

mostly depart vertically from the home position with the aim of 

gathering information to guide the final choice. However, a key 

finding is that in addition to the prominent vertical component, the 

initial steps of the trajectory were already biased towards the chosen 

target, as the initial angle was significantly larger than zero in both 

LB and HB conditions (right tail one sample t-tests, t(16) = 4.58, p 

< .001 and t(16) = 3.41, p = .002, respectively). This result strongly 

supports the notion that the decision process transpires into the 

movement even whilst participants are actively sampling 

information.   

One might argue that some trials in the analysis above might have 

been misclassified (as non-sampling, instead of sampling trials), 

given the partial overlap of the two lobes of the bimodal distribution 

of angles. This could introduce some biases towards positive angles. 

To control for this possible confound we used a more data-driven 

analysis limited to LB and HB trials only (in which participants are, 
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for the most part, in need to sample information), that does not rely 

on trial classification. In this analysis we calculated average angle 

in incremental ranges of angles (symmetric around 0º) from ±1º to 

±30º, in steps of one degree (Figure 5a).  We found that the average 

angle was significantly larger than zero in all the ranges larger than 

±14º (right tail t-tests, p < .05, see Figure 5a). Angles in the range 

±14º and ±20º are well inside the central peak of the bimodal 

distribution, as described above, and therefore can be independently 

classified as sampling trajectories (trajectories with such small 

initial angle very unlikely correspond to trials where the decision 

maker already made a choice about where to move). In sum, this 

new analysis reveals that trajectories whose initial angles lie within 

a small range of angles symmetrical around zero already show a 

significant bias towards the chosen target. This result supports, once 

more, the notion that the ongoing decision-making process 

transpires into the movement well before all the information 

necessary to solve the task has been gathered.  

Although we did find significant deviations in the initial angle of 

blur trials (HB, LB) we did observe only marginal evidence that the 

angle deviation was larger in LB (mean = 5.28º, sd = 4.75) than in 

HB (mean = 3.42º, sd = 4.13) conditions (Fig. 5b; right tail paired-

samples t-test, t(16) = 1.66, p = 0.058, Cohen’s d = .4).   
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Figure 5. a. Mean initial trajectory angle for all blur trajectories (pooled 

LB and HB data), along incremental ranges of angles symmetric around 

zero. The solid black line corresponds to the inter-individual mean (the 

grey area represents s.e.m.). The black horizontal line represents 

significance (right tail t-test, p < 0.05) against the hypothesis that the 

mean angle is not larger than zero. b. Initial angle of trial trajectories for 

LB and HB conditions. The coloured dots represent each participant’s 

mean value for the corresponding condition. The white dots represent the 

median for each condition and the grey lines illustrate the inter-quartile 

range. 

3.3.  Converging evidence from angle and height 

information 

Initially we had decided to classify sampling and non-sampling 

trials based on initial angle of the trajectories. However, if our 

hypothesis is correct, a similar classification should apply to the 

heights of the trajectories. This is because sampling trajectories are 

expected to reach higher than non-sampling trajectories, as the latter 

correspond to ballistic movements to the target without much 

ongoing deliberations and thus are expected to reach vertically 

much lower. What is more, if trajectories are truly separable into 

sampling and non-sampling, then it should be the case that in their 

heights should also be distributed in a bimodal way, and height and 
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angle should be correlated. Consistent with this prediction, we 

found that heights were distributed in bimodally (Figure 6a) across 

conditions and participants (Figure 6a; Hartigan’s Dip Test, p < 

0.05; see Figure S3 for each blur condition). These results in turn 

suggest that it should be possible to classify trajectories as sampling 

and non-sampling based on the bimodality in heights, and that this 

classification should be largely consistent with the one derived 

above from the angle analyses. In line with this, classification based 

on height and classification based on angle were highly correlated 

(Pearson’s correlation, r = 0.76) and clustered trials in two clear 

categories (Figure 6b). 
  

7 

 

 

Figure 6. a. Probability density of the heights of the trajectories across 

participants. The solid black line corresponds to the Gaussian mixture 

model with 2 components fit to the distribution (better fit in the model 

with 2 components, AIC = 26439 lower than the model with 1 component, 

AIC = 26874). b. Probability density of the heights and angles of the 

trajectories across participants.  

Similar to the main angle analysis reported in Section 3.2 (where 

trial classification was based on angle), we analysed angle again but 

this time using trial classification based on height. We found that 

the angles in sampling trials, both the LB and the HB conditions, 
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were significantly larger than zero (right tail one sample t-test, t(16) 

= 3.7, p < 0.001, Cohen’s d = .9 and t(16) = 2.05, p = 0.029, d = .5, 

respectively). This outcome corroborates the conclusions of our 

main analysis and shows that this finding generalizes regardless of 

the classification variable used.  

3.4.  Generalization of the results along the trajectory  

In the main analysis, we estimated angles at one third of the 

trajectory, as we wanted to capture the initial moments of the 

response movement. However, the criterion to compute angles at 

one-third of the trajectory is somehow arbitrary. As a check 

regarding the reliability of this result, and the validity of the 

criterion used, we decided to compute the angles along the whole 

trajectory at 10 equidistant points, from 1/10th to 10/10th of the 

trajectory length. Then we checked the distribution of angles at each 

of these trajectory points. We found significant bimodality of angle 

distributions in all except the last trajectory point (Hartigan’s Dip 

test, p < 0.05). This generalizes the bimodality of trajectories 

beyond the one particular point used in the main analysis. As can be 

seen in Figure 7, the distribution of angles from 1/10th to 5/10th of 

trajectory shows an earlier peak closer to 0º which means that a 

portion of trials classified as sampling are still in a phase of upward 

movement. Logically, at later stages the trajectories show diversion 

towards the final choice. Therefore, we are safe to interpret our 

main results obtained from angles calculated at the 1/3rd of the 

trajectory length as it is early enough to check if decision transpires 

into the movement during active sampling. 
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Figure 7. Probability density of angles calculated at 1/10th to 10/10th of 

trajectory length. The solid black lines correspond to the Gaussian mixture 

model with 2 components fit to the distribution. The asterisks indicate the 

significance of Hartigan’s dip test for bimodality (p < 0.05). 

3.5.  Angle and height analyses including error trials  

It is common practice to use only correct trials in trajectory analyses 

(Barca & Pezzulo, 2015, Quinton, et. al., 2013, Flumini, et. al., 

2015), because the aetiology of errors is varied and difficult to 

trace. However, one could argue that removing error trials might 

have biased the outcomes toward positive angles. In order to ensure 

that the results we found were not due to biases induced by the 

exclusion of error trials, we repeated the height and angle analysis, 

this time including error trials along with the correct trials. We 

found that NB trials (mean = 393.6, sd = 208) had significantly 

lower height than LB (mean = 636.6, sd = 185.7) and HB (mean = 

726.8, sd = 150.8) conditions (right tail paired-samples t-tests, t(17) 

= 7.6, p < .001 and t(17) = 8.1, p < .001, respectively). As in the 

main Results section 3.2, we subtracted the NB average height from 
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LB and HB and compared them. The result of the right tail paired-

samples t-test showed that HB trajectories were significantly higher 

than LB trajectories (t(17) = 5.2, p < .001) , confirming the main 

results conducted only on correct responses. Similarly, we assessed 

the angle of sampling trajectories in LB (mean = 4.6, sd = 4.2) and 

HB (mean = 2.1, sd = 3.9) and found that both were significantly 

above 0 (right tail one sample t-tests, t(17) =.4.7, p < .001 and t(17) 

= 2.3, p < .05, respectively). We conducted right tail paired-sample 

t-test, to test if LB had larger angles than HB. The results showed 

that LB had significantly larger angles than HB (t(17) = 2.5, p < 

.01). Thus, we can conclude that the results we reported were not 

biased due to exclusion of error trials. As we see that the direction 

and significance of the effects did not change when the analysis 

were repeated with correct and incorrect trials altogether. 

4. Discussion 

Many studies in the past have challenged the classical view of 

decision-making and cognition which assumes a temporal and 

functional separation between decision and action systems (Newell 

& Simon, 1972, Pylyshyn, 1984). The newer view is that natural 

choice actions in humans and other animals involve movement 

patterns that reflect, in part, the ongoing decision process. As a 

result, movement trajectory analyses in continuous control tasks 

have been increasingly used to trace the underlying decision 

dynamics. The outcome of the present study clearly sides with this 

framework, showing that it is possible to trace decision dynamics 

from the ongoing choice action (Tabor, et. al., 1997, Magnuson, 
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2005, Spivey & Dale, 2006). However, the majority of the tasks 

used in previous studies did not contemplate decision-making 

scenarios where actions are also required to sample information. 

This scenario characterises choice in many natural environments, 

such as getting closer to an object to decide whether it is nutritious 

food or else should be avoided. To fill this gap in the literature, we 

tested whether the outcome of decision processes pervades 

sampling actions. 

As mentioned in the introduction, parallel processing of decision-

making and action control processes is an important principle. 

However, the nature of the interaction between the two is still under 

debate, given that a strictly parallel view might be insufficient to 

account for the full range of decision and action interactions. For 

instance, Lepora and Pezzulo (2015) have put forward the 

‘embodied choice’ framework, that accommodates richer 

interactions between action and decision through action-dependent 

information gain, compared to the parallel account. However, the 

experimental tasks they have used to illustrate their predictions 

lacked the active sampling component, which leaves one main 

prediction of the theory still unresolved. The findings of the current 

study support the ‘embodied choice’ theory by showing that the 

interaction between decision and action can be revealed, and traced 

in the decision responses, under ecological scenarios that 

incorporate the active sampling constrain. If this were not the case, 

we would have observed a temporally separated sampling and 

responding characteristics in the movement trajectory without any 

angular deviation during sampling, in early parts of the trajectories. 
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In fact, that non-sampling trajectories observed in our data revealed 

a kind of serial decision-making pattern which consists of a longer 

stationary period followed by a shorter movement (Results section, 

movement onset analysis). However, sampling trajectories were 

characterized by moving earlier (shorter stationary period) followed 

by a longer movement directed at sampling which is biased by the 

decision process. Thus, rather than claiming that all decisions are 

fully parallel and continuous, our preferred interpretation is that, 

even if there are certain stages in the decision process, some of 

them allow for continuous interaction of action and decision status.   

One central feature of the task used in the present study is that 

participants must trade off information (image de-blurring) for 

energetic efficiency (moving up, hence orthogonal to the choice 

goal). This is because motor execution involves expenditure of 

energy, thus incurring effort-related costs. Motor cost and physical 

effort have started to be studied in relation to decision-making 

(Burk, et. al., 2014, Marcos, et. al., 2015). For instance, Cos and 

colleagues (2014) have shown that effort and biomechanics of a 

task influence the decision dynamics starting at early stages. It is 

likely that physical effort influences the decision dynamics due to 

the strong interactions between action and decision. In our 

experiment, each blur condition had a different cost/information 

structure. Although, it is not easy to quantify exactly how this 

effort-to-information ratio impacted our results (due to the use of 

real images instead of parametric stimuli), it is still safe to say that 

the effort associated to information sampling altered the decision-

making process, rendering differences in choice trajectories. The 
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analyses showing an inverse relationship between image visibility 

and trajectory height clearly support this. 

The main result to emerge from this study, however, was based on 

the deviations and curvatures in choice trajectories. Please note that 

this is only superficially similar to other mouse-tracking studies 

(Spivey, et. al., 2010, Freeman, 2018, Wojnowicz, et. al., 2009). A 

common task characteristic our current study shares with this 

previous work is the urgency of responding (Scherbaum & Kieslich, 

2018, Kieslich, et. al., 2019). Via imposing time pressure, 

participants are encouraged to execute decision and action in the 

same time window as it is more optimal for a successful response 

than staying stationary to make a decision and then move to report 

it. However, the fundamental feature of our experiment compared to 

others in the decision-making literature is the presence of a 

functional link between information and movement. In those 

previous works, the subject planned and performed actions to report 

the choice response, therefore effectively allowing to study 

interactions between decision process and response plan only in one 

direction (as shown in Figure 1a). In contrast, the task we developed 

here involves, and makes it possible to study, both response and 

sampling plans and their mutual interplay (Figure 1b). Another way 

to put it is that most of the previous studies so far have considered 

only tasks equivalent to the ‘no blur’ condition of our study. Hence, 

one of the main goals here was to compare the trajectories between 

different sampling conditions as a function of movement-to-

information ratio. First, the results obtained conclusively support 

the prediction that the decision process pervades information 
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sampling movements in various ways. Information sampling 

trajectories deviated toward one of the choices (the correct one, on 

average) very early on. We confirmed this both in low blur and high 

blur conditions, using only trials classified as sampling trials. A 

second expectation by hypothesis was that, if the sampling 

component was stronger in high versus low blur conditions, then 

one would assume that the decision component will be more 

pronounced in the trajectories of low blur trials than in those of high 

blur trials, especially at early stages. This is because the need for 

information in high blur trials is stronger. Angular differences 

between low and high blur conditions calculated according to the 

planned analysis (at 1/3th of trajectories) were in the expected 

direction, but reached only a marginally significant effect. This 

borderline result may be due to the fact that the two conditions were 

not sufficiently different in terms of costs of sampling movement 

(effort-to-information ratio). This cost depended directly on the blur 

function, which was chosen arbitrarily. Indeed, subsequent analyses 

where angle was calculated at different stages throughout 

trajectories, or when angular deviation was calculated in 

incremental steps from movement origin, revealed robust significant 

differences in the same, predicted direction. This variability reflects 

the importance of the task mechanics to the study of sensorimotor 

interactions in a decision-making setting (Kieslich, et. al., 2019). 

Variants of active sampling decision-making tasks, including 

variations of the information cost function, should shed more light 

on the full range of embodied decisions under naturalistic 

constrains.   
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We argue that the proposed interactions between action and 

decision revealed by our data rely on the incorporation of sampling 

and responding actions in the task structure (as illustrated in Figure 

1b). We note that the tasks that include movement-agnostic 

stimulus, often used in the literature (and illustrated in Figure 1a), 

are a special instance of the more general case modelled in Figure 

1b: one in which the arrows to and from “sampling plan” have zero 

weight. This is also the case of non-sampling trajectories that we 

observed in our study. Yet, our experimental setup is not intended 

as a general model for all action-decision possibilities that humans 

and animals are capable of. We rather claim that embodied 

decisions are the manifestation of the flexibility of the decision 

process (Wispinski, et. al., 2018). In many natural and ecological 

situations, like the one modelled here, decisions have to be carried 

out as ECTs predict –with a strong interaction coupling with action 

processes. Nevertheless, there are also abstract and higher-level 

decisions which may comply with serial accounts of decision-

making, especially in humans given their more sophisticated 

planning strategies. In line with a ‘phylogenetic refinement’ view, 

fully abstract cognitive operations are evolutionarily more recent, 

whereas rich cycles of action and decision are prevalent from very 

basic animals to complex mammals (Cisek, 2019). In the human 

context, depending on the task, the biomechanical characteristics 

and previous experience, we may observe response patterns ranging 

from a pure abstract and covert decision-making process that 

precedes any action, to a fully embodied and interactive one such as 

the one seen here. For instance, a novice driver may find herself 
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thinking step-by-step about all of the driving actions before 

executing them, however as practice accumulates, she may decide 

and move at the same time with ease. Therefore, we are aware of 

the vast complexity underlying the interaction between decision and 

motor action (Gallivan, et. al., 2018). Previous studies have 

succeeded in revealing the impact of decisions on choice actions in 

situations where actions do not contribute information. Our study 

provides one step forward in understanding these interactions under 

the new constrain of action-dependent information sampling. What 

we have shown is that when the task dynamics imposes this type of 

ecological constraint, action for sampling and choice action have 

interactions with the decision process and with each other.  

Despite the novelty of the present study, it has covered only a 

subset of situations and some areas of the decision-action process 

remain uncharted. For instance, in this study we used orthogonal 

vertical and horizontal movement components to observe sampling 

and decision respectively. Yet, the weights of these movement axes 

are not equal, considering the display dimensions and the difficulty 

of equating a level of information gained with a unit of sampling 

movement and a level of decision criterion with a unit of response 

movement. In the future, different approaches such as reward 

structures and/or stimulus that allow parametric information gain 

can be utilized to answer more specific questions about action and 

decision interaction. Besides the task design aspects, we are not 

oblivious to the fact that the present group patterns on which we 

have based our conclusions contain important individual 

differences. These individual patterns may reveal fundamentally 
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different strategies in the trade-off between information sampling 

and decision. Uncovering the hidden dynamics behind them will be 

key to characterize embodied decisions. Lastly, in this study we 

have focused our analysis on the correct trials and therefore 

designed a task with a ceiling level performance. In decision-

making field, error responses are crucial to understand the 

underlying mechanisms. After establishing the main principles of 

the ECTs, we expect to see studies delving on to error behaviours 

and enriching our understanding of embodied decisions.  

To summarize, the present study provides a demonstration of 

interactions between action to sample information, action to 

respond, and decision process with a novel mouse-tracking task. 

Our results show that decision outcomes feed into movement 

trajectory during information sampling movements which, in turn, 

accrue decision-relevant information. This is a support for the 

embodied theories in decision-making with a task that allows to 

inspect rich action-dependent sampling mechanisms. 
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Supplementary Information 

1. Supplementary Figures 

 

Figure S1. Distribution of angles for each individual subject. 

 

 

 

 

Figure S2.  Distribution of trajectory angles for each blur condition 
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Figure S3. Distribution of trajectory heights across participants for 

each blur condition. 

2. Supplementary Table 

 

Table S1. Bayesian counterparts of the t-tests that have been 

reported in the Results section. The analyses are ranked in the order 

of appearing in text. 

 

  Page 

Analysis 

Variable H1 

Bayes 

Factor Error 

Median 

Effect 

Size 95% CI 

Frequentist 

p-values 

1 7 

Height (all 

trials) 

HB > 

LB 1067.6 < 0.001 1.17 

[0.54, 

1.79] <0.001 

2 9 

Angle 

(classification 

based on angle) LB > 0 209.53 <0.001 1.01 

[0.41, 

1.63] <0.001 

3 9 

Angle 

(classification 

based on angle) HB > 0  25.27 <0.001 0.73 

[0.21, 

1.29] =0.002 

4 10 

Angle 

(classification 

based on angle) 

LB > 

HB 1.45 0.004 0.37 

[0.04, 

1.12] =0.058 

5 11 

Angle 

(classification 

based on height) LB > 0 44.02 <0.001 0.8 

[0.26, 

1.38] <0.001 

6 11 

Angle 

(classification 

based on height) HB > 0  2.56 0.002 0.44 

[0.06, 

0.93] =0.029 
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ABSTRACT 

When making decisions one must consider the costs of gathering 

relevant information.  It is well known that time imposes a cost 

expressed through the urgency to execute the choice. However, 

other potential costs contributing to urgency, such as the physical 

effort necessary to gather evidence, have been largely overlooked. 

Here, we address the hypothesis that physical effort used to gather 

evidence can alter decision-making dynamics by modulating 

urgency. To test this, we used a random dot motion discrimination 

task where stimulus viewing was contingent upon continuous effort 

exertion on a dynamometer. By manipulating the amount of 

physical effort of the hand press and the response deadline, we 

addressed whether effort induced speed-accuracy trade-off changes 

similar to those of deadline manipulations. The results showed that 

physical effort speeded up RTs similar to a deadline curtail, and 

reduced accuracy and motion discrimination performance. Overall, 

we propose that physical effort as well as time pressure costs 

converge as the decision process unfolds, and tax the decision 

maker with an urgency signal that accumulates in time.  
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1. Introduction  

Quite often we must make decisions in the face of time constrains 

and limited resources available to gather information (e.g., physical 

and/or cognitive effort). In many ecological situations, 

accumulating information and making subsequent decisions is 

contingent on both effort and time pressure involved in the task. For 

instance, riding a bike in a city requires the orchestration of fast 

decisions and effortful actions like pedaling and braking, within 

hard time constraints like complying with street lights, making turns 

etc. This implies solving an optimality problem by considering time 

and effort as currencies toward obtaining outcomes.  Sometimes it 

may be more attractive to make an early decision with less effort 

even at the cost of reduced accuracy, whereas in other contexts 

greater amounts of effort may be invested to secure precision on a 

certain outcome. This is the notion of speed accuracy trade-off 

(SAT), and many influential decision-making models in 

neuroscience and economy have tried to account for its underlying 

mechanisms (Wald, 1947, Edwards, 1965, Ratcliff & Rouder, 

1998). However, while time constraints and SAT have received a 

wide attention in the study of decision-making, physical effort and 

its potential effects on decisions have been mostly neglected until 

the last couple of decades (Kurniawan, et.al., 2011, Cos, 2017, 

Dounskaia, 2010, Cos, et. al., 2014, Cos, et.al., 2011). This is 

remarkable, given that the putative importance that physical effort 

has as a constraining resource for behavior. In the present study we 

address the impact of the physical effort used to control 

accumulation of information on decision-making, and draw 
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comparisons to the known effects of time constraints. We will 

consider previous findings on time constraints in relation to 

decisions, their interaction with the motor system, and common 

mechanisms that might drive both time-related and effort-related 

effects.  

Accumulation-to-threshold models posit decision as a process of 

accumulation of evidence until a bound is reached. According to 

these models, SAT may be generally explained by a positive 

relationship between, on average, longer evidence accumulation 

(with greater gains in evidence) and higher accuracy (Heitz, 2019). 

This even happens in difficult trials where sensory information is 

noisy and the trial condition is difficult: the longer the accumulated 

evidence, the higher the accuracy (Shadlen & Kiani, 2013). 

However, in difficult trials the gain in accuracy obtained by 

observing longer the stimulus might not pay off the protracted 

observation time. To optimally solve this tradeoff, the decision 

process is additionally endowed with an urgency signal that tracks 

the passage of time, and pushes the decision process to terminate 

even if the evidence is noisy (Drugowitsch, et. al., 2012, Thura, et. 

al. 2014). There are two ways in which the urgency signal can be 

incorporated into the current models of decision-making. The first is 

collapsing decision bounds as a function of time, effectively 

triggering response in later stages of the deliberation with less 

evidence accumulated (Drugowitsch, et. al., 2012). The second is a 

signal that multiplies the accumulated evidence and increases as the 

accumulation continues. Both implement a signal that facilitate 
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reaching a decision as time goes by, at the cost of lesser certainty 

(Thura, et. al. 2014). 

Due to the conceptual connection between urgency and SAT, 

urgency is studied through task manipulations known to affect SAT. 

For instance, emphasizing speed or accuracy in a reaction time task, 

or manipulating trial deadline (Heitz, 2019). This approach is also 

used to address the brain correlates of the putative urgency signal. 

Neurophysiological recordings have pointed out the neural signals 

related to motor processing for carrying out urgency-related brain 

activity. For instance, when response speed was emphasized in a 

decision-making task, Spieser and colleagues (2017) found that the 

interval between EMG (electromyographic) activity onset and the 

behavioral response was reduced, showing a modulation in the 

motor system which operates fast movements in speeded decision-

making tasks. There is also evidence for higher motor preparation 

(indexed by a decrease in in mu/beta-band oscillations in scalp 

EEG) over the motor cortex prior to stimulus under time pressure 

(Steinemann, et. al., 2018). This indicates that the context-

dependent urgency (speed or accuracy emphasis) regulates the 

baseline activity in the motor pathway. In keeping with this, an 

electrophysiological study by Thura & Cisek (2014) found activity 

in primary motor cortex and premotor cortex of monkeys that 

reflects both the accumulated sensory evidence but also the 

animals’ subjective urgency to act. Altogether, this evidence 

strongly suggests that the urgency signal has significant impact on 

preparatory motor activity, as well as implications for motor 

execution of responses.  
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It is plausible to think of urgency in terms of time cost. When a 

decision has to be made rapidly, time has a higher cost, and 

therefore it is traded off with a heightened activation in the motor 

system (Standage, et. al., 2014). This can explain the baseline 

adjustment of motor preparation in speeded tasks mentioned in the 

previous paragraph (Steinemann, et. al., 2018). Given the close 

connection between urgency and motor processes, researchers have 

wondered whether urgency is implemented through striatal 

networks responsible for reward/cost mechanisms and motivated 

behavior (i.e., basal ganglia) (Carland et. al., 2019). Since basal 

ganglia activity predicts rewards and modulates the speed of 

movements (Houk, et. al., 1995 & Schultz & Romo 1992), it is a 

candidate structure for aiding SAT-related changes in motor 

processing. Supporting this logic, research has actually shown that 

the basal ganglia exhibited SAT related modulations (Bogacz, et. 

al., 2010, Forstmann, et. al., 2010, van Maanen, 2016). For 

example, van Maanen (2016) showed that the striatum showed 

higher activation when the participants had a stronger urgency to 

respond. Taken together, in addition to leading to motor excitability, 

urgency can be seen as a mechanism to balance rewards and costs 

within the task at hand, through the striatal network.  

Despite the studies discussed so far implemented urgency in the 

form of time cost, it is important to bear in mind that decision-

making involves the optimization of multiple costs (Drugowitsch, 

et. al., 2012). Decision-making tasks may involve cognitive costs 

(i.e. sensory processing, memory, attention) and the costs of 

physical effort in addition of time, all eventually involved in the 
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process of accumulating evidence. These costs in fact unfold in time 

and have a temporal structure that varies from context to context. 

Thus, to efficiently keep track of the costs that build up in time, one 

needs to factor in the physical costs as well. Under this 

conceptualization, physical costs can also contribute to urgency 

consistent with that of time pressure. Luckily, there is increasing 

research tackling the effects of physical costs in relation to decision-

making. For instance, there is currently enough evidence to support 

that the physical cost of actions influences the dynamics of 

decision-making. Burk and colleagues (2014) showed that 

increasing the physical cost needed to execute response movement 

leads to less changes of mind during a decision-making process. 

Similarly, Marcos and colleagues (2015) tested whether motor cost 

of response actions influence the performance in a binary decision-

making task. They found that when the two response actions have 

different levels of motor cost, there is a bias of subjects to choose 

the less effortful option. This implies that the motor costs involved 

in the response impact the choice. Morel and colleagues (Morel, et. 

al., 2017) have found that the effects of different levels of effort was 

not proportional to the metabolic cost of the movements, but rather 

to perceived levels of effort. This has resulted in the interpretation 

that physical effort has a way of influencing the decisions not 

merely as a function of their metabolic costs, but instead as a 

function of the perceived effort (Cos, 2017).  

According to the findings reviewed above, it seems plausible to 

associate effort-related effects in decision-making to the signal of 

urgency, whose main function has been claimed to be taking costs 
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into account. Although these findings suggest that a common 

urgency signal may control the speed and timing of the response 

movements (shared invigoration hypothesis; Cisek & Thura, 2018, 

Thura, 2020), few studies have addressed the effects of physical 

effort during evidence accumulation The contingency of evidence 

accumulation on effort gets us closer to real life scenarios in which 

motor actions are necessary to collect and sustain sensory evidence 

(Ayhan & Ozbagci, 2020). The studies that have come closest to 

address this scenario are dual task studies which measure 

performance in a cognitive task concurrent with a secondary, 

effortful task. For instance, Park and colleagues (2021) studied how 

visual attention is influenced by an ongoing simultaneous physical 

effort expenditure. They found that moderate levels of physical 

effort shorten reaction times in a visual search task, but also 

increase distractor interference effect due to less efficient attentional 

mechanisms. Considering that attention has a crucial role in 

decision-making, it can be claimed that effortful action can 

influence decision-making as well in situations that require slow 

accumulation of evidence. Yet, this hypothesis has not been tested. 

Therefore, to understand how physical effort costs influence the 

decision process and whether they have similar effects with time-

related costs, we need experimental paradigms that incorporate 

effortful actions within the period of decision, but also contingent to 

evidence accumulation. Such an effort-contingent evidence 

accumulation task is representative of many real-life situations, and 

it has therefore important value in terms of ecological validity. 
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The goal of this study is to address the influence of contingent 

physical effort on performance in a visual decision-making task, 

and test whether urgency is sensitive to physical effort. This 

question requires a task that incorporates an effortful physical 

action to initiate and uphold the evidence gathering that is needed to 

make a decision. Thus, we have used a manual hand press action 

during a perceptual discrimination task, with manipulations of both 

the time pressure (by imposing response deadlines) and exerted 

physical effort necessary to accumulate evidence. Our main 

hypothesis was that if contingent physical effort and time pressure 

contribute toward an urgency signal, then they should impact SAT 

dynamics in the perceptual decision-making task, in convergent 

ways. That is, increasing effort should resemble stricter deadlines, 

so that end up in shorter reaction times and lower accuracies.  

 

 2. Methods 

2.1. Participants 

Twelve participants (8 females, mean age = 24.3 years., [19-33]) 

have completed the experiment. Participants were invited through 

the database of the Center for Brain & Cognition (Universitat 

Pompeu Fabra) and were given 20 euros in exchange of their 

participation for 2 hours. All participants were right-handed, had 

normal or corrected-to-normal vision and had no history of motor 

problems related to use of their left hand, arm and wrist. They all 

signed an informed consent form and a data privacy form. The 

experiment was approved by an institutional ethical committee 
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(CIREP, Universitat Pompeu Fabra) and all methods were 

performed in accordance with the relevant guidelines and 

regulations. Since this was a novel study, we could not optimize the 

sample size with an analytic approach before the data collection. 

Because of time constraints, we had planned to recruit 20 

participants. After hitting that number, we had to exclude data from 

8 participants due to low performance (< 50% correct responses in 

all stimulus strengths). Considering that many psychophysics 

studies recruit lab members or people who are familiar with 

perceptual experiments into their studies, this high incidence of 

inadequate performance in our data set is due to the recruitment 

protocol we have used. The participant pool was naïve to long and 

effortful psychophysical paradigm; so that we presume that some 

were not motivated to perform better. Thus, we continued our 

analysis with the data from 12 participants. It is also relevant to note 

that we used 125 trials per effort/deadline condition, which is a 

sufficient number compared to other random dot motion studies. 

Similarly, when compared with many other motor-learning 

experiments which commonly has between 8 to 12 participants 

(Moskowitz, et. al., 2022), our sample size is adequate to test our 

hypothesis.  

2.2. Apparatus 

The experiment was conducted in a darkened room. Participants sat 

in front of a CRT monitor (Sony Multiscan G520; refresh rate 60 

Hz; 1024 × 768 pixels) which was placed 60 cm away from the 

participant’s head (as it rested on a chinrest). Seat and chin-rest 

height were adjusted at a comfortable position for each subject. To 
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measure effort, a hand dynamometer (Vernier HD BTA, with 

Arduino USB adaptor) was used. Stimuli and experimental scripts 

were programmed in Matlab, PsychToolBox. 

2.3. Visual Stimuli 

The task consisted of motion discrimination 2AFC of Random Dot 

Kinematograms, RDK (Figure 1; Britten, et.al., 1992, Shadlen & 

Newsome, 2001). The RDK consisted of a cloud of white dots (2-

pixel radius) moving at 5 deg/sec within a circular area of the 

screen, aperture size of 5 degrees of visual angle, and density of 16-

7 dots/deg2. The detailed stimulus features and algorithm is 

described in Gold and Shadlen’s (2003) work. Coherence was 

manipulated as the proportion of dots moving coherently either 

towards left or right, amongst otherwise randomly moving dots 

within the aperture. The set of dots moving coherently was 

randomly selected at every time step, except that all dots had a 

maximum life time of 4 frames moving in the same direction. This 

feature of short lifetime is implemented to make sure that it is not 

possible to track only one coherent dot and figure out the answer. 

Some dots can move out of the window if the starting position of 

the dot is close to the edges before 4 frame life time, after which it 

re-emerged at another random location. So, the participant needs to 

observe the general motion rather than individual dots. There were 

five levels of coherence which are logarithmically scaled as it is the 

standard in the field: .032, .064, .128, .256, .512.  
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2.4. Experimental Task and Effort Manipulation 

Participants performed a 2AFC direction discrimination task on the 

RDKs described above. To study the effects of motor effort on the 

ongoing decision process, we included three effort levels: No 

Effort, Low Effort, and High Effort. The No Effort condition served 

as a baseline situation in terms of requiring no motor action for 

stimulus viewing, so that equating it to the common way RDK 

experiments have been carried out in the literature. In the two effort 

conditions, instead, the participants were required to press and hold 

a dynamometer with the left hand to initiate and maintain the 

stimulus on the display (Figure 1, middle). Each initiation phase 

started with the presentation of white fixation cross at the center of 

the screen, which prompted participants to press and reach the 

required force level for a trial to begin (there was a maximum wait 

time of 2s). Once the force threshold was reached, the RDK 

stimulus appeared on screen and, in order to keep the stimulus on-

screen, the participant had to sustain the effort exertion above the 

required threshold until a response. The response, with the right 

dominant had, was made via a keyboard press (left and right arrow 

keys, to indicate whether the overall motion is towards left or right 

respectively). We also manipulated response deadline by limiting 

the maximum viewing time and responding, which was either 4s or 

1.5s. If the grip force fell under the threshold before a response was 

given or if a participant had not responded by the deadline (4s or 

1.5s), that trial aborted, and the fixation cross turned yellow to 

notify the participant that the trial was invalid. The same trial was 

repeated at a random later trial in the session, securing the total 
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number of trials. When a choice was made, the fixation cross turned 

red for incorrect responses and green for correct responses (Figure 

1, bottom). The feedback period with the color-coded fixation 

signal took 1.5 seconds. Then, the fixation cross turned white again, 

which indicated the beginning of the initiation phase of the next 

trials.  

In the No Effort condition, the stimuli appeared without a hand 

press and the participant had to passively watch stimuli and make a 

decision. To make the temporal structure similar across the 

conditions of the experiment, there was a delay before the stimulus 

appeared akin to the initiation phase in effort trials. For this delay, 

we used the individual’s average initiation duration from the effort 

trials as a pre-stimulus delay plus a small uniformly distributed 

random jitter between -.1 and .1 s. Thus, each subject had to start 

the experiment with one of the effort conditions, to be able to 

calculate average pre-stimulus delay.  
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Figure 1. Trial Sequence. Each trial starts with a blank screen with a 

white fixation cross. Participants initiate pressing the dynamometer and 

until the force threshold is reached while the white fixation remains on the 

screen. After the threshold is reached, the RDK stimulus appears and the 

participant has to make a decision about the motion direction within 1.5s 

or 4s. After a response is made, fixation cross changes the color to red 

(incorrect) or green (correct).  

 

 

2.5. Procedure  

Effort calibration  

Before starting the decision-making task, each participants’ 

potential force exertion was calibrated. In this phase, participants 

were asked to press the dynamometer momentarily as hard as 

possible, three times. The average of the maximum values from the 

three presses were taken as Maximum Voluntary Control (MVC) 

for that participant. Then, we took 10% and 25% of the individual 

MVC as the effort thresholds for the Low and High Effort 

conditions. 

Experiment 

After calculating the MVC, each participant proceeded with a 

training phase which consisted of 15 trials, consisting of the 

repetition of 3 mid-level coherences, with a deadline of 4s. The 

purpose of the training was to familiarize the subject with the hand 

grip and perceptual task at the same time. Training was repeated 

until participants reached at least 70% accuracy in the 2AFC motion 

discrimination task. When a participant successfully finished the 

training, they proceed to the experimental blocks. In the experiment, 
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there were two fully crossed between-block manipulations: physical 

effort (No, Low and High Effort) and duration deadline of trials (1.5 

s and 4 s). The order of the blocks was chosen randomly, except 

that the No Effort blocks were never the first, to be able to calculate 

the average trial initiation period for No Effort condition from the 

participant’s effort condition trials. Subjects had freedom to take 

short (5 minute) breaks in between the blocks. Within each block, 

25 repetitions of each 5 coherence levels were presented in random 

order, which makes a total of 125 trials per block, and a total of 750 

trials overall (plus, eventual repetitions of invalid trials, on average 

3% per subject).  

3. Results 

3.1. Reality check: Force Exertion in Low and High Effort 

In both effort conditions of this experiment (Low and High), 

participants were required to apply a minimum level of force on the 

dynamometer to initiate the onset of the visual stimulus and proceed 

with the trial. However, since we did not control for the precise 

level of force exerted, it may have been possible that the 

participants could have pressed stronger than required, equalizing 

the Low and High Effort conditions in terms of exertion. To rule out 

this possibility, we gauged the overall exertion throughout the trial 

to ascertain that Low and High Effort conditions were indeed 

different. Figure 2 shows that this was the case regardless of trial 

timeout (1.5 or 4s). We did paired-samples t-tests to test whether 

average forces applied Low Effort condition was lower than in High 

Effort condition. The result showed that in both 4s and 1.5s 
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deadline conditions the average force applied in each condition was 

significantly different (t(11) = -7.2, p < .001, Cohen’s d = -2.1 and 

(t(11) = -3.4, p = .003, Cohen’s d = -.99) throughout the average 

duration of the trial. 

  

 

Figure 2. Average force (in Newtons) exerted during the 4s (a) and 1.5s 

(b) deadline conditions. The solid lines and shades correspond to overall 

mean and standard error of the mean. Dashed lines are some individual 

trial data from one representative participant. Note the different x-axis 

ranges, which correspond to the average reaction times in Low & High 

conditions in the corresponding deadline conditions. 

 

3.2. Speed versus Accuracy  

To test the main hypothesis, we first focused on reaction times and 

accuracy. If effort drove urgency as hypothesized, we ought to see 

reaction time (RT) shortening as a function of effort at the expense 

of accuracy, especially in the long deadline condition where there is 

more room for speeding up. As Figure 3a-b illustrates, physical 

effort shortened RTs in both the 4s condition (No Effort = 1.82s, 

Low Effort = 1.57s, High Effort = 1.39s, p = 0.002, η2 = .7) and 1.5s 

condition (No Effort = 0.91s, Low Effort = 0.89s, High Effort = 

0.77s, p < 0.001, η2 = .4). To further test the combined effects of 

effort intensity and deadline on RTs, we conducted a two-way 
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repeated measures ANOVA on RTs with deadline and effort 

intensity as independent variables (a Shapiro-Wilk test of normality 

showed that the normality assumption was not violated, p > .05). 

The results showed that both deadline and effort intensity exerted a 

significant influence on RTs (F(1,11) = 69.5, p < .001, η2 = .69 and 

F(2,22) = 12.1, p < .001, η2 = .07, respectively). The interaction 

between deadline and effort also came out significant (F(2,22) = 

4.4, p = .025, η2 = .02), as the speeding up effect of effort was 

smaller under the more strict deadline. We also conducted 

regression analysis per participant to get a more detailed picture of 

how Coherence, Deadline and Effort all influence RT. The results 

of these analyses can be found in Supplementary Analysis 1. 

Overall, effort speeded up the decisions, in a way similar to a 

manipulation of the deadline. This befits the notion that both time 

pressure and effort contribute to a common urgency signal.  
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Figure 3. Average reaction time (a, b) and accuracy (c, d) box plots. 

Purple lines represent individual data. Asterisks indicate significance of 

difference (* is p <.05, ** is p < .01, *** is p < .001) a-b Reaction times 

from 4 and 1.5s deadline conditions, respectively c-d Proportion of correct 

responses from 4s and 1.5s deadline conditions, respectively. 

 

Next, we assessed the average accuracy for each deadline and effort 

condition, collapsing across coherence levels (Figure 3c-d). 

Physical effort did not have a significant effect on the proportion of 

correct responses in the 4s deadline (Figure 3c, no effort = .71, low 

effort = .7, high effort = .69, p = 0.54, η2 = .05), but it significantly 

reduced correct responses in the 1.5s deadline blocks (Figure 3d, No 

Effort = .69, Low Effort = .68, High Effort = .65, p = 0.013, η2 = 

.33). We again conducted a two-way repeated measures ANOVA 

on the proportion correct responses with deadline and effort as 

independent variables. We again ensured that normality assumption 

was not violated (Shapiro-Wilk tests, p > .05). The results showed 

that the effect of deadline on accuracy was significant (F(1,11) = 

8.07, p = .016, η2 = .12). The effect of effort on the other hand 

showed a trend in the expected direction, but it did not reach 

significance (F(2,22) = 3.4, p = .051, η2 = .09). The interaction 

between the two variables was not significant (F(2,22) = .25, p = 

.78, η2 = .007). In general, effort did not reduce response accuracy 

as strongly as the manipulation of the deadline, although, as 

previously described, they both significantly influenced the RTs. 

We conducted per-participant regression analysis to assess how 

coherence, deadline and effort influence choice accuracy. These are 

summarized in Supplementary Analysis 2. Altogether, the 

proportion correct results are consistent with the general hypothesis 
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that effort tends to exert a qualitatively similar influence than 

response deadline on performance, albeit slightly weaker under the 

specific parameters of this study. 

3.3. Psychophysical analysis  

 

 
  2 

    

Figure 4. a. Average Psychometric Curves. Proportion of correct 

responses as a function of stimulus coherence. Here, average performance 

from all participants plotted for illustrative purposes. Shades of purple 

belong to 4s deadline conditions and shades of yellow correspond to 1.5s 

deadline conditions. Increasing color tone indicate the effort level. b. 

Average of psychophysical threshold (y-axis) and RT (x-axis) for each 

condition. Purple represents the 4s deadline conditions. Yellow represents 

the 1.5s deadline conditions. The shade of the points indicates the effort 

level, light grey: No Effort, medium grey: Low Effort, black: High Effort. 

 

We used a GLM with a logit link function to fit individual 

proportion correct data as a function of coherence, for each 

condition. We estimated individual discrimination threshold as the 

coherence value corresponding to 75% correct performance and 

analyzed this threshold as a function of deadline and effort in a two-

way repeated measures ANOVA (Shapiro-Wilk tests, p > .05). Both 

deadline and effort had a significant influence on discrimination 
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threshold (F(1,11) = 12.2, p = .005, η2 = .21 and F(2,22) = 4.3, p = 

.026, η2 = .07, respectively), and their interaction was not 

significant (see Table 1 for the average threshold values in each 

condition). Figure 4a shows that both shorter deadlines and stronger 

efforts led to higher thresholds, that is, worsened discrimination 

performance. To better convey RT and performance effects 

combined we have illustrated mean RTs and discrimination 

thresholds per condition, in Figure 4b. Overall, our results show that 

effort speeds up RTs and increases the threshold under both 

deadline conditions. It also became evident that with a more relaxed 

response deadline, the effect of effort is even more visible, in 

keeping with the main analyses. Considering that effort builds up 

with time, its influence should be stronger at longer timescales, 

whereas under a stricter deadline the relative speed up / threshold 

increase effects due to effort are weaker because there is already 

pressure for fast responses.  This is the kind of additive effect one 

may expect if the two factors (time and effort) converge on the 

same process. Our hypothesis is that this convergent process is in 

fact urgency. 

Deadline Effort RT (s) 
Prop. 

Correct 

Threshold 

(Coherence) 

Slope 

(Coherence) 

      

Long 

No 1.82 (.09) .71 (.017) .17 (.017) 9.5 (.66) 

Low 1.57 (.11) .70 (.011) .19 (.011) 7.9 (.6) 

High 1.39 (.13) .69 (.011) .21 (.014) 7.1 (.54) 

Short 
No 0.91 (.017) .69 (.014) .22 (.017) 7.0 (.8) 

Low 0.89 (.023) .68 (.014) .23 (.02) 6.3 (.54) 
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High 0.77 (.03) .65 (.014) .24 (.017) 6.7 (.69) 

Table 1. Mean Reaction Time, Accuracy, Threshold and Slope of 

psychometric curves for each condition. Standard error of the mean 

(SEM) is written in parenthesis. 

 

Another crucial insight to gain from the psychophysical analysis is 

the slope of the curves. The slope indicates the amount of change in 

stimulus intensity causing a change in the performance, therefore 

providing us with an idea about sensitivity. To analyze the 

sensitivity, we conducted a repeated measures ANOVA with 

deadline and effort as independent variables and slope as a 

dependent variable (Average values can be seen in Table 1). The 

results showed that deadline had a significant negative effect on the 

slope of psychometric curves (F(1,11) = 16.2, p = .002, η2 = .17), 

and effort  had a significant positive effect (F(2,22) = 5.4, p = .01, 

η2 = .1). Thus, these results indicate that shorter deadlines and 

stronger effort led to less precise discrimination of motion direction.  

3.4.  Force Fluctuations Trial by Trial 

After assessing the influence of effort on RT and choice by 

comparing the conditions of No, Low & High Effort, our remaining 

question was whether the trial-by-trial fluctuations in effort (i.e. the 

exerted force over the dynamometer) could predict RT and choice 

accuracy. To this end, we focused on the Low and High Effort 

conditions separately, by fitting linear regression models to predict 

log(RT) from Coherence and Average Force per trial, per 

participant and condition (4s Low Effort, 4s High Effort, 1.5s Low 

Effort and 1.5s High Effort). The results showed that Coherence 
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was a significant predictor of log(RT) in all 12 participants and in 

all deadline/effort conditions (range of the coefficient = [-2.5, -.08], 

p < .05). However, the trial force was a significant predictor only in 

a small subset of participants for each condition (range of the 

coefficient = [-.008, .001], p < .05 4s - Low Effort: 7 participants, 

4s – High Effort: 3 participants, 1.5s - Low Effort: 3 participants, 

1.5s -High Effort: 2 participants). In short, fluctuations of the force 

on a trial-by-trial basis were a poor a predictor of the reaction time 

in the majority of participants. Importantly, it became evident that 

the strongest effect of force on RT was in the condition in which the 

force could vary the most (namely, 4s - low effort condition). 

Stricter deadline conditions and higher effort requirement may have 

lowered the variability in force/RT, thus making it more difficult to 

see trial by trial fluctuations. In fact, the standard deviation of both 

force and RT is the largest in 4s low effort compared to higher 

effort or shorter deadline conditions (Figure 5). 
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Figure 5. Average standard deviation of RT (x-axis) and Force (y-axis) 

for each effort/deadline condition. Purple represents 4s deadline 

conditions, yellow represents 1.5s deadline conditions. Circle indicates 

Low Effort and triangle indicates High Effort conditions. 

 

We also conducted a Logistic Regression analysis to predict choice 

(correct or incorrect) from Coherence and Average Force in a trial, 

per participant and per condition. Coherence was a significant 

predictor of choice for all subjects (p < .05). However, force was 

not significant in any participants for any condition. Therefore, the 

trial by trial fluctuations in applied effort on the dynamometer were 

not sufficient to explain trial to trial choice accuracy, at least under 

the conditions of this experiment.  

3.5.  Lack of Left/Right Bias 

So far we have estimated discrimination threshold and correct 

response measures lumped over direction of motion of the stimulus 

to gain more stable measures, as this variable is orthogonal to our 
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hypothesis. However, because the task involved choices based on 

the left or right direction of stimulus motion, we decided to check if 

there was any significant directional bias across participants. To this 

end, we fitted psychophysical curves for probability of right choice 

as a function of each level of coherence, distinguishing between 

leftward motion (negative sign by convention) and rightward 

motion (positive sign). A repeated measures ANOVA with effort 

and deadline as independent variables and bias as a dependent 

variable showed that neither deadline nor effort exerted a significant 

effect on bias (F(1,11) = 1.05, p = .33 and F(2,22) = 1.07, p = .36, 

respectively and Shapiro-Wilk tests, p > .05). For completeness, we 

also ran an ANOVA on the slope, and found that deadline did not 

exert a significant effect on slope whereas effort had a significant 

effect (F(1,11) = 3.1, p = .1 and F(2,22) = 12.6, p < .001, 

respectively and Shapiro-Wilk tests for normality, p > .05).  Group 

means of bias and slope are shown in Table 2. 

Deadline Effort 
Bias 

(Coherence) 

Slope 

(Coherence 

    

Long 

No -.01 (.017) 7.8 (.6) 

Low  .01 (.01) 6.4 (.49) 

High  .01 (.021) 5.6 (.35) 

Short 

No  .02 (.017) 6.3 (.52) 

Low  .01 ( .005) 6.1 (.43) 

High  .02 (.017) 5.4 (.37) 

Table 2. Mean Bias and Slope obtained from fitting psychometric curves 

for left and right choices. Standard error of the mean (SEM) is written in 

parenthesis. 
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4. Discussion 

Physical effort is an important aspect in many everyday life 

decisions, as energetically costly actions (for example hand, head or 

whole-body movements) are often required to gather critical 

information to make decisions. This study tested the hypothesis that 

when physical effort is required to accumulate task-relevant sensory 

evidence, it influences urgency and, consequently, the speed 

accuracy trade-off in decision-making. We used an experimental 

task in which an effortful action was required to accumulate sensory 

evidence to carry out decisions, and studied if effort intensity 

induced an urgency effect of similar consequences to that of 

imposing time constraints. Our results showed that increased effort 

speeded up the RTs and diminished performance, and that the 

influence of effort interacts with that of time pressure, as it 

diminishes under a strict deadline. This reinforces the notion that 

effort influences urgency, therefore combining with other urgency-

related factors, such as time pressure.  

In general, our work is in line with others before that have shown 

motor effort can alter decision-making (Burk, et. al., 2014, Cos, 

2017, Marcos, et. al., 2015, Shadmehr et. al., 2016). However, these 

previous studies have focused on the effort required to execute the 

response movement, but not the effort required to control and 

sustain evidence accumulation, which was the focus of this study. 

The novel result here is that physical effort required to accumulate 

information brings about speed-accuracy adjustments. In addition to 

shortening of reaction times due to effort, we also reported that 
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effort had a detrimental effect on accuracy, albeit weaker. However, 

motion discrimination thresholds from psychophysical curves 

demonstrated that increasing effort significantly worsened the 

discrimination performance too. Hence, we can conclude that effort 

impairs performance in addition to shortening the reaction times. 

Overall, these results indicate that physical effort modulates the cost 

structure of a decision-making process, akin to temporal constrains.  

This supports the initial hypothesis that effort costs contribute to a 

common urgency signal, together with time pressure. 

Urgency or collapsing bound models have repeatedly shown that 

optimal decision-making has to take elapsed time and temporal 

restrictions into account (Drugowitch, et.al., 2012, Cisek, et. al., 

2009). This brought many scholars to think of urgency as a signal to 

modulate overall reward rate by factoring in the cost of decision 

time (Carland, et. al., 2019). Here, we took this understanding one 

step further by addressing whether the urgency signal takes the 

effort-related costs incurred during the decision-making process 

into account as well. Based on physiological findings, this is a 

plausible hypothesis. The basal ganglia, a brain area initially 

thought to modulate rewards (Houk, et. al., 1995, Schultz & Romo, 

1992) has been proposed to mediate urgency related signals (van 

Maanen, 2016). When it comes to physical effort and basal ganglia 

activation, Kurniawan and colleagues (2011) have shown that 

physical effort discounts the action value and basal ganglia has a 

role in effort representation and value. It is plausible then to think 

that the basal ganglia could process the physical costs that discounts 

rewards. Thus, there is ample support for the claim that the same 
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mechanism related to basal ganglia and dopaminergic activation can 

be responsible for processing both effort and time related costs (van 

Maanen, 2016, Thura & Cisek, 2017).  

The effect of effort on the urgency of decisions might be mediated 

via some representation of time, since urgency requires a 

representation of time passage. Such mediation would imply that 

there is a relation between action and time estimation. Indeed, there 

is plenty of support in the literature about the effects of a concurrent 

motor action on time perception. For instance, Wiener and 

colleagues (Wiener, et. al., 2019) showed that the precision of time 

estimates was higher when subjects carried out a manual reach 

action, compared to when they remained still. They concluded that 

motor engagement brought a perceptual advantage. Other studies 

have shown that perceived time gets compressed around the 

moment of a movement (Tomassini & Morrone, 2016, Hagura, et. 

al., 2012, Press, et. al., 2014, Ayhan & Ozbagci, 2020). Although 

there is no general consensus on how movements influence time 

perception (increasing precision, or compressing subjective time), it 

is safe to argue that an ongoing motor action can alter time 

perception. Thus, a question worth testing in future research is 

whether one mediating factor behind shorter reaction times under 

higher physical effort can be the altered time perception due to the 

ongoing motor action; note that, according to our results, it would 

not be (only) acting per se, but the amount of effort put in the 

action, what matters.   
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Apart from time perception, ongoing motor action and effort have 

also been argued to influence visual attention. Park and colleagues 

(2021) have shown that under effortful actions, visual search seems 

to proceed faster. They concluded that moderately effortful motor 

actions could enable faster cognitive processing. In order to 

understand the interactions between effort and speed of cognitive 

functions, further studies should address the effect of effort on 

diverse tasks and diverse temporal contexts. Similarly, more 

detailed analysis of whether this faster cognitive processing imposes 

significant drops in precision and task performance are needed. 

According to our own results, admittedly limited in this respect, we 

could speculate that if effort speeds up cognitive processing, it does 

so at the expense of accuracy, albeit very weakly so.  

The present study addressed the effects of effort on perceptual 

decision-making, but we need to consider that physical actions 

induce increases in arousal, and arousal variations can mediate 

effort-related updates in decision-making. Arousal is commonly 

gauged by pupil size, as the noradrenergic system is directly linked 

to expansion and constriction of the pupil. By measuring pupil size 

in a decision-making task, Naber and Murphy (2020) have found 

that larger baseline pupil size predicts faster reaction times and 

Steineman and colleagues (2018) have reported that under strict 

time pressure baseline pupil size is higher than liberal conditions. 

There is also evidence that physical effort influences arousal.  For 

example, Zenon, and colleagues (2014) have measured the subjects’ 

pupil sizes during force production via a hand dynamometer and 

found that larger force brings larger phasic arousal. Hence, to 
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clarify whether ongoing physical effort has an effect on decision 

process via the arousal system, we suggest to check pupil size in 

similar task design like ours in future studies. In this way, the 

differences between deadline and effort manipulations could be 

compared in terms of their impact on arousal levels and test whether 

heightened arousal correlate with SAT dynamics in a decision-

making task. 

In conclusion, in this study we addressed whether physical effort 

intensity induces an urgency effect converging with those induced 

by time pressure. We believe our results are supportive of this 

hypothesis. In addition, our findings extend our understanding of 

decision-making in a more ecological context given the many cases 

in everyday life where physical effort is needed to sample 

information, from simply moving the eyes or the head to body parts 

actions and whole body movement. By combining an effortful 

motor action contingent with a classic perceptual decision-making 

task, we have shown that increased physical effort sped up reaction 

times and weakly lowered performance in terms of accuracy, and 

perceptual discrimination threshold, as well as in terms of precision. 

These effects are similar to, and combine with those of strict 

deadlines in the sense that they both imposed increased cost and 

thus ended up with speed-accuracy alterations. We argue that 

urgency is a mechanism which factors in time-related and effort-

related costs into account during a decision-making process, which 

eventually impacts speed-accuracy adjustments through a common 

currency.  
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Supplementary Analysis 

1. Regression over reaction times 

To assess in depth how coherence factors in RT and interacts with 

Deadline and Effort, we fitted Linear Regressions per participant to 

predict RT from Deadline, Effort and Coherence and their 

interactions. After fitting these regressions for each participant, we 

have taken the coefficients and conducted t-tests for each of them to 

see if they are significantly different from 0. The results have shown 

that except Effort and Effort*Coherence interaction, all regression 

terms were significantly different from 0.  

 

 

Supplementary Figure 1. Boxplots of coefficients from Linear 

Regressions predicting Reaction Time. Asterisks indicate 

significance (* = p < .05, ** = p < .01, *** = p < .001). 

In order to interpret the significant interaction effects better, we 

plotted the average RTs for each coherence and each condition. In 

Figure S2, we can see the Deadline*Coherence interaction from 
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checking the slopes of blue and orange lines. Similarly, 

Deadline*Effort interaction is the overall separation of blue and red 

lines across the three boxes. To demonstrate the three-way 

interaction of Deadline*Effort*Coherence more clearly, we 

presented Figure S3, in which we can see that RT differences 

between two deadline conditions is modulated by coherence and 

larger in No Effort condition compared to Low and High Effort 

conditions.  

 

 

Supplementary Figure 2. Average RT (y-axis) for each Coherence 

(x-axis). 4s and 1.5s deadline conditions are represented in blue and 

orange lines respectively.  

 



 

 96 

 

 

Supplementary Figure 3. The difference between average RTs in 

4s and 1.5s deadline condition. x-axis indicates the Coherences and 

each line belongs to a different effort condition. 

 

2. Regression over reaction times 

To assess in depth how coherence factors in correct choice and 

interacts with Deadline and Effort, we fitted Logistic Regressions 

per participant to predict Correct Choice from Deadline, Effort and 

Coherence and their interactions. After fitting these regressions for 

each participant, we have taken the coefficients and conducted t-

tests for each of them to see if they are significantly different from 

0. The results have shown that only Coherence (p < .001) and 

Coherence*Deadline (p < .01) interaction terms had coefficients 

significantly different from 0.  
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Supplementary Figure 4. Boxplots of coefficients from Logistic 

Regressions predicting Correct Choice. Asterisks indicate 

significance (* = p < .05, ** = p < .01, *** = p < .001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 98 

2.3. Physical effort induces changes into pupil-

linked arousal as well as modulating speed and 

accuracy trade-off in decision-making 
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ABSTRACT 

Effort of motor actions incur an optimality problem for decision 

making. Similar to time costs, a decision maker has to evaluate how 

much physical effort needs to be devoted in order to complete a 

decision. In our earlier work, we established that physical effort 

induces faster responses and lower performance in a perceptual 

decision making task. This effort-induced urgency could potentially 

be related to elevated arousal levels under effortful actions. In order 

to test this, we carried out a random dot motion experiment in 

which the stimulus was contingent on a hand press action with 

different intensities of effort. We hypothesized that physical effort 

modulates pupil-linked arousal. Furthermore, we predicted that the 

changes in arousal would correlate with the speed and accuracy of 

responses. The results showed that physical effort increased the 

tonic pupil sizes and tonic pupil sizes were significantly correlating 

with speed and accuracy of responses under each effort regimen. 

Hence, we concluded that effort-related changes in speed and 

accuracy trade-off are likely to be modulated by arousal.  
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1. Introduction 

To make decisions, one must expend cognitive and physical costs 

that comes from the effort of response execution or information 

sampling. According to an economic framework, this can be 

understood with the notion of utility maximization; all costs are 

compared against the potential rewards to optimize the decision 

process (Drugowitch et al, 2012, Kennerley. Et. al., 2009). 

Although delay and time-related costs have been well-studied and 

formalized within that framework (Kacelnik et. al., 1997, 

Wittmann, et. al., 2007) our understanding of how physical effort 

factors in in the decision making process is still limited (Kurniawan, 

et. al., 2011). Thus, further understanding is needed regarding the 

mechanisms behind the effort-based modulations of decision 

making. In our previous work we have reported evidence that 

physical effort induces urgency in a similar way to time constrains 

(Ozbagci et al., 2022). In the present study we aim at investigating 

whether this effort-based changes in urgency and SAT can be 

related to arousal.  

Before delving into physical effort in decision making, it makes 

sense to discuss how motor costs influence decisions. Generally, 

organisms tend to choose the less energy costly response option in 

decision making (Cos, et. al., 2011), and make less changes of mind 

if the change requires high physical cost (Burk, et. al, 2014). These 

findings mean that the brain takes motor costs into account whilst 

executing decisions and therefore physical effort modulates the 

decision making process (Cos, 2017). Morel, et. al (2017) took it 

further and demonstrated that physical effort does not only depend 
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on the metabolic cost of action but also the duration of the effort, 

thus their work supported the notion that both motor control and 

decision making share similar optimization mechanisms. A similar 

link between motor control and decision making is suggested by the 

‘shared regulation hypothesis’ by Cisek & Thura (2018). This 

hypothesis states that decision urgency (defined as a cost signal that 

tracks the ongoing time and ensures to respond with less certainty 

as time goes by so that the opportunity to gain reward is not missed) 

not only influences decision formation, but also motor execution 

(invigoration) (Thura, 2020).  

As urgency has been suggested to have a relation with regulation of 

motor responses, in our previous work we hypothesized that 

urgency could also track physical costs (i.e. effort) on top of time-

related costs (Ozbagci, et. al., 2022). The novelty of that study was 

that effort was made contingent on the information sampling, but 

not on response. That is, effort was required to sample information 

which was relevant for the decision but orthogonal to the actual 

response. This is an ecologically relevant case since sampling 

information to reach a decision can often require physical effort. As 

a result of that experimental work, we reported that increased 

physical effort lowered the RT as well as proportion of correct 

responses. We concluded that effort contributed to urgency, in a 

similar way as time pressure. However, there was still a lack of 

understanding about the mechanisms which could underlie these 

effort-based alterations in speed, accuracy and perceptual decision-

making performance. One potential mechanism that we consider as 

a contributing factor to mediate effort-related SAT adjustments via 
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urgency is arousal. Arousal is considered a global brain state that is 

related to the level of activation and integration across brain areas, 

and it is modulated by emotion, movement, and sleep (Humphreys 

& Revelle, 1984, Whissel, et. al., 1986). Since motor actions induce 

certain level of arousal, it is important to address whether the effects 

of physical effort on decisions that we and others report are partially 

due to changes in arousal.  

Arousal modulates various behavioral and cognitive phenomena. 

For instance, according to classical Yerkes-Dodson Curve (Yerkes 

& Dodson, 1908), moderate levels of arousal bring about most 

optimal behavioral performance whereas very low and high levels 

induce impairments. If arousal is too low, it indicates 

disengagement with a task and too high indicates an agitated state 

which also is a marker of attention difficulties. Locus Ceuruleus 

(LC) in the brain stem is the area that controls arousal by releasing 

of neurotransmitter norepinephrine (NE), and its connections with 

various cortical and subcortical structures explain the widespread 

impact of arousal throughout the brain (Sara & Bouret, 2012). 

Because LC regulates pupil size, it is common to use pupil size as a 

measure of arousal (Krugman, 1964, Granholm & Steinhauer, 

2004). Although pupil’s main response is to light, both phasic and 

tonic changes in pupil size under equal luminance have been 

associated to changes in cognitive performance (Eldar, et. al., 

2013). For instance, larger tonic pupil size (baseline changes) has 

been related to faster reaction times (Shriver, et. al., 2018) and 

poorer performance due to increased distractibility (Zenon, 2019) 

and response variability (Van Kempen, et. al., 2019). Phasic pupil 
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changes on the other hand are inversely correlated with the tonic 

levels of arousal (Aston-Jones & Cohen, 2005) and have usually 

been regarded as indicators of better performance (Colizoli, et. al., 

2017, van Kempen, et. al., 2019).  

Speed and accuracy of responses are also subject to changes as a 

result of pupil-linked arousal. For instance, Naber & Murphy (2020) 

have found that pupils dilated more under speed pressure and larger 

baseline pupil size predicted faster and less accurate response 

movements. Hence, the researchers concluded that arousal has a 

critical role in gain modulation of neural processing which can 

explain speed-accuracy adjustments. Murphy, et. al. (2016) as well 

proposed that global gain modulation in the brain which can be 

tracked by pupil-linked arousal is subject to changes due to urgency 

of response. They reported larger pupil responses as a result of short 

deadline imposition and asserted that pupil-linked arousal and 

urgency are related processes. Thus, there is ample support for the 

claim that arousal can be a key mechanism behind the reward 

optimization in the face of costs. On the grounds that physical effort 

is a source of cost over various cognitive processes, we claim that 

pupil-linked arousal undergo changes as a function of physical 

effort. Zenon, et. al., (2014) have conducted a study in which they 

recorded pupil signals during effortful manual contraction and 

founded that larger physical effort predicted larger pupil responses. 

In a similar vein, Varazzani, et. al. (2015) presented MRI and single 

cell recordings in monkeys during effort-based decision making 

task. They reported larger NE release in LC with increased physical 

effort. Since, LC controls pupil size, that work implies that physical 
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effort induces arousal changes. Physical effort may influence 

decision process via increasing the overall arousal state.  

Hence, from the research discussed above we learn that (1) pupil-

linked arousal tracks speed-accuracy adjustments and (2) pupil-

linked arousal tracks physical effort. Based on this, we advance that 

physical effort modulates arousal which can, in turn, explain its 

effect on speed and accuracy of responses. This is the hypothesis we 

plan to test in this study. In our previous work, we reported that 

larger physical effort induced shorter reaction times, poorer 

accuracy and lower psychophysical performance in a perceptual 

decision-making task. We advance that SAT modulations under 

physical effort might be due to arousal induced by the effortful 

movements. Thus, the main hypothesis of this work is that physical 

effort alters pupil-linked arousal as well as modulating speed 

accuracy trade-off. In order to test this hypothesis, we used a 

random dot motion task in which we manipulated the response 

deadline and level of effort that is required to initiate and sustain 

sensory evidence. First, we checked whether effort influences SAT 

similar to a deadline manipulation, to reproduce our own previous 

results. Second, after confirming these results, we assessed whether 

effort changed baseline pupil diameter which is a marker of tonic 

arousal and checked whether the baseline pupil diameter correlates 

with speed and accuracy. In specific, we predicted larger baseline 

pupil sizes with larger physical effort.  

 

2. Methods 

2.1. Participants 
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Twenty participants were recruited via e-mail invitations through 

the database of the Center for Brain & Cognition (Universitat 

Pompeu Fabra). The number of recruited participants was decided 

before the data collection, based on our previous work with the 

same paradigm (Chapter 2.2.) and considering the potential data 

losses due to pupil recording. All participants were right-handed, 

had normal or corrected-to-normal vision, and had no history of 

motor problems related to use of their left hand, arm and wrist. 

They all signed an informed consent form and a data privacy form. 

The experiment was approved by an institutional ethical committee 

(CIREP, Universitat Pompeu Fabra) and all methods were 

performed in accordance with the relevant guidelines and 

regulations. According to our data inclusion criterion decided a 

priori, after the first block of trials (125), we assessed the 

participant’s performance. If the participant had not reached at least 

75% in the easiest stimulus level (52% dots moving coherently), we 

did discontinue the data collection. With this criterion, 12 

participants completed the whole experimental session of 2 hours. 

2.2. Apparatus 

The experiment was conducted in a dimly lit room. Visual stimuli 

were presented on CRT monitor (Sony Multiscan G520; refresh rate 

60 Hz; 1024 × 768 pixels) which was placed 65 cm away from the 

participant’s head (as it rested on a chinrest). Seat and chin-rest 

height were adjusted at a comfortable position for each subject. To 

measure effort, a hand dynamometer (Vernier HD BTA, with 

Arduino USB adaptor) was used. To record pupil size during the 
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experiment, Tobii x120 eye-tracker was used. Stimuli and 

experimental scripts were programmed in Matlab, PsychToolBox. 

2.3. Visual Stimuli 

In this experiment, we used the exact same parameters and process 

to produce Random Dot Kinematogram (RDK) stimuli with our 

previous experiment (Chapter 2). There were 5 levels of 

logarithmically spaced dot coherence; .032, .064, .128, .256, .512. 

The overall stimulus characteristics and algorithm have been 

replicated from the classical version of RDK (Gold & Shadlen, 

2003). The stimuli color was white and the background of the 

presentation was dark grey. 

2.4. Task and Effort Manipulation 

The main task in the experiment was to report the direction of 

motion, which a portion of dots were coherently moving towards. In 

order to study the effects of deadline imposition and physical effort, 

we used two deadline conditions (4s and 1.5s) and three effort 

conditions (No Effort, Low Effort, High Effort). No Effort 

condition served as a baseline situation which resembles the 

common version of a perceptual task with passive observation of 

stimuli and response by pressing a button. A typical trial started 

with a white fixation cross presented at the centre of the screen and 

after a fixed delay (calculated per subject from the mean duration to 

initiate trials in an effort block) the stimulus appeared. The 

participant could respond until the deadline (4s or 1.5s) by pressing 

left or right arrow keys with their right hand. If no key was pressed 

until the deadline, a yellow fixation cross appeared as a feedback. 



 

 108 

Yellow cross indicated an invalid trial and those trials were repeated 

at a random time later in the block. If a subject gave a correct 

answer, the feedback cross was in green and if it was an incorrect 

answer, it was in red. This feedback cross appeared for 1.5 seconds. 

After that, a new trial started with presentation of a white fixation 

cross. 

In Effort conditions, the trial structure was identical except for the 

force application. After the white fixation cross was presented 

which indicated the beginning of a trial, participants had to squeeze 

the hand dynamometer with their left hand. After the required level 

of force was reached, the stimulus appeared on the screen and 

remained as long as the hand press force was above the required 

force level. If the force intensity fell below the threshold, stimuli 

disappeared and a yellow feedback fixation was presented. As with 

the invalid trials due to no response, these trials were also repeated 

later during the block. Similar to the No Effort condition, green or 

red feedback crosses has been used to indicate correct and incorrect 

responses, respectively.  

 

2.5. Procedure 

Eye-tracker calibration 

We needed to ensure if the participants’ eyes could be tracked 

effectively by the device. In order to do that, we administered a 

short calibration procedure (with a custom Matlab code) which 

involved presentation of markers on the screen and asking 
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participant to follow the shape with their gaze. This took 2 minutes 

in total. Calibration process was successful in all participants. 

Effort calibration  

In order to calculate the required force levels for the effort 

conditions of the experiment, we measured the Maximum 

Voluntary Control (MVC) of each subject before the session. The 

participant was asked to press the dynamometer as hard as they can, 

three times in a row. Then, we took the average of these values as 

MVC for that participant. We took 10% and 25% of MVC as 

required force thresholds for Low and High Effort conditions, 

respectively.  

Experiment  

Each participant completed a training session which consisted of 15 

trials, to familiarize with the task and incorporating hand pressing. 

Main purpose of the training was to help participants get used to the 

incorporation of hand press and overall timeline of trials. Therefore, 

we only used the upper 3 levels of stimuli to help ease the learning. 

The training process was repeated if the participant had not reached 

70% accuracy. If the participant did not reach the required 

performance (70% accuracy) after 3 training sessions, we still 

proceeded to the first block of the experiment just in case they can 

learn the task during the first block. However, in first block if the 

participant could not perform at least 75% in the highest coherence, 

we finished the experiment and not continued with the rest of the 

blocks. There were 6 blocks in total which were assigned in random 
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order. In each block, there were 25 trials per coherence which make 

125 trials in a block and 750 trials in whole experiment.  

 

3. Data Analysis  

Behavioural Analysis 

Analysis of the experimental data required mainly assessing speed 

and accuracy of the data. For group comparisons, we used ANOVA 

if adequate assumptions for analysis of variance were not violated. 

We also conducted per participant linear regressions with the 

factors; effort, deadline, and coherence. To calculate 

psychophysical thresholds, we fitted psychometric curves to the 

participant data. We used GLM with logit link function to fit the 

curves. Analyses have been done with custom made Matlab scripts. 

Pupilometry Analyses 

We followed a pre-processing pipeline which involved data 

cleaning, interpolation for missing values and smoothing. Raw pupil 

data usually involves abnormal erratic values that are due to blinks, 

thus an important step in pupil data cleaning is detecting blinks and 

correcting them (Knapen, et. al., 2016, Mathot, 2013). Other 

sources of artefacts in raw pupil data are periods with no data; either 

due to eye-tracker cannot resolving the pupil size from camera 

image or certain head movements of the person (Mathot, et. al., 

2016). For both blinks and missing data the common treatment is to 

apply interpolation. In line with the conventional pre-processing 

steps in pupillometry research, we identified blinks and missing 

data and then filled those by cubic-spline interpolation. We 

excluded trials which had more than 25% of data points 
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interpolated. We then low-pass filtered the data (10 Hz). For these 

pre-processing stages, we used a built-in Matlab repository called 

PUPILS (link: https://gitlab.gbar.dtu.dk/heliaib/PUPILS-

preprocessing-pipeline.git) which was developed by Relano-Iborra 

& Baekgaard (2020). The details of the algorithm and procedure is 

explained in their publication.  

After the pre-processing, we normalized the pupil size values within 

subject by subtracting the mean pupil value and dividing it to 

standard deviation. To make data ready for the analysis, we aligned 

the pupil time series with respect to onset of trial and calculated the 

baseline pupil size as the average normalized pupil size for the 500 

ms time window prior to effort production and stimulus onset. The 

baseline value is subtracted from the time series data to assess the 

dilation and other phasic components of the pupil time series data. 

In one participant, majority of the trials (109 out of 125) from one 

condition did not have any recorded signal (possibly due to 

removing the head from the chin-rest), therefore we excluded that 

participant’s data from pupil analysis data pool. We ended up with 

N=11 for all the pupil analysis. 

 

3. Results 

3.1. Reality Check: Force Exertion in Low and High Effort 

Participants could potentially exert larger than necessary force in 

the Low Effort condition which might have caused two effort levels 

in our experiment to be similar, defeating the purpose of the 

manipulation. We set to ensure that the effort conditions effectively 
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set a minimum for Low and High Effort by checking the average 

forces applied in the two conditions. As can be seen in Figure 1, 

Low and High Effort conditions were clearly separated in terms of 

their average force levels. We also conducted paired-samples t-tests 

to compare the average forces applied in the two effort conditions. 

The result showed that in both 4s and 1.5s deadline conditions the 

average force applied in each condition was significantly different 

(t(11) = -10.1, p < .001, Cohen’s d = -2.9 and (t(11) = -6.4, p < .001, 

Cohen’s d = -1.85) throughout the average duration of the trial. 

 

Figure 1. a. Average force profile in 4s deadline condition from all 

participants. Red trace indicate High Effort condition and Blue trace 

indicates Low Effort condition. Shaded area is standard error of 

mean S.E.M. b. Average force profile in 1.5s deadline condition 

from all participants. Red trace indicate High Effort condition and 

Blue trace indicates Low Effort condition. Shaded area is standard 

error of mean S.E.M. 

 

3.2. Speed and Accuracy  

In order to test if deadline and effort changed speed of decisions, we 

conducted an analysis on the mean reaction times per condition with 
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one-way ANOVAs (a Shapiro-Wilk test of normality showed that 

the normality assumption was not violated, p > .05). To test for the 

deadline and effort effects on RT, we proceeded with repeated-

measures ANOVA with deadline and effort as independent 

variables over RT. The results showed that both deadline and effort 

had significant effects on RT (F(1,11) = 89.5, p < .001, η2 = .78 and 

F(2,22) = 19.2, p < .001, η2 = .06, respectively) in the expected 

direction. To look further at effort-induced RT speed up in each 

deadline condition, we conducted two separate one-way ANOVAs. 

We found that effort reduced RTs significantly in both 4s (No 

Effort = 2.05s, Low Effort = 1.89s, High Effort = 1.52s, F(2,22) = 

23.1, p < 0.001, η2 = .7, Figure 2a) and 1.5s (No Effort = .9s, Low 

Effort = .88, High Effort = .83, F(2,22) = 3.4, p < 0.05, η2 = .24, 

Figure 2b) deadline conditions. 

 

Figure 2. Box plots of average RT and Proportion of Correct 

responses. Horizontal lines indicate median values and purple lines 
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are each participant’s average values. a. Average Reaction Times 

from 4s deadline conditions. b. Average RTs from 1.5s deadline 

conditions. c. Average proportion of correct responses from 4s 

conditions. d. Average proportion of correct responses from 1.5s 

conditions. 

The above analyses focused on averages for each deadline/effort 

condition and therefore did not take stimulus intensity (coherence) 

into account. As task difficulty has a big influence on RT, we 

conducted Linear Regression analysis to predicted RTs from 

Deadline, Effort, Coherence and their interactions. We fitted 

regression models for each participant separately, and then 

extracted each coefficient of the regression model. Then, we 

assessed the average coefficient values from all participants whether 

they differed significantly from 0. We found that Deadline, Effort 

and Coherence coefficients were significantly different from 0 

(Figure 3). When it comes to interactions, Deadline*Effort, 

Deadline*Coherence and Deadline*Effort*Coherence regression 

coefficients were significantly different from 0 (Figure 3). To have 

a better grasp of the interactions, we plotted RT as a function of 

coherence in each Effort condition and each Deadline separately 

(Figure 4). All in all, RTs became faster at higher coherence across 

the board. This coherence effect was more steep with the long 

deadlines (can be seen in Figure 4, each panel). In addition, there 

was an overall reduction in RTs specifically for the longer 

deadlines. The steeper effect of coherence and overall reduction of 

RTs with effort was constrained to the longer deadlines, indicating 

that shorter deadlines did not leave much room for speeding up. 

Lastly, the RT difference between 4s and 1.5s. deadline conditions 
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were larger for No Effort condition, compared to effort conditions. 

(Figure 5). It is clear that the effect of coherence on RTs is 

modulated both by deadline and effort.   

  

Figure 3. Average coefficients from per participant linear 

regressions to predict RT with Deadline, Effort, Coherence and 

their interactions. *** = p < .001, ** = p < .01, * = p < .05) 

 

 

Figure 4. Average RT (y-axis) for each Coherence (x-axis). 4s and 

1.5s deadline conditions are represented in blue and red lines 

respectively. 
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Figure 5. The difference between average RTs in 4s and 1.5s 

deadline condition. x-axis indicates the Coherence and each line 

belongs to a different effort condition. 

 

After showing that effort speeded up decisions, we moved on to 

inspect whether effort also has an influence over accuracy. Similar 

to the RT analysis, we ensured that accuracy estimates did not 

violate the normality assumption (Shapiro-Wilk tests, p > .05). We 

conducted two-way repeated measures ANOVA with the Deadline 

and Effort as factors over Accuracy. The results showed that both 

deadline and effort had significant effects on accuracy (F(1,11) = 

20.4, p < .001, η2 = .13 and F(2,22) = 18.7, p < .001, η2 = .4, 

respectively). To check the effect of effort in both deadline 

conditions, one-way ANOVAs ran on each deadline condition 

separately showed that effort led to lower accuracy in both 4s (No 

Effort = .69, Low Effort = .67, High Effort =.64, F(2,22) = 10.1, p < 



 

 117 

0.001, η2 = .47, Figure 2c) and 1.5s (No Effort = .67, Low Effort = 

.65, High Effort = .62, F(2,22) = 12.4, p < 0.001, η2 = .53, Figure 

2d) conditions. After assessing these accuracy effects with 

condition means, we proceeded to a regression analysis including 

Coherence as a factor as well as deadline and effort. We built 

Logistic Regression Models per participant to predict Choice 

(correct or incorrect) from Deadline, Effort, Coherence and their 

interactions. We extracted coefficients from each participant and 

then checked with two-way t-tests if they were different from 0. We 

found that only the coherence coefficient was significantly different 

from 0. Thus we see that, trial by trial prediction of choice accuracy 

was not robust with the current dataset. Although, effort had an 

influence over group averages in accuracy, trial-by-trial fluctuations 

could not be confirmed with individual logistic regression analysis. 

Moreover, since we used a constant stimulus protocol, as an 

alternative to directly analyzing proportion of correct responses we 

also assessed performance by fitting psychometric curves to extract 

perceptual thresholds. 

3.3. Psychometric Threshold  

For each participant and each condition, we fitted a curve for the 

proportion of correct responses across coherence levels by using a 

GLM with a logit link function. The coherence value that gives 75% 

performance was used as the threshold value. If deadline and effort 

induce any in motion perception decisions, we expected to see a 

difference in these thresholds. To test this prediction, we conducted 

two-way repeated measures ANOVA with deadline and effort as 

independent variables and threshold as a dependent variable. The 
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results showed that both deadline and effort significantly modulated 

threshold (F(1,11) = 29.9, p < .001, η2 = .17 and F(2,22) = 17.9, p < 

.001, η2 = .39, respectively). The interaction effect on the other 

hand was not significant (p = .7). In general, effort lowered 

performance (increased the threshold) both in the 4s (No Effort = 

.19, Low Effort = .24, High Effort =.25) and 1.5s (No Effort = .22, 

Low Effort = .27, High Effort =.29) deadline conditions. To better 

grasp the changes in RT and performance together, we plotted 

average RTs and Thresholds for each condition in Figure 4. It can 

be clearly seen that both in the 4s and 1.5s deadline, effort reduces 

both RT and performance (Figure 6).  

 

Figure 6. Average RT (x-axis) and Threshold (y-axis) for each 

condition. Purple line indicates 4s deadline condition and Yellow 

line indicates 1.5s deadline condition. The shade of the points 

represents effort condition, light grey: No Effort, dark grey: Low 

Effort and black = High Effort. Error bars represent S.E.M. 
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Threshold as obtained from the psychometric curves can inform 

about the level of performance in motion perception. The other 

information that we can gather from psychometric curves is the 

slope of the curves which indicate the precision/sensitivity of 

detecting motion. Thus, we analyzed if effort and deadline induced 

significant changes on the slope of psychometric curves. We 

conducted a repeated-measures ANOVA similar to the previous 

analysis. We found that both deadline and effort had a significant 

effect on slope (F(1,11) = 11.5, p = .049, η2 = .07 and F(2,22) = 

16.7, p < .001, η2 = .21, respectively). Specifically, in Long 

Deadline condition the slopes were generally higher. Within each 

deadline condition, No Effort conditions had a higher slope than the 

effort conditions (4s deadline, No Effort = 7.7, Low Effort = 5.7 , 

High Effort = 6.1 and 1.5s deadline, No Effort = 6.4 , Low Effort = 

5.4 , High Effort = 5.3). It will be discussed later that, at least 

according to the effect size, the effect of deadline effect was smaller 

than the effect of effort. 

3.4. Tonic Pupil Size  

Tonic pupil size is an indicator of baseline arousal levels and is 

measured from a period that precedes task-related stimuli. Based on 

our hypothesis that physical effort induces arousal changes, we 

predicted larger baseline pupil sizes in higher effort conditions. To 

test this prediction, we extracted the baseline pupil size by 

averaging the pupil size during the 500ms pre-stimulus and pre-

effort period. After averaging the normalized baseline values for 

each participant, we conducted a two-way repeated measures 

ANOVA to check if deadline and effort induce significant effects 
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on the baseline pupil sizes (the normality assumption to was not 

violated, Shapiro-Wilk test, p > .05). The results showed that effort 

had a significant effect on baseline pupil size (F(2,20) = 8.75, p < 

.001, η2 = .35), but deadline did not (F(1,10) = .22, p = .6). Looking 

separately at each of the two deadline conditions, we confirmed that 

effort increased baseline pupil size in both, 4s (No Effort = -.26, 

Low Effort = -.17, High Effort = .2, p = 0.02, η2 = .34), and 1.5s 

(No Effort = -.47, Low Effort = -.05, High Effort = .15, p < 0.001, 

η2 = .56) deadline conditions. Thus, we confirmed our hypothesis 

that higher effort levels induce a larger tonic arousal and this could 

potentially drive physical effort’s influence on speed and accuracy. 

 

Figure 5. Box-plots of normalized baseline pupil sizes for the 4s 

deadline condition (a.) and for the 1.5s deadline condition (b.) at 

each effort level. Purple lines indicate individual participant means.  

 

3.5. Tonic Pupil Size and Effort-related SAT Effects 

As it is important for us to test whether effort-induced changes in 

speed and accuracy of responses can be explained by arousal, we 

looked at how accuracy and RTs correlate with baseline pupil size. 

Since baseline pupil size did not show significant differences 

between 4s and 1.5s deadlines (Results 3.4), here we pooled the 
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data from the two deadline conditions and focused on comparing 

effort conditions. We found that average pupil size across 

participants for each effort condition correlated very strongly with 

proportion of correct responses for each condition (r = -.99, p = .02, 

Figure 6a) and the correlation was significant. Furthermore, the 

correlation between pupil size and RT was also significant (r = -.98, 

p = .04, Figure 6b). 

 

Figure 6. a. Average normalized baseline pupil sizes (x-axis) and 

proportion of correct responses for each effort condition. Error bars 

represent S.E.M across participants. Correlation coefficient between 

pupil size and proportion of correct responses is shown in text box 

left bottom corner. b. Average normalized baseline pupil sizes (x-

axis) and RTs for each effort condition. Error bars represent S.E.M 

across participants. Correlation coefficient between pupil size and 

proportion of correct responses is shown in text box left bottom 

corner. 

 

After addressing the correlation between baseline pupil size and 

proportion of correct responses with the pooled data from all 

subjects, we also checked the same correlation per participant. We 

collected each correlation values per participant and ran t-tests to 
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check if the correlations were significantly different from 0. It turns 

out that the correlation between baseline pupil size and proportion 

of correct responses across effort conditions were significant 

(average r = -.52, range = [-.99 .2] p = .005). Four out of 11 

participants showed a significant correlation individually. Similarly, 

the correlation between baseline pupil size and RT was also 

significant (average = -.58, range = [-.95 .4], p = .03), and three out 

of 11 participants had significant correlation individually. We 

checked the across participant variation (see Figure 7) in the range 

of correlation values for baseline pupil and the two behavioural 

measures (proportion correct and RT). Although, the distribution of 

these variabilities indicated that there were some participants who 

did not show a strong correlation between pupil size and RT, 

overall, baseline pupil size correlated strongly and negatively with 

speed and accuracy of responses. Thus, it is plausible to conclude 

that effort-related changes in SAT can be at least partially due to 

higher arousal.  

 

Figure 7. Box-plot for correlation coefficients for Baseline Pupil 

with Proportion of correct responses and with Reaction Times. ***: 

p < .001, *: p < .05. 
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3.6. Pupil Dilation Dynamics 

Although we did not have a specific hypothesis about pupil dilation 

during stimulus processing, significant support in the literature 

posits that phasic pupil dynamics are highly linked to tonic levels of 

arousal (de Gee, et. al., 2020, van Kempen, et. al., 2019). Namely, 

when there is a large baseline pupil size, it is likely to see less task-

evoked dilation. Therefore, it is difficult to interpret phasic changes 

when there are systematic changes in baseline pupil sizes, which is 

the case in our results. First, we wanted to confirm if baseline pupil 

size really predicted the pupil dilation in comparison to other 

factors. Therefore, we fitted linear regression models for each 

subject to predict pupil dilation (maximum baselined pupil size 

measured during a trial) from Deadline, Effort, Coherence, Baseline 

Pupil Size and their interactions. We included all trials with valid 

pupil data into the analysis. We found that, in all participants, 

baseline pupil size was a significant predictor of phasic pupil 

dilation (mean = -.57, range: [-1.2 -.17], p < .05). It is crucial to 

point out that in all subjects, the coefficient for baseline pupil size 

was negative, which confirms the results in the literature on the 

notion that there is an inverse relationship between tonic and phasic 

pupil size. After fitting regression models and obtaining coefficient 

estimations, we ran t-tests to test for group effects. We found that 

Baseline Pupil Size was the only main term that was significant at 

predicting pupil dilation (Figure 8). The Coherence*Baseline 

interaction coefficient was also significantly different from 0 (p < 

.05). This makes sense as usually phasic changes in pupil during a 

cognitive task rely a lot on the cognitive effort which in our case 
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boils down to stimulus difficulty. All in all, we can confidently say 

that pupil dilation was strongly influenced by baseline pupil size, 

and therefore any strong modulation as a function of other 

experimental factors was muffled. 

 

 

Figure 8. Coefficients from Regressions to predict pupil dilation. Bars 

with asterisk(s) indicate that the coefficients across participants are 

significantly different than 0. ***: p < .001, *: p < .05. 

 

4. Discussion 

In this work, our aim was to demonstrate (1) that physical effort can 

induce urgency changes, with an impact on shortening reaction 

times and reducing accuracy similar to deadline impositions and, (2) 

that arousal changes resulting from the physical effort follows these 

SAT regulations, namely increased tonic arousal with larger 

physical effort. Our results supported both of our premises and 

corroborated the results from our previous work. Similar to that 

work (Ozbagci, et. al., 2022) here we also reported RT speed up and 

performance reductions as a function of physical effort. Then, we 

also showed that in accordance with our hypothesis, higher physical 

effort conditions exhibited larger tonic arousal, measured by 
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baseline pupil sizes. There are already works in the field reporting 

the link between physical effort and arousal (Zenon, et. al., 2014), 

yet this is the first study we know which shows these effort-related 

arousal adaptations in relation to perceptual decision making. Our 

task involved making visual discrimination in which the evidence 

accumulation was contingent on physical effort. In a way, physical 

cost of information sampling was manipulated. Interpreted this way, 

our work concludes that effort of sampling information is an 

important factor in the speed-accuracy trade-off during perceptual 

decisions and effort-induced arousal alterations can be the key 

mechanism behind it. 

As discussed in the introduction, arousal is a brain-wide state that 

impacts a variety of processes including decision making and 

perception (Aston-Jones & Cohen, 2005). Similarly, global gain 

mechanisms driven by arousal have suggested to have a specific 

role in optimal decision making (Niyogi & Wong-Lin, 2013). One 

obvious mechanism of optimal decision making is regulating speed 

and accuracy of responses (Murphy, et. al., 2014). Thus, it seems 

important to elaborate on the urgency-arousal interaction. From the 

brain anatomy point of view, the main candidate brain correlates of 

urgency are, on the one hand activity in the striatum (van Maanen, 

et. al., 2016), and on the other hand noradrenergic release that 

originates in LC and cholinergic release controlled by basal 

forebrain (Jones, 2004, Reimer, et. al., 2016, Lee & Dan, 2012). LC 

has many projections across the brain and striatum is one of the 

areas that has a primary connection and similarly cholinergic 

release impact the whole cortex. Therefore, the interaction between 
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LC and striatum can be how arousal contributes to urgency 

dynamics and therefore can explain (at least partially) SAT 

modulations (Steinemann, et. al., 2018). This being said, the 

common way to study urgency is imposing a temporal deadline on 

responding (Heitz, 2014). In the present experiment, we also 

introduced a short deadline to impose urgent decisions. And as we 

did in our previous experiment, we found that physical effort 

induced a very similar behavioral output as deadline manipulation 

in terms of lower RTs and accuracies. Following the results of both 

studies, we can claim that urgency is a mechanism that takes both 

time-based and effort-based costs into account.  

Our claim about urgency carrying both the time-based and effort-

based constraints does not necessarily indicate that these two types 

of urgency-inducing variables (time and effort) have the same 

mechanistic relationships within the brain. In the present 

experiment, we showed that tonic arousal is increased with effort 

intensity and correlated negatively with accuracy and RT. However, 

we could not find an effect of deadline on tonic arousal, albeit it 

induced clear differences in both RT and accuracy. Effort related 

changes in SAT may be mediated or heightened by arousal and LC, 

while pure deadline impositions can be mediated by other structures 

for instance that related to processing of time. In fact, there are 

plenty of researchers who supported that speed of responses in 

decision making tasks are mediated by timing ability of individuals 

(Frazier & Yu, 2008, Miletic & Van Maanen, 2019, Balci & Simen, 

2016). Another crucial point of different urgency mechanisms is 

that there are already disputes in the literature about the shape of the 
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urgency signal (Hawkins. Et. al., 2015, Murphy, et. al., 2016). 

Depending on different experimental structures, some data could be 

explained better with growing urgency signals (continuously 

increasing signal throughout the trial which pushes the agent toward 

the decision bounds), whereas other studies found static urgency (a 

criterion set from the beginning of a trial which does push the 

decision to be made when a certain time point is reached) to better 

explain experimental data (Steinemann, et. al., 2018). Since, in this 

work we did not used a mechanistic model such as DDM or 

Urgency Gating Model to fit our data, we cannot claim whether our 

data favors one over the other. However, it is highly favorable if in 

the future such tests would be made to compare time-based and 

effort-based urgency.  

Our main interpretation about effort-related arousal adjustments and 

observed SAT effects attributes a role to arousal in mediating the 

speed and accuracy changes under effort. However, an alternative 

explanation could be that arousal effects and observed behavioral 

effects are two independent mechanisms that physical effort has 

induced. It is hard to refute this explanation, yet considering the 

literature on how tonic pupil size influences perceptual decision 

making, it is unlikely that the arousal changes would not influence 

speed and accuracy. For instance, Park, et. al., (2021) have 

conducted an experiment that studied visual search under different 

physical effort regimens and found that due to heightened arousal 

levels, visual search was faster and more subject to errors under 

large loads of physical effort. Similarly, Murphy, et. al., (2014) 

have studied perceptual decision making with the same random 
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motion task as in our study and reported that in trials with higher 

pupil size, the performance was more variable and included more 

errors. They concluded that high tonic arousal might lead to larger 

noise and less efficient evidence accumulation. Under the light of 

these evidences, it is not too speculative to assume a specific role of 

arousal in relation to faster and less accurate decisions under high 

physical effort. 

As explained above, our hypothesis depended on tonic arousal and 

physical effort interactions, and we did not have specific predictions 

about phasic dynamics in pupil size. It is known that phasic 

dynamics in pupil-linked arousal is highly and negatively correlated 

with baseline pupil sizes (Gilzenrat, et. al., 2010, de Gee, et. al., 

2014, van Kempen, et. al., 2019, This intuition indicates that when 

there are baseline changes in pupil size, it is important to control if 

this pattern explains the phasic pupil changes before interpreting 

any phasic changes due to any experimental variable. We reported 

in results section that baseline pupil has significantly predicted the 

phasic changes. Despite our main hypothesis regarded the tonic 

changes in arousal, it is important to note that there are many other 

studies which reported changes in phasic arousal due to urgency 

(Murphy, et. al., 2016, van Kempen, et. al., 2019). It is therefore 

difficult to say that only phasic or tonic changes in arousal are 

related to urgency and accuracy of responses. Both might be at play, 

especially considering the tight coupling between the two. To 

summarize, we are concluding that effort-related changes in SAT 

are attributable to tonic arousal whereas other mechanisms still 

might be at play.   
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In summary, in the present study we showed that physical effort that 

is contingent on evidence accumulation induces urgency, similar to 

that typically seen due to deadline impositions. Furthermore, these 

effort-related urgency effects are captured by tonic arousal, 

measured by pupil sizes. However, tonic arousal did not show 

changes as a function of deadline which indicates that time-related 

urgency might have different mechanisms. Urgency takes both 

time-based and effort-based costs into account in order to optimize 

decision process in terms of reward rate. Yet, the functional and 

mechanistic connections within the brain for each type of urgency 

inducing situations are possibly different. This is the first 

experimental study which looked at the coupling between effort-

related urgency and arousal. Therefore, more can be discovered via 

future research that investigates in detail what are the other potential 

dynamics which control effort-related urgency.  
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3. GENERAL DISCUSSION 
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The overarching goal of this thesis was to enhance the 

understanding of the interactions between decision making and 

action, especially in cases when the decision takes place meanwhile 

an action must be executed. Such situations would include, for 

example, those in which information sampling that is relevant for 

the choice involves acting. These situations are common in 

everyday life behaviours, yet they have been investigated only 

superficially.  

We had a theoretical affinity towards embodied decision making in 

the development of research ideas and designing the experiments. 

Thus, generating new and relevant hypotheses based on the current 

knowledge was at utmost importance for this dissertation. Each 

study had tests about various sub-questions, and we can summarize 

the main hypotheses corresponding to each of the studies as 

follows:  

1. Actions related to decision making and actions related to 

sampling of information are subject to online interaction. 

2. Physical effort imposes urgency in decision making similar 

to time-constraints. 

3. Physical effort alters arousal as well as modulating speed 

and accuracy trade-off. 

In this last chapter, I will summarize the results we obtained in 

response of the tests performed on these hypotheses, as well as 

discuss the overall implications of the three studies with respect to 

the most relevant findings and theory in past literature. 
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3.1. Interactions between sampling actions and 

choice related actions 

The results from Chapter 2.1. indicate that movements to sample 

information and movements to execute choices are in continuous 

interaction. The key aspect of the study was that sampling of 

information was required (at least in some of the conditions), and 

that sampling actions involved the same effector, the hand, as the 

choice response. The main hypothesis was that actions related to 

decision making and actions related to sampling of information 

interact during the course of a decision. To test this hypothesis, we 

implemented a mouse movement task in which upward movements 

helped to gain information about the visual stimulus whereas the 

horizontal movements were used to report the choice. By looking at 

the hand movement trajectories from this task, we found that even 

during the active sampling stage (upward movement) there were 

significant choice related movement components (horizontal 

deviations).  

 

Another important finding was that not all trials have exhibited 

sampling actions. In some trials, participants rather remained stable 

at the initial location and acted only to go and respond. This 

bimodality in behavioural responses, some sampling and choosing 

at the same time (sampling responses) and others sampling first then 

acting (non-sampling responses), implies that a sub-decision took 

place at the very beginning of a trial on whether to sample 

information or not. Further supporting the presence of an initial sub-

decision, we observed that in sampling trials participants initiated 
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the movement significantly earlier than in non-sampling trials, in 

which they waited longer at the initial location. We interpret this 

waiting period as if participants were relying on internal evidence 

accumulation instead of an active one. This highlights the flexibility 

of types of decision making strategies humans can resort to, in 

adaptation to external and internal conditions. In certain situations, 

when there is a stronger need to accrue information, sampling 

movements are executed earlier and therefore allow for more 

nuanced embodied interactions. However, there are also cases 

which resemble more a serial decision making process; first 

deliberating internally and then executing the movements to 

respond. Therefore, this is exactly why we do not support the 

position that all decisions are embodied across the board. Yet, most 

ecological situations require moving to sample more information 

and in those situations decisions and actions interact in a continuous 

fashion. This is in line with the recent theoretical stances within 

embodied choice framework (Gordon et. al., 2021) that instead of 

replacing classic serial view of decision making, we need to 

understand its limits and when it is replaced with parallel action-

decision dynamics. 

 

3.2. Movement trajectories reveal decision 

making dynamics 

Overall, our work in Chapter 2.1. contributes to a body of studies 

which study decision-making by analysing movement trajectories. 

In recent years, there has been an increase in the number of studies 

reporting novel movement trajectory experiments, so that during the 
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time of this thesis, new articles have been published with a similar 

approach to ours (Kurtzer et. al., 2020, Michalski et. al., 2020, 

Pierrieau et. al., 2021). For example, Cos et. al., (2021) have 

conducted a study in which they assessed reaching movement 

trajectories during a decision making task and found that after the 

movement initiation participants were still carrying on decision 

process which was manifested with changes of mind in the 

trajectories based on cost and reward associated with options. Thus, 

their work also extends our knowledge on decision making during 

action. Furthermore, Michalski et. al., (2020) studied movement 

trajectories during a decision making task in which subjects needed 

to track a target with their movements and switch to a new target 

that appears if they would like to. They found that the switching to a 

new target depended on the distance of the new target, in a way that 

switching costs were influencing the rate of switches. Although 

these two studies and ours too had different paradigms and 

addressed different questions, they all support the idea that 

movement trajectories can reveal underlying decision dynamics.  

 

3.3. Physical effort alters decision making 

After concluding that the actions to sample information are 

integrated in the decision process, we focused on the effort of 

actions that are needed for information accumulation and whether it 

has an effect on decisions. In the second empirical study presented 

in this thesis (Chapter 2.2.), we studied whether physical effort 

influences speed and accuracy of responses. As we hypothesized 

that decision urgency is modulated both by time-constraints and 
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effort-constraints, we compared performance in a perceptual 

decision making task under different effort and duration schemes. In 

particular, the experiment in Chapter 2.2 (and Chapter 2.3) 

introduced effort-contingent evidence sampling, so that effort 

exertion did not just occur during the decision making process, but 

participants had to exert effort in order to obtain decision-relevant 

evidence.  The results showed that increased physical effort led to a 

speed up of reaction times and reduction in choice accuracy, similar 

to speed-accuracy modulations when shortening response deadlines. 

This behavioural result was also replicated with a follow-up study 

which is presented in Chapter 2.3. Thus, we are safe to conclude 

that effort induces changes into speed and accuracy trade-off.  

 

There are already studies which reported that effort influences 

decision making (Cos, 2017, Morel et. al., 2017, Marcos et. al., 

2015). For example, it is reported that when the response action is 

costlier, subjects exhibit less changes of mind even if to correct 

their choices (Cos, 2017). This and similar results supported the 

idea that decision making requires balancing costs and rewards and 

effort is one type of such costs (Shadmehr, 2010). Although the 

aforementioned studies were able to point the effort and decision 

making interactions, their locus of study were limited to effort of 

actions that were required to report a choice. In contrast, here we 

coupled effortful action into the evidence accumulation stage. This 

effort-contingent evidence accumulation is a novelty of our 

paradigm and therefore posits our results into a novel place. We 

attempted to capture natural settings where actions are needed to be 
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able to perceive and interact with the world. Our experiment tried to 

emulate these more ecologically valid situations within the limits of 

well-controlled lab experiments. So, building on the existing work 

on the effort and decision making relation, our work contributed the 

novel insight that effort, which is coupled with evidence 

accumulation, modulates decision making. After concluding that 

physical effort modulates SAT in a perceptual decision making task, 

we considered potential mechanisms that might have accompanied 

the effort-induced changes in decision making. Since effortful 

actions induce increases in arousal and high arousal is linked to 

modulations in variety of cognitive processes, we pursued a 

following study to check the arousal under physical effort in the 

context of decision-making. 

 

3.4. Arousal is a key mechanism for effort-related 

SAT alterations 

After the second study under this dissertation (Chapter 2.2.), we 

questioned the potential mechanisms that might mediate the effort-

based modulations in speed and accuracy of decisions. As motor 

actions require energizing the body and the brain, they have a strong 

relationship with arousal (Kurniawan et. al., 2021). We intended to 

check whether pupil size would be modulated under effort and 

whether it correlates with speed and accuracy effects we observed. 

We have conducted a random dot-motion task, in which the subjects 

needed to press a hand dynamometer in three different levels of 

force in order to see the stimulus. We predicted to see larger arousal 

in larger effort conditions. The result of this experimental study 
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showed that baseline pupil sizes had a strong interaction with the 

physical effort that the participants had carried on during the task. 

Specifically, in higher effort conditions, the baseline pupil sizes 

were larger which indicated a higher tonic arousal. Furthermore, we 

demonstrated that the tonic pupil size changes in each effort 

condition was negatively correlated with reaction time and 

proportion of correct responses. Thus, we confirmed our hypothesis 

that effort of actions during a decision making task modulate 

arousal levels and this correlates with the speed and accuracy of the 

responses. This result is in line with the recent studies which have 

highlighted the influence of arousal on decision making (Jepma & 

Nieuwenhuis, 2011, Murphy et. al., 2014, Naber & Murphy, 2019). 

For instance, Naber & Murphy (2019) have reported that large 

baseline pupil sizes were predictive of faster and less accurate 

responses. Following this, we found that in high effort conditions, 

the baseline pupil was larger and responses were faster and less 

accurate. Thus, the effort’s influence on arousal might be a key 

contributor of SAT effects due to effort intensity. In fact, high tonic 

arousal is usually related to higher variability in decision making 

process and faster responses (van Kempen et. al., 2019, Zenon, 

2019). In extension to situations outside classic decision making 

paradigms, large baseline pupil sizes were found to be correlated 

with mind wandering, exploration and distractibility (Gilzenrat et. 

al, 2010, Jepma & Nieuwenhuis, 2011, Smallwood et. al., 2011). To 

sum up, speed and accuracy modulations under effort-induced 

arousal that we report here might be a manifestation of this highly 
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vigilant, variable and poorly focused state of mind under increased 

tonic arousal.   

 

3.5. Open questions 

As it is the case with the most scientific studies, our study leaves 

more open questions than the ones it answers. Although we reported 

rich continuous dynamics between action and decision in Chapter 

2.1, we are aware of the fact that some decisions are abstract (not 

significantly connected with motor actions) and therefore are 

executed in a passive fashion. For instance, deciding what is your 

favourite meal or which class to take the next semester are 

examples to decisions that can be executed merely mentally without 

the need to move around in an environment. In fact, most of the 

studies in the history of decision-making field were about these 

passive decisions that rely on deliberation without strong coupling 

with the motor system. To build a strong scientific framework, 

embodied decision accounts must invest on understanding the 

boundaries between embodied and not embodied manifestations of 

decisions. Therefore, it is an open question that when given the 

flexibility, what makes an agent to carry on an embodied decision 

process versus a pure cognitive one.  

 

In relation to our work in Chapter 2.2 and 2.3, there is an open 

question about the difference between effort and perceived effort. 

Despite we used an objective measure of force as a proxy of effort, 

there are works that show that perceived effort is not directly 

correlated with the mechanical cost of actions. Similarly, perceived 
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effort of a task with the same external demand can change as a 

factor of fatigue (Iodice et. al., 2017). We did not specifically focus 

on the effect of fatigue and how it influences the effort-induced 

decision effects that we found. Future work can look for how 

fatigue can monotonically change the decision process under 

physical effort.  

 

Again in Chapter 2.2 and 2.3, we proposed that urgency is a 

mechanism that tracks effort-based costs as well as time-based 

costs. In order to bolster this claim, model-based approaches can be 

utilized. Potential implementations of evidence accumulation 

models (DDM) or more recent urgency models (Urgency Gating 

Model) may help us differentiate what processes drive the effort-

based alterations in choice behaviour (Ratcliff & McKoon, 2008, 

Thura et. al., 2012). Specifically, it can be tested whether effort 

induced SAT changes can be accounted by urgency modulations or 

general shift in decision bias or drift rate can explain them. These 

are important questions that we are not able to answer yet. In future, 

we or other research groups should carry on these much-needed 

applications. 

 

3.6. Concluding remarks 

Under this PhD thesis, we investigated decision making during an 

ongoing action with three novel experimental studies. After 

establishing that sampling actions and response actions can be 

executed simultaneously (Chapter 2.1), we moved on to a detailed 

study of how effort of actions contribute to decision making 
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(Chapter 2.2). Finally, we sought after whether arousal is a critical 

factor in effort-related changes in decision-making (Chapter 2.3). 

Although it may seem as if there is a leap between the first study 

and the latter two studies, they are highly connected conceptually. 

In all three experimental paradigms, we utilized an ongoing action 

while a decision was being made. Similarly, in all paradigms stimuli 

were contingent on motor actions. Overall, we researched the 

influence and dynamics of actions during evidence accumulation 

stage. This conceptual continuity is highly relevant considering the 

overarching conclusion of this PhD dissertation. Costly physical 

actions influence decision making both in terms of dynamic 

changes in shape of trajectories and in terms of speed and accuracy 

of responses that are reported.  

 

Our work contributes to a field that is gradually getting more 

prevalent in the last decades. Despite the dualist idea of mind and 

body that dominated studies of cognition and brain for a very long 

time, we see a surge of embodied approaches that revisits the 

coupling between brain and body from various angles. Yet, there is 

still a lot to understand about the mechanisms and limits of 

embodied decisions. In their extensive review of the field, Gordon 

et. al., (2021) mentioned important considerations about studying 

embodied decisions. They emphasized that to be able to answer the 

specific questions about decision and action relationship, there 

needs to be novel task designs which are still as rigorous as well-

controlled classic setups. We think that the body of work described 

in this thesis is a response to such a need in the field. In addition to 
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presenting novel evidence in favour of action-decision interactions, 

we hope that our work promotes further questions and inspires 

further studies. 
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