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Abstract

This thesis is concerned with the development of efficient and practical numeri-
cal methodologies to deal with longitudinally invariant soil-structure interaction
problems in elastodynamics. All the approaches appearing in this thesis are formu-
lated in the frequency-wavenumber domain. Moreover, the formulations can deal
with full-space and half-space models of the soil. The novel proposed methods are
mainly based on meshless approaches, which provide three main benefits: simplic-
ity on the formulation and implementation, to avoid meshing requirements and to
increase the computational efficiency of the evaluation of the soil-structure system
response. Generally, these approaches are employed to model the wave propaga-
tion in unbounded mediums. Thus, in this thesis, meshless methods are used to
model the soil, while the finite element method is mainly used to deal with the
structure modelling. However, this thesis also demonstrates that meshless meth-
ods can also be used to model homogeneous structures. The performances of the
novel approaches presented have been assessed in the context of railway tunnels
embedded in the soil, especially for the case studies of circular and cut-and-cover
tunnels. The studies are carried out for different elastodynamic models of the
soil, including homogeneous full-space, homogeneous half-space and horizontally
layered half-space.

Four new methodologies are presented in this thesis. Firstly, a two-and-a-half-
dimensional finite element-boundary element methodology coupled with the me-
thod of fundamental solutions is developed. This approach uses the method of fun-
damental solutions to model the wave propagation in the soil once the soil-tunnel
interaction has been determined, reducing the computational needs of comput-
ing the soil response. Afterwards, the second methodology further enhances the
computational efficiency, the robustness and the simplicity of the approach, by
modelling the soil response using the singular boundary method. To reach even
higher computational benefits, a hybrid method that combines the singular bound-
ary method and the method of fundamental solutions is proposed. This hybrid
approach is found to be inheriting the computational efficiency of the method of
fundamental solutions while keeping the robustness and accuracy presented by the
singular boundary method. The hybrid methodology is finally extended to model
both the structure and wave propagation in the soil, which leads to a fully meshless
and efficient approach to deal with the soil-structure interaction problems.
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Chapter 1

Introduction

This chapter serves as an introduction of the present thesis. It begins with a brief
introduction to the soil-structure interaction problems. Afterwards, a justification
of the interest on introducing more practical numerical methodologies to deal with
soil-structure interaction problems is presented. The justification is followed by the
main objectives of the thesis. Finally, the chapter concludes with a brief outline of
the contents of each of the chapters in the thesis.

1
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1.1 Overview

Dynamic soil-structure interaction (SSI) refers to the engineering field devoted
to the study of the dynamic response of structures resting or embedded in the
soil. This field is an interdisciplinary subject that can be a prominent issue in
the dynamic analysis of different types of structural engineering problems, for
instance, the seismic analysis of the structures, the design of offshore industries
and the prediction of traffic-induced vibrations [1].

The simulation approaches to deal with dynamic SSI problems can be categorised
into two general forms: analytical/semi-analytical solutions and numerical ap-
proaches. The analytical/semi-analytical solutions have a limited scope of appli-
cation, as they can only be defined for quite simple geometries. However, these
solutions are extremely efficient in terms of computational time and can be used
as a reference for the verification of numerical strategies. Methods of this type
have been used in previous investigations to address various SSI problems such as
footings [2] and pile-soil interaction [3]. On the contrary, numerical methodologies
need to be adopted to study complex structures embedded in the soil, despite their
larger computational time compared to analytical/semi-analytical methods. These
approaches are commonly based on domain discretisation and they are specially
designed to deal with complex finite systems (structures) embedded in unbounded
domains (soil).

This thesis is devoted to the study of the numerical strategies for SSI when the
structure is (or can be considered to be) longitudinally invariant, meaning that
the system has constant geometrical and mechanical parameters along the lon-
gitudinal direction. Engineering structures such as at-grade railway or highway
systems, underground tunnels or pipelines can be modelled within this assumption.
Although the results presented in this thesis are associated with railway tunnels,
the methodologies developed can be used for arbitrary longitudinally-invariant
structures embedded in the soil.

1.2 Motivation

A large variety of numerical methods are presented in the literature for the dynamic
assessment of SSI problems. This area of research brings new challenges to study
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SSI problems related to different types of engineering structures. As mentioned
earlier, some of these structures can be considered to be longitudinally invariant
systems, for example, the cases of railway tracks, tunnels, roads and pipelines.
Approaches formulated in the wavenumber-frequency domain, usually referred as
two-and-a-half-dimensional (2.5D) approaches, are particularly suitable to model
these types of systems. It is well-established that 2.5D modelling approaches [4] are
a better alternative than three-dimensional (3D) models [5], since they inherently
account for the longitudinal infiniteness of the system. From a computational
point of view, 2.5D modelling approaches are considered more efficient than 3D
models.

Mesh-based approaches are widely used to study SSI problems. Among them,
finite element method (FEM), boundary element method (BEM) [6] and perfectly
matched layer (PML) [7] and, especially, combinations of them are largely predom-
inant. BEM can also be mentioned as an integration-based numerical strategy,
since numerical integration along the boundary is a key procedure of the method.
Despite of the benefits provided by these approaches in terms of accuracy, ro-
bustness and versatility dealing with diverse problems, they inherit two important
drawbacks. On the one hand, the main disadvantage of the mesh-based methods
is that they usually involve expensive mesh generation processes for high preci-
sion computations which result in large system of linear equations, requiring large
computational capabilities. On the other hand, their implementation in practical
algorithms has severe technical challenges [8].

To address these shortcomings, research on meshless approaches as alternative
methods with significantly higher computational efficiency has gained momentum
from both academia and industry in the last few years. The main benefits that
the meshless methods provide are:

• Simplicity in the numerical formulation and, subsequently, in the algorithm
implementation.

• To avoid the constraints of mesh generation required in mesh-based ap-
proaches.

• Enhanced the computational efficiency with respect to the mesh-based ap-
proaches.

• Lower computer memory requirements.
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• To provide higher accuracy for non-complex smooth boundary geometries.

Motivated by the research gap in this field, novel meshless methodologies to deal
with SSI problems have been developed. In this context, two of the most well-
known meshless approaches are employed: the method of fundamental solutions
(MFS) [9–14] and the singular boundary method (SBM) [15–19]. Generally, these
approaches are employed to model the wave propagation in unbounded mediums.
In this thesis, they are used to model the soil, while the FEM is initially used
to deal with structure modelling. However, this thesis also demonstrates that
meshless methods can be also employed to model bounded homogeneous struc-
tures. The performances of the novel approaches presented have been assessed in
the context of railway tunnels embedded in the soil, especially for the case stud-
ies of circular and cut-and-cover underground railway tunnels. The studies are
performed for various elastodynamic models of the soil, including homogeneous
full-spaces, homogeneous half-spaces and layered half-spaces.

1.3 Thesis Objectives

The objective of this thesis is the development of more efficient and practical
numerical methodologies to deal with longitudinally invariant SSI problems. This
goal has been achieved by taking advantage of the benefits presented by novel
approaches based on meshless methods. To this end, the following tasks have
been undertaken:

• To study the applicability of the 2.5D MFS approach as a post-processing
tool with the 2.5D FEM-BEM method to determine the response in the field
points.

• To develop a coupled 2.5D FEM-SBM method, reaching a more robust
methodology than the 2.5D FEM-MFS.

• To investigate the performance of the proposed coupled 2.5D FEM-SBM
method in the context of railway tunnels, particularly for the case studies of
circular and cut-and-cover underground railway tunnels.

• To propose a novel 2.5D hybrid SBM-MFS approach for elastic propagation
problems that may inherit the benefits of both SBM and MFS methods.
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• Study the effect of fictitious eigenfrequencies on the performance of 2.5D
MFS, 2.5D SBM and 2.5D hybrid SBM-MFS methods.

• Development of a fully meshless method for longitudinally invariant SSI
problems.

• To study the performance of the proposed coupled 2.5D SBM-MFS approach
in the framework of railway tunnels embedded in the soil, particularly for
the case studies of circular and cut-and-cover underground railway tunnels.

1.4 Thesis Outline

This dissertation is divided into seven chapters. In the current chapter, an overview
of the problems, the motivation to do this research, the objectives of the present
thesis, and the contents of each chapter are outlined.

Chapter 2 is concerned with presenting a review of previous researches regarding
prediction models for wave propagation problems. Moreover, different methods
(mesh-based and meshless) to address SSI problems are discussed in this chapter.
The recent investigations related to the MFS and SBM approaches are reviewed
in detail.

Chapter 3 is concerned with a new prediction methodology for longitudinally in-
variant SSI problems. This method uses the FEM to model the structure, the
BEM to model the local soil surrounding the structure and the MFS to model the
wave propagation through the soil, all formulated in the 2.5D domain. The chap-
ter begins with an introduction to the proposed methodology. Afterwards, the
numerical formulation of the proposed approach is developed. The performance
of the method is demonstrated in the framework of different examples: a solid
cylinder and a thin circular shell, considering homogeneous full-space and half-
space models for the soil. Moreover, the computational efficiency of the proposed
approach is studied. Also, a control methodology that ensures the robustness of
the approach is presented.

Chapter 4 presents a more efficient and robust numerical methodology to deal
with longitudinally invariant SSI problems. The methodology uses the FEM to
model the structure and the SBM to model the wave propagation in the soil, both
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formulated also in the wavenumber-frequency domain. First of all, the numerical
formulation of the method is developed in detail. Afterwards, the accuracy of the
proposed method is assessed by comparing it against 2.5D FEM-MFS and 2.5D
FEM-BEM approaches for two cases: a thin cylindrical shell and a star-like beam
structure, both embedded in a full-space medium. Moreover, the computational
efficiency of the proposed method is evaluated. In the final step, the applicabil-
ity of the proposed method is studied through two examples of a railway tunnel
embedded in a layered half-space.

The hybridisation of the SBM with the MFS to deal with elastic wave propagation
problems is studied in Chapter 5. The chapter starts with the theoretical back-
ground of the method. Afterwards, the accuracy of the 2.5D SBM, the 2.5D MFS
and the hybrid methods are evaluated in the context of three examples: longitudi-
nally infinite cavities with a circular, partially circular and square cross-sections,
all considered in a homogeneous full-space medium. The computational efficiency
of the proposed method is also assessed in this chapter. Finally, the effects of
the fictitious eigenfrequencies on the responses are studied for all the considered
methods.

In Chapter 6, the proposed 2.5D hybrid SBM-MFS methodology is extended for
two domains to model both the structure and wave propagation in the soil, re-
sulting in a fully meshless approach for dealing with SSI problems. The chapter
begins with the theoretical background of the methodology. In the next step, the
method is validated in the context of a circular shell embedded in the the soil by
comparing it against the corresponding semi-analytical solution. The performance
of the novel methodology has been assessed in the context of circular and cut-and-
cover underground railway tunnels embedded in soils modelled as homogeneous
full-spaces.

The conclusions from this investigation are summed up in Chapter 7. Some guide-
lines for further research in the topic are also pointed out.



Chapter 2

Background and literature review

This chapter begins with a literature review of the mesh-based approaches. Then, an
introduction to the meshless methods is given, reviewing the previous investigations
about the method of fundamental solutions, the singular boundary method and other
existing meshless methods.

7
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2.1 Background

Dynamic SSI is an engineering discipline that arises at the intersection of soil and
structural dynamics and it is related to other disciplines as earthquake engineer-
ing, geophysics and geomechanics, material science and computational mechanics,
among others [1]. The interest of scientific and technical communities in the dy-
namic assessment of SSI problems has been increasing over the last decades [20]. At
the same time, a large variety of modelling methodologies has been developed in re-
cent years to deal with these engineering problems. For the specific case of SSI that
could be assumed to be longitudinally invariant, 2.5D modelling approaches [4] are
found to be a better alternative than 3D models [21]. The wavenumber-frequency
domain has been adopted in models that study the dynamic SSI between the soil
and different types of infrastructures, such as at-grade railway tracks [22, 23],
underground tunnel systems [22, 24], roads [25] and pipelines [26], among others.

Analytical and semi-analytical methods formulated in the wavenumber-frequency
domain are a faster alternative to 2.5D numerical approaches. One of the most
well-known semi-analytical models that consider a 2.5D approach is the Pipe-in-
Pipe (PiP) model [27, 28], a computationally efficient method for underground
railway tunnels of circular cross-section, embedded in a full-space medium. The
extension to a layered half-space using a fictitious force method was later proposed
by Hussein et al. [29]. The method ensures accurate results when the distance
between the tunnel and the free surface or near layer interfaces is large. More
recently, a general semi-analytical solution for the case of a tunnel embedded in
a multi-layered half-space has been presented by He et al. [30]. Nevertheless,
these semi-analytical approaches are limited to very simple tunnel geometries and
numerical alternatives, mesh-based or meshless, are usually necessary to deal with
cases involving complex geometries. In sections 2.2 and 2.3, the existing mesh-
based and meshless approaches in the field are reviewed, respectively.

2.2 Mesh-based approaches

The applicability of 2.5D modelling strategies to SSI problems was firstly inves-
tigated by Hwang et al. [31], who presented the first work on 2.5D FEM, along
with an application of the proposed methodology for soil-structure systems. Later,
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a 2.5D approach based on finite and infinite elements was developed by Yang
and Hung [32] to model longitudinally invariant unbounded systems subjected to
moving loads. In their approach, the infinite elements are used to account for
the unbounded domain. Furthermore, a 2.5D FEM approach was presented by
Gavríc to compute the dispersion curves associated with longitudinally invariant
structures with thin-walled [33] and solid [34] cross sections. A well-established
approach to deal with SSI problems is the coupled FEM-BEM, where the FEM
is used to model the structure and the BEM is employed to account for the soil
medium. Sheng et al. [6, 35] proposed a FEM-BEM approach in the context of
the 2.5D domain. François et al. [23] proposed also a 2.5D FEM-BEM approach
that uses the Green’s functions of a layered half-space as fundamental solutions
instead of the full-space ones, leading to a significant reduction on the number
of boundaries to be meshed. The application of this method to the prediction
of railway-induced vibrations is investigated in [22]. An alternative approach for
obtaining the Green’s functions required in 2.5D BEM in elastodynamics is the
thin layer method [36]. Another method to deal with SSI problems is proposed by
Lopes et al. [37], who studied the vibration induced in buildings due to the under-
ground railway traffic using the 2.5D FEM-PML approach, where the FEM is used
to model the structure and the PML is employed to account for the unbounded
soil domain.

In 2.5D models, the structure and surrounding soil are assumed to be invariant in
the longitudinal direction. However, due to the physical periodicity of the railway
tracks, this assumption is not valid in all frequencies. Specifically, for typical rail-
way tunnel structures, the periodicity of the system does not influence the transfer
functions in frequencies below 80 Hz [38]. Alternatively, periodic modelling can
be used to simulate the response of railway systems at higher frequencies. In
this regard, Gupta et al. [39] compared the results obtained by a coupled FEM-
BEM periodic model of the track-tunnel-soil system with the ones obtained with
the PiP model, and they highlighted the benefits and drawbacks of both mod-
els. Furthermore, Gupta and Degrande [38] assessed the efficiency of continuous
and discontinuous floating slab tracks using a periodic model of track-tunnel-soil
system.

In order to avoid the limitations of mesh-based approaches and also to improve the
computational efficiency of the integration-based numerical strategies, meshless
methods have been proposed to model the wave propagation.
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2.3 Meshless approaches

The meshless methods, as an alternative to the mesh-based approaches, started to
capture the interest of a broader community of researchers over the last decades.
In meshless methods, there is no inherent reliance on a particular mesh topology
which is associated with simpler formulations and computational implementation
procedures of the method. Over the last years, numerous studies have been carried
out on novel meshless approaches. MFS and SBM are probably the most popular
approaches in this category. In what follows, general conceptual description of
these two methods as well as a review of the previous studies found in the literature
are presented. Afterwards, a summary of alternative meshless methods is also
presented.

2.3.1 Method of fundamental solutions (MFS)

The MFS is a meshless method that employs the fundamental solution of the
governing equation of interest as the interpolation basis function. It is especially
useful for dealing with wave propagation problems in unbounded or partially un-
bounded domains. This method provides two main benefits with respect to the
BEM in terms of numerical efficiency: on the one hand, it does not require to dis-
cretise the boundary and it avoids the integration over the boundary and, on the
other hand, the system of equations to solve is usually much smaller than the one
required in BEM. The earliest works associated with the application of the MFS
were presented by Shippy and Kondapalli for acoustic problems [40, 41]. Later,
the application of the MFS to solve the Helmholtz eigenvalue problems was stud-
ied [42]. This method was proven to be effective also for elastodynamic problems,
as shown in [43]. Its application is based on a distribution of collocation points,
which evaluate the boundary conditions at discrete positions, and on a distribu-
tion of source points (or virtual forces, in elastodynamic problems), where those
with strengths evaluated to comply with the boundary condition at the colloca-
tion points. In the MFS the collocation points are located on the boundary, while
the source points are placed outside the domain. For many years, it has been a
concern of researchers to define guidelines on the positioning of the source points,
since the accuracy of MFS has been found largely dependent on their distribution,
particularly in complicated shapes. An incorrect selection of this distribution may
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lead to large errors in the numerical method [44]. Besides, it should be noted that
the amount of source points also affects the numerical convergence and stability
of the results [45]. Chen et al. [46] proposed to minimise the error of the MFS
through two algorithms. They considered one algorithm that minimises the error
on the boundary condition satisfaction and the leave-one-out cross-validation algo-
rithm which minimises the distance between the physical and auxiliar boundaries
to find the optimal position of the virtual source points. Furthermore, Wong et
al. [47] showed that there is a strong relation between the optimal position and
density of the virtual source points and the effective-condition-number, which thus
can be used as an indicator to optimise the virtual sources distribution. The need
for an optimal determination of the distribution of virtual sources belongs to the
inherent numerical instability of the MFS. A non-proper distribution of the virtual
sources may result in various numerical issues. Among them, the singularity of
ill-conditioned matrices [48, 49] or ill-posed problems [50] are the most common
numerical issues associated with the MFS application.

To extend the capabilities of the MFS, methodologies that combine it with mesh-
based approaches to deal with SSI problems have been developed. Godinho et al.
[51] presented a 2D FEM-MFS modelling approach for these types of problems.
An extension of the method to the 2.5D domain was presented by Amado-Mendes
et al. [52], where a methodology that models the structure using 2.5D FEM and
the surrounding soil with 2.5D MFS is proposed. Godinho et al. [53] presented a
fully meshless method to deal with SSI problems in the frequency domain where
the MFS is used to model the soil while the meshless local Petrov–Galerkin method
is used to model the structure. More recently, Liravi et al. [14] proposed a 2.5D
FEM-BEM-MFS approach which uses the BEM to obtain the soil stiffness matrix
at the SSI, while the MFS is employed to determine the radiated field in the soil
induced by the system. This work also presents a control methodology to reduce
the existing errors associated with the MFS predictions. However, both FEM-
MFS and FEM-BEM-MFS methods exhibit complications dealing with complex
boundary shapes, due to the difficulties arising in the selection of virtual sources
distribution for these geometries.
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2.3.2 Singular boundary method (SBM)

The SBM is a novel and emerging meshless boundary collocation method for the
solution of boundary value problems that, in contrast to MFS, locates the vir-
tual source points on the physical boundary. The SBM inherits some of the key
advantages of the BEM and some of the MFS. On the one hand, the integration
procedure that is computationally expensive in BEM-based methods is avoided.
On the other hand, the SBM addresses the drawbacks of the MFS associated
with the position of the virtual source points by relocating them on the physical
boundary, overlapping the collocation points. Although this technique eliminates
the difficulties with the distribution of the source points, it arises the singularities
of the fundamental solutions on the boundary due to the overlap between colloca-
tion points and virtual forces. Thus, a regularisation technique should be adopted
to overcome these singularities. In the SBM, this is performed by introducing the
concept of origin intensity factor (OIF) [54]. In Dirichlet boundary conditions,
the OIF can be derived directly as an average value of the fundamental solutions
over a portion of the boundary [55]. In the original SBM, the inverse interpola-
tion technique is also introduced in [56, 57] for the calculation of OIFs by using
sample solutions of the governing equation of the problem. For Neumann bound-
ary conditions, the OIFs can be derived by using a subtracting and adding-back
technique [58, 59]. Chen and Gu [60] proposed a desingularisation procedure that
uses this technique to obtain a numerical-analytical solution which allows to di-
rectly determine the OIFs without any sample solutions. Gu et al. [54] proposed a
SBM formulation for the solution of orthotropic elastic problems. This technique
has been followed by Sun et al. [61] to deal with wave propagation problems in
poroelastic systems.

The original SBM has been reformulated in various works to be adapted to partic-
ular cases. Asymmetric formulation of the SBM has been proposed for problems
with mixed boundary conditions [62]. This type of formulation not only improves
the computational efficiency but also enhances the stability of the method. Fu et
al. [15] developed a SBM formulation to study acoustic radiation which has been
adapted to deal with periodic systems [63] and to longitudinally invariant systems
[18]. More recently, these authors developed a 3D coupled FEM-SBM approach
to address acoustic radiation problems for underwater acoustics [64]. Fakhraei
et al. [65] presented a full assessment of the 2.5D SBM for both scattering and
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radiation acoustic problems. They studied the accuracy and robustness of the me-
thod with respect to 2.5D MFS and 2.5D BEM by proposing different examples
with complex geometries. A formulation for the 2.5D SBM for elastodynamics has
been recently presented in [19]. In that work, the authors used the FEM to model
the structure and SBM to model the wave propagation in the medium. Despite
that the SBM presents multiple benefits, it also has a number of shortcomings.
One of the drawbacks of the traditional 3D SBM is the difficulties of simulating
large-scale problems. This shortcoming is addressed in various studies by pre-
senting a novel algorithm based on the recursive skeletonisation factorisation [66]
and by proposing a localised singular boundary method [67] that incorporates a
local subdomain at every node of the domain in conjunction with the Chebyshev
collocation scheme [68], resulting in the reduction of computational time and the
data storage memory by the method.

2.3.3 Alternative meshless approaches

Many other alternative meshless methods have been proposed in the literature. For
instance, the regularised meshless method is another modification scheme that was
firstly introduced in [69] and later developed by using the double layer potential
in the desingularisation procedure [70]. Another technique, named the boundary
distributed source approach, has proposed to replace concentrated sources with
circular distributed ones [71, 72], providing a method free of singularities. Other
meshless methods introduced in the literature are the boundary collocation method
[73], boundary knot method [74], localised boundary knot method [75], singular
meshless method [76] and local Petrov–Galerkin method [77] which is coupled with
the BEM in [78], for addressing the acoustic wave propagation problems [78].

Some studies have also considered the combination of different meshless method-
ologies in a single approach with the aim of inheriting the advantages of them. In
this context, a hybrid meshless method that coupled the hybrid boundary node
method with the dual reciprocity method was proposed for solving the Helmholtz-
type equation [79]. More recently, a hybrid localised meshless method has been
developed and formulated by mixing the generalised finite difference method and
the Crank–Nicolson scheme for solving transient groundwater flow [80]. In this
context, the hybridisation of SBM and MFS approaches is a novel methodology
that will be studied in this work.



Chapter 3

A 2.5D coupled FEM-BEM-MFS

methodology for longitudinally

invariant soil-structure interaction

problems

This chapter is concerned with a new prediction methodology for longitudinally
invariant soil-structure interaction problems in elastodynamics. The method uses
the finite-element method to model the structure, the boundary-element method to
model the local soil surrounding the structure and the method of fundamental so-
lutions to model the wave propagation through the soil, all of them formulated in
the two-and-a-half dimensional domain. The proposed method firstly obtains the
displacement field on the soil-structure interaction boundary making use of a two-
and-a-half dimensional coupled finite element-boundary element method. The me-
thod of fundamental solutions is used then as a post-processing tool to compute the
response of the soil, increasing the computational efficiency of the overall method-
ology with respect to a methodology that considers the boundary element method
as a model of the wave propagation through the soil. The accuracy of the method-
ology is verified for four calculation examples: a solid cylinder and a circular thin
shell embedded in a homogeneous full-space and also in a homogeneous half-space.
This verification is performed comparing the results with available analytical or
semi-analytical solutions and a conventional two-and-a-half dimensional coupled
finite element-boundary element method. Furthermore, a control methodology to

14
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increase the robustness of the method is presented.
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In the current chapter, a 2.5D FEM-BEM-MFS approach formulated in Cartesian
coordinates and in the frequency domain is presented. The method uses the MFS
as a post-processing tool to obtain the displacement and traction fields on the
soil from the displacement field on the SSI boundary. That displacement field on
the boundary is proposed to be obtained by using a 2.5D FEM-BEM approach.
The main novelty of the proposed method is, thus, the way MFS is applied, which
leads to two global benefits. On the one hand, the application of this methodology
results to an increase of the computational efficiency of the method with respect
to traditional 2.5D FEM-BEM approaches [23], especially when many evaluation
points are required to be analysed. On the other hand, a substantial difference
between the work of Amado-Mendes et al. [52] and the method proposed here is
related about how the dynamic stiffness matrix of the soil at the SSI boundary
is obtained: Amado-Mendes work uses the MFS while the present method uses
the BEM. Since the BEM discretises the boundary in elements instead on the
discrete collocation points employed in the MFS, the methodology presented here
ensures higher accuracy on the computation of the displacement and traction
fields on the SSI boundary, which results in a significant reduction of the errors
associated with the displacement and traction fields on the soil. As shown in
this chapter, this is of special importance for the traction field on the soil, since
it has a stronger dependency on the accuracy of the displacement and traction
responses on the boundary. In terms of computational efficiency, the 2.5D FEM-
MFS generally overcomes the proposed method since it avoids the integration
along the boundary required in BEM. However, it is demonstrated in this chapter
that the new proposed method is specially relevant for large amounts of evaluation
points: in these cases, both 2.5D FEM-MFS and 2.5D FEM-BEM-MFS methods
exhibit very similar levels of efficiency. Also, in this chapter, an interpolation-
based technique that considerably increases the accuracy/efficiency of the method
is studied. In this technique, the values on the boundary obtained by 2.5D FEM-
BEM are interpolated to have more collocation points to be used in the MFS.
All of these capabilities lead to a comprehensive method that encompasses the
robustness of FEM-BEM approaches combined with the computational efficiency
of the MFS. The methodology is tested and verified for homogeneous full-space
and half-space cases for two structures: a solid and a cavity embedded in the
soil. Finally, an error detection tool to control the error of the displacement and
traction fields on the soil, ensuring the robustness of the methodology, is proposed
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in this chapter. This control technique is based on control points in the field fully
evaluated by the 2.5D FEM-BEM. These control points can be used to find the
location of the virtual sources that optimises the MFS performance in terms of
accuracy. This is a new feature as compared with the 2.5D FEM-MFS method.

3.1 Numerical method

A general description of the methodology developed in the current chapter is
presented in Fig. 3.1. This methodology is devoted to deal with SSI problems in
elastodynamics and it consists of two general steps. First of all, the displacements
at the soil-structure interface Γ for a structure Ωs embedded inside the medium
Ω are calculated using a mesh-based method. Numerical approaches such as the
coupled FEM-BEM and the FEM-PML are suitable of this task. In step two,
the MFS is applied in order to compute the displacement and traction fields on
the soil. The displacements on the boundary Γ obtained in the first step are
used as the input boundary conditions for the MFS: the boundary nodes of the
mesh-based approach where the boundary condition is evaluated are transformed
to collocation points. Virtual sources are located inside the virtual boundary
Γ̃ (which is in geometrical accordance to Γ), outside the Ω domain, and their
strengths are obtained using the fundamental solutions or the Green’s function
of the soil, depending on whether a full-space or a half-space model of the soil is
considered. In this method, the MFS is proposed to be applied considering the
same number of virtual sources as number of collocation points. Finally, the MFS
can be used to provide the desired displacement and traction fields on the soil.

~

Figure 3.1: General description of the methodology. Collocation points are
denoted by grey dots while virtual sources are denoted by red ones.
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This methodology is described for the particular case of longitudinally invariant
soil-structure problems, as shown in Fig. 3.2. To do so, all methods included
in the methodology are formulated in the wavenumber-frequency domain (2.5D).
Thus, the mesh-based method used to obtain the displacement response at the SSI
boundary is based on a 2.5D FEM-BEM approach, which is detailed in Section
3.1.1. The 2.5D MFS approach for elastodynamics used for the computation of the
response in the soil domain is presented in Section 3.1.2. The combination of these
two approaches results in a global methodology called 2.5D FEM-BEM-MFS.

Although the method can be potentially applied to problems with arbitrary soil-
structure interface geometries, the applications appearing in this chapter are re-
stricted to circular boundaries, as also shown in Fig. 3.2. In this context, colloca-
tion points and virtual sources are located along two circumferences of radius Rc

and Rs, respectively, with the same angular positions for both cases.

Rc

Rs

Virtual sources

Collocation points

FEM mesh

BEM mesh

Boundary nodes

2.5D FEM-BEM 2.5D MFS

Figure 3.2: Visual description of the 2.5D FEM-BEM and the 2.5D MFS
models considered in this chapter.

In this work, matrices and tensors are denoted by upright bold letters and vectors
are denoted by bold italic letters. Also, the bar notation represents variables in the
wavenumber domain, while the upper case notation is used to denote frequency
domain variables.

3.1.1 2.5D FEM-BEM approach

In order to obtain the response at Γ using a 2.5D FEM-BEM approach, the soil-
structure system is divided into two sub-domains, as shown in Fig. 3.2 (left) for the
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case of a tunnel structure, the first one consisting of the structure and the second
one consisting of the unbounded semi-infinite medium, as a model of the soil. The
FEM is used to model the structure sub-domain and the BEM is used to model
the soil. The considered formulation for the 2.5D FEM-BEM approach used in
this chapter comes from [23] when half-space models of the soil are adopted, while
the work of Ghangale et al. [81] is employed for full-space cases. These approaches
are chosen for their computational efficiency, particularly significant in the case of
[81], and because of the avoidance of using an explicit evaluation scheme of the
required singular traction integrals and their capability of using half-space Green’s
functions, which simplifies the meshing effort. In both methods, the response of
the soil-structure system can be obtained by

[
K0 − ikxK1 + k2

xK2 + K̄s − ω2M
]
Ū = F̄ , (3.1)

where K0, K1, K2 and M are the stiffness and mass matrices associated with the
2.5D FEM domain. The matrix K0 corresponds to a combination of the classical
two-dimensional in-plane and out-of-plane FE stiffness matrix, while matrices K1

and K2 account for the 3D wave propagation in the structure, where the in-plane
and out-of-plane degrees of freedom are coupled. K̄s is the dynamic stiffness matrix
of the soil obtained from the 2.5D BEM model, kx is the longitudinal wavenumber
and ω is the angular frequency. The stiffness of the soil is frequency and wavenum-
ber dependent, while the stiffness and mass matrices related to FEM domain are
independent to them. Moreover, Ū and F̄ are vectors that collect displacements
and applied external forces, respectively, for all the degrees of freedom along the
mesh of the structure. The dynamic stiffness matrix of the soil can be computed
by

K̄s = ΦH̄−1
bb [H̄

τ
bb + I], (3.2)

where H̄bb and H̄τ
bb are square matrices associated with the displacement and

traction Green’s functions, respectively, that relate the response on the boundary
due to forces on it. Furthermore, I represents the identity matrix and Φ is the
transformation matrix that converts the unknown nodal tractions on the boundary
to nodal forces.



Chapter 3. 2.5D FEM-BEM-MFS 20

The response of the soil in terms of displacements, represented by Ūf , can be then
obtained by

Ūf = H̄fbT̄b − H̄τ
fbŪb, (3.3)

where Ūb and T̄b are vectors that collect displacement and traction of all the
degrees of the nodes on Γ, respectively, and H̄fb and H̄τ

fb are the matrices of
displacement and traction Green’s functions on the medium due to forces on the
boundary, respectively. Eq. (3.3) represents the discretised form of the bound-
ary integral equation in BEM [23]. The displacements on the boundary can be
computed using Eq. (3.1).

Most of the computational time required in 2.5D FEM-BEM approaches relies
on the computation of the displacement and traction Green’s functions required
to construct the matrices H̄bb, H̄τ

bb, H̄τ
fb and H̄fb, especially for half-space cases,

where the Green’s functions are not analytical expressions. When full-space mod-
els of the soil are adopted, strategies to reduce the computational time associated
with these matrices are explained in [81]. These strategies cannot be directly used
in the half-space problems, since the Green’s function are also depending on the
source depth in comparison with full-space cases, where the only geometric in-
formation required from the source and the receiver is its relative distance. For
half-space models of the soil, François et al. [23] proposed to obtain these matrices
by interpolation over a 2D grid of fixed points. However, using a 2D fixed grid to
account for the particular boundary of the problem could result on a significant
amount of unnecessary evaluation points. Also, interpolation could result in a loss
of accuracy of the system response due to improper sampling of source and evalu-
ation locations. In the present methodology and the others to come in this thesis,
however, it is proposed to construct a unique set of source-receiver combinations
taking into account the relative source-receiver distance and also the source depth.
The results on this unique set of source-receiver combinations are then mapped for
the original configuration of source and receivers. Refer to [81] for more details on
how to construct this unique set of source-receiver combinations and its mapping
to the global set. Since for half-space cases this strategy is less efficient than in
full-space ones due to the dependency on the source depth, it can be combined
with one-dimensional interpolation along the boundary. All this strategy is found
to be considerably more efficient in terms of computational time. In the present
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scheme, the Green’s function for 2.5D elastodynamic problems in a full-space are
proposed to be obtained with the formulation presented by [82] and adapted by
[83], while the Green’s functions for homogeneous and layered half-space problems
are proposed to be computed using the EDT toolbox [84] or the method proposed
by Noori et al. [85], respectively. This also applies for all the other methods
described in the present PhD thesis.

3.1.2 2.5D MFS approach

The MFS is a mesh-free and integration-free approach capable to deal with bound-
ary value problems. In this method, a set of virtual sources located outside of the
domain that produces the input response at the boundary are used to obtain an
approximation to the response inside the domain, always by means of the fun-
damental solutions (or the Green’s functions, depending on the problem) of the
medium. In the present method, the displacements on the collocation points are
obtained from the 2.5D FEM-BEM by computing the response on the bound-
ary. The sources, as shown in Fig. 3.2 (right), are located outside the domain,
i.e. outside the BEM domain from the 2.5D FEM-BEM approach. As previously
mentioned, the displacement and traction Green’s functions used in this method
are the same ones that are proposed for the 2.5D FEM-BEM approach. Given the
displacements at the collocation points, the source strengths can be calculated as

S̄v = H̄−1
cs Ūc, (3.4)

where S̄v is the vector that collects all virtual source strengths in the three Carte-
sian coordinates, H̄cs represents the matrix of displacement Green’s functions on
the collocation points due to the virtual sources and Ūc is the vector that contains
the displacements at all the collocation points and for the three Cartesian direc-
tions. If the collocation points are considered to be directly the nodes of boundary
mesh, Ūc=Ūb. If the configuration is different, the displacement in the collocation
points Ūc should be obtained by interpolation along the boundary from Ūb. Once
the source strengths are computed, the displacement and traction responses on
the medium, Ūf and T̄f , can be computed by means of

Ūf = H̄fsS̄v, T̄f = H̄τ
fsS̄v, (3.5)
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where H̄fs and H̄τ
fs represent the source-evaluation points Green’s functions for

displacements and tractions, respectively, and Ūf and T̄f stands for the displace-
ment and traction of the field points, inside the domain.

3.2 Verification for the case of a structure embed-

ded in a homogeneous full-space

In this section, the current methodology is verified for the case particular struc-
ture embedded in homogeneous full-space. For this verification, two calculation
examples are considered: a solid cylinder and a thin circular shell, both embedded
in a homogeneous full-space. The shell has a thickness of 0.1 m and the external
radius for both cases is equal to 1 m. The geometrical description of these two
case studies can be found in Figs. 3.3 and 3.9, respectively. In the example of the
solid cylinder, the structure is assumed to be defined by the exact same mechanical
parameters as the soil. Thus, for this case, the new methodology results can be
compared with the ones obtained with the analytical solution for the 2.5D Green’s
functions in a homogeneous full-space [82]. Also, the results obtained using a 2.5D
FEM-BEM approach [23] of the entire soil-structure system are included in the
comparison only for the case of displacement Green’s functions. In the case of the
thin circular shell, the verification of the new methodology is made only comparing
the results with a 2.5D FEM-BEM model of the entire soil-structure system. The
mechanical parameters of the soil and the structures appearing in these two exam-
ples are presented in Table 3.1. The FEM meshes of all the structures considered
in this verification are constructed using with linear triangular elements. For the
solid cylinder, the density of the FEM mesh close to the boundary is selected to
have at least 10 boundary elements (BE) per wavelength of the shear waves in the
soil and assuming maximum frequencies interest of 100 Hz and 250 Hz, achieving
BEM meshes of 36 and 104 BE, respectively. These two frequencies are selected
in accordance to the frequency ranges of interest for ground-borne vibration and
noise defined in the standards, which are 1-80 Hz and 16-250 Hz, respectively
[86]. For the thin circular shell, meshes for 6 and 10 elements per wavelength are
constructed, resulting in 24 and 36 BE, respectively (for a maximum frequency of
100 Hz), and 64 and 104, respectively (for a maximum frequency of 250 Hz). In
both calculation cases, the MFS is applied considering the same number of virtual
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sources as number of collocation points and a distance between them, defined by
d = Rc − Rs, of 0.15 m. This value comes from the control scheme presented
in Section 3.4. This verification is shown in terms of two different results: dis-
placement and traction Green’s functions in the wavenumber-frequency domain
due to a vertical load, presented in dB based on references of 10−12 m/(N/m)
and 1 (N/m2)/(N/m), respectively; and also in terms of the receptances and the
traction transfer functions obtained from those Green’s functions, considering the
evaluation point at the longitudinal position x0 and the longitudinal distribution
of the load as δ(x− x0), presented in dB based on references of 10−12 m/N and 1
(N/m2)/N, respectively. Stating the transformation of an arbitrary response g(x, t)
in the space-time domain to the wavenumber-frequency domain on the basis of a
double Fourier transform defined by

Ḡ(kx, ω) =

∫ +∞

−∞

∫ +∞

−∞
g(x, t)ei(kxx−ωt)dxdt, (3.6)

the receptance and traction transfer functions at x = 0 can be obtained from the
following inverse Fourier transforms

Uf (ω) =
1

2π

∫ +∞

−∞
Ūf (kx, ω) dkx, Tf (ω) =

1

2π

∫ +∞

−∞
T̄f (kx, ω) dkx. (3.7)

Due to the symmetries of the displacements and tractions in the wavenumber-
frequency domain due to a vertical load, the x components of the receptances and
traction transfer functions for this direction are null at x = 0. In contrast, the
other components can be computed by

U i
f (ω) =

1

π

∫ ∞

0

Ū i
f (kx, ω) dkx, T i

f (ω) =
1

π

∫ ∞

0

T̄ i
f (kx, ω) dkx, for i = y, z

(3.8)

where i refers to the component of the receptance or the traction transfer function.
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System
Young’s

modulus [MPa]
Density[
kg/m3

] Poisson’s
ratio

Damping

Soil 108 1800 0.33 0.05

Solid cylinder 108 1800 0.33 0.05

Thin circular shell 31000 2500 0.2 0.001

Table 3.1: Mechanical parameters of the soil and the structures considered in
the case studies in this chapter.

3.2.1 Solid cylinder embedded in a full-space

In first instance, the verification study for the proposed 2.5D FEM-BEM-MFS
method in the case of the solid cylinder is performed based on the displacement
Green’s functions results. The geometry of the structure, the location of the
evaluation points A and B and the location of the force are indicated in Fig. 3.3.
In this case, the mesh of system has a total number of 457 FEM nodes and 36
BEM nodes. The FEM mesh close to the load position is refined to approximately
simulate the load considered in the analytical solution, defined in the y-z plane
as δ(y)δ(z). Points A and B are selected to represent near and far field responses
on the soil with respect to the structure, respectively. The comparisons between
the different methods are presented in two forms: displacement Green’s function
plotted against frequency for two fixed wavenumbers, presented in Fig. 3.4 and
plotted against wavenumber for two fixed frequencies, illustrated in Fig. 3.5. The
chosen fixed wavenumbers in Fig. 3.4 are 0.1 rad/m and 1 rad/m and the fixed
frequencies considered in Fig. 3.5 are 10 Hz and 50 Hz. As can be seen, very good
agreement of the results between the three methods compared is observed in all
the plots. The 2.5D FEM-BEM and the analytical solution are matching perfectly
in all cases, as expected due to the selection of 10 BE per wavelength. Only slight
differences between the 2.5D FEM-BEM-MFS and the other two methods are
observed in displacement Green’s functions at near field evaluation point (point
A) for frequencies higher than 80 Hz, mostly for the wavenumber of 0.1 rad/m.
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Figure 3.3: Geometry of the calculation example of a solid cylinder embedded
in a full-space. Two evaluation points are considered: A and B. The input

vertical force is represented by a big arrow.

Using the same model presented for the displacement Green’s functions compar-
ison, the traction Green’s functions are compared with the analytical solution of
the problem. It can be found that the proposed 2.5D FEM-BEM-MFS approach
reaches high levels of accuracy associated with the traction Green’s functions in
the soil. Again, results at frequencies higher than 80 Hz are the only ones having
slight disagreement with respect to the analytical solution. In the case of tractions,
these inaccuracies can also be seen in the far field evaluation point, mostly in the
case of the wavenumber 0.1 rad/m.
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Figure 3.4: Displacement Green’s functions. Methods: 2.5D FEM-BEM (solid
red line), 2.5D FEM-BEM-MFS (dashed black line) and analytical solution (solid
green line). The results are obtained at points A (a) and B (b) for x (i), y (ii)
and z (iii) directions and for wavenumbers of 0.1 rad/m (1) and 1 rad/m (2).
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Figure 3.5: Displacement Green’s functions. Methods: 2.5D FEM-BEM (solid
red line), 2.5D FEM-BEM-MFS (dashed black line) and analytical solution (solid
green line). The results are obtained at points A (a) and B (b) for x (i), y (ii)

and z (iii) directions and for frequencies of 10 Hz (1) and 50 Hz (2).
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Figure 3.6: Traction Green’s functions. Methods: 2.5D FEM-BEM-MFS
(dashed black line) and analytical solution (solid green line). The results are
obtained at points A (a) and B (b) for x (i), y (ii) and z (iii) directions and for

wavenumbers of 0.1 rad/m (1) and 1 rad/m (2).
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Figure 3.7: Traction Green’s functions. Methods: 2.5D FEM-BEM-MFS
(dashed black line) and analytical solution (solid green line). The results are
obtained at points A (a), B (b) and C (c) for x (i), y (ii) and z (iii) directions

and for frequencies of 10 Hz (1) and 50 Hz (2).

Receptances and traction transfer functions are also considered to verify the me-
thod in this case study. In Fig. 3.8, receptances and traction transfer functions
obtained by the proposed methodology are compared with the ones obtained by
the 2.5D FEM-BEM approach and the analytical solution of the problem up to
250 Hz. The meshes used here are done imposing 10 BE per wavelength, resulting
in a total of 2335 FEM nodes and 104 BEM nodes. In the receptances compar-
isons presented in this figure, only slight discrepancies can be seen between the
analytical solution and both numerical methods (which are in full agreement with
each other) for frequencies above 200 Hz, for the y component of the response and
specially for the near field evaluation point. These discrepancies are also appearing
in the case of traction transfer functions.
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Figure 3.8: Receptances (1) and traction transfer functions (2). Methods:
2.5D FEM-BEM (solid red line), 2.5D FEM-BEM-MFS (dashed black line) and
analytical solution (solid green line). The results are obtained at points A (a)

and B (b) for y (ii) and z (iii) directions

.

3.2.2 Thin circular shell structure embedded in a full-space

In the second calculation example, a thin circular shell embedded in a homogeneous
full-space is modelled. The geometrical description of the system, the position
of the evaluation points considered and the location and direction of the input
force are illustrated in Fig. 3.9. In this example, the new 2.5D FEM-BEM-
MFS methodology is compared with a 2.5D FEM-BEM of the entire soil-structure
system. In context of these two methods, eight different modelling options are
taken into account in the comparison. They are listed and described in Table 3.2.

In this example, the comparison is done in terms of the receptances due to a vertical
force applied in the bottom of the cavity. For the calculation of the receptances,
the wavenumber in the x direction was logarithmically sampled from 0 rad/m
to 55 rad/m with 1025 points. In first instance, modelling options associated
with maximum frequency of 100 Hz are compared. For this case, the differences
between the five proposed numerical models are negligible for frequencies below 80
Hz. Thus, receptances are plotted in Fig. 3.10 only in the frequency range from 80
Hz to 100 Hz, where the most significant discrepancies between methods can be
seen. From the observation of these plots, the first insight that arises is that 2.5D
FEM-BEM and 2.5D FEM-BEM-MFS methods show a strong agreement when
the number of boundary nodes considered is the same, which verifies the new
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Figure 3.9: Geometry of the calculation example of a thin circular shell struc-
ture embedded in a full-space. Three evaluation points are considered: A, B and

C. The input vertical force is represented by a big arrow.

Max. F BE per λs Modelling options NBEM/NCP NFEM

100 Hz 6 2.5D FEM-BEM-24 24 241
2.5D FEM-BEM-MFS-24-24 24/24 241
2.5D FEM-BEM-MFS-24-36 24/36 241

10 2.5D FEM-BEM-36 36 283
2.5D FEM-BEM-MFS-36-36 36/36 283

250 Hz 6 2.5D FEM-BEM-MFS-64-64 64/64 563

10 2.5D FEM-BEM-MFS-104 104 603
2.5D FEM-BEM-MFS-104-104 104/104 603

Table 3.2: Specifications of the modelling options considered for the case of
thin shell structure. In this table, λs represents the wavelength of the S-waves
for the maximum frequency and NBEM, NFEM and NCP represent the number

of BEM nodes, FEM nodes and collocation points, respectively.

proposed approach for the present calculation example. The modelling option
2.5D FEM-BEM-MFS-24-36 is an enhanced version of the 2.5D FEM-BEM-MFS-
24-24 one, where the displacements on the 24 boundary nodes are interpolated
based on a third degree polynomial to a set of 36 collocation points. As can be
observed in Fig. 3.10, this method generally increases the accuracy of the 2.5D
FEM-BEM-MFS when it is compared with a 2.5D FEM-BEM with the same
number of boundary nodes, providing enhanced accuracy results with respect to
the 2.5D FEM-BEM-MFS-24-24 method. However, it should be noted that the
interpolation-based methodology can only converge to the solution for the same
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number of boundary nodes. Due to that, the accuracy level of the 2.5D FEM-BEM-
MFS-24-36 results is similar to the one associated with the 2.5D FEM-BEM-24
method but lower than the 2.5D FEM-BEM-MFS-36-36 one.

Furthermore, the results obtained by the modelling options associated with a max-
imum frequency of 250 Hz are shown in Fig. 3.11. The accuracy of the proposed
method, even for the 2.5D FEM-BEM-MFS-64-64 model (which is the method
with the coarser mesh for this case), has been found to be high. The interpolation-
based method is not considered in this comparison due to the high accuracy of
that non-interpolated 2.5D FEM-BEM-MFS-64-64 method.

The computational efficiency of the current method is studied with respect to
the 2.5D FEM-BEM solution in the context of the thin shell case study with
36 BEM nodes. Both methodologies have been implemented in MATLAB. The
efficiency comparison is performed over a high performance cluster with 2 GHz
Intel® Xeon® Gold 6138 CPU (with 40 cores). The computational efficiency of
the methodology is investigated for two case scenarios. Firstly, a computation for
2048 wavenumber values, a frequency of 50 Hz and only one evaluation point is
performed in only one core of the cluster and the computational costs are assessed.
The results indicate that the 2.5D FEM-BEM methodology consumes 78 seconds
to obtain the displacement response in the evaluation point, while the current
methodology spends a total time of 69 seconds, divided in 63 seconds to get the
response in the collocation points with the 2.5D FEM-BEM and 6 seconds to
obtain the field point response using the 2.5D MFS (the latter computational
time includes the source strengths computation). In the second example, the
algorithms are run for one value of the wavenumber and the frequency, and for
5, 25, 100, 500, 1000 and 2500 evaluation points. The computational costs of
both methods for this second example are indicated in Table 3.3. It is worth to
be mentioned that the computational time to obtain the boundary conditions by
2.5D FEM-BEM in the context of the 2.5D FEM-BEM-MFS method is equal to
0.119 seconds and it is constant for all cases. According to the results, the time
consumed by the 2.5D FEM-BEM method increases exponentially with respect
to the number of evaluation points, while the computational cost of the current
methodology increases in a linear trend. Thus, the computational efficiency of the
current methodology with respect to the 2.5D FEM-BEM method is demonstrated
to be very high for large amounts of evaluation points, while the improvement for
few evaluation points is almost insignificant.
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Number of evaluation points 5 25 100 500 1000 2500

Time: 2.5D FEM-BEM-MFS [s] 0.9 0.91 0.96 1.02 1.08 1.32
Time: 2.5D FEM-BEM [s] 2.46 2.49 2.82 5.3 11.8 48.1

Table 3.3: Computational costs of both methods depending of the number of
evaluation points considered.
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Figure 3.10: Receptances. Methods: 2.5D FEM-BEM-36 (solid red line),
2.5D FEM-BEM-24 (solid magenta line), 2.5D FEM-BEM-MFS-24-24 (dashed
blue line), 2.5D FEM-BEM-MFS-24-36 (dashed cyan line) and 2.5D FEM-BEM-
MFS-36-36 (dashed black line). The results are obtained at points A (a), B (b)

and C (c) for y (ii) and z (iii) directions.
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Figure 3.11: Receptances. Methods: 2.5D FEM-BEM-104 (solid red line),
2.5D FEM-BEM-MFS-64-64 (dashed blue line) and 2.5D FEM-BEM-MFS-104-
104 (dashed black line). The results are obtained at points A (a), B (b) and C

(c) for y (ii) and z (iii) directions.

3.3 Verification for the case of a structure embed-

ded in a homogeneous half-space

In this section, the performance of the current method is verified for the case of
particular structures embedded in homogeneous half-spaces. The verification is
performed for two examples: a solid cylinder and a thin circular shell, both buried
in a homogeneous half-space. The external radius for both structures is equal to 1
m and the shell thickness is equal to 0.1 m. The geometrical characteristics of these
two calculation examples are indicated in Figs. 3.12 and 3.18, respectively. The
material properties are described in Table 3.1. As assumed in the full-space case,
the same material is used for the structure and medium for the solid cylinder case.
Therefore, the results of this case can be directly compared with the semi-analytical
solution for the 2.5D Green’s functions of a homogeneous half-space. The semi-
analytical solution is obtained in the basis of the direct stiffness method proposed
by Kausel [87] using the EDT toolbox [84]. The 2.5D Green’s functions required
in 2.5D FEM-BEM-MFS and 2.5D FEM-BEM methods are also computed in this
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way for both calculation examples. The FEM meshes for these cases are the
same ones that have been created for the full-space case studies. The MFS is
also applied for these calculation examples considering the same number of virtual
sources as number of collocation points and a distance between them of 0.15 m.
Results presented in this section are of the same form as the ones presented for
the full-space cases.

3.3.1 Solid cylinder embedded in a half-space

As explained before, three types of results are compared in the verification of
the new proposed approach for the displacement Green’s functions in the case
of the solid cylinder embedded in a half-space: the ones obtained by the 2.5D
FEM-BEM-MFS, by the 2.5D FEM-BEM and by the semi-analytical solutions of
a homogeneous half-space. The geometry of the structure, the location of the eval-
uation points A, B and C and the location of the force are indicated in Fig. 3.12.
The evaluation point A is located on the ground surface and points B and C are
located in the soil to investigate the near and far field responses, respectively.
According to Figs. 3.13 and 3.14, the Green’s function displacements for all cal-
culation cases are consistent with those obtained by the semi-analytical method
and 2.5D FEM-BEM approach. The only significant difference is observed in the
displacement in the y component in point B for the wavenumber of 0.1 rad/m
(Fig. 3.13 (b-ii-1)), where errors up to 16% difference at high frequencies (higher
than 80 Hz) for both 2.5D FEM-BEM-MFS and 2.5D FEM-BEM approaches with
respect to the semi-analytical solution are observed.
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Figure 3.12: Geometry of the calculation example of a solid cylinder embedded
in a half-space. Three evaluation points are considered: A, B and C. The input

vertical force is represented by a big arrow.

In the case of traction Green’s functions, the verification study only accounts for
the 2.5D FEM-BEM-MFS method and the semi-analytical solution. The compar-
ison of these two methods for the selected calculation parameters are illustrated in
Figs. 3.15 and 3.16. As demonstrated in the presented plots, very good accuracy
of the traction Green’s functions is provided by the new method. Since the trac-
tion Green’s functions in vertical direction are equal to zero for evaluation points
at the ground surface, no plot is presented for the z component in the point A.
Only slight differences at frequencies higher than 80 Hz can be observed, again,
for the y component of the traction in point B and the wavenumber of 0.1 rad/m
(Fig. 3.15 (b-ii-1)) and also for the wavenumber of 1 rad/m (Fig. 3.15 (b-ii-2)).
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Figure 3.13: Displacement Green’s functions. Methods: 2.5D FEM-BEM
(solid red line), 2.5D FEM-BEM-MFS (dashed black line) and semi-analytical
solution (solid green line). The results are obtained at points A (a), B (b) and
C (c) for x (i), y (ii) and z (iii) directions and for wavenumbers of 0.1 rad/m (1)

and 1 rad/m (2).
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Figure 3.14: Displacement Green’s functions. Methods: 2.5D FEM-BEM
(solid red line), 2.5D FEM-BEM-MFS (dashed black line) and semi-analytical
solution (solid green line). The results are obtained at points A (a), B (b) and
C (c) for x (i), y (ii) and z (iii) directions and for frequencies of 10 Hz (1) and

50 Hz (2).
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Figure 3.15: Traction Green’s functions. Methods: 2.5D FEM-BEM-MFS
(dashed black line) and semi-analytical solution (solid green line). The results
are obtained at points A (a), B (b) and C (c) for x (i), y (ii) and z (iii) directions

and for wavenumbers of 0.1 rad/m (1) and 1 rad/m (2).
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Figure 3.16: Traction Green’s functions. Methods: 2.5D FEM-BEM-MFS
(dashed black line) and semi-analytical solution (solid green line). The results
are obtained at points A (a), B (b) and C (c) for x (i), y (ii) and z (iii) directions

and for frequencies of 10 Hz (1) and 50 Hz (2).

Moreover, the accuracy of the proposed method is also studied in terms of recep-
tances and traction transfer functions. The same mesh with 10 BE per wavelength
and a maximum frequency of 250 Hz used in the full-space cases is adopted here.
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Results of this study are presented in Fig. 3.17, where the proposed method is
compared with the 2.5D FEM-BEM approach and the semi-analytical solution.
To compute the desired transfer functions, the wavenumber in the longitudinal
direction was logarithmically sampled from 0 rad/m to 55 rad/m with 257 points.
Slight discrepancies are observed at frequencies above 200 Hz for the y and z

components of the response in the field points B and C, for both receptances and
traction transfer functions.
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Figure 3.17: Receptances (1) and traction transfer functions (2). Methods:
2.5D FEM-BEM (solid red line), 2.5D FEM-BEM-MFS (dashed black line) and
semi-analytical solution (solid green line). The results are obtained at points A

(a), B (b) and C (c) for y (ii) and z (iii) directions

.

3.3.2 Thin circular shell structure embedded in a half-space

The last case study considered to verify the proposed 2.5D FEM-BEM-MFS ap-
proach consists of a thin circular shell embedded in a homogeneous half-space.
The studied system is visually described in Fig. 3.18, where the evaluation points
and the input force are defined. For this example, the same eight modelling op-
tions described in Section 3.2.2 are also taken into consideration here. For the
methods comparison, results are shown in terms of the receptances. In this case,
the wavenumber in the longitudinal direction was logarithmically sampled from 0
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rad/m to 55 rad/m with 129 points. For the case of a maximum frequency of 100
Hz, this comparison is presented in Fig. 3.19 only for the frequency range of 80 Hz
to 100 Hz. As shown for the case of a thin shell embedded in a full-space, signifi-
cant differences between the different methods compared can only be seen above
80 Hz. Following the same trend as full-space case results, Fig. 3.19 shows that the
receptances obtained by 2.5D FEM-BEM and 2.5D FEM-BEM-MFS methods are
approximately matching when the number of boundary nodes is equal, confirming
the accuracy of the new method. The interpolation-based method applied in the
2.5D FEM-BEM-MFS-24-36 modelling option is slightly improving the accuracy
of the results, as also encountered in the full-space case study. Modelling options
associated with a maximum frequency of 250 Hz are compared in Fig. 3.20. Sim-
ilarly to the full-space case, very good agreement is observed between the three
modelling options.

Figure 3.18: Geometry of the thin circular shell structure embedded in a
half-space medium studied in this chapter for the verification of the 2.5D FEM-
BEM-MFS. Three evaluation points are considered: A, B and C. The input

vertical force is represented by a big arrow.

The computational efficiency of the current method is compared to the 2.5D FEM-
BEM approach in the context of the thin shell case study considering 36 BEM
nodes. Both methodologies have been implemented in MATLAB and they have
been executed with the same desktop configuration described in the full-space
scenarios. The computational cost of the methods is studied for two different cases.
Firstly, the results are compared for one evaluation point, one frequency and 128
wavenumber values. The running times for the new method and for 2.5D FEM-
BEM are 702 (divided in 431 seconds for the 2.5D FEM-BEM and 271 seconds
for the 2.5D MFS) and 475 seconds, respectively. Due to EDT toolbox algorithm
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design, the new method is even slower than the 2.5D FEM-BEM; however, it
should be noted that the benefits of the method are arisen for large amounts of
evaluation points. Secondly, a computational efficiency study is carried out taking
one value of the wavenumber and the frequency and 5, 25, 60, 100, 160 and 200
evaluation points. The total computational costs consumed by the 2.5D FEM-
BEM-MFS and 2.5D FEM-BEM methods are shown in Table 3.4. It should be
noted that the computational time to obtain the boundary conditions in the 2.5D
FEM-BEM-MFS by the 2.5D FEM-BEM is equal to 4.5 seconds regardless of the
amount of evaluation points. It is found that the computational time spent by both
methods raises with a quadratic trend with respect to the number of evaluation
points, being the second-order coefficient associated with the curve obtained from
the new method considerably smaller than the one associated with the 2.5D FEM-
BEM approach. Although the computational efficiency of the current methodology
for half-space problems has increased, the improvement does not reach the same
levels of the method in full-space cases. That is due to the semi-analytical nature
of the 2.5D elastodynamic Green’s functions for a half-space and also because of
the selected algorithm to calculate them, which in this case is the EDT toolbox.

Number of evaluation points 5 25 60 100 160 200

Computational time: 2.5D FEM-BEM-MFS [s] 7.5 10 15 20 30 45
Computational time: 2.5D FEM-BEM [s] 15 20 44 70 181 241

Table 3.4: Computational costs of both methods depending of the number of
evaluation points considered.
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Figure 3.19: Receptances. Methods: 2.5D FEM-BEM-36 (solid red line),
2.5D FEM-BEM-24 (solid magenta line), 2.5D FEM-BEM-MFS-24-24 (dashed
blue line), 2.5D FEM-BEM-MFS-24-36 (dashed cyan line) and 2.5D FEM-BEM-
MFS-36-36 (dashed black line). The results are obtained at points A (a), B (b)

and C (c) for y (ii) and z (iii) directions.
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Figure 3.20: Receptances. Methods: 2.5D FEM-BEM-104 (solid red line),
2.5D FEM-BEM-MFS-64-64 (dashed blue line) and 2.5D FEM-BEM-MFS-104-
104 (dashed black line). The results are obtained at points A (a), B (b) and C

(c) for y (ii) and z (iii) directions.
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3.4 Control methodology for MFS robustness

As mentioned in the introduction section, the distance between collocation and
source points in the MFS should be properly selected to avoid large numerical
errors of the method. In the present section, a control technique that finds the
optimal distance between collocation and source points that minimises the error of
the method is described. The error of the method is evaluated in a limited group of
points in the medium, called control points, distributed in the area where the final
results are required. Assuming a MFS application where the number of virtual
forces is always the same as collocation points and BE nodes, where the auxiliary
boundary is a scaled version of the physical boundary and where the sources are
uniformly distributed along the boundary, as adopted in the present work, the
distance between collocation points and virtual sources d is the only variable that
should be selected and, thus, the only variable that controls the robustness of
the method. In order to optimise d without losing computational efficiency, the
control technique is carried out only considering three field points (near, not-so-
near and far field locations), three frequencies (representing low, medium and
high values of the total frequency range) and two wavenumbers (representing low
and high values of the total wavenumber range). The relative error is calculated
at these sampling points for various values of the distance d by comparing the
results obtained by the 2.5D FEM-BEM-MFS method and those obtained from
the 2.5D FEM-BEM approach. The optimal d is determined from the inspection
of the obtained relative errors. Consequently, this control method is not affecting
the overall computational efficiency of the methodology if the amount of sampling
points (considering field points, frequency and wavenumber) are large, which is the
common situation for SSI problems. Unless to the previous techniques [44, 46], the
proposed control method is easier to be implemented. A relative error parameter
εr is defined to determine the robustness of the method [88].

εr =

√√√√ 1

3N

3∑
i=1

N∑
j=1

∣∣∣∣∣ Ū
ij
fn − Ū ij

fr

Ū ij
fr

∣∣∣∣∣
2

(3.9)

where i and j are the indices associated with the three displacement components
and the N control points, respectively. Moreover, Ū ij

fn and Ū ij
fr represent the dis-

placements obtained by the new method and by a reference method, respectively,
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in the control point j and in the direction i. For all the cases, the reference method
is the 2.5D FEM-BEM approach.

In this investigation, this control methodology has been applied to the four calcu-
lation examples described in Sections 3.2 and 3.3. The control points considered
are the evaluation points selected in each case. In Figs. 3.21 and 3.22, the rela-
tive error in full-space and half-space cases, respectively, is plotted for frequencies
ranging 1 Hz to 100 Hz and for distances d ranging between 5 cm to 75 cm and
for two wavenumbers: 0.1 rad/m and 1 rad/m. From the optimisation process
for the calculation examples in full-space, it can be seen that only distances lower
than 0.1 m are not recommended. The rest of the source-collocation points dis-
tances in the range considered are resulting in accurate results and very similar
to each other. Only some slight errors appear as constant trends with respect to
the distance for some specific frequencies. Particularly, errors at around 89 Hz
in the case of the subplot (a-i) in Fig. 3.21 is related to the trough appearing
at this frequency in the subplot (b-ii-1) in Fig. 3.4. On the other hand, results
associated with half-space cases behave differently. For these cases, distances be-
tween sources and collocation points larger than 0.5 m results in high errors of
the new methodology, as seen in the subplots denoted by (a) and (b) in Fig. 3.22,
which represent the results obtained for the cases of a solid cylinder and a thin
shell, respectively. These cases are developed, both for the new method and the
2.5D FEM-BEM, in the basis of a Green’s function calculation with the EDT
toolbox considering a slowness associated with the wavenumber in the y direction
logarithmically sampled from 10−7 to 103 with 919 points. This is the sampling
used in all the half-space Green’s functions computations required for the results
in previous sections of the present work. However, subplot (c) of Fig. 3.22 is re-
lated to the case of the thin shell structure when the half-space Green’s functions
in the new methodology are computed using a sampling for the slowness ranging
between 10−11 to 107 with 13240 samples, while the 2.5D FEM-BEM is based
on the previous sampling scheme. The results obtained in subplot (c) are more
likely the ones presented in full-space case which leads to the conclusion that the
new methodology is more sensitive to the accuracy of the Green’s functions than
the 2.5D FEM-BEM. This finding turns the control methodology presented even
more essential to ensure the correctness and the computational efficiency of the
method, since a proper selection of the distance d results on accurate results of
the method, even if the half-space Green’s functions are computed using the same
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sampling scheme for the numerical integration.

Figure 3.21: Relative error of the displacement Green’s functions of the new
methodology for the calculation examples in full-space, where (a) and (b) denote
solid cylinder and thin shell structures, respectively, and (i) and (ii) represent

the wavenumber of 0.1 rad/m and 1 rad/m, respectively.
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Figure 3.22: Relative error of the displacement Green’s functions of the new
methodology for the calculation examples in half-space, where (a), (b) solid
cylinder and thin shell structures, respectively, and (i) and (ii) represent the
wavenumber of 0.1 rad/m and 1 rad/m, respectively. The plots denoted by (c)
are related to the case of the thin shell structure in which the used 2.5D Green’s

functions of the half-space are computed highly accurately.

3.5 Conclusions

This chapter presents a methodology to deal with longitudinally invariant SSI
problems in elastodynamics. The method uses a 2.5D FEM-BEM approach to
model structure and the locally surrounding soil and, then, uses a 2.5D MFS ap-
proach in elastodynamics to model the wave propagation through the soil. The
new methodology is verified in terms of the displacement and traction Green’s
functions as well as the receptances and traction transfer functions up to frequen-
cies of 100 Hz and 250 Hz. According to the results obtained, this method provides
similar levels of accuracy than a full 2.5D FEM-BEM model of the soil-structure
system but it spends a smaller amount computational time especially when the
number of evaluation points is high. Furthermore, the simplicity of MFS formula-
tion leads to a very simple implementation of the method as a post-processing tool
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after the application of a numerical approach to accurately evaluate the response
at the soil-structure interface. However, it is also found, as was expected, that the
accuracy of the 2.5D FEM-BEM-MFS strongly depends on the accuracy of this
soil-structure boundary response. Besides these general outcomes, this study has
arisen other significant findings:

• A comparison between the new approach and the 2.5D FEM-BEM in terms
of the computational efficiency has been carried out and the results indicate
that, for the calculation examples where the soil is modelled as a full-space
medium, the time consumed by the new method follows a linear trend with
the number of evaluation points, while the computational time associated
with the 2.5D FEM-BEM method increases exponentially. For the half-space
calculation examples, the benefits of the proposed methodology in terms of
computational time are also confirmed, although the improvement is not as
high as in full-space problems. That is due to the numerical integration
required for the evaluation of the 2.5D elastodynamic Green’s functions in
a half-space, in contrast to the analytical nature of the ones for full-space,
and because of the particular computational performance of the algorithm
used for their calculation.

• Cubic interpolation from the displacements on the boundary nodes to a
larger set of collocation points has been found to be an interesting proce-
dure, since it induces an enhancement of the results accuracy by adding no
significant increment in the computational time of the full method. This
improvement is shown by comparing the accuracy of the results obtained by
taking 24 boundary nodes and 36 collocation points with respect to the case
of 24 boundary nodes and 24 collocation points.

• A control technique that minimises the MFS error by optimising the dis-
tance between collocation points and virtual sources has been also presented.
This control technique is demonstrated to be very useful in cases where the
Green’s functions have a semi-analytical nature, since the 2.5D MFS is found
to be much more sensitive to the Green’s functions accuracy than the 2.5D
FEM-BEM when the response at field points is computed. This sensitiveness
is observed in the application of the control technique in half-space cases,
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where the 2.5D elastodynamic Green’s functions computation requires a nu-
merical integration. In contrast, it is not observed in the calculation exam-
ples considering a full-space, since the Green’s functions for this case are
analytical. From the results obtained, it is proposed a practical application
of this control technique based only on few control points (located at the area
where the final response is required) and some selected frequencies, in order
to avoid compromising the computational efficiency of the whole method.

Despite all the mentioned capabilities of the proposed methodology, its accuracy is
subjected to the distribution of virtual sources, particularly in terms of amount and
location, especially in the case of complex boundary geometries. This is a major
challenge associated with the MFS. A new step on developing a strongly robust
and efficient method for 2.5D SSI dynamic computations is presented in the next
chapter, where the BEM and MFS methods are substituted by the SBM, resulting
in a 2.5D FEM-SBM approach, a method that avoids the problems induced by
the source location in MFS and provides even larger computational benefits than
2.5D FEM-BEM-MFS.

It should be also mentioned that the proposed 2.5D FEM-BEM-MFS approach
cannot overcome the problems associated with the fictitious eigenfrequencies, since
the responses on the boundary are obtained using BEM, which is not capable of
solving them. This issue is fully investigated later in Chapter 5.



Chapter 4

A 2.5D coupled FEM-SBM

methodology for soil-structure

dynamic interaction problems

In this chapter, a 2.5D FEM-SBM numerical method for longitudinally invariant
soil-structure interaction problems is proposed. In this method, the structure is
modelled using the 2.5D FEM and a 2.5D SBM approach is adopted to model the
surrounding soil. Due to the previously discussed benefits of the SBM with respect
to the BEM and the MFS to model unbounded domains, the proposed 2.5D FEM-
SBM method exhibits advantages with respect to FEM-BEM and FEM-MFS ap-
proaches: modelling simplicity, numerical efficiency and robustness. These benefits
are evaluated, analysed and described in this chapter. In the 2.5D SBM approach
adopted in the present work, the singularities arisen in the method are avoided
using the concept of origin intensity factor (OIF).

The chapter is organised as follows. In Section 4.1, the proposed formulation of
the novel 2.5D FEM-SBM approach is presented in detail. Section 4.2 presents a
verification study of the novel method, assessed in the context of two examples: a
thin cylindrical shell and a solid beam with star-like cross section, both embedded in
a homogeneous full-space. These two examples were selected in order to show the
versatility of the method. In the first example, the accuracy of the 2.5D FEM-SBM
in terms of the response of the system at the soil-structure boundary and in the soil
medium is compared to the responses provided by 2.5D FEM-MFS [52] and 2.5D
FEM-BEM [23] approaches. In the second example, the accuracy of the proposed

51
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method is compared against the one of 2.5D FEM-BEM in terms of receptances of
the system in the soil medium. Moreover, the computational efficiency of the pro-
posed method is compared to the one of other numerical strategies in the context
of the first calculation example. Finally, in Section 4.3, the applicability of the
proposed method for railway-induced vibration assessment problems is discussed
through two examples of a railway tunnel embedded in a half-space.
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4.1 Numerical method formulation

The 2.5D FEM-SBM method is developed to address 2.5D dynamic SSI problems.
The method considers that the whole system can be divided into two distinct
domains, the structure and the soil, each one of them modelled using a different
approach: as in Chapter 3, the structure is modelled using the FEM and in contrast
to previous chapter, the unbounded domain representing the soil is modelled by
the SBM. As before, the new approach is proposed for longitudinally invariant
SSI problems (2.5D) and is formulated in the wavenumber-frequency domain. In
Fig. 4.1, these sub-systems are denoted by the domains Ωs (structure) and Ω (soil).
The SBM method approximates the solution of the displacement and traction
fields at Ω using a set of virtual sources collocated along the boundary Γ that
comply with the boundary conditions evaluated at these same collocation points,
which are also distributed along Γ. The coupling between the two sub-systems is
done by assuming displacement compatibility and force equilibrium. In this work,
the set of FEM nodes on the boundary, collocation points and virtual sources
are geometrically coincident, as shown in Fig. 4.1, which strongly simplifies the
coupling procedure. The detailed formulations for the 2.5D SBM and its coupling
with the 2.5D FEM are presented in Sections 4.1.1 and 4.1.2, respectively.

Collocation points (2.5D SBM)  
FEM boundary nodes (2.5D FEM)

Virtual sources (2.5D SBM)

Structure 

Physical bou

Figure 4.1: General description of the proposed 2.5D FEM-SBM methodology.
Collocation points and FEM boundary nodes are denoted by grey solid points

and virtual forces are denoted by red circles.
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4.1.1 The 2.5D singular boundary method (2.5D SBM)

Using a radial basis function interpolation, the displacement and traction of the
soil are approximated by the following linear combination of fundamental solutions
with respect to N different source points:

Ū(y, kx, ω) =
N∑

n=1

H̄(y,xn, kx, ω)S̄n(kx, ω), (4.1)

T̄ (y, kx, ω) =
N∑

n=1

H̄τ (y,xn, kx, ω)S̄n(kx, ω) (4.2)

where Ū(y, kx, ω) and T̄ (y, kx, ω) are the displacements and tractions of the soil,
respectively, at an arbitrary field point located at y, S̄n(kx, ω) is the vector of
unknown strengths of the nth virtual source located at xn (being n the sub-
script/superscript used in Eqs. (4.1) and (4.2)), and where H̄(y,xn, kx, ω) and
H̄τ (y,xn, kx, ω) are the displacement and traction dynamic Green’s functions of
the soil. For clarity, the wavenumber and frequency dependencies will be omitted
in the remaining of the chapter. For longitudinally invariant structures, the solu-
tion of the 3D elastodynamic problem can be expressed in the 2.5D domain. This
transformation is derived, for example, in [52], and it is not repeated here for the
sake of brevity. Accounting for the 2.5D framework, xn and y are vectors of two
elements, while Ū(y), T̄ (y) and S̄n have three elements, collecting the three com-
ponents in space of the displacements, tractions and virtual forces, respectively.
To evaluate the source strengths, the SBM, as other boundary-type collocation
methods, considers the boundary conditions in a set of points, called collocation
points, distributed along the boundary. Then, Eqs. (4.1) and (4.2) are used to re-
late the response at the collocation points with the strengths of all virtual sources.
These strengths are finally determined solving the resulting system of equations.

In contrast to the assumptions considered in the MFS, the SBM method assumes
that both the collocation and source points are all placed in the same physical
boundary, and there is no need of defining a virtual boundary. To avoid the singu-
larities that arise from this assumption when Eqs. (4.1) and (4.2) are employed to
evaluate the solution on a set of collocation points geometrically coincident with
the set of virtual sources, the SBM method assumes that these equations can be
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rewritten as follows [54]

Ū(ym) =
N∑

n=1,n ̸=m

H̄(ym,xn)S̄n + H̄mmS̄m, (4.3)

T̄ (ym) =
N∑

n=1,n ̸=m

H̄τ (ym,xn)S̄n + H̄τ
mmS̄m. (4.4)

where ym is the location of the mth collocation point and where H̄mm and H̄τ
mm are

defined as the origin (or source) intensity factors (OIFs) in the SBM literature.
A considerable number of numerical and analytical methods have been used to
compute the OIFs for different types of problems. In the following, the expression
of the OIFs used in this work is derived.

The OIF associated with the Neumann boundary condition is obtained by ap-
plying a subtracting and adding-back technique [89] to Eq. (4.2). The resulting
expression can be written as

T̄ (ym) =
N∑

n=1

H̄τ (ym,xn)

(
S̄n −

Ln

Lm

S̄m

)

+

 N∑
n=1

Ln

Lm

(
H̄τ (ym,xn)−Hτ (ym,xn)

) S̄m

+

 N∑
n=1

Ln

Lm

(
Hτ (ym,xn) +Hτ,I(xn,ym)

) S̄m− N∑
n=1

Ln

Lm

Hτ,I(xn,ym)

 S̄m, (4.5)

where Li is the half length of the curve between the source points xi−1 and xi+1,
which is approximated in this work as

Li =
d
(
xi−1,x

)
2

+
d
(
x,xi+1

)
2

, (4.6)

where d(x,y) refers to the Euclidean distance between points x and y.

In Eq. (4.5), the terms Hτ (ym,xn) and Hτ,I(ym,xn) are the Green’s functions
for the traction of the plane strain elastostatic case in the exterior and interior
domains, respectively. These two fundamental solutions are related as follows [61]
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Hτ (ym,xn) = −Hτ,I(ym,xn), if xn ̸= ym,

Hτ (ym,xn) = Hτ,I(ym,xn), if xn = ym.
(4.7)

Defining [54, 88]

Am = Lm

[
Hτ (ym,xm) +Hτ (xm,ym)

]
≈

∫
Γm

[
Hτ (ym,x) +Hτ (x,ym)

]
dΓm(x),

(4.8)

where Γm is the segment of the boundary with length Lm on which the mth
collocation point is located, and where the integration is applied componentwise
(i.e. the integration is performed for each component of the matrix) and using the
relations given by Eqs. (4.7) and (4.8), Eq. (4.5) can be expressed as

T̄ (ym) =
N∑

n=1,n̸=m

H̄τ (ym,xn)S̄n −

 N∑
n=1,n ̸=m

Ln

Lm

Hτ (xn,ym)

 S̄m

+
1

Lm

AmS̄m −

 N∑
n=1

Ln

Lm

Hτ,I(xn,ym)

 S̄m.

(4.9)

The previous expression can be further simplified using that

N∑
n=1

Ln

Lm

Hτ,I(xn,ym) = − 1

Lm

I, (4.10)

where I is the identity matrix. Eq. (4.10) can be derived following a procedure
similar to the one presented, for example, in [88]. The following direct boundary
integral equation for the elastostatic plane strain problem for an interior domain
is initially considered [54]:

U(y) =

∫
Γ

[
HI(x,y)TT (x)−Hτ,I(x,y)TU(x)

]
dΓ (x), y ∈ ΩI , (4.11)

where y is a field point located inside the domain. Substituting the elementary
solutions corresponding to rigid-body displacements of the whole body in the di-
rection of each one of the coordinate axes (i.e. U1(x) = [1 0 0]T , U2(x) =

[0 1 0]T and U3(x) = [0 0 1]T with null tractions, the following expression
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can be obtained [54]:∫
Γ

Hτ,I(x,y) dΓ (x) = −I, y ∈ ΩI , (4.12)

where it has been used that the transpose of the identity matrix is the identity
matrix. When the field point y approaches the boundary collocation point ym,
Eq. (4.12) can be discretised as follows

∫
Γ

Hτ,I(x,ym) dΓ (x) =
N∑

n=1

∫
Γn

Hτ,I(x,ym) dΓn(x) ≈

N∑
n=1

Hτ,I(xn,ym)Ln, ym ∈ Γ, (4.13)

where, as before, Γn is the segment of boundary on which the nth collocation point
is located and Ln is its length. Therefore, it can be seen from Eqs. (4.12) and
(4.13) that

N∑
n=1

Hτ,I(xn,ym)Ln = −I (4.14)

and Eq. (4.10) can be finally obtained by dividing the previous equation by Lm.
Using it Eq. (4.9) can be rewritten as

T̄ (ym) =
N∑

n=1,n ̸=m

H̄τ (ym,xn)S̄n+

 1

Lm

I+
1

Lm

Am −
N∑

n=1,n̸=m

Ln

Lm

Hτ (xn,ym)

 S̄m.

(4.15)

The term in brackets can be identified as the OIF for the Neumann boundary
conditions defined in Eq. (4.4), i.e.

H̄τ
mm =

1

Lm

I+Am −
N∑

n=1,n ̸=m

LnH
τ (xn,ym)

 . (4.16)

In the case of the OIF associated with the Dirichlet boundary condition, the
singularity that arises is weak (its order being ln r). Due to this, the OIF associated
with the mth collocation point can be directly calculated as an average value of
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the fundamental solution over Γm, i.e. the small portion of the boundary that
contains the singular point [54]. In the results presented in this chapter, this
portion of the boundary is approximated by the union of two straight segments,
i.e. Γm ≈ [(xm−1 + xm)/2,xm] ∪ [xm, (xm + xm+1)/2]. The integral in Eq. (4.8),
which allows to estimate the term Am, is computed using the same integration
scheme.

4.1.2 Coupling between the structure and the soil

The displacements and tractions on the physical boundary Γ can be obtained by
considering Eqs. (4.3) and (4.4) for each one of the N collocation points. The
obtained systems of equations can be expressed in a matrix form as

Ūb = H̄bbS̄, T̄b = H̄τ
bbS̄, (4.17)

where Ūb and T̄b are vectors that collect the displacements and tractions at the
degrees of freedom of all collocation points, respectively, having a total size 3N ,
S̄ collects the three components of all virtual forces and H̄bb and H̄τ

bb are square
matrices containing the displacement and traction dynamic Green’s functions that
relate all virtual forces with all collocation points degrees of freedom. Due to the
procedure presented in the previous section, no singularities arise on the compu-
tation of the H̄bb and H̄τ

bb matrices. Note that these matrices directly collect the
Green’s functions along the boundary, and they are different to the typical BEM
square matrices, which are determined integrating the displacement and traction
Green’s functions on the boundary elements [23]. Thus, the global soil stiffness
matrix seen by the structure at the FEM boundary nodes can be consequently
written as

K̄s = ΦH̄τ
bbH̄

−1
bb , (4.18)

where Φ is a matrix that transforms the unknown nodal tractions on the colloca-
tion points to nodal forces. This transformation matrix is defined by

Φ =

∫
Γ

NT
b NbdΓ, (4.19)
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where Nb is the matrix of the global shape functions that discretises the displace-
ments and the tractions on the boundary to the collocation points. Once the soil
stiffness matrix is obtained, it can be introduced to the finite element equilibrium
equation of the structure, resulting on [23]

[
K0 − ikxK1 + k2

xK2 + K̄s − ω2M
]
Ū = F̄ , (4.20)

where K0, K1, K2 and M are the stiffness and mass matrices associated with
the 2.5D FEM model of the structure and K̄s is the dynamic stiffness matrix
of the soil obtained from the 2.5D SBM model. The stiffness of the soil is fre-
quency and wavenumber dependent, while the stiffness and mass matrices related
to FEM domain are not. Vectors Ū and F̄ collect nodal displacements and forces,
respectively, in all the degrees of freedom of the FEM model. In contrast to the
formulation of the 2.5D FEM-MFS approach presented in [52], the present method
leads to a symmetric matrix of the coupled system.

The displacements on the collocation points Ūb due to external forces applied to
the structure can be determined using Eq. (4.20). Then, the corresponding virtual
forces to that displacement field on the boundary can be determined by

S̄ = H̄−1
bb Ūb. (4.21)

Once the source strengths are computed, the displacement and traction response
at an arbitrary field point on the soil can be computed by means of

Ūf = H̄fbS̄, T̄f = H̄τ
fbS̄, (4.22)

where H̄fb and H̄τ
fb represent the matrices of source-receiver dynamic Green’s

functions for displacements and tractions, respectively, and Ūf and T̄f stand for
the displacement and traction at the field point, respectively.

In the present approach, the 2.5D elastodynamic fundamental solutions for a ho-
mogeneous full-space can be calculated with the formulation presented by Tadeu
and Kausel [82] and extended by [83], while the Green’s functions for homogeneous
and layered half-space problems can be computed through the EDT toolbox [84],
the approach proposed by Noori et al. [85] or the thin-layer method [36], although
other alternative method could also be perfectly adequate.
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4.2 Verification and computational efficiency as-

sessment

The accuracy of the proposed methodology is exhibited in this section for the two
cases presented in Fig. 4.2 (a) and Fig. 4.2 (b). As illustrated, the structures of
these two cases consist of a thin cylindrical shell and a solid beam with star-like
cross section, respectively, both embedded in a full-space model of the soil. The
results obtained using the proposed 2.5D FEM-SBM methodology are compared
with those obtained using a 2.5D FEM-MFS [52] approach, only in the case of the
thin cylindrical shell, and a 2.5D FEM-BEM [23] approach. In boundary methods,
accuracy on the method strongly relies on the accuracy of the boundary condition.
Thus, the responses are firstly compared on the physical boundary of the structure
in the thin cylindrical shell example. For the sake of certainty, the responses at
different field points in the soil have been also compared. The system’s symmetry
has been taken into account when presenting the boundary results. Therefore,
results for only half of the boundary have been presented in the plots.

The comparison between the three numerical approaches is performed in terms
of receptances and traction transfer functions (TTF) computed in the frequency
domain. In both cases, a harmonic vertical point load is applied on the embedded
structure at x = 0. The position of the loads within both cross section has
been presented in Fig. 4.2 (a) and Fig. 4.2 (b) with a larger grey arrow. In
both examples, the soil response has been calculated at three different locations,
identified as point A (x = 0 m; y = 2 m; z = −2 m), B (x = 0 m; y = 4 m;
z = −1 m) and C (x = 0 m; y = 10 m; z = 2 m). Eq. (3.8) is used to compute
the receptances and TTF.

In all calculations carried out in this section, both integrals have been computed
numerically with a total of 1025 sampling points consisting of kx = 0 and a log-
arithmically spaced vector of wavenumbers ranging from 10−3 to 102 rad/m. For
the 2.5D FEM-BEM three Gaussian points are considered. Results for the recep-
tances and the TTF are presented in dB based on references of 10−12 m/N and 1
(N/m2)/N, respectively.

The results have been obtained considering the following mechanical parameters
for the soil: a Young’s modulus of 108 MPa, a density of 1800 kg/m3, a Poisson’s
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ratio of 0.33 and material damping ratio of 0.05. The comparisons has been
performed in the frequency range of 0 to 100 Hz.

1 m

y 1 m

Figure 4.2: Geometry of the thin cylindrical shell (a) and the star-like shape
(b) used for the comparison between the three methods.

4.2.1 Thin cylindrical shell

The case studied in this section is presented in Fig. 4.2 (a). The cylindrical shell
is assumed to have a thickness of 0.1 m and material properties of a common
concrete: a Young’s modulus of 31000 MPa, a density of 2500 kg/m3, a Poisson’s
ratio of 0.2 and a material damping ratio of 0.001. Two meshing strategies have
been considered to model this system. In the first strategy, the density of the FEM
mesh at the boundary has been selected to have at least 10 nodes per wavelength
(NpW) of the soil shear waves at 100 Hz, which is the highest frequency of the
range considered. Due to the coupling strategy between the FEM and SBM models
adopted in the present methodology, 10 NpW at the boundary also implies 10
collocation points and 10 virtual sources per wavelength. In the second case,
up to 24 NpW have been considered. For these two cases, the results on the
boundary are compared with the ones obtained by the 2.5D FEM-BEM and 2.5D
FEM-MFS approaches. In the 2.5D FEM-MFS approach, the virtual sources are
located outside of the soil domain (i.e. inside the structure domain), uniformly
distributed in a concentric circumference to the cylindrical shell. The radius of this
auxiliary boundary for the virtual sources has been optimised using the method
presented in [14], reaching a value of 85 cm. This optimisation is performed
accounting for point B as the control point. In the same way as in the proposed
SBM methodology, the FEM-MFS approach has been applied considering the same
amount of virtual sources as collocation points.
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Results for the cylindrical shell case study are presented in Figs. 4.3 and 4.4.
Fig. 4.3 compares the receptances and tractions transfer functions along the soil-
structure interface obtained using the three mentioned numerical approaches for
the case of 10 NpW and considering two excitation frequencies: 10 Hz and 80 Hz.
The results are only compared for y and z components since the displacements
and tractions in the x direction are equal to zero. A very good match can be
observed between the three methods in the receptance plots. However, for both
excitation frequencies, some differences arise between the traction transfer func-
tions obtained with the 2.5D FEM-MFS and the two other methods. It is found
that these discrepancies are coming from the instability of the 2.5D MFS method
at high wavenumbers. Also, the accuracy of the results is sensitive to the control
points chosen in the control technique [14] and, consequently, the location of the
virtual sources [12, 46]. Fig. 4.4 shows the comparison between the three numerical
approaches for the case 24 NpW. The new results show a good agreement between
the three methods in all the cases considered. The discrepancies previously ob-
served for the 2.5D FEM-MFS method have been clearly reduced, a result that
suggests that a larger number of NpW should be used in this method.
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Figure 4.3: Receptances (a) and traction transfer functions (b) on the bound-
ary for the case of 10 NpW. Methods: 2.5D FEM-BEM (solid red line), 2.5D
FEM-SBM (dashed black line) and 2.5D FEM-MFS (dashed green line). The
results are obtained for y (ii) and z (iii) directions at frequencies of 10 Hz (1)

and 80 Hz (2).
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Figure 4.4: Receptances (a) and traction transfer functions (b) on the bound-
ary for the case of 24 NpW. Methods: 2.5D FEM-BEM (solid red line), 2.5D
FEM-SBM (dashed black line) and 2.5D FEM-MFS (dashed green line). The
results are obtained for y (ii) and z (iii) directions at frequencies of 10 Hz (1)

and 80 Hz (2).

The accuracy of the presented method is also studied in this section by comparing
the soil response obtained using the three numerical approaches previously con-
sidered. In this case, the comparison between these methods has been performed
computing the soil receptance and traction transfer functions for excitation fre-
quencies ranging from 0 to 100 Hz. The results have been computed for the three
field points previously detailed (A, B and C) and considering 10 NpW. The com-
parisons are presented in Fig. 4.5, which shows a very good agreement between the
three methods for all the cases considered. The results presented in this section
in terms of boundary and field displacements and tractions confirm that the pro-
posed method can be used to deal with problems that have geometrically smooth
soil-structure interfaces.
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Figure 4.5: Receptances (1) and traction transfer functions (2) at the field
points A (a), B (b) and C (c) for y (ii) and z (iii) directions and for the case of
10 NpW. Methods: 2.5D FEM-BEM (solid red line), 2.5D FEM-SBM (dashed

black line) and 2.5D FEM-MFS (dashed green line).

The accuracy of the method has been also assessed by comparing the results with
an analytical solution in terms of receptances and traction transfer function. In
this regard, the calculation has been repeated replacing the concrete material
by soil material, allowing to compare the proposed method with the cylindrical
cavity solution. According to Fig. 4.6, good agreement can be observed between
the proposed method and the other presented solutions.
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Figure 4.6: Receptances (1) and traction transfer functions (2) at the field
points A (a), B (b) and C (c) for y (ii) and z (iii) directions and for the case of
10 NpW. Methods: 2.5D FEM-BEM (solid red line), 2.5D FEM-SBM (dashed
black line), 2.5D FEM-MFS (dashed green line) and cylindrical cavity solution

(solid blue line).

Furthermore, the performance of the 2.5D FEM-SBM approach is evaluated by
analysing its convergence with respect to 2.5D FEM-BEM and 2.5D FEM-MFS
methods. For this aim, the relative error of the methods is calculated for the case
presented in Fig. 4.6 using the equation below:

εr =
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, (4.23)

where i is the index associated with the coordinate components (x, y and z), j
is the index associated with the field points and NE refers to the total number of
evaluation points in the model. Moreover, U ij

f and U ij
fr represent the receptances

on the field points obtained by the selected method and by a reference method,
respectively, at the field point j and in the direction i.

The cylindrical cavity solution is adopted as the exact reference solution for the
convergence analysis. The receptances at field points A, B and C are computed
using the wavenumber sampling previously described. The analysis is carried out
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based on a number of NpW ranging from 6 to 20 with unit intervals. As shown in
Fig. 4.7, the 2.5D FEM-SBM has a better performance than 2.5D FEM-BEM for
low frequency (10 Hz) but worsens for higher ones (80 Hz). 2.5D FEM-MFS has
proven a potential to be more accurate than the other methods, but it requires
a proper optimisation process [14] to determine the sources location, which is
challenging (or even impossible) for complex geometries. In contrast, at high
frequencies, more than 10 NpW is required by the 2.5D FEM-SBM approach to
achieve approximately 10% error. However, errors achieved by all methods are
more than acceptable for engineering applications.

Figure 4.7: Convergence analysis for receptances averaged at the three fields
points A, B and C and at 10 Hz (a) and 80 Hz (b).

4.2.2 Star-like shape structure

To demonstrate the generality of the proposed approach, the accuracy of the me-
thod is investigated in this section for the case of a solid beam with a star-like cross
section embedded in a full-space, as illustrated in Fig. 4.2 (b). The parametric
representation of the star-like shape boundary geometry is

y =
1

m2
(m2 + 2m+ 2− 2(m+ 1) cos(mϕ)) cos(ϕ), (4.24)

z =
1

m2
(m2 + 2m+ 2− 2(m+ 1) cos(mϕ)) sin(ϕ),
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where m represents the shape factor (m = 5 is considered in this study) and ϕ

denotes the angular coordinate of the polar coordinate system. Two different ma-
terials have been considered for the structure in order to perform two comparisons
between the proposed 2.5D FEM-SBM method and the 2.5D FEM-BEM method.
While in the first comparison the star-like structure is considered to be solid con-
crete with the same properties of the cylindrical shell presented in the previous
section, in the second comparison its mechanical properties are assumed to be the
same as those considered for the surrounding soil. Since in this second calculation
example both the structure and the soil have the same mechanical properties, the
responses obtained by the proposed method can be also compared to the funda-
mental solution of a homogeneous full-space [82]. For both cases, the comparisons
are presented at the same three field points that have been considered in the previ-
ous section (field points A, B and C). The results have been computed considering
10 NpW and these points are distributed uniformly along the perimeter of the
boundary.

Fig. 4.8 presents a comparison between the results obtained by the novel 2.5D
FEM-SBM and the 2.5D FEM-BEM approaches for the case of the concrete star-
like structure. The results show that the receptances computed by the proposed
method at points A, B and C agree reasonably well with those obtained by the
2.5D FEM-BEM approach. Discrepancies up to 0.3 dB are found at the near-field
(see Fig. 4.8 (a-ii)).

Fig. 4.9 shows the results obtained using the 2.5D FEM-SBM approach for the case
where both the structure and the soil have the same mechanical properties. In the
case of the receptances, these results are compared with those obtained using the
2.5D FEM-BEM approach and using the elastodynamic fundamental solutions of a
homogeneous full-space. For the traction transfer functions, the 2.5D FEM-SBM
results are only compared to the fundamental solutions. Good agreements are
observed between the 2.5D FEM-SBM results and the results obtained with the
other approaches. Only small discrepancies are observed in traction transfer func-
tions in the far-field (see Fig. 4.9 (c-ii-2)), especially at low frequencies. Therefore,
from the results obtained in these two examples, it can be interpreted that the
proposed method not only is practical for structures with simple geometries, but
also provides good accuracy in cases where geometrically complicated structures
are involved.
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Figure 4.8: Receptances at the field points A (a), B (b) and C (c) for y (ii) and
z (iii) directions. Methods: 2.5D FEM-BEM (solid red line), 2.5D FEM-SBM

(dashed black line).
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Figure 4.9: Receptances (1) and traction transfer functions (2) at the field
points A (a), B (b) and C (c) for y (ii) and z (iii) directions. Methods: 2.5D
FEM-BEM (solid red line), 2.5D FEM-SBM (dashed black line) and fundamental

solution (solid blue line).

4.2.3 Comparison of the relative error between the methods

In the previous sections, the results obtained with the 2.5D FEM-SBM method
have been compared to the ones obtained with the 2.5D FEM-BEM and the 2.5D
FEM-MFS approaches for two different case studies. Even though the accuracy
of the presented method could be inferred from these results, it is desirable to
investigate it using more robust indicators. In this section, the accuracy of the new
approach is assessed by evaluating the relative errors between all three numerical
approaches with respect to the displacement and traction Green’s functions on
the boundary in the wavenumber-frequency domain. The comparison is performed
considering the case of the thin cylindrical shell embedded in a full-space presented
in Section 4.2.1, considering a vertical load at the bottom. It is worth mentioning
that the term A presented in Eq. (4.8) has not been used in the calculations
described in this section, since this term does not provide significant benefits in
terms of accuracy of the results in the case of smooth geometries. The relative
errors associated with the displacement and traction Green’s functions along the
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boundary are computed using the following expressions
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(4.25)

where i is the index associated with the coordinate components (x, y and z), j is
the index associated with the collocation points and N refers to the total number of
collocation points in the model. Moreover, Ū ij

b and Ū ij
br represent the displacement

Green’s functions in the wavenumber-frequency domain on the boundary obtained
by the selected method and by a reference method, respectively, at the collocation
point j and in the direction i. Analogously, T̄ ij

b and T̄ ij
br represent the traction

Green’s functions in the wavenumber-frequency domain on the boundary obtained
by the selected method and by a reference method, respectively, at the collocation
point j and in the direction i. Both errors have been computed for frequencies
between 0 and 100 Hz, for wavenumber values from 0.1 rad/m to 10 rad/m, and
considering 10 or 24 NpW.

The color map plots presented in Fig. 4.10 show the relative errors obtained when
10 NpW are considered. For clarity, the errors are presented on a logarithmic
scale. Also, receptances and traction transfer functions corresponding to these
color maps are also presented, where the relative errors between the methods have
been computed using the same expressions as before but replacing the displacement
and traction Green’s functions with the corresponding transfer function. The
results show that the displacement and traction Green’s functions obtained by
the proposed method converge well to those obtained using the 2.5D FEM-BEM
approach. Color map plots show that the discrepancies between the 2.5D FEM-
MFS and the 2.5D FEM-BEM methods at large wavenumbers are significant for
almost all the range of frequencies, although these discrepancies have a small effect
on the receptances and traction transfer functions. The relative errors between
the 2.5D FEM-SBM and the 2.5D FEM-BEM approaches associated with the
displacements are smaller than the errors between the 2.5D FEM-MFS and the
2.5D FEM-BEM approaches at frequencies between 20 Hz and 80 Hz. In contrast,
the opposite trend is observed below 20 Hz and above 80 Hz. However, larger
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discrepancies are observed in the relative error associated with the traction Green’s
functions. In this case, the relative errors between the 2.5D FEM-SBM and the
2.5D FEM-BEM approaches are considerably smaller than those found between
the 2.5D FEM-MFS and the 2.5D FEM-BEM.

The results previously presented in Section 4.2.1 showed that the accuracy of the
2.5D FEM-SBM and 2.5D FEM-MFS can be significantly improved by considering
a larger number of NpW. Therefore, it is expected that an increase in the number
of collocation points should result in a decrease of the relative error between the
presented meshless methods and the 2.5D FEM-BEM approach. This hypothesis
is confirmed by the results presented in Fig. 4.11, in which the relative errors
between the methods have been calculated considering 24 NpW instead of 10. It
can be observed that displacement results exhibit lower discrepancies between the
methods, although the accuracy enhancement provided by the use of 24 NpW is
not high enough to justify a mesh refinement such as this. The same tendency
can be observed for the traction results, for which such a refinement is found to
be more important to ensure the 2.5D FEM-MFS proper performance.
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Figure 4.10: Relative error of the displacement Green’s functions (i) and trac-
tion Green’s functions (ii) on the boundary considering 10 NpW. Plots denoted
by (a-i) and (a-ii) represent the relative error in terms of receptances and traction
transfer functions, respectively. SBM/BEM refers to the relative error when the
selected method is the 2.5D FEM-SBM and the reference is the 2.5D FEM-BEM
approach and MFS/BEM refers to the relative error when the selected method

is the 2.5D FEM-MFS and the reference is the 2.5D FEM-BEM one.
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Figure 4.11: Relative error of the displacement Green’s functions (i) and trac-
tion Green’s functions (ii) on the boundary considering 24 NpW. Plots denoted
by (a-i) and (a-ii) represent the relative error in terms of receptances and traction
transfer functions, respectively. SBM/BEM refers to the relative error when the
selected method is the 2.5D FEM-SBM and the reference is the 2.5D FEM-BEM
approach and MFS/BEM refers to the relative error when the selected method

is the 2.5D FEM-MFS and the reference is the 2.5D FEM-BEM one.

4.2.4 Investigation of the computational efficiency of the

method

In this section, the proposed 2.5D FEM-SBM method is compared to the 2.5D
FEM-BEM and 2.5D FEM-MFS approaches in terms of computational efficiency.
The comparison is performed in the framework of the thin cylindrical shell case
study presented in Section 4.2.1. All three methodologies have been implemented
in MATLAB and have been executed using a single core of a high-performance
cluster with 2 GHz Intel® Xeon® Gold 6138 CPU (with 40 cores). The computa-
tional time of each one of these methods is evaluated for two different case scenar-
ios. In the first case, the soil responses are computed in a single field point, for a
specific frequency, for 1024 wavenumber values and considering different values for
the number of NpW: 6, 10, 17 and 24. In the second case, the soil responses are
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computed for one frequency, 1024 wavenumber samples, 24 NpW and considering
different values for the number of field points: from 5 to 200. The computational
time spent in both defined cases is shown in terms of the percentage with respect
to the computational time of the 2.5D FEM-BEM.

The results obtained in the first case are indicated in Table. 4.1. It can be observed
that the computational time spent by the 2.5D FEM-MFS and the 2.5D FEM-
SBM approaches are averagely 61.5% and 77% of the computational time spent
by the 2.5D FEM-BEM method.

The computational times obtained in the second case are presented in Table. 4.2.
In this case, by increasing the number of field points points from 5 to 200, the
computational time of the 2.5D FEM-MFS and 2.5D FEM-SBM approaches with
respect to the the computational time of the 2.5D FEM-BEM method decrease
significantly. This result shows the clear benefit that the use of 2.5D FEM-MFS or
2.5D FEM-SBM approaches has when the response of a large number of evaluation
points is required.

From the results presented in Tables 4.1 and 4.2, it can be concluded that the 2.5D
FEM-MFS and the 2.5D FEM-SBM approaches can be much more efficient than
the 2.5D FEM-BEM approach in many practical scenarios. The comparison also
shows that the 2.5D FEM-SBM approach is slightly slower than the 2.5D FEM-
MFS approach. This extra computational time spent by the 2.5D FEM-SBM
approach comes from the evaluation of the OIF terms.

Number of NpW 6 10 17 24

Time: 2.5D FEM-MFS [%] 63 60 63 60
Time: 2.5D FEM-SBM [%] 78 77 76 77

Table 4.1: Computational time in percentage of the two methods for different
number of NpW.

Number of field points 5 25 60 100 160 200

Time: 2.5D FEM-MFS [%] 64 47 32 24 17 15
Time: 2.5D FEM-SBM [%] 81 61 41 31 22 19

Table 4.2: Computational time in percentage of the two methods for different
number of field points.
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4.3 Application to the assessment of railway-induced

ground-borne vibrations

4.3.1 Model description

The numerical implementation and accuracy of the proposed 2.5D FEM-SBM
have been fully addressed in the previous sections. The aim of this section is to
present an application example of the 2.5D FEM-SBM approach to the assessment
of tunnel-soil transfer functions required for railway-induced ground-borne vibra-
tion assessment. With the purpose of depicting the potentialities of the proposed
method, two examples of underground railway tunnels are presented: a circular
tunnel and a cut-and-cover tunnel. For the circular tunnel case, a tunnel with
an external radius of 3 m and a wall thickness of 0.3 m embedded in a layered
half-space is considered. The system is illustrated in Fig. 4.12a. The centre of the
tunnel is located at a depth of 9 meters from the ground surface and the struc-
ture is excited by two harmonic point loads symmetrically applied on the tunnel
invert and separated 1.5 meters. The response of the soil has been calculated at
two different evaluation points (identified as A and B), one located on the ground
surface and the other within the soil. For the cut-and-cover tunnel case, a tunnel
with a length and width of 6 m, embedded in a layered half-space is presented.
The geometry of the system is shown in Fig. 4.12b. The centre of the tunnel is
located at a depth of 5 meters from the ground surface and the structure is ex-
cited by two harmonic point loads symmetrically applied on the tunnel invert and
separated 1.5 meters. The response of the soil has been obtained at three different
evaluation points (identified as A, B and C), two located on the ground surface
and the other within the soil. As before, in these examples it is assumed that
the evaluation points and the applied point loads are all always in the same cross-
section. The geometry of both cases and the locations of the considered evaluation
points are also presented in Fig. 4.12. The mechanical properties of the tunnel
lining and the soil are presented in Table. 4.3, where the only difference between
both cases is the thickness of the first soil layer. The FEM mesh, the position of
the collocation/source points and the position of the two forces associated with
the circular and cut-and-cover railway tunnels are specified in Figs. 4.13 and 4.14,
respectively. Since the frequency range of interest for railway-induced vibration
problems is 1-80 Hz [86], the application of the proposed method is evaluated up
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to 100 Hz. For the circular tunnel case, two FEM meshes have been created to
deal with this problem, having 6 and 8 NpW (considering a maximum frequency
of 100 Hz, as mentioned) along the boundary. For the cut-and-cover example, only
a FEM mesh with 10 NpW along the boundary is considered.

Type E [MPa] ρ [kg/m3] ν Thickness [m] Damping

Tunnel 31000 2500 0.2 0.3 0.001
Soil layer 1 50 1900 0.3 4 / 3 0.05

Figs. (4.12a / 4.12b)
Soil layer 2 180 1980 0.3 9 0.05
Soil layer 3 400 2050 0.3 ∞ 0.05

Table 4.3: Mechanical parameters of the tunnel and the layered soil.
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Figure 4.12: Geometry of the problem: Circular tunnel (a), Cut-and-cover
tunnel (b). The position of the forces and the position of the receivers are also

presented.
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Figure 4.13: FEM mesh for 6 NpW along the boundary. The FEM nodes, the
collocation/source points and the position of the applied forces used in the case

study are also included.

Figure 4.14: FEM mesh for 10 NpW along the boundary. The FEM nodes,
the collocation/source points and the position of the applied forces used in the

case study are also included.
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4.3.2 Results

In this section, the response of the tunnel-soil models previously described is pre-
sented. For the circular tunnel example, the results are presented in terms of
response at the evaluation points A and B (Fig. 4.12a) for each one of the three
numerical methods compared in previous sections: 2.5D FEM-SBM, 2.5D FEM-
MFS and 2.5D FEM-BEM. For the 2.5D FEM-BEM, a mesh with 6 NpW along
the boundary has been used. For 2.5D FEM-SBM and 2.5D FEM-MFS, both 6
and 8 NpW meshes (referred to as 6NpW and 8NpW, respectively) are considered.
For the cut-and-cover tunnel example, the response obtained with the proposed
approach is compared to the one obtained using the 2.5D FEM-BEM approach
at evaluation points A, B and C (Fig. 4.12b) and considering 10 NpW along the
boundary. The longitudinal wavenumber has been sampled using a logarithmic
sampling from 0 to 100 rad/m with 129 points. In the computations using the
2.5D FEM-BEM, two Gaussian points have been used in this case. The layered
soil Green’s functions are computed using the EDT toolbox [84], considering for
the wavenumber associated with the y direction a logarithmic sampling in a range
from 10−7 rad/m and 103 rad/m with 2048 samples. Convergence tests showed
that the number of samples was sufficient to obtain accurate results. In what
follows, the soil displacement response caused by the action of the two unit point
loads is referred to as receptance.

Fig. 4.15 shows the receptance at the evaluation points A and B and for y and z

components.

Based on the results shown in Fig. 4.15, a generally good agreement is observed
between the responses obtained with the proposed approach and those obtained
using the other two methods for the case of 6 NpW. Comparing the results obtained
with the 2.5D FEM-SBM with 6 NpW and 8 NpW at the maximum frequency,
an adequate convergence of the method is observed. Results start to differ just at
60 Hz, which is consistent with the fact that, above this frequency, the number
of NpW is going below 10 for the 6 NpW case. Regarding 2.5D FEM-MFS, the
method shows larger discrepancies between 6 NpW and 8 NpW cases at large
frequencies with respect to the 2.5D FEM-SBM. Comparing the results between
the 2.5D FEM-SBM and the 2.5D FEM-BEM, both with 6 NpW, discrepancies
up to 0.8 dB can be observed. These small discrepancies assure very accurate
predictions of the railway-induced ground-borne vibrations.



Chapter 4. 2.5D FEM-SBM 79

0 80 100
-10

0

10

20

30

40

50

R
e

ce
p

ta
n

ce
 [

d
B

]
(a-ii)

0 80 100
10

15

20

25

30

35

40

45

R
e

ce
p

ta
n

ce
 [

d
B

]

(a-iii)

0 20 80 10040 60 

Frequency [Hz]

15

20

25

30

35

40

45

R
e

ce
p

ta
n

ce
 [

d
B

]

(b-ii)

0 20 80 10040 60 

Frequency [Hz]

0

10

20

30

40

50

R
e

ce
p

ta
n

ce
 [

d
B

]

(b-iii)

20 40 60 20 40 60 

Figure 4.15: Receptances at points A (a) and B (b) for y (ii) and z (iii)
directions. Methods: 2.5D FEM-BEM 6NpW (solid red line), 2.5D FEM-SBM
6NpW (solid black line), 2.5D FEM-MFS 6NpW (solid green line), 2.5D FEM-
SBM 8NpW (dashed black line) and 2.5D FEM-MFS 8NpW (dashed green line).

Fig. 4.16 presents the receptance at the evaluation points A, B and C and for
y and z components. As in the circular tunnel case, a very good agreement is
observed between the response computed by the proposed method and the one
obtained using the 2.5D FEM-BEM approach. This agreement is obtained for
all the range of frequencies of interest, indicating that the use of 10 NpW in the
computation is a suitable choice. Some small discrepancies (up to 1.8 dB) are
only observed around 55 Hz and for some of the receptances in the y direction.
The larger discrepancies in comparison with the circular railway tunnel example
are due to the higher complexity of the current geometry. In the other field
points and directions, differences up to 1 dB are observed between the considered
methods. The mentioned discrepancies are acceptable for railway-induced ground-
borne vibration problems.
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Figure 4.16: Receptances at points A (a), B (b) and C (c) for y (ii) and z
(iii) directions. Methods: 2.5D FEM-BEM (solid red line) and 2.5D FEM-SBM

(solid black line),

4.4 Conclusions

In this chapter, a novel numerical methodology to deal with longitudinally invari-
ant SSI problems is proposed. This approach works in the wavenumber-frequency
domain and models the structure with the FEM and the soil with the SBM. This
new approach has been compared with two previously well-established approaches:
the 2.5D FEM-BEM [23] and 2.5D FEM-MFS [52]. In general, the results show
that the novel approach provides higher accuracy than 2.5D FEM-MFS with al-
most similar computational time. With respect to the 2.5D FEM-BEM, similar
accuracy is reached with larger computational efficiency. The particular merits of
the proposed approach are listed below:

• The approach combines the benefits of the FEM and the SBM, providing
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the capability for dealing with detailed structures (FEM) and the efficient
treatment of the wave propagation in the soil (SBM).

• The method is studied in the framework of simple (a thin cylindrical shell)
and more complex (a star-like beam structure) smooth geometries of the soil-
structure interface, showing that the proposed method not only is practical
for structures with geometrically simple boundaries but also it has reasonable
accuracy in cases where the interface is more intricate.

• The convergence analysis carried out has pointed out that the proposed me-
thod has an acceptable performance when compared to the other presented
approaches at low frequencies while at high frequencies more than 10 NpW
are required to achieve an acceptable level of accuracy.

• Comparing with the 2.5D FEM-BEM methodology, the computational effi-
ciency of the novel 2.5D FEM-SBM is a great advantage of the method, while
exhibiting a similar accuracy considering the same number of NpW. More-
over, using SBM strongly simplifies the formulation and implementation of
the method.

• Comparing with the 2.5D FEM-MFS approach, 2.5D FEM-SBM is more
robust since no virtual boundary is required. This is of special importance
for problems with complex geometries for the SSI boundary. The overlapping
between collocation and source points also allows the method to couple a
structure just on the soil surface and keep using half-space Green’s functions,
a capability that the 2.5D FEM-MFS does not have. This can be used to
deal with the SSI of several structures such as at-grade railway tracks and
roads.

• Two examples of application for the novel method in underground railway-
induced vibration assessment has been presented for a realistic scenario,
showing the adequacy of the method for dealing with these kinds of problems.

To conclude, the 2.5D FEM-SBM is found to be an adequate prediction tool for
the SSI problems since it inherits some of the key advantages of the BEM and of
the MFS while keeping the versatility presented by the FEM.

This chapter has shown that the SBM is a suitable alternative for modelling the
propagation of elastic waves in a soil. However, the presented results have shown
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that, despite being much more computationally efficient than the BEM, the me-
thod is less efficient than the MFS, as the later does not require to determine the
OIFs associated with the considered boundary conditions. In contrast, it has also
been discussed that the SBM is much more robust than the MFS, because it does
not require to define a virtual boundary, a definition that can be very challenging
for cases with complicated geometries. Both results suggest that if a methodology
was capable of combining the key features of SBM with those of MFS, it would be
an even better alternative for the type of problems that have been addressed in this
chapter. This will be the objective of the next chapter, in which the SBM and the
MFS are combined to develop a hybrid SBM-MFS methodology that will inherit
the computational efficiency of the MFS and also the accuracy and robustness of
the SBM.



Chapter 5

A 2.5D hybrid SBM-MFS

methodology to deal with elastic

wave propagation problems

In this chapter, a novel 2.5D hybrid SBM-MFS approach in the frequency domain
to simulate elastic wave propagation through a soil medium is presented. The
methodology is mainly developed to address radiation or scattering problems in-
volving complex boundary geometries of the structure, being the complex parts of
shape modelled with the SBM and the smooth parts with the MFS. The method is
studied in the framework of three case studies: a circular shape, a partially circu-
lar shape and a square geometry, all embedded in a homogeneous full-space. These
three examples are selected to assess the accuracy and robustness of the proposed
hybrid method. Once it is properly used, the method is found to be inheriting the
accuracy of the MFS while keeping the robustness associated with the SBM on
dealing with the more complex geometries. Three features can be mentioned as
the main advantages of the proposed method with respect to the SBM or the MFS.
Firstly, for problems with complex geometries involving edges, the hybrid method
is more accurate than the MFS. Secondly, the computational efficiency of the pro-
posed approach overcomes the one developed by the SBM. Accordingly, the new
method is significantly faster than the BEM. Lastly, the hybrid approach naturally
mitigates the effect of fictitious eigenfrequencies, a feature that neither the SBM
nor the BEM posses.

This chapter is organised as follows. In Section 5.1, the proposed formulation of
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the novel 2.5D SBM-MFS method is presented in detail. Section 5.2 presents an
assessment of the accuracy of the methods in the context of the three examples
previously mentioned. For the sake of presenting a detailed assessment of the
proposed method, the response of the soil in each example is compared in terms
of accuracy and robustness to the results obtained by the 2.5D MFS, the 2.5D
SBM and the 2.5D BEM. Generally, two types of virtual sources distributions
are considered and assessed in all the examples: regular, following an auxiliar
boundary with the same shape of the physical one, and random, distributed all
along the cavity space. To ensure the validity of the proposed method for the
whole frequency range of interest, a comparison is also carried out in terms of
frequency spectra. Afterwards, in Section 5.3, the computational efficiency of the
hybrid method is assessed and then compared to the ones of the alternative methods
considered, (2.5D MFS and the 2.5D SBM) in the context of the first calculation
example. Finally, the effect of the fictitious eigenfrequencies on the accuracy of
the presented methods is discussed in Section 5.4.
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5.1 Numerical method formulation

The proposed 2.5D hybrid SBM-MFS methodology is an approach designed to
deal with elastic wave propagation problems, when the boundary of the struc-
ture involved is (or it might be considered to be) longitudinally invariant. The
methodology is useful for the structures that involve both complicated and smooth
geometries, where the complex parts of the shape are modelled with the SBM and
the smooth parts are addressed with the MFS. As before, the system is assumed
to be invariant in the x direction. A general description of the proposed method-
ology is illustrated in Fig. 5.1. The figure shows a distribution example of the
MFS and SBM virtual sources in the proposed methodology. The methodology
considers two sets of virtual sources. The first set is distributed within the physical
boundary (Γ), while the other virtual sources are located outside the domain Ω

(inside the cavity space). In the following, the formulation of this novel approach
is outlined in detail. In the same manner as in previous chapters, the bar notation
is used to denote that a variable is defined in the wavenumber domain and cap-
ital notation is used for frequency domain variables. Thus, the dynamic Green’s
functions are represented with capital-bar notation and static Green’s functions
are represented just with uppercase letters.

Collocation points n   (ym)

Collocation points  (ys)

MFS virtual source points (xm) 

SBM virtual source points (xs)

Physical boundary

(Γ)

Soil

( )

Figure 5.1: General description of the proposed hybrid methodology. Colloca-
tion points are denoted by black solid circles and the virtual sources associated

with MFS and SBM are denoted by blue and red circles, respectively.

Based on radial basis function interpolation, the displacement and traction fields
in the soil can be approximated throughout the domain using the following linear
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combination of the fundamental solution of the governing equations:

Ū(y) =

NM∑
n=1

H̄(y,xn
M)S̄M,n +

NS∑
n=1

H̄(y,xn
S)S̄S,n, (5.1a)

T̄ (y) =

NM∑
n=1

H̄τ (y,xn
M)S̄M,n +

NS∑
n=1

H̄τ (y,xn
S)S̄S,n, (5.1b)

where the terms H̄(y,xn
M/S) and H̄τ (y,xn

M/S) represent the displacement and
traction Green’s functions of the soil considering a point load applied at xn

M/S and
an arbitrary field point at y. The terms S̄M,n and S̄S,n represent vectors that collect
the three components of the strength of the nth virtual source associated with the
SBM and MFS sources, respectively, and Ū(y) and T̄ (y) are the displacements
and tractions of the soil at the arbitrary field point. The number of MFS and SBM
sources points are denoted by NM and NS, respectively, being N = NM +NS the
total amount of sources. Also, it should be noted that the terms xn

M and xn
S are the

location of the nth source point associated with the MFS and SBM, respectively.
To avoid the singularities that arise when Eqs. (5.1a) and (5.1b) are employed to
evaluate the solution on collocation points geometrically coincident with virtual
sources, the equations can be rewritten as follows [19, 54]

Ū(ym
S ) =

NM∑
n=1

H̄(ym
S ,x

n
M)S̄M,n +

NS∑
n=1,n ̸=m

H̄(ym
S ,x

n
S)S̄S,n

+ H̄mmS̄S,m, for m = 1, 2, ..., N

(5.2a)

T̄ (ym
S ) =

NM∑
n=1

H̄τ (ym
S ,x

n
M)S̄M,n +

NS∑
n=1,n̸=m

H̄τ (ym
S ,x

n
S)S̄S,n

+ H̄τ
mmS̄S,m, for m = 1, 2, ..., N

(5.2b)

where H̄mm and H̄τ
mm are, as in Chapter 4, the SBM origin (or source) intensity

factors (OIFs) and where ym
S is the location of the mth collocation point associated

with the SBM formulation.

In this work, it is assumed that the OIFs associated with the hybrid SBM-MFS
formulation are equal to the ones that are obtained by formulating the problem
using the SBM. Therefore, these OIFs can be computed from a formulation of the
problem that does not consider MFS sources, i.e. where all the collocation points
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are coincident with virtual sources. Therefore, referring to this total set of collo-
cation points simply as {y1, . . . , yN} = {y1

S, . . . , yNS
S } ∪ {y1

M , . . . , yNM
M }, the

expression that defines the OIF associated with the Neumann boundary condition
of the hybrid SBM-MFS formulation at the mth collocation point is given by

H̄τ
mm =

1

Lm

I+Am −
N∑

n=1,n ̸=m

LnH
τ (yn,ym

S )

 , (5.3)

where

Am ≈
∫
Γm

[
Hτ (ym,y) +Hτ (y,ym)

]
dΓm(y), (5.4)

being Γm the segment of the boundary with length Lm on which the mth collo-
cation point is located. The detailed derivation of the previous expression has
been presented in Chapter 4. In the numerical calculations of Am, Γm is approxi-
mated by the following union of two straight segments Γm ≈ [(ym−1+ym)/2,ym]∪
[ym, (ym + ym+1)/2].

As it was mentioned in Chapter 4, the OIFs associated with the Dirichlet boundary
condition H̄mm, can be directly calculated as an average value of the fundamental
solution over Γm [54]. As before, the real boundary is approximated by two straight
segments.

In contrast with what happened for the SBM collocation points, the responses on
the MFS points are simply given by Eqs. (5.5a) and (5.5b), since no singularity
arises in the required Green’s functions.

Ū(ym
M) =

NM∑
n=1

H̄(ym
M ,xn

M)S̄M,n +

NS∑
n=1

H̄(ym
M ,xn

S)S̄S,n,

for m = 1, 2, ..., N

(5.5a)

T̄ (ym
M) =

NM∑
n=1

H̄τ (ym
M ,xn

M)S̄M,n +

NS∑
n=1

H̄τ (ym
M ,xn

S)S̄S,n,

for m = 1, 2, ..., N

(5.5b)

The source strengths resulting of a prescribed boundary condition can be deter-
mined arranging the previous expressions in the form of Eq. (4.17) and solving
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the resulting system of equations.

Once the source strengths are computed, the displacement and traction response
at an arbitrary field point in the soil can be computed by means of Eqs. (5.1a)
and (5.1b).

5.2 Assessment of the hybrid method

In this section, the assessment of the accuracy and robustness of the proposed
method is conducted in the framework of three examples. The first example deals
with a circular cylindrical cavity, the second example considers a partially circular
shape, and the last one presents the results for a square geometry. The methods
are compared with other numerical strategies and the comparison is performed in
terms of an error analysis with respect to a reference solution to evaluate the ac-
curacy of the method, and in terms of the conditioning of the system of equations
employed to determine the source strengths, to study its robustness. Furthermore,
the frequency spectrum is also presented for all examples, in order to assess the
performance of the method in a broad frequency range. As mentioned previously,
the 2.5D BEM, the 2.5D MFS and the 2.5D SBM approaches are applied together
with the 2.5D hybrid SBM-MFS method to carry out a thorough comparison.
For the application of the 2.5D SBM, the same methodology used in the previ-
ous chapter in where sources located at the locations of all collocation points is
also employed here. The hybrid SBM-MFS and MFS approaches are analysed,
in contrast, for two distinct configurations of the MFS virtual sources: regular,
following an interior auxiliar boundary with the same shape of the physical one,
and random, distributed all along the cavity space, while the SBM sources are lo-
cated with different distributions depending on the problem. The error analysis is
performed by computing the root mean square error (RMSE), which is calculated
as
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RMSE =

√√√√√ 1

3NE

NE∑
j=1

∣∣∣∣∣∣
3∑

i=1

U ij
f −

3∑
i=1

U ij
fr

∣∣∣∣∣∣
2

√√√√√ 1

3NE

NE∑
j=1

∣∣∣∣∣∣
3∑

i=1

U ij
fr

∣∣∣∣∣∣
2

, (5.6)

where i is the index associated with the Cartesian coordinates (x, y and z), j is
the index associated with the evaluation points, and NE refers to the total number
of evaluation points considered. Moreover, U ij

f and U ij
fr represent the receptances

in the frequency domain on the evaluation points obtained by the selected method
and by the reference method, respectively, at the field point j and in the direction
i. The procedure to compute the receptances is presented in Section 3.2.

In contrast to the previous chapter, the exact geometrical data from the curve
equation of the boundary is considered for the determination of influence lengths
to be used in the computation of OIFs and also to obtain the normal vectors. How-
ever, it is found that for the considered cases in this chapter, the accuracy of the
2.5D SBM and the hybrid approaches will not change considerably by considering
the node-based approximation instead of the exact geometry of the boundary.

In this chapter, the RMSE analysis is performed based on integrals computed
numerically with a total of 513 sampling points consisting of kx = 0 and a loga-
rithmically spaced vector of wavenumbers ranging from 10−3 to 102 rad/m. More
details on this regard can be found in Section 3.2. The considered material prop-
erties of the soil can be found in Table. 3.1.

5.2.1 Example 1: Circular shape cavity

This example provides a thorough comparative study of the considered approaches
in the context of the radiation problem caused by a load acting on a cylindri-
cal cavity. For this case, the reference for the determination of the error is the
semi-analytical solution of a cylindrical cavity in a homogeneous elastic medium
presented in [27]. The particular system considered is a cylindrical cavity with
a unit radius excited by a vertical harmonic load applied to the bottom of the
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cavity. The RMSE is calculated at two different sets of test points (each set con-
sists of 100 evaluation points), both distributed on circles centred at the cylinder
axis and with radii 2 m and 20 m, representing near-field and far-field positions,
respectively. The RMSE trends are shown against NpW, ranging from 3 to 21,
considering the mentioned soil properties and maximum frequencies of 80 Hz and
250 Hz.

5.2.1.1 Regular distribution of MFS source points

Prior to the comparison of the proposed approach with the other numerical meth-
ods, various distributions for the MFS sources are studied. For all cases, the
virtual sources are distributed uniformly in a concentric circle of radius rs and,
afterwards, the hybrid and MFS approaches are assessed for different values of
this radius. The adopted distributions for the case of rs = 0.75 m are shown in
Fig. 5.2. On the one hand, the distribution of the source points associated with
the full MFS method is shown in Fig. 5.2a. On the other hand, two different con-
figurations are assumed for the hybrid method, illustrated in Fig. 5.2b and 5.2c,
and named as one-in-between (OIB), and half-half (HH) configurations, respec-
tively. In OIB configuration, the neighbouring points of each SBM source point
are collocation points without a coincident source at them. In HH configuration,
all SBM sources are located consecutively along the boundary in its upper half
side. In both arrangements of the hybrid approach, 50% of the virtual sources are
SBM sources and the remaining 50% are MFS sources.

Figure 5.2: Distributions of the collocation points (blue) and virtual sources
(red) for the circular shape case, adopting a regular distribution approach for
the full MFS method (a) and the OIB (b) and HH (c) configurations for the

hybrid approach.
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The RMSE of the MFS and hybrid (OIB configuration) methods for different values
of the rs is shown in Fig. 5.3. The HH configuration for the hybrid approach is not
presented since it is found to present a similar behaviour to the OIB configuration.
The RMSE of the full SBM method is also presented for comparison purposes. As
shown in this figure, the hybrid method behaves more consistently than the MFS,
even though it can not reach the high accuracy levels of the full MFS method at
particular radii. As it can be seen, both hybrid and MFS approaches present large
errors at very small or very large radii. This finding is consistent with the previous
investigations in the field [14, 90]. Moreover, the hybrid method presents the same
level of accuracy in a wide range of radii, reaching a RMSE value slightly smaller
than the one associated with the full SBM method. The results of this analysis
are used to select an optimal rs for the hybrid and MFS methods that will be used
all along the calculations for regular distribution of MFS sources in the circular
shape cavity case. Corresponding optimal distances depending on the method and
the frequency are used.



Chapter 5. 2.5D hybrid SBM-MFS 92

Figure 5.3: The RMSE of the studied methods against the position of the
virtual sources, considering 10 NpW and frequencies of 80 Hz (a) and 250 Hz
(b). The field points are located at a radius of 2 m (i) and 20 m (ii). Methods:
2.5D MFS (blue line), hybrid method with OIB configuration (purple line) and

2.5D SBM (black line).

The accuracy of the hybrid method is compared with the considered alternative
approaches in terms of the RMSE. Fig. 5.4 shows the RMSE at two chosen fre-
quencies (80 Hz and 250 Hz) versus NpW. For the hybrid and MFS approaches, the
previously determined optimal rs has been employed in the calculations. Based
on the results shown in Fig. 5.4, the 2.5D MFS is the most accurate solution
among all methods, as expected for such a smooth geometry [91]. In this figure,
the RMSE values below 10−3 are not shown to highlight the differences between
the other numerical methods. Comparing the results obtained by the 2.5D SBM
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and the 2.5D BEM with the 2.5D SBM-MFS, it is found that the hybrid method
with OIB configuration presents a higher numerical accuracy than the 2.5D SBM
and 2.5D BEM, specially at far-field responses. Also, it demonstrates a similar
error decay rate that SBM and BEM approaches. In contrast, as depicted, the
accuracy of the hybrid approach with HH configuration is less stable, although is
generally better than the one associated with the 2.5D BEM.

Figure 5.4: RMSE for different numerical strategies, considering regular dis-
tribution of the MFS sources for the case of a circular shape cavity. Two sets of
evaluation points at radii of 2 m (i) and 20 m (ii) are considered. Calculation

frequencies: 80 Hz (a) and 250 Hz (b).

Previous results were useful to evaluate the global performance of the method at
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two specific frequencies. However, it is also interesting to check the performance of
the method along the frequency. In this context, the frequency response functions
delivered by the hybrid method are compared against the ones provided by the
semi-analytical solution of the cylindrical cavity [27]. The comparison is conducted
in terms of receptances and TTF. Three evaluation points in the soil are settled:
points A (x = 0 m; y = 2 m; z = 2 m), B (x = 0 m; y = 5 m; z = 2 m) and C
(x = 0 m; y = 8 m; z = −4 m). In these cases, the number of collocation points
are constant along the frequency range to ensure 10 NpW at 250 Hz. As shown in
Figs. 5.5 and 5.6, very good agreement can be seen between the semi-analytical
solution of the cylindrical cavity and the proposed approach along the frequency
range of interest. Also, these figures give a more visual representation of the errors
delivered by the new methodology: despite the 2.5D MFS is clearly more accurate
than the other methods, these figures highlight the fact that they are still highly
accurate.
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Figure 5.5: Receptances for the circular shape case at the field points A (a), B
(b) and C (c) for y (ii) and z (iii) directions. Methods: semi-analytical solution
of the cylindrical cavity (solid red line) and hybrid method (dashed black line

with circular markers).
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Figure 5.6: Traction transfer functions for the circular shape case at the field
points A (a), B (b) and C (c) for y (ii) and z (iii) directions. Methods: semi-
analytical solution of the cylindrical cavity (solid red line) and hybrid method

(dashed black line with circular markers).

5.2.1.2 Random distribution of MFS source points

In order to assess the robustness of the proposed method, the RMSE obtained
by the hybrid approach, considering different random distributions of the MFS
sources, is compared with those obtained by the alternative methods. Fig. 5.7a
illustrates the distribution of collocation points and, more importantly, sources lo-
cation for one of the multiple random source distribution cases for the 2.5D MFS.
Similarly, Fig. 5.7b indicates a random realisation of source points arrangement
for the hybrid method. Similar to the regular distribution of source points, these
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random distributions for the hybrid method consider 50% of the sources to be MFS
sources, being the remaining 50% of SBM nature. To limit the proximity between
MFS sources and also between MFS sources and collocation points, two restric-
tions are assumed. These restrictions are calculated based on the RMSE analysis
presented in Fig. 5.3. Firstly, a minimum distance of 0.1 m is assigned between
the virtual sources and the physical boundary for all cases. Secondly, a minimum
allowed distance between source points is defined. At 80 Hz, a minimum gap of
0.02 m is defined between MFS sources for both methods, while, the minimum
permitted values for the case of 250 Hz are 0.05 m and 0.08 m for the hybrid and
MFS approaches, respectively. In this work the distribution is generated using an
iterative procedure where each new source is randomly located inside the boundary
taking into account the source-boundary constraint and assuming a uniform prob-
ability distribution. Once defined, the source-source constraint is assessed for the
new source location and, if the condition is not satisfied, the source is discarded.
The procedure is repeated until the desired number of sources are generated.

5 0 5 0

Figure 5.7: Examples of distributions of the collocation points (blue) and
virtual sources (red) for the circular shape case, adopting a random distribution
approach for the placement of MFS sources. Methods: full MFS approach (a)

and hybrid approach (b).

The robustness of the hybrid and full MFS approaches are quantified at two differ-
ent frequencies by comparing the RMSE obtained assuming a random distribution
of the MFS sources with those delivered by the 2.5D SBM and 2.5D BEM. The
RMSE analysis is carried out for 100 distinct realisations of random sources distri-
butions. The underlying idea of this particular comparison is to study how much
dependent to the source distributions the methods are. Fig. 5.8 illustrates the
results of this comparative study in where, for this specific geometry, the 2.5D



Chapter 5. 2.5D hybrid SBM-MFS 98

MFS presents, generally, more accurate and stable results than the hybrid me-
thod. Moreover, the hybrid method presents a similar mean RMSE to the 2.5D
SBM in all cases. The analysis carried out in this section illustrates that the full
MFS is the most accurate method for a circular boundary and that the hybrid me-
thod does not provide a significant improvement when compared with the SBM
approach. However, next sections show that the benefits of the hybrid approach
arise when a geometrically complex boundary is considered.
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Figure 5.8: RMSE for different numerical strategies when considering random
distributions of the MFS sources for the case of a circular shape cavity. Two sets
of evaluation points at radii of 2 m (i) and 20 m (ii) are considered. Calculation

frequencies: 80 Hz (a) and 250 Hz (b).

5.2.1.3 Condition number

In order to analyse the accuracy of the considered numerical methods, the con-
cept of condition number is defined in this chapter. The condition number of a
function measures how much the output value of the function is sensitive to small
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perturbations in the input data [92]. To be specific, the 2-norm condition number
associated with the linear systems of equations appearing in Eq. (4.17) is consid-
ered to show the sensitiveness of the solution of the system, which is the source
strengths, for a small change in the input boundary condition. In this context,
the condition number can be defined as the ratio between the largest and smallest
singular value of the inverted matrix of the system in this work [93]. This indicator
is important to be studied since a high condition number of H̄τ would mean that
a correct solution of the system is more difficult to be accurately determined. In
this analysis, the system of equations is named as ill-conditioned if the condition
number exceeds 1016. The analysis of the condition number is presented for two
wavenumbers (0.1 and 1 rad/m) and two frequencies (80 Hz and 250 Hz). To
evaluate the asymptotic behaviour of the condition number, the NpW considered
in this section are considerably larger than those required for any practical com-
putation. Fig. 5.9 illustrates the condition number obtained by the 2.5D SBM,
the 2.5D MFS and the hybrid approaches. It should be noted that the OIB con-
figuration is used for the hybrid approach for the case of regular distribution of
source points. The trend associated with the 2.5D SBM indicates that this me-
thod is very well-conditioned or in other words, the condition number of the matrix
H̄τ that defines the coefficients of the system of equations required to determine
the source strengths for a Neumann boundary condition is not sensitive to the
number of NpW. The comparison between the 2.5D MFS and the hybrid method
for the regular distribution of MFS source points shows that the 2.5D MFS has
ill-conditioned system of equation for values above 95 NpW and 23 NpW for the
frequencies of 80 Hz and 250 Hz, respectively, while the hybrid method presents
an ill-conditioned system of equation for values above 190 NpW and 47 NpW for
the frequencies of 80 Hz and 250 Hz, respectively. For the random distributions of
sources points, average condition numbers are considered for both full MFS and
hybrid methods. This assumption for all condition number calculation based on
random source distributions presented in this chapter. The comparison between
the 2.5D MFS and the hybrid method with random distribution of MFS sources
demonstrates that they present ill-conditioned system of equation for values above
47 NpW and 23 NpW for the frequencies of 80 Hz and 250 Hz, respectively. Thus,
it can be concluded that the hybrid approach produces generally more conditioned
systems of equations for the determination of the required source strengths.
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Figure 5.9: Condition number with respect to the discretisation density for
the 2.5D MFS, the 2.5D SBM, and the hybrid methods in the circular boundary
shape case at frequencies of 80 Hz (a) and 250 Hz (b) and for wavenumbers of

0.1 rad/m (i) and 1 rad/m (ii).

5.2.2 Example 2: Partially circular

In the previous section, it was shown that the hybrid method does not provide
any particular improvement for the case of a circular cavity in comparison with
the other considered methods. In fact, it was found that the full 2.5D MFS is
the most accurate approach for that specific geometry. In order to present the
benefits provided by the hybrid method, more complex geometries are considered
in examples 2 and 3. The second example is presented in this section, where a
circular boundary with a flat is adopted. This geometry has been called partially
circular shape along the section. Since the considered problem does not have a
known analytical solution, the 2.5D FEM-BEM approach with a highly refined
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mesh is taken as the reference in the error analysis. The radius of the circular
segment of the geometry is taken to be 3 m, and the length of the lower straight
segment has been set to 5 m. The system is excited by two vertical harmonic loads,
both applied to the bottom of the geometry, as shown in Fig. 5.10a. The mesh
employed for the reference case is presented in Fig. 5.10b, where the soil material
is assigned to both FEM and BEM to properly represent the studied system. The
reference case uses the 2.5D FEM to model the local surrounding soil to the cavity
in order to accurately model the geometry of the cavity. Particularly refined FEM
mesh is adopted in the two corners for this purpose. Moreover, BEM mesh in
the reference solution adopts 40 NpW for a frequency of 80 Hz, the maximum
frequency of interest settle in the this example. As in example 1, RMSE is used
to assess the accuracy of the different methods studied. It is again computed at
two sets of test points, with 100 points each one, both homogeneously distributed
on circles centred at the cylinder axis and with radii 5 m and 20 m, representing
near-field and far-field positions, respectively.

BEM nodes

FEM elements

a

Figure 5.10: The geometry and loading pattern of the problem (a) and the
mesh considered in the 2.5D FEM-BEM reference solution (b).

5.2.2.1 Regular distribution of MFS source points

In this section, the accuracy of the hybrid and MFS approaches when the MFS
source points are distributed in a regular pattern is compared with the 2.5D SBM
and the 2.5D BEM approaches. In this example, it is supposed that the fictitious
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boundary uses a scaled partially circular shape corresponding to the physical ge-
ometry, as shown in Fig. 5.11a. Previous works has shown that the MFS requires
of large amounts of collocation points to provide accurate results for complicated
geometries [94], In contrast, the SBM is an appropriate approach to deal with
complex geometries with sharp edges [18]. Having this in mind, the hybrid me-
thod uses the SBM to deal with these complex parts of boundary while the MFS
is used for the remaining smooth sections. In the present example, thus, the cir-
cular section of the geometry (referred as the smooth segment in this example)
is handled with the MFS and the SBM is used to deal with the lower straight
segment of shape including the two corners (referred as the complex segment in
this example). As a consequence of this distribution, 65% of the virtual sources
are the MFS sources and 35% of the sources are the SBM source points. This ratio
is kept constant for all the calculations presented for this example. The optimal
position of the MFS virtual sources is chosen based on RMSE analysis similar to
the one presented for the previous example.

0

1

1.5

0

1

1.5

Figure 5.11: The collocation points (blue) and virtual sources (red) for the
partially circular shape case, adopting a regular distribution approach, for the

full MFS (a) and hybrid (b) methods.

Fig. 5.12, shows a comparative of the RMSE for all considered approaches in the
context of the present example. In contrast to example 1, the 2.5D MFS presents
the largest errors and a fluctuating behaviour, when compared with the other
methods. That is due to higher complexity of the considered geometry. In general,
the hybrid approach demonstrates the most accurate results at 80 Hz among all
methods, while SBM is the most precise method at 20 Hz. The performance of the
hybrid method versus the amount of NpW is stable and smooth in all cases, similar
to the 2.5D BEM and 2.5D SBM approaches. When comparing these methods, it is
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important to notice that the hybrid method is more computationally efficient than
the full SBM due to the reduction of OIF required to be computed. Furthermore,
the capability of the MFS to have less sources than collocation points is also a
potential benefit of the hybrid method with respect to the SBM not discussed in
the present thesis.

Figure 5.12: RMSE for different numerical strategies, considering regular dis-
tribution of the MFS sources for the case of a partially circular shape. Two sets
of evaluation points at radii of 5 m (i) and 20 m (ii) are considered. Calculation

frequencies: 20 Hz (a) and 80 Hz (b).

In order to assess the accuracy of the proposed approach for a frequency range of
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interest, a comparison is conducted between the receptances and TTF obtained by
the hybrid approach and those of 2.5D FEM-MFS approach. The 2.5D FEM-MFS
is used here instead of the 2.5D FEM-BEM since it provides good accuracy and
also an easier evaluation procedure for the tractions. The mesh illustrated in Fig.
5.10b also is used for the 2.5D FEM-MFS calculations. Three evaluation points
in the soil are considered: points A (x = 0 m; y = 4 m; z = −4 m), B (x = 0 m;
y = 8 m; z = −3 m) and C (x = 0 m; y = 12 m, z = 6 m). In these cases, a
minimum of 10 NpW and 40 NpW are considered for the hybrid method and the
2.5D FEM-MFS, respectively, for the range of frequencies of interest, considering
a maximum frequency of 100 Hz. From the results shown in Figs. 5.13 and 5.14,
it can be interpreted that the proposed method is a good prediction model for the
considered geometry. This accuracy is consistent with the RMSE values presented
in Fig. 5.12 which is 3% for 10 NpW.
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Figure 5.13: Receptances for the partially circular shape case at the field
points A (a), B (b) and C (c) for y (ii) and z (iii) directions. Methods: 2.5D
FEM–MFS (solid red line) and hybrid method (dashed black line with circular

markers).
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Figure 5.14: Traction transfer functions for the partially circular shape case at
the field points A (a), B (b) and C (c) for y (ii) and z (iii) directions. Methods:
2.5D FEM–MFS (solid red line) and hybrid method (dashed black line with

circular markers).

5.2.2.2 Random distribution of MFS source points

The robustness of the hybrid and 2.5D MFS approaches is again assessed by con-
sidering random distributions of MFS sources. Figs. 5.15a and 5.15b illustrate
the distribution for one of the randomisation of the MFS sources for the 2.5D
MFS and the hybrid methods, respectively. The applied restrictions of this case
are corresponding to the ones considered in Section 5.2.1.2. Similar to the case
of regular distribution of MFS source points, 65% of the sources are MFS sources
and the remaining 35% are of SBM nature.



Chapter 5. 2.5D hybrid SBM-MFS 108

  

4.5

1.5

1.5

0

4.5

1.5

1.5

0

Figure 5.15: Examples of distributions of the collocation points (blue) and
virtual sources (red) for the partially circular shape case, adopting a random
distribution approach for the placement of MFS sources. Methods: full MFS

approach (a) and hybrid approach (b).

The RMSE plot associated with the random distribution of the MFS sources is
illustrated in Fig. 5.16. Similar to example 1, RMSE analysis is conducted for
100 distinct realisations of random sources distributions. As shown, at 20 Hz the
RMSE of the hybrid approach is lower than the one of 2.5D MFS, and it follows
the RMSE trend of the 2.5D SBM and the 2.5D BEM with slightly lower accuracy.
At 80 Hz, there is a larger difference between the RMSE of the hybrid and the 2.5D
MFS. However, this large difference also is observed between the hybrid approach
and two other methods (2.5D SBM and 2.5D BEM). The results obtained for
this example indicate that the hybrid method can properly deal with the present
geometry, showing acceptable levels of accuracy even for random placement of the
MFS sources, clearly surpassing the capabilities of the full MFS approach in this
regard.
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Figure 5.16: RMSE for different numerical strategies when considering ran-
dom distribution of the MFS sources for the case of a partially circular shape.
Two sets of evaluation points at radii of 5 m (i) and 20 m (ii) are considered.

Calculation frequencies: 20 Hz (a) and 80 Hz (b).

5.2.2.3 Condition number

The conditioning of the system of equation associated with the 2.5D SBM, the 2.5D
MFS and the hybrid approaches for the present example is studied in this section.
The condition number is calculated for both regular and random distribution of
the MFS sources and the results are presented for two wavenumbers (0.1 rad/m
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and 1 rad/m) and two frequencies (20 Hz and 80 Hz) in Fig. 5.17. The condition
number obtained for the 2.5D SBM shows that, as in example 1, the system of
equation is very well-conditioned in this method. The comparison between the
2.5D MFS and the hybrid method for the regular distribution of MFS sources
shows that 2.5D MFS suffers from an ill-conditioned system of equation for values
above 95 NpW and 47 NpW, at frequencies of 20 Hz and 80 Hz, respectively, while
the hybrid method presents an ill-conditioned system of equations for values above
380 NpW and 95 NpW, at frequencies of 20 Hz and 80 Hz, respectively. For the
random distribution of the MFS sources, it is observed that the 2.5D MFS presents
an ill-conditioned system of equation for values above 47 NpW and 23 NpW, at
frequencies of 20 Hz and 80 Hz, respectively. The system of equations delivered
by the hybrid approach becomes ill-conditioned for values of NpW above 95 and
47, at frequencies of 20 Hz and 80 Hz, respectively. These results are aligned with
the previous findings associated to this example.

Figure 5.17: Condition number with respect to the discretisation density for
the 2.5D MFS, the 2.5D SBM, and the hybrid methods in the partially circular
shape case at frequencies of 20 Hz (a) and 80 Hz (b) and for wavenumbers of

0.1 rad/m (i) and 1 rad/m (ii).
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5.2.3 Example 3: Square shape

As illustrated in Fig. 5.18, a square shape is selected for this example. The
length of each side of the square is equal to 6 m, as shown in Fig. 5.18a. The
system is excited by a vertical unit load applied at the bottom of the cavity.
Since there is no known analytical solution for this geometry, the 2.5D FEM-BEM
is taken as the reference method. The FEM mesh and the boundary nodes are
indicated in Fig. 5.18b. The RMSE is computed at two distinct sets of test points,
both distributed on circles centred at the centre of the tunnel and with radii 7 m
and 20 m, representing near-field and far-field positions, respectively. For both
sets, the evaluation points are distributed uniformly on the circle perimeter. Two
frequencies are chosen for the present RMSE analysis: 20 Hz and 80 Hz. In all
the calculations carried out for this example, 30% of the virtual sources are SBM
sources and the remaining 70% are MFS sources.

Soil

3 m

Boundary

Figure 5.18: The geometry and loading pattern of the problem (a) and the
mesh considered in the 2.5D FEM-BEM reference solution (b).

5.2.3.1 Regular distribution of MFS source points

For the distribution of the virtual sources in the hybrid approach, the SBM virtual
sources are located at the edges of the square, while the MFS source points are
employed for the smooth part of the geometry. Also, it is found that placing SBM
virtual source at the position of the applied force can boost the accuracy of the
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proposed approach. The distributions of the sources associated with full MFS and
hybrid methods are shown in Figs. 5.19a and 5.19b, respectively.
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Figure 5.19: The collocation points (blue) and virtual sources (red) for the
square shape case, adopting a regular distribution approach, for the full MFS

(a) and hybrid (b) methods.

In this framework, resulting RMSE for all the methods considered in this case
study is shown in Fig. 5.20, the SBM method is the most accurate approach for
a frequency of 20 Hz, while SBM and hybrid approaches are the most accurate
methods at 80 Hz and from 5 to 15 NpW. Also, it should be noted that, as expected,
the MFS does not presents accurate results in any of the cases. Generally, the
performance of the proposed hybrid approach in terms of accuracy and stability of
the results is almost as good as the ones presented by the SBM approach. Again,
to highlight the benefits of the hybrid approach, it is important to mention the
previously mentioned potentialities of it in terms of computational performance
with respect to full SBM modelling, thanks to the reduction of SBM sources and
even total sources.
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Figure 5.20: RMSE for different numerical strategies, considering regular dis-
tribution of the MFS sources for the case of a square shape. Two sets of eval-
uation points at radii of 7 m (i) and 20 m (ii) are considered. Calculation

frequencies: 20 Hz (a) and 80 Hz (b).

Similar to example 2, the proposed approach is compared with the 2.5D FEM-
MFS for frequencies ranging from 0 to 100 Hz. The mesh used to compute the
2.5D FEM-MFS model is shown in Fig. 5.18b. The receptances and TTF are
computed at three defined evaluation points: point A (x = 0 m; y = 6 m; z = −6

m), B (x = 0 m; y = 12 m; z = −3 m) and C (x = 0 m; y = 18 m; z = 6
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m). The number of collocation points are constant along the frequency range to
ensure 10 NpW and 40 NpW for the hybrid and the 2.5D FEM-MFS methods,
respectively, at 100 Hz. From the responses presented in Figs. 5.21 and 5.22, it
can be observed that there is a good agreement between the hybrid method and
the 2.5D FEM-MFS approach. The largest discrepancies are found at the highest
frequencies, which is consistent with the NpW chosen.

Figure 5.21: Receptances for the square shape case at the field points A (a), B
(b) and C (c) for y (ii) and z (iii) directions. Methods: 2.5D FEM–MFS (solid

red line) and hybrid method (dashed black line with circular markers).
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Figure 5.22: Traction transfer functions for the square shape case at the field
points A (a), B (b) and C (c) for y (ii) and z (iii) directions. Methods: 2.5D
FEM–MFS (solid red line) and hybrid method (dashed black line with circular

markers).

5.2.3.2 Random distribution of MFS source points

The robustness of the hybrid and 2.5D MFS methods is also evaluated for this
example by considering random distributions of MFS sources. Figs. 5.23a and
5.23b show the distribution for one of the randomisation of the MFS sources for
the 2.5D MFS and the hybrid methods, respectively. The restrictions to distribute
the random MFS sources are similar to the ones presented in Section 5.2.1.2. In
the hybrid approach, the position of the SBM sources is the one used in the case
of the regular distribution of source points and the MFS sources are distributed
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randomly. Similar to the regular distribution of source points, 70% of the sources
are MFS sources and the remaining 30% are of SBM nature.

Figure 5.23: Examples of distributions of the collocation points (blue) and
virtual sources (red) for the square shape case, adopting a random distribution
approach for the placement of MFS sources. Methods: full MFS approach (a)

and hybrid approach (b).

The RMSE analysis of cases associated with the random distribution of the MFS
sources is illustrated in Fig. 5.24. Similar to examples 1 and 2, RMSE analysis is
carried out for 100 distinct realisations of random sources distributions. Results
show that, in the same manner as demonstrated in example 2, the hybrid method
is consistently providing better results than the 2.5D full MFS approach. This
result is more clear at 80 Hz than at 20 Hz. However, the hybrid method is less
accurate than the 2.5D SBM and the 2.5D BEM for any NpW. It is important
to mention that considerable improvement in the performance of the method in
comparison with the 2.5D MFS has been achieved by employing only 30% of the
SBM sources, an important point to demonstrate the computational benefits of
the proposed approach.
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Figure 5.24: RMSE for different numerical strategies, considering random
distribution of the MFS sources for the case of a square shape. Two sets of
evaluation points at radii of 7 m (i) and 20 m (ii) are considered. Calculation

frequencies: 20 Hz (a) and 80 Hz (b).

5.2.3.3 Condition number

Similar to previous examples, the condition numbers of the 2.5D SBM, 2.5D MFS
and the hybrid approaches are also assessed for a square shape. The considered
calculation frequencies, wavenumbers and methodologies used for this example
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are the same as those used in example 2. Fig. 5.25 shows the condition number
obtained by the three meshless methods. As expected, and similar to previous
examples, the condition number for the 2.5D SBM is not sensitive to the number
of NpW. For regular distribution of the MFS sources, the 2.5D MFS suffers from
the ill-conditioned system of equations for NpW above 95 and 23, at frequencies of
20 Hz and 80 Hz, respectively, while the hybrid method presents an ill-conditioned
system of equations for NpW above 380 and 95, at frequencies of 20 Hz and 80
Hz, respectively. For random distribution of MFS sources, the hybrid method is
well-conditioned for the considered range of NpW, while the 2.5D MFS has an
ill-conditioned system of equations for NpW above 95 and 23, at frequencies of 20
Hz and 80 Hz, respectively.

Figure 5.25: Condition number with respect to the discretisation density for
the 2.5D MFS, the 2.5D SBM, and the hybrid methods in the square shape case
at frequencies of 20 Hz (a) and 80 Hz (b) and for wavenumbers of 0.1 rad/m (i)

and 1 rad/m (ii).
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5.3 Computational efficiency of the method

In this section, the proposed 2.5D MFS, 2.5D SBM-MFS and 2.5D SBM ap-
proaches are compared in terms of computational efficiency. It is known that
the meshless methods are significantly more efficient than mesh-based numerical
strategies such as the 2.5D BEM. Thus, the comparison is only made between
the meshless methods previously mentioned. The comparison is performed in the
framework of the case study presented in Section 5.2.1.1 and for the evaluation of
the receptances at a discrete frequency and for 513 discrete values of the wavenum-
bers and for 100 field points distributed on a circle centred at the cylinder axis and
with radius of 2 m. All three methodologies have been implemented in MATLAB
and have been executed using a single core of a high-performance cluster with 2
GHz Intel® Xeon® Gold 6138 CPU (with 40 cores). The computational cost of
the three methods is evaluated at a frequency of 250 Hz, considering different val-
ues of NpW ranging from 3 to 21. The computational times spent in the previously
defined calculations for the 2.5D MFS and 2.5D hybrid SBM-MFS methods are
shown in Table. 5.1 in terms of the percentage with respect to the computational
cost of the 2.5D SBM.

As shown in Table. 5.1, the 2.5D MFS and the 2.5D SBM-MFS models are more
efficient than the 2.5D SBM, where the relative computational cost of the 2.5D
MFS and the hybrid methods with respect to the one of the 2.5D SBM are av-
eragely 68% and 81%, respectively. It should be noted that the computational
costs presented in this section are calculated for the case of a prescribed Neumann
boundary condition, for which, as stated in Eq. (5.3), the determination of the
OIFs requires to compute the 2D static traction Green’s functions which can be
computed just once for all wavenumber and frequency discrete values at which
the response is desired to be computed. On the contrary, for the case of Dirich-
let boundary conditions, the computational efficiency of the hybrid method with
respect to 2.5D SBM is higher, since the OIFs are frequency and wavenumber
dependent in this case.
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NpW 3 6 9 12 15 18 21

Computational time (2.5D MFS) [%] 70 64 77 57 73 65 72
Computational time (2.5D SBM-MFS) [%] 80 75 88 73 88 87 79

Table 5.1: Computational time spent by calculating the receptances of 100
field points using the 2.5D MFS and hybrid methods in percentage with respect
to the computational cost of the 2.5D SBM method, considering different NpW.

5.4 Influence of the fictitious eigenfrequencies

The boundary integral equation formulations for exterior problems suffer of loss
of solution uniqueness at frequencies close to the eigenvalues of the corresponding
interior problem [95], which are called fictitious eigenfrequencies. In this section,
the effect of the fictitious eigenfrequencies on the results obtained by the numer-
ical methods considered in this chapter is assessed. To enable detecting those
frequencies that are close to the eigenvalues of the corresponding interior problem,
no damping is considered for all calculations presented in this section. For 2.5D
problems, a set of fictitious eigenfrequencies exist at each wavenumber, resulting
in a set of curves in the wavenumber-frequency domain, called dispersion curves.
In this regard, the calculation are performed in the framework of the system pre-
sented in example 1 and considering 10 NpW at 500 Hz. Hybrid method with
the optimal OIB distribution of source points is employed. The RMSE is com-
puted using a alternative version of Eq. (5.6) that considers displacement Green’s
functions instead of receptance. A total of 100 evaluation points uniformly dis-
tributed on circles centred at the cylinder axis and with radius 2 m are considered
for the calculations. The colour map plots shown in Fig. 5.26 show the results
of the RMSE analysis of the presented 2.5D approaches, considering the semi-
analytical solution of a cylindrical cavity as a reference solution. As expected
and shown in Fig. 5.4, the 2.5D MFS show high levels of accuracy all along the
wavenumber-frequency spectrum [41]. Conversely, the 2.5D BEM and the 2.5D
SBM demonstrate a poor accuracy in the areas of influence of fictitious dispersion
curves. In the results associated to the newly proposed approach, however, it can
be seen that this pattern is clearly attenuated, which is consistent with the fact
the MFS, since its sources are placed in the interior domain, naturally overcomes
the problems associated with the fictitious eigenfrequencies.
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In order to highlight the effect of the fictitious eigenfrequencies, the RMSE calcu-
lated using the original Eq. (5.6) (i.e. using receptances) and just considering one
evaluation point at x = 0, y = 0 and z = −2 m is presented for a frequency range
from 0 to 500 Hz. Results are shown in Fig. 5.27 for the hybrid and full SBM
approaches. In accordance of what is shown in Fig. 5.26, the fictitious eigenfre-
quencies turn the error to be a noisy signal. It can be seen that both methods
exhibit similar accuracy at low frequencies, a range where the fictitious eigenfre-
quencies are not affecting. In contrast, the accuracy of the 2.5D SBM approach
drops considerably above 60 Hz which is consistent with the results presented in
Fig. 5.26, where the first problems of fictitious eigenfrequencies appear around 60
Hz.
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Figure 5.26: The comparison of the RMSE of the displacement Green’s func-
tions of the considered methods in the wavenumber-frequency domain.
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Figure 5.27: Errors delivered by the 2.5D SBM and hybrid approach in the
calculation of the receptances for the case 1 scenario.

5.5 Conclusions

This chapter has proposed a novel hybrid methodology to simulate wave propaga-
tion problems in elastodynamics. In this method, the 2.5D MFS is used to deal
with smooth sections of the boundary, while the complex segments are modelled
through the 2.5D SBM method. The performance of the new method is compared
to other numerical modelling techniques in the framework of three examples, in-
creasing the complexity of the geometry step by step: circular shape, partially
circular shape and square geometry. The following conclusions can be drawn from
the numerical analyses presented in this chapter:

• For the circular shape of the boundary, the 2.5D MFS is the most accurate
method when compared to all other approaches. This is a well-established
finding for smooth boundary geometries that can be read in other research
works on the topic [91, 96]. Among the compared approaches, the hybrid
method presents the most accurate results at the far field. In contrast, as
depicted, the accuracy of the hybrid approach is higher than the 2.5D BEM
and similar to the 2.5D SBM at near field evaluation points. The accuracy
of the hybrid approach in both configurations of the MFS sources (regular
and random) is almost the same, while the accuracy of the 2.5D MFS for
random distribution of MFS sources case is less than those ones of the regular
distribution of MFS sources, which shows the instability of the 2.5D MFS
approach.



Chapter 5. 2.5D hybrid SBM-MFS 124

• The hybrid method is a more robust approach than the 2.5D MFS, since
it presents acceptable accuracy when the MFS sources are randomly dis-
tributed, a behaviour not seen in the 2.5D MFS, which is clearly unstable
assuming this kind of distributions.

• For partially circular geometry, the 2.5D MFS presents the largest errors and
a fluctuating behaviour due to the added complexity of the geometry. For
the random distribution of MFS sources, the hybrid method shows a great
improvement in the RMSE in compare with the MFS. However, its accuracy
does not reach to the level of the ones obtained by the 2.5D BEM and the
2.5D SBM methods.

• For square shape, the accuracy of the hybrid method is higher than the one
of the 2.5D MFS, while it is approximately the same as the 2.5D BEM and
the 2.5D SBM. The inaccurate results obtained by the 2.5D MFS indicate
that it is not a suitable approach for the considered geometry. For random
distribution of the MFS sources, the difference between the RMSE of the
2.5D MFS and the hybrid method is considerable in all cases. However, its
accuracy does not reach the ones of the 2.5D SBM.

• The condition number of the 2.5D SBM method is not sensitive to the num-
ber of NpW in all examples which means its system of equation is very well-
conditioned. On the contrary, the 2.5D MFS suffers from an ill-conditioned
system of equation when a large number of collocation points (or NpW)
is considered. The hybrid method shows a remarkable improvement in the
condition number comparing with the 2.5D MFS. This improvement can be
observed in both types of MFS sources distribution (random and regular
distribution of MFS source points).

• The hybrid method is more computationally efficient than the 2.5D SBM
since fewer singular terms exist in the hybrid approach, resulting less com-
putational time to compute the OIFs. It is shown that for the circular ge-
ometry, where 50% of the virtual sources are selected to be MFS sources and
50% are considered to be the SBM sources, the computational efficiency of
the hybrid method is approaching the one of 2.5D MFS. The 2.5D MFS and
the 2.5D SBM-MFS models are more efficient than the 2.5D SBM, where the
computational cost of the 2.5D MFS and the hybrid method are averagely
68% and 81% of the 2.5D SBM, respectively.
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• The fictitious eigenfrequencies negatively influences the accuracy of the 2.5D
BEM and 2.5D SBM approaches, while the effects over hybrid approach are
insignificant.

• Analogous to the 2.5D SBM and the 2.5D MFS, the implementation proce-
dure of the proposed method is simpler than the ones of integration-based
approaches, such as BEM.

To conclude with a general remark, the 2.5D hybrid SBM–MFS methodology is
found to be an adequate prediction tool for wave propagation in elastodynamic
problems when a method with computational efficiency and, at the same time,
and robust of the method are desired.

In this chapter, the hybrid method was simply employed to model the radiation or
scattering problems of a cavity in the soil. In the next chapter, it is discussed how
to adapt this method to deal with full SSI problems, using this hybrid method to
also model the structure.



Chapter 6

A 2.5D hybrid SBM-MFS

methodology for soil-structure

interaction problems

The previously explained novel 2.5D hybrid SBM-MFS methodology has been fur-
ther developed to deal with soil-structure interaction problems. In this chapter, the
formulation of this new method is outlined, together with a verification study and
two application examples. In contrast with the methodologies presented in chapters
3 and 4, the FEM method is no longer used to model the structure in the proposed
novel method, which results in a fully meshless approach. The method uses the
2.5D MFS and/or the 2.D hybrid SBM-MFS methods to model the structure and
the wave propagation in the soil. Due to the benefits of the meshless methods with
respect to the mesh-based (or partially based) approaches, the proposed 2.5D hy-
brid SBM-MFS method exhibits three main advantages. Firstly, the 2.5D hybrid
SBM-MFS is not subjected to any mesh and only requires distributions of collo-
cation points in physical boundaries and/or interfaces of the problem as well as
virtual forces on physical and/or auxiliary boundaries to operate. Secondly, this
approach is simpler to be implemented. Lastly, the method is in many cases more
computationally efficient and lower memory storage is required for analysis due to
the dramatic reduction of degrees of freedom involved.

This chapter is organised as follows. In Section 6.1, the formulation of the pro-
posed 2.5D hybrid methodology is presented in detail. In this context, the numerical
formulation to model the structure and the elastic wave propagation problem are
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presented. Then, in the same section, the coupling strategy between the soil and
the structure models is explained. Section 6.2 presents a verification of the novel
methodology by comparing its results with the PiP solution considering cylindri-
cal thin shell embedded in a full-space model of the soil. Afterwards, in Section
6.3, the applicability of the proposed method is assessed for the railway soil-tunnel
interaction problems in the framework of two examples: a circular railway tunnel
(Section 6.3.1) and a cut-and-cover tunnel (Section 6.3.2), both embedded in a soil
modelled as a full-space.
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6.1 Numerical method formulation

As the name indicates, SSI problems involves at least two distinct domains: the
structure and the soil. In previous chapters, the structure was modelled using the
FEM due to the geometrical flexibility of the method. The present novel method
proposes, in contrast, to use also the 2.5D SBM-MFS developed in the previous
chapter to model the structure too. In should be noted, however, that due to
the boundary nature of the method, it is only valid for homogeneous structures,
which is normally the case of a railway tunnel, for example. A general overview of
the system to be modelled with the new approach is presented in Fig. 6.1, where
the structure is denoted by Ω1 and the surrounding medium by Ω2. Moreover,
the boundary interface between the soil and structure is referred by Γ1 while the
interior boundary of the structure, which will not be considered for completely
solid structures, is also presented.

Figure 6.1: General description of the proposed 2.5D coupled SBM-MFS
methodology.

Fig. 6.2 illustrates the uncoupled soil-structure methodology proposed in the present
chapter. As shown in this figure, the methodology consists of two general steps. As
indicated in Fig. 6.2a, first of all, the resulted displacements and the tractions at
the soil-structure interface (Γ2) due to the excitation of a structure Ω1 embedded
inside the medium Ω2 are calculated, using two sets of virtual sources (S1 and S2)
that comply with the boundary conditions evaluated in the collocation points. The
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coupling between the two sub-systems is done by compatibility of displacements
and tractions on the boundary (Γ2). In the second step, as shown in Fig. 6.2b, the
desired displacement and traction fields on the soil are computed using a set of
virtual sources (S3) and the collocation points in the second sub-domain (Ω2). It
should be noted that for each domain of the problem, the method to be employed
can be decided based on the smoothness of the geometry. Thus, for the smooth
geometries (such as circles and ellipses), the 2.5D MFS can be a proper choice and
for the more complex geometries (such as a rectangle), the hybrid method can be
selected. The detailed formulations for the structure and its coupling with the soil
are explained in the following. In the same manner, as in previous chapters, the
bar notation is used to represent that a variable is defined in the wavenumber do-
main, and capital notation is employed for frequency domain variables. Therefore,
the dynamic Green’s functions are denoted with capital-bar notation and static
Green’s functions are denoted just with capital notation.

Soil

Virtual sources

( ) S3

Collocation points

Outer physical boundary

Inner physical boundary

Virtual sources

Virtual sources

Structure

(

Collocation points
( )

Outer physical boundary
(Γ2)

( )-S1

( )-S2(Γ2)

(Γ1)

( 2

( 2

Figure 6.2: General description of the proposed 2.5D hybrid SBM-MFS
methodology. The problem descriptions are associated with the model of the

structure (a), the soil (b).

Prior to developing the formulations of the proposed method, the sets of colloca-
tions points and virtual source points associated with the considered soil-structure
system are firstly introduced. The set of collocation points associated with the
two boundaries of the considered system are defined as{

y1
1, · · · ,y

N1
1

}
=

{
y1
S,1, · · · ,y

N1,S

S,1

}
∪
{
y1
M,1, · · · ,y

N1,M

M,1

}
⊂ Γ1, (6.1)
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{
y1
2, · · · ,y

N2
2

}
=

{
y1
S,2, · · · ,y

N2,S

S,2

}
∪
{
y1
M,2, · · · ,y

N2,M

M,2

}
⊂ Γ2, (6.2)

where ym
1 and ym

2 are the positions of collocation points located on the inner and
outer boundaries, respectively, and where N1 and N2 denote the total number of
collocation points considered on these boundaries. As in the previous chapter, the
subscript/superscript M is used for the collocation points that are not coincident
with virtual sources (MFS sources), while the subscript/superscript S is used for
the collocation points coincident with the virtual sources (SBM sources). Thus,
the terms ym

S,1 and ym
M,1 represent the mth collocation points coincident and not

coincident with virtual source points, respectively, all located on the inner bound-
ary. The terms ym

S,2 and ym
M,2 can be defined correspondingly, being these ones

located on the outer boundary.

The position and strengths of the virtual sources associated to the inner boundary
of the structure are{

x1
1, · · · ,x

N1
1

}
=

{
x1
S,1, · · · ,x

N1,S

S,1

}
∪
{
x1
M,1, · · · ,x

N1,M

M,1

}
⊂ Γ1, (6.3a)

S̄(1) =
{
S̄

(1)
1 , · · · , S̄(1)

N1

}
=

{
S̄

(1)
S,1, · · · , S̄

(1)
S,N1,S

}
∪
{
S̄

(1)
M,1, · · · , S̄

(1)
M,N1,M

}
,

(6.3b)

where the terms xm
S,1 and xm

M,1 represent the location of the mth SBM and MFS
virtual sources, respectively, and the terms Sm

S,1 and Sm
M,1 denote their correspond-

ing source strengths.

Equivalent definitions are used for the virtual sources associated to the outer
boundary of the structure{

x1
21, · · · ,x

N2
21

}
=

{
x1
S,21, · · · ,x

N21,S

S,21

}
∪
{
x1
M,21, · · · ,x

N21,M

M,21

}
⊂ (Γ2, Ω1),

(6.4a)

S̄(21) =
{
S̄

(21)
1 , · · · , S̄(21)

N2

}
=

{
S̄

(21)
S,1 , · · · , S̄(21)

S,N21,S

}
∪
{
S̄

(21)
M,1 , · · · , S̄

(21)
M,N21,M

}
,

(6.4b)

where the subscripts/superscripts (21) are used to express that the sources are
associated to the interface Γ2, when the domain Ω1 is considered.
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In a similar way, the virtual sources associated to the inner boundary of the soil
are {

x1
22, · · · ,x

N2
22

}
=

{
x1
S,22, · · · ,x

N22,S

S,22

}
∪
{
x1
M,22, · · · ,x

N22,M

M,22

}
⊂ (Γ2, Ω2),

(6.5a)

S̄(22) =
{
S̄

(22)
1 , · · · , S̄(22)

N2

}
=

{
S̄

(22)
S,1 , · · · , S̄(22)

S,N22,S

}
∪
{
S̄

(22)
M,1 , · · · , S̄

(22)
M,N22,M

}
,

(6.5b)

where the subscripts/superscripts (22) refers to the same interface as in the pre-
vious case (Γ2), but when the domain Ω2 is considered.

In the presented formulation the wavefield within Ω1 is expressed as the one gen-
erated by the two sets of virtual sources presented in Eqs. (6.3) and (6.4) [97].
Therefore, the displacement and traction fields within this domain can be ex-
pressed as

Ū(y) =

N1,S∑
n=1

H̄(y,xn
S,1)S̄

(1)
S,n +

N1,M∑
n=1

H̄(y,xn
M,1)S̄

(1)
M,n

+

N21,S∑
n=1

H̄(y,xn
S,21)S̄

(21)
S,n +

N21,M∑
n=1

H̄(y,xn
M,21)S̄

(21)
M,n,

(6.6)

T̄ (y) =

N1,S∑
n=1

H̄τ (y,xn
S,1)S̄

(1)
S,n +

N1,M∑
n=1

H̄τ (y,xn
M,1)S̄

(1)
M,n

+

N21,S∑
n=1

H̄τ (y,xn
S,21)S̄

(21)
S,n +

N21,M∑
n=1

H̄τ (y,xn
M,21)S̄

(21)
M,n,

(6.7)

where Ū(y) and T̄ (y) are the displacements and tractions of the structure, re-
spectively, at an arbitrary field point y caused by the sets of virtual sources. As in
previous chapters, H̄(y, x) and H̄τ (y, x) are the displacement and traction dynamic
Green’s functions at y, due to a load applied at x.

On the other hand, the wavefield within Ω2 is defined as the one generated by the
set of virtual sources presented in Eq. (6.5). The displacement and traction fields
within this domain are given by

Ū(y) =

N22,S∑
n=1

H̄(y,xn
S,22)S̄

(22)
S,n +

N22,M∑
n=1

H̄(y,xn
M,22)S̄

(22)
M,n, (6.8)
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T̄ (y) =

N22,S∑
n=1

H̄τ (y,xn
S,22)S̄

(22)
S,n +

N22,M∑
n=1

H̄τ (y,xn
M,22)S̄

(22)
M,n, (6.9)

where in this case, H̄ and H̄τ are the displacement and traction dynamic Green’s
functions associated with the soil.

The singularities that arise when the response of a collocation point geometrically
coincident with a virtual source is considered are avoided using, as in previous
chapters, OIFs. Therefore, when the collocation point y = ym

S,1 is considered, Eqs.
(6.6) and (6.7) become [19, 54]

Ū(ym
S,1) =

N1,S∑
n=1,n ̸=m

H̄(ym
S,1,x

n
S,1)S̄

(1)
S,n +

N1,M∑
n=1

H̄(ym
S,1,x

n
M,1)S̄

(1)
M,n + H̄(1)

mmS̄
(1)
S,m

+

N21,S∑
n=1

H̄(ym
S,1,x

n
S,21)S̄

(21)
S,n +

N21,M∑
n=1

H̄(ym
S,1,x

n
M,21)S̄

(21)
M,n,

(6.10)

T̄ (ym
S,1) =

N1,S∑
n=1,n̸=m

H̄τ (ym
S,1,x

n
S,1)S̄

(1)
S,n +

N1,M∑
n=1

H̄τ (ym
S,1,x

n
M,1)S̄

(1)
M,n + H̄τ(1)

mmS̄
(1)
S,m

+

N21,S∑
n=1

H̄τ (ym
S,1,x

n
S,21)S̄

(21)
S,n +

N21,M∑
n=1

H̄τ (ym
S,1,x

n
M,21)S̄

(21)
M,n,

(6.11)

where H̄
(i)
mm and H̄

τ(i)
mm are, respectively, the displacement and traction OIFs asso-

ciated to the source strength S̄
(i)
S,m.

Similarly, when y = ym
S,2, Eqs. (6.6) and (6.7) become

ŪΩ1(ym
S,2) =

N1,S∑
n=1

H̄(ym
S,2,x

n
S,1)S̄

(1)
S,n +

N1,M∑
n=1

H̄(ym
S,2,x

n
M,1)S̄

(1)
M,n

+

N21,S∑
n=1,n̸=m

H̄(ym
S,2,x

n
S,21)S̄

(21)
S,n +

N21,M∑
n=1

H̄(ym
S,2,x

n
M,21)S̄

(21)
M,n

+ H̄(21)
mmS̄

(21)
S,m ,

(6.12)
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T̄Ω1(ym
S,2) =

N1,S∑
n=1

H̄τ (ym
S,2,x

n
S,1)S̄

(1)
S,n +

N1,M∑
n=1

H̄τ (ym
S,2,x

n
M,1)S̄

(1)
M,n

+

N21,S∑
n=1,n ̸=m

H̄τ (ym
S,2,x

n
S,21)S̄

(21)
S,n +

N21,M∑
n=1

H̄τ (ym
S,2,x

n
M,21)S̄

(21)
M,n

+ H̄τ(21)
mm S̄

(21)
S,m ,

(6.13)

where the superscript Ω1 has been added to express that the resulting displace-
ments and tractions are associated to the structure subsystem.

The same strategy is considered for collocation points geometrically coincident
with virtual sources in the soil subsystem. In this regard, when y = ym

S,2, Eqs.
(6.8) and (6.9) become

ŪΩ2(ym
S,2) =

N22,S∑
n=1,n ̸=m

H̄(ym
S,2,x

n
S,22)S̄

(22)
S,n +

N22,M∑
n=1

H̄(ym
S,2,x

n
M,22)S̄

(22)
M,n

+ H̄(22)
mmS̄

(22)
S,m ,

(6.14)

T̄Ω2(ym
S,2) =

N22,S∑
n=1,n̸=m

H̄τ (ym
S,2,x

n
S,22)S̄

(22)
S,n +

N22,M∑
n=1

H̄τ (ym
S,2,x

n
M,22)S̄

(22)
M,n

+ H̄τ(22)
mm S̄

(22)
S,m ,

(6.15)

where the superscript Ω2 states that the resulting displacements and tractions are
associated to the soil subsystem.

As in previous chapters, the OIFs associated with Neumann boundary conditions
(H̄τ

mm) are obtained by applying a substracting and adding-back technique to the
corresponding singular equation. The resulting expression is

H̄τ
mm =

1

Lm

[
κI+

∫
Γm

[
Hτ (ym,y) +Hτ (y,ym)

]
dΓm(x)

−
N∑

n=1,n̸=m

LnH
τ (yn,ym

S )

 ,

(6.16)

where Hτ (yn,ym
S ) is the elastostatic traction Green’s functions of the plane strain

case associated to the exterior domain problem, Γm is the segment of the boundary
with length Lm on which the mth collocation point coincident with a virtual source
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is located, I is the identity matrix and term κ is defined as

κ =

 1, for exterior problems,

0, for interior problems.
(6.17)

It should be noted that the OIFs appearing in Eqs. (6.10) and (6.11) are associated
with the exterior problem and the structure domain, the OIFs in Eqs. (6.14) and
(6.15) are associated with the exterior problem and the soil domain, and the ones
in Eqs. (6.12) and (6.13) correspond to the interior problem and the structure
domain.

The procedure to overcome the singularities for Dirichlet boundary conditions
(H̄mm) is the same one that has been used in previous chapters, which consisted
on averaging the value of the fundamental solution over Γm. Additional details
can be found in Chapter 4 (Section 4.1.1) and Chapter 5 (Section 5.1).

Regarding the response of collocations points not coincident with any virtual
source point, it should be noted that in these cases no singularity arises. Therefore,
Eqs. (6.6)-(6.9) can be directly employed to obtain the responses of interest.

When the responses at all the collocation points (geometrically coincident and not
coincident with virtual sources) associated to the inner and outer boundary of the
structure are considered, the resulting system of equations can be expressed as the
following matrix equation Ūb1

ŪΩ1
b2

 =

H̄b1b1 H̄b1b2

H̄b2b1 H̄Ω1
b2b2

 S̄(1)

S̄(21)

 , (6.18)

where Ūb1 and ŪΩ1
b2

represent vectors that collect the displacements at all the
collocation points defined on the inner and outer boundaries of the structure,
respectively, and where H̄bibj is a matrix that contains the displacement Green’s
functions associated to the collocation points defined on boundary bi due to the
set of virtual sources associated to the boundary bj (note that all sources are
considered but only the SBM sources will actually be located on the boundary).
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When the responses at all the collocation points associated to the inner boundary
of the soil are considered, the resulting set of equations can be expressed as

ŪΩ2
b2

= H̄Ω2
b2b2

S̄(22), (6.19)

being ŪΩ2
b2 a vector that collects the displacements at all the collocation points on

the soil boundary.

Equivalent matrix equations can be obtained when the tractions at all the colloca-
tion points defined on each boundary are considered. For the structure subsystem
the resulting expression is T̄b1

T̄Ω1
b2

 =

H̄τ
b1b1

H̄τ
b1b2

H̄τ
b2b1

H̄τ,Ω1

b2b2

 S̄(1)

S̄(21)

 , (6.20)

where H̄τ
bibj

contains the traction Green’s functions associated to the collocation
points on bi due to the virtual sources associated to bj. Furthermore, the matrix
equation associated to the soil tractions is

T̄Ω2
b2

= H̄τΩ2
b2b2

S̄(22), (6.21)

where T̄Ω2
b2

is a vector that collects the tractions at all the collocation points on
the soil boundary.

The coupling between both subsystems is performed by considering continuity
of displacement and force equilibrium at the soil-structure interface Γ2. These
boundary conditions can be expressed asŪΩ1

b2
= ŪΩ2

b2
= Ūb2 , (6.22a)

T̄Ω1
b2

= −T̄Ω2
b2

. (6.22b)

Considering the displacement compatibility condition, Eqs. (6.18) and (6.19)
become

Ūb1

0

 =

H̄b1b1 H̄b1b2

H̄b2b1 H̄Ω1
b2b2

−H̄Ω2
b2b2




S̄(1)

S̄(21)

S̄(22)

 . (6.23)
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Additionally, considering the force equilibrium condition, Eqs. (6.20) and (6.21)
become

T̄b1

0

 =

H̄τ
b1b1

H̄τ
b1b2

H̄τ
b2b1

H̄τ,Ω1

b2b2
H̄τ,Ω2

b2b2




S̄(1)

S̄(21)

S̄(22)

 . (6.24)

For the type of SSI problems proposed in this thesis, the results of interest are
always displacements caused by a known excitation. Thus, the type of boundary
condition that is considered is that the tractions on the interior boundary of the
structure are known, but that the displacements on this boundary are not. There-
fore, the second equation in Eq (6.23) and Eq. (6.24) can be combined to obtain


T̄b1

0

0

 =


H̄τ

b1b1
H̄τ

b1b2

H̄b2b1 H̄Ω1
b2b2

−H̄Ω2
b2b2

H̄τ
b2b1

H̄τ,Ω1

b2b2
H̄τ,Ω2

b2b2




S̄(1)

S̄(21)

S̄(22)

 . (6.25)

The third equation in Eq. (6.25) allows to express S̄(22) in terms of the other
virtual source strengths as

S̄(22) =
(
H̄Ω2

b2b2

)−1 (
H̄b2b1S̄

(1) + H̄Ω1
b2b2

S̄(21)
)
. (6.26)

Then, substituting Eq. (6.26) into the third equation in Eq. (6.25), the following
relation between S̄(1) and S̄(21) can be obtained

H̄τ
b2b1

S̄(1) + H̄τ,Ω1

b2b2
S̄(21) + H̄τ,Ω2

b2b2

(
H̄Ω2

b2b2

)−1 (
H̄b2b1S̄

(1) + H̄Ω1
b2b2

S̄(21)
)
= 0. (6.27)

Combining the terms related to each source strength, Eq. (6.27) becomes

[
H̄τ,Ω2

b2b2

(
H̄Ω2

b2b2

)−1

H̄b2b1 + H̄τ
b2b1

]
S̄(1) +

[
H̄τ,Ω2

b2b2

(
H̄Ω2

b2b2

)−1

H̄Ω1
b2b2

+ H̄τ,Ω1

b2b2

]
S̄(21) = 0,

(6.28)

which allows to express S̄(21) as

S̄(21) = −B−1AS̄(1), (6.29)
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where the terms A and B are formulated as

A = H̄τ,Ω2

b2b2

(
H̄Ω2

b2b2

)−1

H̄b2b1 + H̄τ
b2b1

, (6.30)

B = H̄τ,Ω2

b2b2

(
H̄Ω2

b2b2

)−1

H̄Ω1
b2b2

+ H̄τ,Ω1

b2b2
. (6.31)

Finally, substituting Eq. (6.29) into the first equation of Eq. (6.25), the following
relation between S̄(1) and the known boundary tractions is obtained

T̄b1 = H̄τ
b1b2

S̄(1) − H̄τ
b1b2

B−1AS̄(1). (6.32)

Therefore, the strengths of the first set of virtual sources is given by

S̄(1) =
[
H̄τ

b1b2
− H̄τ

b1b2
B−1A

]−1

T̄b1 . (6.33)

Once S̄(1) has been determined, the strengths of the second set of virtual sources
is obtained using Eq. (6.29). With the second set known, the remaining set of
strengths is obtained from Eq. (6.26). Finally, once all the source strengths have
been computed, the displacement and traction responses at any arbitrary field
point on the soil or the structure can be computed by means of Eqs. (6.6)-(6.9).

6.2 Verification of the methodology

The accuracy of the proposed hybrid methodology is exhibited in this section for
the case presented in Fig. 6.3a. As illustrated, the structure of this case consists
of a cylindrical thin shell embedded in a full-space model of the soil. In this
case, a harmonic vertical point load is applied on the bottom of the shell and at
x = 0. The external radius of the thin shell is 1 m and its thickness is 0.1 m.
Although the MFS can be used for all sets three sets of virtual forces due to the
smoothness of the two boundaries involved, the hybrid method is used to deal with
the inner boundary while the MFS is used for the two sets of forces associated with
the outer boundary with the aim of demonstrating its capability of the proposed
methodology. The analysis is carried out for 10 NpW, considering a maximum
frequency of 250 Hz and the soil characteristics presented in Table. 3.1. The soil
response has been calculated at three different locations, identified as points A
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(x = 0 m; y = 2 m; z = −2 m), B (x = 0 m; y = 4 m; z = −1 m) and C (x = 0

m; y = 8 m; z = 2 m).

Soi
Physical boundary

 

Structure

y

z

Figure 6.3: The geometry of the cylindrical thin shell. The position of the
load is represented with a large grey arrow.

-0

-

-1

-0

-

-1

Figure 6.4: The distribution of the collocation (black circles) and source points
(red and blue crosses) for the circular thin shell, representing tunnel (a) and the

soil (b).

The results obtained using the proposed hybrid methodology are compared with
those obtained using the PiP model [27]. To assess the accuracy of the presented
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approach, the results are firstly presented in terms of the root mean square er-
rors (RMSE) associated to the receptances and to the traction transfer functions
(TTF), taking the response of the PiP model as the reference solution. These
RMSE have been computed using Eq. (5.6), and the receptances and TTFs of
each case have been calculated using Eqs. (3.6)-(3.8). The number of ring modes
considered for the calculation of the PiP solution has been set to 30 and the
considered wavenumber samplings can be found in Section 5.2.

Fig. 6.5 presents the RMSE obtained for each field point in y and z directions. As
can be observed, the RMSE of the proposed method is below 1% at all considered
evaluation points for most of the range of frequencies of interest, confirming the
accuracy of the proposed approach.
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Figure 6.5: RMSE at field points A (a), B (b) and C (c) for y (ii) and z (iii)
directions.

To confirm the accuracy of the method, the comparison between the hybrid me-
thod and PiP solution has also been performed with a direct comparison of the
receptances and TTFs results obtained by both methods for each one of the field
points considered. These comparisons are presented in Fig. 6.6 (receptances) and
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Fig. 6.7 (TTF). The results show that, as indicated by the previous RMSE re-
sults, there is a very good agreement between both methods for the whole range
of frequencies considered.
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Figure 6.6: Receptances at field points A (a), B (b) and C (c) for y (ii) and
z (iii) directions. Methods: Pipe-in-Pipe (dashed red line) and hybrid method

(dashed black line with circle markers).
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Figure 6.7: Traction transfer functions at field points A (a), B (b) and C (c)
for y (ii), and z (iii) directions. Methods: Pipe-in-Pipe (dashed red line) and

hybrid method (dashed black line with circle markers).
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6.3 Assessment of railway soil-tunnel interaction

This section presents two application examples of the proposed hybrid SBM-MFS
multi-domain approach for railway-induced ground-borne vibration assessment.
More precisely, the aim is to assess the accuracy of the method in the calculation of
soil receptances at different field points for two types of railway tunnel structures:
a circular tunnel with a slab and a cut-and-cover tunnel, both embedded in an
homogeneous full-space soil. The mechanical properties of the tunnel lining and
of the soil are the ones that were presented in Table. 3.1. Since the considered
examples do not have a known analytical solution, the 2.5D FEM-BEM approach
with a highly refined mesh is taken as the reference solution. In both examples
the receptances have been computed for a frequency range between 1 Hz and 100
Hz, containing the range that is usually considered for railway-induced vibration
problems [86]. The number of collocation points and boundary nodes used for
the calculations have been defined imposing the requirement of having at least 10
NpW for an excitation frequency of 100 Hz.

6.3.1 Example 1: circular railway tunnel

In this example a circular tunnel with an internal radius of 3 m and a wall thickness
of 0.3 m embedded in a homogeneous full-space soil is considered. The tunnel is
excited by two harmonic point loads symmetrically applied on the tunnel invert,
separated 1.435 meters and located at a cross-section x = 0. The geometry of the
system and the position of the applied forces are illustrated in Fig. 6.8, and the
distribution of the collocation and sources points associated with the tunnel and
soil models are shown in Figs. 6.9a and 6.9b, respectively. As the inner boundary
of the structure consists of smooth and non-smooth parts, the hybrid SBM-MFS
method is used to represent it. Therefore, the set of virtual sources S̄(1) combines
SBM and MFS sources. In contrast, the remaining two sets of virtual sources
(S̄(21) and S̄(22)) contain only MFS sources, as they are adequate to represent the
outer boundary of the structure (and inner boundary of the soil), which is smooth.
The sets of virtual sources corresponding to each boundary have been presented
in Fig. 6.9 using green, red and blue crosses.

The results obtained with the multi-domain hybrid method are compared with the
ones obtained using a 2.5D FEM-BEM approach. The comparison is performed by
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considering the receptance of the soil at three different evaluation points (identified
as A (x = 0 m; y = 4 m; z = 4 m), B (x = 0 m; y = 8 m; z = 2 m) and C (x = 0

m; y = 12 m; z = −2 m)). The mesh considered for the FEM-BEM model of the
structure is illustrated in Fig. 6.10.

Soil

Structure

Physical boundary

3 m

1.435 m 1.79 m

1.35 m

Figure 6.8: The geometry of the circular railway tunnel. The position of two
equal loads are represented with large grey arrow.

Figure 6.9: The distribution of the collocation (black circles) and source points
(red and blue crosses) for the circular railway tunnel geometry, representing

tunnel (a) and the soil (b).
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Figure 6.10: The FEM elements, the BEM points and the position of the
applied forces used in the reference case (2.5D FEM-BEM).

Fig. 6.11 compares the receptances obtained by both methods for the range of
frequencies of interest. Despite that the results show large discrepancies between
the approaches at 69 Hz (point B, y direction) and at 73 Hz (points C, z direction),
these discrepancies are found at troughs of the response curves. In all the other
cases, an acceptable agreement has been obtained for all the evaluation points
considered, where up to 2 dB differences are observed between the approaches.
These results suggest that the approach proposed in this chapter, which is totally
based on meshless methods and it is much simpler to implement than the 2.5D
FEM-BEM approach, can be used to obtain responses with an accuracy that can
be acceptable for many engineering applications.
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Figure 6.11: Receptances at the field points A (a), B (b) and C (c) for y (ii)
and z (iii) directions for the circular tunnel case. Methods: 2.5D FEM–BEM

(dashed red line), hybrid method (solid black line).

6.3.2 Example 2: cut-and-cover tunnel

The second example considers a cut-and-cover tunnel with a side length of 6 m and
a wall thickness of 0.3 m, embedded in a homogeneous full-space soil. As in the
previous example, the tunnel is excited by two harmonic point loads symmetrically
applied on the tunnel invert and separated 1.435 meters. The geometry of the
system and the position of the applied forces are illustrated in Fig. 6.12a, and the
distribution of the collocation and sources points related to the tunnel and soil
models are presented, respectively, in Figs. 6.13a and 6.13b. In this case both
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(inner and outer) boundaries consist of smooth and non-smooth parts, and the
hybrid SBM-MFS method has been used to represent them. Therefore, all sets of
virtual sources consist of both MFS and SBM sources.

As in the previous example, the soil receptances obtained by the hybrid approach
are compared with the ones obtained using a 2.5D FEM-BEM approach. The
evaluation points used for this comparison are A (x = 0 m; y = 5 m; z = 5 m), B
(x = 0 m; y = 9 m; z = 4 m) and C (x = 0 m; y = 14 m; z = −2 m), and the
mesh considered in the FEM-BEM model of the structure is shown in Fig. 6.14.

Figure 6.12: The geometry of the cut-and-cover railway tunnel. The position
of two equal loads are represented with large grey arrow.
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Figure 6.13: The distribution of the collocation (black circles) and source
points (red and blue crosses) for the cut-and-cover railway tunnel geometry,

representing tunnel (a) and the soil (b).

 

 

Figure 6.14: The FEM elements, the BEM points and the position of the
applied forces used in the reference case (2.5D FEM-BEM).

Fig. 6.15 compares the receptances obtained by the two methods for this second
calculation example. As before, the results show a good agreement between both
methods, where discrepancies below 2 dB can be seen between both approaches,
indicating that, due to its accuracy, efficiency and implementation simplicity, the
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novel meshless approach can be a very interesting alternative to mesh-based meth-
ods for many engineering problems.
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Figure 6.15: Receptances at the field points A (a), B (b) and C (c) for y (ii)
and z (iii) directions for the cut-and-cover case. Methods: 2.5D FEM–BEM

(dashed red line), hybrid method (solid black line).

6.4 Conclusions

This chapter has extended the hybrid SBM-MFS methodology presented in Chap-
ter 5 to the case where, both, an embedded structure and its surrounding soil are
modelled using it, obtaining a fully meshless approach to deal with longitudinally
invariant SSI problems. This new approach has been validated in the context of
a simple example consisting in a thin cylindrical shell embedded in a full-space
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medium. The application of the methodology to the assessment of railway induced
vibrations has been considered in the framework of two examples: a circular tunnel
and a cut-and-cover tunnels, both embedded in a full-space soil. The particular
merits of the proposed approach are listed below:

• The approach combines the benefits of the SBM and the MFS, being capable
of dealing with detailed structures and of computing the wave propagation
in the soil efficiently.

• The calculation examples considered in this chapter shows that the pro-
posed method is not only practical for structures with geometrically simple
boundaries but it can also be considered in those cases containing intricate
interfaces.

• The proposed method is fully based on meshless approaches and, therefore,
it usually requires less modelling time than the one needed by mesh-based
approaches such as FEM-BEM. Moreover, the method can be computation-
ally more efficient than mesh-based approaches, specially if the considered
structure requires to use a mesh with a large number of elements.

• The implementation procedure is simpler than the ones usually required by
mesh-based approaches, such as 2.5D FEM-BEM, 2.5D FEM-MFS and 2.5D
FEM-SBM.

• The presented examples for railway applications indicate that the method is
adequate for assessing the vibration impact of these structures.

To conclude, the 2.5D hybrid SBM-MFS method is found to be an adequate pre-
diction tool for the SSI problems since it is fully meshless, computationally efficient
and easy to be implemented.



Chapter 7

Conclusions and future work

In this chapter, the summary of the main findings of the thesis is presented. More-
over, various recommendations for further research on the topic are proposed.

151
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7.1 Thesis conclusions

The development of new meshless methodologies to deal with longitudinally in-
variant SSI problems has been pursued throughout this thesis. To this end, a 2.5D
FEM-BEM-MFS methodology has been firstly developed to deal with longitudi-
nally invariant SSI problems. The method uses a 2.5D FEM-BEM approach to
model the structure and the surrounding soil and, afterwards, considers a 2.5D
MFS approach to model the wave propagation in the soil. In order to address
the drawbacks of the 2.5D FEM-BEM-MFS method related to the computational
efficiency and the location of the virtual sources, a novel 2.5D FEM-SBM method-
ology has been developed and introduced. This method also uses the FEM to
model the structure and, in contrast, it employs the SBM to model the soil. The
previous soil modelling strategy has been improved by considering a novel hybrid
methodology that employs the 2.5D MFS approach to deal with smooth sections of
the boundary, while the complex segments are accounted through the 2.5D SBM
method. Finally, the previous hybrid SBM-MFS approach has been extended to
model both the structure and wave propagation in the soil, resulting in a fully
meshless methodology capable of dealing with longitudinally invariant SSI prob-
lems.

In order to compare the considered methods along this thesis, Table 7.1 is pre-
sented. As shown, the 2.5D FEM-BEM, the 2.5D FEM-MFS and the three
methodologies developed in this thesis are compared in terms of computational
efficiency, accuracy (considering cases with circular or complex geometry), con-
dition number, implementation procedure, formulation simplicity and capability
to solve the effects of fictitious eigenfrequencies. The comparison carried out in
this table is qualitative, although is based on the calculation examples presented
through this work. In the table, one asterisk represents the lowest performance
and four asterisks denotes the highest one.
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2.5D FEM-BEM * ***/*** **** * * ×

2.5D FEM-BEM-MFS ** ****/* ** * * ×

2.5D FEM-MFS *** ****/* * *** *** ✓

2.5D FEM-SBM *** ***/*** **** ** ** ×

2.5D SBM-MFS **** ***/*** *** **** **** ✓

Table 7.1: Qualitative comparison of various methods considered along this
thesis.

Based on the studies provided, the following conclusions can be drawn from this
thesis.

Computational efficiency

In terms of computational efficiency, for the calculation examples, the 2.5D FEM-
BEM-MFS method is more efficient than the 2.5D FEM-BEM approach, when
a large number of evaluation points is considered. For the half-space calculation
examples, the presented results confirm the improvement of the 2.5D FEM-BEM-
MFS methodology in terms of computational time, although the improvement is
not as large as in full-space problems. Comparing the 2.5D FEM-SBM approach
with the 2.5D FEM-BEM methodology, the computational efficiency of the novel
2.5D FEM-SBM is a great merit of the method, while providing a similar accu-
racy to the 2.5D FEM-BEM. However, the 2.5D FEM-MFS is computationally
more efficient than the 2.5D FEM-SBM, due to the extra calculation task of OIFs.
The hybrid method is more computationally efficient than the 2.5D SBM since
fewer singular terms exist in the 2.5D coupled SBM-MFS which means less com-
putational time is needed to compute the OIFs. The fully meshless 2.5D hybrid
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SBM-MFS can also be more efficient than the mesh-based methods, such as 2.5D
FEM-BEM, 2.5D FEM-MFS and the 2.5D FEM-SBM approaches, in those cases
where a dense FEM mesh is required to model the structure.

Accuracy

The study on the 2.5D FEM-BEM-MFS method indicates that the use of the
proposed control technique in Chapter 3 allows to obtain very accurate results.
The investigation on the 2.5D FEM-SBM approach in the framework of smooth
and complex geometries of the soil-structure interface shows that the proposed
method not only is practical for structures with geometrically simple boundaries
but it has also a reasonable accuracy in cases where this interface is more intricate.
In contrast to the 2.5D FEM-SBM method, the accuracy of the results obtained
by the 2.5D FEM-MFS approach is very sensitive to the location of the virtual
sources. The 2.5D SBM-MFS method as a fully meshless approach presented by
this thesis shows an acceptable level of accuracy for the modelling of the tunnel-soil
interaction problems.

The comparison between the proposed methods for modelling the wave propaga-
tion in the soil illustrates that for the completely smooth geometries, the 2.5D
MFS is the most accurate method of the considered approaches. However, the
hybrid method results are less sensitive to the position of the virtual sources than
the 2.5D MFS ones. When more complicated geometries are considered, the hy-
brid method provides more accuracy than the 2.5D MFS and, for most cases, the
smallest discrepancies are the ones obtained using the 2.5D SBM approach. From
the studies conducted on the use of a random distribution of the virtual sources it
is observed that the hybrid method provides acceptable level of accuracy even in
the cases where the MFS sources points are not distributed on a particular auxiliar
boundary.

Condition number

For the calculation examples presented in this thesis has been observed that the
system of equation of the 2.5D SBM approach is well-conditioned. On the contrary,
the 2.5D MFS suffers from an ill-conditioned system of equation when a large
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number of collocation points (or NpW) is considered. The hybrid method presents
a remarkable improvement in the condition number when compared to the 2.5D
MFS.

Fictitious eigenfrequencies

The investigation on the effect of the fictitious eigenfrequencies has been shown
that the responses calculated by the 2.5D BEM and 2.5D SBM are affected by
this phenomena. This is an issue induced by the non-uniqueness problem of the
systems of equations resulting from the application of those approaches close to the
dispersion curves of the corresponding interior problem, a well-reported drawback
of direct boundary integral methods. The SBM, although it cannot be called a
direct boundary integral method as the BEM, places the sources in the boundary,
which could result in a system of equations that can not distinguish whether the
problem in hands is interior or exterior. In contrast, the MFS uses source outside
the domain to model the system, providing a mathematical clarification about the
exterior/interior problem ambiguity. Thus, MFS and hybrid approaches effectively
deal with the issue of fictitious eigenfrequencies.

Implementation procedure

The implementation of the BEM in practical algorithms for the modelling of wave
propagation problems is a complex task, due to the inner complexity of the method
associated to the mixture between boundary integral equations and finite element
discretisation concepts. Also, its computer memory needs require of experienced
programmers to reach efficient algorithms. Thus, FEM-BEM-based approaches
are the most difficult to be implemented from all the studied methods. On the
contrary, a much simpler implementation procedure are required by the 2.5D FEM-
MFS numerical strategy as the soil response is obtained using a meshless approach.
A slightly more complicated case is the one of the 2.5D FEM-SBM as, despite con-
sidering also a meshless approach for modelling the soil, it requires to compute the
corresponding OIFs. An even simpler implementation is the one that it is required
by the hybrid SBM-MFS method, which, as a fully meshless approach, does not
require to discretise the structure in finite elements. This method overcomes the
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other mesh-based models (such as 2.5D FEM-BEM, 2.5D FEM-MFS and 2.5D
FEM-SBM) in terms of simplicity in the algorithm implementation effort.

7.2 Recommendations and future work

The research work described in this thesis was focused on the development of effi-
cient meshless methods to deal with SSI problems. To this end, four methodolo-
gies were developed and assessed for several numerical examples. All the proposed
methodologies in this work have shown the potentiality to deal with longitudinally
invariant SSI problems. Although it has been considered that the main objectives
of thesis are accomplished, the developed investigations have raised additional
questions that may be interesting to address in the future, in order to develop
more accurate and efficient numerical approaches to deal with such problems. In
the following, some of the open issues on the present topic that deserve further
research are listed.

• One of the approaches to improve the computational efficiency of the mesh-
less methods is reducing the number of virtual sources. From calculation
examples conducted in this thesis, it was found that in the problems with
complicated geometries, the MFS and hybrid approaches provide accurate
results if the number of collocation points is larger than the number of vir-
tual sources. The recommendation is to study the reasons of the mentioned
issue in detail.

• In the analysis carried out in Chapter 5 regarding the random distribution
of the MFS sources, it was observed that the responses obtained by the
2.5D MFS and the hybrid methods are inaccurate in a few randomisation
cases chosen by the programming code. It is recommended to perform a
deeper investigation on the uncertainty of the random distribution of the
virtual sources in the 2.5D MFS and hybrid methods, applying more efforts
to study the restrictions on the positioning of the sources to ensure accurate
responses.
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• In Chapter 6, the formulation of the 2.5D SBM-MFS approach is presented
only for a single inclusion in a medium (Chapter 6). The potential exten-
sion of this methodology to account for multiple layers of material is a very
interesting topic for the future.

• The problems induced by the fictitious eigenfrequencies have been briefly
studied in this thesis, where it has been shown that the fictitious eigenfre-
quencies affects the responses of the 2.5D SBM. In this context, to assess
about the mitigation strategies to be used in the 2.5D SBM formulations for
dealing with the problems arising from the fictitious eigenfrequencies in elas-
todynamics is suggested. In this context, the application of the Burton-Miller
approach [98, 99] to the 2.5D SBM could be of great interest to mitigate the
negative effects of the fictitious eigenfrequencies.

• All the calculation examples considered in this work were presented for ra-
diation problems. It would be interesting to study if the benefits presented
in radiation problems in terms of accuracy, robustness and computational
efficiency, can also be observed in the scattering problems.
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